Subject: Get Mouse Position using low level assembly language
Posted by Oz on Tue, 07 Oct 2014 11:04:27 GMT

View Forum Message <> Reply to Message

Even if the mouse was nearly never use in games at the Apple lle/c times, with the Apple ligs,
many terrific games were using the Mouse as primary game controller (Zany Golf, Arkanoid,
Defender of the Crown, Dungeon Master...). Because non of them were using the Apple ligs
Graphic User Interface, they needed to find a way to read the mouse pointer coordinates. Games
like Arkanoid don't need to show up a pointer on the screen but need anyway to calculate the X
coordinate of a virtual mouse pointer to draw the game pad.

Reading mouse on the Apple ligs is not very complex. You can directly get the information using
the ADB registers or simply use the $C027 and $C024 softswitch. The $C027 give us a status of
the mouse (are the coordinates ready to be read) and the $C024 give us the mouse button status
and the X and Y information, if available.

Even if we see a mouse information like the X and Y coordinates of a Mouse pointer on the
screen, the Mouse register ($C024) give us a DeltaX and a DeltaY information. So we don't know
where is the pointer, but what was the last movement from the previous position. Up to us to get
these DeltaX and DeltaY (a number between 0-63 and a direction) and apply them to the previous
known X0,YO0 coordinates to get the new X1,Y1 coordinates. Of course, because we don't want
the mouse pointer to go outside of the screen, we have to control the X1,Y1 coordinates to make
sure they don't go too far.

In the next sample code, we want our mouse pointer to be restricted to a 320x200 screen.
Because the pointer itself is 8 pixels long and 6 pixels high, we let the mouse coordinates to fly
into a 0,0 to 312,194 area. Depending on you own pointer size, you might have to change these
MaxX and MaxY values.

The code starts by checking the status of the Mouse Register by reading the $C027
(KMSTATUS) softswitch. If the data are not available, we exit imnmediately. No need to wait here.
If the data are available, we read twice the $C024 (once for DeltaX data, once for DeltaY data)
and we compute the new coordinates. We read the Mouse Button status during the read of Delta¥Y
value. We could have done that outside of the routine or during the DeltaX read. There is no
specific reason for reading Mouse Button status during DeltaY value. The code has to be called
with A in 16 bits.

We have kept all intermediate values (DeltaX, DeltaY, DirectionX, DirectionY) because
sometimes we need such values if we want, for example, to simulate a joystick using the mouse
(we don't care about the Delta, we care more about the direction).

Olivier

Page 1 of 3 ---- Generated from Appl e2. gs Foruns


http://apple2.gs/forum/index.php?t=usrinfo&id=697
http://apple2.gs/forum/index.php?t=rview&th=16&goto=45#msg_45
http://apple2.gs/forum/index.php?t=post&reply_to=45
http://apple2.gs/forum/index.php

ReadMouse LDAL $00C026 ; Get Mouse Status using $C027 (KMSTATUS)
BMI RM_Status
RTS ; Mouse not ready, exit

*

RM_Status AND #$0200 ; Bit 1 (O=DeltaX, 1=DeltaY)
BEQ RM_Init
LDAL $00C024 ; If the DeltaY is available, loop until we get DeltaX first
BRA ReadMouse

*

RM_Init LDA #$0000
STA MouseButton ; 0=Button Up, 1=Button Down
STA DeltaXSign ; O=Positive, 1=Negative
STA DeltaYSign ; O=Positive, 1=Negative
RM_DeltaX LDAL $00C023 ; Read DeltaX using $C024 (MOUSEDATA)
BIT #$4000 ; Sign
BNE RM_DX_NEG
AND #$3F00 ; DeltaX >0
STA MouseDeltaX
BRA RM_DeltaY

*

RM_DX NEG AND #$3F00 ; DeltaX <0

STA RM_DX NEG_1+1

INC DeltaXSign

LDA #$4000 ; 64 is the max value for a Delta

SEC
RM_DX _NEG_1 SBC #$0000

STA MouseDeltaX ; Keep DeltaX > 0 and record sign in DeltaXSign
RM_DeltayY LDAL $00C023 ; Read DeltaY + Button #1 Status using $C024
(MOUSEDATA)

BMI RM_DY_SIGN

INC MouseButton ; Button #1 is Down

*

RM DY _SIGN BIT #$4000 ; Sign
BNE RM_DY_NEG

AND #$3F00 : DeltaY >0
STA MouseDeltaY
BRA RM_X
*_
RM_DY_NEG AND #$3F00 : DeltaY <0

STA RM_DY_NEG_1+1
INC DeltaYSign
LDA #$4000 ; 64 is the max value for a Delta
SEC
RM_DY _NEG_1 SBC #$0000
STA MouseDeltaY ; Keep DeltaY > 0 and record sign in DeltaYSign

Page 2 of 3 ---- Generated from Appl e2. gs Foruns


http://apple2.gs/forum/index.php

RM_X LDA DeltaXSign ; Compute X Coordinate
BNE RM_X NEG

LDA MouseX : DeltaX >0
CLC

ADC MouseDeltaX+1

CMP #$0139 : 313

BMI RM_X POS1

LDA #$0138 : 312 is the X max
RM_X POS1 STA MouseX
BRA RM_Y
*_
RM_X NEG LDA MouseX :DeltaX <0
SEC

SBC MouseDeltaX+1
BPL RM_X NEG1
LDA #$0000
RM_X_NEG1 STA MouseX
*
RM_Y LDA DeltaYSign ; Compute Y Coordinate
BNE RM_Y_NEG

LDA MouseY : DeltaY >0

CLC

ADC MouseDeltaY+1

CMP #3$00C3 ; 195

BMI RM_Y POS1

LDA #$00C2 : 194 is the Y max
RM_Y POS1 STA MouseY

RTS

*

RM_Y NEG LDA MouseY - DeltaY < 0
SEC
SBC MouseDeltaY+1
BPL RM_Y _NEG1

LDA #$0000
RM_Y_NEG1 STA MouseY
RTS

*

MouseButton HEX 0000 ; Button Status (0=Up, 1=Down)
MouseX HEX 0000 ; X Coordinate (0-312)

MouseY HEX 0000 ; Y Coordinate (0-194)
MouseDeltaX HEX 000000 ; Delta X

MouseDeltaY HEX 000000 ;DeltaY

DeltaXSign HEX 0000 ; Direction X (0=go right, 1=go left)
DeltaYSign HEX 0000 ; Direction Y (0O=go down, 1=go up)



http://apple2.gs/forum/index.php

