
.ts.
Apple IIGS@ GS/OS Device Driver
Reference
APDA # AOOOSIJ/C

For GS/OS
Systen Softwøre

Vetsion 5.0

ú,

Apple'llcs' GS/OS'
Device Driver Reference

1

J

DStatus (fi202Û) / 26
GetDeviceStaws / 28
GetConfigParameters / 30
GetVaitStatus / 3l
GetFormatoptions / 31
GetParririonüap / 36
Device-specific DStatus subcalls / 40

DControl $2t2Ð / 41

ResetDevice / 43
FormatDevice / 44
EjectMedium / 44
SetConfigPanmeters / 45
SetvaitStatus / 45
SetFormatOptions / 46
AssignPartitionOwner / 48
tumsþal / 49
DisarmSignal / 51

SetPartitionMap / 52
Device-specific DControl sukalls / 52

DRead (5202Ð / 53
DÏfrite $203û / 55

DRename (t2036) / 57

2 The SCSI lùrtvef / Jg
Device calls to the SCSI dnver / 6A

DStatus (202D) / 61
RetumlastResult (DStatus subcall) / 62
ReadTOC (DStatus subcall) / ó5
ReadQSubcode (DStatus subcall) / 69
ReadHeader (Dstatus subcall) / 71
ÄudioStatus (DStatus subcall) / 72

DControl (2028) /7t
AssignPartítionOwner (DControl subcall) / 76
AudioSearch (DControl subcall) / Tl
AudioPlay (DControl subcall) / 81

AudioPause (DControl subcall) / 83
AudioStop (DControl subcall) / 85
AudioScan (DControtsubcall) / 86

lv Apple IIcs GS/OS Device Driver Reference

Data chaining / 89
Some data-chaining xamples / 93

Sending data / 93
Receiving data / %

TheSCSI Nlanager / 96
The SCSI data model / 98

SCSI lttanager calls / 101

RequestDevices ($0002) / 102

ClaimDevices ($0003) / 105
yo ($0004) / 106

Sparing disk blocla / 110

3 Ïte AppleDisk 3.1 Drtver / lll
Device calls to the AppleDiskS.5 ùivq / tt2
DSatus (5202D) / ll2

GetDeviceStatus / lLZ
GetConfigParameters / 113

GetFormatOptions / 111
DControl (8202Ð / ll4

ResetDevice / 114

SetConfigParameters / 115

SetlfaitStatus / 115
SetFormatOptions / 115
AsignPanitionOwner / 115

ArmSþal / 115

DisarmSignal / ll5
DRead (9202Ð / rt6
D\Frite $?030) / 116

4 the UdDtsk 3.5 Ddver / ll7
Device calls to the UniDisk 3.5 driver / 118
DStatus $202D) / ll9

GetDeviceStatus / 119

GetConfigParameters / 119
GetlfaitStatus / 179
GetFormatOptions / 119

Contents Y

DControl ($202Ð / t20
ResetDevice / 120
SetConfigParameteru / 120
setrwaitMode / 121

SetFormat0ptíons / 121

AssignPanitionOwner / 121

Armsignâl / 121

Disarmsignal / 121
DRead $2A2Ð / 122
Dllrite ($2030) / 122

5 lte AppleDlrk 5.25 lJrtver / t23
Umitations af 5,25-lr;rch disk drÍves / 124

Device calls to the AppleDisk 5,25 driver / 124
DStatus $202D) / 125

GetDevice$tetus / 725
GetConfigParameters / 125
GetFormat0ptions / 126

DControl (ï202Ð / W
ResetDevice / 127

FormatDerrice / 127

EiectMedium / 127
SetConfigParameters / 128
$et!üait$tatus / 128
SetFormet0pt¡ons / 128
AssignPartttion0wner / 128
tumsignâl / t28
Disarmsignal / 128

DRead(í202Ð / Ln
Dllrite 6203û / lD
AppleDisk 5.25 dnver formaning / 130

vl Apple IIcs GS/OS Device Driver Reference

ra
6 Ïhe AppleÏalk Drivers / 133

The Remote Print Manager driver (.RPùÐ / 134
About calls to the .RPM ùiver / 1,34

DStatus(202D) / 13i
GetDeviceStatus (DSratus subcall) / 13j
GetConfigParameters (DStatus subcall) / 136
GetFormat0ptions (DStatus subcall) / 136
GetPartirionMap (DStatus subcall) / 137

GetRPMParameters (device-specific subcall) / 137
DControl (52028) / 1,40

ResetDevice (DCon¡rol subcall) / 140

SetRPMParameters (device-specific subcall) I 140
DRead $202F) / 142
Dt$Í¡rite 2ù / .142
Tlre .AppleTalk d¡wer / 143

Protocol layer interaction / 143
About calls to the .AppleTalk ùiver / 1,44

DSutus (202D) / 1,44

Get!flaitStatus / 1,44

GetPort (device-specific subcall) / 144
DControl (fi20?ß) / 145

(

DRead (S20zF) / tíj
Dwrite (i2030) / t45
The AppleTalk Filing Protocol (.Af?n) d¡iver / t46

Interacrion with PToDOS Filing Ín¡e¡face / t46
About calls to the .AFPn dnvet I t47
DStatus (5202D) / 1,47

GetDeviceStatus / 148
GetConfigPanmerers / 149
GetFormatOptions / 150
GetPartitionliap / t50
GetgectStatus (device-specific subcall) / t50

Contents vü

DControl $àAZE) / 151

ResetDevice (DControl subcall) / 151

Format Device (DControl subcall) / 152

EjectMedium (DControl subcall) / 152

SetConfìgParâmeters (DControl subcall) / 152

SetVaitStatus (DControl subcall) / 152

SetFormatOptions (DControl subcall) / 153
AssþnPartitionOwner (DControl subcall) / 153

ArmSignal (DControl subcall) / 153

DisarmSignal (DControl subcall) / 153

SetPartitionMap (DControl subcall) / 153

DisplayMessages (DControl subcall) / 154

SetEjectStatus (DControl subcall) / 154
DRead $zAzF) / t55
Dvrite ($2030) / 155

The SCC lvlanager / 156
Calls to the SCC Managa / 156

AppleTalkClien¡ / 157

GetChannelSøns / 157

SetChannelStatus / 158

AppleTalk driverc / 159
Examples / 160

7 GS/OS C¡enerated Mvers / t63
Àbout generatirig drivers / 164

Types ofgenerated drivers / 164

Device calls to generated drivers / 166

DStarus ($202Ð / 166
GetConfigPanmete¡s / 166
GetVaitStatus / 167

GetFormat0ptions / 167
DControl($2028) / t6l

ResetDevice / 167

SetConfigParameters / 168

SetVaitStatus / l$
SetFormatOptions / 168
Armsignal i 16S

Disarmsþal / læ

vlit Apple IIcs GS/OS Device Driver Reference

il Writing a Device Driver / 169

E GS/OS Devlce Driver Destgfr / l7l
Driver rypes and hienrchy / I72
Driver file types and auxiliary types / 174
Device driver structure / 775

The device driver header / 177

Configuration lis¡s / 177

Device information block / 179
Format options table / 186

Driver code section / 189

How GS/OS calls device drivers / 190

The device dispatcher and the device list / 190
Dynamic driver installation / 791
Direct-page parameter space / L92

Dispatching to device drivers / tg3
List of driver cal\s / lg5

How device drivers callGS/OS / 195

Supervisory-driver structure / 1%
The supervisory information block (StB) / lg7
Supervisory-driver code seûion / 199

How device drivers (and GS/OS) callsupervisory drivers / 199

9 Cache C¡ntrol / 203
Drivers anduching / 204

Cacheølls / 205
How drivers cache / 205

On aRød c ll / 205
OnaVrite øll / 206
Multiblock aching / 207

Caching notesT 208

10 GS/OS Driver Call Beference / Z0g
About driver calls / 2lA
Driver_Starnrp ($0000) / 213
Driver-Open ($0001) / 217

Driver-Read $W0Ð / 219

Contents ix

Driver_lfrite (ïW0Ð / 223
Driver-Close (0004) / 227

Driver-Status ($0005) / 229

GetDeviceStatus (Driver-status subcall) / 231
GetConfìgParameters (Driver-Status subcall) / 234

GetVaitStatus (Driver-Status subcall) / 234

GetFormatoptions (Driver-Status subcall) / 235

GetPartitionMap (Driver-Satus subcall) / 239
Device-specific Driver-Status subcalls / 239

Driver_Control ($000ô / 240

ResetDevice (Driver-Control subcall) / 242

FormatDevice (Driver-Cont¡ol subcall) / 242

EjectMedium (Driver-Control subcall) / 243

SetConfigParameters (Driver-Control subcall) / 243

Setlflaitstatus (Driver-Control subcall) / 244

SetFormatOptions (Driver_Control subcall) / 245

,{ssignPartitionOwner (Driver-Control subcall) / 247

ArmSignal (Driver-Control subcall) / 248

Disarmsignal (Driver-Conuol subcall) / 249
SetPartitionMap (Driver-Control subcall) / 249
Device-specific Driver-Control subcalls I 250

Driver-Flush (500A7) I 251
Driver_Shutdown ($0008) / 253
About supervisorydnver calls / 255
GetSupervisorNumber ($0000) / 257
Supervisor_Startup ($0000) / 259
Set-SlB-Pointer ($0001) I 260

Supervisor-Shutdown ($0001) / 261

Driver-specifìc calls ($0002-$FFFF) / 262

Driver enor codes / 263

11 System Servlce Calls / 265
About system service calls / 266
c"{cHE_FrND_BtK ($01FC04) / 268

CÂCHE-ADD_BIK ($01FC08 / 269
cAclrE-DEr_BrK ($01rc14) / 270
ALLOC_SEG ($01rC1C) / 271

REIEÁ,SE_SEG (i}tFc,zù / 272
snAP_or,J"r (ï01Fc34) / 273

I Apple IIcs GS/OS Device Driver Reference

DEREF ($0tFC3ù / n4
SET-SYS-SPEED ($OIFC5O) / 275
rocK_MEM ($}tFcß) / 276
r,JNrocK_MEM 6A],f.CK) / 277
MOI¡E_INFO ($0tFC70) / 27S
srGNAr ($01FC88) / 2S2

SET.DISKSTT ($OlFC9O) / 2S3

SI.JP.DRVR-DISP ($O1FCÀ4) / 284
INSTAIT-DRNiER ($O1FCA8) / 2S5

DrN_SrOT_ÁXBTTER ($01FCBC) / 287
IINBII{D-INT-VECT ($OlFCD8) / 2æ

A C¡ener¿æd Drlvers and Flrmwa¡e Drtvers / ZBg
Genenateddriver summary / 290
Generating and dispatching to BASIC drivers / 291

Generating / 291

Dispatching / 291

Generated-driver interface / 292
Generating and dispatching to Pæcal l.L dñverc / Z9j

Generatrng / 293
Dispatching / 293
Generateddriver interhce / 294

Generating and disgatching ro PToDOS drivers / 294
Generaang / 294
Dispatching / 295
Generated-driver interface I 296

Generating and dispatching to Smartpo* &ivers / 296
Genentng / 296
Dßpatching / 297
Generated-driver interface / 298

B GS/OS Et¡or Codes and Consta¡¡ts I Zgg
GS/OS enor codes / 300

Glossary / 303

Index / 317

Contents xl

Figures and tables

Introduction Ïhe Dcvlce Ler€l ln GSIOS / I
Figure I-1 Device levelin GS/OS / 3
Figure I-2 Driver hierarchy within device ler¡el / 6
Figure I-3 Diagramof GS/OS call / I
Fþre 14 Diagramof device call / 9
Fþre I-5 Diagram of driver call / 1l
Figure I-,6 Díagramof system service cail / 12

I GS/OS Devlce Call Refercnce / 17

Figure 1-1 Device characteristics word / 21

Figure 1-2 Device satus word / 29
Fþre 1-3 Flag;sword / 33
Figure 14 Partition map / 37

Table 1-1
Table 1-2
Table 1-3

GS/OS device calls / 18
DStatus subcalls / 27
DControl subcalls / 43

2 Ïhe SCSI mvcr / 59

Fþre 2-1
Figve2-2
Fþre 2-3
Fþre 24
Fþre 2-5
Fþre 2-6

Returnl¿stResult subcall rea;rr' daø / 62
ReadTOC subcall îomat / 66
ReadTOC subøllretum dau (TOC type $00) /
ReadTOC subcallretum data (TOC rype $01) /
ReadTOC zubcallretum daa (TOC type $02) /
ReadQSubcode subcall loma¡ / 69

67
67
68

di Apple IIcs GS/OS Device Driver Reference

5 lheÂppleDlst 5.25ffitcr / 123

Fþre 5-1 Apple 5.25 drive interleave confìgurations / 130
Fþre 5-2 Apple 5.25 dnve sector format / 131

6 fte AppleTalk hvers / lït

Figrc2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figrre 2-14
Figure 2-15
Figure 2-16
Figure 2-17
Figure 2-18
Figure 2-19
Figure 2-20
Figure 2-21
Figtne2-22
Figre2-23
Figurre2-24
Figue2-25
Hgue2-26
ligwe2-27
Figure 2-28
Figure2-29
Figure 2-30

Table2-l
Table2-Z
Table2-3
Table24

Fþre 61
Figure 62
Figure 63
Fþre G4
Figure G5
Figure G6

ReadQSubcode subcall retum data (TOC rype $02) / 70
ReadHeader subcall fo¡mat / 7l
ReadHeader subcall rewm data / 72
AudioStatus subcall formar, / 73
AudioStatus subcall rcwm data / 73
Example panidon type ASCII stnng / 76
AudioSearch subcall fomat / 78
AudioSearch subcall rerum data for search type $00 / 80
AudioSearch subcall retum daa forsearch type $01 / 80
AudioSearch subcall retum data for search rype $02 / 81
AudioPlay subcall format / 82
AudioPause subcall Íormat / 84
AudioStop subcall forma¡ / 85
AudioScan subcall fonnat / 87
Sarus list using dara-chaining commands / 90
SCSI Manager I 97
The SCSI data model for the l/O call / 99
Device ID word / 100
RequestDevices input parameter lßt / 102
RequestDevices retum buffer format / 103
RequestDevices device ID longword / 104
ClaimDevices parameter list / 10ó
I/O call parameter list / 107

VO call attributes word / 108

Device enor codes (major) definitions / 63
Device error codes (minor) definitions / 64
Play modes / 79
Data-chaining commands / 92

GetDeviceStarus subcall rewm data / 135
Device status word / 136
GetRPMParameters subcall lormat / t37
GetRPMParameters entþ name format I 138
.rpm Flags b¡e / 138
SetRPMParameters subcall format / MA

Fþres and tables xüi

Figure 67
Figure 68
Figure 69
Figure 610
Fþre 611
Figure 612

GetPort rcum data / 145
GetDeviceStatus subcall retum d¿ta / 148

GetDeviceStatus device starus word / 148
Device configuration starus list / 149
GetEjectSøtus parameter list / 151
SetEjectStatus stâtus list / 154

Device IDs / 185
Device driver execution environment / 193
Supewisory IDs / 198
Supewisor execution environment / 200

Table 61 .rprn Flags byte definitions / 139
Table Ç2 Confìguration data fields / 149

8 GS/OS Devlcc hver D€sign / l7l
Figure &1 Hypothetical driver configuration / 173
Figure 8-2 Auxiliary rype field for GS/OS drivers / 175
Figure &3 GS/OS device-driver structure / 176

Figure 84 Device information block (DIB) / 179
Figure &5 Device characteristics word / 181

Figure &6 Slot-number word / 183

Figure&7 Driverversionword / 184

Fþre 8{ Format options túle / 187
Figure &9 Format options entry / 188
Fþre &10 Format option flags word / 188
Figure &11 GS/OS direct-page parameter syace / 192
Fþre &12 Supervisory-driver sfficrure / 197

Figure &13 Supewisor information block (SIB) / 198

Table 8-1
Table &2
Table &3
Table 84

10 cS/O$ffiverCallReftrcnce / 209

Fþre 1Gl Direct-page parameter space for driver calls / 211
Fþre 10-2 Disk-switched and off-line enors / 222
Figure 10-3 Device stattrs word / 232
Figure 10.4 Disk-switched condition / 233
Figure 1&5 Supervisor direct page: parameter space I 256

Table 10-1 GS/OS driver calls / 210
Table 10-2 Supervisorydriver calls available to device dñvers / 255
Table 10-3 Calls that supervisory drivers must accept / 256

Table 104 D¡iver enor codes and constanß / 263

xlv Apple IIcs GS/OS Device Driver Reference

11 System Service Calß / 265

Figure 11-1 GS/OS direct-page pârâmeter space / 267

Table 11-1 System service calls / 266

B GS/OS Emor Codes and C¡nstants / 299

Table B-1 GS/OS enors / 300

Figures and tables XY

Introduction Ttre Device Level in GS/OS

One of the princþal goals of GS/OSo is to provide application
prCIgr?mmers with access to a wide variety of hardware devices while
insulating programmers (and users) from the lowlevel deails of hardware
control. Ttre device level in GS/OS is responsible for meeting this goal.

The device level consists of
r the GS/OS interface to FSTs for device access through fìle systems

¡ the GS/OS interface to applications for direct device access

I the GS/OS interface to device drivers

r a set of lowlevel system service calls available to device drivers

I the collection of drivers that are provided with GS/OS

Pan I of this reference describes the application interface to GS/OS
for direct device access: It documents all device calls and describes the
individu¿l GS/OS device drivers that applications can call.

Part II of this reference describes the GS/OS interface to drivers:
It shows how to design and write a device drivø, documents allcalls a
driver must accept, and describes how a driver can get information and
services it needs from GS/OS.

Appendixes to this reference describe how GS/OS generated drivers
interact with slot-bæed firmware VO drivers and what enors GS/OS
can feh¡m.

I

What is the device level?

As described in the introduction to GS/OS Reþrence, GS/OS consists of tliree interface
levels; the application level, the file system level, and the device level, Figure i-l is a
generulized diagram of GS/OS, showing how the device level relates to the rest of
the si'5¡srn.

In general, the device levelsits berween the file system level and hardware devices,
translating the device I/O calls made by a file system translator (FST) into the calls that
access data on peripheral devices. Note also that part of the device level (the Device
Manager) extends upward into the level occupied by file system translators. By making
calls through the Device Manager, applications can access devices at a high level, in a

manner analogous to the way they access fìles.

Different components of the device level handle different device-access needs:

r File system translators, which convert file I/O calls into equivalent driver calls, go
through the device dispatcher. Driver calls are described in Chapter 10.

¡ Applícations that wish to access devices directly make device calls that go rhrough rhe
Device Manager. Device calls are described in Chapter 1, Like file i/O calls, device calls
are tmnslated into driver calls by the Device Manager.

r The device dispatcher itself makes other driver calls when setting up drivers or shutting
them down, How the device dispatcher interacts with drivers is described
in Chapter 8.

¡ GS/OS device drivers are the lowest level of GS/OS; they access device hardware
directly. The individual drivers that accompany GS/OS are described in Chapters 2-7.

r The device level is extensible; you can write your own device d¡iver for GS/OS.
Device driver structure and design are described in Chapter 8; how drivers handle
caching and configuration is discussed in Chapters 9 and 10.

r Device drivers that need access to system features and functions can make
system service calls to GS/OS. System service calls are described in Chapter 11.

!Øhat GS/OS device drivers arc and how the Device Manager, the device dispatcher, and
the lest of GS/OS interact with them are the subjects of the rest of this chapter,

2 Apple ilcs GS/OS Device Driver Reference

¡ Flgurc I-1 Device level in CS/OS

Block
device

Application pogram

c

Deviæ
level

Block
device

Cluracrer
deviæ

Cha¡ac¡er
device

Cluncter
deviæ
drÍver

Ch¡racter
device
driver

Block
deviæ
driver

Block
device
driver

Device dispatcher

Other FST
FST

CluncterHuh
Sie¡¡a FSTFST

P¡oDOSoDevice
l,lanager

GS/OSCall !{anager

GS/OS drivers

A GS/OS driver is a program, executing from RAIvf, that directly or indirectly handles all
input/output operations to or from a hardn¡are device and also provides information to
the system about the device. CS/OS drivers must be able to accept and act upon a
specifìc set of calls from GS/OS.

Introduction The Device Level in GS/OS 3

Generally, each hardware device (or group of closely related devices) needs its own driver
Disk drives, printers, serial ports, and the console (keþoard and screen) can all be
accessed through their drivers.

This section discusses the different driver classifications that GS/OS recognizes.

Block drtvers and character drivers

There are wo fundamental types of drivers, in terms of the kinds of devices they control:

r Block drivers allow access to block dwlces, such as disk drives, from which a
certain number (one block) of b¡es is read from or written to the device at a time,
and on which any block within a file can be accessed at arry time. Block devices are
also called rando¡n-access devices because all blocks are equally accessible.

I Ch¿racter ddve¡s allow access to charaúter devlces, such æ printers or the console,
in which a single character (b¡e)-+r a stream of consecutive characters-is read or
wrinen at a time, and access is available to only the cunent byte being read or wrinen.
Character devices are also called sequential-access devices because each byte must be
taken in sequence.

GS/OS fully suppora both types of drivers and includes drivers of each type. For example,
the Console driver (see Chapter 8 of GSIOS Refercnce) is a character driver, and the
ÀppleDisk 3.5 driver (see Chapter 3) is a block driver.

Ioaded drtvens and generated drlvers

GS/OS also distinguishes berween drívers on the bæis of origin, in order to take
advantage of the many existing device drivers (both built in and on peripheral cards)
for the Apple@ II family of computers:

r loaded drlvers are drivers that are wrinen to work directly with GS/OS and that
are usually loaded in from the system disk at boot time.

¡ Generated drtvers are drivers that are towtructed by GS/OS itself to provide a

GS/OS interface to existing, slot-bæed fìrmware drivers in ports or on
pøþheral cards.

At boot time, GS/OS first loads and initializes all loaded drivers. Then, for slots that
contain devices that do not have loaded drivers, GS/OS generates the appropriate
character or block drivers. Generated drivers are discussed further in Chapter 7.

4 Apple IIcs GS/OS Device Driver Reference

Because all generated drivers are created by GS/OS, any driver that you write for GS/OS
will of course be a loaded drivet, How to write a loaded driver is discussed in Part II of
this reference.

Device drivers and supervisory drivers

It is simplest to assume that each hardware device is æsociated with only one driver and
that each driver is associated with only one hardware device. It is only slightly more
complex to have more than one device controlled by a single driver; a single block driver
can access several disk drives, for example. In either cæe the driver accesses its hardware
devices directly.

More complexiry is possible, however. In some cases there are logical *devices"

(hardware controllers such æ a SCSI port) that must handle i/O requests from more than
one driver (for example, a SCSI hard disk driver and a SCSI CD-ROM driver) and access
more than one rype of device. To handle those siruations, GS/OS allows for special
drivers that arbitrate calls from individual device drivers and dispatch them to the proper
individual devices.

Therefore, GS/OS also defines these two rypes of driver:

r A devlce driver is a driver that accepts the standard set of driver celle (device I/O
calls made by an FST or by an application through the Device Manager). A device driver
can conduct I/O transactions directly with its device or indirectly through a
supervisory driver.

r A supervlsory drfver (or supeivlsor) arbitrates uæ of a hardware controller by
several device drivers in cæes where a single hardware controller conducts I/O
transactions with several devices. A supervisory driver does not accept VO calls
directly from FSTs or the Device Manager; it accepts only supervlsorydriver calls
from its individual device drivers.

The presence of supervisory drivers adds more layers to the GS/OS device level.
Because more than one supervisory driver can be active at a time, there is a
supervlsor dispatcher to rout€ the ¡equests of device drivers to the proper supervisory
driver. The supervisor dispatcher relates to supervisory drivers much æ the device
dispatcher relates to device drivers. This device-level driver hierarchy is diagrammed
in Figure I-2.

Introduction The Device Level in CS/OS t

ùlanager
Device

FST
PToDOS

I Figure I-2 Driver hierarchy within device level

High
Siena FST

Character
FST

Orher FST

Device
Driver

Device
Driver

Supervisor
Dispatcher

Supervisory
Drive¡

Device

Supervisory drivers and their accompanying device drivers are alv/ays loaded drivers, but
they can be character drivers, block drivers, or both; that is, a single driver does not have
characteristics that restrict it to being solely a block or charâcter device.

Supervisory drivers are closely tied to their device drivers. During tlie boot sequence all
supervisory drivers are loaded and started before any device drivers. This procedure
ensures that when a loaded device driver is started, its supervisory driver will be available
to it. Other than that, GS/OS is not concemed with the rules of arbitration berween a
supervisory driver and its loaded device drivers.

Device Dispatcher

Deyice
Driver

Supervisory
Drive¡

Device Device

6 Apple IIGs GS/OS Device Driver Reference

Besides simplifying the device interface for applications and providing increæed
hardware independence, the use of supervisory drivers allows individual device drivers to
be added to the system without requiring the replacement or revision of existing drivers.

The differences between devíce driven and supervisory drivers are explained more fully in
Chapter 8. The rest of the discussion in this chapter concems device drivers only.

How applications ¿rccess devices

when an application makes a call that results in any kind of I/O, device access occurs.
That device access is either indirect, through an FST, or direct, through the
Device Manager.

ltrough an FST

Device access through a file system translator is completely automatic and transparent to
the application. Vhen an application performs fìle I/o by making a standard GS/OS call
(æ described in Chapter 3 of GS/OS Refere¡tce) such as Create, Read, or Vrite, the GS/OS
Call Manager passes the call along to the appropriate FST, which converts it to a driver call
and sends it to the device dispatcher, which routes it to the appropriate device driver.
The device driver in tum accesses the device and performs the requested øsk.

In most cases the application does not know what device is being accessed. It might not
even know which fìle system is being used. Figure I-3 shows the schematic progres of a
rypicalGS/OS call from application to device, including how parameters are passed.

Introduction The Device level in GS/OS 7

Dt b driv.r

Drvica dispatchcr

FST

¡ Flgurc I-3 Diagram of GS/OS call

Pa¡emcrÉr block
in m.mory

Pannrtarapä
oñ dirs'tpaoo

Davica

Ç Calling!.qu.nc.

-ô

Par.ítrbr.p¡¡she

Highlevel calls pass parameters differently than low-level calls do. !7hen an FST receives a
call from an application, it converts the par.rmeter block information into data on the
GS/OS dlrect page; that conversion makes the data available to low-levelsoftware,
including drivers. The call then pasæs through the device dispatcher and to the driver.
Âfter the call hæ been completed, the drivø puts any rerum information into the direct-
page parameter space; the FST transfers that information back to the application's
parameter block and returns control to the application,

Througb the Device Manager

Ä typical Apple llcso application doCI not need to make any calls to access devices
directly. File calls made by the application pass through an FST and are âutomatically
converted into the conect driver calls, which read or write the desired data. The
application need not be concemed with the specifìc device, or even the specific file
system, used to store the data. '

However, there are times when a particular process is specifìc to a particular type of
device. If your application needs to do something that specifìc, such as taking user inpur
from the console in text mode, you will need to know how to make a specifìc driver
perform a specific action. That's where device calls come in.

I Apple IIcs GS/OS Device Driver Reference

Device calls are applicationJevel GS/OS calls, just like all the calls discussed in Chapter 10

of 65/05 Reference. Your application æts up a parameter block in memory and makes the
call as described in Chapter 3 of GVOS Reþrcnce. The only difference fuom a normal
fìle-access call is that the device calls are routed through the Device Manager rather than
througtr an FST. See Figure 14.

The Device Manager converts the call into a driver call and sends it to the device
dispatcher, which passes it on to the device driver; the driver then acts on it accordingly.

The Device Manager is similar to an FST but is limited in its support of GS/OS system calls
and is independent of any file system. It supports only those GS/OS calls that provide an
application with direa access to a peripheral device or device driver, while providing an
FST-like interface berween the application and the device dispatcher.

The Device Manager handles only six GS/OS calls: Dlnfo, DStatus, DControl, DRead,
DVrite, and DRename. Extensions to DStatus and DControl allow device-specifìc
functions to be called. ,{l other applicationlevel GS/OS calls that access devices must
pass through an FST, Device calls are documented in detail in Chapter I of this reference.

I fftt¡e 14 Diagram of device call

þplication
Paramete¡ block
in menrory

Parameter space
on direct page

Device

$ cruingtequence+ Parametergassing.

Device

Device

Introduction The Device Level in GSIOS 9

When the Device Manager receives a device call from an application, it converts the
parameter block information into data on the GS/OS direct page; that conversion makes
the data available to low-level software, including drivers. The call then pæses through the
device dispatcher and to the driver. After the call hæ been completed, the driver puts any
ren¡m information ¡nto the direct-page parameter space; the Device Manager transfers
that information back to the application's parameter block and returns control to
the application.

How GS/OS cornmunicates with drivers

Device drivers communicate with the operating system in two basic ways: by receiving
driver calls from the device dispatcher and by making system service calls to GS/OS.

Ihe devlce dlspatcher

AII calls to device drivers pass through the device dispatcher. The device dispatcher
maintains a list of information about each driver attached to the system and thus
knows where to transfer control to when it receives a driver call from an FST or the
Device Manager.

Ttre driver calls that the device dispatcher receives fiom FSTs or the Device Manager and
passes on to drivers are Driver-Read, Driver-\[rite, Driver_Sutus, and Driver-Control.
They are documented in Chapter 10. These particular driver calls have names that are very
similar to the names of their equivalent device calls. The lower parts of Figures l-3 andl4
diagram the call prog¡ess and parameter passing for these driver calls.

Note also that there is no equivalent driver call for the device calls Dlnfo and DRename;
these calls are handled entirely by the device dispatcher by consulting its list of device
information. Dlnfo must subsequently make a Driver-Satus callto determine the volume
size if a block device's size is dynamic. .

The device dispatcher and other parts of GS/OS also make driver calls that are not
translatíons of device calls and are concemed with ætting up drivers to perform VO and
with shutting them down afterward. These other driver calls are Driver-S**p,
Driver_Open, Driver-Close, Driver-Flush, and Driver-Shutdown and are documented in
Chapter 10. Figure I-5 shows the progres of such a driver call; note that Figure I-5 is also
identical to the lower part of Figures I-3 and 14.

f0 Apple IIcs GS/OS Device Driver Reference

t ffurc I-5 Diagram of driver call

Parameter space
on direct page

Device

ç) c,ttingt qu.n..+ P¿¡¡¡¡ç1s¡pessing

Device

System selrlce calls

GS/OS provides a standardized mechanism for passing information and providing
services among ir lowlevelcomponents such as FSTs and device drivers. That mechanism
is the system scrice call
System service calls exist for various purposes: to perform disk caching, to manipulate
buffers in memory to set system parameters such æ execution speed, to send a sþal to
GSIOS, to call a supervìsory driver, or o perform other tæks. Not all drivers need all of
these services, but each is useful in a particular situation. If you are writing a device driver,
consult Chapter 11 to see what system service calls are available to your driver and what
each does.

Drivers make system service calls through jumps to locations specified in the system
service dispatch able. Parameteß are pæsed b¿ck and fortlr through registers on the
stack and through the same direct-page space used for driver calls. See Figrrre I-6.

Introduction The Device Levelin GS/OS 11

Flgure t6 Diagram of system service call

Parameter space
on direct page

(Other parameten pasæd
on stack and in registers)

L)+-
Callingæquenæ
Parameter pæsing

Device driver

System service
table

Driver features

This section describes some of the notable features that GS/OS drivers can have. See the
referenced chapters for more information,

Configuration

GS/OS drivers can be confìgurable, meaning that the user can customize and store certåin
driver settings. For example, for a driver that controlled a serial port, such parameters as

bits per second, parity, stop bits, and so on could be customized and stored.

Many users will never need to configure drivers. Others will use the capability when
adding a peripheral device or adjusting device driver or system default senings. As
a device driver writer, you can choose which user-configurable features you want in
your driver, o

The specific formats in which confìguration options are to be presented to the user, how
the chosen settings are to be stored, and how the options are to be set up by the driver
the fìrst place are specifìc to the individual driver. However, the overall format in which
the confìguration parameters are to be stored in the device driver and what calls are used
to set or modify those parameters are deñned in Chapters 8 and 10.

n Apple IIGs GS/OS Device Driver Reference

Cache support

Cacbing is the process by which frequently accessed disk blocks are kept in memory to
speed subsquent âccesses to those blocks. On the Apple IICs computer the user can
control what the maximum cache size can be. It is the driver, however, that is responsible
for making caching work. GS/OS block drivers should support caching.

The GSiOS cache is a wrlte-through cache. That is, when an FST issues a Vrite call to a
device driver, the driver writes the same data to the block in the cache and the equivalent
block on the disk. Never does the block in the cache contain information more recent
than that in the disk block. Also, like most caching implementations, the GS/OS cache
uses a least recently used (LR[I) algorithm: Once the cache is full, the least recently used
(accessed) block in the cache is sacrifìced for the nen new block that is written.

Cache memory is obtained and released by GS/OS on an as-needed basis. Only æ
individual bloda are cached is the necessary amount of memory (up to the maximum
æt by the user) assigned to the cache. The size of a block in the cache is essentially
unrestdcted, limited only by the maximum size of the cache itself.

Drivers implement caching by making system service calls. Caching is described in
Chapter 9; s]¡stem service calls are documented in Chapter 11.

Terms and conventlons

Terms introduced in this book are printed ¡n bold type where defined and are listed in
the glossary,

Assembly-language labels, entry points, programs and subroutine names, and fìlenames
that appear in text passages are printed in Apple Courier typeface (for example, DoeÍrrem
and Mewu. PAs). There is one exception: The names of Apple IIGS system software
routines such as toolbox calls and operating system calls (for example, NewModalDialog
and QLID are printed in normaltype..

The following words mark special messages to you:

,) Nate: lext set off in this manner presents sidelights or interesting information.

Introduction The Device Level in GS/OS t3

A Importaot Tetr set offin this manner-with the word Impoønt-presents
imporant information or instructions. ¿

A V¡rnlng Terc set off in this manner-with the word Vatutng-indicates
potential serious problems. e

Codc-ltst conventlon

The source code listings in tt¡ese chaptes and the driver examples in the appendixes are in
æsembly language, In addition to the 65C816 syntax and notation, please note the
following conventions:

r Toolbox calls are in boldf¡ce.
r Reserved words uein itallcs.

¡ Names of functions, procedures, tTps, ¿nd userdefined constants begin with
lowercase letters,

¡ Boolean values (such as TRUE and FAIJE) are all CAPIIÄL lenem.

14 Apple IIGs GS/OS Device Driver Referenæ

-

Part I Using GS/OS Device Drivers

P¡r I PâîII
Appendixes

Enor€odes
hppend¡x B)

Sysem s€rvÈecells
(Clup¡e¡ ll)

Drivercal[c
(Chapter 10)

Generaed
md

fì¡mwarcdriven
(ÀppendixA)

(Ctnpten&9)

DdversDæþ
&C¡cheControl

GS/OS device callc
and device.rpæific

informaion
(Chrptu 7)

{

n

(.-

Chapter 1 GS/OS Device Call Reference

This chapter explains how to call device drivers and documenrc the
GS/OSo dÉrfcc callc: application-level calls that give applications
direct access to devices by bypæsing all file systems.

This chapter repeats ttre device-calldescriptions of 6VOS Refetencebut
provides more complete documentation; in particular, it describes all the
sandard Dstatus and DControl subcalls.

This chapter describes only standard GS/OS (class-l) device calls; for
descriptions of how CS/OS handlæ equivalent PTDOSo 1ó (class-0)
device calls, see Appendix B of 6VOf ReJercnce.

17

How to make a device call

Your application makes GS/OS device calls just like it makes any other application-level
GS/OS calls-it sets up a parameter block in memory and executes either an inline or a
stack-bæed call method (either directly or with a macro). Chapter 3 of GS/OS Reþrence
describes all the methods for making GS/OS calls.

All device calls are handled by the Device Manager and are listed in Table 1-1. The rest of
this chapter documents how the device ølls work.

Table 1-1 GS/OS device ølls

øllornbcr Naæ

$202C
s202D
$2028
$202F,
$2030
$2036

The diagram accompanying each call description in this chapter is a simplifìed
representation of the call's parameter block in memory. The width of the parameter block
diagram represents 1 byte; successive tick marks down the side of the block represent
successive b¡es in memory. Each diagram also includes these features:

¡ Otrset Hexadecimal numbers down the left side of the parameter block represent
byte offsets from the base address of the block.

I Name The name of each parameter appears at the parameter's location within
the block.

¡ No.: Each parameter in the block hæ a number, identiffing its position within the
block. The toøl number of parameters in the block is called the paraneter count
(pcount); pcount is the initial (zeroth) parameter in each call. The pcounr
parameter is needed because in some cdls parameter count is not fìxed; see the
following description ef mlnlrnum paraoeûer court,

r Slze a¡d type Each parameter is also identifìed by size (word or longword) and type
(input or result, and value or poiruer). A word is 2 bytes; a longword is 4 bytes. An input
is a parameter passed from the caller to GS/OS; a result is a parameter retumed to the
caller from GS/OS. A value is numeric or character data to be used directly; a pointer is
the address of a buffer containing dau (whether input or result) to be used.

DInfo
DStatus
DControl
DRead
DVrite
DRename

18 Apple IIcs GS/OS Device Driver Reference

-

(

¡ Minimum paramcEr counû To the right of each diagram, acro$s from the pcounr
parameter, the minimum permíned ralue for pcounÈ appears in parentheses. Ttre
maximum permined value for pcounr is the toal number of parameters shown in
the diagram.

Each parameter is described in detail after the diagram. Additional important notes, call
requirements, and princþal enor results follow the parameter descrþions.

Chapter I GVOS Device CallReference 19

Dlnfo ($202C)

Description

Pa¡ameters Oftet

Dlnfo retums certain anributes of a device known to the system. The
lnformation is in the devlce's device information btock (DIB). The
Device Manager makes a call to the device dispatcher to obtain the
pointer to the DIB and then reilrns the requested parameters from the
DIB. If the pcount, parameter is greater than 3, the Dlnfo call acnrally
issues a DStan¡s call with a status code of 0 to the device to obtain the
cufrent block count. This ensures that any dynamic parameters in the DIB
are updated.

- extendedDlBPtr -

for¡rardLink

headlink
,

devicelDNum

version

unitNum

slotNum

totalBlocks

- characterístice -

devNarne

devNu¡n

pCount

Slze and t¡'pe

Word input value (minimum = 2)

word input value

No.

s00

$02

$04

$08

$0A

$08

$10

s12

$14

$16

$t8

slA

I

2 Longword input pointer

word result value3

4 Longword result value

Il'ord result value

Word result value

Word result value

Word result value

Vord result value

Vord result value

11 Longword input pointer

5

6

7

I
9

10

m Apple IIcs GS/OS Device Driver Reference

pcount

devNum

devName

characteristics

l.Rttrf orROMdisk

I . Genemteddevice

I . Iinked device

I . Device busy

I . Resta¡table

l.Fixedname

Vord input value: the number of parameters in this parameter block.
Minimum is 2; maximum is 11.

\[ord input value: a nonzero device number. GS/OS æsigns device
numbers in sequence 1,2,3,.,. as it loads or creates the device drivers.
Because the device list is dynamic, there is no fixed conespondence
berween devices and device numbers. To get information âbout every
device in the system, make repeated calls to Dlnfo with devNum values
of 1, 2, 3,... until GS/OS rehrms enor $11 (invalid device number).

Longword input pointer: points to a rezult buffer in which GS/OS reums
the device nâme conesponding to the device number. The maximum size
of the device-name string is 32bytæ, so the maximum size of the
renmed value is 34 bytes. The buffer size should ttrus be 36 bytes.

Word result value: Individualbits in this word give the general
châracter¡stics of the device. This is is format:

r Flguæ 1-1 Device characteristics word

t-

a

Speed group -
1-Blockdevice

I -\[riteallowed

1-Readallowed

l.Forma¡allowed

I - Remo'able media

Reservedr must be 0 @il

2t v,#ä t678I10llt2t3t415

Chapter I GS/OS Device CallReference Ã,

In the device characteristics word, Iinþed døice means that the device
is one of several partitions on a single, removable medium. Daice busy
is maíntained by the device dispatcher to prevent reenrant calls to
a device.

SWd groupdefines the speed at which the device requires the processor
to be running. Speed group hæ these binary values and meanings:

Scttlng Spccd

$0000 Apple IIcs normal speed

$0001 Apple IIcs fast sped
$0002 Accelerated speed

$0003 Not speed dependent

Restanabledefines whether or not the device driver is to be purged or is
to remain in memory when switching beween a PToDOS 8 application
and a GS/OS application. If this bit is a 1, the driver is restartable and will
not be purged when quining from a GS/OS application program to a
PToDOS I application program. If this bit is a 0, the driver is not
restartable and will be purged.

Device drivers are alwap loaded from disk and thus may contain
preinitialized data. This daa may be modifìed during the normal
execution of the device driver. In order to make these device drivers
restartable, the device driver Shutdown call must be modifìed to reset
the variables that have been modifìed during device driver execution, so
that subsequent Starn¡p calls to the driver will funaion properly. This is
an additional task for the device driver Shutdown call and does not in
any way diminish previous requirements on the driver Shutdown call.

Fixed namedefines whether or not the device driver name can be
changed in the memory-resident DIB. If this bit is a 1, the DRename call
will not alter the device driver name.

longword result value: If the device is a block device, this parameter
gives the maximum number of block on volumes handled by the device.
For character devices, this parameter contains 0.

totaIBl0cks

n Apple IIcs GS/CIS Device Driver Reference

slot,Num

I - driver independent of slot h¿dwa¡e
0. drive¡dependent on slot ludwaæ

unitNum

word result value: slot number of (1) the device hardware or (2) the
resident fìrmware (port) æsociated with the device. Bits 0 through 2
define the slot (valid values are $1 through $Ð, and bit 3 indicates
whe¡her it is an intemalport (controlled by firmware within the
Appleo IIcs@ computer) or an extemal slot containinga card with ie
own fìrmware.

For a given slot number, either the extemal slot or its equivalent intemal
port is active (switched in) at any one time; bit 15 indicates whether or not
the device driver must access the peripheral card's VO addresses. For more
information on those addresses, see the Apple IIcs Hardwarc Reþrcnca

High byte lowb¡e

I . cad (extemal slot)
g. port (intemal slot)

slot number

Reserved: must be zero u

Word result valuq unit numbe¡ of the device within the given slot,
Bec¿use different drivers permit different numbers of devices per slot,
the value of this parameter is driver specifìc; it hæ no direct conelation
with the GS/OS device number or any other device designation uæd by'
the system. :

otlzl t15

Chapter 1 GS/OS Device CallReference A

version Ilord result value version number of the device driver. This parameter
has the s¿me format æ the SmartPort version parameter. These ue
its fields:

Highb¡e Iow byte

I . driverindepetde¡rt
of slalud¡¡aæ

0. d¡irærdepcndent
onslot hardwarc

1 . card(emernelslc)
Q - port (inûemal slot)

Slot number

Reserved: mustbe0

ö Note: Thir parameter hæ a format different from that of the version
parameter retumed from the GSIOS GetVemion call.

ffiil

0I23Wr15

7A Apple IIcs GS/OS Device Driver Reference

devicelDNum

headLink

forwardLink

extendedDlBPtr

Erprt

Descrlptloo

Apple 5.25 drive
(includes UniDisk", DuoDisko,
Disk IIo, and Disk IIc drives)
ProFile" (5 MB)
ProFile (10 À{B)
Apple 3.5 drive
(includes UniDisk 3.5 drive)
SCSI device (generic)
SCSI hard disk drive
SCSI tape drive
SCSI CD-ROM drive
SCSI printer
Modem
Console
Printer
Serial l¿serïfriteP
AppleTalko l¿serVriter
RAJvf disk

Dcscrlptlon

ROM disk
File server
(Reserved)
Apple Desktop Bus"
Hard disk drive (generic)
Floppy disk drive (generic)
Tape drive Qeneric)
Character device (generic)
MFM-encoded disk drive
AppleTalk network (generic)
Sequential-access device
SCSI scanner
Other scanner
Laserlflriter SC

AppleTalk main driver
AppleTalk file server
AppleTalk RPM driver

Word result valuer an identiffing number æsociated with a particular
type of device. Device ID may be useful for Finder*-like applications
when determining what type of icon to display for a certain device.
These are the cunently defined device IDs:

ID

$0000

$0001
$0002
$0003

ID

$000F
$0010
$0011
$0012
$0013
$0014
$0015
$0016
$0017
$0018
$0019
$001A
$0018
$001c
$001D
$0018
$001r

$0004
$0005
$0006
$0007
$0008
$0009
$000A
$0008
$000c
$000D
$0008

Word result value: This panameter holds a device number that describes a
link to another device. It is the device number of the fìrst device in a
linked list of devices that represent separate partitions on a single disk.
A value of 0 indicates that no link exists.

Iford result value: This pafimeter holds a device number that describes a
link to another device. It is the device number of the next device in a
linked list of devices that represent separate partitions on a single disk.
A value of 0 indicates that no link exisa.

longword input pointer: points to a buffer in which GS/OS rerums
information about the extended device information block (extended
DIB), if provided.

$11 Invalid device number
$53 Parameter out of range

Chapter 1 GSiOS Device CallReference 25

Dsratus ($202D)

Descrtptlon

Paf,amet€ñ Oft€t

pCount

devNum

statusCode

statusList

- transfercount -

reque6tCôunt

stâtusList

statusCode

devNuÍr

pCount

Slze and type

Word input value (minimum = 5)

Vord input value

Word input value

longword input pointer

Longword input value

Longword result value

DStarus retums stan¡s information about a specified device. DSmrus
is really four or more calls in one. Depending on the value of the starus
code parameter (statuscooe), DStatus can retum severalclasses of
status information.

No.

3

4

$00

$02

$0{

$0ó

t0A

$0E

1

)

5

Word input value: the number of parameters in this parameter block.
Minimum is 5;maximum is 5.

\[ord input value: device number of the device whose $an¡s is to
be ren¡med.

\Vord input value: a number indicating the fype of stah¡s request being
made. Each status code conesponds to a particular DSan¡s subcall
(DSatus subcalls are dercribed later in this section).

Longword input pointer: points to a buffer in which the device reilms
ig status information. The form¿t of the data in the $an¡s buffer
depends on the status code. See individual DStatus subcall descriptions
for more information.

t Apple IIcs GS/OS Device Driver Reference

requesÈcount

t ransferCount

Br¡ffer size

Dstatus sgþsatts

Ermrs

$0000
$0001
$0002
$0003
$0004
$0005-$7FFF
$800Þ$FFFF

Longword input value; specifìes the number of b¡es to be retumed in
the status list. The call can never renrm more than this number of bytes.

longword result value: specifìes the number of bytes actually retumed in
the status list. This value is always less than or equal to the request count.

On a status call, the caller supplies a pointer (sratus¡,ist) to a buffer,
whose size must be at leæt requesr,counr b¡es. In some cases, the
fìrst 2 bytes of the buffer are a length word, specifying the number of
bytes of daA in the buffer. In those cases, reguesrcounr must be at
leæt 2 b¡es greater than the maximum amount of data that the call can
retum, to account for the length word.

If requestcount is not big enough for the requested daø, the driver
either fìlls the buffer with as much daø as can fìt and retums with no enor
or does not fìll the buffer and retums error $22 (invalid parameter). See
the individual DSarus subcall descriptions for details.

DStatus is several status subcalls rather than a single call. Each value for
the parameter sraruscode con€sponds to a pafticular subcall. Status
codes of $0000 through $7FFF are standard status subcalls that are
supported (if not actually acted upon) by every device driver. Device-
specifìc status subcalls, which may be defined for individual devices, use
status codes $8'000 through $FFFF,

Table l-Zlists the cunently defìned values for starusc<¡de and the
subcalls invoked. Following the Dstarus enor listings, each of the status
subcalls is described individually.

¡ Table 1-2 Dstatus subcalls

St¡tu,r code 9úcrllnæ

GetDeviceStatus
GetConfigParameters

'GetVaitStatus
GetFormatOptions
GetPartitionMap
(Reserved)
(Device-specific subcalls)

$tt Invalid device number
$53 Parameter out of range

Chapter 1 GSIOS Device CallReference T7

GetDeviceStatus

Descríption

Paremete¡s Oft€t
$00

sÈatuscode - $0000

The GetDeviceStatus subcall rerums, in the starus líst, a general device
starus word followed by a number giving rhe total number of blocks on
the device.

This subcall normally requires an input requestcount of $0000 0006, in
this case, the size in bytes of the status list. However, if only the status
word is desired, use a reguesr counr of $0000 0002.

numBlocks

statusword

I

No.

Vord Starus word
(see following definition)

longword Number of bloclc on device

Sfue aod t¡ae

s02

The device status word hæ wo slightly different formats, depending on
whether the device is a block device or a character device. Figure 1-2
shows the bie of the device stÍrtus word for both types of devices.

