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Foreword

This is the definitive guide to programming in 65816 machine language on the
Apple IIGs. It’s a thorough introduction to machine language programming on
the newest Apple II, a comprehensive tutorial for beginning machine language
programmers, and an invaluable reference guide for the most experienced soft-
ware developer.

Roger Wagner’s name is well known to Apple users and programmers.
He is a popular columnist, a software developer with his own publishing com-
pany, and the author of the bestselling Assembly Lines: The Book. He has used
his years of Apple II experience to put together COMPUTE!’s Apple 11Gs Ma-
chine Language for Beginners, a book for both experienced and beginning ma-
chine language programmers.

Clearly written, with dozens of practical examples to show the way, this
book includes more than the basics of machine language programming—it’s a
specific reference and guide to programming in 65816 machine language on the
Apple IIGs. For instance, you'll find complete chapters on using the built-in as-
sembler and on how to write and assemble source code with two popular as-
semblers, the Merlin 8/16 and the APW.

Other topics covered include ProDOS 8 and 16, Menu Manager, the
Toolbox, the Memory Manager, QuickDraw, the Event Manager, the Window
Manager, and how to add machine language to Applesoft BASIC programs.
COMPUTE!'s Apple 11Gs Machine Language for Beginners also contains exhaustive
appendices that you can refer to in an instant. Among the appendices is a com-
prehensive 65816 instruction set.

Written for Apple IIGS programmers of every level of experience, COM-
PUTE!’s Apple 11Gs Machine Language for Beginners is the most complete guide
and reference to 65816 programming around. If you want to learn how to pro-
gram in machine language on the IIGS, or if you're already creating software
masterpieces in machine language, you need COMPUTE!’s Apple 11 Machine
Language for Beginners.

All the programs in this book are ready to type in and use. There is also
a disk available from COMPUTE! Books which includes all the source
code from the book. An assembler is required to use the disk. To pur-
chase the disk, use the coupon in the back of the book.
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Introduction

Some BASIC programmers believe that machine language is some very difficult
and obscure language used only by advanced programmers. As it happens, it’s
just different, and if you have successfully used Applesoft BASIC to write some
of your own programs, there’s no reason why you should have any difficulty
learning to write machine language programs.

This book will meet you at your current understanding of Applesoft
BASIC and will introduce you to the fundamental principles of machine lan-
guage programming. Your knowledge of BASIC will provide a valuable founda-
tion for learning, and you'll even notice some similarities between BASIC and
machine language programs. This is no accident. Part of BASIC’s original pur-
pose was to be an educational tool in the teaching of machine language
programming.

Using the BASIC environment as a starting point, you'll learn about
memory organization and use, and you’ll learn how to add simple machine
language routines to your existing BASIC programs. Each new concept will be
introduced as an extension to ideas already presented, making the learning pro-
cess as absolutely clear and simple as possible. By the time you're done, you'll
be able to write your own Apple IIGS machine language programs—ones com-
pletely independent of BASIC—and you’ll be able to use many advanced Ap-
ple IIGs features such as super hi-res graphics, the mouse, menus, and
windows.

Because the Apple IIGs is an amazingly complex machine, it's impossible
for one book to provide every last detail of its operation. There are very large
books written on just some of the many topics covered in this book. For ex-
ample, the 700-page Apple 1IGS Technical Reference, by Michael Fischer, is about
the IIGs Tools only; and the 600-page Programming the 65816, by David Eyes
and Ron Lichty, is an encyclopedic reference dealing with just the 65816 in-
structions. The goal of this book is not to provide the last word about each
65816 instruction, or on every GS Tool call. Instead, the goal is to provide infor-
mation that will build the foundation essential for your own further efforts.

When you've completed this book, you'll have gained the knowledge
and confidence necessary to write your own programs. The many examples of
executable programs included will provide valuable subroutines and procedures
that you can incorporate in your own programs.

ix



Introduction

What You Need

Like any creative process, having the right tools and materials can make all the
difference in the world. We're going to make some assumptions about what
materials you have as you read this book.

Obviously, having an Apple IIGS on hand while you work through the
examples is important. You'll also need to have a disk drive to save your pro-
grams, although it doesn’t matter whether you have a floppy disk of any par-
ticular brand or capacity—in fact, even a hard disk is OK. Apple Computer’s
ProDOS will be used in those chapters that deal with file operations.

