Subject: Tools or No Tools ?
Posted by Oz on Sun, 05 Oct 2014 19:49:01 GMT

View Forum Message <> Reply to Message

When it is time to consider writing Apple ligs video games or a demo, the first question is
usually to decide which would be the best environment (Operating system) to use.

There are 3 available options :

- Proprietary OS
- Prodos 8
- GS/OS

Everyone who has watched the FTA Demos (Nucleus, Modulae, XMas, Delta...) / Games
(Space Harrier, Bouncin Ferno, Oil Landers...) / Utilities (Photonix, NoiseTracker), the Miami
Software (aka F.*.C.K) products (Teenage Queen, Sensei, Show 3200, Hot Cookies, Space
Shark, ZZ Copy...) or some of the Mr Z Demo (California Demo, Pom's / Toolbox disk introduction,
Crack Intro...) have been amazed by what a basic Apple llgs could do. For a moment, the slow
computer they were facing everyday with Prodos 16 was muted into a computer where everything
was fast, in color and in stereo ! Most of these products use a proprietary OS, very light and very
fast to be loaded from a 3,5 inches disk.

Most of the game, even the best ones like Rastan, were based on a Prodos 8 system. Few of
them, especially the latest ones, were GS/OS compatible (Out Of this World, Wolf 3D, Ultima I)
and NOT protected against the copy.

The real question is about GS/OS. Is the choice of GS/OS a constraint or an advantage for
Game programmers ? Why so many people were ignoring GS/OS when they where writing their
games ? Could we write also Demos under GS/OS ?

It is important to understand that programming a video game under GS/OS won't prevent you to
use all the required tricks for fast sprites animation, scrolling & co. Using GS/OS DOES NOT
MEAN using Quickdraw to write pixels on the screen. Using GS/OS, it is just about allocating
memory and making sure we do not blow up other programs memory spaces. The 'No Tools' and
'No GS/OS' is not the same. You can program low level and use the GS/OS to allocate for you the
right memory space before using it. And when it will be time to quit the game, free the allocated
memory. There is no constraints to use GS/OS. Only advantages (SynthLab / Tool 219 / Tool 220
musics).

The only reason why mot of the game were using Prodos 8 at the time was linked to the small
memory size of the Apple lligs (in the USA, some of them had only 512 KB). So, in order to keep
the maximum memory space for the game itself, the choice of Prodos 8 was done (it is also to
have the maximum space on the 800 KB disk, where Prodos 8 was taken less space than Prodos
16 or GS/OS). For anyone having 2 MB or more, GS/OS is much more friendly environment. You
can install your games on your hard drive, launch them and go back to the finder when exit.
Because the hard drive is faster than the disk, the games loading is faster. Today, with the use of
emulators, using a image disk for a game (and booting from the disk) is painful.

Page 1 of 10 ---- Cenerated from Appl e2. gs Foruns

http://apple2.gs/forum/index.php?t=usrinfo&id=697
http://apple2.gs/forum/index.php?t=rview&th=15&goto=38#msg_38
http://apple2.gs/forum/index.php?t=post&reply_to=38
http://apple2.gs/forum/index.php

The specific OS, like the ones we had at the Apple Il time, has been use mostly for demos or
games. Because such programs do no require to write something back to disk, the usage of the
disk was only done by fast read-block access. This is fast but once again, such program can't
benefit of a better Apple ligs configuration. They are limited to the usage of the 800 KB disk drive
and can't be installed on a hard drive (which would be faster, at the end, than a 800 KB drive).

In order to show that programming under GS/OS in not complex, you will find next a skeleton of
program. Build it with Merlin 16+ and you will get a S16 executable file. Launch it from GS/OS. Hit
a key to quit. The program does nothing spectacular but this could be a base for any game or
demo under GS/SOS.

The code itself is self-explanatory, there is nothing tricky. You can notice that the only thing we
really need, as game programmer, is an access to the $01/2000 area, which is the graphic page
once the Shadowing is active. We simply need to ask GS/OS for this memory area. Because the
Apple ligs is a single process at a time system, once your program is running you are the only one
doing something and you have full CPU power. In the case GS/OS still need to interrupt your
program (AppleTalk, Sound Interrupt, Graphic Interrupt...), you can protect yourself by using the
SEI /CLI opcodes. All code between a SEI and the CLI can't be interrupted, so you can do what
you want (we think here about the move of the Stack & Direct Page in Bank $01 for fast graphic
routines).

Feel free to ask any explanations about this small code set.

