

& APPLE COMPUTER, INC.

Copyright © 1988 by Apple
Computer, Inc.

All rights reserved. No part of
this publication may be repro-
duced, stored in a retrieval
system, or transmitted, in any
form or by any means, mechan-
ical, electronic, photocopying,
recording, or otherwise, without
prior written permission of
Apple Computer, Inc. Printed in
the United States of America.

Apple, the Apple logo,
ImageWriter, LaserWriter, and
ProDOS are registered
trademarks of Apple Computer,
Inc.

Apple Desktop Bus, Macintosh,
and SANE are trademarks of
Apple Computer, Inc.

Adobe Illustrator is a trademark
of Adobe Systems Incorporated

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbats are registered
trademarks of International
Typeface Corporation.

Microsoft is a registered trade-
mark of Microsoft Corporation.

POSTSCRIPT is a registered
trademark of Adobe Systems
Incorporated.

Simultaneously published in the
United States and Canada.

ISBN 0-201-17746-3
ABCDEFGHIJ-DO-8987
First printing, December 1987

WARRANTY INFORMATION

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR REPRESENTA-
TION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO
THIS MANUAL, ITS QUALITY,
ACCURACY, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD “AS 1S,” AND
YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS
TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLU-
SIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is
authorized to make any modifica-
tion, extension, or addition to this
warranty.

Some states do not allow the exclu-
sion or limitation of implied warran-
ties or liability for incidental or -
consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state to state.

Groups of routines within each tool set 1-5
Apple Desktop Bus Tool Set 1-5
Control Manager 1-5
Desk Manager 1-5
Dialog Manager 1-6
Event Manager 1-6
Font Manager 1-7
Integer Math Tool Set 1-7
LineEdit Tool Set 1-8
List Manager 1-8
Memory Manager 1-9
Menu Manager 1-9
Miscellaneous Tool Set 1-10
Print Manager 1-11
QuickDraw II 1-11
QuickDraw II Auxiliary 1-14
SANE Tool Set 1-14
Scheduler 1-14
Scrap Manager 1-15
Sound Tool Set 1-15
Standard File Operations Tool Set 1-15
Text Tool Set 1-16
Tool Locator 1-16
Window Manager 1-17

Using the Apple lics Tool Sets 2-1

Starting up the required tool sets 2-1
Loading and starting up other tool sets 2-3
Calling the correct routine 2-5
Calling a routine from assembly language 2-5
Calling a routine from C 2-6
Passing parameters 2-6
Return from a call 2-7

Apple Desktop Bus Tool Set 3-1

A preview of the Apple Desktop Bus Tool Set routines 3-1
About the Apple Desktop Bus commands 3-2
Using other Apple Desktop Bus devices 3-3
Polling the Apple Desktop Bus for data 3-3
Polling single-user applications 3-3
Polling multiuser applications 3-3
The ADB Change Address When Activated handler 3-4
The Collision Detect handler 3-4

v Contents

Desk Manager 5-1

A preview of the Desk Manager routines 5-1
Using classic desk accessories 5-3
When the CDA menu can be displayed 5-3
Writing classic desk accessories 5-3
Supporting new desk accessories 5-5
Supporting new desk accessories
with TaskMaster 5-5
Supporting new desk accessories
without TaskMaster 5-6
Writing new desk accessories 5-6
Desk Manager housekeeping routines 5-9
Desk Manager routines 5-12
Desk Manager summary 5-30

Dialog Manager 6-1

A preview of the Dialog Manager routines 6-1
Dialog boxes 6-4
Dialog and alert windows 6-7
Item templates 6-8
Item types 6-10
Item descriptor and item value 6-12
Myltem 6-16
Display rectangle 6-17
Item ID 6-18
Item flag 6-18
Item color tables 6-18
Dialog records 6-19
Alerts 6-19
MySound 6-22
Using the Dialog Manager 6-23
Filter procedures 6-25
MyFilter 6-25
Dialog Manager housekeeping routines 6-27
Dialog Manager routines 6-31
Dialog Manager summary 6-88

Event Manager 7-1

A preview of the Event Manager routines 7-1
Two managers in one 7-3
Event types 7-3
Mouse events 7-3
Keyboard events 7-3
Window events 7-4
Other events 7-4
Vi Contents

vill

Contents

FontStatBits and FontSpecBits bit flags 8-8
FontStatBits flag 8-9
FontSpecBits flag 8-11

FamStatBits and FamSpecBits bit flags 8-12
FamStatBits flag 8-12
FamSpecBits flag 8-13

Interaction with the user 8-13

Using the Font Manager 8-14

Best-fit font algorithm 8-16

Font Manager housekeeping routines 8-18

Font Manager routines 8-23

Font Manager summary 8-50

Integer Math Tool Set 9-1

A preview of the Integer Math Tool Set routines 9-1
Rounding and pinning 9-3

Using the Integer Math Tool Set 9-4

Integer Math Tool Set housekeeping routines 9-5
Integer Math Tool Set routines 9-8

Integer Math Tool Set summary 9-42

LineEdit Tool Set 10-1

A preview of the LineEdit Tool Set routines 10-2
Edit records 10-4
The leDestRect and leViewRect fields 10-6
The leLineHite and leBaseHite fields 10-7
The leSelStart and leSelEnd fields 10-7
The leHiliteHook and leCaretHook fields 10-9
Using the LineEdit Tool Set 10-9
Moving or scrolling windows
that contain LineEdit items 10-11
LineEdit Tool Set housekeeping routines 10-12
LineEdit Tool Set routines 10-16
LineEdit Tool Set summary 10-47

List Manager 11-1

A preview of the List Manager routines 11-1
List controls and list records 11-2

List control records 11-8

Using the List Manager 11-11

Selection modes 11-12

List Manager housekeeping routines 11-13
List Manager routines 11-16

List Manager summary 11-25

Miscellaneous Tool Set 14-1

A preview of the Miscellaneous Tool Set routines 14-1
Using the Miscellaneous Tool Set 14-4

Miscellaneous Tool Set housekeeping routines 14-6
Miscellaneous Tool Set routines 14-9

Miscellaneous Tool Set summary 14-64

Print Manager 15-1

A preview of the Print Manager routines 15-2
Print dialog boxes 15-4
Choose Printer dialog box 15-4
Style dialog box 15-5
Job dialog box 15-8
Print records 15-9
Printer information subrecord 15-11
Style subrecord 15-12
ImageWriter style subrecord values 15-13
LaserWriter style subrecord values 15-13
Job subrecord 15-14
Printing modes and resolutions 15-15
Using the Print Manager 15-19
Printing loop 15-20
Printing a specified range of pages 15-21
Using QuickDraw II for printing 15-21
Sequence of events 15-22
Methods of printing 15-23
Printer and port drivers 15-23
Printer drivers 15-23
Printer peripheral cards and printer ports 15-24
Background processing 15-24
Print Manager housekeeping routines 15-25
Print Manager routines 15-29
Print Manager summary 15-47

Contents

xil

Contents

Fonts and text in QuickDraw II 16-41

Font definition 16-41
Apple IIGS font definition 16-41
Apple IIGS font header fields 16-43
Macintosh font part of an Apple IIGS font 16-44
Characters 16-44
Fonts 16-47
Font rectangle 16-47
Font strike 16-48
Defined versus undefined characters 16-49
Location table 16-49
Offset/width table 16-50
Character backgrounds 16-52
Font bounds rectangle 16-53
Drawing and the text buffer 16-54
Controlling text display 16-55
Character spacing calls 16-55
Style modification calls 16-56
Font flags option calls 16-56
Using the QuickDraw II font calls 16-57
Text drawing calls 16-57
Text width calls 16-58
Text bounds calls 16-58
Text buffer management calls 16-58
Font information calls 16-62
QuickDraw II housekeeping routines 16-63
QuickDraw II routines 16-68
QuickDraw Il summary 16-274

QuickDraw I Auxillary 17-1

A preview of the QuickDraw II Auxiliary routines 17-1
About pictures 17-2

Style modification support 17-3

QuickDraw II Auxiliary icon record 17-3

Using QuickDraw II Auxiliary 17-5

QuickDraw II Auxiliary housekeeping routines 17-6
QuickDraw II Auxiliary routines 17-9

QuickDraw II Auxiliary summary 17-16

SANE Tool Set 18-1

A preview of the SANE Tool Set routines 18-2
Using the SANE Tool Set 18-3

Performance characteristics and limitations 18-6
Differences between 65C816 and 6502 SANE 18-7
SANE Tool Set housekeeping routines 18-11
SANE Tool Set routines 18-15
SANE Tool Set summary 18-15

xiv

Contents

Text Tool Set 23-1

A preview of the Text Tool Set routines 23-1
Using the 1/O directing routines 23-3
Using the text routines 23-4

Using the Text Tool Set 23-9

Text Tool Set housekeeping routines 23-10
Text Tool Set routines 23-15

Text Tool Set summary 23-46

Tool Locator 24-1

A preview of the Tool Locator routines 24-1
Using the Tool Locator 24-3

Tool Locator housekeeping routines 24-4
Tool Locator routines 24-7

Tool Locator summary 24-26

Window Manager 25-1

A preview of the Window Manager routines 25-2
Window frames and controls 25-6
Window regions 25-9
Data and content areas and scroll bars 25-9
Using the Window Manager 25-10
Using TaskMaster 25-12
Window Manager icon font 25-15
Window record 25-15
Windows and GrafPorts 25-17
Window frame colors and patterns 25-17
How a window is drawn 25-20
Draw content routine 25-21
Draw information bar routine 25-21
Making a window active: activate events 25-24
Defining your own windows 25-25
wDraw: draw a window frame 25-27
wHit: find what region a point is in 25-28
wCalcRgns: calculate a window's regions 25-28
wNew: perform additional initialization 25-28
wDispose: remove a window 25-29
wGrow: draw the outline of a window 25-29
Origin movement 25-29
Window Manager housekeeping routines 25-32
Window Manager routines 25-35
Window Manager summary 25-139

XViii

Figures and tables

Figure 4-13

Figure 4-14 Radio button control flag 4-20

Figure 4-15 Radio button color table 4-20

Figure 4-16 Scroll bar control record 4-21

Figure 4-17 Scroll bar control flag 4-22

Figure 4-18 Scroll bar color table 4-22

Figure 4-19 Size box control record 4-23

Figure 4-20 Size box control flag 4-24

Figure 4-21 Size box color table 4-24

Figure 4-22 Limit-block data 4-33

Figure 4-23 Default limit-block values 4-34

Figure 4-24 DragRect examples 4-51

Figure 4-25 DragRect routine dragFlag parameter 4-52
Figure 4-26 Control Manager flag bits 4-72

Table 4-1 Control Manager routines and their functions 4-2
Table 4-2 Control Manager part codes 4-8

Table 4-3 Control Manager—other tool sets required 4-9
Table 4-4 Control Manager icon font format 4-11
Table 4-5 Control Manager message parameters 4-25
Table 4-6 Movement constraint values 4-53

Table 4-7 Standard control type values 4-73

Table 4-8 Control Manager constants 4-85

Table 4-9 Control Manager data structures 4-87
Table 4-10 Control Manager error codes 4-88

Radio button control record 4-19

Desk Manager 5-1

Table 5-1
Table 5-2

Table 5-3
Table 5-4
Table 5-5
Table 5-6

Desk Manager routines and their functions 5-2

Tool sets required to support
new desk accessories 5-5
New desk accessory action codes 5-7

New desk accessory Period field values 5-8

Desk Manager constants 5-30
Desk Manager error codes 5-30

Dialog Manager 6-1

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9

Typical dialog box 6-4
Modeless dialog box 6-5
Typical alert box 6-6
Item template 6-9

Item types 6-10

Alert template 6-20
Stage byte 6-21

Alert template 6-32
Stage byte 6-33

X X

Figures and tables

Integer Math Tool Set 9-1

Table 9-1

Table 9-2
Table 9-3
Table 9-4

Integer Math Tool Set routines

and their functions 9-2

Integer Math Tool Set—other tool sets required 9-4
Integer Math Tool Set constants 9-42

Integer Math Tool Set error codes 9-42

LineEdit Tool Set 10-1

Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5
Table 10-1
Table 10-2
Table 10-3
Table 10-4
Table 10-5
Table 10-6
Table 10-7

List Manager

Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5
Figure 11-6
Figure 11-7
Figure 11-8
Figure 11-9
Table 11-1

Table 11-2
Table 11-3

Table 11-4

Edit record 10-5

LineEdit destination and view rectangles 10-6
Justification and the destination rectangle 10-6
Line height and base line 10-7

Selection range and insertion point 10-8
LineEdit Tool Set routines and their functions 10-3
LineEdit Tool Set—other tool sets required 10-9
LEKey actions and special characters 10-29
LETextBox2 embedded change values 10-43
LineEdit Tool Set constants 10-47

LineEdit Tool Set data structures 10-47

LineEdit Tool Set error codes 10-48

11-1

List record 11-3

The listType bit flag 11-4

Member record 11-6

The memFlag bit flag 11-6

List Manager scroll bar color table 11-7

List control record 11-9

List control color table 11-10

Color table and example list 11-10
Range-mode selection 11-12

List Manager routines and their functions 11-2
List Manager—other tool sets required 11-11
List Manager constants 11-25

List Manager data structures 11-25

xxlii

Figures and tables

Miscellaneous Tool Set 14-1

Figure 14-1
Figure 14-2
Figure 14-3
Table 14-1

Table 14-2

Table 14-3
Table 14-4
Table 14-5
Table 14-6
Table 14-7
Table 14-8
Table 14-9
Table 14-10
Table 14-11
Table 14-12

Hardware interrupt status 14-24

Mouse interrupt status word 14-35

User ID fields 14-58

Miscellaneous Tool Set routines

and their functions 14-2

Miscellaneous Tool Set—

other tool sets required 14-4

Battery RAM parameter reference numbers 14-12
ASCII time 14-16

GetAddr parameter reference numbers 14-20
Interrupt source reference numbers 14-26
Mouse mode values 14-36

System failure error codes 14-55

Vector reference numbers 14-62
Miscellaneous Tool Set constants 14-64
Miscellaneous Tool Set data structures 14-69
Miscellaneous Tool Set error codes 14-70

Print Manager 15-1

Figure 15-1
Figure 15-2
Figure 15-3
Figure 15-4
Figure 15-5
Figure 15-6
Figure 15-7
Figure 15-8
Figure 159
Figure 15-10
Figure 15-11
Figure 15-12

Figure 15-13
Table 15-1
Table 15-2
Table 15-3
Table 15-4
Table 15-5
Table 15-6
Table 15-7

Choose Printer dialog box 15-4

Printer names dialog box 15-5

Style dialog box for ImageWriter 15-6
Style dialog box for LaserWriter 15-7

Job dialog box for ImageWriter 15-8

Job dialog box for LaserWriter 15-9

Print record 15-10

Printer information subrecord 15-11
Printer style subrecord 15-12

Job subrecord 15-14

Pixels and print lines 15-17

Resolution, pixel size, page size,

and print quality 15-18

Printer status record 15-41

Print Manager routines and their functions 15-3
Printer paper sizes 15-5

Resolution, colors, and gray scales 15-16
Print Manager—other tool sets required 15-19
Print Manager constants 15-47

Print Manager data structures 15-47

Print Manager error codes 15-49

Machine reference manuals

There are two reference manuals for the machine itself: the Apple IIGS Hardware
Reference and the Apple IIGS Firmware Reference. These books contain detailed
specifications for people who want to know exactly what's inside the machine.

The hardware reference manual

The Apple IIGS Hardware Reference is required reading for hardware developers,
and it will also be of interest to anyone else who wants to know how the machine
works. Information for developers includes the mechanical and electrical
specifications of all connectors, both internal and external. Information of general
interest includes descriptions of the internal hardware, which provide a better
understanding of the machine’s features.

The firmware reterence manual

The Apple IIGS Firmware Reference describes the programs and subroutines that
are stored in the machine’s read-only memory (ROM), with two significant
exceptions: Applesoft BASIC and the toolbox, which have their own manuals. The
Firmware Reference includes information about interrupt routines and low-level
I/O subroutines for the serial ports, the disk port, and for the Apple Desktop Bus™
interface, which controls the keyboard and the mouse. The Firmware Reference
also describes the Monitor, a low-level programming and debugging aid for
assembly-language programs.

The toolboX manuals

Like the Macintosh, the Apple IIGS has a built-in toolbox. This volume of the

Apple IIGS Toolbox Reference introduces concepts and terminology and tells how
to use some of the tools. The Apple IIGS Toolbox Reference, Volume 2, contains
information about the rest of the tools and also tells how to write and install your own
tool set.

Of course, you don't have to use the toolbox at all. If you only want to write simple
programs that don't use the mouse, or windows, or menus, or other parts of the

desktop user interface, then you can get along without the toolbox. However, if
you are developing an application that uses the desktop interface, or if you want to
use the Super Hi-Res graphics display, you'll find the toolbox to be indispensable.

XX Vi Preface: Roadmap to the Apple lics Technical Manuals

Operating-system manuais

There are two operating systems that run on the Apple 1IGS: ProDOS® 16 and
ProDOS 8. Each operating system is described in its own manual: ProDOS 8
Technical Reference Manual and Apple IIGS ProDOS 16 Reference. ProDOS 16
uses the full power of the Apple IIGS. The ProDOS 16 manual describes the features of
ProDOS and includes information about the System Loader, which works closely with
ProDOS 16. If you are writing programs for the Apple IIGS, whether as an application

programmer or a system programmer, you are almost certain to need the ProDOS 16
Reference.

ProDOS 8, previously just called ProDQS, is the standard operating system for most
Apple II computers with 8-bit CPUs. It also runs on the Apple IIGS. As a developer of
Apple 1IGS programs, you need the ProDOS 8 Technical Reference Manual only if

you are developing programs to run on 8-bit Apple II computers.

All-Apple manuals

In addition to the Apple IIGS manuals mentioned above, there are two manuals that
apply to all Apple computers: Human Interface Guidelines: The Apple Desktop
Interface and Apple Numerics Manual. If you develop programs for any Apple
computer, you should know about these manuals.

The Human Interface Guidelines manual describes Apple’s standards for the
desktop interface of any program that runs on Apple computers. If you are writing a
commercial application for the Apple IIGS, you should be familiar with the contents
of this manual.

The Apple Numerics Manual is the reference for the Standard Apple Numeric
Environment (SANE™), a full implementation of the IEEE Standard for Binary
Floating-Point Arithmetic (IEEE Std 754-1985). The functions of the Apple IIGS SANE
tool set match those of the Macintosh™ SANE package and of the 6502 assembly-
language SANE software. If your application requires accurate or robust arithmetic,
you'll probably want to use the SANE routines in the Apple IIGS. The Apple IIGS
Toolbox Reference tells how to use the SANE routines in your programs. The Apple
Numerics Manual is the comprehensive reference for the SANE numerics routines.

xxvili Preface: Roadmap to the Apple ilcs Technical Manuals

Table P-2
Parameter length
on the Apple lics

Term Length

Byte 8 bits
Word 2 bytes; 16 bits
Long 4 bytes; 32 bits

The function of each parameter remains constant, regardless of what language you're
using to access the capabilities of the tools. To make this manual as useful and non-
language-specific as possible, many of the parameters are also identified by a
pseudo-type; that is, the type listed may or may not exist as a formal definition in a
programming language, but the pseudo-type at least provides some additional
information about the nature of the parameter. The pseudo-types used are defined
in Table P-3.

% Note: In fact, some of the pseudo-types may actually conflict with the type
definitions in some programming languages; for example, Pascal does not
define BOOLEAN in the same way as the BOOLEAN pseudo-type does.

Table P-3
Stack diagram pseudo-types

Type Length Definition

POINTER Long Points to an address (see Chapter 12, “Memory Manager”)

HANDLE Long Points to a pointer (see Chapter 12, “Memory Manager”)

BOOLEAN Word TRUE is nonzero, FALSE is O

RECT Four words Data structure specifying coordinates of a rectangle as top, left, bottom,
right (see Chapter 16, “QuickDraw 11,” in Volume 2)

POINT Two words Y and X coordinates of a point (see Chapter 16, “QuickDraw I1,” in
Volume 2)

INTEGER Word 16-bit signed or unsigned value

LONGINT Long 32-bit signed or unsigned value

FIXED Long 32-bit signed value with 16 bits of fraction

FRAC Long 32-bit signed values with 30 bits of fraction

EXTENDED N/A 80-bit signed floating-point values with 64 bits of fraction

After the stack diagrams, the possible tool set errors that can occur during the routine
are listed. Also listed separately is the C synopsis of the routine, with the parameters
and the appropriate types. Finally, any additional information for an individual
routine, such as an example, figure, or table, is provided after the C synopsis.

At the end of each tool set chapter is 2 summary of the tool set’s constants, data
structures, and error codes.

A comprehensive index for both volumes appears at the end of Volume 2.

X X X Preface: Roadmap to the Apple lics Technical Manuals

rurure rooipox ennancements

Apple is continually improving the performance and capabilities of the Apple IIGS
Toolbox. Many of the performance improvements will not affect this manual;
inevitably, however, enhancements will be added that this manual does not
document. To be certain that you have the latest information about the toolbox, you
can contact the Apple Programmer’s and Developer’s Association. APDA is
administered by the A.P.P.LE. cooperative in Renton, Washington.

Apple Programmer’s and Developer’s Association
200 SW 43 Street

Renton, WA 98055

(206) 251-6548

XXX1l Preface: Roadmap to the Apple lics Technical Manuals

The Tool Locator is automatically initialized when ProDOS 16 is booted; thereafter,
the Tool Locator does its work behind the scenes. To use the Apple IIGS Toolbox in
the simplest fashion, you’'ll need to load and start the appropriate tool sets; after that
you don't need to know anything but the name of the routine and how to call it from
the appropriate programming language. (Calling information is in Chapter 2,
“Using the Apple IIGS Tool Sets.”)

The tool sets thus provide their capabilities at a minimum cost; their bookkeeping
functions are almost automatic, the interface to them is simple, and the applications
you write will not be rendered obsolete by any future changes in the hardware.

The Tool Locator is also flexible enough to allow you to extend the scope of the tool
sets by writing your own, and it is powerful enough to keep track of both the Apple
tools and your tools. You can write and install your own tool sets if you wish and still
have the Apple tool sets available when you need them.

Are there any limitations?

There is at least one important point to consider when you are planning to call an
Apple IIGS tool from your application: The tools are designed to run in full native
mode rather than in Apple II emulation mode. In full native mode, the e, m, and x
registers are all set to 0, which provides a 16-bit accumulator and 16-bit index
registers. Almost all of the tools require this mode and simply will not work if the
machine is in any other state. The limited exceptions to this rule are documented
under the individual calls described in later chapters of this manual.

What kinds of tool sets are provided?

In this section, we simply list the categories of tool sets and the groups of routines
within each tool set. The listing does not contain definitions of the individual
routines for each tool set; for that summary, look at the first few pages of the chapter
describing the appropriate tool set. To find an individual routine, look it up by its
name in the index or look under the appropriate tool set.

A summary such as this can seem like teasing; in fact, that's part of its purpose. At
this point, we wish to introduce you to the entire range of the Apple IIGS Toolbox
routines and encourage you to use as many of the tool sets as possible.

1-2 Chapter 1: Infroducing the Apple lies Toolbox

Standard File Operations Tool Set: Presents the standard user interface when a file
is to be saved or opened.

List Manager: Presents the user with a list from which to choose (for example, the
Font Manager uses the List Manager to arrange the list of fonts).

Font Manager: Provides information to applications as to how many fonts are
available and what the characteristics of those fonts are.

QuickDraw II Auxiliary: Adds some capabilities to QuickDraw 1, particularly the
ability to collect drawing calls into a picture.

wiJl1 1901 3€15

Integer Math Tool Set: Supports mathematics routine with integers, long integers,
and signed fractional numbers. Also converts integers and hex and decimal
numbers from one form to another.

SANE Tool Set: Supports the Standard Apple Numerics package, which provides
IEEE standard extended-precision calculations.

rinuer 1901 Sel

Print Manager: Allows your application to use standard QuickDraw II routines to
print text or graphics on a printer.

DWW UV 3D

Sound Tool Set: Supports the sound tool set interfaces and provides the basic sound
capabilities.

Note Synthesizer: Not described in this manual.

Note Sequencer: Not described in this manual.

IMSVIVIILEU 1VUL 315
Apple Desktop Bus Tool Set: Controls Apple Desktop Bus activity.

Scheduler: Prevents a tool call from crashing the system by asking for a temporarily
unavailable system resource.

Text Tool Set: Provides an interface between Apple 11 character device drivers and
applications running in native mode.

1-4 Chapter 1: Introducing the Apple lics Toolbox

Dialog Manager

Dialog creation and disposal routines: Create and close modal or modeless
dialog boxes.

Item creation and removal routines: Add and remove items from dialog boxes.

Dialog event-handling routines: Handle events in dialog boxes, including the
standard Cut, Copy, Paste, and Delete commands.

Alert routines: Invoke alerts, including those containing predefined icons.

Item manipulation routines: Allow you to

Change or return text for items in dialog boxes

Set or return the item type, display rectangle, or current value of an item
Return the ID of the first item, or the next item after a specified item

Set or return the default button item

Return or reset the alert stage of an alert

Hide, show, or find a dialog item

Call the standard dialog filter

Enable or disable a dialog item

B Redraw a part of a dialog in a specified update region

Miscellaneous dialog routines: Establish the sound procedure for alerts and
specify the font for the dialog and alert window.

Event Manager

Event accessing routines: Check events to see if they are of interest to the
application and returns them if appropriate.

Mouse status routines: Provide the ability to read the location of the mouse and
the status of the mouse buttons.

Event queue routines: Allow you to place or remove events into the event queue.
Miscellaneous Event Manager routines: Allow you to
® Check the number of ticks (sixtieths of a second) since the system was last started

B Return the suggested maximum difference between ticks that determines a double
mouse-click

B Return the number of ticks between blinks of the caret marking the insertion point
m Specify the system event mask

m Allow use of an alternative pointing device, such as a graphics tablet, in place of or
in conjunction with the mouse

1-6 Chapter 1: Introducing the Apple lics Toolbox

Integer Math string routines: Convert between a binary value and an ASCII
character string representing that value, allowing you to

m Convert integers to hex, Long, or decimal format ASCII strings
m Convert Longs to decimal format ASCII strings

m Convert hex ASCII strings to Integer or Long

m Convert decimal format ASCII strings to Integers or Longs

LineEdit Tool Set

Edit record routines: Initialize an edit record, dispose of an edit record, copy text
into an edit record, return a handle to the text of a specified edit record, or return the
length of the text of an edit record.

Insertion point and selection range routines: Cause the caret at the insertion
point to blink, control the selection range, and highlight or unhighlight the selection
range or caret.

Editing routines: Replace, cut, copy, paste, delete, or insert the selection range or
at the caret of an edit record, as appropriate.

Text display routines: Draw the text of an edit record, including routines that use
justification, word wrap, and embedded changes.

Scrap handling routines: Copy to and from the LineEdit scrap, return a handle to
the scrap, and set or return the size of the LineEdit scrap.

Miscellaneous LineEdit routines: Set the leHiliteHook and leCaretHook field of a
specified edit record.

List Manager

List routines: Create a list control, reset a list control, alphabetize a specified list,
and return a pointer to the list control’s definition procedure.

Member routines: Draw one or all members of a list, search a list for the next
selected member, and select a member.

1-8 Chapter 1: Introducing the Apple lics Toolbox

Item record access routines: Allow you to
B Set or return the name of a menu item
® Enable or disable a menu item

m Check or uncheck a menu item; that is, display or not display a check mark to the
left of the item

m Set or return the character to be displayed or not displayed to the left of the item
® Set or return the text style for a menu item

®m Set or return the values for a menu item, such as whether it is underlined and
highlighted

B Specify the ID number of a menu item
@ Determine how many times all menu items should blink when selected

Miscellaneous Menu Manager routines: Return a pointer to the Menu Manager
port, adjust screen resolution and redraw the current menu bar, and reinitialize the
palettes needed for the color Apple logo.

Miscellaneous Tool Set

The miscellaneous tools are a collection of various routines. Their capabilities are
summarized below.

Battery RAM routines: Write or read data to and from the Battery RAM and write
and read data to and from a specified Battery RAM parameter.

Clock routines: Set or return the current time in various ways.

Firmware entry routine: Allow you to use some Apple II emulation-mode entry
points.

Get system address routine: Retrieves the address of some important system
parameters referenced by the firmware.

Tick counter routine: Retrieves the current value of the tick counter.

Interrupt control routines: Enable or disable certain interrupt sources and return
the status of the interrupts.

Mouse and absolute clamp routines: Allow you to

® Initialize, set, position, home, and read the values for the mouse
m Set and get the clamp values for the mouse

® Return the interrupt status for the mouse

m Set and get the clamp values for an absolute device

Packing and munging routines: Pack bytes into, and unpack bytes from, a special
format that uses less storage space and manipulate bytes in a string of bytes.

1-10 Chapter 1: Introducing the Apple lics Toolbox

GrafPort routines: Set up the GrafPort for QuickDraw II and the other tool sets,
allowing you to

Open, initialize, and close a GrafPort
@ Set or get the current Grafport or the GrafPort's location information
® Set, get, or change the size of, adjust the origin of, or move the drawing location

m Set, get, or change the current clip regions

Pen and pattern routines: Control pen and pattern information, allowing you to

B Hide or show the pen and set or get the current values for the pen state, size,
mode, pattern, and mask

m Set or get the background pattern

m Move the current pen location to a point or a relative distance

Font routines: Control the pen and pattern information, allowing you to
B Set or get the current font, font ID, font flags, and font globals

m Set or get the text face and mode

m Set or get the spExtra and chExtra fields

m Set or get the foreground and background colors

Miscellaneous GrafPort routines: Allow you to

B Set or get the clip region, visible region, and handle to the visible region

® Set or get various fields in the GrafPort record, such as picSave, rgnSave,
polySave, userField, and sysField

& Set or get the pointer to the grgfProcs record

Line drawing routines: Draw a line from the current pen position to either a
specified point or a relative distance.

Rectangle, region, polygon, oval, round rectangle, and arc drawing
routines: Allow you to do the following with their respective objects:

® Frame; that is, draw the boundary of the object using the current pattern and pen
size

m Paint; that is, paint the interior of the object with the current pen mode and pen
pattern

® Erase; that is, fill the interior of the object with the background pattern
s Inver; that is, invert the pixels in the interior of the object

m Fill; that is, fill the interior of the object with a specified pen pattern

Pixel transfer routines: Allow you to scroll or shift a region of pixels or to transfer
pixels.

1-12 Chapter 1: Introducing the Apple lics Toolbox

Calculations with polygons: Allow you to open, close, dispose of, or offset a
polygon.

Mapping and scaling utilities: Allow you to
m Map points, rectangles, and regions from a source to a destination

& Scale points from a source to a destination

Cursor-handling routines: Allow you to

B Set or get the current settings for the cursor

®m Show or hide the cursor

m Obscure the cursor

® Reinitialize the cursor

Miscellaneous QuickDraw II utilities: Allow you to
Return a pseudo-random number

Set a seed value for a random number generator
Get the values for a specified pixel

Return a pointer to a specified ROM table

Indicate whether the cursor drawing code should use scan line interrupts

Set up a specified record of pointers

QuickDraw 1I Auxitiary

Picture routines: Allocate memory for recording of a picture definition, insert
comments into the current open picture, draw pictures, close pictures, and remove
pictures.

Miscellaneous QuickDraw II Auxiliary routines: Copy a pixel image from one
place to another and change the cursor to a watch cursor.

SANE Tool Set

The SANE Tool Set routines provide an entry to the SANE functions, which contain

B Numeric scanners and formatter

Elementary functions, financial functions, and random number generator

B Basic arithmetic operations, comparsions, conversions, environmental control,
and IEEE auxiliary operations

Scheduler

This tool set contains a routine that allows your own tool set or interrupt handler to
add a task to the Scheduler’s queue; this prevents tasks from calling a currenily busy
system resource,

1-14 Chapter 1: Introducing the Apple lles Toolbox

Text Tool Set

Text global routines: Allow you to set and return the global parameters for the
input, output, and error output devices.

1/0 directing routines: Allow you to set the type and location, and return the type,
of the input, output, and error output devices.