When a person writes a letter or report on a computer, a word processor
is the right tool for the job. When writing machine language programming, a
good assembler is what you need. An assembler is essentially a word processor
specifically designed for writing machine language programs. It also does many
other things, so you’'ll need one to follow the examples in this book. Most of
the examples use the Merlin 8/16 assembler, but there is also information on
the APW (Apple Programmer’s Workshop) assembler. I prefer the Merlin 8/16 in
terms of ease of use, speed of assembly, and minimum explanation required for
a beginning programmer; but you may use any assembler capable of assem-
bling 65816 instructions.

It’s also important, especially as you do more programming, to have a
solid reference library. For beginners, this book has all the information neces-
sary to complete the examples, but you may wish to look at books listed in the
bibliography for further reading material.

Program Library

In the early days of programming, programmers had to write programs that
were completely self-contained, ones in which every operation of the program
was covered by instructions the programmer had specifically written into the
program.

It soon became apparent, however, that time could be saved in program
development if the most frequently used routines were available in a library
that could be incorporated as the program was being written. That way, things
like disk access, printing to the screen, reading the keyboard, and so forth,
didn’t have to be rewritten every time a new program was started—program-
mers no longer have to “reinvent the wheel.”

In the Apple IIGS, a great number of useful routines and operations are
not only already written for you, but are also built right into the machine,
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much the same way that Applesoft BASIC is already there. Thus, your library
is right in the machine. You don’t have to add hundreds of lines of program in-
structions from a disk file when you write a program; a simple call to a subrou-
tine in the computer does the trick. Your program is smaller, development time
is shorter, and writing a program is in general much more satisfying.

One of the most valuable lessons you can learn from this book, beyond
the simple commands that make up machine language, is how to use the
routines already existing in the machine that make writing your programs
much easier. You should also make a point of saving every program you write,
so you can build your own collection of program operations for use in later
programs as you create them.

Just for the Fun of It

One last warning before you start: Don’t be discouraged if you're not an over-
night expert in assembly language programming.

Many people are discouraged when learning a new skill because they ex-
pect instant results. Perhaps you know someone who got interested in art or
music, and then became disappointed when their first attempts weren’t beauti-
ful works of art or they weren't able to play their favorite melody by just pick-
ing up the instrument.

Even some schools lose sight of the fact that not everything has to be
justified by monetary or productivity standards. They teach only word process-
ing and spreadsheets because these are the “practical’” uses for a computer, and
downplay the value of programming or using the computer for fun. Yet these
same schools have no problem offering shop and art classes, even though very
few students will go on to become professional carpenters or artists.

The key to your own success is to set achievable goals, and to do things
that you find personally rewarding. Don’t worry that the first program you
write isn’t likely to be immediately publishable as a commercial product, or
that it isn’t big enough to do something “really important.” By starting with a
small project like drawing a single line on the screen, you'll have chosen a
project that will teach you something, and in completing it, you'll gain the con-
fidence and sense of satisfaction that will make you want to start your next
project. As your experience grows, one day you'll suddenly realize that you've
learned how to write all sorts of great programs and that programming has be-
come more fun than work.

The bottom line is this: The most important rule in programming is that
you enjoy it. As in learning any subject, motivation and taking the time to ex-
periment are more important than genius or prior experience. If you have the
former, everyone will think you have the latter.












Chapter 1
Applesoft BASIC and Beyond

A good starting point for learning machine language is to take a look at some-
thing you're already familiar with, namely Applesoft BASIC. As it happens,
Applesoft BASIC is a machine language program. When your program executes
the command PRINT “HELLO"”, it's a machine language program that puts the
characters on the screen. It is also possible to call custom-made machine lan-
guage routines from within an Applesoft BASIC program. If this is all true, why
learn machine language in the first place?

What Is Machine Language and Why Bother Learning It?

As discussed earlier, the primary reason for learning machine language is that
you’ll find the subject interesting and fun to experiment with. There are some
more tangible reasons, though, that will make learning machine language more
useful than, say, learning ancient Latin. One of the main reasons is speed. The
Apple IIGS can execute about 100,000 machine language instructions per sec-
ond, far more than Applesoft BASIC can execute, even when it’s running in
fast mode.