A Apple IIcs GS/OS Device Driver Reference

Block device:

r Figt¡æ 1-2 Device stâtus word

High b¡e

I = unce¡tain
block count

I - lir¡ked device

1 . backg¡ound busy

Characerdevice:

1-linkeddevice
I - badcg¡ound bt¡sy

High byte

1 . üerismit buffer empty

I . receive buffer not empty

1 - device is online

Lowbyti

1 - disk in drive

1 - device is write protected

I - device is in¡ern¡pting

1 ' disk has been switclred

lowbyte

1 - device is intempting

1-deviceisopen
I

J

Reærved; mus¡ be 0 W

Tke ltnþed daticebit indicates that this device is one of several in a
linked list of DIBs that hæ been constructed to keep track of a changing
number of partitidns (such æ for a CD-ROM drive) and must dynamically
adiust the linked list æ new CDs are inserted.

The background busybit is set if the device is ornently exeq¡ting a
background task.

the rcceiw ktîq nA emptybit is set whenever the receive buffer
conteins data.

T"l'rc wlume on linebit is set whenever the device is mounted.

13141' ffi

014J613t4

Chapter 1 GS/OS Device Call Reference D

The deuice ß intrntptingbit is set whenever the device is requesting
intem;pt service.

The deuice ß optt bit (character devices only) is set whenever a
Driver_Open call is made to the character device driver.

To mainain future compatibility, the driver mu$ reilm 0 in allreserved
bit positions for the status word, because reserved bits may be assigned
new values in the furure.

GetConftgPaf,ameters

Ihscrtptlon

Pa¡ameteñ Oftct
sm

configParaml,ist

sraruscode - $0001

The GetConfìgParameters subcall returns, in the starus list, a length word
and a list of confìguration parameters. The stn¡cnrre of the confìguration
list is device dependent.

The request count for this subcall (the length of the confìguration list plus
the length word) must be in the range from $0000 0002 to $0000 FFÏF.

No. Slzc aûd type

Length of list (in bytes)

Confìguration list

Vord
$02

Length

fi Apple IIGs GS/OS Device Driver Reference

GetValt$tatus

Ihscdption

P¡rameters Oft€t
f00

statuscode = $0002

The GetïTaitStarus subcall is used to determine if a device is in wait
mode or no'wait mode. nØhen a device is in wait mode, it does not
teminate a Read call until it hæ read the number of characters specifìed
in the request count. In no-wait mode, a Read call rerurns immediately
after reading the available characters, up to the maximum specifìed by
requestCount, with a transfer count indicating the number of
characters retumed. If one or more characters were available, the transfer
count hæ a nonzero value; if no character wæ available, the transfer
count is zero.

The satus list for this subcall contains $0000 if the device is operating in
wait mode, $8000 if it is operating in no-wait mode. The request count
must be $0000 0002.

weitMode

Sfue and type

\flaitlno-wait status of device

No.

lflord

o /[ole Block devices always oper¿te in w¿it mo<Je. Vhenever this call
is made to a block device, the call retuûts $0000 in the status list.

GetFormatOptions

Descrlptlon

statuscode = $0003

Some block devices can be formatted in more than one way. Formaning
parameters can include variables such æ fìle sptem group, number of
blocks, block size, and interleave. Each driver that supports media
varlables (rnultiple formatting options) contains a list of the formaning
options for its devices. The options can be used for two purposes:

Chapter 1 GS/OS Device Call Reference 31

Parameters Oftet

¡ An application can select one option with a SetFormatOptions
subcall prior to formatting a block device, See the description of the
DControl call later in this chapter.

¡ .An FST can display one or more of the options to the user when
initializing disks. See the section "Disk lnitialization and FSTs" in
Chapter 1l of 6,f/OJ Reþence.

The GetFormatOptions subcall ren¡tns the list of formaning options for
a particular device. Devices that do not support media variables rerum a

transfer count of 0 and generate no error. Character devices do nothing
and retum no enor from this call. If a device does support media
variables, it rerums a sþrus líst consisting of a four-word header followed
by a set of entries, each of which describes a formaning option.

No. Slze and type

$m

$oz

$04

s06

$08

soc

formatOptionl

Word Number of format option entries
in list\tord Number of options to be displayed

\Pord Recommended default formaníng
option\Pord Option with which cunently
on-line media was formatted
($0000 = unknown)

(t6 bytes) First format option entry

formatOptionN (16 b¡es) last format option entry

Of the total number of options in the list, zero or more can be displayed
on the initialization dialog presented to the user when initializing a disk
(see the calls Format and EraseDisk in Chapter 10 of GVOS Refercnce).
The options to be displayed are always the first ones in the list.
(Undisplayed options are available so that drivers can provide FSTs with
logically different options that are aaually physically identical and
therefore needn't be duplicated in the dialog box.)

- currentOption -
-recornended@ion-

nurnDisplayed

numOptions

32 Apple llcs GSiOS Device Driver Reference

nediasize

-interleavePactoÌ

blockSize

flags

linkRefNum

- formatOpt ionNum-

Each format option entry consists of 16 b¡es, containing these fields:

Oftet Size

Vord

tüÍord

IPord

Dæcription

Number of this option

Number of linked option

(See following defìnition)

$00

$02

$0ó

toA

$0c

I

þoe

blockcount

Linked options are options that are physically identical but that may
appear different at the FST level. Linked options are in sets; one of the
set is displayed, whereas all others are not, so that the user is not
presented with several choices on the initializaüon dialog. See the
example later in this section.

Bits within the flags word are defined æ follov,'s:

r Hgure l-t Flapword

Long¡vord Number of blocks supported by
device

Word Block size in bytes

lford Inteileave factor (in ratio to 1)

Ilord Media size (see flag¡s description)

'*'*'i:I*Ï
ncerved ffi.I

Chapter I GS/OS Device Call Reference ß

Example

In the format options flags word, fotmat type defines the general fìle
system family for formaning. An FST might use this information to
enable or disable certain options in the initialization dialog, Format type
can h¿ve these binary values and mønings:
00 Universal format
01 Apple format
10 Non-Apple format
11 (Not valid)

Size multipltcr is used, in conjunction with the parameter mediasize,
to calculate the total number of b¡es of storage available on the device.
Size multiplier can have these binary values and meaninp:

00 medíasi ze is in b¡es
01 mediasize is in kilobytes (KB)

10 mediasize is in megab¡es (lúB)

11 mediasiae is in gigabytes (GB)

A list retumed from this call for a device supporting fwo possible
interleaves intended to support one of Apple's file systems (DOS 3.3,
ProDOS, MtS, and tlFS) might be æ follows. The field transfercount
hæ the value $0000 0038 (56 bytes retumed in list). Only two of the three
options are displayed; option 2 (displayed) is linked to oPtion 3 (not
displayed), because both have exactly the same physical formatting.
Both must exist, however, because the driver will provide an FST with
either 512 b¡es or 256 bytes per block, depending oû the option chosen.
.At format time, each FST will choose its proper option among any æt of
linked options.

A Apple IIcs GS/OS Device Driver Reference

The entire format options list looks like this:

vdue lrplenedoa

Format options lßt heder:
$0003 Three format options in status list
$0002 Only nwo display entries
$0001 Recommendeddefault'option I
$0003 Cunent media formatted as specifìed by option 3

Format option 1:
$0001 Option I
$0000 linkRef = none
$000i Apple format/size in kilobytes
$m00 0640 Block count = 1600

$0200 Block size = 512 bytes
$0002 Interleave factor = 2:l
$0320 Media size = 800 KB

Format @tion 2:
$0002 Option 2

$0003 LinkRef = option 3
$0005 Apple format/size in kilobytes
$0000 0640 Block count - 1600
$0100 Block size = 256bytes
$0004 Inteileave faclor = 4:1
$0190 Media size = 400 KB

Format optím 3:
$0003 Option 3
$0000 linlcRef = none
$0005 Apple format/size in kilobytes
$0000 0320 Block count = 800
$0200 Block size = 512 bytes
$0004 Interleave facþr - 4:']',

$0190 Media size = 4001(B

Chapter 1 GS/OS Device Call Reference !5

GetPartltlonllap

Ilescrlpdon

statuscode = $0004

This subcall returns the partition map for a partitioned disk or other
medium in the starus list. The structure of the partition information is
device dependent. The map for Apple's implemenution is described
here. If you would like your partitioned device to be supported by the
Apple Advanced Disk Utility (ADU), you must use a similar map.

There are times that you will want to alter the contents of the partition
map of a partitioned device or veriff its contents. This subcall retums
the partition map of a head device (the fìrst in a linked list of partitions)
that you specifu. If you specify any device other than the head device,
error $11 (invalid device number) is retumed.

The size of the partition map canvairy, and the only way for an
application to be sure that the entire partition map has been read is to
validate the pmuapnlkcnt field in the map with the transfer count
renrned by ttre driver. If the value of pmuapBtkcnt times the value of
blocksize is not equal to rransf ercount, then the application
program must reissue ttre call with the appropriate reguest,count
value. If requestcount is not an integral multiple of btocksize, then
an invalid b¡e count enor is retumed. The partition map is retumed
beginning with the dau fìrst entry. It is not posible to read a specifìc
entry in the partition map; if you wish to reessign an entry to a different
type operating system, use the AssignPartitionOwner DControl subcall.
The partition map conkins these fìelds:

Apple IIcs GS/OS Device Driver Reference

t ¡ Ftguñ 14 Partition map

prhParEgIkCnt

pÍ|lPyParÈSÈårE

pmù'lapBlkCnr

pnslqPad
pnsig

pmPârtNüne
62b¡cs)

pnParÈlype
62b¡es)

pnProceSsor
Oó bytes)

(128 bytes of Sm)

The above figure shows a rypicalparrition map. Nore that all fìelds
are stored in high-b¡e-hrst order; even rhough the partition signature
is defined as $504D (.ASC[nPM,nfor "partition map'), it appears to
¡he 6502 family of processors (induding the 65C816 microprocessor)
æ $4D50,

$00
$02

$04

$08

$0c

$10

$30

$50

sy

s58

$5C

$60

$64

$6s

$6c

$70

$74

$78

$88

pn8ooÈEntry2

pnBooEEntry

pn8ootLoeda

pnBootLoad

pm8ooÈSlze

pmDâraCnr

pñLgDâÈâSÈart

Chaptø 1 GS/OS Device CallReference fj

pmSig

pmSigPad

pmMapBIkCnÈ

pmPyPartStart

pmParÈBlkCnt

pmPartName

pmPartType

Partition signarure; always $504D to signiff that this block contains a
Pârtition mâP,

Reserved; must be $00.

Number of blocks in the partition mâp.

First physical block of the partition.

Number of blocla in the partition map.

A user-defìned partition name. Can be any GS/OS legalname (which may
or may not be the same name as used by the sptem). If the name is less
than the maximum character length, it must be terminated with a null
character (ÂSfl code $00). An empty name can be specifìed by sening
the fìrst b¡e to the null character.

Partition type. This is an ASCIi string of from i to 32 bytes in lengh; case
is not signifìcant. If the rype is less than the maximum character length, it
must be terminated with a null character (ASCII code $00)..{n empty
name can be specifìed by setting the fìrst b¡e to the null character.

Here are some example partition types:

r Apple-trfFS

r Apple-HFS

r Apple_Unix-SVR2

r Äpple¡artition-map
r Apple-Drivø
r Apple-PRODOS

r Apple-Free

r Apple_Scratch

pmlgDatastart First logical block of the daa area.

pmDaracnt, Number of bloclcs in the daa area.

3t Apple IIcs GS/OS Device Driver Reference

pmParrsrarus Contains partition status information:

pml,gBoot,Start

pnBootSize

pmBoottoad

pmBootLoad2

pmBootEntry

Blt Mcrotng

0 Set if a valid partition map entry

I Set if partition is already allocated; clear if available
2 Set if partition is in use; might be cleared after a system reset

3 Set if panition contains valid boot information
4 Set if partition allows reading

5 Set if partition allows writing

6 Set if boot code is position independent

7 Freeforyouruse

First logical block of the boot code.

Size in b¡es of the boot code.

Specifìes the memory address at which the boot code is to be loaded.

Additional boot load information.

Specifìes the memory address at which execurion will begin after the
boot code is loaded.

Additional boot entry information.

Boot code checlaum.

pmBootEntry2

pmBootCksun

pmProcessor Processor type. This field conains an ASCI string of 1 to 16 bytes in
length, upper- or lowercæe cha¡acters. If either name is less than the
maximum character length, it must be terminated with a null character
(ASCU code $00). tur empty name can be specified by seuing the first
b¡e to the null character.

Here are some e:ømples of processor types:

r 6gooo '
r 68030

r 610Z

t 65cß16

¡ 8080

r 80386

Chapter I GSIOS Device Call Reference 9

Devlce-spoclffc Dstatus subcalls

Device-specific DStatus subølls are provided to allow device driver wrÍters to implement
søtus calls specifìc to indMdualdevice drivers'needs. DStatus calls with staruscode
values of $8000 to $tfFF are passed by the Device Managø direaly to the device
dispatcher for interpreation by the device driver.

The content and format of information retumed from these subcalls can be defined
individually for each type of device; the only requirements are that the parameter block
mu$ be ttre regular DStatus parameter block, and the status code must be in the range
from $8000 to $FFFT.

{0 Apple IIcs GS/OS Device Driver Referenæ

DControl ($2028)

Descriptton

Paraneters Oftet

pCount

devNum

controlCode

control-List

- transfercount -

requestCount

controlList

contrôIcode

devNum

pCount

Stue and type

Ilord input value (minimum = 5)

\[ord input value

Word input value

This call sends control information, commands, or data to a specified
device or device driver. DControl is really ten or more subcalls in one.
Depending on the value of the control code parameter (eontroLcode),
DControl can set several clæses of control information.

No.

$00

$02

$04

$0ó

$0A

$0E

I

2

3 Longword input pointer

4 Longword input value

, Longword result value

Word input value: the number of parameters in this parameter block.
Minimum is 5;maximum is 5.

Vord input value: device number of the device to which the control
information is being sent.

word input valuer specifìes the type of control request being made. Each
controlrequest coresponds to a Dcontrol subcall (DControl cells are
described later in this section).

Longword input pointer: points to a buffer that contains the control
information for the device. The format of the daa and the required
minimum size of the buffer are different for different subcalls. See the
individual subcall descriptions.

Chapter 1 GS/OS Device Call Reference 4l

Cont¡ol-ltst
brftr

Subcalls

reguesrcounr Longword input value indicates the number of bytes to be transfened.
For control subcalls that use a control list, this patameter gives the size of
the control list. For control sukalls that do not use the control list, this
parameter is not used.

rransfercount Longword result valus for control subcalls that use a control list, this
parameter indicates the number of b¡es of information taken from the
control list by the device driver. For control subcalls that do not use the
control list, this parameter is not used.

On a control call, the caller supplies a pointer (cont roll,ist) to a
buffer, whose size must be at least requestcount bytes. In some
ceses, the fìrst 2 b¡es of the buffer are a length word, speciffing the
number of b¡es of data in the buffer. In those cases, reguestcount
(which describes the amount of data supplied to the driver in the buffer)
must be at least 2 b¡es greatet than the amount of data the driver needs
to account for the length word. The value retumed in transfercount is

the number of bytes used by the driver. If not enough d¿ta is supplied for
the requested function, this call may retum enar $22 (invalid parameter).

For those subcalls that pas no information in the control list, the driver
does not access the control list and verify that its length word is 0;
instead, the driver þoræ the control list entirely.

DControl is several control subcalls rather than a single call. Each value for
the parameter controLcode conesponds to a particular subcall.
Control codes of $0000 through $7FfF are standard control subcalls that
are supported (if not actually acted upon) by every device driver.
Device-specifìc control subcalls, which may be defìned for individual
devices, use control codes $8000 through $Ffff.

Table 1-3 lists the cunently defìned values for controlcode. Following
the DCont¡ol enor listings, each of the standard control subcalls is
described individually.

42 Apple IIcs GS/OS Device Driver Reference

r Table 1-3 DControl subcalls

êo¡È!ô1Coda Subcdln¡æ

$0000
$0001
$0002
$0003
$0004
$0005
$0006
$0007
$0008
$0009
$000À-$7rFF
$800È$rFFr

ResetDevice
FormatDevice
EjectMedium
SetConfigParameters
SetVaitStatus
SetFormatOptions
AssignPartitionOwner
tumSign¿l
DisarmSignal
SetPartitionMap
(Reserved)
(Device-specifìc subcalls)

Erm¡s $tt Invalid device number
$2t Invalid control code
fi53 Parameter out of range

ResetDevlce

Deccdptlon

controlCode - $0000

The ResetDevice subcall sets a device's configuration parameters back
to their default values. ùfany GS/OS device drivers contain default
configuration settings for each device they control; see Ch¿pter 8,
"GS/OS Device Driver Design," for more information.

ResetDevice also sets a device's format options back to their default
values if the device supports media variables. See the SetFormatOptions
subcall described later in this section.

If ttris call is successful, the transfø count is 0. The reque$ count is
ignored, and the conrol list is not used. Howevø, for future
compatibílity, the reguestCount pa¡ameter should be set to $0.

Chapter 1 GS/OS Device CallReference I

FormatDevice

Description

conÈrolCo¿e = $0001

The FormatDevice subcall is used to format the medium, usually a disk
drive, used by a block device. This call is not linked to any particular
fìle system, in that no directory information is written to disk.
FormatDevice simply prepares all blocla on the medium for reading
and writing.

After formatting, FormatDevice resets the device's format options back
to their default values if the device supports media variables. See the
DControl subcall SetFormatOptions described later in this section.

Character devices do not implement this function but retum with
no enor.

If this call is successful, the transfer count is 0. Request count is ignored;
the control list is not used. However, for future compatibility, the
requestCount Parameter should be set to $0,

Ejectìtedlum

Ihscrlption

controlCoae = $0002

The EjectMedium subcall physically or logically ejects the recording
medium, usually a disk, from a block device. In the cæe of linked
devices (sepuate partitions on a single physical disk), physical ejection
occurs only if, æ a result of this call, all ttre linked devices become off
line. If any other devices linked to the device being ejeaed are still on
line, the device being eiected is marked as off line but is not
actually ejected,

Character devices do not implement this funaion but retum with
no enof.

If this call is successful, the transfer count is 0. Request count is ignored;
the control list is not used. However, for future compatibility, the
requesÈCount Parameter should be set to $0.

44 Apple IIcs GS/OS Device Driver Reference

SetConfigParaneters

Description

Pa¡ameters Oftct
s00

controlCoae = $0003

The SetConfìgParameters subcall is used to send device-specific
confìguration parameters to a device. The confìguration parameters are
contained in the controllist. The first word in the control list (renstn)
indicates the length of the configuration list, in b¡es. The confìguration
parameters follow the length word.

No. Slze and type

Length of list (in bytes)Vord
s02

conflgPara¡ntist Confìguration list

This subcall is most typically used in conjunction with the sarus subcall
GetConfigParameters. The application fìrst uses the status subcall to get
the list of configuration parameters for the device; it then modifies
parameters æ needed and makes this control subcall send the new
parameters to the device driver,

The request count for this subcall must be qual to tensrh + 2.
Furthermore, the length word of the new configuration list must equal the
length word of the existing confìguration list (the list returned from
GetConfìgParameters). If this call is m¿de with an improper
configuration list length, the call returns enor $22 (invalid parameter).

length

SetValtStatus

Descriptton

control-eo¿e - $0004

The SetVaitStatus subcall is used to set a characrer device to wair mode
or nowait mode.

Chapter 1 CS/OS Device CallReference 45

Il'hen a device is in wait mode, it does not teminate a Read call until it
hæ read the number of characters specified in the request count. In no-
wait mode, a Read øll retums immediately after reading the available
characters, with a transfer count indicating the number of characters
retumed. If one or more characters are available, the transfer count is
nooZ€ro; if no character is available, the transfer count is zero.

Tt¡e conrol list for this subcall contains $0000 (to set wait mode) or
$8000 (to set no-wait mode). The request count must be $0000 0002.

P¿raoctcrs Oftet
$00 r¡aitt'tode

$lze and type

\faVno-wait status of device

No.

lford

This subcall hæ no meaning for block devices; they operate in wait mode
only. Set\faitSørus should retum from block devices with no enor (if
wait mode is requated) or with enor $22 (invalid parameter) if nowait
mode is requested.

SetFormat0ptions

Ilescrlptlon

Pa¡amctcr Oñet
$00

-interleaveFactor-

- formatOptionNum-

controlCoAe = $0005

Some block devices can be formatted in more th¿n one way. Formatting
pafimeters can include variables such æ fìle system group, number of
blocls, block size, and interleave. Each driver that supports media
variables (multiple formaning options) contains a list of the formatting
options for its devices.

The SetFormat0ptions subcall is used to set these media*pecifìc
formaning paremeters prior to executing a FormatDevice subcall.
SetFormatOptions does not itself cause or require a formaning
operation. The control list for SetFormatOptions consists of two
wordlength parameters.

$02

No.

Vord

\Vord

Slze and type

Number of format option

Ovenide interleave factor
(if nonzero)

ß Apple IIcs GS/OS Device Driver Reference

The format option number (formatoptionNun) specifìes a particular
format option entrT from the driver's list of formatting options
(rerurned from the DStatus subcall GetFormatOptions). The format
option entry has this format:

Parzneters Ofbet

s00

s02 i

s04

$06

s0A

$0c

s0E

rmatOpt

IinkRefNum

interl-ear¡eFactor

Size and type

The number of this option

Number of linked option

File system information

Number of blocks supported
by device

Block size in bytes

Interleave factor (in ratio to 1)

Media size

No.

lflord

Word

Word

Longword

!flord

Word

Word

See the description of the DStarus subcall GetFormatOptions, earlier in
this chapter, for a more detailed description of the format option entry.

The interleaveractor parameter in the control list, if nonzero,
ovenides interleave!"actor in the format option list. If the control
list intedeave factor is zero, the interleave specified in the format option
list is used.

To carry out a formatting process with this subcall, do this:

1. Issue a (DStatus) GetFormat0ptions subcall to the device. The call
retums a list of all the device's format option entries :rnd their
conesponding values of f ormatopt ionNum.

2. Issue a (DConüol) SetFormatOptions subcall, specifying the desired
format option.

3. Issue a (DControD FormatDevice subcall.

nediaSize

blocksize

blockcount

flags

Chapter 1 GS/OS Device Call Reference {7

A Important SetFormatOptions sets the parameters for one subsequent
formatting operation only. You must call SetFormatOptions each
time you format a disk with anything other than the recommended
(default) option. a

The SetFormetOptions subcall applies to block devices only; character
devices retum effor $20 (invalid request) if they receive this call.

Ass ignPartitlonOrvner

Dæcrtptton

Parameteæ Oft€t

controlCoae = $0006

The AssignPartitionOwner subcall provides support for partitioned
media on block devices. Each partition on a disk has an owner,
identifìed by a string stored on disk. The owner name is used to identify
the fìle s)'stem to which the partition belongs.

This subcall is executed by an FST when an application makes the call
EræeDisk, to allow the driver to reæsign the partition to the new owner.

Partition owner names are assigned by Apple Developer Technical
Support and can be up to 32 b¡es in length. Uppercæe and lovrercase
characters are considered equivalent. The control list for this call consists
of a GS/OS string naming the partition owner.

No.

Word

Size ad type

Iængth of name (in bytes)$00

owne¡Name Partition owner name

Block devices with nonpartitioned media and character devices do
nothing with ttlis calland retum no enor.

s02

length

4E Apple IIcs GS/OS Device D¡iver Reference

Atmslgnal

Descriptlon

Par¿meters Oß€t

signalCode

priority

handlerÀddress

- handLerÀddress -

priority
signaJ-Code

Size and type

ID for this handler and its signals

Prioriry for this handler's signals

cont,rolcoae = $0007

The Armsignal subcall provides a means for an application to bind its
own software intem.rpt handler to the hardware intemrpt handler
controlled by the device.

An ArmSignal call is issued by application programs to inform the driver
to call an application-supplied intemrpt handler routine at the location
specified in handler.A,ddress. The SIGNAI system service call
provides the signalcode and priority values to GS/OS.

sm

$02

s04

No.

Vord

Ilord

longword Pointer to signal handler's entry

The signalcode pârânìeter contains the ID of the condition that the
driver will pass to GS/OS when the condition ocçurs. The sisnatcode
ID is æsigned by the caller and must match a unique number defìned by
the device driver. The only subsequent use of the sisnalcode number
is æ an input to the DControl subcall DisarmSignal. A device driver
should bind only one signal handler to each of its defined
signalCode numbers.

The priority parâmeter is the sþnal prioriry the caller wishes to assign
to the signal condition; $0000 is the lowest prioriry, and $FFFF is the
highest priority.

The handterÀddress parameter is the entry address of the caller's
signalhandler. Control is passed to this address when GS/OS dispatches a
queued signal æsociated with an occr¡rence of the signal condition. See

Chapter 9 of the GS/OS Refemce for a description of the signal handler
execution environment.

Chapter 1 GS/OS Device CallReference 0

tur example may help to clariff how this subcallworls. Imagine that
we've defìned three different values for the signalcode pârârrl€t€t,
each representing a unique occurrence within the computer (for example
a hardware interrupt).

.tga¡rcod. $tgnelrourae

$0000 Break sequence detected
$0001 Transition detected on the CTS input line
$0002 Transition detected on the DCD input line

An application program needs to be signaled when a break occurs or
when the DCD line changes state. If both events happen simuluneously,
the application program needs to be informed about the DCD transition
fìrst. The application program doesn't care about the CTS transitíon.
Here's how it would call a driver to set up things:

First, the application program calls ArmSignal twice to bind is nuo sþal
handlers to the driver's signal sources. The fìrst call uses these parameter
values:

sisnarcode $0002 (ID for detecting DCD transition)
prioriry $FFFF
handlerÀddress Address of handler code

Tt¡e iecond ArmSignal call uses these parameter values:

sisnalcode $0000 (lD for detecting break)
priority $fffE
handlerAddress ,{ddress of handler code

Now that the driveds sþalsources have been bound to the signal
handlers, seve¡al events can occur. This is how GS/OS handles these
events:

If DCD changes state:

1. When the signal source detects that DCD hæ changed state, it issues a
SIGNAT system service call with a prioriry of $FFFF in the.A, register
and the address of the DCD-handling routine in the X and Y registers.

2. when GS/OS is no longer busy and is able to dispatch signals, it calls
the application's DCD-handling routine.

50 Apple IIGs GS/OS Device Driver Reference

If a break occurs:

1, When the signalsource notices that a break hæ occuned, it issues a
SIGNAL system service call with a priority of $FFFE in the A register
and the address of the break-handling routine in the X and Y registers.

2. Vhen GS/OS is no longer busy and is able to dispatch signals, it calls
the application program's break-handling routine.

If DCD changes state and a break occurs:

1. Ilhen the signalsource notices that a break has occuned, it issues a

SIGNAL system service call pæsing a priority of $FFFE in the A
register and the address of code to be called when a break is
detected in the X and Y registers. The signal source also notices that
DCD hæ changed state, so it makes another SIGNAL system service
call passing a priority of $FFFF in the A register and the address of
code to be called on a DCD transition in the X and Y registers.

2. when GS/OS is no longer busy and is able to dispatch signals, it first
calls the application program's DCD-handling code, since the DCD
signalwæ given a higher priority by the application when it made the
Armsignalcalls.IÍhen GS/OS dispatches the next signal, it calls the
application program's break-handling code unless another higher-
priority signal event hæ occuned.

DlsarmSlgnal

Descrlptlon

Parameters Oftet
$00 signalCode

Slze and type

Signalhandler's ID

cont rolcoae ' $0008

The DisarmSignal subcallprovides a means for an application to
unbind is own software intemrpt handler from the hiardware intemrpt
handler controlled by the device. The sisnalcode pârârr€t€r is the
identifìcation number æsigned to that handler when the signal
was armed.

No.

Vord

Chapter 1 GS/OS Device Call Reference 5l

SetPartitlonMap

IÞscdptlon

statuscode * $0009

This call passes the partition map for a partitioned disk or other medium
to ¿ device in the control list. The structure of the partition information
is device dependent.

Devlce-speclûc DConuol subcalls

Device-specifìc DControl subcalls are provided to allow device driver writers to
implement control calls specifìc to individu¿l device drivers'needs. DControlsubcalls with
conrrorcode v¿lues of $8000 to $FFFF are passed by the Device Manager directly to the
device dispatcher for interpretetion by the device driver.

The content and format of information passed by this subcell can be defìned individually
for each typ of device, The only requirements are that the parameter block must be the
regular DControl parameter block, and the contrcl code must be in the range $800F$FFFF.

52 Apple IIcs GS/OS Device Driver Reference

Dnead ($zozq

Descrlpdon

Paraoctcrs Oft€t

Tt¡is call performs a device-level read on a specifìed device. It transfers
data fiom a character device or block device to a caller-supplied buffer.

- transfercount -

blockSize

- startingBlock

requestCount

buffer

devNu¡a

pCount

Sþc and type

Ilord input value (minimum - 6)

Word input value

No.

$00

$02

$04

¡ß

$0c

$10

$r2

1

longword input pointer

4

5

2

3

longword input value

longword input value

Ilord input value

6 longword result value

pCount lford input value: the number of parameters in this parameter block.
Minimum is 6; maximum is 6.

devNum Ïlord input value: device number of the device from which data is to
be read.

buffer Longword input pointer: points to a buffer into which the dau is to be
read, Ttre buffer must be big enough to hold the data,

requesrcounr Longword input value: specifies the number of bytes to be read.

startingBlock Long¡word input value: For a block device, this parametø specifies the
logical block number of the block whe¡e the read starts. For a character
device, this parameter is unused.

Chapter 1 GS/OS Device CallReference fi

btocksize I[ord input value: the size, in bytes, of a block on the specified block
device. For nonblock devices, the parameter must be set to 0.

rransfercount Longtvord result value: the number of bytes actually transfened by
the call.

Cha¡acær
dcvices

Bloct devices

Etmrt

You must first open a character device (with an Open call) before reading
characters from it wittr DRead; othervrise, DRead rerums enor $23
(device not open).

If the paramet€r blocksize is not 0 on a DRead callto a character
device, DRead returns enor $58 (not a block device).

DRead does not support caching. From block devices, DRead always
reads data directly from the device, not from the cache (if any).
Furthermore, the block being read will not be copied into the cache.

The request count should be an integral multiple of block size; if it is not,
the call retums enor $2C (invalid b¡e count). If the block number is
outside the range of possible block numhrs on the device, the call
retums enor $2D (invalid block nurnber).

$tt Invalid device number
i23 Device not open
$2C Invalid b¡e count
$2D Invalid block number
$53 Parameter out of range
$58 Not a block device

a

t4 Apple IIcs GS/OS Device Driver Reference

Dr[rire ($2030)

Description

Patemeters Oft€t

pCount

devNum

transferCount

blockSíze

startingBlock

strPtr

devNu¡n

pcount

Sfue and type

Iford input value (minimum = 6)

Tford input value

This call performs a device-levelwrite to a specified device. The call
transfers daa from a caller-supplied buffer ro a character device or
block device.

No.

$00

$02

$04

$08

$0c

$10

$12

I

4

)

3

longword input value

longword input pointer

longword input value

5

6 Longword result value

Vord input value

Word input value: the number of parameters in this parameter block.
Minimum is 6; maximum is 6.

Word input value: device number of the device from which data is to
be wrinen.

buffer Longword input pointer: points to a buffer from which the data is to
be written.

requestcount Longword input value: specifies the number of b¡es to be written.

startingBlock Longword input valuq For a block device, this parameter specifìes the
logical block number of the block where the write stafis. For a character
device, this parameter is unused.

Chapter I GS/OS Device Call Reference t5

blockSize ll'ord input value: the size, in b¡es, of a block on the specified block
device. For nonblock devices, the parameter is unused and must be
se to 0.

r,ransfercount longword result value: the number of b¡es acnrally transfened by
the call.

Ch¡racar
devlces

Btocl¡ deviccs

Ermæ

You must first open a charaler device (with an Open call) before writing
characters to it with D!flrite (or ![rite); otherwise, Dlfrite returns error
$23 (device not open).

If the paramet€r br.ocksize is not 0 on a Dlfrite call to a character
device, DWrite retums enor $58 (not a block device).

Dïlrite does not support caching. When writing to block devices,
D\[rite does not also write the blocks into the cache, if there is one.

The request count should be an integral multiple of block size; if it is not,
the call retums enor $2C (invalid b¡e count). f the block number is
outside the range of possible block numbers on the device, the call
retums enor $2D (invalid block number).

$tt Invalid device number
$25 Device not open
$2C Invalid b¡e count
$2D Invalid block number
$53 Parameter out of range
$58 Not a block device

fi Apple IIcs GS/OS Device Driver Reference

DRen¿me ($2036)

Description

Püamctcrt

pCounÈ

devNum

strPtr

Ermñ

This call replacæ a device name as specifìed in a device
information block.

Oftct No. Slzcmdtype

- wo¡d IMUT ralue (minimum - 2)

l-\ford IMUT valt¡e

2-tongword INPUT pointer

$00

s02

$04
gtrPt r

devNur¡

pcount

IØord input value: the number of parametøs in this parameter block.
Minimum is 2;maximum is 2.

Iford input value: device number of the device from which data is to
be wrinen.

Longword input pointer: points to a GS/OS input string with a maximum
length of 31 dSCII characters. The string must be uppercase with the
most significant bit off.

$tt Invalid device number
$53 Parameter out of range
$62 Device witt¡ same name exists

Chapter 1 GS/OS Device Call Reference J1

(

Chapter 2 Ïhe SCSI Driver

This chapter describes the GS/OS SCSI (Small Computer
System Interface) drivers. There are three SCSI block drivers (the
Apple HD SC hard disk driver, theAppleCD SCo CD-ROM driver, and
the Apple Tape Backup 40SC driver) and one SCSI character driver
(the Apple Scanner driver). These drivers suppofi a similar set of calls and
provide a common standard driver interface for SCSI devices.

Tl.is chapter also describes the SCSI Manager. This supervisory driver
manages the SCSI bus and arbitrates between all 5C$ device drivers
and SCSI peripherals.

I

Device calls to the SCSI driver

All Apple SCSI drivers support these standard GS/OS device calls:

r Dlnfo
r DStatus

r DControl

¡ DRead

r DVrite
r DRename

The SCSI driver ¿lso supports additional device-specific DStatus and DControl subcalls.
Because the device+pecific DStatus and DControl subcalls for the SCSI driver follow the
industry sundard format for SCSI calls, this chapter provides descriptions of only the
Apple-un(ue commands. All other SCSI commands are identical to the American National
Stand¿rds Institute (ANSD SCSI standard and can be found in the ANSI SCSI document.
This and other documents should be on your bookhelf if you plan on writing your own
driver. They are

t ,apleCD SC Danlopa's Guide

r ANSI X3.131-1986, Small Conputer Systøn Interføce (SCSI) spcífication
r SCSI-2 proposed specifìcation

The Apple publication can be obøined from

Apple Programmeds and Developet's Association (APDA")
Apple Computer, Inc.
20125lvlariani Avenue, Mail Stop 31G
Cupertino, CA 95014"62W
800-282-APD.{

The other two publications can be obained from

Global Engineering Documents
2805 McGawAvenue ,
Irvine, CA 9271.4
7 14-261-1455 or 80U854-7 t7 9

The SCSI-2 document is necessary beøuse it documents the device support that hæ been
added to the SCSI standard since the release of the original SCSI specification.

60 Apple IIcs GS/OS Device Driver Reference

(
Dsan¡s ($zozD)

The SCSI driver supports all sandard stah¡s subcalls. See Chapter 1 of this reference for a
description of the DStatus call.

All of the device-specifìc SC$ driver DSaus zubcalls use the same format for the status
list (the buffer pointed to by statusLisr in the DStatus call).

Oftct Descrlpdon

Version of parameter list

12 bytes oÍ ù¡a

$0E

Pointer to buffer that may contein
additional information

) Note: Use this status list for all satus calls unless you wish to use daø-chaining
commands. See the data<haining status list in the section 'Daa Chaining' later
in this chapter.

$00

$02

Version

commandData

bufferPtr

Contains version of ttre parameter list. If you are using daa<haining
commands, this version must be 1.

Conøins subcall-specific information.

Contains a pointer to a buffer that contains the source data to be
transfened by the call or to the destination buffer where retum data is to
be placed by the call.

bufferPtr

conmandData

s0000

(

Chapter 2 The SCSI Driver 6l

The commandoara parameter and the contents of the data buffer pointed to by
buf ferprr are different for each subcall.

Dæcttptlon

Retuml¿sttresult (DStatu subcall)

controlcoAe - $0005

This subøll providæ an application with a means to query the driver for
the results of the læt device-specifìc call issued, provided that no other
call hæ been issued since. Because the Apple SCSI drivers utilize auto-
seruing (automatically issuing a Request Senæ call when an enor occurs),
this is the only way to get accurate sense data from the device when using
device-specifìc stâtus and control subcalls. You can use this method
afrer having issued an asynchronous call to veriff that the call performed
the requæted action. For example, if an æynchronous format call is
issued to a device, the application has no immedate means of veriffing
the success of the format. Issuing a RetumlastResult subcall will indicate
the succes or failure of the format.

Parameters This øll retuÍts requestlensth bytes up to 16 b¡æ maximum. The
rerumed information format is shown in Figure 2-1.

r Flgure 2-1 RetumlastResult subcall retum da¡a

Device specif ìc information

$00

$02

$04

$06

$08

$0A

$0c
$08 Devlcê Specif,ic t4

Devlcê Speclflc 13

Devlce Speclflc *2

Devlce Speclflc tl

Devlce lD Nunber

GS/OS Error Cocle

62 Appte ncs GS/OS Device Driver Reference

I
GS/OS Error Code

Reflects, as closely as possible, the problem encountered while
performing the last requested transaction. GS/OS enor codes are listed in
Appendix B.

Device ID Number
Conøins the SCSI device number

Devi.ce Error Code (major)
Contains device-specífic enor information defined by and generated by
the device. This word will be $00 if the request was succesfully
completed. The values are defined in Table 2-1.

r Table ã1 Device enor codes (maior) defìnitions

Ír00000r

rr01010r

Dlr
76'432r0 Eñlf

Good; no enor
Check condition
Good; condition met
Busy
Good; intermediate
Good; intermediate, condition met
Reservation conflict

Queuefull

rr00001r
rr00010r
rr00100r
rr01000r
rr01100r
rr10100r
r . ¡eserved

Device Error Code (minor)
A combination of several bits and the sense key, it provides a much more
exact defìnition of the enor sutus of the device. The bits and key are
defined inTable2-2,

Chapter 2 the SCSI Driver 63

. Ta¡bla?"z Device enor cods (minor) definitions

Blr vdue Error

5

4-
H $0-$B

Indicates that the læt command read a file mark.
This is used only for sequential-access devices.

Indicates an end-of-medium condition. It is used in
sequential-access and printer devices. This includes
end-of-tape, beginning-of+ape, and out-of-paper
conditions. Not used in direct-access devices.

Indicates that the requested logical block length did
not match the logical block length of the data on the
medium. (Refer to the Al,lSI X3.131-1986 SCSI

specification for a discussion of logical
block lengths.)
Reserved.

Sense key. These bits show the deaíls of the device
enor code. The 16 posible sense keys are

fcy Deñ¡ltlon

$0 No sense

$t Recovered enor

fiZ Not ready

$3 Medium enor

$4 Hardware enor

$5 lllegalrequest

$6 Unit anention

$7 Data protect

$8 Blank check

$9 ,Vendorunique

$¡, Copy aborted

$g Aborted command

$C Equal

$D Volume overflow

$r Miscompare

$n Reserved

7L
6r

I

64 Apple llcs CS/OS Device Driver Reference

Device Specific #fandDevice Specific #2
Uæd to form a longword (ordered from MSB to I5B); contain
information about the failure. A few sample values are shown below.
There are more than a hundred failure codes listed in the AI.ISI SCSI
specification; refer to it for a complete list of failure codes.

l,rmr

The unsigned block address associated with the sense key.

The difference (residue) of the requested length minus the
actual length in either bytes or blocla, æ determined by the
command. (Negative values are indicated by two's
complement notation.)

Devj-ce Specific #3
Reserved; must be $00

Device Specifì.c #4
Contains the extended sense key that was reilmed by the device. This
enor information is device specifìc and defined by the vendor.

Godc

1

2

n€adTOC (D$tatus $¡bcatt)

Descrlptton

controlCode - $80C1

This subcall appliCI to the AppleCD SC only.

The ReadTOC subcall reads the table of contents information f¡om the
CD-ROM and rerums it to the host. Ttre format for this subcall is shown in
Figne22,

Chapter 2 Ttre SCSI Driver 6t

Pa¡ameters

Opcode

Flags

Track number

Reserved

TyPe

Reserved

r Flgtnt 2-2 ReadTOC subcall format

$c1

$00

Requested track number,07-Ð in binary<oded decimal (BCD)

Must be $00

Indicates the type of TOC requested by the call. The valid values and
their meanings are

Vduc Dclnlúon

$00 Requesr the fìrst and læt user track number in BCD.

$Ot Requests the strfiing address of the leadout area (minutes,
seconds, and frames) in BCD format.

$02 Requests the starting address of each track, stafiing with the
track number specifìed in rrack number (subcall byte $02).
The quantity of track addresses transfened is equal to the
value of erlocation length or the number of available
track address bytes, whichever is less.

Must be $00

Reserved s00s6-sB

Types5

Reserved s00s4

Reærved s00s3

T¡ack number$2

Fla¡p s00sl

Opode scrs0

0I)34567Bit

Byte

6 Apple IIGs GS/OS Device Driver Reference

(
The three retum data formats are shown in Figures 24 through 24.The parameters and the
definitions are listed following each fìgure.

r Ftgurt 2-3 ReadTOC subcall retum data (TOC type $00)

þg uscr t¡ack number in BCD$1

Fhst Uær track number in BCD$0

01234567Bit

Byte

User track number
Two bytes that conuin the first and læt user track numbers on the disc.

r Flgtut 24 ReadTOC subcall retum data (TOC type $01)

I.eadoutarea sarting¿ddrcs fta¡ne) in BCD12

I¡adout a¡ea caring addres (second) in BCD$t

Leadout arca saning addres (minu¡Ð in BCD$0

01)34567Bil
Byte

Lead-out area starting addrpss
Contains the sarting address of the leadout area (minutes, seconds, and
frames) in BCD format.

{

I

Ctraptø 2 TheSCSI Driver 67

Cont ro1

r Figrrrc 2-i ReadTOC subcall rerum data (TOC type $02)

Contains the type of track requested in this call. The tracla can be of
several types: data; audio with preemphasis; audio without preemphæis.
The options are

Blr
321 0 Deñnltlon

Two audio ch¿nnels without preemphasis

Two audio channels with preemphæis
Four audio channels without preemphæis

Four audio channels with preemphasis

Data track
Reserved
Reserved

Digital copy protected
Digital copy protected

Starting address
Retums the stafüng add¡ess of each track for a range of tracl<s, starting
from the track specifìedin the Track number b¡e. Addresses are
retumed in ascending sequential order until the number of b¡es
specifìed in ttre allocation length have been uansfened or until all
available data has been transfened to the host.

0
0
1

1

0

0

1

x
x

0

1

0

1

0
1

X
x
x

X
x
x
x
x
x
X
0
1

0

0

0
0
1

1

1

x
x

Sørting address (fnme) in BCD$3

Starting address Gecond) in BCD$2

Sraning address (minute) in BCD$1

Cont¡olReærved$0

0I234567Bit

Byte

6t Apple IIcs GS/OS Device Driver Reference

ReadQSubcode (OStatus subcell)

Deccrtptbn

controlCo¿e = $80C2

This subcall applies to the AppleCD SC only.

This zubcall returns the Q Subcode daø of either data tracks or audio
tracks. The format for ttris subcall is shown in Figure 2-6.

Peraocærs

r Flgurc 26 ReadQSubcode subcall formar

opcode $C2

Flass $00

Reserved Must be $00.

The ReadQSubcode retum daa format is shown in Figure 2-7.

Resen€d $00$2

FlagB $00$1

Opcode sc2$0

0I234567Bir

Byte

Chapter 2 The SCSI Driver O

r Ftgruc 2-7 ReadQSubcode subcall retum data (TOC type $02)

Conains the type of tracks requested. See the ReadTOC subcall for a
description of this fìeld.

Specifìes the cunent track number, between I and 99 in BCD notation.

Specifies the index number æsigned to the cunent track.

Contains the relative running time in minutes, seconds, ¿nd frames from
the hginning of the track.

Contrains the absolute running time in minutes, seconds, and frames from
the beginning of the disc.

Control

Track nurnber

Index number

Address

Address (abs)

Àdùess (abs. frame)$8

Addrcss (abs. second)s7

Âddress (ah. minute)$6

Åddres (fr¿me)$5

Âddress (second)$4

Äddres (minute)$3

Index number$2

Track number$1

ControlReærved$0

0It34567Bir

Byte

il Apple IIGs GS/OS Device Driver Reference

ReadHeader (DStahs subcaü)

Descriptlon

controlCo¿e = $80C3

This subcall applies to the AppleCD SC only.

The ReadHeader subcall returns 4 bytes of header information for the
specified logical block address on the CD-ROM. The format for this
subcallis shown in Figure 2-8.

Pa¡amcErs

r Flgurc 2-8 ReadHeader subcall format

opcode $C3

Flass $00

Brock address Conains the number of the requested logical block,

Reserved Must be $00.

The retum data format is shown in Figure 2-9.

Reserved s00$3-$B

Blockaddæs$2

Commandflags $00$1

Commandcode $c3$0

01234567Bit

Byte

Chapter 2 The SCSI Driver 7l

I Ftgurc 2-9 ReadHeader subcall retum data

Logícal block address
Four b¡es that contain the absolute address (minutes, seconds, and
frames from the beginning of the disc) in BCD format of the requested
logical block.

Mode Contains the mode of the requested block.

$4 Mode

$3 Iogical block addrcs (I5B)

$2 Iogiøl blockaddrcs

$1 Logiøl block addrcs

$0 togical block address (MSB)

0173456Bir 7

Byte

Audtosatus (DSatus subcall)

Deccrlptlon

controlcoae - $80CC

This subcall applies to the AppleCD SC only.

The AudioStatus subcall ren¡ms the audio play stanrs and the staÍing
address of the next track, Ttre format for this subcall is shown in
Figure 2-10.

n Apple IIcs GS/OS Device Driver Reference

Pa¡ameters

I Figuæ 2-10 AudioStatus subcall format

opcode $CC

Flass $00

Reserved Must be $00.

The AudioStahrs retum d¿a format is shown in Fþre 2-11.

r Flgnæ 2-11 AudioSatus subcall retum d¿ta

$00RÊs€rved$2-$B

Flap 00l

Opcode cc0

0I234567

Byte

Bir

Àddæsç (abs. freÍie)$5

Address (abs.s€cond)$4

a Addres (abu. minute)$3

Cont¡olReserved$2

PlaymodeReserved$1

Status$0

0I734567Bit

8y(e

Chapter 2 The SCSI Driver n

Status

Play mode

Control

Address

Reflects the cunent audio san¡s of the AppleCD SC. The possible
retumed values and their meanings are

Vdnc üc.û¡ûg

$00 The device is in AudioPlay mode following the ocecution of an
AudioSearch subcall or AudioPlay subcall.

$01 The device is in pause mode.

$02 The device is in mute mode following the execution of an
AudioSearch subcall or AudioPlay subcall.

$03 The device hæ just completed an AudioPlay operation.

$04 An enor occuned during AudioPlay operation.

$05 AudioPlay operation not requested.

Determines which recorded audio clunnels are sent to which output
channels. See the desaiption of the AudioSearch subcall later in this
chapter for an explanation of this fìeld.

Shows the kind of information that is on the cunent track. See the
ReadIOC subcall for a description of the conr ror fìeld bits.

Iast 3 bytes of retum data; contains the cunent absolute address
(minutes, seconds, and frames from the beginning of the disc)
in BCD format.

74 Apple IIcs GS/OS Device Driver Reference

DControl ($2028)

The SCSI driver supports all standard device-specific subcalls. Please see Chapter 1,

"GS/OS Device Call Reference,n for a description of the general format of the
DControlcall.

All of the SCSI device-specifìc subcalls use this same format for the control list (the buffer
pointed to by controltistPtr):

bufferPtr

s0000

Oftct Descrtptlon

Version$00

12 bytes of daa

$0E Pointer to buffer that may contain additional
information

Version Contains version of the parameter list. If you are using daa<haining
commands, this version must be $0001. Otherwise, it should be $0000.

commandDara Contains subcall-specific information.

bufferprr Contains a pointe¡ to a buffer that conaíns the source data to be
transfened by the øll or to the destination buffer where retum dau is to
be placed by the call.

Ttle commandDara parameter and the contents of the data buffer pointed to by
buf ferptr are different for each subcall,

$02

Chapter 2 The SCSI Driver V,

Descrtption

Pa¡amcters

Partition type

AssignPartttton(hvner (DControl subcall)

controlco¿e = $0004

Thís subcall provides FSTs the ability to æsign a new FST owner to a
device partition. It does this by writing an ASCII string to the partition
map, but it does not alter any other information on the m¿p.

The AssignPartitionOwner subcall is supported by block devices that
allow partitioned media. This call is initiated by an FST æ a result of the
EraseDisk system call in order to label the partition with the FST type.

