
Apple® II Apple IIGs 
Toolbox 
Reference 
Volume 1 

A ...... 
Addison-Wesley Publishing Company, Inc. 
Reading, Massachusetts Menlo Park, California New York Don Mills, 
Ontario Wokingham, England Amsterdam Bonn Sydney · Singapore 
Tokyo Madrid Bogota Santiago San Juan 



ti APPLE COMPUTER, INC. 

Copyright© 1988 by Apple 
Computer, Inc. 

All rights reserved. No part of 
this publication may be repro­
duced, stored in a retrieval 
system, or transmitted, in any 
form or by any means, mechan­
ical, electronic, photocopying, 
recording, or otherwise, without 
prior written permission of 
Apple Computer, Inc. Printed in 
the United States of America. 

Apple, the Apple logo, 
ImageWriter, LaserWriter, and 
ProDOS are registered 
trademarks of Apple Computer, 
Inc. 

Apple Desktop Bus, Macintosh, 
and SANE are trademarks of 
Apple Computer, Inc. 

Adobe Illustrator is a trademark 
of Adobe Systems Incorporated 

ITC Avant Garde Gothic, ITC 
Garamond, and ITC Zapf 
Dingbats are registered 
trademarks of International 
Typeface Corporation. 

Microsoft is a registered trade­
mark of Microsoft Corporation. 

POSTSCRIPT is a registered 
trademark of Adobe Systems 
Incorporated. 

Simultaneously published in the 
United States and Canada. 

ISBN 0-201-17746-3 
ABCD EFG HIJ-DO-8987 
First printing, December 1987 

WARRANTY INFORMATION 

ALL IMPLIED WARRANTIES ON 
THIS MANUAL, INCLUDING 
IMPLIED WARRANTIES OF 
MERCHANTABILITY AND 
FITNESS FOR A PARTICULAR 
PURPOSE, ARE LIMITED IN 
DURATION TO NINETY (90) 
DAYS FROM THE DATE OF THE 
ORIGINAL RETAIL PURCHASE 
OF THIS PRODUCT. 

Even though Apple has reviewed 
this manual, APPLE MAKES NO 
WARRANTY OR REPRESENTA­
TION, EITHER EXPRESS OR 
IMPLIED, WITH RESPECT TO 
THIS MANUAL, ITS QUALITY, 
ACCURACY, MERCHANTABILITY, 
OR FITNESS FOR A PARTICULAR 
PURPOSE. AS A RESULT, THIS 
MANUAL IS SOID "AS IS," AND 
YOU,THEPURCHASER,ARE 
ASSUMING THE ENTIRE RISK AS 
TO ITS QUALITY AND 
ACCURACY. 

IN NO EVENT WILL APPLE BE 
LIABLE FOR DIRECT, INDIRECT, 
SPECIAL, INCIDENTAL, OR 
CONSEQUENTIAL DAMAGES 
RESULTING FROM ANY DEFECT 
OR INACCURACY IN THIS 
MANUAL, even if advised of the 
possibility of such damages. 

THEW ARRANTY AND REMEDIES 
SET FORTH ABOVE ARE EXCLU­
SIVE AND IN LIEU OF ALL 
OTHERS, ORAL OR WRITTEN, 
EXPRESS OR IMPLIED. No Apple 
dealer, agent, or employee is 
authorized to make any modifica­
tion, extension, or addition to this 
warranty. 

Some states do not allow the exclu­
sion or limitation of implied warran­
ties or liability for incidental or · 
consequential damages, so the 
above limitation or exclusion may 
not apply to you. This warranty 
gives you specific legal rights, and 
you may also have other rights 
which vary from state to state. 



Contents 

Volume l 

Figures and tables (Volume 1) xvii 

Preface Roadmap to the Apple IIGs Technlcal Manuals xxlll 

Introductory manuals xxv 
The technical introduction xxv 
The programmer's introduction xxv 

Machine reference manuals xxvi 
The hardware reference manual xxvi 
The firmware reference manual xxvi 

The toolbox manuals xxvi 
The Programmer's Workshop manual xxvii 
Programming-language manuals xxvii 
Operating-system manuals xxviii 
All-Apple manuals xxviii 
How to use this manual xxix 
Other materials you'll need xxxi 
Notations and conventions xxxi 

Typographic conventions xxxi 
Watch for these xxxi 

Future toolbox enhancements xxxii 

Chapter 1 Introducing the Apple IIGs Toolbox 1- 1 

What is a tool set? 1-1 
What can the tool sets do for you? 1-1 
Are there any limitations? 1-2 
What kinds of tool sets are provided? 1-2 

The big five 1-3 
Desktop interface tool sets 1-3 
Math tool sets 1-4 
Printer tool set 1-4 
Sound tool sets 1-4 
Specialized tool sets 1-4 

iii 



Iv Contents 

Groups of routines within each tool set 1-5 
Apple Desktop Bus Tool Set 1-5 
Control Manager 1-5 
Desk Manager 1-5 
Dialog Manager 1-6 
Event Manager 1-6 
Font Manager 1-7 
Integer Math Tool Set 1-7 
LineEdit Tool Set 1-8 
List Manager 1-8 
Memory Manager 1-9 
Menu Manager 1-9 
Miscellaneous Tool Set 1-10 
Print Manager 1-11 
QuickDraw II 1-11 
QuickDraw II Auxiliary 1-14 
SANE Tool Set 1-14 
Scheduler 1-14 
Scrap Manager 1-15 
Sound Tool Set 1-15 
Standard File Operations Tool Set 1-15 
Text Tool Set 1-16 
Tool Locator 1-16 
Window Manager 1-17 

Chapter 2 Using the Apple IIGS Tool Sets 2-1 

Starting up the required tool sets 2-1 
Loading and starting up other tool sets 2-3 
Calling the correct routine 2-5 

Calling a routine from assembly language 2-5 
Calling a routine from C 2-6 

Passing parameters 2-6 
Return from a call 2-7 

Chapter 3 Apple Desktop Bus Tool Set 3-1 

A preview of the Apple Desktop Bus Tool Set routines 3-1 
About the Apple Desktop Bus commands 3-2 
Using other Apple Desktop Bus devices 3-3 
Polling the Apple Desktop Bus for data 3-3 

Polling single-user applications 3-3 
Polling multiuser applications 3-3 

The ADB Change Address When Activated handler 3-4 
The Collision Detect handler 3-4 



Using the Apple Desktop Bus Tool Set 3-5 
Completion routines 3-7 

AsyncADBReceive completion routine 3-8 
SRQ list completion routine 3-9 

Apple Desktop Bus Tool Set housekeeping routines 3-10 
Apple Desktop Bus Tool Set routines 3-13 
Apple Desktop Bus Tool Set summary 3-28 

Chapter 4 Control Manager 4-1 

A preview of the Control Manager routines 4-1 
Standard controls 4-3 
Scroll bars 4-5 
Active, inactive, and highlighted controls 4-7 
Controls and windows 4-8 
Part codes 4-8 
Using the Control Manager 4-9 
Control Manager icon font 4-11 
Control records 4-11 

Simple button control records 4-14 
Check box control record 4-16 
Radio button control record 4-18 
Scroll bar control record 4-20 
Size box control record 4-23 

Defining your own controls 4-24 
Draw routine 4-26 
Test routine 4-27 
Calculate indicator rectangle routine 4-28 
Initialize routine 4-29 
Dispose routine 4-30 
Position routine 4-31 
Thumb routine 4-32 
Drag routine 4-35 
Track routine 4-36 
New value routine 4-37 
Set parameters routine 4-38 
Move routine 4-39 
Record size routine 4-40 

Control Manager housekeeping routines 4-41 
Control Manager routines 4-45 
Control Manager summary 4-85 

Contents v 



vi Contents 

Chapter 5 Desk Manager 5-1 

A preview of the Desk Manager routines 5-1 
Using classic desk accessories 5-3 

When the CDA menu can be displayed 5-3 
Writing classic desk accessories 5-3 

Supporting new desk accessories 5-5 
Supporting new desk accessories 

with TaskMaster 5-5 
Supporting new desk accessories 

without TaskMaster 5-6 
Writing new desk accessories 5-6 

Desk Manager housekeeping routines 5-9 
Desk Manager routines 5-12 
Desk Manager summary 5-30 

Chapter 6 Dialog Manager 6-1 

A preview of the Dialog Manager routines 6-1 
Dialog boxes 6-4 
Dialog and alert windows 6-7 
Item templates 6-8 

Item types 6-10 
Item descriptor and item value 6-12 

Myitem 6-16 
Display rectangle 6-17 
Item ID 6-18 
Item flag 6-18 
Item color tables 6-18 

Dialog records 6-19 
Alerts 6-19 

MySound 6-22 
Using the Dialog Manager 6-23 
Filter procedures 6-25 

MyFilter 6-25 
Dialog Manager housekeeping routines 6-27 
Dialog Manager routines 6-31 
Dialog Manager summary 6-88 

Chapter 7 Event Manager 7-1 

A preview of the Event Manager routines 7-1 
Two managers in one 7-3 
Event types 7-3 

Mouse events 7-3 
Keyboard events 7-3 
Window events 7-4 
Other events 7-4 



Event priority 7-4 
Event records 7-6 

Event codes 7-7 
Event messages 7-8 
Modifier flags 7-8 

Event masks 7-10 
Using the Event Manager 7-12 

Responding to mouse events 7-13 
Responding to keyboard events 7-13 
Responding to window events 7-14 
Responding to other events 7-14 
Posting and removing events 7-14 
Performing other operations 7-14 

Capturing asynchronous key events 7-15 
Journaling mechanism 7-19 
Using alternative pointing devices 7-21 

Writing device drivers 7-21 
Installing device drivers 7-23 

Devices using their own cards 7-23 
Devices communicating 

through the serial port 7-24 
Devices communicating 

through the Apple Desktop Bus 7-24 
Removing device drivers 7-25 

Devices using their own cards 7-25 
Devices communicating 

through the serial port 7-25 
Devices communicating 

through the Apple Desktop Bus 7-25 
Event Manager housekeeping routines 7-26 
Event Manager routines 7-31 
Event Manager summary 7-50 

Chapter 8 Font Manager 8-1 

A preview of the Font Manager routines 8-2 
Font records and font families 8-3 

Family names and numbers 8-3 
Font size 8-4 
Font style 8-5 
Font ID record 8-6 
Base families 8-7 
Real and scaled fonts 8-7 
Current and system fonts 8-8 

Contents vii 



vii i Contents 

FontStatBits and FontSpecBits bit flags 8-8 
FontStatBits flag 8-9 
FontSpecBits flag 8-11 

FamStatBits and FamSpecBits bit flags 8-12 
FamStatBits flag 8-12 
FamSpecBits flag 8-13 

Interaction with the user 8-13 
Using the Font Manager 8-14 
Best-fit font algorithm 8-16 
Font Manager housekeeping routines 8-18 
Font Manager routines 8-23 
Font Manager summary 8-50 

Chapter 9 Integer Math Tool Set 9-1 

A preview of the Integer Math Tool Set routines 9-1 
Rounding and pinning 9-3 
Using the Integer Math Tool Set 9-4 
Integer Math Tool Set housekeeping routines 9-5 
Integer Math Tool Set routines 9-8 
Integer Math Tool Set summary 9-42 

Chapter 10 Line Edit Tool Set 10-1 

A preview of the LineEdit Tool Set routines 10-2 
Edit records 10-4 

The leDestRect and leViewRect fields 10-6 
The leLineHite and leBaseHite fields 10-7 
The leSelStart and leSelEnd fields 10-7 
The leHiliteHook and leCaretHook fields 10-9 

Using the LineEdit Tool Set 10-9 
Moving or scrolling windows 

that contain LineEdit items 10-11 
LineEdit Tool Set housekeeping routines 10-12 
LineEdit Tool Set routines 10-16 
LineEdit Tool Set summary 10-47 

Chapter 11 List Manager 11-1 

A preview of the List Manager routines 11-1 
List controls and list records 11-2 
List control records 11-8 
Using the List Manager 11-11 
Selection modes 11-12 
List Manager housekeeping routines 11-13 
List Manager routines 11-16 
List Manager summary 11-25 



Chapter 12 Memory Manager 12-1 

A preview of the Memory Manager routines 12-2 
Apple IIGS memory map 12-3 
Pointers and handles 12-5 
Memory fragmentation and compaction 12-6 
Purging memory 12-8 
User IDs 12-10 
Assigning memory block attributes 12-12 
Cleaning up memory 12-14 
Using the Memory Manager 12-14 
Memory Manager housekeeping routines 12-16 
Memory Manager routines 12-21 
Memory Manager summary 12-47 

Chapter 13 Menu Manager 13-1 

A preview of the Menu Manager routines 13-1 
Menu bars 13-4 

System menu bar 13-4 
Window menu bars 13-5 

Menu appearance 13-6 
Keyboard equivalents for commands 13-7 
Using the Menu Manager 13-7 

Initializing the Memory Manager 13-8 
Defining menus and items 13-8 
Setting the sizes of the menu bar and items 13-9 
Drawing the new menu bar 13-9 
Accepting input from the user 13-9 

With TaskMaster 13-10 
Without TaskMaster 13-11 

Menu lists: menu lines and item lines 13-13 
Dividing lines and underlines 13-15 
Menu bar records 13-17 
Menu records 13-19 
Defining your own menus 13-21 

The mDrawMenu operation 13-23 
The mChoose operation 13-24 
The mSize operation 13-25 
The mDrawTitle operation 13-26 
The mDrawMitem operation 13-27 
The mGetltemID operation 13-28 

Menu Manager housekeeping routines 13-29 
Menu Manager routines 13-33 
Menu Manager summary 13-87 

Contents Ix 



x Contents 

Chapter 14 Miscellaneous Tool Set 14-1 

A preview of the Miscellaneous Tool Set routines 14-1 
Using the Miscellaneous Tool Set 14-4 
Miscellaneous Tool Set housekeeping routines 14-6 
Miscellaneous Tool Set routines 14-9 
Miscellaneous Tool Set summary 14-64 

Chapter 15 Print Manager 15-1 

A preview of the Print Manager routines 15-2 
Print dialog boxes 15-4 

Choose Printer dialog box 15-4 
Style dialog box 15-5 
Job dialog box 15-8 

Print records 15-9 
Printer information subrecord 15-11 
Style subrecord 15-12 

ImageWriter style subrecord values 15-13 
LaserWriter style subrecord values 15-13 

Job subrecord 15-14 
Printing modes and resolutions 15-15 
Using the Print Manager 15-19 

Printing loop 15-20 
Printing a specified ra;!ge of pages 15-21 
Using Quick:Draw II for printing 15-21 
Sequence of events 15-22 

Methods of printing 15-23 
Printer and port drivers 15-23 

Printer drivers 15-23 
Printer peripheral cards and printer ports 15-24 

Background processing 15-24 
Print Manager housekeeping routines 15-25 
Print Manager routines 15-29 
Print Manager summary 15-47 



Contents 

Volume 2 

Figures and tables (Volume 2) xvii 

Chapter 16 QulckDraw II 16-1 

A preview of the QuickDraw II routines 16-1 
Drawing to the screen and elsewhere 16-9 

Where QuickDraw II draws 16-9 
Coordinate plane 16-10 
Pixel images and the coordinate plane 16-12 
GrafFort, port rectangle, and clipping 16-14 
Global and local coordinate systems 16-16 

How QuickDraw II draws 16~ 18 
Drawing pen 16-18 
Basic drawing functions 16-20 

What QuickDraw II draws 16-21 
Points and lines 16-21 
Rectangles 16-22 
Circles, ovals, arcs, and wedges 16-23 
Polygons 16-24 
Regions 16-25 
Pictures 16-25 

Drawing text 16-26 
Simple text manipulation 16-26 

Drawing in color 16-31 
Color tables and palettes 16-32 
Scan line control bytes 16-34 
Standard color palette in 320 mode 16-35 
Dithered colors in 640 mode 16-35 

Cursors 16-37 
Using QuickDraw II 16-39 

xi 



xii 

Fonts and text in QuickDraw II 16-41 
Font definition 16-41 

Apple IIGS font definition 16-41 
Apple IIGS font header fields 16-43 
Macintosh font part of an Apple IIGS font 16-44 

Characters 16-44 
Fonts 16-47 

Font rectangle 16-47 
Font strike 16-48 
Defined versus undefined characters 16-49 
Location table 16-49 
Offset/width table 16-50 

Character backgrounds 16-52 
Font bounds rectangle 16-53 
Drawing and the text buffer 16-54 
Controlling text display 16-55 

Character spacing calls 16-55 
Style modification calls 16-56 
Font flags option calls 16-56 

Using the QuickDraw II font calls 16-57 
Text drawing calls 16-57 
Text width calls 16-58 
Text bounds calls 16-58 
Text buffer management calls 16-58 
Font information calls 16-62 

QuickDraw II housekeeping routines 16-63 
QuickDraw II routines 16-68 
QuickDraw II summary 16-274 

Chapter 17 QulckDraw II Auxlllary 17-1 

A preview of the QuickDraw II Auxiliary routines 17-1 
About pictures 17-2 
Style modification support 17-3 
QuickDraw II Auxiliary icon record 17-3 
Using QuickDraw II Auxiliary 17-5 
QuickDraw II Auxiliary housekeeping routines 17-6 
QuickDraw II Auxiliary routines 17-9 
QuickDraw II Auxiliary summary 17-16 

Chapter 18 SANE Tool Set 18-1 

Contents 

A preview of the SANE Tool Set routines 18-2 
Using the SANE Tool Set 18-3 

Performance characteristics and limitations 18-6 
Differences between 65C816 and 6502 SANE 18-7 
SANE Tool Set housekeeping routines 18-11 
SANE Tool Set routines 18-15 
SANE Tool Set summary 18-15 



Chapter 19 Scheduler 19-1 

A preview of the Scheduler routines 19-1 
Using the Scheduler 19-2 
Scheduler housekeeping routines 19-4 
Scheduler routines 19-7 
Scheduler summary 19-8 

Chapter 20 Scrap Manager 20-1 

A preview of the Scrap Manager routines 20-2 
Memory and the desk scrap 20-3 
Desk scrap data types 20-3 
Using the Scrap Manager 20-4 
Setting up a private scrap 20-5 
Scrap Manager housekeeping routines 20-7 
Scrap Manager routines 20-10 
Scrap Manager summary 20-19 

Chapter 21 Sound Tool Set 21-1 

A preview of the Sound Tool Set routines 21-1 
Sound hardware 21-3 
Oscillators and generators 21-5 
Using the Sound Tool Set 21-6 
Sound Tool Set housekeeping routines 21-7 
Sound Tool Set routines 21-11 
Sound Tool Set low-level routines 21-29 
Sound Tool Set summary 21-36 

Chapter 22 Standard FIie Operations Tool Set 22-1 

A preview of the Standard File Operations Tool Set routines 22-1 
Standard dialog boxes 22-3 
Standard File dialog templates 22-4 

Templates for the standard Open File dialog box 22-4 
640 mode 22-5 
320 mode 22-6 

Templates for the standard Save File dialog box 22-8 
640 mode 22-8 
320 mode 22-10 

Using the Standard File Operations Tool Set 22-13 
Standard File Operations Tool Set housekeeping routines 22-15 
Standard File Operations Tool Set routines 22-20 
Standard File Operations Tool Set summary 22-32 

Contents xiii 



Chapter 23 Text Tool Set 23-1 

A preview of the Text Tool Set routines 23-1 
Using the I/0 directing routines 23-3 
Using the text routines 23-4 
Using the Text Tool Set 23-9 
Text Tool Set housekeeping routines 23-10 
Text Tool Set routines 23-15 
Text Tool Set summary 23-46 

Chapter 24 Tool Locator 24-1 
A preview of the Tool Locator routines 24-1 
Using the Tool Locator 24-3 
Tool Locator housekeeping routines 24-4 
Tool Locator routines 24-7 
Tool Locator summary 24-26 

Chapter 25 Window Manager 25-1 

A preview of the Window Manager routines 25-2 
Window frames and controls 25-6 
Window regions 25-9 
Data and content areas and scroll bars 25-9 
Using the Window Manager 25-10 

xiv Contents 

Using TaskMaster 25-12 
Window Manager icon font 25-15 
Window record 25-15 
Windows and GrafPorts 25-17 
Window frame colors and patterns 25-17 
How a window is drawn 25-20 

Draw content routine 25-21 
Draw information bar routine 25-21 

Making a window active: activate events 25-24 
Defining your own windows 25-25 

wDraw: draw a window frame 25-27 
wHit: find what region a point is in 25-28 
wCalcRgns: calculate a window's regions 25-28 
wNew: perform additional initialization 25-28 
wDispose: remove a window 25-29 
wGrow: draw the outline of a window 25-29 

Origin movement 25-29 
Window Manager housekeeping routines 25-32 
Window Manager routines 25-35 
Window Manager summary 25-139 



Appendix A Writing Your Own Tool Set A-1 

Structure of the Tool Locator A-2 
Tool set numbers and function numbers A-3 
Obtaining memory A-4 
Tool Locator system initialization A-5 
Disk and RAM structure of tool sets A-5 
Installing your tool set A-6 
Function execution environment A-10 

Appendix 8 Tool Set Error Codes 8-1 

Appendix C Tool Set Dependencies and Startup Order C-1 

Tool set dependencies C-1 
Tool set startup order C-6 

Appendix D List of Routines by Tool Set Number 
and Routine Number D-1 

Glossary (Volumes 1 and 2) G-1 

Index (Volumes 1 and 2) 1-1 

Contents xv 





Figures and tables 

Preface Roadmap to the Apple IIGs Technical Manuals xxiii 

Figure P-1 
Table P-1 
Table P-2 
Table P-3 

Roadmap to the technical manuals xxiv 
Apple IIGS technical manuals xxiii 
Parameter length on the Apple IIGS x:xx 

Stack diagram pseudo-types xxx 

Chapter 2 Using the Apple IIGs Tool Sets 2-1 

Table 2-1 
Table 2-2 
Table 2-3 

Tool set numbers 2-3 
Tool set startup order 2-4 
Flags and registers on return from a call 2-7 

Chapter 3 Apple Desktop Bus Tool Set 3-1 

Figure 3-1 
Figure 3-2 
Table 3-1 

Table 3-2 

Table 3-3 

Table 3-4 
Table 3-5 
Table 3-6 
Table 3-7 
Table 3-8 

Apple Desktop Bus data 3-7 
Apple Desktop Bus scale record 3-24 
Apple Desktop Bus Tool Set routines 
and their functions 3-2 
Apple Desktop Bus Tool Set­
other tool sets required 3-5 
Apple Desktop Bus ReadKeyMicroData 
parameters 3-17 
Apple Desktop Bus Sendinfo parameters 3-20 
Key code specification 3-22 
Apple Desktop Bus Tool Set constants 3-28 
Apple Desktop Bus Tool Set data structures 3-29 
Apple Desktop Bus Tool Set error codes 3-29 

Chapter 4 Control Manager 4-1 

Figure 4-1 Standard and typical controls 4-4 
Figure 4-2 Parts of the scroll bars 4-5 
Figure 4-3 Scroll bar view 4-6 
Figure 4-4 Active and inactive controls 4-7 
Figure 4-5 Highlighted active controls 4-7 
Figure 4-6 Generic control record 4-12 
Figure 4-7 Simple button control record 4-15 
Figure 4-8 Simple button control flag 4-16 
Figure 4-9 Simple button color table 4-16 
Figure 4-10 Check box control record 4-17 
Figure 4-11 Check box control flag 4-18 
Figure 4-12 Check box color table 4-18 

xvii 



Figure 4-)3 
Figure 4-14 
Figure 4-15 
Figure 4-16 
Figure 4-17 
Figure 4-18 
Figure 4-19 
Figure 4-20 
Figure 4-21 
Figure 4-22 
Figure 4-23 
Figure 4-24 
Figure 4-25 
Figure 4-26 
Table 4-1 
Table 4-2 
Table 4-3 
Table 4-4 
Table 4-5 
Table 4-6 
Table 4-7 
Table 4-8 
Table 4-9 
Table 4-10 

Radio button control record 4-19 
Radio button control flag 4-20 
Radio button color table 4-20 
Scroll bar control record 4-21 
Scroll bar control flag 4-22 
Scroll bar color table 4-22 
Size box control record 4-23 
Size box control flag 4-24 
Size box color table 4-24 
Limit-block data 4-33 
Default limit-block values 4-34 
DragRect examples 4-51 
DragRect routine dragFlag parameter 4-52 
Controi Manager flag bits 4-72 
Control Manager routines and their functions 4-2 
Control Manager part codes 4-8 
Control Manager-other tool sets required 4-9 
Control Manager icon font format 4-11 
Control Manager message parameters 4-25 
Movement constraint values 4-53 
Standard control type values 4-73 
Control Manager constants 4-85 
Control Manager data structures 4-87 
Control Manager error codes 4-88 

Chapter 5 Desk Manager 5-1 

Table 5-1 Desk Manager routines and their functions 5-2 
Table 5-2 Tool sets required to support 

new desk accessories 5-5 
Table 5-3 
Table 5-4 
Table 5-5 
Table 5-6 

New desk accessory action codes 5-7 
New desk accessory Period field values 5-8 
Desk Manager constants 5-30 
Desk Manager error codes 5-30 

Chapter 6 Dialog Manager 6- 1 

xviii Figures and tables 

Figure 6-1 
Figure 6-2 
Figure 6-3 
Figure 6-4 
Figure 6-5 
Figure 6-6 
Figure 6-7 
Figure 6-8 
Figure 6-9 

Typical dialog box 6-4 
Modeless dialog box 6-5 
Typical alert box 6-6 
Item template 6-9 
Item types 6-10 
Alert template 6-20 
Stage byte 6-21 
Alert template 6-32 
Stage byte 6-33 



Figure 6-10 
Figure 6-11 
Figure 6-12 
Figure 6-13 
Figure 6-14 
Table 6-1 
Table 6-2 
Table 6-3 
Table 6-4 
Table 6-5 
Table 6-6 
Table 6-7 
Table 6-8 

Caution icon 6-35 
Item template 6-58 
Dialog template 6-60 
Note icon 6-74 
Stop icon 6-86 
Dialog Manager routines and their functions 6-2 
Dialog item types 6-10 
Dialog item descriptors 6-12 
Dialog scroll bar action procedure commands 6-15 
Dialog Manager-other tool sets required 6-23 
Dialog Manager constants 6-88 
Dialog Manager data structures 6-89 
Dialog Manager error codes 6-90 

Chapter 7 Event Manager 7-1 

Figure 7-1 
Figure 7-2 
Figure 7-3 
Table 7-1 
Table 7-2 
Table 7-3 
Table 7-4 
Table 7-5 
Table 7-6 
Table 7-7 
Table 7-8 

Modifier flags in event record 7-9 
Event masks 7-11 
Journaling mechanism 7-19 
Event Manager routines and their functions 7-2 
Event Manager event codes 7-7 
Event messages 7-8 ~ .. 
Event Manager-other tool sets required 7-12 
Journal codes and result pointers 7-20 
Event Manager constants 7-50 
Event Manager data structures 7-51 
Event Manager error codes 7-52 

Chapter 8 Font Manager 8-1 

Figure 8-1 Font style byte 8-5 
Figure 8-2 Font ID record 8-6 
Figure 8-3 Font scaling 8-7 
Figure 8-4 FontStatBits values 8-9 
Figure 8-5 FontStatRec 8-10 
Figure 8-6 FontSpecBits values 8-11 
Figure 8-7 FamStatBits values 8-12 
Figure 8-8 FamSpecBits values 8-13 
Figure 8-9 ChooseFont dialog box 8-13 
Figure 8-10 Font scale word 8-44 
Table 8-1 Font Manager routines and their functions 8-2 
Table 8-2 Font family numbers 8-4 
Table 8-3 Font Manager-other tool sets required 8-14 
Table 8-4 ChooseFont routine-other tool sets required 8-27 
Table 8-5 FixFontMenu routine-other tool sets required 8-37 
Table 8-6 Font Manager constants 8-50 
Table 8-7 Font Manager data structures 8-51 
Table 8-8 Font Manager error codes 8-52 

Figures and tables x Ix 



Chapter9 Integer Math Tool Set 9-1 

Table 9-1 Integer Math Tool Set routines 

Table 9-2 
Table 9-3 
Table 9-4 

and their functions 9-2 
Integer Math Tool Set-other tool sets required 
Integer Math Tool Set constants 9-42 
Integer Math Tool Set error codes 9-42 

9-4 

Chapter 10 Line Edit Tool Set 10-1 

Figure 10-1 
Figure 10-2 
Figure 10-3 
Figure 10-4 
Figure 10-5 
Table 10-1 
Table 10-2 
Table 10-3 
Table 10-4 
Table 10-5 
Table 10-6 
Table 10-7 

Edit record 10-5 
LineEdit destination and view rectangles 10-6 
Justification and the destination rectangle 10-6 
Line height and base line 10-7 
Selection range and insertion point 10-8 
LineEdit Tool Set routines and their functions 10-3 
LineEdit Tool Set- other tool sets required 10-9 
LEKey actions and special characters 10-29 
LETextBox2 embedded change values 10-43 
LineEdit Tool Set constants 10-47 
LineEdit Tool Set data structures 10-47 
LineEdit Tool Set error codes 10-48 

Chapter 11 List Manager 11 -1 

x x Figures and tables 

Figure 11-1 
Figure 11-2 
Figure 11-3 
Figure 11-4 
Figure 11-5 
Figure 11-6 
Figure 11-7 
Figure 11-8 
Figure 11-9 
Table 11-1 
Table 11-2 
Table 11-3 
Table 11-4 

List record 11-3 
The listType bit flag 11-4 
Member record 11-6 
The memFlag bit flag 11-6 
List Manager scroll bar color table 11-7 
List control record 11-9 
List control color table 11-10 
Color table and example list 11-10 
Range-mode selection 11-12 
List Manager routines and their functions 11-2 
List Manager-other tool sets required 11-11 
List Manager constants 11-25 
List Manager data structures 11-25 



Chapter 12 Memory Manager 12-1 

Figure 12-1 
Figure 12-2 
Figure 12-3 
Figure 12-4 
Figure 12-5 
Figure 12-6 
Figure 12-7 
Figure 12-8 
Figure 12-9 
Table 12-1 
Table 12-2 
Table 12-3 
Table 12-4 
Table 12-5 

Memory Manager memory use 12-4 
Memory handle 12-5 
Memory fragmentation 12-6 
Memory compaction 12-7 
Fragmentation after compaction 12-7 
Memory block being purged and reallocated 12-9 
User ID fields 12-10 
Memory attributes flag 12-12 
Memory attributes word 12-37 
Memory Manager routines and their functions 12-2 
Memory block attributes 12-13 
Memory Manager-other tool sets required 12-14 
Memory Manager constants 12-47 
Memory Manager error codes 12-47 

Chapter 13 Menu Manager 13-1 

Figure 13-1 
Figure 13-2 
Figure 13-3 
Figure 13-4 
Figure 13-5 
Figure 13-6 
Figure 13-7 
Figure 13-8 
Figure 13-9 
Figure 13-10 
Figure 13-11 
Figure 13-12 
Table 13-1 
Table 13-2 
Table 13-3 
Table 13-4 
Table 13-5 
Table 13-6 
Table 13-7 
Table 13-8 
Table 13-9 
Table 13-10 
Table 13-11 

System menu bar 13-4 
Window menu bar 13-5 
Standard menu 13-6 
Dividing lines and underlines 13-16 
Menu bar record 13-17 
Menu bar ct/Flag values 13-18 
Menu bar color table 13-18 
Menu record 13-19 
The menuFlag values 13-20 
Menu bar color table for GetBarColors 13-43 
Menu bar color table for SetBarColors 13-70 
Menu text style word 13-83 
Menu Manager routines and their functions 13-2 
Menu Manager--other tool sets required 13-7 
Menu special characters 13-14 
ID number asignment 13-16 
Menu messages 13-22 
Menu global mask values 13-60 
Menu global flag values 13-60 
Menu flag values 13-72 
Item flag values 13-78 
Menu Manager constants 13-87 
Menu Manager data structures 13-88 

Figures and tables xx i 



Chapter 14 Miscellaneous Tool Set 14-1 

Figure 14-1 
Figure 14-2 
Figure 14-3 
Table 14-1 

Table 14-2 

Table 14-3 
Table 14-4 
Table 14-5 
Table 14-6 
Table 14-7 
Table 14-8 
Table 14-9 
Table 14-10 
Table 14-11 
Table 14-12 

Hardware interrupt status 14-24 
Mouse interrupt status word 14-35 
User ID fields 14-58 
Miscellaneous Tool Set routines 
and their functions 14-2 
Miscellaneous Tool Set-
other tool sets required 14-4 
Battery RAM parameter reference numbers 14-12 
ASCII time 14-16 
GetAddr parameter reference numbers 14-20 
Interrupt source reference numbers 14-26 
Mouse mode values 14-36 
System failure error codes 14-55 
Vector reference numbers 14-62 
Miscellaneous Tool Set constants 14-64 
Miscellaneous Tool Set data structures 14-69 
Miscellaneous Tool Set error codes 14-70 

Chapter 15 Print Manager 15-1 

xx ii Figures and tables 

Figure 15-1 
Figure 15-2 
Figure 15-3 
Figure 15-4 
Figure 15-5 
Figure 15-6 
Figure 15-7 
Figure 15-8 
Figure 15-9 
Figure 15-10 
Figure 15-11 
Figure 15-12 

Figure 15-13 
Table 15-1 
Table 15-2 
Table 15-3 
Table 15-4 
Table 15-5 
Table 15-6 
Table 15-7 

Choose Printer dialog box 15-4 
Printer names dialog box 15-5 
Style dialog box for ImageWriter 15-6 
Style dialog box for LaserWriter 15-7 
Job dialog box for ImageWriter 15-8 
Job dialog box for LaserWriter 15-9 
Print record 15-10 
Printer information subrecord 15-11 
Printer style subrecord 15-12 
Job subrecord 15-14 
Pixels and print lines 15-17 
Resolution, pixel size, page size, 
and print quality 15-18 
Printer status record 15-41 
Print Manager routines and their functions 15-3 
Printer paper sizes 15-5 
Resolution, colors, and gray scales 15-16 
Print Manager-other tool sets required 15-19 
Print Manager constants 15-47 
Print Manager data structures 15-47 
Print Manager error codes 15-49 



Preface 

Roadmap to 
the Apple 11 GS 
Technical Manuals 

The Apple® IIGS™ personal computer has many advanced features, making it more 
complex than earlier models of the Apple II. To describe it fully, Apple has 
produced a suite of technical manuals. Depending on the way you intend to use the 
Apple -IIGS, you may need to refer to a select few of the manuals, or you may need to 
refer to most of them. 

The technical manuals are listed in Table P-1. Figure P-1 is a diagram showing the 
relationships among the different manuals. 

Table P-1 
Apple IIGs technical manuals 

Title 

Technical Introduction to the Apple JIGS 
Apple JIGS Hardware Reference 
Apple JIGS Firmware Reference 
Programmer's Introduction to the Apple JIGS 
Apple JIGS Toolbox Reference, Volume 1 

Apple JIGS Toolbox Reference, Volume 2 
Apple JIGS Programmer's Workshop Reference 
Apple JIGS Programmer's Workshop Assembler Reference 
Apple JIGS Programmer's Workshop C Reference 

Subject 

What the Apple IIGS is 
Machine internals- hardware 
Machine internals-firmware 
Concepts and a sample program 
How the tools work and some toolbox 
specifications 
More toolbox specifications 
The development environment 
Using the APW Assembler 
Using C on the Apple IIGS 

Apple JIGS ProDOS 16 Reference 
ProDOS 8 Technical Reference Manual 
Human Interface Guidelines: The Apple Desktop Interface 
Apple Numerics Manual 

Apple IIGS operating system and loader 
Standard Apple II operating system 
Guidelines for the desktop interface 
Numerics for all Apple computers 

xxiii 



To start finding out 
about the Apple II GS 

To learn how --------------------1 Apple IIGS [I] Apple IIGS 
Hardwcn Flnnwcn the Apple II GS works 

To start learning to ---+-- ..­
program the Apple II GS 

To use the development 
environment 

To operate on files 

'--....1-..111 Reference Reference 

ApplellGS 
'-----,:::::..l......111 Toolboxh(erence 

ProDOS8Technlcal ._ ____ Reference Manual 

To program in C ---+----------[D Apple IIGS Programmer's 
Workshop C Reference 

To program in ----+----, 
assembly language 

Figure P-1 

OJ Apple IIGS Programmer's Workshop 
C Toolbox Quick Reference 

Apple IIGS Programmer's Workshop 
~ Reference 

OJ Apple IIGS Programmer's Workshop 
~ Toolbox Quick hference 

Roadmap to the technical manuals 

xxlv Preface: Roadmap to the Apple IIGs Technical Manuals 



Introductory manuals 
These books are introductory manuals for developers, computer enthusiasts, and 
other Apple IIGS owners who need technical information. As introductory manuals, 
their purpose is to help the technical reader understand the features of the 
Apple IIGS, particularly the features that are different from other Apple computers. 
Having read the introductory manuals, the reader will refer to specific reference 
manuals for details about a particular aspect of the Apple IIGS. 

The technical introduction 

The Technical Introduction to the Apple JIGS is the first book in the suite of technical 
manuals about the Apple IIGS. It describes all aspects of the Apple IIGS, including its 
features and general design, the program environments, the toolbox, and the 
development environment. 

Whereas the Apple JIGS Owner's Guide is an introduction from the point of view of 
the user, the Technical Introduction describes the Apple IIGS from the point of view 
of the program. In other words, it describes the things the programmer has to 
consider while designing a program, such as the operating features the program uses 
and the environment in which the program runs. 

The programmer's introduction 

When you start writing Apple IIGS programs, the Programmer's Introduction to the 
Apple JIGS provides the concepts and guidelines you need. It is not a complete 
course in programming, only a starting point for programmers writing applications 
that use the Apple Desktop Interface (with windows, menus, and the mouse). It 
introduces the routines in the Apple IIGS Toolbox and the program environment 
they run under. It includes a sample event-driven program that demonstrates how a 
program uses the toolbox and the operating system. An event-driven program 
waits in a loop until it detects an event such as a click of the mouse button. 

Introductory manuals xx v 



Machine reference manuals 
There are two reference manuals for the machine itself: the Apple JIGS Hardware 
Reference and the Apple JIGS Firmware Reference. These books contain detailed 
specifications for people who want to know exactly what's inside the machine. 

The hardware reference manual 
The Apple JIGS Hardware Reference is required reading for hardware developers, 
and it will also be of interest to anyone else who wants to know how the machine 
works. Information for developers includes the mechanical and electrical 
specifications of all connectors, both internal and external. Information of general 
interest includes descriptions of the internal hardware, which provide a better 
understanding of the machine's features . 

The firmware reference manual 
The Apple JIGS Firmware Reference describes the programs and subroutines that 
are stored in the machine's read-only memory (ROM), with two significant 
exceptions: Applesoft BASIC and the toolbox, which have their own manuals. The 
Firmware Reference includes information about interrupt routines and low-level 
I/O subroutines for the serial ports, the disk port, and for the Apple Desktop Bus™ 
interface, which controls the keyboard and the mouse. The Firmware Reference 
also describes the Monitor, a low-level programming and debugging aid for 
assembly-language programs. 

The toolbox manuals 
Like the Macintosh, the Apple IIGS has a built-in toolbox. This volume of the 
Apple JIGS Toolbox Reference introduces concepts and terminology and tells how 
to use some of the tools . The Apple JIGS Toolbox Reference, Volume 2, contains 
information about the rest of the tools and also tells how to write and install your own 
tool set. 

Of course, you don't have to use the toolbox at all. If you only want to write simple 
programs that don't use the mouse, or windows, or menus, or other parts of the 
desktop user interface, then you can get along without the toolbox. However, if 
you are developing an application that uses the desktop interface, or if you want to 
use the Super Hi-Res graphics display, you'll find the toolbox to be indispensable. 

xxvl Prefoce: Roadmap to the Apple IIGS Technical Manuals 



The Programmer's Workshop manual 
The Apple IIGS Programmer's Workshop (APW) is the development environment for 
the Apple IIGS computer. APW is a set of programs that enables developers to create 
and debug application programs on the Apple IIGS. The Apple JIGS Programmer's 
Workshop Reference includes information about the APW Shell, Editor, Linker, and 
utility programs; these are the parts of the workshop that all developers need, 
regardless of which programming language they use. 

The APW reference manual describes the way you use the workshop to create an 
application and includes a sample program to show how this is done. In addition, 
this manual documents the APW Shell to provide the information necessary to write 
an APW utility or a language compiler for the workshop. 

Included in the APW reference manual are complete descriptions of two standard 
Apple IIGS file formats : the text file format and the object module format. The 
text file format is used for all files written or read as "standard ASCII files" by 
Apple IIGS programs running under ProDOS 16. The object module format is used 
for the output of all APW compilers and for all files loadable by the Apple IIGS System 
Loader. 

Programming-language manuals 
Apple currently provides a 65816 assembler and a C compiler. Other compilers can 
be used with the workshop, provided that they follow the standards defined in the 
Apple JIGS Programmer's Workshop Reference. 

There is a separate reference manual for each programming language on the 
Apple IIGS. Each manual includes the specifications of the language and of the 
Apple IIGS libraries for the language and describes how to use the assembler or 
compiler for that language. The manuals for the languages Apple provides are the 
Apple JIGS Programmer's Workshop Assembler Reference and the Apple JIGS 
Programmer's Workshop C Reference. 

❖ Note: The Apple //GS Programmer's Workshop Reference and the two 
programming-language manuals are available through the Apple Programmer's 
and Developer's Association. 

Programming-la nguage manua ls xxv il 



Operating-system manuals 
There are two operating systems that run on the Apple IIGS: ProDOS® 16 and 
ProDOS 8. Each operating system is described in its own manual: ProDOS 8 
Technical Reference Manual and Apple //GS ProDOS 16 Reference. ProDOS 16 
uses the full power of the Apple IIGS. The ProDOS 16 manual describes the features of 
ProDOS and includes information about the System Loader, which works closely with 
ProDOS 16. If you are writing programs for the Apple IIGS, whether as an application 
programmer or a system programmer, you are almost certain to need the ProDOS 16 
Reference. 

ProDOS 8, previously just called ProDOS, is the standard operating system for most 
Apple II computers with 8-bit CPUs. It also runs on the Apple IIGS. As a developer of 
Apple JIGS programs, you need the ProDOS 8 Technical Reference Manual only if 
you are developing programs to run on 8-bit Apple II computers. 

All-Apple manuals 
In addition to the Apple IIGS manuals mentioned above, there are two manuals that 
apply to all Apple computers: Human Interface Guidelines: The Apple Desktop 
Interface and Apple Numerics Manual. If you develop programs for any Apple 
computer, you should know about these manuals. 

The Human Interface Guidelines manual describes Apple's standards for the 
desktop interface of any program that runs on Apple computers. If you are writing a 
commercial application for the Apple IIGS, you should be familiar with the contents 
of this manual. 

The Apple Numerics Manual is the reference for the Standard Apple Numeric 
Environment (SANE™), a full implementation of the IEEE Standard for Btnary 
Floating-Point Arithmetic (IEEE Std 754-1985). The functions of the Apple IIGS SANE 
tool set match those of the Macintosh™ SANE package and of the 6502 assembly­
language SANE software. If your application requires accurate or robust arithmetic, 
you'll probably want to use the SANE routines in the Apple IIGS. The Apple //GS 
Toolbox Reference tells how to use the SANE routines in your programs. The Apple 
Numerics Manual is the comprehensive reference for the SANE numerics routines. 

xxvlll Preface: Roadmap to the Apple IIGs Technical Manuals 



How to use this manual 
The first chapter of this manual introduces and defines the toolbox, gives the names 
of the various managers and tool sets, and provides a brief description of the kind of 
routines included under each manager and tool set. 1bis chapter gives you an 
overview of what you can expect to find in the toolbox. 

Chapter 2 gives you general instructions on how to load and start up tool sets. The 
chapter also discusses how you set up your program to make a tool call from 65816 
assembly language and from C. 

Important 

If you're still completely lost after the first two chapters and don't know where to 
begin, you probably need more information than this reference manual can 
provide, You should read the Programmer's Introduction to the Apple I/Gs before 
continuing with this manual. 

After the introductory chapters, the book presents the first tool set chapter. The tool 
sets are presented in alphabetical order by tool set or manager name; thus, the 
Apple Desktop Bus is described first, and the Window Manager is described in the 
last chapter of Volume 2. 

Each tool set chapter introduces the tool set and then previews the routines. The 
preview is a good place to look if you know the type of routine you want but don't know 
its name. In addition, the preview is a good way for you to quickly scan the specific 
capabilities of the tool set. 

After the preview, one or more sections discuss the general concepts of the tool set. 
One of the sections is usually entitled "Using the XXXX"Tool Set." 1bis section tells 
you about the general flow of the commands in the tool set and also provides a table 
indicating what other tool sets the tool set depends upon. 

Finally, each tool set chapter presents the specifications for all of the tool set's 
routines. The standard housekeeping routines are described at the beginning of the 
routines. The rest of the routines are presented in alphabetical order so that you can 
find them easily; exceptions to the alphabetical order are Chapter 14, 
"Miscellaneous Tool Set," and Chapter 21, "Sound Tool Set." 

Each individual routine begins with the routine name and number. Following a short 
description are stack and parameter diagrams (if applicable), which show how the 
stack should look for assembly-language programmers and define the length and 
function of each parameter. The length is defined as shown in Table P-2. 

How to use this manual xx Ix 



Table P-2 
Parameter length 
on the Apple IIGS 

Term 

Byte 
Word 
Long 

Length 

8 bits 
2 bytes; 16 bits 
4 bytes; 32 bits 

The function of each parameter remains constant, regardless of what language you're 
using to access the capabilities of the tools. To make this manual as useful and non­
language-specific as possible, many of the parameters are also identified by a 
pseudo-type; that is, the type listed may or may not exist as a formal definition in a 
programming language, but the pseudo-type at least provides some additional 
information about the nature of the parameter. The pseudo-types used are defined 
in Table P-3. 

❖ Note: In fact, some of the pseudo-types may actually conflict with the type 
definitions in some programming languages ; for example, Pascal does not 
define BOOLEAN in the same way as the BOOLEAN pseudo-type does. 

Table P-3 
Stack diagram pseudo-types 

Type 

POINTER 
HANDLE 
BOOLEAN 
RECT 

POINT 

INTEGER 
LONGINT 
FIXED 
FRAC 
EXTENDED 

Length 

Long 
Long 
Word 
Four words 

Two words 

Word 
Long 
Long 
Long 
NIA 

Definition 

Points to an address (see Chapter 12, "Memory Manager") 
Points to a pointer (see Chapter 12, "Memory Manager") 
TRUE is nonzero, FALSE is 0 
Data structure specifying coordinates of a rectangle as top, left, bottom, 
right (see Chapter 16, "QuickDraw II," in Volume 2) 
Y and X coordinates of a point (see Chapter 16, "QuickDraw II," in 
Volume 2) 
16-bit signed or unsigned value 
32-bit signed or unsigned value 
32-bit signed value with 16 bits of fraction 
32-bit signed values with 30 bits of fraction 
80-bit signed floating-point values with 64 bits of fraction 

After the stack diagrams, the possible tool set errors that can occur during the routine 
are listed. Also listed separately is the C synopsis of the routine, with the parameters 
and the appropriate types. Finally, any additional information for an individual 
routine, such as an example, figure , or table, is provided after the C synopsis. 

At the end of each tool set chapter is a summary of the tool set's constants, data 
structures, and error codes. 

A comprehensive index for both volumes appears at the end of Volume 2. 

xx x Preface: Roadmap to the Apple IIGs Technical Manuals 



Other materials you'll need 
To use the routines described in this manual, you will need an Apple IIGS with at least 
one external disk drive. The toolbox routines require only the base computer, 
although the Apple IIGS Programmer's Workshop and many application programs 
may require more memory. 

You will also need an Apple IIGS system disk. A system disk contains the RAM-based 
tool sets, ProDOS 16, ProDOS 8, the System Loader, and other system software 
necessary for proper functioning of the computer. A system disk may also contain 
application programs. 

Notations and conventions 
To help make this manual more understandable, the following conventions and 
definitions have been used throughout. 

Typographic conventions 
Each new term introduced in this manual is printed first in boldface. This lets you 
know that the term has not been defined earlier and also indicates that an entry for it 
appears in the glossary, which is in Volume 2. Parameter, field, and bit names are 
given in ttalics, indicating that the name is replaced by a value when used in actual 
code. Constant names are given in Courier typeface. 

Watch for these 
The following conventions mark special messages: 

❖ Note: Text set off in this manner presents sidelights or interesting points of 
information. 

Important 

Text set off in this manner presents important Information or Instructions. 

Warning 

Text set off In this manner Indicates that the system will fail If the instructions are 
not followed, 

Notations and conventions xxxi 



Future toolbox enhancements 
Apple is continually improving the performance and capabilities of the Apple IIGS 
Toolbox. Many of the performance improvements will not affect this manual; 
inevitably, however, enhancements will be added that this manual does not 
document. To be certain that you have the latest information about the toolbox, you 
can contact the Apple Programmer's and Developer's Association. APDA is 
administered by the A.P.P.L.E. cooperative in Renton, Washington. 

Apple Programmer's and Developer's Association 
290 SW 43 Street 
Renton, WA 98055 
(2o6) 251-6548 

xxxll Preface: Roadmap to the Apple IIGs Technical Manuals 



What is a tool set? 

Chapter 1 

Introducing the 
Apple IIGS Toolbox 

A software tool set, in the Apple IIGS environment, is a collection of related routines 
(or functions) that provides one major capability. Each routine performs a 
fundamental operation and converts zero or more inputs to zero or more outputs and 
side effects. For example, QuickDraw II provides routines that handle graphics on 
the Apple IIGS. SetPenSize and SetPenMode, for example, are routines within that 
tool set that set the pen size and pen mode. 

The tool sets, then, are routines that are always available to perform many common 
tasks. Many of the capabilities of the Apple IIGS are easily accessed through the tool 
sets. For example, even the Memory and Event Managers are considered to be tool 
sets on the Apple IIGS. (Manager, by the way, is another name for a collection of 
routines. Some of the tool sets are called XXX Tool Set; others are called X}Z 
Manager.) 

❖ Mactntosh programmers: You'll be familiar with this concept from your work 
with the Macintosh Toolbox. 

What can the tool sets do for you? 
The tool sets provide capabilities that allow your application to concentrate on its 
specific business rather than on background tasks. 

A number of the tools are included in ROM. This approach makes those tools 
available to all programs without using disk space or memory. Additional tools are 
available in RAM. However, you don't need to keep track of where a particular 
function is or even whether it is in ROM or RAM. A tool set called the Tool Locator, 
which allows tools and applications to communicate, takes care of the necessary 
bookkeeping functions. 

1-1 



The Tool Locator is automatically initialized when ProDOS 16 is booted; thereafter, 
the Tool Locator does its work behind the scenes. To use the Apple IIGS Toolbox in 
the simplest fashion, you'll need to load and start the appropriate tool sets; after that 
you don't need tp know anything but the name of the routine and how to call it from 
the appropriate programming language. (Calling information is in Chapter 2, 
"Using the Apple IIGS Tool Sets.") 

The tool sets thus provide their capabilities at a minimum cost; their bookkeeping 
functions are almost automatic, the interface to them is simple, and the applications 
you write will not be rendered obsolete by any future changes in the hardware. 

The Tool Locator is also flexible enough to allow you to extend the scope of the tool 
sets by writing your own, and it is powerful enough to keep track of both the Apple 
tools and your tools. You can write and install your own tool sets if you wish and still 
have the Apple tool sets available when you need them. 

Are there any limitations? 
There is at least one important point to consider when you are planning to call an 
Apple IIGS tool from your application: The tools are designed to run in full native 
mode rather than in Apple II emulation mode. In full native mode, the e, m, and x 
registers are all set to 0, which provides a 16-bit accumulator and 16-bit index 
registers. Almost all of the tools require this mode and simply will not work if the 
machine is in any other state. The limited exceptions to this rule are documented 
under the individual calls described in later chapters of this manual. 

What kinds of tool sets are provided? 
In this section, we simply list the categories of tool sets and the groups of routines 
within each tool set. The listing does not contain definitions of the individual 
routines for each tool set; for that summary, look at the first few pages of the chapter 
describing the appropriate tool set. To find an individual routine, look it up by its 
name in the index or look under the appropriate tool set. 

A summary such as this can seem like teasing; in fact, that's part of its purpose. At 
this point, we wish to introduce you to the entire range of the Apple IIGS Toolbox 
routines and encourage you to use as many of the tool sets as possible. 

1-2 Chapter l: Introducing the Apple JIGS Toolbox 



The big five 

Five tool sets provide the basic framework upon which the other tool sets build. All of 
these tools must be used in every event-driven application. The tools in this group 
are as follows: 

Tool Locator: Provides the mechanism for dispatching tool calls. This tool allows 
you to get away with not knowing where in memory the tool sets reside; the Tool 
Locator knows and retrieves them when you make a tool call. 

Memory Manager: Allocates all memory available to the application. When your 
application needs memory, it must request it from the Memory Manager. 

Miscellaneous Tool Set: Includes mostly system-level routines that must be 
available for other tool sets. 

QuickDraw II: Controls the graphics environment and draws simple objects and 
text. Other tools call QuickDraw II to draw such elements as windows. 

Event Manager: Traps events as they happen, maintains a queue of the events, and 
passes the events on to the application. 

Desktop interface tool sets 

The interface tool sets control the desktop interface. You will almost always use the 
Window and Menu Managers and the Line Edit Tool Set to adhere to the Human 
Interface Gutdel1nes: The Apple Desktop Interface. You should use the other tool sets 
if your application needs their features (for example, you will need the Dialog 
Manager if your application uses dialog boxes). Many of the interface tool sets are 
also needed to support desk accessories. The tool sets are as follows: 

Window Manager: Updates and maintains windows. 

Control Manager: Presents controls, which are objects on the screen that the user 
can manipulate with the mouse to cause instant action or change settings. 

Menu Manager: Controls and maintains the pull-down menus and the items in the 
menus. 

LineEdit Tool Set: Presents text on the screen and allows the user to edit that text. 

Dialog Manager: Implements dialog boxes, which appear on the screen when an 
application needs more information to carry out a command. 

Scrap Manager: Supports the desk scrap, which allows data to be copied from one 
application to another (or from one place to another within an application). 

Desk Manager: Enables applications to support desk accessories, which are mini­
applications that can be run at the same time as another application. 

What kinds of tool sets are provided? 1-3 



Standard File Operations Tool Set: Presents the standard user interface when a file 
is to be saved or opened. 

List Manager: Presents the user with a list from which to choose (for example, the 
Font Manager uses the List Manager to arrange the list of fonts) . 

Font Manager: Provides information to applications as to how many fonts are 
available and what the characteristics of those fonts are. 

QuickDraw II Auxiliary: Adds some capabilities to QuickDraw II, particularly the 
ability to collect drawing calls into a picture. 

Moth tool sets 
Integer Math Tool Set: Supports mathematics routine with integers, long integers, 
and signed fractional numbers. Also converts integers and hex and decimal 
numbers from one form to another. 

SANE Tool Set: Supports the Standard Apple Numerics package, which provides 
IEEE standard extended-precision calculations. 

Printer tool set 
Print Manager: Allows your application to use standard QuickDraw II routines to 
print text or graphics on a printer. 

Sound tool sets 
Sound Tool Set: Supports the sound tool set interfaces and provides the basic sound 
capabilities. 

Note Synthesizer: Not described in this manual. 

Note Sequencer: Not described in this manual. 

Specialized tool sets 
Apple Desktop Bus Tool Set: Controls Apple Desktop Bus activity. 

Scheduler: Prevents a tool call from crashing the system by asking for a temporarily 
unavailable system resource. 

Text Tool Set: Provides an interface between Apple II character device drivers and 
applications running in native mode. 

1-4 Chapter l: Introducing the Apple IIGs Toolbox 



Groups of routines within each tool set 
This section describes the major functional groups of the routines within each tool 
set. The tool sets are organized in the order in which they appear in later chapters in 
the two volumes of this manual. 

Every tool set or manager includes a class of routines known as housekeeping 
routines. Included among the routines are boot initialization and application startup 
calls, an application shutdown call, a reset call, a call that returns the version 
number of the particular tool set, and a call that returns the status of the tool set. 

Apple Desktop Bus Tool Set 

These routines receive and send data to the ADB rnicrocontroller. 

Control Manager 

Initialization and termination routines: Create, show, hide, draw, highlight, 
and dispose of controls. 

Mouse location routines: Provide the ability to find out whether the user pressed 
the mouse button while the cursor was in a control. 

Control movement routines: Move a control or allow the user to drag the control 
around the screen. 

Control record access routines: Allow your application access to some fields of 
the control record. 

Miscellaneous routines: Add some capabilities, such as returning the height and 
width of the size box control. 

Desk Manager 

Installation routines: Install new desk accessories (NDAs) or classic desk 
accessories (CDAs) into the system. 

Classic desk accessory routines: Activate the Desk Manager and display the CDA 
menu, change the names of the built-in CDAs, and return the pointer to the names of 
the built-in CDAs. 

New desk accessory routines: Open and close NDAs, add the names of the NDAs 
to a specified menu, return the total number of NDAs currently installed, and handle 
events relating to desk accessories. 

State-saving routines: Save and restore areas used by the Desk Manager; these 
routines must not be called by an application. 

What kinds of tool sets are provided? 1-5 



Dialog Manager 

Dialog creation and disposal routines: Create and close modal or modeless 
dialog boxes. 

Item creation and removal routines: Add and remove items from dialog boxes. 

Dialog event-handling routines: Handle events in dialog boxes, including the 
standard Cut, Copy, Paste, and Delete commands. 

Alert routines: Invoke alerts, including those containing predefined icons. 

Item manipulation routines: Allow you to 

■ Change or return text for items in dialog boxes 

■ Set or return the item type, display rectangle, or current value of an item 

■ Return the ID of the first item, or the next item after a specified item 

■ Set or return the default button item 

■ Return or reset the alert stage of an alert 

■ Hide, show, or find a dialog item 

■ Call the standard dialog filter 

■ Enable or disable a dialog item 

■ Redraw a part of a dialog in a specified update region 

Miscellaneous dialog routines: Establish the sound procedure for alerts and 
specify the font for the dialog and alert window. 

Event Manager 

Event accessing routines: Check events to see if they are of interest to the 
application and returns them if appropriate. 

Mouse status routines: Provide the ability to read the location of the mouse and 
the status of the mouse buttons. 

Event queue routines: Allow you to place or remove events into the event queue. 

Miscellaneous Event Manager routines: Allow you to 

■ Check the number of ticks (sixtieths of a second) since the system was last started 

■ Return the suggested maximum difference between ticks that determines a double 
mouse-click 

■ Return the number of ticks between blinks of the caret marking the insertion point 

■ Specify the system event mask 

■ Allow use of an alternative pointing device, such as a graphics tablet, in place of or 
in conjunction with the mouse 

1-6 Chapter 1: Introducing the Apple IIGS Toolbox 



■ Return the address of the direct page used by the Event Manager 

■ Generate a switch event 

Font Manager 

Font family routines: Allow you to 

■ Return the number of font families available 

■ Return the number and name of a particular font family 

■ Return the family name and characteristics of a family specified by number 

■ Return the family number corresponding to a font family name 

■ Add a family number and name to the Font Manager's list of known font families 

Font routines: Allow you to 

■ Find a specified font, or the best-fit available font if the specified font isn't 
available, and load the font if necessary 

■ Make a specified font in memory purgeable or unpurgeable 

■ Return the number of fonts currently available to the Font Manager that fit a 
specified description 

■ Return the font ID and the characteristics of a particular font 

■ Load a specified font into memory (if it is not already there) and make it current 
and unpurgeable 

■ Make a specified font the current or system font 

■ Return the font ID of the current or system font 

■ Add a variation of a preexisting font family to the Font Manager's collection of 
available fonts 

Menu and dialog routines: Append the names of available font families to a 
specified menu, display a dialog box enabling the user to select a new font, size, and 
style, or translate from a menu item ID into a font family number or vice versa. 

Integer Math Tool Set 

Math routines: Allow you to 

■ Support multiplication and division of Integer, Longint, Fixed, and Frac numbers 

■ Take two signed Integers and produce a Fixed number as a ratio of the numerator 
and denominator 

■ Take a Frac input and return a rounded Frac square root 

■ Take a Fixed input (radians) and return its Frac cosine or its Frac sine 

■ Take two like inputs and return a Fixed arc tangent (in radians) of their coordinates 

■ Return the high- or low-order word of a long input 

■ Convert from one type of value to another 

What kinds of tool sets are provided? 1-7 



Integer Math string routines: Convert between a binary value and an ASCII 
character string representing that value, allowing you to 

■ Convert integers to hex, Long, or decimal format ASCII strings 

■ Convert Longs to decimal format ASCII strings 

■ Convert hex ASCII strings to Integer or Long 

■ Convert decimal format ASCII strings to Integers or Longs 

LlneEdlt Tool Set 

Edit record routines: Initialize an edit record, dispose of an edit record, copy text 
into an edit record, return a handle to the text of a specified edit record, or return the 
length of the text of an edit record. 

Insertion point and selection range routines: Cause the caret at the insertion 
point to blink, control the selection range, and highlight or unhighlight the selection 
range or caret. 

Editing routines: Replace, cut, copy, paste, delete, or insert the selection range or 
at the caret of an edit record, as appropriate. 

Text display routines: Draw the text of an edit record, including routines that use 
justification, word wrap, and embedded changes. 

Scrap handling routines: Copy to and from the LineEdit scrap, return a handle to 
the scrap, and set or return the size of the LineEdit scrap. 

Miscellaneous LineEdit routines: Set the leHtliteHook and leCaretHook field of a 
specified edit record. 

List Manager 

List routines: Create a list control, reset a list control, alphabetize a specified list, 
and return a pointer to the list control's definition procedure. 

Member routines: Draw one or all members of a list, search a list for the next 
selected member, and select a member. 

1-8 Chapter 1: Introducing the Apple IIGs Toolbox 



Memory Manager 

Memory allocation routines: Create new blocks, reallocate purged blocks, dispose 
of old blocks, and purge unlocked, purgeable blocks. 

Block information and free space routines: Return the handle of a block, check a 
handle to see whether it is valid, set or return the size of a block, compact memory 
space, return the total number of free bytes or the size of the largest free block, and 
return the total amount of memory. 

Locking and purge level routines: Lock, unlock, and set the purge levels of 
memory blocks. 

Other Memory Manager routines: Copy a specified number of bytes from a 
source to a destination. 

Menu Manager 

Initialization and termination routines: Create a default menu bar, allocate 
space for a menu list and its items, free memory, compute standard sizes for the 
menu bar and menus, and set menu dimensions. 

User interaction routines: Draw highlighted titles, pull down menus, handle user 
interaction when a mouse button is clicked on a menu bar, map a character to the 
associated menu and item for that character, and attempt to refresh the screen. 

Menu drawing routines: Draw the current menu bar, highlight or unhighlight the 
title of a menu, and flash the current menu bar. 

Menu and item shuffling routines: Insert a menu into the menu list after a 
specified menu item or at the front of the list, remove a menu from the menu list, 
insert a menu item into a menu after a specified menu item or at the front of the menu 
list, and remove an item from the current menu. 

Menu bar access routines: Allow you to 

■ Set a new system bar or return the handle of the current system menu bar 

■ Return the handle of the current menu bar 

■ Set or return the normal, inverse, and outline colors of the current menu bar 

■ Set or return the starting position for the leftmost title within the current menu bar 

■ Return the number of items in a specified menu 

Menu record access routines: Allow you to 

■ Return a handle to a menu record 

■ Set or return the width of a menu title 

■ Set the state or return the current state of a menu 

■ Set or return the title for a menu 

■ Specify a new menu number 

What kinds of tool sets are provided? 1-9 



Item record access routines: Allow you to 

■ Set or return the name of a menu item 

■ Enable or disable a menu item 

■ Check or uncheck a menu item; that is, display or not display a check mark to the 
left of the item 

■ Set or return the character to be displayed or not displayed to the left of the item 

■ Set or return the text style for a menu item 

■ Set or return the values for a menu item, such as whether it is underlined and 
highlighted 

■ Specify the ID number of a menu item 

■ Determine how many times all menu items should blink when selected 

Miscellaneous Menu Manager routines: Return a pointer to the Menu Manager 
port, adjust screen resolution and redraw the current menu bar, and reinitialize the 
palettes needed for the color Apple logo. 

Miscellaneous Tool Set 

The miscellaneous tools are a collection of various routines. Their capabilities are 
summarized below. 

Battery RAM routines: Write or read data to and from the Ilattery RAM and write 
and read data to and from a specified Battery RAM parameter. 

Clock routines: Set or return the current time in various ways. 

Firmware entry routine: Allow you to use some Apple II emulation-mode entry 
points. 

Get system address routine: Retrieves the address of some important system 
parameters referenced by the firmware. 

Tick counter routine: Retrieves the current value of the tick counter. 

Interrupt control routines: Enable or disable certain interrupt sources and return 
the status of the interrupts. 

Mouse and absolute clamp routines: Allow you to 

■ Initialize, set, position, home, and read the values for the mouse 

■ Set and get the clamp values for the mouse 

■ Return the interrupt status for the mouse 

■ Set and get the clamp values for an absolute device 

Packing and munging routines: Pack bytes into, and unpack bytes from, a special 
format that uses less storage space and manipulate bytes in a string of bytes. 

1-1 O Chapter l: Introducing the Apple II GS Toolbox 



Heartbeat routines: Install or delete a specified task in the Heartbeat Interrupt 
Service queue and remove all tasks from the Heartbeat Interrupt Service queue. 

System bell routine: Calls the Apple II monitor entry point BELLl. 

System Failure Manager: Calls a system failure handler, allowing you to provide 
your own failure message or code, and halts program execution. 

User ID Manager routines: Create and delete ID tags used for memory 
management and return the status of an ID tag. 

Vector initialization routines: Set or return the vector address for a specified 
interrupt manager or handler. 

Print Manager 

Print record and dialog routines: Fill a print record with default values; check the 
contents of a print record for compatibility; and conduct a style, job, or Choose 
Printer dialog with the user. 

Printing routines: Initialize a GrafPort for use in printing, close a printing 
GrafPort, begin a new page, end the printing of the current page, print a spooled 
document, and print all or part of a specified pixel map. 

Error handling routines: Return the last printer error code left during the printing 
loop by Print Manager routines and set the printer error code. 

Printer driver and port driver routines: Return the version number of the 
currently installed printer driver and the currently installed port driver. 

QuickDraw II 

Global environment routines: Set up the graphics environment for QuickDraw II 
and the other tools, allowing you to 

■ Specify (set) or return (get) the settings for the scan-line bytes, the color tables, 
and the color-table entries 

■ Set or get the system font 

■ Set or get the maximum width or size of a pixel map that is being drawn 

■ Clear the screen 

■ Turn Super Hi-Res graphics mode on or off 

■ Set or get the maximum width or size of a pixel map that is being drawn 

■ Set the size of the clipping and text buffers, either with or without padding 

■ Save and restore the buffer sizing information 

What kinds of tool sets are provided? 1-11 



Grafl>ort routines: Set up the GrafPort for QuickDraw II and the other tool sets, 
allowing you to 

■ Open, initialize, and close a Gra£'Port 

■ Set or get the current Grafport or the GrafPort's location information 

■ Set, get, or change the size of, adjust the origin of, or move the drawing location 

■ Set, get, or change the current clip regions 

Pen and pattern routines: Control pen and pattern information, allowing you to 

■ Hide or show the pen and set or get the current values for the pen state, size, 
mode, pattern, and mask 

■ Set or get the background pattern 

■ Move the current pen location to a point or a relative distance 

Font routines: Control the pen and pattern information, allowing you to 

■ Set or get the current font, font ID, font flags, and font globals 

■ Set or get the text face and mode 

■ Set or get the spExtra and chExtra fields 

■ Set or get the foreground and background colors 

Miscellaneous Grafl>ort routines: Allow you to 

■ Set or get the clip region, visible region, and handle to the visible region 

■ Set or get various fields in the GrafPort record, such as picSave, rgnSave, 
polySave, userFteld, and sysField 

■ Set or get the pointer to the grajProcs record 

line drawing routines: Draw a line from the current pen position to either a 
specified point or a relative distance. 

Rectangle, region, polygon, oval, round rectangle, and arc drawing 
routines: Allow you to do the following with their respective objects: 

■ Frame; that is, draw the boundary of the object using the current pattern and pen 
size 

■ Paint; that is, paint the interior of the object with the current pen mode and pen 
pattern 

■ Erase; that is, fill the interior of the object with the background pattern 

■ Invert; that is, invert the pixels in the interior of the object 

■ Fill; that is, fill the interior of the object with a specified pen pattern 

Pixel transfer routines: Allow you to scroll or shift a region of pixels or to transfer 
pixels. 

1-12 Chapter 1: Introducing the Apple IIGS Toolbox 



Text drawing and measuring routines: Allow you to 

■ Draw a character, text, Pascal string, or C string 

■ Get the width of a character, text, Pascal string, or C string 

■ Get a rectangle that describes the area overwritten by a character, text, Pascal 
string, or C string 

Calculations with rectangles: Allow you to 

■ Set the dimensions of a rectangle 

■ Offset or inset a rectangle 

■ Calculate the intersection of two rectangles and place the intersection in a third 

■ Calculate the union of two rectangles and place the union in a third 

■ Determine whetl}er a point is in a particular rectangle or copy points to the upper 
left and lower right of a rectangle 

■ Determine whether two rectangles are equal 

■ Determine whether a rectangle is empty 

Calculations with points: Allow you to 

■ Add two points together or subtract a point from another point 

■ Set a point to specified values 

■ Determine whether two points are equal 

■ Convert a point from local to global coordinates, and vice versa 

Calculations with regions: Allow you to 

■ Create a new region or dispose of a region 

■ Copy contents from one region to another 

■ Set a region to a rectangle or make it empty 

■ Open or close a temporary region 

■ Offset or inset a region 

■ Calculate the union of two regions and place the union in a third 

■ Calculate the intersection of two regions and place the intersection in a third 

■ Calculate the difference between two regions and place the difference in a third 

■ Calculate the difference between the union and the intersection of two regions and 
place the result in a third 

■ Determine whether a point is in a particular region 

■ Determine whether a rectangle intersects a particular region 

■ Determine whether two regions are equal 

■ Determine whether a region is empty 

What kinds of tool sets are provided? 1-l 3 



Calculations with polygons: Allow you to open, close, dispose of, or offset a 
polygon. 

Mapping and scaling utilities: Allow you to 

■ Map points, rectangles, and regions from a source to a destination 

■ Scale points from a source to a destination 

Cursor-handling routines: Allow you to 

■ Set or get the current settings for the cursor 

■ Show or hide the cursor 

■ Obscure the cursor 

■ Reinitialize the cursor 

Miscellaneous QuickDraw II utilities: Allow you to 

■ Return a pseudo-random number 

■ Set a seed value for a random number generator 

■ Get the values for a specified pixel 

■ Return a pointer to a specified ROM table 

■ Indicate whether the cursor drawing code should use ·scan line interrupts 

■ Set up a specified record of pointers 

QuickDraw II Auxiliary 

Picture routines: Allocate memory for recording of a picture definition, insert 
comments into the current open picture, draw pictures, close pictures, and remove 
pictures. 

Miscellaneous QuickDraw II Auxiliary routines: Copy a pixel image from one 
place to another and change the cursor to a watch cursor. 

SANE Tool Set 

The SANE Tool Set routines provide an entry to the SANE functions, which contain 

■ Numeric scanners and formatter 

■ Elementary functions, financial functions, and random number generator 

■ Basic arithmetic operations, comparsions, conversions, environmental control, 
and IEEE auxiliary operations 

Scheduler 

This tool set contains a routine that allows your own tool set or interrupt handler to 
add a task to the Scheduler's queue; this prevents tasks from calling a currently busy 
system resource. 

1-14 Chapter 1: Introducing the Apple IIGs Toolbox 



Scrap Manager 

This tool set contains routines that allow you to 

■ Write or read the desk scrap 

■ Clear the contents of the scrap and increment the scrap count 

■ Append data to data in the appropriate scrap 

■ Copy scrap information of the appropriate type to a specified handle 

■ Return the current scrap count 

■ Return a flag indicating the current state of the scrap 

■ Return a copy of the handle for the scrap of a specified type 

■ Return the size of the specified scrap 

■ Set or return a pointer to the pathname used for the Clipboard file 

Sound Tool Set 

Sound Tool Set routines: Allow you to 

■ Write and read a specified number of bytes to and from DOC RAM 

■ Set and get the volume for a sound generator or change the system volume 

■ Start or stop the sound for a particular generator 

■ Return the status of a specifed generator or the status of all generators 

■ Set up the entry points for the system and the user sound interrupt handler 

■ Return the current Free-Form Synthesizer sound-playing status 

■ Return the jump table address for the low-level routines 

Low-level sound routines: These routines, designed for quick access, allow you to 

■ Write and read any register within the DOC 

■ Write and read a specified Ensoniq RAM location 

■ Write and read the next DOC or RAM location 

Standard File Operations Tool Set 

This tool set contains routines that allow you to display a standard or custom Open 
File or Save File dialog box and a routine to determine whether file names will be 
displayed in all uppercase letters or with uppercase and lowercase letters. 

What klr.ds of tool sets are provided? 1-15 



Text Tool Set 

Text global routines: Allow you to set and return the global parameters for the 
input, output, and error output devices. 

1/0 directing routines: Allow you to set the type and location, and return the type, 
of the input, output, and error output devices. 

Text routines: Allow you to 

■ Initialize a text device 

■ Pass a control code to a text device 

■ Execute a status call to a text device 

■ Combine a specified character, Pascal-type string, C-type string, line, or block of 
characters with the output global AND mask and OR mask and write the character 
to the output text device or error output text device 

■ Read a character obtained from the input text device, combine it with the input 
global masks, and return the character on the stack 

■ Read a character string or block of characters from the input text device, combine 
it with the input global masks, and write it to a specified memory location 

Tool Locator 

This tool set contains routines that allow you to 

■ Ensure that one or more system tool sets are available and have specified 
minimum version numbers 

■ Unload a specified tool set from memory 

■ Return an entry in the function pointer table for a specified function in a specified 
tool set 

■ Return the pointer to the function pointer table of a specified tool set 

■ Install the pointer to a function pointer table in the appropriate tool pointer table 

■ Set or return the pointer to the work area for a specified tool set 

■ Display a simulated dialog box on the Super Hi-Res display or on the 40-column 
text screen 

■ Save and restore the state of the text screen 

■ Allow applications to communicate with each other 

1-16 Chapter l: Introducing the Apple IIGs Toolbox 



Window Manager 
Initialization and termination routines: Allow you to 
■ Control the addition of regions to and the subtraction of regions from the desktop 

and control the current desktop pattern 

■ Create a window 

■ Remove a window 

■ Close the Window Manager's GrafFort and open a new GrafPort in the other Super 
Hi-Res resolution 

Window record and global access routines: Allow you to 
■ Return a pointer to the Window Manager port 

■ Set the icon font for the Window Manager 

■ Set or get a value that is inside the window record and is reserved for the 
application's use 

■ Set or get the title of a window 

■ Set or get the color of a window's frame 

■ Return a pointer to the the active window 

■ Return a pointer to the next window in the window list after a specified window 

■ Determine whether a specified window is a system or an application window 

■ Set or get the bit flag that describes a specified window's frame type 

■ Return a handle to a specified window's structure, content, or update region 

■ Set or get a pointer to the routine that is called to draw, hit test, and otherwise 
define a window's frame and behavior 

■ Return the handle to the first control in the window's control list 

■ Set or get the rectangle to be used as the zoomed or unzoomed size for the contents 
of a specified window 

■ Determine whether a specified window is a system window 

■ Mark a specified window as a system window 

■ Set or get the origin of the window's port 

■ Specify the mask used to put the horizontal origin on a grid 

■ Make a specified window the current port and set its origin 

■ Set or get the height and width of the data area of a window 

■ Set or get the maximum values to which a window's content region can grow 

■ Set or get the number of pixels by which TaskMaster will scroll the content region 
when the user selects the arrows on window frame scroll bars 

■ Set or get the number of pixels by which TaskMaster will scroll the content region 
when the user selects the page regions on window frame scroll bars 

■ Set or get the pointer to the routine that draws the content region of a window 

What kinds of tool sets are p rovided? 1-17 



Information bar routines: Allow you to 

■ Set or get a pointer to a specified window's draw information bar procedure 

■ Set or get the value associated with the draw information bar routine for a window 

■ Set the information rectangle to the coordinates of the information bar rectangle 

■ Draw or hit test outside your application's information bar definition procedure 

■ Put the Window Manager back into a global coordinate system 

Window shuffling routines: Allow you to 

■ Make a specified window the active window 

■ Make a specified window invisible 

■ Make a specified window visible if it was invisible and then draw the window 

■ Show or hide a window 

■ Bring a specified window to the front of all other windows and redraw the windows 
as necessary 

■ Send a specified window behind another specified window, redrawing any 
exposed windows 

Window drawing routines: Highlight or unhighlight a specified window and 
redraw the entire desktop and all the windows. 

User interaction routines: Allow you to 

■ Determine which part of which window, if any, the cursor was in when the user 
pressed the mouse button 

■ Pull around a dotted outline of a specified window, following the movements of 
the mouse until the mouse button is released 

■ Pull around a size image of a specified window, following the movements of the 
mouse until the mouse button is released 

■ Track the mouse until the mouse button is released, highlighting the close region 
so long as the mouse location remains inside it and unhighlighting it when the 
mouse moves outside it 

■ Track the mouse until the mouse button is released, highlighting the zoom region 
so long as the mouse location remains inside it and unhighlighting it when the 
mouse moves outside it 

■ Use TaskMaster to call GetNextEvent and handle the event if possible 

Window sizing and positioning routines: Move a window, enlarge or shrink a 
window, and switch the size and position of a window between its current size and 
position and its maximum size. 

1-18 Chapter l : Introducing the Apple IIGs Toolbox 



Update region routines: Allow you to 

■ Accumulate rectangles and regions into the update region of the window whose 
GrafPort is the current port 

■ Remove rectangles and regions from the update region of the window whose 
GrafPort is the current port 

■ Replace the visible region of the window's GrafPort with the intersection of the 
visible region and the update region and then set the window's update region to an 
empty region 

■ Restore the normal visible region of a specified window's GrafPort that was 
changed by BeginUpdate 

Miscellaneous Window Manager routines: Pin a point inside a rectangle and look 
for a visible window that needs updating. 

What kinds of tool sets are provided? 1-19 





Chapter 2 

Using the Apple IIGS 
Tool Sets 

Starting up the required tool sets 
Three tool sets are required for any application using the Apple IIGS tool sets: the 
Tool Locator, the Memory Manager, and the Miscellaneous Tool Set. 

As the name implies, the Tool Locator is the tool that finds all other Apple IIGS tool 
sets. Thus, the application must start up the Tool Locator before it calls any other 
tool sets. The call to start the Tool Locator is 

TLStartup 

without any parameters. Once the Tool Locator is running, you can begin starting up 
the other tools you need. 

Next, you need to start up the Memory Manager, which performs the housekeeping 
task of assigning memory. Because all of the other tools ask the Memory Manager for 
any memory space they need, the Memory Manager must be started up before any 
other tool set except the Tool Locator. The call to start the Memory Manager is 

MMStartup 

without any input parameters. The call returns a user ID for this execution of the 
application, which other managers and tool sets need to reference in order to get 
memory space. You need to store this ID for later use. 

Next, you must start up the Miscellaneous Tool Set. Don't be misled by the name; 
this set of routines is crucial to the success of an event-driven application, since other 
tool sets need to use various calls in the Miscellaneous Tool Set. The call to start up 
the Miscellaneous Tool Set is 

MTStartup 

2-1 



The next step is to start up QuickDraw II, which is the tool set responsible for 
manipulating graphics on the Apple IIGS. Many of the other tool sets call 
QuickDraw II to draw their graphics, particularly the tool sets controlling the desktop 
interface. Therefore, QuickDraw II must be started up before those other tools. 

Important 

QulckDraw II and several other tool sets require some direct-page space. 
Because the Memory Manager has already been started up, you can obtain 
the direct-page space from It. You then provide the appropriate address In the 
startup call for the appropriate tool set (and can thus find the total direct-page 
space needed for the tool sets you're using by totaling the pages needed In 
the startup calls), such as In the QDStartUp routine that follows. 

The starting address for a page of direct-page space must be page aligned 
(that Is, must be a multiple of $100). If you need more Information about 
assigning direct-page space, see the Programmer's Introduction to the 
Apple IIGS. 

To start QuickDraw II, you call the QDStartup routine and provide the following: 

■ The starting location for QuickDraw H's direct-page space (QuickDraw II needs 
three consecutive pages) 

■ The Master Scan Line Control Byte (Master SCB), which controls the basic 
properties of the lines that will appear on the screen, such as the resolution and 
color tables 

■ The maximum width, in bytes, of the largest pixel image that will be drawn 
(0 equals the entire screen) 

■ The user ID of the program requesting the space (the user ID was provided by the 
Memory Manager) 

Now start up the Event Manager, which provides the basic support for event-driven 
applications by monitoring the following: 

■ The user's actions, such as those involving the mouse and keyboard 

■ The actions taken by other managers, such as the Window and Control Managers 

To start the Event Manager, call the EMStartup routine and provide the following: 

■ The starting location for the Event Manager's direct page (the Event Manager 
needs one page of direct-page space) 

■ The maximum number of events that the event queue can hold 

■ The borders for the mouse or cursor, called the clamp values 

■ The user ID of the application (the user ID was provided by the Memory Manager) 

The basic structure of the tools is now in place; in fact, the information up to this 
point is so generic that you may wish to place it in a single module. You can then 
either use that module for all of your applications or copy and modify it slightly when 
necessary. 

2-2 Chapter 2: Using the Apple IIGs Tool Sets 



Loading and starting up other tool sets 
When the required tool sets are in place, you can then load all other tool sets your 
application will use. To simplify things, and to ensure that the correct version of 
each tool set is available, yciu will usually want to load all remaining tool sets you want 
for your application at this time. Loading all tool sets also saves you the trouble of 
determining which tool sets are in ROM and which are in RAM. 

You load the tools by using the Tool Locator LoadTools routine, which needs as input 
a pointer to a tool table that you provide. That table must contain the following 
information: 

■ The total number of tool sets to be loaded with this call 

■ The tool set number of each tool set to be loaded, followed by the minimum 
acceptable version number of each tool set 

The format of the information in the tool table is shown in the section "LoadTools" 
in Chapter 24, "Tool Locator." The tool set numbers are listed in Table 2-1 and also 
in Table 24-2 in the section "LoadTools." 

Table 2-1 
Tool set numbers 

Tool set Tool set Tool set Tool set 

number name number name 

$01 #01 Tool Locator $OF #15 Menu Manager 
$02 #02 Memory Manager $10 #16 Control Manager 
$03 #03 Miscellaneous Tool Set $11 #17 Loader 
$04 #04 QuickDraw II $12 #18 QuickDraw II Auxiliary 
$05 #05 Desk Manager $13 #19 Print Manager 
$06 #06 Event Manager $14 #20 LineEdit Tool Set 
$07 #07 Scheduler $15 #21 Dialog Manager 
$08 #08 Sound Tool Set $16 #22 Scrap Manager 
$09 #09 Apple Desktop Bus Tool Set $17 #23 Standard File Operations Tool Set 
$0A #10 SANE Tool Set $18 #24 Disk Utilities 
$OB #ll Integer Math Tool Set $19 #25 Note Synthesizer 
$QC #12 Text Tool Set $1A #26 Note Sequencer 
$OD #13 Reserved for Apple use $1B #27 Font Manager 
$OE #14 Window Manager $ IC #28 List Manager 

Important 

Any RAM-based tools you wish to use must be located In the TOOLS 
subdirectory of the SYSTEM directory. 

Loading and starting up other tool sets 2-3 



After you have loaded the tools, you must then start up each tool set. Because each 
tool set depends upon the presence of other tool sets, certain tool sets must be 
started up for others to work. In addition, these tool sets must be started up in a 
prescribed order. This order is shown in Table 2-2, with tool sets lower on the list 
depending upon the presence of all the tool sets higher on the list. Thus, the Menu 
Manager depends upon the presence of all of the tool sets up to the Control 
Manager; those tool sets must all be started up before the Menu Manager. 

When you shut down the tools before you quit your application, you must shut them 
down in the reverse order from which they were started up; that is, the last one started 
up must be shut down first, the next-to-the-last one started up must be shut down 
next, and so on. 

Table 2-2 
Tool set startup order 

Tool set Tool set 

number name 

$01 #01 Tool Locator 
$02 #02 Memory Manager 
$03 #03 Miscellaneous Tool Set 
$04 #04 QuickDraw II 
$06 #06 Event Manager 
$OE #14 Window Manager 
$10 #16 Control Manager 
$OF #15 Menu Manager 
$14 #20 LineEdit Tool Set 
$15 #21 Dialog Manager 
$05 #05 Desk Manager 
$17 #23 Standard File Operations Tool Set 
$16 #22 Scrap Manager 
$1C #28 List Manager 
$13 #19 Print Manager 
$1B #27 Font Manager 

In addition, if you are using QuickDraw II Auxiliary, it must be started up after 
QuickDraw II. You may assume that any other tool sets do not need to be started up 
in any particular order; that is, they may be started up or shut down at any time. 

Tool sets require the presence of certain minimum versions of other tool sets. Those 
versions are given in the section "Using the XXX Tool Set" in each chapter. The 
versions are also summarized, along with the tool set startup order, in Appendix C, 
"Tool Set Dependencies and Startup Order," in Volume 2. 

2-4 Chapter 2: Using the Apple IIGS Tool Sets 



Calling the correct routine 
The toolbox routines are available at the time of publication from 65C816 assembly 
language and Apple JIGS Workshop C. The general rules for accessing the tool sets 
are outlined in the following sections. 

Calling a routine from assembly language 

The interface files that allow the tool sets to be accessed from assembly language are 
included in the Apple JIGS Programmer's Workshop. They consist of equate files that 
provide symbolic constant and data structure field offsets and macro files that allow 
each tool call to be invoked by name. The steps to use a particular routine are as 
follows : 

1. Make the macro accessible by using the MCOPY assembler directive for the 
appropriate file (for example, MCOPY Ml 6. Quickdra w for the QuickDraw II 
routines). You may wish to use the APW MacGen utility to create a single macro 
file containing only the macros that you're using (see the Apple IJGS 
Programmer's Workshop Reference for more about MacGen). 

2. If the routine has any output, push room for it onto the stack. 

3. If the routine has any inputs, push them onto the stack in the specified order. The 
input parameters are described under each individual call in the two volumes of 
this manual. 

4. Invoke the appropriate macro by entering the name of the routine preceded by an 
underscore character; for example, _QDStartUp. 

5 . Pull any output from the top of the stack. The output values are described under 
each individual call in the two volumes of this manual. 

6. Check for errors, if necessary, by examining the carry flag (c flag) . If it is set to 1, 
an error occurred and the A register contains the error code in the following 
format : 

High-order byte = tool set number 
Low-order byte = error number 

With this method, an error can be properly identified, even if it occurs during a 
call from one tool set, but doesn't actually show up until a call from another tool 
set; for example, a QuickDraw II call can pass an error message from the Memory 
Manager. The error codes for each tool set are listed at the end of the relevant 
chapter, and all error codes are summarized in Appendix B, "Error Codes," in 
Volume 2. 

Calling the correct routine 2-5 



Calling a routine from C 
The interface libraries that allow the tool sets to be accessed from the C 
programming language are included in the Apple IIGS Workshop C. These libraries 
contain the function definitions for the tools. The steps to use a particular routine are 
as follows: 

1 . Make the routine accessible by using an #include statement that includes the 
appropriate file (for example, #include <Quickdraw. h> for the QuickDraw II 
routines). The included file will provide the function declarations and the 
necessary constants and data structures. 

2. Invoke the call by entering its name and supplying the correct parameters. The 
parameters should be supplied according to Pascal-style conventions; that is, the 
parameters are pushed from left to right rather than from right to left. The 
parameters for each routine are described in the individual routine descriptions in 
the two volumes of this reference. 

3. Examine the global variable _toolErr for errors, if necessary. If the variable is 
equal to 0, no errors occurred; otherwise, the error number will be present. The 
error numbers for each tool set are listed at the end of the relevant chapter and 
compiled in Appendix B, "Error Codes," in Volume 2. 

In cases where a routine returns more than one value on the stack, the C definition 
usually calls for those values to be returned as a data structure. The definitions for 
these structures are in the appropriate C interface file . The type name for the 
structure is the return type as shown in the C synopsis for the routine. The field 
names for the structure are identical to ~he labels shown in the Stack after call. 

Two exceptions to this rule are routines that return an X and Y coordinate and those 
that return a font ID. These are declared in C as returning a Long Word rather than a 
Point or a FontID. Frequently, you will only need to pass that result as is to another 
routine that takes a Point or a FontID as a parameter. 

If you wish to access the individual fields of such results, you can't use the dot 
operator (that is, . fieldname) method. You can, for example, access them by the 
method (FontID * ) (&result ) -> fontStyle. 

Passing parameters 
Most input and output parameters for the tool calls are passed on the stack. The 
parameters and parameter-passing method are defined by each routine. Usually, 
the parameters are passed on the stack, with the routine pulling input parameters off 
and leaving any output parameters on the stack for the calling program to handle. 
The method and parameters for each routine are described under the relevant 
routine in the tool set chapters. 

2-6 Chapter 2: Using the Apple IIGS Tool Sets 



Return from a call 
When a routine finishes, the routine returns control directly back to the application. 
The state of all flags and registers upon return from a tool set call is summarized in 
Table 2-3. 

Table 2-3 
Flags and registers on return from a call 

Flag or register 

n flag 
V flag 
m flag 
X flag 
d flag 
i flag 
z flag 
C flag 
e flag 
A register 
X register 
Y register 
S register 
D register 
P register 
DB register 
PB register 
PC register 

Value• 

As set by routine 
As set by routine 
Unchanged (must be 0) 
Unchanged (must be 0) 
Set to 0 
Unchanged 
As set by routine 
As set by routine or error flag 
Unchanged (must be 0) 
As set by routine or, if carry flag is set, A = error code 
As set by routine 
As set by routine 
Parameters have been removed from stack 
Unchanged 
See preceding list of flags 
Unchanged 
Unchanged 
Address following call 

• "Unchanged" means that the value is the same as it was just before the 
routine call. 

Return from a call 2-7 



~\ 



Chapter 3 

Apple Desktop Bus 
Tool Set 

The Apple Desktop Bus (ADB) is a method and a protocol for connecting input 
devices, such as keyboards and mice, with personal computers. The personal 
computer is considered to be the host during the communication, and it controls the 
communication on the bus by issuing ADB commands to the devices. 

The Apple Desktop Bus Tool Set sends commands and data between the Apple 
Desktop Bus microcontroller and the rest of the system. Typically, the tool set is 
used to control ADB activity, but other commands, which are used by diagnostic 
routines and the Control Panel, are available. 

Under normal circumstances, you won't need to use the ADB tool set. However, if 
you want to change how the system interfaces with existing or additional ADB 
devices, this tool set will be indispensable. 

More details about the bus can be found in the Apple JIGS Finnware Reference and 
the Apple If'cs Hardware Reference. This chapter assumes that you understand how 
the ADB works. 

A preview of the Apple Desktop Bus Tool Set routines 
To introduce you to the capabilities of the Apple Desktop Bus Tool Set, all of its 
routines are grouped by function and briefly described in Table 3-1. These routines 
are described in detail later in this chapter, where they are separated into 
housekeeping routines (discussed in routine number order) and the rest of the Apple 
Desktop Bus Tool Set routines (discussed in alphabetical order). 

3-1 



Table 3-1 
Apple Desktop Bus Tool Set routines and their functions 

Routine 

Housekeeping routines 
ADBBootlnit 

ADBStartUp 
ADBShutDown 
ADBVersion 
ADBReset 

ADBStatus 

ADB routines 
Sendlnfo 
ReadKeyMicroData 
ReadKeyMicroMemory 
AsyncADBReceive 
SyncADBReceive 
Abson 
AbsOff 
ReadAbs 
SetAbsScale 
GetAbsScale 
SRQPoll 
SRQRemove 

ClearSRQTable 

Description 

Initializes the ADB Tool Set; called only by the Tool Locator-must not be 
called by an application 
Starts up the ADB Tool Set 
Shuts down the ADB Tool Set 
Returns the version number of the ADB Tool Set 
Resets the ADB Tool Set; called only when the system is reset-must not be 
called by an application 
Indicates whether the ADB Tool Set is active 

Sends data to the keyboard microcontroller or to an ADB device 
Receives data from the keyboard microcontroller 
Reads a data byte from the keyboard microcontroller memory 
Receives data from an ADB device 
Receives data from an ADB device 
Enables automatic polling of an absolute device (reserved for future use) 
Disables automatic polling of an absolute device (reserved for future use) 
Determines whether automatic polling of an absolute device is on or off 
Sets up scaling for absolute devices (reserved for future use) 
Reads absolute device scaling values (reserved for future use) 
Adds a device to the SRQ list 
Removes a device previously installed by the SRQPoll routine from the SRQ 
list 
Clears the SRQ list of all entries 

About the Apple Desktop Bus commands 
As you work with the ADB Tool Set, it's important for you to understand that the ADB 
commands are not the same as the ADB Tool Set routines. The ADB commands are 
at a lower-level than the tool set routines; that is, the tool set routines often include 
an ADB command as an input parameter to the routine. The ADB Tool Set then 
interprets and issues the ADB command. In a similar fashion to other tool sets, 
then, the ADB tool set provides a higher-level interface to a lower-level function. 

3-2 Chapter 3: Apple Desktop Bus Tool Set 



Using other Apple Desktop Bus devices 
An application that allows the use of specific ADB devices other than the mouse or 
keyboard must use a driver for that device. The device driver must have both setup 
routines and data handling routines. 

The setup routines for the device driver must identify the devices on the ADB, 
possibly by changing ADB addresses and handlers. The data handling routines must 
contain a completion routine, called by the system when data is received from a 
device, and any other routines that operate on the data. 

Polling the Apple Desktop Bus for data 
The method you use to poll the Apple Desktop Bus for data will vary, depending 
upon whether your application is designed for a single user or for multiple users. 

Polling single-user applications 
A special tool mechanism called the SRQ list can be used to poll the ADB for data 
from specific devices. The system automatically starts polling the devices in the list 
whenever any device on the bus asserts SRQ. If data is received, that device's 
completion routine is called. 

The SRQPoll routine is the most efficient way for a single-user application to gather 
data from an ADB device. This mechanism assumes that the user rarely switches 
between devices. Whenever SRQ is detected, the system always starts looking for data 
by polling the last device used. 

Polling multiuser applications 
ln multiuser applications, such as games for two or more players, the SRQ list doesn't 
work efficiently because it always gives priority to the last device that returned data. 
For these applications, each device should be polled separately using the 
AsyncADBReceive routine. Devices can then be read in an arbitrary fashion, with 
no device getting priority (unless an application wants that), and the application can 
also regulate how often data is read. The latter feature is very important since it 
allows a game to adjust to the number of players. 

Each device must have a unique address for polling, and the application must specify 
those addresses. Here are two suggested methods for assigning unique addresses. 

Polling the Apple Desktop Bus for data 3-3 



The ADB Change Address When Activated handler 

The simplest method for assigning a unique address to each device is to ask a player 
to hold down the activator button (mouse button or Apple key) . You can then use the 
ADB Change Address When Activated handler. This command changes the address 
of any device that is currently activated. 

After you verify that a device has changed addresses, tell the player to release the 
button. Repeat the request for each player, giving each device a new and different 
address, until all of the players' devices have been assigned unique addresses. 

If this technique doesn't suit your taste (you may not wish to ask each player to hold 
down the button), there is a more complicated, but more automated, way to assign 
unique addresses, detailed in the next section. 

The Collision Detect handler 

You can use the Collision Detect handler to move each ADB device to a unique 
address. You request the ID at a specific address (TALK-REG.3), which forces a 
collision between the devices at this address, and then issue the Change Address 
command using the Collision Detect Handler. Any device that did not detect a 
collision will change its address. 

It's possible that two (or more) devices may not detect a collision and both will move 
to the new address. To alleviate this problem, you should move the devices between 
the new addresses many times, thus increasing the odds that the devices will collide 
and only a single device will be moved. 

For example, if an application needs to distinguish four keyboards from each other, 
it can 

1. Use the Sendinfo routine to send the ADB command TALK and an appropriate 
register and address (TALK register 3, address 2). 

2 . Issue the Change Address command to address 8, with the Collision Detect handler 
(=$FE). Any device that didn't detect a collision (at least one) will change to the 
new address. 

3. Repeat step 2, changing address 8 to 9. 

4. Move any device that stays at address 8 (it lost the collision) back to address 2. 

5. Continue swapping the device between addresses 8 and 9 another 30 times, always 
moving any losers back to address 2. Swapping 32 times yields very good statistical 
odds that only one device will have its address changed to 8 from the original 
keyboard address. 

6. Repeat the command for each keyboard, using two open addresses (such as 9 and 
10, then 10 and 11, and so on). 

3-4 Chapter 3: Apple Desktop Bus Tool Set 



7 . After each keyboard has been moved to a new address, the application should ask 
each user to press a key. The keypress can then be used to identify the address of 
each user. 

Important 

The ADBReset and the ADBShutDown tool set routines do not clear the SRQ list 
or the ABSOLUTE flag, If your application Installs a device, the application should 
use the Sendlnfo routine to Issue a RESET ADB command. See the section 
·sendlnfo" In this chapter. 

Using the Apple Desktop Bus Tool Set 
This section discusses how the ADB Tool Set routines fit into the general flow of an 
application and gives you an idea of which routines you'll need to use under normal 
circumstances. Each routine is described in detail later in this chapter. 

The ADB Tool Set depends upon the presence of the tool sets show!). in Table 3-2 and 
requires that at least the indicated version of the tool set be present. 

Table 3-2 
Apple Desktop Bus Tool Set­
other tool sets required 

Tool set 
number 

$01 #01 
$02 #02 

Tool set 
name 

Tool Locator 
Memory Manager 

Minimum version 
needed 

1.0 
1.0 

Your application should make an ADBStartUp call before making any other ADB 
Tool Set calls. 

❖ Note: At the time of publication, the ADBStartUp call was not an absolute 
requirement, because the Tool Locator automatically started up the ADB Tool 
Set atboot time. However, you should make the call anyway, to guarantee that 
your application remains compatible with all future versions of the system. 

Your application should also make the ADBShutDown call when the application 
quits . 

Some commands can return an error code that indicates busy. This usually means 
that part of another command is currently active. Rather than queue the command, 
the tool set puts the burden on the calling routine to try again. A calling routine can 
retry the call immediately or can try it again later (perhaps by installing a task into 
the Heartbeat chain to remind the routine to try again). 

Using the Apple Desktop Bus Tool Set 3-5 



The following examples assume that you are using the APW equate and macro files . 
The first example enables SRQ on a device at address 7. 

ENSRQ EQU * 

PEA $0000 Count of O bytes (lengt hByt e ) 

PEA $0000 Dummy addres s (not used since lengthByte i s 0 ) 

PEA $0000 

PEA enableSRQ+7 Enable SRQ of address 7 

Sendinfo 

BCS ERROR 

The next example shows how to make a tool call to change the handler of an ADB 
device at address 7. It uses the ADB Tool Set routine Sendlnfo to transmit 2 bytes to 
register 3 at address 7. 

LDA #$0207 

STA DATABUF 

PEA $0002 

Pushlong #DATABUF 

PEA transmit2ADBBytes+$37 

Sendinfo 

BCS ERROR 

Change device at address 7 to handler 2 

into data buffer 

Count of 2 bytes to be sent on ADB (lengthByte ) 

Data-buffer address 

Transmit 2 data bytes to register 3 , ADB address 7 

The next example sends data to an ADB device. 

DATASND EQU * 

DATA 

* 

* 

PEA $0005 

Pushlong #DATA 

PEA transmitADBBytes+$4 

Sendi nfo 

BCS ERROR 

DS $8A , l , 2 , 3 , 4 

5 data bytes (4 data & 1 ADB command ) 

Data-buffer address with AxBy 

Command to microcontroller (transmit 4 data bytes ) 

First byte = ADB device command , 

device at address 8 , Listen , register 2 

Other bytes are data 

❖ Note: The first byte sent is transmitteq directly as the ADB device command. 

3-6 Chapter 3: Apple Desktop Bus Tool Set 



The last example explains how to poll a device at address 7, register O for data. 

ADBPOLL anop 

PushLong #CPLTVC 

PEA Talk+$07 

_AsyncADBREceive 

BCC OK 

Pointer to completion routine 

Register 0 , address 7 (if register 3 , then TALK+$37) 

Everything OK 

CMP BUSYERROR 

BEQ ADBPOLL 

BRA ERROR 

Check if busy error 

Poll again if busy 

OK EQU * 

END RTS 

Completion routines 

End 

All completion routines are called in 8-bit native mode. Two types of completion 
routines are currently defined: the AsyncADBReceive and the SRQ list. 

Only a single completion routine can be active at a time. If an application wants to 
poll many devices sequentially, it should use the completion routine to initiate a poll 
of the next device. 

The stack looks like this when the completion routine is called: 

previous contents 

dataPtr 

RTI 

RTI 

I RTI 

If- SP 

Long-POINTER to data 

Three bytes-RTL address 

The data pointed to by dataPtr should look like Figure 3-1: 

Offset Field 

$0 adbBytel Byte-First ADB data byte 
adbByte2 Byte-Second ADB data byte 

nl las/Byte Byte-Last ADB data byte 

Figure 3-1 
Apple Desktop Bus data 

Completion routines 3-7 



AsyncADBReceive completion routine 

The AsyncADBReceive completion routine obtains data from a buffer pointed to 
by an address on the top of the stack. The first byte in the buffer contains the number 
of data bytes in the buffer. The first data byte received from the ADB is the next byte 
in the buffer, with subsequent data 1.Jytes received from the ADB stored sequentially 
in the buffer. The last (nth) byte received is the n +l byte in the buffer. 

CPLTVC EQU * 

PHO 

TSC 

TCD 

LOA 

BEQ 

TAY 

INY 

LP LOA 

STA 

DEY 

BNE 

ENDPOLL EQU * 

PLO 

RTL 

[ 6] 

ENDPOLL 

[6] 'y 

BUF , Y 

LP 

Completion vector for AsyncADBReceive 

Move direct page onto stack minus 1 

Stack now has RTL address (3 bytes ) 

Old direct page (2 bytes) 

Get length byte from buffer 

No data remaining 

Set index 

Index+ 1 to get (length+ 1) bytes 

Get data byte 

Move to application buffer 

Set index for next data byte 

Restore direct page 

Return from completion routine 

3-8 Chapter 3: Apple Desktop Bus Tool Set 



SRQ list completion routine 

The SRQ list completion routine is very similar to the AsyncADBReceive routine. 
The only major difference is that an extra return address is on the stack when the 
routine is called. (These 3 extra bytes are left by the SRQ list handler.) Thus, the SRQ 
completion routine finds the data buffer address 3 bytes into the stack instead of on 
top of the stack. 

SRQCP LT 

ENDABS 

EQU * 

PHO 

TSC 

TCD 

LDA [9] 

TAY 

INY 

LDA [ 9], y 

DEY 

PLO 

RTL 

Completion vector from SRQ list 

Save direct page 

Move direct page onto stack 

and perform indirect indexed long to 

get data length (NOT 0 ) 

Set index 

Index+ 1 to get (length+ 1) bytes 

Get last data byte 

More data , etc . 

Restore stack and return 

Completion routines 3-9 



$0109 

Parameters 

Errors 

C 

$0209 

Parameters 

Errors 

C 

ADBBootlnit 
Initializes the ADB Tool Set; called only by the Tool Locator. 