Text routines: Allow you to

m Initialize a text device

Pass a control code to a text device
Execute a status call to a text device

Combine a specified character, Pascal-type string, C-type string, line, or block of
characters with the output global AND mask and OR mask and write the character
to the output text device or error output text device

Read a character obtained from the input text device, combine it with the input
global masks, and return the character on the stack

Read a character string or block of characters from the input text device, combine
it with the input global masks, and write it to a specified memory location

Tool Locator

This tool set contains routines that allow you to

Ensure that one or more system tool sets are available and have specified
minimum version numbers

B Unload a specified tool set from memory

®m Return an entry in the function pointer table for a specified function in a specified

tool set

Return the pointer to the function pointer table of a specified tool set

Install the pointer to a function pointer table in the appropriate tool pointer table
Set or return the pointer to the work area for a specified tool set

Display a simulated dialog box on the Super Hi-Res display or on the 40-column
text screen

Save and restore the state of the text screen

um Allow applications to communicate with each other

1-16 Chapter 1. Infroducing the Apple lies Toolbox

Information bar routines: Allow you to

Set or get a pointer to a specified window’s draw information bar procedure

Set or get the value associated with the draw information bar routine for a window
Set the information rectangle to the coordinates of the information bar rectangle
Draw or hit test outside your application’s information bar definition procedure

Put the Window Manager back into a global coordinate system

Window shuffling routines: Allow you to

Make a specified window the active window

N Make a specified window invisible

Make a specified window visible if it was invisible and then draw the window
Show or hide a2 window

Bring a specified window to the front of all other windows and redraw the windows
as necessary

Send a specified window behind another specified window, redrawing any
exposed windows

Window drawing routines: Highlight or unhighlight a specified window and
redraw the entire desktop and all the windows.

User Interaction routines: Allow you to

Determine which part of which window, if any, the cursor was in when the user
pressed the mouse button

Pull around a dotted outline of a specified window, following the movements of
the mouse until the mouse button is released

Pull around a size image of a specified window, following the movements of the
mouse until the mouse button is released

Track the mouse until the mouse button is released, highlighting the close region
so long as the mouse location remains inside it and unhighlighting it when the
mouse moves outside it

Track the mouse until the mouse button is released, highlighting the zoom region
so long as the mouse location remains inside it and unhighlighting it when the
mouse moves outside it

Use TaskMaster to call GetNextEvent and handle the event if possible

Window sizing and positioning routines: Move a window, enlarge or shrink a
window, and switch the size and position of a window between its current size and
position and its maximum size.

1-18 Chapter 1: Introducing the Apple lics Toolbox

The next step is to start up QuickDraw 1I, which is the tool set responsible for
manipulating graphics on the Apple IIGS. Many of the other tool sets call
QuickDraw II to draw their graphics, particularly the tool sets controlling the desktop
interface. Therefore, QuickDraw II must be started up before those other tools.

Important

QuickDraw Il and several other ool sets require some direct-page space.
Because the Memory Manager has already been started up, you can obtain
the direct-page space from it. You then provide the appropriate address in the
startup call for the appropriate tool set (and can thus find the total direct-page
space needed for the tool sets you're using by totaling the pages needed in
the startup calls), such as in the QDStartUp routine that follows.

The starting address for a page of direct-page space must be page aligned
(that Is, must be a multiple of $100). If you need more information about
assigning direct-page space, see the Programmer’s Introduction to the
Apple liGs.

To start QuickDraw II, you call the QDStartup routine and provide the following:

® The starting location for QuickDraw II's direct-page space (QuickDraw 1I needs
three consecutive pages)

® The Master Scan Line Control Byte (Master SCB), which controls the basic
properties of the lines that will appear on the screen, such as the resolution and
color tables

¥ The maximum width, in bytes, of the largest pixel image that will be drawn
(0 equals the entire screen)

m The user ID of the program requesting the space (the user ID was provided by the
Memory Manager)

Now start up the Event Manager, which provides the basic support for event-driven
applications by monitoring the following:

m The user’s actions, such as those involving the mouse and keyboard
® The actions taken by other managers, such as the Window and Control Managers
To start the Event Manager, call the EMStartup routine and provide the following:

m The starting location for the Event Manager’s direct page (the Event Manager
needs one page of direct-page space)

B The maximum number of events that the event queue can hold
m The borders for the mouse or cursor, called the clamp values

m The user ID of the application (the user ID was provided by the Memory Manager)
The basic structure of the tools is now in place; in fact, the information up to this
point is so generic that you may wish to place it in a single module. You can then

either use that module for all of your applications or copy and modify it slightly when
necessary.

2-2 Chapter 2: Using the Apple lics Tool Sets

After you have loaded the tools, you must then start up each tool set. Because each
tool set depends upon the presence of other tool sets, certain tool sets must be
started up for others to work. In addition, these tool sets must be started up in a
prescribed order. This order is shown in Table 2-2, with tool sets lower on the list
depending upon the presence of all the tool sets higher on the list. Thus, the Menu
Manager depends upon the presence of all of the tool sets up to the Control
Manager; those tool sets must all be started up before the Menu Manager.

When you shut down the tools before you quit your application, you must shut them
down in the reverse order from which they were started up; that is, the last one started
up must be shut down first, the next-to-the-last one started up must be shut down
next, and so on.

Table 2-2

Tool set startup order
Tool set Tool set
number name

$01 #01 Tool Locator

$02 #02 Memory Manager

$03 #03 Miscellaneous Tool Set
$04 #04 QuickDraw II

$06 #06 Event Manager

$OE #14 Window Manager

$10 #16 Control Manager

$0F #15 Menu Manager

$14 #20 LineEdit Tool Set

$15 #21 Dialog Manager

$05 #05 Desk Manager

$17 #23 Standard File Operations Tool Set
$16 #22 Scrap Manager

$1C #28 List Manager

$13 #19 Print Manager

$1B #27 Font Manager

In addition, if you are using QuickDraw II Auxiliary, it must be started up after
QuickDraw II. You may assume that any other tool sets do not need to be started up
in any particular order; that is, they may be started up or shut down at any time.

Tool sets require the presence of certain minimum versions of other tool sets. Those
versions are given in the section “Using the XXX Tool Set” in each chapter. The
versions are also summarized, along with the tool set startup order, in Appendix C,
“Tool Set Dependencies and Startup Order,” in Volume 2.

2-4 Chapter 2: Using the Apple ligs Tool Sets

ALY M W MIBIIS W N

The interface libraries that allow the tool sets to be accessed from the C

programming language are included in the Apple IIGS Workshop C. These libraries
contain the function definitions for the tools. The steps to use a particular routine are
as follows:

1. Make the routine accessible by using an #include statement that includes the
appropriate file (for example, #include <Quickdraw.h> for the QuickDraw II
routines). The included file will provide the function declarations and the
necessary constants and data structures.

2. Invoke the call by entering its name and supplying the correct parameters. The
parameters should be supplied according to Pascal-style conventions; that is, the
parameters are pushed from left to right rather than from right to left. The
parameters for each routine are described in the individual routine descriptions in
the two volumes of this reference.

3. Examine the global variable _toolErr for errors, if necessary. If the variable is
equal to 0, no errors occurred; otherwise, the error number will be present. The
error numbers for each tool set are listed at the end of the relevant chapter and
compiled in Appendix B, “Error Codes,” in Volume 2.

In cases where a routine returns more than one value on the stack, the C definition
usually calls for those values to be returned as a data structure. The definitions for
these structures are in the appropriate C interface file. The type name for the
structure is the return type as shown in the C synopsis for the routine. The field
names for the structure are identical to the labels shown in the Stack afler call.

Two exceptions to this rule are routines that return an X and Y coordinate and those
that return a font ID. These are declared in C as returning a ZongWord rather than a
Point or a FontID. Frequently, you will only need to pass that result as is to another
routine that takes a Point or a FontID as a parameter.

If you wish to access the individual fields of such results, you can't use the dot
operator (that is, . fieldname) method. You can, for example, access them by the
method (FontID *) (&result) -> fontStyle.

" vwviily MHIGTTISICID

Most input and output parameters for the tool calls are passed on the stack. The
parameters and parameter-passing method are defined by each routine. Usually,
the parameters are passed on the stack, with the routine pulling input parameters off
and leaving any output parameters on the stack for the calling program to handle.
The method and parameters for each routine are described under the relevant
routine in the tool set chapters.

2-6 Chapter 2: Using the Apple lics Tool Sets

Table 3-1

Apple Desktop Bus Tool Set routines and thelir functions

Routine

Description

Housekeeping routines
ADBBootlnit

ADBStartUp
ADBShutDown
ADBVersion
ADBReset

ADBStatus

ADB routines
Sendinfo
ReadKeyMicroData
ReadKeyMicroMemory
AsyncADBReceive
SyncADBReceive
AbsOn

AbsOff

ReadAbs
SetAbsScale
GetAbsScale
SRQPoll
SRQRemove

ClearSRQTable

Initializes the ADB Tool Set; called only by the Tool Locator—must not be
called by an application

Starts up the ADB Tool Set

Shuts down the ADB Tool Set

Returns the version number of the ADB Tool Set

Resets the ADB Tool Set; called only when the system is reset—must not be
called by an application

Indicates whether the ADB Tool Set is active

Sends data to the keyboard microcontroller or to an ADB device
Receives data from the keyboard microcontroller

Reads a data byte from the keyboard microcontroller memory

Receives data from an ADB device

Receives data from an ADB device

Enables automatic polling of an absolute device (reserved for future use)
Disables automatic polling of an absolute device (reserved for future use)
Determines whether automatic polling of an absolute device is on or off
Sets up scaling for absolute devices (reserved for future use)

Reads absolute device scaling values (reserved for future use)

Adds a device to the SRQ list

Removes a device previously installed by the SRQPoll routine from the SRQ
list

Clears the SRQ list of all entries

nvvdl IS APPIE UESKIOP DUS commands

As you work with the ADB Tool Set, it's important for you to understand that the ADB
commands are not the same as the ADB Tool Set routines. The ADB commands are
at a lower-level than the tool set routines; that is, the tool set routines often include
an ADB command as an input parameter to the routine. The ADB Tool Set then
interprets and issues the ADB command. In a similar fashion to other tool sets,
then, the ADB tool set provides a higher-level interface to a lower-level function.

3-2 Chapter 3: Apple Desktop Bus Tool Set

The ADB Change Address When Activated handler

The simplest method for assigning a unique address to each device is to ask a player
to hold down the activator button (mouse button or Apple key). You can then use the
ADB Change Address When Activated handler. This command changes the address
of any device that is currently activated.

After you verify that a device has changed addresses, tell the player to release the
button. Repeat the request for each player, giving each device a new and different
address, until all of the players’ devices have been assigned unique addresses.

If this technique doesn't suit your taste (you may not wish to ask each player to hold
down the button), there is a more complicated, but more automated, way to assign
unique addresses, detailed in the next section.

The Collision Detect handier

You can use the Collision Detect handler to move each ADB device to a unique

address. You request the ID at a specific address (TALK-REG.3), which forces a
collision between the devices at this address, and then issue the Change Address
command using the Collision Detect Handler. Any device that did not detect a

collision will change its address.

It's possible that two (or more) devices may not detect a collision and both will move
to the new address. To alleviate this problem, you should move the devices between
the new addresses many times, thus increasing the odds that the devices will collide
and only a single device will be moved.

For example, if an application needs to distinguish four keyboards from each other,
it can

1. Use the SendInfo routine to send the ADB command TALK and an appropriate
register and address (TALK register 3, address 2).

2. Issue the Change Address command to address 8, with the Collision Detect handler
(=3FE). Any device that didn’t detect a collision (at least one) will change to the
new address.

3. Repeat step 2, changing address 8 to 9.
4. Move any device that stays at address 8 (it lost the collision) back to address 2.

5. Continue swapping the device between addresses 8 and 9 another 30 times, always
moving any losers back to address 2. Swapping 32 times yields very good statistical
odds that only one device will have its address changed to 8 from the original
keyboard address.

6. Repeat the command for each keyboard, using two open addresses (such as 9 and
10, then 10 and 11, and so on).

3-4 Chapter 3: Apple Desktop Bus Tool Set

The following examples assume that you are using the APW equate and macro files.
The first example enables SRQ on a device at address 7.

ENSRQ EQU =*

PEA $0000 ; Count of 0 bytes (lengthByte)

PEA 30000 ; Dummy address (not used since lengthByte is 0)
PEA $0000

PEA enableSRQ+7 ; Enable SRQO of address 7

_SendInfo

BCS ERROR

The next example shows how to make a tool call to change the handler of an ADB
device at address 7. It uses the ADB Tool Set routine SendInfo to transmit 2 bytes to
register 3 at address 7.

LDA #5$0207 s Change device at address 7 to handler 2

STA DATABUF ; into data buffer

PEA 50002 ; Count of 2 bytes to be sent on ADB (lengthByte)
Pushlong #DATABUF ; Data-buffer address

PEA transmit2ADBBytes+$37 ; Transmit 2 data bytes to register 3, ADB address 7
_SendInfo
BCS ERROR

The next example sends data to an ADB device.

DATASND EQU *

PEA $0005 ; 5 data bytes (4 data & 1 ADB command)
Pushlong #DATA ; Data-buffer address with AxBy
PEA transmitADBBytes+$4 ; Command to microcontroller (transmit 4 data bytes)
_SendInfo
BCS ERROR
DATA DS $8AR,1,2,3,4 ; First byte = ADB device command,
* ; device at address 8, Listen, register 2
* ; Other bytes are data

% Note: The first byte sent is transmitted directly as the ADB device command.

3-6 Chapter 3: Apple Desktop Bus Tool Set

MYYylICAVDKRECRIVE complenon rournne

The AsyncADBReceive completion routine obtains data from a buffer pointed to
by an address on the top of the stack. The first byte in the buffer contains the number
of data bytes in the buffer. The first data byte received from the ADB is the next byte
in the buffer, with subsequent data bytes received from the ADB stored sequentially
in the buffer. The last (nth) byte received is the # +1 byte in the buffer.

CPLTVC EQU * ; Completion vector for AsyncADBReceive
PHD ; Move direct page onto stack minus 1
TSC ; Stack now has RTL address (3 bytes)
TCD ; Old direct page (2 bytes)
LDA [6] ; Get length byte from buffer

BEQ ENDPOLL ; No data remaining

TAY ; Set index

INY ; Index + 1 to get (length + 1) bytes
LP LDA [6],Y ; Get data byte

STA BUF,Y ; Move to application buffer

DEY ; Set index for next data byte

BNE LP
ENDPOLL EQU *

PLD ; Restore direct page

RTL ; Return from completion routine

3-8 Chapter 3: Apple Desktop Bus Tool Set

QU IVUY AWUDBDBOOTINIT
Initializes the ADB Tool Set; called only by the Tool Locator.

An application must never make this call.

The stack is not affected by this call. There are no input or output parameters.
None

Call must not be made by an application.

yYULvu7 AWVDIIAITUPR

Starts up the ADB Tool Set for use by an application.

s+ Note: At the time of publication, the ADBStartUp call was not an absolute
requirement, because the Tool Locator automatically started up the ADB Tool Set
at boot time. However, you should make the call anyway, to guarantee that your
application remains compatible with all future versions of the system.

The stack is not affected by this call. There are no input or output parameters.
None

extern pascal void ADBStartUp()

3-10 Apple Desktop Bus Tool Set housekeeping routines

vyUQuU7 MAUDKESeI!

Resets the ADB Tool Set; called only when the system is reset.

Warning
An application must never make this call.

The stack is not affected by this call. There are no input or output parameters.
None

Call must not be made by an application.

vyUoQu7 ALDOIATUS

Indicates whether the ADB Tool Set is active.

Stack before call

previous comntents

wordspace Word—Space for result
<SP

Stack after call

previous contents

activeFlag Word—BOOLEAN; TRUE if ADB Tool Set is active; FALSE if not
<SP

None

extern pascal Boolean ADBStatus()

3-12 Apple Desktop Bus Tool Set housekeeping routines

vyiivz KeUUAD

Reads flags to determine whether automatic polling of absolute device is on or off.

Important

At the time of publication, this routine was not implemented. The routine is
reserved for future use,

Stack before call

brevious contents

wordspace | Word—Space for result
| <SP

Stack after call

Dbrevious contents

autoABSPoll Word—BOOLEAN; TRUE if polling on, FALSE if polling off
— SP

None

Call must not be made by an application.

3-16 Apple Desktop Bus Tool Set routines

S4911%) 4 Keaaneyiviicroiviemory
Reads a data byte from keyboard microcontroller ROM or RAM.

Stack before call

previous contents
-- dataOutPtr -— Long—POINTER to location to store results of read
— datalnPtr -— Long—POINTER to keyboard memory location to be read
adbCommand Word—ADB command to be issued, equal to $0009
«— SP
Stack after call
previous contents
«— SP
$0910 crndIncomplete Command not completed

extern pascal void ReadKeyMicroMem (dataOutPtr,datalInPtr, adbCommand)

Pointer datalQutbtr;
Pointer datalInPtr;
Word adbCommand;

3-18 Apple Desktop Bus Tool Set routines

A AT TTREAS AN AT AN N A= L= AN

Table 3-4 summarizes the values for the SendInfo parameters. For more information
about the ADB, see the Apple IIGS Firmware Reference.

Important

All of the commands in Table 3-4 that require more than a 1-byte fransfer, except
the Synch command, will automatically timeout In 10 milliseconds if there is no
response. The Synch command will fimeout in 20 miliseconds.

Table 3-4

Apple Desktop Bus SendIinfo parameters

Com-

mand dafalength Name Action

01 0 abort Abort; no operation

02 0 resetKbd Reset keyboard microcontroller

03 0 flushKbd Flush keyboard

04 1 setModes Set modes; data is a byte specifying the mode

05 1 clearModes Clear modes; data is a byte specifying the mode

06 3 setConfig Set configuration; data is a data structure as follows:
Byte ADB addresss, keyboard, and mouse
Byte Layout/language
Byte Repeat delay/rate

07 4 synch Synch; data is a data structure as follows:
Byte Mode
Byte ADB addresss, keyboard, and mouse
Byte Layout/language
Byte Repeat delay/rate

08 2 writeMicroMem Write microcontroller memory; data is a data structure as
follows:
Byte Direct-page memory address
Byte Data

10 0 resetSys Reset system; pull the reset line low for 4 milliseconds

11 1 keyCode Send ADB key code; data is a byte specifying the key code

(for key codes, see Table 3-5). This command can be
used to emulate an ADB keyboard by accepting key codes
from a device and then sending them to the
microcontroller to be processed as keystrokes. The
command doesn’t support buffering, nor will it process
Reset Up or Reset Down codes; those codes must be
handled before this command is used.

3-20 Apple Desktop Bus Tool Set routines

NeMIT FEIRIVE BUY RTY LUUEY

Table 3-5 summarizes the key codes that the Apple Desktop Bus microcontroller
understands. Various keyboards can generate various codes. See the appropriate
keyboard’s hardware reference manual for that keyboard’s actual codes.

Table 3-5

Key code specification

Key Key code Key Key code Key Key code
ESC $35 = $51 (Key number 71) $27
F1 $7A / $4B Return $24
F2 $7B * $43 4 $56
F3 $63 Tab $30 5 $57
F4 $76 Q $0C 6 $58
F5 $60 W $0D + $45
F6 $61 E $OE L Shift $38
F7 $62 R $0F Z $06
F8 $64 T $11 X $07
Fo $65 Y $10 C $08
F10 $6D U $20 \Y% $09
F11 $67 I $22 B $0B
F12 $6F O $1F N $2D
F13 $69 P $23 M $2E
Fl14 $6B [$21 , $2B
F15 $71] $1E . $2F
Reset $7F7F \ $2A / $2C
(Key number 18) $32 [X>(Del) $75 R Shift $38
1 $12 End $77 Up Arrow $3E
2 $13 Page Down $79 1 $53
3 $14 7 $59 2 $54
4 $15 8 $5B 3 $55
5 $17 9 $s5C L Control $36
6 $16 - $4E L Option $3A
7 $1A Caps Lock 38 L Apple 37

8 $1C A 00 Space 31

9 $19 S 01 R Apple 37
0 $1D D 02 R Option 3A
- $1B F 03 R Control 36

= $18 G 05 L Arrow 3B
Delete $33 H 04 D Arrow 3D
Help $72 J 26 R Arrow 3C
Home $73 K 28 0 52
Page Up $74 L 25 (Key number 104) 41
Clear $47 ; 29 Enter 4C

3-22 Apple Desktop Bus Tool Set routines

VWIS 1CWwWIiw

The scale record is shown in Figure 3-2.

Offset

W
O 00 NO DW= O

o Qo
@ >

Field

xDivide

yDivide

xOffset

yOffset

[1]

-

xMuitiply

I

yMuiltiply

Figure 3 -
Apple Desktop Bus scale record

3-24

Word—To divide X coordinate by
Word—To divide Y coordinate by
Word—To add to X coordinate of result
Word—To add to Y coordinate of result
Word—Low-order byte only; to multiply

X coordinate of result by

Word—Low-order byte only; to multiply
Y coordinate of result by

Apple Desktop Bus Tool Set routines

PRSIV 4 OYRKAUAKSITIOVEe

Removes a device previously installed by the SRQPoll routine from the SRQ list.

Important

The adbRegAdadr must be the same as that used in the SRQPoll routine to install
the device.

Stack before call

previous contents
adbRegAddr Word—ADB register and address
| < SP

Stack after call

l Drevious contents
| & sp

$0910 cmndIncomplete Command not completed

$0982 adbBusy ADB busy (command pending)

extern pascal void SRQORemove (adbRegAddr)

Word adbRegAddr;

3-26 Apple Desktop Bus Tool Set routines

Apple Desktop Bus Tool Set summary

This section briefly summarizes the constants, data structures, and tool set errors
contained in the Apple Desktop Bus Tool Set.

Important
These definitions are provided in the appropriate interface file.

Table 3-6
Apple Desktop Bus Tool Set constants

Name Value Description

ReadKeyMicroData ADB commands

readModes $000A Read modes of ADB command
readConfig $000B Read configuration of ADB command
readADBError $000C Read ADB error byte of ADB command
readVersionNum $000D Read version number of ADB command
readAvailCharSet $000E Read available character sets
readAvailLayout $000F Read available keyboard layouts
ReadKeyMicroMEM ADB command

readMicroMem $0009 Read data byte from keyboard microcontroller
Sendinfo ADB commands

abort $0001 Abort; no operation

resetKbd $0002 Reset keyboard microcontroller
flushKbd $0003 Flush keyboard

setModes $0004 Set modes

clearModes $0005 Clear modes

setConfig $0006 Set configuration

synch $0007 Synch

writeMicroMem $0008 Write microcontroller memory
resetSys $0010 Reset system

keyCode $0011 Send ADB key code

reset ADB $0040 Reset ADB

transmitADBBytes $0047 Transmit ADB bytes

enableSRQ $0050 Enable SRQ

flushADBDevBuf $0060 Flush buffer on ADB device
disableSRQ $0070 Disable SRQ

transmit2ADBBytes $0080 Transmit 2 ADB bytes

listen $0080 ADB Listen command

talk $00C0O ADB Talk command

3-28 Chapter 3: Apple Desktop Bus Tool Set

Table 4-1
Control Manager routines and their functions

Routine Description

Housekeeping routines

CtlBootlnit Initializes the Control Manager; called only by the Tool Locator—must not be
called by an application

CtlStartUp Starts up the Control Manager for use by an application

CtlShutDown Shuts down the Control Manager

CtlVersion Returns the version number of the Control Manager

CtlReset Resets the Control Manager; called only when the system is reset—must not be
called by an application

CtlStatus Indicates whether the Control Manager is active

Initialization and termination routines

CtlNewRes Reinitializes resolution and mode

NewControl Creates a control, adds it to the beginning of a specified window’s control list, and

returns a handle to the new control
DisposeControl Deletes a specified control and releases the memory occupied by the control
record and any data structures associated with the control

KillControls Disposes of all controls associated with a specified window

HideControl Makes a specified control invisible by filling the region the control occupies with
the background pattern of the window’s GrafPort

EraseControl Makes a specified control invisible, but does not add the control's enclosing
rectangle to the window’s update region

ShowControl Makes a specified control visible

DrawControls Draws all controls currently visible in a specified window

DrawOneCtl Draws a specified control

HiliteControl Changes the way a specified control is highlighted

Mouse location routines

FindControl Tells in which of the window’s controls, if any, the cursor was in when the user
pressed the mouse button

TestControl Tests which part of a specified control contains a specified point

TrackControl Follows mouse movements and responds appropriately until the mouse button is
released

Control movement routines

MoveControl Moves a specified control to a new location within its window

DragControl Pulls a dotted outline of the control around the screen, following the movements of
the mouse until the button is released

4-2 Chapter 4: Control Manager

m Radio buttons also retain and display an on-or-off setting. They’re organized
into families; only one button in a family can be on at a time. Clicking any button
on turns off all the others in the family, like the buttons on a car radio. Radio
buttons are used to offer a single choice among several alternatives; the radio
button that's on is filled with a small black circle.

m Size boxes provide a graphic symbol to represent the idea of resizing something,
For example, the Window Manager provides a size box that can be used to
increase or decrease the size of the window.

m Dials display a quantitative setting or value, typically in some pseudo-analog form
such as the position of a sliding switch, the reading on a thermometer scale, or the
angle of a needle on a gauge; the setting may be displayed digitally as well. The
control’s moving part that displays the current setting is called the indicator. The
user may be able to change a dial’s setting by dragging its indicator with the
mouse, or the dial may simply display a value not under the user’s direct control
(such as the amount of free space remaining on a disk).

The standard controls and a few other typical controls are illustrated in Figure 4-1.

[Check bow 1
X Check bow 2
[check box 3

> Dials

Frrrrrirrriyl

C Radio button 1
@ Radio button 2
O Radio button 3

Figure 4-1
Standard and typical controls

4-4 Chapter 4: Control Manager

Controls and windows

Every control belongs to a window. When the control is displayed, it appears within
that window’s content region; when the control is manipulated with the mouse, it acts
on that window. All coordinates pertaining to the control (such as those describing
its location) are given in the window’s local coordinate system. Even the state of the
control can be tied to the state of the window. A bit in the window’s record can be set
so the controls in the window will be considered inactive if the the window is inactive.
See Chapter 25, “Window Manager,” in Volume 2 for further information.

If you would like the controls in a window to scroll with the content region, make sure
that the origin of the control's window is set to its scrolled value before you call the
Control Manager.

Part codes

Some controls, such as buttons, are simple and straightforward. Others can be
complex objects with many parts: for example, a scroll bar may have two scroll
arrows, two paging regions, and a thumb. To allow different parts of a control to
respond to the mouse in different ways, many of the Control Manager routines
accept a part code as a parameter or return a part code as a result.

A part code is a number between 1 and 255 that stands for a particular part of a
control. Each type of control has its own set of part codes. The part codes are
assigned as shown in Table 4-2.

Table 4-2
Control Manager part codes
Code Description Code Description
0 No part 11 Editable line
1 Reserved for internal use 12 User item
2 Simple button 13 Long static text
3 Check box 14 Icon
4 Radio button 15-31 Reserved for internal use
5 Up arrow 32-127 Reserved for application use
6 Down arrow 128 Reserved for internal use
7 Page up 129 Thumb
8 Page down 130-159 Reserved for internal use
9 Static text 160-253 Reserved for application use
10 Size box 254~255 Reserved for internal use

% Note: Some Control Manager routines need to give special treatment to the
indicator of a dial, such as the thumb of a scroll bar. For the Control Manager to
recognize them, such indicators always have part codes greater than 127.

4-8 Chapter 4: Control Manager

When your application receives a mouse-down event, it should do the following:

1. If you used GetNextEvent to retrieve the mouse-down event, call FindWindow to
determine which part of which window the cursor was in when the user pressed the
mouse button. If you are using TaskMaster, this step is done for you.

2. If FindWindow or TaskMaster indicates that the mouse-down event was in the
content region of the active window, use that window’s control list.

3. If the event occurred in a content area, call FindControl with the pointer to the
window to find out whether the event occurred on an active control.

4. If FindControl returns a control handle, call TrackControl to handle user
interaction with the control. TrackControl handles the highlighting of the control
and determines whether the mouse is still in the control when the mouse button is
released. The routine also handles the dragging of the thumb in a scroll bar and
responds to presses or clicks in the other parts of a scroll bar. When TrackControl
returns the part code for a valid control, the application must respond
appropriately.

The application’s exact response o mouse activity in a control that retains a setting
depends upon the current setting of the control (available from the GetCtlvalue
routine). For controls whose values can be set by the user, the SetCtlValue routine
may be called to change the control's setting and redraw the control accordingly.
For example, you can call SetCtlValue when a check box or radio button is clicked to
change the setting and draw or clear the mark inside the control.

When you need to, you can call HideControl to make a control invisible or
ShowControl to make it visible. Similarly, you can call MoveControl, which simply
changes a control’s location without pulling around an outline of it, at any time. For
example, when the user changes the size of a document window that contains a scroll
bar, you can call HideControl to remove the old scroll bar, MoveControl to change
its location, and ShowControl to display it as changed.

Whenever necessary, you can read various attributes of a control with GetCtlAction,
GetCdTite, GetCtiRefCon, or GetCtlParams; similarly, you can change those
attributes with SetCtlAction, SetCtiTitle, SetCtlRefCon, or SetCtlParams'

4-10 Chapter 4: Control Manager

Offset Field

ctiNext —

— ctiowner j

ctiRect

R4
N W — O

OF
10 ctiflag

] '| ~HHIlts

12
13
14
15]
16]
7

18]

19

1A
1B
1C

ol ctDat
]Et afa

1F
20

‘;; — chRefCon —

— cfiValue —

—_ pu—

—— ctiProc

F— ctiAction

l
111

l

1

23
24
25
26
27

— ctiColor

| ||

Figure 4-6
Genetic control record

4-12 Chapter 4: Control Manager

ctiData: Reserved for use by the control definition procedure, typically to hold
additional information for a particular control type. For example, the standard
definition procedure for scroll bars uses the low-order word as the view size and the
high-order word as the data size. The standard definition procedures for simple
buttons, check boxes, and radio buttons store the address of the control’s title.

ctiRefCon: This field is reserved for application use.

ctlColor: Pointer to the control’s color table, which is used by the control’s
definition procedure to draw the control. NIL causes a default to a standard color
table defined by the control’s definition procedure.

More fields can be added to the end of the control record to further define the
control. See the section “Scroll Bar Control Record” in this chapter for an example
and the section “Defining Your Own Controls” in this chapter for more information.

Control record fields used by standard controls are shown in the next sections.

VIHNMIG MUHIVIE CUHTNVIE 1eCOTIAS

A button causes an immediate or continuous action when the user clicks it with the
mouse. A simple button can be round-cornered or square-cornered and can have a
single or a bold outline. You should use the bold outline on buttons that the user can
use to select default values by pressing the Return key. By convention, a default
selection should never cause the destruction of something (you shouldn’t, for
example, use a default Delete File). Use a single outline for all other simple buttons.

A square-cornered button can have a drop shadow.

% Note: Simple buttons with thick outlines and drop shadows are the only standard
controls that are drawn outside of their control rectangle.

4-14 Chapter 4: Control Manager

The ctlFlag field is defined as shown in Figure 4-14.

Tl o

ctiinvis
Invisible = 1
Visible =0

Family number

Figure 4-14
Radio button control flag

The pointer in ctiColor points to the radio button color table, which is defined as
shown in Figure 4-15,

Offset Field
$0 Word=Reserved for future use; must be 0
1 t— radReserved —
2 Word—Color of radio bufton when not highlighted
radNor — Bits 15~8=0 Bits 7-4 = Background color (only bits 5-4 used in 640 mode)
3 r Bits 3-0 = Foreground color (only bits 1-0 used In 640 mode)
4 Word—Color of radio button when highlighted (selected)
radSel __J Bits 15-8=0 Bits 7-4 = Background color (only bits 5-4 used in 640 made)
- Bits 3-0 = Foreground color (only bits 1-0 used In 640 mode)
5
6 Word—Color of title text
—— radiitle — Bits 15-8 =0 Bits 7-4 = Background color (only bits 6-4 used in 640 mode)
7 Bits 3-0 = Foreground color (only bits 1-0 used in 640 mode)
Figure 4-15

Radlo button color table

wwiwil W WwWilHWI ITCVIU

Scroll bars are predefined dials. Arrows in the scroll bars scroll data one line at a
time, paging regions scroll data a “page” at a time, and the thumb can be dragged to
represent any position within the data area.

4-20 Chapter 4. Control Manager

The ctiFlag field is defined as shown in Figure 4-17.

[7]e]s]afs]2][1]0]

ctlinvis
Invisible = 1
Visible =0
horScrol

Horizontal scroll bar = 1
Vertical scroll bar =0

rightFlag .
Right arrow on scroll bar = 1
No right arrow on scroll bar =0

leftFlag —
Left arrow on scroll bar = 1
No left arrow on scroll bar = 0 J

downflag
Down arrow on scroll bar = 1
No down arrow on scroll bar =0

upflag —
Up arrow on scroll bar = 1
No up arrow on sroll bar =0

Figure 4-17
Scroll bar control flag

The pointer in ct/Color points to the scroll bar color table, which is defined as shown
in Figure 4-18.