Another reason to learn machine language is flexibility. Applesoft BASIC
is an artificial environment that stands between you and the most fundamental
level of your computer. When you type PRINT “HELLO” in a BASIC program,
you really don’t have any idea what causes the letters to appear on the screen.
In machine language, you do. In addition, BASIC is limited to the different
kinds of information, called data structures, that it can easily deal with. For ex-
ample, in BASIC you can have string variables with lengths up to 255 charac-
ters. Suppose you want to store a paragraph with 1000 characters in it—
Applesoft BASIC has no direct variable defined for paragraph. Or suppose you
want your program to handle graphics objects like points, rectangles, ovals, and
so forth. Again, no variable types exist for these.

In machine language, there is not specifically any data type; you still
have to create these. But you do have the flexibility to create any kind of data
structures you want.
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On the Apple IIGS, another good reason to program in machine lan-
guage is to have access to all those features, such as super hi-res graphics, that
are built into the machine, but are not directly accessible from Applesoft
BASIC. With machine language, these are relatively easy to use. In fact, an in-
teresting first application of your machine language programming skills can be
using them to create a bridge between Applesoft BASIC and the IIGS Tools.

Finally, one of the best reasons to learn machine language is to gain a
better idea of how a computer actually works. In machine language, you're
dealing with the most fundamental levels of operation in the computer. You'll
see how the microprocessor actually runs a program, how memory is used,
how the hardware interacts with a program, and more. This knowledge will
also make you more flexible as the hardware evolves and changes in the future,
and it provides an excellent foundation should you ever wish to program on
other computers.

A World of Languages

Programming is just a word to describe the process of telling your computer
what you want it to do. In fact, this is the real power of a computer as a mod-
ern device. The beauty of a computer is that you can tell it how to help you
solve problems that are unique to your own life, on your own terms, and at
your convenience.

How hard is it to program a computer? Not as hard as you might think.
The only requirement is a language with which you can communicate with your
computer. It doesn’t understand English directly, but it’s also not always neces-
sary to use BASIC, PASCAL, or other formal computer languages. Some of the
most successful commercial programs for the computer are just well-disguised
programming languages.

As an example, consider the classic spreadsheet program. It’s always fun
to hear someone say “Oh, I don’t program. I just use programs like the Acme
Spreadsheet.” With a little thought, you realize that using a spreadsheet is
much like programming. The user creates a set of numbers, variables and equa-
tions that are used in a predictable order by the computer. Some more ad-
vanced spreadsheet programs have enhancements like search and sort
functions, IF-THEN testing, and more. It's programming all right—just in a dif-
ferent language than we usually think of.

Any language consists of a collection of words with specific meanings. In
programming, these words are usually commands that make the computer do
something in particular, such as add numbers, clear the screen, and so on.

In Applesoft BASIC, there are just over 100 different commands to learn,
expressions like PRINT, VTAB, INPUT. Once you've learned the commands,
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you can put them together in a certain order and create a program.

In machine language, there are still only about 100 commands to learn,
and many fall into groups of similar functions that make learning them easier
still.

How It Really Works

Lesson #1 starts with Wagner’s Paradox:
“Everything complex can be broken down into simple elements (and nothing is
as simple as it seems).”

Although sometimes it feels like life is an endless case of discovering the
fine print, it’s true that most things in life are quite simple when you consider
the fundamental things that make them up. The computer is an excellent
example.

Even though the engineering required to build a computer is awe-inspiring,
the underlying principle of their operation is almost trivial.

The heart of your Apple IIGS is something called the 65816
microprocessor. Another important part is its memory—thousands of places in
the computer where a simple number can be stored. Each memory location can
store an arbitrary number value in the range of 0 to 255. Number values larger
than 255 must use a combination of bytes to store the number value. That’s
why, in Applesoft BASIC, you get an “ILLEGAL QUANTITY ERROR” if you
try to use the POKE statement with a value larger than 255, such as in POKE
768,1000. (Try this if you've never done it.)

The 65816, like its cousins in other computers, works on the idea of
scanning through memory, one location at a time, and performing some action
depending on what number value it finds stored there.