Warning 
An application must never make this call. 

The stack is not affected by this call. There are no input or output parameters. 

None 

Call must not be made by an application. 

ADBStortUp 
Starts up the ADB Tool Set for use by an application. 

❖ Note: At the time of publication, the ADBStartUp call was not an absolute 
requirement, because the Tool Locator automatically started up the ADB Tool Set 
at boot time. However, you should make the call anyway, to guarantee that your 
application remains compatible with all future versions of the system. 

The stack is not affected by this call. There are no input or output parameters. 

None 

ext e rn p as cal void ADBStartUp () 

3-10 Apple Desktop Bus Tool Set housekeeping routines 



$0309 

Parameters 

Errors 

C 

$0409 

Parameters 

ADBShutDown 
Shuts down the ADB Tool Set when an application quits. 

Important 

If your application has started up the ADB Tool Set, the application must make 
this call before it quits. 

The stack is not affected by this call. There are no input or output parameters. 

None 

e xtern pascal void ADBShutDown () 

ADBVersion 
Returns the version number of the ADB Tool Set. 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

versionlnfo 

Errors None 

Word-Space for result 

~SP 

Word-Version number of the ADB Tool Set 

~SP 

C extern pascal Word ADBVersion () 

Apple Desktop Bus Tool Set housekeeping routines 3- 11 



$0509 ADBReset 
Resets the ADB Tool Set; called only when the system is reset. 

Warning 
An application must never make this call. 

Parameters The stack is not affected by this call. There are no input or output parameters. 

Errors None 

C Call must not be made by an application. 

$0609 ADBStatus 
Indicates whether the ADB Tool Set is active. 

Parameters 

Stack before call 

previous contents 

wordspace Word-Space for result 

f- SP 

Stack after call 

previous contents 

Errors 

C 

3-12 

activeFlag 

None 

Word-BOOLEAN; TRUE if ADB Tool Set is active; FALSE if not 

f-SP 

extern pascal Boolean ADBStatus() 

Apple Desktop Bus Tool Set housekeeping routines 



$0F09 

$1009 

AbsOn 
Will enable automatic polling of an absolute device. 

Important 

At the time of publication, this routine was not Implemented. The routine Is 
reserved for future use. 

AbsOff 
Will disable automatic polling of an absolute device. 

Important 
At the time of publication, this routine was not Implemented, The routine Is 
reserved for future use. 

Apple Desktop Bus Tool Set routines 3-13 



$0D09 

Parameters 

AsyncADBReceive 
Receives data from an ADB device. The ADB command byte sent assumes that the 
command type is Talk, which tells the addressed device to send data to the host. 
Thus, the adbCommand to be sent is in the form 

$CO+xyabcd 

where $CO is the Talk command, xy is the register, and abed is the address. 

Internally, AsyncADBReceive uses asynchronous communication; that is, the system 
sends the ADB command but doesn't wait for a response. The keyboard 
rnicrocontroller notifies the system when the data is ready by sending a response byte 
that interrupts the system. 

Important 

The completion vector Is called with 8-bit m and x flags and must return via an 
RTL instruction with the carry flag clear. 

Stack before call 

previous contents 

compPtr Long-POINTER to completion routine 

adbCommand Word- ADB command, in form $CO+xyabcd, as described above 

f-SP 

Stack after call 

previous contents I 
--------- f- SP 

Errors $0910 

$0982 

cmndincomplete Command not completed 

adbBusy ADB busy (command pending) 

C extern pascal void AsyncADBReceive(compPtr , adbCommand ) 

Pointer compPtr ; 

Word adbCommand ; 

3-14 Apple Desktop Bus Tool Set routines 



$1609 

Parameters 

Errors 

C 

$1309 

Parameters 

ClearSRQTable 
Clears the SRQ list of all entries. 

The stack is not affected by this call. There are no input or output pa..rameters. 

None 

extern pascal v o id ClearSRQTable() 

GetAbsScale 
Reads absolute device scaling values, as set by the SetAbsScale routine. Se~ the 
section "SetAbsScale" in this chapter. 

Stack before call 

previous contents 

datalnPtr 

Stack after call 

Long-POINTER to ScaleRec; see "SetAbsScale" in this chapter 

f-SP 

previous contents I 
i-------- f- SP 

Errors None 

C extern pascal void GetAbsScale (datainPtr) 

ScaleRecPtr datainPtr ; 

Apple Desktop Bus Tool Set routines 3-15 



$1109 

Parameters 

ReadAbs 
Reads flags to determine whether automatic polling of absolute device is on or off. 

Important 
At the time of publication, this routine was not Implemented. The routine Is 
reseNed for future use. 

Stack before call 

previous contents 

wordspace Word-Space for result 

f- SP 

Stack after call 

previous contents 

Errors 

C 

3-16 

autoABSPoll 

None 

Word-BOOLEAN; TRUE if polling on, FALSE if polling off 

f-SP 

Call must not be made by an application. 

Apple Desktop Bus Tool Set routines 



$0A09 ReadKeyMicroData 
Receives data from the microcontroller. 

Parameters 

Stack before call 

previous contents 

datalength 

-- dataPtr 

adbCommand 

--· 

Word-Number of bytes to be received (see Table 3-3) 

Long-POINTER to data; NIL if no data (see Table 3-3) 

Word-ADB command to be issued 

f- SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors $0910 crnndincomplete Command not completed 

C e xtern pascal void ReadKeyMicroData (dataLength , dataPtr , adbCommand ) 

Word dataLength ; 

Pointer dataPtr ; 

Word adbCommand; 

Table 3-3 
Apple Desktop Bus ReadKeyMicroData parameters 

Com-
mend dafaLengfh Name Action 

OA 1 read.Modes Read modes; data is a byte returning the mode 
OB 3 readConfig Read configuration; data is a data structure as follows: 

Byte Repeat delay/ rate 
Byte Layout/ language 
Byte ADB address, keyboard, and mouse 

oc 1 readADBError Read ADB error byte; data is a byte returning the error 
code 

OD 1 readVersionNum Read version number; data is a byte returning the 
version number 

OE 1 readAvailCharSet Read available character sets 
OF 1 readAvailLayout Read available keyboard layouts 

Apple Desktop Bus Tool Set routines 3-17 



$0B09 ReadKeyM icroMemory 
Reads a data byte from keyboard microcontroller ROM or RAM. 

Parameters 

Stack before call 

previous contents 

-- dataOutPtr 

-- datalnPtr 

adbCommand 

--· 

- - · 

Long-POINTER to location to store results of read 

Long-POINTER to keyboard memory location to be read 

Word- ADB command to be issued, equal to $0009 

~SP 

Stack after call 

previous contents I 
--------~SP 

Errors $0910 cmndinc omplete Command not completed 

C e xtern pascal void ReadKe yMicroMem (dataOutPtr , datainPtr , adbCommand) 

Pointer dataOutPtr ; 

Pointer datainPtr ; 

Word adbCommand ; 

3- 18 Apple Desktop Bus Tool Set routines 



$0909 Sendlnfo 
Sends data to the microcontroller or an ADB device. The command and data to be 
sent are shown in Table 3-4. 

Parameters 

Stack before call 

previous contents 

datalength Word-Number of bytes of data to be sent (see Table 3-4) 

Long-POINTER to data; NIL if no data (see Table 3-4) 

Word-ADB command to be issued 

-- dataPtr --· 

adbCommand 
~SP 

Stack after call 

previous contents I 
--------~SP 

Errors $0910 cmndincomplete Command not completed 

C extern pascal void Sendinfo(dataLength , dataPtr ,adbCornmand ) 

Word dataLength ; 

Pointer dataPtr ; 

Word adbCornmand ; 

(continued) 

Apple Desktop Bus Tool Set routines 3-19 



Send Info parameters 
Table 3-4 summarizes the values for the Sendinfo parameters. For more information 
about the ADB, see the Apple IJGS Ftrmware Reference. 

Important 

All of the commands In Table 3-4 that require more than a 1-byte transfer, except 
the Synch command, will automatically timeout In 10 milliseconds If there is no 
response. The Synch command will timeout In 20 milliseconds. 

Table 3-4 
Apple Desktop Bus Sendlnfo parameters 

Com-
mand 

01 
02 
03 
04 
05 
06 

07 

08 

10 

11 

dafaLength 

0 
0 
0 
1 
1 
3 

4 

2 

0 

1 

Name 

abort 
resetKbd 
flushKbd 
setModes 
clearModes 
setConfig 

synch 

writeMicroMe m 

resetSys 

keyCode 

Action 

Abort; no operation 
Reset keyboard microcontroller 
Flush keyboard 
Set modes; data is a byte specifying the mode 
Clear modes; data is a byte specifying the mode 
Set configuration; data is a data structure as follows: 
Byte ADB addresss, keyboard, and mouse 
Byte Layout/ language 
Byte Repeat delay/ rate 

Synch; data is a data structure as follows: 
Byte Mode 
Byte ADB addresss, keyboard, and mouse 
Byte Layout/language 
Byte Repeat delay/ rate 

Write microcontroller memory; data is a data structure as 
follows: 
Byte 
Byte 

Direct-page memory address 
Data 

Reset system; pull the reset line low for 4 milliseconds 

Send ADB key code; data is a byte specifying the key code 
(for key codes, see Table 3-5). This command can be 
used to emulate an ADB keyboard by accepting key codes 
from a device and then sending them to the 
microcontroller to be processed as keystrokes. The 
command doesn't support buffering, nor will it process 
Reset Up or Reset Down codes; those codes must be 
handled before this command is used. 

3-20 Apple Desktop Bus Tool Set routines 



Table 3-4 (continued) 
Apple Desktop Bus Send lnfo parameters 

Com-
mand dataLengfh 

40 0 

4y n+ l 

5x 0 

6x 0 

7x 0 

ry 2 

Name 

resetADB 

transmitADBBytes 

enableSRQ 

Action 

Reset Apple Desktop Bus; be careful with this 
command, because resetting an ADB keyboard 
clears all pending commands, including all key-up 
events. Thus, if a keystroke is used to launch this 
command, the key-up event will be lost, and the key 
will autorepeat until another key is pressed. All keys 
should be up before this command is executed. 
Transmit ADB bytes, where y = 7 + n and n = number 
of bytes to transmit (n must be greater than or equal 
to 2 and less than or equal to 8); data is a data 
structure as follows: 
Byte ADB command (ADB type, address, 
register) 
Byte Data byte 1 
Byte Data byte 2 

Byte Data byte 8 

Enable SRQ ( where x = ADB address in low nibble) 

Important 

Use the SRQPoll routine before call ing Sendlnfo 
with the enableSRQ command. 

flushADBDevBuf Flush buffer on ADB device (x= ADB address in low 
nibble); be careful with this command, because 
resetting an ADB keyboard clears all pending 
commands, including all key-up events. See the 
Reset ADB command in this table. 

disableSRQ Disable SRQ (x= ADB address in low nibble); be 
careful with this command, because data pending 
may be lost when the command is executed. For 
example, if SRQ is disabled on the ADB keyboard, all 
key-up events may be lost. See the Reset ADB 
command in this table. 

transmit2ADBBytes Transmit 2 ADB bytes (where r= 8 + register, y = 
ADB address); data is a data structure as follows: 
Byte Data byte 1 
Byte Data byte 2 

(continued) 

Apple Desktop Bus Tool Set routines 3-2 1 



Apple Desktop Bus key codes 
Table 3-5 summarizes the key codes that the Apple Desktop Bus microcontroller 
understands. Various keyboards can generate various codes. See the appropriate 
keyboard's hardware reference manual for that keyboard's actual codes. 

Table 3-5 
Key code specification 

Key Key code Key Key code Key Key code 

ESC $35 $51 (Key number 71) $27 
Fl $7A I $4B Return $24 
F2 $7B • $43 4 $56 
F3 $63 Tab $30 5 $57 
F4 $76 Q $0C 6 $58 
F5 $60 w $OD + $45 
F6 $61 E $OE L Shift $38 
F7 $62 R $OF z $06 
F8 $64 T $11 X $07 
F9 $65 y $10 C $08 
Fl0 $6D u $20 V $09 
Fll $67 I $22 B $OB 
F12 $6F 0 $1F N $2D 
F13 $69 p $23 M $2E 
F14 $6B [ $21 $2B 
F15 $71 l $IE $2F 
Reset $7F7F \ $2A I $2C 
(Key number 18) $32 I X>(Del) $75 R Shift $38 
1 $12 End $77 Up Arrow $3E 
2 $13 Page Down $79 1 $53 
3 $14 7 $59 2 $54 
4 $15 8 $5B 3 $55 
5 $17 9 $5C L Control $36 
6 $16 $4E L Option $3A 
7 $IA Caps Lock 38 L Apple 37 
8 $ lC A 00 Space 31 
9 $19 s 01 R Apple 37 
0 $1D D 02 R Option 3A 

$1B F 03 R Control 36 
$18 G 05 LArrow 3B 

Delete $33 H 04 D Arrow 3D 
Help $72 J 26 R Arrow 3C 
Home $73 K 28 0 52 
Page Up $74 L 25 (Key number 104) 41 
Clear $47 29 Enter 4C 

3-22 Apple Desktop Bus Tool Set routines 



$1209 

Parameters 

SetAbsScale 
Sets up scaling for absolute devices. This routine will eventually allow a generic 
scaling desk accessory to support almost any size or brand graphics tablet. 

Importa nt 

At the time of publication, this routine was not implemented . The routine is 
reserved for future use. 

The SetAbsScale routine will not perform scaling, but will leave the scaling to the 
absolute device. 

Stack before call 

previous contents 

dataOutPtr Long-POINTER to scale record (see Figure 3-2) 

~SP 

Stack after call 

previous contents I 
--- -----~SP 

Errors one 

C ext e rn pascal void SetAbsScale (dataOutPtr ) 

Scale RecPtr dataOutPtr ; 

(co ntinu ed) 

Apple Desktop Bus Tool Set routines 3-23 



Scale record 
The scale record is shown in Figure 3-2. 

Offset Field 

$0 
xDivide Word-To divide X coordinate by 

l 
2 

yDivide Word-To divide Y coordinate by 
3 
4 

xOffset Word-To add to X coordinate of result 
5 

6 
7 

yOffset Word-To add to Y coordinate of result 

8 
xMultiply Word-Low-order byte only; to multiply 

9 X coordinate of result by 
OA 

yMultiply Word-Low-order byte only; to multiply OB Y coordinate of result by 

Figure 3-2 
Apple Desktop Bus scale record 

3-24 Apple Desktop Bus Tool Set routines 



$1409 

Parameters 

SRQPoll 
Adds a device to the SRQ list (if the device exists) so that an application can be 
notified when this device has data. Whenever an SRQ is generated, the system 
automatically polls any device in the SRQ list to see if it has data ready. If data is 
available, the routine jumps to the specified completion routine with the data and 
notifies the application. 

Important 
The completion vector is called w ith 8-bit m and x flags and must return via an 
RTL instruction with the carry flag clear. 

Stack before call 

previous contents 

compPtr 

adbRegAddr 

Long-POINTER to completion routine 

Word-ADB register and address 

~SP 

Stack after call 

previous contents I 
--------~SP 

Errors 

C 

$0910 

$0983 

$0984 

cmndincomplete Command not completed 

devNotAtAddr Device not present at address 

srqListFull List full 

extern pascal void SRQPoll (compPtr , adbRegAddr ) 

Pointer compPtr ; 

Word adbRegAddr ; 

Apple Desktop Bus Tool Set routines 3-25 



$1509 

Parameters 

SRQRemove 
Removes a device previously installed by the SRQPoll routine from the SRQ list. 

Important 
The adbRegAddr must be the same as that used In the SRQPoll routine to Install 
the device. 

Stack before call 

previous contents 

adbRegAddr Word-ADB register and address 

f- SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors $0910 

$0982 

cmndincomplete Command not completed 

adbBusy ADB busy (command pending) 

C e xtern pascal void SRQRemove (adbRegAddr ) 

Word adbRe gAddr ; 

3-26 Apple Desktop Bus Tool Set routines 



$0E09 

Parameters 

SyncADBReceive 
Receives data from an ADB device. This routine is very similar to the 
AsyncADBReceive routine. However, SyncADBReceive needs the inputWord 
parameter, which specifies the ADB command Talk and the address and register. 
Thus, compute the command to be sent by using the form 

$CO+xyabcd 

where $CO is the Talk command, .xy is the register, and abed is the address. When 
you have that result, swap its high and low nibbles and use that swapped form as the 
input Word. 

Important 

The completion vector Is called with 8-bit m and x flags and must return via an 
RTL Instruction with the carry flag clear. 

Stack before call 

previous contents 

input Word 

-- compPtr 

adbCommand 

--· 

Word-ADB device command with high and low nibbles swapped 

Long-POINTER to completion routine 

Word- ADB command to be issued, equal to $0048 

~SP 

Stack after call 

previous contents I 
--------~SP 

Errors 

C 

$0910 

$0982 

cmndincomplete Command not completed 

adbBusy ADB busy (command pending) 

extern pascal void SyncADBReceive( i nputWord ,compPtr,adbCommand ) 

Word input Word; 

Pointer compPtr; 

Word adbCommand ; 

Apple Desktop Bus Tool Set routines 3-27 



Apple Desktop Bus Tool Set summary 
This section briefly summarizes the constants, data structures, and tool set errors 
contained in the Apple Desktop Bus Tool Set. 

Important 
These definitions are provided in the appropriate Interface fi le. 

Table 3-6 
Apple Desktop Bus Tool Set constants 

Name Value 

ReadKeyMlcroData ADB commands 
readModes $000A 
readConfig $000B 
readADBError $000C 
readVersionNum $000D 
readAvailCharSet $000E 
readAvailLayout $000F 

ReadKeyMlcroMEM ADB command 
readMicroMem $0009 

Sendlnfo ADB commands 
abort $0001 
resetKbd $0002 
flushKbd $0003 
setModes $0004 
clearModes $0005 
setConfig $0006 
synch $0007 
writeMicroMem $0008 
resetSys $0010 
keyCode $0011 
resetADB $0040 
transmitADBBytes $0047 
enableSRQ $0050 
flushADBDevBuf $0060 
disableSRQ $0070 
transmit2ADBBytes $0080 
listen $0080 
talk $00C0 

Description 

Read modes of ADB command 
Read configuration of ADB command 
Read ADB error byte of ADB command 
Read version number of ADB command 
Read available character sets 
Read available keyboard layouts 

Read data byte from keyboard microcontroller 

Abort; no operation 
Reset keyboard microcontroller 
Flush keyboard 
Set modes 
Clear modes 
Set configuration 
Synch 
Write microcontroller memory 
Reset system 
Send AD B key code 
Reset ADB 
Transmit ADB bytes 
Enable SRQ 
Flush buffer on ADB device 
Disable SRQ 
Transmit 2 ADB bytes 
ADB Listen command 
ADB Talk command 

3-28 Chapter 3: Apple Desktop Bus Tool Set 



Table 3-7 
Apple Desktop Bus Tool Set data structures 

Name Offset Type Definition 

ReadConflgRec (configuration record for ReadKeyMlcroData) 
rcRepeatDelay $0000 Byte Repeat delay/rate 
rcLayoutOrLang $0001 Byte Keyboard layout/ language 
rcADBAddr $0002 Byte ADB address, keyboard, and mouse 

SetConflgRec (configuration record for Sendlnfo) 
scADBAddr $0000 Byte ADB address, keyboard, and mouse 
scLayoutOrLang $0001 Byte Keyboard layout/ language 
scRepeatDelay $0002 Byte Repeat delay/rate 

SynchRec (record for Sendlnfo) 
synchMode $0000 Byte Mode 
synchKybdMouseAddr $0001 Byte ADB address, keyboard, and mouse 
synchLayoutOrLang $0002 Byte Keyboard layout/language 
synchRepeatDelay $0003 Byte Repeat delay/rate 

ScaleRec (scale record) 
xDivide $00 Word Value to divide X coordinate by 
yDivide $02 Word Value to divide Y coordinate by 
xOffset $04 Word Value to add to X coordinate of result 
yOffset $06 Word Value to add to Y coordinate of result 
xMultiply $08 Word Value to multiply X coordinate by 
yMultiply $0A Word Value to multiply Y coordinate by 

Note: The actual assembly-language equates have a lowercase o (the letter) in front of all 
of the names given in this table . 

Table 3-8 
Apple Desktop Bus Tool Set error codes 

Code 

$0910 
$0911 
$0982 
$0983 
$0984 

Name 

cmndincomplete 
cantSync 
adbBusy 
devNotAtAddr 
srqListFull 

Description 

Command not completed 
Can't synchronize with system 
ADB busy (command pending) 
Device not present at address 
SRQ list full 

Apple Desktop Bus Tool Set summary 3-29 





Chapter 4 

Control Manager 

The Control Manager is the part of the Apple IIGS Toolbox that deals with controls. 
A control is an object on the IIGS screen with which the user, using the mouse, can 
cause instant action with graphic results or can change settings to modify a future 
action. Using the Control Manager, your application can 

■ Create or dispose of controls 

■ Display or hide controls 

■ Monitor the user's operation of a control with the mouse and respond accordingly 

■ Read or change the setting or other properties of a control 

■ Change the location or appearance of a control 

Your application performs these actions by calling the appropriate Control Manager 
routines. The Control Manager carries out the actual operations, but it's up to you to 
decide when, where, and how. 

Controls are of various types, each with its own characteristic appearance on the 
screen and responses to the mouse. Each individual control has its own specific 
properties-such as its location, size, and setting-but controls of the same type 
behave in the same general way. 

A preview of the Control Manager routines 
To introduce you to the capabilities of the Control Manager, all Control Manager 
routines are grouped by function and briefly described in Table 4-1. These routines 
are described in detail later in this chapter, where they are separated into 
housekeeping routines (discussed in routine number order) and the rest of the 
Control Manager routines (discussed in alphabetical order). 

4-1 



Table 4-1 
Control Manager routines and their functions 

Routine Description 

Housekeeping routines 
CtlBootinit Initializes the Control Manager; called only by the Tool Locator-must not be 

CtlStartUp 
CtlShutDown 
CtlVersion 
CtlReset 

CtlStatus 

called by an application 
Starts up the Control Manager for use by an application 
Shuts down the Control Manager 
Returns the version number of the Control Manager 
Resets the Control Manager; called only when the system is reset- must not be 
called by an application 
Indicates whether the Control Manager is active 

Initialization and termination routines 
Ct!NewRes Reinitializes resolution and mode 
NewControl Creates a control, adds it to the beginning of a specified window's control list, and 

returns a handle to the new control 
DisposeControl 

KillControls 
HideControl 

EraseControl 

ShowControl 
DrawControls 
DrawOneCtl 
HiliteControl 

Deletes a specified control and releases the memory occupied by the control 
record and any data structures associated with the control 
Disposes of all controls associated with a specified window 
Makes a specified control invisible by filling the region the control occupies with 
the background pattern of the window's GrafPort 
Makes a specified control invisible, but does not add the control's enclosing 
rectangle to the window's update region 
Makes a specified control visible 
Draws all controls currently visible in a specified window 
Draws a specified control 
Changes the way a specified control is highlighted 

Mouse location routines 
FindControl Tells in which of the window's controls, if any, the cursor was in when the user 

pressed the mouse button 
TestControl Tests which part of a specified control contains a specified point 
TrackControl Follows mouse movements and responds appropriately until the mouse button is 

released 

Control movement routines 
MoveControl Moves a specified control to a new location within its window 
DragControl Pulls a dotted outline of the control around the screen, following the movements of 

the mouse until the button is released 

4-2 Chapter 4: Control Manager 



Table 4-1 (continued) 
Control Manager routines and their functions 

Routine Description 

Control record access routines 
SetCtlTitle 
GetCtlTitle 

SetCtlValue 

GetCtlValue 
SetCtlAction 
GetCtlAction 
SetCtlRefCon 
GetCtlRefCon 
SetCtlParams 

GetCtlParams 

Sets a specified control's title to a given string and redraws the control 
Returns the value in a specified control's ct/Data field, which, for controls with 
titles, is the pointer to the control's title string 
Sets a specified control's ct/Value field to a specified value and redraws the control 
to reflect the new setting 
Returns a specified control's current ct/Value field 
Sets a specified control's ctlAction field to a new action 
Returns the current value of a specified control's ctlAction field 
Sets a specified control's ctlRejCon field to a new value 
Returns the current value of a specified control's ctlRejCon field 
Sets new parameters in the control's definition procedure, which will set the values 
and redraw the control if necessary 
Returns a specified control's additional parameters 

Miscellaneous routines 
DragRect Pulls a dotted outline of a specified rectangle around the screen, following the 

movements of the mouse until the button is released 
GetCtlDpage 
GrowSize 

SetCtlicons 

Returns the value of the Control Manager's direct page 
Returns the height and width of the size box control, using the Control Manager's 
current icon font 
Provides a handle to a specified new icon font 

Standard controls 
Certain standard types of controls are predefined for you. Your application can 
easily use controls of these standard types, and it can also define its own custom 
control types. The predefined control types are as follows: 

■ Buttons cause an immediate or continuous action when clicked or pressed with 
the mouse. They appear on the screen as rectangles with a title centered inside. 

■ Check boxes retain and display a setting, either checked (on) or unchecked (off); 
clicking with the mouse reverses the setting. On the screen, a check box appears as 
a small square with a title to the right of the square; the box is either filled in with 
an X (checked) or empty (unchecked). Check boxes are frequently used to control 
or modify some future action instead of causing an immediate action of their own. 
More than one box may be checked at any one time. 

Standard controls 4-3 



■ Radio buttons also retain and display an on-or-off setting. They're organized 
into families; only one button in a family can be on at a time. Clicking any button 
on turns off all the others in the family, like the buttons on a car radio. Radio 
buttons are used to offer a single choice among several alternatives; the radio 
button that's on is filled with a small black circle. 

■ Size boxes provide a graphic symbol to represent the idea of resizing something. 
For example, the Window Manager provides a size box that can be used to 
increase or decrease the size of the window. 

■ Dials display a quantitative setting or value, typically in some pseudo-analog form 
such as the position of a sliding switch, the reading on a thermometer scale, or the 
angle of a needle on a gauge; the setting may be displayed digitally as well. The 
control's moving part that displays the current setting is called the indicator. The 
user may be able to change a dial's setting by dragging its indicator with the 
mouse, or the dial may simply display a value not under the user's direct control 
(such as the amount of free space remaining on a disk). 

The standard controls and a few other typical controls are illustrated in Figure 4-1. 

Button 1 

Button 2 

l8J Check boH 1 

l8J Check bOH 2 

0 Check bOH 3 

0 Radio button 1 

ill Radio button 2 

0 Radio button 3 

Figure 4-1 

IOI :::::I 

Standard and typical controls 

4-4 Chapter 4: Control Manager 

Dials 



Scroll bars 
Scroll bars are predefined dials . The user clicks the mouse when the cursor is on a 
scroll bar arrow to scroll data a line at a time, or when the cursor is on a paging 
region to scroll a "page" at a time. The user can also drag the thumb box to any 
position within the scroll area. Although each of these may seem to behave like 
individual controls, they are all parts of a single control, the scroll-bar type of dial. 
You can define other dials of any shape or complexity if your application needs 
them. · 

Figure 4-2 shows the parts of the vertical and horizontal scroll bars. 

Up arrow -------------- 0 

Page-up region---------

Thumb----------. 

\vi 
Figure 4-2 
Parts of the scroll bars 

Scroll bars 4-5 



Standard scroll bars are proportional; that is, they show the relationship between the 
total amount of data and the amount viewed and where the view is in the data, as 
illustrated in Figure 4-3. 

Total data 

Data in view 

Figure 4-3 
Scrol l bar view 

Assume that you want to use a single vertical scroll bar to the right of the text. The text 
has 300 lines, 30 of which can be displayed at one time. To set the scroll bar, you 
pass 30 for the view size and 300 for the data size in a SetCtlParams call. 

When the user enters a line you want the scroll bar to be updated. To do this, you pass 
-1 for the view size because there was no change in the view, and you pass 301 for the 
data size to show the increased data size. 

If you prefer, you can pass the view and data sizes as pixels rather than lines. If every 
line is 10 pixels high, and there are 300 lines, of which 30 can be displayed, you can 
pass 300 for the view size and 3000 for the data size. After the line is entered, you pass 
-1 for the view size (or 300 again) and 3010 for the data size. Because passing the 
number of pixels is proportionally equivalent to passing the number of lines, the 
scroll bar is identical using either method. 

4-6 Chapter 4: Control Manager 



Active, inactive, and highlighted controls 
A control may be active or inactive. Active controls respond to the user's mouse 
actions; inactive controls don't. A control is made inactive when it has no meaning 
or effect in the current context, such as an Open button when no document has been 
selected to open, or a scroll bar when there's currently nothing to scroll to. 

An inactive control is shown in some special way, depending on its control type. 
Figure 4-4 illustrates some active and inactive controls. 

Button 

□ Check bOH 

0 Radio button 

Active controls 

Figure 4-4 

Hu1lon 

Cti(J(:k ilOll 

fh111io button 

Inactive controls 

Active and Inactive controls 

Figure 4-4 also illustrates the two ways a scroll bar can be made inactive. The first way 
is to make the data size equal to or smaller than the view size. The second way is to 
pass 255 (inactiveHilite) to the Control Manager routine HiliteControl. This 
makes the scroll bar inactive in the same sense that the other controls are inactive. 

You can also make controls invisible, which renders them inactive in the sense that 
they can't be selected. 

If the user presses the mouse button when the cursor is over an active control, the 
control usually becomes highlighted. It's also possible for just a part of a control to 
become highlighted; for example, when the user presses the mouse button inside a 
scroll arrow in a scroll bar, the arrow, not the whole scroll bar, becomes 
highlighted. Figure 4-5 illustrates some highlighted controls. 

q Check BOH 

Gt Radio Button 

Figure 4-5 
Highlighted active controls 

Active, inactive, and highlighted controls 4-7 



Controls and windows 
Every control belongs to a window. When the control is displayed, it appears within 
that window's content region; when the control is manipulated with the mouse, it acts 
on that window. All coordinates pertaining to the control (such as those describing 
its location) are given in the window's local coordinate system. Even the state of the 
control can be tied to the state of the window. A bit in the window's record can be set 
so the controls in the window will be considered inactive if the the window is inactive. 
See Chapter 25, "Window Manager," in Volume 2 for further information. 

If you would like the controls in a window to scroll with the content region, make sure 
that the origin of the control's window is set to its scrolled value before you call the 
Control Manager. 

Part codes 
Some controls, such as buttons, are simple and straightforward. Others can be 
complex objects with many parts: for example, a scroll bar may have two scroll 
arrows, two paging regions, and a thumb. To allow different parts of a control to 
respond to the mouse in different ways, many of the Control Manager routines 
accept a part code as a parameter or return a part code as a result. 

A part code is a number between 1 and 255 that stands for a particular part of a 
control. Each type of control has its own set of part codes. The part codes are 
assigned as shown in Table 4-2. 

Table 4-2 
Control Manager part codes 

Code Description Code Description 

0 No part 11 Editable line 
1 Reserved for internal use 12 User item 
2 Simple button 13 Long static text 
3 Check box 14 Icon 
4 Radio button 15-31 Reserved for internal use 
5 Up arrow 32-127 Reserved for application use 
6 Down arrow 128 Reserved for internal use 
7 Page up 129 Thumb 
8 Page down 130- 159 Reserved for internal use 
9 Static text 160-253 Reserved for application use 

10 Size box 254-255 Reserved for internal use 

❖ Note: Some Control Manager routines need to give special treatment to the 
indicator of a dial, such as the thumb of a scroll bar. For the Control Manager to 
recognize them, such indicators always have part codes greater than 127. 

4-8 Chapter 4: Control Manager 



Using the Control Manager 
This section discusses how the Control Manager routines fit into the general flow of 
an application and gives you an idea of which routines you'll need to use under 
normal circumstances. Each routine is described in detail later in this chapter. 

The Control Manager depends upon the presence of the tool sets shown in Table 4-3 
and requires that at least the indicated version of the tool set be present. 

Table 4-3 
Control Manager-other tool sets required 

Tool set Tool set Minimum version 

number name needed 

$01 #01 Tool Locator 1.2 
$02 #02 Memory Manager 1.2 
$03 #03 Miscellaneous Tool Set 1.2 
$04 #04 QuickDraw II 1.2 
$06 #06 Event Manager 1.0 
$OE #14 Window Manager 1.3 

The first Control Manager call that your application must make is CtlStartUp. 
Conversely, when you quit your application, you must make the CtlShutDown call. 

Where appropriate in your program, use the NewControl routine to add any controls 
you need. NewControl sets the control's owner to a specified window pointer and 
adds the control to the head of the window's control list. When you no longer need a 
control, call DisposeControl to remove it from its window's control list and erase it 
from the screen. To dispose of all of a window's controls at once, use KillControls. 

❖ Note: The Window Manager procedure CloseWindow automatically disposes of all 
controls associated with a given window. 

When the Window Manager routine TaskMaster (or the Event Manager routine 
GetNextEvent, if you're not using TaskMaster) reports that an update event has 
occurred for a window, your application should call DrawControls to redraw the 
window's controls as part of the process of updating the window. 

Using the Control Manager 4-9 



When your application receives a mouse-down event, it should do the following: 

1 . If you used GetNextEvent to retrieve the mouse-down event, call FindWindow to 
determine which part of which window the cursor was in when the user pressed the 
mouse button. If you are using TaskMaster, this step is done for you. 

2 . If FindWindow or TaskMaster indicates that the mouse-down event was in the 
content region of the active window, use that window's control list. 

3 . If the event occurred in a content area, call FindControl with the pointer to the 
window to find out whether the event occurred on an active control. 

4. If FindControl returns a control handle, call TrackControl to handle user 
interaction with the control. TrackControl handles the highlighting of the control 
and determines whether the mouse is still in the control when the mouse button is 
released. The routine also handles the dragging of the thumb in a scroll bar and 
responds to presses or clicks in the other parts of a scroll bar. When TrackControl 
returns the part code for a valid control, the application must respond 
appropriately. 

The application's exact response to mouse activity in a control that retains a setting 
depends upon the current setting of the control (available from the GetCtlValue 
routine). For controls whose values can be set by the user, the SetCtlValue routine 
may be called to change the control's setting and redraw the control accordingly. 
For example, you can call SetCtlValue when a check box or radio button is clicked to 
change the setting and draw or clear the mark inside the control. 

When you need to, you can call HideControl to make a control invisible or 
ShowControl to make it visible. Similarly, you can call MoveControl, which simply 
changes a control's location without pulling around an outline of it, at any time. For 
example, when the user changes the size of a document window that contains a scroll 
bar, you can call HideControl to remove the old scroll bar, MoveControl to change 
its location, and ShowControl to display it as changed. 

Whenever necessary, you can read various attributes of a control with GetCtlAction, 
GetCtlTitle, GetCtlRefCon, or GetCtlParams; similarly, you can change those 
attributes with SetCtlAction, SetCtlTitle, SetCtlRefCon, or SetCtlParams'. 

4-10 Chapter 4: Control Manager 



Control Manager icon font 
The standard control definition procedures use a font to draw some control parts and 
their highlighted states. If you would like to use different icons, you can replace the 
default font with the SetCtllcons call, which replaces the font or returns the handle to 
the current font. The font format is shown in Table 4-4. 

Table 4-4 
Control Manager Icon font format 

Character 

0 
1 
2 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Description 

Check box off and not highlighted 
Check box off and highlighted 
Check box on and not highlighted 
Check box on and highlighted 
Radio button off and not highlighted 
Radio button off and highlighted 
Radio button on and not highlighted 
Radio button on and highlighted 
Up arrow not highlighted 
Up arrow highlighted 
Down arrow not highlighted 
Down arrow highlighted 
Left arrow not highlighted 
Left arrow highlighted 
Right arrow not highlighted 
Right arrow highlighted 
Size icon 

Control records 
The control record contains fields that define the behavior and appearance of the 
control. The first few fields of every control record are defined as shown in 
Figure 4-6. Additional data can be appended to the end of those fields; the 
NewControl routine calls the control's definition procedure to find out the size of the 
record to allocate before the record is actually allocated. The generic control record 
is illustrated in Figure 4-6. 

Control records 4-11 



Off.set Field 
so 

2 
ct/Next 

3 
4 

5 
ct/Owner 

6 
7 
8 

ct/Reel 

OF 
10 ct/Flag 

11 cHH/1/te 

12 ct/Value 
13 
14 
15 

ct/Proc 
16 
17 
18 
19 ct/Action 

lA 
l B 
lC 
l D 
l E 

cHData 

l F 
20 
21 

ct/RefCon 
22 
23 
24 
25 ct/Color 
26 
27 

Figure 4-6 
Generic control record 

4-12 Chapter 4: Control Manager 



ct/Next: A handle to the next control associated with this control's window. All the 
controls belonging to a given window are kept in a linked list, beginning in the 
wControl field of the window record and chained together through the ct/Next fields 
of the individual control records. The end of the list is marked by a zero value; as 
new controls are created, they're added to the beginning of the list. 

ctlOwner: A pointer to the window port to which the control belongs. 

ctlRect: The rectangle that defines the control's position and size in the local 
coordinates of the control's window. For simple buttons, radio buttions, and check 
buttons, if you leave the bottom and right coordinates of the rectangle as 0, the 
Control Manager will calculate the values for you. 

ctlFlag: A bit flag that further describes the control. The appropriate values are 
shown for each control in the sections that follow. 

ctlHilite: Specifies whether and how the control is to be highlighted and indicates 
whether the control is active or inactive. The values for ctlHilite are as follows : 

0 
1-254 
255 

Control active; no highlighted parts 
Part code of a highlighted part of the control 
Control inactive 

Only one part on a control can be highlighted at any one time, and no part can be 
highlighted on an inactive control. See the section "HiliteControl" in this chapter 
for more information. 

ctlValue: The control's current setting. For check boxes and radio buttons, 0 means 
the control is off, and a nonzero value means it's on. For scroll bars, the value is 
between O and the data size minus the view size. The field is also available for custom 
controls to use as necessary. 

ctlProc: For standard controls, the high-order byte determines the type of standard 
control, and bits 23--0 are zero. Values for standard controls are as follows: 

simpleProc $00000000 Simple button 
checkProc $02000000 Check box 
radioProc $04000000 Radio button 
scrollProc $06000000 Scroll bar 
growProc $08000000 Size box 

For nonstandard controls, ctlProc is a pointer to the control definition procedure 
for this type of control. 

ctlAction: Pointer to the control's custom action procedure, if any. The procedure 
TrackControl may call the custom action procedure to respond to the user's dragging 
the mouse inside the control. See the section "TrackControl" in this chapter for 
more information. 

Control records 4- l 3 



ctlData: Reserved for use by the control definition procedure, typically to hold 
additional information for a particular control type. For example, the standard 
definition procedure for scroll bars uses the low-order word as the view size and the 
high-order word as the data size. The standard definition procedures for simple 
buttons, check boxes, and radio buttons store the address of the control's title. 

ctlRefCon: This field is reserved for application use. 

ctlColor: Pointer to the control's color table, which is used by the control's 
definition procedure to draw the control. NIL causes a default to a standard color 
table defined by the control's definition procedure. 

More fields can be added to the end of the control record to further define the 
control. See the section "Scroll Bar Control Record" in this chapter for an example 
and the section "Defining Your Own Controls" in this chapter for more information. 

Control record fields used by standard controls are shown in the next sections. 

Simple button control records 

A button causes an immediate or continuous action when the user clicks it with the 
mouse. A simple button can be round-cornered or square-cornered and can have a 
single or a bold outline. You should use the bold outline on buttons that the user can 
use to select default values by pressing the Return key. By convention, a default 
selection should never cause the destruction of something (you shouldn't, for 
example, use a default Delete File) . Use a single outline for all other simple buttons. 

A square-cornered button can have a drop shadow. 

❖ Note: Simple buttons with thick outlines and drop shadows are the only standard 
controls that are drawn outside of their control rectangle. 

4-14 Chapter 4: Control Manager 



Figure 4-7 shows a simple button control record. 

Field Offset so,-------, 

2 
3 
4 
5 
6 
7 
8 

ct/Next 

1---- ----< 

c t/Owner 

1----- --i 

c t/Reef 

Long-HANDLE to next control; 0 for last control 

Long-POINTER to window to which control belongs 

: Four words-RECT data structure defining button's enclosing rectangle 

OF 
1-------i 

1 o ct/Flag Byte-Style of button (see Figure 4-8) 
1-------i 

11 c ttHtllte Byte-Current style of highlighting 

12 
c t/Value Word-Not used; set to 0 

13 t--------t 

14 
15 
16 
17 
18 
19 
lA 
1B 
lC 
1D 
lE 
lF 
20 
21 
22 
23 
24 

ct/Proc 

1-------< 

c t/Action 

1-------i 

c t/Data 

1-------i 

ct/RefCon 

1-------1 

Long- simpleProc ($00000000) 

Long-POINTER to button's custom action procedure; 
NIL for no custom procedure 

Long-POINTER to button title string 

Long-ReseNed for application use 

25 
26 
27 

ct/Color Long-POINTER to control 's color table , NIL for default table (see Figure 4-9) 

~--- -~ 
Figure 4-7 
Simple button control record 

Control records 4-15 



The ct/Flag value defines the button style, as shown in Figure 4-8. 

l7l6lsl4l312I lol 

Invisible = l 
Visible= 0 

ctllnvls j J 
Single-outlined, square-cornered, and drop-shadowed button = 11 

Single-outlined, square-cornered button = 10 
Bold-outlined, round-cornered button = 01 

Single-outlined, round-cornered button = 00 

Figure 4-8 
Simple button control flag 

The ct/Color field points to the simple button color table, which is defined as shown in 
Figure 4-9. 

Offset Field 

$0 
b ttnOutllne 

Word-Outline color 
Bits 15-8 = 0 7-4 = Outline color (bold outline and drop shadow. It used) 

3-0 = 0 

2 
bttnNorBack 

Word- Interior color when not highlighted 
Bits 15-8 = 0 7-4 = Background color 

3 3-0 = 0 

4 
b ttnSe/Back 

5 

Word-Interior color when highlighted (selected) 
Bits 15-8 = 0 7-4 = Background color 

3-0 =0 

6 
b ttnNorText 

7 

Word-Text color when not highlighted 
Bits 15-8 = 0 7-4 = Background color (only bits 5-4 used In 640 mode) 

3-0 = Foreground color (only bits 1-0 used In 640 mode) 

8 
bttnSe/Text 

9 

Word-Text color when highlighted (selected) 
Bits 15-8 = 0 7-4 = Background color (only bits 5-4 used In 640 mode) 

3-0 = Foreground color (only bits 1-0 used in 640 mode) 

Figure 4-9 
Simple button color table 

Check box control record 
Check boxes retain and display a setting, either checked (on) or not checked (off); 
clicking with the mouse reverses the setting. On the screen, a check box appears as a 
small square with a title to the right of the square; the box is either filled in with an X 
(checked) or is empty (not checked). Check boxes are frequently used to control or 
modify some future action, instead of causing an immediate action of their own. 
More than one box may be checked at any one time. 

4-16 Chapter 4: Control Manager 



Figure 4-10 shows a check box control record. 

Field Offset so~-----, 

2 
3 

4 

5 
6 
7 
8 

OF 

ct/Next 

1-------, 

ct/Owner 

1-------, 

ct/Rect 

f-------
10 f----ct_lR_og __ 

11 f---c_t_lHl_llt_e __ 

12 ct/Value 

13 1-------, 
14 
15 
16 

ct/Proc 

17 f-------, 
18 
19 
lA 
1 B 
lC 
1D 
1 E 
1 F 
20 
21 

22 

ct/Action 

1-------, 

ct/Doto 

1-------, 

ct/RefCon 

23 f-----.-, 
24 

25 
26 

ct/Color 

27 .__ ____ .....J 

Figure 4-10 

Long-HANDLE to next control; 0 for last control 

Long-POINTER to window to whic h check box belongs 

Four words-RECT data structure defining check box's enclosing rectangle 

Byte-Visibility of check box (see Figure 4-11) 
Byte-Current style of highlighting 

Word-0 if not checked, nonzero If checked 

Long-checkProc ($02000000) 

Long-POINTER to check box's custom action procedure; 
NIL for no custom procedure 

Long-POINTER to title string of check box 

Long-Reserved for application use 

Long-POINTER to color table; NIL for default table (see Figure 4-12) 

Check box control record 

Control records 4- l 7 



The ct/Flag value defines whether the check box is visible or invisible, as shown in 
Figure 4-11. 

!?l6ISl4l312I 1!0! 
ctllnvis J 

Invisible = 1 
Visible= 0 

Figure 4-11 
Check box control flag 

The pointer in the ct/Color field points to the check box color table, which is defined 
as shown in Figure 4-12. 

Offset Field ~------, 
$0 

Word-Reserved for future use; must be 0 

boxReserved 
1 
2 1--------1 Word-Color of check box when not highlighted 

boxNor Bits 15-8 = 0 Bits 7--4 = Bockground color (only bits 5-4 used In 640 mode) 
3 1--------1 Bits 3--0 = Foreground color (only bits 1--0 used In 640 mode) 

Word-Color of check box when highlighted (selected) 
4 boxSel Bits 15-8 = 0 Bits 7--4 = Bockground color (only bits 5-4 used In 640 mode) 
5 Bits 3--0 = Foreground color (only bits 1--0 used In 640 mode) 

Word-Color of title text 
6 boxT/tle Bits 15-8 = 0 Bits 7--4 = Background color (only bits 5-4 used In 640 mode) 
7 Bits 3--0 = Foreground color (only bits 1--0 used In 640 mode) 

Figure 4-12 
Check box color table 

Radio button control record 
Radio buttons also retain and display an on-or-off setting. They're organized into 
families; only one button in a family can be on at a time. Clicking any button on 
turns off all the others in the family, like the buttons on a car radio. Radio buttons are 
used to offer a single choice among several alternatives; the radio button that's on is 
filled with a small black circle. 

4-18 Chapter 4: Control Manager 



Figure 4-13 shows a radio button control record. 

Offset Field 
so.-------, 

l 
2 
3 
4 

5 
6 

7 
8 

cf/Next 

I-------, 

cf/Owner 

t-------; 

ct/Rect 

Long-HANDLE to next control; O for last control 

Long-POINTER to window to which radio button belongs 

i Four words-RECT data structure defining radio button's enclosing rectangle 

OF 
lQ ,___c_t_lFla_g _ ___, Byte-Visibility and family of button 
ll ,___c_t,-H,-lite-----, Byte-Current style of highlighting 

12 
13 
14 

15 

16 
17 
l 8 
19 
lA 
lB 
lC 
lD 
lE 
l F 
20 
21 
22 
23 
24 

ct/Value 

I-------, 

ct/Prac 

1-------

ct/Action 

t-------; 

ct/Data 

t-------; 

ct/RefCon 

I-------, 

Word-0 if off, nonzero if on 

Long-radioP roe ($04000000) 

Long-POINTER to radio button's custom action procedure; 
NIL for no custom procedure 

Long-POINTER to title string of radio button 

Long-Reserved for application use 

25 
26 
27 

cf/Colar Long-POINTER to color table; NIL for default table (see Figure 4-15) 

~----~ 
Figure 4-13 
Radio button control record 

Control records 4-19 



The ct/Flag field is defined as shown in Figure 4-14. 

l7l6lsl 4 l3l2I lol 
ctllnvls J 

Invisible= 1 
Visible= 0 

Family number 

Figure 4-14 
Radio button control flag 

The pointer in ct/Color points to the radio button color table, which is defined as 
shown in Figure 4-15. 

Offset 

$0 
1 
2 
3 
4 
5 
6 
7 

Field 
,--------, 

radReserved 

radNor 

1--------1 

radSel 
,__ ____ __, 

radntle 
.__ ____ __, 

Figure 4-15 

Word-Reserved for future use; must be 0 

Word-Color of radio button when not highlighted 
Bits 15--8 = 0 Bits 7-4 = Background color (only bits 5-4 used In 640 mode) 
Bits 3--0 = Foreground color (only bits 1--0 used In 640 mode) 

Word-Color of radio button when highlighted (selected) 
Bits 15-8 = 0 Bits 7-4 = Background color (only bits 5-4 used In 640 mode) 
Bits 3--0 = Foreground color (only bits 1--0 used In 640 model 

Word-Color of title text 
Bits 15-8 = 0 Bits 7-4 = Background color (only bits 5-4 used In 640 mode) 
Bits 3--0 = Foreground color (only bits 1--0 used In 640 mode) 

Radio button color table 

Scroll bar control record 
Scroll bars are predefined dials. Arrows in the scroll bars scroll data one line at a 
time, paging regions scroll data a "page" at a time, and the thumb can be dragged to 
represent any position within the data area. 

4-20 Chapter 4: Control Manager 



Figure 4-16 shows a scroll bar control record. 

Offset Field 
$0 Long-Handle to next control; NIL for last control 

l 
2 

ct/Next 

3 
4 
5 

cHOwner Long-POINTER to window to which scroll bar belongs 6 
7 
8 

c t/Reef 

Four words-RECT data structure defining scroll bar's enclosing rectangle 

OF 
10 ct/Flog Byte-Style of scroll bar (see Figure 4-17) 
11 cHH/1/te Byte-Current style of highlighting 
12 

ct/Value Word-Number between 0 and data size minus view size 
13 
14 
15 ct/Proc Long-scrol1Proc ($06000000) 
16 
17 
18 

' Long-POINTER to scroll bar's custom action procedure; 

lB I 
ct/Action 

NIL for no custom procedure 

lC 

ct/Doto Long-High-order word is data size; low-order word is view size 

lF 
20 

ct/RefCon Long-Reserved for application use 
23 
24 

ct/Color Long-POINTER to color table; NIL for default table (see Figure 4-18) 27 
28 

thumbRect 
Four words-RECT data structure defining thumb rectangle 

2F 
30 

pogeReglon Four words-RECT data structure defining page region, thumb bounds 38 

Figure 4-16 
Scroll bar control record 

Control records 4-2 l 



The ct/Flag field is defined as shown in Figure 4-17. 

l7l6!sl4l312I lol 

Invisible = 1 
ctllnvis J J 

Visible= 0 

horScro/1 
Horizontal scroll bar = 1 

Vertical scroll bar= 0 

rightF/ag -
Rlght arrow on scroll bar = 1 

No right arrow on scroll bar = 0 

leftF/ag -
Lett arrow on scroll bar = 1 

No left arrow on scroll bar = 0 

downF/ag ­
Down arrow on scroll bar = 1 

No down arrow on scroll bar = 0 

upF/ag ­
Up arrow on scroll bar = 1 

No up arrow on sroll bar = 0 

Figure 4-17 
Scroll bar control flag 

The pointer in ct/Color points to the scroll bar color table, which is defined as shown 
in Figure 4-18. 

Offset 

$0 
l 
2 
3 
4 
5 
6 
7 
8 
9 

A 

B 
C 
D 

Field 
,--------, 

borOuHlne 

borNorArrow 
,__ _____ ....., 

borSe/Arrow 

f--------i 

rArrowBoc 
,__ _____ ....., 

borNorThum 
,__ _____ ....., 

borSe/Thumb 

f--------i 

borPogeRgn 
E ,__ _____ ....., 

F 
borlnocHve 

L--------' 

Figure 4-18 

Word-Outtlne color 
Bits 15-8 = 0 Bits 7-4 = Outline color for arrow boxes, thumb, page region 
Blts3-0 = 0 

Word-Color of arrows when not highlighted 
Bits 15-8 = 0 Bits 7-4 = Background color (only bits 5-4 used In 640 mode) 
Bits 3-Q = Foreground color (only bits HJ used in 640 mode) 

Word-Color of arrows when highlighted (selected) 
Bits 15-8 = 0 Bits 7-4 = Background color (only bits 5-4 used In 640 mode) 
Bits 3-0 = Foreground color (only bits 1-0 used In 640 model 

Word-Color of arrow box Interior background 
Bits 15-8 = O Bits 7-4 = Background color 
Blts3-0 = 0 

Word-Thumb's Interior color when not highlighted 
Bits 15-8 = 0 Bits 7-4 = Background color 
Blts3-0 = 0 

Word-INTEGER; Reserved for future use; can be any value 

Word-Page region's lnterlor color 
Bits 15-9 = 0 Bit 8 = l for dotted pattern, 0 for solid pattern 
Bits 7-4 = Background of pattern, or color If solid Bits 3-Q = Foreground of pattern 

Word-Color of scroll bar's Interior when Inactive 
Bits 15-8 = 0 

7-4 = Background color 
3-0=0 

Scroll bar color table 

4-22 Chapter 4: Control Manager 



Size box control record 

Size boxes provide a graphic symbol to represent the idea of resizing something. 
Figure 4-19 shows a size box control record. 

Field Offset 
so.--------, 

2 

3 
4 
5 
6 
7 
8 

OF 

ct/Next 

------
ct/Owner 

1--------1 

ct/Rect 

------< 
10 ct/Flag 

1--------1 
11 ct/H/1/te 
------< 

12 
ct/Value 

13 1-------
14 
15 
16 

ct/Proc 

17 t-------i 
18 
19 
lA 
1B 
lC 
1D 
lE 
1 F 
20 
21 
22 
23 
24 

25 
26 
27 

ct/Action 

t-------; 

ct/Data 

------, 

ct/RefCon 

1-------

ct/Color 

~-----
Figure 4-19 

Long-HANDLE to next control; 0 for last control 

Long-POINTER to window to which size box belongs 

Four words-RECT data structure defining size box's enclosing rectangle 

Byte-Visibility of size box (see Figure 4-20) 
Byte-Not used 

Word-Not used 

Long-growProc ($08000000) 

Long-POINTER to control's custom action procedure; 
NIL for no custom procedure 

Long-Not used 

Long-Reserved for application use 

Long-POINTER to color table; NIL for default table (see Figure 4-21) 

Size box control record 

Control records 4-23 



The ct/Flag value defines the visibility of the size box, as shown in Figure 4-20. 

l7l6lsl4l3l2l 1101 
ctllnvls J 

Invisible = 1 
Visible= 0 

Figure 4-20 
Size box control flag 

The pointer in ct/Color points to the size box color table, which is defined as shown in 
Figure 4-21. 

Offset Field 

so 
l 

growOuHlne 

2 
3 

growNorBack 

Figure 4-21 
Size box color table 

Word- Outline color 
Bits 15--8 = 0 

7-4 = Outline color 
3--0 = 0 

Word-Color of Interior 
Bits 15--8 = 0 

7-4 = Background color 
3--0 = Icon's foreground color 

Defining your own controls 
In addition to using the predefined controls, you can also define custom controls of 
your own. Perhaps you need a three-way selector switch, a memory-space indicator 
that looks like a thermometer, a thruster control for a spacecraft simulator, or some 
other special type of control. Controls and their indicators can occupy regions of 
any shape. 

To define your own type of control, you place a control definition procedure in 
your application. The Control Manager stores the address of the procedure in the 
ct!Proc field of the control record when you create the control with a NewControl 
routine. Later, when the Control Manager needs to perform a type-dependent 
action on the control, it calls the control definition procedure. 

4-24 Chapter 4: Control Manager 



The definition procedure inputs and output are placed on the stack as follows: 

Stack before call 

prevtous contents 

-- longspace 

ct/Message 

-- ctlParam 

--theControlHandle 

Stack after call 

prevtous contents 

retValue 

--· 

--· 

--· 

Long-Space for result 

Word-Desired operation, as shown in Table 4-5 

Long-Value depends on operation 

Long-HANDLE to control 

~SP 

Long-Value depends on operation 

~SP 

The ct/Message parameter identifies the desired operation. It has one of the values 
shown in Table 4-5. 

Table 4-5 
Control Manager message parameters 

Value 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Message 

drawCtl 
calcCRect 
testCtl 
initCtl 
dispCtl 
posCtl 
thumbCtl 
dragCtl 
autoTrack 
newValue 
setParams 
moveCtl 
recSize 

Description 

Draw the control (or control part) 
Compute the rectangle to drag 
Test where mouse button was pressed 
Perform any additional control initialization 
Take any additional disposal actions 
Move the control's indicator 
Compute the parameters for dragging an indicator 
Drag either a control's indicator or the entire control 
Called while dragging if -1 is passed to TrackControl 
Called when the control gets a new value 
Called when control gets a new additional parameters 
Called when control moves; compute new position for parts 
Return control record size (in bytes) 

The value for ctlParam depends on the operation. Similarly, the control definition 
procedure returns a retValue only where indicated; in other cases, the routine can 
ignore retValue, since it is not used. 

Defining your own controls 4-25 



Draw routine 

The message drawCtl asks the control definition procedure to draw all or part of the 
control within its enclosing rectangle. The low-order word of ct/Param is a part code 
specifying the part of the control to draw or O for the entire control. If the control is 
invisible, there's nothing to do; if it's visible, the definition procedure should draw 
the control (or the requested part), taking into account the current highlighting and 
value . 

If ct/Param is the part code of the control's indicator, the draw routine can assume 
that the indicator hasn't moved; it might be called, for example, to highlight the 
indicator . 

Stack before call 

previous contents 

-- longspace 

ct/Message 

-- ct/Param 

- - theControlHandle 

Stack after call 

previous contents 

retValue 

- - · 

- - · 

--· 

Long-Space for result 

Word-drawCtl message 

Long-(Low word only) If part code, draw part; if 0, draw control 

Long-HANDLE to control 

Long-Undefined 

f- SP 

4-26 Chapter 4: Control Manager 



Test routine 
The Control Manager routine TestControl sends the message testCtl to the control 
definition procedure when the mouse button is pressed in a visible control. This 
message asks in which part of the control, if any, a given point lies. The point is 
passed as the value of ct!Param in the local coordinates of the control's window; the 
vertical coordinate is in the low-order word of the long integer, and the horizontal 
coordinate is in the high-order word. The control definition procedure should 
return the part code for the part of the control that contains the point; it should 
return O if the point is outside the control or if the control is inactive. 

Stack before call 

previous contents 

-- longspace 

ct/Message 

- - ct!Param 

- - theControlHandle 

Stack after call 

previous contents 

retValue 

--· 

- - · 

--· 

Long- Space for result 

Word- testCtl message 

Long-Point in window's local coordinates; low word = Y, high word = X 

Long- HANDLE to control 

f-SP 

Long-Part code if part contains point, 0 if it does not 

f-SP 

Defining your own controls 4-27 



Calculate indicator rectangle routine 

Just before the Control Manager starts to drag a control or its indicator, it calls the 
control's definition procedure to determine the coordinates of the control or its 
indicator. The highest bit of ct!Param must be O if the entire control is to be 
dragged, or 1 if the control's indicator is to be dragged. 

Stack before call 

previous contents 

-- longspace 

ct/Message 

-- ct!Param 

--theControlHandle 

Stack after call 

previous contents 

retValue 

-- · 

--· 

--

Long-Space for result 

Word-calcCRect message 

Long-RECT data structure address 

Long-HANDLE to control 

f-SP 

Long-0 for default RECT, nonzero if RECT is set 

f-SP 

If the definition procedure returns O and the entire control is to be dragged, the RECT 
pointed to by ctlParam is set to the control's enclosing rectangle. 

If the definition procedure returns O and the control's indicator is to be dragged, the 
Control Manager assumes that the record is set up like a scroll bar record, and the 
RECT is set to the thumb rectangle. See the section "Scroll Bar Control Record" in 
this chapter. 

4-28 Chapter 4: Control Manager 



Initialize routine 

After allocating and initializing the control record as appropriate when creating a 
new control, the Control Manager sends the message ini tCt 1 to the control 
definition procedure. The definition procedure can then perform any type-specific 
initialization it requires. For example, the control definition procedure for scroll 
bars initializes the thumb and page RECTs and also stores paraml and param2 in the 
ctlData field . The initialize routine for standard buttons, check boxes, and radio 
buttons does nothing. 

Stack before call 

previous contents 

-- longspace 

ct/Message 

-- ct/Param 

--theControlHandle 

Stack after call 

previous contents 

retValue 

--· 

--· 

- - · 

Long-Space for result 

Word-initCtl message 

Long- Low word = paraml, high word = param2; passed to NewControl 

Long-HANDLE to control 

Long-Undefined 

f- SP 

Defining your own controls 4-29 



Dispose routine 
The Control Manager's DisposeControl routine sends the message dispCtl to the 
control definition procedure, telling it to perform any additional actions required 
when disposing of the control. If the control definition procedure returns O for 
retValue, the control will be erased and removed from the control list, and its record 
will be deallocated. The predefined standard controls always return 0. 

If a custom control returns a nonzero retValue, the definition procedure has a chance 
to abort the disposal. 

Stack before call 

prevtous contents 

-- longspace 

ct/Message 

-- ctlParam 

- - theControlHandle 

Stack after call 

prevtous contents 

retValue 

- - · 

--· 

--· 

Long-Space for result 

Word-dispCtl message 

Long-Undefined 

Long-HANDLE to control 

Long-0 to continue disposal, nonzero to abort disposal 

f- SP 

4-30 Chapter 4: Control Manager 



Position routine 
When dragging a control's indicator, TrackControl calls the control definition 
procedure with the message posCtl to reposition the indicator and update the 
control's setting accordingly. The value of ct!Param is a point giving the vertical and 
horizontal offset, in pixels, by which the indicator is to be moved relative to its 
current position. (For example, this is often the offset between the points where the 
user pressed and released the mouse button while dragging the indicator.) The 
vertical offset is given in the low-order word of ct!Param and the horizontal offset in 
the high-order word. The definition procedure should calculate the control's new 
setting based on the given offset, update the ct/Value field in the control record, and 
redraw the control within its window to reflect the new setting. 

❖ Note: The Control Manager routines SetCtlValue and SetCtlParams do not call 
the control definition procedure with this message; instead, they pass the 
newValue and setParams messages respectively. See the sections "New Value 
Routine" and "Set Parameters Routine" in this chapter. 

Stack before call 

previous contents 

-- longspace 

ct/Message 

-- ct!Param 

--theContro!Handle 

Stack after call 

previous contents 

retValue 

--· 

--· 

--· 

Long-Space for result 

Word-posCtl message 

Long-High word is horizontal offset, low word is vertical offset 

Long-HANDLE to control 

~SP 

Long-0 = default reposition, nonzero = application did reposition 

~SP 

❖ Note: If you're using the default reposition, your control record must look like a 
scroll bar control record. The Control Manager repositions the indicator as if it 
was a thumb on a scroll bar. 

Defining your own controls 4-31 



Thumb routine 
Before the Control Manager begins to drag a control's indicator, it calls the control's 
definition procedure with the message thumbCtl. The control definition procedure 
should respond by calculating the limit rectangle, slop rectangle, axis constraint, 
and outline pattern to use for dragging the control's indicator. See the DragRect 
routine in this chapter for more information about these parameters. The 
parameters as they are defined in the limit block (shown in Figure 4-22) are passed to 
that routine. 

Stack before call 

previous contents 

-- longspace 

ct/Message 

-- ctlParam 

--theControlHandle 

Stack after call 

previous contents 

retValue 

- - · 

- - · 

--· 

Long-Space for result 

Word- thumbCtl message 

Long-POINTER to parameter block for dragging an indicator 

Long-HANDLE to control 

f-SP 

Long-0 = default reposition, nonzero = application did reposition 

f-SP 

4-32 Chapter 4: Control Manager 



The ctlParam parameter is a pointer to the limit-block data structure, which is shown 
in Figure 4-22. 

Offset 

$0 
l 
2 
3 
4 

5 

6 
7 
8 
9 

QA 

OB 
QC 
OD 
0 E 
0 F 
10 
11 
12 
13 
14 
15 

Field 
~----~ 

boundRect 

1-------< 

s/opRect 

1--------1 

oxlsPorom 

--------< 

drogPott 

~----~ 

Figure 4-22 
Limit-block data 

Four words-RECT data structure specifying drag limit 

Four words-RECT data structure specifying cursor limit 

Word-Movement constraint; 0 = none, l = horizontal, 2 = vertical 

Long-Pointer to drag outline pattern 

Defining your own controls 4-33 



If the definition procedure returns 0, the default parameters shown in Figure 4-23 are 
used. 

Offset 

$0 

1 
2 
3 
4 

5 
6 
7 
8 
9 

OA 
OB 
oc 
OD 
OE 
0 F 
10 
11 
12 
13 
14 

Field -----~ 

boundRect 

1------4 

s/opRect 

1------4 

axlsParam 

1------.... 

dragPatt 

15 '--------' 

Figure 4-23 

Four words-RECT data structure specifying pageRegion 

Four words-RECT data structure specifying pageRegion plus 16 pixels all around 

Word-2 if bit 4 of ct/Flag is c lear, l if bit 4 is set 

Long-Pattern generated from pageRgnColor in control 's color table 

Default limit-block values 

4-34 Chapter 4: Control Manager 



Drag routine 

The message dragCtl asks the control definition procedure to drag the control or its 
indicator around the screen to follow the mouse until the user releases the mouse 
button. The ct!Param parameter specifies O to drag the entire control or a nonzero 
value as the part code of the part to drag. 

Stack before call 

previous contents 

-- longspace 

ct/Message 

-- ct!Param 

--theContro!Handle 

Stack after call 

previous contents 

retValue 

--· 

--· 

--· 

Long-Space for result 

Word-dragCtl message 

Long-(Low-order word only) Part code to drag, 0 = drag entire control 

Long-HANDLE to control 

f- SP 

Long-0 to use default dragging, nonzero if application did dragging 

f-SP 

The control definition procedure does not have to implement any form of custom 
dragging; if the procedure returns a retValue of 0, the Control Manager uses its own 
default method of dragging (calling DragControl to drag the control or DragRect to 
drag its indicator). Conversely, if the control definition procedure chooses to do its 
own custom dragging, it should signal the Control Manager not to use the default 
method by returning a nonzero retValue. 

Defining your own controls 4-35 



Track routine 
You can design a control that has its action procedure in the control definition 
procedure. To do this, pass -1 for the actionProc parameter to the TrackControl 
routine and set the control's ct/Action field to -1. TrackControl responds by calling 
the control definition procedure with the autoTrack message. The definition 
procedure should respond like an action procedure, as discussed in the section 
"TrackControl" in this chapter. 

The ctlParam parameter contains the part code, which defines in which part of the 
control the cursor was when the mouse button was pressed. 

Stack before call 

previous contents 

-- longspace 

ctlMessage 

-- ctlParam 

--theControlHandle 

Stack after call 

previous contents 

retValue 

--· 

--· 

--· 

Long-Space for result 

Word-autoTrack message 

Long-(Low-order word only) Part code, 0 if not currently in part 

Long-HANDLE to control 

f-SP 

Long-Undefined 

f-SP 

4-36 Chapter 4: Control Manager 



New value routine 
The Control Manager calls the control's definition procedure with the message 
newValue any time a control's value changes. First, the Control Manager stores the 
new value in the ct/Value field of the control's record. The definition should 
compute any new parameters affected by the change, such as a new thumb position 
for scroll bars, and then redraw the control (if it is visible). The definition procedure 
can assume that the control is already drawn in the window, so, in the case of scroll 
bars, only the thumb has to be erased and redrawn. Actually, the definition 
procedure for standard scroll bars erases only the part of the thumb that uncovered 
the page region, rather than the entire thumb. 

In Version 1.2 and later of the Control Manager, ct!Param contains the previous and 
new values. 

❖ Note: The ct!Param parameter is undefined in Control Manager Version 1.1 
and earlier. 

Stack before call 

previous contents 

-- longspace 

ct/Message 

-- ct!Param 

--theContro!Handle 

Stack after call 

previous contents 

retValue 

--· 

--· 

--· 

Long-Space for result 

Word-newValue message 

Long-High-order word is previous value, low-order word is new value 

Long-HANDLE to control 

f-SP 

Long-Undefined 

f-SP 

Defining your own controls 4-37 



Set parameters routine 
The Control Manager calls the control's definition procedure with the message 
setParams any time a control's additional parameters change. The additional 
parameters are defined by the control. The values could be anything, even a pointer 
to more parameters. The definition should perform the actions the new parameters 
cause, including redrawing the control if necessary. The definition procedure can 
assume that the control is already drawn in the window, in contrast to the situation in 
which new parameters are sent with the message initCtl (see the section "Initialize 
Routine" in this chapter). 

The only predefined control that uses additional parameters is the scroll bar. The 
low-order word is the view value, and the high-order word is the data size. Simple 
buttons, check boxes, and radio buttons do nothing with additional parameters. The 
standard scroll bar definiton procedure stores the values in the ct/Data field of the 
control's record, computes a new thumb, and draws the new thumb in the scroll bar 
(if the scroll bar is visible). 

Stack before call 

prevtous contents 

-- longspace 

ct/Message 

-- ct!Param 

--theControlHandle 

Stack after call 

previous contents 

retValue 

- - · 

--· 

- - · 

Long-Space for result 

Word-setParams message 

Long-New parameters 

Long-HANDLE to control 

Long-Undefined 

~SP 

4-38 Chapter 4: Control Manager 



Move routine 
The Control Manager calls the control's definition procedure with the message 
moveCtl from the MoveControl routine. The Control Manager first hides the 
control with HideControl, if the control was visible, and moves the control's 
enclosing rectangle (as defined by the ct!Rect field of the control). The definition 
procedure should compute any other parameters necessary and return. 

Stack before call 

previous contents 

-- longspace 

ct/Message 

-- ctlParam 

--theControlHandle 

Stack after call 

previous contents 

retValue 

--· 

--· 

--· 

Long-Space for result 

Word-moveCtl message 

Long-High-order word = X-axis change, low-order = Y-axis change 

Long-HANDLE to control 

f-SP 

Long-Undefined 

f-SP 

For example, the standard definition procedure for scroll bars also moves the thumb 
and pageRegion fields in the control record. Upon return from the definition 
procedure, the Control Manager makes a ShowControl call if the control was visible 
on entry in order to draw the control at its new position. The definition procedure 
should not redraw the control here, but should do everything necessary to ensure 
that the control will be drawn properly at its new position. 

Defining your own controls 4-39 



Record size routine 
The Control Manager calls the control definition procedure with the message 
recCtl from the NewControl routine before it allocates memory for the control 
record. NewControl then allocates the number of bytes returned in retValue for the 
control's record. 

Important 
The theContro/Handle parameter as passed to the definition procedure Is not 
valid In this case. Because the control's record has not been a llocated, no 
access to the record should be performed during the record size call. After the 
record has been allocated and initialized by the Control Manager, the definition 
procedure will be called again with the message initCtl. See the section 
"Initialize Routine· In this chapter. 

Stack before call 

previous contents 

-- longspace 

ct/Message 

-- ctlParam 

--theControlHandle 

Stack after call 

previous contents 

retValue 

--· 

--· 

--· 

Long-Space for result 

Word-recCtl message 

Long-Undefined 

Long-HANDLE to control 

f-SP 

Long-Number of bytes needed for control record 

f-SP 

If your control needs only the standard control record, for example, button, check 
box, and radio button control records, return the size of the standard record 
(decimal 40). If your control needs additional data fields, for example, for a scroll 
bar record, return the size of the standard record, plus the additional size. You 
should never return a number less than the number of bytes in a standard record. 

4-40 Chapter 4: Control Manager 



$0110 CtlBootlnit 
Initializes the Control Manager; called only by the Tool Locator. 

Warning 
An application must never make this call. 

Parameters The stack is not affected by this call. There are no input or output parameters. 

Errors None 

C Call must not be made by an application. 

Control Manager housekeeping routines 4-41 



$0210 

Parameters 

CtlStartUp 
Starts up the Control Manager for use by an application. 

Important 

Your application must make this call before It makes any other Control Manager 
calls. 

Stack before call 

previous contents 

user/D Word- ID number of the application 

dPageAddr Word- Bank $0 starting address of one page of direct-page space 

0SP 

Stack after call 

I previous contents 1
0 

SP 

Errors $1001 wmNotStart edUp Window Manager not initialized 

C extern pascal void CtlStartUp (userID,dPageAddr ) 

Word use r ID ; 

Word dPageAddr; 

4-42 Control Manager housekeeping routines 



$0310 

Parameters 

Errors 

C 

$0410 

Parameters 

CtlShutDown 
Shuts down the Control Manager. 

Important 

If your application has started up the Control Manager, the application must 
make this call before It quits. 

CtlShutDown does not dispose of controls, because the Window Manager disposes of 
all controls in a window. Therefore, the Window Manager must be shut down before 
the Control Manager. 

The stack is not affected by this call. There are no input or output parameters. 

None 

extern pascal void Ct l ShutDown() 

CtlVersion 
Returns the version number of the Control Manager. 

Staclc before call 

previous contents 

wordspace 

Staclc after call 

previous contents 

Versionlnfo 

Errors None 

Word-Space for result 

~SP 

Word-Version number of Control Manager 

~SP 

C extern pascal Word CtlVersion() 

Control Manager housekeeping routines 4-43 



$0510 CtlReset 
Resets the Control Manager; called only when the system is reset. 

Werning 
An application must never make th is call, 

Parameters The stack is not affected by this call. There are no input or output parameters. 

Errors None 

C Call must not be made by an application. 

$0610 CtlStatus 
Indicates whether the Control Manager is active. 

Parameters 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

activeFlag 

Errors None 

Word-Space for result 

~SP 

Word- BOOLEAN; TRUE if Control Manager active; FALSE if inactive 

~SP 

C extern pascal Boolean CtlStatus() 

4-44 Control Manager housekeeping routines 



$1210 

Parameters 

Errors 

C 

$0Al0 

Parameters 

CtlNewRes 
Reinitializes resolution and mode. Call CtlNewRes after you have changed the video 
mode . 

The stack is not affected by this call. There are no input or output parameters. 

None 

extern pascal void CtlNewRes() 

DisposeControl 
Deletes a specified control from its window's control list and releases the memory 
OC:CUpied by the control record 11nd any data structures associated with the control. 

❖ Note: DisposeControl does not erase the control from the screen. If necessary, 
hide the control by calling HideControl before calling DisposeControl. 

Stack before call 

prevtous contents 

--theControlHandle 

Stack after call 

Long-HANDLE to control 

f- SP 

previous contents I 
-------- f- SP 

Errors None 

C extern pascal void DisposeControl (theControlHandl e) 

CtlRecHndl theControlHandle; 

Control Manager routines 4-45 



$1710 

Parameters 

DragControl 
Pulls a dotted outline of the control around the screen, following the movements of 
the mouse until the button is released. When the mouse button is released, 
DragControl calls the MoveControl routine to move the control to the appropriate 
location. Called when the mouse button is pressed while the cursor is in a specified 
control. 

❖ Note: Before beginning to follow the mouse, DragControl calls the control 
definition procedure to allow the application to perform its own custom dragging if 
it chooses. If the definition procedure doesn't choose to perform any custom 
dragging, DragControl uses the default dragging method. 

The start)(, startY, limitRectPtr, and slopRectPtr parameters have the same meaning 
as in the DragRect routine (see the section "DragRect" in this chapter). The axis 
parameter has the same meaning as bits 1--0 in the dragFlag parameter of the 
DragRect routine. 

Stack before call 

previous contents 

startX 

startY 

-- limitRectPtr 

- slopRectPtr 

axis 

- theControlH and le 

Stack after call 

--· 

--· 

-- · 

Word-X coordinate of starting point in local coordinates 

Word-Y coordinate of starting point in local coordinates 

Long-POINTER to bounds RECT data structure 

Long-POINTER to slop RECT data structure 

Word-Movement constraint: 0 = none, 1 = horizontal, 2 = vertical 

Long-HANDLE to control 

~SP 

previous contents I 
--------~SP 

Errors None 

4-46 Control Manager routines 



C extern pascal void DragControl (startX ,startY , limitRectPtr , slopRectPtr , 

axis,theControlHandle ) 

Integer 

Integer 

startX; 

startY; 

Rect *limitRectPtr; 

Rect *slopRectPtr; 

Word axis; 

CtlRecHndl theControlHandle; 

You can also use the following alternate form of the call: 

extern pascal void DragControl(startPoint,limitRectPtr , slopRectPtr, 
axis , theControlHandle) 

Point startPoint ; 

Rect *limitRectPtr ; 

Rect *slopRectPtr ; 

Word axis; 

CtlRecHndl theControlHandle; 

Control Manager routines 4-4 7 



$1D10 DragRect 
Pulls a dotted outline of a specified rectangle around the screen, following the mouse 
movements until the mouse button is released. 

Parameters 

Stack before call 

prevtous contents 

-- longspace --· 

-- acttonProcPtr --· 

-- dragPatternPtr --· 

startX 

startY 

-- dragRectPtr --· 

-- limttRectPtr --· 

-- slopRectPtr --· 

dragFlag 

Stack after call 

previous contents 

moveDelta 

Errors $1001 

Long-Space for result 

Long-POINTER to routine; NIL for default 

Long-POINTER to pattern to use for drag outline 

Word-X coordinate of starting point in local coordinates 

Word-Y coordinate of starting point in local coordinates 

Long-POINTER to RECT data structure of rectangle to be dragged 

Long-POINTER to bounds RECT data structure 

Long-POINTER to slop RECT data structure 

Word-Bit flag that customizes DragRect (see Figure 4--25) 
f-SP 

Long-High word = amount X changed, low word = amount Y changed 

wmNotStartedUp Window Manager not initialized 

4-48 Control Manager routines 



C extern pascal Longword DragRect (actionProcPtr , dragPatternPtr , 

startX , startY , dragRectPtr , limitRectPtr , slopRectPtr , dragFlag ) 

VoidProcPtr actionProcPtr ; 

Pattern dragPatternPtr ; 

Integer startX; 

Integer startY; 

Rect *dragRectPtr ; 

Rect *limitRectPtr ; 

Rect *slopRectPtr ; 

Word dragFlag ; 

You can also use the following alternate form of the call: 

extern pascal Longword DragRect (actionProcPtr , dragPatternPtr , 
st a rt , dragRectPtr , limitRectPtr , slopRectPtr,dragFlag ) 

VoidProcPtr actionProcPtr; 

Pattern dragPatternPtr ; 

Point start ; 

Rect *dragRectPtr ; 

Rect *limitRectPtr ; 

Rect *slopRectPtr; 

Word dragFlag; 

(continued) 

Control Manager routines 4-49 



More about DragRect parameters 
The actionProcPtr parameter is a pointer to a procedure that defines some action to 
be performed repeatedly for as long as the user holds down the mouse button; the 
procedure should have no parameters. If actionProcPtr is NIL, DragRect simply 
retains control until the mouse button is released. 

The dragPatternPtrpoints to a QuickDraw II type of pattern. See Chapter 16, 
"QuickDraw II," in Volume 2 for more information. 

The startX and startY parameters are assumed to be the point where the cursor was 
when the mouse button was originally pressed in local cooidinates. "Local 
coordinates," in this case, means coordinates that are local to the current GrafPort. 
However, if you want to drag an object anywhere on the screen, then the current 
GrafPort should be the size of the screen. When the GrafPort is the size of the screen, 
local and global coordinates are the same. 

The RECT data structures pointed to by limitRectPtr and slopRectPtr are also in local 
coordinates (that is, local as explained for startX and startY). To understand these 
parameters, you must first understand the concept of offset point The offset point 
is initially the point whose vertical and horizontal offsets from the top-left corner of 
the region's enclosing rectangle are the same as those of startX and startY The offset 
point follows the mouse location, except that DragRect never moves the offset point 
outside of the limit rectangle; this limits the travel of the region's outline (but not 
the movements of the mouse). The slop rectangle (defined by the RECT data 
structure pointed to by slopRectPtr), which should completely enclose the limit 
rectangle, allows the user some margin for error (that is, the user doesn't have to be 
extremely precise) when moving the mouse. DragRect's behavior while tracking the 
mouse depends on the location of the mouse with respect to these two rectangles, as 
follows: 

■ When the mouse is inside the limit rectangle, the region's outline follows it 
normally. If the mouse button is released while the mouse is there, the region 
should be moved to the mouse location. 

■ When the mouse is outside the limit rectangle but inside the slop rectangle, 
DragRect "pins" the offset point to the edge of the limit rectangle. If the mouse 
button is released while the mouse is there, the region should be moved to this 
pinned location. 

■ When the mouse is outside the slop rectangle, the outline disappears from the 
screen, but the DragRect routine continues to follow the mouse; if the mouse moves 
back into the slop rectangle, the outline reappears. If the mouse button is released 
while the mouse is outside the slop rectangle, the region should not be moved from 
its original position. 

4-50 Control Manager routines 



Figure 4-24 shows what happens when 

■ The user moves the mouse past the boundaries of the limit rectangle but inside the 
boundaries of the slop rectangle 

■ The user moves the mouse outside the the boundaries of both the limit and the 
slop rectangles 

... ... . . . 

~ 
, . . . . . . ... 

Cursor 

Drag rectangle 

Limit rectangle 

Slop rectangle 

Figure 4-24 
DragRect examples 

, . .. . • .... , 
' • 

1. Outside limit 
rectangle but inside 
slop rectangle 

.. . U ... .. 
• • 

2. Outside slop 
rectangle 

The left diagram in Figure 4-24 shows the starting position. As the cursor is moved, 
an outline of the window is dragged with it. The outline will seem to be glued to the 
cursor at the offset point. However, if the cursor moves outside the limit rectangle, 
the outline will be left behind, as shown in the center diagram. As the cursor is 
moved outside the limit rectangle, but within the slop rectangle, the outline will get as 
close to the cursor as possible without letting the offset point leave the limit 
rectangle. Finally, if the cursor moves outside the slop rectangle, the outline will 
snap back to its starting position. If the cursor moves back into the slop rectangle, 
the outline will snap out to get as close to the cursor as it can. 

If the mouse button is released within the slop rectangle, the high-order word of the 
value returned by DragRect contains the vertical coordinate of the ending mouse 
location minus that of startX and startY, and the low-order word contains the 
difference between the horizontal coordinates. If the mouse button is released 
outside the slop rectangle, both words are 0. 

(continued) 

Control Manager routines 4-5 1 



The dragFlag parameter allows you to customize the DragRect routine so that it 
performs in different ways. The meanings of the bits in the flag are summarized in 
Figure 4-25, and each bit is discussed in greater detail after the figure. 

l1sl14l13l12l1111019 I a I 7 I 6 Is 141312 I 1 Io I 

Grid value J " J 
Reserved for future use; set to 0 

1 11 1 1 11 'IJ 
Set dragRect to RECT being dragged = l 

Don't return final RECT in dragRect = 0 

Limit RECT contains minimum and maximum values = l 

Figure 4-25 

Limit RECT contains a bounds RECT = 0 

Custom drag shape = l 
Default dragging = 0 

Drag a rubber-band rectangle = l 
Drag a rectangle = 0 

Reserved = 11 
Allow vertical movement only = l 0 

Allow horizontal movement only= 01 
No movement constraint = 00 

DragRect routine dragF/ag parameter 

Bits 15-8 specify on what vertical columns the rectangle's horizontal position is to be 
bound. Values $00xx and $Oboe both specify single horizontal movement; other 
values passsed must be a power of 2. For example, if the value $04xx is passed, the 
smallest amount of movement possible would be 4 pixels to the left or right of the 
starting position. From there, movements to the left or right of 8, 12, 16, or 20 
pixels, and so on for other multiples of 4 would be possible. 

The feature can be used to move dithered colors, which would otherwise be position 
dependent, and to speed up pixel copying by forcing a pattern to stay on byte or 
word boundaries. See Chapter 16, "QuickDraw II," in Volume 2 for more 
information about dithered colors. 

Bit 5 can be set to 1 to make the DragRect routine store coordinates of the dragged 
rectangle in the RECT data structure pointed to by the dragRectPtr parameter. That 
RECT will then be updated whenever DragRect moves the rectangle. The RECT can 
be used as the final RECT when the DragRect routine returns, or by a custom draw 
routine for drawing the current RECT. See the description of bit 3. 

4-52 Control Manager routines 



Bit 4 can be set to 1 to pass the maximum and minimum amounts the cursor is 
allowed to move from its starting position (the delta values). This bit can be useful 
when you'd like to pin the cursor to a RECT other than the drag RECT. The values are 
signed and passed in the RECT data structure for the limit rectangle as follows: 

■ Top of limit rectangle = minimum Y delta (0 or less) 

■ Left of limit rectangle = minimum X delta (0 or less) 

■ Bottom of limit rectangle = maximum Y delta (0 or greater) 

■ Right of limit rectangle = maximum X delta (0 or greater) 

Bit 3 can be set to 1 to use a custom draw routine for drawing the drag shape. In this 
case, the actionProcPtr parameter points to the custom routine that will be called to 
draw the drag outline. The custom routine will not be called in the same way or at the 
same time intervals as an action routine, but will be called whenever the DragRect 
routine determines it should be. The custom routine picks up the change in the 
cursor's position from the starting position passed in the startX and startY 
parameters. 

Bit 2 defines the shape being dragged. If the bit is set to 1, the shape is a rectangle 
with a constant upper-left corner and a changing lower-right corner. The movement 
delta is added to the bottom and right sides of the drag rectangle to compute the drag 
rectangle. If bit 2 is 0, the shape is a rectangle with a constant width and height. The 
movement delta is added to all four sides of the drag rectangle to compute the drag 
rectangle. 

Bits 1-0 allow you to restrict the region's motion to only one axis. They have one of 
the values shown in Table 4-6. 

Table 4-6 
Movement constraint values 

Value 

0 
1 
2 

Name 

noConstraint 
hAxisOnly 
vAxisOnly 

Description 

No constraint on movement 
Movement constrained to horizontal axis only 
Movement constrained to vertical axis only 

If an axis constraint is in effect, the outline will follow the mouse's movements along 
the specified axis only, ignoring motion along the other axis. 

Control Manager routines 4-53 



$1010 

Parameters 

DrawControls 
Draws all controls currently visible in a specified window. The controls are drawn in 
reverse order of creation; thus, in case of overlap, the controls created first appear 
frontmost in the window. 

Important 
Window Manager routines such as SelectWlndow, ShowWlndow, and 
BrlngToFront do not call DrawControls to display the window's controls. They 
Just add the areas of the window that had not been visible to the window's 
update region, thus generating an update event. When your application 
receives an update event for a window that contains controls, the application 
should always call DrawControls explicitly between the BeglnUpdate and 
EndUpdate calls. 

Stack before call 

prevtous contents 

-- theWtndowPtr Long-POINTER to window whose controls are to be drawn 

~SP 

Stack after call 

previous contents I 
------- -~SP 

Errors None 

C exter n pascal voi d Dr awC ontrols (theWindowP t r ) 

GrafPo rtPtr theWindowPt r; 

4-54 Control Manager routines 



$2510 

Parameters 

DrawOneCtl 
Draws a specified control. If you want to draw all of the controls in the control list, see 
the section "DrawControls" in this chapter. 

Stack before call 

previous contents 

--theContro/Handle Long-HANDLE to control to be drawn 

~SP 

Stack after call 

previous contents I 
- - ------ ~SP 

Errors None 

C e xtern p asc a l void Dr a wOne Ctl (the ControlHa nd le ) 

CtlRecHnd l theControlHa nd l e; 

Control Manager routines 4-55 



$2410 

Parameters 

EraseControl 
Makes a specified control invisible by filling the region the control occupies with the 
background pattern of the window's GrafPort. Unlike the HideControl routine, 
EraseControl does not add the control's enclosing rectangle to the window's update 
region . 

The specified control's ct/Flag field is set to make the control invisible. If you need to 
make the control reappear, use the ShowControl routine. 

If the control is already invisible, EraseControl has no effect. 

Stack before call 

previous contents 

-- theControlHandle Long-HANDLE to control to be erased 

~SP 

Stack after call 

previous contents I 
---------~SP 

Errors None 

C extern pascal void EraseControl(theControl Handle ) 

CtlRecHndl theControlHandle ; 

4-56 Control Manager routines 



$1310 FindControl 
Tells in which of a specified window's controls, if any, the cursor was in when the user 
pressed the mouse button, as follows: 

■ If the mouse button was pressed while the cursor was in a visible, active control, 
FindControl sets the JoundCtlPtr parameter to the control handle and returns a 
part code identifying the part of the control in which the cursor was located when 
the mouse button was pressed. 

■ If the mouse button was pressed while the cursor was in an invisible or inactive 
control or not in any control, FindControl returns O as JoundPart, and JoundCt!Ptr 
is undefined. 

❖ Note: FindControl also returns O as found.Part, and JoundCt!Ptr is undefined if the 
window is invisible or doesn't contain the specified point. However, the Window 
Manager shouldn't return this window in the first place, so this situation shouldn't 
arise . 

Parameters 

Stack before call 

previous contents 

wordspace 

-- JoundCtlPtr 

pointX 

pointY 

-- theWindowPtr 

Stack after call 

previous contents 

JoundPart 

---

---

Errors None 

Word-Space for result 

Long-POINTER to address where handle of found control will be stored 

Word-X coordinate to check, in global coordinates 

Word-Y coordinate to check, in global coordinates 

Long-POINTER to window to check 

f-- SP 

Word-Part code of found part of control 

f-- SP 

Control Manager routines 4-57 



C extern pascal Word FindControl(foundCtlPtr , pointX , pointY , theWi ndowPtr) 

CtlRecHndl *foundCtlPtr ; 

Integer pointX; 

Integer pointY ; 

GrafPortPtr theWindowPtr ; 

You can also use the following alternate form of the call: 

extern pascal Word FindControl ( foundCtlPtr , foundPoint ,theWindowPtr ) 

CtlRecHndl *foundCtlPtr ; 

Point foundPoint ; 

GrafPortPtr theWindowPtr ; 

About FindControl and Window Manager FindWindow routine 

When the Window Manager routine FindWindow reports that the mouse button was 
pressed in the content region of a window and the window contains controls, your 
application should call FindControl with theWtndowPtr equal to the window pointer 
and pointX/pointYequal to the point (in global coordinates) where the cursor was 
when the mouse button was pressed. 

4-58 Control Manager routines 



$2110 GetCtlAction 
Returns the current value of a specified control's ctlActton field. 

Parameters 

Stack before call 

previous contents 

longspace 

-- theControlH andle 

Stack after call 

previous contents 

-- ctlActionValue 

Errors None 

Long- Space for result 

Long- HANDLE to control 

~SP 

Long- Value in control's ctlActton field 

~SP 

C extern pas c a l LongProcPtr GetCtlAction( t he Co nt r o lHandle ) 

CtlRec Hndl theControlHandle ; 

Control Manager routines 4-59 



$1F10 GetCtlDpage 
Returns the value of the Control Manager's direct page. This call is normally made 
only by the Dialog Manager. 

Parameters 

Stack before call 

previous contents 

words pace 

Stack after call 

previous contents 

ctlDPage 

Errors None 

Word-Space for result 

f-SP 

Word-Bank $0 starting address of Control Manager's direct page 

f-SP 

C extern pascal Word GetCtlDPage() 

4-60 Control Manager routines 



$1Cl0 

Parameters 

GetCtlParams 
Returns a specified control's additional parameter settings. 

Scroll bars use paraml as the scroll bar's view and param2 as the data size. 

Simple buttons, check boxes, radio buttons, and grow boxes do not use paraml or 
param2. 

❖ Note: Custom controls might or might not support this feature, depending upon 
the custom control. 

Staclc before call 

previous contents 

longs pace 

-- theControlH andle 

Staclc after call 

previous contents 

paraml 

param2 

Errors None 

Long-Space for result 

Long-HANDLE to control 

Word-Value of additional control parameter 

Word-Value of additional control parameter 

f- SP 

C extern pascal Longword GetCtlParams (theControlHandle ) 

CtlRecHndl theControlHandle ; 

Control Manager routines 4-61 



$2310 GetCtlRefCon 
Returns the current value of a specified control's ct!RejCon field. 

Parameters 

Stack before call 

previous contents 

longspace 

--theContro!Handle 

Stack after call 

previous contents 

-- ct!RejConValue 

Errors None 

Long- Space for result 

Long-HANDLE to control 

f-SP 

Long-Value in control's ct!RejCon field 

f- SP 

C ext e rn pascal Lon g word GetCtlRefCon (theControlHand le ) 

CtlRecHndl theControlHa ndle ; 

4-62 Control Manager routines 



$0D10 

Parameters 

GetCtlTitle 
Returns the value in a specified control's ct/Data field. For controls with titles, the 
value is the pointer to the control's Pascal-type title string. For scroll bars, the 
ct/Data field contains the view and data sizes. For custom controls, the ct/Data field 
is defined by the control. 

Stack before call 

previous contents 

longspace 

--theControlHandle 

Stack after call 

previous contents 

ctlTttlePtr 

Errors None 

Long-Space for result 

Long-HANDLE to control 

f-SP 

Long-POINTER to control's ct/Data field 

f-SP 

C extern pascal Pointer GetCtlTitle(theControlHandle ) 

CtlRecHndl theControlHandle; 

Control Manager routines 4-63 



$1A 10 GetCtlValue 
Returns a specified control's current ctlValue field. 

Parameters 

Stack before call 

previous contents 

wordspace 

--theControlHandle 

Stack after call 

previous contents 

curValue 

Errors None 

Word-Space for result 

Long-HANDLE to control 

~SP 

Word-Control's current value 

~SP 

C extern pascal Word GetCtlValue(theControlHandle) 

CtlRecHndl theControlHandle; 

4-64 Control Manager routines 



$1E10 

Parameters 

GrowSize 
Returns the height and width of the size box control, using the Control Manager's 
current icon font. You can use this value, for example, to help you compute the size 
of the scroll bar. 

Stack before call 

previous contents 

longs pace 

Stack after call 

previous contents 

SizeOJGrow 

Errors None 

Long-Space for result 

f-SP 

Long-High-order word is width, low-order word is height 

f-SP 

C exte rn pascal Longword GrowSi ze () 

Control Manager routines 4-65 



$0El0 

Parameters 

HideControl 
Makes a specified control invisible by filling the region the control occupies with the 
background pattern of the window's GrafPort. The routine also adds the control's 
enclosing rectangle to the window's update region, so that anything else previously 
obscured by the control reappears on the screen. If the control is already invisible, 
HideControl has no effect. 

Stack before call 

previous contents 

-- theControlHandle -- Long-HANDLE to control to be hidden 

~SP 

Stack after call 

previous contents I 
- ----- --~SP 

Errors None 

C e xt ern pascal void HideControl (theControlHandle ) 

Ct lRecHndl theControlHandle ; 

4-66 Control Manager routines 



$1110 HiliteControl 
Changes the way a specified control is highlighted. HiliteControl calls the control 
definition routine to redraw the control with its new highlighting. 

Parameters 

Stack before call 

previous contents 

h iliteState 

-- theControlH andle 

Word-Type of highlighting: 0 = none, 1- 253 = part code, 255 = inactive 

Long-HANDLE to control to be highlighted 

~SP 

Stack after call 

previous contents I 
- ------ - ~SP 

Errors None 

C e xtern pascal void HiliteControl (hiliteState , theControlHandle) 

Word hiliteState ; 

CtlRe cHndl theControlHandle ; 

More about highlighting 
The hiliteState parameter has one of the following values: 

1. The value O (noHilite) indicates no highlighting and that the control is active. If 
any part of the control is highlighted, the highlighting is removed. If the control 
is inactive, it's changed to active and redrawn. 

2 . A value between 1 and 253 is interpreted as a part code designating the part of the 
(active) control to be highlighted. See Table 4-2 in the section "Part Codes" in 
this chapter. 

3. The value 255 (inactiveHilite) means that the control is to be made inactive 
and redrawn accordingly. 

❖ Note: Do not use the value 254; this value is reserved for future use. 

Control Manager routines 4-67 



$0B10 

Parameters 

Kill Controls 
Disposes of all controls associated with a specified window by calling the 
DisposeControl routine for each control in the window's control list. 

❖ Note: The Window Manager routine CloseWindow calls KillControls to dispose of 
all controls associated with the specified window. 

Stack before call 

previous contents 

-- theWindowPtr Long-POINTER to window whose controls are to be disposed of 

f-SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors None 

C ext e rn pa s cal void Ki llControls (theWind owPtr) 

Gr af PortPtr theWindowPtr ; 

4-68 Control Manager routines 



$1610 

Parameters 

MoveControl 
Moves a specified control to a new location within its window. The upper-left corner 
of the control's enclosing rectangle is moved to the horizontal and vertical 
coordinates newX and newY(given in the local coordinates of the control's window); 
the bottom-right corner is adjusted accordingly to keep the size of the rectangle the 
same as before. If the control is currently visible, it's hidden and then redrawn at its 
new location. 

Stack before call 

prevtous contents 

newX 

newY 

Word-New X origin of control, in local coordinates 

Word- New Y origin of control, in local coordinates 

--theContro/Handle - - · Long- HANDLE to control 

f- SP 

Stack after call 

previous contents I 
--------. f- SP 

Errors None 

C extern pascal void MoveControl (newX , newY , theControlHandle ) 

Integer newX ; 

Integer newY ; 

CtlRecHnd l theControlHa ndle ; 

You can also use the following alternate form of the call: 

extern pas cal void MoveControl (newPos , theControlHandle ) 

Point newPos ; 

Ct lRec Hndl theControlHandle ; 

Control Manager routines 4-69 



, $0910 NewControl 
Creates a control, adds it to the beginning of a specified control list, and returns a 
handle to the new control. The field that determines highlighting is set to O (no 
highlighting). NewControl does not draw the control. 

❖ Note: The control definition procedure may perform additional initialization, 
including changing any of the control record fields. The scroll bar is the only 
standard control for which additional initialization is performed; its control 
definition procedure computes the thumb and the page region from 
boundsRectPtr and flag. 

Parameters 

Stack before call 

previous contents 

-- longspace 

-- theWindowPtr 

-- boundsRectPtr 

-- titlePtr 

flag 

value 

paraml 

param2 

-- dejProcPtr 

-- re/Con 

-- colorTab/ePtr 

--· 

--· 

--· 

--· 

- - · 

--· 

--· 

Long-Space for result 

Long-POINTER to window owner 

Long-POINTER to RECT data structure defining enclosing rectangle 

Long-POINTER to title string (ct/Data) 

Word-Bit flag (see Figure 4-26) 

Word-Control's starting value 

Word-Additional parameter (view size for scroll bars) 

Word-Additional parameter (data size for scroll bars) 

Long-POINTER to definition procedure, or standard control value 

Long-Reserved for application use 

Long-POINTER to control's color table; NIL for default color table 

t-- SP 

4-70 Control Manager routines 



Stack after call 

previous contents 

-- theControlHandle Long- HANDLE to control; NIL = error 

~SP 

Errors 

C 

The contra/Handle parameter will be NIL if the control record can't be allocated. 

extern pasca l CtlRecHndl NewControl (theWin d owPtr , boundsRectPtr , titlePtr , 

flag , value , paraml , param2 ,defProcPtr , refCon , colorTablePtr ) 

GrafP ortPtr theWindowPtr ; 

Rect *boundsRectPtr ; 

Pointer titlePtr ; 

Word flag; 

Word value ; 

Wo rd paraml ; 

Word param2 ; 

LongProcPtr de f ProcPtr ; 

Long int refCon ; 

CtlColorTablePtr colorTabl ePtr ; 

More about NewControl parameters 
The values passed as parameters are stored in the corresponding control record 
fields . The pointer in theWindowPtr parameter points to the window to which the 
new control will belong. All coordinates pertaining to the control are interpreted 
using this window's local coordinate system. 

The RECT data structure pointed to by boundsRectPtr specifies the rectangle that 
encloses the control in the window's local coordinates and thus determines the 
control's size and location. 

The titlePtr parameter points to the control's title, if any (if there is none, just pass a 
NIL pointer as the title) . Be sure the title will fit in the control's enclosing rectangle; if 
the title doesn't fit , it may not be completely erased by the HideControl routine. 

The flag parameter is a bit flag that further defines the control. The bit values and 
their functions vary according to the type of control being displayed, as shown in 
Figure 4-26. 

(continued) 

Control Manager routines 4-71 



I l 5 I 14 I l 3 I 12 I 11 I 10 I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I l I O I 
ctllnvis j I 

Invisib le = l 
Visible= 0 

Single-outlined , square-cornered , and drop-shadowed button= 11 
Single-outlined, square-cornered button= 10 

Bold-outlined, round-cornered button= 01 
Single-outl ined, round-cornered button = 00 

11s 1141131121 11 1101 9 I a 1 7 161 s 14 1 31 211 1 o 1 
ctllnvis J 

Invisible = l 
Visible= 0 

l1sl14l131 12l 1111019 Is I 7 I 6 Is I 4 I 3 I 2 I 1 Io I 
ctllnvis J 

Invisible = l 
Visib le= 0 

Family number 

11sl14113112111 110191s 17 161s 1413121 , 1 o 1 

ctllnvis J J 
Invisible = l 

Visible= 0 

horScroll 
Horizontal scroll bar = l 

Vertical scroll bar= 0 

rightFlag -
Right arrow on scroll bar = l 

No right arrow on scroll bar = 0 

leffF/ag -
Lett arrow on scroll bar = l 

No left arrow on scroll bar = 0 

downF/ag ­
Down arrow on scroll bar = l 

No down arrow on scroll bar = 0 

upF/ag ­
Up arrow on scroll bar = l 

No up arrow on scroll bar = 0 

l1 sl14l13112l11 l1o l 9 I 8 I 7 I 6 Is I 4 I 3 I 211 IO I 
ctl/nvis J 

Invisible = l 
Visib ie = 0 

Figure 4-26 
Control Manager flag b its 

4-72 Control Manager routines 



The value field gives the control's initial settings. 

The paraml and param2 fields contain additional values that are defined by the 
control's definition procedure. For standard scroll bars, paraml is the size of the 
view and param2 is the total data size. The standard scroll bar definition procedure 
will store the value of paraml in the ctlData field and param2 in ctlData + 2 field . 
Any values can be passed when creating simple buttons, check boxes, radio buttons, 
or size boxes. 

The dejProcPtr points to the control's definition procedure. The definition 
procedures for custom control types are discussed in the section "Defining Your Own 
Controls" in this chapter. The values for the standard control types are as shown in 
Table 4-7. 

Table 4-7 
Standard control type values 

Value 

$00000000 
$02000000 
$04000000 
$06000000 
$08000000 

Name 

simpleProc 
checkProc 
radioProc 
scrollProc 
growProc 

Description 

Simple button 
Check box 
Radio button 
Scroll bar 
Size box 

The re/Con field is reserved for application use. 

The colorTablePtr points to the color table used to draw the control. NIL can be 
passed to use a default color table; other values access a color table defined by the 
control's definition procedure. 

Control Manager routines 4-73 



$2010 

Parameters 

SetCtlAction 
Sets a specified control's ctlAction field to a pointer for a custom control action 
procedure. See the section "TrackControl" in this chapter for more information. 

Stack before call 

previous contents 

newActionPtr Long-POINTER to custom control action procedure 

-theControlHandle Long-HANDLE to control 

f-SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors None 

C extern pascal void SetCtlAction (newActionPtr , theControlHandle) 

LongProcPtr 

CtlRecHndl 

newActionPtr; 

theControlHandle; 

4-74 Control Manager routines 



$1810 

Parameters 

SetCtllcons 
Replaces the current icon font with a specified new font and returns the handle of the 
old font, or just returns the handle of the old font. See the section "Control Manager 
Icon Font" in this chapter for more information. 

Stack before call 

prevtous contents 

longspace 

newFontHandle 

Stack after call 

previous contents 

-- oldFontHandle 

Errors None 

Long- Space for result 

Long-HANDLE to new icon font; negative value to not set new font 

~SP 

Long- HANDLE to old icon font 

~SP 

C ext e rn pas cal FontHndl SetCtli c ons( newFontHandle ) 

Fo ntHndl newFontHandle ; 

Control Manager routines 4-7 5 



$1B10 

Parameters 

SetCtlParams 
Sets new parameters to the control's definition procedure, which will set the values 
and redraw the control if necessary. 

Scroll bars use paraml as the scroll bar's view and param2 the data size. If -1 is 
passed for either paraml or param2, that parameter will not be changed. 

Simple buttons, check boxes, radio buttons, and size boxes do not use paraml or 
param2, and no action is performed. 

❖ Note: Custom controls might or might not not support this feature, depending 
upon the control. 

