Apple IIGS® GS/0OS Device Driver
Reference

APDA # AO00SLL/C

<.

For GS/OS Apple® HGS® GS/ OS®
wstem Software—— Tyayice Driver Reference

Version 5.0

DStatus ($202D) / 26
GetDeviceStatus / 28
GetConfigParameters / 30
GetWaitStatus / 31
GetFormatOptions / 31
GetPartitionMap / 36
Device-specific DStatus subcalls / 40

DControl ($202E) / 41
ResetDevice / 43
FormatDevice / 44
EjectMedium / 44
SetConfigParameters / 45
SetWaitStatus / 45
SetFormatOptions / 46
AssignPartitionOwner / 48
ArmSignal / 49
DisarmSignal / 51
SetPartitionMap / 52
Device-specific DControl subcalls / 52

DRead ($202F) / 53

DWrite ($2030) / 55

DRename ($2036) / 57

2 The SCSI Driver / 59

Device calls to the SCSI driver / 60

DStatus ($202D) / 61
ReturnLastResult (DStatus subcall) / 62
ReadTOC (DStatus subcall) / 65
ReadQSubcode (DStatus subcall) / 69
ReadHeader (DStatus subcall) / 71
AudioStatus (DStatus subcall) / 72

DControl ($202E) / 75
AssignPartitionOwner (DControl subcall) / 76
AudioSearch (DControl subcall) / 77
AudioPlay (DControl subcall) / 81
AudioPause (DControl subcall) / 83
AudioStop (DControl subcall) / 85
AudioScan (DControl subcall) / 86

iv Apple IIGS GS/OS Device Driver Reference

Data chaining / 89
Some data-chaining examples / 93
Sending data / 93
Receiving data / 94
The SCSI Manager / 96
The SCSI data model / 98
SCSI Manager calls / 101
RequestDevices ($0002) / 102
ClaimDevices ($0003) / 105
1/0 ($0004) / 106
Sparing disk blocks / 110

The AppleDisk 3.5 Driver / 111
Device calls to the AppleDisk 3.5 driver / 112
DStatus ($202D) / 112
GetDeviceStatus / 112
GetConfigParameters / 113
GetFormatOptions / 113
DControl ($202E) / 114
ResetDevice / 114
SetConfigParameters / 115
SetWaitStatus / 115
SetFormatOptions / 115
AssignPartitionOwner / 115
ArmSignal / 115
DisarmSignal / 115
DRead ($202F) / 116
DWrite (§2030) / 116

The UniDisk 3.5 Driver / 117
Device calls to the UniDisk 3.5 driver / 118
DStatus ($202D) / 119
GetDeviceStatus / 119
GetConfigParameters / 119
GetWaitStatus / 119
GetFormatOptions / 119

Contents

DControl ($202E) / 120
ResetDevice / 120
SetConfigParameters / 120
SetWaitMode / 121
SetFormatOptions / 121
AssignPartitionOwner / 121
ArmSignal / 121
DisarmSignal / 121

DRead ($202F) / 122

DWrite ($2030) / 122

5 The AppleDisk 5.25 Driver / 123
Limitations of 5.25-inch disk drives / 124
Device calls to the AppleDisk 5.25 driver / 124
DStatus ($202D) / 125
GetDeviceStatus / 125
GetConfigParameters / 125
GetFormatOptions / 126

DControl ($§202E) / 127
ResetDevice / 127
FormatDevice / 127
EjectMedium / 127
SetConfigParameters / 128
SetWaitStatus / 128
SetFormatOptions / 128
AssignPartitionOwner / 128
ArmSignal / 128
DisarmSignal / 128

DRead (§202F) / 129

DWrite ($2030) / 129

AppleDisk 5.25 driver formatting / 130

vi Apple 11GS GS/OS Device Driver Reference

6 The AppleTalk Drivers / 133
The Remote Print Manager driver (RPM) / 134
About calls to the .RPM driver / 134
DStatus ($202D) / 135
GetDeviceStatus (DStatus subcall) / 1335
GetConfigParameters (DStatus subcall) / 136
GetFormatOptions (DStatus subcall) / 136
GetPartitionMap (DStatus subcall) / 137
GetRPMParameters (device-specific subcall) / 137
DControl ($202E) / 140
ResetDevice (DControl subcall) / 140
SetRPMParameters (device-specific subcall) / 140
DRead ($202F) / 142
DWrite ($2030) / 142
The .AppleTalk driver / 143
Protocol layer interaction / 143
About calls to the .AppleTalk driver / 144
DStatus ($202D) / 144
GetWaitStatus / 144
GetPort (device-specific subcall) / 144
DControl ($202E) / 145
DRead ($202F) / 145
DWrite (§2030) / 145
The AppleTalk Filing Protocol (AFPn) driver / 146
Interaction with ProDOS Filing Interface / 146
About calls to the .AFPn driver / 147
DStatus ($202D) / 147
GetDeviceStatus / 148
GetConfigParameters / 149
GetFormatOptions / 150
GetPartitionMap / 150
GetEjectStatus (device-specific subcall) / 150