Offset Field

Word—Outline color

—— barOutiine — Bits 15-8 =0 Bits 7-4 = Qutline color for arrow boxes, thumb, page region
Bits 3-0=0

Word—Color of arrows when not highlighted

— barNorArrow——‘ Bits 15-8 =0 Bits 7-4 = Background color (only bits 5-4 used in 640 mode)
Bits 3-0 = Foreground color (only bits 1-0 used in 640 mode)

Word—~Color of arrows when highlighted (selected)
Bits 15~8 =0 Bits 7-4 = Background color (only bits 5-4 used in 640 mode)
Bits 3-0 = Foreground color (only bits 1-0 used in 640 mode)

Word-—Color of arrow box interior background
—barArrowBack— Bits 15-8 =0 Bits 7-4 = Background color

Bits 3-0=0
Word—Thumb's interior color when not highlighted
—barNorThump— Bits 15-8 =0 Bits 7-4 = Background color

Bits 3-0=0
Word—INTEGER; Reserved for future use; can be any value

(924
o

- barSelArrow —

— barSelThumb —

Word-—-Page region's interior color
— barPageRgn — Bits 15-9 =0 BIit 8 = 1 for dotfted pattermn, O for solid pattern
Bits 7-4 = Background of pattern, or color if solid Bits 3-0 = Foreground of pattern

Word~-Color of scroll bar's interior when inactive

— barinactive — Bits 15-8 =0
7-4 = Background color

- — 30=0
Figure 4-18
Scroll bar color table

T mUOwmP oo~ sWN —

4-22 Chapter 4: Control Manager

MIWYY IVUIIY

The message drawCt 1 asks the control definition procedure to draw all or part of the
control within its enclosing rectangle. The low-order word of ct/Param is a part code
specifying the part of the control to draw or 0 for the entire control. If the control is
invisible, there’s nothing to do; if it's visible, the definition procedure should draw
the control (or the requested part), taking into account the current highlighting and

value.

If ctiParam is the part code of the control’s indicator, the draw routine can assume
that the indicator hasn’t moved; it might be called, for example, to highlight the

indicator.

Stack before call

Drevious contents

- longspace

ctiMessage

- ctiParam

—-theControlHandle

Stack after call

brevious contents

- retValue

Long—Space for result
Word—drawCt1 message

Long—(Low word only) If part code, draw part; if 0, draw control

Long—HANDLE to control

— SP

Long—Undefined
— SP

4-26 Chapter 4: Control Manager

wurno UGS G UIOr feciangie rourine

Just before the Control Manager starts to drag a control or its indicator, it calls the
control’s definition procedure to determine the coordinates of the control or its
indicator. The highest bit of ct/Param must be 0 if the entire control is to be
dragged, or 1 if the control’s indicator is to be dragged.

Stack before call

previous contents
- longspace --| Long—Space for result
ctiMessage Word—calcCRect message
- ctiParam -——| Long—RECT data structure address
—-theControlHandle -—| Long—HANDLE to control
— SP
Stack after call

previous contents

- retValue -—] Long—o0 for default RECT, nonzero if RECT is set

<« SP

If the definition procedure returns 0 and the entire control is to be dragged, the RECT
pointed to by ctlParam is set to the control's enclosing rectangle.

If the definition procedure returns 0 and the control’s indicator is to be dragged, the
Control Manager assumes that the record is set up like a scroll bar record, and the
RECT is set to the thumb rectangle. See the section “Scroll Bar Control Record” in
this chapter.

4-28 Chapter 4: Control Manager

W IINMWIT IVUIINIIC

The Control Manager's DisposeControl routine sends the message dispCtl to the
control definition procedure, telling it to perform any additional actions required
when disposing of the control. If the control definition procedure returns 0 for
retValue, the control will be erased and removed from the control list, and its record
will be deallocated. The predefined standard controls always return 0.

If a custom control returns a nonzero retValue, the definition procedure has a chance
to abort the disposal.

Stack before call

previous contents
- longspace --| Long—Space for result
ctiMessage Word—dispCtl message
- ctlParam -—-| Long—Undefined
~-theControlHandle --| Long—HANDLE to control
& SP
Stack after call
previous contents
-- retValue - Long—oO0 to continue disposal, nonzero to abort disposal
< SP

4-30 Chapter 4: Control Manager

[RRLCINRIV ARSIV {RL—

Before the Control Manager begins to drag a control’s indicator, it calls the control’s
definition procedure with the message thumbCtl. The control definition procedure
should respond by calculating the limit rectangle, slop rectangle, axis constraint,
and outline pattern to use for dragging the control’s indicator. See the DragRect
routine in this chapter for more information about these parameters. The
parameters as they are defined in the limit block (shown in Figure 4-22) are passed to

that routine.

Stack before call

Drevious contents

- longspace

ctiMessage

- ctiParam

—-theControlHandle

Stack after call

previous contents

- retValue

Long—Space for result
Word—thumbCt1 message

Long—POINTER to parameter block for dragging an indicator

Long—HANDLE to control

< SP

Long—0 = default reposition, nonzero = application did reposition

<— SP

4-32 Chapter 4: Conirol Manager

If the definition procedure returns 0, the default parameters shown in Figure 4-23 are
used.

Offset Field

r

boundrect — Four words—RECT data structure specifying pageRegion

® N WA~
HERE

O

0A
0B
0C
oo [
0E|]
OF
10
1
12
13
14
15

Ll

— siopRect — Four words—RECT data structure specifying pageRegion plus 16 pixels all around

axisparam —1 Word—2 if bif 4 of ctiflag is clear, 1 if bit 4 is set

aragratt — Long—Pattern generated from pageRgnColor in control's color table

FTTTT

Figure 4-23
Defaulf limit-block values

4-34 Chapter 4: Control Manager

1IACK rourne

You can design a control that has its action procedure in the control definition
procedure. To do this, pass -1 for the actionProc parameter to the TrackControl
routine and set the control’s ctlAction field to —1. TrackControl responds by calling
the control definition procedure with the autoTrack message. The definition
procedure should respond like an action procedure, as discussed in the section
“TrackControl” in this chapter.

The ctlParam parameter contains the part code, which defines in which part of the
control the cursor was when the mouse button was pressed.

Stack before call

previous contents
-~ longspace -—| Long—Space for result
ctiMessage Word—autoTrack message
- ctiParam -—~| Long—(Low-order word only) Part code, 0 if not currently in part
—-theControlHandle --|{ Long—HANDLE to control
<SP
Stack after call
Drevious contents
- retValue --| Long—Undefined
<SP

4-36 Chapter 4: Control Manager

ovl puramerers rourine

The Control Manager calls the control’s definition procedure with the message
setParams any time a control’s additional parameters change. The additional
parameters are defined by the control. The values could be anything, even a pointer
to more parameters. The definition should perform the actions the new parameters
cause, including redrawing the control if necessary. The definition procedure can
assume that the control is already drawn in the window, in contrast to the situation in
which new parameters are sent with the message initCtl (see the section “Initialize
Routine” in this chapter).

The only predefined control that uses additional parameters is the scroll bar. The
low-order word is the view value, and the high-order word is the data size. Simple
buttons, check boxes, and radio buttons do nothing with additional parameters. The
standard scroll bar definiton procedure stores the values in the ctlData field of the
control’s record, computes a new thumb, and draws the new thumb in the scroll bar
(if the scroll bar is visible).

Stack before call

Drevious contents
- longspace -—| Long—Space for result
ctiMessage Word—setParams message
-- ctiParam - Long—New parameters
--theControlHandle -—{ Long-—HANDLE to control
— SP
Stack after call

| Drevious contents

- retValue -—| Long—Undefined

l &« sp

4-38 Chapter 4: Control Manager

KeCOorQ size rourine

The Control Manager calls the control definition procedure with the message
recCtl from the NewControl routine before it allocates memory for the control
record. NewControl then allocates the number of bytes returned in retValue for the
control’s record.

Important

The theControlHandle parameter as passed to the definition procedure is not
valid in this case. Because the control’s record has not been allocated, no
access to the record should be performed during the record size call. After the
record has been dllocated and inifialized by the Coentrol Manager, the definition
procedure will be called again with the message initCtl. See the section

“Initlalize Routine” In this chapter.

Stack before call

previous contents
- longspace - Long—Space for result
ctiMessage Word-—recCt 1 message
- ctiParam -—| Long—Undefined
—-theControlHandle —- Long—HANDLE to control
— Sp
Stack after call
previous contents
- retValue -— Long—Number of bytes needed for control record
—Ssp

If your control needs only the standard control record, for example, button, check
box, and radio button control records, return the size of the standard record
(decimal 40). If your control needs additional data fields, for example, for a scroll
bar record, return the size of the standard record, plus the additional size. You
should never return a number less than the number of bytes in a standard record.

4-40 Chapter 4: Control Manager

UL IV CTRTarnnup

Starts up the Control Manager for use by an application.

Important

Your application must make this call before it makes any other Control Manager
calls.

Stack before call

Dprevious contents

userlD Word—ID number of the application
arage_f-faar Word—Bank $0 starting address of one page of direct-page space
— SP
Stack after call

previous contents

< SP

$1001 wmNotStartedUp Window Manager not initialized

extern pascal vold CtlStartUp(userID,dPageAddr)
Word userID;

Word dPageAddr;

4-42 Control Manager housekeeping routines

YU 1V CIIKeser

Resets the Control Manager; called only when the system is reset.

An application must never make this call.

The stack is not affected by this call. There are no input or output parameters.
None

Call must not be made by an application.

VO 1V CIRTATUS

Indicates whether the Control Manager is active.

Stack before call

previous contenis

wordspace Word—Space for result
<SP

Stack after call

previous contenis

activeFiag Word—BOOLEAN; TRUE if Control Manager active; FALSE if inactive
<« SP

None

extern pascal Boolean CtlStatus ()

4-44 Control Manager housekeeping routines

“XYALY vIagLonrrol

Pulls a dotted outline of the control around the screen, following the movements of
the mouse until the button is released. When the mouse button is released,
DragControl calls the MoveControl routine to move the control to the appropriate

location.
control.

< Note:

Called when the mouse button is pressed while the cursor is in a specified

Before beginning to follow the mouse, DragControl calls the control

definition procedure to allow the application to perform its own custom dragging if
it chooses. If the definition procedure doesn’t choose to perform any custom
dragging, DragControl uses the default dragging method.

The startX, startY, limitRectPtr, and slopRectPtr parameters have the same meaning
as in the DragRect routine (see the section “DragRect” in this chapter). The axis
parameter has the same meaning as bits 1-0 in the dragFlag parameter of the
DragRect routine.

Stack before call

Drevious contents

stantX
startY

-~ limitRectPtr —_—

- slopRectPtr -—

axts

—-theControlHandle --

Stack after call

previous contents

None

Word-—X coordinate of starting point in local coordinates

Word—Y coordinate of starting point in local coordinates

Long—POINTER to bounds RECT data structure

Long—POINTER to slop RECT data structure
Word—Movement constraint: 0 = none, 1 = horizontal, 2 = vertical
Long—HANDLE to control

< SP

<SP

4-46 Control Manager routines

vIWIV vragkecr

Pulls a dotted outline of a specified rectangle around the screen, following the mouse
movements until the mouse button is released.

Stack before call

previous contents

- longspace --1 Long—Space for result
—- actionProcPtr -—| Long—POINTER to routine; NIL for default
-~ dragPatternPtr --| Long-—POINTER to pattern to use for drag outline
startX Word—X coordinate of starting point in local coordinates
stantY Word—Y coordinate of starting point in local coordinates
-~ dragRectPlr - Long—POINTER to RECT data structure of rectangle to be dragged
-~ limitRectPtr --1 Long—POINTER to bounds RECT data structure
-~ slopRectPtr -—| Long—POINTER to slop RECT data structure
dragFlag Word—Bit flag that customizes DragRect (see Figure 4-25)
<SP
Stack after call

Dprevious contents

-- moveDelta --{ Long—High worc amount X changed, low word = amount Y changed

<SP

$1001 wmNotStartedUp Window Manager not initialized

4-48 Control Manager routines

IMVIS WMVVUL HIWYRTSWl PUIULTICISID

The actionProcPtr parameter is a pointer to a procedure that defines some action to
be performed repeatedly for as long as the user holds down the mouse button; the
procedure should have no parameters. If actionProcPtr is NIL, DragRect simply
retains control until the mouse button is released.

The dragPatternPtr points to a QuickDraw II type of pattern. See Chapter 16,
“QuickDraw II,” in Volume 2 for more information.

The stantX and startY parameters are assumed to be the point where the cursor was
when the mouse button was originally pressed in local coordinates. “Local
coordinates,” in this case, means coordinates that are local to the current GrafPort.
However, if you want to drag an object anywhere on the screen, then the current
GrafPort should be the size of the screen. When the GrafPort is the size of the screen,
local and global coordinates are the same.

The RECT data structures pointed to by limitRectPtr and slopRectPtr are also in local
coordinates (that is, local as explained for stantX and stanty). To understand these
parameters, you must first understand the concept of offset point. The offset point
is initially the point whose vertical and horizontal offsets from the top-left corner of
the region’s enclosing rectangle are the same as those of starntX and stantY. The offset
point follows the mouse location, except that DragRect never moves the offset point
outside of the limit rectangle; this limits the travel of the region’s outline (but not
the movements of the mouse). The slop rectangle (defined by the RECT data
structure pointed to by slopRectPtr), which should completely enclose the limit
rectangle, allows the user some margin for error (that is, the user doesn’t have to be
extremely precise) when moving the mouse. DragRect's behavior while tracking the
mouse depends on the location of the mouse with respect to these two rectangles, as
follows:

m When the mouse is inside the limit rectangle, the region’s outline follows it
normally. If the mouse button is released while the mouse is there, the region
should be moved to the mouse location.

8 When the mouse is outside the limit rectangle but inside the slop rectangle,
DragRect “pins” the offset point to the edge of the limit rectangle. If the mouse
button is released while the mouse is there, the region should be moved to this
pinned location.

® When the mouse is outside the slop rectangle, the outline disappears from the
screen, but the DragRect routine continues to follow the mouse; if the mouse moves
back into the slop rectangle, the outline reappears. If the mouse button is released
while the mouse is outside the slop rectangle, the region should not be moved from
its original position.

4-50 Control Manager routines

The dragFlag parameter allows you to customize the DragRect routine so that it
performs in different ways. The meanings of the bits in the flag are summarized in
Figure 4-25, and each bit is discussed in greater detail after the figure.

[Tzl o[s [s 7 [e]e 2[5 2] 1]0]
(;rid value ’—J o ’ ’ LTJ
Reserved for future use; set 1o 0 J ’l

\

\ i

| |

Set dragRect to RECT being dragged = 1] |]
Don't return final RECT in dragRect = 0 J (

Limit RECT contains minimum and maximum values = 1
Limit RECT contains a bounds RECT =0

Custom drag shape =] -
Default dragging =0

Drag a rubber-band rectangle = 1 —
Drag arectangle =0

Reserved = 11 .
Allow vertical movement only = 10
Allow horizontal movement only = 01
No movement constraint = 00

Figure 4-25
DragRect routine dragFlag parameter

Bits 15-8 specify on what vertical columns the rectangle’s horizontal position is to be
bound. Values $00xx and $01xx both specify single horizontal movement; other
values passsed must be a power of 2. For example, if the value $04xx is passed, the
smallest amount of movement possible would be 4 pixels to the left or right of the
starting position. From there, movements to the left or right of 8, 12, 16, or 20
pixels, and so on for other multiples of 4 would be possible.

The feature can be used to move dithered colors, which would otherwise be position
dependent, and to speed up pixel copying by forcing a pattern to stay on byte or
word boundaries. See Chapter 16, “QuickDraw 11,” in Volume 2 for more
information about dithered colors.

Bit 5 can be set to 1 to make the DragRect routine store coordinates of the dragged
rectangle in the RECT data structure pointed to by the dragRectPtr parameter. That
RECT will then be updated whenever DragRect moves the rectangle. The RECT can
be used as the final RECT when the DragRect routine returns, or by a custom draw
routine for drawing the current RECT. See the description of bit 3,

4-52 Control Manager routines

vIVIW HIUWALUIIHUIS

Draws all controls currently visible in a specified window. The controls are drawn in
reverse order of creation; thus, in case of overlap, the controls created first appear
frontmost in the window.

Important

Window Manager routines such as SelectWindow, ShowWindow, and
BringToFront do not call DrawControls to display the window's controls, They
Just add the areas of the window that had not been visible to the window's
update region, thus generating an update event. When your application
recelves an update event for a window that contains controls, the application
should always call DrawControls explicitly between the BeginUpdate and
EndUpdate calls.

Stack before call

previous comntents

- theWindowPtr -—| Long—POINTER to window whose controls are to be drawn

| < sP

Stack after call

brevious contents

&« Sp

None

extern pascal void DrawControls(theWindowPtr)

GrafPortPtr theWindowPtr;

4-54 Control Manager routines

v — - YRS IS ASA A IR IR |

Makes a specified control invisible by filling the region the control occupies with the
background pattern of the window’s GrafPort. Unlike the HideControl routine,

EraseControl does not add the control’s enclosing rectangle to the window’s update
region.

The specified control’s ctiFlag field is set to make the control invisible. If you need to
make the control reappear, use the ShowControl routine.

If the control is already invisible, EraseControl has no effect.

Stack before call

Dprevious contents

—~theControlHandle -~| Long—HANDLE to control to be erased

— SP

Stack after call

Drevious contents

«— SP
None

extern pascal veid EraseControl(theControlHandle)

CtlRecHndl theControlHandle;

4-56 Control Manager routines

extern pascal Word FindControl (foundCtlPtr,pointX,pointY,theWindowPtr)

CtlRecHndl *foundCtlPtr;

Integer pointX;
Integer polinty;
GrafPortPtr theWindowPtr;

You can also use the following alternate form of the call:

extern pascal Word FindControl{foundCtlPtr, foundPoint, theWindowPtr)
Ct1lRecHndl *foundCtlPtr;
Point foundPoint;

GrafPortPtr theWindowPtr;

AUUL THIAWVITHITOL AU WINAow vianager rinawindaow rourine

When the Window Manager routine FindWindow reports that the mouse button was
pressed in the content region of a window and the window contains controls, your
application should call FindControl with theWindowPtr equal to the window pointer
and pointX/pointY equal to the point (in global coordinates) where the cursor was
when the mouse button was pressed.

4-58 Control Manager routines

SIFIU GetCtibpage

Returns the value of the Control Manager’s direct page. This call is normally made
only by the Dialog Manager.

Stack before call

Dprevious contents

wordspace Word—Space for result
— SP
Stack after call
previous contents
ctiDFuge Word—Bank $0 starting address of Control Manager’s direct page
)
None

eXtern pascal Word GetCtlDPage()

4-60 Control Manager routines

VLI 1Y welliiker,.on

Returns the current value of a specified control’s ctlRefCon field.

Stack before call
previous contents
- longspace -—| Long—Space for result
—--theControlHandle --| Long—HANDLE to control
— Sp
Stack after call

previous contents

-~ ctiRefConValue --| Long—Value in control’s ctlRefCon field

< SpP

None

extern pascal LongWord GetCtlRefCon(theControlHandle)

Ct1lRecHndl theControlHandle;

4-62 Control Manager routines

vyIimv IV UIUS

Returns a specified control's current ct/Value field.

Stack before call

Dbrevious contents

wordspace Word—Space for result
--theControlHandle --| Long—HANDLE to control
«— SP
Stack after call
Dbrevious contents
curValue Word—Control’s current value

N)
None

extern pascal Word GetCtlValue(theControlHandle)

CtlRecHndl theControlHandle;

4-64 Control Manager routines

SOE10 HideControl

Makes a specified control invisible by filling the region the control occupies with the
background pattern of the window’s GrafPort. The routine also adds the control’s
enclosing rectangle to the window’s update region, so that anything else previously
obscured by the control reappears on the screen. If the control is already invisible,
HideControl has no effect.

Stack before call

previous contents

—~theControlHandle --| Long-—HANDLE to control to be hidden

<« SP

Stack after call

I brevious contents
| < SP

None

extern pascal void HideControl (theControlHandle)

CtlRecHndl theControlHandle;

4-66 Control Manager routines

SOB10 KillControls

Disposes of all controls associated with a specified window by calling the
DisposeControl routine for each control in the window’s control list.

% Note: The Window Manager routine CloseWindow calls KillControls to dispose of
all controls associated with the specified window.

Stack before call

previous contents

-- theWindowPir --| Long—POINTER to window whose controls are to be disposed of

|6 SP

Stack after call

previous contents

«— SP
None

extern pascal volid KillControls(theWindowPtr)

GrafPortPtr theWindowPtr;

4-68 Control Manager routines

QU7 IV Newleonirol

Creates a control, adds it to the beginning of a specified control list, and returns a
handle to the new control. The field that determines highlighting is set to 0 (no
highlighting). NewControl does not draw the control.

% Note: The control definition procedure may perform additional initialization,
including changing any of the control record fields. The scroll bar is the only
standard control for which additional initialization is performed; its control
definition procedure computes the thumb and the page region from
boundsRectPtr and flag.

Stack before call

previous contents

- longspace

-~ theWindowPtr

-- boundsRectPtr

-- titlePtr

flag

value

paraml1

param2

-~ defProcPtr

- refCon

colorTablePtr

Long—Space for result
Long—POINTER to window owner
Long—POINTER to RECT data structure defining enclosing rectangle

Long—POINTER to title string (ct!Data)

Word—Bit flag (see Figure 4-26)
Word—Control’s starting value
Word—Additional parameter (view size for scroll bars)
Word—Additional parameter (data size for scroll bars)

Long—POINTER to definition procedure, or standard control value
Long—Reserved for application use

Longy 'OINTER to control’s color table; NIL for default color table

<— SP

4-70 Control Manager routines

$2010 SetCtlAction

Sets a specified control’s ctlAction field to a pointer for a custom control action
procedure. See the section “TrackControl” in this chapter for more information.

Stack before call

brevious contents
— mnewActionPtr —| Long—POINTER to custom control action procedure
—theControlHandle ——| Long—HANDLE to control
— SP
Stack after call

previous contents

«— SP
None

extern pascal void SetCtlAction(newActionPtr,theControlHandle)
LongProcPtr newActionPtr;

Ct1lRecHndl theControlHandle;

4-74 Control Manager routines

v1BI10 SerCtiparams

Sets new parameters to the control’s definition procedure, which will set the values
and redraw the control if necessary.

Scroll bars use paraml as the scroll bar’s view and param?2 the data size. If -1 is
passed for either paraml or paramz2, that parameter will not be changed.

Simple buttons, check boxes, radio buttons, and size boxes do not use parami or
param2, and no action is performed.

% Note: Custom controls might or might not not support this feature, depending
upon the control.

Stack before call

previous contents
param’ Word—Additional control parameter; defined by control
paraml Word—Additional control parameter; defined by control
--theControilHandle --| Long—HANDLE to control
— SP
Stack after call

previous contents

<« SP

None

extern pascal vold SetCtlParams (param2,paraml,theControlHandle)

Word param2;
Word paraml;
CtlRecHndl theControlHandle;

4-76 Control Manager routines

$0C10 SetCtiTitle

Sets a specified control’s ctiData field to a specified title and redraws the control.

Stack before call

previous contents
- titlePtr - Long—POINTER to control's ctlData field
—-theControlHandle -- Long—HANDLE to control
T T |¢—sP
Stack after call

previous contents

< SP

None

vold SetCtlTitle(titlePtr,theContreclHandle)
Pointer titlePtr;

Handle theControlHandle;

4-78 Control Manager routines

Ywi W VIIWV YW, VI T VI

Makes a specified control visible. The control is drawn in its window but may be
completely or partially obscured by overlapping windows or other objects. If the
control is marked as visible as specified by the ctlInvis bit (bit 7) in the ctlFlag,
ShowControl has no effect.

Stack before call

previous contents

—~theControlHandle --| Long—HANDLE to control to be shown

<SP

Stack after call

previous contents
T T |&sp

None

extern pascal void ShowControl (theContrclHandle)

CtlRecHndl theControlHandle;

4-80 Control Manager routines

vIVIV IHAQCKLONIrol

Follows the movements of the mouse and responds appropriately until the mouse
button is released; the exact response depends on the type of control and the part of
the control in which the mouse button was pressed.

If highlighting is appropriate, TrackControl performs the highlighting and then
removes it before returning. When the mouse button is released, TrackControl
returns with the part code if the mouse is in the same part of the control that it was
originally in; otherwise, TrackControl returns 0 (in which case the application should
do nothing).

Stack before call

Dbrevious contents

wordspace Word—Space for result
startX Word—X coordinate, in global coordinates, of starting point
startY Word—Y coordinate, in global coordinates, of starting point
-- actionProcPtr -~ Long—POINTER to routine; NIL, or negative (see the section “Additional
Actions and the Action Procedure” in this chapter)
—-theControlHandle --| Long—HANDLE to control
¢« SpP
Stack after call
brevious contents
paricuue Word—Selected part when button was released
¢ SP
None

extern pascal Word TrackControl (startX, startY,actionProcPtr,theControlHandle)

Integer startX;

Integer starty;

LongProcPtr actionProcPtr;
CtlRecHndl theControlHandle;

4-82 Control Manager routines

The action procedure in the control definition procedure is described in the section
“Defining Your Own Controls” in this chapter. The input to the action procedure

must be as follows:

partCode

—-theControlHandle -

RTL | RIZ
RTL |¢ SP

Word—Selected part

Long—HANDLE to control

3 bytes—RTL address

In this case, TrackControl passes the control handle and the part code to the action
procedure. (It passes 0 in the partCode parameter if the mouse has moved outside
the original control part.) As an example of this type of action procedure, consider
what should happen when the mouse button is pressed in a scroll arrow or paging
region of a scroll bar. For these cases, your action procedure should examine the
part code to determine exactly where the mouse button was pressed, scroll up or
down a line or page as appropriate, and call the SetCValue routine to change the
control’s setting and redraw the thumb.

4-84 Control Manager routines

Table 4-8 (continued)

Control Manager constants

Name

Value

Description

DefProc (message parameters)

drawCtl
calcCRect
testCtl
initCtl
dispCtl
posCtl
thumbCt1l
dragCtl
autoTrack
newValue
setParams
moveCtl
recSize

Axis parameters
noConstraint
hAxisOnly
vAxisOnly

Part codes
noPart
simpleButton
checkBox
radioButton
upArrow
downArrow
pageUp
pageDown
growBox
thumb

HiliteControl parameters

noHilite

inactiveHilite

$00
$01
$02
$03
$04
$05
$06
$07
$08
$09
$0A
$0B
$0C

$0000
$0001
$0002

$00
$02
$03
$04
$05
$06
$07
$08
$OA
$81

$0000
$O0FF

Draw the control

Compute the rectangle to drag

Test where mouse button was pressed

Perform any additional control initialization

Take any additional disposal actions

Move the control's indicator

Compute the parameters for dragging an indicator
Drag either a control’s indicator or the entire control
Called while dragging if -1 is passed to TrackControl
Called when the control gets a new value

Called when the control gets new additional parameters
Called when control moves

Return control record size in bytes

No constraint on movement
Movement constrained to horizontal axis only
Movement constrained to vertical axis only

No part

Simple button

Check box

Radio button

Up arrow on scroll bar
Down arrow on scroll bar
Page up

Page down

Size box

Thumb

Highlight control
Remove hightlighting from control

4-86 Chapter 4: Control Manager

Table 4-9 (confinued)
Control Manager datfa sfructures

Name Offset Type Definition

LimitBik (limit block)

boundRect $00 Rect Drag bounds

slopRect $08 Rect Cursor bounds

axisParam $10 Word Movement constraints
dragPatt $12 Pointer Pattern for drag outline
RadioColors (radio button color table)

radReserved $00 Word Reserved for future use

radNor $02 Word Color of radio button when off
radSel $04 Word Color of radio button when on
radTitle $06 Word Color of radio button’s title text

Note: The actual assembly-language equates have a lowercase o (the letter) in front of all of the names given in
this table.

Table 4-10
Control Manager error codes

Code Name Description

$1001 wmNotStartedUp Window Manager not initialized

4-88 Chapter 4: Control Manager

Table 5-1

Desk Manager routines and their functions

Routine

Description

Housekeeping routines
DeskBootlnit

DeskStartUp
DeskShutDown
DeskVersion
DeskReset

DeskStatus

Installation routines
InstalINDA
InstallCDA

Initializes the Desk Manager; called only by the Tool Locater—must not be
called by an application

Starts up the Desk Manager for use by an application

Shuts down the Desk Manager when an application quits

Returns the version number of the Desk Manager

Resets the Desk Manager; called only when the system is reset—must not be
called by an application

Indicates whether the Desk Manager is active

Installs a specified NDA in the system
Installs a specified CDA in the system

Classic desk accessory routines

ChooseCDA

SetDAStrPtr
GetDASuPur

Activates the Desk Manager and displays the CDA menu-—must not be called
by an application

Changes the names of the built-in CDAs

Returns the pointer to the names of the built-in CDAs

New desk accessory routines

OpenNDA
CloseNDA
CloseNDAbyWinPtr
CloseAlINDAs
FixAppleMenu
GetNumNDAs
SystemClick
SystemEdit
SystemTask
SystemEvent

State-saving routines
SaveScrn

RestScrn
SaveAll

RestAll

Opens a specified NDA

Closes a specified NDA

Closes an NDA with a specified window pointer

Closes all open NDAs

Adds the names of the NDAs to a specified menu

Returns the total number of NDAs currently installed

Handles mouse-down events in a system (that is, desk accessory) window
Passes standard menu edits to system windows

Causes a desk accessory to perform its periodic action

Previews all events returned to an application and indicates whether the event
has been processed by a desk accessory

Saves the 80-column text screens in banks $00, $01, $EO0, and $E1—must not
be called by an application

Restores the screen area saved by the Desk Manager—must not be called by an
application

Saves all the variables that the Desk Manager preserves when the CDA menu is
activated—must not be called by an application

Restores all the variables that the Desk Manager preserves when the CDA menu
is activated—must not be called by an application

5-2 Chapter 5: Desk Manager

The header section contains the name of the desk accessory and two pointers. The
first pointer is the address of the primary entry point—the activation entry point—to
the CDA. The CDA gets control through this entry point, with the processor in full
native mode.

The second pointer points to the entry point used whenever the DeskShutDown
routine is called. DeskShutDown is called by all applications that have issued a
DeskStartUp call, and also by ProDOS when it switches from ProDOS 16 to ProDOS 8
or vice versa.

% Note: The second entry point is necessary because CDAs can spawn background
tasks that rely on the availability of the current ProDOS. The shutdown routine
allows the CDA to stop the tasks.

When the Desk Manager displays the CDA menu, it saves the text pages in banks 30,
$1, $EO, and $E1, along with pages 0 and 1 of bank $0.

Important

Only the screen holes used by the Desk Manager are preserved.

These parts of memory, which contain the system direct page and stack, are restored
by the Desk Manager when the user selects Quit from the CDA menu. Thus, a CDA
can use almost all of this memory, except for the stack, as it sees fit. Since the Desk
Manager’s return address is on the stack (along with other Desk Manager variables),
the CDA cannot cut the stack back any farther than it is when it gets control.

A CDA must be careful when using any other memory in the system that it does not
already own. A CDA can ask the Memory Manager for additional memory, but there
is no guarantee that the memory will be available. For example, ProDOS 8
applications already have all special memory reserved for them.,

¢ Note: The CDA can obtain a user ID by using the User ID Manager routines in
the Miscellaneous Tool Set. See Chapter 14, “Miscellaneous Too! Set,” for more
information.

important

The CDA must be able fo respond appropriately when no additional memory s
avallable.

5-4 Chapter 6: Desk Manager

g IV T MBS YR WLWSIIVIGY WHTIVUL TUSKIVIGSTer

Applications that do not use TaskMaster must take the following steps to support new
desk accessories:

. Call DeskStartUp to initialize the Desk Manager.

. Call FixAppleMenu to add the list of NDAs to the Apple menu.

. Call OpenNDA when the user selects an NDA from the Apple menu.

. Call SystemTask frequently (at least every time through the event loop).

. Call SystemClick when a mouse-down event occurs in a system window.

O\ W o W N

. Call SystemEdit when a desk accessory is active and the user selects Undo, Cut,
Copy, Paste, or Clear from the Edit menu.

7. Close an NDA when the user selects Close from the File menu. You can use
CloseNDA or CloseNDAbyWinPtr to do this.

8. Call DeskShutDown to shut down the Desk Manager.

e Tm Tt wmw wan i W wwIWwi i d

New desk accessories are load files with file type $B8. An NDA must be placed on the
system disk in the DESK.ACCS subdirectory of the SYSTEM directory. NDAs have
four entry points: open, close, action, and init. For each of these entry points the
processor is in full native mode. No direct page is assigned to an NDA, so it must
obtain space from the stack or by asking the Memory Manager.

A new desk accessory can assume that the tool sets shown in Table 5-2 have been
loaded and started up. A new desk accessory can also assume that the Print Manager
is available but not necessarily loaded.

The NDA is responsible for saving and restoring important globals such as the
current GrafPort.