Stack before call 

prevtous contents 

param2 

paraml 

Word-Additional control parameter; defined by control 

Word-Additional control parameter; defined by control 

- - theControlH and le --· Long-HANDLE to control 

Stack after call 

previous contents I 
-------- f- SP 

Errors None 

C ext e rn p a sca l void Se tCtlParams( p a ram2 , paraml , theControlHandle) 

Word pa r a m2 ; 

Wo rd para ml ; 

Ct l RecHndl theContro l Ha nd le ; 

4-76 Control Manager routines 



$2210 SetCtlRefCon 
Sets a specified control's ct/Re/Con field to a new value. The ct/Re/Con field is 
reserved for the application's use and is not changed (except by this call) by the 
Control Manager. 

Parameters 

Stack before call 

previous contents 

newRejCon Long-Value to store in the control's ct/Re/Con field 

-- theControlHandle 

Stack after call 

Long-HANDLE to control 

~SP 

previous contents I 
-------- ~SP 

Errors None 

C extern pascal void Se t CtlRefCon (newRefCon , theCont rolHandle ) 

Long int newRe f Con ; 

CtlRecHndl theControlHandle ; 

Control Manager routines 4-77 



$0C10 SetCtlTitle 
Sets a specified control's ct/Data field to a specified title and redraws the control. 

Parameters 

Stack before call 

prevtous contents 

titlePtr 

-- theControlHandle 

Long-POINTER to control's ct/Data field 

Long-HANDLE to control 

~SP 

Stack after call 

previous contents I 
--------~SP 

Errors 

C 

None 

void SetCtlTitle(titlePtr,theControlHandle) 

Po i nter titlePtr ; 

Handle theControlHandle ; 

4-78 Control Manager routines 



$1910 

Parameters 

SetCtlValue 
Sets a specified control's ct/Value field to a specified value and redraws the control to 
reflect the new setting. For check boxes and radio buttons, a value of 1 fills the control 
with the appropriate mark, and O clears it. For scroll bars, SetCtlValue redraws the 
thumb when appropriate. 

If the specified value is out of range, the value is pinned to the nearest endpoint of the 
range, as specified by the control. 

Stack before call 

previous contents 

curValue 

-- theControlHandle 

Stack after call 

Word-Current value of control 

Long-HANDLE to control 

f-SP 

previous contents I 
-------- f- SP 

Errors None 

C extern pascal void SetCtlValue (curValue , theControlHandle ) 

Word curVa lue; 

CtlRecHnd l theContro l Handle ; 

Control Manager routines 4-79 



$0Fl0 

Parameters 

ShowControl 
Makes a specified control visible. The control is drawn in its window but may be 
completely or partially obscured by overlapping windows or other objects. If the 
control is marked as visible as specified by the ctllnvis bit (bit 7) in the ct/Flag, 
ShowControl has no effect. 

Stack before call 

previous contents 

- -theControlHandle -- Long- HANDLE to control to be shown 

~SP 

Stack after call 

previous contents I 
---- ---- ~SP 

Errors None 

C extern pa s cal void ShowCont r o l (theCont rolHa nd l e ) 

CtlRecHndl theControlHandl e ; 

4-80 Control Manager routines 



$1410 TestControl 
If a specified control is visible and active, TestControl tests which part of the control 
contains a specified point (using the local coordinates of the control's window); the 
routine returns the corresponding part code, or it returns O if the point is outside the 
control. 

If the specified control is invisible or inactive, TestControl returns 0. TestControl is 
called by the FindControl and TrackControl routines; normally an application won't 
need to use TestControl. 

Parameters 

Stack before call 

prevtous contents 

wordspace 

potntX 

potntY 

Word-Space for result 

Word-X coordinate to check, in local coordinates 

Word-Y coordinate to check, in local coordinates 

--theControlHandle --· Long- HANDLE of control to be tested 

f-- SP 

Stack after call 

prevtous contents 

partCode 

Errors 

C 

Word- Part code of the POINT; 0 if not in visible, active control 

f-- SP 

None 

e xtern pascal Word TestControl (pointX , point Y, theContro l Ha ndle ) 

Integer pointX ; 

Intege r pointY ; 

Ct lRecHndl theControlHandle ; 

You can also use the following alternate form of the call: 

e xtern pas cal Word TestControl (te stPoint , theContro l Ha ndle) 

Point testPoint ; 

CtlRecHndl theControlHa ndle ; 

Control Manager routines 4-81 



$1510 

Parameters 

Track Control 
Follows the movements of the mouse and responds appropriately until the mouse 
button is released; the exact response depends on the type of control and the part of 
the control in which the mouse button was pressed. 

If highlighting is appropriate, TrackControl performs the highlighting and then 
removes it before returning. When the mouse button is released, TrackControl 
returns with the part code if the mouse is in the same part of the control that it was 
originally in; otherwise, TrackControl returns O (in which case the application should 
do nothing) . 

Stack before call 

previous contents 

wordspace Word-Space for result 

startX Word-X coordinate, in global coordinates, of starting point 

startY Word-Y coordinate, in global coordinates, of starting point 

-- actionProcPtr --· Long-POINTER to routine; NIL, or negative (see the section "Additional 
Actions and the Action Procedure" in this chapter) 

-- theControlH andle --· Long- HANDLE to control 

f-SP 

Stack after call 

previous contents 

partCode 

Errors 

C 

None 

Word-Selected part when button was released 

f-SP 

extern pascal Word TrackControl(startX,startY,actionProcPtr,theControlHandle ) 

Integer startX; 

Integer startY; 

LongProcPtr actionProcPtr; 

CtlRecHndl theControlHandle ; 

4-82 Control Manager routines 



You can also use the following alternate form of the call: 

extern pascal Word TrackControl (start , actionProcPtr , theControlHandle ) 

Point start ; 

LongProcPtr 

CtlRecHndl 

actionProcPtr ; 

theControlHandle ; 

About TrackControl and indicators 

If the part code indicates that the user pressed the mouse button while the cursor was 
in an indicator, TrackControl drags a dotted outline of the indicator to follow the 
mouse. When the mouse button is released, TrackControl calls the control 
definition procedure to reposition the indicator. The control definition function for 
scroll bars responds by redrawing the thumb, calculating the control's current setting 
based on the new relative position of the thumb, and storing the current setting in the 
control record. The application must then scroll to the corresponding relative 
position in the document. 

Additional actions and the action procedure 
TrackControl may take additional actions beyond highlighting the control or 
dragging the indicator, depending on the value passed in the actionProcPtr 
parameter, as described below. For a custom control, what you pass will depend on 
how the control is defined. What to pass for the standard control types is as follows : 

■ The actionProcPtr parameter may be a pointer to an action procedure that 
defines some action to be performed repeatedly for as long as the user holds down 
the mouse button. 

■ If actionProcPtr is NIL, TrackControl performs no additional actions. This is 
appropriate for simple buttons, check boxes, radio buttons, and the thumb of a 
scroll bar. 

■ If actionProcPtr is a negative number, TrackControl checks the ctlAction field of 
the control record. No additional actions are performed if ct/Action is 0. If 
ctlAction is negative, the control's definition procedure is called with an 
autoTrack message. If ctlAction is neither O nor negative, it is considered a valid 
pointer to an action routine and is called. 

(continued) 

Control Manager routines 4-83 



The action procedure in the control definition procedure is described in the section 
"Defining Your Own Controls" in this chapter. The input to the action procedure 
must be as follows: 

partCode 

--theControlHandle 

Rn I Rn 
Rn If- SP 

- - · 

Word-Selected part 

Long-HANDLE to control 

3 bytes-RTL address 

In this case, TrackControl passes the control handle and the part code to the action 
procedure. (It passes O in the partCode parameter if the mouse has moved outside 
the original control part.) As an example of this type of action procedure, consider 
what should happen when the mouse button is pressed in a scroll arrow or paging 
region of a scroll bar. For these cases, your action procedure should examine the 
part code to determine exactly where the mouse button was pressed, scroll up or 
down a line or page as appropriate, and call the SetCtlValue routine to change the 
control's setting and redraw the thumb. 

4-84 Control Manager routines 



Control Manager summary 
This section briefly summarizes the constants, data structures, and tool set error 
codes contained in the Control Manager. 

Important 

These definitions are provided in the appropriate interface fi le. 

Table 4-8 
Control Manager constants 

Name Value 

Invisible control flag va lue 
ctlinVis $0080 

Simple button control flag values 
simpRound $0000 
simpBRound $0001 
simpSquare $0002 

Description 

Invisible mask for any type of control 

Single-outlined, round-cornered button 
Bold-outlined, round-cornered button 
Single-outlined, square-cornere d button 

simpDropSquare $0003 Single-outlined, square-cornered, drop-shadowed button 

Radio button control flag values 
family $007F 

Scroll bar control flag values 
upFlag $0001 
downFlag $0002 
leftFlag $0004 
rightFlag $0008 
horScroll $0010 

CtlProc 
simpleProc 
checkProc 
radioProc 
scrollProc 
growProc 

$00000000 
$02000000 
$04000000 
$06000000 
$08000000 

Radio button family number 

Up arrow on scroll bar 
Down arrow on scroll bar 
Left arrow on scroll bar 
Right arrow on scroll bar 
Horizontal scroll bar 

Simple button standard control 
Simple button standard control 
Radio button standard control 
Scroll bar standard control 
Size box standard control 

(continued) 

Control Manager summary 4-85 



Table 4-8 (continued) 
Control Manager constants 

Name Value 

Def Proc (message parameters) 
drawCtl $00 
calcCRect $01 
testCtl $02 
initCtl $03 
dispCtl $04 
posCtl $05 
thumbCtl $06 
dragCtl $07 
autoTrack $08 
newValue $09 
setParams $0A 
moveCtl $OB 
rec Size $0C 

Axis parameters 
noConstraint $0000 
hAxisOnly $0001 
vAxisOnly $0002 

Part codes 
noPart $00 
simpleButton $02 
checkBox $03 
radioButton $04 
upArrow $05 
downArrow $06 
pageUp $07 
pageDown $08 
growBox $0A 
thumb $81 

HlllteControl parameters 
noHilite $0000 
inactiveHilite $00FF 

Description 

Draw the control 
Compute the rectangle to drag 
Test where mouse button was pressed 
Perform any additional control initialization 
Take any additional disposal actions 
Move the control's indicator 
Compute the parameters for dragging an indicator 
Drag either a control's indicator or the entire control 
Called while dragging if -1 is passed to TrackControl 
Called when the control gets a new value 
Called when the control gets new additional parameters 
Called when control moves 
Return control record size in bytes 

No constraint on movement 
Movement constrained to horizontal axis only 
Movement constrained to vertical axis only 

No part 
Simple button 
Check box 
Radio button 
Up arrow on scroll bar 
Down arrow on scroll bar 
Page up 
Page down 
Size box 
Thumb 

Highlight control 
Remove hightlighting from control 

4-86 Chapter 4: Control Manager 



Table 4-9 
Control Manager data structures 

Name Offset Type 

CtlRec (control record) 
ct!Next $00 CtlRecHndl 
ctlOwner $04 GrarPortPtr 
ctlRect $08 Rect 
ctlFlag $10 Byte 
ctlHilite $11 Byte 
ctlValue $12 Integer 
ctlProc $14 LongProcPtr 
ctlAction $18 LongProcPtr 
ctlData $1C Longint 
ctlRefCon $20 Longint 
ctlColor $24 Pointer 

BarColors (scroll bar color table) 
barOutline $00 Word 
barNorArrow $02 Word 
barSelArrow $04 Word 
barArrowBack $06 Word 
barNorThumb $08 Word 
barSelThumb $QA Word 
barPageRgn $QC Word 

barlnactive $OE Word 

BoxColors (check box color table) 
boxReserved $00 Word 
boxNor $02 Word 
boxSel $04 Word 
boxTitle $06 Word 

BttnColors (button color tab le) 
bttnOutline $00 Word 
bttnNorBack $02 Word 
bttnSelBack $04 Word 
bttnNorText $06 Word 
bttnSelText $08 Word 

Definition 

Handle to next control 
Pointer to control's window 
Enclosing rectangle 
Bit flags 
Highlighted part 
Control's value 
Control's definition procedure 
Control's action procedure 
Reserved for CtlProc's use 
Reserved for application use 
Control's color table 

Color for outlining bar, arrows, and thumb 
Color of arrows when not highlighted 
Color of arrows when highlighted 
Color of arrow box's background 
Color of thumb's background when not highlighted 
Color of thumb's background when highlighted 
Color and pattern page region; high-order byte: 
1 = dither, 0 = solid 
Color of scroll bar's interior when inactive 

Reserved for future use 
Color of box when not checked 
Color of box when checked 
Color of check box's title 

Color of outline 
Color of background when not selected 
Color of background when selected 
Color of title's text when not selected 
Color of title's text when selected 

(continued) 

Control Manager summary 4-8 7 



Table 4-9 (continued) 
Control Manager data structures 

Name Offset 

Llml!Blk (limit block) 
boundRect $00 
slopRect $08 
axisParam $10 
dragPatt $12 

Type 

Rect 
Rect 
Word 
Pointer 

RadloColors (radio button color table) 
tadReserved $00 Word 
rad.Nor $02 Word 
radSel $04 Word 
radTitle $06 Word 

Definition 

Drag bounds 
Cursor bounds 
Movement constraints 
Pattern for drag outline 

Reserved for future use 
Color of radio button when off 
Color of radio button when on 
Color of radio button's title text 

Note: The actual assembly-language equates have a lowercase o (the letter) in front of all of the names given in 
this table. 

Table 4-10 
Control Manager error codes 

Code Name Description 

$1001 wmNotStartedUp Window Manager not initialized 

4-88 Chapter 4: Control Manager 



Chapter 5 

Desk Manager 

The Desk Manager is the tool set that enables your application to support desk 
accessories. Desk accessories are mini-applications that can be run at the same 
time as an Apple IIGS application. There are two types of desk accessories in the 
Apple IIGS environment: classic desk accessories and new desk accessories. 

Classic desk accessories (CDAs) are desk accessories designed to function in a 
nondesktop, nonevent-based environment. Unlike new desk accessories, a CDA has 
full control of the computer during what is basically an interrupt state (generated by a 
key press). The desk accessory is responsible for saving and restoring any of the 
application's memory that it uses as well as handling all I/O. 

New desk accessories (NDAs) are desk accessories designed to execute in a desktop, 
event-driven environment. NDAs run in a window and have control when that 
window is the frontmost window. The control executed by an NDA is described in 
this chapter. 

❖ Macintosh programmers: New desk accessories are the kind of desk accessories 
available on the Macintosh. 

A preview of the Desk Manager routines 
To introduce you to the capabilities of the Desk Manager, all Desk Manager routines 
are grouped by function and briefly described in Table 5-1. These routines are 
described in detail later in this chapter, where they are separated into housekeeping 
routines (discussed in routine number order) and the rest of the Desk Manager 
routines (discussed in alphabetical order) . 

5-1 



Table 5-1 
Desk Manager routines and their functions 

Routine 

Housekeeping routines 
DeskBootlnit 

DeskStartUp 
DeskShutDown 
Desk Version 
DeskReset 

DeskStatus 

Installation routines 
InstallNDA 
InstallCDA 

Description 

Initializes the Desk Manager; called only by the Tool Locater-must not be 
called by an application 
Starts up the Desk Manager for use by an application 
Shuts down the Desk Manager when an application quits 
Returns the version number of the Desk Manager 
Resets the Desk Manager; called only when the system is reset-must not be 
called by an application 
Indicates whether the Desk Manager is active 

Installs a specified NDA in the system 
Installs a specified CDA in the system 

Classic desk accessory routines 
ChooseCDA Activates the Desk Manager and displays the CDA menu-must not be called 

by an application 
SetDAStrPtr Changes the names of the built-in CDAs 
GetDAStrPtr Returns the pointer to the names of the built-in CDAs 

New desk accessory routines 
OpenNDA Opens a specified NDA 
CloseNDA Closes a specified NDA 
CloseNDAbyWinPtr Closes an NDA with a specified window pointer 
CloseAllNDAs Closes all open NDAs 
FixAppleMenu Adds the names of the NDAs to a specified menu 
GetNumNDAs Returns the total number of NDAs currently installed 
SystemClick Handles mouse-down events in a system (that is, desk accessory) window 
SystemEdit Passes standard menu edits to system windows 
SystemTask Causes a desk accessory to perform its periodic action 
SystemEvent Previews all events returned to an application and indicates whether the event 

has been processed by a desk accessory 

State-saving routines 
SaveScrn 

RestScrn 

SaveAll 

RestAll 

Saves the 80-column text screens in banks $00, $01, $E0, and $El-must not 
be called by an application 
Restores the screen area saved by the Desk Manager-must not be called by an 
application 
Saves all the variables that the Desk Manager preserves when the CDA menu is 
activated-must not be called by an application 
Restores all the variables that the Desk Manager preserves when the CDA menu 
is activated-must not be called by an application 

5-2 Chapter 5: Desk Manager 



Using classic desk accessories 
A user activates a classic desk accessory from the CDA menu. The CDA menu is 
displayed by pressing Apple-Control-Escape. Two CDAs are built into the system: 

■ Control Panel 

■ Alternate Display Mode 

Any others (up to 11) are loaded from disk. From the CDA menu, a user can select 
any of the CDAs currently in the system. The desk accessory selected is activated and 
retains control until it shuts down. When it shuts down, the Desk Manager redisplays 
the CDA menu. Only when the user selects Quit from the CDA menu does the 
original application resume operation. 

When the CDA menu can be displayed 

The Desk Manager obtains control in two ways. If the Event Manager is active, the 
Desk manager is called in conjunction with GetNextEvent. When the user presses 
Apple-Control-Escape, a desk accessory event is posted. Later, when the 
GetNextEvent routine is called, the Desk Manager previews the event and, if the event 
is a desk accessory event (among others), retrieves the event for processing. 

If the Event Manager is not active, the Desk Manager gets control whenever the user 
presses Apple-Control-Escape. Before the manager displays the CDA menu, it 
checks the system busy flag. If something in the system is busy, the Desk Manager 
schedules a wake-up with the Scheduler. The next time the system flag is free, the 
Scheduler wakes up the Desk Manager, which then can display the CDA menu. This 
guarantees that CDAs have all system resources available to them when they are 
ca lled. 

See Chapter 19, "Scheduler," in Volume 2 for more information. 

Writing classic desk accessories 

Classic desk accessories are load files that have a file type of $B9 and must be placed 
on the system disk in the DESK.ACCS subdirectory of the SYSTEM directory. 

A CDA must start with a header section as follows: 

St a rtOf DA str ' Name of DA ' 

de i4 ' Start0fDACode ' 

de i4 ' ShutDownRoutine ' 

Name of the DA 

Pointer to start of code 

Pointer to shutdown routine 

❖ Note: The strin the preceding example is an APW-specific macro that generates 
a Pascal-type string (a string beginning· with a length byte and followed by 
ASCII characters). 

Using c lassic desk accessories 5-3 



The header section contains the name of the desk accessory and two pointers. The 
first pointer is the address of the primary entry point-the activation entry point-to 
the CDA. The CDA gets control through this entry point, with the processor in full 
native mode. 

The second pointer points to the entry point used whenever the DeskShutDown 
routine is called. DeskShutDown is called by all applications that have issued a 
DeskStartUp call, and also by ProDOS when it switches from ProDOS 16 to ProDOS 8 
or vice versa. 

❖ Note: The second entry point is necessary because CDAs can spawn background 
tasks that rely on the availability of the current ProDOS. The shutdown routine 
allows the CDA to stop the tasks. 

When the Desk Manager displays the CDA menu, it saves the text pages in banks $0, 
$1, $E0, and $El, along with pages 0 and 1 of bank $0. 

Im portent 

Only the screen holes used by the Desk Manager are preseNed. 

These parts of memory, which contain the system direct page and stack, are restored 
by the Desk Manager when the user selects Quit from the CDA menu. Thus, a CDA 
can use almost all of this memory, except for the stack, as it sees fit. Since the Desk 
Manager's return address is on the stack (along with other Desk Manager variables), 
the CDA cannot cut the stack back any farther than it is when it gets control. 

A CDA must be careful when using any other memory in the system that it does not 
already own. A CDA can ask the Memory Manager for additional memory, but there 
is no guarantee that the memory will be available. For example, ProDOS 8 
applications already have all special memory reserved for them. 

❖ Note: The CDA can obtain a user ID by using the User ID Manager routines in 
the Miscellaneous Tool Set. See Chapter 14, "Miscellaneous Tool Set," for more 
information. 

lmportcnt 

The CDA must be able to respond appropriately when no additional memory Is 
available. 

5-4 Chapter 5: Desk Manager 



Supporting new desk accessories 
New desk accessories are loaded automatically by the operating system at boot time. 
An application that wants to make NDAs available to the user does not have to do a 
lot of work, particularly if the application is using the Window Manager routine 
TaskMaster. The application must, however, make sure that all the tool sets listed in 
Table 5-2 are loaded and started up. 

Table 5-2 
Tool sets required to support 
new desk accessories 

Tool set Tool set Minimum version 

number name needed 

$01 #01 Tool Locator 1.2 
$02 #02 Memory Manager 1.2 
$03 #03 Miscellaneous Tool Set 1.2 
$04 #04 QuickDraw II 1.2 
$06 #06 Event Manager 1.0 
$OE #14 Window Manager 1.3 
$OF #15 Menu Manager 1.3 
$10 #16 Control Manager 1.3 
$14 #20 LineEdit Tool Set 1.0 
$15 #21 Dialog Manager 1.0 
$16 #22 Scrap Manager 1.0 

Supporting new desk accessories with TaskMaster 

If an application uses TaskMaster, it needs to make only three calls to support new 
desk accessories after it has loaded and started up the proper tool sets: 

■ DeskStartUp: to start up the Desk Manager 

■ FixAppleMenu: to add the list of NDAs to the Apple menu 

■ DeskShutDown: to shut down the Desk Manager before the other tool sets are 
shut down 

After the FixAppleMenu call has been made, TaskMaster automatically handles 
opening NDAs in response to menu selections, calling SystemTask and SystemClick 
when appropriate. If the application sets up the menu items correctly, TaskMaster 
can even call SystemEdit when the user selects an item from the Edit menu or close a 
desk accessory in response to the user selecting Close from the File menu (if the 
appropriate task mask has been set up). 

Suppo rting new desk accessories 5-5 



Supporting new desk accessories without TaskMaster 
Applications that do not use TaskMaster must take the following steps to support new 
desk accessories: 

1 . Call DeskStartUp to initialize the Desk Manager. 

2 . Call FixAppleMenu to add the list of NDAs to the Apple menu. 

3 . Call OpenNDA when the user selects an NDA from the Apple menu. 

4 . Call SystemTask frequently (at least every time through the event loop). 

5 . Call SystemClick when a mouse-down event occurs in a system window. 

6 . Call SystemEdit when a desk accessory is active and the user selects Undo, Cut, 
Copy, Paste, or Clear from the Edit menu. 

7 . Close an NDA when the user selects Close from the File menu. You can use 
CloseNDA or CloseNDAbyWinPtr to do this. 

8 . Call DeskShutDown to shut down the Desk Manager. 

Writing new desk accessories 
New desk accessories are load files with file type $B8. An NDA must be placed on the 
system disk in the DESK.ACCS subdirectory of the SYSTEM directory. NDAs have 
four entry points: open, close, action, and init. For each of these entry points the 
processor is in full native mode. No direct page is assigned to an NDA, so it must 
obtain space from the stack or by asking the Memory Manager. 

A new desk accessory can assume that the tool sets shown in Table 5-2 have been 
loaded and started up. A new desk accessory can also assume that the Print Manager 
is available but not necessarily loaded. 

The NDA is responsible for saving and restoring important globals such as the 
current GraEPort. 

The NDA must start with a header section as follows: 

StartOfDA de i4 ' PtrToOpen ' Pointer to the open rout i ne , which should RTL 

d e i4 'PtrToClose ' Po i nter to the close routine , which should RTL 

de i 4'PtrToAct i on ' Pointer t o the action routine , which should RTL 

de i 4' PtrToinit ' Poi nter to the init routine , which should RTL 

de i2 ' Period ' How ofte n t he NOA gets run codes 

d e i2 ' EventMask ' Describes wha t events it wants 

de c ' MenuLine \H** ' The text that descr i be s the menu item 

d e i l' O' Termi nator for the menu line 

5-6 Chapter 5: Desk Manager 



When the Desk Manager calls the open routine, it puts 4 bytes on the stack before it 
pushes the RTI address. The open routine must replace those 4 bytes with a pointer 
to its window and leave the RTI address intact. 

The close routine has no inputs or outputs. However, it must be able to work even if 
the desk accessory is not open when the routine is called. 

The action code is passed to the action routine in the A register; other information is 
passed to the action routine in the X and Y registers. The possible action codes are 
shown in Table 5-3. 

Table 5-3 
New desk accessory action codes 

Code 

1 

2 

3 

4 

5 
6 
7 
8 
9 

Action 

eventAction 

runAction 

cursorAction 

Not used 

undoAction 
cutAction 
copyAction 
pasteAction 
clearAction 

Description 

Passed when an event must be handled by the desk accessory. The X and 
Y registers contain a pointer to the event record (low-order word in X, 
high-order word in Y) . The only events that can be passed to an NDA are 
ButtonDown, ButtonUp, KeyDown, AutoKeyDown, Update, and 
Activate. Update and Activate events for a desk accessory are always 
passed to it. The other four are passed to it only if the eventMask 
indicates that they should be passed. 

Passed when the specified time period has elapsed. 

Passed to a desk accessory if it is the frontmost window when SystemTask is 
called. This allows the desk accessory to change the cursor when it is over 
the NDAs window. 

These codes are passed to a desk accessory when the application 
determines that the user has selected one of these edit commands 
from the Edit menu. The action call should return a Boolean 
value in the A register indicating whether the command was 
handled. 

The InitRoutine is called for each installed NDA every time DeskStartUp or 
DeskShutDown is called. The Desk Manager passes a variable in the A register to 
indicate whether a DeskStartUp or DeskShutDown call is being made. AO indicates a 
shutdown call; a nonzero value indicates a startup call. 

❖ Note: As part of its cleanup process, ProDOS 16 shuts down all new desk 
accessories every time it starts an application. 

Supporting new desk accessories 5-7 



The Period field of the header section describes how often the DA should be called 
with the runAction code, as shown in Table 5-4. 

Table 5-4 
New desk accessory 
Period fie ld values 

Period 

0 
1 
2 
60 
$FFFF 

Interva l 

As often as possible 
Every sixtieth of a second 
Every thirtieth of a second 
Every second 
Never 

The action routine is called with the runAction code from SystemTask. The 
application should call SystemTask every time through its event loop. 

The MenuLine is a line of text that will be passed to the Menu Manager to appear in 
the Apple menu. As shown in the preceding assembly-language header section, the 
line must start with two place-holding characters because the Menu Manager puts 
something in those positions. The line must also have a backslash(\) in it and an H 
followed by two place-holding characters. The place-holding characters are 
replaced with the menu item ID for the desk accessory when the FixAppleMenu 
routine is called. 

5-8 Chapter 5: Desk Manager 



$0105 

Parameters 

Errors 

C 

$0205 

Parameters 

Errors 

C 

DeskBootlnit 
Initializes the Desk Manager; called only by the Tool Locator. 

Warning 
An application must never make this call. 

The stack is not affected by this call. There are no input or output parameters. 

None 

Call must not be made by an application. 

DeskStartUp 
Starts up the Desk Manager for use by an application. An application must make this 
call if it wishes to support desk accessories. 

Important 
Your application must make this ca ll before it makes any other Desk Manager 
ca lls. In addition , all of the tools required by NDAs must be started up before this 
ca ll is made. It is also Important that applications not make this ca ll unless they 
completely support NDAs. 

The stack is not affected by this call. There are no input or output parameters. 

None 

e xtern pascal void DeskStartUp () 

Desk Manager housekeeping routines 5-9 



$0305 

Parameters 

Errors 

C 

$0405 

Parameters 

DeskShutDown 
Shuts down the Desk Manager. 

Important 

If your application has started up the Desk Manager, the application must make 
this call before it quits. In addition, this ca ll must be made before any of the 
required tools are shut down. 

The stack is not affected by this call. There are no input or output parameters. 

None 

e xt e rn pasca l void De s kShutDown () 

Desk Version 
Returns the version number of the Desk Manager. 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

versionlnfo 

Errors None 

Word-Space for result 

~SP 

Word-Version number of the Desk Manager 

~SP 

C e xtern pascal Word DeskVer s ion () 

5-10 Desk Manager housekeeping routines 



$0505 Desk Reset 
Resets the Desk Manager; called only when the system is reset. 

Warning 

An appl ication must never make this call. 

Parameters The stack is not affected by this call. There are no input or output parameters. 

Errors None 

C Call must not be made by an application. 

$0605 DeskStatus 
Indicates whether the Desk Manager is active. 

Parameters 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

activeFlag 

Errors None 

Word-Space for result 

~SP 

Word-BOOLEAN; TRUE if Desk Manager active, FALSE if inactive 

~SP 

C extern pascal Boolean DeskSt a tus () 

Desk Manager housekeeping routines 5-11 



$1105 

Parameters 

Errors 

C 

$1D05 

Parameters 

Errors 

C 

ChooseCDA 
Activates the Desk Manager and displays the CDA menu. ChooseCDA causes the 
Desk Manager to display the CDA menu as if the user pressed the appropriate keys. 

Warning 

An application must never make this call. 

The stack is not affected by this call. There are no input or output parameters. 

None . 

Call must not be made by an application. 

CloseAIINDAs 
Closes all open NDAs. 

The stack is not affected by this call. There are no input or output parameters. 

None 

e xtern pascal void CloseAllNDAs () 

5-12 Desk Manager routines 



$1605 

Parameters 

CloseNDA 
Closes a specified NDA. You normally won't use the routine in an application, 
because NDAs are closed automatically when the user presses the mouse button with 
the cursor in the close box (the SystemClick routine handles that situation). 

Stack before call 

previous contents 

refNum 

Stack after call 

Word-As returned by the OpenNDA routine 

f- SP 

previous contents I 
-------- f- SP 

Errors None 

C extern pascal void CloseNDA (refNum ) 

Word refNum; 

Desk Manager routines 5-13 



$1C05 

Parameters 

CloseN DAbyWinPtr 
Closes the NDA whose window pointer is equal to the one that is passed. This call is 
handy when the system is trying to close a desk accessory because the user chose Close 
from the File menu. When the user chooses Close, your application should use the 
Window Manager FrontWindow routine to determine which window is to be closed. If 
the front window is not an application window, the application can pass the pointer to 
the CloseNDAbyWinPtr routine. 

Stack before call 

previous contents 

-- theWindowPtr Long-POINTER to window to close 

f-SP 

Stack after call 

previous contents I 
--------- f- SP 

Errors $0510 

$0511 

daNotFound 

n otSysWindow 

Specified DA not available 

Window pointer is not a pointer to a window owned 
by an NDA 

C extern pascal void CloseNDAByWinPtr(theWindowPtr) 

GrafPortPtr theWindowPtr ; 

5-14 Desk Manager routines 



$1E05 

Parameters 

FixAppleMenu 
Adds the names of the NDAs to a specified menu. This call is used to add the names 
of the currently installed NDAs to a menu (usually the Apple menu). The first NDA 
appended to the menu is given an ID of 1, the second NDA an ID of 2, and so on. 

Stack before call 

previous contents 

startingID Word-ID of menu that will display the NDAs 

~SP 

Stack after call 

previous contents I 
--------~SP 

Errors None 

C extern pascal void FixAppleMenu (startingID ) 

Word startingID; 

Desk Manager routines 5-15 



$1405 GetOAStrPtr 
Returns the pointer to the table of strings containing the built-in CDA names. 

Parameters 

Stack before call 

previous contents 

longspace 

Stack after call 

previous contents 

-- strlngTablePtr 

Errors None 

Long-Space for result 

~SP 

Long-POINTER to table of strings for the built-in CDA names 

~SP 

C extern pascal Pointer GetDAStrPtr( ) 

5-16 Desk Manager routines 



$1B05 GetNumNDAs 
Returns the total number of NDAs currently installed. 

Parameters 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

numberojNDAs 

Errors None 

Word-Space for result 

f-SP 

Word- INTEGER; total number of open NDAs 

f-SP 

C extern pascal unsigned int GetNumNDAs() 

Desk Manager routines 5-1 7 



$0F05 

Parameters 

lnstallCDA 
Installs a specified CDA in the system. Tilis routine is normally called only by 
ProDOS 16 when the machine is booted. 

The CDA header section is described in the section "Writing Classic Desk 
Accessories" in this chapter. 

Stack before call 

previous contents 

idHandle 

Stack after call 

Long-HANDLE to CDA header section 

f-- SP 

previous contents I 
-------- f-- SP 

Errors None 

C extern pascal void I nstallCDA(idHa ndle ) 

Handle idHandle ; 

5-18 Desk Manager routines 



$0E05 

Parameters 

lnstallNDA 
Installs a specified new desk accessory in the system. This routine is normally called 
only by ProDOS 16 when the machine is booted. 

The NDA header section is described in the section "Writing New Desk Accessories" 
in this chapter. 

Stack before call 

previous contents 

idHandle 

Stack after call 

Long-HANDLE to NDA header section 

f-SP 

previous contents I 
-------- f- SP 

Errors None 

C extern pascal void Inst a llNDA (idHandle) 

Handle idHandle ; 

Desk Manager routines 5-19 



$1505 

Parameters 

OpenNDA 
Opens a specified NDA. The idNum passed is the same ID returned by the Menu 
Manager and set up by the FixAppleMenu call. 

❖ Note: If your application is using the Window Manager routine Task.Master, the 
application doesn't need to make the OpenNDA call. 

An application should make this call when the user selects an NDA from the Apple 
menu. 

Stack before call 

previous contents 

wordspace Word-Space for result 

idNum 

Stack after call 

Word-ID number returned from Menu Manager 

~SP 

previous contents 

re/Num 

Errors 

C 

$0510 

Word-Reference number to use when application closes NDA 

~SP 

daNotFound Specified DA not available 

extern pascal Word OpenNDA(idNum ) 

Word i d Num ; 

5-20 Desk Manager routines 



$0C05 

Parameters 

Errors 

C 

$0A05 

Parameters 

Errors 

C 

RestAII 
Restores all the variables that the Desk Manager preserves when the CDA menu is 
activated. 

Warning 
An application must never make this call. 

The stack is not affected by this call. There are no input or output parameters. 

None 

Call must not be made by an application. 

RestScrn 
Restores the screen area saved by the Desk Manager. The entire screen and all of the 
the screen holes are restored. 

Warning 
An application must never make this call. 

The stack is not affectecl by this call. There are no input or output parameters. 

None 

Call must not be made by an application. 

Desk Manager routines 5-21 



$OBOS 

Parameters 

Errors 

C 

$0905 

Parameters 

Errors 

C 

SaveAII 
Saves all the variables that the Desk Manager preserves when the CDA menu is 
activated. The routine also sets the display to text mode in either 640 or 320 mode, 
depending upon the settings in the Control Panel. 

Warning 
An application must never make this call. 

The stack is not affected by this call. There are no input or output parameters. 

None 

Call must not be made by an application. 

SaveScrn 
Saves the 80-column text screens in banks $00, $01, $E0, and $El. This new image of 
the screen is used for subsequent calls to the RestScrn routine. The entire screen and 
all of the screen holes are preserved. 

Warning 

An application must never make this call. The screen Is saved in only one place, 
so a subsequent desk accessory ca ll could destroy the screen . 

The stack is not affected by this call. There are no input or output parameters. 

None 

Call must not be made by an application. 

5-22 Desk Manager routines 



$1305 SetDAStrPtr 
Changes the names of the built-in CDAs. 1bis routine can be used to localize the 
built-in desk accessories. 

Parameters 

Stack before call 

previous contents 

altDtspH and le 

stringTablePtr 

Stack after call 

Long-HANDLE to new alternate display desk accessory 

Long-POINTER to table of strings 

~SP 

previous contents I 
--------~SP 

Errors 

C 

None 

extern pascal void SetDAStrPtr(altDispHandle , stringTablePtr) 

Handle 

Pointer 

a ltDispHandle; 

stringTablePtr ; 

(continued) 

Desk Manager routines 5-23 



Alternate-display-mode desk accessory 

Your alternate-display-mode desk accessory should contain code similar to the 
following: 

AltDispDA anop 

de il ' StrEnd-StrStart ' 

StrStart 

StrEnd 

Open 

de c ' Alternate 

de i4 ' Open ' 

de i4 ' ShutDown ' 

sep #$30 

longa off 

longi off 

phb 

lda 

pha 

plb 

jsl 

plb 

#$00 

$El00A4 

rep #$30 

longa on 

longi on 

Shut Down rtl 

Table of strings 

Display Mode ' 

Length of string 

Name you want 

8- bit m and x 

Save data bank register 

Set db r eg to $00 

Alternate display mode vector 

Restore data bank register 

16- bit m and x 

The table of strings pointed to by stringTablePtr must look like this: 

StringTable de 

de 

de 

de 

i4 ' titlestr ' 

i4 ' controlstr ' 

i4 ' quitsti: ' 

i4 ' selectstr ' 

Title line 

Control Panel 

Quit 

Select string 

The strings currently used are discussed in the following sections. 

5-24 Desk Manager routines 



Title string 

The title string must be exactly 39 characters long and must be built in a manner 
similar to the following: 

titlestr de 

de 

de 

de 

h ' SA AO 41 AO ' 

c ' Desk Accessories ' 

18h ' 20 ' 

h ' SF 00 ' 

Bar-space - Apple-space c haracter s 

Note space after string 

Inverse 

Bar a nd termi na tor 

If you change the title (Desk Accessories in the preceding example), you should also 
change the number (18 here) appropriately. The number specifies the number of 
inverse spaces to display. 

❖ Note: The strings used for titles by the Desk Manager are C strings (strings 
terminated by $00); thus, there is no length byte. 

Control string 

The control string must be less than 34 characters long. 

controlstr de c ' Control Panel ' 

de h ' 00 ' 

Quit string 

The quit string must be less than 34 characters long. 

quit s tr de c ' Quit ' 

d e h 1 00 1 

Select string 

This string must be exactly 39 characters long and must be built similar to the 
following : 

selectstr de h ' SA ' 

de c ' Select I Note space before and after s tring 

de h ' 4A AO 4B ' 

de 17h ' A0 ' 

de c ' Open: I Note space after s tring 

de h ' 4D AO AO SF 00 ' 

If you change the length of the words (Select or Open), you should alter the number 
1 7 in the fourth line of the example. This alters the number of spaces between Select 
and Open. 

Desk Manager routines 5-25 



$1705 

Parameters 

System Click 
SystemClick handles mouse-down events in the size, drag, zoom, and close boxes. 
This routine should be called when the application detects a mouse-down event in a 
system window. 

❖ Note: If an application is using TaskMaster, it never needs to make this call. 
TaskMaster does the work for it. 

If the window is inactive and the event is in the content area, information area, 
window frame, or vertical or horizontal scroll bar, SystemClick will make the window 
active. If the window is already active, SystemClick passes the event to the desk 
accessory. 

Stack before call 

previous contents 

-- eventRecPtr 

-- theWindowPtr 

findWndwResult 

--· 

- - · 

Long-POINTER to event record 

Long-POINTER to system window 

Word-Result of the FindWindow call 

f-SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors None 

C e xtern p a sca l v oid Sy stemClick (eventRecPtr , theWindowPtr , findWndwResult ) 

EventRecordPtr eventRecPtr ; 

GrafPortPtr theWindowPtr ; 

Word findWndwRe s ult ; 

5-26 Desk Manager routines 



$1805 System Edit 
Passes standard menu edits to system windows. The valid edit types are 

1 
2 

3 
4 
5 

Parameters 

Stack before call 

previous contents 

wordspace 

editType 

Stack after call 

previous contents 

undo 
cut 
copy 
paste 
clear 

Word-Space for result 

Word-Edit type 

~ SP 

processedFlag Word-BOOLEAN; 1RUE if frontmost window system window and 

~ SP desk accessory has to handle call, otherwise FALSE 

Errors None 

C extern pascal Boolean SystemEdit (editType ) 

Word edit Type ; 

Desk Manager routines 5-27 



$1A05 System Event 
Entry point the Event Manager uses into the Desk Manager. Every event returned to 
an application is first processed by SystemEvent, which returns TRUE if the event has 
been processed by a desk accessory and FALSE if it is to be sent to the application. 
The CDA activation keystroke is processed in this way. 

Werning 
An application must never make this call. 

Parameters 

Stack before call 

prevtous contents 

wordspace 

event What 

-- eventMessage 

-- eventWhen 

-- eventWhere 

eventMods 

Stack after call 

previous contents 

processFlag 

Errors None 

--· 

- - · 

--· 

Word-Space for result 

Word-From event record 

Long-From event record 

Long-From event record 

Long-From event record 

Word-From event record 

f- SP 

Word-BOOLEAN; TRUE if event is to be processed by DA, FALSE if not 
f-SP 

C Call must not be made by an application. 

5-28 Desk Manager routines 



$1905 

Parameters 

Errors 

C 

System Task 
For each open desk accessory, SystemTask causes the accessory to perform the 
periodic action defined for it, if any such action was defined and if the proper time 
period has elapsed since the action was last performed. The routine should be called 
periodically by an application to support desk accessories that perform periodic 
actions. 

❖ Note: If the application is using the Window Manager routine TaskMaster, it 
doesn't need to make this call. TaskMaster does the work for it. 

For example, a clock accessory can be defined such that the second hand moves once 
every second; the periodic action for the accessory is to move the second hand to the 
next position, and SystemTask will alert the accessory every second to perform that 
action. 

The stack is not affected by this call. There are no input or output parameters. 

None 

extern pasca l void Syst e mTask () 

Desk Manager routines 5-29 



Desk Manager summary 
This section briefly summarizes the constants and tool set error codes contained in 
the Desk Manager. There are no predefined data structures for the Desk Manager. 

Important 

These definitions are provided In the appropriate Interface file. 

Table 5-5 
Desk Manager constants 

Name Value 

NOA action codes 
eventAction $0001 
runActio~ $0002 
cursorAction $0003 

undoAction $0005 
cutAction $0006 
copy Action $0007 
pasteAction $0008 
clearAction $0009 

Edit types 
undo $0001 
cut $0002 
copy $0003 
paste $0004 
clear $0005 

Table 5-6 
Desk Manager error codes 

Code 

$0510 
$0511 

Name 

daNotFound 
notSysWindow 

Description 

Code passed if event is to be handled by desk accessory 
Code passed when specified time period has elapsed 
Code passed if desk accessory is frontmost window 
when SystemTask called 
Code passed when user selects Undo from Edit menu 
Code passed when user selects Cut from Edit menu 
Code passed when user selects Copy from Edit menu 
Code passed when user selects Paste from Edit menu 
Code passed when user selects Clear from Edit menu 

Undo edit type 
Cut edit type 
Copy edit type 
Paste edit type 
Clear edit type 

Description 

Specified DA not available 
Window pointer is not a pointer to a window 
owned by an NDA 

5-30 Chapter 5: Desk Manager 



Chapter 6 

Dialog Manager 

The Dialog Manager allows you to implement dialog boxes and the alert 
mechanism, two means of communication between the application and the user. 
The Dialog Manager provides these capabilities in a way consistent with the Apple 
Human Interface Guidelines: The Apple Desktop Interface. 

You should already be familiar with the following: 

■ The basic concepts and structures behind QuickDraw, particularly rectangles, 
GrafForts, and pictures 

■ The Event Manager, the Window Manager, and the Control Manager 

■ The LineEdit Tool Set, to understand text editing in dialog boxes 

A preview of the Dialog Manager routines 
To introduce you to the capabilities of the Dialog Manager, all Dialog Manager 
routines are grouped by function and briefly described in Table 6-1. These routines 
are described in detail later in this chapter, where they are separated into 
housekeeping routines (discussed in routine number order) and the rest of the Dialog 
Manager routines (discussed in alphabetical order). 

6-1 



Table 6-1 
Dialog Manager routines and their functions 

Routine 

Housekeeping routines 
DialogBootinit 

DialogStartUp 
DialogShutDown 

DialogVersion 
DialogReset 

DialogStatus 

Description 

Initilializes the Dialog Manager; called only by the Tool Locator-must not be 
called by an application 
Starts up the Dialog Manager for use by an application 
Shuts down the Dialog Manager and frees any memory allocated by the Dialog 
Manager 
Returns the version number of the Dialog Manager 
Resets the Dialog Manager; called only when the system is reset-must not be 
called by an application 
Indicates whether the Dialog Manager is active 

Dialog creation and disposal routines 
NewModa!Dialog Creates a specified modal dialog and returns a pointer to the GrafFort of the 

NewModelessDialog 

GetNewModa!Dialog 
CloseDialog 

new dialog 
Creates a specified modeless dialog and returns a pointer to the GrafPort of 
the new dialog 
Creates a modal dialog and returns a pointer to the port of the new dialog 
Removes a specified dialog window from the screen and deletes it from the 
window list 

Item creation and removal routines 
NewDitem Adds a new item to the dialog's item list 
GetNewDitem Adds a new item to a specified dialog's item list using a template 
RemoveDitem Removes a specified item from a specified dialog and erases it from the screen 

Dialog event-handling routines 
Moda!Dialog If the frontmost window is a modal dialog box, Moda!Dialog repeatedly gets 

Moda!Dialog2 

IsDialogEvent 

DialogSelect 
DlgCut 

DlgCopy 

DlgPaste 

DlgDelete 

DrawDialog 

and handles events in the dialog's window 
If the frontmost window is a modal dialog, Moda!Dialog2 repeatedly gets and 
handles events in the dialog's window; after handling an event involving an 
enabled dialog item, it returns with the part code and the item ID in 
itemHitlnjo 
Determines whether a specified event needs to be handled as part of a 
modeless dialog 
Handles an event as part of a specified modeless dialog 
Checks whether a specified dialog has any editLine items and, if so, applies 
the LineEdit procedure LECut to the currently selected editLine item 
Checks whether a specified dialog has any editLine items and, if so, applies 
the LineEdit routine LECopy to the current editLine item 
Checks whether a specified dialog has any editLine items and, if so, applies 
the LineEdit routine LEPaste to the current editLine item 
Checks whether a specified dialog has any editLine items and, if so, applies 
the LineEdit routine LEDelete to the current editLine item 
Draws the contents of a specified dialog box 

6-2 Chapter 6: Dialog Manager 



Table 6-1 (continued) 
Dialog Manager routines and their functions 

Routine 

Alert routines 
Alert 
StopAlert 

NoteAlert 

CautionAlert 

Item manipulation routines 

Description 

Invokes an alert defined by a specified alert template 
Invokes an alert defined by a specified alert template and draws the stop icon 
in the upper-left corner of the alert box 
Invokes an alert defined by a specified alert template and draws the note icon 
in the upper-left corner of the alert box 
Invokes an alert defined by a specified alert template and draws the caution 
icon in the upper-left corner of the alert box 

ParamText Specifies text for 1-4 special strings in statText, longStatText, and 
longStatText2 items 

GetControlDitem Returns a handle to the control for a specified item 
GetIText Returns the text of a specified statText or editLine item in a specified dialog 

box 
SetIText 

SelectIText 

GetDitemType 
SetDitemType 
GetDitemBox 
SetDitemBox 
GetFirstDitem 
GetNextDitem 
GetDefButton 
SetDefButton 
GetDitemValue 
SetDitemValue 
GetAlertStage 
ResetAlertStage 

DefaultFilter 

HideDitem 
ShowDitem 
FindDitem 
UpdateDialog 
DisableDitem 
EnableDitem 
Miscellaneous routines 
ErrorSound 
SetDAFont 

Provides the text for a specified statText or editLine item in a specified dialog 
box and draws the item 
Sets the selection range or insertion point for a specified editLine item in a 
specified dialog box 
Returns the type of a specified item (buttonltem, radioltem, statText, etc.) 
Changes a specified item to a new specified item type 
Returns the display rectangle of a specified item 
Changes the display rectangle of a specified item to a new display rectangle 
Returns the ID of the first item in a specified dialog 
Returns the ID of the next item in a specified dialog after a specified item 
Returns the ID of the default button item in a specified dialog 
Sets the ID of the default button to a specified ID 
Returns the current value of a specified item 
Sets the value of a specified item to a new desired value and redraws the item 
Returns the stage of the last occurrence of an alert as a number from O to 3 
Resets the stage of the last occurrence of an alert so that the next occurrence of 
that same alert will be treated as its first stage 
Calls the standard default filter used by ModalDialog or Alert when no user 
filter procedure is specified 
Erases a specified item from a specified dialog 
Makes visible a specified item from a specified dialog 
Returns the ID of the item located at a specified point in a specified dialog 
Redraws the part of a specified dialog that is in a specified update region 
Disables a specified item in a specified dialog 
Enables a specified item in a specified dialog 

Establishes the sound procedure for alerts 
Specifies the font for the dialog or alert window's Grafport 

A preview of the Dialog Manager routines 6-3 



Dialog boxes 
A dialog box appears on the screen when an application needs more information to 
carry out a command. As shown in Figure 6-1, a dialog box typically resembles a 
form on which the user checks boxes and fills in blanks. 

Print the document 

@81 / 2" H 11" paper 
Q B 1/ 2" H 14" paper 

Cancel 

Ok 

C8J Stop printing after each page 

Title: I Annual Aeportl 

Figure 6-1 
Typical dialog box 

By convention, a dialog box appears slightly below the menu bar, is somewhat 
narrower than the screen, and is centered between the left and right edges of the 
screen. It may contain any or all of the following: 

■ Informative or instructional text 

■ Rectangles in which text may be entered (initially blank or containing default text 
that can be edited) 

■ Controls of any kind 

■ Graphics (icons or QuickDraw II pictures) 

■ Anything else, as defined by the application 

The user supplies any necessary information in the dialog box; for example, by 
entering text or clicking a check box. The dialog box usually contains a button 
labeled OK to tell the application to accept the information provided and perform 
the command, and a button labeled Cancel to cancel the command as though it had 
never been given (retracting all actions since its invocation). Some dialog boxes 
may use a more descriptive word than OK; for simplicity, this chapter refers to the 
button as the OK button. There may even be more than one button that will perform 
the OK command, each in a different way. 

6-4 Chapter 6: Dialog Manager 



Most dialog boxes require the user to respond before doing anything else. Clicking a 
button to perform or cancel the command makes the box disappear; clicking outside 
the dialog box causes only a beep from the speaker. This type of box is called a 
modal dialog box because it puts the user in the state, or mode, of being able to work 
only inside the dialog box. A modal dialog box usually has the same general 
appearance as the box shown in Figure 6-1. One of the buttons in the dialog box may 
be boldly outlined. Pressing the Return key has the same effect as clicking the 
outlined button or, if no outlined button exists, the OK button; the particular button 
whose effect occurs is called the dialog's default button and is the preferred ("safest") 
button to use in the current situation. If no boldly outlined or OK button appears, 
pressing the Return key should not, by convention, have any effect. 

Other dialog boxes do not require the user to respond before doing anything else; 
these are called modeless dialog boxes. The user can, for example, work in 
document windows on the desktop before dicking a button in the dialog box, and 
modeless dialog boxes can be set up to respond to the standard editing commands in 
the Edit menu. Clicking a button in a modeless dialog box will not make the box 
disappear: The box will remain visible so that the user can perform the command 
again. A Cancel button, if present, will simply stop the action currently being 
performed by the command; this is useful for long printing or searching operations. 

As shown in Figure 6-2, a modeless dialog box looks like a document window. It can 
be moved, made inactive and active again, or closed like any document window. 
When you're done with the command and want the box to disappear, you can click its 
close box or choose Close from the File menu when the dialog box is the active 
window. 

Change 

Find teHt: I Guide lines 

Change to : ... I g_u_id_e_li_n_es_l ____ _, 

[ Change NeHt ) Change All 

Figure 6-2 
Modeless dialog box 

A dialog box can't be modal and modeless at the same time; different routines are 
used to create the two types. 

Some dialog boxes may not require any response at all. For example, when an 
application is performing a time-consuming process, it can display a dialog box that 
contains only a message telling what it's doing; then, when the process is complete, 
the application can simply remove the dialog box. 

Dialog boxes 6-5 



The alert mechanism provides applications with a means of reporting errors or 
giving warnings. An alert box is similar to a modal dialog box, but an alert box 
appears only when something has gone wrong or must be brought to the user's 
attention. The alert box is usually placed slightly farther below the menu bar than a 
dialog box. To help the user who isn't sure how to proceed when an alert box 
appears, the preferred button to use in the current situation is outlined in bold so that 
it stands out from the other buttons in the alert box. The outlined button is also the 
alert box's default button; if the user presses the Return key, the effect is the same as 
clicking this button. See Figure 6-3. 

r:n 
l..:U 

Ex amp 1 e of a MOTE ALERT 

Figure 6-3 
Typical alert box 

There are three standard kinds of alerts-Stop, Note, and Caution-each indicated 
by a particular icon in the upper-left corner of the alert box. Figure 6-3 illustrates a 
Caution alert. The icons identifying Stop and Note alerts are similar; instead of a 
danger sign, they show a stop sign and a talking face, respectively. Other alerts can 
have anything in the the upper-left corner, including blank space if desired. 

The alert mechanism also provides another type of signal: sound from the speaker. 
The application can base its response on the number of consecutive times an alert 
occurs; the first time, it might simply beep, and thereafter it may present an alert 
box. The sound isn't limited to a single beep but may be any sequence of tones and 
may occur either alone or along with an alert box. As an error is repeated, the 
default button can also change (perhaps from OK to Cancel). You can specify 
different responses for up to four occurrences of the same alert. 

6-6 Chapter 6: Dialog Manager 



Dialog and alert windows 
A dialog box appears in a dialog window. When you call a Dialog Manager routine 
to create a dialog, you supply the same kind of information as when you create a 
window with a Window Manager routine. For example, you usually take the following 
steps: 

1 . Call GetNewModalDialog, NewModalDialog, or NewModelessDialog to 
determine how the window looks and behaves. 

2. Supply a rectangle that becomes the port rectangle of the window's GrafPort. 

3. Specify whether the window is visible or invisible. 

For modeless dialog boxes, you also specify the window's plane (which, by 
convention, should initially be the frontmost). The dialog window is created as 
specified. 

You can manipulate a dialog window just like any other window with Window Manager 
or QuickDraw routines-you can show it, hide it, move it, or change its size or plane, 
for example-all, of course, in conformance with the Apple Human Interface 
Guidelines. The Dialog Manager can use the clip region of the dialog window's 
GrafPort, so if you want clipping to occur, you can set this region with the 
QuickDraw II routine SetClip or ClipRect. 

In the same fashion as a dialog box, an alert box appears in an alert window. You 
don't have the same flexibility in defining and manipulating an alert window, 
however. The Dialog Manager chooses the window definition procedure, so that all 
alert windows have much the same appearance and behavior. The size and location 
of the box are supplied as part of the alert box definition. You don't specify the alert 
window's plane; it always appears in front of all other windows. Since an alert box 
requires the user to respond before doing anything else and the response makes the 
box disappear, the application doesn't manipulate the alert window. 

Dialog and alert windows 6-7 



Item templates 
To create a dialog or an alert box, the Dialog Manager needs to know what items the 
dialog or alert box contains. Your application passes this information as a list of 
pointers to item templates. 

An item template contains the following information: 

■ An ID number uniquely identifying the item. All subsequent Dialog Manager calls 
referring to that item will be made using the ID number. 

■ The type of item. This includes not only whether the item is a standard control, 
editable text, or some other type, but also whether the Dialog Manager should 
return to the application when the item is clicked. 

■ An item descriptor such as a title for a control, a procedure pointer for a user­
defined item, or text for an editable or noneditable text item. 

■ A display rectangle, which determines the location of the item within the dialog or 
alert box. 

■ The initial value of a standard control, the word length of a longStatText item, the 
maximum string length of an editLine item, or any value you want for a userltem. 

■ A flag determining whether the item should originally be visible or invisible and 
including item-specific information; for example, the family number of a radio 
button, or whether a scroll bar is horizontal or vertical. 

■ A pointer to a color table used to draw items (custom color tables are used only for 
standard controls or controls you define yourself). Take care that your use of 
color conforms to the Apple Human Interface Guidelines. 

There are several Dialog Manager procedures that, given a pointer to a dialog port 
and an item ID, set or return that item's text, type, display rectangle, appearance, 
and value. 

6-8 Cha. Jr 6: Dia log Manager 



The structure of the item template is shown in Figure 6-4. 

Offset 

$0 

l 
2 
3 
4 
5 
6 
7 

8 
9 

OA 
OB 

QC 
OD 
OE 
OF 
10 
11 
12 
13 
14 
15 
16 
17 

Field 
------

ltem/0 

ltemRect 

1--------1 

ltemType 

1---------1 

ltemDescr 

1--------1 

Item Value 

1--------1 

ltemF/ag 

1---------1 

ltemColor 

Figure 6-4 
Item template 

Word- Item ID identifying the item 

Four Words-RECT defining item's enclosing rectangle 

Word-type of item (button, check box, scroll bar, and so on) 

Long- Item descriptor 

Word- Item value 

Word- Bit flag (0 for default) 

Long-POINTER to color table (NIL for default table) 

The following sections further describe the information contained in the item 
template. 

Item templates 6-9 



Item types 
The item type identifies the type of a dialog item. The type is specified by a 
predefined constant or combination of constants, as listed in Table 6-2. Figure 6-5 
illustrates some of these item types. 

lcon ltem - -ti- :!- Print the document--""""r====::-tt-- statltem 
Cancel 

radioltem 
B 1 / 2" H 11 " paper 
B 1/ 2" H 14" paper 

~--~ ~ - buttonlte m 

Ok 

Stop printing after each page 

Choose file r.s::a:::m:;::p-;:le~M~em=o--1 "1---4-1-- scrol l Bar lte m 
to print: MyDocument 

userCtlltem -++------1 CalcSheet 
PlayMate 
File 1 

Title: Annual Report ! - - ----- - editline 

userltem Progress of print ing 

Figure 6-5 
Item types 

Table 6-2 
Dialog item types 

Item type 

button Item 
check Item 
radio Item 
scrollBaritem 
userCtlitem 
userCtlitem2 
statText 
longStatText 
longStatText2 

editLine 

iconitem 
picitem 

Description 

Standard button control 
Standard check box control 
Standard radio button control 
Special scroll bar for dialog boxes 
Application-defined control 
Application-defined control 
Static text; text cannot be edited (several lines allowed) 
Static text; text cannot be edited (several lines allowed) 
Static text; text cannot be edited and can contain embedded commands 
(several lines allowed) 
Text that can be edited (dialog boxes only); the Dialog Manager accepts 
text typed by the user and allows editing (one line only) 
Icon 
QuickDraw II picture 

6- l O Chapter 6: Dia log Manager 



Table 6-2 (continued) 
Dialog item types 

Item type Description 

useritem Application-defined item, such as a picture whose appearance changes 
(dialogs only) 

it emD is ab le + any Item If itemDisable is specified for an item, the Dialog Manager doesn't let the 
application know about events involving that item. For example, your a 
pplication may not need to know every time the user types a character or 
clicks in an editLine item; you may need to look at the text only when the 
OK button is clicked. In this case, you would disable the editLine item. 
Standard buttons and check boxes should always be enabled so that your 
application will know when they've been clicked. 

Important 

Don't confuse disabling a control with making one inactive with the Control 
Manager procedure Hil iteControl. When you want a control not to respond at 
all to being clicked, you make it inactive. An inactive control is dimmed to show 
that it's inactive, while a disabled control doesn't change its appearance. See 
Chapter 4, ·control Manager," for more information. 

An editline item may initially either show default text or be empty. Text entry and 
editing are handled in the conventional way, as with the LineEdit Tool Set; in fact, 
the Dialog Manager usually calls LineEdit routines to handle text operations. 

The Apple-X, Apple-C, and Apple-V commands, respectively, cut, copy, and paste 
the current selection in the active editline item, allowing you to copy and paste text 
between different editline items (the cut/ copy/ paste mechanism preserves the space 
between words). 

The Tab key advances the cursor to the next editline item in the item list, wrapping 
around to the first item if no other items remain. In an alert box or a modal dialog 
box (regardless of whether it contains an editLine item), pressing the Return key has 
the same effect as clicking the default button; in an alert box, the default button is 
identified in the alert template, whereas in a modal dialog box the default item is the 
item in the item list whose ID number is 1 (unless specified otherwise). 

Item templates 6- 11 



Item descriptor and item value 
The item descriptor and item value provide additional information about a 
specific dialog item, as shown in Table 6-3. 

Table 6-3 
Dia log item descriptors 

Item type 

button Item 
check Item 
radio Item 
scrollBaritem 
userCtlitem 
userCtlitem2 
statText 
longStatText 

longStatText2 

editLine 

iconitem 
picitem 
useritem 

Item descriptor 

Pointer to the title string 
Pointer to the title string 
Pointer to the title string 
Pointer to dialog scroll bar action procedure 
Pointer to control definition procedure 
Pointer to parameter block 
Pointer to the static string 
Pointer to the beginning of the text 

Pointer to the beginning of the text 

Pointer to the default string 

Handle to the icon 
Handle to the picture 
Pointer to item definition procedure 

Item value 

Initial value of the control 
Initial value of the control 
Initial value of the control 
0 or default value if itemDescr = 0 
Initial value of the control 
Initial value of the control 
For application use 
Length of the text (0 to 32767 
characters) 
Length of the text (0 to 32767 
characters) 
Maximum length of default text 
(0 to 255 characters) 
For application use 
For application use 
For application use 

❖ Note: Whenever "For application use" is specified under "Item value," the value 
parameter is not accessed by the Dialog Manager and can be used by the 
application for its own purpose (use the GetDitemValue and SetDitemValue 
routines to change this field). For example, the application might want to store the 
indicator position of the userltem in Figure 6-5. Note that SetDitemValue redraws 
the item to display its new value. 

The procedure for a userltem draws the item; for example, if the item is a clock, it 
draws the clock with the current time displayed. When this procedure is called, the 
current port will have been set by the Dialog Manager to the dialog window's 
GrafPort. 

6-12 Chapter 6: Dialog Manager 



The procedure must have a dialog pointer and an item ID as input, as follows: 

Stack before call 

previous contents 

theDialogPtr 

itemID 

Stack after call 

Long-POINTER to the dialog's GrafPort 

Word-ID of item to draw 

~SP 

previous contents I 
--------~SP 

The theDialogPtr parameter is a pointer to the dialog window; if the procedure draws 
in more than one dialog window, this parameter tells the procedure the window in 
which to draw. 

The itemID parameter is the item ID; if the procedure draws more than one item, 
this parameter tells it which one to draw. 

For a button item, check item, or radio item, itemDescr is a pointer to the title of the 
button, check box, or radio button, and item Value is the initial value of the control 
(this is useful with check boxes and radio buttons). 

For a statText item, itemDescr is a pointer to a string containing the static text, and 
item Value is not used. You can have several lines of text in the same item by 
inserting carriage returns (ASCII 13 = $OD) inside the string. An example of a typical 
string you could use for a statText item is as follows: 

St atieStr d e i l ' EndStaticStr- StatieStr - 1 ' 

d e e ' Do you want to save', h ' OD ' 

de e ' before quitting? ',h' OD ' 

EndSt atieStr a nop 

If you're using APW, you can use the macro STR for a one-line static text item, as 
follows: 

St atieSt r s t r 'Fi l e not foun d' 

Item templates 6-13 



For a longStarrext item, itemDescr is a pointer to the beginning of the text, and 
item Value is the word length of the text (0 to 32767 characters). An example of 
typical itemDescr and item Value parameters you would use for a longStarr ext item is 
as follows, where itemDescr is a pointer to the text shown in the code fragment 

myLongText de 

de 

de 

de 

de 

de 

EndLongText anop 

and item Value is 

e ' This is a really very , ,, ', h ' OD ' 

e 'very , ,. very ... ', h ' OD ' 

e'long text, that eontains ', h ' OD ' 

e'more than 255 eharaeters ' , h ' OD ' 

e'so that I need a LongStatText ',h ' OD ' 

e'item to print it in a single item ', h ' OD ' 

EndLongText - myLongText 

For an editLine item, itemDescr is a pointer to the default string containing the 
default text that first appears in the item when the dialog comes up, and item Value is 
the maximum allowed length of the editable string (0 to 255 characters). An example 
of typical ttemDescr and item Value parameters you would use for an editLine item is 
as follows, where itemDescr is a pointer to the string 

EditLStr str ' Untitled ' ; default string 

and itemValue is 15 characters (the maximum length for a ProDOS filename). 

If you pass O for ttemDescr, the line will not contain any default text. 

If the item is the first editLine item to be created, it will be the current active editLine 
item, and the default text (if there is any) will be selected. 

For a scrollBaritem, itemDescr is a pointer to a special action procedure that is 
called during initialization and scrolling. This procedure can, for example, change 
the appearance of different items in the dialog in real time while the user is scrolling 
the scroll bar, and it will do so without reporting anything to the application. In fact, 
if the scrollBarltem is disabled, the application will not even know that the user 
clicked in it. 

6- 14 Chapter 6: Dialog Manager 



The definition of a dialog scroll bar action procedure is as follows: 

Stack before call 

previous contents 

wordspace 

command 

-- theDialogPtr 

scrollBarID 

Stack after call 

previous contents 

result 

Table 6-4 

--· 

Word-Space for result 

Word-See list of possible commands in Table 6-4 

Long-POINTER to dialog the scroll bar is in 

Word-Item ID of scroll bar 

f- SP 

Word-Depends on command, as shown in Table 6-4 
f-SP 

Dialog scroll bar action procedure commands 

Command 

getinitView 
getinitTotal 
getinitValue 
scrollLineUp 
scrollLineDown 
scrollPageUp 
scrollPageDown 
scroll Thumb 

Result 

Initial view 
Initial total 
Starting value 
New value 
New value 
New value 
New value 
New value 

Comments 

View size at creation (called before control is allocated) 
Total size at creation (called before control is allocated) 
Value at creation (called before control is allocated) 
Scroll one line up and return new scroll bar value 
Scroll one line down and return new scroll bar value 
Scroll one page up and return new scroll bar value 
Scroll one page down and return new scroll bar value 
Get thumb position; scroll to that position and return new 
correct value (usually the same) 

For the commands getinitView, getinitTotal, and getinitValue, do 
not make any reference to the scroll bar control because these calls are made before 
the control is allocated. 

The commands scrollLineUp and scrollPageDown should first call the 
GetDitemValue routine with scrollBarID to get the previous value of the scroll bar, 
then make some changes (such as changing an icon or the text of a statText item or 
adding or removing items from the dialog), and finally return the new value of the 
scroll bar. 

Item templates 6- l 5 



For the scroll Thumb command, you should first call the GetDitemValue routine 
with scrol/BarID. GetDitemValue returns the new thumb position. You can then 
make whatever changes you want and return either the value obtained from 
GetDitemValue or any other suitable value. 

Your scroll bar action procedure is called by NewDitem to create a scrollBaritem and 
by ModalDialog when the user clicks in a scrollBaritem. ModalDialog sets the new 
scroll bar value according to the result returned by your procedure. 

For an iconltem, itemDescr is a handle to an icon, and item Value is not used. The 
icon record contains the following fields : 

iconre ct 

icon Image 

equ 

equ i c onRe c t + 8 

bou nds Rect (width is multiple of 8) 

pixel image of icon 

Picture items were not yet implemented at the time of publication. 

For a userCtlitem, itemDescr is a pointer to a control definition procedure, as 
defined in Chapter 4, "Control Manager," and item Value is the initial value of the 
control. 

For a userltem, itemDescr is a pointer to an item definition procedure, and 
item Value is not used. The definition of an item definition procedure is as follows : 

Myltem 

Stack before call 

previous contents 

theDialogPtr 

itemID 

Stack after call 

Long-POINTER to the dialog's GrafPort 

Word-ID of item to draw 

~SP 

previous contents I 
--------~SP 

The procedure for a userltem draws the item; for example, if the item is a clock, it will 
draw the clock with the current time displayed. When this procedure is called, the 
current port will have been set by the Dialog Manager to the dialog window's 
GrafFort. 

6- 16 Chapter 6: Dialog Manager 



Display rectangle 
The display rectangle in the item template controls how the item is displayed. You 
must specify the values for the upper-left corner of the display rectangle; however, if 
you specify (0,0) as the coordinates for the lower-right corner for simple buttons, 
radio buttons, or check boxes, the Dialog Manager will calculate the display 
rectangle for you. 

■ For standard controls, scroll bars, and user controls, the display rectangle 
becomes the control's enclosing rectangle. 

■ For an editLine item, the display rectangle becomes LineEdit's view rectangle. The 
text is clipped if there are more characters than will fit in the rectangle. In 
addition, the Dialog Manager uses the QuickDraw II routine FrameRect to draw a 
rectangle outside the display rectangle. 

■ Any statText, longStatText, or longStatText2 items are displayed in exactly the 
same way as editLine items, except that a rectangle isn't drawn outside the display 
rectangle, and you can display more than one line of text by inserting carriage­
return characters in the text. 

■ The rectangle for a statText item must always be at least as wide as the first 
character of the text; a good rule of thumb is to make it at least 20 pixels wide. See 
the section "StringWidth" in Chapter 16, "QuickDraw II," for more information. 

■ Icons are clipped to fit the display rectangle. 

■ If the procedure for a userltem draws outside the item's display rectangle, the 
drawing is clipped to the display rectangle. 

❖ Note: Clicking anywhere within the display rectangle is considered a click in that 
item. If display rectangles overlap, a click in the overlapping area is considered 
a click in whichever item comes first in the item list. 

Item templates 6-1 7 



Item ID 
Each item in an item list is identified by an item ID, a unique number in the list 
allowing you to further reference this item. In a modal dialog's item list, the item 
whose ID is 1 is assumed to be the dialog's default button, unless specified otherwise 
by the SetDefButton routine. If the user presses the Return key, the Dialog Manager 
normally returns the ID of the default button, just as when that item is actually 
clicked. By convention, the OK button in an alert's item list should have an ID of 1 
and the Cancel button should have an ID of 2 (in fact, those numbers are given to OK 
and Cancel constants). 

To conform with the Apple Human Interface Gutdeltnes, the Dialog Manager 
automatically outlines the default button in bold, unless there is no default button 
(that is, no button item with ID 1). 

❖ Note: If you don't want any default button, don't create an item with an ID of 1. 

An item ID of O is invalid. 

Item flag 
The itemFlag parameter usually contains the same value as the flag parameter given 
to the Control Manager routine NewControl. The itemFlag parameter may also 
contain the family number of a radio button or information as to whether a scroll bar 
is horizontal or vertical. For more details, refer to Chapter 4, "Control Manager." 

❖ Note: Don't use itemFlag to outline a default button in bold, because the Dialog 
Manager handles the concept of a default button automatically. 

Item color tables 
If you specify NIL for the color table in an item template, the item is drawn using the 
default color table. Otherwise, you can specify a custom color table for the item, as 
described in Chapter 16, "QuickDraw II." If you do decide to use a special color 
table, take care that your use of color conforms to the Apple Human Interface 
Guidelines. 

6-18 Chapter 6: Dialog Manager 



Dialog records 
To create a dialog, you pass information to the Dialog Manager in parameters or in a 
template; the Dialog Manager then incorporates that information into a dialog 
record. The dialog record contains the window record for the dialog window, a 
handle to the dialog's item list, and some additional fields . The Dialog Manager 
creates the dialog window by calling the Window Manager routine NewWindow and 
then setting the dialog type in the dialog record to indicate whether the dialog is 
modal or modeless. 

The routine that creates the dialog returns a dialog pointer to the dialog's GrafPort; 
thereafter, you use that pointer to refer to the dialog in Dialog Manager routines or 
even in Window Manager or QuickDraw II routines. The dialog pointer is equivalent 
to the window pointer for the dialog box. It is not a pointer to the dialog record or 
even to the window record. 

The Dialog Manager provides routines for handling events in the dialog window and 
disposing of the dialog when you're done. 

The structure of a dialog record is private. You can perform all necessary operations 
on a dialog without accessing the fields of the dialog record directly. To get or 
change information about a dialog, you pass the dialog pointer to a Dialog Manager 
routine. Similarly, to get or change information about an item in a dialog, you pass 
the dialog pointer and the item ID to a Dialog Manager routine. You'll never access 
information directly through the handle to the item. 

Alerts 
When you call a Dialog Manager routine to invoke an alert, you pass the routine a 
pointer to the alert template, which contains the following: 

■ An alert ID used by the Dialog Manager to manage the stages between the different 
alerts. 

■ A rectangle, given in global coordinates, which determines the alert window's size 
and location. This becomes the portRect of the window's GrafPort. To allow for 
the normal menu bar and the border around the portRect, the top coordinate of 
the rectangle should be at least 25 pixels below the top of the screen. 

■ Information about exactly what should happen at each stage of the alert. 

■ A list of pointers to the item templates. 

Alerts 6-19 



An alert gets its parameters from an alert template. The structure of an alert template 
is shown in Figure 6-6. 

Offset Field 
$0 ,-------, 

2 

3 
4 

5 
6 
7 
8 
9 

tBoundsRec 

1--------, 
otA/ertlD 

1--------i 

Four words-RECT data structure defining dialog box's enclosing rectangle 

Word-Number uniquely identifying alert 

OA 1---a_tSt_o_ge_1_-i Byte-Stage byte for first stage of alert 
QB atstage2 Byte-Stage byte for second stage of alert 
QC atstoge3 Byte-Stage byte for third stage of alert 
OD atStoge4 Byte-Stage byte for fourth stage of a lert 

OE 
OF 
10 
11 
12 
13 
14 

item/Plr 

1--------, 

item2Plr 

15 1--------< 

ltemNPlr 

terminator 

Figure 6-6 
Alert temp late 

Long-POINTER to first item's template 

Long-POINTER to second item's template 

Long-POINTER to last item's template 

Long-NIL POINTER terminating item list 

Every alert has four alert stages, which correspond to consecutive occurrences of 
the alert. The first three stages correspond to the first three occurrences, and the 
fourth stage includes the fourth and subsequent occurrences. (The Dialog Manager 
compares the current alert's ID to the last alert's ID to determine whether these 
indicate that it is the same alert.) 

6-20 Chapter 6: Dialog Manager 



The actions for each stage are specified by the following three pieces of information: 

1. Is the alert box is to be drawn? 

2 . Which is the default button-the OK button (or, if none, a button that will perform 
the command) or the Cancel button? For an alert, the OK button should have an 
ID 1 and the Cancel button an ID 2. 

3 . Which of four sounds should be emitted at this stage of the alert? 

The actions taken are determined by a stage byte, which contains the bit fields 
shown in Figure 6-7. 

l7 161sl4l3 12l 1lol 
alertDrawn J J 
Draw alert = l 

Don't draw alert= 0 

Default button ID minus 1 
Cancel is default button = 1 

OK is default button = 0 

Reserved; set to 0 

Sound number to emit at this stage (0-3) 

Figure 6-7 
Stage byte 

The alert sounds are determined by a sound procedure that emits one of up to four 
tones or sequences of tones. The sound procedure has one parameter: an integer 
from O to 3. The procedure can emit any sound for each of these numbers, which 
identify the sounds in the alert template. The volume of each beep depends on the 
current speaker volume setting, which the user can adjust with the Control Panel desk 
accessory. 

The standard sound procedure is as follows: 

0 No sound 
1 One short beep of a preset pitch and duration 
2 Two short beeps, each of the same pitch and duration as sound number 1 
3 Three short beeps, each of the same pitch and duration as sound number 1 

A le rts 6-2 1 



If you want other sounds besides the standard ones, write your own sound procedure 
and call ErrorSound to make it the current sound procedure. For example, you 
might declare a sound procedure named MySound as follows: 

MySound 

Stack before call 

previous contents 

soundNumber 

Stack after call 

Word-Number of the sound 

~SP 

previous contents I 
--------~SP 

If you want two successive beeps of different pitch, you need to write a procedure that 
will emit that sound for a particular sound number, and you need to specify that 
number in the alert template. The Apple IIGS Miscellaneous Tool Set routine 
FWEntry allows you to be in the 16-bit environment and still call the Apple II 
firmware, which has routines for emitting sound (the standard sound procedure calls 
the BELL routine at $FBDD); for more complex sounds, you can use the Sound Tool 
Set. See Chapter 14, "Miscellaneous Tool Set," and Chapter 21, "Sound Tool Set," 
for more information. 

❖ Note: When the Dialog Manager detects a click outside an alert box or a modal 
dialog box, it emits sound number 1; thus, for consistency with the Apple 
Human Interface Guidelines, sound number 1 should always be a single beep. 

Internally, alerts are treated as special modal dialogs. The alert routine creates the 
alert window by calling NewModalDialog and every item with GetNewDitem. The 
Dialog Manager works with the dialog created by NewModalDialog, just as when it 
operates on a dialog window, but it disposes of the dialog before returning to the 
application. Normally your application won't change the dialog record for an alert; 
however, there is a way that this can happen: For any alert, you can specify a filter 
procedure that will be executed repeatedly during the alert, and this procedure may 
change the dialog. For details, see the section "Filter Procedures" in this chapter. 

6-22 Chapter 6: Dialog Manager 



Using the Dialog Manager 
This section discusses how the Dialog Manager routines fit into the general flow of an 
application and gives you an idea of which routines you'll need to use under normal 
circumstances. Each routine is described in detail later in this chapter. 

The Dialog Manager depends upon the presence of the tool sets shown in Table 6-5 
and requires that at least the minimum version of the tool set be present. 

Table 6-5 
Dialog Manager-other tool sets required 

Tool set Tool set Minimum version 

number name needed 

$01 #01 Tool Locator 1.0 
$02 #02 Memory Manager 1.0 
$03 #03 Miscellaneous Tool Set 1.0 
$04 #04 QuickDraw II 1.0 
$05 #05 Desk Manager 1.0 
$06 #06 Event Manager 1.0 
$OE #14 Window Manager 1.3 
$10 #16 Control Manager 1.3 
$14 #20 LineEdit Tool Set 1.0 

Your application must make the DialogStartUp call before it makes any other Dialog 
Manager calls. Conversely, when your application quits, it must make the 
DialogShutDown call. 

Where appropriate in your program, call NewModa!Dialog, NewModelessDialog, or 
GetNewModa!Dialog to create any dialogs you need. Then call NewDitem or 
GetNewDitem for each new item you want to add to the dialog. When you no longer 
need a dialog, you'll usually call CloseDialog. 

In most cases, you won't have to change the dialogs from the way they're defined at 
their creation. However, if you want to modify an item in a dialog, you can use one 
of the GetDitemXXX calls to get information about the item and SetDitemXXX to 
change it. In some cases it may be appropriate to call some other routine to change 
the item; for example, to move a control in a dialog, you would get its handle from 
GetContro!Ditem and then call the appropriate Control Manager routine. There are 
also two routines specifically for accessing or setting the content of a text item in a 
dialog box: GetIText and SetIText. · 

Using the Dialog Manager 6-23 



To handle events in a modal dialog, just call the Moda!Dialog routine after putting up 
the dialog box. If your application includes any modeless dialog boxes, you'll pass 
events to IsDialogEvent to learn whether they need to be handled as part of a dialog. 
If those events do need to be handled, you'll then usually c:tll DialogSelect. Before 
calling DialogSelect, however, you should check whether the user has given the 
keyboard equivalent of a command, and you may want to check for other special 
cases, depending on your application. For more information about event handling, 
see Chapter 7, "Event Manager." 

You can support the use of the standard editing commands in a modeless dialog's 
editText items with DlgCut, DlgCopy, DlgPaste, and DlgDelete . 

A dialog box that contains editLine items normally is displayed with the insertion 
point in the first such item in its item list. You may instead want to display a dialog 
box with text selected in an editLine item or cause an insertion point or text selection 
to reappear after the user has made an error in entering text. For example, the user 
who accidentally types nonnumeric characters when a number is required can be 
given the opportunity to type the entry again. The SelectIText routine makes this 
possible. 

To invoke a particular alert, call one of the alert routines: StopAlert, NoteAlert, or 
CautionAlert for one of the standard kinds of alert, or Alert for an alert with 
something other than a standard icon (or nothing at all) in its upper-left corner. 

You can find out what the current default button is by calling the GetDefButton 
routine on the dialog pointer for the alert passed to your filter procedure. 

You can substitute text in statText items with text that you specify in the ParamText 
routine. This means, for example, that a document name supplied by the user can 
appear in an error message. 

By calling the HideDitem routine, you can make an item invisible. This technique 
can be useful, for example, if your application needs to display a number of similar 
dialog boxes with one item missing or different in some of them. You can use a 
single dialog box in which the item or items that aren't currently relevant are 
invisible. To hide an item or make one reappear, use the HideDitem or ShowDitem 
routines. Note the following, however: 

■ When you want to change text in a statText item, you will find the Dialog Manager 
routine ParamText (described later in this chapter) easier to use than hiding the 
item and showing it again. 

■ Instead of making an item invisible and visible, you can use the RemoveDitem 
routine to completely remove the item from the item list. 

If you want the font in your dialog and alert windows to be other than the system font, 
call SetDAFont to change the font. 

6-24 Chapter 6: Dialog Manager 



Filter procedures 
Filter procedures allow you to control the type of events handled by Dialog 
Manager routines . Many Dialog Manager routines allow you to specify a custom filter 
procedure by including a fllterProcPtr parameter to that procedure. 

If you specify NIL as the filterProcPtr, the standard filter procedure is executed. The 
standard filter procedure performs the following actions: 

■ Causes the Return key to have the same effect as clicking the default button 

■ Supports the Apple-X/C/V commands for cut/copy/paste operations inside the 
dialog 

If filterProcPtr isn't NIL, the calling routine filters events by executing the procedure 
it points to. 

❖ Note: If you set bit 31 of the filterProcPtr parameter to 1 before passing it to the 
calling routine, the standard filter procedure will also be called after your filter 
procedure. This allows you to define a custom filter procedure and still get the 
benefits of the default Return key and the cut/copy/ paste feature for consistency 
with the Apple Human Interface Guidelines. 

Your filterProc procedure should have three parameters and return a Boolean value. 
For example, this is how it would be declared if it were named MyFilter: 

MyFilter 

Stack before call 

previous contents 

wordspace 

-- theDtalogPtr 

-- eventPtr 

-- ttemHttPtr 

Stack after call 

previous contents 

ignoreFlag 

--· 

--· 

- - · 

Word-Space for result 

Long-POINTER to the dialog's GrafPort 

Long-POINTER to the event 

Long-POINTER to the item hit 

<-SP 

Word-BOOLEAN; TRUE if event is to be ignored, 

<- SP FALSE if calling routine should handle event 

FIiter procedures 6-25 



An tgnoreFlag value of FALSE tells the calling routine to handle the event, which 
either can be changed to simulate a different event, or sent through unchanged. 

You could use the filterProc procedure, for example, to treat a typed character in a 
special way (such as to ignore it or make it have the same effect as another character 
or as clicking a button); in this case, the function would test for a key event with that 
character. As another example, suppose the dialog box contains a userltem whose 
procedure draws a clock with the current time displayed. The filterProc procedure 
can call that procedure and return FALSE without altering the current event. 

6-26 Chapter 6: Dialog Manager 



$0115 DialogBootlnit 
Initializes the Dialog Manager; called only by the Tool Locator. 

Warning 
An application must never make this call. 

Porometers The stack is not affected by this call. There are no input or output parameters. 

Errors None 

C Call must not be made by an application. 

Dialog Manager housekeeping routines 6-27 



$0215 

Parameters 

DialogStartUp 
Starts up the Dialog Manager for use by an application. 

lmportcnt 

Your application must make this call before It makes any other Dialog Manager 
calls. 

DialogStartup performs the following initialization: 

■ Installs the standard sound procedure 

■ Passes empty strings to ParamText 

■ Sets the dialog font to the System font 

■ Sets the alert stage to 1 

Im portent 

The Dialog Manager shares Its direct page with the Control Manager, so It does 
not need a special direct page. However, the Control Manager must be present 
for the Dialog Manager to run, even If the application does not use any 
standard control Items In Its dialogs. 

Stack before call 

previous contents 

userID 

Stack after call 

Word-ID number of the application 

f-SP 

I previous contents If- SP 

Errors None 

C extern pascal void DialogStartUp (user I D) 

Wo rd u s erID; 

6-28 Dialog Manager housekeeping routines 



$0315 

Parameters 

Errors 

C 

$0415 

Parameters 

DialogShutDown 
Shuts down the Dialog Manager and frees any memory allocated by the Dialog 
Manager. 

Important 
If your application has started up the Dialog Manager, the application must 
make this call before It quits. 

The stack is not affected by this call. There are no input or output parameters. 

None 

extern p a scal void DialogShutDown () 

DialogVersion 
Returns the version number of the Dialog Manager. 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

versionlnfo 

Errors None 

Word-Space for result 

f-SP 

Word-Version number of the Dialog Manager 

f-SP 

C exte rn pascal Word DialogVer s ion () 

Dialog Manager housekeeping routines 6-29 



$0515 

Parameters 

Errors 

C 

$0615 

Parameters 

Dialog Reset 
Resets the Dialog Manager; called only when the system is reset. 

Warning 
An application must never make this call. 

DialogReset resets the dialog font to the system font, clears the strings set by the 
ParamText routine, resets the sound procedure to the standard sound procedure, and 
resets the alert stage to 1. 

The stack is not affected by this call. There are no input or output parameters. 

None 

Call must not be made by an application. 

DialogStatus 
Indicates whether the Dialog Manager is active. 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

activeFlag 

Errors None 

Word-Space for result 

~SP 

Word-BOOLEAN; TRUE if Dialog Manager is active, FALSE if it is not 
~SP 

C e xt e r n pascal Boolean DialogStatus () 

6-30 Dialog Manager housekeeping routines 



$1715 Alert 
Invokes an alert defined by a specified alert template. The routine calls the current 
sound procedure, if any, passing it the sound number specified in the alert template 
for this stage of the alert. If no alert box is to be drawn at this stage, Alert returns a 
function result of - 1; otherwise, it takes the following actions: 

1 . Creates and displays the alert window for this alert 

2. Draws the alert box 

3 . Waits for the user to select an item 

4. Removes the alert box 

5 . Returns with the ID of the item hit 

Parameters 

Stack before call 

prevtous contents 

wordspace 

- alertTemplatePtr 

- JtlterProcPtr 

Stack after call 

prevtous contents 

ttemHtt 

Errors None 

-

-

Word-Space for result 

Long-POINTER to an alert template 

Long-POINTER to filter procedure; NIL for standard filter 

f- SP 

Word-ID of item hit (minus 1 if not drawn) 

f-SP 

C extern pascal Word Alert(alertTemplatePtr,filterProcPtr) 

AlertTempPtr 

WordProcPtr 

alertTemplatePtr; 

filterProcPtr; 

(continued) 

Dialog Manager routines 6-31 



Alert template 

Alert gets its parameters from an alert template. The definition of an alert template is 
shown in Figure 6-8. 

Offset Field 
$0 ,-------, 

2 
3 

4 
5 
6 

tBaundsRec 

71---------i 
8 
9 

atAlert/D 

Four words-RECT data structure defining dialog box's enclosing rectangle 

Word-Number uniquely identifying alert 

QA i-------; 
1---a""""tSt_a_ge....,,_-; Byte-Stage byte for first stage of alert (see Figure 6-9) 

o B atStage2 Byte-Stage byte for second stage of alert (see Figure 6-9) 

QC atStage3 Byte-Stage byte for third stage of alert (see Figure 6-9) 

Q D atStage4 Byte-Stage byte for fourth stage of alert (see Figure 6-9) 

OE 
0 F 

10 
ltem/Pfr 

11 f-------; 
12 
13 
14 

ltem2Pfr 

15 1-------i 

/temPfr 

terminator 

Figure 6-8 
Alert template 

Long-POINTER to first item's template; item template is defined 
in the section 'Item Template' in this chapter 

Long-POINTER to second item's template 

Long-POINTER to last item's template 

Long-NIL POINTER terminating Item list 

6-32 Dialog Manager routines 



A stage byte is a bit flag containing the bit fields shown in Figure 6-9. 

l?l6lsl 4 !3l2 I 1 101 

alertDrawn J J 
Draw alert = l 

Don't draw alert= O 

Default button ID minus l 
Cancel Is default button = l 

OK Is default button = O 

Reserved; set to 0 

Sound number to emit at this stage (0-3) 

Figure 6-9 
Stage byte 

❖ Note: The Alert routine creates the alert window by calling NewModalDialog 
and GetNewDitem for each item in the alert, and it performs the rest of its 
processing by calling ModalDialog. 

The Alert routine repeatedly gets and handles events in the alert window until an 
enabled item is clicked, at which time it returns the item ID. Normally you'll then do 
whatever is appropriate in response to a click of that item. 

Alert gets each event by calling the Event Manager routine GetNextEvent. If the event 
is a mouse-down event outside the content region of the alert window, Alert emits 
sound number 1 (which should be a single beep) and gets the next event; otherwise, it 
filters and handles the event as described next. 

If you specify NIL for filterProcPtr, the standard filter procedure is executed. If 
filterProcPtr isn't NIL, the calling routine filters events by executing the procedure it 
points to. 

❖ Note: If you set bit 31 of the filterProcPtr parameter to 1 before passing it to the 
calling routine, the standard filter procedure will also be called after your filter 
procedure. This allows you to define a custom filter procedure and still get the 
benefits of the default Return key and the cut/ copy/ paste feature for consistency 
with the Apple Human Interface Guidelines. 

(continued) 

Dialog Manager routines 6-33 



Alert handles the events for which the filter procedure returns FALSE as follows: 

■ If the mouse button is pressed in a control, Alert calls the Control Manager routine 
TrackControl. If the mouse button is released inside the control and the control is 
enabled, Alert returns; otherwise, it does nothing. 

■ If the mouse button is pressed in any other enabled item, Alert simply returns. If 
it's pressed in any other disabled item or in no item, or if any other event occurs, 
Alert does nothing. 

Before returning to the application with the item number, Alert removes the alert 
box from the screen. (Alert disposes of the alert window and its associated data 
structures, the item list, and the items.) 

❖ Note: The Alert routine's removal of the alert box would not be the desired 
result if the user clicked a check box or ra_dio button; however, alerts normally 
contain only static text, icons, pictures, and buttons that are ~upposed to make 
the alert box go away. If your proposed alert box contains other items besides 
these, consider whether it might be more appropriate as a dialog box. 

6-34 Dialog Manager routines 



$1Al5 

Parameters 

CautionAlert 
Invokes an alert defined by a specified alert template and draws the caution icon in the 
upper-left corner of the box. The caution icon is shown in Figure 6-10. 

Figure 6-10 
Caution Icon 

The alert template is defined in Figure 6-8 under the Alert routine. 

Stack before call 

previous contents 

wordspace 

-- alertTemplatePtr 

-- filterProcPtr 

Stack after call 

previous contents 

itemHit 

Errors None 

--· 

- - · 

Word-Space for result 

Long-POINTER to an alert template 

Long-POINTER to filter procedure; NIL for standard filter 

f-SP 

Word-ID of item hit 

f-SP 

C extern pascal Word CautionAlert (alertTemplatePtr , filterProcPtr ) 

AlertTempPtr 

WordProcPtr 

alertTemplatePtr ; 

filterProcPtr; 

Dialog Manager routines 6-35 



$0C15 

Parameters 

CloseDialog 
Removes a specified dialog window from the screen and deletes it from the window 
list. 

The routine releases the memory occupied by the following: 

■ The data structures associated with the dialog window (such as the window's 
structure, content, and update regions) 

■ All of the items in the dialog box (except for pictures and icons) and any data 
structures associated with them 

❖ Note: CloseDialog does not affect the memory space allocated for your own 
structures, such as dialog, alert, and item templates 

Stack before call 

prevtous contents 

theDialogPtr Long-POINTER to the dialog's GrafPort 

~SP 

Stack after call 

previous contents I 
--------~SP 

Errors Window Manager errors Returned unchanged 

C extern p a scal void Cl oseDi alog (theDialogPtr ) 

GrafPortPtr t neDialogPtr ; 

6-36 Dialog Manager routines 



$3615 DefaultFilter 
Calls the standard default filter used by the ModalDialog or Alert routines when no 
user filter procedure is specified. Given a pointer to an event involving dialog items, 
DefaultFilter filters the Apple-X, Apple-C, and Apple-V keys to make them cut, copy, 
and paste. The routine also interprets the Return key as a click in the default button. 

DefaultFilter returns a TRUE result if the default button has been clicked and the item 
hit (pointed to by itemHitPtr) contains the button's ID number, or it returns TRUE if a 
cut/copy/ paste operation has been performed on an enabled editLine item. 

Parameters 

Stack before call 

previous contents 

wordspace 

-- theDtalogPtr 

-- theEventPtr 

-- itemHitPtr 

--

--· 

--· 

Word-Space for result 

Long-POINTER to the dialog's GrafPort 

Long- POINTER to the event 

Long- POINTER to Word in which to store item hit 

f-SP 

Stack after call 

prevtous contents 

returnFlag Word-BOOLEAN; TRUE if return, 

f- SP FALSE if application should handle event 

Errors None 

C extern p a scal Boolean DefaultFilter (theDialogPtr , theEventPtr , itemHitPtr ) 

Gr a fPor t Ptr theDia l ogPtr ; 

EventRecordPtr t heEventPtr ; 

Word *itemHitPtr ; 

Dialog Manager routines 6-37 



$1115 DialogSelect 
Handles an event as part of a specified modeless dialog. You'll normally call 
DialogSelect when the IsDialogEvent routine returns 1RUE, passing the event in the 
event record pointed to by theEventPtr. 

If the event involves an enabled dialog item, DialogSelect returns a result of 1RUE 
with the dialog pointer stored at the location pointed to by resultPtr and the item ID 
stored at the location pointed to by itemHitPtr. Otherwise, the routine returns FALSE 
with resultPtrand itemHitPtrundefined. Normally when DialogSelect returns 1RUE, 
you 'll do whatever is appropriate as a response to the event, and when it returns 
FALSE you'll do nothing. 

Parameters 

Stack before call 

previous contents 

wordspace 

-- theEventPtr 

-- resultPtr 

-- itemHitPtr 

Stack after call 

previous contents 

enabledFlag 

Errors None 

--· 

--· 

--· 

Word-Space for result 

Long-POINTER to the event record 

Long-POINTER to Long in which to store POINTER to dialog's GrafFort 

Long-POINTER to Word in which to store ID of item hit 

(-SP 

Word-BOOLEAN; TRUE if event involved an enabled item, FALSE if not 
(-SP 

C extern pascal Boolean DialogSelect (theEventPtr , resultPtr , itemHitPtr ) 

EventRecordPtr theEventPtr ; 

GrafPortPtr *resultPtr ; 

Word *itemHitPtr ; 

6-38 Dia log Ma nager routines 



More about DialogSelect and events 
The actions that DialogSelect takes in response to events are as follows: 

■ For an activate or update event for a dialog window, DialogSelect activates or 
updates the window and returns FALSE. 

■ For a key-down or auto-key event with the Apple key held down, DialogSelect 
returns FALSE. 

■ For a mouse-down event in an editLine item, DialogSelect responds as 
appropriate (displaying a caret at the insertion point or selecting text), and it 
returns TRUE if the editLine item is enabled or FALSE if it's disabled. 

■ For a key-down or auto-key event occurring without the Apple key being held down 
and with an editLine item present, text entry and editing are handled in the 
standard way. DialogSelect returns TRUE if the editLine item is enabled or FALSE 
if it's disabled. 

■ For a key-down or auto-key event with no editLine item present, DialogSelect 
returns FALSE. 

❖ Note: To treat a typed character in a special way (such as to ignore it or to give it 
the same effect as another character or as clicking a button), you need to check 
for a key-down event with that character before calling DialogSelect. 

■ For a mouse-down event in a control, DialogSelect calls the Control Manager 
routine TrackControl. If the mouse button is released inside the control and the 
control is enabled, DialogSelect returns TRUE; otherwise, it returns FALSE. 

■ For a mouse-down event in any other enabled item, DialogSelect returns TRUE. 

■ For a mouse-down event in any other disabled item or in no item, or for any other 
event, DialogSelect returns FALSE. 

❖ Note: If the event isn't one that DialogSelect specifically checks for (if it's a null 
event, for example), and if an editLine item is present in the dialog, DialogSelect 
calls the LineEdit Tool Set routine LEidle to make the cursor blink. 

Dialog Manager routines 6-39 



$3915 

Parameters 

DisableDltem 
Disables a specified item in a specified dialog. If the item is already disabled, 
DisableDitem does nothing. 

Important 
Disabled Is different from deactivated. If you do not want a control to respond 
at all when the user clicks It, deactivate the control with the Control Manager 
routine HlliteControl. 

Stack before call 

previous contents 

theDialogPtr Long-POINTER to the dialog's GrafPort 

Word-ID of item in dialog itemID 
f-SP 

Stack after call 

I previous contents If- SP 

Errors $150C itemNotFound No such item 

C extern pascal void DisableDitem (t heDialogP t r , itemID ) 

GrafPortPtr theDialogPtr ; 

Word itemID ; 

6-40 Dialog Manager routines 



$1315 DlgCopy 
Checks whether a specified dialog has any editLine items and, if so, applies the 
LineEdit routine LECopy to the current editLine item. You can call DlgCopy to 
handle the Copy editing command when a modeless dialog window is active. 

Parameters 

Stack before call 

previous contents 

theDialogPtr Long- POINTER to the dialog's GrafPort 

Stack after call 

previous contents I 
- - ------ f- SP 

Errors None 

C extern pascal void DlgCopy (theDi a logPtr ) 

Po inter theDialogPtr; 

Dialog Manager routines 6-41 



$1215 

Parameters 

DlgCut 
Checks whether a specified dialog has any editLine items and, if so, applies the 
LineEdit routine LECut to the current editLine item. You can call DlgCut to handle the 
Cut editing command when a modeless dialog window is active. 

Stack before call 

prevtous contents 

theDialogPtr Long-POINTER to the dialog's Grafl>ort 

~SP 

Stack after call 

previous contents I 
--------~SP 

Errors None 

C extern pascal void DlgCut (theDialogPtr) 

GrafPortPtr theDialogPtr; 

6-42 Dialog Manager routines 



$1515 

Parameters 

Dig Delete 
Checks whether a specified dialog has any editLine items and, if so, applies the 
LineEdit routine LEDelete to the current editLine item. You can call DlgDelete to 
handle the Clear editing command when a modeless dialog window is active. 

Stack before call 

previous contents 

theDialogPtr Long-POINTER to the dialog's GrafPort 

f--- SP 

Stack after call 

previous contents I 
-------- f--- SP 

Errors None 

C extern pascal void DlgDelete (theDialogPtr ) 

GrafPortPtr theDialogPtr; 

Dia log Manager routines 6-43 



$1415 

Parameters 

DlgPaste 
Checks whether a specified dialog has any editLine items and, if so, applies the 
LineEdit routine LEPaste to the current editLine item. You can call DlgPaste to handle 
the Paste editing command when a modeless dialog window is active. 

Stack before call 

previous contents 

theDialogPtr Long-POINTER to the dialog's GrafPort 

f-SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors None 

C e xt ern p a s c al void DlgPaste (theDialogPtr ) 

Gra fP o r t Pt r theDialogPtr ; 

6-44 Dia log Manager routines 



$1615 

Parameters 

DrawDialog 
Draws the contents of a specified dialog box. Since the normal sequence of 
IsDialogEvent and DialogSelect handles dialog window updating, this procedure is 
useful only in unusual situations. You would call it, for example, to display a dialog 
box that doesn't require any response but merely tells the user what's going on during 
a time-consuming process. 

Stack before call 

previous contents 

theDialogPtr Long-POINTER to the dialog's GrafPort 

<-SP 

Stack after call 

previous contents I 
-------- <-SP 

Errors None 

C e x tern pascal void DrawDi a log (theDialogPtr ) 

Gr a fPortPtr theDialogPtr ; 

Dialog Manager routines 6-45 



$3A15 EnableDltem 
Enables a specified item in a specified dialog. If the item is already enabled, 
EnableDitem does nothing. 

Parameters 

Stack before call 

prevtous contents 

theDtalogPtr 

itemID 

Long-POINTER to the dialog's GrafPort 

Word-ID of item in dialog 

f- SP 

Stack after call 

prevtous contents I 
-------- f- SP 

Errors $150C itemNotFound No such item 

C extern pascal void EnableDitem (theDialogPtr , itemID) 

GrafPortPtr theDialogPtr ; 

Word itemID; 

6-46 Dialog Manager routines 



$0915 

Parameters 

ErrorSound 
Establishes the sound procedure for alerts. 

If you don't call ErrorSound, or if you pass NIL for soundProcPtr, the Dialog Manager 
uses the ~tandard sound pr9cedure. (For details, see the section "Alerts" in this 
chapter,) 

❖ Note: The sound procedure is also called by the ModalDialog routine with a sound 
number of 1 when the user clicks outside the dialog box. 

Stack before call 

previous contents 

-- soundProcPtr Long-POINTER to sound procedure; NIL for standard sound 

~SP 

Stack after call 

previous contents I 
--------~SP 

Errors None 

C extern pascal void ErrorSound(soundProcPtr) 

VoidProcPtr soundProcPtr; 

Dialog Manager routines 6-47 



$2415 

Parameters 

FindDltem 
Returns the ID of the item located at a specified point in a specified dialog. The point 
must be expressed in global coordinates. 

If there is no item at the location or if the specified point is outside of the specified 
dialog, Find.Ditem returns 0. 

Important 
The thePo/nt parameter must be expressed in g lobal coordinates. 

Stack before call 

previous contents 

wordspace 

-- theDtalogPtr 

- - thePotnt 

Stack after call 

previous contents 

ttemHit 

Errors None 

- - · 

- - · 

Word-Space for result 

Long-POINTER to the dialog's GrafPort 

Long-POINT in global coordinates 

~SP 

Word- ID of item at thePoint,· 0 if no item or point not in dialog 

~SP 

C e xtern pascal Word FindDitem (theDialogPtr , thePoint ) 

GrafPortPtr theDialogPtr ; 

Point thePoint ; 

6-48 Dialog Manager routines 



$3415 GetAlertStage 
Returns the stage of the last occurrence of an alert as a number from O to 3. 

Parameters 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

alertStage 

Errors None 

Word-Space for result 

~SP 

Word-Current stage of the alert 
~SP 

C extern pascal Word GetAlertStage() 

Dialog Manager routines 6-49 



$1~15 

Parameters 

GetControlDltem 
Returns a handle to the control record for a specified item. You can then make calls to 
the Control Manager to change the behavior of this item. 

❖ Note: Dialog Manager calls are provided to change the attributes of items. 
Whenever possible, use those calls instead of Control Manager calls. 

Important 

Be very careful when you use GetControlDltem. By using the Control Manager, 
you bypass the Dialog Manager and can destroy data used by the Dialog 
Manager. However, It Is safe to use GetControlDltem on standard controls (such 
as buttons, check boxes, and radio buttons). It Is less safe to use It with dialog 
scroll bars, and It Is definitely unsafe to use It with text Items. Do not use It to 
change the ct/RefCon field In the control record of any control. 

Stack before call 

previous contents 

-- longs pace - - · 

-- theDfalogPtr - - · 

itemID 

Stack after call 

previous contents 

--theControlHandle --

Errors $150C 

Long-Space for result 

Long-POINTER to the dialog's GrafPort 

Word- Unique number identifying the item 

f-SP 

Long-HANDLE to the item's control record 

f-SP 

itemNotFound No such item 

C extern p a sca l CtlRecHndl GetControlDitem(theDialogPtr , itemID ) 

Gr a fPortPtr theDialogPtr ; 

Wo rd itemID; 

6-50 Dialog Manager routines 



$3715 GetDefButton 
Returns the ID of the default button item in a specified dialog. If the dialog does not 
contain any default button, GetDefButton returns 0. 

Parameters 

Stack before call 

prevtous contents 

wordspace 

theDtalogPtr 

Stack after call 

prevtous contents 

dejButtonID 

Errors None 

Word- Space for result 

Long-POINTER to the dialog's GrafPort 

f-SP 

Word-ID of dialog default button, or 0 

f-SP 

C extern pascal Word Ge tDefButton (theDialogPtr) 

GrafPortPtr theDialogPtr ; 

Dialog Manager routines 6-51 



$2815 GetDltemBox 
Returns the display rectangle of a specified item. 