Contents vii

DControl ($202E) / 151
ResetDevice (DControl subcall) / 151
Format Device (DControl subcall) / 152
EjectMedium (DControl subcall) / 152
SetConfigParameters (DControl subcall) / 152
SetWaitStatus (DControl subcall) / 152
SetFormatOptions (DControl subcall) / 153
AssignPartitionOwner (DControl subcall) / 153
ArmSignal (DControl subcall) / 153
DisarmSignal (DControl subcall) / 153
SetPartitionMap (DControl subcall) / 153
DisplayMessages (DControl subcall) / 154
SetEjectStatus (DControl subcall) / 154

DRead ($202F) / 155 '

DWrite ($2030) / 155

The SCC Manager / 156

Calls to the SCC Manager / 156

AppleTalkClient / 157
GetChannelStatus / 157
SetChannelStatus / 158

AppleTalk drivers / 159
Examples / 160

7 GS/OS Generated Drivers / 163

About generating drivers / 164
Types of generated drivers / 164
Device calls to generated drivers / 166
DStatus ($202D) / 166
GetConfigParameters / 166
GetWaitStatus / 167
GetFormatOptions / 167
DControl ($202E) / 167
ResetDevice / 167
SetConfigParameters / 168
SetWaitStatus / 168
SetFormatOptions / 168
ArmSignal / 168
DisarmSignal / 168

vili Apple IIGS GS/OS Device Driver Reference

II

10

Writing a Device Driver / 169

GS/0S Device Driver Design / 171
Driver types and hierarchy / 172
Driver file types and auxiliary types / 174
Device driver structure / 175
The device driver header / 177
Configuration lists / 177
Device information block / 179
Format options table / 186
Driver code section / 189
How GS/OS calls device drivers / 190
The device dispatcher and the device list / 190
Dynamic driver installation / 191
Direct-page parameter space / 192
Dispatching to device drivers / 193
List of driver calls / 195
How device drivers call GS/OS / 195
Supervisory-driver structure / 196
The supervisory information block (SIB) / 197
Supervisory-driver code section / 199
How device drivers (and GS/OS) call supervisory drivers / 199

Cache Control / 203
Drivers and caching / 204
Cache calls / 205
How drivers cache / 205
OnaRead call / 205
On a Write call / 206
Multiblock caching / 207
Caching notes */ 208

GS/0S Driver Call Reference / 209
About driver calls / 210

Driver_Startup ($0000) / 213
Driver_Open ($0001) / 217

Driver_Read ($0002) / 219

Contents

ix

Driver_Write ($0003) / 223

Driver_Close ($0004) / 227

Driver_Status ($0005) / 229
GetDeviceStatus (Driver_Status subcall) / 231
GetConfigParameters (Driver_Status subcall) / 234
GetWaitStatus (Driver_Status subcall) / 234
GetFormatOptions (Driver_Status subcall) / 235
GetPartitionMap (Driver_Status subcall) / 239
Device-specific Driver_Status subcalls / 239

Driver_Control ($0006) / 240
ResetDevice (Driver_Control subcall) / 242
FormatDevice (Driver_Control subcall) / 242
EjectMedium (Driver_Control subcall) / 243
SetConfigParameters (Driver_Control subcall) / 243
SetWaitStatus (Driver_Control subcall) / 244
SetFormatOptions (Driver_Control subcall) / 245
AssignPartitionOwner (Driver_Control subcall) / 247
ArmSignal (Driver_Control subcall) / 248
DisarmSignal (Driver_Control subcall) / 249
SetPartitionMap (Driver_Control subcall) / 249
Device-specific Driver_Control subcalls / 250

Driver_Flush ($0007) / 251

Driver_Shutdown ($0008) / 253

About supervisory-driver calls / 255

GetSupervisorNumber ($0000) / 257

Supervisor_Startup ($0000) / 259

Set_SIB_Pointer ($0001) / 260

Supervisor_Shutdown ($0001) / 261

Driver-specific calls ($0002-$FFFF) / 262

Driver error codes / 263

11 System Service Calls / 265
About system service calls / 266
CACHE_FIND_BLK ($01FC04) / 268
CACHE_ADD_BIK ($01FC08 / 269
CACHE_DEL_BIK ($01FC14) / 270
ALLOC_SEG ($01FCIC) / 271
RELEASE_SEG ($01FC20) / 272
SWAP_OUT ($01FC34) / 273