The NDA must start with a header section as follows:

StartQfDA dc 14'PtrToOpen' ; Pointer to the open routine, which should RTL
dc 14'PtrToClose’ : Pointer to the close routine, which should RTL
dc 14'PtrToAction® ; Polnter to the action routine, which should RTL
dc 14'PtrTolInit? ; Pointer tec the init routine, which should RTL
dc i2'Period! ; How often the NDA gets run codes
dc i2'EventMask’ ; Describes what events it wants
dc ¢' Menuline \H**' ; The text that describes the menu item
de i1'0" ; Terminator for the menu line

5-6 Chapter 5: Desk Manager

The Period field of the header section describes how often the DA should be called
with the runAction code, as shown in Table 5-4.

Table 5-4
New desk accessory
Period field values

Period Interval

0 As often as possible

1 Every sixtieth of a second
2 Every thirtieth of a second
60 Every second

$FFFF Never

The action routine is called with the runaction code from SystemTask. The
application should call SystemTask every time through its event loop.

The MenulLine is a line of text that will be passed to the Menu Manager to appear in
the Apple menu. As shown in the preceding assembly-language header section, the
line must start with two place-holding characters because the Menu Manager puts
something in those positions. The line must also have a backslash (\) in it and an #
followed by two place-holding characters. The place-holding characters are
replaced with the menu item ID for the desk accessory when the FixAppleMenu
routine is called.

5-8 Chapter 5: Desk Manager

Y Vv W MTINIIITUWIWOWII

Shuts down the Desk Manager.

Important

If your application has starfed up the Desk Manager, the application must make
this call before it quits. In addition, this call must be made before any of the
required tools are shut down,

The stack is not affected by this call. There are no input or output parameters.
None

extern pascal void DeskShutDown ()

Y W T ww »UON VYV CIJIVII

Returns the version number of the Desk Manager.

Stack before call

previous contents

wordspuce Word—Space for result
— SP

Stack after call

previous contents

versionlInfo Word—Version number of the Desk Manager
< SP

None

extern pascal Word DeskVersion()

5-10 Desk Manager housekeeping routines

v i IUv WwlIVUIC\U WA

Activates the Desk Manager and displays the CDA menu. ChooseCDA causes the
Desk Manager to display the CDA menu as if the user pressed the appropriate keys.

An application must never make this call.

The stack is not affected by this call. There are no input or output parameters.
None

Call must not be made by an application.

¥ e ww wiIWIGMIINL MO

Closes all open NDAs.
The stack is not affected by this call. There are no input or output parameters.

None

extern pascal void CloseAllNDAs ()

5-12 Desk Manager routines

~ swwvwism sy YYILIT 1

Closes the NDA whose window pointer is equal to the one that is passed. This call is
handy when the system is trying to close a desk accessory because the user chose Close
from the File menu. When the user chooses Close, your application should use the
Window Manager FrontWindow routine to determine which window is to be closed. If
the front window is not an application window, the application can pass the pointer to
the CloseNDAbyWinPtr routine.

Stack before call

brevious contents

theWindowPtr -- Long—POINTER to window to close

Stack after call

&« SP

previous contents

5-14

— SP
$0510 daNotFound Specified DA not available
$0511 notSysWindow Window pointer is not a pointer to a window owned

by an NDA

extern pascal void CloseNDAByWinPtr(theWindowPtr)

GrafPortPtr theWindowPtr;

Desk Manager routines

v 14U OSIVADIIFIT

Returns the pointer to the table of strings containing the built-in CDA names.

Stack before call

I previous contents

- longspace - Long—Space for result

— Sp

Stack after call

Drevious contents

-~ stringTablePtr —- Long—POINTER to table of strings for the built-in CDA names

e sp
None

extern pascal Pointer GetDAStrYPtr ()

5-16 Desk Manager routines

YW W HIDIVINS LM

Installs a specified CDA in the system. This routine is normally called only by
ProDOS 16 when the machine is booted.

The CDA header section is described in the section “Writing Classic Desk
Accessories” in this chapter.

Stack before call

previous contents

- idHandle -— Long—HANDLE to CDA header section

<SP

Stack after call

previous contents

«— Sp
None

extern pascal void InstallCDA(idHandle)

Handle idHandle;

5-18 Desk Manager routines

Y IVvUvY WMNESIINWA

Opens a specified NDA. The idNum passed is the same ID returned by the Menu
Manager and set up by the FixAppleMenu call.

% Note: If your application is using the Window Manager routine TaskMaster, the
application doesn’t need to make the OpenNDA call.

An application should make this call when the user selects an NDA from the Apple
menu.

Stack before call

previous contents

wordspace Word—Space for result
idNum Word—ID number returned from Menu Manager
«— SP
Stack after call

previous contents

refNum Word—Reference number to use when application closes NDA
«— SP
$0510 daNotFound Specified DA not available

extern pascal Word OpenNDA (idNum)

Word idNum;

5-20 Desk Manager routines

¥ - - WA ¥V Sl

Saves all the variables that the Desk Manager preserves when the CDA menu is
activated. The routine also sets the display to text mode in either 640 or 320 mode,
depending upon the settings in the Control Panel.

An application must never make this call.

The stack is not affected by this call. There are no input or output parameters.
None

Call must not be made by an application.

T o WA Y W will

Saves the 80-column text screens in banks $00, $01, $E0, and $E1. This new image of
the screen is used for subsequent calls to the RestScrn routine. The entire screen and
all of the screen holes are preserved.

An application must never make this call. The screen Is saved in only one place,
so a subsequent desk accessory call could destroy the screen.

The stack is not affected by this call. There are no input or output parameters,

None

Call must not be made by an application.

5-22 Desk Manager routines

AneINIVIE-UISPIAY-MOoae aesK daccessory

Your alternate-display-mode desk accessory should contain code similar to the
following:

AltDispDA anop
de i1*StrEnd-StrStart’ ; Length of string
StrStart dc c'Alternate Display Mode'! ; Name you want
StrEnd dc i4'Open'’
dc i4'ShutDown’
Open sep #%$30 ; 8-bit m and x
longa off
longi off
rhb ; Save data bank register
lda #500 ; Set db reg to $00
rha
plb
jsl SE100A4 ; Alternate display mode vector
plb ; Restore data bank register
rep #3530 ; 16-bit m and X
longa on
longi on
ShutDown rtl
e — wraseage

The table of strings pointed to by stringTablePtr must look like this:

StringTable dc id'titlestr’ ; Title line
dc id4'controlstr! ; Control Panel
dc i4'quitstr’ ; Quit
dc i4'selectstr? ; Select string

The strings currently used are discussed in the following sections.

5-24 Desk Manager routines

L LN A A

VYIIGHIINCIICR

SystemClick handles mouse-down events in the size, drag, zoom, and close boxes.
This routine should be called when the application detects a mouse-down event in a
system window.

% Note: If an application is using TaskMaster, it never needs to make this call.
TaskMaster does the work for it.

If the window is inactive and the event is in the content area, information area,
window frame, or vertical or horizontal scroll bar, SystemClick will make the window
active. If the window is already active, SystemClick passes the event to the desk
accessory.

Stack before call

previous contents
-~ eventRecPtr -— Long—POINTER to event record
-~ theWindowPtr --| Long—POINTER to system window
JSindWndwResult Word—Result of the FindWindow call
< SP
Stack after call

Drevious contents

5-26

«— SP
None

extern pascal void SystemClick{eventRecPtr,theWindowPtr, findWndwResult)

EventRecordPtr eventRecPtr;
GrafPortPtr theWindowPtr;
Word findWndwResult;

Desk Manager routines

v’—n'lll-'vlll

Entry point the Event Manager uses into the Desk Manager. Every event returned to
an application is first processed by SystemEvent, which returns TRUE if the event has
been processed by a desk accessory and FALSE if it is to be sent to the application.
The CDA activation keystroke is processed in this way.

AN application must never make this call.

Stack before call

previous contents
wordspace Word—Space for result
eventWhat Word—TFrom event record
-~ eveniMessage — —— Long—From event record
-- eventWhen - Long—From event record
-- eventWhere -—{ Long—From event record
eventMods Word—From event record
<« Sp
Stack after call

Drevious contents

brocessFlag Word—BOOLEAN; TRUE if event is to be processed by DA, FALSE if not

< Sp

None

Call must not be made by an application.

5-28 Desk Manager routines

e IR VLY S DUTTHTIQATY

This section briefly summarizes the constants and tool set error codes contained in
the Desk Manager. There are no predefined data structures for the Desk Manager.

Important

These definitions are provided In the appropriate interface file,

Table 5-5

Desk Manager constants

Name Value Description

NDA action codes

eventAction $0001 Code passed if event is to be handled by desk accessory

runaAction $0002 Code passed when specified time period has elapsed

cursorAction $0003 Code passed if desk accessory is frontmost window
when SystemTask called

undoAction 80005 Code passed when user selects Undo from Edit menu

cutAction $0006 Code passed when user selects Cut from Edit menu

copyAction $0007 Code passed when user selects Copy from Edit menu

pasteAction $0008 Code passed when user selects Paste from Edit menu

clearAction $0009 Code passed when user selects Clear from Edit menu

Edit types

undo $0001 Undo edit type

cut $0002 Cut edit type

copy $0003 Copy edit type

paste $0004 Paste edit type

clear $0005 Clear edit type

Table 5-6

Desk Manager error codes

Code Name

Description

$0510 daNotFound
$0511 notSysWindow

Specified DA not available
Window pointer is not a pointer to a window
owned by an NDA

5-30 Chapter &: Desk Manager

Table 6-1

Dialog Manager routines and their functions

Routine

Description

Housekeeping routines
DialogBootInit

DialogStartUp
DialogShutDown

DialogVersion
DialogReset

DialogStatus

Initilializes the Dialog Manager; called only by the Tool Locator—must not be
called by an application

Starts up the Dialog Manager for use by an application

Shuts down the Dialog Manager and frees any memory allocated by the Dialog
Manager

Returns the version number of the Dialog Manager

Resets the Dialog Manager; called only when the system is reset aust not be
called by an application

Indicates whether the Dialog Manager is active

Dialog creation and disposal routines

NewModalDialog
NewModelessDialog

GetNewModalDialog
CloseDialog

Creates a specified modal dialog and returns a pointer to the GrafPort of the
new dialog

Creates a specified modeless dialog and returns a pointer to the GrafPort of
the new dialog

Creates a modal dialog and returns a pointer to the port of the new dialog
Removes a specified dialog window from the screen and deletes it from the
window list

Item creation and removal routines

NewDlItem
GetNewDlItem
RemoveDItem

Adds a new item to the dialog’s item list
Adds a new item to a specified dialog’s item list using a template
Removes a specified item from a specified dialog and erases it from the screen

Dialog event-handling routines

ModalDialog

ModalDialog2

IsDialogEvent

DialogSelect
DlgCut

DlgCopy
DlgPaste
DlgDelete

DrawDialog

If the frontmost window is a modal dialog box, ModalDialog repeatedly gets
and handles events in the dialog’s window

If the frontmost window is a modal dialog, ModalDialog?2 repeatedly gets and
handles events in the dialog’s window; after handling an event involving an
enabled dialog item, it returns with the part code and the item ID in
itemHitInfo

Determines whether a specified event needs to be handled as part of a
modeless dialog

Handles an event as part of a specified modeless dialog

Checks whether a specified dialog has any editLine items and, if so, applies
the LineEdit procedure LECut to the currently selected editLine item

Checks whether a specified dialog has any editLine items and, if so, applies
the LineEdit routine LECopy to the current editLine item

Checks whether a specified dialog has any editLine items and, if so, applies
the LineEdit routine LEPaste to the current editLine item

Checks whether a specified dialog has any editLine items and, if so, applies
the LineEdit routine LEDelete to the current editline item

Draws the contents of a specified dialog box

6-2 Chapter 6: Dialog Manager

—. i gy T N S

A dialog box appears on the screen when an application needs more information to
carry out a command. As shown in Figure 6-1, a dialog box typically resembles a
form on which the user checks boxes and fills in blanks.

Print the document

@8 1/2" n 11" paper

(08 1/2" v 14" paper

[X] stop printing after each page

Title: lﬂnnual Report|]

Figure 6-1
Typical dialog box

By convention, a dialog box appears slightly below the menu bar, is somewhat
narrower than the screen, and is centered between the left and right edges of the
screen. It may contain any or all of the following:

m Informative or instructional text

® Rectangles in which text may be entered (initially blank or containing default text
that can be edited)

Controls of any kind

Graphics (icons or QuickDraw II pictures)
8 Anything else, as defined by the application

The user supplies any necessary information in the dialog box; for example, by
entering text or clicking a check box. The dialog box usually contains a button
labeled OK to tell the application to accept the information provided and perform
the command, and a button labeled Cancel to cancel the command as though it had
never been given (retracting all actions since its invocation). Some dialog boxes
may use a more descriptive word than OK; for simplicity, this chapter refers to the
button as the OK button. There may even be more than one button that will perform
the OK command, each in a different way.

6-4 Chapter 6: Dialog Manager

The alert mechanism provides applications with a means of reporting errors or
giving warnings. An alert box is similar to a modal dialog box, but an alert box
appears only when something has gone wrong or must be brought to the user’s
attention. The alert box is usually placed slightly farther below the menu bar than a
dialog box. To help the user who isn't sure how to proceed when an alert box
appears, the preferred button to use in the current situation is outlined in bold so that
it stands out from the other buttons in the alert box. The outlined button is also the
alert box's default button; if the user presses the Return key, the effect is the same as
clicking this button. See Figure 6-3.

Example of a NOTE ALERT

Figure 6-3
Typical alert box

There are three standard kinds of alerts—Stop, Note, and Caution—each indicated
by a particular icon in the upper-left corner of the alest box. Figure 6-3 illustrates a
Caution alert. The icons identifying Stop and Note alerts are similar; instead of a
danger sign, they show a stop sign and a talking face, respectively. Other alerts can
have anything in the the upper-left corner, including blank space if desired.

The alert mechanism also provides another type of signal: sound from the speaker.
The application can base its response on the number of consecutive times an alert
occurs; the first time, it might simply beep, and thereafter it may present an alert
box. The sound isn't limited to a single beep but may be any sequence of tones and
may occur either alone or along with an alert box. As an error is repeated, the
default button can also change (perhaps from OK to Cancel). You can specify
different responses for up to four occurrences of the same alert.

6-6 Chapter 6: Dialog Manager

1wl IS INMINIIGO

To create a dialog or an alert box, the Dialog Manager needs to know what items the
dialog or alert box contains. Your application passes this information as a list of
pointers to item templates.

An item template contains the following information:

An ID number uniquely identifying the item. All subsequent Dialog Manager calls
referring to that item will be made using the ID number.

The type of item. This includes not only whether the item is a standard control,
editable text, or some other type, but also whether the Dialog Manager should
return to the application when the item is clicked.

An item descriptor such as a title for a control, a procedure pointer for a user-
defined item, or text for an editable or noneditable text item.

A display rectangle, which determines the location of the item within the dialog or
alert box.

The initial value of a standard control, the word length of a longStatText item, the
maximum string length of an editLine item, or any value you want for a userltem,

A flag determining whether the item should originally be visible or invisible and
including item-specific information; for example, the family number of a radio
button, or whether a scroll bar is horizontal or vertical.

A pointer to a color table used to draw items (custom color tables are used only for
standard controls or controls you define yourself). Take care that your use of
color conforms to the Apple Human Interface Guidelines.

There are several Dialog Manager procedures that, given a pointer to a dialog port
and an item ID, set or return that item’s text, type, display rectangle, appearance,
and value.

6-8 Cha ur 6: Didlog Manager

The item type identifies the type of a dialog item. The type is specified by a
predefined constant or combination of constants, as listed in Table 6-2. Figure 6-5
illustrates some of these item types.

iconlterr Print the documer Tatltem

uttonltem
/2" W 11" paper

radiolten /2" 4 14" paper

checklterr Stop printing after each page

iample Memo crollBaritem
vyDocument

userCtliterr ‘alcSheet
‘layMate

‘ile 1

Title: [Hnnual Report| xditline

Progress of printing

1serlitem

Figure 6-5

[fem types

Table 6-2

Dialog item types

Item type Description

buttonItem Standard button control

checkItem Standard check box control

radioItem Standard radio button control

scrollBarItenm Special scroll bar for dialog boxes

userCtlItem Application-defined control

userCtlItem2 Application-defined control

statText Static text; text cannot be edited (several lines allowed)

longStatText Static text; text cannot be edited (several lines allowed)

longStatText2 Static text; text cannot be edited and can contain embedded commands
(several lines allowed)

editLine Text that can be edited (dialog boxes only); the Dialog Manager accepts
text typed by the user and allows editing (one line only)

iconItem Icon

picItem QuickDraw II picture

6-10 Chapter 6: Dialog Manager

i wiwvwlpIWE WL UETTE VWU

The item descriptor and item value provide additional information about a
specific dialog item, as shown in Table 6-3.

Table 6-3

Dialog item descriptors

Item type Item descriptor ltem value

buttonItem Pointer to the title string Initial value of the control

checkItem Pointer to the title string Initial value of the control

radioItem Pointer to the title string Initial value of the control

scrollBarItem Pointer to dialog scroll bar action procedure 0 or default value if itemDescr= 0

userCtlItem Pointer to control definition procedure Initial value of the control

userCtlItem? Pointer to parameter block Initial value of the control

statText Pointer to the static string For application use

longStatText Pointer to the beginning of the text Length of the text (0 to 32767
characters)

longStatText2 Pointer to the beginning of the text Length of the text (0 to 32767
characters)

editLine Pointer to the default string Maximum length of default text
(0 to 255 characters)

iconItem Handle to the icon For application use

picItem Handle to the picture For application use

userItem Pointer to item definition procedure For application use

% Note: Whenever “For application use” is specified under “ltem value,” the value
parameter is not accessed by the Dialog Manager and can be used by the
application for its own purpose (use the GetDltemValue and SetDltemValue
routines to change this field). For example, the application might want to store the
indicator position of the userltem in Figure 6-5. Note that SetDItemValue redraws
the item to display its new value.

The procedure for a userltem draws the item; for example, if the item is a clock, it
draws the clock with the current time displayed. When this procedure is called, the
current port will have been set by the Dialog Manager to the dialog window’s

GrafPort.

6-12

Chapter 6: Dialog Manager

For a longStatText item, ftemDescris a pointer to the beginning of the text, and
itemValue is the word length of the text (0 to 32767 characters). An example of
typical ftemDescr and ftemValue parameters you would use for a longStatText item is
as follows, where ftemDescr is a pointer to the text shown in the code fragment

nyLongText dc c¢'This is a really very...',n'oD!
dc c'very... very...',nh'0D’
dc c'long text, that contains',h'0D!'
dc c'more than 2535 characters',h'0D'
dc c'sc that I need a LongStatText'?!,h'0D?
dc c'item to print it in a single item',h'QOD'

EndLongText anop
and itemValue is
EndLongText-myLongText

For an editline item, itemDescr is a pointer to the default string containing the
default text that first appears in the item when the dialog comes up, and ftemValue is
the maximum allowed length of the editable string (0 to 255 characters). An example
of typical ftemDescr and itemValue parameters you would use for an editLine item is
as follows, where ftemDescr is a pointer to the string

EditLstr str 'Untitled! ; default string
and ftemValue is 15 characters (the maximum length for a2 ProDOS filename).
If you pass 0 for itemDescr, the line will not contain any default text.

If the item is the first editLine item to be created, it will be the current active editLine
item, and the default text (if there is any) will be selected.

For a scrollBarltem, itemDescr is a pointer to a special action procedure that is
called during initialization and scrolling. This procedure can, for example, change
the appearance of different items in the dialog in real time while the user is scrolling
the scroll bar, and it will do so without reporting anything to the application. In fact,
if the scrollBarltem is disabled, the application will not even know that the user
clicked in it.

6-14 Chapter 6: Dialog Manager

For the scrollThumb command, you should first call the GetDItemValue routine
with scrollBarID. GetDItemValue returns the new thumb position. You can then
make whatever changes you want and return either the value obtained from
GetDItemValue or any other suitable value,

Your scroll bar action procedure is called by NewDItem to create a scrollBarltem and
by ModalDialog when the user clicks in a scrollBarltem. ModalDialog sets the new
scroll bar value according to the result returned by your procedure.

For an iconltem, ftemDescr is a handle to an icon, and ftemValue is not used. The
icon record contains the following fields:

iconrect equ ; boundsRect (width is multiple of 8)
iconImage equ iconRect + 8 ; plxel image of icon
Picture items were not yet implemented at the time of publication.

For a userCtlltem, itemDescr is a pointer to a control definition procedure, as
defined in Chapter 4, “Control Manager,” and ftemValue is the initial value of the
control.

For a userltem, itemDescr is a pointer to an item definition procedure, and
itemValue is not used. The definition of an item definition procedure is as follows:

Myltem

Stack before call

previous contents

-~ theDialogPtr - Long—POINTER to the dialog's GrafPort
itemID Word—ID of item to draw
— SP
Stack after call

previous contents

<« SP

The procedure for a userltem draws the item; for example, if the item is a clock, it will
draw the clock with the current time displayed. When this procedure is called, the
current port will have been set by the Dialog Manager to the dialog window’s
GrafPort.

6-16 Chapter é: Dialog Manager

neirn 1w

Each item in an item list is identified by an item ID, a unique number in the list
allowing you to further reference this item. In a modal dialog’s item list, the item
whose ID is 1 is assumed to be the dialog’s default button, unless specified otherwise
by the SetDefButton routine. If the user presses the Return key, the Dialog Manager
normally returns the ID of the default button, just as when that item is actually

clicked. By convention, the OK button in an alert’s item list should have an ID of 1
and the Cancel button should have an ID of 2 (in fact, those numbers are given to OK
and Cancel constants).

To conform with the Apple Human Interface Guidelines, the Dialog Manager
automatically outlines the default button in bold, unless there is no default button
(that is, no button item with ID 1).

% Note: If you don’t want any default button, don’t create an item with an ID of 1.

An item ID of 0 is invalid.

NS 1Y

The itemFlag parameter usually contains the same value as the flag parameter given
to the Control Manager routine NewControl. The itemFlag parameter may also
contain the family number of a radio button or information as to whether a scroll bar
is horizontal or vertical. For more details, refer to Chapter 4, “Control Manager.”

&+ Note: Don't use itemFlag to outline a default button in bold, because the Dialog
Manager handles the concept of a default button automatically.

BT CWIVE IUVISD

If you specify NIL for the color table in an item template, the item is drawn using the
default color table. Otherwise, you can specify a custom color table for the item, as
described in Chapter 16, “QuickDraw II.” If you do decide to use a special color
table, take care that your use of color conforms to the Apple Human Interface
Guidelines.

6-18 Chapter 6: Dialog Manager

An alert gets its parameters from an alert template. The structure of an alert template
is shown in Figure 6-6.

Offset Field .
$0
] ed
2]
j —atBoundsRect—
5 — —
6 o
7
g F— afAlertiD —
0A atStage 1
0B atStage2
oC ~estagel
00 e |
OE |]
(])(l; — itemlPtr —
" : N
12]
13 L— item2Ptr —‘
4
15 B
— itemNPtr ——
— terminator —
Figure 6-6

Alert template

Four words—RECT data structure defining dialog box's enclosing rectangle

Word—Number uniquely identifying alert

Byte—Stage byte for first stage of alert
Byte—Stage byte for second stage of dlert
Byte—Siage byte for third stage of alert
Byte—Stage byte for fourth stage of alert

Long—POINTER to first item's template

Long—POINTER to second item's template

Long—PQINTER to last item's template

Long—NiL POINTER terminating item list

Every alert has four alert stages, which correspond to consecutive occurrences of
the alert. The first three stages correspond to the first three occurrences, and the
fourth stage includes the fourth and subsequent occurrences. (The Dialog Manager
compares the current alert’s ID to the last alert’s ID to determine whether these
indicate that it is the same alert.)

6-20 Chapter 6: Didlog Manager

If you want other sounds besides the standard ones, write your own sound procedure
and call ErrorSound to make it the current sound procedure. For example, you
might declare a sound procedure named MySound as follows:

MySound

Stack before call

previous contents

soundNumber Word—Number of the sound
<— SP

Stack after call

Drevious contents

<SP

If you want two successive beeps of different pitch, you need to write a procedure that
will emit that sound for a particular sound number, and you need to specify that
number in the alert template. The Apple IIGS Miscellaneous Tool Set routine
FWEntry allows you to be in the 16-bit environment and still call the Apple II
firmware, which has routines for emitting sound (the standard sound procedure calls
the BELL routine at $FBDD); for more complex sounds, you can use the Sound Tool
Set. See Chapter 14, “Miscellaneous Tool Set,” and Chapter 21, “Sound Tool Set,”
for more information.

% Note: When the Dialog Manager detects a click outside an alert box or a modal
dialog box, it emits sound number 1, thus, for consistency with the Apple
Human Interface Guidelines, sound number 1 should always be a single beep.

Internally, alerts are treated as special modal dialogs. The alert routine creates the
alert window by calling NewModalDialog and every item with GetNewDItem. The
Dialog Manager works with the dialog created by NewModalDialog, just as when it
operates on a dialog window, but it disposes of the dialog before returning to the
application. Normally your application won't change the dialog record for an alery;
however, there is a way that this can happen: For any alert, you can specify a filter
procedure that will be executed repeatedly during the alert, and this procedure may
change the dialog. For details, see the section “Filter Procedures” in this chapter.

6-22 Chapter 6: Diaglog Manager

To handle events in a modal dialog, just call the ModalDialog routine after putting up
the dialog box. If your application includes any modeless dialog boxes, you’ll pass
events to IsDialogEvent to learn whether they need to be handled as part of a dialog.
If those events do need to be handled, you'll then usually c#ll DialogSelect. Before
calling DialogSelect, however, you should check whether the user has given the
keyboard equivalent of a command, and you may want to check for other special
cases, depending on your application. For more information about event handling,
see Chapter 7, “Event Manager.”

You can support the use of the standard editing commands in a modeless dialog’s
editText items with DlgCut, DlgCopy, DlgPaste, and DlgDelete.

A dialog box that contains editline items normally is displayed with the insertion
point in the first such item in its item list. You may instead want to display a dialog
box with text selected in an editLine item or cause an insertion point or text selection
to reappear after the user has made an error in entering text. For example, the user
who accidentally types nonnumeric characters when a number is required can be
given the opportunity to type the entry again. The SelectIText routine makes this
possible.

To invoke a particular alert, call one of the alert routines: StopAlert, NoteAlert, or
CautionAlert for one of the standard kinds of alert, or Alert for an alert with
something other than a standard icon (or nothing at all) in its upper-left corner.

You can find out what the current default button is by calling the GetDefButton
routine on the dialog pointer for the alert passed to your filter procedure.

You can substitute text in statText items with text that you specify in the ParamText
routine. This means, for example, that a document name supplied by the user can
appear in an error message.

By calling the HideDItem routine, you can make an item invisible. This technique
can be useful, for example, if your application needs to display a number of similar
dialog boxes with one item missing or different in some of them. You can use a
single dialog box in which the item or items that aren’t currently relevant are
invisible. To hide an item or make one reappear, use the HideDItem or ShowDItem
routines. Note the following, however:

B When you want to change text in a statText item, you will find the Dialog Manager
routine ParamText (described later in this chapter) easier to use than hiding the
item and showing it again.

m Instead of making an item invisible and visible, you can use the RemoveDitem
routine to completely remove the item from the item list.

If you want the font in your dialog and alert windows to be other than the system font,
call SetDAFont to change the font.

6-24 Chapter é: Diglog Manager

An ignoreFlag value of FALSE tells the calling routine to handle the event, which
either can be changed to simulate a different event, or sent through unchanged.

You could use the filterProc procedure, for example, to treat a typed character in a
special way (such as to ignore it or make it have the same effect as another character
or as clicking a button); in this case, the function would test for a key event with that
character. As another example, suppose the dialog box contains a userltem whose
procedure draws a clock with the current time displayed. The filterProc procedure

can call that procedure and return FALSE without altering the current event.

6-26 Chapter 6: Diadlog Manager

YW I HIUIUQOIUIIUP

Starts up the Dialog Manager for use by an application.

Important

Your application must make this call before it makes any other Dialog Manager
calls.

DialogStartup performs the following initialization:

Installs the standard sound procedure
m Passes empty strings to ParamText

m Sets the dialog font to the System font
B Sets the alert stage to 1

Important

The Dialog Manager shares ifs direct page with the Control Manager, so it does
not need a special direct page. However, the Control Manager must be present
for the Dialog Manager to run, even if the application does not use any
standard control items in Its dialogs.

Stack before call

previous contents

useriD Word—ID number of the application
&SP

Stack after call

| previous contents
i ¢« SP

None

extern pascal void DialogStartUp(userlD)

Word userID;

6-28 Dialog Manager housekeeping routines

- - - —-—-vvl\\vd\i!

Resets the Dialog Manager; called only when the system is reset.

AN application must never make this call.

DialogReset resets the dialog font to the system font, clears the strings set by the
ParamText routine, resets the sound procedure to the standard sound procedure, and
resets the alert stage to 1.

The stack is not affected by this call. There are no input or output parameters,
None

Call must not be made by an application.

-_— .-.-vavnuluﬂ

Indicates whether the Dialog Manager is active.

Stack before call

previous contents

wordspace Word—Space for result
«— SP
Stack after call
Drevious contents
activeFlag Word—BOOLEAN; TRUE if Dialog Manager is active, FALSE if it is not
¢« SP
None

extern pascal Boolean DialogStatus ()}

6-30 Digdlog Manager housekeeping routines

I

(R SXEY 4L T 4

Alert gets its parameters from an alert template. The definition of an alert template is
shown in Figure 6-8.

Offset
$0

O® N OO D LN —

— Yt 4. , O 0 O0OO0OO O
O OO0 TmMmOO0O @ >

Field

p— —
S— —

—atBoundsRect—

—]
L -
b

— atAlertiD ——l

atStage}
atStage2

atStage3

afSte~~+

——

L1

— {temIPtr

item2Ptr —

L

— ltemPtr

I
11

—

— terminator

—]

[|

Figure 6-8
Alert template

6-32

Four words—RECT data structure defining dialog box's enclosing rectangie

Word—Number uniquely identifying alert

Byte—Stage byte for first stage of alert (see Figure 6-9)
Byte—Stage byte for second stage of alert (see Figure 6-9)
Byte—Stage byte for third stage of alert (see Figure 6-9)
Byte—Stage byte for fourth stage of alert (see Figure 6-9)

Long—POINTER to first item'’s template; item template is defined
in the section "ltem Template" in this chapter

Long—POINTER 1o second item's template

Long—POINTER to last itemn's termplate

Long—NIL POINTER terminating item list

Dialog Manager routines

Alert handles the events for which the filter procedure returns FALSE as follows:

m If the mouse button is pressed in a control, Alert calls the Control Manager routine
TrackControl. If the mouse button is released inside the control and the control is
enabled, Alert returns; otherwise, it does nothing.

m If the mouse button is pressed in any other enabled item, Alert simply returns. If
it's pressed in any other disabled item or in no item, or if any other event occurs,
Alert does nothing.

Before returning to the application with the item number, Alert removes the alert
box from the screen. (Alert disposes of the alert window and its associated data
structures, the item list, and the items.)

% Note: The Alert routine’s removal of the alert box would not be the desired
result if the user clicked a check box or radio button; however, alerts normally
contain only static text, icons, pictures, and buttons that are supposed to make
the alert box go away. If your proposed alert box contains other items besides
these, consider whether it might be more appropriate as a dialog box.

6-34 Dialog Manager routines

UAYAC N RS VlUDGUlUIUg

Removes a specified dialog window from the screen and deletes it from the window
list.

The routine releases the memory occupied by the following:

B The data structures associated with the dialog window (such as the window’s
structure, content, and update regions)

s All of the items in the dialog box (except for pictures and icons) and any data
structures associated with them

% Note: CloseDialog does not affect the memory space allocated for your own
structures, such as dialog, alert, and item templates

Stack before call

Drevious contents

-- theDialogPtr --| Long—POINTER to the dialog’s GrafPort
< SP
Stack after call
Drevious contents
< SP
Window Manager errors Returned unchanged

extern pascal vold CloseDialog(theDialogPtr)

GrafPortPtr theDialogPtr;

6-36 Dialog Manager routines

Handles an event as part of a specified modeless dialog. You’'ll normally call
DialogSelect when the IsDialogEvent routine returns TRUE, passing the event in the
event record pointed to by theEventPtr.

If the event involves an enabled dialog item, DialogSelect returns a result of TRUE
with the dialog pointer stored at the location pointed to by resultPirand the item ID
stored at the location pointed to by #temHitPtr. Otherwise, the routine returns FALSE
with resultPtrand itemHitPir undefined. Normally when DialogSelect returns TRUE,
you’ll do whatever is appropriate as a response to the event, and when it returns
FALSE you’ll do nothing.