Parameters 

Stack before call 

previous contents 

-- theDialogPtr 

itemID 

--· Long-POINTER to the dialog 

Word-ID of item in dialog 

-- itemBoxPtr --· Long-POINTER to 8 bytes in which to store the rectangle 

f-SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors $150C itemNotFound No such item 

C extern pascal void GetDitemBox (theDialogPtr ,itemID , itemBoxPtr ) 

GrafPortPtr theDialogPtr; 

Word itemID; 

Rect *itemBoxPtr; 

6-52 Dialog Manager routines 



$2615 GetDltemType 
Returns the type of a specified item (buttonltem, radioltem, statText, and so on). If 
the item is currently disabled, the returned value is the type plus i temDisable . See 
the section "Item Types" in this chapter. 

Parameters 

Stack before call 

prevtous contents 

wordspace 

-- theDtalogPtr 

itemID 

Stack after call 

previous contents 

ttemType 

- - · 

Errors $150C 

Word- Space for result 

Long-POINTER to the dialog 

Word-ID of item in dialog 

f- SP 

Word-Type of item, including itemDisable 

f-SP 

itemNotFound No such item 

C extern pascal Word GetDitemType (theDialogPtr , itemID ) 

Gr a fPortPt r theDia l ogPtr ; 

Word itemID ; 

Dialog Manager routines 6-53 



$2E15 GetDltemValue 
Returns the current value of a specified item. 

For standard controls, item Value is the current value of the control. For other types 
of items, itemValue may have special meaning, as follows: 

■ For a longSta(fext or longSta(fext2 item, the value is the length of the text. 

■ For a useritem, iconitem, or starrext item, the value is reserved for the 
application's use. 

Parameters 

Stack before call 

previous contents 

wordspace 

-- theDialogPtr -- · 

itemID 

Stack after call 

previous contents 

item Value 

Errors $150C 

Word-Space for result 

Long-POINTER to the dialog's GrafPort 

Word-ID of item in dialog 

f- SP 

Word-Current value of item 

f-SP 

itemNotFound No such item 

C ext e rn pascal Word GetDitemValue (theDi'a.logPtr , itemID ) 

GrafPortPt r theDialogPtr ; 

Word itemID; 

6-54 Dialog Manager routines 



$2A15 

Parameters 

GetFirstDltem 
Returns the ID of the first item in a specified dialog. If there is no item in the dialog 
(for example, immediately following a NewModalDialog or NewModelessDialog 
call), GetPirstDitem returns 0. 

Warning 

You must not have any Item with an ID of 0. 

Stack before call 

previous contents 

wordspace 

theDialogPtr 

Stack after call 

previous contents 

f irstltem 

Errors None 

Word- Space for result 

Long- POINTER to the dialog's GrafPort 

f- SP 

Word-ID of first item in dialog, or O if none 

f-SP 

C extern pascal Word GetFirstDitem (theDialogPtr) 

GrafPortPtr theDialogPtr ; 

Dialog Manager routines 6-55 



$1Fl5 

Parameters 

GetlText 
Returns the text of a specified statText or editline item in a specified dialog box. 

Important 
Sufficient space for the returned text must be a llocated before you call 
GetlText. 

Stack before call 

previous contents 

-- theDialogPtr --· Long-POINTER to the dialog's GrafPort 

Word-ID of item in dialog itemID 

-- resultPtr 

Stack after call 

--· Long-POINTER to space in which to place the text 

~SP 

previous contents I 
--------~SP 

Errors $150A 

$150C 

baditemType 

itemNotFound 

Inappropriate item type; only statText and editline 
allowed 

No such item 

C extern pascal void GetIText(theDialogPtr , itemID,resultPtr) 

GrafPortPtr theDialogPtr; 

Word itemID; 

Pointer resultPtr; 

6-56 Dialog Manager routines 



$3315 GetNewDltem 
Adds a new item to a specified dialog's item list using a template. 

Important 
You must not have any Item with an ID of 0. 

Parameters 

Stack before call 

prevtous contents 

theDialogPtr Long-POINTER to the dialog's GrafPort 

ttem TemplatePtr Long- POINTER to an item template (see Figure 6-11) 

f-SP 

Stack after call 

previous contents I 
- - - - --- - f- SP 

Errors 

C 

$150A 

$150B 

baditemType 

newitemFailed 

Inappropriate item type 

Item creation failed 

e xtern pascal void GetNewDitem (theDialogPtr , i t emTemplatePtr ) 

Gr a fPortPtr 

ItemTempPtr 

theDia logPtr ; 

itemTempl a tePtr ; 

(continued) 

Dialog Manager routines 6-57 



Item template 
Like the NewDitem routine, GetNewDitem adds a new item to a specified dialog's item 
list. However, instead of getting its parameters from the stack, GetNewDitem 
retrieves its parameters from a template whose definition is shown in Figure 6-11. 

Most of the item template fields are the same as those you would pass to NewDitem, 
except as follows: 

■ The ttemRect field contains the actual RECT definition of the display rectangle, 
not a pointer to it. 

■ The dialog that will contain the item is not specified in the template. This allows 
you to use dialog-independent items (such as OK and Cancel buttons) and 
repeat them during several dialogs. 

See the section "Item Templates" in this chapter for a description of the parameters. 

Offset Field 

so ,-------, 
ltem/D 

l i--------1 

2 
3 

4 

5 
6 
7 
8 

9 
QA 
OB 
QC 
OD 
OE 
OF 
10 
11 
12 
13 
14 
15 
16 
17 

/temRect 

,__ ____ _, 

ltemType 

1-------l 

/temDescr 

1-------1 

item Value 

1--------1 

ltemFlag 

-------1 

itemCalor 

Figure 6-11 
Item template 

Word- Item ID Identifying item 

Four Words-RECT defining item's enclosing rectangle 

Word-Type of Item (button, check box, scroll bar, and so on) 

Long- Item descriptor 

Word- Item value 

Word-Bit flag (0 for default) 

Long- POINTER to color table; NIL for default table 

6-58 Dialog Manager routines 



$3215 GetNewModolDiolog 
Creates a modal dialog and returns a pointer to the port of the new dialog. However, 
instead of getting its parameters from the stack, the routine gets them from a dialog 
template. 

Parameters 

Stack before call 

previous contents 

longs pace 

--dialogTemplatePtr --· 

Stack after call 

previous contents 

theDialogPtr 

Long-Space for result 

Long-POINTER to a dialog template (see Figure 6-12) 

~SP 

Long-POINTER to the dialog's GrafFort; NIL if error 

~SP 

Errors Memory Manager errors Returned unchanged 

C extern pascal Gr a fPortPtr GetNewModalDialog(dialogTemplatePtr) 

DlgTempPtr dialogTemplatePtr; 

(continued) 

Dialog Manager routines 6-59 



Dialog template definition 
The beginning of a dialog template contains the same values you would pass to 
NewModalDialog, except that boundsRect is the actual rectangle, not a pointer. 

The iteml, item2, ... itemN fields are pointers to item templates for each of the items 
to include in the dialog. The last pointer must be O to signal the end of the list. See 
the section "Item Templates" in this chapter for description of the item template. 

Field Offset so~----~ 
l 
2 
3 dtBoundsRect 

4 
5 
6 
7 
8 
1--------1 

dtV/slble 
9 

OA1--------1 

OB 
QC 
OD 
OE 
0 F 
10 
11 
12 
13 
14 

dtRefCon 

-------! 

itemlPtr 

-------1 

/tem2Ptr 

151--------1 

ltemNPtr 

terminator 

Figure 6-12 
Dialog template 

Four words-RECT data struc ture defining dia log box's enclosing rectangle 

Word-BOOLEAN; TRUE if dialog is to be visible 

Long-Reserved for application use 

Long-POINTER to first item's template 

Long-POINTER to second item's template 

Long-POINTER to last item's template 

Long-NIL POINTER terminating item list 

6-60 Dialog Manager routines 



$2B15 

Parameters 

GetNextDltem 
Returns the ID of the next item in a specified dialog after a specified item. If the item 
is the last item in the dialog, GetNextDitem returns 0. 

Stack before call 

previous contents 

wordspace 

-- theDialogPtr 

item!D 

--· 

Word-Space for result 

Long-POINTER to the dialog's GrafPort 

Word-ID of item in dialog 

f-SP 

Stack after call 

previous contents 

nextltem 

Errors 

C 

Word-ID of next item in dialog, 0 if no more items 

f-SP 

None 

extern pascal Word GetNextDitem (theDi a logPtr , itemID ) 

Gr a fPortPtr theDialogPtr ; 

Word itemID; 

Dialog Manager routines 6-61 



$2215 

Parameters 

HideDltem 
Erases a specified item from a specified dialog. The item is not removed from the 
item list and can be displayed again by calling the ShowDitem routine. 

If the item is already invisible, HideDitem does nothing. 

Stack before call 

prevtous contents 

theDtalogPtr 

ttemID 

Long-POINTER to the dialog's GrafPort 

Word-ID of item in dialog 

~SP 

Stack after call 

prevtous contents I 
- ---- - -- ~SP 

Errors $150C itemNotFound No such item 

C e xtern pascal void HideDitem (theDialogPtr , itemID} 

GrafP o rtPtr theDialogPt r; 

Word itemID ; 

6-62 Dialog Manager routines 



$1015 lsDialogEvent 
Determines whether a specified event needs to be handled as part of a modeless 
dialog. If your application includes any modeless dialogs, call IsDialogEvent after 
calling the Event Manager routine GetNextEvent or the Window Manager routine 
TaskMaster. For more information about events, see Chapter 7, "Event Manager." 

Im portent 
If your modeless dialog contains any edltllne Items, you must call lsDialogEvent 
(and then DialogSelect), even If GetNextEvent returns FALSE; otherwise, your 
dialog won' t receive null events and the cursor won't b link. 

Parameters 

Stack before call 

previous contents 

wordspace 

theEventPtr 

Stack after call 

previous contents 

eventFlag 

Errors None 

Word-Space for result 

Long-POINTER to the event record 

~SP 

Word-BOOLEAN; TRUE if the event is a Dialog Event, FALSE if not 

~SP 

C extern pascal Boolean IsDialogEvent (theEventPtr ) 

EventRecordPtr t heEventPtr; 

(continued) 

Dialog Manager routines 6-63 



More about lsDialogEvent and events 
If the event is an activate or update event for a dialog window, a mouse-down event in 
the content region of an active dialog window, or any other type of event when a 
dialog window is active, IsDialogEvent returns TRUE; otherwise, it returns FALSE. 

When FALSE is returned, handle the event yourself like any other event that's not 
dialog related. When TRUE is returned, you'll generally pass the event to 
DialogSelect for it to handle (as described in the section "DialogSelect" in this 
chapter), but in some special cases, you may want to bypass DialogSelect or to 
perform some preprocessing before calling it. If so, check for those events and 
respond accordingly. 

For cases other than these, pass the event to DialogSelect for that routine to handle. 

6-64 Dialog Manager routines 



$0F15 

Parameters 

Modal Dialog 
If the frontmost window is a modal dialog box, ModalDialog repeatedly gets and 
handles events in the dialog's window. After the routine handles an event involving 
an enabled dialog item, it returns with the item ID in itemHit. Normally you'll then 
do whatever is appropriate in response to an event in that item. 

Call ModalDialog after creating a modal dialog box and making its window the 
frontmost window. 

Stack before call 

previous contents 

wordspace 

faterProcPtr 

Stack after call 

previous contents 

itemHit 

Errors $150D 

Word-Space for result 

Long-POINTER to a filter procedure; NIL for standard filter 

f-SP 

Word-ID of item hit; 0 if window not a modal dialog 

f-SP 

notModalDialog Frontmost window not a modal dialog window 

C extern p asca l Wor d ModalDialog (filterProcPtr ) 

Wo r d ProcPtr fi lterProc Ptr ; 

(continued) 

Dialog Manager routines 6-65 



More about ModalDialog and events 
ModalDialog gets each event by calling the Event Manager routine GetNextEvent. If 
the event is a mouse-down event outside the content region of the dialog window, 
ModalDialog emits sound number 1 (which is preset to sound a single beep) and gets 
the next event; otherwise, it filters and handles the event as described next. 

❖ Note: Once before getting each event, ModalDialog calls SystemTask, a Desk 
Manager routine that must be called regularly so that desk accessories will work 
properly. 

If the filter procedure pointed to by filterProcPtr returns 1RUE, ModalDialog will 
return immediately rather than handle the event; in this case, the filterProc 
procedure sets itemHit to the item ID that ModalDialog should return. 

If you want the filter procedure to handle a special event and prevent ModalDialog 
from handling it, but don't want to leave ModalDialog, change the what field of the 
Event Record to nullEvent and return FALSE. 

ModalDialog handles events for which the filterProc procedure returns FALSE as 
follows : 

■ For an activate or update event for the dialog window, ModalDialog activates or 
updates the window. 

■ For a mouse-down event in an editLine item, ModalDialog responds to the mouse 
activity as appropriate (displaying an insertion point or selecting text) . 

■ For a key-down event with an editLine item present, text entry and editing are 
handled in the standard way, with the following exception: If the Apple key is 
pressed, the event is ignored unless the default filter is used. In any case, 
ModalDialog returns if the editLine item is enabled, or does nothing if the 
editLine item is disabled. 

■ For a key-down event with no editLine item present, ModalDialog does nothing. 

■ For a mouse-down event in any control (except scroll bars), ModalDialog calls 
the Control Manager routine TrackControl. If the mouse button is released inside 
the control and the control is enabled, ModalDialog returns; otherwise, it does 
nothing . 

■ For a mouse-down event in a scroll bar item, ModalDialog calls the Control 
Manager routine TrackControl with a special action procedure that calls your 
dialog scroll bar action procedure. 

■ For a mouse-down event in any other enabled item in the dialog box, 
ModalDialog returns. 

■ For a mouse-down event in any other disabled item or in no item, or if any other 
event occurs, ModalDialog does nothing. 

6-66 Dialog Manager routines 



$2C15 

Parameters 

Moda1Dialog2 
If the frontmost window is a modal dialog, Moda1Dialog2 repeatedly gets and handles 
events in the dialog's window. After handling an event involving an enabled dialog 
item, it returns with the part code and the item ID in itemHitlnfo. Normally you'll 
then do whatever is appropriate in response to an event in that item. For example, if 
a key is pressed and an editLine item is present in the dialog, the part code is 
inEditLine and the item ID is the ID of the current active editLine. Part codes are 
documented in Chapter 4, "Control Manager." 

Call Moda1Dialog2 after creating a modal dialog and displaying its window in the 
frontmost plane . 

❖ Note: If the frontmost window is not a modal dialog box (for instance, if it is a 
regular window or a modeless dialog), Moda1Dialog2 returns immediately with 
itemHitlnjo set to 0. 

Stack before call 

previous contents 

longspace 

filterProcPtr 

Stack after call 

previous contents 

itemHitlnfo 

Errors $150D 

Long-Space for result 

Long-POINTER to a filter procedure; NIL for standard 

f-SP 

Long-High-order word = part code of item hit, low-order word = item 

f-SP 

notModalDialog Frontmost window not a modal dialog window 

C extern pascal Longword ModalDialog2 (filterProcPt r ) 

WordP rocPtr filterProcPtr; 

Dialog Manager routines 6-67 



$0D15 NewDltem 
Adds a new item to a specified dialog's item list. 

The possible item types are buttonitem, checkitem, radioltem, scrollBarltem, 
userCtlltem, userCtlltem2, statText, longStatText, longStatText2, editLine, iconltem, 
picltem, and userltem. For more information about how the item type affects the 
ttemDescr and item Value parameters, see the section "Item Descriptor and Item 
Value" in this chapter. 

Warning 
You must not have any Item with an ID of 0. 

If the bottom-right coordinate of the rectangle pointed to by itemRectPtr is specifed 
as (0,0), the Dialog Manager provides a default size for simple buttons, radio buttons, 
and check boxes. 

Parameters 

Stack before call 

previous contents 

-- theDialogPtr 

itemID 

-- ttemRectPtr 

itemType 

-- itemDescr 

item Value 

ttemFlag 

-- itemColorPtr 

Stack after call 

--· 

--

--

--

Long-POINTER to dialog this item belongs to 

Word-Item identifier for all item-related calls 

Long-POINTER to rectangle enclosing item in dialog's local coordinates 

Word-Item type 

Long-Depends upon item type 

Word-Depends upon item type 

Word-Includes visible/invisible flag (0 for default flag) 

Long-POINTER to item's default color table; NIL for default 

~SP 

previous contents I 
--------~SP 

6-68 Dia log Manager routines 



Errors 

C 

$150A baditemType Inappropriate item type 

$150B newitemFailed Item creation failed 

extern pascal void NewDitem (theDialogPtr , itemID,itemRectPtr ,itemType , 

itemDescr , itemValue , itemFlag , i temColorPtr) 

GrafPortPtr theDialogPtr; 

Word itemID ; 

Rect *itemRectPtr; 

Word itemType; 

Pointer itemDescr; 

Word itemValue ; 

Word itemFlag; 

CtlColorTablePtr itemColorPtr ; 

Dia log Manager routines 6-69 



$0Al5 NewModalDialog 
Creates a specified modal dialog and returns a pointer to the GrafPort of the new 
dialog. 

Parameters 

Stack before call 

prevtous contents 

-- longs pace 

-- dBoundsRectPtr 

dVtstbleFlag 

-- dRejCon 

--· 

--· 

--· 

Long-Space for result 

Long-POINTER to the window bounds rectangle 

Word-BOOLEAN; TRUE if dialog is visible, FALSE if not 

Long-Reserved for application use 

f-SP 

Stack after call 

prevtous contents 

Errors 

C 

theDialogPtr Long-POINTER to the dialog's GrafPort; NIL if error 

f-SP 

Memory Manager errors Returned unchanged 

extern pascal GrafPortPtr NewModalDialog(dBoundsRectPtr,dVisibleFlag , 

dRefCon) 

Rect *dBoundsRectPtr; 

Boolean 

Longword 

dVisibleFlag; 

dRefCon; 

6-70 Dia log Manager routines 



More about NewModalDialog parameters 
The rectangle pointed to by dBoundsRectPtr determines the dialog window's size 
and location and must be specified in global coordinates. Remember that the top 
coordinate of this rectangle should be at least 25 pixels below the top of the screen for 
a modal dialog to allow for the menu bar. 

If the dVisibleFlag parameter is TRUE, the dialog window is drawn on the screen. If 
it's FALSE, the window is initially invisible and may later be shown by a call to the 
Window Manager routine ShowWindow or SelectWindow. 

❖ Note: NewModalDialog generates an update event for the entire window 
contents, so the items aren't drawn immediately. Thus, the routine allows you to 
perform some processing on the items before you draw them. However, if you 
change the value of an item or its text, the Control Manager draws the item 
immediately. If you find that all the items should be drawn at the same time, 
make the dialog invisible initially and then call ShowWindow. 

The dRefCon parameter is reserved for the application use. 

NewModalDialog sets the font of the dialog window's GrafPort to the system font or, 
if you previously called SetDAFont, to the specified font. It also sets the dialog type 
in the dialog record to Modal_Type. 

Dialog Manager routines 6-71 



$0B15 NewModelessDialog 
Creates a specified modeless dialog and returns a pointer to the GrafPort of the new 
dialog. Modeless dialogs are described in the section "Dialog and Alert Windows" in 
this chapter. 

Parameters 

Stack before call 

prevtous contents 

-- longspace 

-- dBoundsRectPtr 

-- dTitlePtr 

-- dBehtndPtr 

dFlag 

-- dRefCon 

-- dFullStzePtr 

Stack after call 

prevtous contents 

theDialogPtr 

--· 

--· 

--· 

--· 

--· 

--· 

Long-Space for result 

Long-POINTER to RECT defining window bounds rectangle 

Long-POINTER to string for dialog's title; NIL if no title 

Long-POINTER to window the dialog should be behind 

Word-Bit flag describing the dialog's frame 

Long-Reserved for application use 

Long-POINTER to RECT to be used as content's zoomed size 

~SP 

Long-POINTER to the dialog's GrafFort; NIL if error 

~SP 

Errors Memory Manager errors Returned unchanged 

6-72 Dialog Manager routines 



C extern pascal GrafPortPtr NewModelessDia log (dBoundsRectPt r , dTitlePtr , 

d Be h i ndPtr , dFl ag,dRefCon , dFullSizePtr ) 

Rect *dBounds RectPtr ; 

Pointer dTitlePtr ; 

Gr a fP ortPtr dBehindPtr ; 

Word dFl a g ; 

Longword dRefCon ; 

Rect *dFullSizePtr ; 

More about NewModelessDialog parameters 
The rectangle pointed to by dBoundsRectPtr determines the dialog window's size 
and location and must be given in global coordinates. Remember that the top 
coordinate of this rectangle should be at least 25 pixels below the top of the screen for 
a modal dialog to allow for the menu bar. 

The dBehtndPtr parameter points to the window behind which the dialog window is 
to be placed on the desktop. Pass - 1 ($FFFFFFFF) to display the dialog window in 
front of all other windows. 

The dFlag parameter allows you to specify the frame of the dialog box, as described 
in the section "NewWindow" in Chapter 25, "Window Manager," in Volume 2. 

The dRefCon parameter is reserved for application use. 

The dFullStzePtr parameter points to a rectangle describing the size and location of 
the dialog after the user has zoomed in on the dialog. 

Dia log Manager routines 6-73 



$1915 

Parameters 

NoteAlert 
Performs the same functions as the Alert routine, except that before drawing the items 
of the alert in the alert box, NoteAlert draws the note icon in the upper-left corner of 
the box. The note icon is shown in Figure 6-13. 

Figure 6-13 
Note icon 

The alert template is defined in Figure 6-8 under the Alert routine. 

Stack before call 

previous contents 

wordspace 

- - alertTemplatePtr 

-- filterProcPtr 

Stack after call 

prevtous contents 

itemHit 

Errors None 

--· 

--· 

Word-Space for result 

Long-POINTER to an alert template 

Long-POINTER to filter procedure; NIL for default filter 

f- SP 

Word-ID of item Hit 

f-SP 

C extern pas ca l Word NoteAlert (a lertTemplatePtr,filterProcPtr ) 

AlertTe mpPtr 

WordP roc Ptr 

6-74 Dialog Manager routines 

a l e rtTemplatePtr ; 

filterProcPtr ; 



$1B15 ParamText 
Specifies text for 1-4 special strings in statText, longStatText, and longStatText2 
items. The strings pointed to by paramOPtr through param3Ptr replace the special 
strings "AO" through "A3" in all static-text type items in all subsequent dialog or alert 
boxes. Your application can make the call as many times as necessary. 

You may pass NIL for parameters not used or for strings that are not to be changed. 

Parameters 

Stack before call 

previous contents 

-- paramOPtr 

-- paramlPtr 

-- param2Ptr 

-- param3Ptr 

Stack after call 

--· 

--· 

--· 

--· 

Long- POINTER to string AO; NIL = no change 

Long-POINTER to string Al; NIL = no change 

Long- POINTER to string A2; NIL = no change 

Long-POINTER to string A3; NIL = no change 

f-SP 

previous contents I 
-------- f- SP 

Errors 

C 

None 

extern pascal void ParamText(paramOPtr , paramlPtr,param2Ptr , param3Ptr ) 

Pointer 

Pointer 

Pointer 

Pointer 

p a ramOPtr ; 

p a ramlPtr ; 

param2Ptr ; 

param3Ptr ; 

Dialog Manager routines 6-75 



$0E15 

Parameters 

RemoveDltem 
Removes a specified item from a specified dialog and erases it from the screen. The 
routine also invalidates the item area, so that any other items behind the specified 
item are redrawn. 

Stack before call 

previous contents 

theDialogPtr Long-POINTER to the dialog's GrafPort 

Word-ID of item to be removed itemID 
f-SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors 

C 

$3515 

Parameters 

Errors 

C 

$150C itemNotFound No such item 

extern pascal void RemoveDitem(theDialogPtr,itemID) 

GrafPortPtr theDialogPtr; 

Word itemID; 

ResetAlertStage 
Resets the stage of the last occurrence of an alert so that the next occurrence of that 
same alert will be treated as its first stage. This is useful, for example, when you've 
used the ParamText routine to change the text of an alert such that, from the user's 
point of view, it becomes a different alert. 

The stack is not affected by this call. There are no input or output parameters. 

None 

extern pascal void ResetAlertStage() 

6-76 Dialog Manager routines 



$2115 

Parameters 

SelectlText 
Sets the selection range or insertion point for a specified editLine item in a specified 
dialog box. SelectIText also makes the specified editLine item the current edit item 
when the dialog box contains more than one such item. 

Stack before call 

prevtous contents 

-- theDtalogPtr 

ttemID 

startSel 

endSel 

Stack after call 

--· Long- POINTER to the dialog 

Word-ID of item in dialog 

Word-Start of selection, by character position 

Word-End of selection, by character position 

f- SP 

prevtous contents I 
-------- f-SP 

Errors None 

C extern pascal void SelectIText (theDialogPtr , itemID,startSel , e ndSel ) 

GrafPortPtr theDialogPtr ; 

Word itemID; 

Word startSel ; 

Word endSel ; 

(continued) 

Dialog Manager routines 6-77 



More about SelectlText 
Given a pointer to a dialog and the item ID of an editLine item in the dialog box, 
SelectIText does the following: 

■ If the item contains text, SelectIText sets the selection range to extend from 
character position startSel up to but not including character position endSel. The 
selection range is inverted unless startSel equals endSel, in which case a blinking 
vertical bar is displayed to indicate an insertion point at that position. 

■ If the item doesn't contain text, SelectIText simply displays the insertion point. 

For example, if the user makes an unacceptable entry in the editLine item, the 
application can display an alert box reporting the problem and then select the entire 
text of the item so it can be replaced by a new entry. (Without this procedure, the 
user would have to select the item before making the new entry.) 

❖ Note: You can select the entire text by specifying O for startSel and 32767 for 
endSel. For details about selection range and character position, see 
Chapter 10, "LineEdit Tool Set." 

6-78 Dialog Manager routines 



$1C15 SetDAFont 
Specifies the font for the dialog or alert window's GrafFort. SetDAFont affects statText 
ite~, editLine items, and standard controls. 

If you don't call this routine, the system font is used. For more information about 
fonts, see Chapter 8, "Font Manager." 

Parameters 

Stack before call 

prevtous contents 

JontHandle 

Stack after call 

Long-HANDLE to the new font 

~SP 

prevtous contents I 
--------~SP 

Errors None 

C extern pascal void SetDAFont(fontHandle) 

FontHndl font Handle; 

Dialog Manager routines 6-79 



$3815 SetDefButton 
Sets the ID of the default button to a specified ID. 

Important 
The defButton/D must be the ID of a button Item. 

Parameters 

Stack before call 

previous contents 

dejButtonID Word-ID of new default button 

Long-POINTER to the dialog's GrafFort 

~SP 

theDtalogPtr 

Stack after call 

I previous contents I~ SP 

Errors None 

C extern pascal void SetDefButton(defButtonID , theDialogPtr) 

Word defButtonID ; 

GrafPortPtr theDialogPtr ; 

6-80 Dia log Manager routines 



$2915 

Parameters 

SetDltemBox 
Changes the display rectangle of a specified item to a new display rectangle. 

The routine does not redraw the item. This allows you to change the enclosing 
rectangle for several items and then redraw all of the changes at the same time. 

❖ Note: If only one item is changed, the best way to change the display rectangle is 
to call HideDitem, SetDitemBox, and ShowDitem, in that order. 

Stack before call 

previous contents 

-- theDtalogPtr 

ttemID 

-- itemBoxPtr 

--· 

--· 

Long-POINTER to the dialog's GrafPort 

Word-ID of item in dialog 

Long-POINTER to RECT defining new display rectangle 

f-SP 

Stack after call 

prevtous contents I 
-------- f- SP 

Errors $150C itemNotFound No such item 

C extern pascal void SetDitemBox(theDialogPtr ,itemID,itemBoxPtr ) 

GrafPortPtr theDialogPtr; 

Wo r d itemID; 

Rect *itemBoxPtr; 

Dialog Manager routines 6-81 



$2715 SetDltemType 

Parameters 

Changes a specified item to a new specified item type. The routine does not redraw 
the item. This allows you to change the type of several items and then redraw all the 
changes at the same time. 

If you want the item to be disabled, add itemDisable to itemType. 

Important 
Changing the type of an Item can be very dangerous. The ltemDlsable status 
can be changed by the DlsableDltem or EnableDltem routines. 

Stack before call 

previous contents 

itemType 

-- theDtalogPtr 

ttemID 

--· 

Word-Type of item, including itemDisable 

Long-POINTER to the dialog's GrafPort 

Word-ID of item in dialog 

f-SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors $150C iternNotFound No such item 

C extern pascal void SetDitemType (itemType , theDialogPtr,itemID ) 

Word itemType; 

GrafPortPtr theDialogPtr; 

Word itemID; 

6-82 Dialog Manager routines 



$2Fl5 

Parameters 

SetDltemValue 
Sets the value of a specified item to a new desired value and redraws the item. 

For standard controls, item Value is the new value of the control. For the other types 
of items, item Value may have special meaning, as follows: 

■ For a longStatText or longStatText2 item, the value is the length for the text. 

■ For a userltem, iconltem, or statText item, the value is reserved for the 
application's use. 

Stack before call 

previous contents 

item Value Word-New value 

-- theDialogPtr 

itemID 

- - · Long-POINTER to the dialog's GrafPort 

Word-ID of item in dialog 

f-- SP 

Stack after call 

previous contents I 
-------- f-- SP 

Errors $150C itemNotFound No such item 

C extern pascal void SetDitemValue (itemValue , theDialogPtr , itemID) 

Word itemValue ; 

Gr a fPortPtr theDialogPtr ; 

Word itemID ; 

Dialog Manager routines 6-83 



$2015 

Parameters 

SetlText 
Provides the text for a specified statText or editLine item in a specified dialog box and 
draws the item. 

For example, suppose the exact content of a dialog's text item cannot be determined 
until the dialog is created, but the display rectangle is already defined. Call the 
SetIText routine with the desired text. 

Stack before call 

previous contents 

-- theDialogPtr 

itemID 

-- theStringPtr 

---

---

Long-POINTER to the dialog's Graf'Port 

Word-ID of item in dialog 

Long-POINTER to the new text string 

f-SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors $150A baditemType 

$150C itemNotFound 

Inappropriate item type; only statText and editLine 
allowed 

No such item 

C e xter n pascal void SetIText (theDialogPtr , itemID , theStringPtr ) 

GrafPortPtr t heDia l ogPtr ; 

Word i t emID ; 

Pointe r theStringPtr ; 

6-84 Dialog Manager routines 



$2315 

Parameters 

ShowDltem 
Makes visible a specified item from a specified dialog. The item may have been 
hidden by HideDitem or may have been invisible when created. 

If the item is already visible, ShowDitem does nothing. 

Stack before call 

previous contents 

theDialogPtr Long-POINTER to the dialog's Gra£'Port 

Word- ID of item in dialog itemID 

f-- SP 

Stack after call 

previous contents I 
------- - f-- SP 

Errors $150C iternNotFound No such item 

C extern pasca l void ShowDitem (theDialogPtr,itemID ) 

Gr a fPortPtr theDialogPtr ; 

Word i temID ; 

Dialog Manager routines 6-85 



$1815 

Parameters 

StopAlert 
Invokes an alert defined by a specified alert template and draws the stop icon in the 
upper-left corner of the box. The stop icon is shown in Figure 6-14. 

0 
Figure 6-14 
Stop Icon 

The alert template is defined in Figure 6-8 under the Alert routine. 

Stack before call 

previous contents 

wordspace 

-- alertTemplatePtr --· 

-- filterProcPtr --· 

Stack after call 

previous contents 

itemHit 

Errors None 

Word- Space for result 

Long- POINTER to an alert template 

Long- POINTER to filter procedure; NIL for standard filter 

Word- ID of item hit 

f-SP 

C extern pascal Word StopAlert (alertTemplatePtr , filterProcPtr) 

AlertTempPtr 

WordProcPtr 

6-86 Dia log Manager routines 

alertTemplatePtr ; 

filterProcPtr ; 



$2515 

Parameters 

UpdateDialog 
Redraws the part of a specified dialog that is in a specified update region. 

If the specified update region is part of a region that will be updated in an upcoming 
update event, you should call the Window Manager routine ValidRgn to prevent the 
Dialog Manager from redrawing the region twice. For more information, see the 
sections "GetUpdateRgn" and "How a Window Is Drawn" in Chapter 25, "Window 
Manager," in Volume 2. 

Stack before call 

previous contents 

theDtalogPtr Long-POINTER to the dialog's GrafPort 

--updateRgnHandle 

Stack after call 

Long-HANDLE to update region 

~SP 

previous contents I 
--- ----- ~SP 

Errors None 

C extern pasca l void UpdateDialog (theDialogPtr,updateRgnHandle) 

GrafPortPtr theDia logPtr ; 

RgnHandl e updateRgnHandle ; 

Dialog Manager routines 6-87 



Dialog Manager summary 
This section briefly summarizes the constants, data structures, and tool set errors 
contained in the Dialog Manager. 

Important 

These definitions are provided In the appropriate Interface file. 

Table 6-6 
Dialog Manager constants 

Name Value 

Dialog scroll bar commands 
getinitView $0001 
getinitTotal $0002 
getinitValue $0003 
scrollLineUp $0004 
scrollLineDown $0005 
scrollPageUp $0006 
scrollPageDown $0007 
scroll Thumb $0008 

Item types 
buttonitem $000A 
check Item $000B 
radio Item $000C 
scrollBaritem $000D 
userCtlitem $000E 
statText $000F 
longStatText $0010 
editLine $0011 
iconitem $0012 
picitem $0013 
useritem $0014 
userCtlitem2 $0015 
longStatText2 $0016 

itemDisable $8000 

Item type range 
minitemType $000A 
max itemType $0016 

Description 

View size at creation 
Total size at creation 
Value at creation 
Scroll one line up 
Scroll one line down 
Scroll one page up 
Scroll one page down 
Scroll to thumb position 

Standard button control 
Standard check box control 
Standard radio button control 
Special scroll bar for dialogs 
Application-defined control 
Static text; text that cannot be edited 
Static text 
Text that can be edited 
An icon 
A QuickDraw II picture 
Application-defined item 
Application-defined control 
Static text; text cannot be edited and can contain 
embedded commands 
Added to any item, this disables that item 

Minimum valid item type 
Maximum valid item type 

6-88 Chapter 6: Dialog Manager 



Table 6-6 (continued) 
Dialog Manager constants 

Name Value 

Item IDs 
ok $0001 
cancel $0002 

Part codes 
inButton $0002 
inCheckBox $0003 
inRadioButton $0004 
inUpArrow $0005 
inDownArrow $0006 
inPageUp $0007 
inPageDown $0008 
inStatText $0009 
inGrow $000A 
inEditLine $000B 
inUseritem $000C 
inLongStatText $000D 
iniconitem $000E 
inLongStatText2 $000F 
inThumb $0081 

Stage bit flags 
okDefault $0000 
cancelDefault $0040 
alertDrawn $0080 

Table 6-7 
Dialog Manager data structures 

Name Offset Type 

AlertTemplate 
atBoundsRect $00 Rect 
atAlertID $08 Word 
atStagel $0A Byte 
atStage2 $OB Byte 
atStage3 $0C Byte 
atStage4 $OD Byte 

Description 

OK button 
Cancel button 

User clicked simple button 
User clicked check box 
User clicked radio button 
User clicked up arrow 
User clicked down arrow 
User clicked in page-up area 
User clicked in page-down area 
User clicked statText item 
User clicked size box 
User clicked in text that can be edited 
User clicked application-defined item 
User clicked longStatText item 
User clicked an icon 
User clicked longStatText2 item 
User clicked in thumb area of scroll bar 

OK is the default button for alert 
Cancel is the default button for alert 
Draw alert 

Definition 

Alert bounds rectangle 
ID identifying alert 
First stage of alert 
Second stage of alert 
Third stage of alert 
Fourth stage of alert 

atltemList $OE ItemTempPtr Points to first item in item list; list terminated by a 
NIL pointer 

(continued) 

Dialog Manager summary 6-89 



Table 6-7 (continued) 
Dialog Manager data structures 

Name 

DlalogTemplate 
dtBoundsRect 
dtVisible 
dtRefCon 
dtitemList 

lconRecord 
iconRect 

iconimage 

ltemTemplate 
itemID 
itemRect 
itemType 
itemDescr 
item Value 
itemFlag 
itemColor 

UserCtlltemPB 
defProcParm 
titleParm 
param2 
paraml 

Offset 

$00 
$08 
$0A 
$OE 

$00 

$08 

$00 
$02 
$0A 
$0C 
$10 
$12 
$14 

$00 
$04 
$08 
$0A 

Type 

Rect 
Boolean 
Lorig 
ItemTempPtr 

Rect 

Array 

Word 
Rect 
Word 
Pointer 
Word 
Word 
CtlColorTablePtr 

LongProcPtr 
Pointer 
Word 
Word 

Definition 

Dialog bounds rectangle 
TRUE if dialog is to be visible 
Reserved for application use 
Points to first item in item list; list terminated by a 
NIL pointer 

Bounds rectangle (width is multiple of 8) of 
rectangle enclosing icon 
Pixel image 

Number identifying item 
Display rectangle, in local coordinates 
Type of item (button, check, scroll, and so on) 
Item descriptor 
Item value 
Bit flag (0 for default) 
Pointer to color table (NIL for default) 

Address of definition procedure 
Pointer to title string 
First parameter 
Second parameter 

Note: The actual assembly-language equates have a lowercase o (the letter) in front of all of 
the names given in this table . 

Table 6-8 
Dialog Manager error codes 

Code 

$150A 
$150B 
$150C 
$150D 

Name 

baditemType 
newiternFailed 
itemNotFound 
notModalDialog 

Description 

Inappropriate item type 
Item creation failed 
No such item 
Frontmost window not a modal dialog window 

6-90 Chapter 6: Dialog Manager 



Chapter 7 

Event Manager 

This chapter describes the Event Manager, the Apple IIGS tool set that allows 
applications to monitor the user's actions, such as those involving the mouse, 
keyboard, and keypad. These actions are reported to the application as events. For 
example, whenever the user presses or releases the mouse button, the Event Manager 
records the action as an event. 

A typical event-driven application decides what to do from moment to moment by 
asking the Event Manager for events and responding to them one by one in whatever 
way is appropriate. 

In general, events are collected from a variety of sources and reported to the 
application on demand, one at a time. The Event Manager doesn't necessarily 
report the events in the order they occurred because some have a higher priority 
than others. 

The Event Manager is also used by other tool sets and managers; for instance, the 
Window Manager uses events to coordinate the sequence and display of windows on 
the screen. 

A preview of the Event Manager routines 
To introduce you to the capabilities of the Event Manager, all Event Manager 
routines are grouped by function and briefly described in Table 7-1. These routines 
are described in detail later in this chapter, where they are separated into 
housekeeping routines (discussed in routine number order) and the rest of the Event 
Manager routines (discussed in alphabetical order). 

7-1 



Table 7-1 
Event Manager routines and their functions 

Routine Description 

Housekeeping routines 
EMBootinit Initializes the Event Manager; called only by the Tool Locator-must not be called by 

EMStartUp 
EMShutDown 
EMVersion 
EMReset 
EMStatus 

an application 
Starts up the Event Manager for use by an application 
Shuts down the Event Manager when an application quits 
Returns the version of the Event Manager 
Returns an error if the Event Manager is active-must not be called by an application 
Indicates whether the Event Manager is active 

Event accessing routines 
GetNextEvent Returns the next available event of a specified type or types; if the event is in the event 

EventAvail 
GetOSEvent 

OSEventAvail 

queue, GetNextEvent removes the event from the queue 
Allows an application to look at the next available event of a specified type or types 
Returns the next available queue event of a specified type or types and removes it from 
the queue 
Allows an application to look at the next available queue event of a specified type or 
types, but leaves the event in the queue 

Mouse status routines 
GetMouse Returns the current mouse location 
Button Returns the current status of a specified button on the mouse 
Stilldown Tests whether the specified mouse button is still down 
WaitMouseUp Tests whether the specified mouse button is still down and, if not, removes the 

preceding mouse-up event 

Event queue routines 
PostEvent Posts an event into the event queue 

FlushEvents Removes all queue events of the type or types specified by an event mask up to but not 
including the first event of any type specified by a stop mask 

Miscellaneous routines 
TickCount Returns the current number of ticks (in sixtieths of a second) since the system was last 

started 
GetDblTime 

GetCaretTime 

SetEventMask 
FakeMouse 

Do Windows 
SetSwitch 

Returns the maximum difference (in ticks) between mouse-up and mouse-down events 
allowed for the mouse clicks to be considered a double-click 
Returns the time (in ticks) between blinks of the caret (usually indicated by a vertical 
bar) marking the insertion point in text that can be edited 
Specifies the system event mask 
Allows use of an alternative pointing device, such as a graphics tablet, in place of or in 
conjunction with the mouse 
Returns the address of the direct page used by the Event Manager 
Generates a switch event 

7-2 Chapter 7: Event Manager 



Two managers in one 
Although the Event Manager is a single tool set, it can be conceptually divided into a 
high-level Event Manager and a low-level Event Manager. These two parts perform 
different functions. The low-level Event Manager detects low-level, hardware­
related events such as mouse-button presses and keystrokes. It stores information 
about these events in the event queue and provides routines that access the queue. 

The high-level Event Manager calls the low-level Event Manager to retrieve events 
from the event queue. In addition, the high-level Event Manager reports window and 
switch events, which aren't kept in the queue. 

Event types 
Events are of various event types. Some report actions by the user; others are 
generated by the Window Manager, device drivers, or the application itself. The 
system handles some events before the application sees them; it leaves others for the 
application to handle. The event types are discussed in the following sections. 

Mouse events 
When the user presses the mouse button, the system generates a mouse-down 
event; when the user releases the button, the system generates a mouse-up event. 
Movements of the mouse cause the cursor position to be updated but are not 
reported as events. 

Keyboard events 
When the user presses any character key on the keyboard or keypad, the system 
generates a key-down event. The character keys include all keys except Shift, Caps 
Lock, Control, Option, and Apple, which are called modifier keys. Modifier keys 
are treated differently and generate no keyboard events of their own. When an event 
is posted, the state of the modifier keys is reported in a field of the event record. 

The character keys on the keyboard and keypad also generate auto-key events when 
the user holds them down. An auto-key event is generated only when the event queue 
is empty. 

Two different time intervals are associated with auto-key events. The first auto-key 
event is generated after a certain initial delay has elapsed since the key was originally 
pressed; this is called the repeat delay. Subsequent auto-key events occur each time 
a certain interval has elapsed since the last such event; this is called the repeat 
speed. The user can change these values with the Control Panel. 

Event types 7-3 



Window events 
The Window Manager generates events to coordinate the display of windows on the 
screen (see Chapter 25, "Window Manager," in Volume 2). These events are either 
activate or update events: 

■ Activate events are generated whenever an inactive window becomes active or an 
active window becomes inactive. These events generally occur in pairs (for 
example, one window is deactivated and then another is activated). 

■ Update events occur when all or part of a window's contents need to be drawn or 
redrawn, usually as a result of the user opening, closing, activating, or moving a 
window. 

Other events 
Device driver events are generated by device drivers in certain situations; for 
example, an application might set up a driver to report an event when its 
transmission of data is interrupted. The device driver uses the PostEvent routine to 
place device driver events in the event queue. 

Switch events are reserved for future use. 

A desk accessory event occurs whenever the user enters Control-Apple-Escape to 
invoke a classic desk accessory. 

An application can define as many as four application events of its own and use 
them for any purpose. Application-defined events are placed in the event queue with 
the PostEvent routine. 

The Event Manager returns a null event if it has no other events to report. 

Event priority 
The Event Manager generally retrieves events from the event queue in the order of 
their original posting. However, the way that various types of events are generated 
and detected causes some events to have higher priority than others. Also, not all 
events are kept in the event queue. Furthermore, when an application asks for an 
event, it can specify the types in which it is interested. Specifying the types can cause 
the Event Manager to pass over some events in favor of others. 

7-4 Chapter 7: Event Manager 



The GetNextEvent and EventAvail routines always return the highest-priority event 
available among the requested types. They rank events in the following order: 

1 . Activate events (one window becomes inactive before another window becomes 
active) 

2 . Switch events (reserved for future use) 

3 . Mouse-down, mouse-up, key-down, auto-key, device driver, application-
defined, and desk accessory events (in order of posting) 

4 . Update events (in front-to-back order of windows) 

Activate events take priority over all others; they're detected in a special way and are 
never actually placed in the event queue. The GetNextEvent and EventAvail routines 
check for pending activate events before looking in the event queue, so they will 
always return such an event if one is available. Because of the special way the routines 
detect activate events, more than two such events cannot be pending at the same 
time; at most one event can be pending to make a window inactive followed by 
another event waiting to make a window active. 

Next in priority are switch events, which also remain outside of the event queue. 

❖ Note: At the time of publication, switch events were reserved for future use and 
weren't currently generated by the toolbox. 

If no activate events are pending, the GetNextEvent and EventAvail routines check for 
a switch event before looking in the event queue. If a switch event is available, the 
routines then check to see if any update events are pending; if so, they return the 
update event to the application. GetNextEvent and EventAvail return a switch event 
to the application only when no update events are pending. This ensures that all 
windows are updated before the switch event is returned to the application. 

The third category includes all of the event types in the event queue. The Event 
Manager retrieves events from the queue in the order of their posting. The 
GetOSEvent and OSEventAvail routines return only events from this category. 

The final category of events are update events. Like activate and switch events, the 
update events are not placed in the event queue, but are detected in another way. If 
no higher-priority event is available, the GetNextEvent and EventAvail routines 
check for windows whose contents need to be drawn. If they find such a window, they 
return an update event for that window. The routines check the windows in the order 
in which the windows are displayed on the screen, from front to back. Thus, if two or 
more windows require updating, GetNextEvent and EventAvail return an update 
event for the frontmost window. 

Finally, if no other event is available, a null event is returned. 

❖ Note: If the queue becomes full, the Event Manager begins discarding old events 
to make room for new ones as they're posted. The events discarded are always 
the oldest ones in the queue. 

Event priority 7-5 



Event records 
Every event, including a null event, is represented by an event record containing 
all pertinent information about that event. The event record includes the following 
information: 

■ The type of event 

■ Event-specific information, such as which key the user pressed or which window is 
being activated 

■ The time the event was posted 

■ The location of the mouse at the time the event was posted (in global coordinates) 

■ The state of the mouse buttons and modifier keys at the time the event was posted 

Every event, including a null event, has a 16-byte event record containing the 
preceding information defined as follows: 

what WORD Event code 
message LONG Event message 
when LONG Tick count 
where POINT Mouse location 
modifiers WORD Modifier flags 

The when field contains the number of ticks since the system was last started, and the 
where field gives the location of the mouse, in global coordinates, at the time the 
event was posted. The other three fields are described in the following sections. 

7-6 Chapter 7: Event Manager 



Event codes 
The what field of an event record contains an event code identifying the type of the 

· event. Event codes are assigned as shown in Table 7-2. 

Table 7-2 
Event Manager event codes 

Code Name Description 

0 nullEvt Null event 
1 mouseDownEvt Mouse-down event 
2 mouseUpEvt Mouse-up event 
3 keyDownEvt Key-down event 
4 Undefined 
5 autoKeyEvt Auto-key event 
6 updateEvt Update event 
7 Undefined 
8 activateEvt Activate event 
9 switchEvt Switch event (reserved for future use) 

10 deskAccEvt Desk accessory event 
11 driverEvt Device driver event 
12 applEvt Application-defined event 
13 app2Evt Application-defined event 
14 app3Evt Application-defined event 
15 app4Evt Application-defined event 

Event records 7-7 



Event messages 
The message field of an event record contains the event message, which conveys 
additional information about the event. The nature of this information depends on 
the event type, as shown in Table 7-3. 

Table 7-3 
Event messages 

Event type 

Mouse-down 
Mouse-up 
Key-down 
Auto-key 

Activate 
Update 
Device driver 
Application 

Switch 
Desk accessory 
Null 

Modifier flags 

Event message 

Button number (0 or 1) in low-order word; high-order word undefined 
Button number (0 or 1) in low-order word; high-order word undefined 
ASCII character code in low-order byte (high bit clear); upper 3 bytes undefined 
ASCII character code in low-order byte (high bit clear); upper 3 bytes undefined 

Pointer to window 
Pointer to window 
Defined by the device driver 
Defined by the application 

Undefined 
Undefined 
Undefined 

The modifiers field of an event record contains further information about activate 
events and about the state of the modifier keys and mouse buttons at the time the 
event was posted. For example, your application might look at this field to find out 
whether the Apple key was down when a mouse-down event was posted ( which could 
affect the way objects are selected) or when a key-down event was posted (which could 
mean the user is choosing a menu item by typing its keyboard equivalent). 

7-8 Chapter 7: Event Manager 



Figure 7-1 shows the bit positions of the modifier flags. 

I 15 I 14 I 13 I 12 I 11 I 10 I 9 I a I 7 I 6 I s 141 3 I 2 I 1 I o I 
Rese,ve~ J ' , 

keyPad 
Key pressed on keypad = 1 

Key pressed on keyboard = 0 

contro/Key -
Control key was down = 1 

Control key was not down = 0 

optionKey -
Optlon key was down = 1 

Option key was not down = 0 

capsLock -
Caps Lock key was down = 1 

Caps Lock key was not down = O 

shiftKey -
Shitt key was down = 1 

Shift key was not down = 0 

app/eKey -
Apple key was down = 1 

Apple key was not down = 0 

btnOState -
Mouse button O was up = 1 

Mouse button O was down = 0 

btnlState -
Mouse button 1 was up = 1 

Mouse button 1 was down = 0 

Reserved -

changeFfag -
Active window changing from application to system window, or vice versa= 1 

Figure 7-1 

No change= 0 

act,veF/ag -
Window pointed to by event message was being activated = 1 

Window was being deactivated = O 

Modifier flags in event record 

Event records 7-9 



The keyPad bit gives further information about key-down events; it's set to 1 if the key 
pressed was on the keypad, or O if the key pressed was on the keyboard. Bits 12 
through 6 indicate the state of the mouse button and modifier keys. Note that the 
btnOState and btnlState bits are set to 1 if the corresponding mouse button was up, 
whereas the bits for the five modifier keys are set to 1 if their corresponding keys were 
down. 

❖ Note: On a one-button mouse, the button is button 0. 

The activeFlag and changeFlag bits give further information about activate events. 
The activeFlag bit is set to 1 if the window pointed to by the event message is being 
activated, or O if the window is being deactivated. The changeF/ag bit is set to 1 if the 
active window is changing from an application window to a system window or vice 
versa. Otherwise, it's set to 0. 

Event masks 
Some Event Manager routines can be restricted to operate on a specific event type or 
group of types; in other words, the specified event types are enabled and all others 
are disabled. For instance, instead of just requesting the next available event, the 
application can specifically ask for the next keyboard event. 

An application can specify which event types a particular call applies to by supplying 
an event mask as a parameter. This is a word with one bit position for each event 
type, as shown in Figure 7-2. The bit position representing a given type corresponds 
to the event code for that type-for example, update events (event code 6) are 
specified by bit 6 of the mask. A 1 in bit 6 means that this call applies to update 
events; a O means that it doesn't. 

❖ Note: Null events can't be disabled; a null event is always reported when none of 
the enabled types of events are available. 

There's also a global system event mask that controls which event types are 
posted into the event queue by the Event Manager. Only event types corresponding 
to bits set in the system event mask are posted; all others are ignored. When the 
system starts up, the system event mask is set to post all events. 

7-10 Chapter 7: Event Manager 



I 1s I 14 I 13 I 12 I 11 I 10 I 9 I a I 1 I 6 I s I 4 I 3 I 2 I 1 I o I 
Appllcatlan-deflned eve,nts J ' ' J 

driverMask 
Call applies to device driver events = l 

Call does not apply to device driver events = 0 

deskAccMask -
Call applies to desk accessory events = 1 

Call does not apply to desk accessory events = O 

switchMask -
Call applies to switch events = 1 

Call does not apply to switch events = 0 

activeMask -
Call applies to activate events = l 

Call does not apply to activate events = 0 

Reserved -

update Mask 
Call applies to update events = l 

Call does not apply to update events = O 

autoKeyMask -
Call applies to auto-key events = 1 

Call does not apply to auto-key events = 0 

Reserved -

keyDownMask -
Call applies to key-down events = l 

Call does not apply to key-down events = 0 

mUpMask -
Call applies to mouse-up events = l 

Call does not apply to mouse-up events = O 

mDownMask ­
Call applies to mouse-down events = l 

Call does not apply to mouse-down events = O 

Reserved -

Figure 7-2 
Event masks 

Event masks 7 -11 



Using the Event Manager 
This section discusses how the Event Manager routines fit into the general flow of an 
application and gives you an idea of which routines you'll need to use under normal 
circumstances. Each routine is described in detail later in this chapter. 

The Event Manager depends upon the presence of the tool sets shown in Table 7-4 
and requires that at least the indicated version of the tool set be present. 

Table 7-4 
Event Manager-other tool sets required 

Tool set Tool set Minimum version 

number name needed 

$01 #01 Tool Locator 1.0 
$02 #02 Memory Manager 1.0 
$03 #03 Miscellaneous Tool Set 1.0 
$04 #04 QuickDraw II 1.0 
$05 #05 Desk Manager 1.0 
$09 #09 ADB Tool Set 1.0 

The first Event Manager call that your application must make is EMStartUp. 
Conversely, when you quit your application, you must make the EMShutDown call. 

Any application that uses both the Event Manager and the Window Manager must 
start the Event Manager before starting up the Window Manager. Because the Event 
Manager shares data with the Window Manager, both must use the same direct-page 
work area. When an application starts up the Window Manager, the Window 
Manager automatically calls the Event Manager routine DoWindows to obtain the 
address of the direct-page work area assigned to the Event Manager. If Do Windows is 
not called, the Event Manager assumes that the application does not use windows and 
makes no attempt to return window events. 

Event-driven applications have a main loop that repeatedly calls GetNextEvent to 
retrieve the next available event and then takes an appropriate action for each type of 
event. Some typical responses to commonly occurring events are described in the 
next section. Your application should respond only to those events that are directly 
related to its own operations. After calling GetNextEvent, it should test the Boolean 
result to find out whether it should respond to the event: TRUE means the event may 
be of interest to the application; FALSE means it will usually not be of interest. In 
some cases, you may want your application simply to look at a pending event while 
leaving it available for subsequent retrieval by GetNextEvent. You can use the 
EventAvail routine for this purpose. Also remember that, if you are using the 
Window Manager TaskMaster routine, TaskMaster will intercept and act upon certain 
types of events, such as mouse events occurring in a window's Close box, Zoom box, 
or scroll bars. For more details, see the section "Using TaskMaster" in Chapter 25, 
"Window Manager," in Volume 2. 

7-12 Chapter 7: Event Manager 



Responding to mouse events 
On receiving a mouse-down event, an application should first call the Window 
Manager to find out where the cursor was on the screen when the mouse button was 
pressed and then respond in whatever way is appropriate. Depending upon where 
the cursor was when the button was pressed, the application may have to call toolbox 
routines in the Menu Manager, the Desk Manager, the Window Manager, or the 
Control Manager. 

If the application attaches special significance to the user pressing a modifier key or 
keys along with the mouse button, the application can discover the state of the 
modifier keys by examining the appropriate flags in the modifiers field of the event 
record . 

If you want your application to respond to mouse double-clicks, it must detect them 
itself. It can do so by comparing the time and location of a mouse-up event with the 
time and location of the mouse-down event immediately following the mouse-up 
event. The application should assume a double-click has occurred if both of the 
following are true: 

■ The times of the mouse-up event and the mouse-down event differ by a number of 
ticks less than or equal to the value returned by the GetDblTime routine. 

■ The locations of the two mouse-down events separated by the mouse-up event are 
sufficiently close to each other; exactly how close depends on the particular 
application. For example, a word-processing application might consider two 
locations to be essentially the same if they fall on the same character, whereas a 
graphics application might consider the locations essentially the same if the 
horizontal and vertical changes in position total no more than five pixels. 

Mouse-up events can be significant in other ways; for example, they can signal that 
the user has stopped dragging the mouse after selecting the last of several objects. 
Most simple applications, however, ignore mouse-up events. 

Responding to keyboard events 
For a key-down event, the application should first check the modifiers field of the 
event record to see whether the character was typed with the Apple key held down; if 
so, the user may have been choosing a menu item by typing its keyboard equivalent. 

If the key-down event is not a menu command, the application·should respond to the 
event in whatever way is appropriate. For example, if one of the windows is active, 
the application could insert the typed character into the active document; if none of 
the windows is active, it might choose to ignore the event. 

Most applications can handle auto-key events the same way as they handle key-down 
events. However, you may want your application to ignore auto-key events that 
invoke commands that you don't want continually repeated. 

Using the Event Manager 7-13 



Responding to window events 
When the application receives an activate event for one of its own windows, the 
Window Manager will already have completed all of the normal housekeeping tasks 
associated with the event, such as highlighting or unhighlighting the window. The 
application can then take any further necessary action, such as showing or hiding a 
scroll bar or highlighting or unhighlighting a selection. 

On receiving an update event for one of its own windows, the application usually 
should update the contents of the window. 

Responding to other events 
Applications never receive desk accessory events because the Desk Manager 
intercepts and handles such events. Switch events were not implemented at the time 
of publication; however, when they are generated, your application will be returned 
to after being switched out of by a switcher-type application. Thus, upon receiving a 
switch event, your application should check to make sure that the environment is still 
the same as it was before the switch event occurred. 

Posting and removing events 
An application using application-defined events must call PostEvent to post these 
events to the event queue. Device drivers can post events the same way. PostEvent 
can also be useful for reposting an event that the application removed from the event 
queue by calling the GetNextEvent or GetOSEvent routine. 

In some situations, you may want to remove from the event queue some or all events 
of a certain type or types. You can do this with the FlushEvents routine. 

Performing other operations 
In addition to receiving the user's mouse and keyboard actions in the form of events, 
applications can directly read the mouse location and state of the mouse buttons by 
calling the GetMouse and Button routines, respectively. To follow the mouse when 
the user moves it with the button down, the application can use the StillDown or 
WaitMouseUp routines. 

The TickCount routine returns the number of ticks since the last system start up. Your 
application can compare this to the when field of an event record to discover the 
delay since that event was posted. 

7-14 Chapter 7: Event Manager 



The GetCaretTime routine returns the number of ticks between blinks of the caret 
(usually a vertical bar) marking the insertion point in editable text. Your application 
should call GetCarerrime if you want to control the blinking of the caret. The 
application should check this value each time through the main event loop to ensure 
a constant frequency of blinking. 

Applications must never call the DoWindows or SetSwitch routines and will probably 
never call the GetOSEvent, OSEventAvail, and SetEventMask routines. 

Capturing asynchronous key events 
You may want your application to trap asynchronous key events that could affect the 
current executing process. For example, you may want the user to be able to press 
Control-C to abort a process. Using the Event Manager alone, your application 
would have to check the event queue in a synchronous process for the Control-C 
keyboard event. This requires that the current process have the extra overhead of the 
Tool Locator and the Event Manager. 

Your application can process asynchronous keyboard events without this extra 
overhead. After you make the EMStartUp call, replace the keyboard interrupt vector 
with a vector that points to an interrupt handler that you write to process 
asynchronous keyboard events. 

Besides processing the asynchronous keyboard events, your handler must pass to the 
Event Manager any keystrokes the handler does not recognize as asynchronous 
keyboard events. To do this, your application must save the keyboard interrupt 
vector initialized by the Event Manager. The handler must dispatch to the Event 
Manager when the handler doesn't recognize a keyboard event. 

In addition, your asynchronous keyboard event handler must clear the keyboard 
strobe on recognized events, but leave the keyboard strobe set on unrecognized 
events. 

Capturing asynchronous key events 7-15 



Following is an example of how you can install an asynchronous keyboard event handler: 

_MTStartup ; Startup call to Miscellaneou s To o l Set 

* (Push a ppropriate EMStartup parameters on the stack. ) 

_EMStartup 

pu s h l ong #0 

pea $000F 

Get Vector 

pla 

sta >EventKey+l 

pla 

sep #$20 

sta >EventKey+3 

rep #$20 

pea $000F 

pushlong #AsyncKey 

Set Vector 

Startup call to Event Manager 

Space for result 

Vector is keyboard interrupt handler 

Get the vector set by the Event Man a ger 

Low word of current keyboard IRQ vecto r 

Store for Event Manager dispatches 

High word of current keyboard IRQ vector 

8=bit m 

Store for Event Manager dispatches 

16=bit m 

Vector is keyboard interrupt handler 

Address of asynchronous key handler 

Install my handler 

Following is an example of how you can implement an asychronous keyboard 
interrupt handler. 

As yncKey start 

kbd equ 

kbdstrb equ 

leng t h equ 

l onga 

longi 

* 

$00C000 

$00C010 

3 

off 

off 

Keyboard data 

Keyboard strobe 

Three asynchronous key events a re po s sib le 

* Interrupt h a ndlers are called in native mode with 8=bit m and x . 

* I nterrupt h an d l ers return with an RTL instruction. The carry flag 

* must b e c l eared i f the interrupt was handled . 

* 

7-16 Chapter 7: Event Manager 



phb 

phk 

p l b 

lda 

a nd 

l dx 

AsyncLoop a nop 

c mp 

b eq 

dex 

bpl 

* 

>kbd 

H0lllllll 

#length-1 

As yncTable,x 

AsyncDsptch 

AsyncLoop 

Must preserve data bank 

Set data bank to program bank 

Get current key 

Mask any key-down bit 

Length of list containing asynchronous keys 

Is key in table? 

Yes 

Next key 

* If the ke y is not found in the list of valid asynchronous key events, the interrupt 

* h a ndler must dispatch to the Event Manager keyboard interrupt handler. The applicat ion 

* in i tia lized the jump address in the dispatcher before it instal l ed its own keyboard 

* interrupt handler. 

EventKe y 

* 

a nop 

plb 

jmp 

Restore data bank 

>$000000 If not recognized , dispatch to Event Manager 

* This d i s patcher will execute a subroutine associated with the asynchronous key event. 

AsyncDsptch a nop 

t x a Make a word i ndex 

asl a 

tax 

rep #$20 

lda DsptchTable , x 

pea DsptchRet-1 

pha 

sep #$20 

rts 

16=bit m 

Get d i spatch tabl e address 

Push return address 

Push dispatch address 

B=bit m 

Dispatch to subr out i ne (B=bit m & x) 

Capturing asynchronous key events 7-17 



DsptchRet 

* 

anop 

sta 

clc 

plb 

rtl 

>kbdstrb Clear the keyboard strobe 

Flag that interrupt was handled 

Restore data bank 

Return from interrupt 

* Following is a table of valid asynchronous event keys: 

AsyncTable 

* 

anop 

de 

de 

de 

h'03' 

h'13' 

h' 1B' 

Control-C 

Control-S 

Escape 

* Following is a table of dispatch addresses to subroutines for handling asynchronous key 

events: 

DsptchTable anop 

de 

de 

de 

CtrlC 

* This 

CtrlS 

* This 

Escape 

* This 

7-18 

anop 

routine would 

rts 

anop 

routine would 

rts 

anop 

routine would 

rts 

end 

i'CtrlC-1' 

i 'Ct rlS-1 ' 

i'Escape-1' 

Control-Chandler address-1 

Control-S handler address-1 

Escape handler address-1 

do whatever you want for an asynchronous Control-C key event: 

do whatever you want for an asynchronous Control-S key event: 

do whatever you want for an asynchronous Escape key event: 

Chapter 7: Event Manager 



Journaling mechanism 
The Event Manager provides a journaling mechanism that can be accessed 
through assembly language. Figure 7-3 illustrates the journaling mechanism. 

Important 

At the time of publication, Apple did not provide a Journaling driver; you wlll 
have to write your own. 

The mechanism can separate the Event Manager from the user and feed the manager 
events from a file . The file can contain a record of all events that occurred during 
some portion of a user's session. Specifically, this file records all calls to the 
GetNextEvent, EventAvail, GetMouse, Button, and TickCount routines. 

When a journal is being recorded, every call to any of these routines is sent to a 
journaling device driver, which records the call (and the results of the call) in a file. 
When the journal is played back, these recorded calls are taken from the journal file 
and sent directly to the Event Manager. The result is that the recorded sequence of 
user-generated events is reproduced when the journal is played back. 

❖ Note: To play back a journal, an application must make exactly the same Event 
Manager calls in the same order as when the journal was recorded. 

Journaling off 

User 

Event Manager 

Your 
journaling 

driver 

Figure 7-3 

Your 
application 

Journaling mechanism 

Recording mode 

User 

Your 
journaling 

driver 

Your 
application 

Playback mode 

Your 
journaling 

driver 

Your 
application 

Journaling mechanism 7-19 



To use journaling, you must place the address of the journaling driver in the Event 
Manager jump vector journa!Ptr; that is, you must place a $SC followed by the 3-byte 
address of the driver in journa!Ptr. The Event Manager then calls the journaling 
device driver by jumping through journa!Ptr. The journa!Ptr is set to $00000000 
when EMStartUp is executed. 

The journa!Flag variable controls whether journaling is active, and, if so, whether it 
is in recording or playback mode. If journa!Flag is set to 0, journaling is not active. 
If journa!Flag is a nonzero value, journaling is active. A positive value indicates 
recording mode, and a negative value indicates playback mode. The journa!Flag is 
set to $0000 when EMStartUp is executed. The locations of journa!Ptr and 
journa!Flag should be obtained by calling the Miscellaneous Tool Set routine 
GetAddr. 

If journaling is active, the routines GetNextEvent, EventAvail, GetMouse, Button, 
and TickCount will push information onto the stack and perform a JSL to the 
journaling device driver whose address is stored in journa!Ptr. The journaling driver 
should remove the information from the stack before returning with an RTI. 

The information pushed onto the stack is as follows: 

previous contents 

Journa!Flag Word-Current value of the flag 

Journal Code Word-Code indicating the routine calling the journaling driver 

-- resultPtr - - · Long-POINTER to actual data returned by the calling routine 

~SP 

Table 7-5 summarizes the values for journa!Code and resultPtr. 

Table 7-5 
Journal codes and result pointers 

Journal Result pointer 
code value Routine values 

0 TickCount LONG 
1 Get:1\.1ouse POINT 
2 Button BOOLEAN 
4 GetNextEvent Event record 
4 EventAvail Event record 

7-20 Chapter 7: Event Manager 



Using alternative pointing devices 
❖ Note: You need to read this section only if you are writing a device driver for an 

alternative pointing device. All applications that use the Event Manager work the 
same with alternative pointing devices as they do with the mouse. 

The Event Manager can use an alternative pointing device, such as a graphics 
tablet, light pen, or trackball, instead of the mouse. When an alternative pointing 
device is being used, its X-Y location and button status appear in the event records in 
place of the mouse information. Mouse-up and mouse-down events are posted 
when the alternative device's buttons change state. 

More than one pointing device can also be used. In this case, whichever device is 
currently moving or changing state is the device whose X-Y location appears in the 
event records. The device that is currently moving or changing state also determines 
the cursor position. 

For an alternative pointing device to be usable by the Event Manager, a device driver 
must be written for it and installed in the system. 

Writing device drivers 

Your device driver is called with the processor in native 8-bit mode, and the driver 
must exit in native 8-bit mode. If the device driver is to be installed as a Heartbeat 
Task, it must be written according to the instructions in Chapter 14, "Miscellaneous 
Tool Set." See the Heartbeat Interrupt routines in that chapter. All other device 
drivers must be written according to interrupt routine guidelines as found in the 
Apple JIGS Firmware Reference. 

All device drivers should begin with a 6-byte header, as follows: 

■ BRA CodeStart (this generates 2 bytes of code) 

■ 2 bytes of device information 

■ 2 bytes initialized to $8989 (device driver signature) 

If the device driver is installed as a Heartbeat Task, the driver header should be 
immediately after the Heartbeat Task header. 

Initialize the low byte of device information as follows: 

Bit 7 Set if the device is an absolute device 
Bit 6 Set if the device is a relative device 
Bit 5 Unused; set to 0 
Bit 4 Unused; set to 0 
Bit 3 Set if the device communicates through the Apple Desktop Bus 
Bit 2 Set if the device communicates through the serial port 
Bit 1 Set if the device has its own card and generates interrupts 
Bit O Set if the device has its own card and does not generate interrupts 

Using alternative pointing devices 7-21 



Initialize the high-order byte of device information to $FF. The startup program will 
then set up this byte as required by the type of device being installed, as follows: 

Card device 
Serial device 
ADB device 

Byte contains slot # in which the card was found 
Byte contains port # to which the device is connected 
Byte contains address # assigned to the device 

A device driver should perform the following steps each time it is called: 

1. Call the GetAddr routine in the Miscellaneous Tool Set to obtain the address of 
the relative or absolute clamp values (depending on whether the driver is for a 
relative or absolute device). Save the address so that you have to make the call 
only the first time the device driver is executed. 

2. If the driver is installed as a Heartbeat Task, reset the Heartbeat Task counter to 
1 or 2. Poll the device to obtain its current X-Y position and button state. 

If the driver is for a serial device, issue an InQStatus call to determine how many 
characters are in the serial firmware 's input queue. Read the characters by 
calling the Serial Read routine. 

❖ Note: For more information about the Serial Read routine, see the 
Apple JIGS Firmware Reference. 

If the driver is for an ADI3 device, the stack will have a buffer pointer at offset 7. 
The first byte in the buffer specifies the number of data bytes in the buffer. Read 
the data bytes. 

3. Determine whether the device's X-Y position or button state has changed. If no 
changes, skip to step 11. 

4. Push the following word onto the stack: 

Bits 15-3 Unused; set to 0 
Bit 2 Set to 1 if button state has changed; otherwise set to 0 
Bit 1 Set to 1 if XY position has changed; otherwise set to 0 
Bit O Unused; set to 0 

5. Read the keyboard modifiers latch at $C025 (must be done in 8-bit mode) and 
push the byte onto the stack. Push a byte of O onto the stack. 

6. Determine the device's absolute X position. Get the current X clamps, using the 
address saved in step 1, and clamp the X position; that is, make sure that the X 
position is within the clamp boundaries. Push a word containing the clamped, 
absolute X position on the stack. 

7. Determine the device's absolute Y position. Get the current Y clamps, using the 
address saved above, and clamp the Y position; that is, make sure that the Y 
position is within the clamp boundaries. Push a word containing the clamped, 
absolute Y position on the stack. 

7-22 Chapter 7: Event Manager 



8. Push the following word on the stack: 

Bit 15 Current state of button O (1 if down, 0 if up) 
Bit 14 Previous state of button 0 
Bit 13 Unused; set to 0 
Bit 12 Current state of button 1 
Bits 11-9 Unused; set bit to 0 
Bit 8 Previous state of button 1 
Bits 7--0 Unused; set to 0 

9. Call the Event Manager routine FakeMouse (must be called in native 16-bit mode). 

10 . Return to native 8-bit mode. 

11 . Return with an RTI. 

Installing device drivers 
The user installs the device driver by executing a startup program. If the startup 
program is a desk accessory, the user can install the driver while running an 
application. The startup program should initialize the device and install the device 
driver into the system as described in the following sections. 

Devices using their own cards 

If the device communicates using its own card, take the following steps to install the 
device driver: 

1 . Load the driver code into memory. 

2 . Determine which slot the device's card is in. Store the slot number in the 
appropriate byte of the device driver header (described in the section "Writing 
Device Drivers" in this chapter). 

3 . Perform any initialization needed by the device, such as setting up scaling and 
offset values or setting the correct operation mode. 

4. Install the driver into either the heartbeat queue or the IRQ_Other interrupt 
vector, depending on whether the device generates interrupts. 

If the device does not generate interrupts, install the driver as a task in the 
heartbeat queue. Install the driver using the SetHeartBeat routine in the 
Miscellaneous Tool Set. (See the section "SetHeartbeat" in Chapter 14, 
"Miscellaneous Tool Set.") 

If the device does generate the interrupts, install the driver in the IRQ_Other 
interrupt vector after saving the previous contents of the vector. The previous 
contents of the vector will be needed later when you remove the device driver. 
Obtain the contents of the vector by calling the GetVector routine (in the 
Miscellaneous Tool Set) with a reference number of $17. You can then install the 
driver by calling the SetVector routine (in the Miscellaneous Tool Set) with a 
reference number of $17. (See the sections "GetVector" and "SetVector" in 
Chapter 14, "Miscellaneous Tool Set.") 

Using alternative pointing devices 7-23 



Devices communicating through the serial port 

If the device communicates through the serial port, install the device driver by taking 
the following steps: 

1 . Load the driver code into memory. 

2 . Determine to which port the device is connected. Store the port number in the 
appropriate byte of the device driver header (described in the section "Writing 
Device Drivers" in this chapter). 

3. Initialize the device by calling the Serial Init routine. 

❖ Note: For more information about the Serial Init routine and for more details 
about the next two steps, consult the Apple JIGS Firmware Reference. 

4. Install the driver in the serial firmware's completion vector by issuing a Setintinfo 
call to the serial firmwar~. The command list for the call should specify that 
character available interrupts be passed to the driver. 

5. Turn on buffering by calling the Serial Write routine with the following three 
characters: Control-I, B, E. 

Devices communicating through the Apple Desktop Bus 

If the device communicates through the Apple Desktop Bus (ADB), install the device 
driver as follows: 

1 . Load the driver code into memory. 

2 . Determine the address number assigned to the device. Store the address number 
in the appropriate byte of the device driver header (described in the section 
"Writing Device Drivers" in this chapter). 

3. Install the driver in the ADB firmware's SRQ List completion vector by calling the 
SRQPoll routine in the ADB Tool Set (see Chapter 3, "Apple Desktop Bus Tool 
Set") . 

4. Enable SRQ for the device by calling the Sendlnfo routine in the ADB Tool Set. 

7-24 Chapter 7: Event Manager 



Removing device drivers 
The user removes the device driver by executing a shutdown program. If the 
shutdown program is a desk accessory, the user can remove the driver while running 
an application. The shutdown program should shut down the device and remove the 
device driver from the system as described in the following sections. 

Devices using their own cards 

If the device communicates using its own card, remove the device driver as follows: 

1 . Shut down the device if possible. 

2. If the driver is installed in the Heartbeat queue, remove it by calling the 
De!HeartBeat routine in the Miscellaneous Tool Set. (See the section 
"De!HeartBeat" in Chapter 14, "Miscellaneous Tool Set.") If the driver is 
installed in the IRQ_Other interrupt vector, restore the previous contents of the 
vector. 

3. Release all memory used by the driver code. 

Devices communicating through the serial port 

If the device communicates through the serial port, remove the device driver as 
follows: 

1. Turn off buffering by calling the Serial Write routine with the following three 
characters: Control-I, B, D. 

❖ Note: For more information about the Serial Write routine, see the 
Apple JIGS Firmware Reference. 

2 . Release all memory used by the driver code. 

Devices communicating through the Apple Desktop Bus 

If the device communicates through the Apple Desktop Bus, remove the device 
driver as follows : 

1 . Disable SRQ for the device using the Sendinfo routine from the Apple Desktop Bus 
Tool Set. See Chapter 3, "Apple Desktop Bus Tool Set." 

2 . Remove the driver from the ADB firmware's SRQ List completion vector by 
calling the SRQRemove routine in the ADl3 Tool Set. 

3. Release all memory used by the driver code. 

Using a lternative pointing devices 7-25 



$0106 

Parameters 

Errors 

C 

EMBootlnit 
Initializes the Event Manager; called only by the Tool Locator. 

Warning 
An application must never make this call. 

The stack is not affected by this call. There are no input or output parameters. 

None 

Call must not be made by an application. 

7-26 Event Manager housekeeping routines 



$0206 

Parameters 

EMStartUp 
Starts up the Event Manager, sets size of event queue, and sets minimum and 
maximum mouse clamp values. 

Important 

Your application must make this ca ll before It makes any other Event Manager 
cal ls. 

The mouse clamp values establish the minimum and maximum X and Y 
coordinates for the mouse position. Since these values are usually used to prevent the 
user from moving the mouse position off the screen, the clamp values input to 
EmStartUp are generally 0,320,0,200 for 320 mode, and 0,640,0,200 for 640 mode. 

'Before the Event Manager passes the clamp values to the mouse, it decrements 
xMaxClamp and yMaxClamp by 1. 

The clamp values are also used to set the absolute clamps in order to support 
alternative pointing devices. If your application will change the relative or absolute 
clamps after initializing the Event Manager, the application should call either the 
ClampMouse or SetAbsClamp routine with the new clamp values. See Chapter 14, 
"Miscellaneous Tool Set," for more information about those routines. 

If you change the clamp values, your application should not reinitialize the Event 
Manager. 

Stack before call 

previous contents 

dPageAddr 

queueSize 

xMinClamp 

xMaxClamp 

yMinClamp 

yMaxClamp 

userID 

Word-Bank $0 starting address for one page of direct-page space 

Word-Maximum number of event records in queue (0 = default of 20) 

Word-Minimum X clamp value for the mouse 

Word-Maximum X clamp value for the mouse plus 1 

Word-Minimum Y clamp value for the mouse 

Word-Maximum Y clamp value for the mouse plus 1 

Word-ID number Event Manager will use to get memory 

f-SP 

Event Manager housekeeping routines 7-27 



Stack after call 

previous contents I 
-------- f- SP 

Errors 

C 

$0601 

$0606 

$0607 

emDupStrtUpErr EMStartUp already called; duplicate call ignored 

emQSiz2LrgErr Size of event queue exceeds 3639 

emNoMemQueueErr Insufficient memory available for queue; Event 
Manager not initialized 

extern pascal void 

EMStartUp(dPageAddr,queueSize , xMinClamp,xMaxClamp , yMinClamp, yMaxClamp , 
userID) 

Word dPageAddr; 

Word queueSize; 

Integer xMinClamp; 

Integer xMaxClamp; 

Integer yMinClamp; 

Integer yMaxClamp; 

Word userID; 

Your application can also use the following alternate form of the call: 

extern pascal void EMStartUp (dPageAddr,queueSize,clamp,userID) 

Word dPageAddr ; 

Word queueSize ; 

ClampRec clamp; 

Word user ID ; 

7-28 Event Manager housekeeping routines 



$0306 

Parameters 

Errors 

C 

$0406 

Parameters 

EMShutDown 
Shuts down the Event Manager and releases any workspace allocated to it. 

Important 
If your application has started up the Event Manager, the application must 
make this call before It quits. 

The stack is not affected by this call. There are no input or output parameters. 

None 

extern pascal void EMShutDown() 

EMVersion 
Returns the version number of the Event Manager. 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

versionlnfo 

Errors None 

Word-Space for result 

f-SP 

Word-Version number of the Event Manager 

f-SP 

C extern pascal Word EMVersion (} 

Event Manager housekeeping routines 7-29 



$0506 EMReset 
Returns an error if the Event Manager is active; otherwise does nothing. 

Warning 
An application must not make this call. 

Parameters The stack is not affected by this call. There are no input or output parameters. 

Errors $0602 emResetErr Can't reset Event Manager 

C Call must not be made by an application. 

$0606 EMStatus 
Indicates whether the Event Manager is active. 

Parameters 

Stack before call 

previous contents 

wordspace Word- Space for result 

~SP 

Stack after call 

previous contents 

Errors 

C 

7-30 

acttveFlag 

None 

Word-BOOLEAN; TRUE if Event Manager active, FALSE if inactive 

~SP 

e xtern pascal Boolean EMStatus () 

Event Manager housekeeping routines 



$0D06 Button 
Returns the current state of the specified mouse button. 

❖ Note: On a one-button mouse, the button number is 0. 

Parameters 

Stack before call 

previous contents 

words pace 

buttonNum 

Stack after call 

previous contents 

buttonDown 

Errors $0605 

Word-Space for the result 

Word-Number of button (0 or 1) to check 

f-SP 

Word-BOOLEAN; TRUE if button is down, or FALSE if it isn't 

f-SP 

emBadBt tnNoErr Button number specified is not O or 1 

C e xter n p asca l Boolean Button(buttonNum) 

Word b uttonNum ; 

Event Manager routines 7-3 1 



$0906 Do Windows 
Returns the address of the direct-page work area used by the Event Manager. 

Warning 
An application must never make this call. 

Do Windows is called by the Window Manager when the Window Manager is 
initialized. The Window Manager uses the high end of the dPageAddr returned by 
Do Windows; the Event Manager uses the low end. 

Parameters 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

dPageAddr 

Errors None 

Word-Space for result 

f-SP 

Word-Bank $0 starting address for Event Manager's one-page work area 
f-SP 

C Call must not be made by an application. 

7-32 Event Manager routines 



$0B06 EventAvail 
Allows an application to look at the next available event of a specified type or types. If 
the event is in the event queue, the event is left there for subsequent retrieval by 
GetNextEvent. If no event of the specified type or types is available, a null event is 
returned. EventAvail does not call the Desk Manager. 

EventAvail follows the event priority order discussed in the GetNextEvent routine in 
this chapter. 

A queue event returned by EventAvail will not be accessible later if, in the meantime, 
the queue has become full and the event has been discarded. 

Parameters 

Stack before call 

prevtous contents 

wordspace 

eventMask 

-- eventPtr 

Stack after call 

prevtous contents 

gotEventFlag 

--· 

Errors None 

Word-Space for result 

Word-Specifies which types of events are of interest 

Long-POINTER to event record in which event will be placed 

f-SP 

Word-BOOLEAN; TRUE if any specified event types available, 

f- SP FALSE if not 

C e xtern pascal Boolean EventAvail (eventMa s k , eventPtr ) 

Wo rd eventMask ; 

Ev entRe c ordPtr eventPtr ; 

Event Manager routines 7-33 



$1906 

Parameters 

FakeMouse 
Allows an alternative pointing device, such as a graphics tablet, to be used in place of 
or in conjunction with the mouse. This call must be made only by a device driver. 
See the section "Using Alternative Pointing Devices" in this chapter for more 
information. 

Stack before call 

previous contents 

changedFlag 

modlatch I padding 

xPosition 

yPosition 

buttonStatus 

Stack after call 

Word-Indicating that device's position and/or button state has changed 

Byte-Keyboard modifiers latch I Byte-Set to 0 

Word-Device's clamped absolute X position 

Word-Device's clamped absolute Y position 

Word-Device's button status 

~SP 

previous contents I 
--------~SP 

Errors None 

C Call cannot be made from C. 

7-34 Event Manager routines 



$1506 Flush Events 
Removes all queue events of the type or types specified by an event mask up to but not 
including the first event of any type specified by a stop mask. If the event queue 
doesn't contain any events of the types specified by eventMask, FlushEvents does 
nothing. 

To remove all events specified by eventMask, specify a stopMask of 0. 

Parameters 

Stack before call 

previous contents 

wordspace 

eventMask 

stopMask 

Stack after call 

previous contents 

resultCode 

Errors None 

Word-Space for result 

Word-Types of events to be removed from queue 

Word-Event types to stop removal process 

<-SP 

Word--0 = all events removed from queue, or 

<- SP event code= type of event that stopped process 

C extern pascal Word FlushEvents (eventMask , stopMask ) 

Word eventMask ; 

Word stopMask ; 

Event Manager routines 7-35 



$1206 

Parameters 

GetCaretTim e 
Returns the time (in ticks) between blinks of the caret (usually indicated by a vertical 
bar) marking the insertion point in text that can be edited. 

If your application controls the blinking of the caret, the application should call this 
routine. On every pass through the program's main event loop, the application 
should check numTicks against the elapsed time since the last blink of the caret 

The user can adjust the numTtcks value by changing the Cursor Flash setting in the 
Control Panel. 

Stack before call 

previous contents 

longs pace Long-Space for result 

~SP 

Stack after call 

previous contents 

Errors 

C 

7-36 

numTicks 

None 

Long-Number of ticks between blinks of the caret 

~SP 

e xt e rn pascal Longword GetCa retTime () 

Event Manager routines 



$1106 GetDblTime 
Returns the maximum difference (in ticks) between mouse-up and mouse-down events 
allowed for the mouse clicks to be considered a double-click. The user can adjust the 
maxTicks value by changing the Double-Click setting in the Control Panel. 

Parameters 

Stack before call 

previous contents 

longspace 

Stack after call 

previous contents 

maxTicks 

Errors None 

Long-Space for result 

~SP 

Long-Maximum number of ticks between mouse clicks 

~SP 

C e xtern pascal Longword GetDblTime () 

Event Manager routines 7-37 



$0C06 

Parameters 

GetMouse 
Returns the current mouse location. GetMouse gives the location in the local 
coordinate system of the current GrafPort (for example, the currently active window). 
In contrast, the mouse location stored in the where field of an event record is always 
specified in global coordinates. 

Stack before call 

previous contents 

mouseLocPtr Long-POINTER to POINT for current mouse location 

~SP 

Stack after call 

previous contents I 
- ----- - - ~SP 

Errors 

C 

None 

extern pascal void GetMouse (mous e LocPtr ) 

Point *mouseLocPtr; 

7-38 Event Manager routines 



$0A06 GetNextEvent 
Returns the next available event of a specified type or types; if the event is in the event 
queue, GetNextEvent removes the event from the queue. 

Events in the queue that aren't designated in the mask remain in the queue. Your 
application can remove the events by calling the FlushEvents routine. 

Parameters 

Stack before call 

prevtous contents 

wordspace 

eventMask 

-- eventPtr 

Stack after call 

prevtous contents 

handleEventFlag 

--· 

Errors None 

Word-Space for result 

Word-Specifies which types of events are of interest 

Long-POINTER to the event record in which event will be placed 

f-SP 

Word-BOOLEAN; TRUE if event should be handled by application, 

f- SP FALSE if not 

C extern pascal Boolean GetNextEvent (eventMask,eventPtr) 

Word eventMask; 

EventRecordPtr eventPtr; 

(continued) 

Event Manager routines 7-39 



Event priority order 
GetNextEvent returns the next available event of any type the mask designates, subject 
to the following priority order: 

1 . Activate event (one window becomes inactive before another window becomes 
active) 

2 . Switch event (reserved for future use) 

3 . Mouse-down, mouse-up, key-down, auto-key, device driver, application-defined, 
or desk accessory event (in the order they were posted) 

4 . Update event (in front-to-back order of windows) 

If no event of any of the designated types is available, GetNextEvent returns a null 
event. This priority order is further discussed in the section "Event Priority" in this 
chapter. 

GetNextEvent and the Desk Manager 

Before reporting an event to the application, GetNextEvent calls the Desk Manager 
routine SystemEvent to see whether the system wants to intercept and respond to the 
event. If so, or if the event being reported is a null event, GetNextEvent returns a 
Boolean result of FALSE; a Boolean result of TRUE means that the application should 
handle the event itself. The Desk Manager intercepts the following events: 

■ Desk accessory events 

■ Activate and update events directed to a desk accessory 

■ Mouse-up and keyboard events, if the currently active window belongs to a desk 
accessory 

In each case, the Desk Manager intercepts the event only if the desk accessory can 
handle that type of event. As a rule, all desk accessories should be set up to handle 
activate, update, and keyboard events and should not handle mouse-up events. 

7-40 Event Manager routines 



$1606 GetOSEvent 
Returns the next available queue event of a specified type or types and removes it from 
the queue. 

GetOSEvent returns the next available queue event of any type that the mask 
designates. If no event of any of the designated types is available, GetOSEvent returns 
a null event. GetOSEvent doesn't return window or switch events and doesn't call the 
Desk Manager before returning the event. 

Parameters 

Stack before call 

previous contents 

wordspace Word-Space for result 

eventMask Word-Specifies which types of queue events are of interest 

-- eventPtr --· Long-POINTER to the event record in which the event will be placed 

~SP 

Stack after call 

previous contents 

gotEventFlag Word-BOOLEAN; TRUE if any specified event types available, 

~ SP FALSE if null event 

Errors None 

C extern pasca l Boolean Ge tOSEvent (eventMa sk , e ventPt r) 

Word eventMask ; 

Eve ntRecordPt r e ventPt r ; 

Event Manager routines 7-41 



$1706 OS Event Avail 
Allows an application to look at the next available queue event of a specified type or 
types, but leaves the event in the queue. OSEventAvail re turns the next available 
queue event of any type the mask designates. If no event of any of the designated types 
is available, OSEventAvail returns a null event. 

OSEventAvail doesn't return window or switch events and doesn't call the Desk 
Manager before returning the event. 

An event returned by OSEventAvail will not be accessible later, if, in the meantime, 
the queue has become full and the event has been discarded. 

Parameters 

Stack before call 

prevtous contents 

words pace Word-Space for result 

eventMask Word-Specifies which types of queue events are of interest 

-- eventPtr --· Long-POINTER to the event record in which the event will be placed 

f- SP 

Stack after call 

previous contents 

gotEventFlag Word-BOOLEAN; TRUE if any specified event types available, 

f- SP FALSE if null event 

Errors None 

C extern pascal Boolean OSEventAvail (eventMask , eventPtr ) 

Wo rd eventMask ; 

EventRecordPtr eventPtr ; 

7-42 Event Manager routines 



$1406 PostEvent 
Posts an event into the event queue. PostEvent sets the fields of the event record as 
follows: 

■ Sets the what field to the specified event type 

■ Sets the message field to the specified message 

■ Sets the when, where, and modifiers fields to the current time, mouse location, 
and state of the modifier keys and mouse buttons 

PostEvent should generally be used only to post application-defined events or driver 
events into the queue. Be careful if your application posts any other types of events 
into the queue. For example, an application that attempts to post an activate or 
update event (which aren't normally posted to the queue) will interfere with the 
normal operation of the Event Manager. 

Important 
If you use PostEvent to post a keyboard or mouse event, you must supply the 
state of the modifier keys and mouse buttons In the high-order word of 
eventMsg. This Information will be used to set the modifiers field of the event 
record. 

If you are posting a keyboard event, you must also supply the ASCII character 
code In the low-order byte of eventMsg. If you are posting a mouse event, you 
must also supply the button number In the low-order word of eventMsg. 

If your application uses PostEvent to repost an event that has been removed from the 
queue using GetNextEvent or GetOSEvent, the event time, mouse location, state of the 
modifier keys, and state of the mouse buttons will all be changed from the originally 
posted event. The meaning of the event may change in the process. 

Parameters 

Stack before call 

previous contents 

wordspace Word-Space for result 

eventCode Word-Type of event to be placed in the queue 

-- eventMsg - - · Long-Event message 

f-SP 

Event Manager routines 7-43 



Stack after call 

previous contents 

Errors 

C 

resultCode 

$0604 

Word-0 if event posted, 1 if event type not enabled in system event mask 

f-- SP 

emBadEvtCodeErr Event code is greater than 15 

extern pascal Word PostEvent (eventCode , eventMsg) 

Word event Code ; 

Longword eventMsg; 

7-44 Event Manager routines 



$1806 

Parameters 

SetEventMask 
Specifies the system event mask. 

The system event mask controls what types of events are posted into the event queue. 
The Event Manager posts only those event types that correspond to bits set in the 
system event mask. The Event Manager does not post activate, update, or switch 
events, because those events are not stored in the event queue. 

The system event mask is initially set to post all events. Your application should not 
change the system event mask, because desk accessories may depend upon receiving 
certain types of events. 

Stack before call 

prevtous contents 

sysEventMask 

Stack after call 

Word-System event mask 

(- SP 

prevtous contents I 
-------- (- SP 

Errors None 

C e xtern pascal void SetEventMas k (s ysEventMas k ) 

Word sysEventMask ; 

Event Manager routines 7-45 



$1306 

Parameters 

Errors 

C 

SetSwitch 
Generates a switch event. 

Warning 
Only switcher-type applications should make this call. 

The stack is not affected by this call. There are no input or output parameters. 

None 

extern pascal void SetSwitch ( ) 

7-46 Event Manager routines 



$0E06 

Parameters 

StillDown 
Tests whether the specified mouse button is still down. 

❖ Note: On a one-button mouse, the button number is 0. 

Usually called after a mouse-down event, StillDown is a true test of whether the mouse 
button is still down from the original press. 

❖ Note: The Event Manager Button routine is not a true test; that routine returns 
TRUE whenever the mouse button is currently down, even if the user has released 
and pressed the button again since the original mouse-down event. 

Stack before call 

previous contents 

wordspace 

buttonNum 

Stack after call 

previous contents 

buttonDown 

Errors $0605 

Word-Space for result 

Word-Number of button (0 or 1) to check 

f-SP 

Word-BOOLEAN; TRUE if button down and no mouse events are pending 

f- SP in event queue for specifed button, or FALSE if not 

emBadBttnNoErr Button number specified is not O or 1 

C e xt e rn p as cal Boolean St i llDown( buttonNum) 

Word b uttonNum ; 

Event Manager routines 7-4 7 



$1006 

Parameters 

TickCount 
Returns the current number of ticks (in sixtieths of a second) since the system was last 
started. 

Your application should not depend upon an exact tick count. The tick count is 
incremented during the VBL interrupt, but that interrupt can be disabled. Also, 
because an interrupt task can keep control for more than one tick, your application 
should not rely on the tick count being incremented to a certain value (for example, it 
should not test whether the tick count has become equal to its old value plus 1). 
Instead, the application should check for a greater than or equal to condition. 

Stack before call 

previous contents 

longspace 

Stack after call 

Long-Space for result 

~SP 

previous contents 

Errors 

C 

7-48 

numTicks 

None 

Long-Number of ticks since system startup 

~SP 

e xt e r n p asca l Longword TickCount () 

Event Manager routines 



$0F06 

Parameters 

WaitMouseUp 
Tests whether the specified mouse button is still down. If the button is not still down 
from the original press, WaitMouseUp removes the preceding mouse-up event from 
the queue before returning FALSE. 

❖ Note: On a one-button mouse, the button number is 0. 

You could use WaitMouseUp, for example, if your application attaches some special 
significance to mouse double-clicks and to mouse-up events. WaitMouseUp would 
allow the application to recognize a double-click without being confused by the 
intervening mouse-up event. 

Stack before call 

previous contents 

wordspace 

buttonNum 

Stack after call 

previous contents 

buttonDownF/ag 

Errors $0605 

Word-Space for result 

Word-Number of button (0 or 1) to check 

~SP 

Word-BOOLEAN; IBUE if button down and no mouse events are pending 

~ SP in event queue for the specifed button; FALSE if not 

emBadBttnNoErr Button number specified is not O or 1 

C exte r n pascal Boo l ean Wa i tMous e Up (buttonNum) 

Word buttonNum ; 

Event Manager routines 7-49 



Event Manager summary 
This section briefly summarizes the constants, data structures, and tool set errors 
contained in the Event Manager. 

Important 

These definitions are provided in the appropriate interface file. 

Table 7-6 
Event Manager constants 

Name Value Description 

Event codes 
nullEvt $0000 Null event 
mouseDownEvt $0001 Mouse-down event 
mouseUpEvt $0002 Mouse-up event 
keyDownEvt $0003 Key-down event 
autoKeyEvt $0005 Auto-key event 
updateEvt $0006 Update event 
activateEvt $0008 Activate event 
switchEvt $0009 Switch event 
deskAccEvt $000A Desk accessory event 
driverEvt $000B Device driver event 
applEvt $000C Application-defined event 
app2Evt $000D Application-defined event 
app3Evt $000E Application-defined event 
app4Evt $000F Application-defined event 

Event masks 
mDownMask $0002 Call applies to mouse-down events 
mUpMask $0004 Call applies to mouse-up events 
keyDownMask $0008 Call applies to key-down events 
autoKeyMask $0020 Call applies to auto-key events 
updateMask $0040 Call applies to update events 
activeMask $0100 Call applies to activate events 
switchMask $0200 Call applies to switch events 
deskAccMask $0400 Call applies to desk accessory events 
driverMask $0800 Call applies to device driver events 
applMask $1000 Call applies to application-defined applEvt events 
app2Mask $2000 Call applies to application-defined app2Evt events 
app3Mask $4000 Call applies to application-defined app3Evt events 
app4Mask $8000 Call applies to application-defined app4Evt events 
everyEvent $FFFF Call applies to all events 

7-50 Chapter 7: Event Manager 



Table 7-6 (continued) 
Event Manager constants 

Name Value Description 

Journal codes 
jcTickCount $00 TickCount call 
jcGetMouse $01 GetMouse call 
jcButton $02 Button call 
jcEvent $04 GetNextEvent and EventAvail calls 

Modifier Flags 
activeFlag $0001 Set if window was activated 
changeFlag $0002 Set if active window changed state 
btnlState $0040 Set if button 1 was up 
btnOState $0080 Set if button 0 was up 
appleKey $0100 Set if Apple key was down 
shiftKey $0200 Set if Shift key was down 
capsLock $0400 Set if Caps Lock key was down 
optionKey $0800 Set if Option key was down 
controlKey $1000 Set if Control key was down 
keyPad $2000 Set if keypress was from key pad 

Table 7-7 
Event Manager data structures 

Name Offset Type Definition 

Event record 
what $00 Word Event code 
message $02 Long Event message 
when $06 Long Tick count 
where $0A Point Mouse location 
modifiers $OE Word Modifier flags 

Note: The actual assembly-language equates have a 
lowercase o (the letter) in front of all of the names 
given in this table. 

Event Manager summary 7-5 l 



Table 7-8 
Event Manager error codes 

Code 

$0601 
$0602 
$0603 
$0604 
$0605 
$0606 
$0607 
$0681 
$0682 

Name 

emDupStrtUpErr 
ernResetErr 
emNotActErr 
emBadEvtCodeErr 
emBadBttnNoErr 
emQSiz2LrgErr 
emNoMemQueueErr 
emBadEvtQErr 
emBadQHndlErr 

Description 

EMStartUp already called 
Can't reset Event Manager 
Event Manager not active 
Event code is greater than 15 
Button number specified is not 0 or 1 
Size of event queue is greater than 3639 
Insufficient memory available for queue 
Event queue damaged-fatal system error 
Queue handle damaged-fatal system error 

7-52 Chapter 7: Event Manager 



Chapter 8 

Font Manager 

This chapter describes the Font Manager, the tool set that allows an application to 
use different fonts . A font is a complete set of characters of one typeface. If you want 
to allow the user to choose from all of the fonts available when the application is run, 
or if you're developing an application that requires a specific font, you can use the 
Font Manager. 

As its name implies, the Font Manager is responsible for managing fonts . The Font 
Manager keeps lists in memory as to how many fonts are available and what their 
characteristics are and provides this information to applications. The expression 
available font means that the font is one of the following: 

■ The ROM font (at the time of publication, the ROM font is Shaston 8) 

■ A font that is in the FONTS subdirectory 

■ A font that the application tells the Font Manager about directly with the 
AddFontVar tool set routine 

Other fonts may be on disk or may be put into use directly with the QuickDraw II 
SetFont routine; those fonts are not available to the Font Manager. 

When your application requests a font, the Font Manager searches all available fonts 
for the closest fit, loads the font from disk if necessary, possibly scales an existing 
font to create a better fit, and gives QuickDraw II the information it needs to use the 
font selected. 

Important 
For the Font Manager to find fonts, the SYSTEM subdirectory must contain a 
subdirectory called FONTS. This subdirectory must contain all fonts (except the 
ROM font) that are to be available to applications. 

8-1 



QuickDraw II is then responsible for the actual drawing of the characters in the 
currently installed font. Thus, you can think of the Font Manager as a higher-level 
tool set that installs a font and directs QuickDraw II to use that font until directed 
otherwise. For details about how fonts are drawn and constructed, see Chapter 16, 
"QuickDraw II," in Volume 2. 

A preview of the Font Manager routines 
To introduce you to the capabilities of the Font Manager, all Font Manager routines 
are grouped by function and briefly described in Table 8-1. These routines are 
described in detail later in this chapter, where they are separated into housekeeping 
routines (discussed in routine number order) and the rest of the Font Manager 
routines (discussed in alphabetical order). 

Table 8-1 
Font Manager routines and their functions 

Routine Description 

Housekeeping routines 
FMBootinit Initializes the Font Manager; called only by the Tool Locator-must not be called 

FMStartUp 
FMShutDown 
FMVersion 
FMReset 
FMStatus 

Font family routines 
CountFamilies 

FindFamily 
GetFaminfo 

GetFamNum 
AddFamily 

Font routines 
InstallFont 

SetPurgeStat 

by an application 
Starts up the Font Manager for use by an application 
Shuts down the Font Manager 
Returns the version number of the Font Manager 
Returns an error if the Font Manager is active 
Indicates whether the Font Manager is active 

Returns the total number of distinct font families currently available to the Font 
Manager that match a given specification (either all families or all families that 
have a plain-styled font available) 
Returns the number and name of a particular font family 
Returns the family name and characteristics of a font family with a specified 
family number 
Returns the family number corresponding to a specified font family name 
Enables the application to add a family number and name to the Font Manager's 
list of known font families 

Finds a specified font or the available font with the best fit if the specified font isn't 
available; loads the font into memory, if necessary; possibly creates a new, 
scaled font to match the specified font's size; and makes the resulting font current 
and unpurgeable 
Makes a specified font in memory purgeable or unpurgeable 

8-2 Chapter 8: Font Manager 



Table 8-1 (continued) 
Font Manager routines and their functions 

Routine Description 

Font routines 
CountFonts 

FindFontStats 
LoadFont 

LoadSysFont 
FMSetSysFont 
FMGetSysFID 
FMGetCurFID 
AddFontVar 

Returns the number of fonts currently available to the Font Manager that fit a 
specified description 
Returns the font ID and the characteristics of a particular font . 
Loads a specified font into memory (if it is not already there) and makes it current 
and unpurgeable 
Makes the system font the current font 
Makes a specified font the system font 
Returns the font ID of the system font 
Returns the font ID of the current font 
Enables the application to add a variation of a preexisting font family to the Font 
Manager's collection of available fonts 

Menu and dialog routines 
FixFontMenu Appends the names of available font families to a specified menu 
ChooseFont Displays a dialog box enabling the user to select a new font, size, and style 
ItemID2FamNum Translates a menu item ID into a font family number 
FamNum2ItemID Translates a font family number into a menu item ID 

Font records and font families 
Fonts for the Apple IIGS font are grouped into font families. Each font family has a 
name and a number. Further, each font in a family has a characteristic style and size. 
This section discusses the family names, family numbers, font styles, and font sizes, 
and some other preliminary concepts. 

Family names and numbers 
Each font belongs to a font family. The family has a name, such as Geneva, 
Helvetica, or Times. All fonts with the same name belong to the same font family. 
Different fonts in the Same family are called variations of that family. For example, 
10-point Helvetica, 12-point Helvetica in boldface, and 36-point Helvetica in 
boldface and underlined are all variations of the Helvetica font family. 

The font's family name is restricted to 25 letters. A string of length O is not 
permitted. Two family names are considered to be the same only if they are 
identical; thus, the following are all different family names: 

newYork newyork NewYork NewYork 

The family name of the font built into ROM is Shaston. 

Font records and font families 8-3 



A font family also has an identifying number, called the family number. This is a 
number identifying a font family, independent of point size or style modifications 
(so London 9, London Bold 14, and London Bold Underline 24 would all have the 
same family number) . A family number of $0000 can be used to specify the system 
font for most Font Manager calls; $FFFF is an invalid family number. 

At µie time of publication, the font family numbers are as shown in Table 8-2. 

Table 8-2 
Font fami ly numbers 

Number Font family Number Font family 

$0002 #2 newYork $000B #ll cairo 
$0003 #3 geneva $000C #12 losAngeles 
$0004 #4 monaco $0014 #20 times 
$0005 #5 Venice $0015 #21 helvetica 
$0006 #6 london $0016 #22 courier 
$0007 #7 athens $0017 #23 symbol 
$0008 #8 sanFran $0018 #24 taliesin 
$0009 #9 toronto $FFPE #65524 Shaston 

There is a one-to-one correspondence between family numbers and family names. 
That is, any two fonts with the same family number should have the same family 
name . 