X Apple IIGs GS/OS Device Driver Reference

DEREF ($01FC38) / 274
SET_SYS_SPEED ($01FC50) / 275
LOCK_MEM ($01FC68) / 276
UNLOCK_MEM ($01FC6C) / 277
MOVE_INFO ($01FC70) / 278
SIGNAL ($01FC88) / 282
SET_DISKSW ($01FC90) / 283
SUP_DRVR_DISP ($01FCA4) / 284
INSTALL_DRIVER ($01FCAS) / 285
DYN_SLOT_ARBITER ($01FCBC) / 287
UNBIND_INT_VECT ($01FCD8) / 288

Generated Drivers and Firmware Drivers / 289

Generated-driver summary / 290

Generating and dispatching to BASIC drivers / 291
Generating / 291
Dispatching / 291
Generated-driver interface / 292

Generating and dispatching to Pascal 1.1 drivers / 293
Generating / 293
Dispatching / 293
Generated-driver interface / 294

Generating and dispatching to ProDOS drivers / 294
Generating / 294
Dispatching / 295
Generated-driver interface / 296

Generating and dispatching to SmartPort drivers / 296
Generating / 296
Dispatching / 297
Generated-driver interface / 298

GS/0S Error Codes and Constants / 299
GS/0S error codes / 300

Glossary / 303

Index / 317

Contents

xi

Figures and tables

Introduction The Device Level in GS/0S / 1

Figure I-1
Figure I-2
Figure [-3
Figure 14
Figure I-5
Figure 1-6

Device level in GS/OS / 3

Driver hierarchy within device level / 6
Diagram of GS/OS call / 8

Diagram of device call / 9

Diagram of driver call / 11

Diagram of system service call / 12

1 GS/0S Device Call Reference / 17

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4

Table 1-1
Table 1-2
Table 1-3

Device characteristics word / 21
Device status word / 29

Flags word / 33

Partition map / 37

GS/0S device calls / 18
DStatus subcalls / 27
DControl subcalls / 43

2 The SCSI Driver / 59

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6

ReturnLastResult subcall return data / 62
ReadTOC subcall format / 66

ReadTOC subcall return data (TOC type $00) / 67
ReadTOC subcall return data (TOC type $01) / 67
ReadTOC subcall return data (TOC type $02) / 68
ReadQSubgode subcall format / 69

xii Apple IIGS GS/OS Device Driver Reference

Figure 2-7 ReadQSubcode subcall return data (TOC type $02) / 70
Figure 2-8 ReadHeader subcall format / 71

Figure 2-9 ReadHeader subcall return data / 72

Figure 2-10 AudioStatus subcall format / 73

Figure 2-11 AudioStatus subcall retumn data / 73

Figure 2-12 Example partition type ASCII string / 76

Figure 2-13 AudioSearch subcall format / 78

Figure 2-14 AudioSearch subcall return data for search type $00 / 80
Figure 2-15 AudioSearch subcall return data for search type $01 / 80
Figure 2-16 AudioSearch subcall return data for search type $02 / 81
Figure 2-17 AudioPlay subcall format / 82

Figure 2-18 AudioPause subcall format / 84

Figure 2-19 AudioStop subcall format / 85

Figure 2-20 AudioScan subcall format / 87

Figure 2-21 Status list using data-chaining commands / 90

Figure 2-22 SCSI Manager / 97

Figure 2-23 The SCSI data model for the I/O call / 99

Figure 2-24 Device ID word / 100

Figure 2-25 RequestDevices input parameter list / 102

Figure 2-26 RequestDevices retumn buffer format / 103

Figure 2-27 RequestDevices device ID longword / 104

Figure 2-28 ClaimDevices parameter list / 106

Figure 2-29 /O call parameter list / 107

Figure 2-30 1/O call attributes word / 108

Table 2-1 Device error codes (major) definitions / 63
Table 2-2 Device error codes (minor) definitions / 64
Table 2-3 Play modes / 79

Table 24 Data-chaining commands / 92

The AppleDisk 5.25 Driver / 123

Figure 5-1 Apple 5.25 drive interleave configurations / 130
Figure 5-2 Apple 5.25 drive sector format / 131

The AppleTalk Drivers / 133

Figure 6-1 GetDeviceStatus subcall return data / 135
Figure 6-2 Device status word / 136

Figure 6-3 GetRPMParameters subcall format / 137
Figure 6-4 GetRPMParameters entity name format / 138
Figure 6-5 .rpm Flags byte / 138

Figure 6-6 SetRPMParameters subcall format / 140

Figures and tables

xiv

10

Figure 6-7 GetPort return data / 145
Figure 6-8 GetDeviceStatus subcall return data / 148
Figure 6-9 GetDeviceStatus device status word / 148

Figure 6-10
Figure 6-11

Device configuration status list / 149
GetEjectStatus parameter list / 151

Figure 6-12 SetEjectStatus status list / 154
Table 6-1 .rpm Flags byte definitions / 139
Table 6-2 Configuration data fields / 149