*oeeee Merlin 16+ Directives
mx %00 ; assemble in 16 bit
rel ; Build a relocated S16 file
dsk Hello.l ; Name of your program on disk
use 4/Locator.Macs ; Macro Definition Files

use 4/Mem.Macs
use 4/Misc.Macs
use 4/Util.Macs
use 4/Sound.Macs

*omomo Begin Of Program ----------

PHK ; Data Bank Register = Program Bank Register
PLB

CLC ; 16 bit
XCE
REP #$30

JSR Toollnit ; Init Tools + Compact Memory + Ask Shadowing
JSR BackupEnv ; Backup environment (colors...)

Page 2 of 10 ---- Cenerated from Appl e2. gs Foruns

http://apple2.gs/forum/index.php

Fommem Your Code Starts Here ----------
JSR WaitForKey ; Wait until a Key is pressed

Foomon End Of Program ---------

End JSR RestoreEnv ; Restore environment (colors...)
JSR ToolTerm ; End up Tools
JMP Exit ; Quit to the Launcher
*kkkkkkkkkkkkkkkkkkkkkhkkkkhkhkkkkhkkkkkhkhkkkkhkkhkkkhkkhkkhkkkhkhkkkkkkkkkk
Fkkkkk INIT TOOL SET/ FREE TOOL CODE Fhkkkkk
*kkkkkkkkkkkkkkkkkkkkhkkhhkkkkhkhkkkhkkhhkkkhkkhkkkkhhkkkhkhkkhkkkhkhhkkkhkkhkhkkkhkkx
Toollnit _TLStartUp ; Start Tools
PHA
_MMStartUp ; Start Memory Manager Tool Set
PLA
STA myID ; Get current ID
*_o
_MTStartUp ; Start Miscellaneous Tool Set
*__
PushLong #0 ; Allocate Page Direct in Bank 00

PushLong #$000100
PushWord myID

PushWord #$C005 ; Fixed, Page Aligned, Locked, Unpurgeable
PushLong #0
_NewHandle
PLX ; Handle Low Address
PLA ; Handle High Address (00XX bank)
XBA
STA Tl 1+2
T_1 LDAL $000000,X ; Get Low Address A=??/XXXX
PHA
*__
_SoundStartUp ; Start Sound Tool Set
*
PushLong #0 ; Compact Memory

PushLong #$8fffff

PushWord myID

PushWord #%211000000_00000000
PushLong #0

_NewHandle

_DisposeHandle

_CompactMem

PushLong #0 ; Ask Shadowing Screen ($8000 bytes from $01/2000)

Page 3 of 10 ---- Cenerated from Appl e2. gs Foruns

http://apple2.gs/forum/index.php

PushLong #$8000
PushWord myID
PushWord #%211000000_00000011

PushLong #$012000

NewHandle

PLA
PLA

RTS

ToolTerm _SoundShutDown

_MTShutDown
PushWord myID
_DisposeAll
PushWord myID
_MMShutDown
TLShutDown

RTS

BackupEnv SEP

LDAL
STA
LDAL
STA
LDAL
STA
LDAL
STA
REP
RTS

$00C022
BE_C022
$00C029
BE_C029
$00C034
BE_CO034
$00C035
BE_CO035
#$30

RestoreEnv SEP #$30

#$30

; Stop Tools

; ID of this Program in memory

; Backup Environment values (color, border...)

; Restore Environment values (color, border...)

LDA BE_CO035
STAL $00C035
LDA BE_CO034
STAL $00C034
LDA BE_C029
STAL $00C029
LDA BE_CO022
STAL $00C022
Page 4 of 10 ---- Cenerated from Appl e2. gs Foruns

http://apple2.gs/forum/index.php

REP #$30

RTS
BE C022 HEX 00 ; Background Color
BE _C029 HEX 00 ; Linearization of the Graphic Page
BE C034 HEX 00 ; Border Color
BE C035 HEX 00 ; Shadowing
kkkkkkkkkkkkkhkkkkkkkkkhkkkkhkhkkkhkkkkkkkkkhkkkkkkkkkhkkhkkkkkkkkkk
*kkkkkk GS/OS CODE *kkkkkk
*kkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkkkkkhkkhkkkkkhkkhkkkkkkkkhkkhkkkkkkkkkk
GSOS = $E100A8
L
Exit JSL GSOS ; Quit Program

dw $2029

adrl gsosQUIT

gsosQUIT dw 2 ; pCount

ds 4 ; pathname

ds 2 ; flags
kkkkkkkkkkkkkkkkkkkkkkhhkkkkhkkkkkhkkkkkkkkkhkkhkkkkkkkkkhkkkkkkkkkk
Fkkkkkok EVENT HANDLER CODE Fkkkkokok
kkkkkkkkkkkkkkkkkkkkkkhkkkkhkhkkkhkhkkkkkhkhkkkkkhkkhkkkhkkhkkhkkkhkkhkkkkkkkkkk
WaitForKey SEP #$30 ; Wait for a Key Press
WFK_1 LDAL $00c000