The input parameter consists of an ASCII string indicating the partition
type. Ttre string can be up to 3?bytes in lengh (not cæe sensitive). If
the string is less than 32bytæ in length, it must be terminated with a null
character. A panition rype can be cleared by setting the fìrst b¡e of the
string to $00 (the null character). The driver reassigns the cunent partition
to the new owner. This subcall does not reassign physical block allocation
within a device partition descriptor. Block devices utilizing
nonpartitioned media and character devices retum with no error. Figure
2-12 shows an example of a parr ir ion r¡>e ASCII string.

I Flguæ 2-12 Example p¿rtition rype ASCII suing

$00s53$4Fs44s6Fs7Z$50$5Fs6t$ócs70$70$41$00$0D

0'b'7þ' 7./'@

76 Apple IIcs GS/OS Device Driver Reference

{

Partition owner names are assigned by Apple Developer Technical
Support and øn be up to 32 b¡es in length-uppercese and lowercæe
characters are considered equivalent. The control list for this call consists
of a GS/OS ASCII string conteioing the partition owner name. Here are
some examples of partition rype names:

r Apple_MFS

r Apple_HFS

I
r Apple-partition_map
r Apple_Driver

r Apple-ProDOS
r Apple_Free

r Apple Scratch

AudloSea¡ch (DControl subcall)

Descrlptlon

controlCo¿e - $80C8

îris subcall applies to the AppleCD SC only.

The AudioSearch subcall provides a means for positioning the optical
piclnrp at an address and retums a stâtus b¡e if and when the address is
found. Tt¡e format for this subcall is shown in Figure 2-13.

Chaptu2 TheSCSIDriver n

Paramcteir

Opcode

Flags

Play flag

Play mode

r Flgur 2-13 AudioSearch subcall format

$cg

$00

$QQ e pause after search complete
691 = plal after search complete

Daennines which recorded audio channels are sent to which audio
outp,r.rt connectors, ,il the possible combinations are shown inTable 2-3.

Reserved $00$9-$B

Type$8

Searchaddrcs (58)$7

Sea¡ch addrcs$ó

Seardl addrcss5

Searchaddæss fiSB)$4

Pþmode$3

Phy flag$2

Flags $00$1

Opcode $c8$0

0I234)61Bir

Byte

78 .dpple IIcs GS/OS Device Driver Reference

r Table 2-3 Play modes

pl¡fnodc Dcûnitl,on

$00

$ot
$02

$03

$04

Play with muting on, no audio output
Play right channel only through right output
Play left channel only through right output
Play both channels through right output
Play right channelthrough left output

$06

$oz

$08

$0e

$0c
$0D

$o¡,
$08

$08

Play right channel through left output, left channel through
right output
Play right channelthrough left output, both channels through
right output
Play left channel through left output
Play left channel through left output, right channel through
right output (stereo)

Play left channel through both outputs
Play left channel through left output, both channels through
right output
Play both channels through left output
Play both channels through left output, right channel through
right output
Play both channels through left output, left channel through
right output
Play both channels through both outputs

Search address

Type

$0F

Address at which the search begins.

Specifìes in which format the values in the search address field are
given. The valid values and their meanings are

lypc Adút¡r form¡t

$OO Address is in logical-block address format.

$40 Address is in absolute minutes, seconds, and frames format.

$80 Addræs is in track-number format.

$C0 Reserved.

Reserved Must be $00.

Chapter 2 The SCSI Driver 79

The three ren¡m data formats are shown in Figures 2-14 through 2-1,6.1he parameters and
the defìnitions are listed following each fìgure.

r ffrrre 2-14 AudioSearch subcall retum data for search rype $00

logical block addæs (lSB)sl
Logicalblock addrcss2

Logical block address1

logical block address (MSB)s0

0I)34567Bir

Byle

Logical block address
Specifìo the block address at which the AudioPause or AudioPlay
subcall commences.

r ßtguæ 2-ff AudioSearch subcall rerum data for search type $01

Reserved Must be $00.

,tddrcs (abc. f¡ame)$3

Addres (abs. second)$2

Addrcss (abs. minute)$1

Reærved $00$0

0I734567Bir

Byre

m Apple IIcs GS/OS Device Driver Reference a

Address Specifìes the absolute address (minutes, seconds, and frames from
the beginning of the disc) in BCD format, at which the ,{udioPause or
AudioPlay subcall commences. Valid values for these parameters ere
00.Ð minutes, 0f59 seconds, aulrd(lf!74 frames.

r Figure 2-16 AudioSearch subcall retum data for search type $OZ

Track number$3

$00Reserved$0-$2

Byte

fi,l',1
^

t1Pir

Reserved

Track number

Must be $00.

Specifìes the absolute track address in BCD format at which the
AudioPaue or AudioPlay subcall co¡nmences. limits of the parameter
are from 01 to 99 in BCD.

AudioPlay (DControl subcatl)

Ihscriptbn

controLCoae = $80C9

This subcall applies to the AppleCD SC only.

Ttris subcall allows you to position the optical pickup at a specified
addræs and to play audio through the audio output.

You can also use Ére AudioPlay subcallto releæe the drive from a pause
stete efter the execution of an AudioSearch subcall or from a pause state
after the execution of an AudioPause subcall. The AudioPlay subcall can
also be used to set a particular completion address or play mode. The
format for this subcall is shown in Fþre 2-17.

Chapter 2 TheSCSI Driver R

Parameten

Opcode

Flags

Stop f1a9

Play mode

r Flgur€ 2-17 AudioPlay subcall format

$c9

$oo

Indicates whether the add¡ess supplied in the e:.ayback address
field is a stiart address or a stop address. The valid values and their
meanings are
$00 - p layback addçess is used as a stårt address
$10 - pray¡ack a¿¿less is used as a stop address

See the desoiption of the AudioSearch subcall earlier in this chapter for a
description of these bits.

Playback address
Contains the address at which the drive begins or stops, depending on
the value in the stop naq fìeld.

Reærved 00ts$B

Type${r

Playback addrcss (l5B)$7

Plaþckaddress$6

Ptalnck address$t

Plaþad< addæss (MSB)s4

Playmode$3

Stop flags2

Flaç $00$1

Opcode $c9$0

1 0234567Bit

Byte

t¿ Apple IIcs GS/OS Device Driver Reference
Ò

Type

Reserved Must be $00.

Specifies in which format the values in the a¿aress fìeld are given, The
valid values and their meanings are

TfF fdd¡tu forn¡t

$00 Address is in logical-block address format.

$40 Address is in absolute minutes, seconds, and frames format.

$80 Address is in track-number format.

$C0 Reserved.

AudtoPause (DControl n¡bcall)

Ihccrlpdon

controlCo¿e = $80C4

This subcallapplies to the AppleCD SC only.

The AudioPause subcall temporarily stops audio play operation and
enters the hold-track state, mâintaining the same address.

Tt¡ese zubcalls can teminate the AudioPause subaall: Rezero Unit, Read,
Seek, Start/Stop Unit, Send Diagnostics, Prevent/Allow Media Removal,
Reed Extended, ExtendedSeek, Verify, Eject, ReadHeader, AudioPlay
(stop bit = 0), AudioPaue, and AudioScan.

Theæ subcalls u,illnot intenupt the AudioPause subcall: TestUni8eady,
Reques6ense, Inquiry, Reserve, Releæe, ModeSelect, ModeSense,
ReadCapacity, ReadTOC, ReadQSubcode, AudioStatus, AudioPlay
(stop bit = 1), md AudioStop.

Ttre format of the AudioP¿use subcall is shown in Fþre 2-18.

Chapter 2 The SCSI Driver 6

P¡¡rmeter¡

Opcode

FIags

Pause flag

Reserved

r Flgtut 2-1t AudioPause subcall format

$cr

$00

Conains the flag that determines whether this subøll pauses the CD
audio play or releææ the drive from a pause. Ttre ralid values and their
meaninp are

Yduc tlcûdtlon

$00 Release pause

$10 Initiate pause

Ttris subcall is valid only if audio play is in progres and only after ¿n
AudioSearch or AudioPlay subcall has executed.

Must be $00.

Reserved $00$3-$B

Pause flag$2

Flags $00$1

0pode $cÂ$0

0I234567Bir

Byte

ú Apple IIcs GS/OS Device Driver Reference a

AudloStop (DControl subcall)

Descrtptton

Pa¡emete¡s

controlCoae = $80C8

This subcallapplies to the.{ppleCD SC only.

The AudioStop subcall specifiæ the address at which the audio play
terminates. The drive stops spinning, and the optical pickup remains in
the approximate arel, of the stop address. The format for this subcall
is shown in Figure 2-19.

r Flgure ãf9 AudioStop subcall format

$cB

$oo

Specifìes the addres at which the drive shuts down. If this field contâins
$00, and the rype fìeld also cont¿ins $00, the drive will perform ¿ SCSI
Rezero Unit SCSI call. See the AtfSI Xj.13l-1986 SCSI specification for
deails on this call.

Opcode

Flags

Stop address

Reærved $00$7-$B

ReærvedTl¡pe$6

Stopaddæs (l5B)$5

Stop address$4

Stop addres$3

Stop addrcss (MSB)$2

flagÞ $00$1

Opcode cB0

01234567Bir

Byte

Chapter 2 theSCSI Driver ö

Type

Reserved Must be $00.

Specifìes in whích format the values in the stop address field are
given. The valid values and their meanings are

fypc Add¡an tunl
$00 Address is in logical-block address format.

$40 Address is in absolute minutes, seconds, and frames format.

$80 Address is in track-number format.

$C0 Reserved.

Audto$can (DControl sr¡bc¿tl)

Ilccrtptbn

controlCode . $80CD

Ttris subcall applies to the AppleCD SC only.

The AudioSøn subcall performs a fæt-forward or fæt-reverse sci¡n
operation beginning at a specífied address. ,{.udio output remains
enabled normally.Ihe format for this subcall is shown in Fþre 2-20.

a

S Apple IIcs GS/OS Device Driver Reference a

Perameters

Opcode

Flags

Direction

r Ftgurc 2-20 AudioScan subcall format

$cD

$oo

Determines in which direction the scan takes place. The valid values and
their meanings are
$00 = fast forvrard
$10 = fast reveme

Must be $00.Reserved

start address The scan begins at the address specified in this field.

Reærved s00s9-sB

T}pes8

Surt address (LSB)57

Start addresss6

Surt addressst

Sa¡t addrcs (!,lSB)s4

Reserved s00s3

Dircctions2

Fla¡B s00st

OpcorJe scDs0

0I'),4567Bi¡

Bfe

Chapter 2 TheSCSI Driver 87

Type

Reserved

Specifies in which format the values in the start address fìeld are
given. Ttre valid values and their meanings are

IyF Addær. furort

$OO .{ddress is in logical-block address format.

$40 Address is in absolute minutes, seconds, and frames format.

$S0 .{ddres is in rack-number format.

$C0 Reserved.

Must be $00.

a

St Apple IIcs GS/OS Device Ddver Reference
a

i

Data chaining

There is a special clæs of starus codes specific to the SCSI driver. These commands
instruct the SCSI Manager to move dara, u*y quickly from location to location by use
of data chaining. The commands are explained in this section.

Data chaining is instituted by rneans of four new commands to ttre SCSI Manager:
DCMove, DC[oop, DCSpecial, and DCStop. The DCMove command provides an
address to rnove data to at a very fast rate. The DCLoop command provides a means
for repeatabiliry at a very small cost in code. The DCSpecial command provides a means
for jumping to an auxiliary routine. The DCStop command terminates the
data-chaining structure.

To issue a single command, use the status list shown in Figure 2-21.

The ¡urrerpolnr,er parameter on direct page points to this structure, and the
requesrcounr parameter, also on direct pâge, contains the total number of bytes
requested by the command.

Chapter 2 The SCSI Driver E9

¡ Ftgr¡ñ 2-21 Status list using data-chaining commands

Used byall deviæ-spæific +
sþn¡s and control calls

Rercrvcd

Offset

Count

Ëufferlcomnand

comandDäca

cåll vêrsion

Additional daa used by
the dau chaining comrnânds,

æ def¡ned forversion 1

CaII version To maintain compatibility between previously written
SCSI drivers and GS/OS, this field is provided to
distinguirh berween versions of SCSI device-specifìc
commands. Ttre first SCSI driver release (GS/OS system
software version 4.0 and previous versions) supports
version $ffi00 commands only and uses only the carr
version field, the Command data fìeld, and the
Buf f er com¡nand fìeld. The curent version of tl¡e
driver supports version $0001 commands and uses
all fìelds.

R€s€n cd

Offsct

Côunt

Buffer/cotnnånd

90 Apple IIcs GS/OS Device Driver Reference a

commândData

Buffer/command

The l2-byte command dara æ outlined in the definition
of the dliver command being iszued.

Conrains a pointer to the source or destination data
buffer, depending on the command.
The data-chaining commands are each composed of
four longword fìelds and are in low-byte-first format. By
using the commands in various combinâtions, data can
be gathered or distributed depending on the direction
of transfer.

Count

The address contained in the fìeld is also used to
determine which of the three dau chaining commands
will be used and are interpreted in one of three waysr

1. Ifthe value is in the range of$00000001-$FFFFFFFE,
the command is a DCMove command, and the value
is treated æ a buffer address.

2. If the value is $FFFTTFTF, the command is a
DC[oop command.

3. If the value is $00000000, the command is a
DCSpecial command.

Depending on what is in the Buf fer,/commana fìeld,
the next fìeld is interpreted in one of three ways:

1. If a DCMove command is indicated, this value is a
request b¡e count.

2. Il a DCLoop command is indiøted, this value is a
count for the number of times to loop through the
buffer entries minus 1.

3. ln the cæe of a DCSpecial command, this field is
interpreted in one of two ways: It either terminates a
DCtoop command or calls a userdefined routine.

Yd¡e Def¡lttoo

$00000000 DCStop command; execution hâlts

Other Address of a routine to call

The userdefìned routine can perform an action such æ a
graphia page flip or any other task required in midtransfer

Chapter 2 The SCSI Driver 9l

Offset

Reserved

Hæ three different definitions depending on the
contents of the eurre r/commana fìeld. The
definitions are

1. If a DCMove command is indicated, this value is
added to the buffer address (in the
Buf ferlcommand fìeld), so that the buffer address
poins to a new buffer for the next pass.

2. lf a DC[oop command is indicated, this value is the
number of entries (not the number of å7teÐ to go
back to the beginning of the loop.

3. If the command is a DCSpecial command, this field
is $00000000, which represenß a DCStop command,
and terminates the loop. If the command is not a
DCspecialcommand, this field can be uæd by the
called routine for any purpose.

This fìeld is reserved and must contain $00000000 in
allcæes.

a Note:The totalnumber of b¡es transfened (the number of bytes requested times the
loop count plus any other counts) may not be larger than the counr used when issuing the
command. If tlre number of bytes transfened is larger than.counr, a time-out enor is
retumed, the daa'chaining stnrctures âre modifìed, and the data retumed is unreliable.

Table 24 contains the dau-chaining instructions.

t Teblez4 Data-chaining commands

Iûrtrl¡ctloû Dulhr/cor¡od Coút Offret Fol¡Ë

DCMove Buffer address

DCLoop $FFFFFFFF

DCStop $00000000

DCSpecial $00000000

Value added to buffer address Null

Offset to another instruction Null

$00000000 Null

Application defined ñdl

Buffer size

Loop count

$00000000

.åddress

n Apple IIcs GS/OS Device Driver Reference
a

Sone data<halnlng examples

Some examples will help show how data chaining can be implemented. Two examples
for using these commands, one for sending dea and the other for receiving data, arc
given here.

Scndlng daa

In this example, a printer is connected to the SCSI interface, and the pointer requires a
header to be sent prior to sending the image to the printer. The image resides in memory
æ contiguous pages and is rather læge.

Rather than breaking up the data to be printed and collating it with copies of the he¿der
information, the application could instead use the following data-chaining commands.

M
DCMove

DCMove

DCloop
DCStop

Opcodc

$00025c88

$001c0138

$FFTFFTTT

$00000019

Couat

$00000200

$00004000

$00000019

$00000000

Offsct

$00000000

$00004000

$TTTFFFFE(-2)

$00000000

Polntcr

$00000000

$00000000

$00000000

$00000000

Tl¡e fìrst DCMove command is the pointer to the header information that is sent to the
printer each time through the loop. It is 512 b¡es in size, and we want to send the same
header data on each pæs of the loop.

The second DCMove command points to the first page image to be sent. Each page is
16 KB in size, and we want to send page 2-which is contiguous in memory-after page 1

on the next pílss of the loop.

The DCLoop command executes a loop $1,{, times and goes back two instructions
($fFFfFFf¡E - -2) to the fint DCMove command each time. After the loop exeantes
the $lAth time, it drops through to the next cornmand, which is the DCSrop comm¿nd,
This command sþals the end of the transfer, and the callretums via the normal path to
the application.

t Note:The flirst two commands will already have been executed once prior to the
DCLoop command. The DCLoop command then instructs the SC$ À,fanager to do this
$19 more times, for atotal of $1Á, executions of the DCMove instructions.

Chapter 2 The SCSI Driver Yt

Receiving data

In this example, an imaging device (an image scanner, for example) is connected to the
SCSI interface and sends alarge amount of image data, which we v/ant to display. The
video mapping in Apple II Hi-Res graphics mode is not structured in a way that allows an
image to be read in directly and displayed; the data must first be remapped to the
noncontiguous video memory in the Apple II computer. By strucruring the data-chaining
commands, a Hi-Res bitmap image can be read directly into video memory wirhout
having to fìrst be manipulated.

Rather than using multiple unique Read calls to the device to achieve the conect mapping,
and thereby spending a lot of time in CPU overhead, the application could instead use the
following data-chaining commands:

cd
DCMove

DCMove

DCMove

DCMove

DCMove

DCMove

DCMove

DCMove

DC[oop
DCSpecial

DC[oop
DCStop

Opcodc

$00002000

$00002400

$00002800

$00002c00

$00003000

$00003400

$00003800

$00003c00

$TFFFFFTF

$00000000

$TFFTFFFF

$00000000

Count

$00000028

$0000002s

$00000028

$0000002s

$0000002s

$00000028

$00000028

$00000028

$00000007

(Ad justProcl
$00000002

$00000000

Off¡ct

$00000080

$00000080

$00000080

$00000080

$00000080

$00000080

$00000080

$00000080

$FrrFrrrs(-8)
$00000000

$FFrrrrF6(-10)
$00000000

Polûtcr

$00000000

$00000000

$00000000

$00000000

$00000000

$00000000

$00000000

$00000000

$00000000

$00000000

$00000000

$00000000

The fìrst DCMove command h the pointer to $2000, the first line of Apple II Hi-Res video
memory. This increments by $80 on each pass through the loop.

The second DCMove command is the pointer to $2400, the second line of video memory.
This also increments by $80 on each pass. '
The third DCMove command is the pointer to $2800, the third line of video memory.
This increments by $80 on each pass.

These values are duplicated for all eight DCMove commands, the læt of which points
to $3C00.

,f Apple IIcs GS/OS Device Driver Reference
Ò

The fìnt DCLoop command is set to loop seven times and goes back eight insructions
($FFfFfffS . -8) to the fìrst DCMove comrnand after eactr pass through the loop. when
the loop executes the eighth pæs (the initial pass plus seven loops back equals eight
passes toal), it drops through to the ner command which is the DCSpecial command.
It contains the address of the application-defined Adjustproc routine.

The nd justproc routine is ølled after each 64 søn lines have been drawn to the screen
(8 scanl æses through the inner loop equals (A sanlines) to adjust the
pointersforthenextgroupof 64sønlines.There area¿oralofthreegroup,s of &scan
line.s on the video screen. The aa justproc routine adiusts the buffer addresses within
the daa<haining smrcture to point to the next group of 64 scan lines. This adjustrnent is
required because of the interleaved nature of the Apple II Hi-Res video memory, (See the
Apple IGs Hardwarc Refeøræ for more information on Apple llcs video graphics.)

AdJustProc is shown here.

AdjustProe
ldv
ldr(

0loop
lda
sêc
sbc
gtå
tya
clc
adc
tay
dcx
bnc

Proc
t0
t8

rinit index
ilnit countcr

scatusLísÈ+14,y rget the value in Fieldl

tS3D8 ;adjust to flrst add¡ess of next gror¡p
ståtusList,+14, y

;adjust, index

116

;dcc¡enent counÈer
0loop , loop until all I add¡esgeg are fixed

*7 tadjust the count ín the flrst DCLoop inetruction
statusLisÈ+14+80+4

nôw we fix up the eount field in the first DCLoop lnstluctlon.
This is Located at (statusList+14) (beglnnlng of Datachaln stluctur.)

plus 80 r (offset of Dcl,oop inst¡uction rithin stlucture)
plug 04 ; (offset of count within DCLoop inst¡uction)

1da
9ta
rtl
EndP

Chapta 2 The SCSI Driver 95

a lvote.'The SCSI Manager always checks data-chaining commands for validity prior to
exeotion. If any command is unaccept¿ble, the driver retums with the carry bit set,
and enor in the A register.

The SCSI Manager

Ttre SCSI Manager is a supervisory driver that controls all communications on the SCSI bus
by managing arbitration between SCSI device drivers and SCSI peripherals. All SCSI driver
calls are issued to the SC$ [4anagø. If you plan on writing your own SCSI driver for use
with the Apple SCSI Card, you must undersand the SCSI Manager calls desaibed in
this section.

It is the iob of the SCSI ltfanager to arbitrate and manage Apple SCSI peripheral cards,
physical SCSI devices, and logical SCSI devices. However, it does not manage partitions;
that task belongs to the drivens. In order to access a partition on a physical SCSI block
device or a logical SCSI block device, the driver must translate logical block numbers to
physical block numbers. Figure 2-22 shows the relationship of the SCSI Manager to drivers
and devices in GS/OS.

X Apple IIcs GS/OS Device Driver Reference
a

Flgure 2-22 SCSI Manager

Panftion 1 Pa¡tirion 1 Panition 1

Panition 2 Panftion 2

Partition 1 Paniüon 1

Partition 2 Partition 2

Device
dispatcher

Partition 2

Parti¡ion 63 Partition 63 Panidon 63 Parti¡ion 63

Partition 64 Partition ó4 Partition 64 Panition 64

Devíce 1 Dsvicc 7 Dcvlcc 1

a

D<rLË7 llcrice 1

The SCSI Manager supports the Apple II SCSI Card and the Apple II High-Speed SCSI Card.

7

Device
driver

Device
driver

Device
driver

Device
driver

Device
driver

Device
driver

Supenisor

'scsl

SCSI supervisor
driver Othersupervisor

drivers

Äpple SCSI

Card I
Apple SCSI

Cañ6

Partition 1

Partirion 2

Panftion 63

Panition 64

unit 7

Logic¿l unit 1

Apple SCSI

C,ard7

Chapter 2 The SCSI Driver n

o Note:The SCSI Manager will support the originalÁ,pple II SCSI Card only if it
hæ revision C firmware on the card. The.{pple part number for this ROM is
341-043t-L.

You can plug seven cards into e system and connect seven devices to each card. Although
the SCSI l,fanager does not uknowo about partitions, room has been reserved to allow
device drivers to access a mæcimum of 32 partitions. Therefore, even though there are
only seven possible SCSI ørget devices on each SCSI bus, meny more are available through
multiple cards and partitions. Refer to Figure 2-22 for a pictorial representetion of
possible devices supportd by üe SCSI Manager.

Tt¡e SCSI Manager sends calls and data to SCSI devices using direct memory access (DMA).
The following are ¡he maþr areas the SCSI Manager controls:

r manages hardware resources

r supports startup and shutdown calls

r provides a call interface berween SCSI drivers and the SCSI devices

r supports the built-in NCR 5380 SCSI controller IC

¡ provides lowlevel phæe support, giving complete control of the SCSI bus

The SCSI data model

In addition to the required calls for zupervisory drivers, there is one callto access SCSI
target devices. The SCSI VO call handles all communication berween initiators and
targets. Device drive¡s make the VO call with a set panmeter list, and the SCSI Manager
will manage the communication bemeen the system and the target. Figure 2-23 shows the
format of the parameter list,

a

S Apple IIcs GS/OS Device Driver Reference Ò

Reserved

Resewed

Autosênse ptr

TlanslÇË. byte
cgunt

Buffer structure
- pointer

SCSI comand
pointer

- Complctlon vecÈor -

Call tlneout
Call âtÈrlburcs
P-Ltst version

SCSI dèvlce ID

I ffurc 2-23 The SCSI data model for the UO call

s00

t04

$06

s08

$0A

$08

fl2

$1ó

t1A

$lE

622

SCSI device ID

SinSle tl2.h/rc
SCSI fl¡|rlând

p¡ck(r

Date instruclions

Longword wide fìeld that contains the ID given devices by the SCSI
Manager. The ID is defined by the SCSI Manager for physical SCSI
devices and logical units within SCSI devices. The driver-defìned ID
extension is used by block device drivers to differentiate partitions on
block devices, The driverdefined ID extension is set to 0 and should not
be modifìed by the driver unless the physical or logical device conrains
partitions on it. ff the device contains partitions, the driver-defined ID
extension must bE unique for each partition on that device. Vhen
making a callto the SC$ trIawger., the driver musr set bits A through F to
0. See Fþre 2-24 fu a depiction of the device ID word.

polrücroftarcouildcloe

polntcroft.rAdd¡dcspecbl

loin¡roflercûrilDCfæp

pdn¡at0ß6CfrtrìlDcf¿bvc

pdn¡croftdcûtft¡DCI¡ovc

Chapter 2 TheSCSI Driver I

r Ftgutc 2-24 Device ID word

Slot number
Reserved

Lowword

Highword

ID extension

Device ID number

Reærved EI

P-List /vers ion
Contains a version word defìning the type of parameter block. Must be

ser ro $00.

CaIl attributes
A bit-encoded word describing how the VO call is to be handled. Refer
to the description of the SCSI VO call later in this chapter for a
description of the birs.

cal-l- timeout Contains the number of l/ -second intervals the SCSI driver waits before
aborting the I/O call. If the call does not complete within this specified
time, an enor is retumed to the driver.

CompLetion vector
When a callcompletes, the SCSI Manager calls the driver through this
vector to signal completion of the call.

SCSI command pointer
Points 10 one or more 6CSI command packets, Each packet can be 6, 10,
or 12 bytes in size. The daa conmined in the command packet is
defìned in the AI.ISI X3.131-1986 SCSI specification.

Buffer structure pointer
Long pointer that contains the address of a list of data<haining
instructions. Refer to 'Data Chaining" earlier in this chapter for a
detailed description.

0Iz34)67I9rrl rot21314r5

lm Apple IIcs GS/OS Device Driver Reference
Ò

Transfer byte count,
Conains the total number of b¡es requested.

Àut,oSense ptr Contains a pointer to a buffer where the retumed senæ information is
placed æ a result of a RequctSense device call, The sense information
contains device-specifìc deails of an enor reported by the device.

SCSI lfanager calls

The SCSI Manager accepts SCSI driver calls from the supervisor dispatcher and SCSI
device drivers. Calls from device drive¡s are the only means of communicating with SCSI
devices; all calls and daa are passed to devices using the SCSI ùhnager l/O call,

The GS/OS SCSI l,lanaga calls ¿v¿ilable to SCSI device drivers are

r RequestDevices

r ClaimDevices

t I/O

when a driver makes a call o the SCSI Manager, control is pasæd to ttre manager through a
system ærvice vector defned by GS/OS. !7hen control is retumed to the driver at the end
of the call, the accumulator contains $0000 (no enor) or an enor code that the driver must
interpret and translate into a valid GS/OS enor code. If an eûor does occur, the carry bit
will be set; otherwise, it will be clear.

Chapter 2 Ttrc SC$I Driver 101

RequestDevices ($0002)

Descdpdon

Paramcters

This call retums the number of devices the SCSI Manager found
on line during the SCSI Manager starn¡p for a specific SCSI peripheral
device type.

The driver must provide a buffer of $704 b¡es in size to hold a maximum
of 49 devices (seven epple SCSI peripheral cards with seven physical SCSI

devices on each card; see Figve 2-22).

A register: SCSI Manager ID $0000

X register: Call opcode $0002

GS/OS DirectPage: srB pointer
Parameter list pointer

r Flguæ 2-21 RequestDevices input puameter list

$00

302

t06

IYpC

$00

$01

$02

$03

$04

Dåst,1nåtlon
buffcr polntcr

Rcaêrvcd

Dcvlôc typc

Device rype Word defining SCSI devices about which information is being requested.
Bits 0-7 defìne the device rype.

Dcrlcc

Direct-access device (for example, magnetic disk)

Sequential-acöess device (for example, magnetic tape)

Printer device

Processor device

\[rite-once read-multiple device (for example, sorne
optic¿l disks)

w¿ Apple IIGs GS/OS Device Driver Reference
-

[continuedl

Reserved

TyF'c ncncc [continuedl

$05 Readonly direct-access device (for example, some
optical disks)

$06 Scanner device

$07 Optical memory devices

$08 Changer devices (for example, CD jukeboxes)

$09 Communications devices

$044F Reserved

$10 Appte Tape Drive (and 3M Corp. MCD/40)

$11-1D Reserved

$18 Target device

$1r Unknown device type

Must be 0.

Destination buffer pointer
longword field; conains the pointe¡ to a i704lb¡e buffer that contains
the list of devices requested.

The retum buffer conains all the information about all SCSI devices of the rype
requested. Fþre 2-26 shows the format of the buffer, and each parameter is described
immediately following the figure.

¡ flgr¡æ 2-26 RequestDevices retum buffer form¿t

$00

t02
t04

$08

$0c

Davlcc ID

Devlcê lD

Devlcè count
' z.Eo pagc addrrss -

DÊvlcc ID

t

Chapter 2 The SCSI Driver 103

Zero page address
Contains the address ofa scratch zerc page that can be used by device
drive¡s calling the SCSI Manager. This zero page is valid only during the
call, and drivers should not count on data's remaining valid between calls
to the driver.

Device count

Device ID

lÍord fìeld that contains the number of arget devices that match the
specifìed device type ren¡med to the caller.

Conains several subfields. Figure 2-27 shows the bits in the longword,
and a description of each subfield follows the illust¡ation.

r Flgure 2-27 RequestDevices device ID longword

Slot number
Rese¡ved

lowwo¡d

Higltwotd

ID extension

Device ID number

Vord

Low

Low
High
High

Bltt

$0-3

$4-n
$0-9

$.{-F

Reærved ffiil

Ilercrtptlon

Slot number for ttris device. Slots $tr7 are intemal
slog; slots $8-F are extemal slots.

Reærved; must be 0.

Device ID (defìned by SCSI Manager).

ID extension (defìned by driver).

0IJ3

012t456789l011t2t31415

104 Apple IIcs GS/OS Device Driver Reference

Ttre high word conains the unit numhr assigned to the device by the
SCSI tr4anager. Note that the device ID matches the slot and unit number
defnitions for DIBs. The device ID is asigned by the SCSI l4anager to
identify devices it fìnds on the SCSI bus. The driver-defined ID
extension fìeld is provided for support of SCSI block devices with
multiple partitions. It is set to 0 by the SCSI ìdanager and can be changed
by SCSI block device drivers that suppon panitions. It gives drivers a
msans to make each partition on a specific SCSI device unique. The SCSI

device ID must be unique; multiple devices with the same SCSI device ID
are not allowed. The fìrst ID ercension must be 0.

Enorr $f801 Invalid GS/OS SCSI device'type

ClainDevices ($0003)

lleccrlpdon

Pe¡amcters A register:

X register:

This ce¡lprovides a mqlns for drivers to request access to devices on the
bus. This process is called claiming a device. The driver informs the SCSI

Manager which devices are being claimed by æcing the high bit in the
device ID.

Ttre parameter list for ttris call is identical to the parameter list for the
RequestDevices c¿ll. The ¡utrerPointer pafâmeter points to a buffer
that contains the same list as that retumed from the RequestDevices call
with the exception of the high-order bit of the device ID. For each
device being claimed by the driver, the highorder bit of the device ID
must be set by the driver to indicate a claimed device. If ttre bit is 0, the
device is free and øn be claimed by another driver. Drivers must daim a
device in order to access the device. If the driver does not claim the
device and accesses it, there may be a conflict; unpredictable (and
potentially unpløsant) results may oco¡r. Ttre only way to guarantee that
a driver has sole 4ccess to a device is to claim it.

SCSI Manager ID $0000

Call opcode $0003

GS/OS DirectPage: srB pointer
Parameter líst pointer

Chapø 2 'theSCSI Driver 10t

Clalnad dêvfcê
Ilst polnte!

Rcgêrved

Dêvlcé

¡ Flg¡¡re 2-2E ClaimDevices panmeter list

$00

t02

$0ó

Device rype Byte that defines SCSI devices. Bits 0-7 define the device rype. See
.RequestDevices ($0002)," earlier in this chapter, for a complete list of
device types.

Reserved Must be $00.

Claimed devices list pointer
Longword pointer that contains the address of the $704b¡e buffer that
holds the list of devices of the rype being requested.

The ClaimDevices remm buffer is identical to the RequestDevices return buffer. Refer to
'RequestDevices ($0002),' earlier in this chapter, for a desaiption of the contents of the
retum buffer.

Ermrs $FE03 Device ID not found

vo ($0004)

Deccdptlon

P¡¡amcters

AII SCSI driven issue the VO call to the SCSI l{anager each time the driver
receives a driver call tt¡at accesses a SC$ device. Figure 2-29 shows the
format of the call parameter list that is pointed to by the srarusr,isr
pointer. '

.A register: SCSI Manager ID $0000

X register: Call opcode $0004

GS/OS DirectPage: Address of GS/OS direct page

106 Apple IIcs GS/OS Device Driver Reference
Ò

(r Ftgt¡ñ 2-29 VO call parameter list

s00

s04

so6

s08

s0A

soE

sr2

sl6

slA

srE

s22

Device ID

Version

CalL attributes

Contains a longword idendfying ¡he device requested. This is the ID
given to the driver during the RequestDevices call.

Conains the block version number. TÌre number identifies the version of
the parameter block (this block) used by ttre SCSI Manager. Should be
set to $0000 for GS/OS system software version 5.0.

If bit 15 is set, the SCSI Managø allows the device to disconnect if it
chooses to do so'during the call. If bit li is clear, the SCSI lvlanago will
not allow the device to disconnect. The call attributes word is depiaed
in Figure 2-30.

(
Rêsêrvêd

Reservad

AuÈoSênsc
buf,f,êr poinÈer

Byte counc

Buffer poinrer

Comnand pointer

- Co¡npleÈfon vecÈor -

Cåll ÈlneouÈ

CàIl åttriþutes
versi,on

Devicê ID

1

Chaptø 2 T\e SCSI Driver lül

r Flgr¡æ 2-30 UO call anributes word

Allowtaryet to
dironnea duringcall Reærved

Reærved ffil

catl timeout ïflord field defining the number of 1/4second intervals the call hæ to
complete before the manager retums due to a time out.

Completion vecÈor
Address of a routine called via aJSL when a SCSI call completes. There
can be only one completion routine pending for each SCSI device. The
routine performs the function, executes, and returns to the SCSI Manager
through an RTL in fullnative mode.

Command pointer
Longword field; contains pointer to the SC$ command block for the
cunent call.

Buffer pointer
Conains a pointer to a buffer that contains the data-chaining

instructions that are execr¡ted by the SCSI Manager. Each instruction
occupies 16 b¡es, and ¿ll commands are contiguons. The last instruction
must be a DCStop command. See "Data Chaining" earlier in this chapter.

Contains the number of b¡es requested in the call and contains the
number of bytes actually transfened on exit from the call.

AutoSense buffer poínter
longword field; pointer'to a buffer used to hold the enor information
retumed when ¿uto sensing is enabled. If the pointer is $00000000, then
auto sensing is disabled. If the pointer is nonzero, auto sensing is
enabled and the SCSI lvlanager will automatically issue a RequestSense
call to the arget when an VO call fails. The Request5ense buffer mu¡t be
a minimum of one page Q56 b¡CI) in size. If ttre Reques6ense call fails,
the enor code is in ttre range from $F880 to $FEFF. Ttre low byte of the
enor code contek$ the value of the SCSI status b¡e retumed by the
t¿rget device when the callfailed.

Byte count

1ü Apple IIcs GS/OS Device Driver Reference

r-
Reserved

Ermrg

Reserved and mt¡st contain $00 when the call is issued.

A register: Enor code

Codc Errpr

$fgOt Invalid GS/OS SCSI device type

$F802 SCSI ct¡eck condition from SC$ device

$F803 Device ID not found

$F805 Parameter list

$f808 Device already busy

$futt Call time out

$FE80-$fEFf Request Sense failed

Ctupta2 TtnSCSIDriver 109

Spattng disk blocks

The Apple SCSI drivers use block sparing to reæsign a block that hæ ¿ lowered read
reliability..{ll failed wite attempts are spared, and reads are spared only when the daa
can be retrieved. The following description should clarfi what ¿ctually takes place.

Vhen a read call is issued to the device specifying a panicular block, the device reads the
block, checking it for wholenzu (a checkum is examined to see if the data is intact). ff
the block is damaged, an error is renrmed, and the read is attempted again. If more than
one retry is needed before the inaa daa ¡s retumed, then the block is æsigned a new
location on the device, and the data is wrftten to the new block. If the block is so
damaged that the data cannot be read, then an enor is retumed to the caller, and the
block is not spared; it is possible that a subsequent read will be successful. Unsuccessful
read anempts never result in a block's being spared. If the block is ineparably damaged,
then tl¡e next write attempt to the block results in the block's being spared and a new
one æsþned.

110 Apple IIcs GS/OS Device Driver Reference -

Chapter J Tlre AppleDisk 3.5 Driver

The AppleDisk 3.5 driver is a loaded driver that communicates directly
with the hardware to support one or two Apple 3.5 drives. The Apple 3.5
drive is a block device that reads 3.5-inch disla in formats compatible
with the PToDOS or Macintosho fìle systems and connects directly to
the Apple IIcs disk port or to a compatible expansion card in a slot
(æe the ANe ilcs Harduare Referæce for more information on disk
drive expansion).

The AppleDisk 3.5 driver operates independently of the system speed.
T?¡e driver supports several formaning options: 400 KB or 800 KB disks
and efther 21 or 4J interleave.

This chapter describes the GS/OS AppleDisk 3.5 driver. It gives
general info¡mation on the driver and includes descriptions of any
driver-specifìc implementation of the standard GS/OS device calls.

a

111

Devlce calls to the AppleDisk 3.5 driver

Applications can access the AppleDisk 3.5 driver either through ¿ file system translator
(such as PToDOS) or by making device calls. Applications can make these device c¿lls to
the AppleDisk 3.5 driver:

r Dlnfo
r DStatus

r DControl

¡ DRead

¡ DVrite
r DRename

The rest of this chapter describes the differences berween the way the AppleDisk 3.5
driver handles these device calls and the way a standard driver handles these calls. Any calls
or subcalls not disct¡ssed here are handled exactly as documented in Chapter l.

Dsrarus ($202D)

This call is used to obtain cuneot status information from the device or the driver. The
AppleDisk 3.5 driver supports this standard set of DSams subcalls:

St¡tut codc

$0000

$0001

$0002

$0003

$0004

Sbc¡ll¡ræ

GetDeviceStatus

GetConfigPeremeters

GetVaitStatus
GetFormatOptions
GetPartitionMap

I

GetDevlceStatus

This subcall reilms a generalstatus followed by a longword speciþg the number of
blocla supported by the device.

ll2 Apple IIcs GS/OS Device Driver Reference
a

The driver retums a disk-switched condition under appropriate circumstances. For a
descrþtion of those circumstances, see 'Driver-Status ($0005)" in Chapter 10.

GetConflgParameters

Vith this subcall, the AppleDisk 3.5 driver has no parameters in its configuration
pammeter list and rerums with a stan¡s list length word of 0 and a transfer count
of $0000 0002.

CretFormat0ptlons

This subcall ren¡rns a list of formaning options that may be selected using the DControl
subcall SetForma0ptions prior to issuing a FormatDevice call to a block device. The
AppleDisk 3.5 driver retums format options as follows:

transfercount $0000 0038 (56 b¡es retumed in list)

sÈaÈuslist Ùþtion list heødex
$0003 Three options in list
$0003 All three options to be displayed
$0001 Recommended default = option 1

$0000 Cunent media formatting unknown

Optían entry 1:

$0001 Option 1

$0000 No linked option
$0004 Apple format/size in kilobytes
$0000 0640 Block count = 1600
$0200 Block size - 512 bytes
$0002 Interleave faúor = 2:t
$0320 Media size = 800 KB

Option entr! 2:
$0002 Option 2

$0000 No linked option
$0004 Apple format/size in kilobytes
$00000640 Block count = 1600

$0200 Block size = 512 bytes
$0004 Interleave factor = 4:1

$0320 Media size '800 KB

Chapter 3 The AppleDisk 3.5 Driver ff!

option mhry 3:
$0003 Option 3
$0000 No linked option
$0004 ,{pple formaVsize in kilobytes
$00000320 Block count = 800
$0200 Block size = 512 bytes
$0002 Interleave factor - 2:1

$0190 Media size = 400 KB

DControl ($zozE)

This call is used to send control information to the device or the device driver. The
ÂppleDisk 3.5 driver supports this standard set of DControl subcalls:

Cootrol codc Sc¡ll¡æ
$0000 ResetDevice

$0001 FormatDevice

$0002 EjectMedium

$0003 SetConfigParameters

$0004 SetVaitstatus
$0005 SetFormatOptions

$0006 AssignPartitionOwner

$0007 ÂrmSignal

$OOO8 DisarmSignal

Only the following subcalls are nonstandard for the AppleDisk 3.5 driver.

ResetDevlce

This control call is r¡sed to reset a particular device to its default settings. Ttris call hæ no
function with the AppleDisk 3.5 driver and returns wÍth no enor.

ll4 Apple IIcs GSiOS Device Driver Reference
-

SetConftgParametets

This call has no function with the AppleDisk 3.5 driver and ren¡ms with no enor

SetVaitstatus

All block devices, including the Apple 3.5 drive, operate in wait mode only. Setting
tlre AppleDisk 3.5 driver to wait mode results in no enor. lf a call is isued to set the
AppleDisk 3.5 driver to no-wait mode, then enor $22 (invalid parameter) is retumed.

SetFormat0ptions

This control call see the cunent format option æ specifìed in the format option list
retumed from the GetFormatOptions subcall of DSt¿tus.

AsstgnParttttoûOwûer

This call hæ no function with tl¡e AppleDisk 3.5 driver and rerums witl¡ no enor.

Arn$tgnal

This call hæ no function with the AppleDisk 3.5 driver and rerums with no enor

Disarmsignal

This call has no function with the AppleDisk 3.5 driver and retr¡ms with no enor

Chapter 3 TheAppleDisk 3.5 Driver 115

Dnead ($202r)

This call r€tuflis the requæted number of byto from the disk starting at the block number
specified. The request count must be an integral multiple of the block size. Valid block
sizes for this driver are $0200 and $020C (5l2atú 524) byta per block.

Dwrttc ($2030)

This callwrites the requested number of bytæ to the disk *arting at the block number
specified. Ttre request count mu$ be an integral multiple of the block size. Valid block
sizes for this dríver are $0200 and $020C (5t2 nd 524) b¡æ per block.

t

116 Apple IIcs GS/OS Device Driver Reference
a

I

Ê

Chapter 4 Ttre UntDtsk 3.5 ffiver

The UniDisk 3.5 drive is a bloclc deviæ ttrat reads 3.5-inch disks in
form¿s compatible with the PToDOS or Macintosh fìle qrutems and
connects directly to the Apple IIcs disk port. The UniDisk 3,5 úive
supports up to four toal UniDisk 3.5 drives on the disk port.

Ihis chaptø describes the GS/OS UniDisk 3.5 driver, a GSIOS loaded
driver that controls ttre UniDisk 3.5 drive. tt hæ genaal information on
üe driver and includes &saþtions of any driver*pecifìc
implementation of the standard GS/OS device calls.

(-

U
tt7

Device calls ûo the UrtDßk 3.5 drtver

.Appliøtions access a UniDisk 3.J device eithu by making a file cellthat goes through a
file system translator (FST) ø by makins a GS/OS dodce call. The UniDisk 3.5 driver
suppoß these sand¿rd device ølls from an application:

r Dinfo
r DStatus

I DControl

r DRead

¡ Dl9rite
r DRename

The rest of ttris chaptø describes the differences between the way the UniDisk 3.5 driver
handles tl¡ese device calls and the way a søndard driver handles these calls. Any calls or
zubcalls not dÍscussed here are handled exactly æ documenæd in Chapter l.

a

llt Apple IIcs GS/OS Device Driver Reference o

Dstatus ($202D)

The UniDisk 3.5 driver supports the standard set of status subcalls. Only the following are
implemented in a nonstandard way.

GetDeviceStatus

This call retums a general stan¡s followed by a longword speciffing the number of blocla
supported by the device.

The driver retums a disk-switched condition under appropriate circumstances. For a
description of those circumstances, see uDriver-Satus ($0005)' in Chapter 10,
"GS/OS Driver Call Reference."

GetConftgParamete rs

The UniDisk 3.5 hæ no parameters in its confìguration parameter list. GetConfigParameters
reurns a transfer count of $0000 0002 and a status list length word of $0000.

GetValtStatus

Block devices operate in wait mode only, For UniDisk 3.5 devices, GetVaitSatus always
retums a ransfer count of $0000 0002 and a wait status value of $0000 in the status list.

GetFormat0ptions

This call reums a list of formatting óptions that may be selected using a
SetFormatOptions DControl subcall prior to isuing a Format DControl subcall
to a block device.

Chapter 4 The UniDisk 3.5 Driver f19

The UniDisk 3.5 driver retums a format opions list æ follows:

transfercount $0000 0018 (24bytæ retumed in list)

sraruslist Option lßt heafur:
$0001 One opion in list
$0001 One displayed option
$0001 Default = option I
$0000 Cunent media formatted with option I

Optiottentry 1:
$0001 Option 1

$0000 No linked option
$0004 Apple formaVsize in kilob¡es
$00000640 Block count = 1600
$0200 Block size = 512 bytes
$0004 Interleave factor = 4:1

$0320 Media size = 800 KB

DC.,ontnol ($202E)

The UniDisk 3.5 driver supports the sundard set of control subcalls. Only the following
calls are implemented in a norutandard way.

ResetDevlce

This subøll has no function witt¡ the UniDisk 3.5 driver and retums with no enor.

SetConftgParatnctcrg

This subcall hæ no function wittr the UniDbk 3.5 driver and retums with no enor.

ln Apple IIcs GS/OS Device Driver Reference
Ò

SetValtMode

All block devices operate in wait mode only. Setting the UniDisk 3.5 driver to wait mode
results in no enor. If a call is issued to set the UniDisk 3.5 driver to no-wait mode, then
enor $22 (invalid parameter) is retumed.

SctForm¿toptions

Ttre UniDisk 3.5 driver supports the format options listed under the GetFormatOptions
DStatus subcall. This option (and possible future options) can be specifìed in the
parameter formaroptionNum for this subcall. However, the UniDisk 3.5 driver does
not support oveniding intedeave factors, so interleaver actor for this call must
be $0000.

AssignPartttton0rvncf,

Tîis callhæ no function with the UniDisk 3.5 driver and retums with no enor.

ArmSignaI

This call hæ no function with the UniDisk 3.5 driver and reums with no enor,

Dlsarmstgnal

This callhas no function with the UniDisk 3.5 driver and retums with no enor.

Chapter4 Ttre UniDisk 3.5 Driver tZL

DRead ($202F)

Ttris call retums the requested number of b¡es from the disk staning at the block number
specified. The request count must be an integral multiple of the block size.
Valid block sizes for the UniDisk 3,5 driver are $0200 and $020C 6t2 arlrd524)bytes per block.
Issuing this callwith a block size other than $0200 or $020C will result in enor $22 (invalid parameter).

DVrtte ($2030)

This call writes the requested number of b¡es to the disk sørting at the block number
specified. Ttre request count must be an integnl multiple of the block size.
valid block sizes for this driver are $0200 and $020C (512 and 524)6r¡rt per block. Issuing
ttris call with a block size other than $0200 or $020C will result in enor $22 (invalid parameter).

a

l2 Apple IIcs GS/OS Device Driver Reference
.a

Chapter 5 Ïlre AppleDßk 5,2, Driver

!'pfle 5,25 drives, UniDisk drives, DuoDisk drives, and Disk II drives are
block devices that read 5.25-inch floppy disks and are used widely with
the Apple II family of computers. Dish formafted under the ProDOS,
Pæcal, or DOS 3.3 fìle systems can be read from these devices. The
drives can plug directly into the Apple IIcs disk port, or they can connect
to interface cards in slots. Under GS/OS, these drives are controlled by
the AppleDisk 5.25 driver.

The AppleDisk 5.25 driver is a loaded driver that supports up to 14 Apple
5.25 drives and operates with either an interface card in a slot or the
built-in disk port. The AppleDisk 5.25 driver funaions independently of
the system speed and does not have the resident slot limitation inherent
in the .{pple IIGS computer. This means that, although the Apple IIcs
computer normally allows Apple 5.25 drives to operate at accelerated
speed in slots 4 ttrough 7 only, the AppleDisk 5.25 driver permits Apple
5.25 drives to operate at accelerated speed in all slots (1 through 7), with
either one or two Apple 5.25 drives per slot.