GS/0S Device Driver Design / 171

Figure 8-1 Hypothetical driver configuration / 173
Figure 8-2 Auxiliary type field for GS/OS drivers / 175
Figure 8-3 GS/OS device-driver structure / 176
Figure 84 Device information block (DIB) / 179
Figure 8-5 Device characteristics word / 181

Figure 8-6 Slot-number word / 183

Figure 8-7 Driver version word / 184

Figure 8-8 Format options table / 187

Figure 8-9 Format options entry / 188

Figure 8-10 Format option flags word / 188

Figure 8-11 GS/OS direct-page parameter space / 192
Figure 8-12 Supervisory-driver structure / 197

Figure 8-13 Supervisor information block (SIB) / 198
Table 8-1 Device IDs / 185

Table 82 Device driver execution environment / 193
Table 8-3 Supervisory IDs / 198

Table 8-4 Supervisor execution environment / 200

GS/0S Driver Call Reference / 209

Figure 10-1
Figure 10-2
Figure 10-3
Figure 104
Figure 10-5

Table 10-1
Table 10-2
Table 10-3
Table 10-4

Direct-page parameter space for driver calls / 211
Disk-switched and off-line errors / 222

Device statfis word / 232

Disk-switched condition / 233

Supervisor direct page: parameter space / 256

GS/OS driver calls / 210

Supervisory-driver calls available to device drivers / 255
Calls that supervisory drivers must accept / 256

Driver error codes and constants / 263

Apple 1IGs GS/OS Device Driver Reference

11 System Service Calls / 265
Figure 11-1 GS/OS direct-page parameter space / 267

Table 11-1 System service calls / 266

B GS/0S Error Codes and Constants / 299
Table B-1 GS/OS errors / 300

Figures and tables ~ xv

Introduction The Device Level in GS/OS

One of the principal goals of GS/OS® is to provide application
programmers with access to a wide variety of hardware devices while
insulating programmers (and users) from the low-level details of hardware
control. The device level in GS/OS is responsible for meeting this goal.
The device level consists of

the GS/OS interface to FSTs for device access through file systems
the GS/0S interface to applications for direct device access

the GS/OS interface to device drivers

a set of low-level system service calls available to device drivers
m the collection of drivers that are provided with GS/OS

Part I of this reference describes the application interface to GS/OS
for direct device access: It documents all device calls and describes the
individual GS/OS device drivers that applications can call.

Part II of this reference describes the GS/OS interface to drivers:

It shows how to design and write a device driver, documents all calls a
driver must accept, and describes how a driver can get information and
services it needs from GS/OS.

Appendixes to this reference describe how GS/OS generated drivers
interact with slot-based firmware I/O drivers and what errors GS/OS
can return.

What is the device level?

As described in the introduction to GS/OS Reference, GS/OS consists of three interface
levels: the application level, the file system level, and the device level. Figure I-1 is a
generalized diagram of GS/OS, showing how the device level relates to the rest of

the system.

In general, the device level sits between the file system level and hardware devices,
translating the device I/O calls made by a file system translator (FST) into the calls that
access data on peripheral devices. Note also that part of the device level (the Device
Manager) extends upward into the level occupied by file system translators. By making
calls through the Device Manager, applications can access devices at a high level, in a
manner analogous to the way they access files.

Different components of the device level handle different device-access needs:

m File system translators, which convert file I/O calls into equivalent driver calls, go
through the device dispatcher. Driver calls are described in Chapter 10.

m Applications that wish to access devices directly make device calls that go through the
Device Manager. Device calls are described in Chapter 1. Like file I/O calls, device calls
are translated into driver calls by the Device Manager.

m The device dispatcher itself makes other driver calls when setting up drivers or shutting
them down. How the device dispatcher interacts with drivers is described
in Chapter 8.

m GS/OS device drivers are the lowest level of GS/OS; they access device hardware
directly. The individual drivers that accompany GS/OS are described in Chapters 2-7.

m The device level is extensible; you can write your own device driver for GS/OS.

Device driver structure and design are described in Chapter 8; how drivers handle
caching and configuration is discussed in Chapters 9 and 10.

m Device drivers that need access to system features and functions can make
system service calls to GS/OS. System service calls are described in Chapter 11.

What GS/OS device drivers are and how the Device Manager, the device dispatcher, and
the rest of GS/OS interact with them are the subjects of the rest of this chapter.

2 Apple 1IGS GS/OS Device Driver Reference

m Figure I-1 Device level in GS/OS

Application program

GS/0S Call Manager

it

Device
Manager

U

v v Y

ProDOS®
FST

High Character AppleShare® Other FST
Sierra FST FST FST

Device
level

2, S

Character Character
device device
driver [1 driver

Block Character Character
device device device

GS/0S drivers

A GS/OS driver is a program, executing from RAM, that directly or indirectly handles all
input/output operations to or from a hardware device and also provides information to
the system about the device. GS/OS drivers must be able to accept and act upon a
specific set of calls from GS/OS.