BPL WFK_1

STAL $00c010

REP #$30

RTS

kkkkkkkkkkkhkhkhkhkkkkkkkkhhhhkhkhhhkkkkkkhhhhkhkhhkkkkkkkhhhkhkhkkkkxx

Subject: Re: Tools or No Tools ?
Posted by mcpderez on Sun, 05 Oct 2014 23:09:41 GMT

View Forum Message <> Reply to Message

| think it was over on the Facebook group (which seems impossible to search) someone was
showing The Programmer's Introduction to the Apple lilgs. Then someone said most of what was
in there is obsolete. Specifically, Sheppy (IIRC) said that new GS software should be written using

Page 5 of 10 ---- Cenerated from Appl e2. gs Foruns

http://apple2.gs/forum/index.php?t=usrinfo&id=11
http://apple2.gs/forum/index.php?t=rview&th=15&goto=39#msg_39
http://apple2.gs/forum/index.php?t=post&reply_to=39
http://apple2.gs/forum/index.php

TaskMaster which was not covered by that book.

| think this all ties into what OS to use for a game and | suspect TaskMaster is either a tool or a
library or paradigm for structuring an event loop.

So, does that book help much with game programming or is it considered obsolete in this domain
too? Is TaskMaster something that should be used if selecting GS/OS for the game? | don't know
what TaskMaster is, but it just sounds like something that could add too much overhead and slow
things down too much. He didn't really say where TaskMaster is documented, but | would not be
surprised if it is in one of the Toolbox Reference books that sadly seem unavailable in PDF.

Any hints or nudges in the right direction will be appreciated.

Subject: Re: Tools or No Tools ?
Posted by Oz on Mon, 06 Oct 2014 19:26:07 GMT

View Forum Message <> Reply to Message

Like most of you, | enjoy FaceBook for its capability to let people present on a daily basis how
they interact with the Apple Il world (retro bright session, Ebay auctions, pictures, video, misc
news) but it is the worst place to search for something which is 1 month old. Because Google do
not index FaceBook content, everything disappear very quickly. It is impossible to use such space
for References or long term work. A forum like this one is perfect to focus on one specific direction
(llgs programming). What we are saying here will still be valid in 10 years.

Quote:someone was showing The Programmer's Introduction to the Apple llgs. Then someone
said most of what was in there is obsolete. Specifically, Sheppy (IIRC) said that new GS software
should be written using TaskMaster which was not covered by that book.

Sheppy is right when he speaks about how TaskMaster has changed the way the Apple ligs
programs have to be written. On the early ages of the Apple ligs (Prodos 16 was the first 16 bit Os
delivered with the ligs), the Apple ligs programming was very close to the Macintosh
programming. Thanks to its small market, the Apple ligs system developers had the flexibility to
add features that the Mac was missing : The TaskMaster, a new way to deal with Graphic
Interface events (mouse click, keyboard key press...). The Apple ligs programming was easier
and more elegant than the Macintosh one.

Everything is true, but only if you consider writing applications using the Apple Graphic User
Interface (Apple Menu bar, pull down menu, window with check box, radio button, Text Edit,
QuickDraw ll...). Everything that make an Apple Iigs program looks the same than another Apple
ligs program. For video games, excepts few of them like Balance of Power, ChessMaster, Full
Metal Planete, we don't use the Apple Interface but we take control of the whole screen, remove
mouse cursor and Menu Bar and handle all the events ourselves.

QuickDraw Il routines are tailor made for Windows and 'serious' applications, not suited for
action games where sprites have to be drawn very quickly on the screen. The only events we

Page 6 of 10 ---- Cenerated from Appl e2. gs Foruns

http://apple2.gs/forum/index.php?t=usrinfo&id=697
http://apple2.gs/forum/index.php?t=rview&th=15&goto=40#msg_40
http://apple2.gs/forum/index.php?t=post&reply_to=40
http://apple2.gs/forum/index.php

have to handle when we write a game is the keyboard (Dark Castle), the joystick (Rastan) or the
mouse (Zany golf) for controlling the character on the screen. Reading the right memory locations
to find out which key has been pressed, what is the direction of the Joystick and where is the
mouse is easy and can be done directly in assembler without having to involve the TaskMaster.