Font size 
The size of a font is measured in points. A point is a measure borrowed from the 
typesetting world. In that world, a point is equal to about 1/ 72 of an inch. 

❖ Note: Because measurements can't be exact on a bit-mapped output device, the 
actual font size may be different than what it would be in normal typography. 
Also be aware that two fonts with the same font size but from different font 
families may not appear to be the same size. Font size is more useful for 
distinguishing different sizes of the same font family. 

The Font Manager defines the font size as a byte. Font size is specified as an 
unsigned number in the range 1-255 (0 is not allowed). 

❖ Note: In the Apple IIGS font record and in QuickDraw II, font size is allocated an 
entire word, with only the low-order byte being meaningful. See Chapter 16, 
"QuickDraw II," in Volume 2 for more information about font records. 

8-4 Chapter 8: Font Manager 



Font style 
The font style is the style in which the font was designed. The Font Manager defines 
the font style as a byte, as shown in Figure 8-1. 

❖ Note: In the Apple IIGS font record and in QuickDraw II, font style is allocated 
an entire word, with only the low-order byte being meaningful. See Chapter 16, 
"QuickDraw II," in Volume 2 for more information on font records. 

l7l6lsl41312l 1lol 
Resewed,sett~ 0 J 'j j 

Shadow= 1 

Outline= 1 

Underline= 1 

Italic= 1 

Bold= 1 

Figure 8-1 
Font style byte 

Important 
Shadow, outline, and Italic styles are avai lable only If QulckDraw Ii Auxiliary has 
been loaded and started up. 

A 1 (on) bit means the style is enabled; a value of $00000000 means plain style. The 
style bits are cumulative; for example, $0014 means shadowed and underlined. 

The style byte allows you to use fonts that have been prestyled. Some fonts don't 
look very good when styled by the algorithms used by QuickDraw II. Thus, the Font 
Manager has been designed to handle fonts that have a certain style or combination 
of styles built into the particular font's design. By using such a prestyled font, your 
application can also improve text drawing speed if that style is going to be used 
frequently. 

However, there are some disadvantages to prestyled fonts. First, they consume extra 
memory and disk space. Second, when used with strings of more than one character, 
a styled font can be inferior to a font produced by letting the software perform on­
the-fly styling of a plain font, depending on the font and styles being used (fonts that 
kern are particularly vulnerable; see the discussion of fonts in Chapter 16, 
"QuickDraw II," in Volume 2). 

Chapter 8: Font Manager 8-5 



You must decide on a case-by-case basis whether to create a prestyled font or to let 
the text-drawing routines handle the styling. Usually, leaving styling to the text­
drawing routines is best. However, if you are using large fonts and screen quality is 
very important, it may be worthwhile to create fonts that are properly boldfaced, 
shadowed, and so on. 

If a particular font has been prestyled for a particular style and that style has also been 
set in the GrafPort's t:x:Face field, then the styling is not applied during text drawing. 
For example, fonts that have been prestyled as italic are not further italicized by 
QuickDraw II, regardless of the current value of t:x:Face. If several styles are 
requested, any styles not already built into the font are applied. Also, QuickDraw II 
has no method for removing the styles from the current font if the font happens to 
have a built-in style that is not enabled by t:x:Face. 

For this reason, the best-fit font algorithm never chooses a font that has a style 
enabled that was not requested, even if it's an excellent match in other ways. 1bis 
relationship between styles is called a partial match. That is, style A is considered to 
partially match style B if all of the styles enabled in style A are also enabled in style B. 
(For example, the style bold underline partially matches the style bold italics 
underline. The style plain partially matches all styles.) 1bis concept is used in such 
calls as InstallFont and FindFontStats. 

Font ID record 

A font ID record specifies a font by family, style, and size. It is assumed that no two 
fonts match in all three of these characteristics; if two fonts do match in all three, the 
Font Manager won't be able to distinguish between them and may not be able to 
handle them correctly. The font ID record is used only by the Font Manager; that is, 
QuickDraw II does not use the record. 

The structure of the font ID record is illustrated in Figure 8-2. 

Offset 

$0 

2 
3 

-
Field 

fomNum -

fontSty/a 

fontSiza 

Figure 8-2 
Font ID record 

Word-Family number of font 

Byte-Style of font 

Byte-Size of font, in points 

❖ Note: If you use the txFace and txStyle fields of the GrafPort to determine the 
JontStyle and JontSize, be careful; txFace and txStyle are words with their 
information in the low-order byte, and JontStyle and JontSize are bytes. 

Many Font Manager routines require a font ID record as an input parameter. 

8-6 Chapter 8: Font Manager 



Base families 
A family is called a base family if it is the ROM font or if a plain-styled example of 
the family can be found among the fonts in the FONTS subdirectory. The word base 
is used because the Font Manager can build any style variation of the family at any 
time; that is, the family is not restricted to a particular style (because a plain font can 
be arbitrarily styled) and is always available (because a plain example is in the FONTS 
subdirectory, which is assumed always to be available). The plain-style examples of 
the family can thus serve as bases for any style variation of the family. (This does not 
rule out the use of prestyled fonts, if the application wants them.) 

This definition of a base family is included because, in a typical application that 
allows users to choose from available fonts (a text-editing application or a paint 
program, for example), the application usually lists the base families in its font 
menu. Any other family might not be available in plain (and therefore arbitrarily 
styleable) form. However, this is not binding on the application; the application 
can put anything it wants in its font menu. 

Real and scaled fonts 
The Font Manager depends on the concept of real and unreal fonts for some 
capabilities. A real font exists on disk or was added by an application and marked as 
real (by a cleared unRealBit; see the section "FontStatBits Flag" in this chapter). 

An unreal font is one that was scaled by the Font Manager from a real font of a 
different size or was added by an application and marked as unreal. Scaling means 
to take every character of a real font and make them bigger or smaller as appropriate 
to generate the requested font. For example, if your application specified a font of 
Courier 20, the Font Manager would, when it generated the font, make each Courier 
10 character twice as big to generate the new characters. An example of such a 
multiplication is shown for a T character in Figure 8-3. 

Figure 8-3 
Font scaling 

Chapter 8: Font Manager 8-7 



The Font Manager scales all the characters for the new font when it installs the font; 
that is, rather than generating each character as it is needed, the Font Manager scales 
a character, adds it to the new font, scales another character and adds it, and so on 
until all the characters in the real font have been scaled and added to the new font. 

Fonts that have been algorithmically scaled generally do not look good as the 
original font, and scaling a scaled font produces even less attractive results. For this 
reason, when the Font Manager scales a font, it automatically marks that font as 
unreal. The Font Manager will not attempt to scale an unreal font; instead, it will 
scale from the original font. 

When your application adds a font with the AddFontVar, you have a choice as to 
whether to mark the font as real, and thus allow further scaling, or unreal, and not 
allow further scaling. For more information about how to mark a font as real or 
unreal, see the sections "FontStatBits and FontSpecBits Bit Flags" and "AddFontVar" 
in this chapter. For more information about how the Font Manager uses real and 
unreal fonts, see the section "Best-Fit Font Algorithm" in this chapter. 

Current and system fonts 
The Font Manager also can affect the current and system fonts . The current font is 
the one that is currently being used by QuickDraw II to draw text; the system font is 
the one that QuickDraw II uses as the default current font when a new GrafPort is 
opened. The two fonts can be the same; in fact, the default current font is set by the 
FMStartUp routine to be the system font. If you want your application to use some 
other font, your application must use the Font Manager routines InstallFont, 
LoadFont, or ChooseFont to set the desired font as the current font. 

FontStatBits and FontSpecBits bit flags 
The Font Manager must maintain up-to-date information concerning all the fonts it 
knows about-not only the font ID and name, but also whether the font is currently in 
memory, whether it's a scaled version of another font, whether it was generated by 
the application, and so on. Some Font Manager routines allow the application to 
specify some of this information as a way of restricting the range of fonts that the call 
should consider available; that is, only fonts of a certain family, only fonts currently 
in memory, and so on. 

Other calls return this kind of status information about a font to the application. 
Because many calls deal with the same kind of information, two bit flags are defined: 
FontStatBits, which reports on the status of a font, and FontSpecBits, which 
restricts the range of fonts available to the calling routine. 

8-8 Chapter 8: Font Manager 



FontStatBits flag 

The values for the various bits in FontStatBits are shown in Figure 8-4. The effects of 
the FontStatBits are cumulative; for example, $0011 means that the font is purgeable, 
real, and currently in memory. 

1, s114113112111110191a1716IsI413 121 , 1 o 1 

Specified font not found = 1 
notFoundBit J 

1 

. j 1 

Specified font found = 0 

Reserved; set to 0 

notDiskBit -
Font is not in FONTS folder and is not ROM font = 1 

Font is in FONTS folder of system disk or is ROM font = 0 

purgeBit -
Font is purgeable = 1 

Font is unpurgeable = 0 

apVarBit -
Font added by AddFontVar call or scaled from such a font = 1 

Font not added by AddFontVar call nor scaled from such a font = 0 

apFamBit -
Font's family supplied by application (through AddFamily call) = 1 

Font has same family as either ROM font or font in FONTS folder = 0 

Figure 8-4 
FontStatBits va lues 

unrea/Bit ­
Font is unreal = 1 

Font is real = 0 

memBit ­
Font Is in memory = 1 

Font is not currently In memory = 0 

FontStatBits and FontSpecBits bit flags 8-9 



Some of the Font Manager routines use FontStatBits as input but use only some of the 
bits. In these cases, the unused bits should be set to 0. 

If notFoundBit is 1, the others are undefined. See the section "Using the Font 
Manager" in this chapter for information about the use of notFoundBtt. 

Whenever a font is made current-whether it is brought in from disk, scaled from 
another font, or handed over by the application-it is made unpurgeable. It can be 
made purgeable only by a SetPurgeStat call. 

If memBit is 0, purgeBit is meaningless. 

When the Font Manager scales a font, the apVarBitof the scaled font is set to be the 
same as that of the old font. Similarly, when a variant font of the family is created, 
either by Font Manager scaling or by the AddFontVar call, the apFamBit of the new 
font is set to be the same as that of the old font. 

When the application adds a font with the AddFontVar call, it can set the unrea!Bit to 
indicate whether the font is to be considered real or unreal. 

The FontStatRec, as shown in Figure 8-5, is defined for the convenience of some calls 
that return it. This record represents everything, aside from the name, that the Font 
Manager knows about a particular font. 

Offset Field 

$0 

l 
2 

result/D 

3 

4 
resultStats 

5 

Figure 8-5 
FontStatRec 

Long-Font ID record 

Word-FontStatBits 

8-10 Chapter 8: Font Manager 



FontSpecBits flag 

The FontSpecBits flag is used by certain Font Manager calls to restrict the range of 
fonts available to that call. The effects of the FontSpecBits are cumulative; for 
example, $0011 means "allow only fonts in memory with the specified family 
number and style, real or unreal, any size." 

The values for the various bits in the FontSpecBits flag are shown in Figure 8-6. 

I 1s I 14 I 13 I 12 I 11 I 101 9 I 8 I 7 I 6 I 5 I 4I 3 I 2 I 1 I O I 
\ JJ Reserved; set to O J 

anySizeBit 
Ignore point size supplied by call = l 

Allow only fonts that have point size requested by call = 0 

anyStyleB/t 
Allow any font whose style partially matches style supplied by call = l 

Allow only fonts that have exact style requested by call = 0 

anyFamBit 
Ignore family number supplied in call = 1 

Allow only fonts that have family number requested by call = 0 

rea/OnlyBit 
Allow only real fonts (fonts not scaled by Font Manager) = l 

Allow scaled and unscaled fonts = 0 

memOnlyBit 
Alow only ROM font and fonts currently In memory = 1 

Allow ROM font, fonts in memory, and fonts in FONTS folder on disk= O 

Figure 8-6 
FontSpecBlts values 

The calls that use the FontSpecBits bit flag generally also need a JontID parameter, 
which consists of a family number, style, and point size. 

❖ Note: Even if anyStyleBit is set to 1, only styles that partially match the 
requested style will be supplied. If you want the style parameter to be completely 
ignored, set anyStyleBit to 1 and the style byte in the Jont/D parameter of the 
call to $FF, which is partially matched by all font styles. 

FontStatBlts and FontSpecBlts bit flags 8-1 1 



FamStatBits and FamSpecBits bit flogs 
The Font Manager also hunts for or reports on various font families . Thus, the 
FamStatBits and FamSpecBits bit flags are defined in order to provide information 
about the families. Some of the information in these flags is closely analogous to the 
font information in the FontStatBits and FontSpecBits flags and maintains 
corresponding bit positions. 

FamStatBits reports on the status of a font family; FamSpecBits restricts, for 
certain Font Manager calls, the range of families available to the call. 

FamStatBits flag 

The values for the various bits in the FamStatBits flag are shown in Figure 8-7. The 
effects of the FamSpecBits are cumulative; for example, $0024 means that the family 
was supplied by the application and is not a base family. 

1,s114113l12l11110191a11161s1413121 , 1 o 1 
notFoundBit J l j 1 

Specified family not found = 1 
Specified family found = 0 

Reserved; set to 0 

notBaseB/t 
Family is not a base family = l 

Family is a base family = 0 

Reserved; set to 0 

apFamB/t 
Family was supplied by application (through AddFamily call) = l 

Family is ROM font's family or a family In FONTS folder = O 

Reserved; set to 0 

Figure 8-7 
FamStatBlts values 

See the section "Using the Font Manager" in this chapter for information about the 
use of notFoundBit. 

8-12 Chapter 8: Font Manager 



FamSpecBits flag 

The values for the various bits in the FamSpecBits flag are shown in Figure 8-8. 

11s 114113112111110191 a J 7 J 61 s 141 3 I 21 1 1 o 1 

Re:e"'ed,setto OJ 'J 
baseOnlyBit 

Allow only base families = 1 
Allow families whether they are base families or not = O 

Reserved; set to 0 

Figure 8-8 
FamSpecBits values 

Interaction with the user 
The ChooseFont routine draws the dialog box illustrated in Figure 8-9 in 320 mode 
(example fonts are shown, and the box for 640 mode is similar). 

Font: 
Courier 
Geneva 
He 1 vetica 

.... st""",M~le;..;.: ___ Size: Other 
l'8J Plain : -0- Size: 
□ Bold 16 ([] 
D Italic 
D Under 1 ine ( Cancel ) 
D Outline 
□ Shadow _....._-0-....... [ OK J 

Figure 8-9 
ChooseFont dialog box 

Interaction with the user 8-13 



After the dialog box is drawn, the user can select a new font family, style, and size. 
When a new family is selected, the list of sizes is updated to contain all available sizes 
for the selected family. The size list can hold a maximum of 12 sizes; however, any 
valid size can be entered in the Other Size text entry area. Keyboard input other than 
numbers, Return, Backspace, Left Arrow, Right Arrow, Control-F, Control-X, or 
Control-Y causes a beep. Clicking the mouse outside the dialog bQx also causes a 
beep. 

The user can confirm or cancel the new selection by clicking the OK or Cancel 
button. If the user confirms a valid selection, ChooseFont automatically installs the 
selected font by calling the InstallFont routine. 

Important 
Besides the font family, font style, and font size supplied by the user, Choosefont 
also supplies a scaleWord parameter of O to the lnstallFont routine. See the 
section ·1nstal1Font· In this chapter for more Information. 

Using the Font Manager 
This section discusses how the Font Manager routines fit into the general flow of an 
application and gives you an idea of which routines you'll need to use under normal 
circumstances. Each routine is described in detail later in this chapter. 

The Font Manager depends upon the presence of the tool sets shown in Table 8-2 and 
requires that at least the indicated version of the tool set be present. 

Table 8-3 
Font Manager-other tool sets required 

Tool set Tool set Minimum version 
number name needed 

$01 #Ql Tool Locator 1.0 
$02 #02 Memory Manager 1.0 
$04 #04 Quiclillraw II 1.1 
$OB #ll Integer Math Tool Set 1.0 

In addition to these tool sets, the FixFontMenu and ChooseFont routines require 
additional tool sets, as detailed under those routines in this chapter. Also, if you are 
using the shadowed, outlined, or underlined styles, QuickDraw II Auxiliary (tool set 
number $12 or #18) must be loaded and started up. 

8-14 Chapter 8: Font Manager 



The first Font Manager call that your application must make is FMStartUp. FMStartUp 
searches the FONTS subdirectory in the SYSTEM subdirectory and compiles lists of 
the fonts and font families in that subdirectory. 

Important 
The FONTS subdirectory must exist and must contain all fonts (except the ROM 
font) that are to be available to applications through the Font Manager. 

When you quit your application, you must make the FMShutDown call. 

If you're using the Font Manager to allow the user to choose from the available fonts, 
the routines you'll be most concerned with are FixFontMenu and ChooseFont. 
FixFontMenu appends the names of the available font families onto a specified 
menu. ChooseFont allows the user to select a new font family, size, and style and 
then loads the font into memory. 

Certain Font Manager routines-FindFamily, GetFaminfo, GetFamNum, 
FindFontStats, and LoadFont-return information about some family or font which is 
specified in their input parameters. In each case, the call is designed to return useful 
information even when the specified family or font does not exist. For example, 
GetFamNum can be used to determine whether a particular family name is currently 
in use. If the name is in use, the call returns the corresponding family number; if the 
name isn't in use, the call returns $FFFF (the illegal family number). 

Another example is that FindFontStats is supposed to return information about the 
nth font matching certain specifications (given as input parameters to the call), 
where n = positionNum (another input parameter). If you wish to examine all such 
fonts in sequence, you do not have to first make a CountFonts call to find out how 
many such fonts there are and then call FindFontStats that many times. Instead, you 
only have to call FindFontStats with positionNum = 1,2,3, .. . , examining each 
specification, until FindFontStats informs you that there aren't any more fonts-your 
value of positionNum is greater than the number of available fonts . FindFontStats 
signals that there aren't any more fonts by setting the notFoundBit in the resultStats 
field of the returned FontStatRec. This saves you the call to CountFonts. 

Because these calls are intended to give useful information even when a hunt for a 
family or font fails, they do not treat the condition of no such family or font as an 
error. No error code is returned. The no such family or font condition can always 
be detected by the value of a valid output parameter returned by the calls. 

On the other hand, AddFontVar, SetPurgeStat, and FMSetSysFont generate errors if 
the entities they expect to find do not exist. These routines are not designed to yield 
information other than the error codes in these cases. 

Using the Font Manager 8-15 



You shouldn't use the QuickDraw II SetFont call to make a font current when using the 
Font Manager; the call doesn't communicate everything needed for Font Manager 
information calls (for example, it doesn't associate a name with the font) . However, 
SetFont, along with the QuickDraw II calls GetFont, SetFontID, and GetFontID, is 
handy for saving and restoring a GrafPort's font status, even if the fonts in question 
were originally installed using Font Manager calls. 

Certain fonts being used for exotic purposes-like the specially designed control 
icon font used by the Control Manager-will probably continue to be invoked with 
SetFont, bypassing the Font Manager altogether. You can use this technique, but the 
Font Manager won't be able to help you. See Chapter 16, "QuickDraw II," in 
Volume 2 for more information. 

Best-fit font algorithm 
When the InstallFont routine installs a font, the routine uses the best-flt font 
algorithm to look for a font matching the specified font ID. The font ID record 
(called the desiredID in InstallFont's parameter list) has three fields: destredFam, 
desiredStyle, and destredSize. The following is the best-fit algorithm used by 
InstallFont at the time of publication (this algorithm may be improved in the future) : 

1 . Instal!Font first looks for a font with the same family and size and a style word that 
partially matches desiredStyle. If there is more than one such font, the one with 
the most styles enabled is used. The intent is that the font chosen has as many 
styles in common with desiredStyle as possible, without having any style enabled 
that the requested font doesn't have. 

2 . If the routine does not find a font as described in step 1, the routine narrows its 
search to only real (that is, not scaled) fonts. 

3 . Instal!Font looks for a font with the same family number, twice the size, and a 
partially matching style word. If there is more than one such font, the one with the 
most styles enabled is used. 

4 . If the routine does not find any fonts as described in step 3, the routine looks for a 
font with the same family number, half the size, and a partially matching style 
word. In the case of a tie, the font with the most styles enabled is used. 

5 . If Instal!Font still hasn't found any suitable font, the routine looks for a font with 
the same family number, a larger size than the requested size, and a partially 
matching style word. If the routine finds more than one such font, the one with the 
smallest size is used. If the routine finds more than one such smallest size, the font 
with the most styles enabled is used. 

8- 16 Chapter 8: Font Manager 



6. If there's still no match, the routine looks for a font with the same family number, 
a smaller size than the requested size, and a partially matching style word. If the 
routine finds more than one such font, the one with the largest size is used. If the 
routine finds more than one such largest size, the one with the most styles enabled 
is used. 

❖ Note: In steps 1-6, it is noted that, in case of a tie, the font with the most styles 
enabled is used. Of course, a tie may still occur, with two fonts that have the 
same number of, but different, styles enabled. In such a case, a font in memory 
is selected over one on disk. If this rule still doesn't determine the font to be 
used, the last font found is used. 

7. If there is no font with the requested family number, the system font is selected. 

If the winner of this font hunt has a different size than the requested size, and the last 
bit of scale Word is 0, then InstallFont creates the desired font by scaling the best-fit 
font. The section "InstallFont" in this chapter discusses which fonts are purgeable 
after this point and which are unpurgeable. 

Best-fit font algorithm 8-17 



$011 B 

Parameters 

Errors 

C 

FMBootlnit 
Initializes the Font Manager; called only by the Tool Locator. 

Warning 
An application must never make this call. 

The stack is not affected by this call. There are no input or output parameters. 

None 

Call must not be made by an application. 

8-18 Font Manager housekeeping routines 



$021B FMStartUp 
Starts up the Font Manager for use by an application. 

Important 
Your application must make this call before it makes any other Font Manager 
ca lls. 

When you make the call, the Font Manager searches the FONTS subdirectory and 
makes lists of the following: 

■ All unique font families 

■ All family names 

■ All actual fonts in that subdirectory 

■ The file names of the fonts 

Important 

if the FONTS subdirectory does not exist, FMStartup causes a ProDOS error, and 
the Font Manager is not Initialized. 

The Font Manager AddFamily and AddFontVar routines may add fonts, families, and 
names to this list. If the family names of any of the fonts found in the FONTS 
subdirectory are more than 25 characters long, the names are truncated to 25 
characters. 

Important 

FMStartUp sets the system font to be the same as the built-in ROM font. Your 
application can change the system font by ca ll ing the Font Manager routine 
FMSetSysFont after the Font Manager has been started up. You should not use 
the QulckDraw ii SetSysFont routine to change the system font while the Font 
Manager is In use, because the Font Manager's information doesn ' t reflect the 
changes made by SetSysFont. 

Font Manager housekeeping routines 8-19 



Parameters 

Stack before call 

previous contents 

userID Word-ID number of the application 

dPageAddr Word-Bank $0 starting address of one page of direct-page space 

f-SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors $1B01 fmDupStartUpErr Duplicate FMStartUp call 

Memory Manager errors 

ProDOS errors 

Returned unchanged 

Returned unchanged 

C extern pascal void FMStartUp (userID ,dPageAddr) 

Word user ID ; 

Word dPageAddr; 

8-20 Font Manager housekeeping routines 



$0318 

Parameters 

Errors 

C 

$0418 

Parameters 

FMShutDown 
Shuts down the Font Manager. All application-generated fonts are made purgeable. 
All other fonts the Font Manager knows about are disposed of if they are in memory, 
and then all the memory used by the Font Manager itself is released as well . 

FMShutDown also sets the system font to be the same as the ROM font. 

Important 

If your application has started up the Font Manager, the application must make 
this ca ll before It quits. 

The stack is not affected by this call. There are no input or output parameters. 

$1B03 frnNotActiveErr Font Manager not active 

extern pascal void FMShutDown () 

FMVersion 
Returns the version number of the Font Manager. 

Stack before call 

prevtous contents 

wordspace 

Stack after call 

prevtous contents 

versionlnfo 

Errors None 

Word-Space for result 

f-SP 

Word-Version number of the Font Manager 

f-SP 

C extern pas cal Word FMVer si on () 

Font Manager housekeeping routines 8-21 



$051B FMReset 
Resets the Font Manager; called only when the system is reset. 

Warning 

An application must never make this call. 

Parameters The stack is not affected by this call. There are no input or output parameters. 

Errors $1B02 frnResetErr Can't reset the Font Manager 

C Call must not be made by an application. 

$061B FMStatus 
Indicates whether the Font Manager is active. 

Parameters 

Stack before call 

previous contents 

wordspace Word-Space for result 

~SP 

Stack after call 

previous contents 

Errors 

C 

8-22 

activeFlag 

None 

Word-BOOLEAN; TRUE if Font Manager active, FALSE if inactive 

~SP 

e xtern p a s ca l Boolean FMStatus () 

Font Manager housekeeping routines 



$0D1B 

Parameters 

Addfamily 
Enables the application to add a family number and name to the Font Manager's list 
of known families. Both JamNum and the string pointed to by namePtr must be 
unique (that is, not already on the Font Manager's list). The Font Manager doesn't 
check for this; if there's any doubt, you can use the GetFamNum and GetFaminfo 
routines to find out. Families added with this call have the notBaseBtt and apFamBit 
of FamStatBits both set to 1. 

The string pointed to by namePtr must have a length byte as the first byte. If the name 
is greater than 25 characters long, the name is truncated to 25 characters. If the name 
has a length of 0, an error is returned. 

After AddFarnily is executed, the Font Manager knows about the family number and 
name, but won't have any fonts of that family available. You can add them using the 
AddFontVar routine; once some variations are in memory, more may be generated 
by the Font Manager's scaling algorithm. 

Stack before call 

previous contents 

JamNum 

namePtr 

Stack after call 

Word-Family number 

Long-POINTER to family name 

~SP 

previous contents I 
--- - ---- ~SP 

Errors 

C 

$1B08 fmBadFamNumErr Illegal family number of $FFFF or $0000 

$1B0A fmBadNameErr 

Memory Manager errors 

Illegal name length 

Returned unchanged 

extern pascal void AddFa mily( famN um, namePtr) 

Word famN um; 

Pointer namePt r; 

Font Manager routines 8-23 



$1418 

Parameters 

AddfontVar 
Enables the application to add a variation of a preexisting font family to the Font 
Manager's collection of available fonts. The fontHandle parameter specifies the font 
to be added. The Font Manager gets the font's family number, style, and size out of 
the font record itself. 

❖ Note: The font record is described in Chapter 16, "QuickDraw II," in Volume 2. 

The family number must be the same as that of an existing family; the font will also be 
assigned the same name. However, the size and style can be different, and at least 
one of them should be, because the new font should not have a font ID identical to 
that of an existing font. 

The JontHandle is left unlocked at the end of this routine. No check is made to see 
whether the new font ID is unique; that's up to your application. Also, the family 
number and size of the font are not checked for validity. 

AddFontVar enables you to use application-generated versions of fonts (if you don't 
like the results of the Font Manager's scaling algorithm), fonts styled by the 
application, and so on. 

Stack before call 

previous contents 

JontHandle 

newSpecs 

Stack after call 

Long-HANDLE to font 

Word-FontSpecBits (only unRealBit is used) 

f-- SP 

previous contents I 
-------- f-- SP 

Errors $1B04 fmFarnNotFndErr Family not found 

Memory Manager errors Returned unchanged 

8-24 Font Manager routines 



C extern pascal void AddFontVar (fontHandle , newSpecs) 

FontHndl fontHandle ; 

Word newSpecs; 

About the preexisting font family 
The preexisting font family can be either given (that is, it is the ROM font, or it in the 
FONTS folder) or previously supplied by the application with the AddFamily routine. 
AddFontVar checks to see whether the family number already exists. If it doesn't, 
then an error is returned, the new font is not added, and the current font is left alone. 
If the family does exist, then the following actions occur: 

1 . The new font is placed in the Font Manager's internal list of available fonts. The 
new font's FontStatBits are set as follows: 

memBtt= 1 
purgeBit= O 
apVarBit= 1 
notDiskBit = 1 
unRealBit = As specified by newSpecs 
apFamBit = Inherited from the preexisting font family 

2 . The font is made the current font and is made unpurgeable. 

3. The QuickDraw II text buffer is enlarged (if necessary) to handle the new font. 

4. The JontID, txFace, and txStze fields of the current Grafl>ort are set to the font ID, 
style, and size of the new font. 

Font Manager routines 8-25 



$161B Choose Font 
Displays a dialog box enabling the user to select a new font family, size, and style. 
When the dialog box is drawn, the family name, style, and size specified by currentID 
will be selected if they exist. 

If the baseOnlyBit of JamSpecs is 0, this routine lists the names of all distinct font 
families currently available to the Font Manager. The available families can change 
over time if your application adds new families by using the AddFamily routine. 

If the baseOnlyBit is 1, this routine lists only the names of base font families. All other 
JamSpecs bits are ignored. 

If JamNum of currentID = $0000, it is translated into the family number of the system 
font. If currentID = $00000000, it is translated into the font ID of the system font. 

Parameters 

Stack before call 

previous contents 

-- longspace 

-- currentID 

JamSpecs 

Stack after call 

previous contents 

selectedID 

--· 

--· 

Errors $1B08 

$1B09 

Long-Space for result 

Long-Font ID of the font currently in use 

Word-FamSpecBits 

<-SP 

Long-Font ID of the selected font 

<-SP 

fmBadFamNumErr Illegal family number; JamNum = $FFFF 

fmBadSizeErr Illegal font size; size= $00 

Memory Manager errors Returned unchanged 

8-26 Font Manager routines 



C ext e rn pascal Longword ChooseFont (curre nt ID , f a mSp e c s) 

Font I D c ur rent ID ; 

Wo rd famSpec s; 

❖ Note: C Pascal-type functions do not deal properly with data structures returned 
on the stack. The Long result returned by this call can be passed to any calls 
requiring a font ID as a parameter. You cannot use the C dot operator to access the 
individual font ID fields within the value returned by this call. 

Tool sets required for ChooseFont 
In addition to the tool sets required by the Font Manager, the ChooseFont routine 
requires the minimum versions of the tool sets shown in Table 8-4 to be loaded and 
started up. 

Table 8-4 
ChooseFont routine-other tool sets required 

Tool set Tool set Minimum version 
number name needed 

$03 #03 Miscellaneous Tool Set 1.2 
$OE #14 Window Manager 1.3 
$10 #16 Control Manager 1.3 
$14 #20 LineEdit Tool Set 1.0 
$15 #21 Dialog Manager 1.0 
$ lC #28 List Manager 1.0 

Interaction with the user 

After the dialog box is drawn, the user can select a new family, style, and size. When 
a new family is selected, the list of sizes is updated to contain all available sizes for the 
selected family. The size list can hold a maximum of 12 sizes; however, any valid size 
can be entered in the Other Size text entry area. Keyboard input other than 
numbers, Return, Backspace, Left Arrow, Right Arrow, Control-F, Control-X, or 
Control-Y causes a beep. Clicking the mouse outside the dialog box also causes a 
beep. 

The user can confirm or cancel the new selection. If the user cancels the selection, 
selectedID returns $00000000. If the user attempts to confirm a selection with an 
illegal size, an alert will be posted, and the size will be highlighted. 

❖ Note: The size list will display the sizes of all available, real fonts . 

When the user has confirmed a valid selection, the selected font is automatically 
installed. The font ID of the selected font is then returned in selectedID. 

Font Manager routines 8-27 



$0918 CountFamilies 
Returns the total number of distinct font families currently available to the Font 
Manager that match a given specification (either all families or all families that have 
a plain-styled font available) . 

If baseOnlyBtt of the famSpecs parameter is 0, CountFamilies returns the number of 
distinct font families currently available to the Font Manager (in a one-to-one 
correspondence with distinct family numbers and distinct family names). The count 
can change over time if application-generated families are added. 

If baseOnlyBtt is 1, the routine returns the number of base font families . This number 
should not change over the course of an application, since font families added with 
the AddFamily call are never base families. 

All other bits of the f amSpecs parameter are ignored. 

Parameters 

Stack before call 

previous contents 

wordspace 

famSpecs 

Stack after call 

previous contents 

famCount 

Errors None 

Word- Space for result 

Word-FamSpecBits 

f-SP 

Word-Number of font families available 

f-SP 

C extern pascal Word CountFamilies (famSpecs ) 

Wo rd famSpecs ; 

8-28 Font Manager routines 



$101B CountFonts 
This call returns the number of fonts currently available to the Font Manager that fit a 
specified description. The desiredID parameter supplies a font family number, style, 
and size. The JontSpecs parameter determines the following: 

■ Which of those parameters must be satisfied (and which can be ignored) 

■ Whether the fonts to be counted must be in memory 

■ Whether the fonts to be counted must be real 

See the section "FontSpecBits Flag" in this chapter for more information. All effects 
are cumulative (that is, a font is counted only if it satisfies all applicable 
specifications) . 

❖ Note: CountFounts does not count fonts that have been purged if the fonts were 
scaled by the Font Manager or were application-generated fonts. 

If JamNum = $0000, it is translated into the JamNum of the system font. 
If desiredID = $00000000, it is translated into the font ID of the system font. 

Parameters 

Stack before call 

previous contents 

wordspace 

- - desired/D 

JontSpecs 

Stack after call 

previous contents 

numO.fFonts 

--· 

Errors $1B08 

$1B09 

Word-Space for result 

Long-Font ID 

Word-FontSpecBits 

f-SP 

Word-Number of fonts that fit desiredID andjontSpecs 

f-SP 

fmBadFamNumErr Illegal family number; JamNum of desired/D = 
$FFFF and anyFamBit of JontSpecs = 0 

fmBadSizeErr Illegal font size; size of desiredID = $00 and 
anySizeBit of JontSpecs = 0 

Font Manager routines 8-29 



C extern pascal Word CountFonts(desiredID,fontSpecs) 

Font ID desiredID; 

Word font Specs; 

Some examples of CountFonts 
For example, if destredID consists of a family number of 3, a style of 0, a point size of 
12, and a JontSpecs parameter of $0002 (anySizeBit = 0, anyStyleBit = 0, 
anyFamBtt = 0, rea/On/yBit = 1, memOnlyBit = 0), the routine returns the number 
of real Geneva Plain 12 fonts available, whether these are in memory or not. If the 
result is 0, no such font exists; if the result is 1, such a font exists. (If the result is 2 or 
more, then two fonts with the same font ID have been loaded.) 

If JontSpecs is changed to $0018 (anySizeBtt = 1, anyStyleBtt = l, anyFamBit = 0, 
realOnlyBit = 0, memOn/yBit = 0), the result is the number of Geneva fonts currently 
available-real or scaled, in memory or on disk, and of any style or size. 

If JontSpecs is changed to $001C (anySizeBit = l, anyStyleBit = l, anyFamBit = l, 
realOnlyBit = 0, memOnlyBtt = 0), desiredID is completely ignored, and the call 
returns the total number of fonts available. 

8-30 Font Manager routines 



$1B1B 

Parameters 

FomNum21temlD 
Translates a font family number into a menu item ID. This routine can be called after 
a FixFontMenu call to determine which item ID was assigned to a particular font 
family. The application can then use this information to put a check mark next to the 
family name in the menu, for example. 

See the section "ItemID2FamNum" in this chapter for information about translating 
the menu item ID into a family number. 

Stack before call 

previous contents 

wordspace 

JamNum 

Stack after call 

previous contents 

itemID 

Errors $1BOB 

$1B04 

Word-Space for result 

Word-Family number of menu item whose item ID will be returned 

f-SP 

Word-Item ID assigned to font family with JamNum 

f-SP 

fmMe nuErr FixFontMenu never called 

frnFarnNotFndErr Family number not found 

C extern pascal Word FarnNurn2IternID (farnNurn ) 

Word farnNurn ; 

Font Manager routines 8-31 



$0A1B Find Family 
Returns the family number and name of a particular font family. The family number 
is returned on the stack, and the name is returned in the string pointed to by namePtr. 
This routine can be used to step through the list of all available families . 

The positionNum parameter specifies which font family to find. The Font Manager 
keeps information about every available font family in a list in memory; positionNum 
specifies the position of the font family within that list. For a positionNum of n, 
FindFamily returns the number and name of the nth match of the font families in the 
list. 

The position of a particular font family depends upon the organization of the Font 
Manager's list in memory. The organization of the list does not change over time, but 
new font families can be added to the end of the list with the AddFamily routine. 

If positionNum is greater than the number of font families, the call returns a JamNum 
of $FFFF (illegal family number) and does not return a name. 

The namePtr parameter should point to a string large enough to hold a font family 
name. If namePtr is NIL, FindFamily returns only the family number and does not 
return a name. 

If baseOnlyBit of JamSpecs is 0, FindFamily considers all font families when 
searching for the family with the correct positionNum. If baseOnlyBit is 1, the routine 
considers only base font families when searching for the family with the correct 
positionNum. 

Parameters 

Stack before call 

previous contents 

wordspace 

famSpecs 

positionNum 

-- namePtr --· 

Word-Space for result 

Word-FamSpecBits 

Word-Position number of family in list of families matching JamSpecs 

Long-POINTER to space for family name 

f-SP 

8-32 Font Manager routines 



Stack after call 

previous contents 

JamNum 

Errors None 

Word-Family number 

f-SP 

C extern pascal Word FindFamily(famSpecs , positionNum , namePtr) 

Word famSpecs ; 

Word positionNum ; 

Pointer namePtr; 

Font Manager routines 8-33 



$111 B 

Parameters 

FindFontStats 
Places the font ID and the FontStatBits of a particular font into a specified 
FontStatRec. The routine can be used to step through the list of available fonts 
matching the given specifications. 

The desiredID parameter supplies a font family number, style, and size; JontSpecs 
determines the following: 

■ Which of those parameters must be satisfied (and which can be ignored) 

■ Whether the fonts to be counted must be in memory 

■ Whether the fonts to be counted must be real 

❖ Note: The font ID returned in the FontStatRec may be different than the desiredID 
if the JontSpecs parameter allows the routine to ignore one or more of the fields of 
destredID. 

For posittonNum = n, FindFontStats returns the font ID and the FontStatBits of the nth 
font that satisfies destredID and JontSpecs. If positionNum is greater than the 
number of fonts that satisfy destredID and JontSpecs, the call sets notFoundBit in the 
FontStatRec to 1, with the other bits of the FontStatBits in the FonStatRec and the 
entire font ID remaining undefined. 

If JamNum of desiredID = $0000, it is translated into the family number of the system 
font. If desiredID = $00000000, it is translated into the font ID of the system font. 

Stack before call 

previous contents 

-- destredID 

JontSpecs 

posttionNum 

-- resultPtr 

Stack after call 

--· 

- - · 

Long-Font ID 

Word-FontSpecBits 

Word-Position number of font 

Long-POINTER to FontStatRec 

f-SP 

previous contents I 
-------- f- SP 

8-34 Font Manager routines 



Errors $1B08 fmBadFamNumErr Illegal family number; JamNum = $FFPF and 
anyFamBit = 0 

$1B09 fmBadSizeErr Illegal font size; stze = $00 and anyStzeBit = 0 

C extern pascal void FindFont Stats (desiredID , fontSpecs , positionNum,resultPtr ) 

Font ID desiredID; 

Word fontSpecs ; 

Word positionNum; 

FontStatRecPtr resultPtr; 

FindFontStots example 

To get the FontStatBits of a particular font, you could take the following steps: 

1 . Use the font ID of the font as desiredID in the call. 

2. SetfontSpecs in the call to $0000 (which means find a font with the family 
number, style, and size as specified in destredID, whether the font is in memory or 
not, and whether it is scaled or real). 

3 . Set posttionNum in the call to 1 (you want to find the first such font, and there 
shouldn't be more than one for this example, since the family number, style, and 
size are completely specified). 

In assembly langl!age, the instructions would look like this, if the desired font has a 
family number of 6, a size of 12, and a style of 0: 

PushLong #$0C000006 

PushWord #$0000 

PushWord #$0 00 1 

PushPtr FontStatRec 

FindFontSt a t s 

desiredID 

font Specs 

positionNum 

If the font exists, the resultStats field of the returned FontStatRec contains the 
FontStatBits for the font (the resultID field of the FontStatRec is redundant in this 
case, because it must be equal to destredID). 

If the font doesn't exist, the notFoundBtt of the resultStats field of the PontStatRec 
provides the information (all other bits of that field and the other field of FontStatRec 
are undefined). 

Font Manager routines 8-35 



$151B 

Parameters 

FixFontMenu 
Appends the names of available font families to a specified menu. The names are 
appended in alphabetical order, with the first family name assigned a menu item ID 
of starttngID, the next family name assigned a menu item ID of starttngID + l, and so 
on. The Font Manager routine ItemID2FamNum can be used to translate a menu item 
ID into the family number assigned to it. Conversely, the Font Manager routine 
FamNum2ItemID can be used to translate a family number into a menu item ID. 

After the application calls FixFontMenu, it can call Menu Manager routines to set the 
menu width. 

If the baseOnlyBit of famSpecs is 0, this routine appends the names of all distinct font 
families currently available to the Font Manager. The available families can change 
over time if your application adds new families. 

If the baseOnlyBit is 1, this routine appends only the names of base font families. 
This number shouldn't change over the course of an application. All other JamSpecs 
bits are ignored. 

FixFontMenu also requires tool sets in addition to the ones required by the rest of the 
Font Manager calls. See Table 8-5 for that information. 

Stack before call 

previous contents 

menulD 

startinglD 

JamSpecs 

Word-Menu ID of menu to which family names will be appended 

Word-Item ID to assign to first family name appended to menu 

Word-FamSpecBits 

f- SP 

Stack after call 

previous contents I 
i---- ---- f- SP 

Errors Memory Manager errors 

8-36 Font Manager routines 

Returned unchanged 



C extern pascal void FixFontMenu (menuID , startingID , f a mSpec s) 

Word menu ID ; 

Word startingID; 

Word famSpecs ; 

Tool sets required for FixFontMenu 
In addition to the tool sets required by the Font Manager, the FixFontMenu routine 
requires the minimum versions of the tool sets shown in Table 8-5 to be loaded and 
started up. 

Table 8-5 
FixFontMenu routine - other tool sets required 

Tool set 

number 

$OF # 15 
$ lC #28 

Tool set 

name 

Menu Manager 
List Manager 

Minimum version 

needed 

1. 3 
1. 0 

Font Manager routines 8-3 7 



$1Al B FMGetCurFID 
Returns the font ID of the current font. 

Parameters 

Stack before call 

previous contents 

longspace Long-Space for result 

f-- SP 

Stack after call 

previous contents 

curID 

Errors 

C 

None 

Long-Font ID of the current font 

f-- SP 

extern pascal Longword FMGetCurFID() 

❖ Note: C Pascal-type functions do not deal properly with data structures returned 
on the stack. The Long result returned by this call can be passed to any calls 
requiring a font ID as a parameter. You cannot use the C dot operator to access the 
individual font ID fields within the value returned by this call. 

8-38 Font Manager routines 



$191B 

Parameters 

FMGetSysFID 
Returns the font ID of the system font. 

Important 

This Is the system font as set by the FMStartUp or FMSetSysFont calls. If the 
Quick Draw II SetSysFont call has been used to set the system font, the Font 
Manager will not have that information. 

Stack before call 

previous contents 

longspace Long- Space for result 

~SP 

Stack after call 

previous contents 

sysID 

Errors 

C 

None 

Long-Font ID of the system font 

~SP 

extern pascal Longword FMGetSysFID () 

❖ Note: C Pascal-type functions do not deal properly with data structures returned 
on the stack. The Long result returned by this call can be passed to any calls 
requiring a font ID as a parameter. You cannot use the C dot operator to access the 
individual font ID fields within the value returned by this call. 

Font Manager routines 8-39 



$1818 

Parameters 

FMSetSysFont 
Loads a specified font into memory (if it's not already there), makes it unpurgeable, 
and makes it the system font. 

If famNum of JontID = $0000, it is translated into the family number of the system 
font. If fontID = $00000000, it is translated into the font ID of the system font. 

Stack before call 

previous contents 

fontID 

Stack after call 

Long-Font ID 

~ SP 

I previous contents I~ SP 

Errors 

C 

$1B05 

$1B08 

$1B09 

fmFontNtFndErr Font not found 

fmBadFamNumErr Illegal family number 

fmBadSizeErr Illegal font size 

Memory Manager errors 

ProDOS errors 

Returned unchanged 

Returned unchanged 

e x t e rn pascal void FMSet Sy sFont ( font I D) 

FontID fontID ; 

8-40 Font Manager routines 



$0B1B GetFamlnfo 
Returns the name of the font family with a specified family number, placing the name 
wherever namePtr is pointing. It also returns f amStats, with apFamBit, notBaseBit, 
and notFoundBit set to the correct values (see the section "FamStatBits Flag" in this 
chapter for definitions) . The other bits of famStats are undefined. 

GetFamlnfo also tells you whether the family exists or not: If there is no family with 
the given f amNum, f amStats is returned with the notFoundBit equal to i (and the 
others undefined). In this case, nothing is altered in the buffer pointed to by 
namePtr. 

If namePtr is 0, no name is returned; if you don't need the name, you can use this 
characteristic to get famStats without setting aside space for the name. 

If famNum = $0000, it is translated into the family number of the system font. 

Parameters 

Stack before call 

previous contents 

wordspace 

famNum 

-- namePtr 

Stack after call 

previous contents 

famStats 

--· 

Errors $1B08 

Word-Space for result 

Word-Family number of font 

Long-POINTER to space (26 bytes) for font family name 

f-SP 

Word-FamStatBits 

f-SP 

frnBadFamNumErr Illegal family number 

C extern pascal Word GetFaminfo(famNum,namePtr) 

Word famNum ; 

Pointer namePtr ; 

Font Manager routines 8-41 



$0C1B 

Parameters 

GetFamNum 
Returns the family number corresponding to a specified font family name. The 
family name is pointed to by namePtr. The name must match exactly, including 
length, spaces, and uppercase and lowercase distinctions. If the name has a length of 
0, an error is returned; if the name is more than 25 characters long, only the first 25 
characters are used. 

If there is no such family, $FFFF (the illegal family number) is returned in JamNum 
(this also tells you whether a family name is currently in use) . 

❖ Note: All fonts with the same family number should have the same font family 
name and vice versa. If the font files in the FONTS subdirectory (or those added 
later by the application) do not observe this rule, some fonts can get lost; that is, 
some of the Font Manager calls won't know about them. 

Stack before call 

prevtous contents 

wordspace 

namePtr 

Stack after call 

prevtous contents 

JamNum 

Word-Space for result 

Long-POINTER to family name 

~SP 

Word-Family number 

~SP 

Errors $1BOA fmBadNameErr Illegal name length 

C extern pascal Word GetFamNum(namePtr ) 

Po inter namePtr ; 

8-42 Font Manager routines 



$0E1B 

Parameters 

Install Font 
Performs the following actions: 

■ Finds a specified font or the available font with the best fit if the specified font isn't 
available 

■ Loads the font into memory, if necessary 

■ If the best-fit font has been used and scaling has not been disabled, creates a new, 
scaled font to match the specified font's size 

■ Makes the resulting font current and unpurgeable 

If JamNum of desiredID = $0000, it is translated into the family number of the system 
font. If destredID = $00000000, it is translated into the font ID of the system font. 

Stack before call 

previous contents 

desiredID Long-Font ID of desired font 

scale Word Word-Last bit of O enables scaling, 1 disables scaling (see Figure 8-10) 

f- SP 

Stack after call 

previous contents I 
- ------- f- SP 

Errors 

C 

$1B08 

$1B09 

$1BOC 

fmBadFamNumErr Illegal family number 

fmBadSizeErr Illegal size 

fmScaleSizeErr Scaled size of font exeeds limits 

Memory Manager errors 

ProDOS errors 

Returned unchanged (system font installed) 

Returned unchanged (system font installed) 

e xtern pasca l v oid In s tallFont (desiredID , scaleWord ) 

Font ID desiredID ; 

Word scaleWord ; 

(continued) 

Font Manager routines 8-43 



lnstollFoht's actions 
To find the font you requested in the desiredID parameter, the InstallFont routine 
does the following: 

1 . The routine searches all known fonts for the font that best fits the font identified by 
desiredID. The algorithm for determining best fit is described in the section 
"Best-Fit Font Algorithm" in this chapter. If the best-fit font isn't already in 
memory, InstallFont brings it in from disk. 

2. The last bit of scale Word controls scaling, as shown in Figure 8-10. If the best-fit 
font is the right size, or if it is the wrong size but scaling is disabled, then it is made 
the current font and made unpurgeable. 

11sl14113112111110191 a 1 7 161s141 31211 1 o I 

, Resee,,ed.setto O J 'J 
dontScaleBit 

Scaling d isabled = 1 
Scaling enabled = 0 

Figure 8-10 
Font scale word 

❖ Note: Scaling was implemented in Version 1.1 of the Font Manager. Only that 
version or later versions can use dontScaleBit. Earlier Font Manager versions 
always act as if dontScaleBit = 1. 

3. If the best-fit font is the wrong size and scaling is enabled, then the Font Manager 
creates a new font by scaling the best-fit font and makes this new font current and 
unpurgeable. In this case, the best-fit font is either made purgeable (if it has just 
been brought in from disk by this call), or its purge status is left alone (if it was 
already in memory when this call was made). 

The FontStatBits for the font created by scaling have memBit, notDiskBit, and 
unrea!Bit set to 1 and inherit apFamBit and apVarBit from the best-fit font. 

4. Installfont next enlarges the QuickDraw II text buffer, if necessary, to handle the 
font. 

5. The routine then sets the font ID field of the current Grafport equal to desiredID. 
Even if the precise font cannot be found at this time, future pictures and laser 
printers will know what font was requested. 

6. Finally, Installfont sets the txFace and txSize fields of the current Grafport to the 
style and size specified in desiredID. 

8-44 Font Manager routines 



$171B 

Parameters 

ltem1D2FamNum 
Translates a menu item ID into a font family number. 

Use this routine after you have used the Fix:FontMenu routine to create a menu of 
family names. Because the Font Manager appended the names to the menu, the 
application has no way of knowing which menu item IDs correspond to which 
families . The ItemID2FamNum routine performs the translation. 

❖ Note: See the section "FamNum2ItemID" in this chapter for information about 
translating a family number into a menu item ID. 

Stack before call 

previous contents 

wordspace 

ttemID 

Stack after call 

previous contents 

JamNum 

Errors $1B0B 

$1B04 

Word-Space for result 

Word-Item ID of menu item whose family number will be returned 

f- SP 

Word-Family number of family corresponding to ttemID 

f-SP 

frnMenuErr FixFontMenu never called 

fmFamNotFndErr Family not found; item ID not in menu 

C e xtern pas ca l Word I tern ID2FarnNu rn( iternID ) 

Word i t ernID ; 

Font Manager routines 8-45 



$121B 

Parameters 

LoadFont 
Finds a particular font with a specified font ID and specifications (such as the 
FindFontStats routine), loads the font into memory (if it is not already there), and 
makes the font current and unpurgeable. The routine then enlarges the QuickDraw II 
text buffer (if necessary) to handle the font. Finally, the routine sets the JontID, 
txFace, and t:x:Size fields of the current GrafPort to the font ID, style, and size of the 
font that was loaded. If no such font is found, LoadFont does not change the current 
font. 

LoadFont was included for those occasions when you want your application to step 
through and use all the available fonts matching the given specifications. 

If JamNum of desiredID = $0000, it is translated into the family number of the system 
font. If desiredID = $00000000, it is translated into the font ID of the system font. 

Stack before call 

previous contents 

-- desiredID --· 

JontSpecs 

positionNum 

Long- Font ID 

Word-FontSpecBits 

Word-Position number of font 

-- resultPtr --· Long-POINTER to FontStatRec 

Stack after call 

previous contents I 
-------- f-- SP 

Errors $1B08 fmBadFamNumErr Illegal family number; JamNum is $FFFF and 
anyFamBit is 0 

$1B09 fmBadSizeErr 

Memory Manager errors 

ProDOS errors 

Illegal font size; size is $00 and anySizeBit is 0 

Returned unchanged 

Returned unchanged 

8-46 Font Manager routines 



C extern pascal void LoadFont (desiredID , fontSpecs , positionNum, resultPtr ) 

FontID 

Word 

Word 

desiredID; 

f ont Specs ; 

positionNum ; 

FontStatRecPtr resultPtr; 

Font Manager routines 8-4 7 



$131B 

Parameters 

Errors 

C 

LoadSysFont 
Makes the system font current without forcing the application to know its font ID. The 
routine then enlarges the QuickDraw II text buffer (if necessary) to handle the system 
font. Finally, the routine sets ,the fontlD, txFace, and txSize fields of the current 
GrafPort to the font ID, style, and size of the system font. 

The stack is not affected by this call. There are no input or output parameters. 

None 

e x tern pascal void LoadSysFont() 

8-48 Font Manager routines 



$0F1B 

Parameters 

SetPurgeStat 
Makes a specified font in memory unpurgeable or purgeable. If the routine finds the 
specified font, it makes it either unpurgeable (if purgeBtt of purgeStat is 0) or 
purgeable (if purgeBit of purgeStat is 1). The other bits of purgeStat are not used. 

Important 
Don't make a font purgeable unless you Intend to reload the font If and when 
your application needs the font again. For example, If a font was purged and a 
GrafPort that contains that font's handle was made current, any QulckDraw II 
text-drawing calls would cause the system to fail. 

If the font isn't found, the call returns an error, and no purge status is changed. 

If JamNum of JontlD = $0000, it is translated into the family number of the system 
font. If JontlD = $b0000000, it is translated into the font ID of the system font. 

Stack before call 

previous contents 

JontlD 

purgeStat 

Stack after call 

Long-Font ID 

Word-FontStatBits (only purgeBtt is used) 

f- SP 

I previous contents If- SP 

Errors $1B05 fmFontNtFndErr Font not found 

$1B06 fmFontMemErr Font not in memory 

$1B07 fmSysFontErr System font cannot be purgeable 

$1B08 fmBadFamNumErr Illegal family number 

$1B09 fmBadSizeErr Illegal font size 

C e xtern pascal void SetPurgeStat ( fontID , purgeStat ) 

Font ID font ID ; 

Word purgeStat; 

Font Manager routines 8-49 



Font Manager summary 
This section briefly summarizes the constants, data structures, and tool set errors 
contained in the Font Manager. 

Important 

These definitions are provided In the appropriate Interface file. 

Table 8-6 
Font Manager constants 

Name Value Meaning 

FontStatBlts 
memBit $0001 Font is in memory 
unrealBit $0002 Font is scaled from another font 
apFamBit $0004 Font family supplied by application 
apVarBit $0008 Font added by AddFontVar call or scaled from such a 

font 
purgeBit $0010 Font is purgeable 
notDiskBit $0020 Font not ROM font and not in FONTS subdirectory 
notFoundBit $8000 Specified font not found 

FontSpecBlts 
mem0nlyBit $0001 Allow only ROM font and fonts currently in memory 
real0nlyBit $0002 Allow only real (unscaled) fonts 
anyFamBit $0004 Ignore family number supplied in call 
anyStyleBit $0008 Allow any font whose style partially matches style 

supplied in call 
anySizeBit $0010 Ignore point size supplied by call 

FamStatBlts 
apFamBit $0004 Font family supplied by application 
notBaseBit $0020 Family is not a base family 
notFoundBit $8000 Specified font family not found 

FamSpecBits 
base0nlyBit $0020 Allow only base families 

Scale word 
dontScaleBit $0001 Disable font scaling 

8-50 Chapter 8: Font Manager 



Table 8-6 (continued) 
Font Manager constants 

Name Value Meaning 

Family numbers 
newYork $0002 New York font 
geneva $0003 Geneva font 
monaco $0004 Monaco font 
venice $0005 Venice font 
london $0006 London font 
athens $0007 Athens font 
sanFran $0008 San Francisco font 
toronto $0009 Toronto font 
cairo $000B Cairo font 
losAngeles $000C Los Angeles font 
times $0014 Times font 
helvetica $0015 Helvetica font 
courier $0016 Courier font 
symbol $0017 Symbol font 
taliesin $0018 Taliesin font 
shaston $FFFE Shaston font 

Table 8-7 
Font Manager data structures 

Name 

FontlD 
famNum 
fontStyle 
fontSize 

FontStatRec 
resultID 

resultStats 

Offset 

$00 
$02 
$03 

$00 

$04 

Type 

Word 
Byte 
Byte 

FontID 

Word 

Definition 

Family number of font 
Style of font (bold, italicized, and so on) 
Size of font in points 

Includes family number, font style, and font 
size 
Equal to FontStatBits 

Note: The actual assembly-language equates have a lowercase o (the letter) in front of all 
of the names given in this table. 

Font Manager summary 8-51 



Table 8-8 
Font Manager error codes 

Code Name Description 

$1B01 fmDupStartUpErr FMStartUp call already made 
$1B02 frnResetErr Can't reset the Font Manager 
$1B03 fmNotActiveErr Font Manager not active 
$1B04 fmFamNotFndErr Family not found 
$1B05 fmFontNtFndErr Font not found 
$1B06 fmFontMernErr Font not in memory 
$1B07 frnSysFontErr System font cannot be purgeable 
$1B08 fmBadFamNurnErr Illegal family number 
$1B09 fmBadSizeErr Illegal font size 
$1B0A fmBadNarneErr Illegal name length 
$1B0B frnMenuErr FixFontMenu never called 
$1B0C frnScaleSizeErr Scaled size of font exceeds limits 

8-52 Chapter 8: Font Manager 



Chapter 9 

Integer Math Tool Set 

The Integer Math Tool Set supports multiplication and division of several types of 
numbers and also converts numbers from one type to another. The types of entities 
dealt with are as follows: 

■ Integer Math strings: ASCII strings with no length indication supplied by the 
string itself 

■ Integers: 16-bit signed or unsigned values 

■ Longints: 32-bit signed or unsigned values 

■ Fixed: 32-bit signed values with 16 bits of fraction 

■ Frac: 32-bit signed values with 30 bits of fraction 

■ Extended: 80-bit signed floating-point values with 64 bits of fraction 

❖ Note: The Extended type really serves as a pathway to the Standard Apple 
Numeric Environment (SANE) . For more information, refer to the Apple 
Numerics Manual. 

A preview of the Integer Math Tool Set routines 
To introduce you to the capabilities of the Integer Math Tool Set, all Integer Math 
routines are grouped by function and briefly described in Table 9-1. These routines 
are described in detail later in this chapter, where they are separated into 
housekeeping routines (discussed in routine number order) and the rest of the Integer 
Math routines (discussed in alphabetical order). 

9-1 



Table 9-1 
Integer Math Tool Set routines and their functions 

Routine Description 

Housekeeping routines 
IMBootlnit Initializes the tool set; called only by the Tool Locator-must not be called by an 

IMStartUp 
IMShutDown 
IMVersion 
IMReset 

IMStatus 

Math routines 
Multiply 
SDivide 

UDivide 

LongMul 
LongDivide 

Fi.x:Ratio 

FixMul 
FracMul 
Fi.x:Div 
FracDiv 
Fi.x:Round 
FracSqrt 
FracCos 
FracSin 
FixATan2 
HiWord 
LoWord 
Long2Fix 
Fix2Long 
Fix2Frac 
Frac2Fix 
Fix2X 
Frac2X 
X2Fix 
X2Frac 

application 
Starts up the Integer Math Tool Set for use by an application 
Shuts down the Integer Math Tool Set when an application quits 
Returns the version number of the Integer Math Tool Set 
Resets the tool set; called only when the system is reset-must not be called by an 
application 
Indicates whether the Integer Math Tool Set is active 

Multiplies two Integer inputs and produces a Longint result 
Divides two Integers and produces a signed Integer quotient and a signed Integer 
remainder 
Divides two unsigned Integer inputs and produces an Integer quotient and an unsigned 
Integer remainder 
Multiplies two Longint values and produces a 64-bit result 
Divides two unsigned Longint inputs and produces a Longint unsigned quotient and a 
Longint unsigned remainder 
Takes two signed Integers and produces a Fixed number as a ratio of the numerator and 
denominator 
Multiplies two 32-bit Fixed inputs and produces a 32-bit Fixed result 
Multiplies two Frac inputs and returns a rounded Frac result 
Divides two like inputs and returns a rounded Fixed result (no remainder) 
Divides two like inputs and returns a rounded Frac result (no remainder) 
Takes a Fixed input and returns a rounded Integer result 
Takes a Frac input and returns a rounded Frac square root 
Takes a Fixed input (in radians) and returns its Frac cosine 
Takes a Fixed input (in radians) and returns its Frac sine 
Takes two like inputs and returns a Fixed arc tangent (in radians) of their coordinates 
Returns high-order word of a Long input 
Returns low-order word of a Long input 
Converts a specified Longint value to its corresponding Fixed value 
Converts a Fixed value to its corresponding Longint value 
Converts a Fixed value to its corresponding Frac value 
Converts a specified Frac value to its corresponding Fixed value 
Converts a Fixed value to its corresponding Extended value 
Converts a specified Frac value to its corresponding Extended value 
Converts an Extended value to its corresponding Fixed value 
Converts an Extended value to its corresponding Frac value 

9-2 Chapter 9: Integer Math Tool Set 



Table 9-1 (continued) 
Integer Math Tool Set routines and their functions 

Routine Description 

Integer Math string routines 
Int2Hex Takes an unsigned Integer and produces an Integer Math string representing the value 

in hexadecimal format 
Long2Hex Takes an unsigned Longint value and produces an Integer Math string representing the 

value in hexadecimal format 
Hex2Int 

Hex2Long 

Int2Dec 

Long2Dec 

Dec2Int 

Dec2Long 

Hexlt 

Takes an Integer Math string representing a hexadecimal value and returns an 
unsigned Integer 
Takes an Integer Math string representing a hexadecimal value and returns an 
unsigned Longint 
Takes a signed or unsigned Integer and produces an Integer Math string representing 
the value in decimal format 
Takes a signed or unsigned Longint value and produces an Integer Math string 
representing the value in decimal format 
Takes an Integer Math string representing a decimal value and returns a signed or 
unsigned Integer 
Takes an Integer Math string representing a decimal value and produces a Longint 
value 
Takes an unsigned Integer and returns a 4-byte Integer Math string representing the 
value in hexadecimal format 

Rounding and pinning 
When the result of a computation cannot be represented exactly in a destination's 
format due to insufficient precision, the Integer Math Tool Set will usually round the 
result. A rounded result is the nearest representable value to the actual value, with 
ties going to the value with the larger magnitude. Those Integer Math Tool Set 
routines that use rounding are identified as such in their descriptions. Some Integer 
Math routines do not round; in those cases, the delivered result will be the nearest 
representable value that is less than the actual value. 

The Integer Math Tool Set uses another concept to handle overflows that occur when 
the magnitude of the result exceeds the destination format. In these cases, the tool 
set usually supports pinning, which assigns positive overflows to the largest positive 
representable value and negative overflows to the largest negative representable 
value. 

Rounding and pinning 9-3 



Using the Integer Math Tool Set 

The Integer Math Tool Set depends upon the presence of the tool sets shown in 
Table 9-2 and requires that at least the indicated version of the tool set be present. 

Table 9-2 
Integer Math Tool Set-other tool sets required 

Tool set 

number 

$01 #01 
$02 #02 

Tool set 

name 

Tool Locator 
Memory Manager 

Minimum version 

needed 

1.0 
1.0 

Your application should make an IMStartUp call before making any other Integer 
Math Tool Set calls. 

❖ Note: At the time of publication, the IMStartUp call was not an absolute 
requirement, because the Tool Locator automatically started up the Integer Math 
Tool Set at boot time. However, you should make the call anyway to guarantee 
that your application remains compatible with all future versions of the system. 

If you have started up the tool set, your application should also make the 
IMShutDown call when the application quits. 

Within the tool set, there are Math routines and Integer Math string routines. Math 
routines support multiplication and division of Integer, Longint, Fixed, and Frac 
numbers and convert from one type of value to another. 

Integer Math string routines convert between a binary value and an ASCII character 
string representing that value. The binary value can be either an Integer or a Longint. 
The character string can be in either hexadecimal or decimal format. 

9-4 Chapter 9: Integer Math Tool Set 



$010B 

Parameters 

Errors 

C 

$020B 

Parameters 

Errors 

C 

IMBootlnit 
Initializes the Integer Math Tool Set; called only by the Tool Locator. 

Warning 

An application must never make this call. 

The stack is not affected by this call. There are no input or output parameters. 

None 

Call must not be made by an application. 

IMStartUp 
Starts up the Integer Math Tool Set for use by an application. Your application should 
make an IMStartUp call before making any other Integer Math Tool Set calls. 

❖ Note: At the time of publication, the IMStartUp call was not an absolute 
requirement, because the Tool Locator automatically started up the Integer Math 
Tool Set at boot time. However, you should make the call anyway to guarantee that 
your application remains compatible with all future versions of the system. 

The stack is not affected by this call. There are no input or output parameters. 

None 

extern p a sca l void IMStartUp () 

Integer Math Tool Set housekeeping routines 9-5 



$030B 

Parameters 

Errors 

C 

$040B 

Parameters 

IMShutDown 
Shuts down the Integer Math Tool Set when an application quits. 

Important 
If your application has started up the Integer Math Tool Set, the application 
must make this call before It quits. 

The stack is not affected by this call. There are no input or output parameters. 

None 

exte rn p a scal void IMShutDown () 

IMVersion 
Returns the version number of the Integer Math Tool Set. 

Stack before call 

previous contents 

wordspace Word-Space for result 

~SP 

Stack after call 

previous contents 

Errors 

C 

9-6 

versionlnfo 

None 

Word-Version number of the Integer Math Tool Set 

~SP 

extern pascal Word IMVersion () 

Integer Math Tool Set housekeeping routines 



$050B 

Parameters 

Errors 

C 

$060B 

Parameters 

IMReset 
Resets the Integer Math Tool Set; called only when the system is reset. 

Warning 
An application must never make this ca ll. 

The stack is not affected by this call. There are no input or output parameters. 

None 

Call must not be made by an application. 

IMStatus 
Indicates whether the Integer Math Tool Set is active. 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

activeFlag 

Errors None 

Word-Space for result 

f-- SP 

Word-BOOLEAN; TRUE if Integer Math is active, FALSE if not 

f-- SP 

C extern pasca l Boolean IMStatus() 

Integer Math Tool Set housekeeping routines 9-7 



$280B 

Parameters 

Dec21nt 
Takes an Integer Math string representing a decimal value and returns a signed or 
unsigned Integer. The string must consist of digits and blanks. If the string does not 
fill up the space, pad the string at the left with blanks or zeros. The ASCII characters in 
the string ma;y have the high-order bit either set or clear. 

If the signed.Flag is a nonzero value, the string may contain an ASCII plus or minus 
sign directly in front of the most significant digit. 

Stack before call 

previous contents 

wordspace 

- strPtr 

strlength 

signedF/ag 

--· 

Word-Space for result 

Long-POINTER to Integer Math string 

Word-Length of Integer Math string 

Word-0 if intResult is unsigned, nonzero if intResult is signed 

f- SP 

Stack after call 

previous contents 

intResult 

Errors 

C 

Word-INTEGER equivalent of the Integer Math string 

f-SP 

$0B02 

$0B03 

imillegalChar 

imOverflow 

Illegal character in string 

Signed value is greater than 32,767 or less than 
- 32,768, or unsigned value is greater than 65,535 

extern pascal Integer Dec2Int (s trPtr,strLength,signedFlag ) 

Pointer strPtr ; 

Word strLength ; 

Boolean signedFlag; 

9-8 Integer Math Tool Set routines 



$290B 

Parameters 

Dec2Long 
Takes an Integer Math string representing a decimal value and produces a Longint 
value. The string should be right-justified and may be padded at the left with blanks or 
zeros. The ASCII characters in the string may have the high-order bit either set or 
clear. 

If the value is signed, the string may contain an ASCII plus or minus sign directly in 
front of the most significant digit. 

Stack before call 

previous contents 

-- longspace 

-- strPtr 

strlength 

signedFlag 

- - · 

- - · 

Long-Space for the result 

Long-POINTER to Integer Math string 

Word-Length of Integer Math string 

Word-0 if longlntResult is unsigned, nonzero if longlntResult is signed 

f-SP 

Stack after call 

previous contents 

longlntResult Long-LONGINT equivalent of the Integer Math string 

f-SP 

Errors 

C 

$0B02 

$0B03 

imillegalChar 

imOverflow 

Illegal character in string 

Signed value is greater than 2,147,483,647 or less 
than -2, 147,483,648, or unsigned value is greater 
than 4,294,967,295 

extern pa s c a l Longi nt Dec2Long (s t rPtr ,st rLe ngt h, signedF l ag) 

Pointer strPtr ; 

Wo rd s trLengt h ; 

Boolea n signedFlag ; 

Integer Math Tool Set routines 9-9 



$1COB Fix2Frac 
Converts a Fixed value to its corresponding Frac value. Out-of-range values are 
pinned to the most positive or- negative value, depending on the sign of the input. 

Parameters 

Stack before call 

previous contents 

longspace 

fixedValue 

Stack after call 

previous contents 

JracResult 

Errors None 

Long-Space for result 

Long-FIXED value to be converted 

~SP 

Long-FRAC result of conversion; pinned if out-of-range 

~SP 

C extern pascal Frac Fix2Frac(fixedValue) 

Fixed fixedValue; 

9-10 Integer Math Tool Set routines 



$1B0B Fix2Long 
Converts a Fixed value to its corresponding Longint value. Conversions are rounded. 

Parameters 

Stack before call 

previous contents 

longspace 

fixedValue 

Stack after call 

previous contents 

longlntResult 

Errors None 

Long-Space for result 

Long-FIXED value to be converted 

f-SP 

Long-Rounded LONGINT result of conversion 

f-SP 

C extern pascal Longint Fix2Long(fixedValue ) 

Fixed fixedValue; 

Integer Math Tool Set routines 9-11 



$1EOB Fix2X 
Converts a Fixed value to its corresponding Extended value. 

Parameters 

Stack before call 

prevtous contents 

JtxedValue Long-FIXED input 

extendPtr 

Stack after call 

Long-POINTER to space for EXTENDED value 

f-SP 

prevtous contents I 
-------- f- SP 

Errors None 

C extern pascal void Fix2X ( fixedValue ,extend Ptr ) 

Fixed fixedValue ; 

ExtendPtr e xtendPtr ; 

9-12 Integer Math Tool Set routines 



$170B FixATan2 
Takes two like inputs and returns a Fixed arc tangent (in radians) of their coordinates. 
The inputs can be Frac, Fixed, or signed Longint, but both must be of the same type. 

Parameters 

Stack before call 

previous contents 

-- longs pace 

-- inputl 

-- input2 

Stack after call 

previous contents 

arcTanResult 

--· 

--· 

--· 

Errors None 

Long-Space for result 

Long-First input 

Long-Second input (must be same type as first) 

(-SP 

Long-FIXED arc tangent, in radians, of inputl and input2 

(-SP 

C extern pascal Fixed FixATan2(inputl,input2) 

Longint 

Longint 

inputl; 

input2; 

Integer Math Tool Set routines 9-13 



$110B 

Parameters 

FixDiv 
Divides two like inputs and returns a rounded Fixed result (no remainder). Overflows 
are pinned to the most positive or negative value, depending on the XOR of the signs 
of the inputs. The inputs can be Frac, Fixed, or signed Longint, but both must be of 
the same type. 

Stack before call 

previous contents 

-- longs pace 

-- dtvtdend 

-- dtvtsor 

Stack after call 

previous contents 

Jtx edResult 

Errors None 

--· 

--· 

- - · 

Long-Space for result 

Long- First input 

Long-Second input (must be same type as dtvidend) 

f-SP 

Long-Rounded FIXED result; pinned if out-of-range 

f-SP 

C extern pa scal Fixe d FixDiv (dividend,divisor ) 

Longint 

Longint 

dividend ; 

divisor; 

9-14 Integer Math Tool Set routines 



$0FOB FixMul 
Multiplies two Fixed inputs and produces a Fixed result. 

Important 

The result Is the same as If two 32-blt Integers were multiplied, producing a 64-blt 
product, and only the middle 32 bits were returned. 

Parameters 

Stack before call 

previous contents 

-- longspace 

-- multtpltcand 

-- multtplter 

Stack after call 

prevtous contents 

product 

Errors None 

--· 

--· 

--· 

Long-Space for result 

Long-First FIXED input 

Long-Second FIXED input 

~SP 

Long-FIXED result 

~SP 

C extern pascal Fixed FixMul(multiplicand,multiplier) 

Fixed 

Fixed 

multiplicand; 

multiplier; 

Integer Math Tool Set routines 9-15 



$0EOB FixRatio 
Takes two signed Integers and produces a Fixed number as a ratio of the numerator 
and denominator. 

Important 
FlxRatlo doesn't check for the divide-by-zero condition, nor does It cause an 
error to occur when that condition happens. Therefore. your application must 
prevent that condition from occurring. 

Parameters 

Stack before call 

previous contents 

-- longspace 

numerator 

denominator 

Stack after call 

previous contents 

fixedResult 

Errors None 

--· Long-Space for result 

Word-INTEGER specifying the input numerator 

Word-INTEGER specifying the input denominator 

f-SP 

Long-FIXED result 

C extern pascal Fixed FixRatio(numerator , denominator ) 

Integer 

Integer 

numerator; 

denominator ; 

9-16 Integer Math Tool Set routines 



$130B FixRound 
Takes a Fixed input and returns a rounded Integer result. 

Parameters 

Stack before call 

previous contents 

wordspace 

fixedValue 

Stack after call 

previous contents 

intResult 

Errors None 

Word-Space for result 

Long-Original FIXED value 

f- SP 

Word-Rounded INTEGER result 

f-SP 

C e xtern pasca l Integer FixRound( f i xedVa lue ) 

Fixed fi xedVa lue ; 

Integer Math Tool Set routines 9-17 



$1D0B 

Parameters 

Frac2Fix 
Converts a specified Frac value to its corresponding Fixed value. Conversions are 
rounde d. 

Stack before call 

previous contents 

longspace 

JracValue 

Stack after call 

previous contents 

fixedResult 

Errors None 

Long-Space for result 

Long-FRAC value to be converted 

f- SP 

Long-Rounded FIXED result 

f-SP 

C extern pascal Fixed Frac2Fix ( fracValue) 

Frac fracVal ue ; 

9-18 Integer Math Tool Set routines 



$1 FOB Frac2X 
Converts a specified Frac value to its corresponding Extended value. 

Parameters 

Stack before call 

prevtous contents 

JracValue 

extendPtr 

Stack after call 

Long-FRAC value to be converted 

Long-POINTER to space for EXTENDED value 

f-SP 

prevtous contents I 
-------- f- SP 

Errors None 

C extern pascal void Frac2X(fracValue,extendPtr) 

Frac fracValue; 

ExtendPtr extendPtr ; 

Integer Math Tool Set routines 9-19 



$1508 FracCos 
Takes a Fixed input (radians) and returns its Frac cosine. 

Parameters 

Stack before call 

previous contents 

longspace 

angle 

Stack after call 

previous contents 

-- JracCosineResult 

Errors None 

Long-Space for result 

Long-Angle in radians, as a FIXED value 

f-SP 

Long-FRAC cosine result 

f-SP 

C extern pascal Frac FracCos (angle ) 

Fixed angle ; 

9-20 Integer Math Tool Set routines 



$120B 

Parameters 

FracDiv 
Divides two like inputs and returns a rounded Frac result (no remainder). Overflows 
are pinned to the most positive or negative value, depending on the XO~ of the signs 
of the inputs. Th~ inputs can be Frac, Fixed, or signed Longint; but both must be of 
the same type. 

Stack before call 

previous contents 

-- longspace 

-- dividend 

-- divisor 

Stack after call 

previous contents 

JracResult 

--· 

--· 

--· 

Errors None 

Long-Space for result 

Long-First input 

Long-Second input (must be the same type as dividend) 

~SP 

Long-Rounded FRAC result; pinned if out-of-range 

~SP 

C extern pascal Frac FracDiv(dividend,divisor) 

Longint 

Longint 

dividend; 

divisor; 

Integer Math Tool Set routines 9-21 



$100B FracMul 
Multiplies two Frac inputs and returns a rounded Frac result. Overflows are pinned to 
the most positive or negative value, depending on the XOR of the signs of the input. 

Parameters 

Stack before call 

previous contents 

- longspace --

-- multiplicand --· 

-- multiplier -

Stack after call 

previous contents 

fracResult 

Errors None 

Long-Space for result 

Long-First FRAC input 

Long-Second FRAC input 

f- SP 

Long-Rounded FRAC result; pinned if out-of-range 

f-SP 

C extern pascal Frac FracMul(multiplicand,multiplier) 

Frac multiplicand; 

Frac multiplier; 

9-22 Integer Math Tool Set routines 



$160B FracSin 
Takes a Fixed input (in radians) and returns its Frac sine. 

Parameters 

Stack before call 

previous contents 

longspace 

angle 

Stack after call 

previous contents 

- - JracSineResult 

Errors None 

Long-Space for result 

Long- Angle in radians, as a FIXED value 

<-SP 

Long-FRAC sine result 

<-SP 

C ext e r n pascal Frac Fr a cSin(angle ) 

Fixed angle ; 

Integer Math Tool Set routines 9-23 



$140B 

Parameters 

FracSqrt 
Takes a Frac input and returns a rounded Frac square root. The input is considered 
unsigned with the leading bit significant; that is, the input range is from O to almost 4. 

Stack before call 

prevtous contents 

longs pace 

JracValue 

Stack after call 

Long-Space for result 

Long-Original FRAC value 

~SP 

prevtous contents 

Errors 

C 

fracResult 

None 

Long-Rounded FRAC square root 

~SP 

extern pascal Frac FracSqrt(fracValue) 

Frac fracValue; 

9-24 Integer Math Tool Set routines 



$2408 

Parameters 

Hex21nt 
Takes an Integer Math string representing a hexadecimal value and returns an 
unsigned Integer. The string must con$iSt of digits and blanks. If the string does not 
fill up the space, pad the string at the left with blanks or zeros. The ASCII characters in 
the string may have the high-order bit either set or clear. 

Stack before call 

prevtous contents 

wordspace 

-- strPtr 

strlength 

Stack after call 

prevtous contents 

tntResult 

--· 

Errors $0B02 

$0B03 

Word-Space for result 

Long-POINTER to space for Integer Math string 

Word-Length of Integer Math string 

f--- SP 

Word-Unsigned INTEGER equivalent of the Integer Math string 

f--- SP 

imillegalChar 

imOverflow 

Illegal character in string 

Hexadecimal value is greater than $FFFF 

C extern pascal Word Hex2Int (strPtr ,strLength ) 

Pointer strPtr ; 

Word strLength; 

Integer Math Tool Set routines 9-25 



$250B 

Parameters 

Hex2Long 
Takes an Integer Math string representing a hexadecimal value and returns an 
unsigned Longint. The string must consist of digits and blanks. If the string does not 
fill up the space, pad the string at the left with blanks or zeros. The ASCII characters in 
the string may have the high-order bit either set or clear. 

Stack before call 

previous contents 

-- longspace 

-- strPtr 

strlength 

--· 

--· 

Long-Space for result 

Long-POINTER to space for Integer Math string 

Word-Length of Integer Math string 

f-SP 

Stack after call 

previous contents 

longlntResult Long-Unsigned LONGINT equivalent of the Integer Math string 

f-SP 

Errors $0B02 

$0B03 

imillegalChar 

imOverflow 

Illegal character in string 

Hexadecimal value is greater than $FFFFFFFF 

C e xt e rn p a scal Longword Hex2Long (strPtr , strLength ) 

Pointe r strPt r; 

Wo r d strLength ; 

9-26 Integer Math Tool Set routines 



$2AOB 

Parameters 

Hexlt 
Takes an unsigned Integer and returns a 4-byte Integer Math string representing the 
value in hexadecimal format. 

❖ Note: The difference between this routine and Int2Hex is that Hexit returns its 
result on the stack. 

Stack before call 

previous contents 

longspace 

tntValue 

Long-Space for result 

Word-Unsigned INTEGER to be converted 

f-SP 

Stack after call 

previous contents 

hexResult 

Errors 

C 

None 

Long-4-byte Integer Math string representing value in hex format 

f-SP 

e xtern pascal Longword Hexit ( intVa lue ) 

Word int Value ; 

Integer Math Tool Set routines 9-27 



$180B HiWord 
Returns high-order word of a Long input. 

Parameters 

Stack before call 

previous contents 

wordspace 

long Value 

Stack after call 

previous contents 

wordResult 

Errors None 

Word-Space for result 

Long-Value whose high-order word will be returned 

~SP 

Word-High-order word of longValue 
~SP 

C extern p as cal Wo rd HiWord (longValue) 

Longword longValue ; 

9-28 Integer Math Tool Set routines 



$2608 

Parameters 

lnt2Dec 
Takes a signed or unsigned Integer and produces an Integer Math string representing 
the value in decimal format. The string must consist of digits and blanks. If the string 
does not fill up the space, pad the string at the left with blanks or zeros. 

The ASCII characters in the string have the high-order bit clear. If wordValue is 
signed and negative, the string will contain an ASCII minus sign to the left of the most 
significant digit. 

Stack before call 

previous contents 

wordValue 

-- strPtr 

strlength 

signedFlag 

- - · 

Word-INTEGER to be converted 

Long-POINTER to space for Integer Math string 

Word-Length of Integer Math string 

Word-BOOLEAN; TRUE if wordValue is signed, FALSE if unsigned 

~SP 

Stack after call 

previous contents I 
--------~SP 

Errors $0B04 imStrOverflow Length of string is too short to represent the value 

C extern pascal voi d Int2Dec (wordValue,strPt r ,st rLength,signedFlag) 

Integer wo r dVa l ue; 

Pointer strPtr; 

Word strLength ; 

Boolean signedFl ag; 

Integer Math Tool Set routines 9-29 



$220B 

Parameters 

lnt2Hex 
Takes an unsigned Integer and produces an Integer Math string representing the value 
in hexadecimal format. The string must consist of digits and blanks. If the string does 
not fill up the space, pad the string at the left with blanks or zeros. The ASCII 
characters in the output string have the high-order bit clear. 

Stack before call 

previous contents 

intValue 

- strPtr 

strlength 

Stack after call 

-

Word-Unsigned INTEGER to be converted 

Long-POINTER to space for Integer Math string 

Word-Length of Integer Math string 

f- SP 

previous contents I 
- --- ---- f- SP 

Errors $0B04 imStrOverflow Length of string is too short to represent the value 

C e xtern pascal void I nt2Hex( i ntVa lue ,strPt r,s trLength) 

Wo r d int Value; 

Poi nter strPtr ; 

Word s tr Le ngt h; 

9-30 Integer Math Tool Set routines 



$270B 

Parameters 

Long2Dec 
Takes a signed or unsigned Longint value and produces an Integer Math string 
representing the value in decimal format. The string must consist of digits and 
blanks. If the string does not fill up the space, pad the string at the left with blanks or 
zeros. 

The ASCII characters in the string have the high-order bit clear. If the longValue is 
signed and negative, the string will contain an ASCII minus sign to the left of the most 
significant digit. 

Stack before call 

prevtous contents 

-- long Value 

- strPtr 

strlength 

--

--· 

Long-LONGINT to be converted 

Long-POINTER to space for Integer Math string 

Word-Length of Integer Math string 

stgnedFlag Word-BOOLEAN; TRUE if long Value is signed, FALSE if unsigned 

f- SP 

Stack after call 

prevtous contents I 
-------- f- SP 

Errors $0B04 imStrOverflow Length of string is too short to represent the value 

C e xtern p ascal void Lo ng2Dec (longValue ,strPtr ,s t r Length,s ignedF l a g ) 

Long int longVa l ue ; 

Po int e r strPt r; 

Word strLength ; 

Boole a n signedFlag ; 

Integer Math Tool Set routines 9-31 



$1AOB Long2Fix 
Converts a specified Longint value to its corresponding Fixed value. Overflows are 
pinned to the most positive or negative value, depending on the sign of the input. 

Parameters 

Stack before call 

prevtous contents 

longspace 

longlntValue 

Stack after call 

prevtous contents 

JtxedResult 

Errors None 

Long-Space for result 

Long-L0NGINT value to be converted 

f-SP 

Long-FIXED result of the conversion; pinned if out-of-range 

f-SP 

C extern pascal Fixed Long2Fix(longValue} 

Longint longValue; 

9-32 Integer Math Tool Set routines 



$230B 

Parameters 

Long2Hex 
Takes an unsigned Longint value and produces an Integer Math string representing the 
value in hexadecimal format. The string must consist of digits and blanks. If the 
string does not fill up the space, pad the string at the left with blanks or zeros. The 
ASCII characters in the output string have the high-order bit clear. 

Stack before call 

prevtous contents 

-- long Value 

-- strPtr 

strlength 

Stack after call 

--· 

--· 

Long-Unsigned LONGINT value to be converted 

Long-POINTER to space for Integer Math string 

Word-Length of Integer Math string 

f-SP 

prevtous contents I 
-------- f- SP 

Errors $0B04 imStrOverflow Length of string is too short to represent the value 

C extern pascal void Long2Hex(longValue,strPtr,strLength) 

Longword longValue; 

Pointer strPtr; 

Word strLength; 

Integer Math Tool Set routines 9-33 



$0D0B 

Parameters 

Long Divide 
Divides two unsigned Longint inputs and produces a Longint unsigned quotient and a 
Longint unsigned remainder. 

Stack before call 

previous contents 

-- longs pace --· 

-- longs pace --· 

-- dividend --· 

-- divisor --· 

Stack after call 

previous contents 

remainder 

quotient 

Errors $0B01 

Long-Space for the remainder 

Long-Space for the quotient 

Long-Unsigned LONGINT dividend 

Long-Unsigned LONGINT divisor 

f-SP 

Long-Unsigned LONGINT remainder 

Long-Unsigned LONGINT quotient 

f-SP 

imBadinptParam Bad input parameter 

C extern pascal LongDivRec LongDivide(dividend,divisor ) 

Longint 

Longint 

dividend; 

divisor; 

9-34 Integer Math Tool Set routines 



$0COB LongMul 
Multiplies two Longint values and produces a 64-bit result. 

Parameters 

Stack before call 

previous contents 

-- longs pace --· 

-- longspace --· 

-- multiplicand --· 

-- multiplier --· 

Stack after call 

previous contents 

msResult 

lsResult 

Errors None 

Long-Space for result 

Long-Space for result 

Long-First LONGINT input 

Long-Second LONGINT input 

Long-Most significant 32 bits of the result 

Long-Least significant 32 bits of the result 

~SP 

C extern pascal LongMulRec LongMul(multiplicand , multiplier ) 

Longword 

Longword 

multiplicand; 

multiplier; 

Integer Math Tool Set routines 9-35 



$190B LoWord 
Returns low-order word of Long input. 

❖ Note: To return the high-order word, use the HiWord routine. 

Parameters 

Stack before call 

prevtous contents 

wordspace 

long Value 

Stack after call 

previous contents 

lowWord 

Errors None 

Word-Space for result 

Long-Long input whose low-order word will be returned 

~SP 

Word-Low-order word of longValue 
~SP 

C extern pascal Word LoWord ( longValue ) 

Longword longValue ; 

9-36 Integer Math Tool Set routines 



$090B Multiply 
Multiplies two Integer inputs and produces a Longint result. 

Parameters 

Stack before call 

previous contents 

-- longspace --· 

multiplicand 

multiplier 

Stack after call 

previous contents 

longlntResult 

Errors None 

Long-Space for result 

Word-First INTEGER input 

Word-Second INTEGER input 

f-- SP 

Long-LONGINT result 

f-- SP 

C e xtern pascal Longint Multiply (multipl i cand, multiplier ) 

Integ er 

Integer 

multipl icand ; 

multiplier ; 

Integer Math Tool Set routines 9-3 7 



$0AOB SDivide 
Divides two Integers and produces a signed Integer quotient and a signed Integer 
remainder. The sign of the remainder will always be the same as the sign of the 
dividend . 

Parameters 

Stack before call 

previous contents 

wordspace 

wordspace 

dividend 

divisor 

Stack after call 

previous contents 

remainder 

quotient 

Errors $0B01 

Word-Space for result 

Word-Space for result 

Word-INTEGER dividend 

Word-INTEGER divisor 

f- SP 

Word-INTEGER remainder 

Word-INTEGER quotient 

f-SP 

irnBadinptParam Bad input parameter 

C extern pascal IntDivRec SDivide (dividend,divisor) 

Integer 

Integer 

dividend ; 

divisor; 

9-38 Integer Math Tool Set routines 



$0B0B 

Parameters 

UDivide 
Divides two unsigned Integer inputs and produces an unsigned Integer quotient and 
an unsigned Integer remainder. 

Stack before call 

previous contents 

wordspace 

wordspace 

dividend 

divisor 

Word-Space for remainder 

Word-Space for quotient 

Word-INTEGER dividend 

Word-INTEGER divisor 

(-SP 

Stack after call 

previous contents 

Errors 

C 

remainder Word-Unsigned INTEGER remainder 

Word-Unsigned INTEGER quotient 

(-SP 

quotient 

$0B01 imBadinptParam Bad input parameter 

extern pascal WordDivRec UDivide(dividend,divisor ) 

Word dividend; 

Word divisor; 

Integer Math Tool Set routines 9-39 



$200B X2Fbc 

Parameters 

Converts an Extended value to its corresponding Fixed value. Conversions are 
rounded. Overflows, NaNs (Not a Number), and infinities are pinned to the most 
positive or negative value, depending on the sign of the input. 

❖ Note: For more information on NaNs and infinities, refer to the Apple Numerics 
Manual. 

Stack before call 

previous contents 

longspace 

extendPtr 

Stack after call 

previous contents 

fixedResult 

Errors None 

Long-Space for result 

Long-POINTER to EXTENDED value 

~SP 

Long-Rounded FIXED result; pinned if out-of-range 

~SP 

C ext e rn pascal Longint X2Fix (extendPtr ) 

ExtendPtr extendPt r ; 

9-40 Integer Math Tool Set routines 



$210B 

Parameters 

X2Frac 
Converts an Extended value to its corresponding Frac value. Conversions are 
rounded. Overflows, NaNs, and infinities are pinned to the most positive or negative 
value, depending on the sign of the input. 

❖ Note: For more information on NaNs and infinities, refer to the Apple Numerics 
Manual. 

Stack before call 

previous contents 

longspace 

extendPtr 

Stack after call 

Long-Space for result 

Long-POINTER to EXTENDED value 

f-SP 

previous contents 

JracResult 

Errors 

C 

None 

Long-Rounded FRAC result; pinned if out-of-range 

f-SP 

e xtern pascal Longint X2Fr a c (e xtendPtr ) 

ExtendPtr e xtendPtr ; 

Integer Math Tool Set routines 9-41 



Integer Math Tool Set summary 
This section briefly summarizes the constants and tool set error codes contained in 
the Integer Math Tool Set. There are no predefined data structures for the Integer 
Math Tool Set. 

Important 

These definitions are provided In the appropriate interface file. 

Table 9-3 
Integer Math Tool Set constants 

Name Value Description 

Limits 
rninLongint $80000000 Minimum negative signed Longint 
rninFrac $80000000 Pinned value for negative Frac overflow 
rninFixed $80000000 Pinned value for negative Fixed overflow 
rninint $8000 Minimum negative signed Integer 
rnaxint $7FFF Maximum positive signed Integer 
rnaxUint $FFFF Maximum unsigned Integer 
rnaxLongint $7FFFFFFF Maximum positive signed Longint 
rnaxFrac $7FFFFFFF Pinned value for positive Frac overflow 
rnaxFixed $7FFFFFFF Pinned value for positive Fixed overflow 
rnaxULong $FFFFFFFF Maximum unsigned Long 

SignedFlag 
unsignedFlag $0000 Value is not signed 
signedFlag $0001 Value is signed 

Table 9-4 
Integer Math Tool Set error codes 

Code 

$0B01 
$0B02 
$0B03 
$0B04 

Name 

irnBadinptPararn 
irnillegalChar 
irnOverflow 
irnStrOverflow 

Description 

Bad input parameter 
Illegal character in string 
Integer or Longint overflow 
String overflow 

9-42 Chapter 9: Integer Math Tool Set 



Chapter 10 

LineEdit Tool Set 

This chapter describes the UneEdit Tool Set. The LineEdit routines provide line­
editing capabilities that follow the Human Interface Guidelines: The Apple Desktop 
Interface. 

These capabilities include 

■ Inserting new text 

■ Deleting characters that are backspaced over 

■ Translating mouse or arrow key activity into text selection 

■ Deleting selected text and possibly inserting it elsewhere 

■ Copying selected text without deleting it 

The LineEdit routines support these standard user interface features : 

■ Positioning the insertion point by clicking the mouse 

■ Moving the insertion point one character at a time by using the Left and Right 
Arrow keys 

■ Moving the insertion point one word (plus its following spaces) at a time by using 
Option-Left Arrow or Option-Right Arrow 

■ Moving the insertion point to the beginning or end of the line by using 
Apple-Left Arrow or Apple-Right Arrow 

■ Selecting text by clicking and dragging with the mouse 

■ Selecting text by using Shift-Left Arrow and Shift-Right Arrow 

■ Selecting a word and its following spaces by double-clicking the mouse 

■ Selecting a word and its following spaces by using Shift-Option-Left Arrow or 
Shift-Option-Right Arrow 

■ Selecting the whole line by triple-clicking the mouse 

l 0- l 



■ Selecting from the insertion point to the beginning or end of the line by using 
Shift-Apple-Left Arrow or Shift-Apple-Right Arrow 

■ Extending or shortening the selection by clicking the mouse while holding down 
the Shift key 

■ Deleting the s ~!ection or the character to the left of the insertion point by using 
Backspace 

■ Deleting the 1>dection or the character to the right of the insertion point by using 
Control-F 

■ Deleting the selection or the whole line by using Control-X 

■ Deleting the selection or from the insertion point to the end of the line by using 
Control-Y 

■ Inverse highlighting the current text selection or displaying a blinking vertical bar 
at the insertion point 

■ Cutting (or copying) and pasting (LineEdit places cut or copied text into the 
LineEdit scrap) 

■ Left- or right-justified or centered text 

In addition, the LineEdit routines that work with text that cannot be edited by the user 
support the following features: 

■ More than 256 characters per line 

■ Fill-justified text (text aligned with both the left and right margins) 

■ Automatic word wrap 

■ More than one font or stylistic variation per line 

The LineEdit routines do not support 

■ Scrolling 

■ Fonts that kern characters (see the section "Fonts" in Chapter 16, "QuickDraw II," 
in Volume 2) 

■ "Intelligent" cut and paste operations (that is, LineEdit doesn't adjust spaces 
between words durir.g cutting and pasting) 

■ Tabs 

A preview of the LineEdit Tool Set routines 
To introduce you to the capabilities of the LineEdit Tool Set, all LineEdit routines are 
grouped by function and briefly described in Table 10-1. These routines are 
described in detail later in this chapter, where they are separated into housekeeping 
routines (discussed in routine number order) and the rest of the LineEdit routines 
(discussed in alphabetical order). 

l 0-2 Chapter 10: LlneEdit Tool Set 



Table 10-1 
LlneEdlt Tool Set routines and their functions 

Routine Description 

Housekeeping routines 
LEBootinit Initializes the LineEdit Tool Set; called only by the Tool Locator-must not be called 

LEStartUp 
LEShutDown 
LEVersion 
LEReset 
LEStatus 

Edit record routines 
LENew 

LED is pose 
LESetText 
LEGetTextHand 
LEGetTextLen 

by an application 
Starts up the LineEdit Tool Set for use by an application 
Shuts down the LineEdit Tool Set and releases any workspace allocated to it 
Returns the version number of the LineEdit Tool Set 
Returns an error if LineEdit is active 
Indicates whether the LineEdit Tool Set is active 

Allocates space for text, creates and initializes an edit record, and returns a handle 
to the new edit record 
Releases the memory allocated for a specified edit record 
Incorporates a copy of the specified text into a specified edit record 
Returns a handle to the text of a specified edit record 
Returns the length of the text of a specified edit record in bytes 

Insertion point and selection range routines 
LEidle Causes the caret at the insertion point (if any) in specified text to blink 
LEClick Controls the placement and highlighting of the selection range as determine~ by 

LESetSelect 
LEActiva~e 
LEDeactivate 

Editing routines 
LEKey 

LECut 

LECopy 
LEPaste 

LEDelete 

LEinsert 

Text display routines 

mouse events 
Sets the selection range of a specified edit record 
Highlights the selection range or caret of a specified edit r':!cord 
Unhighlights the selection range or caret of a specified edit record 

Replaces the selection range or caret in the text of a specified edit record with a 
specified character and leaves an insertion point just past the inserted character 
Removes the selection range from the text of a specified edit record and places it in 
the LineEdit scrap 
Copies the selection range from the text of a specified edit record to the LineEdit scrap 
Replaces the selection range or caret in the text of a specified edit record with the 
contents of the LineEdit scrap and leaves an insertion point just past the inserted text 
Removes the selection range from the text of a specified edit record without placing 
it in the LineEdit scrap 
Takes specified text and inserts it just before the selection range or caret in the text of 
a specified edit record 

LEUpdate Redraws the text of a specified edit record 
LETextBox Draws specified text in a specified rectangle, justifying the text as specified 
LETextBox2 Draws specified text in a specified rectangle, justifying the text as specified 

(including fill justification), performing word wrap when necessary, and handling 
embedded changes 

LESetJust Sets the style of justification for the text of a specified edit record 
(continued) 

A preview of the LlneEdit Tool Set routines l 0-3 



Table 10-1 (continued) 
LlneEdit Tool Set routines and their functions 

Routine Description 

Scrap handling routines 
LEFromScrap Copies the desk scrap to the LineEdit scrap 
LEToScrap Copies the LineEdit scrap to the desk scrap 
LEScrapHandle Returns a handle to the LineEdit scrap 
LEGetScrapLen Returns the size of the LineEdit scrap in bytes 
LESetScrapLen Sets the size of the LineEdit scrap to a specified number of bytes 

Miscellaneous routines 
LESetHilite Sets the leHtliteHook field of a specified edit record to a specified address 
LESetCaret Sets the leCaretHook field of a specified edit record to a specified address 

Edit records 
To edit a line of text on the screen, LineEdit needs to know where and how to display 
the text, where to store the text, and other information related to editing. This 
display, storage, and editing information is contained in an edit record that defines 
the complete editing environment. 

You prepare to edit text by specifying a destination rectangle in which to draw the text 
and a view rectangle in which the text will be visible. LineEdit incorporates the 
rectangles and the drawing environment of the current GrafPort into an edit record 
and returns a handle to the record. Most LineEdit routines require you to pass this 
handle as a parameter. 

In addition to the two rectangles and a description of the drawing environment, the 
edit record also contains 

■ A handle to the text to be edited 

■ A pointer to the GrafPort in which the text is displayed 

■ The current selection range, which determines which characters will be affected by 
the next editing operation 

■ The justification style of the text 

You usually don't need to know the exact structure of an edit record, because you 
should always use the LineEdit routines to change any of the fields . However, in case 
your application needs to directly read some values from an edit record, the record's 
structure at the time of publication is illustrated in Figure 10-1. 

❖ Note: The record may grow longer in the future. 

l 0-4 Chapter l 0: LlneEdit Tool Set 



Offset Field 
$0 

l 

2 
leLlneHandle 

3 
4 

5 
leLength 

6 
7 

/eMaxLength 

8 

OF H: leDestRect i 

10 

: leVlewRect : 
17 ' ' 

18 
19 
lA 

lePort 

l B 1--------1 
lC 

leL/neHite 

1D 1--------1 
l E 

leBaseHite 
lF 1--------1 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

2A 

leSe/Start 

1--------1 

leSe/End 
1--------1 

leActFlg 

1--------1 
/eCarAct 

1--------1 
leCarOn 

1--------1 
leCarTlme 

2 D 1--------1 
2 E 

leHlllteHook 

311--------1 
32 
35 

leCaretHook 

36 
1-------t 

37 
/eJust 

Figure 10-1 
Edit record 

Long-Handle to text 

Word-INTEGER; current text length 

Word- INTEGER; maximum text length 

Four words-RECT data structure defining destination rectangle 

Four words-RECT data structure defining view rectangle 

Long-POINTER to Graf Port 

Word- INTEGER; used for highlighting 

Word-INTEGER; used for drawing text 

Word-INTEGER; used for start of selection range 

Word-INTEGER; used for end of selection range 

Word-Reserved for internal use 

Word-Reserved for internal use 

Word-Reserved for internal use 

Long-Reserved for internal use 

Long-POINTER to highlight routine 

Long-POINTER to caret routine 

Word-Style of text Justification; added in LineEdit Version 2.0 

Some of the fields of the record are discussed in the following sections. 

Edit records l 0-5 



The leDestRect and leViewRect fields 

The destination rectangle is the rectangle that determines where the text will be 
drawn. The view rectangle is the rectangle within which the text is actually visible. 
In other words, the portion of the text that the user can see in the destination 
rectangle is determined by the view rectangle. 

The view rectangle also determines the area in which mouse activity affects the text. If 
the user clicks or drags the mouse outside the view rectangle, that action does not 
affect the insertion point or selection range. In most cases, the view rectangle should 
be a few pixels larger than the destination rectangle. This provides users with some 
margin for error, so that their mouse operations still have the desired effect. 

You specify both the destination and the view rectangle in the local coordinates of 
the GrafPort. The rectangles are illustrated in Figure 10-2. 

,__ __ View rectangle 
This line is fully visible. 

~==================~--- Destination rectangle 

..------1r~----_ -_ -_ -_ -_ -_----+E.,_==-=,---- View rectangle 

I Thlline is not fully viF.J ,_ --- Destination rectangle 

Figure l 0-2 
LineEdit destination and view rectangles 

Edit operations may of course lengthen or shorten the text. LineEdit doesn't support 
scrolling or wrapping to the next line. If the text becomes too long to be enclosed by 
the destination rectangle, it's drawn beyond the edge as appropriate for the style of 
justification in effect, as illustrated in Figure 10-3. 

View rectangle 
This is left-justified text that i too long. 

Desti nation rectangle 

This is righ ,. r.~stified text that is too long. 

This i center-justified text that is to > I ong. 

Figure l 0-3 
Justification and the destination rectangle 

l 0-6 Chapter l 0: LineEdit Tool Set 



Warning 

If you're using right- or center-Justification, make sure that the text does not 
extend past the left edge of the Graf Port; that Is, the X value of the leftmost 
character must never be negative. 

The bottom of the destination rectangle does not affect how the text is drawn; that is, 
LineEdit uses only the top of the destination rectangle. 

❖ Note: If you draw a box around the text, the box should be outside the view 
rectangle. This prevents LineEdit from erasing the right side of the box when it 
redraws the text. 

The lelineHite and leBaseHite fields 

The leBaseHite field controls where the text is drawn relative to the top of the 
DestRect. The value of leBaseHite specifies the distance between the top of the 
DestRect and the base line (leading + ascent) . The leLineHite field controls where 
the caret or highlighting of the selection range is drawn relative to the text. The value 
of lelineHtte specifies the height of the line (leading + ascent + descent). See 
Figure 10-4. 

Top of DestRect- ... . ... .. .. ... .. .. .. .... . .. .... .. J . ···•··kl···· ····... Lead,ng 

Base llne_m 
J Ascent 

--~ ·-·········· ··· · ···· .. · · · ·· Descent 

Figure 10-4 
Line height a nd base line 

The leSelStart and leSelEnd fields 
The edit record includes fields that specify the beginning and end of the selection 
range. The selection range is the series of characters where the next editing 
operation will occur. For example, the procedures that cut or copy from the text of 
an edit record do so to the selection range. 

The selection range, which is inversely highlighted when the window and edit record 
are active, extends from the beginning character position to the end character 
position. A character position is an index into the text, with position 0 
corresponding to the first character. Figure 10-5 shows a selection range between 
positions 3 and 8, consisting of five characters (the character at position 8 isn't 
included). The end position of a selection range may be one greater than the 
position of the last character of the text, so that the selection range can include the 
last character. 