Introduction The Device Level in GS/OS

Generally, each hardware device (or group of closely related devices) needs its own driver.
Disk drives, printers, serial ports, and the console (keyboard and screen) can all be
accessed through their drivers.

This section discusses the different driver classifications that GS/OS recognizes.

Block drivers and character drivers

There are two fundamental types of drivers, in terms of the kinds of devices they control:

» Block drivers allow access to block devices, such as disk drives, from which a
certain number (one block) of bytes is read from or written to the device at a time,
and on which any block within a file can be accessed at any time. Block devices are
also called random-access devices because all blocks are equally accessible.

a Character drivers allow access to character devices, such as printers or the console,
in which a single character (byte)—or a stream of consecutive characters—is read or
written at a time, and access is available to only the current byte being read or written.
Character devices are also called sequential-access devices because each byte must be
taken in sequence.

GS/OS fully supports both types of drivers and includes drivers of each type. For example,
the Console driver (see Chapter 8 of GS/OS Reference) is a character driver, and the
AppleDisk 3.5 driver (see Chapter 3) is a block driver.

Loaded drivers and generated drivers

GS/OS also distinguishes between drivers on the basis of origin, in order to take
advantage of the many existing device drivers (both built in and on peripheral cards)
for the Apple® 11 family of computers:

m Loaded drivers are drivers that are written to work directly with GS/OS and that
are usually loaded in from the system disk at boot time.

m Generated drivers are drivers that are tonstructed by GS/OS itself to provide a
GS/0S interface to existing, slot-based firmware drivers in ports or on
peripheral cards.

At boot time, GS/OS first loads and initializes all loaded drivers. Then, for slots that
contain devices that do not have loaded drivers, GS/OS generates the appropriate
character or block drivers. Generated drivers are discussed further in Chapter 7.

4 Apple 1IGS GS/OS Device Driver Reference

Because all generated drivers are created by GS/OS, any driver that you write for GS/OS
will of course be a loaded driver. How to write a loaded driver is discussed in Part II of
this reference.

Device drivers and supervisory drivers

It is simplest to assume that each hardware device is associated with only one driver and
that each driver is associated with only one hardware device. It is only slightly more
complex to have more than one device controlled by a single driver; a single block driver
can access several disk drives, for example. In either case the driver accesses its hardware
devices directly.

More complexity is possible, however. In some cases there are logical “devices”
(hardware controllers such as a SCSI port) that must handle I/O requests from more than
one driver (for example, a SCSI hard disk driver and a SCSI CD-ROM driver) and access
more than one type of device. To handle those situations, GS/OS allows for special
drivers that arbitrate calls from individual device drivers and dispatch them to the proper
individual devices.

Therefore, GS/OS also defines these two types of driver:

wm A device driver is a driver that accepts the standard set of driver calls (device I/O
calls made by an FST or by an application through the Device Manager). A device driver
can conduct I/O transactions directly with its device or indirectly through a
supervisory driver,

s A supervisory driver (or supervisor) arbitrates use of a hardware controller by
several device drivers in cases where a single hardware controller conducts I/0
transactions with several devices. A supervisory driver does not accept I/O calls
directly from FSTs or the Device Manager; it accepts only supervisory-driver calls
from its individual device drivers.

The presence of supervisory drivers adds more layers to the GS/OS device level.

Because more than one supervisory driver can be active at a time, there is a

supervisor dispatcher to route the requests of device drivers to the proper supervisory
driver. The supervisor dispatcher relates to supervisory drivers much as the device
dispatcher relates to device drivers. This device-level driver hierarchy is diagrammed

in Figure I-2.

Introduction The Device Level in GS/OS

m Figure I-2 Driver hierarchy within device level

Device ProDOS High Character
Manager FST Sierra FST FST

(= A

Other FST

Device Dispatcher
Device Device Device
Driver Driver Driver

T T q
¢

Supervisor
Dispatcher
Supervisory ‘| Supervisory
Driver Driver

4 F:ﬁ F]
Device Device Device

Supervisory drivers and their accompanying device drivers are always loaded drivers, but
they can be character drivers, block drivers, or both; that is, a single driver does not have
characteristics that restrict it to being solely a block or character device.

Supervisory drivers are closely tied to their device drivers. During the boot sequence all
supervisory drivers are loaded and started before any device drivers. This procedure
ensures that when a loaded device driver is started, its supervisory driver will be available
to it. Other than that, GS/OS is not concemned with the rules of arbitration between a
supervisory driver and its loaded device drivers.

6 Apple IIGS GS/OS Device Driver Reference

Besides simplifying the device interface for applications and providing increased
hardware independence, the use of supervisory drivers allows individual device drivers to
be added to the system without requiring the replacement or revision of existing drivers.

The differences between device drivers and supervisory drivers are explained more fully in
Chapter 8. The rest of the discussion in this chapter concerns device drivers only.