This chapter describes how the the AppleDisk r.25 driver worla and what
device calls it accepts. It also dæcribes the physical and logical formats
used by the AppleDisk5.25 driver on 5.25-inch media.

O ffote; For convenience, in this chapter the term Apple 5,25 driueis
used to refer to all manifestations of the 5.25-inch drive-including
lpp\e 5.25, UniDisk, DuoDisk. and Disk II.

w

Llmttations of J,Z1-lnch disk drives

The ,{pple 5.25 dnve provides no means for detection of disk-switched enors. Tl¡e
AppleDisk 5.25 driver provides a simulation of disk-switched detection by forcing any
FST interfacing to the Apple 5.25 drive to identify the volume cunently on line. This
simulation of disk-switched enors is adequate to prevent writing to the wrong volume,
but it is not adequate to validate the integriry of the cache. Therefore, the AppleDisk
5.25 dnvq does not implement caching. .Also, the status subcall GetDeviceStatus never
retums a disk'switched sutus.

Device calls to the AppleDisk 5,25 driver

Applications can access the Apple 5.25 dnve either through an FST or by making device
calls. Applications can make these standard device calls to the AppleDisk 5,25 driver
r Dlnfo
r DStatus

r DControl

r DRead

I DVrite
r DRename

The rest of this chapter describes how the AppleDisk 5.25 dnver handles any of the above
device calls differently than the standard ways documented in Chapter 1. Any calls or
subcalls not discussed here are handled exactly æ documented in Chapter 1.

l?Á .{pple Ucs GS/OS Device Driver Reference

Dstatus ($202D)

This call is used ¡o obtain cunent sarus information from the device or the driver. The
AppleDisk 5.25 driver supports this standard set of starus subcalls:

Stülg codc

$0000

$0001

$0002

$0003

Subc¡[¡¡æ

GetDeviceStatus

GetConfigParameters

Get![aitStatus
GetFormatOptions

The following desoiptions show how tt¡e the ,{ppleDisk 5.25 driver handles various
DStatus subcalls differently than the standard descriptions givo in Chapter 1 of
this reference.

C¡etDevlceStetus

This øll retums a genenl status word followed by a longword specifying the number of
blocla supported by the device. Because there is no way to validate media insertion on
an Apple 5.25 dnve, bit 4 ('disk in drive) of the device satus word is always set to L

Cr€tCoûflgParem€ters

The AppleDisk 5.25 driver has no paremeters in im confìguration parameter list.
It retums a lengh word of 0 in the shrus list and transfer count of $0000 0002 in the
paremeter block.

Chapter 5 The AppleDisk 5.25Dnver Í2t

GetFormatOptions

This call returns a list of formaning options that you can select using the DControl subcall
SetFormatOptions prior to issuing a format call to a block device. The AppleDisk 5,25
driver returns format options as follows:

transfercount $0000 0028 (40 b¡es returned in list)

sraruslj-st option list heøder:
$0002 Two options in list
$0001 Only one to be displayed
$0001 Recommended default = option 1

$0000 Formatting option of cunent media unknown

OPtton entr! 1:

$0001 Option I
$0002 This option linked to option 2

$0004 Apple forma¡Jstze in kilob¡es
$0000 0118 Block count = 280
$0200 Block size = 512 bytes
$0000 Interleave factor - r/a (fixed physical interleave)
$008F Media size - 140 KB

optiøt antry 2:
$0002 Option 2

$0000 No linked options
$0004 Apple format/size in kilob¡es
$0000 0230 Block count - 560
$0100 Block size = 256 bytes
$0000 Interleave factor = n/a (fixed physical interleave)
$008F Media size = 140 KB

tú Apple IIcs GS/OS Device Driver Reference

DControt ($202E)

This call is used to send control information to the device or the device driver
Ttre AppleDisk 5.25 driver supports thìs standard set of DControl subcalls:

$¡bcdloæ

ResetDevice

FormatDevice

EiectMedium

SetConfigParameters

SetVaitStatus

SetFormatOptions
AssignPartitionOwner

ArmSignal

DisarmSignal

The rest of this chapter describes the differences beween the way the AppleDisk5.25
driver handles DControl subcalls and the way a sundard driver handles these subcalls. See

Chapter 1 for complete documentation of DControl.

Co¡üol codc

$0000

$0001

$0002

$0003

$0004

$0005

$0006

$0007

$0008

ResetDevlce

This call hæ no function for the AppleDisk 5.25 driver and retums with no enor.

FormatDevlce

This subcall is used to format a disk. The AppleDßk5.25 driver þores the control list.

EiectMedium

Ihe Apple 5.25 dnve does not have any mech¿nism for eiæting dish. This call hæ no
function with the.tppleDisk 5.25 dríver and rerums with no enor.

Chapter5 TtreAppleDßk5.25Driver lûl

SetConftgParaneters

The AppleDisk 5.25 driver hæ no configuration parameters. This call hæ no function and
retums with no enor.

$etValtStatus

All block device drivers, includíng the.{ppleDisk 5.25 driver, operate in wait mode only,
Sening the AppleDisk 5.25 driver to wait mode results in no enor; anempting to set the
driver to no-wait mode results in enor $22 (invalid parameter),

SetFormatOptlons

Because only a single fxed physical interleave is supported, this callworlcs with either
format option but hæ no effect on the actual formatting of the media. This call retums
with no enor.

Assignlhrtttton0wner

This callhæ no function with the þpleDisk 5.25 drwer and retums with no enor

ArmSlgnal

This call has no function with the AppleDisk 5,2J driver and ren¡ms with no enor

DlsarmSlgnal

This call hæ no function with the AppleDisk 5.25 dnver and retums with no enor

tå Apple IIos GS/OS Device Driver Reference

Dnead ($202F)

This call ren¡ms the requested number of bytes from the disk søning at the block
number specifìed. The request count must be an integral multiple of the block size.
The AppleDisk 5.25 driver supports block sizes of 256bytes (for DOS 3.Ð and 512 bytes
(for PToDOS and Pæcal) and block counß of 560 and 280 blocks, respectively. Logical
interleave on the disk varies with the block size.

A Important In order to force disk-switched detection on an Apple 5.25 drive, the
AppleDisk 5.25 dnver retums a disk*witched enor on any read or
write request if there has not been a media access in the previous one
second. If your application is accessing the AppleDisk 5.25 dnver
directly, the application hæ to handle the disk-switched enor. Ttre
normal procedure is to retry once and only once. a

DVrlte ($zolo)

This call writes the requested number of b¡es to the disk starting at the block
number specifìed. The request count must be an integral multiple of the block size.
Ttre AppleDßk 5.25 driver suppora block sizes of 256bytes (for DOS 3.Ð a¡d 512 b¡es
ffor PToDOS and Pæcal) and block counts of 560 and 280 blocks, respectively. Logical
interleaving on the disk varies with the block size.

A Important In order to force.disk-switched detection on an Apple 5.25 drive, the
AppleDisk 5.25 dnver retums a disk-switched enor on any read or
write request if there has not been a media access in the previous one
second. If your application is accessing the AppleDisk 5.25 driver
direaly, the application hæ to handle the disk-switched enor. The
normal procedure is to retry once and only once. a

Chapter5 TheAppleDisk 5.25Dnver lD

AppleDisk 5.25 driver formatting

Ttre AppleDisk 5.25 driver suppoß only 35+øck, lGsector formatting. Media are
form¿ned with a physical 1:1 interleave. Logical interleave is achieved by using one of
wo interleave translation tables. DOS 3.3 operates on 256b¡e sectors; PToDOS and
Pascal operate on 512-byte blocla consisting of two contiguot¡s .logical sectors.' Both
PToDOS and Pascal r¡se a common logical sector interleave of 2:1, while DOS 3.3 uses a
logical sector interleave of 4:1.

Logical-tophysical+ector translations are shown in the interleave translation tables of
Figure 5-1. The input block size to a media-access call controls which translation table
is used.

¡ f$¡r€ l-1 Apple 5.25 dnve interleave confìgurations

PmDos ar Pasaldisl<s:
Logical sec'tor address
Physical sector address

ÐOS 3.3 dlsl<s:
Logícal sec'tor address
Physical sec'lor address

I6420

FEDcA9I7oItltlil¡l:l0l
F246BEIolplslslzl:lllr rcTÃI

130 Apple IIcs GS/OS Device Driver Reference

As Figure 5-2 shows, each sector consists of a self-synchronization gap, followed by the
sector address field, followed by another self-synchronization gap, followed by the data
fìeld, and ending with a finalgap.Ihe sector address field conains the volume number,
track number, sector number, and checksum for the sector. The daa fìeld contains 342
b¡es of da¡a and a checksum. Both the address field and the daa fìeld have beginning
(mark) and ending (epilog) markers.

r fslr€ l-2 .{pple 5,25 dnve æctor format

¡r4l&l!rl&
g
IL&Ëg

'L
4l&oHôxxxxxxXTxxTTI4êIl&ÊrL,lar4r4L4lÈr!&rl&&llr&øl¡;ç

cÂP 2
(Typhlly !-10 b¡es)EPII.OGsEcTNKvoLMANK

cÀP I
(Typiølly 12-85 byt€s)

ADDRESS NEI^D

rrEÉLl&&
l¿;I

&l&çÊøEçrE:EÊê
DÂTA${2b¡es-MARK

DATAFIEIÐ

&rLg&qFLrLLrLÉqr&l¡;&ErL-I&fl.rrl¡.¡
t¡¡çxxx&4ÊÊq

L&rrrøt!l¡.&Ê

GAP
'(Typically 16-28 b¡eÐ[PIIOG-six and tsoencoded)

Chapter5 The,{ppleDisk 5.25Dnver 131

Chapter 6 Ïhe AppleTalk Drivers

The AppleTalk drivers are loaded drivers that provide network protocol
services, allowing Apple II program.s to interact with devices connected
to an AppleTalk nerwork. Utilizing one of ¡he two nS232 serial ports, the
AppleTalk drivers supply network printing and server access. You need
the information in this chapter only if your applÍcation uses AppleTalk.

The AppleTalk driver is actually three drivers in one the .AppleTalk
driver, the .AFPn driver, and the .RPM driver. Tl¡e th¡ee components are
sand-alone drivers in themselves but are loosely connected to each other
by being in the same driver file. These three drivers are described in this
chapter, as are the calls to the drivers.

Ttris chapter also describes the SCC Manager. This supervisory driver
manages the AppleTalk port and arbitrates between all AppleTalk
device drivers and AppleTalk nemork peripherals.

For complete information on AppleShareo and rhe Apple IIcs computer,
you should also have the Appleshare hogramnw's Guideforthe
Apþle I Fanþ.

a

rß

The Remote Print Manager driver (.nPM)

The Remote Print Manager driver (.RPM) is a loaded character driver that communicates
with the AppleTalk Remote Print Managø. The purpose of this driver is to provide a
means of communication between a GS/OS application program and the older Pæcal 1.1

fìrmware entry points for the AppleTalk slot. (For more information on the Pæcal
interface protocol, see the Apple IIGi Finnware Refrence)

Printing to the Remote Print Manager under system software version 4.0 wæ
accomplished by means of a generated driver that was created by GS/OS at boot time.
Generated drivers are created automatically for any slot that has valid fìrmware but no
loaded driver. Since the cr¡nent version of GSIOS (system software version 5.0 and later)
hæ ¿ number of loaded drivers for the AppleTalk slot, GSIOS no longø generates a driver
for the Remote Print lvlanager. A new loaded .RPM driver hæ been written for system
software 5.0.

Instead of making calls directly to the AppleTalk slot fìrmware, application programs
should print to ¿ network printer by using skndard GS/OS Vrite calls to the .RPM driver.
Tt¡e .RPM driver uses special GS/OS generated device-management code to send the data
to the AppleTalk slot. This is a much cleaner approach than writing direaly to the slot and
is the only approach zupported by Apple. For this reason, GS/OS application developers
should make use of it. Although a GS/OS application can print to a network printer using
the .RPM driver, you should limit use of the .RPM driver to textonly output; use the Print
Manager for all of your other printing needs.

The .RPM driver is part of the main ,ATAIK driver located in the ':SYSTEM:DRI\¡ERS subdirectory.

About calls to the .RPM drtver

The .RPM drivø supports the standard driver calls. These calls are

¡ Dlnfo .

I DStatus

I DControl

r DRead

r DVrite
r DRename

1g Apple IIcs GS/OS Device Driver Reference

The remainder of this section describes the way the .RPM driver handles these calls
diffaently than standard driver calls. For details of the standard calls and the requirements
and capabilities of each, see Chapter 1, .GS/OS Device Call Reference.'

Dstarus ($202D)

Dæcriptlon The DSarus call is used to obuin status information from the device or
the driver. The DSutus callsupports several sukalls, which are described
in this section. These are

CodÊ

$0000

$0001

$0003

$0004

$8001

llúcelln¡c
GetDeviceStatus

GetConfigParameters

GetForm¿tOptions
GetPartitionMap

GetRPMParameters

CretDevlcestatus (DStatus subcall)

Descrfpdon This stan¡s zubcallretums the generaldevice status word followed
by a longword. This subcall is handled by the driver's generated
device-management code.

The retum data format is shown in Figure tl, and the individual fìelds are
defìned following the figure.

Rcürn
pafa[rctÉTs

r Flgrnr 61 GetDeviceStatus subcall retum dau

Block cou¡¡t

Deviceg¡ns$00

$02

Chapter ó The AppleTalk Drivers 1,5

Device srarus Conains the device status word. B¡t 0 is set if the device is open. Bit 4 is
set if the device is on line.

r Figurt 6.2 Device status word

Highbyte lowbyte

Reserved

Device online

Reserved

Derrice offline

Block count

Reæned @n

Ttris fìeld is not used by character devices and will always be equal
to $00000000.

0

GetGonfigParametcrs (D$tâtns subcall)

Descrtptlon This satus zubcall is oot valid for character drive¡s and will always returri
with no enor and wittr the t¡ansfer count set to 0. ì

CretFormatoptloß (D$tatus subca[)

Descrlptlon This san¡s subcall is no:t valid for character drivers and will always retum
with no enor and wittr the transfer count set to 0. i

13ß Apple IIcs GS/OS Device Driver Reference

GetPartlttonMap (DSt¿tr¡s sr¡bcall)

Descrlption This satus subcall is not valid for character drivers and will always rerum
with no error and with the transfer count set to 0.

Descdption

resu].t,

CætRPMPar¿meters (dertce-specifrc subcall)

statusCode = $8001

This DStarus subcall returns the cunent paramelers used by the
.RPM driver.

nuiberBuf,fcr¡
t,i¡eû¡t

- flushlnterval -
rpmFlags

entiÈyEtr

result

The result from the PMSetPrinter AppleTalk call will be placed in this
field. (See the Applesharc Prcgrammer's Guide þr the Aple II Family for
more information on the PMSetPrinter call.)

entity Ptr Conains a longword pointer to a sandard AppleTalk entity name. The
ftlme must be supplied before the call is made, and the buffer containing
the name must be 100 ($64) b¡es long..{n entity name is a characrer
string consisting of three Pascal strings: object, rype, and zone
concatenated together. Ttre format of the entity name is shown in
Figure 64 and is described following ttre fìgure.

r Flgure 63 GetRPMParameters subcall format

$00

$02

$0ó
i07

$09

$08

Chapter 6 The AppleTalk Drivers W

object length

r trtgurt 64 GetRPMParameters entity name format

Object

TyPe

Zone

Ttre first rwo fields of the entity neme can be up to 32 charactens plus 1

length b¡e. The third fìeld can be up to 33 characters plus I length b¡e.
This mearrs that the zupplied buffer must be lffi b¡es in length.

Conains the flags b¡e for the .RPM driver, shown in Figure 65, The bits
in the flags b¡e are defined in Table 61.

r Figurt 65 .rpm Flaç b¡e

Ne¡wo¡k deviæactive

Resened

ImageVritero emulation

Reærved

s00

s0l

S.r¡

$¡c

S.l¡

Ss

rpm Flags

Reserved ffilg

Type length

Zone length

f4Fi.F-liä;i.il El

138 Apple IIcs GS/OS Device Driver Reference

r T¡ble 61 ,rpm Flags byte defìnitions

llr Dcfnltlon

7 This bit is set when the specified printer is on the network. This bit
should always be set on the Apple IIGs computer. Use the
SetRPMParamete¡s call to set this bit.
Reserved.
If this bit is æt, the printer is a laser$flriter printer s/ith the Image\Triter
emulator installed. At the start of a print job, the printer is sent a
command causing it to act like an Image\Friter printer. (See the
AppleSharc Prqramner\ Guide to the Apple ï Famiþfu morc
information on using the LaserVriter in emulation mode.)

A lf.rûi¡g This call does not check for the presence of the ImageVriter emulator.
Be sure it has been downloaded to the l¿serlfriter before printing
using the.RPM driver. r

Reserved.

flushrnterval llord value that specifies the number of l/4second intervals the
.RPM driver waits for new characters before flushing a les-than-full
output buffer. The default value is one l/4second interval.

tlmeout Word value that specifìes the number of 1/4second intervals the
.RPM driver waits for new characters to be sent from the application
progfi¡m before timing out and ending the print job. The default value
is 30 seconds.

nu¡nberBuffers Word value that specifies the number of 512-byte buffers the
.RPM driver uses for storing outgoing information. The more buffers
allocated, the faster the printing will be. As many buffen can be allocated
as there is available memory space to support. The default number is
20 buffers (10 KB).

6

5

A

Chapter6 The AppleTalk Drivers l9

DControl ($2028)

Dæcrlpdon

Codc

$0000

$8001

Scrlluc
ResetDevice

SetRPMParameters

The DControl øllallows the .RPM driver to pæs data and control
information to devices on the network. The DControl callsupports two
control subcalls, whìch are described in this section. These are

ResetDcvicc (DControl subcall)

Deccrtptlon This control subcall resets the specifìed network device to its default
settings. The only setting that is affected by this subcall is the wait/ne
wait read mode. Åfter a reset, the read mode will be set to weit. This
subcall will alwap retum with no effor and with the transfer count set to 0

Ihscrlptbn

$etRPllParamcters (devlce-opcciflc subcdl)

controlCooe - $8001

Ttris subcall sets the parameters to be used by the .RPM driver. The
individualpammeters are described following Figure 66.

Numberofbuffc¡s

Tirrcout inteml

Flwh i¡rtervd

Fl¿cs

- Entily üne po'rnter :

len¡lt

I F[rut 66 Setlptr,tparameteñr subcall format

$00

$02

306
$07

s09

JOB

140 Apple IIcs GS/OS Device Driver Reference

result

enÈity Ptr

rpm Flags

flushlnterval

tÍmeOut

numberBuffers

The result from the AppleTalk call PMSetPrinter is placed here.
For information on the PMSetPrinter command, see the
AppleShare Programmer's Guide for the Apple II Famiþ.

Contains a longword pointer to a standard AppleTalk entity name.
See the GetRPMParameters sø$s subcall for the format of
Entity name pointer.

Contains the flags b¡e for the .RPM driver. See the GetRPMParameters
DSatus subcall for the format of the flags byte.

Word value that specifìes the number of l/4second intervals the
.RPM driver waits for new characters before flushing a less-than-full
output buffer,

Word value that specifies the number of l/4-second intervals the .RPM
driver waits for new characters to be sent from the application program
before timing out and ending the print job.

Vord value that specifìes the number of fl2-byte buffers the
.RPM driver uses for storing outgoing information. The more buffers
allocated, the faster the printing will be. As many buffers can be allocated
æ there is available memory space to support. The default number is
20 buffers (10 KB).

a

Chapter 6 ITre AppleTalk Drivers l4l

DRead ($ZOZF)

Deccrtptlon The DRead call for this driver is not valid because the printer is a
writeonly device. Tl¡is call reft¡ms error $4E (invalid access).

Dwrite ($2030)

Ilcccdpdon The DI[rite call is used to send print daa to the driver. Data sent to the
printer is buffered intemally; not every D!flrite callresults in daø's being
printed. To send a les-than-full buffer to the printer, use the Flush call
($2015). Otherwise, the DVrite call for the .RPM driver is the same as the
sundard DTÍrite call for all drivers. Refer to Chapter 1, "GS/OS Device
CallReference,n for specifia on the standard DVrite call.

142 Apple IIcs GS/OS Device DrÍver Reference

Ihe .AppleTalk driver

In the past, the only way for an application or driver to determine generalAppleTalk
parameters was to look at specifìc memory locations. Vith the .AppleTalk driver, an
application or FST can determine these general AppleTalk values by making san¡s calls to
the driver,

The ,.{ppleTalk driver is a loaded character driver that provides a common interface for
detennining general AppleTalk variables. The driver provides application programs with
the following information:

r AppleTalk presence: An application can make the asumption that if this driver is
present in the system, the AppleTalk protocols are also present.

r AppleTalk port The driver can ren¡m which SCC ct¡annel the link access protocol ([AP)
is using æ the AppleTalk port.

The "{,ppleTalk driver is part of the main .ATAIK driver in the ':SYSTEM:DRIVTRS
suMirectory. Ålso included in this driver fìle are the .RPM and .AFPn drivers. Refer to the
sections ¡n this chapter conceming the .AFPn and .RPM drivers for more information.

Protocol ltyæ lnteractlon
It is important that you, the developer, know the difference between AppleTalk and
AppleShare. AppleTalk is the entire network system, and AppleShare is simply AppleTalk
fìle service,

This driver neither uses nor provides direct communication with the AppleTalk protocol
layers. An application must make AppleTalk protocol calls through the,{ppleTalk dispatch
vector at $E11014, Thh is because AppleTalk uses en asynchronous calling scheme, and
GS/OS is designed around a synchronous call strategy. For more information on AppleTalk
protocol calls, see the AppleSharc Prcgrammer's Guidefor the Appb II Famlly.

Chapter 6 The AppleTalk Drivers 143

About calls to the .AppleÏalk driver

The .AppleTalk driver supports the standard driver calls. These calls are

r Dlnfo
¡ DStatus

I DControl

r DRead

r DVrite

The remainder of this section descibes the way the .,{ppleTalk driver handles these calls
differently than standard driver calls. For details of the standard calls and the requirements
and capabilities of each, see Chapter 1, "GS/OS Device Call Reference."

Dstatus ($ZO2O)

This call provides a means to intenogate the .AppleTalk driver and obtain status
information. The .AppleTalk driver supports all the DStarus subcalls plus the GetPort
device+pecifìc subcall.

GetValtStatus

Dæcrlpdon This status subcall always retums with $00, since the driver always
operates in wait mode. ,{lways set the request count to $02.

CetPort (devlce-speclfic subcall)

Descrtptlon

statuscode - $8001

This device-specific status subcall retums the port number that
AppleTalk is annently using. Figure 67 illustrates the GetPort rerum data.

144 Apple IIcs GS/OS Device Driver Reference

r Bgüre 67 GetPort retum data

Pør number

Ttre port number that ÄppleTalk is cunently using:
$0001 . port 1 (printer port)
$0002. Wrt2 (modem port)

$00

Port number

DGontrol ($2028)

Deccrlpdon The DControl call allows the .AppleTalk driver to pass dea and control
information to devices on the nerwork. The .ÅppleTalk driver supports
most of the sandard DControl zubcalls. The exceptions are the device
Armsignal and DisarmSignal calls; these are not supported and always
retum enor $21 (invalid control or stetus code).

DRead ($202F)

Dccrtptlon This call is ner¡er executed and instead retuns enor $48 (invalid acces).

D\[rite ($2030)

Descrtptlon This call is nwer executd and instead retums enor $48 (invalid acces).

a

Chapter6 TtreAppleTalkDriven 145

Ihe AppleTalk Filing Protocol (.Afpn) driver

Ttre AppleTalk Filing Protocol (.AFPn) driver is a loaded block driver that communicates
with the AppleTalk PToDOS Filing Interface (the PToDOS fìle service) and also prcvides
FSTs with a means of logically connecting AFP volumes to GS/OS.

AppleShare fìle service for the Apple IIcs computer is achieved through the.AFPn driver.
The driver is acnrally 14 drivers in one; it has 14 device information blocks (DIBs), for a
maximum of 14 different AppleShare volumes on line at one time, but it uses the same
core routines for all 14 DIBs. The names of the devices are ..AFP1 through .AFP14. (For
information on DIBs and their structure, see Chapter 8, "GS/OS Device Driver Design.")

This driver provides these services:

r Mainteins and updates DIBs for all AppleShare volumes, reporting tt¡e loss of a
connection caused by either logging off or losing the session with a server. The driver
treats these occr¡rrences æ disk-suritch eveng. The only way for the driver to again
hold valid daa ¡s if a new volume is mounted and æsþned to this driver,

r Notifìes users of a lost connection or server shutdown. The driver displays an
appropriate dialog.

I Provides session information. This includes the sesion reference number, volume ID,
volume name, server narne, ¿nd zone name æsociated with a particular .,{F?n driver.

r Handles volume ejea. This is done by unmounting volumes and logging offthe server if
the læt volume on the server hæ just bæn unmounted.

Interactton wtth PnoDOS Fil¡ng Intdace

The PToDOS Filing Interface (PFI) resides under GS/OS and provides.{ppleTalk fìle
service for PToDOS 8. Instead of duplicating much of the code that is already in the PFI,
the .ÂFPn driver relies heavily on the PFI to determine information about.AFP volumes.
The .^AFPn driver relies on the PFI for the following information:

r new volumes that are mounted or unmounted

r volumes already mounted during an OS switch from PToDOS I to GS/OS, or vice ve$a

r names of AFP volumes and their sesion reference numbers and volume ID numbe¡s

r attention messages coming in from a server

146 Apple IIcs GS/OS Device Driver Reference

) Note: All DIBs are rebuilt whenever a switch from PToDOS 8 to GS/OS occurs. The
DIBs are rebuilt to reflect the su¡us of the volumes cuÍently mounted, including
configuration daø and eject status.

The .AFPn driven
^re

p^rt of ttre main .ATALK driver and are located in the
':SYSTEM:DRI\rERS subdireaory of the GS/OS system disk 5.0. ,{so included in this
d¡iver fìle are the .RPM and.AppleTalk drivers. Refer to the .RPM and .AppleTalk driver
sections in this chapter for more information on those drivers.

About calls ûo the .AfPn drtver

Ttre .AFP driver supports the sandard list of driver calls. These calls are

r Dlnfo
r DStatus

r DControl

r DRead

r Dïlrite
¡ DRename

The remainder of this section describes the way the .AIP driver handles these calls
differently than sandard driver calls. For details of the sandard calls and the requirements
and capabilities of each, see Chapter 1, .GS/OS Device Call Reference."

Dsrarus ($202D)

Descdption This call is used ío request status information from the driver. The .AFP
driver supports all the sandard DStatus subcalls plus one additional
device-specifìc subcall, GetEjea. These subcalls are described in
this section.

Chapter 6 The AppleTalk Driven 147

CætDevlceStatus

Descrtptlon This satus subcall ren¡rns the general device søtus word followed by a
longword specifying the number of blocla supported by the device. Ttre
individual fìelds are deflned below,

r Flguæ 68 GetDeviceStatus subcall reum data

Block count

Device stetus

Device srarus Conøins ttre device søtus word. Bit 0 is set if the disk hæ been
switched. Bit 4 is set if the volume is on line. Bit 15 is set if the block
count is unknown. '

r Flgure 6,'9 GetDeviceStatus device status word

Hi¡hb¡e lowbyæ

Reserved

Device on-line

Reærved

Device open

$00

$02

Reserved ffiila

Block count Contairu the size of the device in blocla. This value will alwap be equal
to $007FFFFF for an AppleShare volume.

l{t Apple IIcs GS/OS Device Driver Reference

GetConflgParameters

IÞscrlptlon This status subcall retums a length word as the first element in the status
list that indicates the length of the confìguration parameter list. The
fìelds are defìned following Fþre 6-10.

Conñguration&u

Configuration length
Vord th¿t contains the length of the conrisurar,ion data fìeld in
bytes.

Configuration data
Actr¡al configuration daa; willalways be 101 ($ó5) b¡es. Ttre standard
DIB seuinp retumed in this field are the same ones specifìed in the
SetRPMParameten subcall of the DControl øll to the .RPM driver. The
confìguration datz fìelds are described in Table 12.

t Tabb62 Confìguration data fìelds

H I¡ngtb Dcrcrlpttoa

r Ftgurc G10 Device configuration sarus list

$00

002

$óó

Device number

Session numtær ,

Reserved

Volume name

Vord

Byte

Byte

28 bytes

Logical number of the device within
the driver
Unique number æsigned to each
connection with a fìle server
Not used under GS/OS; used for slot
number and drive number under
PToDOS 8
Name æsociated with each volume

[coninuedl

Conffguntion length

Chapteró Ttre AppleTalk Drivers 149

. Tabk 62 Confìguration data fìelds fcontinuedl

rud I¡ngth DcrcdPdon

Volume ID number \[ord

Sams word Sford

Servername S?bytes

Zone name 33 bytæ

Number æsigned to the volume on
the server
Device satus word; see the
section earlier in this chapter on
the .AFPn driver DStatus subcall
GetDeviceStatus for details
Unique name of the server (seen

from the ControlPenel)
Name of the zone in which the
server is located

o ffof¿: The server name and zone name are rerumed æ empty strings if
the FILogin call is used rather than the FIIogin2 callwhen logging onto
the server.

GetFormatoptlons

Descripthn This satus subcall is not valid for the .AF?n driver because the device
cannot be formatted. This øllalways reh¡ms with no enor and with the
Fansfer count equal to 0.

GetParttttonMap

Descrtptbn This satus subcall is not valid for the .ÂFPn driva because the device
cannot be formatted. This callalways retums with no enor and with the
transfer count equal to'0,

GctEfcct$tetus (derlcc-spcdffc sr¡bcall)

statuscode = $8002

1t0 Apple IIcs GS/OS Device Driver Reference

Description This device-specifìc s¡atus subcall retums the cunent eject status. The
parameter list for this subcallis shown in Fþre 6-11.

¡ F¡gurc 6U GetEjectstatus parameter list

s00 Eiect satus

E ject srarus This field contains the eject status of the device-that is, whether or
not the media may be ejected. lhe default is $0000 (volume may be
eiected). This value is not reset to 0 when a Reset control call is issued.
$0000 = volume.may be eiected
$8000 = volume may not be eiected

DControl ($2028)

Descripdon

Codc

$8001

$8002

ttùoll¡æ
DisplayMessages

SetEiectStatus

This øll is used to send data and control information to the device
on the network. The .AFPn driver supports all the sundard control calls
plus two additional device-specifìc suhalls: DisplayMessages and
SetEiectSøn;rs. These subcalls are described in ¡his section.

These are the only v¿lid device*pecific subcalls:

a

ResetDevic€ (DControl subca[)

Descdptlon Ttris subcall is supporæd for compatibility only and actually does
nothing. This subcall always retums with no enor and with the tnansfer
count equal to 0.

Chapter 6 ïhe AppleTalk Drivers 151

Format Device (DControl subcall)

Description This control subcall is not valid for the .AFPn driver because the device
cannot be formaned. This call always ren¡rns with no enor and with the
transfer count equal to 0.

EiectMedium (DControl subca[)

Descriptlon This control subcall unmounts the volume and logs the user off the fìle
seffer if the volume wæ the last volume connected to that server. If an
enor ocq¡rs while unmounting or logging ofl enor $88 (AppleTalk enor)
is retumed. If the volume has been marked æ unable to be ejected by the
SetEieastatus subcall, then no enor is retumed, and a disk switch occurs
to simulate the volume being ejected and reinsened.

SetConftgParameterc (DControl subcall)

Descdpdon This control subcall would normally set the current parameter list of the
specifìed device to the given parameter list. Because the beginning of
the AFP Dß configuration data contains critical information, the first
101 ($65) bytes ofconfìguration da¡aare ignored and are never set by
this call. The fust word of the sans buffer must be a b¡e count that
indicates the length of the configuration data. The configuration
parameters must be contiguous to the b¡e count.

SetVaitStatus (DControl subcall)

Desctiptlon This controlsubcallsets the cunent wait mode. A read from the .AFPn
driver will always result in enor $88 (AppleTalk enor), so this calldoes
nothing and always ren¡ms with no enor and with the transfer count
equal to 0.

t1Z Apple IIcs GS/OS Device Driver Reference

SetFormat0ptlons (DControl subcall)

Descrlpdon This control subcall is not valid for the .AIPn driver because the device
qrnnot be formaned. Ttris callalways retunis with no enor and with the
transfer count equal to 0.

AsslgnPaftftrionOwner (DControl subcall)

Ttris con¡rol subcall is not valid for the .AFPn driver because the device
cannot be formaued. This call always retums with no enor and with the
transfer count equal to 0.

Descdptlon

Arnslgnal (DGontrol subcall)

Dccrtptlon The .AFPn driver does not support anysþaling, so this subcall always
ren¡ms with enor $21 (invalid control or sÞn¡s code) and with the
transfer count equal to 0.

Dlsarn$tgnal (DContml subcall)

Descriptbn The -AFPn driver does not support any signaling, so this subcall always
ren¡m6 with enor $21 (invalid controlor stan¡s code) and with the
transfer count equal to 0.

SetP¿rftfonì{ap (DConfol subcail)
,

Descrlpdon This control subcall is not valid for the ,{FPn driver because the device
ønnot be formatted. This callalways ren¡rrìs with no enor and with the
transfer count equal to 0.

Chapter 6 The AppleTalk Drivers 153

DlsplayMessages (D0ont¡ol subcall)

Ihscrlption

conrrotcoae = $8001

This control zubcall displays all pending server messages. This call is for
intemaluse only; there is no need for a program to make this call.

SetEiecsanrs (DControl subcall)

Dæcrtptton

controlcoae = $8002

This cont¡ol subcallsets the q¡ffent eject status. The status list is shown
in Figure Ç12 nd is defìned following the figure.

r Flgue 6t2 Setn¡eastatus sratus list

Ecûsatus

o fforei Thi$ call is reserved for use by ttre AppleShare FST only.

lnput
paranctûrs

Eject status Determines the eiect status of the device-that is, whether or not the
media may be ejected. The default is $0000 (volume rnay be ejected).
This value is not reset to 0 when a Reset control call is made.

$0000 = volume may be eþcted
$8000 = volume may ríot be eieaed

$00

t 4 Apple IIcs GS/OS Device Driver Reference

{
DRead ($202F)

Dæcdptloa In order to maintain compatibility with system software version 3.2,
this call normally ren¡rns enor $88 (AppleTalk enor). The only other
erors retumed by this c:.ll are enor $2F (disk off line), enor $2E
(disk switched), and enor $2C (bad request count).

Dvrit€ ($2030)

IÞsct{ptlon This call hæ no effect on the driver and always retums enor $28
(write protected).

a

Chapter 6 TheAppleTalk Drivers lr5

The SCC Manager

The SCC Managø is a loaded supervisor driver that oversees and manages the AppleTalk
protocols, GS/OS AppleTalk drivers, and any other GS/OS driver that requires the use of
the serial communications controller (SCC). The driver provides the following servicCI:

r both loads and initializes all the ¿vailable AppleTalk protocols found in the
':SYSTEM:DRIVERS directory

r æsigns a unique AppleTalk driver unit and slot number by determining in which slot
AppleTalk resides

r provides arbit¡ation of the rwo SCC channels for such services æ AppleTalk, MIDI,
modem, and prÍnter drivers to share the SCC effectively

Calls to the SCC Manager

The SCC Manager is a supervisory driver that controls all communications through the
serial ports by managing arbitration between serial device drivers end serial peripherals
(including network devices). All søial driver calls are issued to the SCC Manager. If you
plan on uniting your own serial driver for use with the SCC, you must understand these
SCC Manager calls described in this section:

r AppleTalkClient
r GetChannelstatus

r SetChannelStatus

t ß Apple IIcs GS/OS Device Driver Reference

AppleTalkCllent

Descrtptton

Pammetcn Oftct

conr,rolco¿e = $0002

This call reilms to the ølling driver the AppleÏalk slot numbø, channel
number, and a unique unit number that the calling driver should use in
is DIB.

f00

t02

t04 Unlt nunber
Channêl nu¡nbe!

Slot nunbor

Ihærtpdon

AppleTalk slot number

SCCchannel number

Unique AppleTalk unit number

SkÊ

Longword

Longrvord

[ongword

st-or number C¡ntains the AppleTalk slot number.

Channel- number
Cont¿rins the SCC channelnumhr.

UniÈ number Contairu the AppleTalk unit number.

GS/OS drivers ue expected to æk fo¡ a ne$/ unit number every time ttrey
start up. This means ttrat when switching from PToDOS 8 back to GS/OS,
the driver must reissue ttre AppleTalkClient call in order to receive a new
unique unit number.

fætChannelstatus

Descdpion

Paramcters Oñct

controlco¿e = $0003

This call ren¡rns the cunent st¿tus of the SCC channels.

$00

i02 - Chennel 2 Stâtus -
- Chônn€l I Status -

Ihrcttptton

Channel 1 status

Cl¡annel2 saus

Slze

Longword
Longrvord

Chapter 6 Ttre AppleTalk Drivers tJ7

Channel 1 Status
Conteins the cunent status of channel 1:

$0000 - channel available
$0001 = channel being used
$0002 = channel being shared

Channel 2 Status
Contairu the cunent st¿tus of channel 2:

$0000 = channel available
$0001 = channel being used
$0002 - channel being shared

SetChannelStatus

Descripdon

Peraoctcrs Oft€t

Channel

Channel Status

controlCoae - $0004

This call sets the status of the specifìed SCC channels.

$00

$02 Chånne1 SÈeEus

Chånnel

S¡ze

long¡word
Longword

Descripdon

ClunnÊl

Ch¿nnel søtus

Indicates which channel of the SCC is being altered:
$0000 - ctrannel 0
$0001 = channel 1

Indicates úre desired status you wish to implement:
$0000 = channel available
$0001 . channel hing used
$0002 = channel øn be shæed

Ttre channel stan$ is maintained only between the GS/OS stamrp and
shutdov*'n calls. After switching back from PToDOS 8 to GS/OS, the
channel status for each channel, with the exception of the AppleTalk
channel, is reset to 0 (channel available),

Etmrr drvr-bad-parm
drw-no-resrc

$22 Invalid parameter
$26 Resource not available

1tB Apple IIcs GS/OS Device Driver Reference

AppleTalk driven¡

The SCC Manager loads and initializes allAppleTalk drÍvers found in the DRMR direaory
on the boot disk. An AppleTalk driver is identifìed by a fìle type ($BB = driver fìle) and
the highorder b¡e of the driver auxiliary type ($02 = AppleTalk driveù. The low-order
byte of the auxiliary type conuins information about under what startup conditions the
driver should be loaded. The auxiliary type is defìned æ follows:

Hfgh byæ: The high b¡e must be $02.

Iow b¡e The low byte hæ the following format:

i

1- optiorul d¡iver J
ROM ve¡sion

Reærved: must be 0

An AppleTalk driver will be loaded only if the cunent system ROM version is equd to or
less than tt¡e ROM version fìeld.

All AppleTalk drivers are loaded when the Apple IIcs computer is booted from a local disk
drive. If the computer is booted over the network, only the drivers with the Optional
Driver bit set will be loaded. Files are loaded in alphabetical (ASCII) order, not necessæily
in the order they appear in the directory.

The SCC Manager r.¡ses the GS/OS loader to load the .AppleTalk driver. The manager then
initializes the AppleTalk driver by iumping to the first b¡e of the driver, The X register
contains the Apple IIcs ROM verlion, and the Y register contâins the AppleTalk slot
number. On exit from the initialization routine, the AppleTalk driver must set the
accumulator to 0 and clear the carry bit.

ffi

01) I
I37

Chapter 6 TTre AppleTalk Drivers t9

Eranplcs

The following driver code example allows a sandard GS/OS driver to find the AppleTalk
slot number and acquire a unique unit number for the slot.

slot_nun
unit nuûr

su¡r_drvr_diep eqtl
drvr_díb3tr GçIu

supjerÍrJ'tr eqJr¡

phk

egu
e$¡

90rFcÀ4
920
ç78

$2E
930

; offcet int,o DrB to slot *
,' offset Into DIB to unit *

, GSOS sygtên cervica vector
r GSOS drivçr zcro page
, GSOS drù¡cr zcro page

prb

t90000 ; No dríver nunbor (Noné)

t CaII nutnber 0 (GctSupNun)
190001 ; Sq¡ervigory ID 1 (SCC)

sup-drvr_disp
Error

suP-nuñ ; store Àpplcfalk supcrvisor nu¡nbcr
¡ for later use

lPallnl,ílt ; Storc parÊr¡Gter block polntcr
<supJasln.¡ttr r on zÇro pagê for au¡rcrvilor I I
l^Par¡¡li,¡t i usc
<rupJe¡nJtr+2
suP_nun i SupêrvlÊor drl,vc¡ nu¡nbcr
t$0002 ; Call nu¡¡Íbcr 2 (ÀpplcÎalkCtient)
l$0001 ; Supervisor ID 1 (SCC)

sup_drvr-diap
Error

lslot_nwr ¡ Slot nunbcr offsGt,
Slot
fdrvr_dfbJtrl , y ; Store glot I in our DIB

rep lS30
Ionge on
Iongi on

Ida
tax
ldv
J8I
bcs

stx

ldå
sta
Idå
stå
¡da
td¡(
ldv
Jst
bcg

ldv
1då
str

160 Apple IlGs GS/OS Device Driver Refeænce

Error

5up_num

Parmtist
SIot
Channel
Unit

ldy
lda
sta

#unÍt_num ; llnit number offset
Unit
[drvr_dibjtr],y ; Store unit # j.n our DIB

clc
rts ; C clear - no erlor

i C set = no Àppletalk

ds.w L ; Supervisor driver number goes here

; Parameter list for AppleTålkclient
dc. r.¡

dc. w
dc.¡¡

o

0

0

Chapter 6 TheAppleTalk Drivers 16l

Chapter 7 GS/OS C¡enerated Ddverr

At system stup, two kinds of device drivers are insalled into the
GS/OS device driver list loaded drivers and generated drivers. GS/OS
constructs a generated driver for each slot that does not have ¿n
æsociated loaded driver, so that all the device drivers supported by
GS/OS c¡rn use the same standard interface.

Vith generated drivus, GS/OS allows apptiøtioru to make søndard
GS/OS calls to access firmwarebæed device drivers (bottr built in and
on periphøal cards) written for the Apple II family of computers.

This chapter describes the BASIC, Pæcal 1.1, ProDOS, and SmartPort
genøated drivers and lists the device calls they fl¡pport.

) Note: lf you are writing a firmware driver for an Apple II peripheral
card, read Appendix A, "Generated Drive¡s and Firmware Drivers."
It explairu how GS/OS recognizes and dispatches to firmware-based
I/O d¡iven.

a

16!,

About generating drivers

At startup, GS/OS constructs a dcvlcc llst, a list of pointers to information about each
installed device driver. GS/OS builds the list in this order:

1. It fìrst installs all loaded drivers from the subdirectory':SYSTEM:DRIVERS on the
system disk.

2. For each slot n that does not have an asociated loaded driver, GS/OS looks for a
fìrmware I/O driver. It examines the appropriate firmware ID bytes in the $C200 page
of bank 0, and generetes a GS/OS driver for any fìrmware driver it fìnds that uses
BASIC, Pæcal 1.1, ProDOS, SmartPort, or extended SmartPort protocols.

Generated drivers have two primary advantages over fìrmware drivers. These
advantages are

r Peripheral card fìrmware is written in 6502assembly-language code and is executable
only in emulation mode on the Apple IIcs computer. However, generated drivem allow
applications to access these drivers while running in native mode.

r Most fìrmware drivers cannot directly access memory banks other than bank $00; for
these drivers, GS/OS double-buffers the data through bank $00 so that applications
am access the drivers from anywhere in memory.

Each generated driver hæ an æsociated devict lnfotm¡tion blocü (DB), iust like a
loaded driver. Ttre DIB contains device-specifìc information that can be used by the
driver and by other parts of GS/OS.

Tlpes of çnerated drlvers

GS/OS generates drivers for four broad types of sloçresident, fìrmware-based I/O drivers;

! BASIC aod Pesc¡I1.1 ddverr: The Apple Super SerialCud and many third'party
printer cards and parallel c¿rds contain fìrmware drivers that conform to the Pæcal 1.1
interface protocol, The Apple II Parallel Interface Card is a ctrd that conforms to the
BA,SIC interface protocol.

A GS/OS character device driver is generated for slot-resident fìrmware I/O d¡ivers
that use the BASIC and Pæcal 1.1 protocols (see the Apple IIcs Firmware Refavncefor
more information). Each generated character device driver hæ a single DIB indicating
that the driver supports only one device.

l& Apple IIcs GS/OS Device Driver Reference

For BASIC fìrmware drivers, a B.{SIC generated driver is creatd, For Pascal 1.1

firmware drivers, a Pæcal 1.1 generated driver is created. For firmware drivers that
support both BASIC and Pascal 1.1 protocols, a Pæcal 1.1 generated driver is created.

r PtoDOS ddvers; Ttre.A,pple ProFile and several third-party hard disk drives include
fìrmware-bæed drivers that conform to the PToDOS interface protocol on their
controller cards.

GS/OS generates a block device driver for sloçresident fìrmware VO drivers that use
the PToDOS interface (defined in the PrcÐOS I Reføence ManuølL One DIB is created
for each logical PToDOS device; for example, a hard disk with two partitions is two
logical devices and therefore hæ two DIBs.

r SmartFo¡t ddve¡s: The Apple II Memory Expansion Cæd (used æ a RAM disk) is a
peripheral card whose fìrmware driver follows the SmartPort protocol.

) Note: The Apple lle UniDisk 3,5 card is not compatible with the,{.pple IIGS computer.

Slot-resident fìrmware drivers that use the SmartPort protocol can in theory support up
to tI7 devices each, eíther character devices or block devices. See the Apple nls
Firmua¡e Refaence for more information. GS/OS generates a DIB for each device
interfaced to SmartPort. The device characteristics flag in the DIB indicates whether
the device is a character device or a block device.

r ExtendedSmafisort ddvei¡: An exended SmartPort driver hæ all the capabilitiæ
of a SmartPort driver and in addition supports direct memory transfer from any bank,

Chaptø 7 GS/OS Generated Drivers 165

Device calls ûo generated drivers

All GS/OS generated drivers support these standard device calls:

r Dlnfo
¡ DStatus

r DControl

r DRead

¡ DVrite
r DRename

All generated drivers support the standard set of Dstatus and DControl subcalls, although
not all of those drivers perform meaningful actions with all of the subcalls. No generated
drivers support driver-specifìc DStaus or DConrol calls.

The rest of this chapter describes how generated drivers handle any of the above device
calls differently than the standard ways documented in Chapter 1. Â¡ry calls or subcalls not
disct¡ssed here are handled exactly as documented in Chapter 1.

Dsrafis ($202D)

Generated drivers support these DSaus subcalls:

I GetDeviceStatus

¡ GetConfigParameters

I GetVaitStatus
I GetFormatOptions

Only the following sukalls are implemented in a nonstanderd way.

CretConflgParameters

Generated drivers have no confìguration parameters. They alwap ren¡m no parameters, no
erors, and a transfer count of $0000 0002 in the parameter block.

16 Apple IIcs GS/OS Device Driver Reference

{
GetValtStatus

Generated devices support wait mode only. A wait-mode value of $0000 is rerumed in the
status list.

C¡etFormatoptlons

Tt¡is subcall applies only to block devices that implement the SmartPort interface with the
new optional set of calls (see the Apple IIcs Fhmwarc ReJercnæ, LMß Apple IIos Updøte for
more information on the optional ølls). The format of the options list is identical to that
of the SmartPort specifìcation and is rctumed unmodifìed in tt¡e slatus list.

Dc¡ntnol ($2028)

Generated drivers support tl¡ese standard DConrol subcalls:

¡ ResetDevice

I FormatDevice

r EjectMedium

¡ SetConfigParameters

I SetVaitStatus
r SetFormatOptions
r .{ssignPartitionOwner

r ArmSignal

I DisarmSignal

Only the subcalls described in this section are implemented in a nonsnandard way

ResetDcvice

This call hæ no appliøtion wittr genuated driven and ren¡rns witl¡ no enor

Chapter 7 GS/OS Generated Drivers 167

SetConfigParameters

This call does not apply to generated drivers, Both generated character and block device
drive¡s retum with no effoÍ.

SetValtStatus

AII generated drivers support wait mode only. .{nempting to set the mode to wait results
in no enot anempting to set the mode to no wait results in enor $22 (invalid parameter).

SetFormat0ptlong

This subcall applies only to block devices that implement the SmartPort imerface with ttre
new optional set of calls (see the Apple IIcs Firmware Refwnæ, 1I[B Apple IIGi fpdøte for
more informarion on the optional calls). The format of the options list is identícal to that
of the SmanPort specifìcation and is passed directly to the device in the control list.