We will publish here the low levels routines to read such events. Unlike TaskMaster, in low level
assembly language we choose to see if something has occurred (keyboard key, joystick direction,
mouse status) instead of being notified that something has happen. If you don't go to read the
mouse position, nothing will happen if the user try to click or move the mouse. On the TaskMaster,
the events are kept by the system and deliver (in the right order) to the process if required.

As conclusion, we won't start the TaskMaster in arcade video game because we don't need it.

Olivier

Subject: Re: Tools or No Tools ?
Posted by mcpderez on Tue, 07 Oct 2014 07:43:46 GMT

View Forum Message <> Reply to Message

Oz wrote: Like most of you, | enjoy FaceBook for its capability to let people present on a daily
basis how they interact with the Apple Il world (retro bright session, Ebay auctions, pictures,
video, misc news) but it is the worst place to search for something which is 1 month old.

Yes, exactly!

mcpderez wrote:someone was showing The Programmer's Introduction to the Apple ligs. Then
someone said most of what was in there is obsolete. Specifically, Sheppy (IIRC) said that new GS
software should be written using TaskMaster which was not covered by that book.

OK, I now understand TaskMaster is the event manager under GS/OS, at least more or less.

Oz wrote:As conclusion, we won't start the TaskMaster in arcade video game because we don't
need it.

So, how useful is The Programmer's Introduction to the Apple ligs for arcade video games? Is
there a better starting book (that | don't have to buy) besides the French one already posted?

| think I will have a choice to make, or freedom to play with both using TaskMaster or not. | am not
very good at fast arcade video games (I die quickly and get frustrated), so | prefer turn-based
strategy games. | doubt anything | write at first will be for public consumption, but mostly to show
myself | can make something. Maybe even YaTTT (Yet another Tic-Tac-Toe). :d | hope you won't
find this a waste of your time; who knows what it will evolve into and | have to start somewhere.

Finally, | had one more question related to the original post in this thread. Are there some
examples of suitable "proprietary OS" with released source? Or are these like asking magicians to

Page 7 of 10 ---- Cenerated from Appl e2. gs Foruns

http://apple2.gs/forum/index.php?t=usrinfo&id=11
http://apple2.gs/forum/index.php?t=rview&th=15&goto=44#msg_44
http://apple2.gs/forum/index.php?t=post&reply_to=44
http://apple2.gs/forum/index.php

tell you their tricks?
Now, | need to get busy setting up an environment to try the sample code you posted.

Thank you Olivier!

Subject: Re: Tools or No Tools ?
Posted by Oz on Wed, 08 Oct 2014 12:48:32 GMT

View Forum Message <> Reply to Message

Mark,
Quote:So, how useful is The Programmer's Introduction to the Apple ligs for arcade video games?

Not very useful. If your game is running under GS/OS, you have very few to know about the
OS. Simply allocating memory, loading files, starting few tools (Misc, Memory, Sound...).

Everything will be explained here in the next coming topics. You can read the book, but 95% is
related to GS/OS application using the Apple Graphic User Interface. Not what most of the games
are using.

Quote:ls there a better starting book (that | don't have to buy) besides the French one already
posted?

The first thing to learn is about the Graphic Page organization. On the Apple ligs this is very
simple (one Graphic Page located in $£1/2000, 320*200, 16 colors / Pixel, 4096 color in the
palette). Dagen will probably present the details in one of its videos. If it is not the case, we will do
a summary here. These explanations can be found in many Apple ligs books (look inside the
Hardware Reference and the Firmware Reference books).

You can also read some of the Tech Notes related to Graphic & Animation. Stay away from
any Tools or QuickDraw Il explanations, it is for Windowed applications. Not useful for games.

Quote:Maybe even Tic-Tac-Toe. Very Happy | hope you won't find this a waste of your time; who
knows what it will evolve into and | have to start somewhere.

The first step is to be able to understand + assemble + test the samples we provide here. Once
the Inputs (Read Mouse / Read Keyboard / Read Joystick / Load Files from disk) and the Outputs
(Draw on the Screen, Play Sounds, Write a file on disk) are working, you can start to program
your game. A Tic-Tac-Toe is fine because you have all previous elements to set up together.

Quote:Are there some examples of suitable "proprietary OS" with released source? Or are these
like asking magicians to tell you their tricks?

| have opened a Topic dedicated to Apple llgs Games Source Code. | have classified them by
OS : Prodos 8, GS/OS, Custom...

Quote:l need to get busy setting up an environment to try the sample code you posted.