How applications access devices

When an application makes a call that results in any kind of I/O, device access occurs.
That device access is either indirect, through an FST, or direct, through the
Device Manager.

Through an FST

Device access through a file system translator is completely automatic and transparent to
the application. When an application performs file I/O by making a standard GS/OS call
(as described in Chapter 3 of GS/OS Reference) such as Create, Read, or Write, the GS/OS
Call Manager passes the call along to the appropriate FST, which converts it to a driver call
and sends it to the device dispatcher, which routes it to the appropriate device driver.
The device driver in turn accesses the device and performs the requested task.

In most cases the application does not know what device is being accessed. It might not
even know which file system is being used. Figure I-3 shows the schematic progress of a
typical GS/OS call from application to device, including how parameters are passed.

Introduction The Device Level in GS/0S

-

m Figure I-3 Diagram of GS/OS call

Application e
Parameter biock
in memory
—
t .
Parameter space
Device dispatcher on direct page

sm——) Calling sequence

ey P AFEMBtAr-passing

High-level calls pass parameters differently than low-level calls do. When an FST receives a
call from an application, it converts the parameter block information into data on the
GS/OS direct page; that conversion makes the data available to low-level software,
including drivers. The call then passes through the device dispatcher and to the driver.
After the call has been completed, the driver puts any return information into the direct-
page parameter space; the FST transfers that information back to the application’s
parameter block and returns control to the application.

Through the Device Manager

A typical Apple 1IGs® application does not need to make any calls to access devices
directly. File calls made by the application pass through an FST and are automatically
converted into the correct driver calls, which read or write the desired data. The
application need not be concerned with the specific device, or even the specific file
system, used to store the data. ’

However, there are times when a particular process is specific to a particular type of
device. If your application needs to do something that specific, such as taking user input
from the console in text mode, you will need to know how to make a specific driver
perform a specific action. That's where device calls come in.

8 Apple 11Gs GS/OS Device Driver Reference

Device calls are application-level GS/OS calls, just like all the calls discussed in Chapter 10
of GS/OS Reference. Your application sets up a parameter block in memory and makes the
call as described in Chapter 3 of GS/OS Reference. The only difference from a normal
file-access call is that the device calls are routed through the Device Manager rather than
through an FST. See Figure I-4.

The Device Manager converts the call into a driver call and sends it to the device
dispatcher, which passes it on to the device driver; the driver then acts on it accordingly.

The Device Manager is similar to an FST but is limited in its support of GS/OS system calls
and is independent of any file system. It supports only those GS/OS calls that provide an
application with direct access to a peripheral device or device driver, while providing an
FST-like interface between the application and the device dispatcher.

_The Device Manager handles only six GS/OS calls: DInfo, DStatus, DControl, DRead,
DWrite, and DRename. Extensions to DStatus and DControl allow device-specific
functions to be called. All other application-level GS/OS calls that access devices must
pass through an FST. Device calls are documented in detail in Chapter 1 of this reference.

m Figure I-4 Diagram of device call

Application -t
Parameter block
in memory

Device Manager

{d t—

L— Parameter space

= on direct page

‘—-'

A
Device
!:> Calling sequence
= Parameter passing,

Introduction The Device Level in GS/OS

9

When the Device Manager receives a device call from an application, it converts the
parameter block information into data on the GS/OS direct page; that conversion makes
the data available to low-level software, including drivers. The call then passes through the
device dispatcher and to the driver. After the call has been completed, the driver puts any
return information into the direct-page parameter space; the Device Manager transfers
that information back to the application’s parameter block and returns control to

the application.

How GS/0S communicates with drivers

Device drivers communicate with the operating system in two basic ways: by receiving
driver calls from the device dispatcher and by making system service calls to GS/OS.

The device dispatcher

All calls to device drivers pass through the device dispatcher. The device dispatcher
maintains a list of information about each driver attached to the system and thus
knows where to transfer control to when it receives a driver call from an FST or the
Device Manager.

The driver calls that the device dispatcher receives from FSTs or the Device Manager and
passes on to drivers are Driver_Read, Driver_Write, Driver_Status, and Driver_Control.
They are documented in Chapter 10. These particular driver calls have names that are very
similar to the names of their equivalent device calls. The lower parts of Figures I-3 and 1-4
diagram the call progress and parameter passing for these driver calls.

Note also that there is no equivalent driver call for the device calls DInfo and DRename;
these calls are handled entirely by the device dispatcher by consulting its list of device
information. DInfo must subsequently make a Driver_Status call to determine the volume
size if a block device’s size is dynamic. ,

The device dispatcher and other parts of GS/OS also make driver calls that are not
translations of device calls and are concerned with setting up drivers to perform I/O and
with shutting them down afterward. These other driver calls are Driver_Startup,
Driver_Open, Driver_Close, Driver_Flush, and Driver_Shutdown and are documented in
Chapter 10. Figure I-5 shows the progress of such a driver call; note that Figure I-5 is also
identical to the lower part of Figures I-3 and I-4.