Armslgnal

This callhas no application with generated drivers and retums with no enor

Dtsarmsignal

Ttris call hæ no application wíth generated drivers and retums with no enor

16t Apple IIcs GS/OS Device Driver Reference

I

Part II Vriting a Device Dríver

Pa¡t I P¡rr l¡
Appendixes

EruÇodes
Gppendix B)

S¡uem scnice ealls
(Clupter u)

Driver calls
(Chager 10)

C¡enen¡ed
and

fìrmwerc d¡¡ven
GppendixÐ

ùiversDesþ
& C¡ctr Coru¡ol
(Chages&9)

GVOS device calls
and deúcçspecifrc

info¡madon
(ChrpaT)

Chapter 8 GS/OS Device Driver Design

If you are planning to write a device driver for GS/OS, read this and tlre
following chapters. GS/OS gives you a wide variery of capabilities to
choose from in designing your driver; GS/OS ddvers can

I access either block devices or character devices

¡ access devices either directly or through supervisory drivers

r respond to both a sandard set of dríver calls and any number of
device-specific calls

I support multiple formatting options for their media

r be configurable by users or applications

¡ suppoft caching of disk blocks to improve VO performance

r include intenupt handlers

¡ includesignalsources

r indudesignalhandlers

This chapter describes the general stn¡ctur€ of device drivers. Chapters 9
and 10 disct¡ss additional concepts relared to driver function and dæign.
Driver calls, which every driver must handle, are described in Chapter 10.
System service ølls, which drivers can make to get infomation from
GS/OS and to perform certain functions, are described in Chapter 11.

tn

Driver types and hierarchy

To summarize the discussion in the introduction to this reference, drivers can be
clæsifìed in three ways:

r ln relation to daÍcæ, there are two bæic types of GS/OS drivers: block drivers and
character drivers. Block drivers control hardware devices that handle data in blocks of
multiple characters; character d¡ivers control hardware devices that handle streams of
individual characters.

¡ In relation to the GS/OS initializatloæ routines, there is another classification of
drivers: loaded drivers and generated drivers. loaded drivers are loaded into memory
at system starup or during srecution; generated drivers are created by GS/OS to
provide a GS/Oscompatible interface to slot-based fìrmware I/O drivers.

r In relation to the hierarchy of drivers and calls, there is another classifìcation: device
driven and supervisory drivers. Device drivers accept driver calls direaly from GS/OS
and in turn access either a hardwæe device or a supervisory driver. The AppleDisk 3.5
driver is an example of a device driver. Supervisory drivers accept driver ølls only
through other device drivers and in n¡m access hardware devices. The SCSI lvfanager
and the SCC Manager ue both examples of supervisory drivers.

If you write a driver to work with GS/OS, it may be a block driver or a character driver, it
may access hardware direaly or go through a supervisory driver, but it must be a loaded
driver. ^{ll loaded drivers, whether block driven or character drivers, must accept (if not
necessarily act on) the standard GS/OS driver calls documented in Chapter 10. Extensions
to the standard calls are available for device-specifìc operations. Part I of this reference
describes several examples of loaded and generated drivers.

Figure &1 shows how some specifìc device drivers and supervisory drivers might make up
a particular confìguration on the Apple IIGS computer.

172 Apple IIcs GS/OS Device Driver Reference

I Fi$rc E-l Hypothetical driver confìguration

Detke,
Maluger ISr

Device dispatcher

scc
superuisory

dríver

Supervisory
dispatcher

Printer
driver

AppleTalk
device
driver

Modem
driver

AppleTalk Printer Modem

Chapter I G$/OS Device Driver Design t75

The diagram in Figure &1 includes examples of both block devices and character devices,
and two hypothetical supervisory drivers: a SCSI supervisor and an SCC supervisor. Note
that some block drivers can ¿ccess their devices directly and don't need a supervisory
driver, Note also that all SCSI device drivers must use the SCSI supervisory driver, and all
drivers interfacing to the serial communications chip (SCCÞsuch æ AppleTalk, printers,
and modems-must use the SCC supervisory driver. The supervisor dispatcher is needed
whenever ttrere is one or more supervisory drive4 the dispatcher routes calls to the proper
supervisory driver.

Driver file types and auxiliaty types

loaded drivers are executable programs (load fìles). On disk, they should be in
compacted format conforming to version 2.0 of object module format (OMF; see
GS/OS Reføencò. All Apple IIcs driver load fìles must have a fìle type of $BB. They
may also be in Enpress load format.

The highorder b¡e of the auxiliary type field (auxrype; see Fþre 8-2) indicates the
type of driver fìle and whether the driver is active (that is, whether it should be loaded and
started up at boot time). If bit 15 of auxrype is æt (= 1), the driver is inactive; if bit 15

is clear (= 0), the driver is active.

The ¡ro high bits of the loworder byte of auxtype indicate the type of GS/OS driver.
Ttree types have been defìned: device drivøs, supervísory drivers, and boot drivers. The
two remaining posible values are reserved. (For information on boot drivers, contect
Apple Developer Support.)

The definition of the low six bits of the low byte of auxType depends on the driver type.
For device drivers, those bits indicate the maximum number of devices supported by the
driver; the device dispatcher uses that number to allocate memory for the device list. For
supervisory drivers, the low six bits of auxType ere not defined.

174 Apple IIcs GS/OS Device Driver Reference

¡ Ftgure &2 Auxiliary rype fìeld for GS/OS driven

High byte [ow byte

I - inactive
0 - aclive

S0l . GS/OS driver

0. device d¡iver
1 - zupervisor driver

Maximum number of devices (if device driver)
Undefi ned (if supervisor driver)

012345716el81011121314li

Device driver structr¡re

A device drive¡ consists of these bæic parts, usually in this order:

r a driver header, which must always be the first part of the driver

¡ one curent confìguration list and one default configuration list for each DIB; for
example, four DIBs result in eight confìguration lists

r optionally, one or more DIBs (DIBs can be ¿llocated dynamically by making calls to
the Memory Manager)

¡ a format options able, if the driver øn perform more than one type of formaning

l a driver code section

Figure &3 diagrams the general structure of a GS/OS device driver.

ChapterS GS/OS Device Driver Desþ 175

Configuration
parameter list or lists

r Flgure E-3 GS/OS device-driver structure

Header

Device information
blockorblock (DIBs)

Driver code ægment
or segfnents

- Each supported device (or pânftion)
must have its os¡¡r CorrfigUration
parameter list and DIB

- May be repeated for eadr supported
device or may be sharcd byall

If the device driver supports more than one device, then one DIB, a current confìguration
list, and a default confìguration list must be provided for each device. Ttre cunent list is a
list that reflects the cunent values of the driver parameters, and the default list is a list of
default values. Each device may have its own individual configuration and default lists or
may share those lists with other devices supported by the driver.

A driver always contåins one DIB per device supported by the driver; multþle devices,
even logical devices such ¿¡s partitions on a disk, cannot share the same DIB. If several
supported devices use the same configuration parameters, the driver need have only a

single set of configuration parameters for them; offsets in the driver header can then
reference the same configuration lists for each device.

176 Apple IIcs GS/OS Device Driver Reference

Ihe device drtver header

The device driver header specifìes where the confìguration lists and DIBs are located. The
device dispatcher needs that information when loading drivers and building the device
list. Using an Initialload call to the System Loader (see Chapter 7 tn GS/OS Reference), the
device dispatcher loads only the driver's static load segment, which contains its code,
DIBs, and configuration lists.

A device driver header hæ this format:

Oftct
t00

$02

$04

$06

$08

Slze

\Vord

Word

\Pord

Word

etc.

Descriptton

Offset to first DIB

Count of number of devices

Offset to fìrst configuration list for device 1

Offset to fìrst confìguration list for device 2

T?re header fìelds following aevicecounr constitute the confìguration list offset table;
it is a word list of offsets from the beginning of the load segment (the beginning
of the driver header) to the fìnt byte of the cunent confìguration list for each device
supported by the driver. If there is no configuration list for a device, the entry for that
device in the confìguration list offset table must be 0.

list2Offset

listlOffset
deviceCount

firstDIB

Configruatlon llsts

A coaflguradon llst is a table of devicedçendent information used to confìgure
a specifìc device. Each device supported by a driver ¡eeds tuo such lists: the first
one shows the device's cunent configuration senings, and the second one holds
default values.

Chapter I GS/OS Device Driver Design ln

A confìguration list has a very simple strucrure æ far as GS/OS is concemed: It consists
of a length word (conaining the number of b¡es in the list) followed by the device's
confìguration parameters. For a driver that supports a single device, the confìguration
lists would look like this:

Oftct Description

length of cunent configuration list for device 1

Cunent confìguration list for device 1

$00 \[ord

Slze

s02

configI,istl

\[ord Length of default configuration list for device 1

configLisE2 Default configuration list for device 1

Configuration lists are driver specifìc in content, but they must follow these rules:

r The first word of the list, the length word, must be a byte count; the length of the rest
of the list must be in b¡es. A length word of 0 indicates an empty list.

r Each parameter in the list must begin on a word boundary (no parameters should be an
odd number of b¡es in length).

r Each curærrt conûguraüon llst must have an accompanying ddault conffgrrratlon
llst, identical in size and format. The default confìguration list contains the default
driver confìguration values and is never altered.

r Tt¡e default configuration list must imrnediately follow the cunent configuration list in
the driver.

An application (through the Device Manager) or an FST obains a copy of a driver's cuffent
configuration parameters by making the call Driver_Status; the driver passes a copy of the
cunent list to the caller in the status list. A caller modifìes a driver's configuration
parameters by making the call Driver-Control; the caller passes the desired configuration
list to the driver in the control list; the driver copies that information into its cunent list.
See Chapter 10 for more information about the Driver-Status and Driver-Control calls.

length

Iength

178 Apple Ucs GS/OS Device Driver Reference

Any time that an appliøtion or FST requests that a device reverf to its default
parameters, the driver should respond by copying the contents of the default
configuration list into the cunent confìguration list.

hce lnfotm¿tlon block

Every device accessed by a driver needs a device information block (DIB). In a driver,
the DIB is a table of information that describes the devicel characteristics; when the
driver is loaded into memory GS/OS uæs that information to idenüry and keep track of
the device.

Each DIB hæ the format shown in Figure 84. Descriptions of the individual parameters
follow the figure.

I Flgr¡r€ 84 Device information block (DIB)

Oßct Slzc

longword

longword

Vord

[ongword

Descrtptton

Pointer to next DIB

Pointer to driver entry point

Chârâderistics of device

Number of blocls on device

300

sû{

s08

30A

$0E
$0F

dertName String Name of device (Pascal srring; ASCII, high bit cleaÐ

Iæntinuedl

blockCour¡t

-c}làrâcÈerl.sÈ1cs -

ent ryPt, r

llnkPtr

ChapterS GS/OS Device Driver Design 179

DIBDcvNr¡rl

extendedDlEPtr

forwardlink
headf,lnk
d€vlcêID
vêrs10n
unltNurt
slotNrrî

r Flgtu€ t4 Device information block (DIB) [continuedl

Size DescrtptionOftct

$28

sn
t30
î32
$34

TN
s38

$,A

$3E

Vord
Vord
Vord
Vord
Vord
Vord

Longvord

Vord

Slot number of device installed
Unit number of device in slot
Version number of device driver
Gene¡al typ of device
Device number of ûnt linked device
Device numbe¡ of nerit linked device

Pointer to additional device information

Initial device number (æsþed at sanrp)

Here is what each p¿Emeter in the DIB means:

ttnkprr Link pointer: longword pointer to the next DIB for device drivers
supporting multiple DIBs. If the device driver supports only a single
DIB, the link pointer should be set to ML. The device dispatcher uses
the link pointer only to install the device drivers into the devíce list.

enrryptr Entry pointer: longword pointer to the device driver's entry point.

characr,eristics Device characteristics: word value that defines whether or not the
device supports certain features. The cunent defìnition for this word
is shown in Fþre &5. Shaded bits are reserved and should be set to 0.

1$ Apple IIcs GS/OS Device Driver Reference

r Ftgure &5 Device characteristics word

1 . R.{M or ROM disk

I - Generated device

1 - Linkeddevice

I - Deviæ busy

1 . Resørtable

1 . Fixed name

Speed Group

1 . Block device

l -Vritealloqrcd

1 'Read allowed

I - Format allowed

1 . Removable medía

Reserved: mus be ze¡o ffiil

In the device characteristics ward, línhed d@tce mear¡s that the device
is one of several partitions on a single, removable medium. Datice fusy
is maintained by the device dispatcher to prevent reentrirnt calls to
a device.

Speed grcup defìnes the speed at which the device requires the processor
to be running.Speed group hæ these bineryvalues and meaning¡s:

Blortrab Spccd

00 Apple IIcs normalspeed
0l Apple IIGs fast speed

10 Accelerated speed

11 Not speed dependent

See the description of the system seryíce call $ET_SY5_SPEED in
Chapter 11 for more information.

5ï;,*'¡¿:|¡312,67IIl0l1L213t4t,

Chaprcr I GS/OS Device Driver Design ltl

Restartable definCI whether or not the device driver is to be purged or is
to remain in memory when switching beween a PToDOS I application
and a GS/OS application. If this bit is a 1, the driver is restartable and will
not be purged when quitting from a GS/OS application program to a
PToDOS 8 application program. If this bit is a 0, the driver is not
resanable and will be purged.

Before the introduction of GS/OS system software 5.0, device drivers
were always loaded from disk and thus may have contained preinitialized
data. Ttris data may have been modified during the normal execution of
the device drivø. In order to make these device drivers restartable, the
device driver Shutdown call must be modifìed to reset the variables that
have been modified during device driver execution, so that subsequent
Starn¡p calls to the driver will function properly. This is an additional usk
for the device driver Shutdown call and does not in any way diminish
previous requirements on the driver Shutdown call.

A flag is available that indicates whether a restart is due to a warm start
(resørting from PToDOS 8) or a cold start (power switch being tumed
on).frb flag is at $E1l01D0, A warm stârt sets bit 0, while a cold sart
clears it.

Fíxed nane defines whether or not the device driver name can be
changed in the memory-resídent DIB. If this bit is a l, the DRename call
will not alter the device driver name.

Block count: longword value that is the toal number of bloclcs
accessible on the device. It applies to block devicæ only; for character
devices, it should be set to 0. The value of ¡rockcount may be
dynamic (changing) if the device supports multiple types of removable
media or partitioned removable media. In this case, any saus call that
detects on-line and disk*witched conditions should update this
parameter after media insertion.

Device name: ïZ-byte fìeld that contains the device's name as a Pæcel
string. It consists of a length b¡e followed by up to 31 bytes of .{SCII
characters-uppercase onl¡ high bit clear (. 0). Note that the initial
period (.), which defìnes a device name to the system, is not part of the
name in this fìeld.

Slot number: word value indicating the slot in which the device hardware
resides. Bia 0 through 2 defìne the slot, and bit 3 indicates whether it is
an intemal port (controlled by fìrmware within the Apple IIcs computer)
or an extemalslot conaining a card with its own fìrmware.

blockCount

devNeme

slotNum

18¿ Apple IIcs GS/OS Device Driver Reference

Reserved: must br 0

A Impotant The driver must set biß7Ø to 0 in the slot-number word, a

For a given slot number, either the e)ilemal slot or its equivalent intemal
port is active (switched in) aÍ.

^ny
one time; bit 15 indicates whether or

not the device driver must access the peripheral card's VO addresses.
For more information on those addresses, see the Apple IIcs
Hørdwarc Refercnce. Figure 8-6 shows the format of the slot-number word.

If you are designing a loaded driver to replace a generated driver, you
must use the same slot number that would have been generated for the
driver. To determine whether an intemalor extemalslot hæ been
used, examine the soft switch SLTROMSEL for slots 1,2, 4,5,6, and7
or examine the soft switch RDC3ROM for slot 3. See the Apple fics
Firmware Refuøtce andthe APple IIGS Hardware Reføence for more
information on soft svritches.

r Ftguæ &6 Slot-number word

Higb bne lowbyte

TL Slotnumber

I . card (extemal slot)
0 = potl (tntemal sloÙ

I . driver is independent of slot hardwarc resources
0 . driver is dependent on slot hardware resources

EI

Unit number: a word value indicating the number of the device within the
slot. Multþe devices within a slot are numbered consecutively. This is
not a global unit number relating to the device list.

unitNum

Chapter 8 GS/OS Device Driver Design 1t3

versron

devicelD

If you are designing a loaded driver to replace a generated driver after
booting, you must use the same unit number that would have been
generated for the driver. For ProDOS, the drive number is equal to the
unit number; for a SmartPort device, the SmartPort unit number is equal
to the unit number.

Driver version: word value indicating the version number of the driver
that controls this device. Loaded drivers have their own version numbers;
generated drivers rnây use the version number obained from the slot-
resident fìrmware interface. Figure &7 shows the fields of the driver
version word.

r Figurc &7 Driver version word

Highb¡e Iowbyte

Majorrelease number

Minorrelease number
Release phase:
A. aþha
B. beta
E = experimental
D . developmental
0 - fìnal

o lvotøj This param€ter hæ a different format from the version
parameter reümed from the GS/OS call GetVersion.

Device IDr word value specifying the general type of device associated
with this DIB. Table &1 shows the presently defìned devices and their
device IDs. It is a guide to æsigning device IDs and does not in any way
imply that Apple Computer, Inc., intends to provide any of the listed
devices or drivers for them.

017345(,7I9l011121314t5

Lú Apple IIcs GS/OS Device Driver Reference

a iVofe; Device IDs are assigned by Apple Computø, Inc. Contact
Apple Developer Technical Support if you have a specifìc need
for a device ID.

¡ Table &1 Device IDs

ID Dercrlptloa ID Dc¡cdgtlon

$0000

$0001
$0002
$0003

$000r
$0010
$0011
$0012
$0013
$0014
$0015
$0016
$0017
$0018
$0019
$001A
$0018
$001c
$001D
$001E
$001F

$0004
$0005
$0006
$0007
$0008
$0009
$000A
$0008
$000c
$000D
$0008

Apple 5.25 drive
(includes Unidisk, Duodisk,
DiskIIc, and Disk II drives)
ProFile (5 MB)
ProFile (10

^{B)Apple 3.5 drive
(includes UniDisk 3.5 drive)
SCSI device (generic)
SCSI hard disk drive
SCSI tape drive
SCSI CD-ROM drive
SCSI printer
Modem
Console
Printer
Serial l¿serVriter
AppleTalk laserVriter
RAlvl disk

ROM disk
File server
(Reserved)
Apple Desktop Bus
Hard disk drive (generic)
Floppy disk drive (generic)
Tape drive Qeneric)
Character device (generic)
MFM-encoded disk drive
AppleTalk network (generic)
Sequential-access device
SCSI scanner
Other scanner
I¿serl[riter SC

AppleTalk main driver
AppleTalk file server driver
AppleTalk RPM driver

headI,ink

forwardi.ink

Head device link word value that is the device number of the first
device in a chain of linked devices (sçarate partitions on a single
removable medium). Using the head link and forward link as opointers,n

GS/OS or an appliøtion can find all DIBs associated with a partitioned
disk and mark them all on line or off line æ needed.

A value of 0 indicates that there are no devices linked to this device.

Forward device link: word value that is the device number of the next
device in a chain of linked devices (separate partitions on a single
removable medium). Using the head link and forward link as "pointers,'
GS/OS or an application can find all DIBs associated with a partitioned
disk and mark them all on line or off line æ needed.

A value of 0 indicates that there are no devices linked to this device.

Chaptø 8 GS/OS Device Driver Design lE

extendedD IBPt r
Extended DIB pointer: a longword pointer to a second, device-specific

structure containing more information about the device associated with
this DIB, This fìeld allows a driver to main¡ain additional device
information for its own purposes.

DfBDevNum DIB device number: a word value that is the device number initially
æsþed (during startup) to the device associated with this DIB. This
paftmeter is used to maintâin the head link and the forurard link between
devices within a loaded drivø supponing multiple volumes on a single
removable medium.

Note that if a loaded device replaces a generated boot device driver,
tl¡en this par¿meter in is DIB will not be valid until the next access of
the device.

a Note: A driver may ertend the DIB for its own internal use. The device øll Dlnfo
retums the value in the DIB field extendedDrBprr, so any driver-specifìc extensions
that use the extended DIB are available through Dlnfo. Ihe driver can also expand the
cunent daa stn¡cmre, but the information in those fields will not be retumed
by Dlnfo.

Format optlons table

Some block devices can be formatted in more than one way. Formaning parameters can
include such variables æ fìle system group, number of blocla, block size, and interleave.
Each driver that supports media variables (multþle formatting options) contains one
or more fotu¡t optbns tables, the formaning options for a particular type of device
controlled by the driver.

Ilhen a block driver receives the GetFormat0ptions subcall of the driver call
Driver-Satus, it retums a copy of is format options table for the particular device
requested. One of the options can then be seleaed and applied (by an FST, for example)
with the Driver-Control subcalls SetFormatOptions followed by FormatDevice. Device
drivers that do not support media variables retum a transfer count of 0 and generate
no eror. Character drivers do nothing and retum no eror from this call.
Fþre &8 shows the overall structure of the format options able; Figure &9 shows
the structure of e¿ch format options entry within the [ist.

1S Apple IIcs GS/OS Device Driver Reference

- currentoption -

-recdtuendedOption*

nurnDisplayed

numOptions

¡ ¡ Hgttrc E{ Format options table

Oftet

formatOptionl

Slze Dæcrtptlon

!Íord Number of format opt¡ons entries in list

llord Number of opions to be displayed

Vord Recommended def¿ult formaning option

lford Option with which curent online media
wæ formaüed

(16 bytes) First format option entry

$00

s02

s0{

106

$08

$0c

formatOptionN (16 byteÐ Læt format option entry

The value specifìed in the currentoptíon parameter is the format option of the cunent
on-line media. If a driver can report this parameter, it should do so. If the driver c,rnnot
detect tlre curent option, it should indicate unþnoun by retuming $0000.

Of all the opions in the format options table, one or more may be displayed in the
initialization dialog presented to the user when initializing a disk (see the calls Format and
EræeDisk in Chapter 10 of 6VOS Reþwce). The options that are o be dþlayed must
come first in ttre able. (Undisplayed options are available so that driven can provide
FSTs u¡ith logically different options that are physically identical and therefore needn't be
duplicated in the dialog.)

ChapterS GS/OS Device DriverDesigr lg7

mediaSize

-interleavePactor-

W ¡f,ott topt
$02 - J.inkRefNurn

i04 flags

I Flt¡¡r€ &9 Format options entry

Oftct Descdptlon

Number of this option

Number of linked option

(See Figure &10 below)

Block size in bytes

Interleave factor (in ratio to 1)

Media size (see Figure &10 below)

S¡ze

Vord

Vord

Vord

Vord

Vord

I[ord

$06

$0a

soc

$08

blockCount Longword Number of block supported by device

bloekSize

Linked optioris are options ttrat are physically identical but that n^y apryar different at
the FST level. Linked opions are in sets; one of the set is displayed, whereæ all others are
not, so that the user is not present€d with ævenl choices on the initialization dialog.

Bits within the flags word are defined æ shown in Figure &10.

t Flgr¡r€ &10 Format option flags word

Sizemultipliu

Formattyp€

Reserved W

0123ffiilffiffiffiffi,ffi

lEE Apple tlcs GS/OS Device Driver Reference

In the format option flags word, format type defines the general fìle system family for
formaning. An FST might use this information to enable or disable certain options in the
initialization dialog. Form¿t type can have these binary values and meanings:

00 Universal form¿t

01 Apple format

10 Non-Apple format

1,1 (Not valid)

Size multiplier is used, in coniunction with the format options parameter medias j.ze, to
calculate the toal number of b¡es of storage available on the device. Size multiplier can
have these binary values and meanings:

00 mediasize is in b¡es
01 mediasÍze is in kilob¡æ
10 mediasize is in megabytes

11 nediasize is in gigab¡es

For examples, see the døaiption of the GS/OS c¿ll DStatus in Chapter 1 ¿nd of the driver
callDriver-Status in Chapter 10.

hver code sectlon

The driver code section must accept all calls and retum appropriately. Beyond that, the
implemenation of the driver is up to the programmer.

Some points to consider when desþing a device driver are the following:
r If you æe writing achuaaer driver, be sure to include an intemaldriver-open flag that

notes the cunent state of the driver. Inspect and set the flag properly on Driver-Open
and Driver-Close ølls, using the calls to retum an enor if appropriate. See Chapter 10

for details on Driver-Open and Driver-Close.

r If your block driver is capable of detecting disk-switched or off-line conditions, it
reports that information æ ¿n eÍor from I/O calls but as device status information
(not æ an enor) from a status call. Enom should be reserved for conditions that cause a

call such æ a Read, write, or Format to fail.

¡ Because device driver routines typically execute during GS/OS calls, and because
GS/OS is not reentrant and therefore cannot accept a call while another is in progress,
device drivers normally cannot make GS/OS calls. This includes System Loader calls
that must make GS/OS calls such æ when loading a dynamic segment,

Chapter I GS/OS Device Driver Design fÐ

If some of your device driver routines need to make GS/OS calls, you can use the
Scheduler in the Apple IIcs Toolbox to schedule a tæk for completion after the
operating system finishes the cunent call. See the Apple IIcs Toolbox Reþrcnce for more
information. As an altemative, consider making some routines into signal handlers
instead. See Chapter 9 of GS/OS Reþrence for more information,

A Important No work space is available on GS/OS direct page for use by either
device drivers or supervisory drivers. Do not use GS/OS direct page as

a work space undu any circurnstancæ.UsingGs/Os direct page as

work space could result in damaged disk media. This waming applies
to all versions of GS/OS system software. a

A device driver or supervisory driver requiring direct-page space can acquire its own direct
page at startup; the driver must then release this memory at shutdown.

How GS/OS calls device drivers

Drivers receive calls from GS/OS through the devlct dlspatc.her. This section describes
the device dispatcher, defìnes the device driver execution environment, and lists the calls
(driver calls) that a device driver must accept from the device dispatcher. Driver calls are
fully documented in Chapter 10.

The devlce dlspatcher and the device llst

The device dispatcher is the main GS/OS interface to drivers. At starnrp, the device
dispatcher installs all drivers; during execution, it is the channel through which all calls to
drivers pass" The device dispatcher accepts I/O calls from fìle system translators or the
Device Manager, adds any necessary parameters, and sends the calls on to individual
device drivers. Device information requests tirrough the Device Manager are handled by
the device dispatcher itself, usually with driver access. The device dispatcher also
generates the startup and shutdown calls that are sent to drivers.

190 Apple IIcs GS/OS Device Driver Refe¡ence

The device dispatcher constructs and maintains the device list, a líst of all inst¿lled device
drivers in the system, including both loaded and generated drivers. Devices under GS/OS
are specifìed by dcylcc nnmben whidr is the cunent position of the device in the device
list. Device calls, for example, use the device number æ an input pararneter; the device
dispatcher uses it æ an index to the device list when sening up the DIB pointer (an input
parameter to the equivalent driver call) prior rc calling a device driver.

At system $arrup, the device dispatcher loads and installs allsupervisory drivers first. It
then loads and insulls all loaded device drivers. Finall¡ it creetes and insølls any needed
generated drive¡s. During execution, the device dispatcher can add more devices to the
device [ist, æ explained next. A device is considered itanlledwhen its driver has
successfully completed a surtup call and its DIB hæ been placed in the device list.

Dynaofc drtvct l¡stelladon

Tt¡e device list under GS/OS is not always static. Because GS/OS $upports removable
partitionable media on block devices, it must also provide a mechanism for dynamically
insalling devices in the device list æ new partitions come on line, The system service call
INSTAII_DRMR hæ been provided for this purpose; it is desaibed in Chaptu 11.

Becauæ of this call, the GS/OS device list can grow during program execution. (However,
the device list cannot stuink; there is no mechanism for removing devices from the
device list.)

To dynamically insall and sart up a driver, take the following steps:

1. lvfake the INSTAIT-DRÍVTR call.

2. Check for outof-memory or busy enors. If either of theæ enors occr¡r, no drivers are
installed. Postpone installation until later,

If neither of these effors occr¡r, the drivers will be installed in tlre system the next time a

driver retums to the device dispatcher.

l/hen a new device comes on line, the application receives no notifìcation that the device
list hæ changed size. An application that scans block devices should always begín by
issuing a Dlnfo call to device $0001 and should continue up ttre device list until enor $11
(invalid device number) occrrs. The Dlnfo call should have a parameter count of $0003 or
more to give the application each device's device<haracteristics word. tf the newly
installed device is a block device with removable media, the application should make a
status call to it.

If the device dispatchø gets an enor during the Driver-Sørtup call, the new driver will not
be included in the device list, nor will the memory manager dispose of the memory
allocated to the driver.

ChaperS GS/OS DeviceDriverDesþ l9l

Dtrect paç paramet€r space

Below the application level in GS/OS, many calls pass parameters by using a single
parameter block on the Apple IIGS direa page. This same direct-page parameter block is
shared among all FSTs, the Device Managu, the device dispatcher, all device drivers,
system service calls, and the GS/OS Call Manager, All driver calls share those locations
(addresses $0f$ð), although not all locations have the same meaning for all calls or are
even used by all calls.

Fþre &11 shou¡s the format of the GS/OS direct-page parameter space.

r figt¡r€ &11 GS/OS direct-page parameter space

Calls to Devices

-III
- d¡bPo¡¡ua* dibpoinrcr t aupo¡** d¡bpoinrcr--++T- d¡bPoin¡€r -- d¡bPoirrcr-dibPdnErdibPohtadbPo¡ntcr

-c¡d¡cDoro¡ar-
crdnPrint¡r

a¡$¡Dai¡n
'rch¡melD -- volunclD -
' FlilNum -- FliINum -
- bb&riæ -- bloddiæ -

-ol¡olCodc-

' HoclNum -- bloctNun -

h¡fferPtrh¡fferPu

h¡rd€rCo¡¡lt

' h¡fie¡Pu -

E¡nCeÉo¡ot

JË$¡crCount-

- h¡fcrPu -

F¿r*rcou¡rf

¡ccucnCount_

- cellNum -- øllNum -øllNumøllNum - c¡llNum * *r' * *"' * *" -- c¡llNum -
- ar',l"lt"n f eu.an- { a.,r-lt tn f tuicÊNurn -- datiod.Ir!¡r-- datidü¡¡n--dattË,¡r¡¡r -dairNum

¡00
$0r
s02
s03
s0{
$0t
s06
3w
t6
s09
$oa
s0B
$0c
¡0D
$E
l0F
310
3lr
312
lll
3r{
il5
st6
t17
318
$t9
3Lr
3tB
ttc
stD
$rE
$rF
sã)
f21
ln
s23

Driver-San¡s Driver_Can¡ol Drir¡cr_Ffdr Drivtr_$t¡¡dor,¡r$omt $mó ¡qt sm
Driver-Clce

$000{
Drivcr_Vrite

i0003
Driva-lc¿d

$0m2
Driver_Surup ùiwr-Opar3m00 $0001

ln Apple IIGs GS/OS Device Driver Reference

For most calls to drivers, the device dispatcher sets up any needed input parameters on
the GS/OS direct page. Exceptions are those parameters already supplied by the
application or FST making the call. A driver can therefore count on all its direct-page
parameters being properly set each time it receives a driver call.

Dtspaæhtng to derlce drlverr

For every driver call, the device manager sets up the device driver execution environment
shown in Table &2, completes the GS/OS direct-page parameter block for the call, sets

the transfer count parameter on direct page to 0, and calls the device driver's entry point
with a JSL instruction. Boldface entries in the table indicate the components of the
environment that the driver routine must restore before rerurning.

r Table &2 Device driver execution environment

C¡npoñût Strtc

Rqßten

BankData

regßtertlags

A
x
Y
D
s

P
e

m
x
i
c

Call number'
Unspecified
Unspecified
Basc of GSIOS dlrcct paç
Top of GSIOS stack
Cunentvalue

0 (ûatlv,e mod€)
o (16brt)
o (lGbtr)
0 (enabled)
Unspecifiedt
0

Speed Fast

'The accumulator contains the call number on entry; on exit, it should contain the enor code (if ao enor
oca¡necl) or 0 (if no enor).

ton exit, the cany flag should be set (- l) if an er¡or oco:ned or cle¿r (. 0) if no er¡or.

decimal

ChapterS GS/OS Device Driver Desþ Ly}

Tbe cunent value in the Daa Bank register (DBR) is preserved by the device dispatcher.

Device drivers should not permanently modify any GS/OS direa-page location except
t ransf ercounÈ, which indicates the number of bytes procæsed by the driver.

A Importaût Drivers should never access GS/OS direct page using absolute or
absolute long addressing modes. The location of GS/OS direct page
is not specified and may not be preserved in any future versions of
the operating system. a

Device drivers must retum from calls with an RTL instruction, in full native mode, with the
portions of the environment præerved æ shown in boldface ín Table &2. The carry flag
and accumulator should reflect the enor status for the call, æ indicated in the footnotes
to Table 8-2.

o ilotø; When a driver call retums to the device dispatcher, the device dispatcher
postprocesses any enor codes from the device. If either a disþswitched or an off-line
enor is retumed by the device, the device dispatcher sets an intemal enor flag for the
device to indicate that a disk-switched condition hæ occuned. GS/OS, for example,
uses this st¿¡tus to discard cached blocks and mark volume control records æ
swapped out.

This fact also means that drivers, which should not return disk-switched or offline
conditions as enors from satus calls, must explicitly notify GS/OS when a sr¿tus call
detects a disk-switched or an off-line condition. See descriptions of the driver call
Driver-Satus (Chapter 10) and the system service call SHI-DISKS!fl (Chapter 11) for
more information,

lY Apple IIcs GS/OS Device Driver Reference

Ltst of drtver calls

l0hen an applicadon makes a device call ttrrough the Device Manager or a file I/O call
through an FST, the øll is translated into a driver øll and pæsed on through the device
dispatcher to the device driver. In addition, FSTs and the device dispatcher itself make
certain driver calls that are not translations of applicationlevel calls. A device driver needs
to accept and act on all those driver calls. The calls are

Gdl¡o. Î{u Dcrcrtptlon

$0000 Driver_Startup Prepares a device for all other device-related calls

$0001 Driver-Open Prepares a character device for conducting
I/O transactions

$0002 Driver-Read Reads data from a character device or a block device

$0003 Driver-Write Writes data to a character device or a block device

$0004 Driver-Close Reseg ttre driver to its nonopen state

$000i Driver_Status Gets information about the sutus of a specific device

$0006 Driver-Control Sends control information or requests to a
specific device

$0007 Driver-Flush Vrites out any characters in a.cha¡acter driver's buffer

$0008 Driver-shutdown Prepares a device driver to be purged

For a more detailed explanation of driver calls, see Chapter 10, "GS/OS Driver Call Reference."

How device driverc call GS/OS

GS/OS calls device drivem through driver calls. Device drivers call GS/OS througþ system
seryice calls, System service calls constirute a sandardized mechanism for pæsing
information and providing services among the lowlevel components of GS/OS, such æ
FSTs and device driven.

System service calls exist for various purpoæs: to perform disk caching, to manipulate
buffers in memory, to set system parameters such æ execution speed, to send a signal to
GS/OS, to call a supervisory driveq and to perform ottrer tæks.

Chapter 8 GS/OS Device Driver Design 19ll

Several of the system service routines are available to device drivers. Acces to these
routines is through a system service dispatch table located in bank $01. These are some of
the available routines:

N¡c
CACHE-FIND-BtK

CACHE-ADD-BTK

CACHE-DEt-BtK
AIIOC-SEG
RETEASE-SEG

DEREF

SET-SYS-SPEED

tOCK-MEM
UNTOCK-T,ÍEM

MOVE-INFO

SIGNAI

SET-DISKSW

SUP-DRVR-DISP

INST,{tt.DIÍVER
DYN-SIOT-ARBITER

UNBIND-INT.VEC

Dcrcrtpttot

Searches for a disk block in the cache

.{dds a block of memory to the cache

Deletes a specifìed block of memory from the cache

Allocates a memory segment

Releæes a previously requested memory segment

Dereferences a virtual pointer

Controls processor execution speed

locla a memory segment, keeping it from being relocated

Unloch a memory segment, allowing it to be relocated

Moves d¿ta into or out of the cache block

Informs GS/OS of the occunence of a signal

Notifìes GS/OS of a disk-switched or off-line condition
Makes a supervisory-driver call

Dynamically insralls a device into the device list
Reh¡ms ståtus of a slot

Deletes a previously created link berween an interupt vector and
its handler

Superrisorydriver structure

Supervisory drivers accept calls from device drivers and in tum access hardware devices.
Supervisory drivers are used where several different Out related) device drivers access
seve¡al different Out related) types of hardware devices through a single hardware
controller, all under the coordination of the supervisory driver.

Supervisory drivers are simpler in overall structure than device drivers. As shown in
Figure 8-12, a supervisory driver consists of a supervisor information block (SIB) and
the supervisory-driver code section.

196 Apple IIcs GS/OS Device Driver Reference

r Ftgure &12 Supervisory-driver structure

(SIB)
Block

Supervisor
Information

Supervisory Driver
code segnent

Ihe supervlsor lnfotm¡üon bloct ($IB)

Ttre supervisor information block (SIB) is a supervisory drive/s equivalent to a DIB;
it identifies the supervisory driver to the system. At startup, GS/OS constructs a
supcrvlsor lbt, equivalent to the device list; it lists pointers to the $IBs of all insalled
supervisory drivers.

Chapter I GS/OS Device Driver Dæign ln

A supervisor information block hæ the format shown in Figure 8-13.

Figrrrc E-13 Supervisor information block (SIB)I

Oft€t

s04

so6:

soc

enÈryPtr

vers¡,0n

extDIBPÈr

reærved

¡eserved

s00

s08

s0E

--l
I

--l

Size Descrtpdon

Longword
entry point

Vord

Vord

Longword

Vord

Word

Pointer to supervisory-driver

Generaltype of supervisory driver

Version of supervisory driver

Pointer to name string; string length byte followed by
ASCII string

(Reærved)

(Reærved)

! supervisorlD -'1

I

i

i

The defìned pammeters in the SIB have these meanings:

entryptr Entry pointerr a longword pointer that indicates the main entry point for
the supervisory driver.

supervisorrD Supervisor ID: a word value that specifìes the type of supervisory driver.
Table &3 shows the cunently defìned values for supervisor ID.

r Tablc &3 Supervisory IDs

TD Dcrcdptlon

$0001
$0002
$0003-$FFFF

AppleTalk supervisory driver
SCSI supewisory driver
(Reserved)

a ilofa; Supervisor IDs are asigned by Apple Computer, Inc. Conøct
Apple Developer Technical Support if you have a specific need for a
supervisor ID.

19t Apple IIGs GS/OS Device Driver Reference

version

extDIBPtr

Reserved

Venion: a word value that specifies the version number of the
supervisory driver. This parameter has the same format as the driver
version word in a device driver DIB (the SmartPort version format).
See Figure &7.

Extended DIB pointer: a longword pointer to the name of the
extended DIB.

Two words have been reserved in the SIB for furure expansion. They
should contain a value of $0000.

Supervtsory-drtver code section

The content of the code section of a supervisory driver is strongly device dependent and
device driver dependent. A supervisory driver must have a single entry point and must
include code routines to accept the sandard supervisory-driver calls listed later in this
chapter (and under *Âbout Supervisory-Driver Calls" in Chapter 10). It can also conøin
routines to handle any supervisor-specifìc calls defìned among it and its device drivers;
it is the supervisor-specific calls that implement all driver VO.

All driver calls to is dependent device driver(s) are Eanslated into supervisor-specífic
calls to the supervisory driver. The supervisory driver in tum accesses the appropriate
hardware device.

How devlce drtvers (and GS/OS) call superlsory driy€rs

All supervisory-driver ølls pass through the supervisor dispatcher. Comparable to the
device dispatcher, the supervisor dispatcher handles informational calls (from device
drivers), p¿¡sses on VO calls (from device drivers) to superuisory drivers, and generates the
startup/shutdown calls that are sent to supervisory drivers,

At starrup, the supervisor dispatcher creates a supervisor list, a list of pointers to all SIBs.
Each insølled supervisory driver is identifìed by supervlsor numbcr, its position in the
supervisor list.

For each supervisorydriver call, the supervisor dispatcher seß up the supervlsor
execr¡tbn envlrcnment, æ shown in Table 34,andcalls the supervisory driver's entry
point with a JSL instruction, Boldface entries in the table indicate the components of the
environment that the supervisory-driver routine must restore before retuming.

Chapter I GS/OS Device Driver Desþ lÐ

r Table &4 Supervisor execution environment

Conlroricot St¡tc

Rqßten

BankData

tqßterflags

A
X
Y
D
S

P
e

m
x
I
c

Call number/supervisor ID'
Unspecified
Unspecified
Base of GS/OS dlæct paç
Top of GS/OS steck
Cunent ralue

0 (n¡üvc mode)
o (rGHt)
o (16brt)
0 (enabled)
Unspecifìedt

Sped Fast

'The ¿ccr¡mulator cont¿ins the call number or zupervisor ID on entry; on exit, it should contain the
zupervisor number or errcr code (nor¡zero if an enor ocorred, zero if no er¡or). See individual call
descdptions.

tOn eit, the carry flag should be æt (' 1) if an enor occured or clear (. 0) if no er¡or.

The value of the Data Bank register is preserved by the supervisor dispatcher.
If appropriate, a pointer to a paremeter block is set up on GS/OS direa page

Qt the datice driuøpnor to calling the supervisory driver. See Fþre 1G5, under
'About Supervisory-Driver Calls," in Chapter 10.

A supervisory driver requiring direct-page space could acquire its own direa page at
startug the supervisory driver must then be sure ro releæe this memory at shutdown.

A Important Drive¡s should never access GS/OS direa page using absolute or
absolute long addresing modes. The location of GS/OS direct page is
not specifìed and may not be preserved in any future versions of the
opefating system. a

m Apple IIcs GS/OS Device Driver Reference

Supervisory drivers must retum from calls with an RTL instruction, in full native mode, with
the appropriate port¡ons of the supervisor execution environment preserved, as shown in
boldface in Table 84. The ørry flagand accumulator should reflect the enor sutus for the
call or results, as indicated in the footnotes to Table 8-4.

Here are a list and brief description of the supervisory-driver calls that device drivers can
make or that supervisory driven must respond to:

C¡llm.

$0000

Supcrrbor no.

(Nonzero)

$0001 (Nonzero)

Cr[æ
Supervisor-Start up

Supervisor_Shutdown

Get-Supervisor-Number

Erphnfioa

Prepares the supervisory
driver to receive calls from
device drivers

Releæes any system resources
allocated at startup

Retums the supervisor nurnber
for the supervisory driver with
a given supervisor ID

Sets the direct-page SIB
pointer for a specifìed
supervisory driver

For uæ by device drivers

$0000 $0000

$0001 $0000 Set-SIB-Ptr

$0002-$FFFF (Nonzero) (Driver-specific calls)

See Chapter 10 for more information.

Chapter I GS/OS Device Driver Design Nl

Chapter 9 Cache Control

GS/OS provides for dl¡l cachiry whereby frequently read disk block
are kept in memory for fæter access. Individual block drivers may or
may not implement caching; ttris chapter shows you how to write your
driver to support caching if you want it to.

ry

Drivers and caching

Under GS/OS, caching is the process in which frequently accessed disk blocks are kept in
memory to speed subsequent accesses to those blocks. The user (through the Control
Panel program) can control whether caching is enabled and what the maximum cache size
can be. The driver, however, is responsible for making caching work. This section
discusses the design of the GS/OS cache and shows what calls are needed to implement it.

Except for one special case, the GS/OS cache is a write-through cache. lflhen an FST issues
a I[rite call to a device driver, the driver writes the same data to the block in the cache
and the equivalent block on the disk. Never does the block in the cache contain
information more recent than that in the disk block.

The one special cæe where the GS/OS cache is not write-through is when a write-defened
session is in effect. In that case, data written to the cache is kept there until the
application makes an EndSesion call that terminates the session and flushes the cache to
the disk,

like most caching implementations, the GS/OS cache uses a least recently used (tRU)
algorithm: Once the cache is full, the least recently used (= read) block in the cache is
sacrifìced for the next new block that is written.

Cache memory is obmined and releæed on an as-needed basis. For example, if the user or
an application selects 32 KB as the cache size, this amount is not directly allocated for
specifìc use by GS/OS. Only æ individual blocks are cached is the necessary amount of
memory (up to 32 KB in this cæe) æsigned to the cache.

The size of a block in the cache is essentially unrestricted, limited only by the maximum
size of the cache itself. GS/OS makes no assumptions about the size of the block to be
cached; it uses whatever block size is requested.

a lVofe: These features differ from caching on the Macintosh computer, in which the
Cache Manager holds exclusive control over the entire amount of cache memory and
deals in 512-byte block only.

M Apple IIcs GS/OS Device Driver Reference

Cache calls

The following brief descriptions show what the available cache calls are and what they do.
Cache calls are system service calls; they are described in more deail in Chapter 11.

CACHE-FIND-BLK Searches the cache to find the specified cached block and, if it
fìnds it, sets a pointer on the direct page to the cache.

CACHE-ADD-BLK Anempts to add the specifìed block to the cache and sets a
pointer to the cache. If there is not enough room left in the cache
for the specified block, it makes space available by deleting
cached blocla.

MOVE-INFO

SET-DISKSW

Copies the block into or out of the cache,

Deletes from the cache any blocks belonging to a device whose
disk has been switched,

How drtvers cache

If you are writing a driver that will support caching, it should perform the followíng tæks
on reading from or writing to its device.

On a Read call

when the driver receives control, its direct-page parâmeters have already been set up by
the caller (Device Manager or FSÐ; see the description of Driver-Read in Chapter 10. If
the cache prioriry is nonzero, the driver should support caching by doing the following:

1. Check the FST ID number on the CS/OS direct page. If it is negative (bir 15 = 1;

unsigned value = $8000 or greater), then the block is always to be read from the device
and not cached. This case is used by FSTs to verifu the identiry of an online volume
for which defened blocla have been written to the cache.

2. Search for the block in the cache by calling CACFü-FIND-BLK.

3. If the block is not in the cache:

a. Call CACHE-ADD-BLK to add a block of the proper size to the cache.

b. If the block is granted, read the data from disk and then write it to both the caller's
buffer and the cached block. If the block is not granted, just read the data from
disk and write it into the caller's buffer.

c. Skip to step 5.

Chapter 9 Cache Control n5

4. If theblockis aheady inthecache,callMOIfE-INFOtotransferthecachedblockto
the caller's buffer.

5. Check for a disk-switched condition; if it is true, then call SET-DISKSW to delete the
blocks from the cache and retum a disk-switched enor from this call. ff it is false, the
read has been completed successfully.

If the driver must perform multiblock reads to satisry the request count for the call, it can
repeat this loop as many times as needed, or it may be fæter to disable caching until all
the blocks have been read from the device and then to transfer those blocks to the cache.

On a Vritc call

\0hen the driver receives control, its direct-page parameters have already been set up by
the caller (Device Manager or FST); see the description of Driver-Vrite in Chapter 10. If
the cache prioriry is nonzero, the driver should support êaching by doing the following;

1. Search for the block in the cache by calling CACHE-FIND BlK.

2. If the block is not in the cache:

a. Call CACHE-ADD-BIK to add a block of the proper size to the cache.

b. If the block is granted, continue; otherwise, skip to step 4.

3, Call MOVE-INFO to move d¿t¿ from the caller's buffer to the cached block.

4. Check for a disk-switched condition; if it is true, then call SET_DISKSTÛ to delete the
block from the cache and ren¡m an enor from this call.

5. Check the cache priority on the GS/OS direct page. If it is negative (that is, if bit 15 is
equal to 1, indicating that the value is $8000 or greater), a defened-write session is in
progress. Your driver should write the block to the cache (if a cached block is
available) but not write the data to the device, since the EndSession call that
terminates the defened-write session flushes the cache to disk. Ttris completes the
driver's write tæk.

If the cache prioriry is positive, write the block to disk. This completes the driver's
write task.

If the driver must perform multiblock writes to satisfy the request count for the call, it can
repeat this loop as many times as needed, or it may be faster to disable caching until all
the blocks have been written to the device and then to transfer those blods to the cache.
There are, however, several things to be aware of when performing multiblock caching,
covered in the folllowing paragraphs.

A6 Apple tlcs GS/OS Device Driver Reference

Multlblock caching

Caching data blocla from a block driver that accepts multiblock calls can be tricþ. A
great deal of anention must be paid to what is in the cache, what gets updated, and
when. Another driver responsibiliry is to verify that each block is the proper size, for
example, that an Apple 3.5 drive is using 512-byte blocks. Some drives that use formaning
conmln mg b¡es in each block, making the block 532bytæ long. rthen a multiblock
request is received, great attention must be paid to where the data goes. The 513th byte
of the request must go to block 2-not to the ag b¡es-while 532 bytes (the 20 ug
bytes must stillbe accounted for) are written to each block.

All ^{pple block drivers use the following method of cache-related reads and writes.

\flhen a read call is issued to the driver, the driver checks the cache to see if the requested
blocks are there. If the call is requesting more than one block, it starts the check with the
fìrst block of the request. If that block is in the cache, the driver copies the data in the
block to the read buffer at the location specifìed in the request. The driver then checks
each consecutive block and looks for a match in the cache. If it finds a block that is not
cached, the driver then, starting with the first block not in the cache, reads the remaining
data from the drive. Once the d¿ta is read, the driver picla up where it left off checking
the cache. Every time a block is found that is in the cache, the daa read from the drive is
updated with the dat¿ that is in the cache.