Stack before call

previous contents
wordspace Word—Space for result
-~ theEventPtr -—1 Long—POINTER to the event record
_ resultPir -—{ Long—POINTER to Long in which to store POINTER to dialog’s GrafPort
- itemHitPtr -—| Long—POINTER to Word in which to store ID of item hit
<— SP
Stack after call
previous contents
enabledFlag Word-—BOOLEAN; TRUE if event involved an enabled item, FALSE if not
— SP
None

extern pascal Boclean DialogSelect (theEventPtr,resultPtr, itemHitPtr)
EventRecordPtr theEventPtr;
GrafPortPtr *resultPtr;

Word *itemHitPtr;

6-38 Dialog Manager routines

Yv7 v WIDUMICWIICITI]

Disables a specified item in a specified dialog. If the item is already disabled,
DisableDItem does nothing.

Important

Disabled is different from deactivated. If you do not want a control to respond
at all when the user clicks i, deactivate the control with the Control Manager
routine HiliteControl,

Stack before call
brevious contents
-~ theDialogPtr -——| Long—POINTER to the dialog’s GrafPort
itemID Word—ID of item in dialog
«—sp
Stack after call
Drevious contents
— SP
$150C itemNotFound No such item

extern pascal void DisableDItem(theDialogPtr,itemlID)
GrafPortPtr theDialogPtr;

Word itemID;

6-40 Dialog Manager routines

PR — Lt A At

Checks whether a specified dialog has any editLine items and, if so, applies the
LineEdit routine LECut to the current editLine item. You can call DlgCut to handle the
Cut editing command when a modeless dialog window is active.

Stack before call

previous contents

-- theDialogPtr --| Long—POINTER to the dialog’s GrafPort

< SP

Stack after call

Dprevious contents

<SP

None

extern pascal void DlgCut (theDialogPtr)

GrafPortPtr theDialogPtr;

6-42 Dialog Manager routines

¥ s T aw LML ol

Checks whether a specified dialog has any editLine items and, if so, applies the
LineEdit routine LEPaste to the current editLine item. You can call DigPaste to handle
the Paste editing command when a modeless dialog window is active.

Stack before call

brevious contents

-~ theDialogPtr -—-| Long—POINTER to the dialog’s GrafPort

<SP

Stack after call

previous contents

<SP

None

extern pascal void DlgPaste(theDialogPtr)

GrafPortPtr theDialogPtr;

6-44 Dialog Manager routines

Ywrviw MIIVANIGW TSI

Enables a specified item in a specified dialog. If the item is already enabled,
EnableDItem does nothing.

Stack before call

Dprevious contents

-~ theDialogPtr —| Long—POINTER to the dialog’s GrafPort
wemlID Word—ID of item in dialog
& sp
Stack after call
| previous contents
| <SP
$150C itemNotFound No such item

extern pascal void EnableDItem(theDialogPtr,itemID)
GrafPortPtr theDialogPtr;

Word itemID;

6-46 Dialog Manager routines

v &~ IV 1HINAWIIICIT]

Returns the ID of the item located at a specified point in a specified dialog. The point
must be expressed in global coordinates.

If there is no item at the location or if the specified point is outside of the specified
dialog, FindDItem returns 0.

Important
The thePoint parameter must be expressed in global coordinates,

Stack before call

previous contents
wordspace Word—Space for result
—-- theDialogPtr _— Long—POINTER to the dialog’s GrafPort
— thePoint — Long—POINT in global coordinates
< SP
Stack after call
previous contents
ftemHit Word—ID of item at thePoint; 0 if no item or point not in dialog
< SP
None

extern pascal Word FindDItem(theDialogPtr,thePoint)
GrafPortPtr theDialogPtr;

Point thePoint;

4-48 Dialog Manager routines

IEIO

erconrroibirem

Returns a handle to the control record for a specified item. You can then make calls to
the Control Manager to change the behavior of this item.

< Note: Dialog Manager calls are provided to change the attributes of items.
Whenever possible, use those calls instead of Control Manager calls.

Impeortant

Be very careful when you use GetControlDitem. By using the Control Manager,
you bypass the Dialog Manager and can destroy data used by the Dialog
Manager. However, it Is safe to use GetControlDitem on standard confrols (such
as buttons, check boxes, and radio buttons). It is less safe to use it with dialog
scroll bars, and it is definitely unsafe to use it with text items. Do not use it to
change the ctiRefCon field In the confrol record of any control.

Stack before call

previous contents

- longspace

_— Long—Space for result

—-- theDialogPtr --] Long—POINTER to the dialog’s GrafPort

Word—Unique number identifying the item

<« SP
Stack after call
Dprevious contents
~-theControlHandle --{ Long—HANDILE to the item’s control record
<SP
$150C itemNotFound No such item

6-50

extern pascal CtlRecHndl GetControlDItem(theDialogPtr,itemID)
GrafPortPtr thebDialogPtr;

Word itemID;

Dialog Manager routines

Y& IV DCIVIICITIDOKX

Returns the display rectangle of a specified item.

Stack before call

previous contents
-~ theDialogPtr -—| Long—POINTER to the dialog
itemID Word—ID of item in dialog
-~ itemBoxPir -—| Long—POINTER to 8 bytes in which to store the rectangle
T |ésp
Stack after call
previous contents
— Sp
$150C itemNotFound No such item

extern pascal void GetDItemBox(theDialogPtr,itemID, itemBoxPtr)
GrafPortPtr theDialogPtr;
Word itemID;

Rect *itemBoxPtr;

6-52 Dialog Manager routines

¥ bW weIWwIIGIHITVUIUES
Returns the current value of a specified item.

For standard controls, itemValue is the current value of the control. For other types
of items, ftemValue may have special meaning, as follows:

M For a longStatText or longStatText2 item, the value is the length of the text.

m For a userltem, iconltem, or statText item, the value is reserved for the
application’s use.

Stack before call

previous contents
wordspace Word—Space for result
~-- theDialogPtr -——| Long—POINTER to the dialog’s GrafPort
itemID Word—ID of item in dialog
< SP
Stack after call
previous contents
itemValue Word—Current value of item
— Sp
$150C itemNotFound No such item

extern pascal Word GetDItemValue (theDialogPtr,itemID)
GrafPortPtr theDialogPtr;

Word itemID;

6-54 Dlalog Manager routines

Y 13 1w

wWoEIIIGAIL

Returns the text of a specified statText or editLine item in a specified dialog box.

Important

Sufficlent space for the returned text must be allocated before you call
GetlText.

Stack before call

previous contents

-- theDialogPtr --| Long—POINTER to the dialog’s GrafPort

Word—ID of item in dialog

- resultPtr -—| Long—POINTER to space in which to place the text
«— SpP
Stack after call
brevious contents

«— SpP

$150A badItemType Inappropriate item type; only statText and editLine

allowed
$150C itemNotFound No such item

6-56

extern pascal vold GetIText (theDialogPtr,itemID, resultPtr)

GrafPortPtr theDialogPtr;
Word itemID;
Pointer resultPtr;

Dialog Manager routines

s wrius BN Il W

Like the NewDItem routine, GetNewDItem adds a new item to a specified dialog’s item
list. However, instead of getting its parameters from the stack, GetNewDItem
retrieves its parameters from a template whose definition is shown in Figure 6-11.

Most of the item template fields are the same as those you would pass to NewDItem,
except as follows:

B The ftemRect field contains the actual RECT definition of the display rectangle,
not a pointer to it.

B ‘The dialog that will contain the item is not specified in the template. This allows
you to use dialog-independent items (such as OK and Cancel buttons) and
repeat them during several dialogs.

See the section “Item Templates” in this chapter for a description of the parameters.

Offset Field

o
(@]

—tt identifying |
L emi — Word—Item ID identifying item

I

itemRect Four Words—RECT defining item's enclosing rectangle

T T TTTT

I

O

OA
0B
oC

OD———- itemDescr ——
CE|]
OF |
10
11
12
13
14
15
16
17

l

itemrype — Word—Type of item (button, check box, scroll bar, and so on)

I

Long—ttem descriptor

[itemVolue — Word—Item value

— itemflog — Word—Bit flag (O for default)

— itemColor —1 Long—POINTER to color table; NIL for default table

Figure 6-11
ltem template

6-58 Dialog Manager routines

wiMIVY ISHIMIVIG U NNVII

The beginning of a dialog template contains the same values you would pass to
NewModalDialog, except that boundsRect is the actual rectangle, not a pointer.

The item1, item2,... itemN fields are pointers to item templates for each of the items
to include in the dialog. The last pointer must be 0 to signal the end of the list. See
the section “Item Templates” in this chapter for description of the item template.

Offset Field
S0
1
2
3 Four words—RECT data structure defining dialog box's enclosing rectangie
4
5
6
7
g— dtvisible — Word—BOOLEAN; TRUE if diclog is to be visible
0A
0B S
oc [dtRefCon] Long—Reserved for application use
ob| _‘
OE|
OF]
ol itemiPtr — Long—POINTER to first item's template
— —
11
B e
™ ffem2Ptr -—— Long—POINTER 1o second item’s tempiate
5] B
I
[— #emNPir — Long—POINTER to Iast item's template
[~ terminator : Long—NIL POINTER terminating item list

Figure 6-12
Diclog template

6-60 Dialeg Manager routines

92215 Higewitem

Erases a specified item from a specified dialog. The item is not removed from the
item list and can be displayed again by calling the ShowDltem routine.

If the item is already invisible, HideDItem does nothing.

Stack before call

Drevious contents
—-- theDialogPtr --| Long—POINTER to the dialog's GrafPort
itemID Word—ID of item in dialog
&SP
Stack after call
Drevious contents
&SP
$1s50C itemNotFound No such item

extern pascal void HideDItem(theDialogPtr,itemID)
GrafPortPtr theDialogPtr;

Word itemID;

6-62 Dialog Manager routines

More dpour ISVIQIOgEVEN] Unu evelin

If the event is an activate or update event for a dialog window, a mouse-down event in
the content region of an active dialog window, or any other type of event when a
dialog window is active, IsDialogEvent returns TRUE; otherwise, it returns FALSE.

When FALSE is returned, handle the event yourself like any other event that's not
dialog related. When TRUE is returned, you'll generally pass the event to
DialogSelect for it to handle (as described in the section “DialogSelect” in this
chapter), but in some special cases, you may want to bypass DialogSelect or to
perform some preprocessing before calling it. If so, check for those events and
respond accordingly.

For cases other than these, pass the event to DialogSelect for that routine to handle.

6-64 Diclog Manager routines

NVIOTe QPOouUl IVIDUUIWVIUIVY UIIu SYSIHID

ModalDialog gets each event by calling the Event Manager routine GetNextEvent. If
the event is a mouse-down event outside the content region of the dialog window,
ModalDialog emits sound number 1 (which is preset to sound a single beep) and gets
the next event; otherwise, it filters and handles the event as described next.

% Note: Once before getting each event, ModalDialog calls SystemTask, a Desk
Manager routine that must be called regularly so that desk accessories will work

properly.

If the filter procedure pointed to by filterProcPtr returns TRUE, ModalDialog will
return immediately rather than handle the event; in this case, the filterProc
procedure sets itemHit to the item ID that ModalDialog should return.

If you want the filter procedure to handle a special event and prevent ModalDialog
from handling it, but don’t want to leave ModalDialog, change the what field of the
Event Record to nullEvent and return FALSE.

ModalDialog handles events for which the filterProc procedure returns FALSE as
follows:

m For an activate or update event for the dialog window, ModalDialog activates or
updates the window.

® For a mouse-down event in an editline item, ModalDialog responds to the mouse
activity as appropriate (displaying an insertion point or selecting text).

m For a key-down event with an editline item present, text entry and editing are
handled in the standard way, with the following exception: If the Apple key is
pressed, the event is ignored unless the default filter is used. In any case,
ModalDialog returns if the editLine item is enabled, or does nothing if the
editline item is disabled.

® For a key-down event with no editline item present, ModalDialog does nothing.

m For a mouse-down event in any control (except scroll bars), ModalDialog calls
the Control Manager routine TrackControl. If the mouse button is released inside
the control and the control is enabled, ModalDialog returns; otherwise, it does
nothing.

m For a mouse-down event in a scroll bar item, ModalDialog calls the Control
Manager routine TrackControl with a special action procedure that calls your
dialog scroll bar action procedure.

& For a mouse-down event in any other enabled item in the dialog box,
ModalDialog returns.

® For a mouse-down event in any other disabled item or in no item, or if any other
event occurs, ModalDialog does nothing,.

6-66 Dialog Manager routines

SOD15 NewDlitem

Adds a new item to a specified dialog’s item list.

The possible item types are buttonltem, checkItem, radioltem, scrollBarltem,
userCtlltem, userCtlltem2, statText, longStatText, longStatText2, editline, iconltem,
picltem, and userltem, For more information about how the item type affects the
ftemDescr and itemValue parameters, see the section “Item Descriptor and Item
Value” in this chapter.

You must not have any item with an ID of 0.

If the bottom-right coordinate of the rectangle pointed to by itemRectPir is specifed
as (0,0), the Dialog Manager provides a default size for simple buttons, radio buttons,
and check boxes.

Stack before call

Dprevious contents

theDialogPtr

itemID

— itemRectPtr

itemType

- itemDescr —

itemValue

itemFlag

Stack after call

previous contents

-- itemColorPir —_—

Long—POINTER to dialog this item belongs to

Word—Item identifier for all item-related calls

Long—POINTER to rectangle enclosing item in dialog's local coordinates
Word—Item type

Long—Depends upon item type

Word—Depends upon item type
Word-—Includes visible/invisible flag (0 for default flag)

Long—POINTER to item’s default color table; NIL for default

< SP

<SP

6-68 Dialog Manager routines

S0A15 NewModadivialog

Creates a specified modal dialog and returns a pointer to the GrafPort of the new
dialog.

Stack before call

Drevious contents
- longspace -—| Long—Space for result
-- dBoundsRectPtr --| Long—POINTER to the window bounds rectangle
dVisibleFlag Word—BOOLEAN; TRUE if dialog is visible, FALSE if not
- dRefCon --| Long—Reserved for application use
< SP
Stack after call

previous contents

-~ theDialogPtr -—| Long—POINTER to the dialog’s GrafPort; NIL if error
< SP
Memory Manager errors Returned unchanged

extern pascal GrafPortPtr NewModalDialog(dBoundsRectPtr,dVisibleFlag,
dRefCon)

Rect *dBoundsRectPtr;
Boolean dVisibleFlag;

LongWord dRefCon;

6-70 Dialog Manager routines

$0B15 NewModelessDialog

Creates a specified modeless dialog and returns a pointer to the GrafPort of the new
dialog. Modeless dialogs are described in the section “Dialog and Alert Windows” in
this chapter.

Stack before call

previous contents
- longspace -—| Long—Space for result
-~ dBoundsRectPtr --| Long—POINTER to RECT defining window bounds rectangle
- AaTitlePtr -] Long—POINTER to string for dialog’s title; NIL if no title
-~ dBehindPtr -—{ Long—POINTER to window the dialog should be behind
dFlag Word—Bit flag describing the dialog’s frame
- dRefCon -—] Long—Reserved for application use
- dFullSizePtr - Long—POINTER to RECT to be used as content’s zoomed size
<« SP
Stack after call
Dbrevious contents
-- theDialogPlr -—| Long—POINTER to the dialog’s GrafPort; NIL if error
<« SP
Memory Manager errors Returned unchanged

6-72 Dialog Manager routines

$1915 NoteAlerr

Performs the same functions as the Alert routine, except that before drawing the items
of the alert in the alert box, NoteAlert draws the note icon in the upper-left corner of
the box. The note icon is shown in Figure 6-13,

Ji:

Figure 6-13
Note icon

The alert template is defined in Figure 6-8 under the Alert routine.

Stack before call

Dprevious contents
wordspace Word—Space for result
-- alertTemplatePtr -—| Long—POINTER to an alert template
-- filterProcPtr —-| Long—POINTER to filter procedure; NIL for default filter
&SP
Stack after call
previous contents
itemFHit Word—ID of item Hit
— SP
None

extern pascal Word NotelAlert (alertTemplatePtr, filterProcPtr)
AlertTempPtr alertTemplatePtr;

WordProcPkPtr filterProcPtr;

6-74 Dialog Manager routines

SOE15 Removevirtem

Removes a specified item from a specified dialog and erases it from the screen. The
routine also invalidates the item area, so that any other items behind the specified
item are redrawn.

Stack before call

previous contenits
-~ theDialogPtr -~| Long—POINTER to the dialog's GrafPort
itemID Word—ID of item to be removed
<— SP
Stack after call
l previous contents
| <SP
$150C itemNotFound No such item

extern pascal void RemoveDItem(theDialogPtr,itemID)
GrafPortPtr theDialogPtr;

Word itemID;

93515 ReserTAlerIage

Resets the stage of the last occurrence of an alert so that the next occurrence of that
same alert will be treated as its first stage. This is useful, for example, when you've
used the ParamText routine to change the text of an alert such that, from the user’s
point of view, it becomes a different alert.

The stack is not affected by this call. There are no input or output parameters.
None

extern pascal void ResetAlertStage ()

6-76 Dialog Manager roufines

IvViore apour selecCrlliexr

Given a pointer to a dialog and the item ID of an editline item in the dialog box,
SelectIText does the following:

m If the item contains text, SelectlText sets the selection range to extend from
character position startSel up to but not including character position endSel. The
selection range is inverted unless startSel equals endSel, in which case a blinking
vertical bar is displayed to indicate an insertion point at that position.

m If the item doesn't contain text, SelectIText simply displays the insertion point.

For example, if the user makes an unacceptable entry in the editline item, the
application can display an alert box reporting the problem and then select the entire
text of the item so it can be replaced by a new entry. (Without this procedure, the
user would have to select the item before making the new entry.)

“» Note: You can select the entire text by specifying 0 for startSel and 32767 for
endSel. TFor details about selection range and character position, see
Chapter 10, “LineEdit Tool Set.”

6-78 Dialog Manager routines

$3815 SetDefButton

Sets the ID of the default button to a specified ID.

Important
The defButtonID must be the ID of a button item.

Stack before call

previous contents
defButtonlD Word—ID of new default button
-~ theDialogPtr — Long—POINTER to the dialog’s GrafPort
&SP
Stack after call

previous contents

«— SP
None

extern pascal void SetDefButton(defButtonID,theDialogPtr)
Word defButtonlID;

GrafPortPtr theDialogPtr;

6-80 Dialog Manager routines

$2715

Servitemiype

Changes a specified item to a new specified item type. The routine does not redraw
the item. This allows you to change the type of several items and then redraw all the
changes at the same time.

If you want the item to be disabled, add itemDisable to itemTipe.

Important

Changing the type of an item can be very dangerous. The itemDisable status
can be changed by the DisableDltem or EnableDltem routines.

Stack before call

previous contents

itemType

Word—Type of item, including itemDisable

-~ theDialogPtr ~ --| Long—POINTER to the dialog’s GrafPort

Word—ID of item in dialog

Stack after call

<« SP

previous contents

6-82

— SP
$150C itemNotFound No such item

extern pascal void SetDItemType(itemType,theDialogPtr, itemID)

Word itemType;
GrafPortPtr theDialogPtr;
Word itemID;

Dialog Manager routines

$2015

Setliexr

Provides the text for a specified statText or editLine item in a specified dialog box and
draws the item.

For example, suppose the exact content of a dialog’s text item cannot be determined
untl the dialog is created, but the display rectangle is already defined. Call the
SetIText routine with the desired text.

Stack before call

previous contenlts

-~ theDialogPtr -—1 Long—POINTER to the dialog’s GrafPort

Word—ID of item in dialog

-~ theStringPtr -—| Long—POINTER to the new text string

Stack after call

— SP

previous contents

6-84

< Sp
$150A badItemType Inappropriate item type; only statText and editline
allowed
$150C itemNotFound No such item

extern pascal vold SetIText (theDialogPtr,itemID,theStringPtr)

GrafPortPtr theDialogPtr;
Word itemID;
Pointer theStringPtr;

Dialog Manager routines

31815 StopAlert

Invokes an alert defined by a specified alert template and draws the stop icon in the
upper-left corner of the box. The stop icon is shown in Figure 6-14.

Figure 6-14
Stop icon

The alert template is defined in Figure 6-8 under the Alert routine.

Stack before call

brevious contents
wordspace Word—Space for result
—- alertTemplatePtr --| Long—POINTER to an alert template
—- filterProcPtr --| Long—POINTER to filter procedure; NIL for standard filter
<« SP
Stack after call

Drevious contents

itemHit Word—ID of item hit
— SP

None

extern pascal Word StopAlert(alertTemplatePtr,filterProcPtr)
AlertTempPtr alertTemplatePtr;

WordProcPtr filterProcPkPtr;

6-86 Dialog Manager routines

Dialog Manager summary

This section briefly summarizes the constants, data structures, and tool set errors
contained in the Dialog Manager,

Important
These definitions are provided In the appropriate Interface file.

Table 6-6
Dialog Manager constants

Name Value Description

Dialog scroll bar commands

getInitView $0001 View size at creation

getInitTotal $0002 Total size at creation

getInitvalue $0003 Value at creation

scrollLineUp $0004 Scroll one line up

scrollLineDown $0005 Scroll one line down

scrollPageUp $0006 Scroll one page up

scrollPageDown $0007 Scroll one page down

scrollThumb $0008 Scroll to thumb position

Item types

buttonItem $000A Standard button control

checkItem $000B Standard check box control

radioItem $000C Standard radio button control

scrollBarItem $000D Special scroll bar for dialogs

userCtlItem $000E Application-defined control

statText $000F Static text; text that cannot be edited

longStatText $0010 Static text

editLine $0011 Text that can be edited

iconItem $0012 An icon

picItem $0013 A QuickDraw II picture

userItem $0014 Application-defined item

userCtlItem2 $0015 Application-defined control

longStatText2 $0016 Static text; text cannot be edited and can contain
embedded commands

itemDisable $8000 Added to any item, this disables that item

Item type range

minItemType $000A Minimum valid item type

maxItemType $0016 Maximum valid item type

6-88 Chapter 6: Dialog Manager

Table 6-7 (contlnued)
Dialog Manager data structures

Name Offset Type Definition

DialogTemplate

dtBoundsRect $00 Rect Dialog bounds rectangle

dtVisible $08 Boolean TRUE if dialog is to be visible

dtRefCon $0A Long Reserved for application use

dtltemList $0E ItemTempPtr Points to first item in item list; list terminated by a
NIL pointer

lconRecord

iconRect $00 Rect Bounds rectangle (width is multiple of 8) of
rectangle enclosing icon

iconlmage $08 Array Pixel image

itemTemplate

itemID $00 Word Number identifying item

itemRect $02 Rect Display rectangle, in local coordinates

itemType $0A Word Type of item (button, check, scroll, and so on)

itemDescr $0C Pointer Item descriptor

itemValue $10 Word Item value

itemFlag $12 Word Bit flag (0 for default)

itemColor $14 CtlColorTablePtr Pointer to color table (NIL for default)

UserCtlitemPB

defProcParm $00 LongProcPtr Address of definition procedure

titleParm $04 Pointer Pointer to title string

param?2 $08 Word First parameter

paraml $0A Word Second parameter

Note: The actual assembly-language equates have a lowercase o (the letter) in front of all of
the names given in this table.

Table 6-8

Dialog Manager error codes

Code Name Description

$150A badItemType Inappropriate item type
$150B newlItemFailed Item creation failed
$150C itemNotFound No such item

$150D notModalbialog Frontmost window not a modal dialog window

6-90 Chapter 6: Dialog Manager

Table 7-1

Event Manager routines and their functions

Routine

Description

Housekeeping routines

EMBootlnit

EMStartUp
EMShutDown
EMVersion
EMReset
EMStatus

Initializes the Event Manager; called only by the Tool Locator—must not be called by
an application

Starts up the Event Manager for use by an application

Shuts down the Event Manager when an application quits

Returns the version of the Event Manager

Returns an error if the Event Manager is active-—must not be called by an application
Indicates whether the Event Manager is active

Event accessing routines

GetNextEvent

EventAvail
GetOSEvent

OSEventAvail

Returns the next available event of a specified type or types; if the event is in the event
queue, GetNextEvent removes the event from the queue

Allows an application to look at the next available event of a specified type or types
Returns the next available queue event of a specified type or types and removes it from
the queue

Allows an application to look at the next available queue event of a specified type or
types, but leaves the event in the queue

Mouse status routines

GetMouse
Button
Stilldown
WaitMouseUp

Returns the current mouse location

Returns the current status of a specified button on the mouse

Tests whether the specified mouse button is still down

Tests whether the specified mouse button is still down and, if not, removes the
preceding mouse-up event

Event queue routines

PostEvent
FlushEvents

Posts an event into the event queue

Removes all queue events of the type or types specified by an event mask up to but not
including the first event of any type specified by a stop mask

Miscellaneous routines

TickCount

GetDblTime

GetCaretTime

SetEventMask
FakeMouse

DoWindows
SetSwitch

Returns the current number of ticks (in sixtieths of a second) since the system was last
started

Returns the maximum difference (in ticks) between mouse-up and mouse-down events
allowed for the mouse clicks to be considered a double-click

Returns the time (in ticks) between blinks of the caret (usually indicated by a vertical
bar) marking the insertion point in text that can be edited

Specifies the system event mask

Allows use of an alternative pointing device, such as a graphics tablet, in place of or in
conjunction with the mouse

Returns the address of the direct page used by the Event Manager

Generates a switch event

7-2 Chapter 7: Event Manager

TPHIMWIY G YTINED

The Window Manager generates events to coordinate the display of windows on the
screen (see Chapter 25, “Window Manager,” in Volume 2). These events are either
activate or update events:

m Activate events are generated whenever an inactive window becomes active or an
active window becomes inactive. These events generally occur in pairs (for
example, one window is deactivated and then another is activated).

1 Update events occur when all or part of a window’s contents need to be drawn or
redrawn, usually as a result of the user opening, closing, activating, or moving a
window.,

- iTrwrs WV wiliv

Device driver events are generated by device drivers in certain situations; for
example, an application might set up a driver to report an event when its
transmission of data is interrupted. The device driver uses the PostEvent routine to
place device driver events in the event queue.

Switch events are reserved for future use.

A desk accessory event occurs whenever the user enters Control-Apple-Escape to
invoke a classic desk accessory.

An application can define as many as four application events of its own and use
them for any purpose. Application-defined events are placed in the event queue with
the PostEvent routine.

The Event Manager returns a null event if it has no other events to report.

=vein MUYy

The Event Manager generally retrieves events from the event queue in the order of
their original posting. However, the way that various types of events are generated
and detected causes some events to have higher priority than others. Also, not all
events are kept in the event queue. Furthermore, when an application asks for an
event, it can specify the types in which it is interested. Specifying the types can cause
the Event Manager to pass over some events in favor of others.

7-4 Chapter 7: Event Manager

BYVGIH ISWVCUIUD

Every event, including a null event, is represented by an event record containing
all pertinent information about that event. The event record includes the following
information:

B The type of event

® Event-specific information, such as which key the user pressed or which window is
being activated

m The time the event was posted
® The location of the mouse at the time the event was posted (in global coordinates)
m ‘The state of the mouse buttons and modifier keys at the time the event was posted

Every event, including a null event, has a 16-byte event record containing the
preceding information defined as follows:

what WORD Event code
message LONG Event message
when LONG Tick count
where POINT Mouse location

modifiers WORD Modifier flags

The when field contains the number of ticks since the system was last started, and the
where field gives the location of the mouse, in global coordinates, at the time the
event was posted. The other three fields are described in the following sections.

7-6 Chapter 7. Event Manager

g -~
The message field of an event record contains the event message, which conveys

additional information about the event. The nature of this information depends on
the event type, as shown in Table 7-3.

Table 7-3

Event messages

Event type Event message

Mouse-down Button number (0 or 1) in low-order word; high-order word undefined
Mouse-up Button number (0 or 1) in low-order word; high-order word undefined
Key-down ASCII character code in low-order byte Chigh bit clear); upper 3 bytes undefined
Auto-key ASCII character code in low-order byte (high bit clear); upper 3 bytes undefined
Activate Pointer to window

Update Pointer to window

Device driver Defined by the device driver

Application Defined by the application

Switch Undefined

Desk accessory Undefined

Null Undefined

The modifiers field of an event record contains further information about activate
events and about the state of the modifier keys and mouse buttons at the time the
event was posted. For example, your application might look at this field to find out
whether the Apple key was down when a mouse-down event was posted (which could
affect the way objects are selected) or when a key-down event was posted (which could
mean the user is choosing a menu item by typing its keyboard equivalent).

7-8 Chapter 7: Event Manager

The keyPad bit gives further information about key-down events; it's set to 1 if the key
pressed was on the keypad, or 0 if the key pressed was on the keyboard. Bits 12
through 6 indicate the state of the mouse button and modifier keys. Note that the
btnOState and biniState bits are set to 1 if the corresponding mouse button was up,
whereas the bits for the five modifier keys are set to 1 if their corresponding keys were
down,

< Note: On a one-burton mouse, the button is button 0.

The activeFlag and changeFlag bits give further information about activate events.
The activeFlag bit is set to 1 if the window pointed to by the event message is being
activated, or 0 if the window is being deactivated. The changeFlag bit is set to 1 if the
active window is changing from an application window to a system window or vice
versa. Otherwise, it's set to 0.

=Y LLINADND

Some Event Manager routines can be restricted to operate on a specific event type or
group of types; in other words, the specified event types are enabled and all others
are disabled. For instance, instead of just requesting the next available event, the
application can specifically ask for the next keyboard event.

An application can specify which event types a particular call applies to by supplying
an event mask as a parameter. This is 2 word with one bit position for each event
type, as shown in Figure 7-2. The bit position representing a given type corresponds
to the event code for that type—for example, update events (event code 6) are
specified by bit 6 of the mask. A 1 in bit 6 means that this call applies to update
events; a 0 means that it doesn't.

% Note: Null events can’t be disabled; a null event is always reported when none of
the enabled types of events are available.

There’s also a global system event mask that controls which event types are
posted into the event queue by the Event Manager. Only event types corresponding
to bits set in the system event mask are posted, all others are ignored. When the
system starts up, the system event mask is set to post all events.

7-10 Chapter 7: Event Manager

vallly e cvenrt vianager

This section discusses how the Event Manager routines fit into the general flow of an
application and gives you an idea of which routines you'll need to use under normal
circumstances. Each routine is described in detail later in this chapter.

The Event Manager depends upon the presence of the tool sets shown in Table 7-4
and requires that at least the indicated version of the tool set be present.

Table 7-4

Event Manager—other tool sets required

Tool set Tool set Minimum version
number name needed

$01 #01 Tool Locator

$02 #02 Memory Manager

$03 #03 Miscellaneous Tool Set
$04 #04 QuickDraw II

$05 #05 Desk Manager

$09 #09 ADB Tool Set

—_ e e e e e
OO OO OO

The first Event Manager call that your application must make is EMStartUp.
Conversely, when you quit your application, you must make the EMShutDown call.

Any application that uses both the Event Manager and the Window Manager must
start the Event Manager before starting up the Window Manager. Because the Event
Manager shares data with the Window Manager, both must use the same direct-page
work area. When an application starts up the Window Manager, the Window
Manager automatically calls the Event Manager routine DoWindows to obtain the
address of the direct-page work area assigned to the Event Manager. If DoWindows is
not called, the Event Manager assumes that the application does not use windows and
makes no attempt to return window events.

Event-driven applications have a main loop that repeatedly calls GetNextEvent to
retrieve the next available event and then takes an appropriate action for each type of
event. Some typical responses to commonly occurring events are described in the
next section. Your application should respond only to those events that are directly
related to its own operations. After calling GetNextEvent, it should test the Boolean
result to find out whether it should respond to the event: TRUE means the event may
be of interest to the application; FALSE means it will usually not be of interest. In
some cases, you may want your application simply to look at a pending event while
leaving it available for subsequent retrieval by GetNextEvent. You can use the
EventAvail routine for this purpose. Also remember that, if you are using the
Window Manager TaskMaster routine, TaskMaster will intercept and act upon certain
types of events, such as mouse events occurring in a window’s Close box, Zoom box,
or scroll bars. For more details, see the section “Using TaskMaster” in Chapter 25,
“Window Manager,” in Volume 2.

7-12 Chapter 7: Event Manager

NwYMWIIMIIY IV WHIMUYW SV

When the application receives an activate event for one of its own windows, the
Window Manager will already have completed all of the normal housekeeping tasks
associated with the event, such as highlighting or unhighlighting the window. The
application can then take any further necessary action, such as showing or hiding a
scroll bar or highlighting or unhighlighting a selection.

On receiving an update event for one of its own windows, the application usually
should update the contents of the window.

NwvpwIiMIlIY W WIHTHE) (= A A1 RIR]

Applications never receive desk accessory events because the Desk Manager
intercepts and handles such events. Switch events were not implemented at the time
of publication; however, when they are generated, your application will be returned
to after being switched out of by a switcher-type application. Thus, upon receiving a
switch event, your application should check to make sure that the environment is still
the same as it was before the switch event occurred.