10 Apple IIGS GS/OS Device Driver Reference

m Figure I-5 Diagram of driver call

Parameter space

Device dispatcher é on direct page

Device driver

Device
Calling sequence
=t Parameter passing

System service calls

GS/OS provides a standardized mechanism for passing information and providing
services among its low-level components such as FSTs and device drivers. That mechanism
is the system service call.

System service calls exist for various purposes: to perform disk caching, to manipulate
buffers in memory, to set system parameters such as execution speed, to send a signal to
GS/08, to call a supervisory driver, or to perform other tasks. Not all drivers need all of
these services, but each is useful in a particular situation. If you are writing a device driver,
consult Chapter 11 to see what system service calls are available to your driver and what
each does.

Drivers make system service calls through jumps to locations specified in the system
service dispatch table. Parameters are passed back and forth through registers on the
stack and through the same direct-page space used for driver calls. See Figure I-6.

Introduction The Device Level in GS/OS

11

® Figure I-6 Diagram of system service call

System service » Parameter space
dispatch table 1 on direct page
(Other parameters passed

on stack and in registers)

Calling sequence
meep- Parameter passing

Driver features

This section describes some of the notable features that GS/OS drivers can have. See the
referenced chapters for more information.

Configuration

GS/OS drivers can be configurable, meaning that the user can customize and store certain
driver settings. For example, for a driver that controlled a serial port, such parameters as
bits per second, parity, stop bits, and so on could be customized and stored.

Many users will never need to configure drivers. Others will use the capability when
adding a peripheral device or adjusting device driver or system default settings. As
a device driver writer, you can choose which user-configurable features you want in
your driver. .

The specific formats in which configuration options are to be presented to the user, how
the chosen settings are to be stored, and how the options are to be set up by the driver
the first place are specific to the individual driver. However, the overall format in which
the configuration parameters are to be stored in the device driver and what calls are used
to set or modify those parameters are defined in Chapters 8 and 10.

12 Apple 1IGs GS/OS Device Driver Reference

Cache support

Caching is the process by which frequently accessed disk blocks are kept in memory to
speed subsequent accesses to those blocks. On the Apple IIGS computer the user can
control what the maximum cache size can be. It is the driver, however, that is responsible
for making caching work. GS/OS block drivers should support caching.

The GS/OS cache is a write-through cache. That is, when an FST issues a Write call to a
device driver, the driver writes the same data to the block in the cache and the equivalent
block on the disk. Never does the block in the cache contain information more recent
than that in the disk block. Also, like most caching implementations, the GS/OS cache
uses a least recently used (LRU) algorithm: Once the cache is full, the least recently used
(accessed) block in the cache is sacrificed for the next new block that is written.

Cache memory is obtained and released by GS/OS on an as-needed basis. Only as
individual blocks are cached is the necessary amount of memory (up to the maximum
set by the user) assigned to the cache. The size of a block in the cache is essentially
unrestricted, limited only by the maximum size of the cache itself.

Drivers implement caching by making system service calls. Caching is described in
Chapter 9; system service calls are documented in Chapter 11.

Terms and conventions

Terms introduced in this book are printed in bold type where defined and are listed in
the glossary.

Assembly-language labels, entry points, programs and subroutine names, and filenames
that appear in text passages are printed in Apple Courier typeface (for example, DowItem
and MENU. PAS). There is one exception: The names of Apple IIGS system software
routines such as toolbox calls and operating system calls (for example, NewModalDialog
and QUIT) are printed in normal type.

The following words mark special messages to you:

¢ Note: Text set off in this manner presents sidelights or interesting information.

Introduction The Device Level in GS/OS

13

A Important Text set off in this manner—with the word Important—presents
important information or instructions. a

A Warning Text set off in this manner—with the word Warning—indicates
potential serious problems. a

Code-list convention

The source code listings in these chapters and the driver examples in the appendixes are in
assembly language. In addition to the 65C816 syntax and notation, please note the
following conventions:

m Toolbox calls are in boldface.
m Reserved words are in italics.

m Names of functions, procedures, types, and user-defined constants begin with
lowercase letters.

m Boolean values (such as TRUE and FALSE) are all CAPITAL letters.

14 Apple I11GS GS/OS Device Driver Reference

Part] Using GS/OS Device Drivers

Par] Partli
rr______/-—\r\/L Apmndixes
'tﬁ"_____/'
Drivers Design s
& Cache Control
GS/OS device calls (Chapters 8-9) Generated
i i and
Mdktife;;;t::gioﬁc Driver calls firware drivers
(Chapter 7) (Chapter 10) (Appendix A)
System service calls T ~—
(Chapter 11) Error Codes
(Appendix B)
]

Chapter 1 GS/OS Device Call Reference

This chapter explains how to call device drivers and documents the
GS/0S® device calls: application-level calls that give applications
direct access to devices by bypassing all file systems.