If it finds a 27 in one place, perhaps it will add some numbers; if it finds
a 32, it will subtract them. In the 65816, as was mentioned earlier, there are
about 100 general operations that the microprocessor will do, depending on
what number it finds in a given memory location. A program is created by
putting the possible commands in a certain meaningful order to tell the com-
puter how to do a certain task.

Obviously, the more memory a computer has, the more instructions (and
information) it can hold. In the world of Applesoft BASIC, which was designed
for an earlier microprocessor called the 6502, there are about 65000 memory lo-
cations in which various numbers can be stored. Each memory location is
called a byte of memory by most programmers. When you hear someone talk
about 1 megabyte, they're talking about one million separate memory locations
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in the computer. The 65816, a newer descendant of that original 6502, can ad-
dress up to 16 million bytes of memory (16 megabytes).

In Applesoft BASIC, however, which was created for the Apple IIs, we
can only talk to 64K at a given time. (There are actually 65,536 locations in the
computer. In the metric system, K is used as an abbreviation for thousand, but
in computer jargon K refers to 1024 bytes.)

BASIC vs. Machine Language

The 65816 can directly interpret the numbers stored in memory as a program—
a sequence of instructions. This sequence of number-instructions is called ma-
chine language. Machine language, or ML, is the actual series of numbers in
memory that the microprocessor can directly act on. There are no handy words
like PRINT or HOME to make life easier for the human creating the program.
Machine language programming in its literal sense is the process of placing
numbers in memory, one at a time, to create a program that the computer can
understand and carry out. Assembly language, as we’ll see shortly, is actually
what most people mean when they say they program in machine language. As-
sembly language itself is an extension beyond true machine language—but
more on that later.

BASIC is sometimes called a high-level language. One way of looking at
this term is that BASIC commands, like PRINT, are closer to English than more
simplistic languages (like machine language). What it really means, though, is
that a new command has been created, behind the scenes, from the primary
100 commands at the machine language level, to do something fairly complex.

An interesting analogy might be to consider that all the words you know
are created with the 26 letters of the alphabet. As with human language, an in-
finite number of specific high-level computer commands can be created from
the 100 fundamental commands that are built into the computer.

In its native mode, just the 65816 and some memory, the computer
doesn’t really understand words like PRINT. That’s where the idea of Applesoft
BASIC as language in itself comes in.

When you type in RUN to start an Applesoft BASIC program, you're ac-
tually triggering a machine language program in the computer that acts as a
middleman between the lines of BASIC that you typed in and those 100 com-
mands that the 65816 understands.

When your program says PRINT “HELLO”, this intermediate program
looks up the word PRINT in a list of commands, and then executes a short,
built-in ML program that prints HELLO on the screen.

So, actually, Applesoft BASIC really is machine language. Each time a
statement in your Applesoft BASIC program is executed, the computer carries
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out a short machine language program (or more properly, a subroutine).

The main reason Applesoft BASIC runs more slowly than a pure ma-
chine language program is that it takes the Applesoft BASIC interpreter (the
middleman) time to decide which routine to execute for each command in the
various lines of BASIC.

Peeking at Maps and Addresses

If you know how to write even a simple program in Applesoft BASIC, you're

well on your way to knowing how to write a program in machine language.
For starters, we mentioned earlier that there are 65,536 locations in the

original Apple II computers to store the parts of a machine language program.

What a coincidence—line numbers in BASIC cover the same range.

Figure 1-1. In BASIC you identify a place in your program with
A Simple Apple lIGS  a line number. For example, to jump to a given routine,
Memory Map you might use the statement GOSUB 1000.

In machine language, each location is identified
with an address. Computer people start counting with zero

ggggi for the first item, so the addresses of those locations count
65533 0,1, 2, 3—up to 65,535. (65,535 + the 0 byte = 65536).
. Just like the addresses of the houses on a street,
each address of a location in memory lets you find one
32768 and only one spot in the computer to look at or store a
32767 number in.
32766 A useful chart can be made to show a diagram of
. the various memory locations in your Apple, and to show
what different parts of memory are used for. Such a chart
255 is called a memory map. Figure 1-1 is a simple memory
254 map that represents the memory that Applesoft BASIC

253 uses in the Apple IIGS.