\Írite calls are handled slightly differently, but they are simpler. ffien a write call that is
not a defened write is received by the driver, the entire transaction is written to the disk.
Following that, the driver check the cache to see if any of the blocks that were just
written to the device are also contâined in the cache. Every time it finds a block that is
cached, the driver updates the cached block with the data that wæ just wrinen to
the device.

!Írite-defened calls are also fairly simple. The driver, starting with the first block of the
reguest, checla to see if the block is in the cache. If it is there, the data in the cache is
updated. If the block is not in the cache, it is added.

Chapter 9 Cache Control Xn

Caßhltrg notcs

Here are a few other points to keep in mind when desþning a driver to support caching.

r Deuice calls:The GS/OS device calls DRead and Dlfrite do not invoke caching,
whether or not the accessed device driver supports it. The Derrice Manager always ser
the cache priority to 0 for those calls.

r AppleDi:;þ 5.25 drtuer: Because it cannot detect dísk-switched enors with complete
reliability, the AppleDisk 5.25 driver does not support caching. Any block driver with
similar limitatioru should not support caching.

ãf, Apple IIcs GSiOS Device Driver Reference

11

Chapter 10 GS/OS Driver Call Reference

This chapter docr¡ments the GS/OS driver calls: lowlevel calls, ttrrough
the device dispatctra, by which file system translators, the Device
Manager, and other para of GS/OS communicafe with device drivers
and devices.

The chapter also doorments supervisory-driver calls: calls that GS/OS and
certain fypes of device drivers make to sUpervisory drivers to access
supervisor<ontrolled devices.

(

w

About driver calls

.{ll GS/OS device drivers must accept a standard set of calls. These driver ølls are of rwo
basic types: intemal calls, made by GS/OS to drivers for housekeeping puçoses; and
device-access calls, low-level translations of applicationJevel calls. The applicationJevel
calls that are translated to driver calls include device calls (made through the Device
Manager) and all application-levelcalls that access files (made through an FST).

Both types of calls are described in this chapter. The driver calls that are intemal are not
like GS/OS calls described elsewhere; the driver calls that access devices, however, are
very similar in content and puçose (if not form) to the device calls documented in
Chapter 1 of this reference.

Table 1G1 lists the driver calls every GS/OS device driver must accept.

. Table 1&1 GS/OS driver calls

lfrdcr Næ Dcrcdptlon

$0000 Driver-Startup

$0001 Driver-Open

Prepares a device for all other device-related calls. This
c¿ll is issued by the device dispatcher as drivers are
loaded or generated.

Prepares a character device for conducting
i/O transactions.
Reads data from a character device or a block device.

Writes data to a character device or a block device.

Resets a character device driver to its nonopen sate.
Gets information about the status of a specifìc device

Sends control information or requests to a
specific device.
lgrites out any characten in a character device driver's
buffer in preparation for purging a driver,
Prepares a device driver to be purged (removed
from memory).

$0002

$0003
$0004

$0005

$0006

Driver-Read
Driver_\[rite
Driver-Close
Driver_Status
Driver-Control

$0007 Driver-Flush

$0008 Driver-Shutdown

Recall from Chapter 8 of this reference that GS/OS recognizes both device drivers and
supervisory drivers. Supervisory drivers handle a different set of calls frorn those listed in
Table 10-1; see'Àbout SupervisoryÐriver Calls,' later in this chapter.

ã0 Apple IIcs GS/OS Device Driver Reference

All driver calls take their panmeters from a parameter block on the GS/OS direcr
page. Figure 1ù1 is a diagam of that parameter block. AII driver calls use the same
memory locations.

r f[Ure 10-1 Direct-page parameter space for driver calls

Oftct Descrlptlon
i00

$02

$04

Pointer to buffer for reading or writing daa

Number of b¡es to transfer to or from driver

Number of b¡es ransfened by call

Number of block ar which to $ân rc,¿d or write

$08

s0c

sl0

dibPo{nler

cachePriorfty

voLunelD

fstNun, stat,us cod€,- or concrol code

blocksÍze

bl.ockNu¡n

trânsfercount

rcguestCount

bufterPtr

ca11Nu¡n

deviceNurn Number of deviæ o which call is made

Number of call being made

Bytes per block for device

Device's FST number orstatus code orcontrol code

ID number for bloch on device

Sort of caching to implement

Pointer o a¡¡rent block in cache
(used only indircctly in driver calls)

Pointer to DIB for device

t14

$16

018

t1¡,

$1C

$20

Drivers receive calls through aJSL to the driver's main entry point (defìned by the driver in
its DIB), with the call number in the accr¡mul¿tor and other registers æ specifìed under
"Dispatching to Device Driyers" in Chapter L

Chapter 10 GS/OS DrÍver Call Reference 2ll

The following sections describe the individual calls. Each call description repeats the
direct-page diagram, showing the following features:

r Oftet (direct paæ): The width of the direa-page parameter block diagram
represents 1 byte; successive tick mark down the side of the block represent
successive b¡es in memory. Hexadecimal numbers down the left side of the
parameter block represent byte offsets from the base address of the GS/OS
direct page.

r Name: The name of each parameter âppears at the parameter's location within the
parameter block.

r Slze a¡d type Each parameter that is used in a particular call is also identifìed by size
(word or longword) and type (input or result, and value or pointer). A word is 2 b¡es; a
longword is 4 b¡es. Arr input is a parameter pasæd from GS/OS to the driver; a result is
a parameter retumed to GS/OS by the d¡iver. A vdue is numeric or character data to be
used directly; a pointer is the address of a buffer containing daa (whether input or
result) to be used.

o Note: The only result that can be retumed from any driver call is transfercount
That is, drivers are not permitted to permanently alter any value other than
transferCount on the GS/OS direct page.

r Unused para¡nctersr Although all calls use the same direct-page parameter space, not
all parameters are used for every call. For each call description, parameters that are not
used are shaded in the parameter-block diagram.

Each parameter used by a call is described in detailfollowing the call's diagram. Additional
imporant notes and call requirements follow the parameter descriptions.

n2 Apple IIcs GS/OS Device Driver Reference

r-\
ffiver_startup ($0000)

Ilescrlptlon

Pe¡rmetcrs

This call performs any tæks necessary to prepare the driver to operate. It
is execued by GS/OS during initialization or ¿frer loading a driver.

The Driver_Startr¡p øll uses these parts of the direct-page
parameter space:

Oftct (dft€ßt page) Slzc.ûd typc

Word input value

lford inprrt value

(Not uæd)

(Not uæd)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not uæd)

Longword input pointer

$00

$02

$04

$G

$0c

$10

$14

$16

$18

$1A

$1C

$20

dibPointer

cêllNun

deviceNum

Chapter 10 GSiOS Driver Call Reference Ã3

deviceNum

cellNum

dibPoint,er

Calt
f€qufueûeûfs

Word input value: specifìes which devíce is to be accessed by the call
Must be nonzero to be valid.

Word input value: specifìes the call to be issued. For Driver_Startup,
callNum - $0000.

Longword input pointer: points to the device information block for the
device being accessed.

Both character device and block device drivers must support this call.
For GS/OS, there are 14 slors ($000È$000F) in the system, only seven of
which can be swítched in at any one üme. To find the slot that your
paipheral device is in, start the search at one end of the range and search
toward the other end, æking the slot arbiter if the cunenr slot is
available. If the slot is not available, the slot arbiter will rerum an effor,
and you can continue the search at the next slot number.

A Vamiûg In GS/OS, you must uæ the slot arbiter, or you might
not fìnd your peripheralif the slot in which the
perþhøalresides is not cunently switctred in, e

A Vamtng Do not use the slot register at $C02D to derermine
whether the slot is intemal or extemal. Use the bit-
encoded slot confìguration (BESC) to determine slot
æsignment. (For more information see the
Apple üGs Technical Note*6Ð. t

Drivøs may use this routine for memory allocation and/or installing an
intemrpt handler with the GS/OS callBindlntem¡pt. Character device
drivers should maintain an intemal flag indicating whether the device is
open; that flag should be set to not open by this call.

Prior to issuing a st¿rtup call to a device, the device disparcher sers the
DIB pointer on the GS/OS direct page.

A Vanoing The Driver-Startup call must not be issued by an
application. It is for system or device driver use only! r,

n4 .Apple IIcs GS/OS Device Driver Reference

Partltloned
devices

Notes

Before issuing a startup call, the device dispatcher sets the parameter
dibDevNum in the device's DIB. This parameter is used by devices that
support removable partitiond media. Each partition is accessed æ a
separate device through its own device driver. Because multiple devices
can share a common medium (such as a single CD-ROM disk), it is
neccessary to maintain the head linlc and forward links be¡ueen devices
to reflect disþswitched and off-line conditions among them.

The device driver is responsible for maintaining these device linls; it uses
the DIB device number (di¡oevl¡un) to initialize the head link and
fomrard link in the DIB.

Device numben can change during the sarnrp process. The boot device
driver-always device l-is replacedby a loaded driver if the slot and
unit number of the loaded driver's DIB match those of the boot device.
If that happens, the loaded driver's device number (in is DIB) is
changed to l, but only afier startup has been completed, Therefore, a
driver cannot rely on the device number in its DIB to be conect during
the startup call. On the second device ¿ccess (th¿t is, the first call after
startup), the driver hæ another chance to inspect its DIB and note the
conect device number.

The driver should examine the head and forward links on the fìrst non-
$arrup call, f the device number does not match the dibDevNum, the
driver should reestirblish the linla.

A driver's DIB is not considered to conain valid information until the
successful completion of this call. ff a driver returns an eror æ the result
of the startup call, it is not installed in the device list. tf the driver retums
no eror during st¿rtup, it then becomes available for an applicadon to
access without fuaher initialization (except that a character device
requires an open callbefore use).

There are two possible v/ays to build a DIB, as follows:

1. Preconstn¡ct the device linla, so that each pointer points to the next
DIB, and the læt pointer is Mt.

2. Allow the device links to be constructed at sarnrp time by taking ttre
following steps:

a. Set the auxiliary rype of the driver fìle to 3F.

b. Determine the number of devices.

c. Allocate the rnemory for the DIBs.

d. Esablish the links between the DIBs by the link pointer.

Chapter 10 GS/OS Driver Call Reference 215

Remember that if your driver is ective (see 'Driver File Types
and AuxiliaryTypes' in Chapter 8) and in the suMirectory
':SYSTEM:DRI\IERS on the boot disk, GS/OS always loads it
and stara ft.

Multiple shtup calls to a driver âre not permined. Your driver
needn't woffy about guarding against them.

If you wish to have separate code for booting and resterting, you
c¿n examine the flag at $E1110D0 to determine which sart hæ occuned.
(See "Device Information Block" in Chapter 8, .GS/OS Device
Driver Designi for a description of rhis bit.)

n6 Apple llas GS/OS Device Driver Reference

I

Ihfver_open ($0001)

Descrlptloa

Paremcters

This call prepares a character device driver for Read and Vrite calls'
Ttris call is supponed by chaøcter device drivøs only.

The Driver-Open call uses these parts of the direct-page
pafameler space:

Oftet(dLcct pagc) Slze and type

llord input value

Vord input value

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Nor used)

Longword input pointer

$m

¡02

$0{

$8

$0c

310

¡11

sró

lr8

J1Â

$c

$20

callNum

devlceNu¡n

I

Chaper 10 CS/OS Driver Call Reference Il7

deviceNum

callNum

dibPolnter

Ch.ractcr
devicc
ttqr¡iffienti

Bloct devlce
fqlulßocnÈ

Notcc

tflord input value: specifìes which device is to be accessed by the call.
Must be nonzero.

Word input value specifies the call to be isued. For Driver-Open,
cal.lNum = $0001.

Longword input pointer: points to the device information block for the
device being accessed.

Ttre driver should maintain a flag indicating whether or not the device is
open. This flag should be set to openby this call. If the call is issued to a
device that is already open, the driver should rerum a
DRVR-PRIOA*OPEN enor.

Block device drivers should take no action on this call and rerum with
no efTor.

A úiver can use this call to perform whatever task are necessâry to
prepare it for conducting VO, including allocation of buffers from the
Memory Manager.

21t Apple IIcs GS/OS Device Driver Reference

Driver-Read ($OOO2)

IÞscrlptbn This call transfers data from the device to the buffer specifìed in the
parameter block on direct page. It is supported by both ch¿racter and
block device drivers.

Paremcûqm The Driver-Read call uses these parts of the direct-page parameter space:

Oft€t (d¡r€ct page) Stz€ aod typc

Vord input value

tülord input value

Longword input pointer

Longpord input ralue

Longword result value

Longword input value

\Pord input value

\[ord input value

\Íord input value

\Pord input value

(Used indirectlP

Longword input pointer

sm

$02

$0{

sæ

sæ

$10

sl{

s16

s18

stA

src

sæ

dibPolnter

- cachePriorit,y -

volumelD

fstNum

blockSize

blockNum

- transfercount -

bufferPtr

calINun

deviceNu¡t

Chapter 10 GS/OS Driver Call Reference Tlg

deviceNum

callNum

bufferPtr

reguestCount

transferCount

bl-ockNum

blockSlze

Vord input mlue specifìes which device is to be accessed by the call.
Must be a nonzero value.

Word input value: specifìes the call to be issued. For Driver-Read,
callNum = $0002.

Longword input pointer: points to memory to which the dara is to be
wriuen after being read from the device,

longword input ralue: specifìes the number of b¡es that the driver is to
transfer from the device to the buffer specified by buf ferprr.
Longword result value: indicates the number of b¡es acnrally transferred.

longword input value specifìes the logical address within the block
device from which data is to be transfened. This parameter hæ no
application in character device drivers.

Vord input value: specifìes the size, in b¡es, of the block addressed by
the block number. This parameter must be nonzero for block devices,
zero for character devices.

fstNum Word input value: specifìes the file system translator tl¡at owns the
volume from which the block is being ransfened. When set, the most
signifìcant bit of the FST number forces device access during the read
even if the block being accessed is in the cache. In this cæe no cache
access occurs. This parameter hæ no application in character
device drivers.

volumefD Vord input valuq a volume reference number used to identift defened
cached block belonging to a specifìc volume.

cachepri-ority Vord input value specifìes whether caching is to be invoked for the
block specifìed in the cunent VO transaction, according to this formula:

Prlorlty Actloo

$0000 Do not read the block from the cache

$0001-$7fFf Read tl¡e block from the cache

Read operations do not invoke defened øching; cache priorities are
therefore limited to ttre range from $0000 to $7TFF for this call. Caching is
described in more detail in Chapter 9, *Cache Control.'

This parameter hæ no application in character device drivers.

n Apple IIcs GS/OS Device Driver Reference

(cachePointer)

dibPolnter

Cb¡¡acter
devlce
æçiæncnts

Longword pointer: poins to the cached equivalent of the disk block
requested. Block device drivers that support caching fill in and use this
paÍlmeter when reading blocks. However, it is neither an input to nor a
result from the call; it is set by the system servíce calls CACHE_FIND_BIK
and CACHE_ADD-BII(. See Chapter 11, 'System Service Calls,"
for details.

longword input pointerr points to the DIB for the device being accessed.

A character device must be open before accepting any UO transaction
requests. If a Driver-Read or DRead is attempted with a device that has
not been opened, the driver should retum enor $23 (device not open). A
driver must set the transfer count to 0 before dispatching to a device
driver. The driver should then increment the transfer count to reflect the
number of bytes received from the device. Typically, a device driver
does this by inaementing the transfer count by the block size as each
block is read.

The driver should retum a disk-switched enor on both disk ejeoion and
disk insertion, but only for the first read, write, or format call following
the ejeaion or insertion. The driver should retum an off-line enor on the
second and subsequent read, write, or format calls as long as the media
remains off line. Both of these conditions are illustrated in Figure 10-2.

Chapter 10 GS/OS DriverCallReference æ1

r Figurc t0-2 Disk-switched and offline errors

Inserted

Firg media acces
(read or write or format)
after inseftion

First media access
(read or write or

format) after
iruenion

Second and subs€quent access€s
afrereiection, æ longæ the

media remains offJine

Block device drivers should support caching. How drivers make the calls
needed to implement caching is described in Chapter 9, "Cache Control.'
The calls themselves are desc¡ibed in Chapter 11, "System Service Calls."

If the request count is greater than rhe size of a single block, the driver
should continue to read contiguous blocla until the request count is
satisfied. Ttre driver should validate each block number prior to
accessing the device. If at any time during a multiple-block read a bad
block number is encountered, the driver should exit with enor $2D
(invalid block number) and with the transfer count indicating the total
number of b¡es that were succesfully read from the device.

Elected

II
Media indrive

Media not in drive

Disk-switched enor

Not disk-swfched enor

Off-lineenor

Not off-lineenor

Notes

Secord and subsequent
accesses after insertion

m Àpple IIGS GS/OS Device Driver Reference

Driver_Write ($0003)

Dæcription

Paraoetere

This call transfers data to the device from the buffer specifìed in the
parameter block on direct page. It is supported by both character and
block device drivers.

The Driver-Iflrite call uses these parts of the diræt-page
parameter space:

Oftct (dtu€ct page) Slze and typc

Word input value

Word input value

Longword input pointer

Longword input value

longword result value

Longword input value

\flord input value

lflord input value

Vord input value

llord input value

(Used indirectly)

Longword input pointer

$00

$02

30{

$(B

toc

$r0

$11

i16

flE

t1Ä

trc

t20

dibPointer

- cachePriority -

volunelD

fetNum

blockSlze

blockNum

t¡ansferCount

requestCount

buf,ferPt!

callNum

deviceNum

Chapta l0 GS/OS Driver CallReference n3

devÍceNum

calLNum

bufferPtr

requestCount

transferCount

b.l-ockNum

bLockS i ze

fstNum

voJ-umeID

cachePriority

\[ord input value: specifìes which device is to be accessed by the call.
This parameter must be a nonzero value.

tüÍord input value: specifies the call to be issued. For Driver_I7rite,
cal-INum = $0003.

Longword input pointer: points to memory to which the daa is to be
written after being read from the device.

Longword input value: specifies the number of b¡es that the driver is
being requested to transfer from the device to the buffer specifìed by
buffer pointer.

longword result value: indicates the number of b¡es actually transfened.

longword input value specifies the logical address within the block
device from which data is to be transfened. This parameter hæ no
application in charader device drivers.

Vord input value: specifìes the size in b¡es of the block addressed by
the block number. This parameter must be a nonzero value for block
devices. For character devices, this parameter must be set to a value
of zero.

Vord input value: specifies the file system translator that owns the
volume from which the block is being transfened. The most significant
bit of the FST number hæ no effect on a write call. This parameter has no
application in character device drivers.

Vord input value: a volume reference number used to identiff defened
cached bloclcs belonging to a specific volume.

Vord input value: specifìes whether caching is to be invoked for the
block specifìed in the cunent VO transaction, according to this formula:

Prlodty

$0000

$0001-$7rrF

$80OL$FFFF

Actlon

Do not place the block in the cache.

Place the block in the cache. If no space is available in
the cache, purge the least recently used purgeable block
to make room for this one.

Cache the block æ a defened unpurgeable block.

nA Apple IIcs GS/OS Device Driver Reference

(cachePointer)

dibPointer

Ch¡racter
devlce
f€qut€rtr€nts

Block dcvicc
f€tlukrûcrts

Nondefened blocks are cached by device number, whereas deferred
blocla are cached by volume ID. Caching is described in more detail in
Chapter 9, 'Cache Control."

This parameter has no application in character device drivers.

longword pointer: points to the cached equivalent of the disk block
requested. Block device drivers that support caching fìll in and use this
p¿râmeter when writing blocla. However, it is neither an input to nor a
result from the call but is set by the system service calls
CACHE_HND_ILK and CACHE-ADD_BIK. See Çhapter 11,
"System Service Calls,' for details.

I"ongword input pointer: points to the DIB for the device
being accessed.

A character device must be open before accepting any UO transaction
requests. If a Driver-Write or DVrite is attempted with a device that hæ
not been opened, the driver should retum enor $23 (device not open). A
driver must increment the transfer count as each b¡e is written to the
device. The driver terminates the I/O transaction when the tr¿nsfer count
equals the request count.

A block device does not have to be opened to accept VO
transaction requests.

Prior to accessing any device, the driver should validate that the request
count is an integral multiple of the block size; if it is not, the driver
should retum enor $2C (invalid b¡e count). If the block number is not a
valid block numbe¡ the driver should exit and retum e¡ror $2D (invalid
block number).

Chapter 10 GS/OS Driver Call Reference 25

Notes

The device dispatcher sets the transfer count to 0 before dispatching to
the device driver. The driver should then increment the transfer count to
reflect the number of bytes written to the device. Typically, a device
driver does this by incrementing the transfer count by the block size as

each block is written.

The driver should retum a disk-switched enor on both disk ejection and
disk insertion, but only for the fìrst read, write, or format call following
the ejection or insertion. The driver should retum an off-line enor on the
second and subsequent read, write, or format calls as long as the media
remains off line. Both of these conditions are illustrated in Figure 10-2 in
the Driver-Read call earlier in this chapter.

Block device drivers should support caching. How drivers make the ølls
needed to implement caching is described in Chapter 9, "Cache Control."
The calls themselves are described in Chapter 11, "System Service Calls."

If the request count is greater than the size of a single block, the driver
should write contþous blocla until the request count is satisfìed. The
driver should valìdate each block number prior to accessíng the device.
If at any time during a multiple-block write a bad block number is
encountered, the driver should exit with enor $2D (invalid block
nurnber), and with the transfer count indicating the total number of
b¡es that were successfully written to the device.

ú .{.pple IIcs GS/OS Device Driver Reference

Hver_Close ($0004)

Description

Parameters

This call sets a character device driver to its closed state, making it
unavailable for further I/O requests and releasing any resources acquired
as a result of the Open call,

The Driver-Close call uses these parts of the direa-page
pafametef sPace:

Oftet(dtrcct peSÊ) Slzc eod type

![ord input value

!flord input value

(Not used)

(Not used)

(Not used)

(t'iot used)

(Not used)

(uot used)

(Not used)

(Not used)

(Not used)

Longword input pointer

g{Þ

s02

s04

s6

soc

sl0

s1{

$ló

st8

slA

slc

t20

dibPointer

callNu¡n

deviceNum

Chapter 10 GS/OS Driver Call Reference tll

deviceNun

callNum

díbPointer

Clha¡acer
devlce
f€qufu€rncots

Bloc¡ devtce
reç¡¡æmcnr

!üord input value: specifìes which device is to be accessed by the call.
This parameter must be a nonzero value.

Vord input value: specifies the call to be issued. For Driver_Close,
callNum = $0004.

Longword input pointer: points to the DIB for the device
being accessed.

The driver should maintain a flag indicating whether the device is open.
This flag should be set to clæedby this call. If this call is issued to a
device that is not open, the driver should retum error $23 (device
not open).

If the driver's open call allocated any memory for buffers, this call should
releæe it back to the Memory Manrger.

This call is supported by character device drivers only; block device
drivers should take no action on this call and retum with no enor.

U Apple IIcs GS/OS Device Driver Reference

Driver_Safts ($0005)

Descriptlon

Pa¡ameters

This call obtains current status information from the device or driver
Both standard and device-specific status calls are available.

The Driver_Sarus call uses these parts of the direct-page
parafneter space:

Oftet (dlrect pagp) Size and type

\flord input value

Vord input value

Longword input pointer

Longword input value

Longword result value

(Not used)

(Not used)

V'ord input value

(Not used)

(Not used)

(Not used)

Longword input pointer

s00

$02

$04

$08

$0c

$10

s14

$16

ü8

$tA

$1C

$20

dibPol.ntef

statusCodê

transfercount

requestCount

statuslistPtr

callNum

deviceNum

Chapter 10 GS/OS DriverCallReference Ø

deviceNum

callNum

bufferPtr

request,Count

transferCount

statusCode

dibPointer

Notes

lford input value: specifies which device is to be accessed by the call.
This parameter must be a nonzero value.

!7ord input value: specifies the call to be issued. For Driver-Süatus,
callNum - $0005.

Longword input pointer: points to a memory buffer into which the status
list is to be written. The required minimum size of the buffer is different
for different subcalls.

Longword input value: indicates the number of bytes to be transfened. If
the request count is smaller than the minimum buffer size required by the
call, an enor will be returned.

Longword result value indicates the number of bytes acnrally transfened,

\Øord input value: specifìes the type of status request. Status codes of
$0000 through $7FFF invoke standard stan¡s subcalls that must be
supported (if not acted upon) by every device driver. Device-specific
status subcalls, which may be defìned for individual devices, use status
codes in the range from $8000 through $frrn. These are the cunently
defined satus codes and subcalls:

$0000 GetDeviceStatus

$0001 GetConfigParameters

$0002 GetlfaitStatus
$0003 GetFormatOptions

$0004 GetPartitionMap

$000F$7fff (Reserved)

$8000-$FFFF (Device specific)

Longword input pointer: points to the DIB for the device
being accessed.

The device driver is responsible for validating the status code prior to
executing the requested satus call. ff an invalid san¡s code is passed to
the driver, the driver should return enor $21 (invdid status code).

The device dispatcher sets the transfer count to 0 before calling the
device driver. lf the call is successful, the device driver should set the
transfer count to the number of b¡es returned.

Zfl Apple IIcs GS/OS Device Driver Reference

I a trolø: Both standard and device-specifìc status subcalls may detect
an offJine or disk-switched sutus. If either of theæ conditions
occurs, the driver should make the system service call SE'I-DISKSIüf
to notifu the device dispatcher, which maintains the system disk-
switched eilor state. A disk-switched or off-line satus should not be
returned âs an enor from a status call; drivers should retum enors only
when a call fails.

Ariy smils call that detects on-line and disk-switched conditions
should update the parameter btockcounr in the DIB after
media insertion.

Ihscrlptbn

GetDevtcestatus (Drtver-Status subcall)

statuscode = $0000

Paraüctcr$

This subcall retums, in the status list, a general device st¡tus word
followed by a longword parameter qpeciffing the number of blocks
supported by the device.

The starus list is 6 b¡es long, This is its format:

Oftct Slze Dccrtptlon
$00

502

nun8locks

st.atusnord IÍord Status word (see
following definition)

Longword Number of blocks on device

The status word indicates several aspects of the device's status,
Character devices and block devices defìne the status word somewhat
differently, æ shown in Figure 1&3.

Chapter 10 GS/OS Driver CallReference 4l

Block device:

1 - uncertain block count

1 - linked device

1. backgroundbusy

Cluracterdevice:

r figur fû3 Device stâtus word

High b¡e Lowb¡e

1 .disk indlive
I - device is write protected

1 - device ls intemlpting

1 = disk lus been switched

Hieh by{e Lowb¡e

1 .li¡¡keddevice

1 . backgroundbusy

l.nowaitmode
1 . device is online

1 . device is intemrptirrg

I - device isopen

Reserved: must b€ 0 EI

Character devíce drivers should return a block count of 0.

If the block driver retums either bit 0 æ set (. 1) or bit 4 as cleared (- 0),
it should also conüact the system service call SET-DISI$V. This is
because older PToDOS devices supported by the generated drivers do
not support disk switch but do support on line; thus, GS/OS treats not
on line and disk switch æ the same condition.

74 0113t415

014,13t4

42 ,{pple IIcs GS/OS Device Driver Reference

The sun¡s word should show a disk-switched condition (bit 0 = 1) on
both disk ejection and disk insertion, but only for the fìrst device access
or the fìrst status call following the eiection or insertion. The driver
should maintain the søtus word to show an off'line condition Oit 4 = 0)
as long as there is no disk in the drive. Figure 104 illustrates the disk-
switched condition,

r Ftgure 104 Disk-switched condition

Inserted

Media
online

Media
offline

Eiected

I

Disk-sn'itdrd
condition

Not disk-sn¿itdred
conditbn

Seco¡d status after inærtion Second status after
eiection

F¡rst status afær irueition
First søtus after eieobn

o Notq Enor codes should not be retumed for conditions indicated
with the general status word. A satus call should retum an enor code
only if the øllfails.

Chaptø 10 GS/OS Driver CallReference 8

Cr€tConffgPaf,ametcrs (Driver-Status subcall)

Description

statuscode - $0001

This subcall retums, in the status list, a length word and a list of
conþration parameters. The structure of the confïguration list is
device dependent. The size of the stanrs list is 2 + tisrlensth bytes:

Ofbet Slze DescrtptlonPerartrcterÊ

s00 Word Length of list (in b¡es)

Confìguration list
w2

- ConfiEuration -
parametêrs llst

lengt,h nord

Cr€tVait$tatus (Drtvcr_Status subcall)

Descriptton

sraÈuscod* - $0002

The Get\[aitstãtus subcall is used to determine if a device is in wait
mode or nowait mode. Vhen a device is in wait mode, it does not
terminate a read call until it hæ read the number of characters specifÏed
in the request count, In no-wait mode, a read call reurns immediately
after reading the available characters, up to the maximum specified by
requestcount, with a transfer count indicating the number of
characters returned. If one or more characters were available, the transfer
count has a noflzero value; if no character was available, the transfer
count is zefo.

The status list for this subcall contains $0000 if the device is operaring in
wait mode, $8000 if it is operating in no-wait mode, The request count
must be $0000 0002.

214 Apple IIcs GS/OS Device Driver Reference

Paramerers Oftet
s00 ¡¡aitMode

Ih*rtption

Vait/no-wait status of device

S¡ze

Word

O Note: Block devices always operate in wait mode. Vhenever this call
is made to a block device, the call retums $0000 in the status list.

C¡etFormatoptlons (Drlver-Statr¡s suhall)

Descrlptlon

statuscode - $@03

Some block devices can be formatted in more than one way. Formatting
parameters can include such variables as ile system group, number of
blocks, block size, and interleave. Each driver that supports media
variables (multiple formafting options) contains a list of the formatting
options for its devices.

Ttris subcall retums the list of formaning options for a particular device.
One of the options cân then be selected and applied (by an FST, for
exampld with the Driver-Control subcalls SetFormatopions followed
by FormatDevice. Devices th¿t do not support media variables should
retum a transfer count ofO and generate no eror. Character devices
should do nothing and retum no enor from this call.

If a device does suppon media variables, it should ren¡m a status list
consisting of a four-word header followed by a set of entries, each of
which describes a formatting option.

Chapter 10 GS/OS Driver CallReference Bj

CurrentOptl.on

-reconnÊndêdopÈ.Ion-

nunDísplayed

numoptions

Pa¡rocters Tt¡e status list looks like this:

Ofbet

$00

¡02

t04

$0ó

$08

ioc

S¡ze

\Vord

\[ord

Vord

!Øord

Descrlptlon

Number of format ootion entries inlist ¡

Number of options to be displayed

Recommended default formatting
oDtion
Obtion with which current
ori-line media wæ formatted

fornatoptlonl (16 b¡eÐ First format options entry

forrnatOptionN (16 byta) Læt format options entry

Of the total number of options in the list, one or more may be displayed
on the initializttion dialog presented to the user when initializing a disk
(see the calls Format and EraseDisk in Chapter 10 of GIOS Refænce).
The options to be displayed are always the first ones in the list.
(Undisplayed options are available so ttrat drivers can provide FSTs with
logically different options that are acrually physically identical and
therefore needn't be duplicated in the dialog.)

The value specified in the currentopt ion parameter is the format
option of the cunent on-line media. If a driver can report this parameter,
it should do so. If the driver cannot detect the current option, it should
indicate unhtown by retuming $0000.

N Apple IIcs GS/OS Device Driver Reference

Each format options entry consists of 16 bytes, containing these fields:

Oftct Size Descriptlon

s00

s02

s0{

¡06

mediaSize

-lnte¡leaveFactor-

blockSize

blockCount

flags

linkRefNum

- formatoptionNum- Number of option

Number of linked option

(See defìnition below)

Word

Vord

\[ord

ioA

goc

s0E

Longword Number of bloclcs supported by
oevlce

Tlord Block size in bytes

Tlord Interleave factor (in ratio to 1)

Word Medi¿ size (see flags description)

Bits within the flagp word are defìned as follows:

,o.^r1;[Ï
Reserved ffiil

In the format options flag word format type
defìnes the general file system family for formaning. fur FST might use
this information to enable or disable ce¡tain options in the initialization
dialog. Format type can have these binary values and meaning;s:

00 Universal format

01 Apple format

10 Non-Apple format

11 (Nor valid)

02l I3Wffi'#ET

Chaper 10 GS/OS Ðriver CallReference 47

rrarnf[e

Size multiplier is used, in conjunction with the parameter media s i ze,
to calculate the toal number of b¡es of storage available on the device.
Size multiplier can have these binary values and meaninç:

00 mediasíze is in b¡es
01 mediasize is in kilob¡es
10 mediasize is in rnegab¡es

11 ¡nediasize is in gigpb¡es

Character devices should retum no enor from this call.

A list retumed from this call for a device supporting rwo possible
interleaves intended to support Apple fìle systems (DOS 3,3, ProDOS,
ItlFS, or HFS) might be as follows. The field transfercount has the
value $0000 0038 (56 bytes retumed in list). Only two of the three options
are displayed; option 2 (displayeö is linked to option 3 (not displayed),
because both have exactly the same physical formatting. Both must
exist, however, beøuse the driver will provide an FST with either
512 bytes or 256 b¡es per block, depending on the option chosen. Àt
format time, each FST chooses is proper option from among any set
of linked options.

The entire format options list looks like this:

Yùc lrpbnrtlon

Format optlotß lN lpader:

$0003 Three format options in the status list
$0002 Only two display entdes
$0001 Recommended default = option 1

$0001 Cunent media formaned æ specifìed by option 1

Format optíon 1:

$0001 Option 1

$0000 LinlcRef = none
$0005 Apple format/size in kilob¡es
$0000 0640 Block count = 1600
$0200 Block size = 572bytæ
$0002 Interleave factor - 2:1

$0320 Media size - 800 KB

ãS Apple IIcs GS/OS Device Driver Reference

Fornat option 2:

$0002 Option 2

$0003 LinkRef = option 3

$0005 Apple format/size in kilob¡es
$0000 0640 Block count = 1600

$0100 Block size = 256 bytes
$0004 Interleave factor = 4:l
$0190 Media size = 400 KB

Format optíon J:
$0003 Option J
$0000 LinkRef o none
$0005 Apple format/size in kilobytes
$0000 0320 Block count = 800
$0200 Block size = 512 bytes
$0004 Interleave factor = 4:1
$0190 Media size = 400 KB

GetPartittonllap (Hver-Status subcall)

Descdption

statusCode = $0004

This call retums, in the sta¡¡s list, the partition map for a partitioned
disk or other medium. See the GetPartitionMap DStan¡s subcall in
Chapter I for more information on this subcall.

Device-speclftc Driwr-Søtr¡s subcalls

Device-specific Driver-Starus subcalls are provided to allow device driver writers to
implement satus calls specific to individual device drivers' needs. Driver-Status calls with
statuscode values of $8000 to $FFFF are passed by the device dispatcher directly to the
driver for interpretation.

The content and format of information returned from these subcalls can be defìned
individually for each type of device. The device dispatcher puts tt¡e regular driver-call
parameterc on the GS/OS direct page, and the device dispatcher and the Device Manager
convert the applicatlon parameter list from a DSarus call into a GS/OS driver call. The
status code must be in the range from $8000 to $FFFF.

Chapter l0 GS/OS Driver CallReference U

IXniver-Control ($ 0006)

Ihscrlptlon

Pa¡ametcrs

sl4

s1ó

$18

$l¡t

slc

$20

This call sends control information or data to the device or the device
driver. Extensions to the standard set of calls are supported through the
use of device-specific control codes.

The Driver_Control call uses these parts of the direct-page
parametef space:

Oft€t (dir€ct paSe) Slze and type

Vord input value

Vord input value

Longword input pointer

Longword input value

Longword result value

(Not used)

$00

s02

$0{

s6

50c

f10

(Not used)

Vord input value

(Not used)

(Not used)

(Not used)

Longlvord ínput pointerdlbFolnter

cofitrolCode

- transfêrcoun! -

requestCount

- controltlstPtr -

callNL¡m

deviccNum

?Æ Apple IIcs GS/OS Device Driver Reference

deviceNum

caIINum

controlListPtr

Vord input value: specifies which device is to be accessed by the call
This parameter must be a nonzero value,

word input value: specifies the call to be issued. For Driver_Control,
callNum = $0006.

Longword input pointer: points to a memory buffer from which the
driver reads the control list. The format of the data and the required
minimum size of the buffer are different for different subcalls.

Longword input value: indicates the number of bytes to be transfened, If
the request count is smaller than the minimum buffer size required by the
call, the driver should retum an enor. For controlsubcalls that do not use
the control list, this parameter is not used.

longword result value: indicates the number of bytes of information
taken from the control list by the device driver.

!Íord input value: specifìes the type of control request. Control codes of
$0000 through $7FFF invoke standard controlsubcalls that must be
supported (if not acted upon) by every device driver. Device-specific
controlsubcalls, which may be defined for individual devices, use control
codes in the range $8000 through $FFFF. These are the cunently defined
control codes and subcallsr

$0000 ResetDevice

$0001 FormatDevice

$0002 EjectMedium

$0003 SetConfigParameters

$0004 SetWaitStatus

$0005 SetFormatoptions

$0006 AssignPartitionOwner

$0007 Armsignal

$0008 Disarmsignal

$0009 SetPartitionMap

$0004-$7FFf (Reserved)

$8000-$FFFF (Device specific)

Longword input pointer: points to the DIB for the device
being accessed.

requestCount

transferCount

controlCode

dibPri.nter

Chapter 10 GS/OS Driver Call Reference ?Al

Notes The device driver is responsible for validating the control code and
control list length prior to executing the requested control call. If an
invalid control code is pæsed to the driver, the driver should return error
$21 (invalid control code). If an invalid control list length is pasæd to the
driver, the driver should retum error $22 (invalid parameter).

If the call is successful, and if a control list was used, the device driver
should set the transfer count to the number of bytes prdcessed. For those
subcalls that pæs no information in the control list, the driver need not
access the control list and veri$ that its length word is 0; the driver
should ignore the control list and request count entirely and pas a
transfer count of 0.

ResetDevice (Drþer-Control subcall)

controÌCode = $0000

Descrlptlon The ResetDevice subcall sets a device's configuration parameters back
to their default values. Every GS/OS device driver contains default
configuration settings for each device it controls; see Chapter 8, "GS/OS
Device Driver Design," for more information.

ResetDevice also sets a device's format options blck to their default
values if the device supports media variables. See the description of the
SetFormatoptions subcall later in this section for more information.

If successful, this call hæ a transfer count of 0 and no enor is retumed.
Request count should be ignored; the control list is not used.

Form¿tDevice (Ilriver-Cortrol subcall)

controfcoae = $0001

Descrlptlon The FormatDevice subcall formats the medium used by a block device.
This call is not linked to any particular fìle system, in that no directory
inform¿tion is written to disk. FormatDevice simply prepares all blocks
on the medium for reading and writing.

?Á2 Apple IIcs GS/OS Device Driver Reference

After formatting, FormatDevice resets the device's form¿t options back
to their default values if the device supports medi¿ variables. See the
description of the Driver-Control subcall SetFormatOptions later in this
section for more information.

Character devices do not implement this funaion and should rerum with
no erTor.

If successful, this call has a transfer count of 0. Request count should be
ignored; the control list is not used.

Descrtption

$ectlf edtum (Driver-Control subcall)

controlCode - $0002

The EjectMedium subcall physically or logically ejecs the recording
medium, usually a disk, from a block device. In the cæe of linked
devices (separate partitions on a single physical disk), phpical ejection
occt¡rs only if, æ a result of this call, all the linked devices become off
line. If any devices linked to the device being ejected a¡e still on line, the
device being ejected is marked as off line but is not acrually ejected.

Character devices do not implement this function and should rerum with
no efÏof.

If successful, this call has a transfer count of 0. Request count should be
ignored; the control list is not used.

SetConflgParameters (Driver-Control subcall)

Descrlptlon

controlCoae = $0003

The SetConfigParameters subcall sends device-specifìc confìguration
parameters to a device. The configuration parâmeters âre contained in
the control list. The fìrst word in the control list indicates the length of
the confìguration list, in bytes. The configuration pârameters follow the
length word.

Chapter 10 GS/OS Driver Call Reference ?43

lengt h

Pa¡amctcæ Oftet
s00

Size

!Íord

Descrlption

Length of list (in b¡es)
s02

configPåram',ist Configuration list

The strucn¡re of the configuration list is device dependent.

This subcall is most rypically used in conjunction with the starus subcall
GetConfìgParameters. The application or FST fìrst uses the status subcall
to get the list of configuration parameters for the device; it then
modifìes parameters as needed and makes this control subc¿ll send the
new pammeters to the device driver.

The request count for ¡iris subcall must be equal to lensrh + 2.

Furthermore, the lengh word of ttre new configuration list must equal
the length word of the existing confìguration list (the list retumed
from GetConfigParameters). If this call is made with an improper
configuration list length, the driver should ren¡m enor $22
(invalid parameter).

Descrlptlon

SetValtlila$s (Hver-Conuol subcall)

controfcode = $0004

The SetVaitSt¿tus subcall is used to set a character device to wait mode
or no-wait mode.

When a device is in wait mode, it does not terminate arcadcall until it
hæ read the number of characters specifìed in the request count. In
no-wait mode, a rød call reums immediately after reading the available
characters, up to the rruximum specifìed by requestcounr, wittr a
transfer count indicating the number of ch¿racters retumed. If one or
more characters is available, the transfer count is nonzero; if no character
is available, the transfer count is zero.

The control list for this subcall contains $0000 (to set w¿it mode) or
$8000 (to set no-wait mode). The request count must be $0000 0002.

M Apple IIcs GS/OS Device Driver Reference

Pa¡ametets Oftet
s00 waitMode

Dercriptton

Vait/no-wait starus of device

Slze

Vord

This subcall has no meaning for block devices; they operate in wait mode
only. SetVaitStatus should retum from block devices with no enor (if
wait mode is requested) or with enor $22 (inv¿lid parameter) if no-wair
mode is requested.

SetFormat0ptions (lhiver_Co¡trol subcall)

Descdption

controLcoae = $0005

Some block devices can be formaned in more than one way. Formatting
parameters can include such variables as fìle system group, number of
blocla, block size, and interleave. Each driver that supports media
variables (multiple formaning options) conrains a list of the formaning
options for its devices.

The SetFormatOptions subcall seb these media*pecific formaning
parameters prior to the execution of a FormatDevice subcall.
SglFgrm4tOpqþqq does no¡ ltself çause or 1èquire a formaqþg
operation. The control list for SetFormatOptions consists of two
word-length parameters:

Parameteru Oftet
$00

-fntcrleaveFactor-

- formatoptlonNum -

Stze ard t!'pc

Number of format option

Ovenide interleave factor
(if nonzero)

No.

Ilord

Vords02

Chapter 10 GS/OS Driver CallReference 24J

The format option number (formatoptionNum) specifìes a particular
format option entry from the driver's format options list (returned from
the Drive$tatus subcall GetFormatoptions). The format option entry
has this format:

Oft€t
sm

s02

s04

s06

soA

$0c

$0E ¡nedlaSize

,interleaveFacto r-

blockSize

blockCount

flags

linkRefNum

-fornatOptionNum-

Longword Number of blocks supported" by device

Description

Numhr of option

Number of linked option

File system information

Block size, in b¡es

Interleave factor (in ratio to 1)

Media size

Slze

Vord

Vord

word

Word

\[ord

Word

See the description of the Driver_Status subcall GetFormatOptions,
earlier in this chapter, for a more detailed description of the format
options entry.

The interleaveractor Parametet in the conÛol list, if nonzefo,
ovenides lnterleaveFactor in the format options list. If
interleaveractor in the control list is zero, the interleave specifìed
in the format options list is used.

If you want to carry out a formatting process with this subcall and not
use the GS/OS format call, your application can take the following steps
(if you use the format call, the Initialization Manager ukes these steps
for you):

1. Issue a Driver-Satus GetFormatOptions subcall to the device. The
driver retums a list of all the device's format option entries and their
conesponding values of f ormatopr ionNum.

2. Issue a Driver-Control SetFormatoptions subcall to the device,
specifying the desired format option.

3. Issue a Driver-Control FormatDevice subcall to the device.

?ß Apple IIcs GS/OS Device Driver Reference

A Important SetFormatOptions is meant to set the parameters for
oze subsequent formatting operation only. Drivers
should expect SetFormatOptions to be called each
time a disk is to be formaned with anything other than
the recommended (default) option, This implies that,
after each successful formatting operation, the driver
should revert to the default option. a

The SetFormatOptions subcall applies to block devices only; character
devices should retum error $20 (invalid request) if they receive this call.

AssignPaattton0rvner (ffivetControl gubca[)

Descrtptlon

controlCo¿e = $0006

The AssignPartitionOwner subcall provides support for partitioned
media on block devices. Each partition on a disk has an owner,
identifìed by a string stored on disk. The owner name identifies the fìle
system to which the partition belongs.

This subcall is executed by an FST after making one of the Driver_Control
subcalls EraseDisk and FormatDevice to allow the driver to reæsign the
partition to the new owner.

Partition owner names can be up to 32 bytes in length. Uppercæe and
lowercase characters are considered equivalent.

The control list for this call consists of a GS/OS string, generated by the
FST or other caller, naming the partition owner.

Pa¡ameterc

Oftet Slze Decriptlon

lfiord length of name (in b¡es)

ownerName Partition owner name

$00

i02

lengrth

Chapter 10 GS/OS Driver Call Reference 247

This call does not reæsign physical block allocation within a device
partition but merely changes the ownership of that partition. The names
of the partition owners can be found in "The SCSI Manager" in Chapter 2,

'The SCSI Driver."

Block devices with nonpartitioned media and character devices should
do nothing with this call and retum no error.

Armsignal (Drlver-Control subcall)

Descrtptton

controlCo¿e = $0007

The Armsignal subcall provides a means for an application to bind its
own sofrware intem.rpt handler to the hardware intemrpt handler
controlled by the device.

An.4,rmSignal subcall is issued by application programs to inform the
driver to call an application-supplied intemrpt handler routine at the
location specified in handrerÀddress. The SIGNAI system service call
provides the sígnalco¿e and priority values to GS/OS.

This is the control list for the subcall:Paranetets

Ofb€t

$00

$02

s04

- handlerAddress -

priority
signalCode

Ihscripdon

ID for tnndler and its signals

Prioriry for handler's signals

Slze

Vord

Vord

Longword Pointer to signal handler's entry

signalCode

priority

Contains the ID of the condition that the driver will pass to GS/OS when
the condition occnrs. The signalcode ID is æsigned by ùe caller and
must match a unique number defìned by the device driver. The only
subsequent use of the signalcode number is as an input to the
DControl subcall Disarmsignal. A device driver should bind only one
signal handler to each of its defined signalcode numbers.

The sigrral priority the caller wishes to assign to the signal condition;
$0000 is the lowest priority, and $FFFF is the highest prioriry.

?ß Apple llcs GS/OS Device Driver Reference

handlerAddress
Entry addrCIs of the caller's sþnal handler. Control is passed to this

address when GS/OS dispatches a queued signal associated with an
occunence of the signal condition. See Chapter 9 of the GYOS Refercnce
for a descrþion of the sigral handler execution environment.

See the Armsignal description in Chapter 1, "GS/OS Device
Call Reference,n for an example of lrmsgnal.

Disernsfgnat (Ih{vm-Control subcalt)

controlCode = $0008

Dercripdon The DisarmSignal subcall provides a means for a device driver to remove
its signal handler from the GS/OS signal handler list. Ttre sisnarcode
parameter is the identification number æsigned to that handler when the
signalwæ armed.

Par¿metas Oftct Dæcripüon

Signal handler's IDs00 sJ.gnaJ,Code

Slze

Ilord

SetPartltlonllap (ffiver_Control subcall)

Dæcdpüoa

statuscode - $0009

This call p¡¡sses the partition map for a partitioned disk or other medium
to a device in the control list. The strucn¡re of the partition information
is device dependent.

Chapter 10 GVOS Driver Call Reference 249

Devicespocffic mvcrJontrol subcalls

Device-specifïc Driver-Control subcalls are provided to allow device driver writers to
implement control calls specifìc to individualdevice drivers'needs. Drirær-Control
subcalls with controtcode values of $8000 to $FFFF are pasæd by the device dispatcher
directly to the driver for interpretation.

Tl¡e content and format of informetion ren¡med from these subcalls can be defined
individually for each type of device. The deviæ dispatcher pus the regular driver-call
par:rmeters on the GS/OS direct page, and the device dispatcher and the Device l\,lanager
convert the application parameter list from a DC,ontrol call into a GS/OS driver call. The
status code must be in the range from $8000 to $FFFF.

Zfr þple IIcs GS/OS Device Driver Reference

Driver-Flush ($0007)

Description

Parametes

tü)

$02

s0¡

Driver-Flush is issued only in preparation for a close or shutdown call.
A character device that maintains its ov¡n buffer should write out any
remaining buffer contents.