Edit records l 0-7 



❖ Note: LineEdit highlights the selection range by calling the QuickDraw II routine 
InvertRect, not by swapping the text and background colors. You can supply your 
own highlight routine; see the section "The leHiliteHook and leCaretHook 
Fields" and "LESetHilite" in this chapter. 

If the selection range is empty-that is, if its beginning and end positions are the 
same-that position is the text's insertion point, the position where characters will 
be inserted. By default, it's marked with a blinking caret (actually a vertical bar). See 
Figure 10-5. 

Selection range 
beginning at position 3 
and ending at position 8 

Insertion point 
at position 4 

Figure 10-5 
Selection range and Insertion point 

If you call the LEKey routine to insert characters when there's a selection range of one 
or more characters rather than an insertion point, the routine automatically deletes 
the selection range and replaces it with an insertion point before inserting the 
characters. 

10-8 Chapter 10: LlneEdit Tool Set 



The leHiliteHook and leCaretHook fields 

The leHtltteHook and leCaretHook fields are used for text highlighting and for 
drawing the caret. These fields are initialized to $00000000. You can set the contents 
of these fields by calling the LESetHilite and LESetCaret routines. 

If you store the address of a routine in leHiliteHook, that routine is used instead of the 
QuickDraw II routine InvertRect whenever a selection range is to be highlighted or 
unhighlighted. For example, you can write a routine that underlines selection ranges 
instead of highlighting them. The routine will be called with the stack containing a 
pointer to the rectangle enclosing the text being highlighted or unhighlighted. When 
your routine finishes its highlighting procedure, the routine must remove the pointer 
from the stack and return with an RTL. 

If you store the address of a routine in the leCaretHook field, that routine is called 
whenever the caret needs to be drawn or removed. This enables you to change the 
appearance of the caret. The routine will be called with the stack containing a pointer 
to the rectangle that encloses the caret. When your routine finishes its actions on the 
caret, the routine must remove the pointer from the stack and return with an RTL. 

Using the LineEdit Tool Set 
This section discusses how the LineEdit Tool Set routines fit into the general flow of an 
application and gives you an idea of which routines you'll need to use under normal 
circumstances. Each routine is described in detail later in this chapter. 

The LineEdit Tool Set depends upon the presence of the tool sets shown in 
Table 10-2 and requires that at least the indicated version of the tool set be present. 

Table 10-2 
LlneEdit Tool Set-other tool sets required 

Tool set Tool set Minimum version 

number name needed 

$01 #01 Tool Locator 1.0 
$02 #02 Memory Manager 1.0 
$04 #04 QuickDraw II 1.1 
$06 #06 Event Manager 1.0 

In addition, if you are going to use LEToScrap, LEFromScrap, or LETextBox2, you 
must load and start up additional tool sets. See the descriptions of those routines for 
more information. 

Using the LlneEdlt Tool Set l 0-9 



The first LineEdit call that your application must make is LEStartUp. Conversely, 
when you quit your application, you must make the LEShutDown call. 

Call LENew to allocate an edit record; it returns a handle to the record. Most text 
editing routines require you to pass this handle as a parameter. You can also obtain 
the handle to the text of a specified edit record by using the LEGetTextHand routine, 
or you can determine the length of the text in a specified edit record by using the 
LEGetTextLen routine. 

When you're completely done with an edit record and want to dispose of it, call 
LEDispose . 

To make a blinking caret appear at the insertion point, call the LEidle routine as often 
as possible (at least once each time through the main event loop); if it's not called 
often enough, the caret will blink irregularly. 

When a mouse-down event occurs in the view rectangle (and the window is active), 
call the LEClick routine. LEClick controls the placement and highlighting of the 
selection range in response to mouse activity, including supporting use of Shift-Click 
to make extended selections. 

Key-down, auto-key, and mouse events that pertain to text editing can be handled by 
several LineEdit routines: 

■ LEKey inserts characters; deletes characters backspaced over; controls the 
placement and highlighting of the selection range in response to the Left Arrow 
and Right Arrow keys; and handles the Control-F, Control-X, and Control-Y 
commands. 

■ LECut transfers the selection range to the LineEdit scrap, removing the selection 
range from the text. 

■ LEPaste inserts the contents of the LineEdit scrap. By calling LECut, changing the 
insertion point, and then calling LEPaste, you can perform a cut and paste 
operation, moving text from one place to another. 

■ LECopy copies the selection range to the LineEdit scrap. By calling LECopy, 
changing the insertion point, and then calling LEPaste, you can make multiple 
copies of text. 

■ LEDelete removes the selection range (without transferring it to the scrap). You 
can use LEDelete to implement the Clear command. 

■ LEinsert inserts specified text. 

After each editing procedure, LineEdit redraws the text if necessary. You never have 
to set the selection range or insertion point yourself; LEClick and the editing routines 
leave it where it should be. If you want to set the selection range directly, however­
to highlight an initial default name or value, for example-you can use the 
LESetSelect routine. 

10-10 Chapter 10: LlneEdlt Tool Set 



To implement cutting and pasting of text between different applications or between 
applications and desk accessories, you need to transfer the text between the LineEdit 
scrap (a private scrap used only by LineEdit) and the Scrap Manager's desk scrap. 
To do this, use the LEFromScrap and LEToScrap routines. 

When an update event is reported for a window associated with an edit record, call 
LEUpdate (along with the Window Manager routine BeginUpdate, the QuickDraw II 
routine EraseRect, and the Window Manager routine EndUpdate) to redraw the text. 

Your application will usually call the LEActivate and LEDeactivate routines when an 
activate event is reported for a window associated with an edit record. LEActivate 
highlights the selection range or displays a caret at the insertion point; LEDeactivate 
unhighlights the selection range or removes the caret. 

The LESetText routine lets you change the text being edited. For example, if your 
application has several separate pieces of text that must be edited one at a ~ime, you 
don't have to allocate an edit record for each of them. Allocate a single edit record 
and then use LESetText to change the text. 

You can use the LESetJust routine to change the justification style of the text. 

If you want to draw noneditable text in any specified rectangle, you can use the 
LETextBox or LETextBox2 routines. 

If you want a custom caret or custom highlighting, use the LESetCaret or LESetHilite 
routines, respectively. 

Moving or scrolling windows that contain LineEdit items 
If you want to move a window that contains one or more LineEdit items, you must not 
be using the Window Manager routine TaskMaster. If you aren't using TaskMaster, 
you should call the LEDeactivate routine for each active LineEdit item, move the 
window, and then call the LEActivate routine for each previously active LineEdit 
item. 

If you want to scroll a window with LineEdit items in it, you will need to use the 
Window Manger routines StartDrawing, BeginUpdate, EraseRect, EndUpdate, and 
the QuickDraw II routine SetOrigin in addition to the LineEdit Tool Set LEUpdate 
routine, in the following order: 

1 . Call StartDrawing for the current window's GraEPort. 

2 . Call Begin Update for the current window's GraEPort. 

3. Call EraseRect to erase the view rectangle. 

4 . Call LEU pdate for the current edit record. 

5. Call EndUpdate for the current window's GraEPort. 

6. Call SetOrigin with coordinates (O,Q). 

Moving or scrolling windows that contain LineEdit Items l 0-11 



$0114 LEBootlnit 
Initializes the LineEdit Tool Set; called only by the Tool Locator. 

Warning 

An application must never make this call. 

Parameters The stack is not affected by this call. There are no input or output parameters. 

Errors None 

C Call must not be made by an application. 

l 0-12 Line Edit Tool Set housekeeping routines 



$0214 

Parameters 

LEStartUp 
Starts up the LineEdit Tool Set for use by an application and allocates a handle for the 
LineEdit scrap. The scrap is initially empty. 

Important 
You should call LEStartUp even if your application doesn't use LlneEdit, so that 
desk accessories, dialog boxes, and alert boxes will work correctly. 

Stack before call 

previous contents 

userID Word-ID number of the application 

dPageAddr Word-Bank $0 starting address for one page of direct-page space 

f- SP 

Stack after call 

previous contents I 
--------- f- SP 

Errors 

C 

$1401 leDupStrtUpErr LEStartUp already called 

Memory Manager errors NewHandle routine called; any errors returned 
unchanged 

extern pascal void LEStartUp (u serID , dPageAddr ) 

Word user ID ; 

Word dPageAddr ; 

LlneEdlt Tool Set housekeeping routines 10-13 



$0314 

Parameters 

Errors 

C 

$0414 

Parameters 

LEShutDown 
Shuts down the LineEdit Tool Set and discards the LineEdit scrap. 

Important 

If your application has started up the LineEdit Tool Set, the application must 
make this call before It quits. 

The stack is not affected by this call. There are no input or output parameters. 

$1403 leNotActiveErr LineEdit Tool Set not active 

Memory Manager errors DisposeHandle called; any errors returned 
unchanged 

e xte r n p as c a l void LEShutDown () 

LEVersion 
Returns the version number of the LineEdit Tool Set. 

Stack before call 

previous contents 

wordspace Word-Space for result 

f-SP 

Stack after call 

previous contents 

Errors 

C 

l 0-14 

versionlnjo 

None 

Word-Version number of the LineEdit Tool Set 

f-SP 

e xte rn pascal Word LEVer si on () 

LineEdlt Tool Set housekeeping routines 



$0514 

Parameters 

Errors 

C 

$0614 

Parameters 

LEReset 
Returns an error if LineEdit is active. 

Warning 
An application must never make this call. 

The stack is not affected by this call. There are no input or output parameters. 

$1402 leResetError LineEdit can't be reset 

Call must not be made by an application. 

LEStatus 
Indicates whether the LineEdit Tool Set is active. 

Staclc before call 

previous contents 

wordspace 

Stack after call 

previous contents 

activeFlag 

Errors None 

Word-Space for result 

f-SP 

Word-BOOLEAN; TRUE if LineEdit Tool Set active, FALSE if inactive 

f-SP 

C extern pascal Boolean LEStatus () 

LlneEdit Tool Set housekeeping routines 10-15 



$0F14 

Parameters 

LEActivate 
Highlights the selection range in specified text. If the selection range is an insertion 
point, the routine displays a caret. 

Your application will usually call LEActivate when an activate event is reported for a 
window associated with an edit record. 

Stack before call 

previous contents 

leRecHandle Long-HANDLE to edit record 

Stack after call 

previous contents I 
-------- f- SP 

Errors Memory Manager errors 

QuickDraw II errors 

Returned unchanged 

Returned unchanged 

C extern pascal void LEActivate (leRecHandle ) 

LERecHndl leRecHandle ; 

l 0-16 LlneEdit Tool Set routines 



$0D14 

Parameters 

LEClick 
Controls the placement and highlighting of the selection range as determined by 
mouse events. Call LEClick whenever a mouse-down event occurs in the view 
rectangle of the edit record specified by leRecHandle and the window associated with 
that edit record is active. The eventPtr parameter should be a pointer to the mouse­
down event record. 

LEClick unhighlights the old selection range unless the selection range is being 
extended. If the mouse moves, meaning that a drag is occurring, LEClick expands or 
shortens the selection range accordingly. In the case of a double click, the word 
under the cursor (plus any following spaces) becomes the selection range; dragging 
expands or shortens the selection a word at a time. In the case of a triple click, the 
entire line becomes the selection range. LEClick keeps control until the mouse button 
is released. 

Stack before call 

prevtous contents 

eventPtr Long-POINTER to mouse-down event record 

leRecHandle Long-HANDLE to edit record 

f- SP 

Stack after call 

prevtous contents I 
-------- f- SP 

Errors Memory Manager errors 

QuickDraw II errors 

Returned unchanged 

Returned unchanged 

C extern pascal void LEClick(eventPtr,leRecHandle) 

EventRecordPtr eventPtr ; 

LERecHndl leRecHandle ; 

LlneEdlt Tool Set routines 10-17 



$1314 

Parameters 

LECopy 
Copies the selection range from the specified text into the LineEdit scrap. Anything 
previously in the scrap is deleted. The selection range is not deleted. If the selection 
range is an insertion point, the scrap is emptied. 

Stack before call 

previous contents 

leRecHandle Long-HANDLE to edit record 

f-SP 

Stack after call 

previous contents I 
------- -- f- SP 

Errors Memory Manager errors 

QuickDraw II errors 

Returned unchanged 

Returned unchanged 

C extern pascal void LECopy( leRecHandle ) 

LERecHndl leRecHandle ; 

l 0-18 LlneEdit Tool Set routines 



$1214 LECut 
Removes the selection range from the specified text and places it in the LineEdit 
scrap. The text is redrawn as necessary. Anything previously in the scrap is deleted. 
If the selection range is an insertion point, the scrap is emptied. 

Parameters 

Stack before call 

previous contents 

leRecHandle 

Stack after call 

Long-HANDLE to edit record 

~SP 

previous contents I 
--------~SP 

Errors Memory Manager errors 

QuickDraw II errors 

Returned unchanged 

Returned unchanged 

C e xtern pas c al v oid LECut ( l e RecHandle) 

LERe cHnd l leRecHandle ; 

LlneEdit Tool Set routines 10-19 



$1014 

Parameters 

LE Deactivate 
Unhighlights the selection range in the specified text. If the selection range is an 
insertion point, the routine removes the caret. 

Your application will usually call LEDeactivate when an activate event (for a window 
becoming inactive) is reported for a window associated with an edit record. 

Stack before call 

prevtous contents 

leRecHandle Long-HANDLE to edit record 

f- SP 

Stack after call 

prevtous contents I 
----- --- f- SP 

Errors Memory Manager errors 

QuickDraw II errors 

Returned unchanged 

Returned unchanged 

C extern pascal void LEDe a ctivate (leRecH a ndle ) 

LERecHndl leRecHandle; 

10-20 LlneEdlt Tool Set routines 



$1514 

Parameters 

LE Delete 
Removes the selection range from the specified text and redraws the text as necessary. 
LEDelete is the same as LECut except that it doesn't transfer the selection range to the 
scrap. If the selection range is an insertion point, nothing happens. 

Stack before call 

prevtous contents 

leRecHandle 

Stack after call 

Long-HANDLE to edit record 

(-SP 

previous contents I 
-------- (- SP 

Errors Memory Manager errors 

QuickDraw II errors 

Returned unchanged 

Returned unchanged 

C e x tern pascal void LEDelete (leRecHandle ) 

LERecHndl leRecHandl e; 

LineEdlt Tool Set routines 10-21 



$OA14 

Parameters 

LE Dispose 
Releases the memory allocated for a specified edit record. Call this routine when 
you're completely through with an edit record. 

Important 
All edit records created by calling LENew must be disposed of by calling 
LEDispose before ca ll ing LEShutDown. 

Stack before call 

previous contents 

leRecHandle Long-HANDLE to edit record 

f-SP 

Stack after call 

previous contents I 
- ------- f- SP 

Errors Memory Manager errors DisposeHandle called; any errors returned 
unchanged 

C extern pascal void LEDispose (leRecHandle ) 

LERecHndl leRecHandle ; 

10-22 LlneEdit Tool Set routines 



$1914 LEFromScrop 
Copies the desk scrap to the LineEdit scrap. If the number of characters in the desk 
scrap is greater than 256, an error is returned, and the scrap is not copied. 

Important 

The Scrap Manager must have already been loaded and started up. 

Parameters The stack is not affected by this call. There are no input or output 
parameters. 

Errors $1404 leScrapErr Desk scrap too big to copy 

Sera p Manager errors GetScrapHandle and GetScrapSize called; any errors 
returned unchanged 

C extern pascal void LEFromScrap () 

$1Cl4 LEGetScroplen 
Returns the length of the LineEdit scrap in bytes. 

Parameters 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

Word-Space for result 

~SP 

scrap Length Word-Length of LineEdit scrap in bytes 

~SP 

Errors 

C 

None 

e xtern pas cal Word LEGetScrapLen () 

LlneEdit Tool Set routines 10-23 



$2214 

Parameters 

LEGetTextHand 
Returns a handle to the text of a specified edit record. 

❖ Note: This call is available only in Version 2.0 or later versions of the LineEdit 
Tool Set. 

Stack before call 

prevtous contents 

longspace 

leRecHandle 

Stack after call 

prevtous contents 

-- leLineHandle 

Errors None 

Long-Space for result 

Long-HANDLE to edit record 

f- SP 

Long-HANDLE to text 

f-SP 

C extern pascal Handle LEGetTextHand(leRecHandle) 

LERecHndl l eRecHandle ; 

l 0-24 Line Edit Tool Set routines 



$2314 LEGetTextlen 
Returns the length of the text, in bytes, of a specified edit record. 

❖ Note: This call is available only in Version 2.0 or later versions of the LineEdit 
Tool Se t. 

Parameters 

Stack before call 

previous contents 

wordspace 

leRecHandle 

Stack after call 

previous contents 

leLength 

Errors None 

Word-Space for result 

Long-HANDLE to edit record 

Word-Length of the text in bytes 

f-SP 

C extern pascal Word LEGetTextLen (leRecHandle ) 

LERecHndl leRecHandle ; 

LlneEdit Tool Set routines 10-25 



$0C14 

Parameters 

LEldle 
Makes a blinking caret appear at the insertion point (if any) in the specified text. The 
caret appears only when the window and the edit record are active. 

LineEdit observes a minimum blink interval: No matter how often LEidle is called, 
the time between blinks will never be less than the minimum interval. The user can 
adjust the minimum blink interval with the Control Panel desk accessory. 

To provide a constant frequency of blinking, LEidle should be called as often as 
possible, at least once each time through the main event loop. Call it more than once 
if your application performs an unusually large amount of processing each time 
through the loop. 

❖ Note: LEidle actually only needs to be called when the window associated with the 
edit record is active. 

Stack before call 

previous contents 

leRecHandle Long-HANDLE to edit record 

f- SP 

Stack after call 

p revious contents I 
------- - f- SP 

Errors Memory Manager errors 

QuickDraw II errors 

Returned unchanged 

Returned unchanged 

C extern pascal void LEidle( leRecHandle ) 

LERecHndl leRecHandle ; 

10-26 LlneEdlt Tool Set routines 



$1614 LElnsert 
Takes specified text and inserts it just before the selection range in the specified text 
and redraws the text as necessary. The routine doesn't affect either the selection 
range or the scrap. 

Important 
The text pointed to by text Ptr must not contain a Pascal-type length byte; 
the length of the text is passed as the textLength parameter. 

Parameters 

Stack before call 

previous contents 

-- textPtr 

textLength 

-- leRecHandle 

--· 

--· 

Long-POINTER to text to be inserted 

Word-INTEGER; number of characters to be inserted 

Long-HANDLE to edit record 

f-SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors Memory Manager errors 

QuickDraw II errors 

Returned unchanged 

Returned unchanged 

C e xtern pascal void LEinsert (textPtr , textLength , leRecHandle ) 

Pointer textPtr ; 

Word text Length ; 

LERecHndl leRecHandle ; 

LlneEdlt Tool Set routines 10-27 



$1114 

Parameters 

LEKey 
Replaces the selection range in the specified text with a specified character and leaves 
an insertion point just past the inserted character. If the selection range is an 
insertion point, LEKey just inserts the character there. LEKey redraws the text as 
necessary. 

Every time a keyboard event that your application decides should be handled by 
LineEdit is reported, you should call LEKey. 

❖ Note: LEKey inserts every character passed in theKey (except for Backspace, 
Control-F, Control-X, Control-Y, Left Arrow, and Right Arrow, as detailed in the 
section "Special Characters" in this chapter), so it's up to the application to filter 
out all undesired characters (such as command keys and other control characters). 

Stack before call 

previous contents 

theKey 

modifiers 

Word-Key reported by the event record 

Word-Copy of the modifiers field in the event record 

-- leRecHandle - - · Long-HANDLE to edit record 

~SP 

Stack after call 

previous contents I 
-------- ~ SP 

Errors Memory Manager errors 

QuickDraw II errors 

Returned unchanged 

Returned unchanged 

C extern pascal void LEKey (theKey, modifiers , leRe cHandle) 

Word theKey ; 

Word modifiers ; 

LERecHndl leRecHandle ; 

10-28 LlneEdit Tool Set routines 



Special characters 
If theKey contains one of the special characters, LEKey takes the action shown in 
Table 10-3. 

Table 10-3 
LEKey actions and special characters 

Character 

Backspace 

Control-F 

Control-X 

Control-Y 

Left Arrow or 
Right Arrow 

Option-Left Arrow or 
Option-Right Arrow 

Apple-Left Arrow or 
Apple-Right Arrow 

Shift-Left Arrow or 
Shift-Right Arrow 

Shift-Option-Left Arrow or 
Shift-Option-Right Arrow 

Shift-Apple-Left Arrow or 
Shift-Apple-Right Arrow 

Action 

Deletes the selection range or the character 
immediately to the left of the insertion point 

Deletes the selection range or the character 
immediately to the right of the insertion point 

Deletes the selection range or the entire line 

Deletes the selection range or the text from the 
insertion point to the end of the line 

Moves the insertion point one character at a time 

Moves the insertion point one word at a time 

Moves the insertion point to the beginning or end of 
the line 

Extends or shortens the selection range one character 
at a time 

Extends or shortens the selection range one word at a 
time 

Selects from the insertion point to the beginning or 
end of the line 

LlneEdit Tool Set routines 10-29 



$0914 LENew 
Allocates space for text, creates and initializes an edit record for that text, and returns 
a handle to the new edit record. Call LENew once for every edit record you want 
allocated. The edit record incorporates the drawing environment of the current 
GrafFort and is initialized with an insertion point at character position 0. 

❖ Note: The caret won't appear until you call the LEActivate routine. 

The text will be limited to the length specified in the maxTextLen parameter . 

Important 
The view rectangle must not be empty. For example, don't make its right edge 
less than Its left edge, If you don't want any text visible, specify a rectangle off 
the screen instead. 

If you want the LineEdit item to appear in a special font, you must call the Font 
Manager routine InstallFont before you make the LENew call. If you want to change 
the font for an existing LineEdit item, you must make a LEDispose call for that record, 
make the InstallFont call, and then call LENew to create a new LineEdit record. 

Parameters 

Stack before call 

prevtous contents 

-- longspace 

-- destRectPtr 

-- viewRectPtr 

maxTextLen 

Stack after call 

previous contents 

leRecHandle 

--· 

--· 

--· 

Long-Space for result 

Long-POINTER to RECT data structure in current GrafFort's coordinates 

Long-POINTER to RECT data structure in current GrafFort's coordinates 

Word-INTEGER specifying number of bytes to allocate for text (1-256) 

f-SP 

Long-HANDLE to new edit record 

l 0-30 Line Edit Tool Set routines 



Errors 

C 

Memory Manager errors NewHandle called; any errors returned unchanged 

extern pascal LERecHndl LENew (destRectPtr , viewRectPtr , maxTextLen) 

Rect *destRectPtr; 

Rect *viewRectPtr ; 

Word maxTextLen ; 

LineEdit Tool Set routines 10-31 



$1414 

Parameters 

LEPaste 
Replaces the selection range in the specified text with the contents of the LineEdit 
scrap and leaves an insertion point just past the inserted text. The text is redrawn as 
necessary. If the scrap is empty, the selection range is deleted. If the selection range 
is an insertion point, LEPaste inserts the scrap at that point. 

Stack before call 

prevtous contents 

leRecHandle Long-HANDLE to edit record 

Stack after call 

prevtous contents I 
-------- f- SP 

Errors Memory Manager errors 

QuickDraw II errors 

Returned unchanged 

Returned unchanged 

C extern pascal void LEPaste (leRecHandle) 

LERecHndl leRecHandle; 

l 0-32 LlneEdlt Tool Set routines 



$1B14 LEScrapHandle 
Returns a handle to the LineEdit scrap. 

Parameters 

Stack before call 

previous contents 

longspace 

Stack after call 

previous contents 

scrapHandle 

Errors None 

Long-Space for result 

f- SP 

Long-HANDLE to LineEdit scrap 

f-SP 

C extern pascal Handle LE ScrapHandle () 

LlneEdit Tool Set routines l 0-33 



$1F14 

Parameters 

LESetCaret 
Sets the leCaretHook field in a specified edit record to point to a custom caret drawing 
procedure. LineEdit will use that procedure to both draw and erase the caret. 

Stack before call 

previous contents 

caretProcPtr 

leRecHandle 

Long-POINTER to custom caret drawing procedure; NIL for standard 

Long-HANDLE to edit record 

~SP 

Stack after call 

previous contents I 
--------~SP 

Errors 

C 

10-34 

None 

extern pascal void LESetCaret (caretProcPtr , leRecHandle) 

VoidProcPtr 

LERecHndl 

caretProcPtr ; 

leRecHandle ; 

LlneEdit Tool Set routines 



$1 E14 LESetHilite 
Sets the leHiliteHook field in the edit record to point to a custom highlighting 
procedure. LineEdit will use that procedure to both highlight and unhighlight the 
selection range. 

Parameters 

Stack before call 

previous contents 

h iliteProcPtr Long-POINTER to custom highlighting procedure; NIL for standard 

leRecHandle Long-HANDLE to edit record 

Stack after call 

previous contents I 
- ------- f- SP 

Errors None 

C e xt e r n pasca l void LESetHilite (hiliteProcPtr , leRecHandle ) 

VoidProcPt r hiliteP r ocPtr ; 

LERe c Hnd l l e RecHandle ; 

LineEdit Tool Set routines 10-35 



$2114 

Parameters 

LESetJust 
Sets the justification style of the text of the specified edit record. The text is justified to 
the destination rectangle supplied by the LENew call, as described in the section "The 
leDestRect and leViewRect Fields" in this chapter. 

After you call LESetJust, call the Window Manager routine InvalRect so that the text will 
be redrawn using the new justification style. 

❖ Note: This call is available only in Version 2.0 or later versions of the LineEdit 
Tool Set. 

Stack before call 

prevtous contents 

just 

leRecHandle 

Word-0 = left justified, 1 = centered, $FFFF = right justified 

Long-HANDLE to edit record 

f- SP 

Stack after call 

previous contents I 
---- --- - f- SP 

Errors None 

C extern pascal void LESetJust ( just , leRecHandle ) 

Word ju s t ; 

LERecHnd l leRecHandle ; 

· 10-36 LlneEdit Tool Set routines 



$1D14 LESetScraplen 
Sets the size of the LineEdit scrap to a specified number of bytes. If newlength is 
greater than 256, it is set to 256. 

Parameters 

Stack before call 

previous contents 

new Length 

Stack after call 

Word-Number of bytes, 0-256 

~SP 

I prevtous contents I~ SP 

Errors None 

C extern pascal v oid LESetScrapLen(newLength) 

Word newLength ; 

LlneEdit Tool Set routines 10-37 



$0El4 

Parameters 

LESetSelect 
Sets the selection range in the specified text. 

The text selected is between selStart and selEnd in the text specified by leRecHandle. 
The old selection range is unhighlighted, and the new one is highlighted. If selStart 
equals selEnd, the selection range is an insertion point, and a caret is displayed. 

The selStart parameter must be less than or equal to selEnd. If selEnd is beyond the 
last character of the text, the position just past the last character is used. 

Stack before call 

previous contents 

selStart 

Se/End 

Word-INTEGER; start of selection range, 0-256 

Word-INTEGER; end of selection range, 0-256 

-- leRecHandle - - · Long-HANDLE to edit record 

f-- SP 

Stack after call 

previous contents I 
-------- f-- SP 

Errors Memory Manager errors 

QuickDraw II errors 

Returned unchanged 

Returned unchanged 

C e xtern pascal void LESetSelect (selStart , selEnd , leRecHandle ) 

Word selStart ; 

Wo r d selEnd; 

LERecHndl leRecHandle ; 

l 0-38 LineEdit Tool Set routines 



$0B14 

Parameters 

LESetText 
Incorporates a copy of the specified text into the specified edit record. 

The selection range is set to an insertion point at the end of the text. If the textLength 
parameter is greater than the maximum text length allowed for the edit record, only 
the maximum number of characters allowed will be copied into the edit record. 

Important 

The text pointed to by text Ptr must not contain a Pasca l-type length byte; 
the length of the text Is passed as the textLength parameter. 

LESetText doesn't redraw the text, so call the Window Manager routine InvalRect 
afterward, if necessary. Pass the InvalRect routine a pointer to the edit record's view 
rectangle, so that the view rectangle will be added to the window's update region. 

Stack before call 

prevtous contents 

-- textPtr 

textLength 

-- leRecHandle 

--· 

--· 

Long-POINTER to text 

Word-INTEGER; number of characters in text 

Long-HANDLE to edit record 

~SP 

Stack after call 

prevtous contents I 
-------- ~SP 

Errors Memory Manager errors 

QuickDraw II errors 

Returned unchanged 

Returned unchanged 

C e xtern pascal void LESetText (textPtr , textLength , l eRecHandle) 

Pointer textPtr ; 

Word text Length ; 

LERecHndl leRecHandle ; 

LineEdit Tool Set routines 10-39 



$1814 

Parameters 

LETextBox 
Draws the specified text in the specified rectangle, justifying the text as specified. 
LETextBox supports left, right, and centered justification. 

❖ Note: The LETextBox2 routine also supports fill justification; see the section 
"LETextBox2" in this chapter. 

LETextBox performs an EraseRect on the rectangle before drawing the text and then 
clips the text to the rectangle. LETextBox is not limited to a single line on the screen 
as the other LineEdit routines are. The routine wraps to the next line whenever a 
carriage return character (ASCII $OD) occurs in the text string. However, LETextBox 
does not automatically wrap when it reaches the right side of the specified rectangle; 
use the LETextBox2 routine for that function. 

Important 

The text pointed to by text Ptr must not contain a Pascal-type length byte; the 
length of the text is passed as the textlength parameter. 

LETextBox creates its own edit record, which it deletes when it's finished, so the text it 
draws cannot be edited. The routine does not allocate space for the text or make any 
copies of the text. 

Stack before call 

previous contents 

-- textPtr 

textlength 

-- rectPtr 

just 

Stack after call 

--

-· 

Long-POINTER to text 

Word-INTEGER, length of text including carriage returns (0-32767) 

Long-POINTER to a RECT specified in local coordinates 

Word-0 = left justified, 1 = centered, $FFFF = right justified 

~SP 

previous contents I 
--------~SP 

l 0-40 LlneEdlt Tool Set routines 



Errors 

C 

Memory Manager errors 

QuickDraw II errors 

Returned unchanged 

Returned unchanged 

extern pascal void LETextBox (textPtr , textLength , rectPtr , just) 

Pointer textPtr ; 

Word text Lengt h; 

Rect *rectPtr ; 

Word just ; 

LlneEdlt Tool Set routines 10-41 



$2014 

Parameters 

LETextBox2 
Draws the specified text in a specified rectangle, justifying the text as specified. 
LETextBox2 supports left, right, centered, and fill justification and can also support 
embedded changes. 

Important 

LETextBox2 Is available only In Version 2.0 or later versions of the LlneEdit Tool 
Set. Also, In addition to the tool sets required by the LlneEdlt Tool Set, 
LETextBox2 requires that the Integer Math Tool Set be loaded and started up. 

LETextBox2 performs an EraseRect on the rectangle before drawing the text and then 
clips the text to the rectangle. LETextBox2 is not limited to a single line on the 
screen. The routine will wrap to the next line whenever a carriage return character 
(ASCII $OD) occurs in the text string, or will automatically wrap to the next line 
whenever the text reaches the right side of the rectangle. 

Important 

The text pointed to by texf Ptr must not contain a Pasca l-type length byte; 
the length of the text Is passed as the textLength parameter. 

LETextBox2 does not create an edit record, so the text it draws cannot be edited. The 
routine does not allocate space for the text or make any copies of the text. 

Stack before call 

previous contents 

-- textPtr 

textlength 

-- rectPtr 

Just 

Stack after call 

--· 

--· 

Long-POINTER to text (text can include embedded changes) 

Word-Includes carriage returns and embedded changes (0-32767) 

Long-POINTER to RECT data structure specified in local coordinates 

Word-0 = left , 1 = centered, $FFFF = right, 2 = fill justified 

f- SP 

previous contents I 
•-------- f- SP 

l 0-42 LlneEdlt Tool Set routines 



Errors Memory Manager errors Returned unchanged 

C extern p a sca l void LETe xt Bo x2 (textPtr , textLength , rec tPt r, just ) 

Pointer textPtr ; 

Wor d text Lengt h; 

Rect * rect Pt r ; 

Word j u s t ; 

Using embedded changes 
You can change the appearance of the displayed text by using embedded changes in 
the text. To specify an embedded change, you insert a delta flag byte ($01) into the 
text, followed by a change flag byte, followed by the appropriate data. The values for 
the change flag byte and the data are given in Table 10-4. 

Table 10-4 
LETextBox2 embedded change values 

Change 
flag value 

S ($53) 

Parameter 
changed 

Font style 

Data 
size 

Word 

Data 
description 

Font style or combination of styles, as shown in the 
following bit flag (1 means that the style is applied): 

1 isl 14113112111110191 a 1 1 I 61 s 1 41 3 I 2 I 1 1 o 1 
R~se,ved; set to O J 'j I 

Shadow = 1 J 
Outline= 1 

Underline = 1 

Italic= 1 

Bold= 1 

❖ Note: QuickDraw II Auxiliary must be loaded and 
started up for the shadow, outline, and italic styles to 
be applied. 

(continued) 

LlneEdit Tool Set routines 10-43 



Table 10-4 (continued) 
LETextBox2 embedded change values 

Change 
flag value 

C ($43) 

B ($42) 

F ($46) 

J ($4A) 

L ($4C) 

M ($4D) 

X ($58) 

Parameter 
changed 

Foreground color 

Background color 

Font 

Justification 

Left margin 

Right margin 

Extra spacing 

Data 
size 

Word 

Word 

FontID 

Word 

Word 

Word 

Word 

Data 
description 

Color of foreground, as an index into the current color 
table. 

Color of background, as an index into the current color 
table. 

Font ID specifying which font family number, font style, 
and font size to use. 

If the JamNum field of the font ID is 0, it's translated 
into the family number of the system font. A family 
number of $FFFF is not allowed, nor is a font size of 0. 

❖ Note: If this change flag is used, the Font Manager 
must have already been loaded and started up. See 
Chapter 8, "Font Manager," for more information. 

How the text should be justified, as follows: 

0 
1 
$FFFF 
2 

Left justification 
Centered 
Right justification 
Fill justification (text is justified to both 
margins) 

Number of pixels to indent from the left edge of the 
destination rectangle . 

Number of pixels to indent from the right edge of the 
destination rectangle. 

Number of extra pixels to be added to normal line 
spacing. This number may be negative, which can lead 
to overlapping text. 

A simple assembly-language example that changes the style of a single word is as follows: 

MyText de e'This is ' 

de h ' 01 ',e'S', i ' $0001 ' 

de e ' My' 

de h 1 0l 1 , e 1 S 1 , i 1 $0000 1 

dee' text' 

LETextBox2 will print this text as 

This is My text 

10-44 LlneEdit Tool Set routines 



$1A14 LEToScrap 
Copies the LineEdit scrap to the desk scrap. 

Important 

The Scrap Manager must have a lready been loaded and started up . 

Parameters The stack is not affected by this call. There are no input or output parameters. 

Errors Scrap Manager errors PutScrap called; any errors returned unchanged 

C extern pascal void LEToScrap () 

LlneEdit Tool Set routines 10-45 



$1714 

Parameters 

LE Update 
LEUpdate redraws the text of the specified edit record. Your application should call 
LEUpdate every time an update event for a window associated with an edit window is 
reported. LEUpdate should be called after you call the Window Manager routine 
BeginUpdate and the QuickDraw II routine EraseRect, and before you call the Window 
Manager routine EndUpdate. 

If you do not include the EraseRect call, the caret may sometimes remain visible when 
the window is deactivated. 

Stack before call 

previous contents 

leRecHandle Long-HANDLE to edit record 

f- SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors Memory Manager errors 

QuickDraw II errors 

Returned unchanged 

Returned unchanged 

C extern pascal void LEUpdate ( leRecHandle ) 

LERecHndl leRecHandle ; 

l 0-46 Line Edit Tool Set routines 



LineEdit Tool Set summary 
This section briefly summarizes the constants, data structures, and tool set errors 
contained in the LineEdit Tool Set. 

Important 

These definitions are provided In the appropriate interface file . 

Table 10-5 
LlneEdit Tool Set constants 

Name 

Justification 
leJustLeft 
leJustCenter 
leJustRight 
leJustFill 

Table 10-6 

Value 

$0000 
$0001 
$FFFF 
$0002 

Description 

Left justification 
Center justification 
Right justification 
Fill justification (text is justified to both the left and right 
margins) 

LlneEdlt Tool Set data structures 

Name Offset Type Definition 

LERec (Edit Record) 
leLineHandle $00 Handle Handle to text 
leLength $04 Integer Current length of text 
leMaxLength $06 Integer Maximum text length 
leDestRect $08 Rect Destination rectangle 
leViewRect $10 Rect View rectangle 
lePort $18 GrafFortPtr Pointer to GrafFort 
leLineHite $ lC Integer Used for highlighting 
leBaseHite $1E Integer Used for drawing the text 
leSelStart $20 Integer Start of selection range 
leSelEnd $22 Integer End of selection range 
leActFlg $24 Word Reserved for internal use 
leCarAct $26 Word Reserved for internal use 
leCarOn $28 Word Reserved for internal use 
leCarTime $2A Longint Reserved for internal use 
leHiliteHook $2E VoidProcPtr Pointer to highlight routine 
leCaretHook $32 VoidProcPtr Pointer to caret routine 
leJust $36 Word Text justification (Version 2.0 or later) 

Note: The actual assembly-language equates have a lowercase o ( the letter) in front of all of 
the names given in this table. 

Line Edit Tool Set summary 10-4 7 



Table 10-7 
LlneEdit Tool Set error codes 

Code Name Description 

$1401 leDupStrtUpErr LEStartUp already called 
$1402 leResetError Can't reset LineEdit 
$1403 leNotActiveErr LineEdit not active 
$1404 leScrapErr Desk scrap too big to copy 

10-48 Chapter l 0: Line Edit Tool Set 



Chapter 11 

List Manager 

The List Manager allows your application to display lists of similar data from which 
the user can choose. Generally, the list is a list of strings, such as names of files, 
fonts, or pictures. However, a list may also be a list of icons, pictures, colors, 
patterns, or any graphic display. A list appears vertically, with a vertical scroll bar to 
the right of it. 

The List Manager does not use a direct page, so it needs 768 bytes of stack space. 

❖ Note: At the time of publication, the system did not allow a list control to be 
part of a dialog window. 

The List Manager is basically a custom control definition procedure. The List 
Manager routines help your application interface with the control. 

A preview of the List Manager routines 
To introduce you to the capabilities of the List Manager, all List Manager routines are 
grouped by function and briefly described in Table 11-1. These routines are 
described in detail later in this chapter, where they are separated into housekeeping 
routines (discussed in routine number order) and the rest of the List Manager 
routines (discussed in alphabetical order). 

11- l 



Table 11-1 
List Manager routines and their functions 

Routine Description 

Housekeeping routines 
ListBootinit Initializes the List Manager; called only by the Tool Locater-must not be called by 

ListStartUp 
ListShutDown 
ListVersion 
ListReset 

ListStatus 

list routines 
CreateList 
NewList 
SortList 
GetListDefF roe 

Member routines 
Draw Member 
NextMember 

ResetMember 

SelectMember 

an application 
Starts up the List Manager for use by an application 
Shuts down the List Manager when an application quits 
Returns the version number of the List Manager 
Resets the List Manager; called only when the system is reset-must not be called by 
an application 
Indicates whether the List Manager is active 

Creates a list control using a specified list record 
Resets the list control according to a specified list record 
Alphabetizes a specified list by rearranging the array of member records 
Returns a pointer to the list control's definition procedure 

Draws one or all members of a specified list 
Searches a specified list record, starting with a specified member, and returns a 
pointer to the member record of the next selected member found 
Searches a specified list record, starting with the first member, returns a pointer to 
the member record of the first selected member found, and deselects (but does not 
redraw) the member 
Selects a specified member, deselects any other selected members in the list, and 
scrolls the list so that the specified member is at the top of the list display 

List controls and list records 
A list control is a custom control that displays lists of similar data. The initial 
appearance of the list control is defined by the list record, as shown in Figure 11-1. 

Important 

If you want to change the list control after It Is created, you must change the list 
control record, not the list record. Changing Information in the list record after 
the list control Is created does not affect the control. See the section • List 
Control Records" in this chapter. 

11-2 Chapter 11: List Manager 



Offset Field 

,o I 
fistRect 

I 
i Four words-RECT defining list's enclosing rectangle minus the scroll bar 

7 
1---------t 

8 

9 
1/stSize Word-Number of members in list; 16383 ($3FFF) maximum 

1-----------< 
OA 
OB 

1/stVfew Word-Maximum number of members that can be seen at once 
I---------< 

OC 11stType Word-Type of members (see Figure 11-2) 
OD 1---------, 
OE 
OF 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

lA 
1 B 
lC 
1D 
1 E 
l F 
20 
21 
22 

ffststart 

f-----------< 

1/stCtl 

f-----------< 

Ifs/Draw 

1---------t 

istMemHefgh 

1-----------< 

1/stMemS/ze 

1---------t 

Ifs/Pointer 

1---------t 

1/stRefCon 

23 f-------l 
24 
25 
26 
27 

flstScrol/Clr 

.__ ____ __, 

Figure 11-1 
List record 

Word-Number of member at which the list will start 

Long-Handle to control associated with this list 

Long-POINTER to routine to draw list's members; NIL for default 

Word-Height of each member in pixels; normally 10 for standard 
list using system font 

Word-Number of bytes in a member record 

Long-POINTER to the member list; an array of member records 
(see Figure 11-3) 

Long-ReseNed for application's use 

Long-POINTER to color table; NIL for default (see Figure 11 -4) 

List controls and list records 11-3 



The fields of the list record are as follows: 

listRect: This field defines the list's enclosing rectangle, not including the list's 
vertical scroll bar. The field is a RECT data structure defining the top, left, bottom, 
and right pixel coordinates. The specified points are local to the window in which 
the list appears; that is, the top number defines the number of pixels from the top of 
the window's content region, and the left number defines the numbers of pixels from 
the left side of the window's content region. This is true no matter where on the 
screen the window appears. 

The minimum height of the rectangle is 40 pixels. The right side of the rectangle 
should be the left side plus the length of the largest possible string in the list, plus 20 
(because strings are printed 10 pixels in from the left side of the list, and the right 
margin should also be 10). 

The bottom side can be computed using the following simple equation: 

topSide + (listView • listMemHeight) + 2 

2 + ( 10 • 10 ) + 2 = 104 

listSize: This field specifies the total number of members in the list. This value can 
range from $0000 to $3FFF, where 0 means no members in the list. The pointer to 
the list is stored in the listPointer field . 

listView: This field specifies the number of members that could be displayed at any 
one time in the list. If the total number of members is greater than listView, the user 
must scroll to see the additional members. 

If the total number of members is smaller than listView, empty slots will be displayed. 
In this case, the list's scroll bar will be inactive because all members are in view and 
the user does not need to scroll to see the data. 

listType: Two bits of this field are defined, and the others reserved. 

11sl14113112111110191s17161s14131211 1 o 1 
I JJ Reserved; set to O J 

listSelect 
Only single selection allowed = 1 

Arbitrary and range selection allowed = 0 

Figure 11-2 

listString 
C string-type ($00-terminated) string = 1 

Pascal-type (length-byte) string c O 

The listType bit flag 

11-4 Chapter 11 : List Manager 



The listString bit should be 1 if the memPtr field of the member records points to 
C-type (null-terminated) strings. The bit should be 0 if the memPtr field of the 
member records point to Pascal-type strings (strings beginning with a length byte). 
If the listDraw field of the list record is not 0, the list is considered custom, and this 
bit's state is not used by the List Manager. 

The listSelect bit should be 1 if only the single selection mode is allowed. The bit 
should be 0 if the arbitrary and range selection modes are allowed (see the section 
"Selection Process" in this chapter). 

listStart: This field specifies the list control 's starting value. It is the number of the 
first member appearing in the view (at the top). The value 1 indicates the first 
member, and 0 generally indicates that there are no members in the list. 

In most cases this field should be 1. However, if you want to display a certain 
member in the middle of the view, then listStart should be member number less half 
the view size but greater than 0. 

listCtL· The List Manager routine CreateList stores the handle to the list control in 
this field . 

listDraw: This field indicates the address of a routine in your application that will 
draw members. If this field is NIL, the list is considered a standard list, and the 
memPtr fields in every member record must point to either a Pascal-type or a C-type 
string. If this field is not NIL, the address is called by the List Manager whenever a 
member must be drawn. When the draw routine is entered the stack will appear as 
follows: 

previous contents 

-- rectPtr 

-- memRectPtr 

-- listHandle 

Rn I Rn 

Rn If- SP 

--· 

--· 

--· 

Long-POINTER to RECT enclosing member 

Long-POINTER to member's record; handle is locked 

Long-HANDLE to list control 

Three bytes-RTI address 

There is no return value, and the input parameters must be removed from the stack 
before returning. 

The flags in the member's memFlag field should be considered when drawing a 
member. 

List controls and list records 11-5 



listMemHeight: This field specifies the height of each member in pixels. The 
minimum height is 10 pixels, a good default value when using a standard list with the 
system font. This field is provided for lists that use a different size font or custom 
lists. 

listMemSize: This field specifies the size of each member record in the list. The 
minimum size is 5. If, for example, you need to associate a different ID number with 
each member, you could extend the member by a word and set ltstMemSize to 7. 
The word for the ID number should be added after the memFlag field in each 
member record. 

listPointer: This field indicates a pointer to the list of member records. If the 
list is empty, the pointer must be NIL. Each member record must be as shown in 
Figure 11-3. 

Offset 

$0 
l 
2 

Field 
,-------, 

memPlr 

3 f-------, 

Long-POINTER to string; can be used for custom members 

4 memFlog Byte-Selected or disabled status (see Figure 11 -4) 
5 n Bytes-The Value n is defined by the listMemSize field . 

I 
n 
'-------' 

Figure 11-3 
Member record 

The memFlag controls whether the member can be selected by the user as well as the 
current state of the member, as shown in Figure 11-4. A selected member is drawn 
using the highlight colors. Note that a disabled member cannot be selected because 
bit 6 of the member must be clear to be selected. 

l7l6 lsl4l312I 1101 

memSe/ect J 
Invalid value = 11 

Member is selected = 10 
Member is disabled; can't be selected= 01 

Member is enabled, but not selected = 00 

Figure 11-4 
The memF/ag bit flag 

11-6 Chapter 11 : List Manager 



listRefCon: This field is reserved for use by the application. 

listScrollQr: This field indicates a pointer to the color table of the list's scroll bar, 
or NIL for the default color table. The color table is shown in Figure 11-5. 

Offset 

so 
l 

2 
3 

4 

5 
6 
7 
8 
9 

A 
B 
C 
D 

E 
F 

Field 

- barOutffne -

- barNorArrow -

- barSe/Arrow -

,-.. barArrowBack -

- barNorThumb -

- barSe/Thumb -

- barPageRgn -

- bar/nactive -

Word- Outline color 
Bits 15-8 = 0 Bits 7-4 = Outline color for arrow boxes. thumb. page region 
Bits 3-0 = 0 

Word-Color of arrows when not highlighted 
Bits 15-8 = 0 Bits 7-4 = Background color (only bits 5-4 used In 640 mode) 
Bits 3-0 = Foreground color (only bits 1-0 used in 640 mode) 

Word-Color of arrows when hig hlighted (selected) 
Bits 15-8 = 0 7-4 = Background color (only bits 1-0 used In 640 mode) 

3-0=0 
Word-Color of arrow box Interior background 

Bits 15-8 = 0 Bits 7-4 = Background color 
Bits 3-0 = 0 

Word-Thumb"s Interior color when not highlighted 
Bits 15-8 = O Bits 7-4 = Background color 
Bits 3-0 = 0 

Word- Reserved for future use 

Word-Page reglon·s Interior color 
Bits 15-8 = 0 Bit 8 = 1 for dotted pattern, 0 for solid 
Bits 7-4 = Background of pattern , or color If solid Bits 3-0 = Foreground of pattern 

Word- Color of scroll bar's Interior color when Inactive 
Bits 15-8 = O Bits 7-4 = Background color 
Bits 3-0 = 0 

Figure 11-5 
List Manager scroll bar color table 

An assembly-language example of a list record follows . 

MyListRec de i2 ' 2 , 120 , 104 , 270 ' ; listRect Rectangle starts 2 pixels down , 120 in . 

4 members de i2 ' 4 ' 

de i2 ' 10 ' 

de i2 ' 0 ' 

de i2 ' 1 ' 

de i4 ' 0 ' 

de i4 ' 0 ' 

de i2 ' 10 ' 

de i2 ' 5 ' 

de i4 ' MyList ' 

de i4 ' 0 ' 

de i4 ' 0 ' 

; list Size 

; list View 10 members would be visible at once ; 

thus , 6 empty slots , scroll bar inactive 

; listType Multiple-selection OK , Pascal strings 

; listStart First member at top of view 

; listCtl Space for list control ' s handle 

; listDraw Default draw routine 

; li stMemHeight Each member 10 pixels tall 

; listMemSize Each member record is 5 bytes 

; listPointer Pointer to my list of member records 

; listRefCon Application defined 

; listScrollClr Default scroll bar color table 

List controls and list records l l -7 



MyList de i4 ' memberl ', il ' 0 ' ; Pointer to first member ' s string I memF l ag 

de i4 ' member2 ', il ' 0 ' ; Pointer to first member ' s st r ing I memFl ag 

de i 4 ' member3 ', il ' 0 ' ; Pointer to first member ' s string I memFlag 

de i4 ' member4 ', il ' 0 ' ; Pointer to first member ' s string I memFlag 

me mbe r l d e il 'B', e ' String 1' ; Str i ng for member 1 

membe r 2 de il ' B', e ' String 2 ' ; String for member 2 

member3 de i l ' B', e ' String 3 ' ; String for membe r 3 

member4 de il ' B', e ' String 4 ' ; String for member 4 

List control records 
The list control record is used to define the appearance of the control after the 
control has been created. Some fields in the list control record are initialized using 
corresponding values in the list record; those fields are identified in Figure 11-6. 

Your application can add and delete members from the list after the list control is 
created by adding or subtracting from the list and then changing the low-order word 
of ct/Data. The SortList routine can be used to realphabetize the list. If SortList is 
called after the list control is already visible (that is, after the list control record has 
already been created), then DrawMember should be called to redraw the entire list. 

11-8 Chapter 11 : List Manager 

byte 

byt e 

byte 

byte 



The complete definition of a list control record is shown in Figure 11-6. 

Offset Field 
$0 .-------, 

2 
3 

4 

5 
6 
7 
8 

OF 
10 
11 
12 

13 
14 
17 
18 

1 B 
l C 
lD 
1 E 
1 F 
20 

23 
24 

27 
28 
28 
2C 
2D 
2E 
2F 

c t/Next 

1--------1 

ct/Owner 

1--------< 

c t/Reef 

c t/Flag 

c t/Hilite 

- ct/Value -

1-- c t/Proc -

c t/Ac tion 

1------ --1 

c t/Data 

1---- ----1 

c t/RefCon 

1-------1 

ct/Color 

c t/MemDraw 

t/MemHe/gh 

c t/MemSize 

30, 
c t/List 

33 : 

34 i 
37 

c t/LlstBar 

Figure 11-6 
List control record 

Long-HANDLE to next control. 0 for last control 

Long-POINTER to window to which control belongs 

Four Words-RECT defining control's enclosing rectangle 
(initialized by list record listRect field) 

Byte-Style of scroll bar as shown in Figure 4- 16 

Byte- Not used 

Word-First member in display (listStart) 

Long-POINTER to list definition procedure 

Long-POINTER to list action proc edure 

Long- High-order word is total number of members (listSize) 
low-order word is view size (listView) 

Long-Reserved for application's use (listRefCon) 

Long-POINTER to color table; NIL for default (see Figure 11 -7) 

Long-POINTER to procedure to draw members (listDraw) 

Word-Member's height in pixels (listMemHeight) 

Word-Number of bytes in a member record (listMemSize) 

Long-POINTER to member list (listPointer) 

Long-HANDLE of list control's scroll bar control 

List control records l l -9 



The address of a list control's color table is stored in the ct/Color field of the list 
control record and can be set after the list control is created by the Control Manager 
routine CreateControl. A default color table is used if the ct/Color field of a list 
control's record is NIL (actual colors depend on the color palette used). 

The color table and its default values are shown in Figure 11-7. 

Offset Field 

so 
1/stFromeC/r 

l 

2 
1/stNorTectClr 

3 
4 

1/stSe!TextClr 
5 

6 
1/stNorBockC/r 

7 
8 

listSelBockClr 
9 

Figure 11-7 

Word-Frame color (black) 

Word-Color of text when not highlighted (black) 

Word-Color of text when highlighted (white) 

Word-Color of background when not highlighted (white) 

Word-Color of background when highlighted (black) 

List control color table 

Figure 11-8 shows a list using the default color values. 

listFrameClr -
1/stNorTextClr 

1/stSe/TextC/r 
1/stNorBackC/r 
listSe!BackC/r 

Figure 11-8 
Color table and example list 

11-10 Chapter 11 : List Manager 



Using the List Manager 
This section discusses how the List Manager routines fit into the general flow of an 
application and gives you an idea of which routines you'll need to use under normal 
circumstances. Each routine is described in detail later in this chapter. The List 
Manager depends upon the presence of the tool sets shown in Table 11-2 and 
requires that at least the indicated version of the tool set be present. 

Table 11-2 
List Manager-other tool sets required 

Tool set Tool set Minimum version 
number name needed 

$01 #01 Tool Locator 1.0 
$02 #02 Memory Manager 1.0 
$03 #03 Miscellaneous Tool Set 1.0 
$04 #04 QuickDraw II 1.0 
$06 #06 Event Manager 1.0 
$OE #14 Window Manager 1.3 
$10 #16 Control Manager 1.3 

Your application must make the ListStartUp call before it makes any other List 
Manager calls. Conversely, when your application quits, it must make the 
ListShutDown call. 

Your first step is to build a list. After the list is generated, you may want to call the 
SortList routine, which will alphabetize the list if the member strings are composed of 
ASCII characters. 

Next, your application should create the list control by calling the CreateList routine, 
which in turn calls the Control Manager routine NewControl and passes information 
from the list record to that routine. CreateList also passes the address of a custom 
control definition procedure inside of the List Manager. 

The list definition procedure also creates a vertical scroll bar on the right side of the 
list. Both the list control and scroll bar are added to the given window's control list. 
From that point on, the Control Manager routine DrawControls will draw both 
controls, and KillControls or CloseWindow will delete them. 

Fields in the control record can be obtained and changed by various Control 
Manager calls. See the description of the list control record for field definitions. 

Important 

Do not use the fo llowing Control Manager routines with list controls: 
DisposeControl, Drag Control, DrawOneCtl, EraseControl, HideControl, 
HillteControi, MoveControi, NewControl, SetCtlAction, SetCtlParams, SetCtlTitle, 
SetCtlValue, ShowControl. 

Using the List Manager 11- 11 



Selection modes 
The List Manager allows the user to choose between three possible selection modes: 
single, arbitrary, and range. The Apple and Shift keys are used to choose the 
selection mode. The state of the Apple and shift keys is checked only when the user 
first presses the mouse button. After that, the user can release the key, and the 
selection mode remains in effect until the user releases the mouse button. The three 
modes are as follows : 
■ Single mode: The user selects single mode by simply pressing the mouse button 

and not pressing either the Apple or Shift key. Any selection the user makes 
deselects all other selected members. Thus, when the user drags the mouse, the 
selection moves from one member to another. 

■ Arbitrary mode: If the user holds down the Apple key and then presses the mouse 
button, already selected members are not deselected. This allows unselected 
members to be between selected members in the list. Dragging is allowed in this 
mode, so any enabled member the mouse is dragged over will be selected. The 
arbitrary mode overrides the range mode if the user presses both the Apple and 
Shift keys. 

■ Range mode: If the user holds down the Shift key and then presses the mouse 
button, a range of members is selected, and all of the members outside the range 
are deselected. A range is defined as follows: The first selected member in the list 
is the beginning of the range. The end of the range is the current selection if it 
appears after the beginning of the range. If the current selection is the first selection 
in the list, and therefore the beginning of the range, then the end of the range is the 
last selected member in the list. This concept is illustrated in Figure 11-9. 

User clicks here 
in range mode 

Results In this { 
selection range 

Figure 11-9 

Courier 
Geneva 
Helvetica 

Courier 
Geneva 
Hel vetico 
Shoston 
Times 
Venice 

Range-mode selection 

-0 

The current selection is both the beginning and end of the range if it is the only 
selection in the list. 

The application can shut off arbitrary and range mode to allow only single selections 
by setting the listSelect bit (bit 1) in the listType field of the list record. 

11-12 Chapter 11 : List Manager 



$01 lC 

Parameters 

Errors 

C 

$021C 

Parameters 

Errors 

C 

List Boot I nit 
Initializes the List Manager; called only by the Tool Locator. 

Werning 

An application must never make this call. 

The stack is not affected by this call. There are no input or output parameters. 

None 

Call must not be made by an application. 

ListStartU p 
Starts up the List Manager for use by an application. 

Important 

Your application must make this call before it makes any other List Manager 
calls. 

The stack is not affected by this call. There are no input or output parameters. 

None 

extern pasca l void ListStartup () 

List Manager housekeeping routines 11-13 



$031C 

Parameters 

Errors 

C 

$041C 

Parameters 

ListShutDown 
Shuts down the List Manager. 

Important 
If your application has started up the List Manager, the application must make 
this call before it quits. 

The stack is not affected by this call. There are no input or output parameters. 

None 

extern pascal void ListShutDown () 

ListVersion 
Returns the version number of the List Manager. 

Stack before call 

previous contents 

wordspace Word-Space for output 

f-SP 

Stack after call 

previous contents 

Errors 

C 

11 -14 

versionlnfo 

None 

Word-Version number of the List Manager 

f-SP 

e xtern pascal Word ListVersion () 

List Manager housekeeping routines 



$051C 

Parameters 

Errors 

C 

$061C 

Parameters 

ListReset 
Resets the List Manager; called only when a system reset occurs. 

Warning 
An application must never make this call. 

The stack is not affected by this call. There are no input or output parameters. 

None 

Call must not be made by an application. 

ListStotus 
Indicates whether the List Manager is active. 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

activeFlag 

Errors None 

Word-Space for result 

f-SP 

Word-BOOLEAN; TRUE if List Manager is active, FALSE if not 

f-SP 

C extern pascal Boolean ListStatus() 

List Manager housekeeping routines 11-15 



$091C 

Parameters 

Create list 
Calls the Control Manager routine NewControl to create a list control, using a 
specified list record. The routine also stores the list control's handle in the list 
record's listCtl field and passes the address of the List Manager's list control definition 
procedure. That definition procedure then creates the list control's vertical scroll bar 
and stores the scroll bar's handle in the list control's ctlListBar field. 

To dispose of a list control, use the Control Manager routine KillControls or the 
Window Manager routine CloseWindow. 

Stack before call 

previous contents 

-- longspace 

-- theWindowPtr 

-- listRecPtr 

Stack after call 

previous contents 

---

---

---

-- theControlHandle ---

Errors None 

Long-Space for result 

Long-POINTER to window in which the list should appear 

Long-POINTER to list record 

f-SP 

Long-HANDLE of list control 

f-SP 

C extern pascal ListCtlRecHndl CreateList (theWindowPtr , listRecPtr ) 

GrafPortPtr 

ListRecPtr 

11 -16 List Manager routines 

theWindowPtr ; 

listRecPtr ; 



$0ClC DrawMember 
I 

Draws one or all members of a specified list. If your application goes directly to the 
member record to change the state of a member, the application should then call 
DrawMember. 

Parameters 

Stack before call 

previous contents 

memberPtr Long-POINTER to member record in list to draw; NIL for all 

listRecPtr 

Stack after call 

Long-POINTER to list record 

f-SP 

previous contents I 
-------- f- SP 

Errors None 

C extern pascal void DrawMember(memberPtr , listRecPtr) 

MemRecPtr 

ListRecPtr 

memberPtr ; 

listRecPtr ; 

List Manager routines 11-17 



$0E1C 

Parameters 

Get List Def Proc 
Returns a pointer to the list control's definition procedure. Normally, you will not 
need to use this call. 

❖ Note: The List Manager is basically a custom control; thus, you may need to 
access the control's definition procedure. See Chapter 4, "Control Manager," for 
information about control definition procedures. 

Stack before call 

previous contents 

longspace 

Stack after call 

previous contents 

dejProcPtr 

Errors None 

Long-Space for result 

f-SP 

Long-POINTER to list control definition procedure 

f-SP 

C e xt e rn p a scal LongProcPtr Get ListDefProc () 

11-18 List Manager routines 



$101C 

Parameters 

Newlist 
Resets the list control according to a specified list record. The routine uses the 
listSize, listStart, and listPointer fields of the list record pointed to by listRecPtr to 
reset the list control. The list control's scroll bar is also readjusted, and the list is 
redrawn with the new list and the member pointed to by memberPtr selected and in 
view. 

Stack before call 

previous contents 

memberPtr Long-POINTER to member to be selected 

listRecPtr 

Stack after call 

Long-POINTER to list record 

f-SP 

previous contents I 
-------- f- SP 

Errors None 

C extern pascal void NewList (memberPtr , listRecPtr ) 

MemRecPtr 

ListRecPtr 

memberPtr ; 

listRecPtr ; 

List Manager routines 11 -19 



$0B1C 

Parameters 

NextMember 
Searches a specified list record, starting with a specified member, and returns a 
pointer to the member record of the next selected member found. 

A member is considered selected if the memSelect field (bits 7-6) of the member's 
memFlag field is set to 10. The NextMember routine does not change that bit. 

Stack before call 

prevtous contents 

-- longspace 

-- memberPtr 

-- listRecPtr 

Stack after call 

prevtous contents 

--· 

--· 

--· 

-- nextMemberPtr --· 

Errors None 

Long-Space for result 

Long-POINTER to member at which to begin search; NIL for first 

Long-POINTER to list record 

~SP 

Long-POINTER to member record of next selected member; 
NIL if no more 

~SP 

C e xtern pascal memRecPtr NextMember (memberPtr , listRecPtr ) 

11-20 

MemRecPtr 

Li s tRecPtr 

List Manager routines 

me mberPtr ; 

listRecPtr ; 



$0F1C 

Parameters 

Reset Member 
Searches a specified list record, starting with the first member, and returns a pointer 
to the member record of the first selected member found. 

A member is considered selected if bit 7 of the member's memFlag field is set to 1. 
That bit will be cleared to O (the other bits of memFlag will not change) before 
ResetMember exits. However, the member is not redrawn in its new state (see the 
section "DrawMember" in this chapter). 

Stack before call 

previous contents 

longspace 

listRecPtr 

Stack after call 

prevtous contents 

-- nextMemberPtr 

Errors None 

Long-Space for result 

Long-POINTER to list record 

~SP 

Long-POINTER to member record of first selected member; 
NIL if no more 

~SP 

C extern pascal memRecPtr ResetMember(listRecPtr ) 

ListRecPtr listRecPtr; 

List Manager routines 11-21 



$0D1C 

Parameters 

SelectMember 
Selects a specified member, deselects any other selected members in the list, and 
scrolls the list so that the specified member is at the top of the list display. 

Important 

The specified member is not selected if it is disabled . 

Stack before call 

previous contents 

memberPtr Long-POINTER to member to be selected 

listRecPtr 

Stack after call 

Long-POINTER to list record 

~SP 

previous contents I 
- - ------~SP 

Errors None 

C e xte r n pascal voi d Selec tMe mber (memberPtr , listRecPtr ) 

Me mRecPtr 

ListRecPtr 

11-22 List Manager routines 

memberPtr ; 

listRecPtr ; 



$0A1C 

Parameters 

Sortlist 
Alphabetizes a specified list by rearranging the array of member records. 

If comparePtr is NIL, an internal string comparison routine is used that sorts standard 
alphabetical strings in ascending ASCII order. If your application needs a routine to 
sort members that are not standard strings, use comparePtr to point to that routine. 

If SortList is called before the CreateList routine, the list will be drawn correctly when 
CreateList is called; no DrawMember call is necessary. If CreateList is called before 
SortList, DrawMember must be called to draw the list in its new order. 

Stack before call 

prevtous contents 

comparePtr Long-POINTER to comparison routine; NIL for standard comparison 

listRecPtr 

Stack after call 

Long-POINTER to list record 

~SP 

prevtous contents I 
--------~SP 

Errors None 

C ext ern pa s c a l void SortLi s t (comparePtr , listRecPtr ) 

Void Pr o c Pt r 

List RecPtr 

c ompa r e Pt r; 

li s tRe c Pt r; 

(continued) 

List Manager routines 11-23 



Custom comparison routine example 
An example of a custom comparison routine follows. 

IN: member A 

mernberB 

Compare START 

mernberAequ 

mernberBequ 

4 

pointer to member A 

pointer to member B 

mernberA +4 

(Your comparison code would go here. How the routine does the 

comparison is up to you. For example:) 

11 -24 

if memberA >= memberB 

sec 

else 

clc 

Carry set if memberA is greater 

than or equal to memberB 

Carry clear if memberA is less than memberB 

lda O,s Remove input parameters and return 

sta 8, s 

lda 2,s 

sta 10,s 

pla 

pla 

pla 

pla 

rtl 

List Manager routines 



List Manager summary 
This section briefly summarizes the constants and data structures contained in the 
List Manager. There are no tool set error codes for the List Manager. 

Important 

These definitions are provided In the appropriate Interface file. 

Table 11-3 
List Manager constants 

Name Value Description 

Bit mask for listType 
cString $0001 Null terminated string type 
selectOnlyOne $0002 Only one selection allowed 

memFlag 
memDisabled $40 Sets member flag to disabled 
memSelected $80 Sets member flag to selected 

Table 11-4 
List Manager data structures 

Name Offset Type Definition 

List record (ListRec) 
listRect $0 Rect Enclosing rectangle 
listSize $8 Word Number of members in the list 
listView $A Word Maximum number of members visible to the user at one 

time 
listType 
listStart 
listCtl 
listDraw 
listMemHeight 
listMemSize 
listPointer 
listRefCon 
listScrol!Clr 

$C 
$E 
$10 
$14 
$18 
$1A 
$1C 
$20 
$24 

Word 
Word 
CtlRecHndl 
VoidProcPtr 
Word 
Word 
MemRecPtr 
Long 
BarColorsPtr 

Bit flag 
First member in view 
List control's handle 
Pointer to custom drawing routine 
Height of list members 
Size of member records 
Pointer to first element in MemRec 
Becomes control's refCon 
Color table for list's scroll bar 

(continued) 

List Manager summary 11-25 



Table 11 -4 (continued) 
List Manager data structures 

Name 

List control record 
ctlMemDraw 
ctlMemHeight 
ctlMemSize 
ctlList 
ctlListBar 

Offset Type 

(ListCtlRec)* 
$28 VoidProcP tr 
$2C Word 
$2E Word 
$30 MemRecPtr 
$34 CtlRecHndl 

Member record (MemRec) 
memPtr $0 Pointer 
memFlag $4 Byte 

List color table (LColorTable) 
listFrameClr $00 Word 
listN orTextClr $2 Word 
listSelTextClr $4 Word 
listNorBackClr $6 Word 
listSelBackClr $8 Word 

Definition 

Pointer to routine to draw member 
Member's height in pixels 
Bytes in member record 
Pointer to first member record in array 
Handle to list control's scroll bar control 

Pointer to string 
Bit flag defining selected or disabled status 

Frame color 
Unhighlighted text color 
Highlighted text color 
Unhighlighted background color 
Highlighted background color 

Note: The actual assembly-language equates have a lowercase o (the letter) in front of all of the names given in 
this table. 
• The first few fields of the list control record are the same as those of a control record. Those fields are 

followed by the listed fie lds. 

/ 

11-26 Chapter 11 : List Manager 



Chapter 12 

Memory Manager 

The Memory Manager controls the allocation, deallocation, and repositioning of 
memory blocks. The manager keeps track of how much memory is free and what 
parts are allocated to whom. Memory is allocated in blocks of arbitrary length; each 
block possesses several attributes that describe how the Memory Manager may 
modify it (such as by moving it or deleting it), how it must be aligned in memory (for 
example, on a page boundary), and what program owns it. 

The Memory Manager works closely with ProDOS 16 and the System Loader to 
provide the needed memory spaces for loading programs and data and for 
providing buffers for input and output. All Apple IIGS software, including the System 
Loader and ProDOS 16, must obtain needed memory space by making Memory 
Manager calls. 

When an application makes a ProDOS 16 call that requires allocation of memory 
(such as opening a file or writing from a file to a memory location), ProDOS 16 first 
obtains any needed memory blocks from the Memory Manager and then performs 
its tasks. Likewise, the System Loader requests any needed memory either directly or 
indirectly (through ProDOS 16 calls) from the Memory Manager. 

Conversely, when an application informs the operating system that it no longer 
needs certain blocks of memory, that information is passed to the Memory 
Manager, which in turn frees those blocks. In all of these cases memory allocation 
and deallocation is completely automatic, as far as the application is concerned. 

For more information about how the Memory Manager communicates with 
ProDOS 16 and the System Loader, see the Apple JIGS ProDOS 16 Reference. 

❖ Macintosh programmers: The Apple IIGS Memory Manager is conceptually 
very similar to the Macintosh Memory Manager. However, because of the 
65C816 microprocessor and the architecture of the Apple IIGS, its calls are very 
different, and its internal data structures are totally different than those of the 
Macintosh. 

12-1 



A preview of the Memory Manager routines 
To introduce you to the capabilities of the Memory Manager, all Memory Manager 
routines are grouped by function and briefly described in Table 12-1. These routines 
are described in detail later in this chapter, where they are separated into 
housekeeping routines (discussed in routine number order) and the rest of the 
Memory Manager routines (discussed in alphabetical order). 

Table 12-1 
Memory Manager routines and their functions 

Routine Description 

Housekeeping routines 
MMBootlnit Called only by the Tool Locator when the Memory Manager is initialized-must 

MMStartUp 
MMShutDown 
MMVersion 
MMReset 
MMStatus 

not be made by an application 
Starts up the Memory Manager for use by an application 
Shuts down the Memory Manager when the application quits 
Returns the version number of the Memory Manager 
Called only when the system is Reset-must not be made by an application 
Indicates whether or not the Memory Manager is active 

Memory allocation routines 
NewHandle Creates a new block and returns the handle to the block 
ReAllocHandle 
RestoreHandle 

DisposeHandle 
DisposeAll 
PurgeHandle 
PurgeAll 

Reallocates a purged block using new attributes 
Reallocates a purged block using the same attributes, user ID, and size that were 
associated with the purged handle 
Discards a specified block and deallocates its handle 
Discards all of the handles and blocks belonging to a specified user ID 
Purges a specified purgeable, unlocked block, but does not deallocate the handle 
Purges all of the purgeable, unlocked blocks for a specified user ID 

Block Information and free space routines 
FindHandle Returns the handle of a block containing a specified address 
CheckHandle Checks a specified handle to see whether it is valid 
GetHandleSize Returns the size of a block 
SetHandleSize Changes the size of a specified block 
CompactMem Compacts memory space 
FreeMem Returns the total number of free bytes in memory 
MaxBlock Returns the size of the largest free block in memory, not counting memory that can 

be freed by purging or compacting 
TotalMem Returns the size of all memory, including the main 256K 

12-2 Chapter 12: Memory Manager 



Table 12-1 (continued) 
Memory Manager routines and their functions 

Routine Description 

Locking and purge-level routines 
HLock Locks a specified block 
HLockAll Locks all of the blocks belonging to a specified user ID 
HUnlock Unlocks a specified block 
HUnlock.All Unlocks all of the blocks belonging to a specified user ID 
SetPurge Sets the purge level of a specified block 
SetPurgeAll Sets the purge level of all blocks belonging to a specified user ID 

Other routines 
BlockMove 
PtrToHand 

HandToPtr 

HandToHand 

Copies a specified number of bytes from a source to a destination 
Copies a specified number of bytes from a source to a destination, with the source 
specified by a pointer and the destination specified by a handle 
Copies a specified number of bytes from a source to a destination, with the source 
specified by a handle and the destination specified by a pointer 
Copies a specified number of bytes from a source to a destination, with the source 
specified by a handle and the destination specified by a handle 

Apple IIGS memory map 
The memory in the Apple JIGS is divided into three categories, as follows : 

■ Nonspecial or normal memory: memory that has no special restrictions on it. 
This memory includes banks $2-$DF and parts of banks $E0 and $El. 

■ Special memory: memory that has restrictions on its use because it is memory 
that appears in the Apple Ile. Special memory may not be used by desk 
accessories, tool sets, and other routines that might be called while running old 
applications. Th.is memory includes banks $0-$1 and parts of banks $E0 and $El. 

■ Reserved memory: memory not managed by the Memory Manager. This 
includes the language cards, addresses $0000- $0800 in banks $0 and $1, and 
addresses $0000-$2000 in banks $E0 and $El. This memory is marked as busy in 
the Memory Manager at startup time. 

Figure 12-1 shows which parts of memory can be allocated through requests to the 
Memory Manager. 

❖ Note: At the time of publication, the Apple IIGS can address up to 8 megabytes, 
which means that normal memory contains only banks $2-$7F and parts of 
banks $E0 and $El. In the future, this mmgrexpand; that expansion will be 
transparent to your application if you follow the rules for using the Memory 
Manager. 

Apple !!Gs memory map 12-3 



FFFF--> 

EO00--> 

Language Card 
D000--> >--------+-----~ 

ROM 
C000--> 

Bank $00 

0C00--> 

0800--> Text page 2 

0000--> Direct page, stack, 
text page l 

FFFF--> 

EO00--> 

D000--> 
Language Card 

1------+-----~ 

C0O0--> 

6000--> 

2000--> 

ROM ,__ ___ _ 

0C00--> 1------

Bank $E0 

Hi-Res pages land 2 

Reserved 

0800--> 1------ Text page 2 
0000--> Direct page, stack, 

text page l 

Unmanaged Memory 

A llocatable Memory 

Figure 12-1 
Memory Manager memory use 

FFFF--> 

E000--> 

Language Card 
D000--> 1--- ---+-----~ 

ROM 

Bank $01 

0C00--> 

0800--> Text page 2 

0000--> Direct page, stack, 
text page l 

FFFF--> 

EO00--> 

D000--> 
Language Card 

1------+-----~ 

C0OO--> 
ROM ,__ ___ _ 

Bank $El 
Super Hi-Res 

Hi-Res pages land 2 

0C00--> Reserved 

0800--> 1-------1 Text page 2 
0000--> Direct page, stack, 

text page l 

Allocatable , but special 
(lie + video memory) 

For more information about the memory layout, see the Apple JIGS Hardware 
Reference. 

12-4 Chapter 12: Memory Manager 



Pointers and handles 
Because the Memory Manager on the Apple IIGS can move memory blocks, an 
application cannot use a simple pointer to access the blocks. Instead, each time the 
Memory Manager allocates a memory block, it returns to the requesting application 
a handle referencing that block. 

A handle is a pointer to a master pointer; it is the address of a fixed (immovable) 
location that contains the address of the block. If the Memory Manager changes the 
location of the block, it updates the address in the fixed location; the value of the 
handle itself is not changed. Thus, the application can use the handle to access the 
block, no matter how often the block itself is moved in memory. Figure 12-2 
illustrates a handle. 

Memory 

Ha ndle 

I 
I - -- Master pointer 

-

"----+ -- Data block 

Handle points to master pointer, 
which points to actual block. 

Figure 12-2 
Memory handle 

If a segment will always be fixed in memory Cocked or nonmovable), it may be 
referenced by a pointer instead of a handle. To obtain a pointer to a particular block 
or location, an application can dereference the block's handle. The application 
reads the address stored in the location pointed to by the handle; that address is the 
pointer to the block. Of course, if the Memory Manager moves the block, the 
pointer is no longer valid. 

Important 

After a handle has been dereferenced, certain system calls or toolbox calls might 
cause memory compaction, which would then make the pointer to the block 
invalid. In that case, your application must dereference the handle again. 
However, compaction won't occur unexpectedly; that Is, toolbox calls made 
from interrupt handlers cannot force compaction. This means that unlocked 
blocks can safely be dereferenced so long as no system or toolbox calls are 
made between the dereference and the use of the handle. 

Pointers and handles 12-5 



Pointers and handles must be at least 3 bytes long to access the full range of 
Apple IIGS memory. However, all pointers and handles used by the Apple IIGS must 
be 4 bytes long for ease of manipulation by the 16-bit registers in the 65C816 
microprocessor. 

Important 

Because the address space of the IIGs requires only 24 bits, the high-order byte of 
the 32-blt address Is always $0. Do not attempt to store other Information In that 
high-order byte! If you do, the Memory Manager and other tool sets may not 
work properly. 

Memory fragmentation and compaction 
Memory blocks can be allocated and deallocated in any order, so memory tends to 
become fragmented into a jumble of free and allocated memory blocks. When 
fragmentation happens, the Memory Manager may not be able to allocate a 
requested block, even if there is enough free memory available, because the space is 
broken into small, isolated blocks. Figure 12-3 illustrates fragmented memory. 

,-: 
" ,,,';" 

1. Before 
deallocation 

Figure 12-3 

High memory----~ 

j Blocks 
to be 
freed 

Low memory ____ __,, 

D Free memory 

D Movable blocks 

Fixed blocks 

2. After deallocation­
fragmented memory 

Memory fragmentation 

12-6 Chapter 12: Memory Manager 



When the Memory Manager is unable to allocate a block, it tries to compact 
memory. Compaction moves all movable blocks to consolidate free space into a 
single region in memory. Figure 12-4 illustrates memory compaction. 

,.------ High memory------

1. Before compaction 

Figure 12-4 
Memory compaction 

2. After compaction 

D Free memory 

D Movable blocks 

Fixed blocks 

Fixed blocks and locked movable blocks interfere with compaction by forming 
immovable islands in memory. Such blocks can prevent the Memory Manager from 
collecting together the free blocks and can leave memory fragmented after 
compaction, as shown in Figure 12-5. 

D Free memory 
.· 

". ··, 

D Movable blocks 

'f •, 
[ ; 

Fixed blocks 

1. Before compaction 2. After compaction 

Figure 12-5 
Fragmentation after compaction 

The Memory Manager never moves a movable block around a nonmovable one. To 
minimize this problem, the Memory Manager tries to allocate fixed blocks toward 
the bottom of memory and movable blocks toward the top of memory. 

Memory fragmentation and compaction 12-7 



Important 

To help prevent fragmentation, your application should use movable blocks 
whenever possible and leave blocks unlocked whenever possible. 

Purging memory 
If the Memory Manager is still unable to allocate a block after compacting memory, it 
tries to purge blocks. 

❖ Note: Only blocks that are marked purgeable and unlocked can be purged. See 
the section "Assigning Memory Block Attributes" later in this chapter for more 
information. 

Purging throws out the contents of the block and frees it. The block's master pointer 
remains allocated, and its value is set to NIL. 

❖ Note: NIL is equivalent to O (zero) . 

A handle pointing to a NIL master pointer is called an empty handle. If you want 
your application to refer to the purged block, the application must detect that the 
handle is empty and ask the Memory Manager to reallocate the block. 

Important 

Even if the block Is reallocated, the data In a purged block has been lost and 
must be restored by your application. 

12-8 Chapter 12: Memory Manager 



Figure 12-6 shows a block being purged and reallocated. 

Memory Memory 

Handle Handle 

t_ 
-~ 
~~ 

--Master pointer 
= Nil Master 

pointer 

-

Flgure12-6 

->- Purgeable 
block 

Block before purging Block after purging 
(handle empty and 
data lost) 

Memory 

Handle n..--
Hand le reallocated 
(pointer points to 
new block) 

New block 

Master pointer 

Memory block being purged and reallocated 

When the Memory Manager runs out of memory, it starts purging purgeable blocks in 
an attempt to make more room. The order of the purging is based on the purge level 
of the block. The purge level is a 2-bit number in the attributes word specifying the 
purging priority of the block. The values are as follows: 

3 Most purgeable; used by the System Loader 
2 Next most purgeable 
1 Least purgeable 
0 Not purgeable 

Purging memory 12-9 



Your application should use only levels 0-2; level 3 is reserved for the System Loader. 
When some applications exit, the memory is not freed, but all of the application's 
blocks are set to level 3. The old application can thus be restarted without accessing 
the disk if the new application did not need the space. If the Memory Manager purges 
any blocks of an application exited this way, it will purge all of them. 

User IDs 
When you start up the Memory Manager for use by your application, the operating 
system has already assigned a master user ID for that execution of the application. 
The Memory Manager uses this master user ID to reserve the memory it needs for 
the program's code and static data. The operating system gives the master user ID 
number to the Memory Manager, which in turn passes that ID to the application in the 
MMStartUp call. You must save that ID for use when you shut down the application. 

User IDs are made up of three fields-t;pe, auxID, and matnID--contained in a 
word parameter, as shown in Figure 12-7. The value in the mainID field is assigned 
by the User ID Manager and will always be a nonzero value. You must provide the 
value for the t)pe field, which has fixed assignments as shown in Figure 12-7. 

I 15 I 14 I 13 I 12 Ill 1101 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 [ 1 I 0 I 
I I I I 

type J 
Memory Manager = $00 

Application = $01 
Control program = $02 

ProDOS = $03 
Tool sets= $04 • 

Desk accessories = $05 
Runtime libraries = $06 

System Loader = $07 
Firmware = $08 

Tool Locator = $09 
Setup file = S0A 

Undefined = $08 
Undefined = SOC 
Undefined = SOD 
Undefined = SOE 
Undefined = $OF 

aux/D 
SO-SF Defined by user 

main/D 
$01-SFF Assigned by ID Manager 

Reserved 

• Apple controls assignment of IDs in this class. At the time of 
publication, the only assignments were $4lxx = Miscellaneous Tool Set 
and $42xx = Scrap Manager. 

Figure 12-7 
User ID fields 

12-10 Chapter- 12: Memory Manager 



For your application, you will be most interested in the au:x:ID field; you can use it to 
allocate any additional, private memory that your application needs. Since the 
field's valid values are from $1 to $F, you can create up to 15 new and distinct user 
IDs, each of which can be used to allocate memory in a NewHandle call. 

Important 

Do not use an aux/D of 0. The Memory Manager routines PurgeAII and DlsposeAII 
treat an aux/D field with O In It as a wildcard that matches all values, 

When your application is through using all of the memory for a particular au:x:ID, it 
can discard the ID all at once by calling DisposeAll with the fully specified ID. An 
example of this technique is shown in the following assembly-language code 
fragment : 

pushword #0 

_MMStartUp 

pla 

sta MasterID 

ora #$0100 

sta MyID 

; (Yo u r code here ) 

; Space for ma ster user ID 

Retrieve ma ster u s er ID 

Store master user ID 

Create user ID with auxID = 1 

Store ID for use with private memory 

; (Ready to exit program) 

pushword MyID 

_DisposeAll ; Discard all of my private memory 

; (Continue with termination processing ) 

Using this technique, you don't have to deallocate the new user ID you obtained by 
modifying the au:x:ID field. When the master user ID is deallocated when the 
application quits, any derivatives of the master ID are automatically deleted. 

There are two other methods of assigning the user ID, although we recommend that 
you modify the au:x:ID. The options and their disadvantages are: 

1 . Simply use the master user ID to obtain new private memory. This is the simplest 
method; however, your application must then individually discard any blocks it 
obtains, rather than using a DisposeAll call to discard them all at once. 

2. Obtain an entirely new user ID by calling the Miscellaneous Tool Set GetNewID 
routine. This method allows you to discard all private memory at once; however, 
you must be sure that your application discards the memory and deletes the new 
user ID before the application quits . 

User IDs 12-11 



Assigning memory block attributes 
Your application controls the properties of a particular block by specifying values in 
a memory attributes word. This attribute word determines how the blocks are 
allocated and maintained. When a block is allocated, several of the bits in the 
attributes word determine how the block is allocated. These attributes can be set only 
when the block is allocated. However, the attributes that determine whether a block 
can be moved or purged (attrLocked and attrPurge) can be changed by your 
application after a block is created. Figure 12-8 illustrates the memory attributes 
word. In all of the bits except bits 9-8, a value of 1 means that the attribute applies to 
the block; you might think of setting the bit to 1 as applying a restriction to the block. 

11s 11 41131 12I 11 1101 9 1 s 1 7 1 6 1 s 1 41 3 I 2 I 1 1 o 1 
attrLocked 

Block temporarily locked down; can't be moved or purged = l 

J J l J L _J l J 

Block may be moved or purged = 0 

attrFixed 
Block can't move while in memory= l 

Block may move = 0 

Reserved; set to 0 -

Figure 12-8 
Memory attributes flag 

12-12 Chapter 12: Memory Manager 

attrPurge -
Purge level 3 = 11 
Purge level 2 = l 0 
Purge level l = 0 l 
Don't purge= 00 

Reserved; set to 0 -

attrNoCross -
May not cross bank boundary = l 

May cross bank boundary = 0 

attrNoSpec -
May not use special memory = l 

May use special memory = 0 

attrPage-
Block will be page aligned = l 

Block might not be page aligned = 0 

attrAddr -
Block must remain at fixed address = l 

Block may be moved to other addresses = 0 

attrBank ­
Block must remain in fixed bank = l 
Block can move to other banks = 0 



Table 12-2 provides the attribute information in a different format. 

Table 12-2 
Memory block attributes 

Bit Constant 

15 attrLocked 

14 attrFixed 

9-8 attrPurge 

4 attrNoCross 

3 attrNoSpec 

2 attrPage 

1 attrAddr 

0 attrBank 

Attribute 

Locked 

Fixed 

Purge level 

Bank-boundary 
limited 

Special memory 
not usable 

Page aligned 

Fixed address 

Fixed bank 

Description 

If the block is locked, it is immovable and unpurgeable, 
regardless of the fixed or purge-level attributes. A block 
can thus be temporarily locked in place while it is being 
executed or referenced. This attribute can be changed 
after allocation. 

If a block is fixed, it cannot be moved when compacting 
memory. Code blocks should usually be fixed, but data 
blocks should usually not be fixed. 

This 2-bit number defines the purge priority of a block: 
0 means the block cannot be purged, 3 means the block 
will be the first block purged. This attribute can be 
changed after allocation. See the section "Purging 
Memory" in this chapter for more information. 

Specifies that a block must not cross banks. Code 
blocks, for example, may never cross banks. 

Specifies that the block may not be allocated in special 
memory. This is memory that was used in the Apple Ile. 
It includes banks $00 and $01 and the video screens. 

Specifies that the block must start on a page; that is, the 
block must start at a location that is a multiple of $100. 
For timing reasons, code or data may need to be page 
aligned; for example, the direct-page space for the 
managers and tool sets should be page aligned. 

Specifies that the block must be at a specified address 
when allocated. An example is allocating the graphics 
screen. 

Specifies that the block must start in a specified bank. 
An example is allocating a block to be used as a direct 
page. 

Assigning memory block attributes 12-13 



Cleaning up memory 
When your application quits, it must explicitly dispose of any memory that it 
acquired; if it doesn't, the memory management system can become clogged. 

If, as recommended, you modified the au:x:ID field of the master user ID to create a 
unique user ID, you can simply use the DisposeAll routine to dispose of the memory 
all at once for that specific user ID. 

If you used the master user ID to allocate private memory, you must dispose of the 
private memory on a handle-by-handle basis. In this case, you can't use the 
DisposeAll routine to dispose of your private memory all at once, since that would 
also mark the application's code space as available for reallocation. 

If you asked the User ID Manager for an entirely new ID, you can use the DisposeAll 
routine to dispose of the memory all at once for that specific user ID. 

For more information about memory management, see the Programmer's 
Introduction to the Apple JIGS and the Apple JIGS ProDOS 16 Reference. 

Using the Memory Manager 
This section discusses how the Memory Manager routines fit into the general flow of 
an application and gives you an idea of which routines you'll need to use under 
normal circumstances. Each routine is described in detail later in this chapter. 

The Memory Manager depends upon the presence of the tool set shown in Table 12-3 
and requires that at least the indicated version of the tool set be present. 

Table 12-3 
Memory Manager-other tool sets required 

Tool set 
number 

$01 #01 

Tool set 
name 

Tool Locator 

Minimum version 

needed 

1.0 

The first Memory Manager call that your application must make is MMStartUp. 
Conversely, when you quit your application, you must make the MMShutDown call. 

Remember that the Memory Manager works closely with ProDOS 16 and the System 
Loader to provide the needed memory spaces for initally loading your application 
and its data. Thus, your application's use of the Memory Manager, after you have 
started it up, will be to ask it for more memory for private purposes. 

12-14 Chapter 12: Memory Manager 



To allocate memory for the application's own purposes, you must use one or more 
Memory Manager NewHandle calls and assign to the memory blocks you acquire the 
appropriate user ID and allocation attributes. After you have acquired blocks of 
memory, you can temporarily lock a single block by using the HLock routine or lock 
all of the blocks associated with a particular user ID by using the HLockAll routine. 

When your application no longer needs the blocks to be locked, you should unlock 
them with the HUnlock or HUnlockAll routine, so that the Memory Manager may 
move them during compaction. If you are temporarily through using the blocks, you 
can set their purge levels by using the SetPurge or SetPurgeAll routine. If the Memory 
Manager needs more space, it can then purge those blocks. 

If the Memory Manager does purge the blocks, you can restore the block with the 
same attributes, user ID, and size by using the RestoreHandle routine, or you can 
reallocate the block with new characteristics by using the ReAllocHandle routine. 

Important 

If the Memory Manager purges the blocks, the data In them Is lost. Your 
application has the responsibility to save and restore the data appropriately. 

When your application is completely done with its own private memory, it should 
call the DisposeAll routine and specify the appropriate user ID (usually an ID with a 
modified au:x:ID field) to discard all of that memory. 

Important 
Do not call DlsposeAII with the unmodified master user ID. 

Using the Memory Manager 12-15 



$0102 

Parameters 

Errors 

C 

MMBootlnit 
Initializes the Memory Manager; called only by the Tool Locator. 

Warning 
An application must never make this ca ll, because It wi ll destroy all currently 
allocated blocks. 

The stack is not affected by this call. There are no input or output parameters. 

None 

Call must not be made by an application. 

12-16 Memory Manager housekeeping routines 



$0202 

Parameters 

MMStartUp 
Starts up the Memory Manager for use by an application. 

Important 
Your application must make this call before it makes any other Memory Manager 
calls. 

You must save the value returned as userID to use when your application quits . 

❖ Note: If you're writing an application for operating systems such as ProDOS 8 or 
DOS 3.3 and the call is not made from a valid block, an ID error occurs. If this 
happens, your application should call the User ID Manager for an ID number and 
then call the Memory Manager to allocate the application's program segments. 
For more information about the User ID Manager, see the section "User IDs" in 
this chapter. 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

userID 

Errors $0207 

Word-Space for result 

~SP 

Word-User ID assigned to the application by the operating system 
~SP 

idErr Invalid user ID 

C e x tern pas cal Word MMStartUp () 

Memory Manager housekeeping routines 12- 17 



$0302 

Parameters 

MMShutDown 
Shuts down the Memory Manager when an application quits. The userID must be the 
same as the one returned by the Memory Manager in the MMStartUp call. 

Important 
If your application has started up the Memory Manager, the application must 
make this call before It quits. Also, your application must discard all memory 
blocks It has allocated before It makes the MMShutDown call. See the sections 
"Cleaning Up Memory· and ·using the Memory Manager· In this chapter for 
more Information. 

Stack before call 

previous contents 

userID 

Stack after call 

Word-User ID of the application to be shut down 

f-SP 

previous contents I 
-------- f- SP 

Errors None 

C e xtern pas ca l void MMShut Down (use r ID ) 

Word u s er ID ; 

12-18 Memory Manager housekeeping routines 



$0402 MMVersion 
Returns the version number of the Memory Manager. 

Parameters 

Stack before call 

previous contents 

wordspace Word-Space for result 

f-SP 

Stack after call 

previous contents 

versionlnfo Word-Version number of the Memory Manager 

f-SP 

Errors 

C 

$0502 

Parameters 

Errors 

C 

None 

extern pascal Word MMVersion () 

MMReset 
Reset the Memory Manager; called only when the system is reset. 

Warning 
An application must never make this call. 

The stack is not affected by this call. There are no input or output parameters. 

$0201 memErr Unable to reset 

Call must not be made by an application. 

Memory Manager housekeeping routines 12-19 



$0602 MMStatus 
Indicates whether the Memory Manager is active. 

Parameters 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

activeFlag 

Errors None 

Word-Space for result 

~SP 

Word-BOOLEAN; TRUE if Memory Manager active, FALSE if inactive 

~SP 

C e xtern pascal Boolean MMStatus () 

12-20 Memory Manager housekeeping routines 



$2B02 

Parameters 

BlockMove 
Copies a specified number of bytes from a source to a destination. BlockMove works 
correctly even if source and destination overlap or cross bank boundaries. No 
address validation is performed; BlockMove simply overwrites everything. 

Stack before call 

previous contents 

-- sourcePtr 

-- destPtr 

-- count 

Stack after call 

--· 

--· 

--· 

Long-POINTER to start of bytes to be copied 

Long-POINTER to starting address where bytes will be written 

Long-Number of bytes to be copied 

~SP 

previous contents I 
- -------~SP 

Errors 

C 

None 

ext e rn pascal void BlockMove( sourcePtr , de s tPtr , count ) 

Pointer 

Pointer 

Longword 

sourcePtr ; 

destPtr ; 

count ; 

Memory Manager routines 12-2 l 



$1E02 

Parameters 

CheckHandle 
Checks a handle to see whether it is valid. If the Memory Manager does not recognize 
theHandle, an error occurs. The routine is intended primarily as a debugging aid. 

Stack before call 

previous contents 

theHandle 

Stack after call 

Long-HANDLE whose validity will be checked 

f- SP 

previous contents I 
-------- f- SP 

Errors 

C 

$1F02 

Parameters 

Errors 

C 

$0206 handleErr Invalid handle 

extern pascal void CheckHandle (theHandle) 

Handle theHandle ; 

CompactMem 
Compacts memory space. 

❖ Note: CompactMem has no effect if it is called during an interrupt. Thus, if you're 
writing an interrupt handler, you can't use CompactMem to force the Memory 
Manager to compact memory space. 

The stack is not affected by this call. There are no input or output parameters. 

None 

extern pascal void CompactMem() 

12-22 Memory Manager routines 



$1102 

Parameters 

DisposeAII 
Discards all of the handles and blocks belonging to a specified user ID. 

Important 
Your application must discard all memory blocks it has allocated for itself before 
making the MMShutDown ca ll . However, If you used the unmodified master user 
ID to allocate your own private memory, you must call DisposeHand le to 
deallocate that memory handle by handle. If you use DisposeAII in that 
Instance, you will a lso deallocate the very space your application is using for 
execution. See the section · using the Memory Manager· In this chapter for 
more details. 

Stack before call 

previous contents 

userID 

Stack after call 

Word- User ID whose handles will be discarded 

f- SP 

I previous contents If- SP 

Errors $0207 idErr Invalid user ID 

C extern pascal void DisposeAll (userID ) 

Word user ID; 

Memory Manager routines 12-23 



$1002 DisposeHandle 
Discards a specified block and deallocates its handle. The block is purg~d regardless 
of locked status and purge level. 

Parameters 

Stack before call 

previous contents 

theHandle Long-HANDLE of the block to be discarded 

f- SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors $0206 handleErr Invalid handle 

C extern pascal void DisposeHandle (t heHandle ) 

Handle theHandle ; 

12-24 Memory Manager routines 



$1A02 FindHondle 
Returns the handle of the block containing a specified address. If the block is not 
locked, it may later move. If locationPtr is not in any handle, then WL is returned. 

Parameters 

Stack before call 

previous contents 

longspace 

locationPtr 

Stack after call 

previous contents 

theHandle 

Errors None 

Long-Space for result 

Long-POINTER whose handle will be found 

~SP 

Long-HANDLE of locationPtr; NIL if not found 

~SP 

C extern pascal Handle FindHandle(locationPtr ) 

Pointer locationPtr ; 

Memory Manager routines 12-25 



$1B02 

Parameters 

FreeMem 
Returns the total number of free bytes in memory, not counting memory that can be 
freed by purging. However, because of memory fragmentation, it might not be 
possible to allocate a block as large as the size indicated by this routine. 

❖ Note: Use the MaxBlock routine to find the size of the largest block that can be 
allocated. 

Stack before call 

previous contents 

longspace 

Stack after call 

Long-Space for result 

f-SP 

previous contents 

Errors 

C 

12-26 

freeSize 

None 

Long-Total number of free bytes in memory 

f-SP 

extern pascal Longword FreeMem () 

Memory Manager routines 



$1802 GetHandleSize 
Returns the size of a specified block in bytes. 

Parameters 

Stack before call 

previous contents 

longspace 

theHandle 

Stack after call 

previous contents 

blockSize 

Errors $0206 

Long-Space for result 

Long-HANDLE of block whose size is to be retrieved 

f-SP 

Long-Size of block, in bytes 

f-SP 

handleErr Invalid handle 

C extern pascal Longword GetHandleSize(theHandle) 

Handle theHandle ; 

Memory Manager routines 12-27 



$2A02 

Parameters 

HandToHand 
Copies a specified number of bytes from a source to a destination, using handles. 
HandToHand works correctly even if source and destination overlap or cross bank 
boundaries. No address validation is performed; HandToHand simply overwrites 
everything. 

Stack before call 

previous contents 

-- sourceHandle --· Long-HANDLE specifying start of bytes to be copied 

-- destHandle 

- - count 

- -· 

--· 

Long-HANDLE specifying starting address where bytes will be written 

Long-Number of bytes to be copied 

f-SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors $0202 

$0206 

emptyErr 

handleErr 

Illegal operation on an empty handle 

Invalid handle 

C extern pascal void HandToHand (sourceHandle , destHandle , count) 

Handle sourceHandle ; 

Handl e destHandle ; 

Longword count ; 

12-28 Memory Manager routines 



$2902 HandToPtr 
Copies a specified number of bytes from a source to a destination, with the source 
specified by a handle and the destination specified by a pointer. HandToPtr works 
correctly even if source and destination overlap or cross bank boundaries. No 
address validation is performed; HandToPtr simply overwrites everything. 

Parameters 

Stack before call 

previous contents 

-- sourceHandle --· Long-HANDLE specifying start of bytes to be copied 

-- destPtr 

-- count 

Stack after call 

--· 

--· 

Long-POINTER to starting address where bytes will be written 

Long-Number of bytes to be copied 

f-- SP 

previous contents I 
-------- f-- SP 

Errors 

C 

$0202 

$0206 

emptyErr 

handleErr 

Illegal operation on an empty handle 

Invalid handle 

extern pascal void HandToPtr (s ourceHandle ,destPtr , count ) 

Handle sourceHandle ; 

Pointer destPtr ; 

Longword count; 

Memory Manager routines 12-29 



$2002 

Parameters 

Hlock 
Locks a block specified by a handle. A locked block cannot be relocated or purged 
during memory compaction. 

❖ Note: If you need to quickly lock a block, you can directly set bit 15 of the attributes 
word to 1. Apple guarantees that the locked attribute will stay at that location. In 
65C816 assembly language, you could set the bit as in the following fragment: 

LDY #4 

LDA [myhandle ], y 

ORA #AttrLocked 

STA [myhandle] , y 

Stack before call 

previous contents 

theHandle Long-HANDLE of block to be locked 

f-SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors $0206 handleErr Invalid handle 

C extern pascal void HLock (theHandle ) 

Handle theHandle ; 

12-30 Memory Manager routines 



$2102 

Parameters 

HLockAII 
Locks all of the blocks belonging to a specified user ID. Locked blocks cannot be 
moved or purged during memory compaction. 

❖ Note: See the section "User IDs" in this chapter for more information about user 
IDs. 

Stack before call 

previous contents 

userID 

Stack after call 

Word-User ID whose blocks are to be locked 

f-SP 

previous contents I 
-------- f- SP 

Errors $0207 idE r r Invalid user ID 

C extern pascal void HLockAll (userID ) 

Word user ID ; 

Memory Manager routines 12-31 



$2202 

Parameters 

HUnlock 
Unlocks a specified block. Unlocked blocks can be moved or purged during memory 
compaction. 

Stack before call 

prevtous contents 

theHandle 

Stack after call 

Long-HANDLE of block to be unlocked 

f- SP 

I prevtous contents If- SP 

Errors $0206 handleErr Invalid handle 

C extern pascal void HUnlock(theHandle ) 

Handle theHandle ; 

12-32 Memory Manager routines 



$2302 

Parameters 

HUnlockAII 
Unlocks all of the blocks for a specified user ID. Unlocked blocks can be moved or 
purged during memory compaction. 

Stack before call 

previous contents 

userID 

Stack after call 

Word-User ID of the blocks to be unlocked 

~SP 

I previous contents I~ SP 

Errors $0207 idErr Invalid user ID 

C extern pascal void HUnlockAll (userID ) 

Word userID ; 

Memory Manager routines 12-33 



$1C02 

Parameters 

MaxBlock 
Returns the size of the largest free block in memory, not counting memory that can be 
freed by purging or compacting. 

Stack before call 

previous contents 

longspace 

Stack after call 

Long-Space for result 

~SP 

previous contents 

Errors 

C 

12-34 

blockSiz e 

None 

Long- Size in bytes of largest free block in memory 

~SP 

extern pascal Longword MaxBlock () 

Memory Manager routines 



$0902 NewHandle 
Creates a new block and returns the handle to the block. The userID parameter marks 
the block as belonging to a specific owner. You can specify the user ID as 

■ A new ID obtained by modifying the au:xID field of the master user ID 

■ The master user ID the Memory Manager returned to you in the MMStartUp call 

■ An entirely new user ID you obtained by calling the Miscellaneous Tool Set 
GetNewID routine 

For more information about the ramifications of these different kinds of IDs, see the 
sections "User IDs" and "Using the Memory Manager" in this chapter. 

The block is located and its attributes are set according to the flags set in the attributes 
parameter, as shown in Figure 12-9. 

The locationPtr points to the starting address of the block only if the attributes 
parameter specifies fixed address or fixed bank. Otherwise, locationPtr is ignored. If 
a block of O bytes is created, theHandle becomes an empty handle. 

Parameters 

Stack before call 

previous contents 

-- longspace 

-- blockSize 

userID 

attributes 

-- locationPtr 

Stack after call 

previous contents 

theHandle 

--· 

--· 

--· 

Long-Space for result 

Long-Size in bytes of block to create 

Word-User ID to be associated with the block 

Word-Attributes (see Figure 12-9) 

Long-POINTER to where in memory the block is to begin 

f-SP 

Long-HANDLE of new block; empty if block of O bytes created 

f-SP 

Memory Manager routines 12-35 



Errors $0201 

$0204 

$0207 

memErr 

lockErr 

idErr 

Unable to allocate block 

Illegal operation on a locked or immovable block 

Invalid user ID 

extern pascal Handle C NewHandle (blockSize , userID , attributes , locationPtr) 

Longword blockSize ; 

Word user ID ; 

Word attributes ; 

Pointer locationPtr ; 

12-36 Memory Manager routines 



Memory attributes word 
Figure 12-9 illustr_ates the memory attributes word. In all of the bits, a value of 1 
means that the attribute applies to the block; you might think of setting the bit to 1 as 
applying a restriction to the block. 

l1sl14l13l12l11 l1ol 91 a I 7 I 6 I 5 I 4 I 3 I 2 I 1 IO I 
attrLocked 

Block temporarily locked down; can't be moved or purged = l 

J J I I L_J l I 

Block may be moved or purged = 0 

ottrFixed 
Block can't move while in memory= l 

Block may move = 0 

Reserved; set to 0 -

Figure 12·9 
Memory attributes word 

attrPurge -
Purge level 3 = 11 
Purge level 2 = l 0 
Purge level l = 01 
Don't purge = 00 

Reserved; set to 0 -

attrNoCross -
May not cross bank boundary = l 

May cross bank boundary = 0 

attrNoSpec -
May not use special memory = l 

May use special memory = 0 

attrPage-
Block will be page aligned = l 

Block might not be page aligned = 0 

attrAddr ­
Block must remain at fixed address = l 

Block may be moved to other addresses = 0 

ottrBonk ­
Block must remain in fixed bank = l 
Block can move to other banks = 0 

Memory Manager routines 12-37 



$2802 

Parameters 

PtrToHand 
Copies a specified number of bytes from a source to a destination, with the source 
specified by a pointer and the destination by a handle. PtrToHand works correctly 
even if source and destination overlap or cross bank boundaries. No address 
validation is performed; PtrToHand simply overwrites everything. 