This memory map represents each single available
memory location in the first 64K (65536) of memory. The
zero byte is shown at the bottom, but this is arbitrary. It’s
also important not to confuse the contents of a memory lo-
cation with its address. We've already said that the value
of a number stored in a byte of memory cannot be larger
than 255. However, the address of a given byte can be vir-
tually any number at all, as shown by the memory map.

ORNW- - -
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Another common way of drawing a memory map is horizontally, with
low address values on the left, and the top of memory on the right, such as the
one shown in Figure 1-2.

Figure 1-2. Horizonal Memory Map

o121 ... 32768 65535

In normal Applesoft BASIC, there are two commands in particular,
POKE and PEEK, that let you look at, and usually change, the contents of any
of the first 64K of memory in your computer. These commands are the first
links to the world of machine language.

Many times, a machine language program will use the contents of some
particular memory location to store a meaningful value or to look at the con-
tents of a location to see what action should be taken.

The Applesoft BASIC PEEK command is used to determine the contents
of a given memory location in the Apple.

By using the PEEK command to examine different memory locations,
you can find out some useful things not normally accessible by the usual
BASIC commands. For example, memory location 33 holds the width of the
screen. Suppose you wanted to write a general-purpose program which would
work on anybody’s computer, in either 40 or 80 columns. By examining mem-
ory location 33, your program could tell which mode is active when it is run.
For example:

10 TEXT: HOME

20 CW = PEEK(33): REM DETERMINE COLUMN WIDTH
30 T$ = “TITLE OF THIS PROGRAM"

40 HTAB CW/2 — LEN(T$)/2: REM CENTER TITLE

50 PRINT T$: REM PRINT CENTERED TITLE

This program will always print a centered title on the screen, no matter
what the video display mode.

Another useful PEEK is at memory locations 218, 219, and 222. In an
Applesoft BASIC program, errors can be trapped by the statement ONERR
GOTO early in the program. Using this command, for example, Control-C can
appear to be ignored by the running program. Usually, Control-C will stop a
running program, but with ONERR, you can trap the error and continue pro-
gram execution. Program 1-1 is a short example.
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Program 1-1. ONERR Example 1

5 HOME

10 ONERR GOTO 100

20X =1

30 VTAB 1:HTAB 1: PRINT X

0X=X+1

50 IF X < 10000 THEN 30

60 END

100 EC = PEEK (222) : REM ERROR CODE

110 EL = PEEK (218) + 256 * PEEK (219) : REM ERR LINE #
120 IF EC = 255 THEN VTAB 12: HTAB 1: PRINT “I'M NOT DONE YET!”
130 VTAB 1:HTAB 1:RESUME

In this program, line 10 tells Applesoft BASIC to jump to line 100 if any
error occurs. Whenever any error occurs in a running program, Applesoft
BASIC always stores a code value for the error in location 222. It also stores
the value for the line number.

Storing the line number, however, creates a new problem. We men-
tioned earlier that a single byte of memory could only store a value in the
range of 0 to 255. Since line numbers can have any value from 0 to 65535,
how can Applesoft BASIC store the number? It uses two bytes. The system is a
little strange, though. First, Applesoft BASIC divides the line number the error
occurred in by 256 (a number you’ll see a lot in machine language program-
ming). It stores the remainder in the first memory location—218—and then
stores the result in the next memory location, 219.

For example, if you press Control-C while the sample program is on line
40, Applesoft BASIC stores 40 (the remainder) in location 218, and it stores 0
(40 divided by 256 = 0, remainder 40) in location 219.

If you had a large program, and an error occurred when the program
was executing line 600, then locations 218 and 219 would hold the values 88
and 2, respectively (600 divided by 256 equals 2, remainder 88).

You may wonder why we divide by 256. The main reason is that divid-
ing a large line number like 63000 by any other number produces results or re-
mainders larger than 255, and we couldn’t store the result or remainder in a
single byte. Using 256 as the divisor makes everything work smoothly. And
one byte can hold any one of 256 different numbers (0-255).