Py Ml ISV VY VLI

An application using application-defined events must call PostEvent to post these
events to the event queue. Device drivers can post events the same way. PostEvent
can also be useful for reposting an event that the application removed from the event
queue by calling the GetNextEvent or GetOSEvent routine.

In some situations, you may want to remove {rom the event queue some or all events
of a certain type or types. You can do this with the FlushEvents routine,

s wrrwsiraiayy Wilwd WG IALIN D

In addition to receiving the user’s mouse and keyboard actions in the form of events,
applications can directly read the mouse location and state of the mouse buttons by
calling the GetMouse and Button routines, respectively. To follow the mouse when
the user moves it with the button down, the application can use the StillDown or
WaitMouseUp routines.

The TickCount routine returns the number of ticks since the last system start up. Your
application can compare this to the when field of an event record to discover the
delay since that event was posted.

7-14 Chapter 7: Event Manager

Following is an example of how you can install an asynchronous keyboard event handler:

_MTStartup

’

Startup call to Miscellaneous Tool Set

* (Push appropriate EMStartup parameters on the stack.)

_EMStartup

pushlong #0

pea $000F
_GetVector
pla

sta >EventKey+1
pla

sep #520

sta >EventKey+3
rep #520

pea SQ00F
pushlong #AsyncKey

_SetVector

Startup call to Event Manager

Space for result

Vector i1s keybcard interrupt handler
Get the vector set by the Event Manager
Low word of current keyboard IRQ vector
Store for Event Manager dispatches

High word of current keyboard IRQ vector
8=bit m

Store for Event Manager dispatches
16=bit m

Vector is keyboard interrupt handler
Address of asynchronous key handler

Install my handler

Following is an example of how you can implement an asychronous keyboard
interrupt handler.

AsyncKey
kbd
kbdstrb

length

start

equ $00CQ00
equ $00C010
equ 3

longa off

longi off

’

’

v

Keyboard data
Keyboard strobe

Three asynchronous key events are possible

Interrupt handlers are called in native mode with 8=bit m and x.

* Interrupt handlers return with an RTL instruction. The carry flag

* must be cleared if the interrupt was handled.

7-16

Chapter 7: Event Manager

DsptchRet anop

sta >kbdstrb Clear the keyboard strobe

~

clc ; Flag that interrupt was handled

plb Restore data bank

~

rel Return from interrupt

~

*

* Following is a table of valid asynchronous event keys:

AsyncTable anop
dc h'03! ; Control-C
dc h'13? ; Control-S
dc h'1lB' ;s Escape

*

* Following is a table of dispatch addresses to subroutines for handling asynchronous key
events:

DsptchTable anop

dc irCtric-1" ; Control-C handler address-1

dec i'ctrls-1' ; Control-S handler address-1

dc i'Escape-1"' ; Escape handler address-1
CtrlC anop

* This routine would do whatever you want for an asynchronous Control-C key event:

rts
Ctrls anop
* This routine would do whatever you want for an asynchronous Control-S key event:

rts

Escape anop
* This routine would do whatever you want for an asynchronous Escape key event:
rts

end

7-18 Chapter 7: Event Manager

To use journaling, you must place the address of the journaling driver in the Event
Manager jump vector journalPir; that is, you must place a $5C followed by the 3-byte
address of the driver in journalPtr. The Event Manager then calls the journaling
device driver by jumping through journalPtr. The journalPtris set to $00000000
when EMStartUp is executed.

The journalFlag variable controls whether journaling is active, and, if so, whether it
is in recording or playback mode. If journalFlagis set to 0, journaling is not active.
If journalFiag is a nonzero value, journaling is active. A positive value indicates
recording mode, and a negative value indicates playback mode. The journalFlag is
set to $0000 when EMStartUp is executed. The locations of journalPtr and
JournalFlag should be obtained by calling the Miscellaneous Tool Set routine
GetAddr.

If journaling is active, the routines GetNextEvent, EventAvail, GetMouse, Button,
and TickCount will push information onto the stack and perform a JSL to the
journaling device driver whose address is stored in journalPtr. The journaling driver
should remove the information from the stack before returning with an RTL.

The information pushed onto the stack is as follows:

Dbrevious contents
JournalFlag Word—Current value of the flag
JournalCode Word—Code indicating the routine calling the journaling driver
- resultPtr -— Long—POINTER to actual data returned by the calling routine
<— SP

Table 7-5 summarizes the values for journalCode and resultPir.

Table 7-5

Journal codes and result pointers

Journal Result pointer
code value Routine values

0 TickCount LONG

1 GetMouse POINT

2 Button BOOLEAN
4 GetNextEvent Event record
4 EventAvail Event record

7-20 Chapter 7: Event Manager

Initialize the high-order byte of device information to $FF. The startup program will
then set up this byte as required by the type of device being installed, as follows:

Card device Byte contains slot # in which the card was found
Serial device Byte contains port # to which the device is connected
ADB device Byte contains address # assigned to the device

A device driver should perform the following steps each time it is called:

1

7-22

Call the GetAddr routine in the Miscellaneous Tool Set to obtain the address of
the relative or absolute clamp values (depending on whether the driver is for a

relative or absolute device). Save the address so that you have to make the call

only the first time the device driver is executed.

If the driver is installed as a Heartbeat Task, resct the Heartbeat Task counter to
1 or 2. Poll the device to obtain its current X-Y position and button state.

If the driver is for a serial device, issue an InQStatus call to determine how many
characters are in the serial firmware'’s input queue. Read the characters by
calling the Serial Read routine.

% Note: For more information about the Serial Read routine, sece the
Apple IIGS Firmware Reference.

If the driver is for an ADB device, the stack will have a buffer pointer at offset 7.
The first byte in the buffer specifies the number of data bytes in the buffer. Read
the data bytes.

Determine whether the device’s X-Y position or button state has changed. If no
changes, skip to step 11.

Push the following word onto the stack:
Bits 15-3 Unused; set to 0

Bit 2 Set to 1 if button state has changed; otherwise set to 0
Bit 1 Set to 1 if XY position has changed; otherwise set to 0
Bit 0 Unused; set to 0

Read the keyboard modifiers latch at $C025 (must be done in 8-bit mode) and
push the byte onto the stack. Push a byte of 0 onto the stack.

Determine the device’s absolute X position. Get the current X clamps, using the
address saved in step 1, and clamp the X position; that is, make sure that the X
position is within the clamp boundaries. Push a word containing the clamped,
absolute X position on the stack.

Determine the device's absolute Y position. Get the current Y clamps, using the
address saved above, and clamp the Y position; that is, make sure that the Y
position is within the clamp boundaries. Push a word containing the clamped,
absolute Y position on the stack.

Chapter 7: Event Manager

Devices communicating through the serial port

If the device communicates through the serial port, install the device driver by taking
the following steps:

1. Load the driver code into memory.

2. Determine to which port the device is connected. Store the port number in the
appropriate byte of the device driver header (described in the section “Writing
Device Drivers” in this chapter).

3. Initialize the device by calling the Serial Init routine.
% Note: For more information about the Serial Init routine and for more details
about the next two steps, consult the Apple IIGS Firmware Reference.

4. Install the driver in the serial firmware’s completion vector by issuing a SetIntInfo
call to the serial firmware. The command list for the call should specify that
Character available interrupts be passed to the driver.

5. Turn on buffering by calling the Serial Write routine with the following three
characters: Control-I, B, E.

Devices communicating through the Apple Desktop Bus

If the device communicates through the Apple Desktop Bus (ADB), install the device
driver as follows:

1. Load the driver code into memory.

2. Determine the address number assigned to the device. Store the address number
in the appropriate byte of the device driver header (described in the section
“Writing Device Drivers” in this chapter).

3. Install the driver in the ADB firmware's SRQ List completion vector by calling the
SRQPoll routine in the ADB Tool Set (see Chapter 3, “Apple Desktop Bus Tool
Set™).

4. Enable SRQ for the device by calling the SendInfo routine in the ADB Tool Set.

7-24 Chapter 7: Event Manager

FU1IUO EMIBOOTINIT

Initializes the Event Manager; called only by the Tool Locator.

An application must never make this call,

The stack is not affected by this call. There are no input or output parameters.
None

Call must not be made by an application.

7-26 Event Manager housekeeping routines

Stack after call

brevious contents

&SP

$0601 emDupStrtUpErr EMStartUp already called; duplicate call ignored
$0606 emQSiz2LrgErr Size of event queue exceeds 3639
$0607 emNoMemQueueErr Insufficient memory available for queue; Event

Manager not initialized

extern pascal void
EMStartUp (dPageAddr, queueSize, xMinClamp, xXMaxClamp, yMinClamp, yMaxClamp,

userlID)

Word dPageAddr;
Word queueSize;
Integer xMinClamp;
Integer xMaxClamp;
Integer yMinClamp;
Integer yMaxClamp;
Word userID;

Your application can also use the following alternate form of the call:

extern pascal void EMStartUp(dPageAddr, queueSize, clamp,userID)

Word dPageAddr;
Word queueSize;
ClampRec clamp;
Word userlID;

7-28 Event Manager housekeeping routines

YUDUO Eivikesert

Returns an error if the Event Manager is active; otherwise does nothing.

An application must not make this call,

The stack is not affected by this call. There are no input or output parameters,
$0602 emResetErr Can't reset Event Manager

Call must not be made by an application.

YUOUO EIVIDTATus

Indicates whether the Event Manager is active.

Stack before call

previous contenis

wordsbace Word—Space for result
T jé-sp
Stack after call
Drevious contents
actwerlag Word—BOOLEAN; TRUE if Event Manager active, FALSE if inactive
&SP
None

extern pascal Boolean EMStatus ()

7-30 Event Manager housekeeping routines

YU7VO wowinaows

Returns the address of the direct-page work area used by the Event Manager.

An application must never make this call.

DoWindows is called by the Window Manager when the Window Manager is
initialized. The Window Manager uses the high end of the dPageAddr returned by
DoWindows; the Event Manager uses the low end.

Stack before call

previous contents

wordspace Word—Space for result
<SP

Stack after call

previous contents

dPageAddr Word—Bank $0 starting address for Event Manager's ane-page work area
<«— Sp

None

Call must not be made by an application.

7-32 Event Manager routines

? 17UO raKkeiviouse

Allows an alternative pointing device, such as a graphics tablet, to be used in place of
or in conjunction with the mouse. This call must be made only by a device driver.
See the section “Using Alternative Pointing Devices” in this chapter for more
information.

Stack before call

previous contenits

changedFlag

modLatcthaa’a’mg

Xrosition

yPosition

butionStatus

Stack after call

I Dprevious contents

None

Word—Indicating that device’s position and/or button state has changed
Byte—Keyboard modifiers latch | Byte—Set to 0

Word—Device’s clamped absolute X position

Word—Device’s clamped absolute Y position

Word—Device’s button status
— SP

< SP

Call cannot be made from C.

7-34 Event Manager routines

9 1£U0 oercareriime

Returns the time (in ticks) between blinks of the caret (usually indicated by a vertical
bar) marking the insertion point in text that can be edited.

If your application controls the blinking of the caret, the application should call this
routine. On every pass through the program’s main event loop, the application
should check numTicks against the elapsed time since the last blink of the caret.

The user can adjust the numTicks value by changing the Cursor Flash setting in the
Control Panel.

Stack before call

Dprevious contents

- longspace -—| Long—Space for result

— SP

Stack after call

previous contents

- numTicks --1 Long—Number of ticks between blinks of the caret

«— Ssp
None

extern pascal LongWord GetCaretTime ()

7-36 Event Manager routines

YULVO werviouse

Returns the current mouse location. GetMouse gives the location in the local
coordinate system of the current GrafPort (for example, the currently active window).
In contrast, the mouse location stored in the where field of an event record is always
specified in global coordinates.

Stack before call

Dprevious contents

-- mouselocPtr --| Long—POINTER to POINT for current mouse location

<— SP

Stack after call

I Dprevious contents
| &SP

None

extern pascal void GetMouse (mouselLocPtr)

Point *mouselocPtr;

7-38 Event Manager routines

- wraes prIIwIIly WiNWAG]

GetNextEvent returns the next available event of any type the mask designates, subject
to the following priority order:

1. Activate event (one window becomes inactive before another window becomes
active)

2. Switch event (reserved for future use)

3. Mouse-down, mouse-up, key-down, auto-key, device driver, application-defined,
or desk accessory event (in the order they were posted)

4., Update event (in front-to-back order of windows)
If no event of any of the designated types is available, GetNextEvent returns a null

event. This priority order is further discussed in the section “Event Priority” in this
chapter,

- = ssmwssimm v wiil WM I WMTON Ivlullugel

Before reporting an event to the application, GetNextEvent calls the Desk Manager
routine SystemEvent to see whether the system wants to intercept and respond to the
event. If so, or if the event being reported is a null event, GetNextEvent returns a
Boolean result of FALSE; a Boolean result of TRUE means that the application should
handle the event itself. The Desk Manager intercepts the following events:

m Desk accessory events
® Activate and update events directed to a desk accessory

m Mouse-up and keyboard events, if the currently active window belongs to a desk
accessory

In each case, the Desk Manager intercepts the event only if the desk accessory can
handle that type of event. As a rule, all desk accessories should be set up to handle
activate, update, and keyboard events and should not handle mouse-up events.

7-40 Event Manager routines

‘A YAYAY, wWILYSIHITAY UL

Allows an application to look at the next available queue event of a specified type or
types, but leaves the event in the queue. OSEventAvail returns the next available
queue event of any type the mask designates. If no event of any of the designated types
is available, OSEventAvail returns a null event.

OSEventAvail doesn't return window or switch events and doesn’t call the Desk
Manager before returning the event.

An event returned by OSEventAvail will not be accessible later, if, in the meantime,
the queue has become full and the event has been discarded.

Stack before call

previous contents
wordspace Word—Space for result
eventMask Word—Specifies which types of queue events are of interest
- eventPtr -—! Long—POINTER to the event record in which the event will be placed
«— SpP
Stack after call
previous contents
gotEventFlag Word—BOOLEAN; TRUE if any specified event types available,
«— Sp FALSE if null event
None

extern pascal Boolean OSEventAvail (eventMask, eventPtr)
Word eventMask;

EventRecordPty eventPtLr;

7-42 Event Manager roufines

Stack after call

previous contenits

resultCode Word—J0 if event posted, 1 if event type not enabled in system event mask
— SP

$0604 emBadEvtCodeErr Event code is greater than 15

extern pascal Word PostEvent (eventCode, eventMsg)
Word eventCode;

LongWord eventMsg;

7-44 Event Manager routines

¥ 19VUV ICIOWIICII

Generates a switch event.

Only switcher-type applications should make this call.

The stack is not affected by this call. There are no input or output parameters.
None

extern pascal voild SetSwitch{()

7-46 Event Manager routines

Y IVuUwv 1R UL L

Returns the current number of ticks (in sixtieths of a second) since the system was last
started.

Your application should not depend upon an exact tick count. The tick count is
incremented during the VBL interrupt, but that interrupt can be disabled. Also,
because an interrupt task can keep control for more than one tick, your application
should not rely on the tick count being incremented to a certain value (for example, it
should not test whether the tick count has become equal to its old value plus 1).
Instead, the application should check for a greater than or equal to condition.

Stack before call

Dbrevious contents

— longspace -—{ Long—Space for result

<SP

Stack after call

brevious contents

- numTicks -——| Long—Number of ticks since system startup

«— SP
None

extern pascal LongWord TickCount{)

7-48 Event Manager routines

cveln vianager summary

This section briefly summarizes the constants, data structures, and tool set errors
contained in the Event Manager.

Important

These definitions are provided in the appropriate interface file.

Table 7-6

Event Manager constants

Name Value Description

Event codes

nullEvt $0000 Null event

mouseDownEvt $0001 Mouse-down event

mouseUpEvt $0002 Mouse-up event

keyDownEvt $0003 Key-down event

autoKeyEvt $0005 Auto-key event

updateEvt $0006 Update event

activateEvt 30008 Activate event

switchEvt $0009 Switch event

deskAccEvt $000A Desk accessory event

driverEvt $000B Device driver event

applEvt $000C Application-defined event

app2Evt $000D Application-defined event

app3Evt $000E Application-defined event

app4Evt $000F Application-defined event

Event masks

mDownMask $0002 Call applies to mouse-down events

mUpMask $0004 Call applies to mouse-up events

keyDownMask 30008 Call applies to key-down events

autoKeyMask $0020 Call applies to auto-key events

updateMask $0040 Call applies to update events

activeMask $0100 Call applies to activate events

switchMask $0200 Call applies to switch events

deskAccMask $0400 Call applies to desk accessory events
driverMask $0800 Call applies to device driver events

applMask $1000 Call applies to application-defined app1Evt events
app2Mask $2000 Call applies to application-defined app2Evt events
app3Mask $4000 Call applies to application-defined app3Evt events
app4Mask $8000 Call applies to application-defined app4Evt events
everyEvent $FFFF Call applies to all events

7-50 Chapter 7: Event Manager

Table 7-8
Event Manager error codes

Code Name

Description

$0601 emDupStrtUpErr
$0602 emResetErr
$0603 emNotActErr
$0604 emBadEvtCodeErr
$0605 emBadBttnNoErr
$0606 emQSiz2LrgErr
$0607 emNoMemQueueErr
$0681 emBadEvtQErr
30682 emBadQHndlErr

EMStartUp already called

Can't reset Event Manager

Event Manager not active

Event code is greater than 15

Button number specified is not 0 or 1

Size of event queue is greater than 3639
Insufficient memory available for queue
Event queue damaged—fatal system error
Queue handle damaged—fatal system error

7-52 Chapter 7: Event Manager

QuickDraw 11 is then responsible for the actual drawing of the characters in the
currently installed font. Thus, you can think of the Font Manager as a higher-level
tool set that installs a font and directs QuickDraw II to use that font until directed
otherwise. For details about how fonts are drawn and constructed, see Chapter 16,
“QuickDraw II,” in Volume 2.

A preview of the Font Manager routines

To introduce you to the capabilities of the Font Manager, all Font Manager routines
are grouped by function and briefly described in Table 8-1. These routines are
described in detail later in this chapter, where they are separated into housekeeping
routines (discussed in routine number order) and the rest of the Font Manager
routines (discussed in alphabetical order).

Table 8-1

Font Manager routines and their functions

Routine

Description

Housekeeping routines

FMBootlnit

FMStartUp
FMShutDown
FMVersion
FMReset
FMStatus

Font family routines
CountFamilies

FindFamily
GetFamlInfo

GetFamNum
AddFamily

Font routines
InstallFont

SetPurgeStat

Initializes the Font Manager; called only by the Tool Locator—must not be called
by an application

Starts up the Font Manager for use by an application

Shuts down the Font Manager

Returns the version number of the Font Manager

Returns an error if the Font Manager is active

Indicates whether the Font Manager is active

Returns the total number of distinct font families currently available to the Font
Manager that match a given specification (either all families or all families that
have a plain-styled font available)

Returns the number and name of a particular font family

Returns the family name and characteristics of a font family with a specified
family number

Returns the family number corresponding to a specified font family name
Enables the application to add a family number and name to the Font Manager’s
list of known font families

Finds a specified font or the available font with the best fit if the specified font isn’t
available; loads the font into memory, if necessary; possibly creates a new,
scaled font to match the specified font’s size; and makes the resulting font current
and unpurgeable

Makes a specified font in memory purgeable or unpurgeable

8-2 Chapter 8: Font Manager

A font family also has an identifying number, called the family number. This is a
number identifying a font family, independent of point size or style modifications
(so London 9, London Bold 14, and London Bold Underline 24 would all have the
same family number). A family number of $0000 can be used to specify the system
font for most Font Manager calls; $FFFF is an invalid family number.

At the time of publication, the font family numbers are as shown in Table 8-2.

Table 8-2

Font family numbers

Number Font family Number Font family
$0002 #2 newYork $000B #11 cairo
$0003 #3 geneva $000C #12 losAngeles
$0004 #4 monaco $0014 #20 times
$0005 #5 Venice $0015 #21 helvetica
30006 #6 london $0016 #22 courier
$0007 #7 athens $0017 #23 symbol
$0008 #8 sanFran $0018 #24 taliesin
30009 #9 toronto $FFFE #65524 Shaston

There is a one-to-one correspondence between family numbers and family names.
That is, any two fonts with the same family number should have the same family
name.

rorIni sice

The size of a font is measured in points. A point is a measure borrowed from the
typesetting world. In that world, a point is equal to about 1/72 of an inch.

% Note: Because measurements can't be exact on a bit-mapped output device, the
actual font size may be different than what it would be in normal typography.
Also be aware that two fonts with the same font size but from different font
families may not appear to be the same size. Font size is more useful for
distinguishing different sizes of the same font family.

The Font Manager defines the font size as a byte. Font size is specified as an
unsigned number in the range 1-255 (0 is not allowed).

% Note: In the Apple IIGS font record and in QuickDraw 1, font size is allocated an
entire word, with only the low-order byte being meaningful. See Chapter 16,
“QuickDraw II,” in Volume 2 for more information about font records.

8-4 Chapter 8: Font Manager

You must decide on a case-by-case basis whether to create a prestyled font or to let
the text-drawing routines handle the styling. Usually, leaving styling to the text-
drawing routines is best. However, if you are using large fonts and screen quality is
very important, it may be worthwhile to create fonts that are properly boldfaced,
shadowed, and so on.

If a particular font has been prestyled for a particular style and that style has also been
set in the GrafPort's #xFace field, then the styling is not applied during text drawing.
For example, fonts that have been prestyled as italic are not further italicized by
QuickDraw 11, regardless of the current value of txFace. If several styles are
requested, any styles not already built into the font are applied. Also, QuickDraw II
has no method for removing the styles from the current font if the font happens to
have a built-in style that is not enabled by txFace.

For this reason, the best-fit font algorithm never chooses a font that has a style
enabled that was not requested, even if it's an excellent match in other ways. This
relationship between styles is called a partial match. That is, style A is considered to
partially match style B if all of the styles enabled in style A are also enabled in style B.
(For example, the style bold underline partially matches the style bold italics
underline. The style plain partially matches all styles.) This concept is used in such
calls as InstallFont and FindFontStats.

L I IS

A font ID record specifies a font by family, style, and size. It is assumed that no two
fonts match in all three of these characteristics; if two fonts do match in all three, the
Font Manager won't be able to distinguish between them and may not be able to
handle them correctly. The font ID record is used only by the Font Manager, that is,
QuickDraw II does not use the record.

The structure of the font ID record is illustrated in Figure 8-2.

Offset Field
$0 . Word—Family number of font
1 — famNum —
2 fontStyle Byte—Style of font
3 fontsize Byte—Size of font, in points
Figure 8-2

Font ID record

% Note: 1f you use the txFace and txStyle fields of the GrafPort to determine the
SontStyle and fontSize, be carelul; txFace and txStyle are words with their
information in the low-order byte, and fontStyle and foniSize are bytes.

Many Font Manager routines require a font ID record as an input parameter.

8-6 Chapter 8: Font Manager

The Font Manager scales all the characters for the new font when it installs the font;
that is, rather than generating each character as it is needed, the Font Manager scales
a character, adds it to the new font, scales another character and adds it, and so on
until all the characters in the real font have been scaled and added to the new font.

Fonts that have been algorithmically scaled generally do not look good as the
original font, and scaling a scaled font produces even less attractive results. For this
reason, when the Font Manager scales a font, it automatically marks that font as
unreal. The Font Manager will not attempt to scale an unreal font; instead, it will
scale from the original font.

When your application adds a font with the AddFontVar, you have a choice as to
whether to mark the font as real, and thus allow further scaling, or unreal, and not
allow further scaling. For more information about how to mark a font as real or
unreal, see the sections “FontStatBits and FontSpecBits Bit Flags” and “AddFontVar”
in this chapter. For more information about how the Font Manager uses real and
unreal fonts, see the section “Best-Fit Font Algorithm” in this chapter.

UL G DY IIRITT TOITS

The Font Manager also can affect the current and system fonts. The current font is
the one that is currently being used by QuickDraw II to draw text; the system font is
the one that QuickDraw II uses as the default current font when a new GrafPort is
opened. The two fonts can be the same; in fact, the default current font is set by the
FMStartUp routine to be the system font. If you want your application to use some
other font, your application must use the Font Manager routines InstaliFont,
LoadFont, or ChooseFont to set the desired font as the current font.

rUildIUIDIIS ANA ronrpecsirs PIT 1ags

The Font Manager must maintain up-to-date information concerning all the fonts it
knows about—not only the font ID and name, but also whether the font is currently in
memory, whether it’s a scaled version of another font, whether it was generated by
the application, and so on. Some Font Manager routines allow the application to
specify some of this information as a way of restricting the range of fonts that the call
should consider available; that is, only fonts of a certain family, only fonts currently
in memory, and so on.

Other calls return this kind of status information about a font to the application.
Because many calls deal with the same kind of information, two bit flags are defined:
FontStatBits, which reports on the status of a font, and FontSpecBits, which
restricts the range of fonts available to the calling routine.

8-8 Chapter 8: Font Manager

Some of the Font Manager routines use FontStatBits as input but use only some of the
bits. In these cases, the unused bits should be set to 0.

If notFoundBit is 1, the others are undefined. See the section “Using the Font
Manager” in this chapter for information about the use of notFoundBit.

Whenever a font is made current—whether it is brought in from disk, scaled from
another font, or handed over by the application—it is made unpurgeable. It can be
made purgeable only by a SetPurgeStat call.

If memBitis 0, purgeBit is meaningless.

When the Font Manager scales a font, the apVarBit of the scaled font is set to be the
same as that of the old font. Similarly, when a variant font of the family is created,
either by Font Manager scaling or by the AddFontVar call, the apFamBit of the new
font is set to be the same as that of the old font.

When the application adds a font with the AddFontVar call, it can set the unrealBit to
indicate whether the font is to be considered real or unreal.

The FontStatRec, as shown in Figure 8-5, is defined for the convenience of some calls
that return it. This record represents everything, aside from the name, that the Font
Manager knows about a particular font.

Offset Field
sof
; T— resufi — Long—Font ID record
e —
g_ resuitstats — Word—FontStatBits
Figure 8-5
FontStatRec

8-10 Chapter 8: Font Manager

After the dialog box is drawn, the user can select a new font family, style, and size.
When a new family is selected, the list of sizes is updated to contain all available sizes
for the selected family. The size list can hold a maximum of 12 sizes; however, any
valid size can be entered in the Other Size text entry area. Keyboard input other than
numbers, Return, Backspace, Left Arrow, Right Arrow, Control-F, Control-X, or
Control-Y causes a beep. Clicking the mouse outside the dialog bax also causes a
beep.

'The user can confirm or cancel the new selection by clicking the OK or Cancel
button. If the user confirms a valid selection, ChooseFont automatically installs the
selected font by calling the InstallFont routine.

Important

Besides the font family, font style, and font size supplied by the user, Choosefont
also supplies a scaleWord parameter of 0 to the InstallFont routine. See the
section “InstallFont” in this chapter for more Information.

vainy 1w roin wvianager

This section discusses how the Font Manager routines fit into the general flow of an
application and gives you an idea of which routines you'll need to use under normal
circumstances. Each routine is described in detail later in this chapter.

The Font Manager depends upon the presence of the tool sets shown in Table 8-2 and
requires that at least the indicated version of the tool set be present.

Table 8-3

Font Manager—other tool sets required

Tool set Tool set Minimum version
number name needed

$01 #01 Tool Locator 1.0
$02 #02 Memory Manager 1.0
$04 #04 QuickDraw I 1.1
$0B #11 Integer Math Tool Set 1.0

In addition to these tool sets, the FixFontMenu and ChooseFont routines require
additional tool sets, as detailed under those routines in this chapter. Also, if you are
using the shadowed, outlined, or underlined styles, QuickDraw II Auxiliary (tool set
number $12 or #18) must be loaded and started up.

8-14 Chapter 8: Font Manager

You shouldn't use the QuickDraw II SetFont call to make a font current when using the
Font Manager; the call doesn’t communicate everything needed for Font Manager
information calls (for example, it doesn’t associate a name with the font). However,
SetFont, along with the QuickDraw 11 calls GetFont, SetFontID, and GetFontID, is
handy for saving and restoring a GrafPort’s font status, even if the fonts in question
were originally installed using Font Manager calls.

Certain fonts being used for exotic purposes—like the specially designed control
icon font used by the Control Manager—will probably continue to be invoked with
SetFont, bypassing the Font Manager altogether. You can use this technique, but the
Font Manager won't be able to help you. See Chapter 16, “QuickDraw 1I,” in
Volume 2 for more information.

ST VN AIgorinm

When the InstallFont routine installs a font, the routine uses the best-fit font
algorithm to look for a font matching the specified font ID. The font ID record
(called the desiredID in InstallFont’s parameter list) has three fields: desiredFam,
desiredStyle, and desiredSize. The following is the best-fit algorithm used by
InstallFont at the time of publication (this algorithm may be improved in the future):

1. InstallFont first looks for a font with the same family and size and a style word that
partially matches desiredStyle. If there is more than one such font, the one with
the most styles enabled is used. The intent is that the font chosen has as many
styles in common with desiredStyle as possible, without having any style enabled
that the requested font doesn’t have.

2. If the routine does not find a font as described in step 1, the routine narrows its
search to only real (that is, not scaled) fonts.

3. InstallFont looks for a font with the same family number, twice the size, and a
partially matching style word. If there is more than one such font, the one with the
most styles enabled is used.

4. If the routine does not find any fonts as described in step 3, the routine looks for a
font with the same family number, half the size, and a partially matching style
word. In the case of a tie, the font with the most styles enabled is used.

5. If InstallFont still hasn't found any suitable font, the routine looks for a font with
the same family number, a larger size than the requested size, and a partially
matching style word. If the routine finds more than one such font, the one with the
smallest size is used. If the routine finds more than one such smallest size, the font
with the most styles enabled is used.

8-16 Chapter 8: Font Manager

PUIID FiviboOoOTINIT
Initializes the Font Manager; called only by the Tool Locator.

An application must never make this call.

The stack is not affected by this call. There are no input or output parameters.
None

Call must not be made by an application.

8-18 Font Manager housekeeping routines

Stack before call

previous contents

userlD Word—ID number of the application
dPageAddr Word—Bank $0 starting address of one page of direct-page space
<SP
Stack after call

previous contents

<SP

$1B01 fmDupStartUpErr Duplicate FMStartUp call
Memory Manager errors Returned unchanged

ProDOS errors Returned unchanged

extern pascal vold FMStartUp (userID,dPageAddr)
Word userID;

Word dPageAddr;

8-20 Font Manager housekeeping routines

U0 ID rivikesert

Resets the Font Manager; called only when the system is reset.

An application must never make this call.

The stack is not affected by this call. There are no input or output parameters.
$1B02 fmResetErr Can’t reset the Font Manager

Call must not be made by an application.

FUOID FivioTartus

Indicates whether the Font Manager is active.

Stack before call

previous contents

wordspace Word—Space for result
— SP
Stack after call
brevious contenis
acuwveklag Word—BOOLEAN; TRUE if Font Manager active, FALSE if inactive
<— sSp
None

extern pascal Booclean FMStatus()

8-22 Font Manager housekeeping routines

vieiw AUUTrOIIIvar

Enables the application to add a variation of a preexisting font family to the Font
Manager'’s collection of available fonts. The fontHandle parameter specifies the font
to be added. The Font Manager gets the font’s family number, style, and size out of
the font record itself.

% Note: The font record is described in Chapter 16, “QuickDraw II,” in Volume 2.

The family number must be the same as that of an existing family; the font will also be
assigned the same name. However, the size and style can be different, and at least
one of them should be, because the new font should not have a font ID identical to
that of an existing font.

The fontHandle is left unlocked at the end of this routine. No check is made to see
whether the new font ID is unique; that's up to your application. Also, the family
number and size of the font are not checked for validity.

AddFontVar enables you to use application-generated versions of fonts (if you don’t
like the results of the Font Manager’s scaling algorithm), fonts styled by the
application, and so on.

Stack before call

Drevious contents

-~ fontHandle -—| Long-—HANDLE to font
newspecs Word—FontSpecBits (only unRealBit is used)
— SP
Stack after call

Drevious contenits

— Sp

$1B04 fmFamNotFndErr Family not found

Memory Manager errors Returned unchanged

8-24 Font Manager routines

vYivID L100SCeroni

Displays a dialog box enabling the user to select a new font family, size, and style.
When the dialog box is drawn, the family name, style, and size specified by currentID
will be selected if they exist.

If the baseOnlyBit of famSpecs is 0, this routine lists the names of all distinct font
families currently available to the Font Manager. The available families can change
over time if your application adds new families by using the AddFamily routine.

If the baseOnlyBit is 1, this routine lists only the names of base font families. All other
JSamSpecs bits are ignored.

If famNum of currentID = $0000, it is translated into the family number of the system
font. If currentID= $00000000, it is translated into the font ID of the system font.