Page 8 of 10 ---- Cenerated from Appl e2. gs Foruns

http://apple2.gs/forum/index.php?t=usrinfo&id=697
http://apple2.gs/forum/index.php?t=rview&th=15&goto=48#msg_48
http://apple2.gs/forum/index.php?t=post&reply_to=48
http://apple2.gs/forum/index.php

| think Dagen will cover soon the development environment, including Merlin 16+. This is
typically the kind of thing that is better looking a video than reading explanations here.

Olivier

Subject: Re: Tools or No Tools ?
Posted by Dagen on Fri, 10 Oct 2014 02:01:04 GMT

View Forum Message <> Reply to Message

| was very inspired the FTA when | was young and took the idea of "No Tools" very literally. This
was a BAD idea. A friend and | made some cool demos, not quite as good as the French groups,
but not bad for two 16-year-olds. We went the route of installing a bootloader and building a
custom OS as Olivier describes in his post. When the size of our binary changed, we had to
change the number of blocks loaded in the bootloader. We had no toolchain to just copy files
since we weren't using a proper OS, so we'd just be copying blocks of data to specific disk
locations and updating our loader params. It was very cumbersome. And now, | haven't seen
many in years because they require a working 3.5" drive (not hard drive installable) and generally
had other ROM 1 specific issues and didn't use the memory manager so I'm sure we stomped on
banks of RAM that weren't ours. When our demos booted, they booted fast and looked great! But
they were more fragile and a pain to maintain. We were optimizing for the end-user experience...
fastest boot possible from a 3.5" floppy. Even | eventually moved away from that style of
development during my last year of active ligs usage (around 1992-93) when | finally got a 44MB
SyQuest Hard Drive, and started writing ProDOS 8 programs and using some of the Memory
Manager and sound tools.

Anyway, you should probably write everything for GSOS now. Yes, a bootable GSOS disk means
you have very little space for a single disk release, but most people will probably experience a
new release in emulation first... with a hard drive. And so many of us enthusiast have a mass
storage device of some sort now, SCSI/CFFA/etc.

Also, don't be a dummy and go overboard with the "No Tools" philosophy like | did as a teenager.
Just use the minimum amount needed to "play nice" with the OS... so you don't crash it and can
exit your game/demo safely. Once you have allocated memory, and loaded your files, you can
write all of the fun stuff directly to the hardware and have little interaction with the OS or tools.
Basically exactly what Olivier said.

Excuse the rambling post, I'm just trying to get in this thread before | forget.

One last thing, soon in my video series, I'll cover the development environments needed to build
these examples. In the meantime, if you already know how to use an assembler like Merlin, take
a look at some examples I've given for building for a BLOAD-style binary, a ProDOS 8 program
and a GSOS program that all just quit immediately. It's basically the exact same program written
for 3 different environments.

https://github.com/digarok/gslib/blob/master/source/quit.s
https://github.com/digarok/gslib/blob/master/source/quit8.s

Page 9 of 10 ---- Cenerated from Appl e2. gs Foruns

http://apple2.gs/forum/index.php?t=usrinfo&id=6
http://apple2.gs/forum/index.php?t=rview&th=15&goto=62#msg_62
http://apple2.gs/forum/index.php?t=post&reply_to=62
http://apple2.gs/forum/index.php

https://github.com/digarok/gslib/blob/master/source/quit16.s

So for example, the Quitl6 program is basically the simplest "proper" GSOS app | think one can
right. I'm not sure that last sentence is accurate though. For instance, you really would need to
do some tool startup/shutdown routines in any real proper GSOS app, as shown in Olivier's
original post. I'm just trying to show the simplest thing that will compile and run from GSOS. So
don't flame me. I'm still just learning too! :lol:

rel ; compile as relocatable code
dsk Quitl6.l ; Save Name

phk ; Set Data Bank to Program Bank
plb ; Always do this first!

*** your main program here!ll ***

jsl $E100A8 ; Prodos 16 entry point

da $29 ; Quit code
adrl QuitParm ; address of parameter table
bcs Error ; hever taken
Error brk ; should never get here
QuitParm adrl $0000 ; pointer to pathname (not used here)
da $00 ; quit type (absolute quit)

Subject: Re: Tools or No Tools ?
Posted by jesseblue on Mon, 15 Jan 2018 19:34:21 GMT

View Forum Message <> Reply to Message

The answer is: No tools! 8)

Page 10 of 10 ---- Generated from Appl e2. gs Forumns

http://apple2.gs/forum/index.php?t=usrinfo&id=728
http://apple2.gs/forum/index.php?t=rview&th=15&goto=107#msg_107
http://apple2.gs/forum/index.php?t=post&reply_to=107
http://apple2.gs/forum/index.php