The DriverJlush call uses these parts of the direct-page parameter space:

Ofüct (dlrcct page) Size and t¡'pe

$ß

foc

$r0

cl{

$1ó

sl8

flÀ

$1C

$æ

Ifiord input value

lt/ord input value

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

longword input pointerdíbPoint,er

calLNum

deviceNum

Chapter 10 GS/OS Driver CallReference 6l

deviceNum

calINum

dibPoint,er

Notes

Vord input valuer specifìes whicl¡ device is to be accessed by the call.
firis paramCIer must be a nonzero value.

Iford input valuer specifìo the call to be issued. For Driver-Flush,
calLNum - $0007.

Longword input pointer: points to the DIB for the device
being accesed.

This call is not suppoÍed by block device drivers; they should return error
$20 (invalid request).

A character device driver that does not mainain its own data buffers
need mke no action on this call.

Even if the driver is cunently set to neweit mode, the driver must not
rerum unül its output buffer is completely flushed.

zfl Apple ncs GS/OS Device Driver Reference

Ilriver-Shutdown ($ OOOA)

Descriptlon

Parametcæ

Driver-Shutdown is issued by GS/OS in preparation for rernoving a driver
from memory. The driver execl¡tes any necessary operations, such æ
releasing buffer memory.

The Driver-Shutdown call uses these parts of rhe direct-page
parameter sPace:

Oftct (dtr€ct pag€) Slze and type

Iûord input value

Ttord input value

(Not used)

(Not used)

(Not used)

(Not uæd)

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)

longword input pointer

$00

s02

s04

¡ü

soc

$10

$14

$1ó

$18

srA

slc

$æ

dlbPolnter

caIINum

deviceNu¡¡

Chapter 10 GS/OS Driver CallReference 253

deviceNum

caffNum

dibPointer

Notca

Vord input ralue specifìes which device is to be accessed by the call.
This parametø must be a nonzero value.

word input value specifìes the call to be issued. For Driver-Shutdown,
callNum = $0008,

longword input pointø: points to the DIB for the device
being accessed.

If Driver-Shutdown is ænt to an open character device, the driver should
perform the equivalems of a flush and a close øll before shuning down.

A Impotrnt Ttris call is for sptem use only. It is not to be íssued by
an application! a

If more than one device is associated with a single code segment, only
the læt device to be shut down should ren¡m no enor. CIher devices
should retum an VO enor to prevent the segment from being purged
before the læt device is shut down.

E4 Àpple IIcs G$/OS Device Driver Reference

About supervisory-driver calls

As explained in Chapter 8, supervisory drivers (or supervisors) are programs that mediate
among several types of device drivers, allocating and dispatching their calls and intemrpt-
handling facilities among several rypes of hardware devices. Calls to supervisory drivers
can be classifìed according to who makes them and who handles them:

r From a device driver's point of view, there are calls that the device driver can make and
calls it cannot (because only other parts of GS/OS can make them).

r From the supervisory driver's point of view, there are calls that the supervisory driver
itself must handle and calls that are handled by the supervisor dispatcher and thus never
reach the supervisory driver.

If you are writing a device driver that accesses a supervisory driver, you need to know
which calls you can make and whether they acrually access the supervisory driver.
Table 10-2 shows the supervisory-driver calls available to device drivers. lf you are writing
a supervisory driver, you need to know which calls your driver must accept and whether
they come from a device driver. Table 10-3 shows those calls that supervisor drivers
must accept.

r TablelL? Supervisorydriver calls available to device drivers

C¡llm. S[pÊn'bo'r ¡¡e, (¡l[c¡¡r Erplenetloo

$0000 $0000 GetSupervisorNumber Rerums the supervisor number for
the supervisory driver with a
given supervisor ID

$0001 $0000 Set-SIB-Ptr Sets the direct-page supervisor
information block pointe¡ for a

specified supervisory driver

$0002-$FFFF $0000 (Reserved)

$0002-$FFFF (Nonzero) (Driver-specific calls) For use by device driven

Note that only those calls in Tablre 7A-2 with nonzero supervisor numbers appear also
in Table 1G3; they are the only calls in Table 10-2 that are actually handled by
superisory drivers.

Chapter 10 GS/OS Driver Call Reference 25J

r Table 10.3 Calls that supervisory drivers must accept

C¿llæ. Suparborno. C¡llo¡c Erplanetlon

s74
s75
s76
sn
$78
$79
s7A
$78

$0000 (Nonzero) Supervisor-Startup Prepares the supervisory driver to
receive calls from device drivers

$0001 (Nonzero) Supervisor*Shutdown Releases any system resources
allocated ¿t startup

$0002-$FFFF (Nonzero) (Driver-specific calls) For use by device drivers

A device driver or other program makes a callto a supervisory driver by making the system
service call 5UP-DR\¡R-DISP (see Chapter 11). Parameters for supervisory-driver calls are
passed both in registers and in locations $74-$78 on the GS/OS direct page, called the
supervisor direct page (Figure l0-5).

I ffur€ 10-t Supervisor direct page: parameter space

ofbet (dfu€ct page) Descdptlon

Supervisor
parameter lis

pointer

SIB
Pointer

On input to the supervisory driver, the A register (accumulator) contains the supervisor
number, which specifies the supervisory driver to which the call is directed; the X register
contains the call number. On retum from the call, the A register contains the enor code
(zero if no enor). Other registers h¿ve call-specifìc functions.

The supervisor number in the A reg¡ster is a required input to all supervisory-driver calls.
Calls with a supervisor number of zero (see Table 1&2) are handled by the supervisor
dispatcher; calls with a nonzero supervisor number (see Table 10-3) are handled by
supewisory drivers.

The rest of this chapter documents the cunently defìned supervisory-driver calls,

longword pointer to supervisor information block (SIB)

longword pointer to device-specifìc parameter list

zfi Apple IIcs GS/OS Device Driver Reference

tÞscription

Para¡¡eterc

callNum

supervisorlÐ

CætSuperuisorNumber ($ 0000)

\[hen a device driver is started up, it makes this call to get the supervisor
number (the position in the supervisor list) of its supervisory driver. The
device driver needs that number for subsequent access to its supervisory
driver.

The device driver passes the supedsor ID (a numerical indication of
general supervisor çe, such æ 'SCC' or .SCSI') of its supervisory driver
to this call; the call then returns the supervisor number in the X register.

The call requires an input zupervisor number of zero; if the input
supervisor number is nonzero, this call becomes the call
Supervisor_Starn¡p, described next.

Input:
A register = $0000 (on input, supervisorNum - 0)
X register - $0000 (calrNum)
Y register = supervísorID

Ùutput:
A register - enor code
X register = supervisorNum
Supervisor direct page = sibPtr

Word input value: This X-register inpu specifies which rype of call is to
be issued to the supervisory driver. It is 0 for this call.

Word input value: This Y-register input specifìes the general type of
supervisor ID whose supervisor number is sought, These are the
supervisor IDs cunently defined by Apple Developer Technical Suppon:

$0001 SCC supervisory driver

$0002 SCSI supervisory driver

$m03-$rFFF (Reservecl)

supervisorNum This parameter appeílrs twice in this call:

I7ord input value: This A-register input must be 0 for this call.

Vord result valus This X-register result is the supervisor number of the
supervisory driver whose supervisor ID wæ pæsed æ input.

Chapter 10 GS/OS Driver Call Reference 217

sibPt,r

Notes

f,¡¡p¡h¡glllng

longword re$u¡t pointer: Tl¡is result on the zupervisor direct page points
to the supervisor infomation block (SIB) for the supervisory driver
being accessed, It is a side benefit of the call; the superv¡sor dispatcher
places the supervisory driver's 5IB on the supervisor direct page before
returning to the caller.

This call is handled by the supervisor dispatcher; it does not resulr in any
execution of the supelvisory driver itself.

If the supervisor dispatcher cannot find a supervisory driver with the
input zupervisor ID, enor $28 (device not connected) is rerumed. In such
a øse the device driver will not be able to use the supenisory driver and
should reh¡m en enor from its starnrp øll.

ry Apple llcs GS/OS Device Driver Reference

Descdptton

Paraocte¡s

callNum

supervisorNum

sibPtr

Supervisor_Starhrp ($0000)

This call is responsible for preparing the supervisory dríver for use by
device drivers. Any system resources required by the supervisory driver,
such æ memory, should be allocated during this call. If the supervisory
driver cannot allocate sufficient resources to suppon device driver calls,
then it should retum an enor; if it retums an eror as a result of the starnrp
call, it is removed from the supervisor list.

This call requires that the supervisor number be nonzero.

Input:
Contents of supervisor direct page (s iup tr) phts

A register' supervisorNum
X register - calrNum ($0000)

Output:
A register = enor code

\flord input value: This X-register input specifìes whích type of call is to
be issued to the supervisory driver. It is 0 for this call.

SÍord input value: This A-register input specifies which supervisory driver
is to be started. It must be nonzero for this call.

Longword input pointer: This supervisor direct-page input is the address
of the supervisor information block for rhe supervisory driver being
started up. Ttris parameter is set up by the supervisor dispatcher, in case
the supervisory driver needs it.

Notes GS/OS starts up supervisory drivers before starting up any device drivers,
so that the supervisor is available to the device driver at sÞrup time.

A Important This call is for system use only. It is not to be issued by
a device driver. a

Chapter l0 GS/OS Driver CallReference W

set_$IB_Polnter ($ 0001)

Description

Parzmeters

cal-fNum

supervisorNum
(A register)

supervisorNum
(Y register)

s ibPt r

Notes

This call sets the parameter sibprr on the supervisor direct page to the
proper value for the specifìed supervisory driver.

Tt¡is call requires that the input supervisor number be zero, If the input
supervisor number is nonzero, this call becomes the call
Supervisor-shutdown, described nerc.

Input:
A register r supervisorNum ($0000)

X registø - cat-.t-Num ($0001)

Y register = supervisorNum

Output:
Conteng of supervisor direct page (s ibP rt) phts

A register = enor code

Input word value: This X-register input specifìes which type of call is to
be issued to the supervisory driver. It is $0001 for this call.

Slord input value: This A-register input must be 0 for this call, which
directs the call to the supervisor dispatcher.

Iford input value This Y-register input specifies the supervisor number
of the supervisory driver whose SIB pointer is to be placed on the
supervisor direct page,

longword result pointer: This supervisor direct-page result points to the
supervisor information block for the supervisory driver specified.

Ttris call is handled by the zupervisor dispatcher; it does not result in any
execution of the supervisory driver iself.

ffi Apple IIcs CS/OS Device Driver Reference

Supervisor_Shutdown ($0001)

This call is responsible for releæing any system resources acquired during
starn¡p of the supervisory driver.

This call requires that the input supervisor number be nonzero.

Inpul:
Contents of supervisor direct page (siue tò plus

A register = supervisorNum
X register = cal.rNum ($0001)

Output:
A register = enor code

Vord input value: This X-register input specifìes which çe of call is ro
be issued to the supervisory driver. It is $0001 for this call.

\?'ord input value: This A-register input specifìes which supervisory driver
is to be shut down. It must be nonzero for this call.

Descdptlon

Par¡meters

caf lNurn

supervisorNum

sibPtr

Notes

longgord input pointer: This supervisor direct-page input points to the
supervisor information block for the supervisory driver being accessed.
This parameter is set up by the supervísor dispatcher in case the
supervisory driver needs it.

GS/OS shu¡s down supervisory drivers only after shuning down all
device drivers.

A fmportaot This catl is for system use only. It is nor to be isued by
a device driver. a

Chapter 10 GS/OS Driver CallReference tt

Desctlption

Driver-specific calls ($0002-$FFff)

Parameterc

these calls are used by device drivers to requesr specifìc ræla from their
supervisory drivers. The narure of those tælcs is device specifìc.

Input:
Contents of GS/OS direct page including supervisor diret. page, plus

A register Ê supervisorNum
X register * cattNum ($0002-$000F)

Output:
Contents of GS/OS dÍect page plus

A register * enor code

Vord input value: This X-register input specifies which rype of call is to
be issued to the supervisory driver. It must be in the range $0002 through
$000F for this call.

caLlNun

supervisoruum Vord input value: This A-register input value specifies which supervisory
driver is to be called, It must be nonzero for this call.

sibPtr longword input pointer: This supervisor direct-page input points to the
SIB for the supervisory driver being accesæd. This parameter is set up by
the zupervisor dispatcher in case the supervisory driver needs it.

ú2 Apple IIcs GS/OS Device Driver Reference

Driver error codes

GS/OS can recognize the device driver enor codes listed in Table 104. Any device driver
or supervisor driver you write should be able to return all appropriate enors from this list.
.Also pleæe note the following requirements:

r All block device drivers must support dishswitched enors without exception. The first
media access after a disk is switched must report a disk-switched condition;
subsequent accesses under the same conditions should not report it.

I Enor codes that a device driver retums must have the high byte cleared. The device
dispatcher maint¿ins certain enor codes under certain conditions, and device
dispatcher enor codes are pæsed in the upper b¡e of the accumulator.

r Tablc 104 Driver enor codes and constants

Codc Con¡l¡¡t Dcscrlptlon

$0000
$0010
$00i1
$0020
$0021
60022
$oozl
s0024
$0026
s0027
$0028
$0029
$0028
$002c
$002D
$0028
$002F
$0048
$0058
$0060

NoError
DevNotFound
InvalidDevNum
DrvrBadReq
DrvrBadCode
DrvrBadParm
DrvrNotOpen
DrvrPríorOpen
DrvrNoBesrc
DrvrIOError
DrvrNoDev
DrvrBusy
DrvrllrProt
DrvrBadCount
DrvrBadBl-ock
DrvrDiskSw
DrvrOffLine
InvalidÀccess
Not,BlockDev
DataUnavail

No enor occuned
Device not found
Invalid device number
Invalid request
Invalid control or status code
Invalid parameter
Device not open (character device driver only)
Device akeady open (character device driver only)
Resource not available
VO enor
Device not connected
Device is busy
Vrite protected (block device driver only)
Invalid b¡e count
Invalid block number (block device driver only)
Disk switched (block device driver only)
Device off line or no media present
Invalid access or access not allowed
Not a block device
Daa unavailable

Chapter i0 GS/OS Driver CallReference ú3

Chapter 11 System Service Calls

GS/OS provides a standardized mechanism for passing informarion
among its lowlevelcomponenß such as FSTs and device drivers. That
mechanism is the system ærvice call.

System service calls exist for various purposes: to perform disk caching,
to manipulate buffers in memory, to set system parameters such as
execution speed, to send a signal to GS/OS, to call a supervisory driver,
and to perform other tasks.

This chapter documents the system ærvice calls that a driver can make.

ú5

About system selvice calls

Access to several system service routines has been provided for device drivers by GS/OS,
Access to these routines is through a system service dispatch table located in bank $01
from addresses $FC00 through $fCfF. A list of the available system service routines and
their entry locations within the system service dispatch able is shown in Table 11-1.

r Table 11-1 System service calls

€dluæ Loc¡tlon Dunct¡on

CACHE-FIND-BtK
CACHE-ADD-BTK
CACHE-DEt-BtK
AIIOC-SEG
RETEASE-SEG
SWAP-OUT
DEREF
SET-SYS-SPEED
tOCK.MEM
UNTOCK-MEM
MOVE-INFO
SIGNAI
SET-DISKSV
SUP-DR\N-DISP
INSTATLDRIVER
DYN_STOTJRBTTER
UNBIND-INT-VECf

Searches for a disk block in the cache
Adds a block of memory to the cache
Deletes a block of memory from the cache
Rerums virnral pointer to specifìed size segment
Frees block of memory obtained with ÀIIOC-SEG
Marksavolumeæoffline
Returns pointer to cunent location of virtual block
Controls processor execution speed
Locla all GS/OS-managed memory segments
Unlocks all segmens acquired with AIIOC_SEG call
Moves dau beween memory buffers
Notifies GSiOS of the occunence of a signal
Notifìes CS/OS of a disk-switched or offJine condition
Makes a supervisory-driver call
Dynamically insølls a device into the device list
Retums slot status
Unbinds a link between intemrpt vector and handler

To make a system service call, follow this procedure:

1, Set up the parameters æ required by the call (whether on GS/OS direct page, in
registers, or on the st¿ck).

2. Execute a JSL instruction to the proper location in the system service dispatch Uble.

3. \Fhen the call completes, take any parameters retumed from the direct page or from
registers, as indicated.

Descriptions of each of the system service routines follow.

$01FC04
$01FC08
$01FC14
$01FC1C
$01rc20
$01FC34
$01FC38
$01rc50
$01FC68
$01FC6C
$01FC70
$01rc88
$01FC90
$01FCA4
$01FCA8
$01FCBC
$01FCD8

ffi Apple IIcs GS/OS Device Driver Reference

Some system service calls make use of the GS/(N dlrect pags pammeter space, the same
parameter space used by the GS/OS driver calls described in Chapter 10. Figure 11-1 shows
the GS/OS direa-page parameters. These are used by driver calls and some system
service calls.

I Flgt¡rr 11-l GS/OS direct-page parameter space

Oftet (dtæct paSG) Descrlptlon

Number of device to which øll is made

Number of call being made

Pointer to buffer for reading or writing data

Number of b¡es to transfer to or from driver

Number of b¡es transfened by call

Number of block at which to starr a read or write

B¡es per block for device

Device's FST number orstatus code orcontrol code

Volume number for blocks on device

Sort of caching to implement

Pointer to cunent block in cache

Pointer to DIB for device

$00

$02

s04

to8

$0c

$10

$14

$16

$18

$1A

$1C

s20

dibPointer

cachePointer

cachePrioríty

volumeID

cont lolcode
or st,atuscode

blocksize

blockNum

transfercount

!eguesÈCount

buffe¡Ptr

caLlNum

deviceNum

Chapter 11 System Service Calls ú7

c..{cHE-FrrtD_Brr(($oilco4)

Description This routine attempts to find the requested block in the cache. If the
block is found, it is moved to the start of the LRU chain, and a 4-byte
pointer to its start is returned to the caller. One of two possible searches
may be specified for this call: a æarch by device number (used by
drivers) or a æarch by volume ID (used by FSTs when a defened-write
session is in progress), A routine making this system service call must
speciff the rype of search desired by se[ing the carry flag appropriately

Input:
GS/OS direct page:

blockNum
deviceNum
voLumelD

Carry flag: 0 = search by device number
1 = search by volume ID

Retum:
GS/OS direct page:

cachePointer Pointer to stafi of block in cache

Fullnative mode is always æsumed.

Drivers making this call should request a search by device number (c = 0).

If c - 0: no effor; block is in cache.
If c = 1: enor; block is not in cache.

Pa¡ameters

Notes

Etmñ

Ñ Apple IIcs GS/OS Device Driver Reference

cAcr{E_ADD_BrK ($01FC0S)

Descrtption This routine attempts to add the requested block to the cache. The
block is added at the start of the IRU chain (that is, at those most
recently used). If there is not enough room in the cache, the block(s) at
the end of the chain (that is, at those least recently used) are purged until
there is enough room for the requested block.

Input:
GSIOS direct page:

bLockSize
blockNum
deviceNu¡n
voJumeID
cachePriorlty

Retum:
GS/OS direct page:

cachePointer

Fullnative mode is always assumed.

when drivers make this call, the block is cached by device number.

If c = 0: no effor; block was added to cache.
If c = 1: enor; block was not added to cache.

Parameten

Notes

Etmrs

Chapter 11 System Service Calls 8

caGHE_DEr_Brtr ($0fic14)

Ilcccripdon

Parem&rs

This routine attempts to delete the specified block from cache memory.

Input:
GS/OS direct page:

blockSlze
blockNum
devÍceNum
volumeID
cachePrlorítY

Return:
None

Input and output are always pæsed by GS/OS direa-page locations in
this routine. Full native mode is used.

If c = 0: no enori block was deleted from cache.
If c = 1: error; bloc* was not deleted from cache.

Notcs

Etmrs

lm Apple IIcs GS/OS Device Driver Reference

!

Ar.roc_sEc ($olFclc)

Descdption

Pa¡ameters

Notes

Ermrs

This routine rerums a virtual pointer to a segment of the requested size.

Inpur:
A register: requested memory block size (number of bytes)

Return:
X register: virn¡al pointer (low b¡e) to newly allocated block
Y register: virnral pointer (high b¡e) to newly allocated block

None

If c = 0: no enor; memory wæ allocated.
If c = 1r enor; memory could not be allocated.

Chapter 11 System Service Calls tn

nET,EASE_SEG ($01rC20)

Ihscrtption

P¡r¡nctcrs

Notcs

Eñ!út

Releasæ a rneïtory segfnent that was allocated with the AIIOC-SEG call.

Input:
X register: virüal pointer (low byte) to target block
Y register: virn¡al pointer (hígh byte) to target block

Relum:
None

None

If c = 0: no enor; memory wæ freed.
If c - 1: effoq memory wæ not freed.

m Apple tIGs GS/OS Device Driver Reference

svAP_ouT ($o1Fc34)

Descriptlon

Par¡neters

Notes

Er¡ors

This routine moves offline any volume in the device specified (a volume
is offline if its media is not curently in a device). (Actually, all volumes
with the pæsed device number are marked offline; there should never be
more than one volume conesponding to a device number.) A volume
associated with the specific device that has no open files is deleted from
the system.

Input:
A register: device number

Retum:
None

None

None

Chapter 11 System Service C¿lls 7f,

DDnff ($01FC3S)

Descrtptbn

P¡¡umcters

Notes

Erñrs

This routine dereferences a virtual pointer and retums a pointer
conesponding to the cunent location of the block refoenced by
the virtualpointer This is the onlyway pu should dereference
virn¡al pointers.

Input:
X register: virn¡al pointer (low byte)
Y register: virtual pointer (high bne)

Return:
X register: pointa 0ow byte) to dereferenced block
Y register: pointer (high bpe) to dereferenced block

The 32-bit pointer ren¡m in the X and Y registers points to the fìnt b¡e
in the block.

None

n4 Apple IIcs GS/OS Device Driver Reference

../'-

SET_SYS_SPEED ($0fC50)

Description This call allows hardware accelerators to stay compatible with device
drivers that may have speeddependent software implementations.

Vhenever it dispatches to a driver, the device dispatcher obtains the
device driver's speed class from the DIB and issues this system service
call to set the system speed. Vhen the driver completæ the call, the
device dispatcher restores the system speed to what it was before
the call.

An accelerator card may intercept this vector and replace the system
service callvrith its own routine, rhus maintaining compatibility with
GS/OS device drivers.

Input:
The A register contains one of these speed settings:

Paramcters

Scttlag Spccd

$0000 Apple IIcs normalsped
$0001 Apple IIcs fast speed

$0002 Accelerated speed

$0003 Not speed dependent

Senings from $0004 through $FFIF are not valid.

Retunt:
The accumulator contains the speed setting that wæ in effect prior to
issuing this system service call.

NoneNotes

Er¡orc None

Chapter 11 System Service Calls n,

LOCK_MEM ($0UC6S)

Descriptton

P¡reneûer¡

Notes

Errort

This routine locla all memory segments that were ¿llocated with the
ALLOC-SEG øll. Use UNtOCK-MElvl when you no longer need these
segments; othemise, the system could run out of avalable memory.

Input:
None

Retum:
None

None

None

n6 Apple IIcs GS/OS Device Driver Reference

(

rJNrocK_trEM ($ofic6c)

Deocrípdon

Pa¡rmctes

Notcs

Etmns

This routine releaæs all locked segments rhat were created with rhe
ALIOC_SEG call.

Input:
None

Retum:
None

None

None

Chaper 11 System Service Calls tn

MOVE_INFO ($01FC70)

Description

Peramet€f,s

This call transfers a block of da¡a fiom a source buffer to a destination
buffer. MOVE-INFO can be used by device drivers to transfer daa from
a single I/O location to a buffer or from a buffer to a single VO location.

The source buffer pointer, destination buffer pointer, and number of
b¡es to transfer are passed æ input parameters to this routine via the
stack. Source ¿nd destination buffers may be in the same or different
memory banlcs, and either may straddle a bank boundary.

Input:
This is how the sack loola on entry to the call (before execution of the

JSI instruction):

Parameterr on stact Stze and type

<- stack þot tteî

lonryord pointer

Longword pointer

longword value

Vord value

IÞscription

The high b¡es of sourcePtr, destinationPtr, ând
transfercount must be 0.

Return:
Data Bank register: unchanged
Direct register: unchanged
Accumulator: error code
X register: undefìned
Y register: undefined

cotru¡landword

Èrônsf,êrCount

dest lnâtl.önPtr

sourcePtr

p¡ev¡ous aÕn¿êncs

Pointer to source buffer

Pointer to destination buffer

Number of b¡es to transfer

Flags (see deæription below)

ZIE Apple IIcs GS/OS Device Driver Reference

Comm¿od word The command word tells MOI¡E-INFO what kind of transfer to make and
how to increment the destination ¿nd source addresses (useful, for
example, for inverting the order of daÌa as it is copied or for filling
memory with a single value). The command word format is this:

High byte low byte

Move ¡node

Destination incrcmer¡ter

Source incremeder

Reserved: must be O IÏlrg

where moue núec¿n have these values and meanings:

000 (Reserved)

001 Elock move

01H11 (Reserved)

and de#ination íncrvmentqcan have these values and meanings:

00 Constant destination

01 Increment destination by 1

10 Decrement destination by 1

1l (Reserved)

and source inc¡enentwcan have these values and meaning¡s:

00 Constant source

01 Increment source by 1
10 Deoement source by 1

11 (Reserved)

Presently, only block moves are defìned.

Chapter 11 System Seryice Calls ZD

Source incrementer and destination incrementer define in what order
successive b¡es are transfened from the source buffer and in what order
they are placed in the destination buffer. The following recommended
predefined constant values for the MOVE-INFO command word cover
most lypical situations:

Moue mode:

moveblkc¡nd egu S0800
(a block move)

Most coÌnmon connand:
move_sinc_dÍnc egu

(source

Less connon connands:
move_sinc_ddec equ

(source

move_sdec_dj.nc egu
(source

$05+moveblkcmd
and destination both increment)

$09+moveblkcmd
increments, destination decrements)
$06+moveblkcmd
decrements, destination increments)
S0a+moveblkcmd
decrements, destination decrements)

$00+moveblkc¡nd
constant, destination constant)
$0L+moveþlkcmd
increments, destination constant)
$02+¡noveblkcmd
decrements, destination constant)
$04+moveblkcmd
constant, destination increments)
$08+moveblkcmd
const¿nt, destination decrements)

move sdec ddec

move scon dcon

move sinc dcon

move sdec dcon

move scon dinc

move_scon_ddec

egu
(source

equ
(source

eqfu
(source

equ
(source

ETJ
(source

equ
(source

I0ith these various combinations, buffers can be emptied or fìlled from
the bonom up or from the top down, and single values can be placed in a
buffer from the bottom up or from the top down. Some of the values are
particularly helpful for moving data from one buffer into another buffer
that overlaps the fìrst.

m Apple llcs GS/OS Device Driver Reference

Caülilg scqucnce From assembly language, you set up and invoke MO\IE-IMO like this:

1, Place machine in fullnative mode (e = 0, il - 0, x = 0).

2. Push parameters onto stack æ shown under'Parameters," earlier in
this section.

3. Execute this instruction:
jsl Move_Info

Samph code Here is an æsembly-language example of a call to MOVE_INFO:

Enrns

rep t$30
pea source_pointerl-16
pea sourceJointèr
pêa destjointer I -16
pea destjointer
pea count_lengthl-16
pea count_length
pea ¡nove sinc_dinc
jsl move_inf,o

Ifc = 0: no enor
Ifc=1:enor

isource point,er

;destination pointer

;count length

iconmand word

Chapter 11 System Se¡vice Calls Al

srcNAr ($orrcss)

Dæcdptioo

Paranete¡s

Notcs

Eftìùrs

This call announces the occurrence of a specific signal to GS/OS and
provides GS/OS with the information needed to execute the proper
signal handler (previously installed with the ArmSignal subcall of the
Driver-Control call). GS/OS queues this information and uses it when it
dispatches to the signal handler.

For more information on GS/OS signals and signal handlers, see Chapter !,
.Handling Intenupts and Signals,' of GS/OS Reþrence.

Input:
A register: signal priority
X register: low word of signal-handler address
Y register: high word of signal-handler address

Retum:
A register: undefìned
X register: undefìned
Y registen undefined

Slgqal prtortty: priority ranking of the signal, with $0000 being the
Iowest priority and $FFFF being the highest.

Stgnal-baodler add¡ess: address of the sþal-handler entry point.

A signal source that makes this call æ the result of an intem¡pt should
announce no more than one signal per intemrpt to avoid the possibility
of overflowing the sþal queue.

None

X2 Apple IIcs GS/OS Device Driver Reference

sET_DrSr$W ($01FC9o)

Descrtption

Parzmetens

Enurs

Some device drivers detect volume-off-line or disk-switched conditions
through device-specific starus calls rather than through returned errors.
Such a condition would then not be detected by the device dispatcher
on exit from the driver call. In fact, by GS/OS convention, offline and
disk-switched conditions should never be rerurned as erors from a stâtus
call; enors are reserved for conditions in which a call fails, not for pæsing
status information.

Vith the call SET-DISKS\f, drivers can specifically request that the disk-
switched status (maintained intemally by the device disp¿tcher) be set
in this situation. SET-DISKSIØ, if necessary, removes the device's blocks
from the cache and places its volumes off line (if the device dispatcher-
maintained disk-switched flag hæ not already been set). All GSiOS
drivers are expected to call SELDISKSV if they detect a disk-switched
or offline condition as a result of a starus call.

Input:
GS/OS direct page:
deviceNum Device number of disk-switched device

Retum:
None

Full native mode is æsumed. Register contents are unspecified on entry
and return, except that the Data Bank register and Direct register are
unchanged by the call.

None

Chapter 11 System Service Calls Aj

Descrtptlon

srrP_DRvR_DrsP ($01rcA4)

This call is the main entry point to the supervisor dispatcher. It
dispatches calls among supervisory drivers. Supervisory drivers provide
an interface that gives higher-level device drivers access to hardware.

Supervisory-driver calls can be classified into rwo groups. Calls with a
supervisor number of zero are handled by the supervisor dispatcher; calls
with a nonzero supervisor number are pæsed on to a supervisory driver.

The following calls are handled by the supervisor dispatcher and are not
pæsed on to a supervisory driver:

C¡llno

$0000

$0001

$0002-$F¡Tr

G¡ll no.

$0000

$0001

$0002-$rrr

Sup. ao

$0000

$0000

$0000

Fu¡cdon

GetSupervisorNumber

Set_SIB_Pointer
(Reserved)

Notes

EmË

The following calls are dispatched by the supen.isor dispatcher to a
supervisory driver:

Srp.oo. Fn¡ctlo¡

(Nonzero) Supervisor-Startup
(Nonzero) Supervisor-shutdown
(Nonzero) (Driver'specific calls)

These subcalls and other supervisory-driver calls are described in detail in
Chapter 10, .GS/OS Driver Call Reference."

None

$28 Device not connected

M Apple IIcs GS/OS Device Driver Reference

I)æcriptlon

Parzmeters

INSTATL_DruVER ($0fC.{S)

Because GSiOS supports removable, partitionable media on block
devices, it must be able to install devices dynamically in its device list as
new partitions come on line. INSTALI_DRIVER hæ been provided for
that purpose.

A Important The existence of this call implies that the GS/OS device
list can grow during program erecution. Drivers and
applications cannot count on a fixed device list. See
"Scanning the Device List," later in this section, ^

Notes

Input:
X register: DIB list address (low word)
Y register: DIB list address (high word)

Return:
A register: enor code

Dts list addæss: longword input pointer: specifies the address of a list
of device information blocks to be installed inro the device list. The first
fìeld in the list is a longword that specifìes the number of device
information blocks to be installed; it is followed by a series of longword
pointers, one to each DIB to be insalled.

This call informs the device dispatcher that a driver or set of drivers is to
be dynamically insalled into the device list at the end of the nexr time
the driver retums to the device dispatcher. When insalling the driver, the
device dispatcher inserts the device into the device list and rhen issues a
starfup call to the device. If space cânnot be allocated in the device list
for the new device, or if the device retums an enor as a result of the
starnJp call, then the device will not be insalled ínto the device list.

Chapter 11 System Service Calls A5

Scannlng the
device list

EflaÑ

There is no indication to an application that the device list has changed
size as a result of this call. An application (such as the Finder) that scans
block devices should always begin by issuing a Dinfo call to device $0001
and should continue up the device list until enor $11 (invalid device
number) occurs. The Dlnfo call should have a parameter count of $0003
to give the application each device's device-characteristics word. If the
new device is a block device with removable media, the application
should make a status øll to the device. If applications scan devices in
this manner, dynamically insalled devices will always be included in the
scan operadon.

Enor checking is aiticalwhen using this call. Two possible erÍors may be
returned. If enor $54 (out of memory) occurs, it is not possible to install
any drivers; if error $29 (device busy) occurs, it means that an
INSTAII-DRIÆR is already pending. In case the laner curent driver
installation ønnot be accepted, the device driver must wait until it is
accessed once more before it can install additional devices.

ú Apple tlcs GS/OS Device Driver Reference

{

Dcscrtptton

DïN_SLOT_AASImA ($olFCBC)

Parameters

This call might provide suppoft for dynamic switching bemeen devices
on intemal and exemal slots in the future. At the rime of publication, the
call indicates only whether the slot is available.

Input:
A register: requested slot
X register: undefined
Y register: undefined

Retum:
.{, register: enor
X register: b¡e-encoded slot configuration
Y register: undefined
Carry flag: cleared if requested slot was granted;

set if requested slot ¡væ denied

Requested slot word input value: specifies the slot to be requested.
The requested-slot pârameter has this format:

High byte lowb¡e

1=enemâlslot
0- intemelslot

Slot number(O-7)

Notes

Emn
None

Carry flagset if request denied

Reærved:mustbeo ffil

Chapter 11 System Service Calls 87

uÍBrND_rNI_vECT ($ 0 ilCDS)

IÞscrlpdon Itris call allows the caller to peform an Unbindlnt callwhen GS/OS is busy
(typically during shutdoqm). There is no sy$em service call to bind an
intemrpt source. To bind an interupt source, use the Bindlnt GS/OS call.

Input:
A register: inrNum (from the Bindlnt GS/OS call)

Return:
None

Pa¡:¡meter¡

Notec

Ertuìg

None

None

2n ,tpple IIcs GS/OS Device Driver Reference

r

t-

3o

Apple" IIcs AS/OS' Device
Driver Keference

Appendixes

-

Appendix A Creneraûed Drivers and
Flrmware Drívers

Ttris appendix provides information of use to designers of BASIC, Pæcal
1.1, ProDOS, SmartPort, and extended SmanPort peripheral cards; it
explains how GS/OS construcß generated drivers for these devices and
how it dispatches to them.

If you æe writing a firmwue driver for an Apple IIcs periphenl card, rctd
this appendix. It explains how GS/OS recognizes your driver, dispatches
to it, and manag$ UO andcaching for it, depending on what kind of
driver it is.

Also æe Chapter 7 of this reference for more information on
generated drivers.

(

æ

Crenerated.driver s¡m rn íü]

At starmp, for each slot that does not have an associated loaded driver, CS/OS look for
a fìrmware VO driver. For slot n, GS/OS examines the appropriate firmware ID b¡es in
the $Cr00 page of bank 0 and generates a GS/OS driver for any firmware driver it fìnds
that uses BASIC, Pascal 1.1, ProDOS, SmaÍPort, or extended SmartPort protocols.

Each generated driver has an associated device information block (DIB), just like a
loaded driver. The DIB contains device-specific information that cân be used by the
driver and by other parts of GS/OS.

GS/OS generates drivers for three broad types of slot-resident, firmware-based
IIO drivers:

¡ BASIC aûd Pascal 1.1 ddvert: For BASIC fìrmware drivers, a BASIC generated driver
is oeated. For Pascal 1.1 firmware drivers, aPæcal1.1 generated driver is created. For
firmware drivers that support both BASIC and Pæcal 1.1 protocols, a Pæcal 1.1

generated driver is created.

r PToDOS drlvers: Either one or rwo DIBs are created for each generated PToDOS
block device driver, depending on the value of $CøFE.

r SoartFort ddveæ¡ All SmartPort block devices are supported by a single generated
block device driver, and all SmartPort character devices are supponed by a single
generated character device driver. Each device's DIB is æsociated with either the
ch¿racter driver or the block driver.

All GS/OS generated drivers support these standard device calls:

r Dlnfo
r DStatus

r DControl

r DRead

I DVrite
r DRename

All generated drivers support the standard set of DSøtus and DControl subcalls, although
not all perform meaningful actions wíth all of them. No generated drivers support driver-
specific DSatus or DControl calls.

o ffof¿; For convenience and t¡adition, all addresses listed in this section are bank $00
addresses. Thus, the full Apple IIcs address conesponding to a listed address such as

$Cr,Oi would be $00 C¿05.

'2X Apple IIcs GS/OS Device Driver Reference

Generating and dispatching to BASIC drlvers

Generatlng

Bec¿use there are no conventional fìrmware ID b¡es for BASIC drivers in the $Cr00
space, GS/OS cannot always be sure that a BASTC cæd is not in a given slot. Therefore, to
be safe, it creates a BASIC generated driver for every slot that is

r occupied by a perþheral card, or

¡ hæ no loaded driver, or

r hæ no ProDOS, Pæcal 1.1, or SmartPort ID b¡es

Dlspatchrng

Contrary to the documented sundard (see, for example, the Apple IIcs Firmwarc
Reþrence), BASIC devices do not support a fixed entry point for input or output. The
only defìned entry point for BASIC device drivers is $Cø00, which is the initialization
entry point. The driver's initialization routine is responsible for putting the offsets to the
driver output and input entry poins into absolute zero-page locations $003fu039.
GS/OS maintains a list of the input and output entry points for BASIC devices as
described in tt¡e following paragraphs.

This is the only BASIC device driver entry point:

$Cr00 Initialization entry point

The driver initialization routine puts the proper values into page zero, so that the input
and output entry points are as follows:

$C200+($0038): add contents of $0038 to $Cø00 to get input routine entry point
$Cr00+($0036): add contents of $0036 to $Cr00 to get output routine entry point

After initialization for a driver hæ been completed, GS/OS saves the entry points for the
BASIC peripheral card.

AppendixA Generated Drivers and Firmware Drivers Dl

This is the processor register state when dispatching to a BASIC driver:

Reglgtcr

Accumulator
X register

Y register

P register

Cortcoto

Character

$Qn(n = slot where driver resides)

$rû (n = slot where driver resides)

Unspecified

On completion of the dispatch to a BASIC driver, the processor register state must
be this:

Rcgi$tcr Cortcott

Accumulator Character

X registø Unspecified

Y register Unspecified

P register Unspecified

BASIC device drivers are not capable of retuming effors. BASIC device drivers do not
support a device status call.

Crenerated-drtvet lnterface

BASIC firmware drivers support single-character I/O only called through bank $00 of
Apple IIos memory. Vhen a BASIC generated driver receives a multicharacter read or write
request, it issues a separate call to the firmware driver for each character to be transfened.
The generated driver also copies the char¿cter from the accumulator to the destination or
from the source to the accumulator, if necCIøry.

ry¿ Apple llcs GS/OS Device Driver Reference

Crenerating and dispatching to Pascal 1.1 drivers

Generating

At stam¡p, CS/OS assumes that it has found a driver conforming to the Pæcal 1.1
fìrmware protocol if all of the following conditions are true for slot ø,

$C205 = $38

$Cd7 - $18

$Cz0B - $01

In these circumstances, GS/OS creates a Pascal 1.1 generated driver to interface with that
firmware driver and æsigns a device ID to the generatd driver.

Dispatchlng

Pascal 1.1 slot-resident fìrmware drivers support a søndard set of entry points (not
requiring a hook table like that needed for BASIC cards). Dispatches to Pascal 1,1 drivers
occur by obtaining an offset and dispatching to $CøO0+offset. The offset values are bpes
stored at these addresses:

Add¡crt

$CrúD

$CnOE

$CzOF

$C210

Reglrtcr

Accumulator

X register

Y register

Contcrts

Offset to initialization routine

Offset to read routine

Offset to write routine

Offset to stafus routine

This is the processor register state when dispatching to a Pascal 1.1 driver:

Cortcnt!

Character or request code (for status call)

\Cnfu = slot where driver resides)

$û (n = slot where driver resides)

Appendix A Generated Drivers and Firmware Drivers 2ß

The processor register state on completion of the dispatch to a Pascal 1.1 driver must
be this:

Icglrtcr Contc[tt

Accumulator Character

X register Enor code on status; othervrise unspecifìed

Y register Unspecified
P register Unspecified

The Pæcal 1.1 fìrmware VO protocol is documented in the Apþle IIcs Fírmware Refrenca

C¡ener¿teddrtver interface

Pascal 1.1 fìrmware driven support single<haracter VO only called through bank $00 of
Apple IIcs memory. I[tren a Pascal 1.1 generated driver receives ¿ multicharacter read or
write request, it issues a separate call to the fìrmware driver for each character to be
rransfened. The generated driver also copies the character from the accumulator to the
destination or from the source to the accumulator, if necessary.

Crenerating and dispatctring to PToDOS drivers

Generatlng

At starnrp, GS/OS assumes that it hæ found a driver conforming to the PToDOS protocol
if all of the following conditions are true for slot z:

$Cø01 * $20

$Cn03. $00

$C205 = $03

$Crd7 is not equal to $00

$CzFF is not equal to $00 or $FF

In these circumstances, GS/OS creates a PToDOS driver to interface with that firmware
driver and æsigns a devíce ID to the generated driver.

M Apple IIGs GS/OS Device Driver Reference

Dlspatching

PToDOS block I/O drivers support a single standard entry point, which requires a
pârameter block in the absolute zero page to specify the call type. GS/OS supports these
devices by generating the appropriate parameter block prior to dispatching to the slot-
resident firmware driver. Entry points for PToDOS drivers are calculated as follows:

$Cr00+($CzFF): add value of byte at address $CzFF to $C200 to get entry point

This is the processor register state when dispatching to a PToDOS block I/O driver:

lcglrter Co¡tcrt¡

Accumulator Unspecified

X register Unspecified

Y register Unspecified

On completion of the dispatch to a PToDOS block I/O driver, the processor register state
must be this:

ncgbtcr Coatentt

Accumulator Enor code

X register Unspæifìed, except status retuflis low byte of block count

Y register Unspecified, except status returns high byte of block count

P rcgister Cany set if enor occuncd; othcrvrisc clear

The input parameters for the PToDOS block device driver are set up by the generated
driver on absolute zera page as follows:

Off¡ct

$0042

$0043

$004â$0045

s004Ç90a47

Puræ'ær

Command byte

PToDOS unit number

Buffer pointer

Block number

Functions supported by the PToDOS block I/O driver include

¡ Status

r Read

I I7rite
I Format

Appendix A Generated Drivers and Firmware Drivers Dt

The Format call is implemented only æ a subcall (FormatDevice) of the CS/OS driver call
Driver-Control. See Chapter 10 of this reference for more information.

The PToDOS block device protocol is documented in the PTIDOS I Technical Refermce Manual.

Crenerated-ddver interface

PToDOS fìrmware block device drivers support only single-block transfers and can access
only bank $00 of Apple IIcs memory. !?hen a PToDOS generated driver receives a

multiblock read or write request, the driver fìrst checks that the request count is a
multiple of the block size. If it is not, the generated driver retums an enor; if it is, the
generated driver issues a read or write call to the firmware driver for each block to be
transfened. The generated drÍver also copies the data between the system bank $00
buffer and the caller's buffer (which may be anywhere in memory), if necessary.

The PToDOS generated driver supports caching. Blocks written to the PToDOS device
through the fìrmware driver are also wrinen to the cache (if enabled) by the generated
driver; blocks to be read from the device may instead be read from the cache by the
generated driver.

Crenerating and dispatchlûg to SmartPort drivers

Generatlng

At startup, GS/OS assumes that it has found a driver conforming to the SmartPort
protocol if all of the following conditions are true for slot n;

$Ct01 = $20

$Cr03 = $00

$Cr05 = $03

$C207 - $00

$C¡IFF is not equalro $00 or $FF

In these circumstance.s, GS/OS creates a SmartPort driver to interface with that firmware
driver and æsigns a device ID to the generated driver.

86 Apple IIcs GS/OS Device Driver Reference

GS/OS then examines the SmartPort ID type byte at $C¿FB to find out whether the
drive supports only the standard SmartPort protocol or both the standard and
extended protocols.

Dispaæhlng

SmartPort drivers can support either the standard or the ståndard and extended
SmartPort protocols. The standard SûMrtPort prctocol uses 2-b¡e addresses and
therefore cannot access or reside in Apple IIcs memory beyond bank $00. The ertended
Sm¡rrPort protocol uses 4b¡e addresses and can access allparts of Apple IIcs memory.
All SmartPort device drivers must support the sandard protocol. GS/OS generated drivers
permit use of the extended protocol only in cases where both the device driver and the
device itself support it.

The SmartPort driver entry point is determined æ follows:
$Cn00+($ç¿¡3¡+$031: add (3 plus value of b¡e at address $CnFF) o $C200 to get
smartPorr entry point

This is the processor register state when dispatching to a SmartPort driver:

lcglrtcr

Accumulator

X register

Y register

Contcnt¡

Unspecified

Unspecified

Unspecified

On completion of the dispatch to a SmartPort driver, the processor register state
must be this:

lcgbtcr Co¡tcnt¡
Accumulator Enor code

X register low b¡e count of bytes transfened to system

Y register High b¡e count of b¡es transfened to system

P register Carry set if enor ocarned; otherwise clear

Calls to the standard Sma¡tPort device driver use the following format:
js¡ smartport ; call to standard g¡nartport
dc i1 'corunandt ,' com¡nand byte
dc i2'parameÈellisti ; polnter to parameter LÍgt

AppendixA Generated Drivers and Firmware Drivers ryl

Calls to the extendçd SmartPort device driver use the following format:
jsr
dc
dc

smartport
ih'com¡nand'
i4 rparameterlist I

call to standard smareport
conìmand byte
pointer to paÌaßeter list

The SmartPort protocols, both standard and extended, are described in the
Apple IIcs Fimuørc ReÍercnca

Crenerateddrlver lntedace

SmartPort fìrmware character device drivers support multiple-character I/O up to 767
b¡es per request. Sandard and extended calls are handled differently:

r Drivers that support only standard calls can access only bank $00 of Apple IIcs
memory, and their data must be copied through the 512-b¡e system buffer in bank
$00. Therefore, the generated driver makes multiple 512-byte requests until the
remaining characters to transfer are fewer than 512; it then makes one final request for
the remaining characters.

r Drivers that support extended calls can access any memory bank. In that case the
generated driver makes multiple 768-b¡e requests until the remaining cha¡acters
to transfer are fewer than 768; it then makes one final request for the
remaining characters.

Sma¡tPort fìrmware block device drivers support only single'block transfers. Sflhen a
SmartPort generated driver receives a multiblock read or write request, the driver fÌrst
checla that the request count is a multiple of the block size. If it is not, the generated
driver retums an error; if it is, the generated driver issues a read or wite call to the
firmware driver for each block to be transfened. If either the firmware driver or the device
it is anached to does not support extended SmartPort calls, the generated driver copies
the daa bemeen the system bank $00 buffer and the caller's buffer (which may be
anprrhere in memory), if necessary.

The SmartPort generated block device driver supports caching. Blocla wrinen to the
Sma¡tPon device through the firmware driver are also wriften to the cache (if enabled) by
the generated driveq blodrs to be read from the device may instead be read from the
cache by the generated driver,

N Apple IIcs GS/OS Device Driver Reference

Appendix B GS/OS Error Codes and Constants

This appendix lists and desaibes the enors that an application can
receive as a rezult of making a GS/OS øll.