Now, back to the error handling routine. To reconstruct the line number
that the error occurred on, the program needs to multiply the value at location
219 by 256, and then add the result to the remainder value at 218. Line 110
does this for purposes of illustration, although our program in particular
doesn’t use the result.
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Finally, line 120 tests the error code to see if the error was caused by
pressing Control-C (255 is the error code for Control-C). Any other error, such
as a syntax error, generates a different code.

When trying out this program press Control-C several times in a row.
You'll notice the value for X at a given point is sometimes printed below the er-
ror message when you press Control-C. This is because RESUME re-executes
the last statement executed, not the last complete line.

POKEing Around in Memory

In Applesoft BASIC, a POKE is used to put a particular number value (always
in the range of 0 to 255) into a particular memory location (in the range of 0 to
65535).

For example, the sample program just presented has a drawback: It ig-
nores all errors, even typographical errors in the listing. If a syntax error due to
a typing mistake occurs, the program gets stuck in an endless loop—resuming
the line with the error, going to the ONERR routine, and resuming again. Try
it—retype line 50 as

50 IF X PRINT 10000 THEN 30 : REM DELIBERATE ERROR

Line 100 can tell the kind of error, but just how can we turn off the ONERR
trap?

The answer is to change memory location 216. This location is set with a
certain number value when the ONERR GOTO statement is executed, and
Applesoft BASIC uses this value as a flag, or indicator, of when to trap errors.
If our program could reset location 216 to 0 (the ONERR off value), errors
other than Control-C would be properly handled—the program would stop and
a message would be printed. While we're at it, let’s add the instruction GOTO
30 to line 120 so as to re-execute the entire line when Control-C is pressed.

Program 1-2 is the revised listing.

Program 1-2. ONERR Example 2

5. HOME

10 ONERR GOTO 100

20X =1

30 VTAB 1:HTAB 1: PRINT X
0X=X+1

50 IF X < 10000 THEN 30
60 END

100 EC = PEEK (222) : REM ERROR CODE

110 EL = PEEK (218) + 256 * PEEK (219) : REM ERR LINE #
120 IF EC = 255 THEN VTAB 12: HTAB 1: PRINT “I'M NOT DONE YET!": GOTO 30

10
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125 POKE 216,0 : REM TURN OFF “ONERR”
130 VTAB 1:HTAB 1:RESUME

First, try this program as shown to verify that it works the way the first
sample listing did. Then retype line 50 incorrectly as

50 IF X PRINT 10000 THEN 30 : REM DELIBERATE ERROR

and verify that the improved listing can distinguish between Control-C and
other errors. By expanding the list of IF-THEN tests for different error codes,
you can make your programs selectively respond to a wide variety of errors at
different parts in your program.

Using Applesoft BASIC’s CALLs
The other, and most important, link to machine language programming from
Applesoft BASIC is the CALL command.

If you've ever used a CALL statement in Applesoft BASIC, you've al-
ready done the machine language equivalent to BASIC's GOSUB command.
For example, a CALL 32768 from BASIC tells the computer to start running a
machine language program at a certain location in memory (location number
32768). As long as there is a machine language program there—and that pro-
gram eventually ends with the usual RETURN code (or more accurately, its ML
equivalent)—then, when the routine is finished, program control will return to
your Applesoft BASIC program (Figure 1-3).

Figure 1-3. GOSUB vs. CALL

Applesoft BASIC Applesoft BASIC
Program Program
(GOSUB XXX) (CALL XXX)
(RETURN) (RETURN)
Applesoft BASIC Machine Language
Program Program
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For now, it’s important to understand that where a machine language
program is located in the computer (its address) is as important as the line
numbers in a BASIC Program.

Instant Machine Language Programming

One of the first, and best ways to start using machine language programming
techniques in your own programs is to just use Applesoft BASIC's CALL com-
mand to execute short machine language routines that either already exist in
the computer or that you have written yourself.

We mentioned already that there were quite a number of preprogrammed
routines built into your Apple computer that Applesoft BASIC uses for its own
commands. Knowing some of these, like knowing some of the special memory
locations to PEEK and POKE, can enhance your existing Applesoft BASIC
programs.

For instance, did you wonder why the sample ONERR program didn’t
use a FOR-NEXT loop? To find out, try running the program written using a
FOR-NEXT loop (Program 1-3) and pressing Control-C.