Stack before call 

previous contents 

-- sourcePtr --· Long-POINTER specifying start of bytes to be copied 

-- destHandle --· Long-HANDLE specifying starting address where bytes will be written 

-- count --· Long-Number of bytes to be copied 

Stack after call 

prevtous contents I 
-------- f- SP 

Errors $0202 

$0206 

emptyErr 

handleErr 

Illegal operation on an empty handle 

Invalid handle 

C extern pascal void PtrToHand(s ou rcePtr,destHandle ,count ) 

Pointer sourcePtr ; 

Handle destHandle; 

Longword count; 

12-38 Memory Manager routines 



$1302 

Parameters 

PurgeAII 
Purges all of the purgeable blocks for a specified user ID. Only purgeable, unlocked 
blocks are purged. If any of the blocks were not purgeable, an error occurs, but any 
purgeable blocks are purged anyway. 

Stack before call 

previous contents 

userID 

Stack after call 

Word-User ID whose blocks will be purged 

~SP 

previous contents I 
--------~SP 

Errors 

C 

$0204 

$0205 

$0207 

lockErr 

purgeErr 

idErr 

Illegal operation on a locked or immovable block 

Attempt to purge an unpurgeable block 

Invalid user ID 

extern pascal void PurgeAll (userID ) 

Word user ID ; 

Memory Manager routines 12-39 



$1202 

Parameters 

PurgeHandle 
Purges a specified purgeable, unlocked block, but does not deallocate the handle; 
that is, theHandle itself remains allocated but is empty. 

Stack before call 

previous contents 

theHandle 

Stack after call 

Long-HANDLE of block to be purged 

~SP 

I previous contents I~ SP 

Errors $0204 

$0205 

$0206 

lockErr 

purgeErr 

handleErr 

Illegal operation on a locked or immovable block 

Attempt to purge an unpurgeable block 

Invalid handle 

C e xt e rn p asca l void Purge Ha ndle( the Handle) 

Hand l e t heHandle ; 

12-40 Memory Manager routines 



$0A02 

Parameters 

ReAllocHandle 
Reallocates a purged block, using new attributes. 

The locationPtr points to the starting address of the block only if the attributes 
parameter specifies fixed address or fixed bank. Otherwise, locationPtr is ignored. 

Stack before call 

previous contents 

-- blockSize 

userID 

attributes 

-- locationPtr 

-- theHandle 

--· 

--· 

--· 

Long-Size in bytes of block to create 

Word-User ID associated with the block 

Word-Attributes (see Figure 12-9 in the section "NewHandle") 

Long-POINTER to where in memory the block is to begin 

Long-HANDLE of the block to reallocate 

f-- SP 

Stack after call 

previous contents I 
-------- f-- SP 

Errors $0201 memErr 

$0203 notEmptyErr 

$0204 lockErr 

$0206 handleErr 

$0207 idErr 

Unable to allocate block 

Empty handle expected for this operation 

Illegal operation on a locked or immovable block 

Invalid handle 

Invalid user ID 

C e xtern pascal void ReallocHandle(blockSize , userID , attributes , 

locationPtr , theHandle ) 

Longwo r d blockSi ze; 

Wo r d user ID ; 

Wor d attributes ; 

Pointer locationPtr ; 

Handle theHandle ; 

Memory Manager routines 12-41 



$0B02 

Parameters 

RestoreHandle 
Reallocates a purged block using the same attributes, userID, and blockSize that were 
associated with the purged handle. The block must not have had a fixed address or 
fixed bank attribute. Any information in the purged block was lost. 

Stack before call 

prevtous contents 

theHandle 

Stack after call 

Long-HANDLE of the block to restore 

~SP 

previous contents I 
- -------~SP 

Errors $0201 

$0203 

$0206 

$0208 

memErr 

notEmptyErr 

handle Err 

attrErr 

Unable to allocate block 

Empty handle expected for this operation 

Invalid handle 

Illegal operation with specified attributes; block 
cannot have fixed address or fixed bank attribute 

C e xtern pascal void RestoreHandle (theHandle ) 

Hand le theHandle ; 

12-42 Memory Manager routines 



$1902 

Parameters 

SetHandleSize 
Changes the size of a specified block. The block can be made larger or smaller. If you 
need more room to lengthen a block, you may compact memory or purge blocks. 

You should unlock theHandle before making the SetHandleSize call, because the 
block may have to move to change size. If newSize is set to 0, theHandle becomes an 
empty handle. 

Stack before call 

previous contents 

newSize 

theHandle 

Stack after call 

Long-New size of block in bytes 

Long-HANDLE of block whose size is to be set 

f-SP 

previous contents I 
-------- f- SP 

Errors 

C 

$0201 

$0202 

$0204 

$0206 

memErr 

emptyErr 

lockErr 

handleErr 

Unable to allocate block 

Illegal operation on an empty handle, usually caused 
by attempting to resize a purged block 

Illegal operation on a locked or immovable block 

Invalid handle 

extern pascal void SetHandleSize(newSize,theHandle) 

Longword newSize ; 

Handle theHandle ; 

Memory Manager routines 12-43 



$2402 

Parameters 

SetPurge 
Sets the purge level of a specified block. The purge level is a 2-bit number in the 
attributes word specifying the purging priority of the block. The values are 

3 Most purgeable; used only by the System Loader 
2 Next most purgeable 
1 Least purgeable 
0 Not purgeable 

Your application should use only levels O to 2; level 3 is reserved for the System 
Loader. 

Stack before call 

previous contents 

newPurgeLevel 

theHandle 

Word-New purge level of block (bits 1-0 only; set others to 0) 

Long-HANDLE of block whose purge level is to be set 

~SP 

Stack after call 

previous contents I 
---------~SP 

Errors $0206 handleErr Invalid handle 

C extern pascal void SetPurge(newPurgeLevel , theHandle ) 

Word newPurgeLevel; 

Handle theHandle ; 

12-44 Memory Manager routines 



$2502 

Parameters 

SetPurgeAII 
Sets the purge level of all blocks associated with a specified user ID. The purge level is 
a 2-bit number in the attributes word specifying the purging priority of the block. The 
values are 

3 Most purgeable; used only by the System Loader 
2 Next most purgeable 
1 Least purgeable 
0 Not purgeable 

Your application should use only levels 0 to 2; level 3 is reserved for the System 
Loader. 

Stack before call 

previous contents 

newPurgeLevel Word-New purge level of block (bits 1-0 only; set others to 0) 

Word-User ID whose blocks are to be set to newPurgeLevel 

f-- SP 

userID 

Stack after call 

previous contents I 
-------- f-- SP 

Errors $0207 idErr Invalid user ID 

C ext e rn p a scal void SetPurge Al l (newPurgeLevel , userID) 

Word newPurgeLevel ; 

Wo rd u s er ID ; 

Memory Manager routines 12-45 



$1D02 TotalMem 
Returns the size of all memory, including the main 256K. 

Parameters 

Stack before call 

previous contents 

longspace 

Stack after call 

previous contents 

totalSize 

Errors None 

Long-Space for result 

f-SP 

Long-Total size in bytes of memory, including main 256K 

f-SP 

C extern pascal Longword TotalMem() 

12-46 Memory Manager routines 



Memory Manager summary 
This section briefly summarizes the constants and tool set error codes contained in 
the Memory Manager. There are no predefined data structures for the Memory 
Manager. 

Important 

These definitions are provided In the appropriate Interface file. 

Table 12-4 
Memory Manager constants 

Name Value Description 

Attribute bits 
attrNoPurge $0000 Not purgeable 
attrBank $0001 Fixed bank 
attrAddr $0002 Fixed address 
attrPage $0004 Page aligned 
attrNoSpec $0008 May not use special memory 
attrNoCross $0010 May not cross banks 
attrPurgel $0100 Purge level 1 
attrPurge2 $0200 Purge level 2 
attrPurge3 $0300 Purge level 3 
attrPurge $0300 Test or set both purge bits 
attrHandle $1000 Block of handles (reserved for Memory Manager) 
attrSystern $2000 System handle (reserved for Memory Manager) 
attrFixed $4000 Fixed block 
attrLocked $8000 Locked block 

Table 12-5 
Memory Manager error codes 

Code Name Description 

$0201 rnemErr Unable to allocate block 
$0202 ernptyErr Illegal operation on an empty handle 
$0203 notErnptyErr Empty handle expected for this operation 
$0204 lockErr Illegal operation on a locked or immovable block 
$0205 purgeErr Attempt to purge an unpurgeable block 
$0206 handleErr Invalid handle 
$0207 idErr Invalid user ID 
$0208 attrErr Illegal operation with specified attributes 

Memory Manager summary 12-47 





Chapter 13 

Menu Manager 

The Menu Manager supports the use of the style of menus approved by the Human 
Interface Guidelines: The Apple Desktop Interface. Menus allow users to examine 
all choices available to them at any time without being forced to choose one of them 
and without having to remember command words or special keys. The Apple IIGS 
user simply positions the cursor in the menu bar and presses the mouse button over a 
menu title. The application then calls the Menu Manager, which highlights the 
selected title (by redrawing it in inverted colors) and "pulls down" the menu below it; 
such menus are thus called pull-down menus. So long as the mouse button is held 
down, the menu is displayed. Dragging through the menu causes each of the menu 
items (commands) to be highlighted in turn. If the mouse button is released over an 
item, that item is "chosen." The item blinks briefly to confirm the choice, and the 
menu disappears. 

When the user chooses an item, the Menu Manager tells the application which item 
was chosen, and the application performs the corresponding action. When the 
application completes the action, it removes the highlighting from the menu title, 
indicating to the user that the operation is complete. 

If the user moves the cursor out of the menu with the mouse button held down, the 
menu remains visible, though no menu items are highlighted. If the mouse button is 
released outside the menu, no choice is made: The menu just disappears, and the 
application takes no action. The user can always look at a menu without causing any 
changes in the document or on the screen. 

A preview of the Menu Manager routines 
To introduce you to the capabilities of the Menu Manager, all Menu Manager 
routines are grouped by function and briefly described in Table 13-1. These routines 
are described in detail later in this chapter, where they are separated into 
housekeeping routines (discussed in routine number order) and the rest of the Menu 
Manager routines (discussed in alphabetical order). 

13-1 



Table 13-1 
Menu Manager routines and their functions 

Routine Description 

Housekeeping routines 
MenuBootinit Initializes the Menu Manager; called only by the Tool Locator-must not be 

MenuStartUp 
MenuShutDown 
Menu Version 
MenuReset 

Menu Status 

called by an application 
Starts up the Menu Manager for use by an application 
Shuts down the Menu Manager when an application quits 
Returns the version number of the Menu Manager 
Resets the Menu Manager; called only when the system is reset-must not be 
called by an application 
Indicates whether or not the Menu Manager is active 

Initialization and termination routines 
NewMenuBar Creates a default menu bar with no menus 
NewMenu 
DisposeMenu 
FixMenuBar 
CalcMenuSize 

Allocates space for a menu list and its items 
Frees the memory allocated by NewMenu 
Computes standard sizes for the menu bar and menus 
Sets menu dimensions, either manually or automatically 

User Interaction routines 
MenuSelect Draws highlighted titles, pulls down menus, and handles user interaction when a 

mouse button is clicked on a menu bar 
MenuKey 
MenuRefresh 
Menu Global 

Menu drawing routines 

Maps a character to the associated menu and item for that character 
Attempts to refresh the screen 
Turns menu help on or off or returns the current state of menu help; your 
application can use menu help to let users find out how inactive items can be 
made active 

DrawMenuBar Draws the current menu bar, along with any menu titles on the bar 
HiliteMenu Highlights or unhighlights the title of a specified menu 
FlashMenuBar Flashes the entire current menu bar 

Menu and item shuffling routines 
InsertMenu Inserts a specified menu into the menu list after a specified menu item or at the 

front of the list 
DeleteMenu 
InsertMitem 

DeleteMitem 

Removes a specified menu from the menu list 
Inserts a menu item into a menu after a specified menu item or at the front of the 
list 
Removes a specified item from the current menu 

13-2 Chapter 13: Menu Manager 



Tobie 13-1 (continued) 
Menu Manager routines and their functions 

Routine Description 

Menu bar access routines 
SetSysBar Sets a new system bar; the system menu bar becomes the current menu bar 
GetSysBar Returns the handle of the current system menu bar 
SetMenuBar Sets the current menu bar 
GetMenuBar Returns the handle of the current menu bar 
SetBarColors Sets the normal, inverse, and outline colors of the current menu bar 
GetBarColors Returns the colors for the current menu bar 
SetMTitleStart 
GetMTitleStart 
CountMitems 

Sets the starting position for the leftmost title within the current menu bar 
Returns the starting position for the leftmost title within the current menu bar 
Returns the number of items, including any dividing lines, in a specified menu 

Menu record access routines 
GetMHandle Returns a handle to a menu record 
SetMTitleWidth Sets the width of a title 
GetMTitleWidth Returns the width of a menu title 
SetMenuFlag 
GetMenuFlag 
SetMenuTitle 
GetMenuTitle 
SetMenuID 

Sets the menu to a specified state 
Returns the menu flag for a specified menu 
Specifies the title for a menu 
Returns a pointer to the title of a menu 
Specifies a new menu number 

Item record access routines 
SetMitem Specifies the name for a menu item by pointing to an item line 
GetMitem Returns a pointer to the name of an item 
SetMitemName Specifies the name of a menu item by pointing to a Pascal-type string 
EnableMitem Sets a specified menu item to display normally and allows it to be selected 
DisableMitem Sets a specified menu item to display in dimmed characters and does not allow it 

to be selected 
Check.Mitem 

SetMitemMark 

GetMitemMark 
SetMitemStyle 
GetMitemStyle 
SetMitemFlag 

GetMitemFlag 

SetMitemID 
SetMitemBlink 

Sets a specified menu item to display or to not display a check mark to the left of 
the item 
Sets a specified menu item to display or to not display a specified character to the 
left of the item 
Returns the current character that is displayed to the left of a specified menu item 
Sets the text style for a specified menu item 
Returns the text style for a specified menu item 
Sets a specified item number to be underlined or not underlined and sets the 
highlighting style 
Returns the values for a specified item, such as whether it is disabled, underlined, 
or highlighted 
Specifies the ID number of a menu item 
Determines how many times all menu items should blink when selected 

(continued) 

A preview of the Menu Manager routines 13-3 



Table 13-1 (continued) 
Menu Manager routines and their functions 

Routine Description 

Miscellaneous Menu Manager routines 
GetMenuMgrPort Returns a pointer to the Menu Manager's port 
MenuNewRes Adjusts screen resolution and redraws the current system menu bar 
InitPalette Reinitializes the palettes needed for the colored Apple logo in the system menu 

bar 

Menu bars 
A menu bar is an outlined rectangle that holds the titles of all the menus associated 
with the bar. A menu may b.e enabled or temporarily disabled. A disabled menu can 
still be pulled down, but its title and all the items in it are dimmed and not selectable. 

❖ Note: If your program is likely to be translated into other languages, the menu 
titles may take up more space. If you're having trouble fitting your menus into the 
menu bar, you should review your menu organization and menu titles. 

System menu bar 
There is one special type of menu bar called the system menu bar, shown in 
Figure 13-1. 

Titles of enabled menus Titles of disabled menus 

Figure 13-1 
System menu bar 

Menu 
bar 

Only one system menu bar at a time can appear on the screen. The system menu bar 
always appears at the top of the Apple IIGS screen; nothing but the cursor ever 
appears in front of it. In applications that support desk accessories, the first menu 
should be the Desk Accessory menu (the menu whose title is a colored Apple 
symbol). The Desk Accessory menu contains the names of all available desk 
accessories. When the user chooses a desk accessory from the menu, the title of a 
menu belonging to the desk accessory may appear in the menu bar for as long as the 
accessory is active, or the entire menu bar may be replaced by menus belonging to 
the particular desk accessory. 

13-4 Chapter 13: Menu Manager 



Color number 1 is reserved for drawing the Apple logo as the title for the Desk 
Accessory menu . Therefore, color number 1 should not be used as the color for the 
bar, as the inverse colors for the bar, or as the outline color. The color can be used 
for menus, items, window menu bars, and the rest of the screen. 

Window menu bars 
In addition to the system menu bar, your application can have various window 
menu bars (see Figure 13-2). These can appear anywhere on the screen and in 
windows. 

Layout Arrange Color 

Th is is my memo that I want to send to 
everyone . 

Figure 13-2 
Window menu bar 

System menu bar 

Window menu bar 

Window menu bars are provided to give you more flexibility and to address the 
limited resolution in 320 mode. However, be careful when using window menu bars; 
your application may be better served by a revised system menu bar. In addition, 
there are several factors which you must consider, including the following: 

■ TaskMaster doesn't handle events in the content region of a window; thus, your 
application must handle events coming from a window menu bar. 

■ To affect a window menu bar, you must first install as the current GrafPort the port 
of the window that owns the menu bar. 

■ Because the menus will be drawn in the window's port, they will be clipped to that 
port's clip region; thus, the menus must fit inside the content region of the window 
or parts of the menus will not be visible to the user. 

Menu bars l 3-5 



Menu appearance 
A standard menu consists of a number of menu items listed vertically inside a 
shadowed rectangle. A menu item may be the text of a command or just a line 
dividing groups of choices. Menus always appear in front of everything else, except 
the cursor. The menu in Figure 13-3 is a menu with six items, including one dividing 
line. 

File Edit , , , · Font l'on1Si:zP Stqlii 

Menu height 
Edit Pattern 

Items 

Dividing line 

Brn~h Shnpe - - - Disabled Item 

Men) width 

Figure 13-3 
Standard menu 

Each item can vary slightly from the standard appearance: 

■ A mark may appear on the left side of the item to denote the status of the item or of 
the mode it controls. See the sections "SetMitemMark," "GetMitemMark," and 
"CheckMitem" in this chapter. 

■ An Apple logo may appear on the right side of the item to show that the item may 
be invoked from the keyboard (that is, the item has a keyboard equivalent), 
followed by a capital letter. If the user presses this key while holding down the 
Apple key, the menu item is invoked just as if it had been chosen from the menu. 
See the section "MenuKey" in this chapter. 

■ Each item's text may have its own style. See the sections "SetMitemStyle" and 
"GetMitemStyle" in this chapter. 

■ An item can be dimmed to indicate that it is disabled and can't be chosen 
(dividing lines should always be disabled). See the sections "DisableMitem" and 
"EnableMitem" in this chapter. 

■ Any menu can be drawn directly by the application and can contain anything (see 
the section "Defining Your Own Menus" in this chapter). 

❖ Note: If an item without any text is dimmed, the item appears the same as the 
menu background. 

If the standard menu doesn't suit your needs-for example, if you want more 
graphics or a nonlinear text arrangement-you can define a custom menu that, 
although visibly different to the user, responds to your application's Menu Manager 
calls just like a standard menu (see the section "Defining Your Own Menus" in this 
chapter). 

13-6 Chapter 13: Menu Manager 



Keyboard equivalents for commands 
Your program can set up a keyboard equivalent for any of its menu commands to 
allow the user to invoke the command from the keyboard. The character you specify 
for a keyboard equivalent will usually be a letter that the user can type in either 
uppercase or lowercase. For example, typing either C or c while holding down the 
Apple key invokes the command whose equivalent is C 

❖ Note: For consistency with the Apple Human Interface Guidelines, you should 
specify the letter in uppercase in the menu. 

Using the Menu Manager 
This section discusses how the Menu Manager routines fit into the general flow of an 
application and gives you an idea of which routines you'll need to use under normal 
circumstances. Each routine is described in detail later in this chapter. 

The Menu Manager depends upon the presence of the tool set shown in Table 13-2 
and requires that at least the indicated version of the tool set be present. 

Table 13-2 
Menu Manager-other tool sets required 

Tool set Tool set Minimum version 
number name needed 

$01 #01 Tool Locator 1.2 
$02 #02 Memory Manager 1.2 
$04 #04 QuickDraw II 1.2 
$06 #06 Event Manager 1.0 
$OE #14 Window Manager 1.3 
$10 #16 Control Manager 1.3 

The first Menu Manager call that your application must make is MenuStartUp. When 
you quit your application, you must call MenuShutDown. 

The procedure described on the following pages presents the steps necessary to set 
up the menu bar using 65C816 assembly language. The procedure basically consists 
of the following steps (the next few sections explain these steps in detail): 

1 . Initialize the Menu Manager. 

2 . Define the menus and items. 

3 . Set the sizes of the menu bar and menus. 

4. Draw the menu bar. 

5 . Accept input from the user, either with or without the Window Manager routine 
TaskMaster. 

Using the Menu Manager 13-7 



Initializing the Menu Manager 
Enter the following code to initialize the Menu Manager: 

lda 

pha 

lda 

pha 

MyID 

MenuZPage 

_MenuStartUp 

ID number returned by Memory Manager MMStartUp 

Pass ID to MenuStartUp 

Direct page for Menu Manager use 

Pass direct page 

Creates and draws an empty menu bar; no output 

You now have a system menu bar that contains no menus and is the current menu 
bar. If you are only using one menu, the system menu bar will always be the current 
menu bar. You can also create several menu bars by changing the current menu bar. 
See the section "SetSysBar" in this chapter. 

Defining menus and items 
Your program then must define menus and items by providing a list of menu and 
item lines to NewMenu for each menu (see the section "Menu Lists: Menu Lines and 
Item Lines" in this chapter) and by using the InsertMenu routine to add them to the 
system menu bar. FixMenuBar may be useful in setting default sizes. 

13-8 

pha 

pha 

pea Menull-16 

pea Menul 

NewMenu 

pla 

sta menuHandle 

pla 

sta menuHandle+2 

ora menu Handle 

beq error 

lda menuHandle+2 

pha 

lda menuHandle 

pha 

pea 0 

InsertMenu 

Chapter 13: Menu Manager 

; Space f or returned handle 

Pass pointer to menu/item lines 

Allocate a menu record and initialize it 

Get returned menu handle 

and save it 

Check for bad handle 

Unable to allocate h a ndle or bad menu/item lines 

Pass handle of menu to insert ( just allocated) 

Insert menu as first menu flag 

Insert menu in data structures, not drawn 



In the preceding example, the menu and item line data might look like this: 

DATA: 

Menul de 

de 

de 

c ' >>T i tle\Nl ', il ' O' 

c ' --Item l\N256 ' ,il ' 0 ' 

Menu title 

Item text 

c '.' Terminat ion character 

Setting the sizes of the menu bar and items 

After you have created and inserted all the menus you want, you must set the sizes of 
the menu bar and menus. 

pha 

FixMenuBar 

pla 

Drawing the new menu bar 

; Space for returned bar height 

; Initialize menu bar and menu sizes 

;Get the height of the menu bar ; generally not useful 

After the menu bars have been created and initialized, you should draw them. If you 
need to change the color of the menu bar and the menus, use the SetBarColors 
routine before drawing the menu. 

DrawMenuBa r ; Draws the menu bar and the menu titles 

The menu bar is displayed, and initialization is complete. 

Important 

Remember to consult the Apple Human Interface Guidelines before changing the 
color of the menu bar and the menu titles. 

Accepting input from the user 

Now you are ready to accept input from the user. You can do so either with or without 
the Window Manager routine TaskMaster. The routine is described in detail in 
Chapter 25, "Window Manager," in Volume 2; this section describes how it is used 
with the Menu Manager. 

Using the Menu Manager 13-9 



Whether or not you use TaskMaster, you need to know about the task record, which 
looks like this in assembly language: 

TaskRec anop 

what ds 2 

message ds 4 

when ds 4 

where ds 4 

modifiers ds 2 

TaskData ds 4 

TaskMask ds 4 

With Task Master 

The following example uses TaskMaster: 

poll pha 

pea 

pea 

$002E 

TaskRecl-16 

pea Task Rec 

TaskMaster 

pla 

beq 

cmp 

bne 

lda 

and 

poll 

#winMenuBar 

poll 

Task Data 

#$00FF 

asl a 

tax 

First part is event record , defined in Event Manager 

Place for returned values 

Used by Window Manager calls , not really needed here 

; Space for returned value 

;Accept at least key and mouse events 

;Pass pointer to task record 

;Task Master will call GetNextEvent for you 

;Get return flag 

; Was there a n event? 

; Was there a menu event? 

; If not , continue to poll (or check other events) 

; Get ID of item selected 

;Table shortcut , if all item IDs must be 256 to 511 

jmp (itemProcs , x) ;Jump to item handler 

itemProcs de i'iteml ' ; Address for item handler (only one item here) 

13-10 Chapter 13: Menu Manager 



iteml 

pea 

lda 

pha 

0 

TaskData+2 

HiliteMenu 

jmp poll 

Without TaskMaster 

; (Perform whatever action the item dictates) 

;Pass FALSE to unhighlight the menu title 

; Get menu ' s ID, returned from MenuKey or MenuSelect 

; Pass the menu ' s ID number 

; Unhighlight the menu's title after item task action 

;Return to polling 

The following example does not use TaskMaster: 

poll 

ck_ key 

ck button 

pha 

pea 

pea 

$002E 

TaskRecl-16 

pea TaskRec 

Get Next Event 

pla 

beq poll 

lda what 

cmp #3 

beq ck _key 

cmp #5 

hne ck button 

pea TaskRecl-16 

pea TaskRec 

pea 0 

pea 0 

_MenuKey 

bra ck Menu 

cmp #1 

bne poll 

; Space for returned value 

; Accept at least key and mouse events 

;Pass pointer to event record 

;Get return flag 

;Was there an event? 

;Get event code 

;Keypress event? 

;Autokey event? 

; Pass TaskRec, which contains key pressed in ' message ' 

; Use current menu bar flag 

;Execute common menu selection routine 

;Mouse down event? 

;If not key or button, continue to poll 

Using the Menu Manager 13- 11 



You should first determine whether the button was pressed in the menu bar. If you 
are using the Window Manager, call the FindWindow routine, which returns a value 
that indicates whether the specified point is in the system menu bar. If you are not 
using the Window Manager, your application must determine how to tell whether the 
button was pressed in the menu bar (the height of the menu bar, returned from 
FixMenuBar, could be useful) . 

Continue if the point is in the menu bar: 

ck Menu 

itemProcs 

iteml 

13-12 

pea TaskRecJ-16 

pea TaskRec 

pea 0 

pea O 

MenuSelect 

l da 

beq 

TaskData 

poll 

; Pass TaskRec , which contains where mouse was pressed 

; Use c ur rent menu bar flag 

; Menu select will wait for button up before returning 

; Get ID of item selected 

; Was an item selected? If not , return to polling 

crop #256 ; Item IDs 1-255 are reserved for desk accessory items 

bee call_deskmgr ;Do what is necessary for desk accessories 

and #$00FF ; Shortcut for table , if all item IDs between 256-511 

asl a 

tax 

jmp (itemProcs , x ) ; Jump to item handler 

de 

pea 

lda 

pha 

i ' iteml ' 

0 

TaskData+2 

HiliteMenu 

jmp poll 

Chapter 13: Menu Manager 

;Address for item handler (only one item here ) 

; (Perform whatever action the item dictates) 

;Pass FALSE to unhighlight the menu tit l e 

; Get menu ' s ID , returned from MenuKey or MenuSelect 

; Pass the menu ' s ID number 

; Unhighlight the menu ' s title after item action 

; Retu r n to pol ling 



❖ Note: The Menu Manager tries to automatica ly save and restore the screen 
behind the menu or tells the Window Manager to update the screen. However, if 
you are not using the Window Manager, and the Menu Manager cannot allocate a 
buffer large enough to save the screen behind the menu, your application must 
update the screen area after a menu has been pulled down. See the section 
"MenuRefresh" in this chapter. 

If you want your menu bar or menu items to change while on the screen, you can use 
SetMenuTitle, InsertMenu, DeleteMenu, SetMitem, InsertMitem, and DeleteMitem 
to rearrange the menus and items. 

Several miscellaneous Menu Manager routines may be useful. CalcMenuSize 
calculates the dimensions of a menu and is called by FixMenuBar. CountMitems 
counts the number of items in a menu. FlashMenuBar inverts the menu bar or menu 
title. SetMitemBlink controls the number of times a menu item blinks when chosen. 

Menu lists: menu lines and item lines 
Menus can be created by passing a pointer to a list of menu lines and item lines to the 
NewMenu routine. NewMenu parses the menu lines and item lines, allocates 
enough memory for necessary records, and initializes those records. The list can be 
edited using a word processor, thus allowing users to easily customize their own 
menus. An example of a list is 

»Title 1 \Nl 
--Item s tr i ng l\N256 
-- Item s t r ing 2\N257 
-- Item s tring 3\N258 

This is a simple list of one menu line and three item lines . The first character on the 
first line is the title character, which denotes the start of a menu. The second 
character simply repeats the first character, since the second character is changed by 
the Menu Manager for internal reasons. Each line is terminated by a return (decimal 
13) or a null byte (0). The first character on subsequent lines that is different from the 
title character is the item character. The second character on subsequent lines is 
also changed by the Menu Manager for its own purposes. Finally, a termination 
character, different from the menu and item character, denotes the end of the list. 

In the preceding example, the > character is the title character, the - character is 
the item character, and the ; character is the termination character. However, you 
may use any characters, so long as the title and item characters are different and the 
termination character is different from the item character. (The title and 
termination characters may be the same.) 

Important 

Menu lines and item lines must remain in memory until the menu Is disposed of. 

Menu lists: menu lines and item lines 13-13 



Backslash characters are also included in the preceding example. A backslash 
character denotes the end of a title's text and the beginning of special characters. 
The N immediately following the backslash in the example precedes an ID number, 
which is a decimal, unsigned ASCII number. Every menu and title item, even 
dividing lines, must have an ID number. The ID number for each menu title must be 
different from the ID number for every other menu title on the menu bar, and the ID 
number of each item must be different from the ID number for every other item. 
Items that are dividing lines, and thus always disabled, can have the same ID 
number. 

The special characters are shown in Table 13-3. 

Table 13-3 
Menu special characters 

Character 

\ 

B 
C 
D 
H 
I 
N 
u 
V 
X 

Description 

Denotes beginning of special characters 
Followed by the character to be displayed on the screen as a keyboard equivalent (usually 
an uppercase letter) followed by the alternate keyboard character (usually the 
corresponding lowercase letter) 
Make the text bold 
Followed by a character to be used to mark the item 
Dim (disable) the selection 
Hexadecimal, non-ASCII ID number follows; low-order byte/ high-order byte 
Italicize the text 
Decimal ASCII ID number follows; any length between 1 and 65535 
Underscore the text 
Place an underline under the item without using a separate item 
Use color replace, and not XOR, highlighting 

❖ Note: You cannot include a backslash(\) in a text string. It will always be seen as 
the beginning of special characters. 

All special characters can be used for items, but the characters •, B, C, I, U, and V 
cannot be used for menu titles. 

An example of a menu and item lines using multiple special characters and different 
title, item, and terminating characters is as follows : 

$$Tit l e l\Nl 

--It em-string 1\N2 5 6*Xx 

-- It em-string 2 \Bc✓uN257 
-- I tem- s tring 3\IN25 8 

$ 

Title character = $, ID= 1; ID can be same as item ID 
Item character = dash, ID = 256, key equivalents = X and x 
Item character = dash, bold, checked, underscored; ID = 257 
Item character = dash, text is italicized, ID = 258 
Terminating character; can be same as title character 

13-14 Chapter 13: Menu Manager 



❖ Note: Because you cannot type a ✓ character from the keyboard, you must write 
a line of code that looks something like the following fragment of 65816 assembly 
language (the ASCII equivalent for ✓ is 18): 

de c ' - - Item-string 2\BC ', i1 ' 18' c ' UN2 57',i1 ' 0 ' 

Using just the @ symbol in a title provides the Apple logo. The @ must follow the 
character denoting a menu title and then be followed by an end-of-line mark 
(carriage return). Do not place a space before or after the @, as you should with 
other menu titles. 

An example of an Apple logo menu title is as follows: 

$$ @\NlX Apple logo title; ID = 1, color replace highlighting 

A single dash (-) as an item's text denotes a dividing line. Special characters apply to 
dividing lines. Dividing lines should be marked as dimmed with D. For example, if 
the > character denotes an item line, the code 

» - \N256D 

will produce a dashed, dimmed dividing line. 

Dividing lines and underlines 
There are two standard ways to separate groups of items. The first is to use a dividing 
line, created with an item string that has only a place-holding character and a single 
dash. It uses the space of an entire item and an entire item record. The second way is 
to use an underline, set either in the menu line or SetMitemFlag. This will draw a 
solid line on the bottom line of the item. The underlined item doesn't use any more 
space, on the screen or in memory, than the item does without the underline. 

The advantages of underlines are that they save memory, the menu draws faster, the 
user has to move the mouse less to move from the menu's title to the last item in the 
menu, and you can put more items in the menu and still have dividing lines. The 
disadvantage of underlines is that there isn't as much space separating items, which is 
the dividing ·line's function. 

Dividing lines and underlines 13-15 



Figure 13-4 shows two menus with the same information. Menu A uses dividing lines 
and has 9 items (dividing lines count as items). Menu B uses underlines and has 7 
items (underlines don't count as items). Menu B looks crowded and would look even 
worse if one of the underlined items had descending lowercase letters. 

Undo 

Cut 
Copy 
Paste 
Clear 

Undo 
Cut 
Copy 
Paste 
Clear 
I nuert 
Fi ll 

I nuert 
Fill Menu B-Underllnes 

Menu A-Dividing Lines 

Figure 13-4 
Dividing lines and underlines 

ID number assignment 

ID numbers must be assigned in the menu and item line list. The ID numbers must be 
allocated as shown in Table 13-4. 

Warning 

A menu ID must be unique for each menu; that Is, no two menus can have the 
same ID or the system will fall. Similarly, no two Items can have the same Item ID. 

Table 13-4 
ID number assignment 

Hex number 

Menu ID numbers 
$0000 
$0001-$FFFE 
$FFFF 

Item ID numbers 

Decimal number 

0 
1-65534 
65535 

Description 

Reserved for internal use; usually indicates first menu in bar 
Reserved for application use 
Reserved for internal use; usually indicates last menu in bar 

$0000 0 Reserved for internal use; usually indicates first item in menu 
$0001-$00F9 1-249 Reserved for desk accessory items 
$00FA 250 Reserved for Undo edit item 
$00FB 251 Reserved for Cut edit item 
$00FC 252 Reserved for Copy edit item 
$00FD 253 Reserved for Paste edit item 
$00FE 254 Reserved for Clear edit item 
$00FF 255 Reserved for Close command item 
$0100-$FFFE 256-65534 Reserved for application use 
$FFFF 65535 Reserved for internal use; usually indicates last item in menu 
After the NewMenu call has been completed, you can change the ID numbers with the 
SetMitemID, GetMitem, and SetMenuID routines. 

13-16 Chapter 13: Menu Manager 



Menu bar records 
The Menu Manager keeps the information required for performing operations on a 
menu bar in a menu bar record, which contains the menu position, color, menu 
lists, item lists, and other flags the Menu Manager needs to manage menus. The 
menu bar record is similar to a control record (see Chapter 4, "Control Manager"), 
with the addition of a menu list at the end. The record is illustrated in Figure 13-5. 

Offset 

so 

2 
3 
4 
5 

6 
7 
8 

Field 
~----~ 

ct/Next 

1--------t 

cHOwner 

1--------t 

Long-HANDLE to next control; NIL for last control 

Long-POINTER to window to which menu belongs; 
NIL for system menu bars 

ct/Rect Four words-RECT defining rectangle enclosing menu bar 
OF 

I-------< 
10 ct/Flag 

1---------< 
11 ct/Hlllte 

12 
13 
14 
15 
16 
17 
18 

1--------t 

ct/Value 

1--------1 

ct/Prac 

1--------t 

' ct/Action 

1 B If--------; 
lC, 
1 F : 

ct/Data 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
2A 
2B 

1--------1 

ct/RefCon 

1--------t 

ct/Color 

1--------t 

menuList 

~----~ 
Figure 13-5 
Menu bar record 

Byte-Style of menu bar (see Figure 13-6) 

Byte-number of highlighted titles 

Word-not used 

Long-S0A000000 

Long-not used 

Long-Reserved for ctlProc use 

Long-Reserved for application use 

Long-POINTER to color table (see Figure 13-7) 

Long-Array of menu handles for internal use 

Menu bar records 13-17 



The bit positions in the ct/Flag are shown in Figure 13-6. 

17 161 5 14 13 12 11 1°1 
l = Invisible J J ~ 

Reserved for future use -• .,.,-, J 
Starting position of titles 

Figure 13-6 
Menu bar ct/Flag values (Note: At the time of publication, 
the Invisible flag was not yet Implemented.) 

The bit positions in the color table pointed to by ct/Color are shown ;n Figure 13-7. 

Color 0-Unhighlighted color of text and background 

[1si1•l13l12l11l10I •I• J ¥' I ,JI 2 I 1 Io I 

Resec,,ed J ·•-· J 
Background color 

Text color 

Color 1-Unhighlighted color of text and background 

[1sl14l13l12l111101 •I• J ¥ I ,JI 2 I 1 Io I 

Reserved J ,,M J 
Background color 

Text color 

Color 2-Color of outline 

11s 1141131121111101 9 1 a I 1 1 6 I s 1 4 1 3 I 2 1 1 I o I 

, Resec,,ed J , :r J 
Outline color 

Text color 

Figure 13-7 
Menu bar color table 

The menulist in the menu bar record is an array of handles to the menu records. 
Menu records are explained in the next section. 

13-18 Chapter 13: Menu Manager 



Menu records 
A menu record provides information about one of the menus in a menu bar. Only 
the first part of the menu record is defined. The defined part of the record is 
illustrated in Figure 13-8, and each field is explained in detail following the figure . 

Offset Field 

so 
menu/D 

2 
menuW/dfh 

3 
4 
5 

menuHe/ght 

6 
7 

menuProc 
8 
9 
A menuF/og 

B menuRes 

C first/tern 

D numOfltems 

E 
title Width 

F 
10 
11 

titleNome 
12 
13 
14 Rest of 

record ls 
undefined 

Figure 13-8 
Menu record 

Word-Menu ID number 

Word-Menu width 

Word-Menu height 

Long-POINTER to menu definition procedure; 
NIL for standard menu 

Byte-Bit flag (see Figure 13-9) 
Byte-ReseNed for internal use 
Byte-ReseNed for future use 

Byte-ReseNed for future use 

Word-Title width 

Long-POINTER to Pascal-type menu string 

menuID: See the section "ID Number Assignment" in this chapter. 

menuWidth: The width of the menu is usually set by the CalcMenuSize routine. 
However, this value can be changed by the application. If the width is set to be too 
narrow, text will be drawn outside of the menu and thus will alter other elements on 
the screen. 

menuHetght: The height of the menu is generally set by CalcMenuSize. However, 
this value can be changed by the application. If the height is set to be too short, text 
will be drawn outside of the menu and thus will alter other elements on the screen. 

Menu records 13-19 



menuProc: A value of O to 255 in this field means that a standard definition 
procedure is being used. Values greater than 255 are considered to be the address of 
a custom menu definition procedure and are called accordingly. See the section 
"Defining Your Own Menus" in this chapter for more information about custom 
menus. 

menuFlag: This is a bit flag controlling various menu attributes, as shown in 
Figure 13-9. 

Warning 

The undefined b its in Figure 13-9 are reserved for internal use by the Menu 
Manager; their values must not be changed by an application. 

l1l6lsl 4 l3l 2 l 1lol 
Disabled = l j j 
Enabled= 0 

Selected= l 
Normal =0 

XOR highlighting = l 
Redraw= 0 

Custom menu = l 
Standard menu = 0 

Invisible = l 
Visible= 0 

Figure 13-9 
The menuF/ag values (Note: At the time of publication, 
the invisib le flag was not yet implemented.) 

menuRes: This byte is reserved and should not be relied on for information nor 
modified by an application. 

firstitem: This byte is reserved for the future implementation of menus that can be 
scrolled. This field should not be relied on for information nor modified by 
applications written before the implementation is defined. 

numOfltems: This byte is reserved for the future implementation of scrollable 
menus. This field should not be relied on for information, nor modified by 
applications written before the implementation is defined. 

title Width: The width of the title can be set to any value between 1 and $FFFF 
(unsigned). The value is used to highlight the title and compute where the next menu 
title should start. The title's text is left justified. 

titleName: This field indicates a pointer to the string to be used for the menu title. 
The first byte of the string should be the length of the string followed by the ASCII 
text. Custom menus may store any type of value desired, so long as the title is drawn 
by the custom definition procedure. 

13-20 Chapter 13: Menu Manager 



Defining your own menus 
The standard type of menu is predefined. However, you may want to define your own 
type of menu-perhaps one with more graphics or a nonlinear text arrangement. 
QuickDraw and the Menu Manager make it possible for you to do this. 

To define your own type of menu, you write a custom menu definition procedure. 
The Menu Manager calls the menu definition procedure to perform basic 
operations, such as drawing the menu. 

Warning 
Do not make any Menu Manager calls from within a custom definition procedure. 

To create a custom menu record you must allocate a block of memory large enough 
for your menu record. Only the defined part (see the section "Menu Records" in this 
chapter) of the menu record has to follow Menu Manager form; the format of the rest 
of the record is up to you. You can also pass a menu line with no items to the 
NewMenu routine and then resize the allocated block to your needs. Fields in the 
menu record that need to be initialized are 

menuID 
menu Width 
menuHeight 
menuProc 
menuFlag 
tttleWidth 
titleName 

Menu ID number 
Width of menu, or you can wait for the mSize operation 
Height of menu, or you can wait for the mSize operation 
Pointer to menu definition procedure 
In addition to other flags, bit 4 must be set 
Width of title 
Pointer to title text (first byte of text is a length byte) or to any other 
desired data 

You may choose any name you wish for the menu definition procedure. The inputs 
and outputs are as follows: 

Stack upon entry to custom routine 

previous contents 

wordspace 

menuMessage 

-- theMenuHandle 

-- rectPtr 

xHitPt 

yHitPt 

menuParam 

Rn I Rn 
Rn 1~ SP 

-- · 

-- · 

Word-Space for result 

Word-Operation to perform 

Long-HANDLE to menu 

Long-POINTER to RECT of rectangle enclosing menu 

Word-X coordinate of point to check 

Word-Y coordinate of point to check 

Word-Additional parameter for each operation 

3 bytes-RTL address 

Defining your own menus 13-21 



Stadt before Rn 

previous contents 

MenuResult 

Rn 
Rn 

Important 

I Rn 
If- SP 

Word-Depends on operation 

3 bytes-RTL address 

Do not change the original RECT pointed to by reef Ptr. If you need to change 
something, first make a copy of the RECT and then change that copy. 

❖ Note: The term item number referred to in the following sections of this document 
does not refer to the same thing as an item ID number. The item number can be 
any value, although bit 15 and bit O each have a specific meaning. The Menu 
Manager passes this value back to the definition procedure and compares the value 
to other item numbers returned by the same definition procedure during a previous 
call. The definition procedure can use any numbering system desired, but it should 
be the same system for each definition procedure function. 

The menuMessage parameter identifies the operation to be performed. It has one of 
the values shown in Table 13-5. 

Table 13-5 
Menu messages 

Value 

0 
1 
2 

3 
4 

5 

Name 

mDrawMsg 
mChooseMsg 
mSizeMsg 
mDrawTitle 
mDrawMitem 
mGetMitemID 

Description 

Draw the menu 
Tell which item was chosen and highlight it 
Calculate the menu dimensions 
Draw the menu title 
Highlight or unhighlight an item 
Return the item ID number 

13-22 Chapter 13: Menu Manager 



The mDrawMenu operation 
The message mDrawMsg tells the menu definition procedure to draw the menu inside 
the rectangle whose RECT data structure is pointed to by rectPtr. The RECT passed 
specifies the coordinates of the menu's interior; that is, the menu minus its frame. 
The current GrafPort will be the Menu Manager port. 

The standard menu definition procedure determines how to draw the menu items by 
looking in the menu record at the data that defines them. For menus of your own 
definition, you may set up the data defining the menu items any way you like. You 
should also check the menuFlag field of the menu record to see whether the menu is 
disabled (or whether any of the menu items are disabled, if you're using all the flags), 
and if the menu is disabled, draw it in gray. You may even print the items in a 
different font, so long as you restore the original font when you finish. The returned 
value is not used. 

Stack upon entry 

previous contents 

wordspace 

menuMessage 

-- theMenuHandle 

-- rectPtr 

xHitPt 

yHitPt 

menuParam 

RTL I RTL 

RTL 1~ SP 

Stack before Rn 

previous contents 

menuResult 

RTL 

RTL 

I RTL 

1~ SP 

--· 

--· 

Word-Space for result 

Word-mDrawMsg message 

Long-HANDLE to menu 

Long-POINTER to RECT that defines the menu's interior 

Word-Undefined 

Word-Undefined 

Word-Undefined 

3 bytes-RTL address 

Word-Not used; may be any value 

3 bytes-RTL address 

Defining your own menus 13-23 



The mChoose operation 
When the menu definition procedure receives the message mChooseMsg, the yHitPt 
and xHitPt parameters specify the mouse location in global coordinates. The 
procedure should determine whether the given point is within an enabled menu 
item. Before calling this routine, the Menu Manager checks that the point is within 
the rectangle whose data structure is pointed to by rectPtr, and that the menu is 
enabled. 

If the mouse location is in an enabled menu item, return the item number in 
menuResult, with the high-order bit of the item set. If the mouse location isn't in an 
enabled item, return 0. 

Stack upon entry 

previous contents 

words pace 

menuMessage 

-- theMenuHandle 

-- rectPtr 

xHitPt 

yHitPt 

menuParam 

Rn I Rn 

Rn If- SP 

Stack before RU 

previous contents 

menuResult 

Rn 

RTI 

I Rn 

If- SP 

- - · 

--· 

Word-Space for result 

Word-mChooseMsg 

Long-HANDLE to menu 

Long-POINTER to RECT specifying rectangle enclosing menu 

Word-X coordinate of point to check 

Word-Y coordinate of point to check 

Word-Undefined 

3 bytes-RTL address 

Word-0 if no item at point; otherwise, item number with high bit set 

3 bytes-RTL address 
I 

13-24 Chapter 13: Menu Manager 



The mSize operation 
The message mSizeMsg tells the menu definition procedure to calculate the 
horizontal and vertical dimensions of the menu. The menu width should be 
computed and stored in the menu Width field of the menu record if menu Width was 0 
on entry; the same is true for menuHeight. By the same token, don't replace the 
value in the menuWidth field if it is nonzero on entry or the value in the menuHeight 
field if it is nonzero on entry. 

Stack upon entry 

previous contents 

wordspace 

menuMessage 

-- theMenuHandle 

-- rectPtr 

xHitPt 

yHitPt 

menuParam 

RTZ I RTZ 

RTZ 1~ SP 

Stack before RTL 

previous contents 

menuResult 

RTZ 

RTZ 

I RTZ 

1~ SP 

--· 

--· 

Word-Space for result 

Word-mSizeMsg 

Long-HANDLE of menu 

Long-Undefined 

Word-Undefined 

Word-Undefined 

Word-Undefined 

3 bytes-RTL address 

Word-Undefined 

3 bytes-RTL address 

Defining your own menus 13-25 



The mDrowTitle operation 

When the menu definition procedure receives the message mDrawTitle, the title of 
the menu must be drawn. The menuParam is as follows: 

$0000 
$0001 
$800x 

The title should be completely drawn; called this way from DrawMenuBar 
The title should be drawn as highlighted without special highlighting 
Negative value to use special highlighting 

If the menu's menuFlag indicates that XOR highlighting is not to be performed, 
menuParam will never be negative. Your definition procedure must define what is 
special highlighting. In the standard definition procedure, the title rectangle is 
XORed. 

Return FALSE in menuResult to have the Menu Manager draw the title (the titleName 
field of the menu record must contain a pointer to a text string for the title); 
otherwise, return TRUE. 

Stack upon entry 

previous contents 

wordspace 

menuMessage 

-- theMenuHandle 

-- rectPtr 

xHttPt 

yHitPt 

menuParam 

RTL I RTL 

RTL I<- SP 

Stack before RTL 

previous contents 

menuResult 

RTL 

RTL 

I RTL 

I<- SP 

--

- - · 

Word-Space for result 

Word-mDrawTitle 

Long-HANDLE to menu 

Long-POINTER to RECT of rectangle enclosing title area 

Word-Undefined 

Word-Undefined 

Word-0 = draw normal, 1 = draw inverted, bit 15 set to invert 

3 bytes-RTL address 

Word-FALSE to draw default title, TRUE if definition procedure drew title 

3 bytes-RTL address 

13-26 Chapter 13: Menu Manager 



The mDrawMltem operation 
The mDrawMitem command is a request to draw an item in its highlighted or 
unhighlighted state. If menuParam is positive, it is the item number and should be 
drawn unhighlighted. If menuParam is negative, it should be drawn highlighted. 
Bits 14 to O of rnenuParam are the same as the item number returned by the 
mChoose operation of your definition procedure. 

Stack upon entry 

previous contents 

words pace 

menuMessage 

-- theMenuHandle 

-- rectPtr 

xHitPt 

yHitPt 

menuParam 

RTL I RTL 

RTL If- SP 

Stack before RTL 

previous contents 

menuResult 

RTL 

RTL 

I RTL 

If- SP 

--· 

--· 

Word-Space for result 

Word-mDrawMitem 

Long-HANDLE to menu 

Long-POINTER to RECT of rectangle enclosing menu 

Word-Undefined 

Word-Undefined 

Word-Item number; high bit set to highlight, clear for unhighlighted 

3 bytes-RTL address 

Word-Undefined 

3 bytes-RTL address 

Defining your own menus 13-27 



The mGetltemlD operation 
The menuParam parameter equals the item's number, and the definition procedure 
is asked to return the item ID number. The item number is the value returned by the 
mChoose operation with the high-order bit masked off. 

Stack upon entry 

previous contents 

words pace 

menuMessage 

-- theMenuHandle 

-- rectPtr 

xHitPt 

yHitPt 

menuParam 

Rn I Rn 

Rn 1~ SP 

Stack before RTI. 

previous contents 
menuResult 

Rn 

Rn 
I Rn 

1~ SP 

--· 

--· 

Word-Space for result 

Word-mGetitemID 

Long-HANDLE to menu 

Long-Undefined 

Word-Undefined 

Word-Undefined 

Word-Item number 

3 bytes-RTL address 

Word-Item ID number 

3 bytes-RTL address 

13-28 Chapter 13: Menu Manager 



$010F 

Parameters 

Errors 

C 

MenuBootlnit 
Initializes the Menu Manager; called only by the Tool Locator. 

Warning 
An application must never make this call. 

The stack is not affected by this call. There are no input or output parameters. 

None 

Call must not be made by an application. 

Menu Manager housekeeping routines 13-29 



$020F 

Parameters 

MenuStartUp 
Starts up the Menu Manager for use by an application by taking the following actions: 

■ Making a system menu bar with no menus the current menu bar 

■ Calling Desktop in the Window Manager to reserve space for the menu bar 

■ Opening a GrafPort 

■ Calling DrawMenuBar to draw the empty system menu bar 

Important 
Your application must make this call before It makes any other Menu Manager 
calls. 

Stack before call 

previous contents 

userID Word- ID number of the application 

dPageAddr Word-Bank $0 starting address for one page of direct-page space 

f--SP 

Stack after call 

p revious contents I 
- - ----- - f--SP 

Errors None 

C e xtern pascal void MenuStartUp (userID , dPageAddr ) 

Word user ID ; 

Word dPageAddr; 

13-30 Menu Manager housekeeping routines 



$030F 

Parameters 

Errors 

C 

$040F 

Parameters 

MenuShutDown 
Shuts down the Menu Manager when an application quits. The routine closes the 
Menu Manager's port and frees any allocated menus. 

Important 
If your application has started up the Menu Manager, the application must make 
this call before It quits, 

The stack is not affected by this call. There are no input or output parameters. 

None 

ext ern pascal void MenuShutDown () 

Menu Version 
Returns the version number of the Menu Manager. 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

versionlnjo 

Errors None 

Word-Space for result 

f-SP 

Word-Version number of the Menu Manager 

f-SP 

C extern pascal Word MenuVersion() 

Menu Manager housekeeping routines 13-31 



? 

$050F 

Parameters 

Errors 

C 

$060F 

Parameters 

Menu Reset 
Resets the Menu Manager; called only when the system is reset. 

Warning 
An application must never make this call. 

The stack is not affected by this call. There are no input or output parameters. 

None 

Call must not be made by an application. 

MenuStotus 
Indicates whether the Menu Manager is active. 

Stack before call 

previous contents 

wordspace Word-Space for result 

f-SP 

Stack after call 

previous contents 

Errors 

C 

13-32 

acttveFlag 

None 

Word-BOOLEAN; 1RUE if Menu Manager active, FALSE if inactive 
f-SP 

extern pascal Boolean MenuSt a tus () 

Menu Manager housekeeping routines 



$1COF 

Parameters 

CalcMenuSize 
Sets menu dimensions, either manually or automatically. The Menu Manager will 
calculate the width if new Width is O and the height if newHeight is 0. 

To compute the width, the Menu Manager finds the widest item in the menu and then 
adds room for a mark and a command key. A default width is used if the menu does 
not contain any item text. 

To compute the height, the Menu Manager adds together the font height of each item 
and then adds 4, or uses the value found in the font index of itemFlag if bit 14 of 
itemFlag is set. 

❖ Note: When FixMenuBar is called, the Menu Manager calls CalcMenuSize for each 
menu with a negative newWtdth and newHeight. 

Stack before call 

previous contents 

newWidth 

newHeight 

Word-Menu width in pixels, or O for automatic calculation 

Word- Menu height in pixels, or O for automatic calculation 

menuNum Word- ID number of the menu whose width and height will be calculated 

~ SP 

Stack after call 

previous contents I 
-------- ~SP 

Errors None 

C extern pascal void CalcMenuSize (newWidth , newHeight , menuNum ) 

Word newWidth; 

Word newHeight; 

Word menuNum ; 

Menu Manager routines 13-33 



$320F 

Parameters 

CheckMltem 
Sets a specified menu item to display or to not display a check mark to the left of the 
item. 

Stack before call 

previous contents 

checkedFlag Word-BOOLEAN; TRUE to check item, FALSE to uncheck item 

Word-Number of item to be checked or unchecked IiemNum 

f- SP 

Stack after call 

previous contents I 
- -------f-SP 

Errors None 

C extern pascal void Che ckMitem (checkedFlag , itemNum) 

Boolea n checkedFlag ; 

Word itemNum ; 

13-34 Menu Manager routines 



$140F CountMltems 
Returns the number of items, including any dividing lines, in a specified menu. 

Parameters 

Stack before call 

prevtous contents 

wordspace 

menuNum 

Stack after call 

prevtous contents 

numberltems 

Errors None 

Word-Space for result 

Word-Menu ID of menu whose items will be counted 

f-SP 

Word-Number of items in the menu 

f-SP 

C extern pascal Word CountMitems (menuNum ) 

Word menuNum ; 

Menu Manager routines 13-35 



$0EOF 

Parameters 

DeleteMenu 
Removes a specified menu from the menu list. The memory for the menu is not 
deallocated; if you want to deallocate the memory, call the DisposeMenu routine. 

You should also call the DrawMenuBar routine to redraw the new menu bar. 

Stack before call 

previous contents 

menuNum Word-ID of menu to be deleted 

~SP 

Stack after call 

previous contents I 
--------~SP 

Errors None 

C extern pascal void DeleteMenu(menuNum) 

Word menuNum; 

13-36 Menu Manager routines 



$100F DeleteMltem 
Removes a specified item from the current menu . Call CalcMenuSize after 
DeleteMitem to resize the menu if necessary. 

Parameters 

Stack before call 

previous contents 

itemNum 

Stack after call 

Word- Item ID of item to be deleted 

f-SP 

previous contents I 
-------- f-SP 

Errors None 

C extern pascal void DeleteMitem (itemNum ) 

Word itemNum; 

Menu Manager routines 13-37 



$310F 

Parameters 

DisableMltem 
Sets a specified item to display in dimmed characters and does not allow it to be 
selected. 

Stack before call 

previous contents 

itemNum 

Stack after call 

Word-Number of item to be disabled 

~SP 

previous contents I 
--- ---- - ~SP 

Errors None 

C extern pascal void DisableMitem (itemNum) 

Word itemNum; 

13-38 Menu Manager routines 



$2EOF DisposeMenu 
Disposes of the memory allocated for a specified menu. The menu list will no longer 
be usable. For more information about how memory is disposed of, see Chapter 12, 
"Memory Manager." 

Parameters 

Stack before call 

previous contents 

menuHandle Long-HANDLE to menu list to be discarded 

~SP 

Stack after call 

previous contents I 
-------- ~SP 

Errors None 

C ext e r n p a scal v oid DisposeMenu(menuHandle) 

CtlRecHndl menuHandle ; 

Assembly-language example 
To delete a menu from the menu list and free its memory, you can enter something 
like this: 

pha 
pha 
pea Menu ID 

GetMHandle 

pea Menu ID 
DeleteMenu 

DisposeMenu 

Space for returned han d le 

ID of menu to delete 
Get the handle of the menu 
Leav e menu handle on stack 

ID of menu to delete f rom l i s t 
Delete menu fro m list 
Handle still on stack 
Deallocate menu rec o rd 

Menu Manager routines 13-39 
t}• 



$2A0F DrawMenuBar 
Draws the current menu bar, along with any menu titles on the bar. 

Parameters The stack is not affected by this call. There are no input or output parameters. 

Errors None 

C extern pascal void Dr awMenuBar () 

$300F EnableMltem 
Sets a specified item to display normally and allows it to be selected. 

Parameters 

Stack before call 

previous contents 

itemNum 

Stack after call 

Word-Number of item to be enabled 

f- SP 

previous contents I 
i--------f-SP 

Errors None 

C extern pascal void EnableMitem (itemNum ) 

Word itemNum; 

13-40 Menu Manager routines 



$130F 

Parameters 

FixMenuBar 
Computes standard sizes for the menu bar and menus. 

The routine searches all the menu title fonts and uses the tallest one to compute the 
height of the menu bar, adds that value to the top of the bar, and stores that value in 
the bottom of the bar. It also sets the title Width field in the menu record for every 
tttleWidth specified as O and calls CalcMenuSize for each menu in the menu bar. 

Stack before call 

previous contents 

wordspace Word-Space for result 

f-SP 

Stack after call 

previous contents 

menuHght Word-Height of the menu bar 

f-SP 

Errors 

C 

$0COF 

Parameters 

Errors 

C 

None 

extern pascal Word FixMenuBar() 

Flash Menu Bar 
Flashes the entire current menu bar by first redrawing it using the colors specified as 
newlnvertColorby the SetBarColors routine and then redrawing it again using 
normal colors. 

The stack is not affected by this call. There are no input or output parameters. 

None 

extern pascal void FlashMenuBar() 

Menu Manager routines 13-41 



$180F GetBarColors 
Returns the colors for the current menu bar. 

Parameters 

Stack before call 

previous contents 

longspace 

Stack after call 

previous contents 

- menuBarColor 

Errors None 

Long- Space for result 

f-SP 

Long-Current menu bar colors (see Figure 13-10) 

f-SP 

C extern pascal Longword GetBarColors () 

13-42 Menu Manager routines 



Returned colors 
The values returned in menuBarColorare shown in Figure 13-10. 

l31l3ol29l2al2?l26l2sl24l23!22l21!2ol1911al17l16J 

Rese~ed,setto O J • T 
Color of menu bar outline, 

menu outline, underlines, 
and dividing lines 

Reserved; set to 0 

11 (l1~l 1~l1 ~l1J1110191s17 I 6 Is I 4 I 3 I 2 I 1 I a I 
Background color J 
when highlighted 

Text color 
when highlighted 

Figure 13-10 

Background color 
when not highlighted 

Text color 
when not highlighted 

Menu bar color table for GetBarColors 

Menu Manager routines 13-43 



$0AOF GetMenuBar 
Returns the handle of the current menu bar. 

Parameters 

Stack before call 

previous contents 

longspace 

Stack after call 

previous contents 

bar:Handle 

Errors None 

Long- Space for result 

f-SP 

Long-HANDLE to current menu bar 

f-SJ> 

C extern pascal CtlRecHndl GetMenuBar () 

13-44 Menu Manager routines 



$200F GetMenuflag 
Returns the menu flag for a specified menu (see the section "Menu Records" in this 
chapter for further definition). 

Parameters 

Stack before call 

previous contents 

wordspace 

menuNum 

Stack after call 

previous contents 

menuState 

Errors None 

Word- Space for result 

Word-Number of menu whose state will be returned 

<---- SP 

Word-Current state of menu bar ct/Flag 

<---- SP 

C extern pascal Word GetMenuFlag (menuNum ) 

Word menuNum ; 

Menu Manager routines 13-45 



$1BOF GetMenuMgrPort 
Returns a pointer to the Menu Manager's port. For example, you need the port if you 
want to change its font. 

Parameters 

Stack before call 

previous contents 

longspace 

Stack after call 

previous contents 

menuMgrPtr 

Errors None 

Long- Space for result 

~SP 

Long-POINTER to Menu Manager port 

~SP 

C exter n pasca l GrafPo rtPtr Get MenuMgrPort () 

13-46 Menu Manager routines 



$220F GetMenuTitle 
Returns a pointer to the title of a menu. 

Parameters 

Stack before call 

previous contents 

longspace 

menuNum 

Stack after call 

previous contents 

menuTitlePtr 

Errors None 

Long-Space for result 

Word-Number of menu whose title pointer will be returned 

f--SP 

Long-POINTER to the title of the menu 

f--SP 

C extern pasca l Pointer GetMenuTitle (menuNum ) 

Word me nuNum; 

Menu Manager routines 13-47 



$160F GetMHandle 
Returns a handle to a menu record. 

Parameters 

Stack before call 

prevtous contents 

longs pace 

menuNum 

Stack after call 

prevtous contents 

menuHandle 

Errors None 

Long-Space for result 

Word-Menu whose handle will be returned 

f-SP 

Long-HANDLE to specified menu; 0 if menu not found 

f-SP 

C extern p as c a l CtlRecHndl GetMHandle (menuNum ) 

Wo r d menuNum ; 

13-48 Menu Manager routines 



$250F GetMltem 
Returns a pointer to the name of an item. 

Parameters 

Stack before call 

previous contents 

longspace 

itemNum 

Stack after call 

previous contents 

itemNamePtr 

Errors None 

Long- Space for result 

Word-Number of item whose name pointer will be returned 

f- SP 

Long- POINTER to the name of the item 

f-SP 

C extern pascal Pointer GetMitem (itemNum ) 

Word itemNum ; 

Menu Manager routines 13-49 



$270F 

Parameters 

GetMltemFlag 
Returns the values for a specified item, such as whether it is disabled, underlined, or 
highlighted. The values are shown in Table 13-9 in the section "SetMitemFlag" in this 
chapter. 

Stack before call 

previous contents 

wordspace Word-Space for result 

itemNum 

Stack after call 

Word-Number of item whose flag will be returned 

f-SP 

previous contents 

itemFlag 

Errors 

C 

None 

Word-Values for flag (see Table 13-9 in the section "SetMitemFlag") 

f-SP 

extern pascal Word GetMitemFlag (itemNum) 

Word itemNum; 

13-50 Menu Manager routines 



$340F GetMltemMark 
Returns the current character that is displayed to the left of a specified menu item. 

Parameters 

Stack before call 

prevtous contents 

wordspace 

itemNum 

Stack after call 

previous contents 

Word-Space for result 

Word-Number of item whose mark character will be returned 

f- SP 

mark Word-Character marking item; 0 if no mark 

f-SP 

Errors None 

C extern pascal Word GetMitemMark ( itemNum) 

Word itemNum ; 

Menu Manager routines 13-51 



$360F 

Parameters 

GetMltemStyle 
Returns the text style for a specified menu item. The values are shown in Figure 13-12 
in the section "SetMitemStyle" in this chapter. 

Stack before call 

previous contents 

wordspace Word- Space for result 

ttemNum 

Stack after call 

Word-Number of item whose text style will be returned 

~SP 

previous contents 

textStyle 

Errors 

C 

None 

Word- Text style (see Figure 13-12 in the section "SetMiteinStyle") 

~SP 

extern pascal TextStyle GetMitemStyle (itemNum ) 

Word itemNum; 

13-52 Menu Manager routines 



$1AOF GetMTitleStart 
Returns the starting position for the leftmost title within the current menu bar. 

Parameters 

Stack before call 

prevtous contents 

wordspace 

Stack after call 

previous contents 

xStart 

Errors None 

Word-Space for result 

f-SP 

Word-Starting position of first title in number of pixels from left 
f-SP 

C e xt e rn pascal Word GetMTitleSt a rt () 

Menu Manager routines 13-53 



$1EOF GetMTitleWidth 
Returns the width of a menu title. The width defines the area where the user can select 
the menu and the area that is inverted when the title is highlighted. 

Parameters 

Stack before call 

previous contents 

wordspace 

menuNum 

Stack after call 

previous contents 

current Width 

Errors None 

Word-Space for result 

Word-Number of menu whose title width will be returned 

f-SP 

Word-Width of the title in pixels 

f-SP 

C extern pascal Word GetMTitleWidth(menuNum) 

Word menuNum; 

-13-54 Menu Manager routines 



$1 lOF GetSysBar 
Returns the handle of the current system menu bar. 

Parameters 

Stack before call 

previous contents 

longspace 

Stack after call 

previous contents 

barHandle 

Errors None 

Long-Space for result 

f- SP 

Long- HANDLE to current system bar 

f-SP 

C e xtern p a scal Ct l RecHndl Get Sys Bar () 

Menu Manager routines 13-55 



$2COF 

Parameters 

HiliteMenu 
Highlights or unhighlights the title of a specified menu. The routine should be called 
with htliteFlag FALSE and the menuNum of the selected menu after your application 
has finished acting on a menu selection. 

Stack before call 

previous contents 

hiliteFlag 

menuNum 

Word-BOOLEAN; FALSE to draw normally, TRUE to highlight title 

Word-ID of menu 

~SP 

Stack after call 

previous contents I 
--------~SP 

Errors 

C 

$2FOF 

Parameters 

Errors 

C 

None 

e xtern p a sca l void Hil i t e Me nu (hiliteFlag , menuNum ) 

Boolean hil i teFl ag ; 

Word me nuNum; 

I nit Palette 
Reinitializes the palette needed for the color Apple logo in the system menu bar. The 
routine changes the scan-line byte for lines 2 through 9 to the first color from color 
tables 1 through 6. 

The stack is not affected by this call. There are no input or output parameters. 

None 

extern pasca l void InitPalette () 

13-56 Menu Manager routines 



$0DOF 

Parameters 

lnsertMenu 
Inserts a specified menu into the menu list after a specified menu or at the front of the 
list. 

After you call this routine, you should call the DrawMenuBar routine to redraw the 
new menu bar. 

Stack before caii 

previous contents 

-- addMenuHandle Long- HANDLE to menu to insert 

insertAfter Word- Menu is inserted after this menu; if 0, menu inserted at front 

f-SP 

Stack after call 

previous contents I 
- - ------ f-SP 

Errors None 

C extern pasca l void I nsertMenu( addMenuHan dle , i n sertAfter ) 

Ct l RecHndl adciMenuHandle ; 

Word insertAfter ; 

Menu Manager routines 13-57 



$0FOF lnsertMltem 
Inserts a menu item into a menu after a specified menu item or at the front of the list. 
Call CalcMenuSize to resize the menu, if necessary. 

Parameters 

Stack before call 

previous contents 

-- addltemPtr 

insertAfter 

menuNum 

--· Long-POINTER to item to insert 

Word- Item after which item is inserted; 0 to add to front, $FFFF at end 

Word-Menu ID of menu to contain new item, 0 for first menu 

f-SP 

Stack after call 

previous contents I 
------ -- f-SP 

Errors None 

C extern pascal void InsertMitem (additemPtr , insertAfter , menuNum ) 

Pointer additemPtr ; 

Word insertAfter ; 

Word menuNum ; 

13-58 Menu Manager routines 



$230F 

Parameters 

MenuGlobal 
Specifies a mask that determines how the Menu Manager performs tasks. If 
menuGlobalMaskhas bit 15 set to 1, the mask will be ANDed with the global flag. If 
menuGlobalMask has bit 15 set to 0, the mask will be ORed with the global flag. 
MenuGlobal also returns the current state of the global flag in menuGlobalFlag. 

Important 
At the time of publication, all bits except 15 and O are reserved for future use. 

The MenuGlobal routine can use bit Oto turn menu help on or off and return the 
current state of menu help. This feature allows users find out how inactive items can 
be made active. 

Stack before call 

previous contents 

wordspace 

menuGloba/Mask 

Stack after call 

previous contents 

menuGlobalFlag 

Errors None 

Word-Space for result 

Word-Global mask (see Table 13-6) 

f-SP 

Word-Current state of menu global flag (see Table 13-7) 

f-SP 

C e xtern p a scal Word MenuGlob al (menuGlobalMask ) 

Word menuGloba lMask; 

(continued) 

Menu Manager routines 13-59 



Menu help 
Using the standard desktop interface, a menu item is dimmed to indicate that the user 
can't choose the item. This presents a problem: The user wouldn't be able to select 
the item to determine how to make the menu item active. The MenuGlobal routine 
provides a menu help feature that enables an application to provide that information 
to the user. The values used to turn menu help on and off are shown in Table 13-6. 

Table 13-6 
Menu global mask values 

Value 

$0000 

$0001 
$FFFE 

Description 

Flag does not change 
(used to retrieve 
current state of flag) 
Turn menu help on 
Turn menu help off 

When your application passes $0001 to the MenuGlobal routine, it indicates to the 
Menu Manager that the application can use the menu help feature. The Menu 
Manager will then 

■ Highlight a dimmed item when the user moves the cursor over the item 

■ Allow the MenuSelect routine to return the ID number of the selected, dimmed 
item in the high-order word of taskData in the task record passed to that routine 

If you're using the Window Manager routine TaskMaster, you will need to set the 
tmlnactive bit (bit 14) in the taskMask field of the task record. TaskMaster will then 
return winactMenu ($001C) when the user chooses a dimmed menu item. The 
dimmed item's ID number can then be returned in the high-order word of taskData. 

The value returned in menuGlobalFlag indicate the state of the flag after any changes 
have been made. The values at the time of publication are shown in Table 13-7. 

Table 13-7 
Menu global flag values 

Value 

$0000 
$0001 

13-60 

Description 

Menu help off 
Menu help on 

Menu Manager routines 



$090F 

Parameters 

MenuKey 
Maps a character to the associated menu and item for that character. When your 
application receives a key-down event while the user is holding down the Apple 
key-or while the user is holding down the Apple key and another key, if the 
command being invoked can be repeated-the application should call MenuKey with 
the character that was typed. MenuKey highlights the appropriate menu title if the key 
matches and then returns the selection. The specified menu bar becomes the current 
menu bar. 

If the user makes a selection, the low-order word of the when element in the event 
record contains ID number of the item selected, and the high-order word contains 
the menu's ID number. The selected menu's title will remain highlighted. Use the 
HiliteMenu routine to redraw the title normally. If the user doesn't make a selection, 
the low-order word of the when element in the event record will be 0. 

There should generally be no more than one item in the menu list with the same 
keyboard equivalent; if there is, MenuKey returns the first one that it encounters. 

Stack before call 

previous contents 

taskRecPtr Long-POINTER to task record containing character to check 

barHandle Long-HANDLE to menu bar, or O for system menu bar 

f-SP 

Stack after call 

previous contents I 
--------f-SP 

Errors None 

C e xt ern pascal void MenuKey (taskRecPtr , barHandle ) 

WmTaskRecPt r t a s kRecPtr ; 

CtlRecHndl bar Handle ; 

(continued) 

Menu Manager routines 13-61 



Keyboard equivalents and the MenuKey routine 
For the returned key, bit 8 should be set. The application can then easily determine 
whether the Apple key was held down when the character key was pressed. When the 
Event Manager returns a key-down message, you can clear the low-order byte of the 
event modifier flag and then OR it with the event message (where the key is). Then 
MenuKey will check the flag for you. 

Any lowercase key is changed to uppercase before being used. MenuKey also makes 
some other changes to accommodate the way the key is packed into the item's 
record. 

13-62 Menu Manager routines 



$290F 

Parameters 

Errors 

C 

MenuNewRes 
Adjusts screen resolution and redraws the current system menu bar. Call this routine 
when the screen resolution changes. 

The stack is not affected by this call. There are no input or output parameters. 

None 

extern pascal void MenuNewRes() 

Menu Manager routines 13-63 



$0BOF 

Parameters 

Menu Refresh 
Called when the application is not using the Window Manager, and the Menu 
Manager cannot restore the screen under a menu. In the attempt to recover, the 
Menu Manager takes the following steps: 

1 . It tries to allocate a buffer large enough to save the screen before it draws the menu. 

2 . If the buffer is allocated, the screen will be restored from it, and then the memory 
buffer will be deallocated. If the buffer cannot be allocated, the Menu Manager 
tries to call the Window Manager (via the call the Window Manager made to 
MenuRefresh during initialization) to refresh the screen when the menu goes away. 

3 . If no buffer can be allocated and the Window Manager isn't installed, the Menu 
Manager will call the routine pointed to by redrawRoutinePtr to refresh the screen 
under the menu. 

Stack before call 

previous contents 

-- redrawRoutinePtr -- Long-POINTER to redraw routine in the application 

~SP 

Stack after call 

previous contents I 
-------- ~SP 

Errors None 

C extern pascal void MenuRef re sh (redr awRoutinePtr ) 

VoidProcPtr redrawRout ine Pt r ; 

13-64 Menu Manager routines 



Redraw routine example 
The Redraw routine that MenuRefresh calls should look somethirig like this: 

Refresh 

rect addr 

lda #$90 
START 

equ 6 ; Offset down stack to RECT pointer 

; (These would be any needed operations 
; to redraw the screen i nside the given RECT ) 

Remove the given pointer from the stack : 

lda 0, s 
sta 4, s 

lda 2, s 

sta 6, s 

pla 

pla 

rtl 

; Move the return address down 
;the stack 

;Move the stack back to the return 
; address 

;Return to the Menu Manager 

Menu Manager routines 13-65 



$2BOF 

Parameters 

MenuSelect 
Draws highlighted titles, pulls down menus, and handles user interaction when a 
mouse button is clicked on a menu bar (see the Window Manager FindWindow routine 
if you're using the Window Manager). These tasks are handled automatically for the 
system menu bar when TaskMaster is used in the Window Manager. 

If the user makes a selection, the low-order word of the when element in the event 
record will contain the ID number of the item selected, and the high-order word will 
contain the menu ID number. The selected menu's title will remain highlighted. See 
the section "HiliteMenu" in this chapter to redraw the title normally. 

If the user doesn't make a selection, the low-order word of the when element in the 
event record will be 0. 

The specified menu bar becomes the current menu bar. 

Stack before call 

previous contents 

taskRecPtr 

bar Handle 

Long-POINTER to task record containing button-down point 

Long-HANDLE to menu bar; 0 for system menu bar 

f-SP 

Stack after call 

previous contents I 
- ------- f-SP 

Errors None 

C extern pascal void MenuSelect (taskRecPtr , barHandle ) 

WmTaskRecPtr taskRecPtr ; 

CtlRecHndl bar Handle ; 

13-66 Menu Manager routines 



$2DOF 

Parameters 

NewMenu 
Allocates space for a menu list and its items. A menu string that describes menu titles, 
items, and special flags must be passed to the routine. See the section "Menu Lists: 
Menu Lines and Item Lines" in this chapter for the format needed. 

The menu pointed to by menuStringPtr can then be inserted in the default system 
menu bar by an InsertMenu call. 

Call DisposeMenu to deallocate the menu list when you are finished. To set the colors 
of the menu bar, see the section "SetBarColor" in this chapter. 

Stack before call 

previous contents 

longspace 

menuStrtngPtr 

Stack after call 

previous contents 

menuHandle 

Errors None 

Long-Space for result 

Long-POINTER to an array of menu lines and item lines 

f-SP 

Long-HANDLE to menu; 0 if error 

f-SP 

C extern pascal CtlRecHndl NewMenu (menuStringPtr ) 

Po i nter menu StringPtr ; 

Menu Manager routines 13-67 



$150F 

Parameters 

NewMenuBar 
Creates a default menu bar with no menus. MenuStartup calls NewMenuBar to create a 
default system menu bar. The upper-left corner of the default menu bar matches the 
port, and the width is the width of the screen. The height of the bar is 13 pixels. The 
menu bar is visible and has default colors of black text on a white background. 

If you are going to use only one system menu bar, you don't have to call 
NewMenuBar. 

Stack before call 

previous contents 

longspace 

theWindowPtr 

Stack after call 

previous contents 

barHandle 

Errors None 

Long-Space for result 

Long-POINTER to window's port; NIL for system 

~SP 

Long-HANDLE to menu bar 

~SP 

C extern pascal CtlRecHndl NewMenuBar(theWindowPtr) 

GrafPortPtr theWindowPtr; 

13-68 Menu Manager routines 



$170F SetBarColors 
Sets the normal, inverse, and outline colors of the current menu bar. The 
newlnvertColor value is the color of an item when selected; newOutColor is the color 
of the menu bar outline, menu outline, underlines, and dividing lines. Any negative 
values will not change the specified color. 

Parameters 

Stack before call 

previous contents 

newBarColor 

newlnvertColor 

newOutColor 

Stack after call 

Word-Normal color (see Figure 13-11) 

Word-Selected color (see Figure 13-11) 

Word-Outline color (see Figure 13-11) 

f-SP 

previous contents I 
--------f-SP 

Errors None 

C extern pascal void SetBarColors(newBarColor,newinvertColor,newOutColor) 

Word newBarColor ; 

Word newinvertColor ; 

Word newOutColor; 

(continued) 

Menu Manager routines 13-69 



Bar colors 
Figure 13-11 illustrates the menu bar color table. 

Offset Field 

$1 
newBarColor 

2 
3 

newlnvertColor 
4 

5 
newOutCo/or 

6 

Figure 13-11 

Word-Color of bar when not selected 
Bits 15-8 = 0 Bits 7-4 = Background color 
Bits 3-0 = Text color 

Word-Color of bar when selected 
Bits 15-8 = 0 Bits 7-4 = Background color 
Bits 3-0 = 0 

Word-Color of outline, Including underlines and dividing lines 
Bits 15-8 = O Bits 7-4 = Color 
Bits 3-0 = 0 

Menu bar color table for SetBarColors 

·13-70 Menu Manager routines 



$390F SetMenuBar 
Sets the current menu bar. If you want the system menu bar to be the current menu 
bar, pass O for barHandle. 

Parameters 

Stack before call 

previous contents 

barHandle Long-HANDLE to new current bar; 0 for system menu bar 

f-SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors None 

C extern pascal void SetMenuBar(barHandle) 

CtlRecHndl bar Handle ; 

Menu Manager routines 13-71 



$1F0F SetMenuFlag 
Sets the menu to a specified state. If you change a flag that affects the appearance of a 
menu title, call the DrawMenuBar routine after the SetMenuFlag call. 

Parameters 

Stack before call 

previous contents 

newValue 

menuNum 

Stack after call 

Word-New bit value to set (see Table 13-8) 

Word-Number of menu whose state will be set 

~SP 

previous contents I 
--------~SP 

Errors 

C 

Table 13-8 
Menu flag values 

Name 

enableMenu 
disableMenu 
colorReplace 

None 

ext e rn pasc al void Se tMe nuFlag (newValue , menuNum ) 

Word newValue ; 

Word menuNum; 

Value 

$FF7F 
$0080 
$FFDF 

Description 

Menu will not be dimmed and will be selectable 
Menu will be dimmed and not selectable 
Menu's title and background will be redrawn in 
highlighted state 

xorTitleHilite 
standardMenu 
customMenu 

$0020 
$FFEF 
$0010 

Menu's title will be XORed to highlighted state 
Menu will be considered a standard menu 
Menu will be considered a custom menu 

13-72 Menu Manager routines 



$370F SetMenulD 
Specifies a new menu number. 

Parameters 

Stack before call 

previous contents 

newMenuNum Word-New menu number for the menu 

curMenuNum Word-Current menu number whose ID will be changed 

f-SP 

Stack after call 

previous contents I 
--------f-SP 

Errors None 

C extern pascal void SetMenuID(newMenuNum , curMenuNum ) 

Word newMenuNum ; 

Word curMenuNum ; 

Menu Manager routines 13-73 



$210F SetMenuTitle 
Specifies the title for a menu. 

Parameters 

Stack before call 

previous contents 

newStrPtr 

menuNum 

Long-POINTER to string to become new title 

Word-Number of menu whose title will be set 

<-SP 

Stack after call 

previous contents I 
- - ----- - <-SP 

Errors None 

C extern pascal void SetMenuTitle (newStrPtr , menuNum ) 

Pointer newStrPtr ; 

Word menuNum ; 

13-7 4 Menu Manager routines 



$240F 

Parameters 

SetMltem 
Specifies the name for a menu item by pointing to an item line. The menu item with 
itemNum has its pointer replaced by newltemLinePtr. All other parameters of the 
item, such as ID number, text style, marked status , and keyboard equivalent, remain 
the same. 

Important 
The string pointed to by newStrPtr must remain in memory at that address. 

Stack before call 

previous contents 

newltemLinePtr 

itemNum 

Long-POINTER to an item line 

Word-Number of item whose name will be set 

~SP 

Stack after call 

previous contents I 
--------~SP 

Errors None 

C extern p a scal void SetMitem( newitemLinePtr , itemNum) 

Pointer newitemLinePtr ; 

Word itemNum ; 

Assembly-language example 
An example of what newltemLinePtrshould point to is as follows: 

NewLine de c '--New Name ', il'O ' 

SetMitem replaces the second dash with the length of the name, and it replaces the 
item's name pointer with a pointer to the length byte, which produces a pointer to a 
Pascal string. 

Menu Manager routines 13-7 5 



$280F 

Parameters 

SetMltemBlink 
Determines how many times menu items should blink when selected. 

When an enabled item is selected by the user, the item blinks briefly to confirm the 
choice. Normally, your application should simply allow the ~ser to set the rate of 
blinking by using the Control Panel. However, if you're writing a desk accessory, you 
might wish to control the duration of the blinking. 

SetMitemBlink affects all system and window menu bars. 

Stack before call 

previous contents 

count 

Stack after call 

Word-Number of times any item should blink when selected 

<-SP 

previous contents I 
--------<-SP 

Errors None 

C e xtern pascal void SetMitemBlink (count) 

Word count ; 

13-76 Menu Manager routines 



$260F SetMltemFlag 
Sets a specified item number to be underlined or not underlined and sets the 
highlighting style. 

Parameters 

Stack before call 

previous contents 

newValue 

itemNum 

Stack after call 

Word-New bits to set (see Table 13-9) 

Word-Number of item whose text style will be set 

~SP 

previous contents I 
--------~SP 

Errors None 

C extern pascal void SetMitemFlag(newValue,itemNum) 

Word newValue; 

Word itemNum ; 

(continued) 

Menu Manager routines 13-77 



Item flag values 
Table 13-9 shows the values for the item flags. 

Table 13-9 
Item flag values 

Name 

underMitem 
noUnderMitem 
xorMitemHilite 
colorMitemHilite 
enable Item 
disable Item 

Important 

Value 

$0040 
$FFBF 
$0020 
$FFDF 
$FF7F 
$0080 

Description 

Underline item 
Don't underline item 
Use XOR highlighting 
Use redraw highlighting 
Enable menu item 
Disable menu item 

Fonts that have a descent value of less than 2, such as Shaston 8 (the system 
font at the time of publication), will not be underlined. 

13-7 8 Menu Manager routines 



$380F SetMltemlD 
Specifies the ID number of a menu item. 

Parameters 

Stack before call 

previous contents 

newltemNum 

curltemNum 

Word-New ID number to be assigned to the item 

Word-Current item whose ID will be changed 

f-SP 

Stack after call 

previous contents I 
--------f-SP 

Errors None 

C extern pascal void SetMitemID(newitemNum,curitemNum) 

Word newitemNum; 

Word curitemNum; 

Menu Manager routines 13-79 



$330F 

Parameters 

SetMltemMark 
Sets a menu item to display or not display a specified character to the left of the item. 
The character will appear to the left of the item's text; it will not appear, or will be 
removed if it already appears, if markltem is 0. 

Stack before call 

previous contents 

mark 

itemNum 

Stack after call 

Word-Character to mark item with or O for no mark 

Word-Number of item to be marked or unmarked 

~SP 

previous contents I 
--------~SP 

Errors None 

C extern pascal void SetMitemMark(mark, itemNum) 

Word mark; 

Word itemNum; 

13-80 Menu Manager routines 



$3AOF 

Parameters 

SetMltemName 
Specifies the name of a menu item by pointing to a Pascal stnng. The menu item with 
itemNum will use the string pointed to by strPtrwhenever the menu is drawn. All 
other parameters of the item, such as ID number, text style, marked ~tatus, and 
keyboard equivalent, remain the same. 

Important 
The string pointed to by strPtr must remain In memory at that address. 

Stack before call 

previous contents 

strPtr 

ttemNum 

Stack after call 

Long-POINTER to a Pascal-type string Oength in first byte) 

Word-Number of item whose name will be set 

f-SP 

previous contents I 
--------f-SP 

Errors None 

C extern pascal void SetMitemName (strPtr, itemNum) 

Pointer strPtr; 

Word itemNum; 

Menu Manager routines 13-81 



$350F 

Parameters 

SetMltemStyle 
Sets the text style for a specified menu item. 

If you need to change only one of the characteristics, call the GetMitemStyle routine 
and use the current states for the attributes that should stay the same. 

Stack before call 

previous contents 

textSty/e 

itemNum 

Stack after call 

Word-Text style (see Figure 13-12) 

Word-Number of item whose text style will be set 

f-SP 

previous contents I 
--------f-SP 

Errors None 

C e xtern pascal void SetMitemStyl e (textSt yle , itemNum ) 

Text St y le text Style ; 

Word itemNum ; 

1 3-82 Menu Manager routines 



\ 

Reserved; set to O J 

Figure 13- 12 
Menu text style word 

Important 

Underline= 1 

Italic= 1 

Bold = 1 

Shadow, outline , and Italic styles are available only If QulckDraw II Auxiliary has 
been loaded and started up. Also, fonts that have a descent value of less than 
2, such as Shaston 8 (the system font at the time of publication), will not be 
underlined. 

Menu Manager routines 13-83 



$190F 

Parameters 

Set MTitl eSta rt 
Sets the starting position for the leftmost title within the current menu bar. 

For square-cornered menu bars, xStart should be at least 1 (0 overwrites the left line 
of the menu bar). 

Stack before call 

previous contents 

xStart 

Stack after call 

Word- Starting position of first title from left in pixels (0-127) 

(-SP 

I previous contents I (- SP 

Errors None 

C e xtern pa s c al void Se tMTitleSt a rt (xSt a rt ) 

Word xStart ; 

13-84 Menu Manager routines 



$1DOF 

Parameters 

SetMTitleWidth 
Sets the width of a title in pixels. The title width defines the area in which the user can 
select the menu and the area that is inverted when the title is highlighted. 

Stack before call 

prevtous contents 

newWtdth 

menuNum 

Word-Width of title in pixels 

Word-Number of menu whose width will be set 

~SP 

Stack after call 

I previous contents I~ SP 

Errors None 

C extern pascal void SetMTitleWidth(newWidth , menuNum) 

Word newWidth ; 

Word menuNum; 

Menu Manager routines 13-85 



$120F SetSysBar 
Sets a new system bar. The new system menu bar becomes the current menu bar. 

Parameters 

Stack before call 

prevtous contents 

barHandle Long-HANDLE to new system bar 

f-SP 

Stack after call 

prevtous contents I 
--------f-SP 

Errors None 

C extern pascal vo i d SetSysBar(barHandle) 

CtlRecHndl bar Handle; 

13-86 Menu Manager routines 



Menu Manager summary 
This section briefly summarizes the constants and data structures contained in the 
Menu Manager. There are no tool set error codes for the Menu Manager. 

Important 

These definitions are provided In the appropriate Interface file. 

Table 13-10 
Menu Manager constants 

Name 

Masks for MenuFlag 
minvis 
mCustom 
mXor 
mSelected 
mDisabled 

Value 

$0004 
$0010 
$0020 
$0040 
$0080 

Description 

Set if menu is not visible 
Set if menu is a custom menu 
Set if menu title is highlighted using XOR 
Set if menu title is highlighted 
Set if menu is disabled 

Messages to menu definition procedures 
mDrawMsg $0000 Draw menu 
mChooseMsg $0001 Hit test item 
mSizeMsg $0002 Compute menu size 
mDrawTitle $0003 Draw menu's title 
mDrawMitem $0004 Draw item 
mGetMitemID $0005 Return item ID number 

Inputs to the SetMenuFlag routine 
customMenu $0010 
disableMenu $0080 
enableMenu $FF7F 
colorReplace $FFDF 

standardMenu $FFEF 

Inputs to the SetMltemFlag routine 
xorMitemHilite $0020 
underMitem $0040 
noUnderMitem $FFBF 
colorMitemHilite $FFDF 

disable Item 
enable Item 

$0080 
$FF7F 

Menu will be considered a custom menu 
Menu will be dimmed and not selectable 
Menu will not be dimmed and will be selectable 
Menu title and background will be redrawn 
highlighted 
Menu will be considered a standard menu 

Menu title area will be XORed to highlighted 
Underline item 
Don't underline item 
Menu title and background will be redrawn 
highlighted 
Disable menu item 
Enable menu item 

Menu Manager summary 13-87 



Table 13-11 
Menu Manager data structures 

Name Offset Type Definition 

MENU (Menu record) 
menuID $00 Word Menu ID number 
menuWidth $02 Word Width of menu , 
menuHeight $04 Word Height of menu 
menuProc $06 Pointer Menu definition procedure 
menuFlag $0A Byte Bit flags 
menuRes $OB Byte Reserved for internal use 
firstltem $0C Byte Reserved for future use 
numOfitems $OD Byte Reserved for future use 
title Width $OE Word Width of menu title 
titleName $10 Pointer Menu title 

Note: The actual assembly-language equates have a lowercase o (the letter) 
in front of all of the names given in this table. 

13-88 Chapter 13: Menu Manager 



Chapter 14 

Miscellaneous Tool Set 

The Miscellaneous Tool Set is comprised of several small tool sets. Most of these 
tool sets deal with various low-level functions of the Apple IIGS; in fact, several other 
tool sets make calls to the Miscellaneous Tool Set. 

Each of the small tool sets is discussed separately in the section "Using the 
Miscellaneous Tool Set" in this chapter. 

A preview of the Miscellaneous Tool Set routines 
Table 14-1 lists the functions of all of the Miscellaneous Tool Set routines in the order 
in which they appear later in this chapter. 

❖ Note: Because the Miscellaneous Tool Set is actually a collection of small tool 
sets, it does not lend itself to the alphabetical routine order organization used in 
the rest of the chapters of this reference. 

14-1 



Table 14-1 
Miscellaneous Tool Set routines and their functions 

Routine Description 

Housekeeping routines 
MTBootinit Initializes the Miscellaneous Tool Set; called only by the Tool Locator-must not 

MTStartUp 
MTShutDown 
MTVersion 
MTReset 

MTStatus 

Battery RAM routines 

be called by an application 
Starts up the Miscellaneous Tool Set for use by an application 
Shuts down the Miscellaneous Tool Set 
Returns the Miscellaneous Tool Set version number 
Resets the Miscellaneous Tool Set; called only when the system is reset-must not 
be called by an application 
Indicates whether the Miscellaneous Tool Set is active 

WriteBRam Writes 252 bytes of data from a specified memory location, plus 4 checksum bytes, 

ReadBRam 

WriteBParam 
ReadBParam 

Clock routines 
ReadTimeHex 
WriteTimeHex 
ReadAsciiTime 

to the Battery RAM 
Reads 252 bytes of data from the Battery RAM, plus 4 checksum bytes, and writes 
the data into a specified memory location 
Writes data to a specified parameter in Battery RAM 
Reads data from a specified parameter in Battery RAM 

Returns current time in hexadecimal format 
Sets the current time in hexadecimal format 
Reads elapsed time since 00:00:00, January 1, 1904, converts the elapsed time to 
ASCII time output, and places the output at the specified ·address 

Firmware entry routine 
FWEntry Allows some Apple II emulation-mode entry points to be supported from full 

native mode 

Get address routine 
GetAddr Returns an address of a byte, word, or long parameter referenced by the firmware 

Tick counter routine 
GetTick Returns the current value of the tick counter 

Interrupt control routines 
GetIRQEnable Returns with the hardware interrupt enable states for interrupt sources that can be 

controlled by the Miscellaneous Tool set 
IntSource Enables or disables certain interrupt sources 

14-2 Chapter 14: Miscellaneous Tool Set 



Table 14-1 (continued) 
Miscellaneous Tool Set routines and their functions 

Routine Description 

Mouse and absolute clamp routines 
ClampMouse Sets clamp values to new values and then sets the mouse position to the minimum 

ClearMouse 

GetMouseClamp 
HomeMouse 
InitMouse 

PosMouse 
ReadMouse 
ServeMouse 
SetMouse 
SetAbsClamp 
GetAbsClamp 

clamp values 
Sets the X and Y axis to $0000 if minimum clamps are negative or to the minimum 
clamp position if the clamps are positive 
Returns the current mouse clamp values 
Positions the mouse at the minimum clamp position 
Initializes mouse clamp values to $000 minimum and $3FF maximum and clears 
the mouse mode and status 
Positions the mouse at specified coordinates 
Returns mouse position, status, and mode 
Returns the mouse interrupt status 
Sets the mouse mode 
Sets the clamp values for an absolute device to new values 
Returns the current values of the absolute device clamps 

Packing and munging routines 
PackBytes Packs bytes into a special format that uses less storage space 
UnPackBytes Unpacks data from the packed format used by PackBytes 
Munger Manipulates bytes in a string of bytes 

Heartbeat routines 
SetHeartBeat 
De!HeartBeat 
ClrHeartBeat 

System bell routine 
SysBeep 

Installs a specifed task into the HeartBeat Interrupt Task queue 
Deletes a specified task from the Heartbeat Interrupt Task queue 
Removes all tasks from the Heartbeat Interrupt Task queue by clearing the 
Heartbeat Task pointer 

Calls the Apple II monitor entry point BELLl 

System Failure Manager routine 
SysFai!Mgr Displays system failure message and halts program execution 

User ID Manager routines 
GetNewID Creates a new user ID 
DeleteID 
StatusID 

Deletes all references to a specified user ID 
Indicates whether a specified user ID is active 

Vector Initialization routines 
SetVector Sets the vector address for a specified interrupt manager or handler 
GetVector Returns the vector address for a specified interrupt manager or handler 

A preview of the Miscellaneous Tool Set routines 14-3 



Using the Miscellaneous Tool Set 
This section discusses how the Miscellaneous Tool Set routines fit into the general 
flow of an application and gives you an idea of which routines you'll need to use 
under normal circumstances. Each routine is described in detail later in this 
chapter. 

The Miscellaneous Tool Set depends upon the presence of the tool sets listed in 
Table 14-2 and requires that at least the indicated version of the tool set be present. 

Table 14-2 
Miscellaneous Tool Set-other tool sets required 

Tool set 
number 

$01 #01 
$02 #02 

Tool set 
name 

Tool Locator 
Memory Manager 

Minimum version 
needed 

1.0 
1.0 

Your application should make an MTStartUp call before making any other 
Miscellaneous Tool Set calls. 

❖ Note: At the time of publication, the MTStartUp call was not an absolute 
requirement, because the Tool Locator automatically started up the 
Miscellaneous Tool Set at boot time. However, you should make the call anyway 
to guarantee that your application remains compatible with all future versions of 
the system. 

If your application starts up the Miscellaneous Tool Set, the application should make 
the MTShutDown call when the application quits. 

In keeping with the flexible spirit of the Apple IIGS, many of the routines in the 
Miscellaneous Tool Set retrieve the address of a given parameter or return the value 
of an appropriate parameter so that you do not need the address. 

Important 

Use these calls only as directed; there Is no guarantee that an address being 
used for something In this version will be used the same way In future versions. 

You can use the WriteBRam, ReadBRam, WriteBParam, and ReadBParam routines 
to write and read data to and from the Battery RAM. Any data written to the Battery 
RAM will affect the default system configuration, which will be used the next time the 
system is booted. 

14-4 Chapter 14: Miscellaneous Tool Set 



The clock routines ReadTimeHex, ReadAsciiTime, and WriteTimeHex provide you 
with a way to read the current time either in hex or ASCII format or to set the current 
time using hex format. 

Use the SetVector and GetVector routines to set or return the vector address for a 
specified interrupt manager or handler. For more information about interrupt 
handlers, see the Apple JIGS Firmware Reference. Similarly, the GetAddr routine 
returns the address of some important firmware parameters, and the FWEntry 
routine allows some Apple II emulation-mode entry points to be used from full native 
mode . 

The IntSource routine allows your application to enable or disable certain interrupt 
sources. The GetIRQEnable routine returns the current status of those interrupts. 

The HeartBeat routines allow you to install or delete tasks from the HeartBeat 
Interrupt Task queue. Such tasks include controlling cursor movement, posting a 
disk-insert event, or checking the stack. 

The SysFailMgr routine allows you to customize the system failure message. Thus, if 
the user causes your application to fail, you can produce a message that gives the user 
an idea of what happened. 

The mouse routines allow your application to directly control the mouse. However, 
the Event Manager calls these routines automatically, so most applications don't 
need to make the calls. If you're not using the Event Manager, you will need to use the 
mouse routines. Similarly, you could use the SetAbsClamp and GetAbsClamp 
routines to set the clamps for absolute devices, but normally won't need to, since the 
Event Manager automatically handles those clamps. For more information, see the 
section "Using Alternative Pointing Devices" in Chapter 7, "Event Manager," and 
the chapter about the mouse in the Apple JIGS Firmware Reference. 

The PackBytes routine packs data to make a file smaller. This can be useful, for 
instance, in graphic images, which would ordinarily take up too much space on disk. 
UnPackBytes unpacks the data from the PackBytes format. 

The Munger routine allows your application to manipulate strings easily, and the 
SysBeep routine causes the system speaker to beep. 

Using the Miscellaneous Tool Set 14-5 



$0103 

Parameters 

Errors 

C 

$0203 

Parameters 

Errors 

C 

MTBootlnit 
Initializes the Miscellaneous Tool Set; called only by the Tool Locator. The routine 
performs the following: 

■ Initializes the Heartbeat Task pointer to $00000000 

■ Clears the tick counter 

■ Sets the mouse flag to NOT FOUND 

■ Asks the Memory Manager for a block of memory with a length of one word for use 
by the User ID Manager 

Warning 

An application must never make this call. 

The stack is not affected by this call. There are no input or output parameters. 

None 

Call must not be made by an application. 

MTStartUp 
Starts up the Miscellaneous Tool Set for use by an application. Your application 
should make an MTStartUp call before making any other Miscellaneous Tool Set calls. 

❖ Note: At the time of publication, the MTStartUp call was not an absolute 
requirement, because the Tool Locator automatically started up the Miscellaneous 
Tool Set at boot time. However, you should make the call anyway to guarantee that 
your application remains compatible with all future versions of the system. 

The stack is not affected by this call. There are no input or output parameters. 

None 

exte rn pascal void MTStartUp () 

14-6 Miscellaneous Tool Set housekeeping routines 



$0303 

Parameters 

Errors 

C 

$0403 

Parameters 

MTShutDown 
Shuts down the Miscellaneous Tool Set when an application quits. 

Important 

If your application has started up the Miscellaneous Tool Set, the application 
must make this call before It quits. 

The stack is not affected by this call. There are no input or output parameters. 

None 

extern pascal void MTShutDown() 

MTVersion 
Returns the version number of the Miscellaneous Tool Set. 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

versionlnfo 

Errors None 

Word-Space for result 

f- SP 

Word-Version number of the Miscellaneous Tool Set 

f-SP 

C extern pascal Word MTVersion() 

Miscellaneous Tool Set housekeeping routines 14-7 



$0503 

Parameters 

Errors 

C 

$0603 

Parameters 

MTReset 
Resets the Miscellaneous Tool Set; called when the system is reset. Clears the 
Heartbeat Task pointer and sets the Mouse flag to NOT FOUND. 

Warning 
An application must never make th is call. 

The stack is not affected by this call. There are no input or output parameters. 

None 

Call must not be made by an application. 

MTStatus 
Indicates whether the Miscellaneous Tool Set is active. 

Stack before call 

previous contents 

wordspace Word-Space for result 

f-SP 

Stack after call 

previous contents 

Errors 

C 

14-8 

activeFlag 

None 

Word-BOOLEAN; TRUE if Miscellaneous Tool Set is active, FALSE if not 

f-SP 

e xtern pascal Boolean MTStatus () 

Miscellaneous Tool Set housekeeping routines 



0903 WriteBRam 

Parameters 

Writes 252 bytes of data from a specified memory location, plus 4 checksum bytes, to 
the Battery RAM. 

Important 
The WriteBRam routine affects the default system configuration, which will be 
used the next time the system is booted. The routine does not change the 
current system configuration. 

Stack before call 

previous contents 

bufjerPtr 

Stack after call 

Long- POINTER to the 252 bytes to be written to Battery RAM 

~SP 

previous contents I 
--------~SP 

Errors None 

C e xtern pascal void WriteBRam (bufferPtr ) 

Pointer bufferPtr ; 

Miscellaneous Tool Set routines 14-9 



$0A03 

Parameters 

ReadBRam 
Reads 252 bytes of data from the Battery RAM, plus 4 checksum bytes, and writes the 
data into a specified memory location. 

Stack before call 

previous contents 

bujjerPtr 

Stack after call 

Long-POINTER to 256 bytes to be written to application 

f-- SP 

previous contents I 
-------- f-- SP 

Errors None 

C extern pascal void ReadBRam (bufferPtr ) 

Pointer bufferPtr ; 

14-10 Miscellaneous Tool Set routines 



$0803 

Parameters 

WriteBParam 
Writes data to a specified parameter in Battery RAM. The data is written to the 
location specified by the paramRejNum, as described in Table 14-3. 

Important 
The WriteBParam routine affects the default system configuration, which will be 
used the next time the system Is booted. The routine does not change the 
current system configuration . 