Stack before call
previous contents
- longspace - Long—Space for result
- currentlD -~{ Long—Font ID of the font currently in use
famSpecs Word—FamSpecBits
<SP
Stack after call

previous contents

selectedID - Long—Font ID of the selected font

<SP

$1B08 fmBadFamNumErr Illegal family number; famNum = $FFFF
$1B09 fmBadSizeErr Tllegal font size; size = $00

Memory Manager errors Returned unchanged

8-26 Font Manager routines

YUY IDB countramilies

Returns the total number of distinct font families currently available to the Font
Manager that match a given specification (either all families or all families that have
a plain-styled font available).

If baseOnlyBit of the famSpecs parameter is 0, CountFamilies returns the number of
distinct font families currently available to the Font Manager (in a one-to-one
correspondence with distinct family numbers and distinct family names). The count
can change over time if application-generated families are added.

If baseOnlyBit is 1, the routine returns the number of base font families. This number
should not change over the course of an application, since font families added with
the AddFamily call are never base families.

All other bits of the famSpecs parameter are ignored.

Stack before call

Dbrevious contenis

wordspace Wor« ipace for result

JamSpecs) Word—FamSpecBits
<~ SP

Stack after call
previous contents

SfamCount Word—Number of font families available

<SP
None

extern pascal Word CountFamilies (famSpecs)

Word famSpecs;

8-28 Font Manager routines

extern pascal Word CountFonts(desiredID, fontSpecs)
FontID desiredID;

Word fontSpecs;

Some examples of Countronts

For example, if destredID consists of a family number of 3, a style of 0, a point size of
12, and a fontSpecs parameter of $0002 (anySizeBit = 0, anyStyleBit = 0,
anyFamBit = 0, realOnlyBit = 1, memOnlyBit = 0), the routine returns the number
of real Geneva Plain 12 fonts available, whether these are in memory or not. If the
result is 0, no such font exists; if the result is 1, such a font exists. (If the result is 2 or
more, then two fonts with the same font ID have been loaded.)

If fontSpecs is changed to $0018 (anySizeBit = 1, anyStyleBit = 1, anyFamBit = 0,
realOnlyBit = 0, memOnlyBit = 0), the result is the number of Geneva fonts currently
available—real or scaled, in memory or on disk, and of any style or size,

If fontSpecs is changed to $001C (anySizeBit = 1, anyStyleBit = 1, anyFamBit 1
realOnlyBit = 0, memOnlyBit = 0), desiredID is completely ignored, and the call
returns the total number of fonts available.

)

8-30 Font Manager routines

JUAID rinaraminy

Returns the family number and name of a particular font family. The family number
is returned on the stack, and the name is returned in the string pointed to by namePtr.
This routine can be used to step through the list of all available families.

The positionNum parameter specifies which font family to find. The Font Manager
keeps information about every available font family in a list in memory; positionNum
specifies the position of the font family within that list. For a posittonNum of n,
FindFamily returns the number and name of the zth match of the font families in the
list.

The position of a particular font family depends upon the organization of the Font
Manager’s list in memory. The organization of the list does not change over time, but
new font families can be added to the end of the list with the AddFamily routine.

If positionNum is greater than the number of font families, the call returns a famNum
of $FFFF (illegal family number) and does not return a name.

The namePtr parameter should point to a string large enough to hold a font family
name. If namePtris NIL, FindFamily returns only the family number and does not
return a name.

If baseOnlyBit of famSpecs is 0, FindFamily considers all font families when
searching for the family with the correct positionNum. 1If baseOnlyBit is 1, the routine
considers only base font families when searching for the family with the correct
positionNum.

Stack before call

previous contents
wordspace Word—Space for result
famSpecs Word—FamSpecBits
B positionNum Word—Position number of family in list of families matching famSpecs
- namebPtr - Long—POINTER to space for family name
— SP

8-32 Font Manager routines

111D rinAronIoSTars

Places the font ID and the FontStatBits of a particular font into a specified
FontStatRec. The routine can be used to step through the list of available fonts
matching the given specifications.

The desiredID parameter supplies a font family number, style, and size; fontSpecs
determines the following:

m Which of those parameters must be satisfied (and which can be ignored)

m Whether the fonts to be counted must be in memory

® Whether the fonts to be counted must be real

% Note: The font ID returned in the FontStatRec may be different than the desiredID

if the fontSpecs parameter allows the routine to ignore one or more of the fields of
desiredID.

For positionNum = n, FindFonitStats returns the font ID and the FontStatBits of the 7th
font that satisfies desiredID and fontSpecs. If positionNum is greater than the
number of fonts that satisfy desiredID and fontSpecs, the call sets notFoundBit in the
FontStatRec to 1, with the other bits of the FontStatBits in the FonStatRec and the
entire font ID remaining undefined.

If famNum of desiredID = $0000, it is translated into the family number of the system
font. If desiredID = $00000000, it is translated into the font ID of the system font.

Stack before call

previous contents
-~ destredID -— Long—Font ID
SfontSpecs Word—FontSpecBits
positionNum Word—Position number of font
- resultPtr - Long—POINTER to FontStatRec
< SP
Stack after call

previous contents

— SP

8-34 Font Manager routines

$151B FixFontMenu

Appends the names of available font families to a specified menu. The names are
appended in alphabetical order, with the first family name assigned a menu item ID
of stantingID, the next family name assigned a menu item ID of startingID + 1, and so
on. The Font Manager routine ItemID2FamNum can be used to translate a menu item
ID into the family number assigned to it. Conversely, the Font Manager routine
FamNum?2ItemID can be used to translate a family number into a menu item ID.

After the application calls FixFontMenu, it can call Menu Manager routines to set the
menu width.

If the baseOnlyBit of famSpecs is 0, this routine appends the names of all distinct font
families currently available to the Font Manager. The available families can change
over time if your application adds new families.

If the baseOnlyBit is 1, this routine appends only the names of base font families.
This number shouldn’t change over the course of an application. All other famSpecs
bits are ignored.

FixFontMenu also requires tool sets in addition to the ones required by the rest of the
Font Manager calls. See Table 8-5 for that information.

Stack before call

previous contents
menulD Word—Menu ID of menu to which family names will be appended
startinglD Word—Item ID to assign to first family name appended to menu
SfamSpecs Word—FamSpecBits
<SP
Stack after call

Dbrevious contents

— SP

Memory Manager errors Returned unchanged

8-36 Font Manager routines

ST1AIB FMGetCurriD

Returns the font ID of the current font.

Stack before call

previous contents

- longspace -—| Long—Space for result

— Sp

Stack after call

previous contents

-~ curiD -—| Long—Font ID of the current font

<— SpP
None

extern pascal LongWord FMGetCurFID ()

% Note: C Pascal-type functions do not deal properly with data structures returned
on the stack. The Long result returned by this call can be passed to any calls
requiring a font ID as a parameter. You cannot use the C dot operator to access the
individual font ID fields within the value returned by this call.

8-38 Font Manager routines

101D FIVIderdysront

Loads a specified font into memory (f it’s not already there), makes it unpurgeable,
and makes it the system font.

If famNum of fontID = $0000, it is translated into the family number of the system
font. If fomtID = $00000000, it is translated into the font ID of the system font.

Stack before call

previous contents

- SfontID --| Long—Font ID

— SP

Stack after call

previous contents

— SP

$1B0OS fmFontNtFndErr Font not found
$1B08 fmBadFamNumErr Illegal family number

$1B09 fmBadSizeErr Illegal font size
Memory Manager errors Returned unchanged
ProDOS errors Returned unchanged

extern pascal void FMSetSysFont (fontID)

FontID fontlD;

8-40 Font Manager routines

$O0C1B GetFamNum

Returns the family number corresponding o a specified font family name. The
family name is pointed to by namePtr. The name must match exactly, including
length, spaces, and uppercase and lowercase distinctions. If the name has a length of
0, an error is returned, if the name is more than 25 characters long, only the first 25
characters are used.

If there is no such family, $FFFF (the illegal family number) is returned in famNum
(this also tells you whether a family name is currently in use).

» Note: All fonts with the same family number should have the same font family
name and vice versa. If the font files in the FONTS subdirectory (or those added
later by the application) do not observe this rule, some fonts can get lost; that is,
some of the Font Manager calls won’t know about them.

Stack before call

previous contents
woraspace Word—Space for result
- namePtr -~ Long—POINTER to family name
«— SP
Stack after call
Drevious contents
SamNum Word—Family number
«— SP
$1BOA fmBadNameErr lllegal name length

extern pascal Word GetFamNum{namePtr)

Pointer namePtr;

8-42 Font Manager routines

$121B LoadFont

Finds a particular font with a specified font ID and specifications (such as the
FindFontStats routine), loads the font into memory (f it is not already there), and
makes the font current and unpurgeable. The routine then enlarges the QuickDraw 11
text buffer (if necessary) to handle the font. Finally, the routine sets the fontID,
txFace, and txSize fields of the current GrafPort to the font ID, style, and size of the
font that was loaded. If no such font is found, LoadFont does not change the current
font.

LoadFont was included for those occasions when you want your application to step
through and use all the available fonts matching the given specifications.

If famNum of desiredID = $0000, it is translated into the family number of the system
font. If desiredID = $00000000, it is translated into the font ID of the system font.

Stack before call

previous contents
- desiredID — Long— Font ID
SfontSpecs Word—FontSpecBits
quonnfgm—_— Word—Position number of font
- resultPtr -— Long—POINTER to FontStatRec
~ |¢&—sP
Stack after call

| previous contents
I " |esp

$1B08 fmBadFamNumErr Illegal family number;, famNum is SFFFF and
anyFamBit is 0

$1B09 fmBadSizeErr lllegal font size; size is $00 and anySizeBit is O
Memory Manager errors Returned unchanged
ProDOS errors Returned unchanged

8-46 Font Manager routines

$131B LoadSysFont

Makes the system font current without forcing the application to know its font ID. The
routine then enlarges the QuickDraw II text buffer (if necessary) to handle the system
font. Finally, the routine sets the fontID, txFace, and txSize fields of the current
GrafPort to the font ID, style, and size of the system font.

The stack is not affected by this call. There are no input or output parameters,
None

extern pascal void LoadSysFont ()

8-48 Font Manager routines

Font Manager summary

This section briefly summarizes the constants, data structures, and tool set errors
contained in the Font Manager.

Important

These definitions are provided in the appropriate interface fils.

Table 8-6

Font Manager constants

Name Value Meaning

FontStatBits

memBit $0001 Font is in memory

unrealBit $0002 Font is scaled from another font

apFamBit $0004 Font family supplied by application

apVarBit $0008 Font added by AddFontVar call or scaled from such a
font

purgeBit $0010 Font is purgeable

notDiskBit $0020 Font not ROM font and not in FONTS subdirectory

notFoundBit $8000 Specified font not found

FontSpecBits

memOnlyBit 30001 Allow only ROM font and fonts currently in memory

realOnlyBit $0002 Allow only real (unscaled) fonts

anyFamBit $0004 Ignore family number supplied in call

anyStyleBit $0008 Allow any font whose style partially matches style
supplied in call

anySizeBit $0010 Ignore point size supplied by call

FamStatBits

apFamBit $0004 Font family supplied by application

notBaseBit $0020 Family is not a base family

notFoundBit $8000 Specified font family not found

FamSpecBits

baseOnlyBit $0020 Allow only base families

Scale word

dontScaleBit $0001 Disable font scaling

8-50 Chapter 8: Font Manager

Table 8-8

Font Manager error codes

Description

Code Name

$1B01 fmDupStartUpErr FMStartUp call already made
$1B02 fmResetErr Can't reset the Font Manager
$1B03 fmNotActiveErr Font Manager not active

$1B04 fmFamNotFndErr Family not found

$1B0OS fmFontNtFndErr Font not found

$1B06 fmFontMemErr Font not in memory

$1B07 fmSysFontErr System font cannot be purgeable
$1B08 fmBadFamNumErr Illegal family number

$1B09 fmBadSizeErr Illegal font size

$1BOA fmBadNameErr Illegal name length

$1B0OB fmMenuErr FixFontMenu never called
$1BOC fmScaleSizeErr Scaled size of font exceeds limits
8-52 Chapter 8: Font Manager

Table 9-1

Integer Math Tool Set routines and their functions

Routine

Description

Housekeeping routines

IMBootlnit

IMStartUp
IMShutDown
IMVersion
IMReset

IMStatus

Math routines
Multiply
SDivide

UDivide

LongMul
LongDivide

FixRatio

FixMul
FracMul
FixDiv
FracDiv
FixRound
FracSqrt
FracCos
FracSin
FixATan2
HiWord
LoWord
Long2Fix
Fix2Llong
Fix2Frac
Frac2Fix
Fix2X
Frac2X
X2Fix
X2Frac

Initializes the tool set; called only by the Tool Locator——must not be called by an
application

Starts up the Integer Math Tool Set for use by an application

Shuts down the Integer Math Tool Set when an application quits

Returns the version number of the Integer Math Tool Set

Resets the tool set; called only when the system is reset—must not be called by an
application

Indicates whether the Integer Math Tool Set is active

Multiplies two Integer inputs and produces a Longint result

Divides two Integers and produces a signed Integer quotient and a signed Integer
remainder

Divides two unsigned Integer inputs and produces an Integer quotient and an unsigned
Integer remainder

Muldiplies two Longint values and produces a 64-bit result

Divides two unsigned Longint inputs and produces a Longint unsigned quotient and a
Longint unsigned remainder

Takes two signed Integers and produces a Fixed number as a ratio of the numerator and
denominator

Multiplies two 32-bit Fixed inputs and produces a 32-bit Fixed result

Multiplies two Frac inputs and returns a rounded Frac result

Divides two like inputs and returns a rounded Fixed result (no remainder)

Divides two like inputs and returns a rounded Frac result (no remainder)

Takes a Fixed input and returns a rounded Integer result

Takes a Frac input and returns a rounded Frac square root

Takes a Fixed input (in radians) and returns its Frac cosine

Takes a Fixed input (in radians) and returns its Frac sine

Takes two like inputs and returns a Fixed arc tangent (in radians) of their coordinates
Returns high-order word of a Long input

Returns low-order word of a Long input

Converts a specified Longint value to its corresponding Fixed value

Converts a Fixed value to its corresponding Longint value

Converts a Fixed value to its corresponding Frac value

Converts a specified Frac value to its corresponding Fixed value

Converts a Fixed value Lo its corresponding Extended value

Converts a specified Frac value to its corresponding Extended value

Converts an Extended value to its corresponding Fixed value

Converts an Extended value to its corresponding Frac value

9-2 Chapter 9: Integer Math Too! Set

vaiy e nneyger viam 1001 oer

The Integer Math Tool Set depends upon the presence of the tool sets shown in
Table 9-2 and requires that at least the indicated version of the tool set be present.

Table 9-2

integer Math Tool Set—other tool sets required
Tool set Tool set Minimum version
number name needed

$01 #01 Tool Locator 1.0

$02 #02 Memory Manager 1.0

Your application should make an IMStartUp call before making any other Integer
Math Tool Set calls.

% Note: At the time of publication, the IMStartUp call was not an absolute
requirement, because the Tool Locator automatically started up the Integer Math
Tool Set at boot time. However, you should make the call anyway to guarantee
that your application remains compatible with all future versions of the system.

If you have started up the tool set, your application should also make the
IMShutDown call when the application quits.

Within the tool set, there are Math routines and Integer Math string routines. Math
routines support multiplication and division of Integer, Longint, Fixed, and Frac
numbers and convert from one type of value to another.

Integer Math string routines convert between a binary value and an ASCII character
string representing that value. The binary value can be either an Integer or a Longint.
The character string can be in either hexadecimal or decimal format.

9-4 Chapter 9: Integer Math Tool Set

YyUIvpD IVIQINUIWOWI

Shuts down the Integer Math Tool Set when an application quits.

Important

If your application has started up the Integer Math Tool Set, the application
must make this call before It quits,

The stack is not affected by this call. There are no input or output parameters.
None

extern pascal void IMShutDown ()

YUSUD 1IVIV 191011

Returns the version number of the Integer Math Tool Set.

Stack before call

I previous contents

wordspace Word—Space for result
& sp
Stack after call
brevious contents
verstonInfo Word-—Version number of the Integer Math Tool Set
<SP
None

extern pascal Word IMVersion{)

9-6 infeger Math Tool Set housekeeping routines

YLUUD

weeLlilll

Takes an Integer Math string representing a decimal value and returns a signed or
unsigned Integer. The string must consist of digits and blanks. If the string does not
fill up the space, pad the string at the left with blanks or zeros. The ASCII characters in
the string may have the high-order bit either set or clear.

If the signedFlag is a nonzero value, the string may contain an ASCII plus or minus
sign directly in front of the most significant digit.

Stack before call

brevious contents

wordspace Word—Space for result

-] Long—POINTER to Integer Math string

strlength Word—Length of Integer Math string
signedFlag Word—0 if intResult is unsigned, nonzero if intResult is signed
<—Ssp
Stack after call

previous contents

intResult

Word—INTEGER equivalent of the Integer Math string

9-8

<SP

$0B02 imIllegalChar Illegal character in string

$0B03 imOverflow Signed value is greater than 32,767 or less than
-32,768, or unsigned value is greater than 65,535

extern pascal Integer Dec2Int(strPtr,strlength,signedFlag)

Pointer strPtr;
Word strLength;
Boolean signedFlag;

Integer Math Tool Set routines

Y I Wwuw FIALTIUG

Converts a Fixed value to its corresponding Frac value. Out-of-range values are
pinned to the most positive or negative value, depending on the sign of the input.

Stack before call

previous contents
- longspace --| Long—Space for result
-~ fixedValue -—| Long—FIXED value to be converted
— Sp
Stack after call

I previous contents

-- fracResult _— Long—FRAC result of conversion; pinned if out-of-range

— SP
None

extern pascal Frac Fix2Frac(fixedValue)

Fixed fixedvValue;

9-10 Integer Math Tool Set routines

T N P\ AP [7,V Ve

Converts a Fixed value to its corresponding Extended value.

Stack before call

previous contents
-- fixedValue --| Long—FIXED input
- extendPtr --| Long—POINTER to space for EXTENDED value
<SP
Stack after call

previous contents

<SP

None

extern pascal vold Fix2X(fixedValue,extendPtr)
Fixed fixedValue;

ExtendPtr extendPtr;

9-12 Integer Math Tool Set routines

?11UD FIXWIYV

Divides two like inputs and returns a rounded Fixed result (no remainder). Overflows
are pinned to the most positive or negative value, depending on the XOR of the signs
of the inputs. The inputs can be Frac, Fixed, or signed Longint, but both must be of
the same type.

Stack before call

previous contents
- longspace --1 Long—Space for result
- dividend --| Long—First input
- divisor --| Long—Second input (must be same type as dividend)
«— SP
Stack after call

Drevious contents

-~ fixedResult

!
1

Long—Rounded FIXED result; pinned if out-of-range

<— SP

None

extern pascal Fixed FixDiv(dividend,divisor)
Longint dividend;

Longint divisor;

9-14 Integer Math Tool Set routines

yUEUB FIXRQTO

Takes two signed Integers and produces a Fixed number as a ratio of the numerator
and denominator.

Important

FixRatio doesn’t check for the divide-by-zero condition, nor does It cause an
error to occur when that condition happens. Therefore, your application must
prevent that condition from occurring.

Stack before call

previous contents
- longspace --| Long—Space for result
numerator Word—INTEGER specifying the input numerator
denominator Word—INTEGER specifying the input denominator
— SP
Stack after call

Drevious contents

—- fixedResult --| Long—FIXED result

< SP

None

extern pascal Fixed FixRatio(numerator,denominator)
Integer numerator;

Integer denominator;

9-16 integer Math Tool Set routines

?1UUD rrac«rix

Converts a specified Frac value to its corresponding Fixed value.

rounded.

Stack before call

I previous contents

— longspace -—| Long—Space for result

- fracValue -—| Long—TFRAC value to be converted
I — Sp
Stack after call

previous contents

-- fixedResult -—| Long—Rounded FIXED result

| &SP

None

extern pascal Fixed Frac2Fix(fracValue)

Frac fracvalue;

9-18 Integer Math Tool Set routines

Conversions are

2 10UD rraceos

Takes a Fixed input (radians) and returns its Frac cosine.

Stack before call

previous contenis
-- longspace --| Long—Space for result
- angle --| Long—Angle in radians, as a FIXED value
T «SP
Stack after call

brevious contents

-- fracCostneResult --| Long—FRAC cosine result

<— SP
None

extern pascal Frac FracCos{angle)

Fixed angle;

9-20 Integer Math Tool Set routines

¥ 1UUD rraciviul

Multiplies two Frac inputs and returns a rounded Frac result. Overflows are pinned to
the most positive or negative value, depending on the XOR of the signs of the input.

Stack before call

previous contents

— longspace -—| Long—Space for result

-- multiplicand -——} Long—First FRAC input

- multiplier -—| Long—Second FRAC input
<— SP

Stack after call

Dprevious contents

— fracResult -—| Long—Rounded FRAC result; pinned if out-of-range

<SP

None

extern pascal Frac FracMul (multiplicand,multiplier)
Frac multiplicand;

Frac multiplier;

9-22 integer Math Tool Set routines

914UD rraco>qrr

Takes a Frac input and returns a rounded Frac square root. The input is considered
unsigned with the leading bit significant; that is, the input range is from 0 to almost 4.

Stack before call

previous contents
-- longspace --| Long—Space for result
-- fracValue -~| Long—Original FRAC value
T « SP
Stack after call

previous contents

-- fracResult --| Long—Rounded FRAC square root

&SP

None

extern pascal Frac FracSqgrt(fracValue)

Frac fracvValue;

9-24 Integer Math Tool Set routines

345UD HexzLong

Takes an Integer Math string representing a hexadecimal value and returns an
unsigned Longint. The string must consist of digits and blanks. If the string does not
fill up the space, pad the string at the left with blanks or zeros. The ASCII characters in
the string may have the high-order bit either set or clear.

Stack before call

Drevious contents
- longspace --{ Long—Space for result
- strPtr --| Long—POINTER to space for Integer Math string
o strlength Word—Length of Integer Math string
< SP
Stack after call

Dprevious contents

—- longIntResuit --| Long—Unsigned LONGINT equivalent of the Integer Math string

<SP

$0B02 imIllegalChar Illegal character in string
$0B03 imOverflow Hexadecimal value is greater than $FFFFFFFF

extern pascal LongWord Hex2Long({strPtr, strLength)
Pointer strPtr;

Word strlLength;

9-26 Integer Math Tool Set routines

v i10OUD nivworaQa
Returns high-order word of a Long input.

Stack before call
Drevious contents
wordspace Word—Space for result
- longValue _— Long—Value whose high-order word will be returned
& Sp
Stack after call
Drevious contents
wordResult Word—High-order word of longValue
&« Sp
None

extern pascal Word HiWord(longValue)

LongWord longValue;

9-28 Integer Math Tool Set routines

VLLVUD HINLOCA

Takes an unsigned Integer and produces an Integer Math string representing the value
in hexadecimal format. The string must consist of digits and blanks. If the string does
not fill up the space, pad the string at the left with blanks or zeros. The ASCII
characters in the output string have the high-order bit clear.

Stack before call

Dprevious contenis
intValue Word—Unsigned INTEGER to be converted
- strPtr -——| Long—POINTER to space for Integer Math string
strrength Word—Length of Integer Math string
— SP
Stack after call

Dprevious contents

— SP

$0B04 imStrOverflow Length of string is too short to represent the value

extern pascal void Int2Hex(intValue, strPtr, strlength)

Word intvalue;
Pointer strPtr;
Word strlength;

9-30 integer Math Tool Set routines

? 1AUD LONg«rix

Converts a specified Longint value to its corresponding Fixed value. Overflows are
pinned to the most positive or negative value, depending on the sign of the input.

Stack before call
previous contents
- longspace -—] Long—Space for result
-~ longintValue --| Long—LONGINT value to be converted
T |¢sp
Stack after call

previous contents

-~ fixedResult -~| Long—FIXED result of the conversion; pinned if out-of-range

<« SP

None

extern pascal Fixed Long2Fix{longValue)

Longint longValue;

9-32 integer Math Tool Set routines

YUywuvo wilywiviue

Divides two unsigned Longint inputs and produces a Longint unsigned quotient and a
Longint unsigned remainder.

Stack before call

previous contents
—- longspace -— Long—Space for the remainder
- longspace -—{ Long—Space for the quotient
- dividend --1 Long—Unsigned LONGINT dividend
- divisor -—| Long—TUnsigned LONGINT divisor
¢~ SpP
Stack after call
previous contents
-- remainder -—| Long—Unsigned LONGINT remainder
- quotient -— Long—Unsigned LONGINT quotient
¢~ SpP

$0BO1 imBadInptParam Bad input parameter

extern pascal LongDivRec LongDivide(dividend,divisor)
Longint dividend;

Longint divisor;

9-34 infeger Math Tool Set roufines

vi7UD LOWOra
Returns low-order word of Long input.

% Note: To return the high-order word, use the HiWord routine.

Stack before call

previous conients
wordspace Word-—Space for result
- fongValue —} Long—Long input whose low-order word will be returned
«— SP
Stack after call
previous contents
lowWord Word—Low-order word of longValue
&« SP
None

extern pascal Word LcWord{longValue)

LongWord longValue;

9-36 Integer Math Tool Set routines

YUAUD QUuiIvIGe

Divides two Integers and produces a signed Integer quotient and a signed Integer
remainder. The sign of the remainder will always be the same as the sign of the
dividend.

Parameters

Stack before call

previous contents
wordspace Word—Space for result
wordspace Word—Space for result
dividend Word—INTEGER dividend
divisor Word—INTEGER divisor
«— SP
Stack after call
Dprevious contenis
remainder Word—INTEGER remainder
quotient Word—INTEGER quotient
<« SP

$0BO1 imBadInptParam Bad input parameter

extern pascal IntDivRec SDivide(dividend,divisor)
Integer dividend;

Integer divisor;

9-38 Integer Math Tool Set routines

vY4£UUD ALTIX

Converts an Extended value to its corresponding Fixed value. Conversions are
rounded. Overflows, NaNs (Not a Number), and infinities are pinned to the most
positive or negative value, depending on the sign of the input.

% Note: For more information on NaNs and infinities, refer to the Apple Numerics
Manual.

Stack before call

previous contents
- longspace -— Long—Space for result
- extendPtr -— Long—POINTER to EXTENDED value
& SP
Stack after call

previous contents

-~ fixedResult - Long—Rounded FIXED result; pinned if out-of-range

| ¢ SP
None

extern pascal Longint X2Fix(extendPtr)

ExtendPtr extendPtr;

9-40 integer Math Tool Set routines

Hueyger viain oot ser summary

This section briefly summarizes the constants and tool set error codes contained in
the Integer Math Tool Set. There are no predefined data structures for the Integer
Math Tool Set.

Important
These definitions are provided in the appropriate interface file.

Table 9-3

Intfeger Math Tool Set constants

Name Value Description

Limits

minLongint $80000000 Minimum negative signed Longint
minFrac $80000000 Pinned value for negative Frac overflow
minFixed $80000000 Pinned value for negative Fixed overflow
minInt $8000 Minimum negative signed Integer
maxInt $7FFF Maximum positive signed Integer
maxUInt $FFFF Maximum unsigned Integer
maxLongint $7FFFFFFF Maximum positive signed Longint
maxFrac $7FFFFFFF Pinned value for positive Frac overflow
maxFixed $7FFFFFFF Pinned value for positive Fixed overflow
maxULong $FFFFFFFF Maximum unsigned Long

SignedFlag

unsignedrlag $0000 Value is not signed

signedFlag $0001 Value is signed

Table 9-4

Integer Math Tool Set error codes

Code Name Description

$0BO1 imBadInptParam Bad input parameter
$0B02 imIllegalChar Illegal character in string
$0B03 imOverflow Integer or Longint overflow
$0B04 imStroOverflow String overflow

9-42 Chapter 9: Integer Math Tool Set

m Selecting from the insertion point to the beginning or end of the line by using
Shift-Apple-Left Arrow or Shift-Apple-Right Arrow

m Extending or shortening the selection by clicking the mouse while holding down
the Shift key

m Deleting the : ection or the character to the left of the insertion point by using
Backspace

m Deleting the 1 :lection or the character to the right of the insertion point by using
Control-F

m Deleting the selection or the whole line by using Control-X

m Deleting the selection or from the insertion point to the end of the line by using
Control-Y

m Inverse highlighting the current text selection or displaying a blinking vertical bar
at the insertion point

B Cutting (or copying) and pasting (LineEdit places cut or copied text into the
LineEdit scrap)

m Left- or right-justified or centered text

In addition, the LineEdit routines that work with text that cannot be edited by the user
support the following features:

m More than 256 characters per line
m Fill-justified text (text aligned with both the left and right margins)
® Automatic word wrap

m More than one font or stylistic variation per line

The LineEdit routines do not support
m Scrolling

m Fonts that kern characters (see the section “Fonts” in Chapter 16, “QuickDraw II,”
in Volume 2)

m “Intelligent” cut and paste operations (that is, LineEdit doesn’t adjust spaces
between words durir.g cutting and pasting)
B Tabs

M pIeview Ol INe Linecair 1001 >er routines

To introduce you to the capabilities of the LineEdit Tool Set, all LineEdit routines are
grouped by function and briefly described in Table 10-1. These routines are
described in detail later in this chapter, where they are separated into housekeeping
routines (discussed in routine number order) and the rest of the LineEdit routines
(discussed in alphabetical order).

10-2 Chapter 10: LineEdit Tool Set

Table 10-1 (continued)
LineEdit Tool Set routines and their functions

Routine Description

Scrap handling routines

LEFromScrap Copies the desk scrap to the LineEdit scrap

LEToScrap Copies the LineEdit scrap to the desk scrap

LEScrapHandle Returns a handle to the LineEdit scrap

LEGetScraplen Returns the size of the LineEdit scrap in bytes

LESetScrapLen Sets the size of the LineEdit scrap to a specified number of bytes

Miscellaneous routines
LESetHilite Sets the leHtliteHook field of a specified edit record to a specified address

LESetCaret Sets the leCaretHook field of a specified edit record to a specified address

CUll 1ecoras

To edit a line of text on the screen, LineEdit needs to know where and how to display
the text, where to store the text, and other information related to editing. This
display, storage, and editing information is contained in an edit record that defines
the complete editing environment,

You prepare to edit text by specifying a destination rectangle in which to draw the text
and a view rectangle in which the text will be visible. LineEdit incorporates the
rectangles and the drawing environment of the current GrafPort into an edit record
and returns a handle to the record. Most LineEdit routines require you to pass this
handle as a parameter.

In addition to the two rectangles and a description of the drawing environment, the
edit record also contains

B A handle to the text to be edited
B A pointer to the GrafPort in which the text is displayed

m The current selection range, which determines which characters will be affected by
the next editing operation

m The justification style of the text

You usually don't need to know the exact structure of an edit record, because you
should always use the LineEdit routines to change any of the fields. However, in case
your application needs to directly read some values from an edit record, the record’s
structure at the time of publication is illustrated in Figure 10-1.

% Note: The record may grow longer in the future.

10-4 Chapter 10: LineEdit Tool Set

< Note: LineEdit highlights the selection range by calling the QuickDraw II routine
InvertRect, not by swapping the text and background colors. You can supply your
own highlight routine; see the section “The leHiliteHook and leCaretHook
Fields” and “LESetHilite” in this chapter.

If the selection range is empty—that is, if its beginning and end positions are the
same~—that position is the text's insertion point, the position where characters will
be inserted. By default, it’s marked with a blinking caret (actually a vertical bar). See
Figure 10-5.

01 2 3 45 6 7 8 9 101121314 151617
| 4

T T T T T T

a s ion range

Selection range
beginning at position 3
and ending at position 8

0123456 7891011121314 1516171819
- St —

the insertion point
. —+—+ —+—t——

T

Insertion point
at position 4

Figure 10-5
Selection range and insertion point

If you call the LEKey routine to insert characters when there’s a selection range of one
or more characters rather than an insertion point, the routine automatically deletes
the selection range and replaces it with an insertion point before inserting the
characters.

10-8 Chapter 10: LineEdit Tool Set

The first LineEdit call that your application must make is LEStartUp. Conversely,
when you quit your application, you must make the LEShutDown call.

Call LENew to allocate an edit record; it returns a handle to the record. Most text
editing routines require you to pass this handle as a parameter. You can also obtain
the handle to the text of a specified edit record by using the LEGetTextHand routine,
or you can determine the length of the text in a specified edit record by using the
LEGetTextLen routine.

When you're completely done with an edit record and want to dispose of it, call
LEDispose.

To make a blinking caret appear at the insertion point, call the LEIdle routine as often
as possible (at least once each time through the main event loop); if it's not called
often enough, the caret will blink irregularly.

When a mouse-down event occurs in the view rectangle (and the window is active),
call the LEClick routine. LEClick controls the placement and highlighting of the
selection range in response to mouse activity, including supporting use of Shift-Click
to make extended selections.