(

Ç
,ry

GS/OS error codes

The fìrst column in Table &1 lists the GS/OS enor codes that an application can receive,
The second column lists the predefined constants whose values are equal to the effor
codes; the constants are defined in the GS/OS interface files supplied with development
systems. The third column gives a brief description of what each enor means.

t Table B-l GS/OS enors

Codc Coûrt.nt Dercdptton

$ot
$04
$07

$10
$tt
$20
$21

s22
$23

$24

$25

$26
$27

$2e

i29
$28
$2C

$2D
$2E

badsystencaLl
invalidPcount,
gsosActive
devNotFound
inval-idDevNum
drvrBadReq
drvrBadCode
drvrBadParm
drvrNotOpen
drvrPriorOpen
irqTableFull
drvrNoResrc
drvrlOError
drvrNoDevice
drvrBusy
drvrÍtrtProt
drvrBadCount
drvrBadBl-ock
drvrDiskSwit,ch

Bad GS/OS callnumber
Parameter count CIut of range
GS/OS is busy
Device not found
Invalid device number (request)

Invalid request

Invalid control or sgtus code
Bad call parameter

Character device not open
Character device already open
Intemrpt table full
Resources not available

VO enor
No device connected
Driver is busy

Device is write protected
Invalid b¡e count
Invalid block address

Disk has been switched

lcontinuedl

300 Apple IIcs GS/OS Device Driver Reference

r Table B-l GS/OS enors lcontinued]

Codc Co¡rt.rt Descrlptloa

$2F

$40

i43
i44
$45

$46

ï4t
$48

s49
$44
$48
$4c
$4D
$4n
$4r
$50
$51

$sz
$53

$54

i57
$58
$59
$51
$58
$5c

drvrOffLine
badPathSyntax
invalidRefNum
pathNotPound
volNotFound
fileNotFound
dupPathname
volumeFull
volDirFull
badFileFormat
badStoreType
eofEncountered
outOfRange
invalidÀccess
buffTooSmall
fileBusY
dirError
unknownVol
paramRangeErr
outOfMem
dupVolume
notBlockDev
invalidLevel
damagedBitMap
badPathNameg
notsystemFile

Device off line or no media present

Invalid pathname syntax
Invalid reference number
Subdirectory does not exist
Volume not found
File not found
Create or ren¿me with existing name
Volume isfull
Volume directory is full
Version enor (incompatible file format)
Unsupported (or inconect) storage type
End-of-fìle encountered
Position out of range

Access not allowed
Buffer too small

File is already open
Directory error
Unknown volume type
Parameter out of range

Out of memory
Duplicate volume name

Not a block device
Specified level outside legal range

Block number too large
Invalid pathnames for ChangePath
Not an exectmble fìle

lcontinued]

Appendix B GS/OS Enor Codes and Const¿nts 301

I Table B-1 GS/OS enors lconrinuedl

Codc Coûst¡ot Dcærlptlon

$5D
$¡r
$60

$61

$62

$63

osUnsupported
stackOverf Ior¡
dataUnavaí1
endOfDir
invalidClass
resNotFound

Operating system not supported
Too many applications on stack
Daø unavailable
End of directory has been reached
Invalid FST call class

File does not contain required resource

W Apple IIcs GS/OS Device Driver Reference

Glossary

absoluæ.bank sçgment A load
segment that is restricted to a
particular memory bank but that can
be placed anlnrhere within that bank,
The ORG field in the segment header
specifies the bank to which the
segment is restricted.

abotract ffle system: The generic file
interface that GS/OS provides to
applications, Individual flle sysæm
trensl¡tors convert fìle information
in abstract format into formats
meaningful to specifìc file systems,
and back again.

AppleDlsk 3.5 driver: A GS/OS
loaded driver that controls
Apple 3.5 drives.

Applelllsk 5.25 driver! A GS/OS
loaded driver that controls
Apple 5.25 drives.

Apple tr: Any computer from the
Apple II family, including the Apple II
Plus, the Apple IIc, the Apple IIe, and
the Apple IIcs.

Apple 3.5 drtvq A block device that
can read 3.5-inch disks in a variety
of formats.

Apple i.ZJ &lvrl. A disk drive that
reads 5.25-inch disks. In this book, the
essentially identical UniDisk, DuoDisk,
Disk IIc, and Disk II drives are all
refened to as Apple 5,25 drùns.

applicatlon level One of the three
lnûetfae level¡ of GS/OS. The
application level accepts calls from
applications and may send them on to
the fìle system level or the device level.

applicatlon-level calls¡ The calls
an application makes to GS/OS to
gain access to files or devices or to
set or get slstem information.
Application-level calls include
staodard GS/OS calls and PIÐDOS
16<ompatlble calls,

atu: To provide ¿ sl8nal source with
the information needed to execute its
slgF¡l h¡odler. Sþals are armed with
a subcall of the device call DControl or
the driver call Driver-Control.

associated flle In the ISO ff60 fìle
format, a file analogous to the resource
fork of a GS/OS erûended flle.

BASIC prìoSocol An I/O protocol for
character devices, used by some
fìrmware-based drivers on Apple II
expansion cards.

M

block (1) A unit of data storage or
transfer, rypically bur nor necessarily
512 b¡es. (2) A contiguous region of
computer memory of arbitrary size,
allocated by the Memory Manager.

block devlce¡ A device that reads and
writes information in multiples of one
block of characters at a time, Disk
drives are block devices.

block drlver¡,{ driver that controls
a block device. Also called
blocþ da¡ice driaer.

cache A portion of the Apple IICs
memory set aside for temporary
storage of frequently accessed disk
blocks. By reading blocla from the
cache instead of from disk, GS/OS can
grearfly speed VO in some cæes.

cache priorlty: Å number that
determines how a block is cached
during a write operation. Depending
on its prioriry, a block may be (1) not
cached at all, (2) wrinen both to the
cache and to disk, or (3) written to
the cache only (if a deferred write is
in progres).

cachtng: The process of placing
disk blocks in the cache and
retrieving them. GS/OS uses an
I,RU caching mechanism, with a
write-tbrough cache.

caIL (v.) To execute ân opefeting-
system routine. (n.) The routine
so executed.

character devlce A device that reads
or writes a stream of characters in
order, one at a time. The keyboard,
screen, printer, and communications
port are character devices.

cbaracter drlverr A driver that
controls a character device. Also called
charactu datice driuer.

character FST: The part ofthe
GS/OS file system level that makes
character devices appear to
application programs as if they
wefe sequential fìles.

class-0 calls: See PToDOS 16-
compatlble calls.

class-l calls: See stand¿rd
GS/OS calls.

conflguratlon llst A table of device-
dependent information in a device
driver, used to configure a specific
device controlled by the driver. There
are two lisu for each confìgurable
device a cuffent conffguration llst
and a default configuratlon llst
configuratlon scripû A set of
commands, either part of a driver or
in a separate module, that are used by
a confìguration program to display
confìguration options and allow a
user to select among them. The
configuration program then modifies
the driver's current configuration
llst accordingly.

console The main terminal of the
computer; the keyboard and screen.
Through the co¡sole drtver, GS/OS
treats the console æ a single device.

Y+ Apple IIcs GS/OS Device Driver Reference

corxxile driveî A GS/OS cha¡acter
drlver that allows applications to read
data conveniently from the keyboard
or write it to the screen.

C¡osole Input toudnq The part of
the console ddver that accepts
characters from the keyboard. There
are two bæic input modes: rarv node
and r¡ser input modc.

Console Output routlne The part
of the console drtver that writes
characters to the screen.

ßontml cåar¿cten A nonprinting
character that controls or modifies
the way information is printed
or displayed.

control code (l)A control
cbe¡acten (2) A parameter in the
device callDControl (and the driver
call Drive¡-ControD whose value
determines which control rubcall is
to be made.

cotrtrÐIl¡ûg prograns A program that
loads and runs other programs, without
itself relinquishing control. A
controlling pro$am is responsible for
shutting down is subprograms and
freeing their memory space when they
are finished. A shell, for emmple, is a
controlling program.

aontrcl üst! A buffer used in
some control subcalls to pass data
to devices.

Contd Panel pmgram: A text-based
Apple IIGs desk accessory that allows
the user to make certain s)rstem
settings, such æ changing cache size
and selecting external or internal
fìrmware for slos. See also
Dlsk Cache prcgraü.

cun€trt conffguatlon llst: One
of the two configuration lists for
each confìgurable device contolled
by a driver; it contains the presenr
values for all the device's
configuration parameters.

data forh The part of an extended
fìle that cont:rins data created by
an application.

defauft conûguradon list One of the
two configuration lists for each device
contolled by a driver; it contains the
default configuration settings for
the device.

deferæd wdb¡ A process in which
GS/OS writes blocks to the cache only,
defening writing to disk until all blocla
to be wrinen are in the cache. A
defened write session is started with a
BeginSession call; it is ended (and all
cached blocla are written to disk) with
an EndSession call.

dolilop i¡terfacc¡ The visual
interface that a rypicalApple IIGs or
Macintosh application presents to
the user.

Glossary fi5

devlce ,{ physical piece of equipment
that transfers information to or from
the Apple IIcs computer. Disk drives,
printers, mouse devices, and joystick
are extemal devices. The keyboard and
screen are also a device (the coosole).

device call¡ See GS/OS devlce calls.

devlcc char¿cterlst¡cs word: Part of
the devlce inforu¡tlon blodr, this
word describes some fundamental
characteristics of the device, such
as whether its driver is loaded or
generated and what access permissions
it allows.

devlce dlspatchen The component
of GS/OS that controls all access to
devices and device drivers, The device
dispatcher handles informational calls
about devices, passes on I/O calls to
the proper driver, starts up and shuts
down device drivers, and maintains
the derlce list
devlce drtvcr Ä, driver that accepts
drtver calls from GS/OS and either
(1) controls a hardware device directly
or (2) accesses a supcry¡sory drtver
that in tum controls the hardware.

devlct ID: A numericalindication of
a general type of device, such as
Apple 3.5 driueq SCSI CD-ROM dr*p.

device lnfotmatlon block (DIB)¡ A
table of information describing a
device. It is stored in the device's
driver and used by GS/OS when
accesing or refening to the device,

device leveü One of tt¡e three
intcrface levels of GS/OS. The
device level mediates between the
flle $yst€m level and individual
device drivers.

devlce li* n fist of all installed
devices; it is acnrally a linked list of
pointers to all devices' DIBs. This list is
constructed and maintained by the
devlce dispatcher.

Devlce Manage* The part of GS/OS
that provides application-level access
to devices and device drivers,

devtce numben The number by which
a device is specifìed under GS/OS. It is
the position of the device in the
device llsr
DIB: See derice l¡form¡tion bloct

dißctory€ntry: See ffle entry.

dirtctory ffle A fìle that describes
and points to other fìles on disk.
Compare staodard file,
extended ffle.

dftlct page An area of memory used
for fast access by the microprocesor;
it is the 256 contiguous b¡es starting
at the address specified in the ó58t6
microprocesor's Direct register. Direct
page is the Apple IIcs equivalent of the
standard Âpple II zerc pagc; the
difference is that it need not be page
zero in rnemory. See also
GS/OS dlæct page.

direct pagelstacl seglrcnt A load
segment used to preset the location
and contenß of the direct page and
stack for an application.

N Apple IIcs GS/OS Device Driver Reference

dlsarm: To notify a sþal sourcc
that a particul¿¡ slgnel handlerwillno
longer process occurrences of the
signal. Signals are disarmed with a
subcall of the device call DControl or
the driver call Driver-Control.

dlst cache See cache.

Disk Cacåe program! A graphics-
based Apple IIcs desk accessory that
allows the user to set the cache size.
See also Contnol Panel progr"û.

dlst switcåed: A condition in which a
disk or other recording medium has
been removed from a device and
replaced by another. Subsequent reads
or writes to the device willaccess the
wrong volume unless the disk+witched
condition is detected.

dormang Said of a program that is not
being executed but whose essential
parts are all in the computer's memory.
A dormant program may be quickly
æstarted because it need not be
loaded from disk.

drfver: A program that handles the
transfer of data to and from a
peripheral device, such as a printer or
disk drive. GS/OS recognizes two
types of drivers in this rcgard: device
drtvers and supervlsoty drtvers.

drfrer calls: A class of lowlevel calls,
not accessible to applications, that
access GS/OS dcvtce dttvrsrË. Driver
calls are made from within CS/OS;
alldriver calls pass through the
device dispatcher.

dynamic segment; A segment that
øn be loaded and unloaded during
execution as needed. Compare
static scgmeûL

extended 0le A named collection of
data consisting of rwo sequences of
b¡es, refened to by a single directory
entry. The two different b¡e
sequences ofan extended fìle are
called the daø fork and the
resourte fork

extended Sma¡tPort pmtocoL See
SmütPort pmtocol

ffle An ordered collection of b¡es
that has several attributes under
GS/OS, including a name and a

file rype.

ffle eotry: A component of a directory
file that describes and points to some
other file on disk.

frlen¡æ: The string of characters that
identifìes a particular file within its
directory. Compare pathnarne.

ñle rysten level: One of the three
l¡terface levels of GS/OS. The fìle
system level consists of ffle syrtetn
transletore (FSTs), which take calls
from the appltcadon lerelo convert
them to a specific file system format,
and send them on to the device lerel
ñle systcm tfimsleûor (fSÐ: A
component of GS/OS that converts
application calls into a specifìc file
system format before sending them
on to devlce drivers. FSTs allow
applications to use the same calls to
read and write files for any number of
file systems.

Glossary T1

frmwa¡e VO drlver: Â character or
block driver on an expansion card in a
slot (or in the slot's equivalent internal-
port firmware). GS/OS creates

çnerated ddve¡s to provide
applications and FSTs with a
consistent interface to fìrmware
I/O drivers.

formet optlon entry: A description
of a single formaning option for a
particular device supported by a
device driver. Part of the foruat
optlons table, the format option
entry includes such information as the
interleave factor, the block size, and
the number of blocks zupported bY
the device.

fotu¡t options table A able in
a dcvlce drlver that contains
formatting pârameters for a device.
The format options table contains
a foruat opdon entry for each
supported format.

FSTSpectñc: A standard GS/OS call
whose function is defined individually
for each FST.

çnerated drlvers: Drivers that ate
constructed by GS/OS iself, to
provide a GS/OS interface to pre-
existing, uzually fìrmware-based
peripheral-card drivers.

GS/OS: A lGbit operating system
developed for the Apple IIcs
computer. GS/OS replaces PToDOS 16
æ the prefened Apple IIcs
operating system.

GS/OS calls: See st¡rderd
GS/O$ cells.

GS/OS device calls: A subset of the
standard GS/OS calls, they bypass the
flle system level altogether, giving
applications direct access to devices
and device drivers.

GS/OS direct paSe A portion of
bank $00 memory used as a dirtct
pagc by GS/OS. Some parts of the
GS/OS direct page are used to pass
parameters to device drivets and
supewlsory df,fverg.

GS/OS drlver calls: See drivcr calls.

headen In obiect module fotma(the
first part of every segment. Following
the header, each segment consisg of a
sequence of records,

Hlgh Slerre The High Siena Group
format; a common fìle format for fìles
on CD-ROM compact discs. Similar
to the ISO 9660 intemational
standard format.

¡{¡gh Slern FST: The part of the
GS/OS ñle sysæm levcl that gives
applications transparent access to fìles
stored on optical compact discs (CD-
ROM), in the most commonly used fìle
formats: Hlgh sicrre and ISo 9660.

l¡ttlallzatton segmeûtl A segment in
a load file that is loaded and executed
independently of the rest of the
program. It is commonly executed
fìrst, to perform any initialization that
the program may require.

laput port In the console driver, a

d¿a stnrcn¡re that conûrins all of the
information about the current input.

3æ Apple IIcs GS/OS Device Driver Reference

lnstall For an interupt handler, to
connect it to its intemrpt source, with
the GS/OS callBindlnt (or the PToDOS
16 callALLOC_INTERRUPT). For a
signal handler, to connect it to its
signalsource, with the controlor driver
subcall ArmSignal. For a device (or
driver), to put its DIB inro rhe devlce
list, thereby making it accessible to
GS/OS and applications.

interface leveü A conceptual division
in the organization of GS/OS. GS/OS
hæ three interface levels: the
appllcation lcvel the file system
level, and the device level The
application level and the device level
are enemal interfaces, whereæ the fìle
system level is intemal to GS/OS.

intem¡pt! A hardware sþalsent from
an extemalor intemaldevice to the
CPU. Vhen rhe CPU receives an
intemrpt, it suspends execution of the
curent progf:¡m, saves the program's
state, and transfers control to an
interrupt ha¡rdhr. Compare slgnat.

lnætnpt dlspatching: The process
of handing control to the appropriate
intem.rpt handler after an
lnt€m¡pt occurs,

intcrrupt hendlen .{ program that
executes in response to a hardware
intempt. Intenupts and interrupt
handlers are commonly used by device
drivers to operate their devices more
efficiently and to make poæible
simple background tasks such æ
printer spooling. Compare
signal handlen

lnæmtpt sor¡¡se Any hardware
device that can generate an intemtpt,
such as the mouse or serial ports.
Compare sigoal sou¡oe.

inverse text: Text clisplayed on
the screen with foreground and
background colors reversed: instead
of the usual light characters on a dark
background, inverse telit is in the
form of dark characters on a
light background.

ISO 9660: A¡¡ intemational standard
that specifìes volume and file srrucure
for CD-ROM discs. ISO %60 is similar
to the Elgb Slerra formet.

iump table segnmt A segment in a
load fìle that contains all references to
dynamic segments thar may be called
during execution of tha¡ load file. The
jump table segnent is created by the
linker, In memory, the loader combines
alljump table segments it encounters
into the jump nble.

llbrary file tur object fìle containing
progfam segments, each of which can
be used in any number of programs.
The linker can search through the library
file for segments that have been
referenced in the program source file.

llnlen A program that combines fìles
generated by compilers and
æsønblers, resolves all symbolic
references, and generates a file that can
be loaded into memory and executed.

loaded drlvcr¡: Drivers that are
written to work direaly with GS/OS
and ¿re usually loaded in from the
system disk at boot time.

Glosary W

load ûle The output of the linker.
Load files contain memory images that
the System loader can load into
memory, together with relocation
dictionaries that the loader uses to
relocate references.

long prcfix: A GS/OS prefix whose
maximum total length is approxirnately
8000 characters. Prefìx designators 8/
through 31/ refer to long prefìxes.
Compare shon pæfix.

I,RA: Least recentþ used.The caching
method employed by GS/OS. !?hen the
cache is full and another block needs
to be written to it, GS/OS purges the
least recently used block(sFthe
one(s) with the longest time since
last access-to make room for the
new block.

media vadables: The set of multiple
formatting options supported by
a driver.

medlum! (1) A disk, tape, or other
object on which a storage device
reads or writes data. Some media
are removable; others are fìxed.
(2) A material, such as metal-oxide
tape, from which storage obiects
are constructed.

Memory Managsn An Apple IIcs tool
set that controls all allocation and
deallocation of memory,

mlnlmum parametcr count¡ The
minimum permitted value for the total
number of parameters in the parameter
block for a standard GS/OS call.

MouseText: Special characters, such
as check mark and apples, used in
some applications.

newlioe characten Any character
(most typically a retum character)
that indicates the end of a sequence
of b¡es.

newllne nods A mode of reading
data in which the end of the data (the
termination of the Read call) is caused
by reading a neryllne cbaracter (and
not by a specifìc byte count).

no-walt mode A mode for reading
characters in which a driver accepts
whatever characters are immediately
available and then terminates a Read
call, whether or not the total number of
requested ch¿racters was read. No-wait
mode allows an application to
continue running while input is
pending. Compare walt mode.

obicct ffle: The output from an
æsembler or compiler, and the input
to a linker. It contains machine-
language instructions.

obiect module foru¿t (OII[F): The
general format followed by,{pple IIcs
object files, library fìles, and load fìles.

paraoeter bloch A specifically
formatted uble that is part of a GS/OS
call. It occupies a set of contiguous
bytes in memory and consists of a
number of fields. These fields hold
information that the calling program
supplies to the GS/OS function it calls,
æ well as information retumed by the
function to the caller.

310 Apple IIcs GS/OS Device Driver Reference

paraûet€r counÈ The totalnumber of
parameters in a block. Also called
pCount.See also mhfmum
para¡trctcr count

patütlon ûup: A data structure
describing the state of a specific
paftition on a device.

Pascel 1.1 pmtocoL An VO protocol
for character devices, used by some
firmware-bæed drivers on Apple II
expansion cards.

pathname Ttre complete name by
which a fìle is specified. It is a
sequence of fìlenames separated by
pathnamc separatoñ, starting with
the fìlename of the volume directory
and proceeding through any
suMirectories that a program must
follow to locate the fìle.

patbname segnctrû The segment in a
load fìle that contains the ooss-
references between load fìles
referenced by number (in the jump
øble segment) and their pathnames
(listed in the fìle direaory). The
pathname segment is oeated by
the linker.

patbnamc separatoß Ttre character
slash (/) or colon (:). Pathname
separators separ¿te fìlenames in
a pathname.

posltion indcpendent Code that is
written specifìcally so that its
execution is unaffected by its position
in memory. It can be moved without
needing to be ¡elocated"

pr€ffx: A portion of a patbname,
starting with a volume name and ending
with a subdirectory name. A prefìx
always starts with a path¡ame
separeûor beøuse a volume directory
name always starts with a separator.

pr€fx destgnaton A number (tr31) or
the æterisk character ('), followed by a
pathÍame separaton Prefìx
designators are a shorthand method for
refening to prefixes.

pr€fu number: See prtûx deslgnaton

P¡oDOS: (1) A general term dæcribing
the family of operating systems
developed for Apple II computers. It
includes both PToDOS I and PToDOS
16; it does not include DOS 3.3 or SOS.
(2) The PToDOS file system.

PToDOS 8¡ The &bit PToDOS
operating system, originally developed
for sandard Apple II computers but
compatible with the Apple IIcs
computer. In some earlier Apple II
documentation, ProÐOS I is called
simply ProDOS.

P¡oDOS 0h system: The general
format of fìles created and read by
applications that run under PToDOS 8
or PToDOS 16 on Apple II computers,
Some aspects of the PToDOS file
system are similar to the GS/OS
abstract flle system.

P¡oDOS FST: The part of the GS/OS
fìle system level that implements the
PToDOS fìle system.

Glossary flf

P¡oDOS prctocoL An I/O protocol
for block devices, used by some
firmware-based drivers on Apple II
expansion cards.

PToDOS 16¡ The fìrst i6bit operating
system developed for the Apple llcs
computer. PToDOS 16 is bæed on
P¡oDOS 8.

P¡oDOS 16<ompadble calls: Also
called PoDOS 16 callsor class Gcalls,
a secondary set of appllcadon-level
calls in GS/OS. They are identical to
the PToDOS 16 system calls described
inthe Apple IIcs PtpDOS 16 Refercnce.
GSiOS suppo¡ts these calls so that
existing PToDOS 1ó applications
can run without modifìc¿tion
under GS/OS.

purge: To delete the contents of a

memory block.

quit ¡cturn stach An intemalG$/OS
stack that contains the user IDs of
programs that have quit but wish to be
launched again once the programs
cunently running fìnish exearting.

raw mode In the console driver, one
of two Console Input routlnes.
Raw mode allows forsimple
keyboard input.

rccord¡ In object module format, a
component of a segment. Records
consist of either progrâm code or
relocation information used by the
linker or System loader.

¡eload: To reexecute a pro$am whose
user ID has been pulled off the çit
rcturn stack but is not presently in a
dotma¡t state in memory. The System
Loader can reload a program quickly
because it hæ the progfam's pathname
information; however, it is much faster
to ¡estart a dormant program than to
reload it from disk.

¡eload scgment A load-file segment
that is always loaded from the file at
startup, regardless of whether the rest
of the program is loaded from fìle or
restarted from memory. Reload
segments contain initialization
information, without which cert¿in
fypes of programs would not
be restartable.

doc¿te To modify a fìle or segment
at load time so that it will execute
conectly at its cuffent memory
location. Relocation consists of
patching the proper values onto
address operands. The loader relocates
load segments when it loads them
into memory.

¡esou¡ce fork¡ One of the forla of an
extended fìle. In the Macintosh fìle
systems, the resource fork contains
specifically formatted, generally static
data used by an application (such as
menus, fonts, and icons).

ñstaf,g To reexecute a program
dotm¿nt in memory, Resarting is
much fæter than reloading because
disk access is not required (unless the
dormant application contains
doad segmenß).

3n Apple IIcs GS/OS Device Driver Reference

rcstartable Said of an application
that initializes itself and makes no
assumPtions about machine st¿te
when it executes. Only resarable
applications can be restarted
successfully from a dotm¡nt sate.

rcstert-ftom-memory fl¡S A flag,
part of the Quit call, that lets the
System loader know whether the
quining program can be restarted
from memory if it is executed again.

rcû¡rt flâS A flag, part of the Quit
call, that notifìes CS/OS whether
controlshould evenrually retum to
the program making the Quit call.

n¡n-time llbraty ñle A load fìle
containing program segments-each
of which can be r:sed in anynumber
of programrthat the System Loader
loads dynamically when they
are needed.

scñeû byûes: Ttre actualvalues, æ
stored in screen memory, of characters
displayed on screen (in Apple IIcs
text mode).

segm€lrts A component of ¿n OIvfF
fìle, consisting of a header and a
body. In object files, each segment
incorporates one or more subroutines.
In load fìles, each segment
incorporates one or more
obiect segments.

separatoc See ¡nthnemc s€paraûor.

secsion¡ See dcftred wrltc.

short prefi* A CS/OS prefu whose
maximum total length is 63 characters.
Preflx designators'/ and 0/ through 7/
refer to short prefxes. Compare
long prcfir
SIB: See supewisor
lnfotuadon block

slgnal A message from one software
subsystem to a second that something
of interest to tt¡e second has occuned.
Compare lnterrupt

signd haodler: A program that
executes in response to the occunence
of a signal. A useful feature of signal
handlers is that, unlike intemrpt
handlers, they can make GS/OS calls.
Compare inætrupt hadkr.
stgnal queues A portion of memory
that holds a sþaluntil it is ready to be
handled. GSiOS does not allow signals
to be handled untilGS/OS is free to
accept calls.

slgtd sottrûs A software routine that
announces a signal to GS/OS. Compare
intcmtpt sourìse.

Sm¡rt$ort potoco[An IiO protocol
for both block devices and character
devices, used by the Apple IIcs disk
port and by some fìrmware-based
drivers on Apple II exparuion cards.
\he støndard SmartPort Wtocoluses
twob¡e pointers and can direaly
access only bank $00 of Apple IIcs
memory; rhe extçnded SmørtPort
protocol uses four-byte pointers, so
that data can be accessed anyv,'here in
Apple IIcs memory.

Glossary 313

spdâl menory: On an Apple llcs
computer, all of banks $00 and $01
and alldisplay memory in banks
$80 and $81.

specd class: Part ofthe devlce
charactedstlcs word, it is a two-bit
field that specifies what processor
speed the device requires.

stacli¡ A list in which entries are added
(pushed) and removed (pulled) at one
end only (the top of the st¿ck),
causing them to be removed in last-in,
fìrst-out (UFO) order.lhe term the
stackusually refers to the particular
stack pointed to by the 65C816's
stack register.

sta¡da¡d Apple tr Any Apple II
computer that is not an Apple IIGS.
Since previous members of the Apple II
family share many characteristics, it is
useful to distinguish them æ a $oup
from the á,pple IIcs. A standard Apple
II may also be called an &bit Apple II,
because of the 8-bit registers in its
6502 or 65Cf,Z microprocessor.

starda¡d ffle: A named collection of
data consisting of a single sequence of
b¡es. Compare extendcd file,
dircctory ffle.

staûda¡d GS/OS calls:,{lso called
class-l calkor simply GilOS calls:rhe
primary set of applicatlon-level calls
in GS/OS. They provide the full range
of GS/OS capabilities accessible to
applications. Besides GS/OS calls,
the other application-level calls
available in GS/OS are PToDOS 16-
compatlble calls.

statlc segnent A segment that is
loaded only at program boot time and
is not unloaded during execution,
Compare dynamic segment

status code: A parameter in the
device call DStatus (and the driver call
Driver_Status) whose value determines
which starus subcall is to be made.

status li$t A buffer uæd by drivers to
return data from some status subcalls.

stan¡s word: A parameter rerumed
by the sarus or driver subcall
GetDeviceStatus that describes some
aspects of a device's fl¡nent status,
such as whether it is busy or whether
it is interupting.

subcalb An instance of a device call
or driver call in which one of the call
input parameters selects which routine
is to be invoked. For example, if the
parameter statuscode in the device
call DSøtus (or the driver call
Driver-status) has the value $0003,
the starus or driver subcall
GetFormatOptions is executed.

supewlson See supervlsory driver.

supenisor dlspatc.hen The
component of GS/OS that controls all
access to supervisory drivers. The
supervisor dispatcher handles
informational calls about supervisory
drivers, passes on VO calls from device
drivers, starts up and shus down
supervisory drivers, and maintains the
superisor llsL Compare
deviae dispatcher.

314 Apple IIcs GS/OS Device Driver Reference

supervlÊor exccutloû cnyüorimcnts
The execution environment set up by
the supervisor dispatcher for each
supervisorydriver call,

nrpervlsor ID: A numerical indication
of the general rype of supervisory
driver, such as AppleTalk or SCSI.

supewisor l¡formatlon block (SE):
A able of information describing a
supervisory driver. It is stored in the
supervisory driver and used by GS/OS
when accessing or refening to the
driver. Compare dcvlce
lnbtm¡donbtoclr
superlsor lbt I list of pointers to
the SIBs of all installed supervisory
drivers. Compare devlce lbt
su¡reivisor numbcr: Ttre identiffing
number for each installed supervisory
driver. It is equivalent to the driver's
position in the superrlsor lbt
supcnriúoûy drfvcr: A driver that
arbit¡ates supewlsotyddver calls
from separate device drivers and
dispatches thern to the proper devices.
Supervisory drivers are used when
several individual device drivers must
access several different devices
through a single hardware conrolle¡.

supervisotydrtver cell* Calls that a
supervisory driver accepts from íts
individual device drivers. they are
different from ddver c¡llç, ¿lthough
many may be direct uanslations of
driver calls.

system flle¡ Under PToDOS 8, any file
of PToDOS fìle type $FF whose name
ends with ..SYSTEM". In GS/OS,
æveral different rypes of fìles are
defìned as system fìles.

Sysæn loadcn The program that
loads all other programs and program
segments into memory and prepares
them for execution.

syctem seivlce cal} A low-level call in
a common format used by intemal
components of GS/OS-such æ
FSTs-and used between GS/OS and
device drivers.

Ermin¡ton A character that
terminates a console driver Read call.
Tlre coosoh drivcr permis more than
one terminator character and also can
note the state of modifter keys in
considering whether a character is to
be interpreted as a terminator.
Compare newllne cher.ct€r.

tcrmin¡tor ll¡t, A list of terminator
charactens kept track of by the
coo¡ole drtvcr,

tert poút In the con¡oh drlver,
a rectangular poÍion of the screen
in which allconsole output
operations occur.

undaimed lntemrpt fur intemrpt
that is not recognized and aaed on by
anylntemrpt ha¡dles.

UnIDlsk 3.1drlyq An intelligent
block device that can read 3,5-inch
disks in a varieg of formats.

Un¡Dirk 3.1drtvtr A GS/OS loaded
driver that controls UniDisk 3.5 drives.

Glossary 3lt

üscr ID¡ A number, assigned by the
User ID Manager, that identifies the
owner of every allocated block of
memory in the Apple IIcs computer.
Generally, each application has a

particulâr user ID, with which all its
allocated memory is identified. The
user ID is also used
as a general identifier of the
program itself.

user ínput mode¡ One of the two
C,onsole Input ruudnes, this mode
allows for textline editing and
application-defined terminator keys.

ve(tor rcfcæ¡cr nuober(WN) The
unique identifìer given to each
intemrpt source that is explicitþ
identifiable by the fìrmware. VRNs are
used to ¿ssociate intem:pt souÍces
with lnhrn¡pt haadleæ.

volume A named collection of files on
a logical storage device.

voh¡me ID A number assigned to
every volume on an installed device.

walt mode A mode for reading
characters in which a driver does not
terminate a Read call until the toal
number of requested characters is read.
In wait mode, normal program
execution is suspended until input is
completed. Compare no-walt mode.

wrlte-tbrougl¡¡ The kind of cache
implemented by GS/OS. When a driver
writes a block of data, it writes the
same data to the block in the cache
and the equivalent block on the disk.
Never does the block in the cache
contain information more recent than
the disk block (unless a deferrcd wdte
session is in progress).

zero page Also called absolute zero
page.The first page (256 bytes) of
memory in a sandard Apple II
computer (or in the Apple IIcs
computer when running a søndard
Apple II program). Because the high-
order b¡e of any address in this part
of memory is 0, only a single b¡e is
needed to specifu azero-page address.
Compare dfu,ect page.

t16 Apple llcs GS/OS Device Driver Reference

Index

,å,FPn d¡iver 133

"tppleTalk dwer 133, 143
.RPM driver 133-142
6502 ææmbly-language 164

A
A rcgister (accumulator) il, l0l, 194
aborting 100
absolute address 80
accelerator c¡rd 275
accumulator (A register) 51, 101, 194

addressing modes 194
Ädvanced Disk Utility(ADU) 36
AFP (Apple Filing Protocol) 146
.,{FPn driver l3l
AIIOC_SEG øll 196,271
American National Standards

Institute (Al.lSD ft, 100
APDÂ (Apple Programmers and

Developers Association) ú
AppleCD SC 59
Apple Deshop Bus 185
Apple Developer Technical Support

ß,n,195,257
AppleDisk 3.5 lW
.{pple 5.25 drive 121, 183

Âpple HD SC d¡iver 59
Apple Scanner 59
Apple SCSI peripheral c:rrd 96
AppleShare 133, 743, 146
ÂppleShare volume 146, 148
Apple SuperSerial Card 164

AppleTalk 156
.AppleTalk driver 133, 143
AppleTalk driven 133
AppleTalk ffle service 143
,tppleTalk Filing Protocol (-AFPn)

driver 14ó
AppleTalk port 143
AppleTalkpresence 143
AppleTalkslot 134

AppleTalk slot number 157
,{ppleTalk uni¡ number 157
AppleTalkClient call li7
Apple 3,5 drive 185
,{pple II High-Speed SCSI Card 97
Apple II Memory Expansion

C,Nd 165
Apple II Pa¡allel Interface Cârd 164
Apple ll SCSI Card 98
Apple IIe UniDisk 3.5 øtd 165
,{pple Tape Backup 40SC i9
Apple Tape Drive 103

Apple IlGs Toolbox 190
application-level calls 210
ArmSignâl (DCont¡ol subcall) 4649
,{,rmSignal (Device_Control

subc¿ll) 24ó
AssignPartitionOwna subcall 48, 7ó,

l15,l2l,ln,É3,247
asynctuonous calling scheme 143
audio channels 78
audio output 78,81
AudioPause subøll 83€4
AudioPlay subcall 81€3
audio playsøtus 72
AudioScan subcall 8687
AudioSeæch subcall 7€1
Aud¡ostatus svfull 7 2-7 4
.{udioStop subcall 85-86
autosensing 108
audio tradrs on CDs 68
auxiliarytypes 174

B

bank boundary 278
BASIC 163

binary<oded decimal (BCD) ó6
bit+ncoded slot confìguration

(BESC) 214
bitmap image, reading 94
block dlocation 248

block devices
and AssignPartition Owner

subcall 76
and DRead øll 54
and Driver_Readull 222
and DVdte call 56
formaning media 44, 6, 187,

235,242
and GetVaÍSaus sukall 26

block drivers 4

block read 129
block size 46, 122, 129, 186

block write 129
bootcode 39
boot disk 21ó
boot ddvers 174
byte offæts 212

c
cache cålls 205
CÂCHE-ÀDD_BLK øll lff, 205,

225,269
CACHE_DEI-Bü(call lS, 270
CÂCHE-FIND-BIK cell 196, 205,

225,2ß
caching 2&2ß

adding block 269
and AppleDisk 5.25 drrer 124
and DRead call 54
and DVrÍe call 54
multiblock 207

call att¡ibuæs 107
Callúzmget 7,792
unyflag 194
cDs 65, toj
ctunnels, søtus of 157
chancter devices 55, 56, 177, 227
chanacter drivers 4, l7 2, l8/l
chedsum 39,110,131
claiming devices 105
cold st¿rt 182

3t7

comPletion vector 100
confìguntion data 149
conlìguration lisrs 175, 178
configuration parameters 30, 43, 176
configuration settings 242
console, device ID for 185
control list 45

cunent confignration list 178

D
data traclc on CDs 68
Daø Bank register 200
data chaining 89-ff
DCLoop command 89
DCMove command 89
DControl caJI 4l-r2

and .AFP driver 151

and AppleDisk 5.25 dnver 127

and,tppleDisk 3.5 dnver ll3
and .AppleTalk driver 145

and generated driver 1ó7
and.RPM driver 140
and UniDisk 3.5 d¡iver 120

DCSpecial command 89
DCStop command 89
default confìgrrration list 178
DEREFcall 1946273
desiping a device driver 189
devicecalls 210
device d¡aracte¡istics wo¡d 21, l8l
device dispatcher 10, 19G194

use of device driver header 17
device drivers

defined 5
designing for GS/OS 172-201

device enor codes 63
Device ID 104, 185

device infonnation block (ÐIB)
t79-"t86

device list t&, 1Tl, l9l, 278
Device Manager 2,8, t2, 178, 192

205,239
device number 149
Device $atus word 29, 136, 148,

ßa,232
device type 106

devicedriver erecution
environment 193

devicedriver strucfure 175

device+pecifìc calls 171

device-specilìc DControl subcalls 52
device-specifìc status calls 229
DIB device number 186
DIB list address 285
DIB pointer 191

Dlnfo call 20-25
direapage & 10,89

parameter space 192
direo-access devices 64
DisarmSignal (DControl subcall) it

and .ÁFP driver 153

and AppleDisk 5.25 dnver 128
and AppleDisk 3.5 d¡iver 115

and.AppleTalk driver 145
and generated drivers 168
and UniDisk 3.j driver 121

DisarmSignal (Driver_Control
subcall) 249

diæonnecting, allowing devices
ro 107

disk caching. See caching
Disklldrive 123
disk port 123

disk-switch event 146

disk-switched condition 194, 2ú,
226,283

disk-switched dereoion 124, 129
disgatch vector 143

DisplayMesuges subcall 154

DOS 3.3 r23,130,2ß
DRead call 53-f

and.AFPn driver 155
and.{ppleDisk 5.25 dnver 129
and ^{ppleDisk 3.5 driver 116
and "{ppleTalk driver 145
and.RPM d¡iver 142

and UniDisk 3.5 driver 122
DRename 9, 57
drivercalls 171,195
Driver-Cloæ call 227
drivercode 175,1Ð
driverfìletypes 174
driver header 175
drirærr¡pes 172
driverversion 184
Driver_Conrol call 10, 240-250
Driver-Flush call 251 -252
Driver_Read call 10, 219-222
Driver_Shutdown call 253-255

Driver_Status call 10, 229-239
Driver_Vrite call 10, 223-226
drivers and caching 204
DSørus e.L!9,2640

and .AIP &iver 147
and AppleDisk 5,2i dnver 12)
and AppleDisk 3,5 driver Il2-114
and .AppleTalk &iver 144
and generated d¡ivers 166

and.RPM ddver 135
and SCSI driver 6l-74
and UniDisk 3.5 driver 119

DuoDisk drive 123

DVrite call 9,54-t6
and .AFPn driver 155

and AppleDisk i.25 drwer 129
and AppleDisk 3.5 driver 11ó
and .AppleTalk driver 14i
and.RPM driver 142
and UniDisk 3.5 dríver 1.22

DYN_SIOT_ATBITTR call 196, 287
dynamic driver installation 191

E

Eþt subøll 83
eject status 151,154
EþctMedia sukall 152
EjectMedium subcall 42, 12r,241
EndSession cal| 204
entity name 137,l4l
epilog markers 131

E¡aæDisk call 48, 76
enor codes 263
execurion speed 195
Express Laadfonna¡ 174
er¡ended SmartPort protocols 164
ExtendedSeek subcall 83

F

fast-forward scan 86
fæt-reverse scan 86
fileserverdevicelD 185
fìleservice 14ó

fìle systemgroup 186
file system translator(FSï) 2, 118
file systems 123, 235, 245
firmware entry poiffs, Pascal Ll 134

firmware IlO dtiver 1&
fÌrmw¿æ ID b¡es 164

31E Apple IIcs GS/OS Device Driver Reference

lxed name bit 20, 182
flags b¡e of GetRPMParameters

sukall 138,141
flags word of GetFormatOptions

subcell 32,188
Flush call 142

formaning devices 42, lí2
format options

gening 31-36, ll3, 126, 231239
üsrof 35
setting 128, 245247
able 187

format tpe 189
FormatDevice call 44, 127, 187, 242
forward links 215
fnmes 67
FST ID number 205

-/t5t owner /o
FSIs (file system tnnslators) 7€

G
generard driven 4, 163, I7Z, 183,

289-292
GetChannelStarus subcall 157

GetConfigParameters (DControl
subcall) 30

and AppteDisk 5,25 dnver 125

and ÀppleDisk 3.5 driver ll3
and generated drivers 166

and UniDisk 3.5 driver 119

GetConfigParameters (Driver
subcall) 234

GetDeviceSurus subcall 28, ll2, ll9,
125,23r

GetEiærSatus subcall 150

GetFormat0ptions (DControl
subcall) 31

and .AFPn driver 150
and ÄppleDisk 5.25 dnver 126
and AppleDisk 3.5 d¡iver 113
and genented drivers 167
and.RPM driver 136
and UniDisk 3.5 driver 119

GetFormatOptions (Driver-Stâlus
subcall) 187,235

GetPartitionMap sukall 36, 137,
150,239

GetPort subcall 144

GetRPMPanmetem subcall 137, 141

Getvaitstatus subcall 31, ll9, 744,
167,234

GS/OS direct page 190
GS/OS direct-page parameter

block 193

GS/OS dkect-page pararneter
space 267

GS/OS drivers 3-7
GS/OS driver calls 2W-263

H
header, device driver l7
hexadecimal numbers 212
HFS 238
HiRes graphics 94
hold-rack 83

I'J'K
ID ertension 97
ImageVriter emulator 139
index number 70
Initi¿lization Marger 246
Inquiry suk¿ll 83
INSIAII-DRIVER call 196, 278

intedace øñ 123
interleave 46, l2l, LN, W), 238
interleave conligurations for

AppleDisk i.25 ddve 130

intenupt sutus 29
intem¡pt handlers 710, 248

t
laserVriter printer 139, 185
leadout are¡ 66
least recently used GRU) aþodthm

12,204
link access protocol (I.l{P) 143
li¡¡ked device bit 27, 181

linked options 188
link to another device 25
loaded d¡ivers 4, 172
loader, GS/OS 159
IOCK-MEM c¡¡ll Ic¡6,276
logical block addres 71

logical hlock length ó4
IRU ctnin 269

M
Maciruosh fìle system 111, 117
mark marke¡s l3l
media variables 31, 46, 186

rnemory bank 278
Memory Manager 228
memory segfnents 271, 272, 276
MFM 185

MFS 238
modem device ID 185

ModeSelect subcall 83
ModeSense subcall 83
MOVE_INFO call 1946 205, 278
multiblock caching 207
multiblock re¿ds 2ffi

N
netive mode 194
network 133,134,74,

o
objæt module fornrl 174
off-line condirion 194
Open øll 54
optiøl pickup n,81,85

P

paramet€r block l8
partition Æ,12,247
partition map 36, 51,239,249
paftitions

æsigning owners 48, 247
and SCSI Manager 96,105

partition saus information 39
partition types 38, 76
Pascal 123,130
Pæcal1.l '!34,t63
pause mode of Apple CD SC 81
phase suppon by SCSI Manager 98
playmodesofApple CD SC 79
PMSetPrinter call 137, 141

pon distinguist¡ed from slot 2l
port number 144
Prevent/Allow Media Remornal

subcall 83
pdnters 93, 102, 134, 142, 156

device ID for 185

Index Tl9

printing 133
processor device-type code 102
processor speed 22
processor types 39
PToDOS

compatibil¡ty with AppleDisk 5.25
driver 123

competibility with eppleDisk 3.5
driver 111

compatibiliry wiÉ¡
UniDisk 3.5 117

and çnerated drivers 163, 232
interleave configrration 1J0
unit numbers 184

ProDOS 8 147, 157, 158, 182

PToDOS Filing Interface (PFD 146
ProFile 165,185
protocol layer interaction 141

a
Q Subcode daa 69

n
RAM d¡sk 185

random-access devices 4
Read subcall 83
Read Extended subcall 83
ReadCapacitysubcall 83
ReadHeader subc¿ll 71, 83
ReadQSubcode subcall 69, 83
ReadtOC sukal 65,83
receiving data 94
rcgisten 193,2W
Release subcall 83
release number 24
RETEASE-SEG âll, 196, 272
Remote Print Manâger 134
Remote Print Manager driver (.RPM)

r33'142
removable med¡n 215,279
RequestSense subcall 83, l0l
Reserve sukall 83
Reset Device 140
ResetDevice (DCont¡ol subcall) 43

and.AFPn driver 151

and ÂppleDisk 5,25 dwer 127
and.{ppleDisk 3.5 driver 114
and.ÂppleTalk dnver 167

and.RPM driver 140

and UniDisk 3.í driver 120
ResetDevice (Driver_Control

sukall) 242
restaÍable brt 22,182
ReturnConfigu mt¡onParemeters

subcall t36,149
RerumDeviceStatus subcall lli, 148
Returnl¡stResult subcall 62

Rezero Unit subcall 83
ROM 159

ROM dísk 18i
,RPM driver 134-142
RS- 232 133

running time 70

s
$cimner device-type code 103
scc 15ó,158
SCC channel number 157
SCC Manager 133, 116, 172
SCC supervisory driver 257
Scheduler 190
SCSI bus 105

SCSI data model 98
SCSI device+ype codes 185

SCSI driven 59-110
SCSI Manaçr 89,96,172
SCSI Manager calls 101

SCSI supervisory ùivet 257
search address in.{udio Seardr

subcall 79
search by volume ID 268
sedor translation 130
Seek sukall 83
self-synchronizarion gap 131

Send Diagnostics subcall 83
ænse keyofdevice enorcodes 64
æquential-acces devices 4,64, 185
æriel pons '/.33,155
ærver 133,146,152
server name 150
æssion reference nu¡nber 1,46, 1,49

SSI-DISKSV caü 196, 205, 206,
232,93

SET-SYS-SPEED call 181, 196, n5
SetChannelSta¡us subcall 158
SetConfrgPaømeters suk¿lt 45, lli,

120,129, 1$,243

SetConfigurationParameters
subcall 1j2

SetEjeoSutus subcall 1i4
SetFormatOptions (DControl

subcall) 46,121
and .AFPn driver I j3
and AppleDisk 5.25 driver 128
and AppleDisk 3.5 driver 115

and generated drivers 168
and UniDisk 3.5 driver 121

SetFormatOptions (Driver_Cont¡ol
subcall) 187,245

SetPartitionMap subcall 52, 153, 249
SetRPMParameters subcall I39, 140
SetVaitMode subcall 121

SetVaitsmrus subc¡ll 45, 1li, 128,
152,168,2u

Shutdown call 182

signals 11, 195, 19ó, 26i, W
signal handlers 1671 249
sþnal priority 49
signal sources 171

size multiplier in flags word 34
slot arbiter 214
slot number 104, 183

slot register 214
slot-number word 183

SmartPort 161,1A
soft switches 183

sparingdisk blocls 110

$artlStop Unit subøll 83
Startup call 182
shtic load segment 171
status calls. &e Driver_Sutus calls;

Dstatus call
status list 167

SUP_DRVR_DISP call t96, 2184

supervisor direct page 256
supervisor dispatcher 5, 19P, 258
supewisor driver 156
superrisor execution

environment 199
supervisorlD 255,2t7
supervisor list 199
supervisor number 199, 256
Supervisor-Shutdown2 (50001) 261
Supervisor_Sta rtrp 259
supervisory driver

defÌned 5
SCSI Manager 94

3m Apple IIcs GS/OS Device Driver Reference

11 supefvisory.drive¡ ølls 199, N,
253-26

SVAP_OUTcall 273
System lroadef U1
s]'stem resources 259
system ærvice c^lh ll, lg2, 26i
system seß¡ice dispatch table 11, 266
syatemsoftnarc li5,l82

T
abþ of contentsof CDs, reading 65
TestUnitReadysubcall 83
timeoutofVOcall 108
uecknumber ó6,70
ransfercor¡nt 226

U
UNBIND-INI-VEC call 19ó
UNBI¡rD-tNr-vEglcall 288
Uû¡D¡sk 3.5 &wer lll -122
UniDísk ddve 123

mfI.OCLMEtr,f ull 196,m

v
Vedf subcall 83
vesion nunber 107
video gnphia g5

video memory 94
videosseen 95
virtrul pointer n\ 272, n4
volurne eþct 1{6
volume ID 14ó
Volu¡¡e lD number 150
rrolume name 149
volumeoff-lir¡e 285

v
wafln sBn 182
witing a devitr ùiver t71

x
Xregi$er 51

r
Yrcgi*a 49

z
zero page 104
zone name 150

(

Ç
Index ffi

TI{E APPI"E PTÍBUSHINO SYSTEM

This Apple manual was wdtten, edited, and
compoæd on a dgsktop publishing system using
Apple Macintosh@ computers and
Microsofto Vord software. Proof pages were
created on Apple laærVritero printen. Finalpages
were created on the Varityper'* W600 imâgeset¡er.
Lirre art lns oeated usin[ïaOe Ulusrraol.
POSTSCRIPI0, the pagedesaiption langrage for the
I¿serVriter, wæ developed by Adobe Systems
Incorporated.

Ten rype and display rype are Apple's corpoqte
font, a condensed ve¡sion of ITC Ga¡amond@.
Bullos are ITC Zapf Dingbatso. Some elemeils,
such æ prognam listinp, aæ set in Apple Couder.

V¡iters: Dave Carper¡¡er, Bill Hanis, and Dave Bke
Copy Editor: Beverly Zeganki
Illust¡ators: Sandee Kan and Peggy Kunz
Production Supervisor: Teresa (Tes) Luian
Formatter: Geni Gray

Special thanla to Greg Brancie, Mark Day, Man
Deatherage, Man Gulick, Jim luùe¡ Dave lyons,
and Ray Monøgne.