Stack before call 

previous contents 

theData 

paramRejNum 

Word-Data to be written (low-order byte only) 

Word-Parameter reference number (see Table 14-3) 

~SP 

Stack after call 

previous contents I 
--------~SP 

Errors None 

C extern pascal void WriteBPara m(t heData , paramRefNum) 

Wo rd theData ; 

Word paramRefNum ; 

Assembly-language example 
PEA $00 05 Data in low byte 

PEA $002 8 Reference number specifying start up slot 

Wr iteBPar a m 

(continued) 

Miscellaneous Tool Set routines 14-11 



Table 14-3 
Battery RAM parameter reference numbers 

Number Parameter Number Parameter 

$00 Port 1 Printer/ modem $20 System speed 
$01 Port 1 Line length 

$21 Slot 1 Internal/external 
$02 Port 1 Delete line feed after carriage return $22 Slot 2 Internal/external 
$03 Port 1 Add line feed after carriage return 

$23 Slot 3 Internal/external 
$04 Port 1 Echo 

$24 Slot 4 Internal/external 
$05 Port 1 Buffer 

$25 Slot 5 Internal/external 
$06 Port 1 Baud 

$26 Slot 6 Internal/external 
$07 Port 1 Data/stop Bits 

$27 Slot 7 Internal/external 
$08 Port 1 Parity 

$28 Startup slot 
$09 Port 1 DCD handshake 
$QA Port 1 DSR handshake $29 Text display language 
$OB Port 1 XON/XOFF handshake $2A Keyboard language 

$2B Keyboard buffering $0C Port 2 Printer/ modem 
$2C Keyboard repeat speed $OD Port 2 Line length 
$2D Keyboard repeat delay $OE Port 2 Delete line feed after carriage return 
$2E Double click time $OF Port 2 Add line feed after carriage return 
$2F Flash Rate $10 Port 2 Echo 

$11 Port 2 Buffer $30 Shift caps/lowercase 
$12 Port 2 Baud $31 Fast space/delete keys 
$13 Port 2 Data/stop Bits $32 Dual speed 
$14 Port 2 Parity $33 High mouse resolution 
$15 Port 2 DCD handshake $34 Month/day/year format 
$16 Port 2 DSR handshake $35 24/am-pm format 
$17 Port 2 XON/XOFF handshake $36 Minimum RAM for RAM disk 

$37 Maximum Ram for RAM disk $18 Display color/ monochrome 
$38-40 Number of languages $19 Display 40/80 column 
$41-51 Number of layouts $IA Display text color 
$52-7F Reserved $113 Display background color 
$80 AppleTalk node number $IC Display border color 
$81-Al Operating system variables $ID 50/60 Hz 
$A2-FB Reserved $IE User volume 
$FC-FF Checksum $IF Bell volume 

14-12 Miscellaneous Tool Set routines 



$0C03 ReadBParam 
Reads data from a specified parameter in Battery RAM. The data is read from the 
location specified by the paramRejNum, as described in Table 14-3 in the section 
"WriteBParam" in this chapter. 

Parameters 

Stack before call 

prevtous contents 

wordspace 

paramRefNum 

Stack after call 

prevtous contents 

theData 

Errors None 

Word- Space for result 

Word-Parameter reference number (see Table 14-3) 

~SP 

Word-Data that was read Oow-order byte only) 

~SP 

C extern pascal word ReadBParam (paramRefNum) 

Word paramRefNum ; 

Assembly-language example 
PEA $0000 Space for result 

PEA $0028 Reference number specifying startup slot 

ReadBParam 

Miscellaneous Tool Set routines 14-13 



$0D03 ReadTimeHex 
Returns current time in hexadecimal format. 

Parameters 

Stack before call 

previous contents 

wordspace 
words pace 

wordspace 

wordspace 

Stack after call 

previous contents 

weekDay I null 

month I day 

curYear I hour 

minute I second 

Errors None 

Word-Space for result 

Word-Space for result 

Word-Space for result 

Word-Space for result 

f-SP 

Byte-Day of week Cl-7, with 1 = Sunday ... ) I Byte-Filling word 

Byte-Month (0-11, with 0 = January ... ) I Byte-Date (0-30) 

Byte-Current year minus 1900 I Byte-Hour (0-23) 

Byte-Minute (0-59) I Byte-Second (0-59) 

f-SP 

C extern pascal TimeRec ReadTimeHex() 

14-14 Miscellaneous Tool Set routines 



$0E03 WriteTimeHex 
Sets the current time using hexadecimal format. 

❖ Note: The value for curYear cannot be 0, 1, 2, or 3. 

Parameters 

Stack before call 

previous contents 

month I day 

curYear I hour 

minute I second 

Stack after call 

Byte-Month (0- 11 with 0 = January ... ) I Byte-Date (0-30) 

Byte-Current year minus 1900 I Byte-Hour (0-23) 

Byte-Minute (0-59) I Byte-Second (0-59) 

~SP 

previous contents I 
--------~SP 

Errors None 

C extern 

Byte 

Byte 

Byte 

Byte 

Byte 

Byte 

pascal void WriteTimeHex(month , day,curYear,hour , minute , second ) 

month; 

day; 

curYear; 

hour; 

minute; 

second; 

Assembly-language example 
PEA $0104 

PEA $560A 

PEA $1900 

WriteTimeHex 

February 5th (numbers are from 0-30 ) 

1986 , 10th hour 

25th minute , no seconds 

Miscellaneous Tool Set routines 14-15 



$0F03 ReadAsciiTime 
Reads elapsed time since 00:00:00, January 1, 1904, converts the elapsed time to 
ASCII time output, and places the output at the specified address. 

Parameters 

Stack before call 

previous contents 

bufferPtr 

Stack after call 

Long-POINTER to start of buffer 

~SP 

I previous contents I~ SP 

Errors None 

C extern pascal void ReadAsciiTime(bufferPtr) 

Pointer bufferPtr ; 

ASCII output time 

The output is always 20 characters, with the most significant byte of each character set 
to 1. The time format is defined by the format set up in the Battery RAM by the 
Control Panel, as shown in Table 14-4. 

Table 14-4 
ASCII time 

Date Time ASCII time Va lues 
format format format 

0 0 mml dd/yy HH:MM·SS AM or PM HH Hour 
1 0 ddl mm/yy HHMM·SS AM or PM MM Minute 
2 0 yy/ mml dd HH:MM·SS AM or PM ss Second 
0 1 mml dd/yy HH:MM:SS mm Month 
1 1 ddl mmlyy HH:MM:SS dd Day 
2 1 yy/ mml dd HH:MM:SS yy Year 

14-16 Miscellaneous Tool Set routines 



$2403 FWEntry 
Allows some Apple II emulation-mode entry points to be supported from full native 
mode. FWEntry preserves the state of the data bank and direct page registers before it 
dispatches to the firmware entry point. During the execution of the firmware task, the 
data bank and direct page registers are set to O; the registers are restored on return 
from the firmware entry point. 

Parameters 

Stack before call 

previous contents 

words pace 

wordspace 

wordspace 

wordspace 

aRegValue 

xRegValue 

yRegValue 

eModeEntryPt 

Stack after call 

previous contents 

status 

aRegExit 

xRegExit 

yRegExit 

Errors None 

Word-Space for result 

Word-Space for result 

Word-Space for result 

Word-Space for result 

Word-Accumulator at entry Oow-order byte only) 

Word-X register at entry (low-order byte only) 

Word-Y register at entry (low-order byte only) 

Word-Emulation mode entry point 

f-SP 

Word-Processor status at exit (high-order byte only) 

Word-Accumulator at exit Oow-order byte only) 

Word-X register at exit Oow-order byte only) 

Word-Y register at exit Oow-order byte only) 

f-SP 

Miscellaneous Tool Set routines 14-17 



C extern pascal FWRec FWEntry(aRegValue , xRegValue , yRegValue , eModeEntryPt) 

Word 

Word 

Word 

Word 

aRegValue ; 

xRegValue ; 

yRegValue ; 

eModeEntryPt ; 

Assembly-language example 

14-18 

lda 

pha 

pha 

pha 

pha 

#$0000 

pea A Val 

pea X Val 

pea Y Val 

Space for 

Space for 

Space for 

Space for 

Low byte 

Low byte 

Low byte 

result 

result 

result 

result 

A register on FW entry 

X register on FW entry 

y register on FW entry 

pea FW Addr Apple II monitor ROM entry point 

FWENTRY 

pla Save returned Y Reg 

sta Y Result 

pla Save returned X Reg 

sta X Result 

pla Save returned A Reg 

sta A Result 

pla Save returned P Reg 

sta P Result 

to be called 

bes error To error routine if tool returned an error 

Miscellaneous Tool Set routines 



$1603 GetAddr 
Returns an address of a byte, word, or long parameter referenced by the firmware . 

Parameters 

Stack before call 

previous contents 

longspace 

reJNum 

Stack after call 

previous contents 

paramPtr 

Errors $0301 

Long-Space for result 

Word-Parameter reference number (see Table 14-5) 

f- SP 

Long-POINTER to parameter 

f-SP 

badinputErr Bad input parameter 

C extern pascal Pointer GetAddr (refNum) 

Word refNum ; 

(continu ed) 

Miscellaneous Tool Set routines 14-19 



Table 14-5 
GetAddr parameter reference numbers 

Number 

$0000 
$0001 
$0002 
$0003 
$0004 
$0005 
$0006 
$0007 
$0008 
$0009 

$000A 

$000B 

Length 

Byte 
Byte 
Byte 
Byte 
Byte 
Long 
Byte 
Byte 
Byte 
20 bytes 

6 bytes 

Byte 

Parameter 

Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Tick counter (TICKCNT) 
IRQ volume (IRQ.VOLUME) 
IRQ active (IRQ.ACTIVE) 
IRQ sound data (IRQ.SOUNPDATA) 
Variables after a BRK (BRK.VAR). The bytes are defined as follows: 

Word A register 
Word X register 
Word Y register 
Word Stack pointer 
Word Direct register 
Byte Processor Status 
Byte Data bank register 
Byte Emulation flag 
Byte Program bank register 
Word Program counter 
Byte State 
Byte Shadow 
Byte Speed register 
Byte MSlot 

Event manager data (EVMGRDATA). The bytes are defined as follows: 

Word 
Long 

Journaling flag 0ourna1Flag) 
Pointer to journal driver 0ourna1Ptr) 

Mouse location/flag (MouseSlot). This is a flag used by the mouse calls. If 
MouseSlot contains a positive value, then it indicates the slot that the mouse 
resides in. If MouseSlot contains a negative value, the mouse has not been 
initialized by an InitMouse call. 

14-20 Miscellaneous Tool Set routines 



Table 14-5 (continued) 
GetAddr parameter reference numbers 

Number Length 

$000C 4 bytes 

$000D 4 bytes 

$000E Byte 

Parameter 

Mouse clamps (MouseClamps). The bytes are defined as follows: 

Byte Low X-axis mouse clamp 
Byte Low Y-axis mouse clamp 
Byte High X-axis mouse clamp 
Byte High Y-axis mouse clamp 

Important 

Do not set the mouse values directly. Use the mouse routines to correctly 
set the clamps. 

Absolute clamps (AbsClamps) . The bytes are defined as follows: 

Byte Low X-axis absolute device clamp 
Byte Low Y-axis absolute device clamp 
Byte High X-axis absolute device clamp 
Byte High Y-axis absolute device clamp 

Absolute device drivers are responsible for clamping the device position within 
the absolute device bounds. 

Serial Communications Controller (SCC) interrupt flag. You can use this 
reference number to set a system interrupt flag byte called SerFlag and handle 
interrupts yourself. Do so by taking the following steps: 

1 . Set your bank $00 handling address to $3FE and $3FF. 

2. Check the version of the firmware by making an emulation call to $00FE1F. If 
the version is $0, the address of the SerFlag byte is $E10104. If the version is 
greater than $0, retrieve the address of SerFlag by making a GetAddr call with 
this parameter reference number ($000E). 

3. Preserve the SerFlag byte's current value. 

4 . Turn on the bits in the SerFlag byte to reflect the port you're using to handle 
interrupts, as follows : 

Port 1 
Port 2 

ORA #o/oO0l 11000 
ORA #O/o00000111 

5. When you no longer wish to handle interrupts from that port (such as at 
application shutdown), restore the byte to its original value. 

Miscellaneous Tool Set routines 14-21 



$2503 

Parameters 

GetTick 
Returns the current value of the tick counter. The value will be incremented only if the 
Heartbeat Interrupt Handler is installed (always true if the Event Manager is active) 
and VBL interrupts are enabled. 

If you want your application to use the GetTick routine without activating the Event 
Manager, install at least one Heartbeat Task, which will then automatically install the 
Heartbeat Interrupt Handler. 

Stack before call 

previous contents 

longs pace Long-Space for result 

f- SP 

Stack after call 

previous contents 

Errors 

C 

14-22 

tickCounter 

None 

Long-Current value of the tick counter 

f-SP 

extern pascal Longword GetTick() 

Miscellaneous Tool Set routines 



$2903 GetlRQEnable 
Returns with the hardware interrupt enable states for the interrupt sources that can be 
controlled by the Miscellaneous Tool Set. The interrupt sources are given in 
Figure 14-1. 

Parameters 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

hdlntstatus 

Errors None 

Word- Space for result 

f-SP 

Word-Status of hardware interrupts (see Figure 14-1) 

f-SP 

C extern pascal Word GetIRQEnable () 

(continued) 

Miscellaneous Tool Set routines 14-23 



11s 1141131121111101 9 I s I 7 I 6 I s I 4 1 3 I 2 I 1 I o I 
l Reserved J JJ 

kbdlnt 
Keyboard Interrupts enabled = 1 
Keyboard Interrupts disabled = 0 

vb/nt -
Vertlcal blanking interrupts enabled = 1 
Vertical blanking interrupts disabled = O 

quartSec/nt -
Quarter-second Interrupts enabled = 1 
Quarter-second Interrupts disabled = 1 

oneSec/nt -
1-second interrupts enabled = 1 
1-second interrupts disabled = O 

Reserved -

adbDatalnt -
Apple Desktop Bus data interrupts enabled = 1 
Apple Desktop Bus data interrupts disabled = 0 

scanUnelnt -
Scan-line interrupts enabled = 1 
Scan-line interrupts disabled = 0 

extVGC/nt ­
External VGC interrupts enabled = 1 
External VGC interrupts disabled = 0 

Figure 14-1 
Hardware Interrupt status 

14-24 Miscellaneous Tool Set routines 



$2303 lntSource 
Enables or disables certain interrupt sources, as specified by the srcRejNum 
parameter. 

Parameters 

Stack before call 

previous contents 

srcRejNum 

Stack after call 

Word-Source reference number of interrupt (see Table 14-6) 

f-SP 

previous contents I 
-------- f- SP 

Errors None 

C e xtern pascal void IntSource (srcRefNum ) 

Word srcRefNum ; 

(continued) 

Miscellaneous Tool Set routines 14-25 



Table 14-6 
Interrupt source reference numbers 

Number Name Action 

$0000 kybdEnable Enable keyboard interrupts 
$0001 kybdDisable Disable keyboard interrupts 
$0002 vblEnable Enable vertical blanking interrupts 
$0003 vblDisable Disable vertical blanking interrupts 
$0004 qSecEnable Enable quarter-second interrupts 
$0005 qSecDisable Disable quarter-second interrupts 
$0006 oSecEnable Enable 1-second interrupts 
$0007 oSecDisable Disable 1-second interrupts 
$0008 Reserved 
$0009 Reserved 
$000A adbEnable Enable ADB data interrupts 
$000B adbDisable Disable ADB data interrupts 
$000C scLnEnable Enable scan-line interrupts 
$000D scLnDisable Disable scan-line interrupts 
$000E exVCGEnable Enable external VGC interrupts 
$000F exVCGDisable Disable external VGC interrupts 

Assembly-language example 
The following example installs and enables a 1-second interrupt handler. For more 
information about the 1-second handler, see the section "Writing a 1-Second 
Interrupt Handler" in this chapter. 

PEA $0015 Set 1 - second vector 

PUSHLONG #ONEHANDLER Pointer to handler 

SETVECTOR -

BCS ERROR If tool set error occurred 

PEA $000 6 Enable 1 - second IRQ 

INT SOURCE 

BCS ERROR If tool set error occurred 

14-26 Miscellaneous Tool Set routines 



About keyboard interrupts 

When keyboard interrupts are enabled, the firmware installs a task into the Heartbeat 
Interrupt Task queue and enables VBL interrupts (there is no hardware enable). This 
causes the Heartbeat Interrupt Handler to be installed into the VBL interrupt vector. 
This task checks the status of the keyboard register during each VBL interrupt. 

If a key is pending, the task dispatches to the Keyboard Interrupt Handler via the 
keyboard interrupt vector (as installed by the SetVector routine; see the section 
"SetVector" in this chapter). Since the Heartbeat Interrupt Handler will be installed 
into the VBL interrupt vector, the application cannot install its own VBL interrupt 
handler if keyboard interrupts are to be used. 

If keyboard interrupts are disabled, the keyboard task is removed from the Heartbeat 
Interrupt Task queue, but the VBL interrupt is not disabled. If the application does 
not want the overhead of the background VBL interrupts, the application must also 
disable the VBL interrupts. 

❖ Note: If no other tasks have been installed into the Heartbeat Interrupt Task 
queue, the additional interrupt overhead is minimal (just that for the Interrupt 
dispatcher and Heartbeat Interrupt Handler, which only increments the tick 
count before returning) . 

Writing a 1-second interrupt handler 

You can use the vector initialization routines to install a 1-second interrupt handler 
into the 1-second interrupt vector. You then use the IntSource routine to enable the 
1-second interrupt. 

The built-in interrupt handler calls the 1-second interrupt handler in 8-bit native 
mode (m and x registers set to 1). The 1-second interrupt handler must clear the 
hardware source of the interrupt before executing an RTL to the interrupt manager. 

❖ Note: Your interrupt handler must return to the built-in interrupt handler with 
the carry flag cleared if the interrupt source was serviced. 

(continued) 

Miscellaneous Tool Set routines 14-27 



An example of a I-second interrupt handler that increments a memory location is 
shown here. 

ONEHANDLER START 

LONGA 

LONGI 

PHB 

PHA 

PHK 

PLB 

INC 

LDA 

TSB 

PLA 

PLB 

CLC 

RTL 

END 

OFF 

OFF 

LOCATION 

#%01000000 

$C032 

Save environment 

Set data bank to program 

Clear 1-second IRQ source 

Restore environment 

Indicate IRQ was serviced 

Writing a quarter-second interrupt handler 
You can use the vector initialization routines to install a quarter-second interrupt 
handler into the quarter-second interrupt vector. You then use the IntSource routine 
to enable the quarter-second interrupt. 

Important 

Quarter-second interrupts are reserved for AppleTalk . 

The Interrupt Manager calls the quarter-second interrupt handler in 8 bit native 
mode (m and x registers set to 1). The quarter-second interrupt handler must clear 
the hardware source of the interrupt before executing an RTI to the interrupt 
manager. 

❖ Note: Your interrupt handler must return to the interrupt manager with the carry 
flag cleared if the interrupt source was serviced. 

14-28 Miscellaneous Tool Set routines 



An example of a quarter-second interrupt handler that increments a memory 
location is shown here. 

QTRHANDLER START 

LONGA 

LONG! 

PHB 

PHA 

PHK 

PLB 

INC 

STA 

PLA 

PLB 

CLC 

RTL 

END 

OFF 

OFF 

LOCATION 

$C047 

Save environment 

Set data bank to program 

Clear 1/4-second IRQ source 

Restore environment 

Indicate IRQ was serviced 

Miscellaneous Tool Set routines 14-29 



$1C03 ClampMouse 
Sets clamp values to new values and then sets the mouse position to the minimum 
clamp values. The clamp values limit the maximum and minimum X and Y 
coordinates for the mouse position. For more information about clamping, see the 
mouse firmware chapter in the Apple JIGS Firmware Reference. 

Parameters 

Stack before call 

previous contents 

xMinClamp 

xMaxClamp 

yMinClamp 

yMaxClamp 

Word-Minirfo.1m clamp value for the X axis 

Word-Maximum clamp value for the X axis 

Word-Minimum clamp value for the Y axis 

Word-Maximum clamp value for the Y axis 

f-SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors 

C 

14-30 

None 

extern pascal void ClampMouse(xMinClamp , xMaxClamp , yMinClamp, yMaxClamp) 

Word xMinClamp ; 

Word xMaxClamp ; 

Word yMinClamp ; 

Word yMaxClamp; 

You can also use the following alternate form of the call: 

extern pascal void ClampMouse(clamp) 

ClampRec clamp ; 

Miscellaneous Tool Set routines 



$1B03 ClearMouse 
Sets the X and Y axis to $0000 if minimum clamps are negative, or to the minimum 
clamp position if the clamps are positive. 

Parameters The stack is not affected by this call. There are no input or output parameters. 

Errors None 

C extern pascal void Cl earMouse () 

$1D03 GetMouseClamp 
Returns the current mouse clamp values. The values can be set by a ClampMouse call 
(see the section "ClampMouse" in this chapter) . 

Parameters 

Stack before call 

previous contents 

wordspace 

wordspace 

wordspace 

words pace 

Stack after call 

previous contents 

xMinClamp 

xMaxClamp 

yMinClamp 

yMaxClamp 

Errors None 

Word-Space for result 

Word-Space for result 

Word-Space for result 

Word-Space for result 

f- SP 

Word- Minimum clamp value for the X axis 

Word-Maximum clamp value for the X axis 

Word-Minimum clamp value for the Y axis 

Word-Maximum clamp value for the Y axis 

f-SP 

C ext ern p a scal ClampRec GetMouseClamp () 

Miscellaneous Tool Set routines 14-3 1 



$1A03 

Parameters 

Errors 

C 

$1803 

Parameters 

HomeMouse 
Positions the mouse at the minimum clamp position. 

The stack is not affected by this call. There are no input or output parameters. 

None 

e xtern pascal void HomeMouse () 

lnitMouse 
Initializes mouse clamp values to $000 minimum and $3FF maximum and clears the 
mouse mode and status. 

Stack before call 

previous contents 

mouseSlot Word-Requests search for mouse ($0000) or slot for mouse ($0001-7) 
f-SP 

Stack after call 

previous contents I 
-------- f- SP 

Errors $0302 noDevParamErr No device for input parameter 

C extern pascal void InitMouse (mouseSlot) 

Word mouseSlot ; 

14-32 Miscellaneous Tool Set routines 



$1E03 PosMouse 
Positions mouse at specified coordinates. 

Parameters 

Stack before call 

previous contents 

xPos 

yPos 

Stack after call 

Word-X axis (horizontal) position of the mouse 

Word-Y axis (vertical) position of the mouse 

f- SP 

previous contents I 
-------- f- SP 

Errors None 

C extern pascal void PosMouse (xPox ,yPos) 

Integer xPox; 

Integer yPos; 

extern pascal void PosMouse(pos) 

Point pos; 

Miscellaneous Tool Set routines 14-33 



$1703 Read Mouse 
Returns mouse position, status, and mode. 

❖ Note: The value of mouseStatus is the same as the low-order byte of intStatus as 
defined in Figure 14-2 (see the section "ServeMouse" in this chapter); the value of 
mouseMode is the same as that shown in Table 14-7 (see the section "SetMouse" in 
this chapter). 

Parameters 

Stack before call 

previous contents 

wordspace 

wordspace 

wordspace 

Stack after call 

previous contents 

xPosition 

yPosition 

status I mode 

Errors $0309 

Word-Space for result 

Word-Space for result 

Word-Space for result 

f-SP 

Word-X position of the mouse 

Word-Y position of the mouse 

Byte-Mouse status I Byte-Mouse mode 

f-SP 

unCnctdDevErr Dispatch attempted to unconnected device 

C ext ern pas c a l Mou s eRec Re adMou se() 

14-34 Miscellaneous Tool Set routines 



$1F03 ServeMouse 
Returns the mouse interrupt status. 

Parameters 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

Word-Space for result 

~SP 

intStatus Word-Mouse interrupt status (see Figure 14-2) 

~SP 

Errors None 

C extern pascal Word ServeMouse () 

I 1s I 14 I 13 I 12 I 11 I 101 9 I a I 7 I 6 I s I 41 3 I 2 I 1 I O I 
Rese~ ed; set to D J , J j 

Button down = 1 

Button down on last read = 1 

Movement sinc e last read = 1 -

Figure 14-2 

Reserved -

Interrupt from CBL interrupt = 1 -

Interrupt from button Interrupt = 1 

Interrupt from movement = 1 -

Reserved -

Mouse Interrupt status word 

Miscellaneous Tool Set routines 14-35 



$1903 SetMouse 
Sets the mouse mode. 

Parameters 

Stack before call 

previous contents 

mouseMode Word-Mouse mode, low-order byte only (see Table 14-7) 

~SP 

Stack after call 

previous contents I 
--------~SP 

Errors None 

C extern pascal void SetMouse(mouseMode) 

Word mouseMode ; 

Table 14-7 
Mouse mode values 

Name Value 

mouseOff $0000 
transparent $0001 
moveintrpt $0003 
bttnintrpt $0005 
bttnOrMove $0007 
mouseOffVI $0008 

transparent VI $0009 
moveintrptVI $000B 
bttnintrptVI $000D 
bttnOrMoveVI $000F 

Description 

Turn mouse off 
Set transparent mode 
Set movement interrupt mode 
Set button interrupt mode 
Set button or movement interrupt mode 
Turn mouse off, VBL IRQ active (VBL IRQ supports emulation-mode 
interrupts via $3F2) 
Set transparent mode, VBL IRQ active 
Set movement interrupt mode, VBL IRQ active 
Set button interrupt mode, VBL IRQ active 
Set button or movement interrupt mode, VBL IRQ active 

14-36 Miscellaneous Tool Set routines 



$2A03 SetAbsClamp 
Sets clamp values for an absolute device to new values. The clamp values limit the X 
and Y position of the absolute device to the specified minimum and maximum 
values. 

Parameters 

Stack before call 

previous contents 

xMinClamp 

xMaxClamp 

yMinClamp 

yMaxClamp 

Stack after call 

Word-Minimum clamp value for the X axis 

Word-Maximum clamp value for the X axis 

Word-Minimum clamp value for the Y axis 

Word-Maximum clamp value for the Y axis 

~SP 

previous contents I 
---------~SP 

Errors None 

C e xtern pascal void SetAb s Clamp (xMinClamp ,xMaxClamp , yMinClamp , yMaxClamp) 

Word xMi nCl amp ; 

Word xMa xClamp ; 

Word yMinClamp ; 

Word yMaxClamp ; 

You can also use the following alternate form of the call: 

exte rn p a scal void SetAb s Clamp (clamp ) 

ClampRe c clamp ; 

Miscellaneous Tool Set routines 14-37 



$2B03 GetAbsClomp 
Returns the current values for the absolute device clamps. 

Parameters 

Stack before call 

previous contents 

wordspace 

wordspace 

wordspace 

words pace 

Stack after call 

previous contents 

xMinClamp 

xMaxClamp 

yMinClamp 

yMaxClamp 

Errors None 

Word-Space for result 

Word-Space for result 

Word-Space for result 

Word-Space for result 

f-- SP 

Word-Minimum clamp value for the X axis 

Word-Maximum clamp value for the X axis 

Word-Minimum clamp value for the Y axis 

Word-Maximum clamp value for the Y axis 

f-- SP 

C e xt e rn p a sca l Cl a mpRec Ge tAbsCl a mp () 

14-38 Miscellaneous Tool Set routines 



$2603 PackBytes 
Packs bytes into a special format that uses less storage space. 

When the call is finished, the pointer to the area to be packed is moved forward to the 
next packable byte, and the size of area pointed to by the second input parameter is 
reduced by the number of bytes traversed. 

The packed data is in the form of 1 byte containing a flag in the first 2 bits and a count 
in the remaining 6 bits, followed by 1 or more data bytes, depending on the flags, as 
follows: 

OOx:xxxxx : (xxxxxx : 0 ➔ 63) = 1 to 64 bytes follow-all different 
Olxxxxxx : (xxxxxx : 2, 4, 5, or 6) = 3, 5, 6, or 7 repeats of next byte 
lOxxxxxx : (xxxxxx : 0 ➔ 63) = 1 to 64 repeats of next 4 bytes 

1 lxxxxxx : (xxxxxx : 0 ➔ 63) = 1 to 64 repeats of next byte taken as 4 bytes 
(as in lOxxxxxx case) 

Parameters 

Stack before call 

previous contents 

wordspace 

-- startHandle 

-- sizePtr 

-- bufferPtr 

bufferSize 

Stack after call 

previous contents 

numPackbytes 

--· 

--· 

--· 

Errors None 

Word-Space for result 

Long-POINTER to POINTER to start of area to be packed 

Long-POINTER to Word containing the size of the area 

Long-POINTER to start of the output buffer area 

Word-Size of the output buffer area 

f- SP 

Word-Number of packed bytes generated 

f-SP 

Miscellaneous Tool Set routines 14-39 



C extern pascal Word PackBytes(startHandle , sizePtr , bufferPtr , bufferSize) 

Handle startHandle ; 

Word *sizePtr ; 

Pointer bufferPtr ; 

Word bufferSize ; 

Assembly-language example 
This example packs a screen image and writes it to a file named f. 

PB START 

lda #$7000 

sta PicSize 

lda #$E12000 

sta PicPtr 

lda #$AE12000 

sta PicPtr+2 

lda #buffer 

sta BufPtr 

lda #ABuffer 

sta BufPtr+2 

loop PUSHWORD #0 

PUSHLONG #PicPtr 

PUSHLONG #PicSize 

PUSHLONG BufPtr 

PUSHWORD BufSize 

PACKBYTES -

pla 

sta HowMuch 

14-40 Miscellaneous Tool Set routines 

Size of area to pack 

Address of screen image 

Pointer to local buffer 

Space for result 

Pointer to Pointer to data to pack 

Pointer to word with size of area 

Pointer to start of output area 

Size of output buffer area 

Get how much packed this pass 



CALL 

l da 

bne 

rts 

PicPtr ds 

PicSize ds 

BufPtr ds 

BufSize de 

HowMuch ds 

Buffer ds 

END 

• 

WRITE(f , BufPtr,HowMuch) 

PicSize 

loop 

4 

2 

4 

12 ' $400' 

2 

$400 

Perform I/O to write " HowMuch " bytes from 
"BufPir " to file " f " 

See if any more to pack 

If there is, go back for more 

Set to $e12000 on entry (screen area) 

Size of a picture; set to $7d00 on entry 

Set to point to "Buffer " on entry 

Local buffer for storing packed data 

Local storage for value from PackBytes 

Actual buffer 

Miscellaneous Tool Se t routines 14-41 



$2703 UnPackBytes 
Unpacks data from the packed format used by PackBytes (see the section "PackBytes" 
in this chapter). 

When the call is finished, the pointer to the unpacked data is positioned 1 byte past 
the last unpacked byte, and the size of the area is reduced by the amount unpacked. 

Parameters 

Stack before call 

previous contents 

wordspace 

-- bufferPtr 

bufferSize 

--· 

Word-Space for result 

Long-POINTER to the buffer containing the packed data 

Word-Size of the packed data buffer 

-- startHandle --· Long-POINTER to POINTER to area where the data will be unpacked 

-- sizePtr -- Long-POINTER to Word containing size of area for unpacked data 

f-SP 

Stack after call 

previous contents 

numunpackbytes 

Errors None 

Word-Number of source bytes unpacked 

f-SP 

• 

C extern pascal Word UnPackBytes(bufferPtr,bufferSize ,startHandle , sizePtr) 

Pointer bufferPtr; 

Word bufferSize; 

Handle start Handle; 

Word *sizePtr ; 

14-42 Miscellaneous Tool Set routines 



Assembly-language example 
This example unpacks data from a file named f . 

PB 

loop 

START 

stz 

lda 

sta 

lda 

sta 

lda 

sta 

Mark 

#$7D00 

PicSize 

#$El2000 

PicPtr 

#$~El2000 

PicPtr+2 

SETFILEMARK ( f , Mark ) 

Mark is the file mark we position to 

Size of area to unpack into 

Address of screen image 

Position file " f " to position "Mark " CALL 

CALL 

PUSHWORD 

PUSHLONG 

PUSHWORD 

PUSHLONG 

PUSHLONG 

READ (f , BufPtr , BufSize ); Read " BufSize " bytes into " BufPtr " 

#0 

BufPtr 

bufsize 

#PicPtr 

#PicSize 

UNPACKBYTES 

pla 

clc 

adc Mark 

sta Mark 

lda picsize 

beq done 

CALL EOF(f) 

bne loop 

Space for result 

Pointer to start of output area 

Size of output buffer area 

Pointer to Pointer to data to pack 

Pointer to word with size of area 

Get how much unpacked this pass 

Add to previous mark position 

See if more to unpack 

If there isn ' t , we ' re done 

Did we reach end of file? (safety check) 

If not , go back for more 

(continued) 

Misce llaneous Tool Set routines 14-43 



Done rts 

BufPtr de i4 ' Buffer ' Pointer to buffer area 

bufsize de i2 ' $400 ' Local buffer for stor i ng packed data 

PicPtr ds 4 Set to $el2000 on entry ( screen area ) 

PicSize ds 2 Size of a picture; set to $7d00 on entry 

Mark ds 2 File mark position 

Buffer ds $400 Actual buffer 

END 

14-44 Miscellaneous Tool Set routines 



$2803 Munger 
Manipulates bytes in a string of bytes. 

The basic operation is to search a destination string for a target string and, if one is 
found, replace it with a replacement string. If the destination string is shortened, the 
end of the string is padded with a pad character. If the string is elongated, the extra 
characters are truncated. Other special cases are discussed in this section. 

Parameters 

Stack before call 

previous contents 

wordspace 

-- destPtr --· 

-- destLenPtr --· 

-- targPtr ---

targLen 

-- rep/Ptr --· 

rep/Len 

-- padPtr --· 

Stack after call 

previous contents 

padBytesFound 

Errors None 

Word-Space for result 

Long-POINTER to pointer to the text to be manipulated 

Long-POINTER to number of bytes to manipulate 

Long-POINTER to be searched for from destPtr 

Word-Number of bytes for targPtr 

Long-POINTER to string to replace when targPtr found 

Word-Number of bytes for rep/Ptr 

Long-POINTER to character value to be added to short input 

~SP 

Word-Number of bytes padded or truncated; 0 if target found, 

~ SP negative if not found 

Miscellaneous Tool Set routines 14-45 



C extern pascal Word Munger (destPtr , destLenPtr,targPtr , targLen , 

replPtr , replLen , padPtr ) 

Handle destPtr ; 

Word *d estLenPtr ; 

Pointer targPtr ; 

Word targLen ; 

Pointer replPtr ; 

Word replLen ; 

Pointer padPtr ; 

Special cases 
If targPtr is NIL, the substring of length targLen is replaced by the replPtr string. 

If targLen is 0, the string pointed to by replPtr is inserted at destPtr. 

If replPtr is NIL, destPtr is updated past the end of the match of the targPtr string. 

If rep/Len is O (and replPtr is not NIL), the targPtr string is deleted rather than 
replaced (since the replacement string is empty). 

There is one case in which Munger performs a replacement, even if it doesn't find all 
of the target string. If the entire destPtr string is at the beginning of the targPtr string, 
then the destPtr string is totally replaced by the replPtr string. 

14-46 Miscellaneous Tool Set routines 



Assembly-language example 
This example replaces a word in lowercase format with its uppercase equivalent. 

* Changes " robert irwin eagle toranaga marcia houdini berns " 

* into " robert irwin EAGLE toranaga marcia houdini berns " 

MG START 

lda 

sta 

lda 

sta 

lda 

sta 

PUSHWORD 

PUSHLONG 

PUSHLONG 

PUSHLONG 

PUSHWORD 

PUSHLONG 

PUSHWORD 

PUSHLONG 

MUNGER 

pla 

rts 

DestPtr ds 

DestLen ds 

PAD ds 

eagleLC de 

eagleUC de 

name de 

#Name 

DestPtr 

#~Name 

DestPtr+2 

#48 

Dest Len 

#0 

DestPtr 

#DestLen 

#eagleLC 

#5 

#eagleUC 

#5 

#PAD 

4 

2 

2 

c ' eagle ' 

c ' EAGLE ' 

Set pointer to name 

Get length 

Space for result 

Pointer to text string to manipulate 

Pointer to word with number bytes to change 

Points to " eagle " (lowercase) 

"eagle " has 5 letters 

Pointer to " EAGLE " (uppercase) 

" EAGLE " has 5 letters 

Pad character (don ' t care for this example) 

(This will be 0 , as will pad ) 

On entry will point to name 

On entry will be set to " NLen " 

Pad value 

c ' robert irwin eagle toranaga marcia houdini berns ' 

Miscellaneous Tool Set routines 14-47 



$1203 

Parameters 

SetHeartBeat 
Installs a specifed task into the Heartbeat Interrupt Task queue. 

You must set taskPtrto point to the task header that precedes the task. The task header 
consists of a long link pointer, a count word, and a signature word of $5AA5. 

SetHeartBeat maintains taskPtr, which is set to NIL ($00000000) if the task is the last 
task in the queue. When a task is installed, the taskPtrof the previous task is set to 
point at the task header for the task being installed. 

Stack before call 

prevtous contents 

taskPtr 

Stack after call 

Long-POINTER to the task header 

f-SP 

previous contents I 
-------- f- SP 

Errors 

C 

$0303 

$0304 

$0305 

taskinstlErr 

noSigTaskErr 

queueDmgdErr 

Specified task already in Heartbeat queue 

No signature detected in task header 

Damaged Heartbeat queue detected 

e xtern pascal void SetHeartBeat (ta sk Ptr) 

Pointer taskPtr ; 

14-48 Miscellaneous Tool Set routines 



Installing a task 
The following example increments a location in memory every tenth VBL. 

TasklHdr 

TasklCnt 

Taskl 

Data 

de h 1 00000000 1 

de i ' l0 ' 

de h ' SAAS ' 

End 

Start 

Using Task l Hdr 

rep #$20 

long a on 

phk 

plb 

lda 

sta 

sep 

#10 

TasklCnt 

#$20 

long a off 

lda 

inc 

sta 

rtl 

End 

>TestLoc 

a 

>TestLoc 

Space for task pointer 

Count word preset to 10 

Signature word $ASSA 

16-bit ' m' 

Data bank program bank 

Reset the task count 

8-bit ' m' 

Increment an address 

The count word indicates the number of VBL interrupts that must occur before the 
associated task is executed (10 in the preceding example). The application sets the 
count word before the task is installed, and the count word must then be maintained 
by either the task or the application. For recurring tasks, the task should reset the 
count word. For tasks that are run one time only, the application should reset the 
count word. 

❖ Note: If you want to use just the tick counter feature of the Heartbeat Interrupt 
Handler without the task execution feature, install a task with a count of 0. 

SetHeartBeat decrements a nonzero count word for each VBL interrupt. If the 
decrement results in a count word of 0, the task is executed. A count word with a value 
of 0 is not decremented during a VBL interrupt. This effectively makes the task 
inactive until a nonzero value is stored for the count word. 

Misce llaneous Tool Set routines 14-49 



The signature word must be set to $5AA5 prior to a task installation and is used by the 
SetHeartBeat routine and the Heartbeat Interrupt Handler to check the integrity of 
the Heartbeat Interrupt Task queue. 

Tasks are executed in native mode with 8-bit m and x registers. You should terminate 
the task with an RTL instruction. 

The following code installs the task shown above. 

I nsta l l a nop 

pushlong #label 

SetHeart Be a t 

When you install a task into the Heartbeat Interrupt Task queue, the Heartbeat 
Interrupt Handler is automatically installed into the VBL interrupt handler vector. 
This displaces any handler already installed. However, installing the task into the 
Heartbeat queue doesn't automatically enable VBL interrupts; your application must 
do so. Also, since tasks are linked with simple pointers, the tasks should reside in 
locked memory. Tasks that make use of system resources should conform to the 
protocol detailed in Chapter 19, "Scheduler," in Volume 2. 

Installing a ROM-based task 

To install a ROM-based task, your application must allocate 12 bytes of RAM for the 
task header. The task must execute a jump absolute long to the ROM-based task. An 
example of this is as follows: 

TasklHdr 

Ta s klCnt 

TasklSig 

TasklJmp 

14-50 

DATA 

DC H' 00000000 ' 

DC i '1 0 ' 

DC H ' SAAS ' 

DC H' 00000000 ' 

END 

START 

USING TASKlHDR 

jmp >RomTaskl 

END 

Misce llaneous Tool Set routines 

Space for link pointer 

Count word preset to 10 

Signature word $ASSA 

Jump to ROM-based task 



An example that shows how a program can construct the task header area in RAM for 
a ROM-based task is shown next. Note that this program is run in full native mode 
(16-bit m and x registers) . 

Install Tl Start 

Using TasklHdr 

lda #$0001 Initialize task count 

sta >TasklCnt 

lda #$ASSA Initialize task signature 

sta >TasklSig 

lda #RomTaskl Now install JMP to task 

pha 

xba 

and #$):FOO 

ora #$00SC 

sta >TasklJmp 

pla 

and #$FFOO 

ora #ARomTaskl 

xba 

sta >Task1Jmp+2 

pushlong TasklHdr 

Set Heart Beat 

Miscellaneous Tool Set routines 14-51 



$1303 DelHeartBeat 
Deletes a specified task from the Heartbeat Interrupt Task queue. 

Parameters 

Stack before call 

previous contents 

taskPtr Long-POINTER to the task header 

f- SP 

Stack after call 

previous contents I 
------ -- f- SP 

Errors $0305 

$0306 

queueDmgdErr 

taskNtFdErr 

Damaged Heartbeat queue detected 

Specified task not in queue 

C e xtern pascal void DelHeartBeat (taskPtr ) 

Pointer taskPtr ; 

14-52 Miscellaneous Tool Set routines 



$1403 

Parameters 

Errors 

C 

$2C03 

Parameters 

Errors 

C 

ClrHeartBeat 
Removes all tasks from the Heartbeat Interrupt Task queue by clearing the Heartbeat 
Task pointer. 

Important 

A desk accessory may have Insta lled tasks In the Heartbeat Interrupt Task 
queue. If you make a ClrHeartBeat call , you will remove those tasks. Therefore, 
under normal circumstances you should not make this call. 

The stack is not affected by this call. There are no input or output parameters. 

None 

e xtern pas c a l void ClrHeartBeat () 

SysBeep 
Calls the Apple II monitor entry point BELLl . The bell routine can be patched out 
using the SetVector routine to patch out the bell vector. Any bell routine installed will 
be called in native mode (8-bit m and x registers). The routine must return with the 
carry flag cleared via an RTI instruction. 

The stack is not affected by this call. There are no input or output parameters. 

None 

extern pascal void SysBeep () 

Miscellaneous Tool Set routines 14-53 



$1503 

Parameters 

SysFailMgr 
Displays system failure message and halts application execution. At system power-up 
time, a default System Failure Manager is installed into the System Failure Manager 
vector. The manager displays either a default system failure message followed by an 
error code, or a user-defined system failure message followed by an error code. 

Stack before call 

previous contents 

errorCode Word-Error code (see Table 14-8) 

strPtr 

Stack after call 

Long-POINTER to ASCII string to be displayed as system failure message 

f-SP 

previous contents I 
-------- f- SP 

Errors None 

C e xt ern p a scal void SysFa ilMgr (er r orCode , s t rPtr ) 

Word errorCode ; 

Po i nter s t rPtr ; 

14-54 Miscellaneous Tool Set routines 



Default message 
The default system failure message displays a sliding Apple below a message as 
follows: 

FATAL SYSTEM ERROR - > XXX X 

• ---------------

If a system failure call is made with a user-defined message, the message is displayed 
starting at the upper-left corner of the screen. (The text may be moved down by 
embedding carriage return characters in the text.) The user-defined message may 
contain 1 to 254 characters. 

(USER- DEFINED MESSAGE} (XXXX } 

• ---------------
If strPtr is set to 0, the default system failure message and the error code passed as the 
tool input are displayed. If strPtr is set to point to an ASCII string, the ASCII string 
will be displayed with the error code. The first byte of the ASCII string should contain 
a count equal to the number of characters to be displayed. The ASCII string should 
have the most significant byte turned off. 

Table 14·8 
System failure error codes 

Code 

$0001 
$0004 
$000A 
$000B 
$000C 
$000D 
$0015 
$0017 
$0018 
$0019 
$001A 
$001B 
$001C 
$001D 
$001E 
$0020 

Name 

pdosUnClmdintErr 
divByZeroErr 
pdosVCBErr 
pdosFCBErr 
pdosBlkOErr 
pdosintShdwErr 
segLoaderlErr 
sPackageOErr 
packagelErr 
package2Err 
package3Err 
package4Err 
packageSErr 
package6Err 
package7Err 
package8Err 

Description 

Unclaimed interrupt (ProDOS 16) 
Division by 0 
Volume control block unusable (ProDOS 16) 
File control block unusable (ProDOS 16) 
Block zero allocated illegally (ProDOS 16) 
Interrupt with I/0 shadowing off (ProDOS 16) 
Segment Loader error 
Can't load a package 
Can't load a package 
Can't load a package 
Can't load a package 
Can't load a package 
Can't load a package 
Can't load a package 
Can't load a package 
Can't load a package 

(continued) 

Miscellaneous Tool Set routines 14-55 



Table 14-8 (continued) 
System failure error codes 

Code Name 

$0021 package9Err 
$0022 packagel0Err 
$0023 packagellErr 
$0024 packagel2Err 
$0025 outOfMemErr 
$0026 segLoader2Err 
$0027 fMapTrshdErr 
$0028 stkOvrFlwErr 
$0030 psinstDiskErr 
$0032-53 
$0100 stupVolMntErr 

Description 

Can't load a package 
Can't load a package 
Can't load a package 
Can't load a package 
Out of memory 
Segment Loader error 
File map destroyed 
Stack overflow 
Please insert disk (File Manager alert) 
Memory Manager errors 
Can't mount system startup volume 

System failure error codes above $0100 are specific to the tool set reporting the 
error, with the high-order byte containing the tool set number and the low-order 
byte returning the error code as defined by that tool set. No tool set will report an 
error with the low-order byte set to $00. 

14-56 Miscellaneous Tool Set routines 



$2003 

Parameters 

GetNewlD 
Creates a new user ID. The user ID marks memory segments as belonging to a specific 
application or desk accessory. The routine passes the type and au:x:ID to the User ID 
Manager, which concatenates the next available mainID to the type and au:x:ID 
fields. The resulting user ID is returned ro the caller. The fields are illustrated in 
Figure 14-3. 

The type field must be nonzero. Only 255 ID tags can be assigned for any type ID. 

Stack before call 

previous contents 

words pace 

idTag 

Stack after call 

previous contents 

userID 

Errors $0301 

$030B 

Word-Space for result 

Word-High-order byte = type and au:x:ID fields; low-order byte = $0000 

<-SP 

Word-Complete user ID 
(-SP 

badinputErr 

idTagNtAvlErr 

Bad input parameter 

No ID tags available 

C extern pascal Word GetNewID (idTag ) 

Word idTag ; 

(continued) 

Miscellaneous Tool Set routines 14-57 



User ID fields 
User IDs are made up of three fields-the type, au:x:ID, and mainID fields-encoded 
in a word parameter. The type field is encoded in bits 15-12, the au:x:ID in bits 11-8, 
and the mainID field in bits 7-0. 

The au:x:ID field is defined by the caller. The mainID field is generated by the User 
ID Manager. The user ID is always assigned a nonzero value in the mainID field. The 
type field has fixed assignments, as shown in the Figure 14-3. 

I 15 I 14 I 13 I 12 I 11 I 101 9 I a I 7 1 6 I 5 I 4 I 3 I 2 I 1 I o I 
I I I I 

type ] 
Memory Manager = $00 

Application= $01 
Control program = $02 

ProDOS = $03 
Tool sets = $04 • 

Desk accessories = $05 
Runtime libraries = $06 

System Loader = $07 
Firmware = $08 

Tool Locator = $09 
Setup file = S0A 

Undefined = SOB 
Undefined = SOC 
Undefined = SOD 
Undefined = SOE 
Undefined = $OF 

aux/D 
SO-SF Defined by user 

main/D 
$01-SFF Assigned by ID Manager 

Reserved 

• Apple controls assignment of IDs in this c lass. At the time of 
publication , the only assignments were $4 l xx = Miscellaneous Tool Set 
and $42xx = Scrap Manager. 

Figure 14-3 
User ID fields 

14-58 Miscellaneous Tool Set routines 



$2103 

Parameters 

DeletelD 
Deletes all references to a specified user ID. Any user IDs with the same mainID and 
type are deleted from the current user ID list. The fields are illustrated in Figure 14-3 
(see the section "GetNewID" in this chapter). This routine does not report an error if 
the tag is not found. 

Important 
The aux/D field Is Ignored during this call . 

Stack before call 

previous contents 

tdTag 

Stack after call 

Word-The type and matnID fields of the user ID to delete 

~SP 

previous contents I 
--------~ SP 

Errors None 

C extern pascal void DeleteID (idTag ) 

Word idTag; 

Miscellaneous Tool Set routines 14-59 



$2203 

Parameters 

StatuslD 
Indicates whether a specified user ID is active. 

The call must specify the type and mainID of the desired user ID. The fields are 
illustrated in Figure 14-3 (see the section "GetNewID" in this chapter). If the user ID is 
active, no error will be returned. 

Important 
The aux/D Is Ignored during this call. 

Stack before call 

previous contents 

tdTag 

Stack after call 

Word-The type and matnID fields of the desired user ID 

f-SP 

previous contents I 
-------- f- SP 

Errors $030B idTagNtAvlErr No ID tag available 

C extern pascal void StatusID(idTag) 

Word idTag ; 

14-60 Miscellaneous Tool Set routines 



$1003 

Parameters 

SetVector 
Sets the vector address for the interrupt manager or handler specified by the 
vectorRejNum. The vector reference numbers are given in Table 14-9. You can 
retrieve the current vector address for a specified interrupt manager or handler with a 
GetVector call (see the section "GetVector" in this chapter for more information). 

Stack before call 

prevtous contents 

vectorRefNum Word-Vector to be set (see Table 14-9) 

Long-POINTER to the manager or handler 

<-SP 

vectorPtr 

Stack after call 

prevtous contents I 
--------<-SP 

Errors None 

C extern pascal void SetVector(vectorRefNum,vectorAddrPtr) 

Word vectorRefNum; 

Pointer vectorAddrPtr ; 

(continued) 

Miscellaneous Tool Set routines 14-61 



Table 14-9 
Vector reference numbers 

Number Vector Number Vector 

$0000 Tool Locator #l $001B Bell vector (for Sound tools) 
$0001 Tool Locator #2 $001C Break vector (for debuggers) 
$0002 User's tool locator #l $001D Trace vector 
$0003 User's tool locator #2 $001E Step vector 
$0004 Interrupt Manager 

$001F Reserved vector $0005 COP Manager 
$0020 Reserved vector 

$0006 Abort Manager $0021 Reserved vector 
$0007 System Death Manager $0022 Reserved vector 
$0008 AppleTalk interrupt handler $0023 Reserved vector 
$0009 Serial Communications Controller 

$0024 Reserved vector interrupt handler 
$0025 Reserved vector $000A Scan-line interrupt handler 
$0026 Reserved vector $000B Sound interrupt handler 
$0027 Reserved vector $000C Vertical blanking interrupt handler 
$0028 Control Y vector $000D Mouse interrupt handler 
$0029 Reserved vector $000E Quarter-second interrupt handler 

$000F Keyboard interrupt handler $002A ProDOS 16 MLI vector 
$0010 ADB response byte interrupt handler $002B Operating system vector 
$0011 ADB SRQ interrupt handler $002C Message pointer vector 
$0012 Desk Accessory Manager 
$0013 Flush buffer handler 
$0014 Keyboard micro interrupt handler 
$0015 1-second interrupt handler 

$0016 External VGC interrupt handler 
$0017 Other unspecified interrupt handler 
$0018 Cursor update handler 
$0019 Increment busy flag (for Scheduler) 
$001A Decrement busy flag (for Scheduler) 

14-62 Miscellaneous Tool Set routines 



$1103 

Parameters 

GetVector 
Returns the vector address for the interrupt manager or handler for a specified vector 
reference number. Vector reference numbers are given in Table 14-9 in the section 
"SetVector" in this chapter; you can use the SetVector routine to set the vector 
address for an interrupt manager or handler. 

Stack before call 

previous contents 

longspace Long-Space for result 

vectorRefNum Word-Vector reference number of manager or handler 

~SP 

Stack after call 

previous contents 

vectorPtr 

Errors 

C 

None 

Long-POINTER to the specified manager or handler 

~SP 

extern pascal Pointer GetVector (vectorRefNum ) 

Word vectorRefNum ; 

Miscellaneous Tool Set routines 14-63 



Miscellaneous Tool Set summary 
This section briefly summarizes the constants, data structures, and tool set errors 
contained in the Miscellaneous Tool Set. 

Important 

These definitions are provided In the appropriate Interface file, 

Table 14-10 
Miscellaneous Tool Set constants 

Name Value Description 

Battery RAM parameter reference numbers 
plPrntModem $0000 Port 1 Printer/modem 
plLineLnth $0001 Port 1 Line length 
plDelLine $0002 Port 1 Delete line feed after carriage return 
plAddLine $0003 Port 1 Add line feed after carriage return 
plEcho $0004 Port 1 Echo 
plBuffer $0005 Port 1 Buffer 
plBaud $00o6 Port 1 Baud 
plDtStpBits $0007 Port 1 Data/ stop bits 
plParity $0008 Port 1 Parity 
plDCDHndShk $0009 Port 1 DCD handshake 
plDSRHndShk $000A Port 1 DSR handshake 
plXnfHndShk $000B Port 1 XON/XOFF handshake 
p2PrntModem $000C Port 2 Printer/modem 
p2LineLnth $000D Port 2 Line length 
p2De1Line $000E Port 2 Delete line feed after carriage return 
p2AddLine $000F Port 2 Add line feed after carriage return 
p2Echo $0010 Port 2 Echo 
p2Buffer $0011 Port 2 Buffer 
p2Baud $0012 Port 2 Baud 
p2DtStpBits $0013 Port 2 Data/ stop Bits 
p2Parity $0014 Port 2 Parity 
p2DCDHndShk $0015 Port 2 DCD handshake 
p2DSRHndShk $0016 Port 2 DSR handshake 
p2XnfHndShk $0017 Port 2 XON/XOFF handshake 
dspColMono $0018 Display color/ monochrome 
dsp40or80 $0019 Display 40/80 column 
dspTxtColor $001A Display text color 
dspBckColor $001B Display background color 
dspBrdColor $001C Display border color 
hrtz50or60 $001D 50/ 60 Hz 

14-64 Chapter 14: Miscellaneous Tool Set 



Table 14-10 (continued) 
Miscellaneous Tool Set constants 

Name Value Description 

Battery RAM parameter reference numbers 
userVolume $001E User volume 
bell Volume $001F Bell volume 
sysSpeed $0020 System speed 
sltlintExt $0021 Slot 1 Internal/external 
slt2intExt $0022 Slot 2 Internal/external 
slt3intExt $0023 Slot 3 Internal/external 
slt4intExt $0024 Slot 4 Internal/external 
sltSintExt $0025 Slot 5 Internal/external 
slt6intExt $0026 Slot 6 Internal/external 
slt7intExt $0027 Slot 7 Internal/external 
startupSlt $0028 Startup slot 
txtDspLang $0029 Text display language 
kybdLang $002A Keyboard language 
kyBdBuffer $002B Keyboard buffering 
kyBdRepSpd $002C Keyboard repeat speed 
kyBdRepDel $002D Keyboard repeat delay 
dblClkTime $002E Double-click time 
flashRate $002F Flash rate 
shftCpsLCas $0030 Shift caps/ lowercase 
fstSpDelKey $0031 Fast space/ delete keys 
dual Speed $0032 Dual speed 
hiMouseRes $0033 High mouse resolution 
dateFormat $0034 Month/ day/ year format 
clockFormat $0035 24 hour/AM-PM format 
rdMinRam $0036 Minimum RAM for RAM disk 
rdMaxRam $0037 Maximum RAM for RAM disk 
langCount $0038 Number of languages 
langl $0039 First language 
lang2 $003A Second language 
lang3 $003B Third language 
lang4 $003C Fourth language 
lang5 $003D Fifth language 
lang6 $003E Sixth language 
lang7 $003F Seventh language 
lang8 $0040 Eighth language 
layoutCount $0041 Number of keyboard layouts 
layoutl $0042 First keyboard layout 
layout2 $0043 Second keyboard layout 
layout3 $0044 Third keyboard layout 

(continued) 

Miscellaneous Tool Set summary 14-65 



Table 14-10 (continued) 
Miscellaneous Tool Set constants 

Name Value Description 

Battery RAM parameter reference numbers 
layout4 
layouts 
layout6 
lay out7 
l ayout8 
layout9 
layoutlO 
layoutll 
layout12 
layout13 
layout14 
layout15 
layout16 
aTalkNodeNo 

$0045 
$0046 
$0047 
$0048 
$0049 
$004A 
$004B 
$004C 
$004D 
$004E 
$004F 
$0050 
$0051 
$0080 

Fourth keyboard layout 
Fifth keyboard layout 
Sixth keyboard layout 
Seventh keyboard layout 
Eighth keyboard layout 
Ninth keyboard layout 
Tenth keyboard layout 
Eleventh keyboard layout 
Twelfth keyboard layout 
Thirteenth keyboard layout 
Fourteenth keyboard layout 
Fifteenth keyboard layout 
Sixteenth keyboard layout 
AppleTalk node number 

GetAddr parameter reference numbers 
irqintFlag 
irqDataReg 
irqSeriall 
irqSerial2 
irqAplTlkHi 
tickCnt 
irqVolume 
irqActive 
irqSndData 
brkVar 
evMgrData 
mouseSlot 
mouseClamps 
absClamps 
sccintFlag 

$0000 
$0001 
$0002 
$0003 
$0004 
$0005 
$0006 
$0007 
$0008 
$0009 
$000A 
$000B 
$000C 
$000D 
$000E 

Reserved for internal use 
Reserved for internal use 
Reserved for internal use 
Reserved for internal use 
Reserved for internal use 
Tick counter 
IRQ volume 
IRQ bctive 
IRQ sound data 
Variables after a BRK 
Event Manager data 
Mouse location/ flag 
Mouse clamps 
Absolute clamps 
Serial Communications Controller (SCC) interrupt 
flag 

Hardware Interrupt status (returned by GetlRQEnable) 
e x tVGCint $01 External VGC interrupts enabled 
scanLineint $02 Scan line interrupts enabled 
adbDataint $04 Apple Desktop Bus interrupts enabled 
oneSecint $10 1-second interrupts enabled 
quartSecint $20 Quarter-second interrupts enabled 
vbint $40 Vertical blanking interrupts enabled 
kbdint $80 Keyboard interrupts enabled 

14-66 Chapter 14: Miscellaneous Tool Set 



Table 14-10 (continued) 
Miscellaneous Tool Set constants 

Name Value Description 

Interrupt reference numbers 
kybdEnable $0000 Enable keyboard Interrupts 
kybdDisable $0001 Disable keyboard Interrupts 
vblEnable $0002 Enable vertical blanking interrupts 
vblDisable $0003 Disable vertical blanking interrupts 
qSecEnable $0004 Enable quarter-second interrupts 
qSecDisable $0005 Disable quarter-second interrupts 
oSecEnable $0006 Enable I-second interrupts 
oSecDisable $0007 Disable I-second interrupts 
adbEnable $000A Enable FDB data interrupts 
adbDisable $000B Disable FDB data interrupts 
scLnEnable $000C Enable scan-line interrupts 
scLnDisable $000D Disable scan-line interrupts 
exVCGEnable $000E Enable external VGC interrupts 
exVCGDisable $000F Disable external VGC interrupts 

Mouse mode reference numbers 
mouseOff $0000 Turn mouse off 
transparent $0001 Set transparent mode 
moveintrpt $0003 Set movement interrupt mode 
bttnintrpt $0005 Set button interrupt mode 
bt tnOrMove $0007 Set button or movement interrupt mode 
mouseOffVI $0008 Turn mouse off, VBL IRQ active (VBL IRQ supports 

transparent VI 
moveintrptVI 
bttnintrptVI 
bttnOrMoveVI 

$0009 
$000B 
$000D 
$000F 

Vector reference numbers 
toolLocl $0000 
too1Loc2 $0001 
usrTLocl $0002 
us rTLoc2 $0003 
intrptMgr $0004 
copMgr $0005 
abortMgr $00o6 
sysFailMgr $0007 
aTalkintHnd $0008 
sccintHnd $0009 

emulation-mode interrupts via $3F2) 
Set transparent mode, VBL IRQ active 
Set movement interrupt mode, VBL IRQ active 
Set button interrupt mode, VIlL IRQ active 
Set button or movement interrupt mode, VBL IRQ 
active 

Tool Locator #l 
Tool Locator #2 
User's tool locator #l 
User's tool locator #2 
Interrupt Manager 
COP Manager 
Abort Manager 
System Failure Manager 
AppleTalk interrupt handler 
Serial Communications Controller interrupt handler 

(continued) 

Miscellaneous Tool Set summary 14-67 



Table 14-10 (continued) 
Miscellaneous Tool Set constants 

Name Value Description 

Vector reference numbers 
scLnintHnd $000A Scan-line interrupt handler 
sndintHnd $000B Sound interrupt handler 
vblintHnd $000C Vertical blanking interrupt handler 
mouseintHnd $000D Mouse interrupt handler 
qSecintHnd $000E Quarter-second interrupt handler 
kybdintHnd $000F Keyboard interrupt handler 
adbRBIHnd $0010 ADB response byte interrupt handler 
adbSRQHnd $0011 ADB SRQ interrupt handler 
deskAccHnd $0012 Desk Accessory Manager 
flshBufHnd $0013 Flush buffer handler 
kybdMicHnd $0014 Keyboard micro interrupt handler 
oneSecHnd $0015 I -second interrupt handler 
e xtVCGHnd $0016 External VGC interrupt handler 
otherintHnd $0017 Other unspecified interrupt handler 
crsrUpdtHnd $0018 Cursor update handler 
incBsyFlag $0019 Increment busy flag (for Scheduler) 
decBsyFlag $001A Decrement busy flag (for Scheduler) 
bell Vector $001B Bell vector (for Sound Tool Set) 
breakVector $001C Break vector (for debuggers) 
trace Vector $001D Trace vector 
stepVector $001E Step vector 
ctlYVector $0028 Control Y vector 
proDOSVctr $002A ProDOS 16 MLI vector 
osVector $002B Operating system vector 
msgPtrVctr $002C Message pointer vector 

14-68 Chapter 14: Miscellaneous Tool Set 



Table 14·11 
Miscellaneous Tool Set data structures 

Name Offset Type Definition 

TimeRec 

second $00 Byte Second (0-59) 
minute $01 Byte Minute (0- 59) 
hour $02 Byte Hour (0-23) 
year $03 Byte Current year minus 1900 
day $04 Byte Date (0-30) 
month $05 Byte Month (0-11, with 0 = January and so on) 
extra $06 Byte Fills up word 
weekDay $07 Byte Day of week (1-7, with 1 = Sunday and so on) 

MouseRec 

mouseMode $00 Byte Mouse mode 
mouseStatus $01 Byte Mouse status 
yPos $02 Word Y position of the mouse 
xPos $04 Word X position of the mouse 

ClampRec 
yMaxClamp $00 Word Maximum clamp value for the Y axis 
yMinClamp $02 Word Minimum clamp value for the Y axis 
xMaxClamp $04 Word Maximum clamp value for the X axis 
xMinClamp $06 Word Minimum clamp value for the X axis 

FWRec 
yRegExit $00 Word Y register at exit 
xRegExit $02 Word X register at exit 
aRegExit $04 Word A register at exit 
status $06 Word Processor status at exit 

Note: The actual assembly-language equates have a lowercase o (the letter) in front of all of 
the names given in this table. 

Miscellaneous Tool Set summary 14-69 



Table 14-12 
Miscellaneous Tool Set error codes 

Code Name Description 

System fai lure codes 
$0001 pdosUnClmdintErr Unclaimed interrupt (ProDOS 16) 
$0004 divByZeroErr Division by 0 
$000A pdosVCBErr Volume control block unusable (ProDOS 16) 
$000B pdosFCBErr File control block unusable (ProDOS 16) 
$000C pdosBlkOErr Block zero allocated illegally (ProDOS 16) 
$GOOD pdosintShdwErr Interrupt with I/0 shadowing off (ProDOS 16) 
$0015 segLoaderlErr Segment Loader error 
$0017 sPackageOErr Can't load a package 
$0018 packagelErr Can't load a package 
$0019 package2Err Can't load a package 
$001A package3Err Can't load a package 
$001B package4Err Can't load a package 
$001C package5Err Can't load a package 
$001D package6Err Can't load a package 
$001E package7Err Can't load a package 
$0020 package8Err Can't load a package 
$0021 package9Err Can't load a package 
$0022 packagel0Err Can't load a package 
$0023 packagellErr Can't load a package 
$0024 package12Err Can't load a package 
$0025 outOfMemErr Out of memory 
$0026 segLoader2Err Segment Loader error 
$0027 fMapTrshdErr File map destroyed 
$0028 stkOvrFlwErr Stack overflow 
$0030 psinstDiskErr Please insert disk (File Manager alert) 
$0032-53 Memory Manager errors 
$0100 stupVolMntErr Can't mount system startup volume 

Miscellaneous Tool Set error codes 
$0301 badinputErr Bad input parameter 
$0302 noDevParamErr No device for input parameter 
$0303 taskinstlErr Specified task already in Heartbeat queue 
$0304 noSigTaskErr No signature detected in task header 
$0305 queueDmgdErr Damaged Heartbeat queue detected 
$0306 taskNtFdBrr Specified task not in queue 
$0307 firmTaskErr Unsuccessful firmware task 
$0308 hbQueueBadErr Damaged Heartbeat queue detected 
$0309 unCnctdDevErr Dispatch attempted to unconnected device 
$030B idTagNtAvlErr No ID tag available 

14-70 Chapter 14: Miscellaneous Tool Set 



Chapter 15 

Print Manager 

The Print Manager allows you to use standard QuickDraw II routines to print text or 
graphics on a printer. The Print Manager calls a printer driver to perform the 
specific printing tasks, so that your application doesn't need to know what kind of 
printer is connected to the computer. 

You should already be familiar with QuickDraw II. 

An application that supports printing must have three items in its File menu: Choose 
Printer, Page Setup, and Print. The following actions occur when the user selects one 
of these items: 

■ Choose Printer: When the user selects the Choose Printer item, a dialog is 
displayed that allows the user to select a destination device from the printer 
drivers on the system disk. The Choose Printer dialog also lets the user pick the 
port or slot to which the device is connected from the port drivers on the system 
disk. If AppleTalk is installed, the network is scanned for the names of all printers 
of the specified printer type. 

❖ Macintosh programmers: On the Apple IIGS, the Choose Printer function is part 
of the Print Manager, rather than being implemented as part of the Chooser desk 
accessory. 

■ Page Setup: When the user selects the Page Setup item, the style dialog is 
displayed. The style dialog allows the user to specify formatting information, such 
as the page size and printing orientation. This information is not changed 
frequently and is usually saved with the document. 

■ Print: When the user selects the Print item, the job dialog is displayed. The job 
dialog lets the user select print quality, page range, number of copies, and 
printer-specific features, such as color printing. 

15- l 



Your application defines the image to be printed by using either the GrafPort that the 
Print Manager automatically gives you when you open a document for printing, or by 
supplying its own GrafPort. 

❖ Note: The Print Manager does not automatically save the current GrafPort when 
it initializes the new GrafPort. If the application will need that GrafPort's 
information for later use, it must save the information itself. 

Your application then prints text and graphics by drawing into the GrafPort with 
QuickDraw II, just as if it was drawing on the screen. The Print Manager installs its own 
versions of QuickDraw II's low-level drawing routines in this GrafPort, causing your 
higher-level QuickDraw II calls to drive the printer instead of drawing on the screen. 

Important 

Don't customize the QuickDraw II routines in the GrafPort being used for printing 
unless you're sure of what you ' re doing, 

A preview of the Print Manager routines 
To introduce you to the capabilities of the Integer Math Tool Set, all Print Manager 
routines are grouped by function and briefly described in Table 15-1. These routines 
are described in detail later in this chapter, where they are separated into 
housekeeping routines (discussed in routine number order) and the rest of the Print 
Manager routines (discussed in alphabetical order). 

15-2 Chapter 15: Print Manager 



Table 15-1 
Print Manager routines and their functions 

Routine Description 

Housekeeping routines 
PMBootinit Initializes the Print Manager; called only by the Tool Locator-must not be called 

PMStartUp 
PMShutDown 
PMVersion 
PMReset 

PMStatus 

by an application 
Starts up the Print Manager for use by an application 
Shuts down the Print Manager 
Returns the version number of the Print Manager 
Resets the Print Manager; called only when the system is reset-must not be called 
by an application 
Indicates whether the Print Manager is active 

Print record and dialog routines 
Pr Default Fills the fields of a specified print record with default values for the appropriate 

printer 
PrValidate Checks the contents of the specified print record for compatibility with the current 

version number of the Print Manager and the currently installed printer 
PrSt!Dialog Conducts a style dialog with the user to determine the page dimensions and other 

information needed for page setup 
PrJobDialog Conducts a job dialog with the user to determine the print quality, range of pages 

to print, and so on 
PrChoosePrinter Conducts a Choose Printer dialog with the user to determine the printer and port 

driver to use 

Printing routines 
PrOpenDoc 

PrCloseDoc 
PrOpenPage 
PrClosePage 
PrPicFile 
PrPixelMap 

Error handling routines 
PrError 

PrSetError 

Initializes a GrafPort for use in printing a document, makes it the current port, and 
returns a pointer to the port 
Closes the GrafPort being used for printing 
Begins a new page 
Ends the printing of the current page 
Prints a spooled document 
Prints all or part of a specified pixel map 

Returns the last printer error code left during the printing loop by Print Manager 
routines 
Stores a specified value into the global variable where the Print Manager keeps its 
printer error code 

Printer driver and port driver routines 
PrDriverVer Returns the version number of the currently installed printer driver 
PrPortVer Returns the version number of the currently installed port driver 

A preview of the Print Manager routines 15-3 



Print dialog boxes 
The dialog boxes seen by the user when he or she chooses an item from the File menu 
are the Choose Printer dialog, the style dialog, and the job dialog. These dialogs 
allow the user to specify information needed by the Print Manager to process the 
print job. This information is stored in the appropriate print record fields. 

Choose Printer dialog box 
The Choose Printer dialog box allows the user to choose the printer to be used for 
printing and the port that connects that printer to the system, as illustrated in 
Figure 15-1. 

Choose Printer vl.2 

....__ _ _____._-0....;....i -0 

( Cancel ) [ OK J 

Figure 15- 1 
Choose Printer dialog box 

15-4 Chapter 15: Print Manager 



If the printer chosen is connected to the system via AppleTalk, then an additional 
dialog box appears, showing all available printers of the specified type on the 
network, as illustrated in Figure 15-2. 

Printer name: 
Old.Dill ffl 
s,~eet.Pick le 

-0 
User Mame: 

lmmll•:tn~m I 
( Cancel ) ( OK ) 

Figure 15-2 
Printer names dialog box 

Style dialog box 
The style dialog box presents the user with a choice of paper size and orientation. 

Both the ImageWriter® and the LaserWriter® printers interpret the paper options as 
shown in Table 15-2, although each printer does not offer all of the options. 

Table 15-2 
Printer paper sizes 

Option 

US Letter 
US Legal 
A4 Letter 
B5 Letter 
International 
fanfold 

Dimensions 

8 1/2 by 11 inches 
8 1/2 by 14 inches 
210 by 297 millimeters 
176 by 250 millimeters 

210 millimeters by 12 inches 

Print dialog boxes 15-5 



Both printers also use the same definitions of vertical sizes, although the Image Writer 
cannot print intermediate text. The vertical-size definitions are 

■ Normal, which prints for 640 mode at 80 ppi (pixels per inch), and for 320 mode 
at 40 ppi horizontally and 36 ppi vertically 

■ Intermediate, which prints at 54 ppi vertically 

■ Condensed, which prints at 72 ppi vertically 

❖ Macintosh programmers: The condensed vertical size resembles the screen size of 
Macintosh text. 

Both printers also allow the user to choose between printing in portrait mode (in 
which text prints from left to right) and landscape mode (in which text prints from 
top to bottom) . 

Other options differ on the two printers, so the style dialog boxes also differ. The 
dialog box that appears if the user chooses an lmageWriter is shown in Figure 15-3. 

IMAGEWRITER/PRIHTER 
Paper: @ US Letter 

0 US Legal 
0 A4 Letter 
0 International Fan fold 

Printer Effects: 

vl.2 

Vertical Sizing: 
@Normal 
0 ~ondensed 

Orientation: 

D 50% Reduction 
D Ho Gaps Bet1~een 

Pages 

(Cancel)@ 

Figure 15-3 
Style dialog box for lmageWriter 

The printer effects choices for the Image Writer allow the user to print at half size as 
well as with no gaps between pages (that is, the printer uses the full vertical 11 inches). 

15-6 Chapter 15: Print Manager 



The dialog box that appears if the user chooses a LaserWriter is shown in Figure 15-4. 

LASERWRITER/APPLETALK 
Poper: @US Letter O A4 Letter 

0 US Legal O B5 Letter 
Orientation: Vertical Sizing: 

@Hormal 

vl.O 

0 Intermediate 
0 Condensed 

Printer Effects: Reduce or ~ 
[2J Smoothing? En 1 arge: l!mJ % 
[2J Font Substitution? 

(-C-on-ce""""'l) (]BJ) 

Figure 15-4 
Style dialog box for LaserWriter 

There are two printing options available on the LaserWriter that don't exist on the 
Image Writer. 

Smoothing asks the system to smooth out any bit-mapped fonts with jagged edges. 
Font substitution tells the system to make the following substitutions if the specified 
font is not in the LaserWriter: Helvetica for Geneva, Courier for Monaco, Times for 
New York. Any other font is downloaded as a bit map to the LaserWriter. 

❖ Note: At the time of publication, the Print Manager did not support downloading 
bit-mapped fonts to the LaserWriter; that is, Courier will be substituted for all 
fonts other than those listed above. However, on the Laserwriter Plus, the Zapf 
Chancery font will be substituted for the Venice font. 

The printed representation of the document can range from 25 to 400 percent of the 
original size, with 100 percent representing normal size. 

Print dialog boxes 15-7 



Job dialog box 
The job dialog box allows the user to communicate the page range, the number of 
copies, and the paper source to the Print Manager. In addition, the ImageWriter job 
dialog offers print-quality choices and the option to print in color. 

In most cases, your application doesn't need to know what choices the user makes for 
this dialog; that is, the application will simply use QuickDraw II calls to draw into the 
GrafFort being used for printing, and the Print Manager will handle the user's 
selections. 

The ImageWriter job dialog box is shown in Figure 15-5. 

IMAGEWRITER/PRIHTER 
Qualit!l: 0 Better Text 

@Better Color 
ODraft 

Page range: 
@All 

v1.2 

OFrom:D To: D 
Copies:rn::=J 
Poper Feed:@ Automatic O Manual 

D Color (Cancel)«::[) 

Figure 15-5 
Job dialog box for lmageWrlter 

The Better Text option doubles the resolution, but halves the color choices 
available; therefore, if your application isn't printing color graphics, this choice by 
the user will produce the highest quality. 

The Better Color option prints the document at the same resolution as the screen, 
with the same number of screen colors available. The option is most appropriate 
when printing color graphics. 

The Draft option is useful only when the user wants to quickly print text without any 
formatting information. 

If the user clicks the Color box, the Image Writer driver will print using a color ribbon 
if the ribbon is available on the specified ImageWriter. If the ribbon is not available, 
or if the user does not click the Color box, the Image Writer will print in black and 
white. 

15-8 Chapter 15: Print Manager 



The LaserWriter job dialog box is shown in Figure 15-6. 

LASERWR I TER/APPLETALK v1.0 
Pages: @All 

OFrom:O To: D 
Copies:m:J 
Paper Source: 

@Paper Cassette 
0 Manual Feed 

(Cancel)(][) 

Figure 15-6 
Job dialog box for LaserWriter 

Print records 
To format and print a document, the Print Manager checks the information 
contained in a data structure called a print record. The Print Manager fills in the 
entire print record for you by using information specified by the user during the job 
and style dialogs. 

❖ Note: Whenever your application saves a document, it should write an 
appropriate print record into the document. This sets up the printing parameters 
so that the document retains and uses those parameters the next time the 
document is printed. 

Information contained in the print record includes the following: 

■ Dimensions of the printable area of the page 

■ Whether the application must calculate the margins, the size of the physical sheet 
of paper, and the printer's vertical and horizontal resolution 

■ Whether draft or spool printing is being used 

Important 
Your application doesn't need to change much of the data In the print record; 
usually, the only fields you'll need to set directly are those containing optional 
information In the Job subrecord. You should use use standard dialog routines for 
controlling the print record Information. If you want to directly change values In 
the print record, be sure you know what you are doing. 

Print records 15-9 



Print records are referred to by handles. The structure of a print record is shown in 
Figure 15-7. 

Offset Field ~-----, 
$0 

>-- prVerslon - Word-Version number of printer driver 

2 

10 

0 14 bytes-Printer information subrecord (see Figure 15-8) 

! ,Paper ! Four Words-RECT defining paper rectangle 

17H. · 
18 

29 

Hi prSfl i 18 bytes-Style subrecord (see Figure 15-9) 

2A 

37 

Hi prlntoPr i 14 bytes-Reserved for internal use 

38 

: prXlnto : 24 bytes-Reserved for internal use 

4FH' ' 
50 

~ H 20 bytes-Job scb,eco,d (see Flgu,e 15-10) 

89 

o 38 bytes-Reserved for future use 

8A ~ Word-Reserved for internal use 

Figure 15-7 
Print record 

The prVerston field identifies the version of the printer driver that initialized this 
print record. If you try to use a print record that is invalid for the current version of 
the Print Manager or for the currently installed printer, the Print Manager will 
correct the record by filling it with default values. 

The other fields of the prin~ record are discussed in the following sections. 

15-10 Chapter 15: Print Manager 



Printer information subrecord 
The printer information subrecord (the print record field prlnfo) gives you the 
information needed for page composition. The structure of the printer information 
subrecord is shown in Figure 15-8. 

Offset Field 
~----~ so 

l 
iOev Word-Printer type; l = lmageWriter, 3 = LaserWriter 

1-------t 
2 

Word-Vertical resolution of printer 
31-------t 

iVres 

4 

5 
IHRes Word-Horizontal resolution of printer 

1-------t 
6 

' ,Page i Four words-RECT defining page rectangle 

OD .__b _ ___.7 
Figure 15-8 
Printer Information subrecord 

The Wev field identifies which type of printer the user selected in the Choose Printer 
dialog . 

The rPage field is the page rectangle, representing the boundaries of the printable 
page. The GrafPort's boundsRect, portRect, and clipRgn are set to this rectangle. Its 
top-left corner always has coordinates (0,0); the coordinates of the bottom-right 
corner give the maximum page height and width attainable on the given printer, in 
pixels. Typically these are slightly less than the physical dimensions of the paper, 
because of the printer's mechanical limitations. The value of rPage is set as a result of 
the style dialog. 

The rPage rectangle is inside the paper rectangle, specified by the print record 
rPaper field. The rPaper field gives the physical paper size, defined in the same 
coordinate system as rPage. Thus, the top-left coordinates of the paper rectangle are 
typically negative, and the bottom-right coordinates are greater than those of the 
page rectangle . 

The iVRes and iHRes fields contain the printer's vertical and horizontal resolution in 
pixels per inch. Thus, if you divide the width of rPage by iHRes, you get the width of 
the page rectangle in inches. 

Print records 15-11 



Style subrecord 
The style subrecord (the print record field prStl) contains information obtained 
from the user via the style dialog as well as the job dialog. Some of the fields in this 
subrecord have different meanings for different printers. The structure of the style 
subrecord is shown in Figure 15-9. 

Offset Field 

$0 
wDev Word-INTEGER; output quality information 

1 
2 

res/ Word-INTEGER; reserved for internal use 
3 
4 

res2 Word-INTEGER; reserved for internal use 
5 
6 

res3 Word-INTEGER; reserved for internal use 
7 
8 

feed Word-INTEGER; type of feeding 
9 

DA 
paper Type 

OB 
Word-INTEGER; type of paper 

DC 
OD 

crW/dth/vSiz/ng Word-INTEGER; carriage width if lmageWriter, 
vertical size if LaserWriter 

OE 
reduction Word-INTEGER; reserved if lma~eWriter, 

0 F percent reduc ion if LaserWriter 
1 0 
1 1 

lnternB 
Word-INTEGER; reserved for internal use 

Figure 15-9 
Printer style subrecord 

The possible values for these fields are shown in the following sections. 

15-12 Chapter 15: Print Manager 



lmageWriter style subrecord values 

wDev 

feed 

paperType 

crWidth 

Bit 6 
Bit 5 
Bit 4 
Bit 3 
Bit 2 
Bit 1 
Bit 0 

0 = no gap, 1 = gap 
0 = black and white, 1 = color 
reserved 
0 = 50% reduction, 1 = full size 
0 = condensed, 1 = normal 
0 = landscape, 1 = portrait 
0 = normal quality, 1 = best quality 

feedManual = 0, feedAuto = 1 

UsLetter = 0 
UsLegal = 1 
A4Letter = 2 
IntlFanFold = 3 

960 for all paper types 

LaserWriter style subrecord values 

wDev 

feed 

paperType 

vStztng 

Bit 3 
Bit 2 
Bit 1 
Bit 0 

0 = substitute fonts, 1 = don't substitute fonts 
0 = smoothing; 1 = no smoothing 
0 = portrait, 1 = landscape 
Reserved 

feedManual = 0, feedAuto = 1 

UsLetter = 0 
UsLegal = 1 
A4Letter = 2 
B5Letter = 3 

Normal= 0 
Intermediate = 1 
Condensed = 2 

Print records 15-13 



Job subrecord 
The job subrecord (the print record field prjob) contains information about a 
particular printing job. Its contents are set as a result of the job dialog. The job 
subrecord is defined as shown in Figure 15-10. 

Offset 

$0 

2 
3 
4 

5 

Field 
,-------, 

/FstPage 

ILstPage 

1-------t 

/Coples 

1-------t 
6 ,--_bJ_D_oc_Lo_o_p--1 

7 
8 
9 

QA 
OB 
QC 
OD 
OE 
0 F 

10 
11 
12 

fFramUsr 

t-------; 

pldlePrac 

t-------; 

pFl/eName 

f-----~ 

IFl/eVo/ 

f-------1 
13 bFileVers 

1-------t 
14 bJobX 

Figure 15-10 
Job subrecord 

Word-INTEGER; first page to print 

Word- INTEGER; last page to print 

Word-INTEGER; number of copies 

Byte-Printing method; 0 = draft printing, 128 = spool printing 

Word-BOOLEAN; reserved for internal use 

Long-POINTER to background procedure 

Long-POINTER to pathname for spool file 

Word-INTEGER; spool fi le volume reference number 

Byte-Spool file version number 

Byte-Reserved for internal use 

The iFstPage and ilstPage fields designate the first and last pages to be printed. 
These page numbers are relative to the first page counted by the Print Manager. The 
Print Manager cannot use any page numbering placed within a document by an 
application. 

The iCopies field is the number of copies to print. The Print Manager automatically 
handles multiple copies for spool printing or for printing on the LaserWriter. Your 
application needs this number only for draft printing on the ImageWriter. 

15-14 Chapter 15: Print Manager 



The b]Docloop field designates the printing method, either draft or spool, that the 
Print Manager will use. Draft printing means that the document will be printed 
immediately. Spool printing means that printing may be deferred: The Print 
Manager writes a representation of the document's printed image to a disk file (or 
possibly to memory); this information is then converted into a bit image and 
printed. Your application can check this field to determine which type of printing the 
user selected. 

The pldleProc field is a pointer to the background procedure (explained later) for 
this printing operation. In a newly initialized print record this field is set to NIL, 
designating the default background procedure, which just polls the keyboard and 
cancels further printing if the user types Apple-period. You can install your own 
background procedure by storing a pointer to that procedure directly into the 
pldleProc field. 

For spool printing, your application may optionally provide a spool file pathname, 
volume reference number, and version number, as follows: 

■ pFileName is the full pathname of the spool file as a ProDOS string. This field is 
initialized to NIL and is generally not changed by the application. NIL denotes the 
default filename . 

■ tFtleVol is the unit number of spool file volume, initialized to 0. 

■ bFtleVers is the version number of the spool file, initialized to 0. 

Printing modes and resolutions 
The Print Manager supports the various display modes available on the Apple IIGS. 

The IIGS is capable of both color and gray scale in either 320 or 640 modes. When the 
user requests color printing via the job dialog, the Print Manager prints the 
document in color on a printer that is capable of color printing, such as the 
ImageWriter II; otherwise it will print it in black and white. 

This next section presents an overview of the algorithm for printing the Super Hi-Res 
color screen to the ImageWriter printer. It describes both the transformation from 
the color screen to a color printer and the method used to print the color screen in 
black and white (gray scale). 

The IIGS screen has two resolution modes: 

■ 320 horizontal by 200 vertical pixels, 16 colors per line 

■ 640 horizontal by 200 vertical pixels, 4 colors per line 

For more detail regarding the exact implementation of the color, see Chapter 16, 
"QuickDraw II," in Volume 2. 

Printing modes and resolutions 15-15 



The ImageWriter II can print horizontally at 160 dots per inch and vertically at 144. 
With a color ribbon, which consists of bands of cyan, magenta, yellow, and black, 
the ImageWriter II supports eight possible colors per dot. These color dot 
combinations, except for black, are composed of all the different mixtures of the 
colors cyan, magenta, and yellow. Black is represented by the black ribbon, and no 
other color dots include black and another color. 

The color screen is initially converted into color pixels before the screen-to-printer 
transformation occurs. Each pixel consists of a total of 12 bits: 4 bits each for red, 
blue, and green (RGB). Thus, each color has 16 possible levels, and each pixel has 
4096 possible colors (or levels). The first part of the algorithm must convert these 
RG B pixels into color pixels that the printer understands. These pixels consist of 
three colors: cyan, magenta, and yellow (CMY). 

This conversion routine performs a straightforward matrix multiplication to achieve 
the translation from RGB to CMY space. All level information is retained, which 
means that the CMY result is also 4 bits per color. The matrix values used for this 
translation are described at the end of this section. 

After the algorithm has calculated the CMY levels, it enters the second translation 
phase: converting from 16 levels of each color to a number of color levels supported 
by the printer. The number of color levels and the resolution (color pixels per inch) 
can be traded off by the higher-level software routines. For example, at 160 color 
pixels per inch (ppi), each pixel can represent one of 8 possible colors, but if the 
resolution is cut in half (80 ppi), then each pixel has 27 possible colors. Table 15-3 
illustrates the possible tradeoffs allowed by the low-level driver. 

Table 15-3 
Resolution, colors, and gray scales 

Average Colors Levels per Gray-scale 

resolution (ppi) per pixel ribbon color levels 

160 8 2 2 

00 27 3 3 

40 125 5 5 

20 729 9 9 

The gray-scale column in Table 15-3 helps clarify how the colors-per-pixel value is 
determined. For example, when there are only 40 pixels per inch, there can be 4 
possible dots for each pixel (as determined by the 160-dots-per-inch capability of 
the printer). These 4 possible dots represent five different levels of brightness: 0 
dots, 1 dot, 2 dots, 3 dots, and 4 dots can be printed at a time. Regardless of which 3 
dots are printed, the eye will perceive the same amount of brightness and color from 
that pixel. Since there are 3 possible colors (CMY) that can be printed at each dot, 
this means that there are 53, or 125, possible colors. 

15-16 Chapter 15: Print Manager 



Table 15-3 specifies average resolution because the dots for each pixel don't always 
fall on the same printing line. At 40 pixels per inch, each pixel is actually comprised 
of two horizontal by two vertical dots. At 20 pixels per inch, the pixel consists of four 
horizontal by two vertical dots . The concepts are illustrated in Figure 15-11. 

l pixel l pixel l pixel l pixel 
at 160 ppi at 80 ppi at 40 ppi at 20 ppi 

__ Q ___ OQ __ _ 88'--8888J 2prlntllne, 

Figure 15-11 
Pixels and print lines 

The second phase of the color transformation consists of a simple linear translation 
of the old color-level value (16 possible levels per color) to a new color-level value 
(either 2, 3, 5, or 9 possible levels, depending on the mode). 

At this point, the color data information is defined for printing on the color printer. 
However, for a black-and-white printer, there must be one more transformation that 
changes the pixels from color space to black-and-white space. This transformation is 
performed by another matrix multiplication that converts the three color values 
(CMY) into a single black-and-white value. 

The resultant black-and-white value is actually a gray-scale value that is sent to the 
printer in the same manner as the color values. The only difference is that each pixel 
is a specified number of black dots instead of color dots. The level information is 
retained in the translation from color to black and white. 

The horizontal and vertical resolutions, the pixel size, and the page rectangle size of 
the various modes, and the print quality for the ImageWriter II are summarized in 
Figure 15-12. 

❖ Note: The terms portrait and landscape refers to the page orientation, 
representing vertical and horizontal orientations, respectively. The printing 
area for a page with a gap is 8 x 10 1/ 2 inches, and that for a page without a gap is 
8 x 11 inches. 

Printing modes and resolutions 15-17 



Dots per pixel I Horizontal resolution I Vertical resolution I Page rectangle 

Portrait, 320 mode _ _ ,. ____________ - , _____________ ,- ___________ _ 

4 X 2 = : : ' .172 d . : with gap: 0,0,378,320 
8 dots : 40 ppi/160 dpi : 36 PP1 P1 , w/o gap: 0,0,396,320 

~~r~~ I ~~~Ii~ _ ___ ~ _____________ : _____________ : ____________ _ 

OJ 
Best quality 

2 x l = , 
2 dots : 80 ppi/ 160 dpi 

0 I 

72 ppi/72 dpi : Same as above 

~o_rt~a~,-~o_ rt]~d~ __ , ____________ - , _____________ ,- ___________ _ 

EB 2x2= I : 

4 dots : 80 ppi/ 160 dpi , 36 ppi/72 dpi 

I 

1 with gap: 0,0,378,640 
: w/o gap: 0,0,396,640 I I 

~~~91 _g~q] i1y - - - - ~ - - - - - - - - - - - - -: - - - - - - - - - - - - - :- - - - - - - - - - - - -

□ 
Best quality 

1 dot : 
I 

I 

I 

160 ppi/160 dpi 72 ppi/72 dpi ' Same as above 

Landscape, 320 mode _____________________ _ 
------------,------------~---- I 

Etm : ~~t; : 36 ppi/72 dpi ' 40 ppi/160 dpi : with gap: 0,0,320,378 
, , , w/o gap: 0,0,320,396 

~<?_r~~I .9~<:li!Y ____ ~ ____________ -: - ____________ ; ____________ _ 

OJ 
Best quality 

2 x l = , 
2 dots ' 72 ppi/72 dpi 

I I 

80 ppi/ 160 dpi ' Same as above 

~a_!l~S~~p_e!. ~Q ~~~e,. _____________ 
1 
_____________ ,- ___________ _ 

I I I I I 
I I I 

4 x l = , : with gap: 0,0,320,756 
4 dots : 72 ppi/72 dpi , 40 ppi/ 160 dpi w/o gap: 0,0,320,792 

~<?_r~~l _9~<:li!Y ____ ~ _____________ ; _____________ ; ____________ _ 

OJ 
Best quality 

Figure 15-12 

2 x l = , 
2 dots ' 

I I 

144 ppi/144 dpi 80 ppi/ 160 dpi ' Same as above 

Resolution, pixel size, page size, and print quality 

15-18 Chapter 15: Print Manager 



Using the Print Manager 
This section discusses how the Print Manager routines fit into the general flow of an 
application and gives you an idea of which routines you'll need to use under normal 
circumstances. Each routine is described in detail later in this chapter. 

The Print Manager depends upon the presence of the tool sets shown in Table 15-4 
and requires that at least the indicated version of the tool set be present. 

Table 15·4 
Print Manager-other tool sets required 

Tool set Tool set Minimum version 
number name needed 

$01 #01 Tool Locator 1.0 
$02 #02 Memory Manager 2.0 
$03 #03 Miscellaneous Tool Set 2.0 
$04 #04 QuickDraw II 2.0 
$05 #05 Desk Manager 1.0 
$OE #14 Window Manager 1.3 
$OF #15 Menu Manager 1.3 
$10 #16 Control Manager 1.3 
$12 #18 QuickDraw II Auxiliary Routines 1.0 
$14 #20 LineEdit Tool Set 1.0 
$15 #21 Dialog Manager 1.1 
$1B #27 Font Manager 1.0 
$ lC #28 List Manager 1.0 

Your application must make a PMStartUp call once before making any other Print 
Manager calls. Conversely, if the application makes a PMStartUP call, the 
application must make a PMShutDown call before it quits or before it unloads the 
Print Manager. 

Before you can print a document, you need a valid print record. You can use an 
existing print record (for instance, one saved with a document), or you can initialize 
one by calling PrDefault. If you use an existing print record, be sure to call PrValidate 
to make sure it's valid for the current version number of the Print Manager and for the 
currently installed printer. 

To create a new print record, you must first create a handle to it with the Memory 
Manager NewHandle routine. A print record is 140 bytes long. 

Using the Print Manager 15-19 



Printer and print record information is obtained via the style and job dialogs: 

■ Call PrChoosePrinter when the user chooses the Select Printer command from the 
File menu. No print record is required for this call. 

■ Call PrSt!Dialog to get the page dimensions when the user chooses the Page Setup 
command. From the rPage field of the printer information subrecord, you can 
then determine where page breaks will be in the document. You can show rulers 
and margins correctly by using the information in the print record iVRes, iHRes, 
and rPaper fields. 

■ Call PrJobDialog to get the specific information about that printing job (such as 
the page range and number of copies) when the user chooses the Print command. 

When the user chooses the Print command, your application normally should 
immediately start its printing loop in order to conform to the Human Interface 
Guidelines: The Apple Desktop Interface. 

The first step of the printing loop is using the PrOpenDoc routine to obtain a pointer 
to the GrafPort to be used for printing. This must be done only once for each print 
job. 

The next step calls for beginning the inner loop of printing the pages one by one, as 
detailed in the next section. 

Printing loop 

To print a document, you call the following routines: 

1 . PrOpenDoc, which returns a pointer to the GrafPort to be used for printing 

2. PrOpenPage, which starts each new page (reinitializing the GrafFort) 

3 . QuickDraw routines, for drawing the page into the GrafPort whose pointer was 
returned by PrOpenDoc 

4. PrClosePage, which terminates the page 

5 . PrCloseDoc, at the end of the entire document, to close the GrafFort being used 
for printing 

Each page is either printed immediately (draft printing) or written to the disk or to 
memory (spool printing). You should test to see whether spooling was done and, if 
so, print the spooled document. First, your application should use the Memory 
Manager routine MaxBlock to ensure that a 10K block of memory is available. If it 
isn't, you should swap out enough memory to allow for that 10K block and then call 
PrPicFile . 

15-20 Chapter 15: Print Manager 



You should check for errors after each Print Manager call. If an error occurs, you 
should abort printing by setting the error to prAbort using the PrSetError routine. 
Be sure that your application exits the printing loop normally so that all allocated 
memory is deallocated accordingly; that is , be sure that PrOpenDoc is matched by 
PrCloseDoc and that every PrOpenPage is matched by a PrClosePage. 

❖ Note: The maximum number of pages in a spool file is 16,382. If you need to 
print more than 16,382 pages at one time, just repeat the printing loop (without 
calling PrValidate, PrSt!Dialog, or PrJobDialog) . 

Printing a specified range of pages 

Your application can try to print an entire document even when the user wants to 
print only a selected subrange of pages. The Print Manager processes each page but 
actually prints only the pages from iFstPage to ilstPage. 

However, if the application knows the page boundaries in the document, it is much 
faster to loop through only the specified pages. The application can do this by saving 
the values of iFstPage and ilstPage after the PrJobDialog call, recalculating the page 
range using 1 as the starting page and storing these values into the appropriate fields 
in the print record. For example, to print pages 20 to 25 of a document, you would set 
iFstPage to 1 and tlstPage to 6 and then begin the printing loop at the document's 
page 20. 

Remember that iFstPage and ilstPage are relative to the first page counted by the 
Print Manager. The Print Manager counts one page each time PrOpenPage is called; 
the count begins at 1. 

Using QuickDraw II for printing 

When drawing into the QuickDraw II Graf'Port being used for printing, you should 
note the following: 

■ With each new page, you get a completely reinitialized Graf'Port, so you'll need to 
reset font information and other Graf'Port characteristics as you want them. 

■ Don't use clipping to select text to be printed. There are a number of subtle 
differences between how text appears on the screen and how it appears on the 
printer; you can't count on knowing the exact dimensions of the rectangle 
occupied by the text. 

■ Don't use fixed-width fonts to align columns. Since spacing is adjusted by the 
printer, you should explicitly move the pen to where you want it. 

■ Don't make calls that don't do anything on the printer. For example, erase 
operations are time consuming and normally aren't needed on the printer. 

Using the Print Manager 15-21 



For printing to the LaserWriter, you'll need to observe the following limitations: 

■ Regions aren't supported; try to simulate them with polygons. 

■ Clipping regions should be limited to rectangles. 

■ Invert routines, such as the QuickDraw II routines InvertRect and InvertRgn, aren't 
supported. 

■ Copy is the only transfer mode supported for all objects except text and bit 
images. For text, Bic is also supported. For bit- images, the only transfer mode not 
supported is XOR. 

■ Don't change the GrafPort's local coordinate system (with SetOrigin) within the 
printing loop (between PrOpenPage and PrClosePage). 

Sequence of events 
The following pseudocode will help you understand the entire sequence of calls 
necessary to print a document. Your application should take the following steps: 

1. Call PrChoosePrinter, if user selects Choose Printer menu item. 

2. Call PrSt!Dialog, if user selects Page Setup menu item. 

3. Call PrJobDialog, when user selects Print menu item. 

4. Call either 

PrDefault, if no existing print record 

or 

PrValidate, if there is an existing print record. 

5. Call PrOpenDoc. 

If tool call error, then PrSetError to prAbort. 

6. Enter printing loop: 

Call PrOpenPage. 

If tool call error, then PrSetError to prAbort . 

Call appropriate QuickDraw II routines, including those that reset font 
information. 

Call PrClosePage. 

If tool call error, then PrSetError to prAbort. 

7. Repeat loop for each page printed. 

8. Call PrCloseDoc. 

9. Call PrError; if error not zero, then skip PrPicFile call. 

10 . Call Memory Manager routine MaxBlock to check for a IOK block, if none, swap 
out parts of application to make room. 

11 . Call PrPicFile . 

15-22 Chapter 15: Print Manager 



Methods of printing 
There are two basic methods of printing documents: draft and spool. 

■ Draft printing: Your QuickDraw II calls are converted directly into command 
codes the printer understands, which are then immediately used to drive the 
printer. The LaserWriter always uses draft printing, since the QuickDraw II calls are 
translated immediately into Postscript commands. The ImageWriter and other 
unintelligent dot matrix printers are written to in draft mode for text only. High­
quality pixel-map images are produced only during spool printing. 

■ Spool printing: The Print Manager processes your printing requests in two steps. 
First it writes (spools) a representation of your document's printed image to a disk 
file or to memory. Second, this information is converted into a bit image and 
printed. This method is used to print graphics on the ImageWriter. 

Printer and port drivers 
Both the ImageWriter and LaserWriter printers are fully supported. Other printers 
should work so long as drivers are written for them; these drivers may be developed 
by Apple or third-party developers. 

Printer drivers 
Apple provides the printer drivers for the ImageWriter and LaserWriter. 

The user can install new printer drivers into the system by saving a printer driver file 
into the DRIVERS subdirectory within the SYSTEM subdirectory. The printer driver 
file must be of file type $BB and have an aux type of $0001. 

At the time of publication, no more information about printer driver formats was 
available. 

Printer and port drivers 15-23 



Printer peripheral cards and printer ports 
Port drivers are used to support the various methods of connecting a printer to the 
Apple IIGS. A port driver can be written to work with a built-in port or with a 
peripheral card in a slot. Currently, the following three types of drivers are defined, 
all of which support the internal ports: 

■ Printer.Port 

■ Modern.Port 

■ Appletalk.Port 

The user can install new port drivers into the system by saving a port driver file into 
the DRIVERS subdirectory within the SYSTEM subdirectory. The port driver file must 
be of file type $BB and have an aux type of $0002. 

At the time of publication, no more information about port driver formats was 
available. 

Background processing 
As already mentioned, the job subrecord includes a pointer, pldleProc, to an 
optional background procedure run whenever the Print Manager has directed 
output to the printer and is waiting for the printer to finish. The background 
procedure has no parameters and returns no result; the Print Manager simply runs it 
at every opportunity. 

If you don't designate a background procedure, the Print Manager uses a default 
procedure for canceling printing. The default procedure polls the keyboard and sets 
a Print Manager error code if the user types Apple-period. If you use this option, you 
should display a dialog box during printing to inform the user that the Apple-period 
option is available. 

If you do designate a background procedure, you must set pldleProc after presenting 
the dialogs, validating the print record, and initializing the GrafPort. The routines 
that perform these operations reset pldleProc to NIL. 

Important 

If you write your own background procedure, you must be careful to avoid a 
number of subtle concurrency problems that can arise. For Instance, if the 
background procedure uses QuickDraw II, It must be sure to restore the GrafPort 
being used for printing as the current port before returning. It's particularly 
Important not to attempt any printing from within the background procedure: 
The Print Manager Is not reentrant. If you use a background procedure that runs 
your application concurrently with printing, It should disable all menu Items 
having to do with printing, such as Page Setup and Print. 

15-24 Chapter 15: Print Manager 



$0113 PMBootlnit 
Initializes the Print Manager; called only by the Tool Locator. 

Warning 
An application must never make this call. 

Parameters The stack is not affected by this call. There are no input or output parameters. 

Errors None 

C Call must not be made by an application. 

Print Manager housekeeping routines 15-25 



$0213 

Parameters 

PMStartUp 
Starts up the Print Manager for use by an application. 

Important 
Your application must make this call before It makes any other Print Manager 
ca lls. 

Stack before call 

prevtous contents 

userID Word-ID number of the application 

dPageAddr Word-Bank $0 starting address for 2 pages of direct-page space 

f-SP 

Stack after call 

prevtous contents I 
-------- f- SP 

Errors $1301 missingDriver 

System Loader errors 

Tool Locator errors 

Memory Manager errors 

Specified driver not in DRIVERS subdirectory of 
SYSTEM subdirectory 

Returned unchanged 

Returned unchanged 

Returned unchanged 

C extern pascal void PMStartUp(userID,dPageAddr) 

Word user ID; 

Word dPageAddr; 

15-26 Print Manager housekeeping routines 



$0313 

Parameters 

Errors 

C 

$0413 

Parameters 

PMShutDown 
Shuts down the Pr.int Manager. 

Important 

If your application has started up the Print Manager, the application must make 
this call before It quits. 

The stack is not affected by this call. There are no input or output parameters. 

None 

extern pascal void PMShutDown () 

PM Version 
Returns the version number of the Print Manager. 

Stack before call 

previous contents 

wordspace 

Stack after call 

previous contents 

versionlnfo 

Errors None 

Word-Space for result 

f-SP 

Word-Version number of the Print Manager 

f-SP 

C extern pascal Word PMVersion() 

Print Manager housekeeping routines 15-27 



$0513 PM Reset 
Resets the Print Manager; called only when the system is reset. 

Warning 
An application must never make this call. 

Parameters The stack is not affected by this call. There are no input or output parameters. 

Errors None 

C Call must not be made by an application. 

$0613 PMStatus 
Indicates whether the Print Manager is active. 

Parameters 

Stack before call 

previous contents 

wordspace Word-Space for result 

f- SP 

Stack after call 

previous contents 

Errors 

C 

15-28 

activeFlag 

None 

Word-BOOLEAN; muE if Print Manager active, FALSE if inactive 

f-SP 

extern pas cal Boolean PMStatu s() 

Print Manager housekeeping routines 



THE APPLE PUBLISHING SYSTEM 

This Apple manual was written, 
edited, and composed on a 
desktop publishing system using 
the Apple Macintosh® computers 
and Microsoft® Word. Proof and 
final pages were created on the 
Apple LaserWriter® Plus. 
POSTSCRIPT®, the LaserWriter 
page-description language, was 
developed by Adobe Systems 
Incorporated. Some of the 
illustrations were created using 
Adobe Illustrator™. 

Text type is ITC Garamond® 
(a downloadable font distributed 
by Adobe Systems). Display type 
is ITC Avant Garde Gothic®. 
Bullets are ITC Zapf Dingbats®. 
Program listings are set in Apple 
Courier, a monospaced font. 

.. 