Key-down, auto-key, and mouse events that pertain to text editing can be handled by
several LineEdit routines:

® LEKey inserts characters; deletes characters backspaced over; controls the
placement and highlighting of the selection range in response to the Left Arrow
and Right Arrow keys; and handles the Control-F, Control-X, and Control-Y
commands.

m LECut transfers the selection range to the LineEdit scrap, removing the selection
range from the text.

m LEPaste inserts the contents of the LineEdit scrap. By calling LECut, changing the
insertion point, and then calling LEPaste, you can perform a cut and paste
operation, moving text from one place to another.

m LECopy copies the selection range to the LineEdit scrap. By calling LECopy,
changing the insertion point, and then calling LEPaste, you can make multiple
copies of text.

® LEDelete removes the selection range (without transferring it to the scrap). You
can use LEDelete to implement the Clear command.

B LEInsert inserts specified text.

After each editing procedure, LineEdit redraws the text if necessary. You never have
to set the selection range or insertion point yourself; LEClick and the editing routines
leave it where it should be. If you want to set the selection range directly, however—
to highlight an initial default name or value, for example—you can use the
LESetSelect routine,

10-10 Chapter 10: LineEdit Tool Set

VI 14 LEDBOOTINIT

Initializes the LineEdit Tool Set; called only by the Tool Locator.

An application must never make this call.

The stack is not affected by this call. There are no input or output parameters,
None

Call must not be made by an application.

10-12 LineEdit Tool Set housekeeping routines

S 14

U4 14

LeShurbown
Shuts down the LineEdit Tool Set and discards the LineEdit scrap.

Important

If your application has started up the LineEdit Tool Set, the application must
make this call before it quits.

The stack is not affected by this call. There are no input or output parameters.

$1403 leNotActiveErr LineEdit Tool Set not active

Memory Manager errors DisposeHandle called; any errors returned
unchanged

extern pascal void LEShutDown ()

LEversion

Returns the version number of the LineEdit Tool Set.

Stack before call

Drevious contents

wordspace Word—Space for result

Stack after call

|6 SP

previous conients

versioninfo Word—Version number of the LineEdit Tool Set

10-14

<« SP

None

extern pascal Word LEVersion{()

Linekdit Tool Set housekeeping routines

QUr 14 LEACTIVATe

Highlights the selection range in specified text. If the selection range is an insertion
point, the routine displays a caret.

Your application will usually call LEActivate when an activate event is reported for a
window associated with an edit record.

Stack before call

brevious contents

- leRecHandle —| Long—HANDLE to edit record
— SP
Stack after call
previous contents
— SP
Memory Manager errors Returned unchanged
QuickDraw 1I errors Returned unchanged

extern pascal void LEActivate(leRecHandle)

LERecHndl leRecHandle;

10-16 LineEdit Tool Set routines

vivi4a LEOPY

Copies the selection range from the specified text into the LineEdit scrap. Anything
previously in the scrap is deleted. The selection range is not deleted. If the selection
range is an insertion point, the scrap is emptied.

Stack before call

Dprevious contents

—-- leRecHandle -~ Long—HANDLE to edit record
<SP
Stack after call
Drevious contents
<SP
Memory Manager errors Returned unchanged
QuickDraw 1I errors Returned unchanged

extern pascal void LECopy (leRecHandle)

LERecHndl leRecHandle;

10-18 LineEdit Tool Set routines

vIV I Leweuacliivare

Unhighlights the selection range in the specified text. If the selection range is an
insertion point, the routine removes the caret.

Your application will usually call LEDeactivate when an activate event (for a window
becoming inactive) is reported for a window associated with an edit record.

Stack before call

Drevious contents

-- leRecHandle —- Long—HANDLE to edit record
< SP
Stack after call
Drevious contents
— SP
Memory Manager errors Returned unchanged
QuickDraw I errors Returned unchanged

extern pascal void LEDeactivate (leRecHandle)

LERecHndl leRecHandle;

10-20 Linekdit Tool Set routines

Tws v1—Y

i IO MWV O

Releases the memory allocated for a specified edit record. Call this routine when
you're completely through with an edit record.

Important

All edit records created by calling LENew must be disposed of by calling
LEDispose before calling LEShutDown,

Stack before call

Drevious contenits

-- leRecHandle --| Long—HANDLE to edit record
«— SP
Stack after call
previous contents
¢« SP
Memory Manager errors DisposeHandle called; any errors returned

10-22

unchanged

extern pascal void LEDispose (leRecHandle)

LERecHndl leRecHandle;

Linekdit Tool Set routines

¥ e 1T maw Wl 1 GALIWIIN
Returns a handle to the text of a specified edit record.

< Note: This call is available only in Version 2.0 or later versions of the LineEdit
Tool Set.

Stack before call

Drevious contenis
— longspace -—f Long—Space for result
— leRecHandle -—| Long—HANDLE to edit record
— SP
Stack after call

previous contents

— lelineHandle --| Long—HANDLE (o text

<SP

None

extern pascal Handle LEGetTextHand(leRecHandle)

LERecHndl leRecHandle;

10-24 LineEdit Tool Set routines

YW T kIS

Makes a blinking caret appear at the insertion point (if any) in the specified text. The
caret appears only when the window and the edit record are active.

LineEdit observes a minimum blink interval: No matter how often LEIdle is called,
the time between blinks will never be less than the minimum interval. The user can
adjust the minimum blink interval with the Control Panel desk accessory.

To provide a constant frequency of blinking, LEIdle should be called as often as
possible, at least once each time through the main event loop. Call it more than once
if your application performs an unusually large amount of processing each time
through the loop.

¢ Note: LEIdle actually only needs to be called when the window associated with the
edit record is active.

Stack before call

previous contents

-- [eRecHlandle -~ Long—HANDLE to edit record

«— SP

Stack after call

Dprevious contents

«— SP
Memory Manager errors Returned unchanged
QuickDraw II errors Returned unchanged

extern pascal void LEIdle(leRecHandle)

LERecHndl leRecHandle;

10-26 LineEdit Tool Set routines

vi1a~

LLNTY

Replaces the selection range in the specified text with a specified character and leaves
an insertion point just past the inserted character. If the selection range is an
insertion point, LEKey just inserts the character there. LEKey redraws the text as
necessary.

Every time a keyboard event that your application decides should be handled by
LineEdit is reported, you should call LEKey.

% Note: LEKey inserts every character passed in theKey (except for Backspace,
Control-F, Control-X, Control-Y, Left Arrow, and Right Arrow, as detailed in the
section “Special Characters” in this chapter), so it’s up to the application to filter
out all undesired characters (such as command keys and other control characters).

Stack before call

previous contents
Word—Key reported by the event record
modifiers Word—Copy of the modifiers field in the event record
—- leRecHandle --| Long—HANDLE to edit record
— Ssp
Stack after call

Drevious contents

10-28

— SpP
Memory Manager errors Returned unchanged
QuickDraw II errors Returned unchanged

extern pascal void LEKey (theKey,modifiers, leRecHandle)

Word theKey;
Word modifiers;
LERecHndl leRecHandle;

LineEdit Tool Set routines

Y7 1= LLINC VY

Allocates space for text, creates and initializes an edit record for that text, and returns
a handle to the new edit record. Call LENew once for every edit record you want
allocated. 'The edit record incorporates the drawing environment of the current
GrafPort and is initialized with an insertion point at character position 0.

% Note: The caret won't appear until you call the LEActivate routine.

The text will be limited to the length specified in the maxTextLen parameter.

Important

The view rectangle must not be empty. For example, don’t make its right edge
less than its left edge. If you don’t want any text visible, specify a rectangle off
the screen instead.

If you want the LineEdit item to appear in a special font, you must call the Font
Manager routine InstallFont before you make the LENew call. If you want to change
the font for an existing LineEdit item, you must make a LEDispose call for that record,
make the InstallFont call, and then call LENew to create a new LineEdit record.

Stack before call

previous contents

- longspace

-~ destRectPtr

-~ viewRectPtr

maxTextlen

Stack after call

previous contents

—- leRecHandle

Long—Space for result
Long—POINTER to RECT data structure in current GrafPort’s coordinates

Long—POINTER to RECT data structure in current GrafPort’s coordinates

Word—INTEGER specifying number of bytes to allocate for text (1-256)
<« SP

Long—HANDLE to new edit record

<SP

10-30 Linekdit Tool Set routines

wvi=r i1~ LLIUIIC

Replaces the selection range in the specified text with the contents of the LineEdit
scrap and leaves an insertion point just past the inserted text. The text is redrawn as
necessary. If the scrap is empty, the selection range is deleted. If the selection range
is an insertion point, LEPaste inserts the scrap at that point.

Stack before call

previous contents

~- leRecHandle --| Long—HANDLE to edit record

— SP

Stack after call

previous contenls

Sp
Memory Manager errors Returned unchanged
QuickDraw I errors Returned unchanged

extern pascal vold LEPaste (leRecHandle)

LERecHndl leRecHandle;

10-32 LineEdit Tool Set routines

vIr 14 LeoeIarer

Sets the leCaretHook field in a specified edit record to point to a custom caret drawing
procedure. LineEdit will use that procedure to both draw and erase the caret,

Stack before call

previous contents
—-- caretProcPtr --]1 Long—POINTER to custom caret drawing procedure; NIL for standard
-- [eRecHandle --| Long—HANDLE to edit record
<« SP
Stack after call

previous contents

— SP

None

extern pascal void LESetCaret(caretProcPtr, leRecHandle)
VoidProcPtr caretProcPtr;

LERecHndl leRecHandle;

10-34 LineEdit Tool Set routines

VLl & LEQETJUSI

Sets the justification style of the text of the specified edit record. The text is justified to
the destination rectangle supplied by the LENew call, as described in the section “The
leDestRect and leViewRect Fields” in this chapter.

After you call LESetJust, call the Window Manager routine InvalRect so that the text will
be redrawn using the new justification style.

% Note: This call is available only in Version 2.0 or later versions of the LineEdit
Tool Set.

Stack before call

previous contents
Just Word—0 = left justified, 1 = centered, $FFFF = right justified
-~ leRecHandle --| Long—HANDLE to edit record
o <SP
Stack after call

previous contents

T |le~sp

None

extern pascal void LESetJust (just, leRecHandle)
Word just;

LERecHndl leRecHandle;

10-36 LineEdit Too! Set routines

$SOE14 LESetSelect

Sets the selection range in the specified text.

The text selected is between selStart and selEnd in the text specified by leRecHandle.
The old selection range is unhighlighted, and the new one is highlighted. If selStart
equals selEnd, the selection range is an insertion point, and a caret is displayed.

The selStart parameter must be less than or equal to se/End. If selEnd is beyond the
last character of the text, the position just past the last character is used.

Stack before call

previous contents
selStart Word—INTEGER; start of selection range, 0-256
SelEnd Word—INTEGER; end of selection range, 0-256
-- leRecHandle -—| Long—HANDLE to edit record
| < SP
Stack after call

previous contents

~|¢-sp
Memory Manager errors Returned unchanged
QuickDraw II errors Returned unchanged

extern pascal void LESetSelect (selStart, selEnd,leRecHandle)

Word selStart;
Word selEnd;
LERecHndl leRecHandle;

10-38 LineEdit Tool Set routines

51814 LETextBox

Draws the specified text in the specified rectangle, justifying the text as specified.
LETextBox supports left, right, and centered justification.

¢ Note: The LETextBox2 routine also supports fill justification; see the section
“LETextBox2” in this chapter.

LETextBox performs an EraseRect on the rectangle before drawing the text and then
clips the text to the rectangle. LETextBox is not limited to a single line on the screen
as the other LineEdit routines are. The routine wraps to the next line whenever a
carriage return character (ASCII $0D) occurs in the text string. However, LETextBox
does not automatically wrap when it reaches the right side of the specified rectangle;
use the LETextBox2 routine for that function.

important

The text pointed to by textPtr must not contain a Pascal-type length byte; the
length of the text is passed as the textLength parameter,

LETextBox creates its own edit record, which it deletes when it’s finished, so the text it
draws cannot be edited. The routine does not allocate space for the text or make any
copies of the text.

Stack before call

previous contents
- textPtr -— Long—POINTER to text
textLength Word—INTEGER, length of text including carriage returns (0-32767)
-— rectPtr —| Long—POINTER to a RECT specified in local coordinates
just _ Word—0 = left justified, 1 = centered, $FFFF = right justified
<« SP
Stack after call

previous contents
- B R

10-40 LineEdit Tool Set routines

2V 14

LEIexXTBOXZ

Draws the specified text in a specified rectangle, justifying the text as specified.
LETextBox2 supports left, right, centered, and fill justification and can also support
embedded changes.

Important

LETextBox2 Is available only in Version 2.0 or later verslons of the LineEdit Tool
Set. Also, In addition to the tool sets required by the LineEdit Tool Set,
LETextBox2 requires that the Intfeger Math Tool Set be loaded and started up.

LETextBox2 performs an EraseRect on the rectangle before drawing the text and then
clips the text to the rectangle. LETextBox2 is not limited to a single line on the
screen. The routine will wrap to the next line whenever a carriage return character
(ASCII $0D) occurs in the text string, or will automatically wrap to the next line
whenever the text reaches the right side of the rectangle.

Important

The text pointed to by fextPtr must not contain a Pascal-type length byte:;
the length of the text is passed as the textlength parameter,

LETextBox2 does not create an edit record, so the text it draws cannot be edited. The
routine does not allocate space for the text or make any copies of the text.

Stack before call

previous contents

textPtr

textlength

rectPtr

Just

Stack after call

previous contents

10-42

Long—POINTER to text (text can include embedded changes)
Word—Includes carriage returns and embedded changes (0-32767)
Long—POINTER to RECT data structure specified in local coordinates

Word—0 = left, 1 = centered, $FFFF = right, 2 = fill justified
<SP

<SP

LineEdit Tool Set routines

Table 10-4 (continued)
LETextBox2 embedded change values

Data
size

Change Parameter

flag value changed

C (§43) Foreground color
B ($42) Background color
F ($46) Font

J (§4A) Justification

L ($4C) Left margin

M ($4D) Right margin

X ($58)

Extra spacing

Word

Word

FontID

Word

Word

Word

Word

Data
description

Color of foreground, as an index into the current color
table.

Color of background, as an index into the current color
table.

Font ID specifying which font family number, font style,
and font size to use.

If the famNum field of the font ID is 0, it’s translated
into the family number of the system font. A family
number of $FFFF is not allowed, nor is a font size of 0.

% Note: If this change flag is used, the Font Manager
must have already been loaded and started up. See
Chapter 8, “Font Manager,” for more information.

How the text should be justified, as follows:

0 Left justification

1 Centered

$FFFF Right justification

2 Fill justification (text is justified to both
margins)

Number of pixels to indent from the left edge of the
destination rectangle.

Number of pixels to indent from the right edge of the
destination rectangle.

Number of extra pixels to be added to normal line
spacing. This number may be negative, which can lead
to overlapping text.

A simple assembly-language example that changes the style of a single word is as follows:

MyText

dc ¢'This is !

de h'Cl',c'S",1'$0001"

de c'My'

de h'01',c'S',1'$0000!

dc c' text!

LETextBox2 will print this text as
This is My text

10-44

LineEdit Tool Set routines

$1/714 LEUpdate

LEUpdate redraws the text of the specified edit record. Your application should call
LEUpdate every time an update event for a window associated with an edit window is
reported. LEUpdate should be called after you call the Window Manager routine
BeginUpdate and the QuickDraw II routine EraseRect, and before you call the Window
Manager routine EndUpdate.

If you do not include the EraseRect call, the caret may sometimes remain visible when
the window is deactivated.

Stack before call

previous contents

—-- leRecHandle —- Long—HANDLE to edit record

T |é&SsP

Stack after call

Dbrevious contents

<« SP
Memory Manager errors Returned unchanged
QuickDraw II errors Returned unchanged

extern pascal vold LEUpdate (leRecHandle)

LERecHndl leRecHandle;

10-46 LineEdit Tool Set routines

Table 10-7
LineEdit Tool Set error codes

Code Name Description

$1401 leDupStrtUpErr LEStartUp already called

$1402 leResetError Can't reset LineEdit

$1403 leNotActiveErr LineEdit not active

$1404 leScrapErr Desk scrap too big to copy
10-48 Chapter 10; LineEdit Too! Set

Table 11-1

List Manager routines and their functions

Routine

Description

Housekeeping routines

ListBootlnit

ListStartUp
ListShutDown
ListVersion
ListReset

ListStatus

List routines
CreatelList
NewlList
SortList
GetListDefProc

Member routines
DrawMember
NextMember

ResetMember

SelectMember

Initializes the List Manager; called only by the Tool Locater—must not be called by
an application

Starts up the List Manager for use by an application

Shuts down the List Manager when an application quits

Returns the version number of the List Manager

Resets the List Manager; called only when the system is reset~—must not be called by
an application

Indicates whether the List Manager is active

Creates a list control using a specified list record

Resets the list control according to a specified list record

Alphabetizes a specified list by rearranging the array of member records
Returns a pointer to the list control’s definition procedure

Draws one or all members of a specified list

Searches a specified list record, starting with a specified member, and returns a
pointer to the member record of the next selected member found

Searches a specified list record, starting with the first member, returns a pointer to
the member record of the first selected member found, and deselects (but does not
redraw) the member

Selects a specified member, deselects any other selected members in the list, and
scrolls the list so that the specified member is at the top of the list display

LIST Cconirois ana list recoras

A list control is a custom control that displays lists of similar data. The initial
appearance of the list control is defined by the list record, as shown in Figure 11-1,

Important

If you want to change the list control after it is created, you must change the list
control record, not the list record. Changing information in the list record after

the list control is created does not affect the control.

See the section "List

Control Records” in this chapter.

11-2

Chapter 11: List Manager

MyList

memberl
member 2
member3

memberd

dc

dc

14 "memberl', 110"
i4 'member2',il1'0"
14 "'member3', 110"

i4'memberq4’,il'or

il'8',ct'string 1°
i1'8',c'String 2°'
i1'8',c'string 3’

il'8',c'String 4°

LISI CoNnirol recoras

;Pointer to
;Pointer to
;Pointer to

;Pointer to

;String for
;String for
;String for

;String for

first
first
first

first

member
member
member

member

member's
menber's
member's

member's

string
string
string

string

memFlag byte
memFlag byte
memFlag byte

memFlag byte

The list control record is used to define the appearance of the control after the
control has been created. Some fields in the list control record are initialized using
corresponding values in the list record,; those fields are identified in Figure 11-6.

Your application can add and delete members from the list after the list control is
created by adding or subtracting from the list and then changing the low-order word
of ctlData. The SortList routine can be used to realphabetize the list. If SortList is
called after the list control is already visible (that is, after the list control record has
already been created), then DrawMember should be called to redraw the entire list.

11-8

Chapter 11: List Manager

The address of a list control’s color table is stored in the ct/Color field of the list
control record and can be set after the list control is created by the Control Manager
routine CreateControl. A default color table is used if the ctiColor field of a list
control’s record is NIL (actual colors depend on the color palette used).

The color table and its default values are shown in Figure 11-7.

Offset FielA

50 — listfromeClr — Word—Frame color (black)

[fistNorTectCr— - Word—Color of text when not highlighted (black)

}— listselTextCir — - Word—Color of text when highlighted (white)
1
listNorBackCi— Word—Color of background when not highlighted (white)

O 00 N O N —

iistseisackCrr—— Word—Color of background when highlighted (black)
I

Figure 11-7
List conftrol color table

Figure 11-8 shows a list using the default color values.

listFrameC, ourier
listNorTextCi eneva
| Helvetica

listSelTextCi
lIstNorBackCl
lIstSelBackCi

Figure 11-8
Color table and example list

11-10 Chapter 11: List Manager

€IS CIIONn Moaes

The List Manager allows the user to choose between three possible selection modes:

single, arbitrary, and range. The Apple and Shift keys are used to choose the

selection mode. The state of the Apple and shift keys is checked only when the user
first presses the mouse button. After that, the user can release the key, and the
selection mode remains in effect until the user releases the mouse button. The three
modes are as follows:

® Single mode: The user selects single mode by simply pressing the mouse button
and not pressing either the Apple or Shift key. Any selection the user makes
deselects all other selected members. Thus, when the user drags the mouse, the
selection moves from one member to another.

m Arbitrary mode: If the user holds down the Apple key and then presses the mouse
button, already selected members are not deselected. This allows unselected
members to be between selected members in the list. Dragging is allowed in this
mode, so any enabled member the mouse is dragged over will be selected. The
arbitrary mode overrides the range mode if the user presses both the Apple and
Shift keys.

m Range mode: If the user holds down the Shift key and then presses the mouse
button, a range of members is selected, and all of the members outside the range
are deselected. A range is defined as follows: The first selected member in the list
is the beginning of the range. The end of the range is the current selection if it
appears after the beginning of the range. If the current selection is the first selection
in the list, and therefore the beginning of the range, then the end of the range is the
last selected member in the list. This concept is illustrated in Figure 11-9,

| Courier
User clicks here ieneva
in range mode Helvetica

Shaston

Times

Yenice

| Courier
Geneva
Helvetica

Results in this Shaston
selection range Times

Yenice

Figure 11-9
Range-mode selection

The current selection is both the beginning and end of the range if it is the only
selection in the list.

The application can shut off arbitrary and range mode to allow only single selections
by setting the listSelect bit (bit 1) in the JistType field of the list record.

11-12 Chapter 11: List Manager

YUV I \» LIDIDIIUIWOVII

Shuts down the List Manager.

Important

If your application has started up the List Manager, the application must make
this call before it quits.

The stack is not affected by this call. There are no input or output parameters.
None

extern pascal void ListShutDown ()

YV | RIDI VIJIVII

Returns the version number of the List Manager.

Stack before call

Dbrevious contents

woruspace Word—Space for output
«— SP
Stack after call
Drevious contents
versioninfo | Word—Version number of the List Manager
— SP
None

extern pascal Word ListVersion({()

11-14 List Manager housekeeping routines

yU7 I wreareList

Calls the Control Manager routine NewControl to create a list control, using a
specified list record. The routine also stores the list control’s handle in the list
record’s listCtl field and passes the address of the List Manager’s list control definition
procedure. That definition procedure then creates the list control's vertical scroll bar
and stores the scroll bar's handle in the list control’s ct/ListBar field.

To dispose of a list control, use the Control Manager routine KillControls or the
Window Manager routine CloseWindow.

Stack before call
previous contents
- longspace —| Long—Space for result
- theWindowPtr -—| Long—POINTER to window in which the list should appear
— listRecPtr -~} Long—POINTER to list record
<« SpP
Stack after call

previous contents

—-theControlHandle ——| Long—HANDLE of list control

«— Sp
None

extern pascal ListCtlRecHndl Createlist (theWindowPtr, listRecPtr)
GrafPortPtr theWindowPtr;

ListRecPtr listRecPtr;

11-16 List Manager routines

UE I GerILISTUeIrroc

Returns a pointer to the list control's definition procedure. Normally, you will not
need to use this call.

% Note: The List Manager is basically a custom control; thus, you may need to
access the control’s definition procedure. See Chapter 4, “Control Manager,” for
information about control definition procedures.

Stack before call

previous contents

-- longspace -—| Long—Space for result

— SP

Stack after call

previous contents

-~ defProcPtr -—| Long—POINTER to list control definition procedure

«— SP
None

extern pascal LongProcPtr GetListDefProc()

11-18 List Manager routines

IUBIC Nexiviemper

Searches a specified list record, starting with a specified member, and returns a
pointer to the member record of the next selected member found.

A member is considered selected if the memSelect field (bits 7-6) of the member’s
memilag field is set to 10. The NextMember routine does not change that bit.

Stack before call

previous contents
- longspace -—| Long—Space for result
-- memberPtr --1 Long—POINTER to member at which to begin search; NIL for first
- listRecPtr -_— Long—POINTER to list record
<SP
Stack after call

Dprevious contenits

-- nextMemberPtr —— Long—POINTER to member record of next selected member;
NIL if no more

<SP

None

extern pascal memRecPtr NextMember (memberPtr, listRecPtr)
MemRecPtr memberPtr;

ListRecPtr listRecPtr;

11-20 List Manager routines

$ODI1C SelectMember

Selects a specified member, deselects any other selected members in the list, and
scrolls the list so that the specified member is at the top of the list display.

Important
The specified member is not selected if it is disabled.

Stack before call
previous contenis
-- memberPir -_— Long—POINTER to member to be selected
- listRecPtr --| Long—POINTER to list record
I <— SP
Stack after call

previous contents

<« SP
None

extern pascal void SelectMember (memberPtr, listRecPtr)
MemRecPtr memberPtr;

ListRecPtr listRecPtr;

11-22 List Manager routines

cusrom compdrison rourine exampie

An example of a custom comparison routine follows.

H IN: memberA = pointer to member A
; memberB = pointer to member B
;
Compare START
memberAequ 4
memberBequ memberA +4
; (Your comparison code would go here. How the routine does the
H comparison i1s up to you. For example:)
K if memberA >= memberB
; sec Carry set if memberA is greater
H than or equal to memberB
K else
clc Carry clear if memberA is less than memberB

‘

lda 0,s Remove input parameters and return

sta 8,s

lda 2,s

sta 10, s

pla

pla

pla

pla

rctl

11-24 List Manager routines

Table 11-4 (continued)
List Manager data structures

Name Offset Type Definition

List control record (ListCtiRec)*

ctiMemDraw $28 VoidProcPtr Pointer to routine to draw member
ctiMemHeight $2C Word Member’s height in pixels

ctiMemSize $2E Word Bytes in member record

ctlList $30 MemRecPtr Pointer to first member record in array
ctlListBar $34 CtlRecHndl Handle to list control’s scroll bar control
Member record (MemRec)

memPtr $0 Pointer Pointer to string

memFlag $4 Byte Bit flag defining selected or disabled status
List color table (LColorTable)

listFrameClr $00 Word Frame color

listNorTextClr $2 Word Unhighlighted text color

listSelTextClr $4 Word Highlighted text color

listNorBackClr $6 Word Unhighlighted background color
listSelBackClr $8 Word Highlighted background color

Note: The actual assembly-language equates have a lowercase o (the letter) in front of all of the names given in
this table.

* The first few fields of the list control record are the same as those of a control record. Those fields are
followed by the listed fields.

11-26 Chapter 11: List Manager

A preview of the Memory Manager routines

To introduce you to the capabilities of the Memory Manager, all Memory Manager
routines are grouped by function and briefly described in Table 12-1. These routines
are described in detail later in this chapter, where they are separated into
housekeeping routines (discussed in routine number order) and the rest of the
Memory Manager routines (discussed in alphabetical orden).

Table 12-1
Memory Manager routines and their functions

Routine Descriotion

Housekeeping routines

MMBootlnit Called only by the Tool Locator when the Memory Manager is initialized—must
not be made by an application

MMStartUp Starts up the Memory Manager for use by an application

MMShutDown Shuts down the Memory Manager when the application quits

MMVersion Returns the version number of the Memory Manager

MMReset Called only when the system is Reset-——must not be made by an application

MMStatus Indicates whether or not the Memory Manager is active

Memory allocation routines

NewHandle Creates a new block and returns the handle to the block

ReAllocHandle Reallocates a purged block using new attributes

RestoreHandle Reallocates a purged block using the same attributes, user ID, and size that were

associated with the purged handle
DisposeHandle Discards a specified block and deallocates its handle

DisposeAll Discards all of the handles and blocks belonging to a specified user ID

PurgeHandle Purges a specified purgeable, unlocked block, but does not deallocate the handle

PurgeAll Purges all of the purgeable, unlocked blocks for a specified user ID

Block Information and free space routines

FindHandle Returns the handle of a block containing a specified address

CheckHandle Checks a specified handle to see whether it is valid

GetHandleSize Returns the size of a block

SetHandleSize Changes the size of a specified block

CompactMem Compacts memory space

FreeMem Returns the total number of free bytes in memory

MaxBlock Returns the size of the largest free block in memory, not counting memory that can
be freed by purging or compacting

TotalMem Returns the size of all memory, including the main 256K

12-2 Chapter 12 Memory Manager

Important

To help prevent fragmentation, your application should use movable blocks
whenever possible and leave blocks unlocked whenever possible.

Purging memory

If the Memory Manager is still unable to allocate a block after compacting memory, it
tries to purge blocks.

¢ Note: Only blocks that are marked purgeable and unlocked can be purged. See
the section “Assigning Memory Block Attributes” later in this chapter for more
information.

Purging throws out the contents of the block and frees it. The block’s master pointer
remains allocated, and its value is set to NIL.

< Note: NIL is equivalent to 0 (zero).

A handle pointing to a NIL master pointer is called an empty handle. If you want
your application to refer to the purged block, the application must detect that the
handle is empty and ask the Memory Manager to reallocate the block.

Important

Even if the block is reallocated, the data in a purged block has been lost and
must be restored by your application.

12-8 Chapter 12: Memory Manager

Your application should use only levels 0-2; level 3 is reserved for the System Loader.
When some applications exit, the memory is not freed, but all of the application’s
blocks are set to level 3. The old application can thus be restarted without accessing
the disk if the new application did not need the space. If the Memory Manager purges
any blocks of an application exited this way, it will purge all of them.

user Ibs

When you start up the Memory Manager for use by your application, the operating
system has already assigned a master user ID for that execution of the application.
The Memory Manager uses this master user ID to reserve the memory it needs for
the program’s code and static data. The operating system gives the master user ID
number to the Memory Manager, which in turn passes that ID to the application in the
MMStartUp call. You must save that ID for use when you shut down the application.

User IDs are made up of three fields—type, auxID, and mainID—contained in a
word parameter, as shown in Figure 12-7. The value in the mainlD field is assigned
by the User ID Manager and will always be a nonzero value. You must provide the
value for the type field, which has fixed assignments as shown in Figure 12-7.

hsl1ahiz)i2)i1fiofo]8f7T4Ts]a]3]2][1]0]
Jl J L 1 i L | l‘ L | 1

type i
Memory Manager = $00
Application = $01
Control program = $02
ProDOS = $03

Tool sets = $04*
Desk accessories = $05
Runtime libraries = $06
System Loader = $07
Firmware = $08
Tool Locator = $09
Setup file = SOA
Undefined = $0B
Undefined = $0C
Undefined = SOD
Undefined = SOE
Undefined = SOF

auxiD J
S0-$F Defined by user

mainlD ~
SO1-SFF Assigned by ID Manager

Reserved —

* Apple controls assignment of IDs in this class. Af the time of
publication, the only assignments were $41xx = Miscellaneous Tool Set
and $42xx = Scrap Manager.

Figure 12-7
User 1D fields

12-10 Chapter. 12: Memory Manager

Cleaning up memory

When your application quits, it must explicitly dispose of any memory that it
acquired; if it doesn’t, the memory management system can become clogged.

1f, as recommended, you modified the auxID field of the master user ID to create a
unique user ID, you can simply use the DisposeAll routine to dispose of the memory
all at once for that specific user ID.

If you used the master user ID to allocate private memory, you must dispose of the
private memory on a handle-by-handle basis. In this case, you can’t use the
DisposeAll routine to dispose of your private memory all at once, since that would
also mark the application’s code space as available for reallocation.

If you asked the User ID Manager for an entirely new ID, you can use the DisposeAll
routine to dispose of the memory all at once for that specific user ID.

For more information about memory management, see the Programmer’s
Introduction to the Apple IIGS and the Apple IIGS ProDOS 16 Reference.

using the Memory Manager

This section discusses how the Memory Manager routines fit into the general flow of
an application and gives you an idea of which routines you’ll need to use under
normal circumstances. Each routine is described in detail later in this chapter.

The Memory Manager depends upon the presence of the tool set shown in Table 12-3
and requires that at least the indicated version of the tool set be present,

Table 12-3

Memory Manager—other tool sets required
Tool set Tool set Minimum version
number name needed

$01 #01 Tool Locator 1.0

The first Memory Manager call that your application must make is MMStartUp.
Conversely, when you quit your application, you must make the MMShutDown call.

Remember that the Memory Manager works closely with ProDOS 16 and the System
Loader to provide the needed memory spaces for initally loading your application
and its data. Thus, your application’s use of the Memory Manager, after you have
started it up, will be to ask it for more memory for private purposes.

12-14 Chapter 12: Memory Manager

THE APPLE PUBLISHING SYSTEM

This Apple manual was written,
edited, and composed on a
desktop publishing system using
the Apple Macintosh® computers
and Microsoft® Word. Proof and
final pages were created on the
Apple LaserWriter® Plus.
POSTSCRIPT®, the LaserWriter
page-description language, was
developed by Adobe Systems
Incorporated. Some of the
illustrations were created using
Adobe Illustrator™.

Text type is ITC Garamond®

(a downloadable font distributed
by Adobe Systems). Display type
is ITC Avant Garde Gothic®.
Bullets are ITC Zapf Dingbats®.
Program listings are set in Apple
Courier, a monospaced font.