Program 1-3. ONERR Example 3

5 HOME

10 ONERR GOTO 100

20 FOR X = 1 TO 10000
30 VTAB 1:HTAB 1: PRINT X
40 NEXT X

60 END

100 EC = PEEK (222) : REM ERROR CODE

110 EL = PEEK (218) + 256 * PEEK (219) : REM ERR LINE #

120 IF EC = 255 THEN VTAB 12: HTAB 1: PRINT “I'M NOT DONE YET!”: GOTO 30
125 POKE 216,0 : REM TURN OFF “ONERR”

130 VTAB 1:HTAB 1:RESUME

When you press Control-C in this program, you'll find that, although the
code for handling the Control-C works OK, when the program tries to continue
the FOR-NEXT loop, you get a NEXT WITHOUT FOR error. That’s because
Applesoft BASIC forgets where it’s up to in the FOR-NEXT loop when the er-
ror occurs. Does this mean you can never have an ONERR trap with a GOTO
in a program that uses FOR-NEXT loops? It does—if you don’t know a special
CALL that you can do to fix the problem. Program 1-4 is the revised program.
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Program 1-4. ONERR Example 4

5 HOME

10 ONERR GOTO 100

20 FOR X = 1 TO 10000

30 VTAB 1:HTAB 1: PRINT X
40 NEXT X

60 END

100 EC = PEEK (222) : REM ERROR CODE

110 EL = PEEK (218) + 256 * PEEK (219) : REM ERR LINE #

115 CALL 62248: REM FIX ONERR HANDLING

120 IF EC = 255 THEN VTAB 12: HTAB 1: PRINT “I'M NOT DONE YET!": GOTO 30
125 POKE 216,0: REM TURN OFF “ONERR”

130 VTAB 1:HTAB 1:RESUME

The added line, 115, does a CALL 62248 that restores Applesoft BASIC's
memory (so to speak) about where in the FOR-NEXT loop it was when the er-
ror occurred. CALL 62248 calls a part of the Applesoft RESUME routine that
fixes the internal Applesoft information about any pending FOR-NEXT loops. If
the error doesn’t occur in a FOR-NEXT loop, the CALL 62248 doesn’t hurt
anything.

There are a number of useful CALLs that you can do in an Applesoft
BASIC program to routines already present in your computer. Here’s a short
list of some of those ML routines that you can call right from Applesoft BASIC.

Address

to Call Effect

64538 Move cursor up.

64614 Move cursor down.

64528 Move cursor left.

64500 Move cursor right.

64780 Wait for a keypress.

64858 Wait for a RETURN keypress.

64668 Clear to end of line from cursor.
64578 Clear to bottom of screen from cursor.

Looking at the list, you'll notice all the addresses have rather high val-
ues. That’s because Applesoft BASIC uses a large number of machine language
routines starting at location 53248. The particular routines in this list start at
64500 and above, but you'll recall the ONERR fix was a CALL to location
62248. Figure 1-4 is a memory map that shows where Applesoft BASIC ROM
is located.
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Figure 1-4. The Location of Applesoft BASIC ROM

Applesoft BASIC
ROM
Routines
0 53248 | 65535
64500+

(Routines in the list)

The illustration indicates that the Applesoft BASIC routines are ROM
routines. You've probably heard the terms RAM and ROM before. (ROM stands
for Read Only Memory; RAM stands for Random Access Memory.) Your computer
has both RAM and ROM in it. The difference is that RAM not only stores a
number value, but the number value can be changed by writing a new value to
that location at any time. That’s what a POKE in Applesoft BASIC does: It
writes a new number value to a given memory location. ROM memory, on the
other hand, can only be read. That is, you can PEEK to see what's there, but a
POKE will not change the contents.

As an example, try this short BASIC program:

10 PRINT PEEK (62000): REM SHOW WHAT’S AT LOC. 62000
20 POKE 62000,0 : REM TRY TO CHANGE IT

30 PRINT PEEK (62000): REM SEE IF IT CHANGED.

40 END

What you should find is that, no matter how hard you try to change the
contents of memory location 62000, it always holds the same value.

The problem with RAM is that, generally speaking, when you turn off
the computer’s power, the contents of RAM are erased; therefore, you can’t
store anything permanent there. But there are some things, like Applesoft
BASIC, that the computer designers wanted to keep in the machine while the
power is off; these are stored in ROM.

