Subject: Memory Allocation under GS/OS
Posted by Oz on Tue, 07 Oct 2014 16:39:40 GMT

View Forum Message <> Reply to Message

Games need memory to load their resources (graphic, music, sound...). Most of the Apple ligs
files are 32 KB (graphic page size) or 64 KB (DOC Ram sound file). Because of the Bank
boundary, it is easy to manipulate 64 KB (or less) files, and harder to deal with larger file. Even
code blocks are limited to 64 KB segments.

When it is time to ask GS/OS some chunk of memory, we could of course ask for the exact size
we need (18 KB if the graphic we want to load is 18 KB long) but it is more convenient to ask for
whole Bank. So we allocate 64 KB space segments, starting from $XX/0000 to $XX/FFFF, and we
organize ourselves the inner storage. The 64 KB segments are perfect to store 2 graphic screens
(32 KB each), they can be used for loading area (a 32 KB graphic file, once compressed will be
smaller than 32 KB) and the unpack area (we need 32 KB to expand the compressed file).

Allocating one Bank also make the address management more easier because we have only one
byte (the bank number, from $00/ to $FF/) to manage and not the 3 bytes address ($E1/2000).

Here is a code to allocate the One Bank from GS/OS :

Hommooeen Allocate 1 bank of 64 KB --------------------
AllocOneBank PushLong #0
PushLong #$10000 ; 64 KB
PushWord myID ; ID of my current Program

PushWord #%11000000_00011100
PushLong #0

_NewHandle
PLX ; Handle Low Address
PLA ; Handle High Address (00XX)
XBA
STA AOB_1+2
AOB_1 LDAL $000001,X ; Get Bank Address (A=XX/00)
RTS

We simply ask the Memory Manager (_NewHandle is a Merlin 16+ Macro to call the Memory
Manager) a memory block of 64 KB, aligned on a Bank boundary (so we ensure to get the
$XX/0000-$XX/FFFF area).

The Memory Manager do not return a pointer to the area but an Memory Handle (= pointer of
pointer). Because we don't want to manipulate the area through it's handle, we need to get the
pointer (bank address). So we pull from the Stack the address of the Handle (4 bytes) and we
read a 16 bit Word containing the Bank byte ($XX/00) of the allocated Bank. We can perform
some self-modification of code (patching the LDAL $000001,X address) because our code is
running in RAM. This kind of manipulation is not possible in ROM. If the memory allocation failed,

Page 1 of 2 ---- Generated from Appl e2. gs Foruns

http://apple2.gs/forum/index.php?t=usrinfo&id=697
http://apple2.gs/forum/index.php?t=rview&th=17&goto=46#msg_46
http://apple2.gs/forum/index.php?t=post&reply_to=46
http://apple2.gs/forum/index.php

the Carry will be raised.

We can use the AllocOneBank routine at the beginning of the source code, after the Tools
initialization :

Fommooes Memory Allocation -------------
JSR AllocOneBank ; One Bank for Loading / Unpacking the files
STA BankLoadUnpack

JSR AllocOneBank : One Bank for the Pictures
STA BankPicture

JSR AllocOneBank ; One Bank for the Sound
BCS Error ; Test only the latest allocation
STA BankSound

BankLoadUnpack HEX 0000 ; 00XX

BankPicture HEX 0000
BankSound HEX 0000

We don't need to care about freeing the memory allocated. The _DisposeAll found at the end of
the code will de-allocate everything.

Olivier

Page 2 of 2 ---- Generated from Appl e2. gs Foruns

http://apple2.gs/forum/index.php