This chapter repeats the device-call descriptions of GS/OS Reference but
provides more complete documentation; in particular, it describes all the
standard DStatus and DControl subcalls.

This chapter describes only standard GS/OS (class-1) device calls; for
descriptions of how GS/OS handles equivalent ProDOS® 16 (class-0)
device calls, see Appendix B of GS/0S Reference.

17

How to make a device call

Your application makes GS/OS device calls just like it makes any other application-level
GS/0S calls—it sets up a parameter block in memory and executes either an in-line or a
stack-based call method (either directly or with a macro). Chapter 3 of GS/OS Reference
describes all the methods for making GS/OS calls.

All device calls are handled by the Device Manager and are listed in Table 1-1. The rest of
this chapter documents how the device calls work.

s Table1-1 GS/OS device calls

Call number Name
$202C Dinfo
$202D DStatus
$202E DControl
$202F DRead
$2030 DWrite
$2036 DRename

The diagram accompanying each call description in this chapter is a simplified
representation of the call’s parameter block in memory. The width of the parameter block
diagram represents 1 byte; successive tick marks down the side of the block represent
successive bytes in memory. Each diagram also includes these features:

m Offset: Hexadecimal numbers down the left side of the parameter block represent
byte offsets from the base address of the block.

m Name: The name of each parameter appears at the parameter’s location within
the block.

m No.: Each parameter in the block has a number, identifying its position within the
block. The total number of parameters in the block is called the parameter count
(pCount); pCount is the initial (zeroth) parameter in each call. The pcount
parameter is needed because in some calls parameter count is not fixed; see the
following description of minimum parameter count.

m Size and type: Each parameter is also identified by size (word or longword) and type
(input or result, and value or pointer). A word is 2 bytes; a longword is 4 bytes. An input
is a parameter passed from the caller to GS/OS; a result is a parameter returned to the
caller from GS/OS. A value is numeric or character data to be used directly; a pointer is
the address of a buffer containing data (whether input or result) to be used.

18 Apple IIGS GS/OS Device Driver Reference

® Minimum parameter count: To the right of each diagram, across from the pcount
parameter, the minimum permitted value for pcount appears in parentheses. The

maximum permitted value for pcount is the total number of parameters shown in
the diagram.

Each parameter is described in detail after the diagram. Additional important notes, call
requirements, and principal error results follow the parameter descriptions.

Chapter 1 GS/OS Device Call Reference 19

Dinfo ($202C)

Description
are updated.
Parameters Offset No.
500 — pCount - —_—
sz devNum 4 1
$04| _
- devName - 2
$08 -characteristics 3
$0A L
. totalBlocks 4
SOE| slotNum - 5
$10_ unitNum - 6
S12f_ version - 7
S14| deviceIDNum 8
S5 headLink o 9
$18) forwardLink - 10
S1A L]
L extendedDIBPtr 11
20 Apple 1IGs GS/OS Device Driver Reference

Dinfo returns certain attributes of a device known to the system. The

information is in the device’s device information block (DIB). The
Device Manager makes a call to the device dispatcher to obtain the
pointer to the DIB and then returns the requested parameters from the
DIB. If the pcount parameter is greater than 3, the DInfo call actually
issues a DStatus call with a status code of 0 to the device to obtain the
current block count. This ensures that any dynamic parameters in the DIB

Size and type
Word input value (minimum = 2)

Word input value

Longword input pointer

~ Word result value

Longword result value

Word result value
Word result value
Word result value
Word result value
Word result value

Word result value

Longword input pointer

pCount

devNum

devName

Word input value: the number of parameters in this parameter block.
Minimum is 2; maximum is 11.

Word input value: a nonzero device number. GS/OS assigns device
numbers in sequence 1, 2, 3,... as it loads or creates the device drivers.
Because the device list is dynamic, there is no fixed correspondence
between devices and device numbers. To get information about every
device in the system, make repeated calls to DInfo with devNum values
of 1, 2, 3,... until GS/OS retums error $11 (invalid device number).

Longword input pointer: points to a result buffer in which GS/OS returns
the device name corresponding to the device number. The maximum size
of the device-name string is 32 bytes, so the maximum size of the
returned value is 34 bytes. The buffer size should thus be 36 bytes.

characteristics

1 = RAM or ROM disk
1 = Generated device

Word result value: Individual bits in this word give the general
characteristics of the device. This is its format:

m Figure 1-1 Device characteristics word

15014 13[12{ 11{ 0] 9 {8 |76

1 = Linked device
1= Device busy -

1 = Restartable -

1 = Fixed name J

Speed group ~

1 = Block device -

. 1 = Write allowed -

1 = Read allowed ~

1 = Format allowed -

1 = Removable media -

Reserved: must b<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>