As a side-note: If we explain this much further, the latter part of Wagner’s Par-
adox will rear its ugly head. You've probably already noticed that both RAM
and ROM can access any given byte at a time, so ROM is technically random
access memory, too (as opposed to sequential access memory, where you have
to look at each byte in a series before you can examine each successive byte).
Also, when the power is off, your Apple IIGS remembers changeable things like
the clock time and your Control Panel settings, and these have to be written
somewhere to be stored. If you can’t write to ROM, it must be RAM that they
are written to. But we just said RAM lost its contents when the power is turned
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off. The designers cheated by hooking up a battery to a small (256) number of
bytes of memory to keep a few things, like the time and the Control Panel
settings, on hand while the power is turned off.

Since ROM routines are always in the machine at the same place all the time,
you can CALL them from your Applesoft BASIC program, just like the ONERR
fix. To see how these might be used, let’s consider some more short examples.

Waiting for a keypress. Usually, in an Applesoft BASIC program, when
you want the program to wait for a keypress you must use GET A$ or some-
thing similar to get the character from the keyboard. The only disadvantage is
that a flashing cursor appears on the screen. Suppose you want to write a pro-
gram that waits for a keypress, but doesn’t put a flashing cursor on the screen.
Using CALL 64780 from the previous chart, you could write a program like
Program 1-5.

Program 1-5. Waiting for Keypress

10 HOME

15 PRINT “WAIT FOR KEYPRESS DEMO”

20 VTAB 12: PRINT “PRESS A KEY TO CONTINUE...”
25 CALL 64780

30 HOME

35 VTAB 12: PRINT “THANK YOU!”

40 END

Moving around. This next program, Program 1-6, demonstrates how to
move the cursor around on the screen, depending on what key is pressed.
(These calls only work from 40-column mode.)

Program 1-6. Moving the Cursor

10 HOME: PRINT CHR$(17): REM 40-COLUMN MODE
20 HTAB 20:VTAB 12:REM CENTER CURSOR

30 GET A$

40 IF A$="U" THEN CALL 64538

50 IF A$="D" THEN CALL 64614

60 IF AS="L" THEN CALL 64528

70 IF A$="R” THEN CALL 64500

80 IF A$="Q” THEN END

90 GOTO 30

Calling them by name. Another trick we can add to an Applesoft
BASIC program to make the CALLs more understandable is to set Applesoft
BASIC variables equal to the address you want to call. By making the names of
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the variables a clue to the function of the routine itself, your program becomes
more understandable.

For example, let’s take that last program, and change it just a bit (Pro-
gram 1-7).

Program 1-7. Using Meaningful Variable Names

5 UP=64538: DOWN =64614:LEFT =64528:RIGHT = 64500
10 HOME: PRINT CHR$(17): REM 40-COLUMN MODE
20 HTAB 20:VTAB 12:REM CENTER CURSOR
30 GET A$
40 IF A$="U" THEN CALL UP
50 IF A$="D" THEN CALL DOWN
60 IF AS="L" THEN CALL LEFT
70 IF A$="R" THEN CALL RIGHT
80 IF A$="Q" THEN END
90 GOTO 30

In naming the routines in Applesoft BASIC, remember that only the first
two letters of the name are really used by Applesoft BASIC. This means you
can’t use two different routines called MOVEUP and MOVEDOWN, for ex-
ample. Also, you have to use legal variable names, and you must avoid the use
of Applesoft BASIC keywords. You can’t create a variable called PRINT, for
example.

Hardware Locations and Softswitches

There is one other area of memory you should be aware of, the range from
49152 to 53247. This area of memory contains addressable locations that are
not necessarily either ROM or RAM. Instead, many of the memory locations in
this area are direct electrical connections to part of your computer’s hardware.
The computer is designed so a program can examine certain of these locations
to determine the status of physical parts of the computer, such as the keyboard,
and to also change other parts that are hardware controlled, such as the
speaker, text and graphics display, and other functions. Figure 1-5 shows the
location in memory of hardware and softswitches.

Figure 1-5. Memory Locations of Softswitches

Hardware Applesoft BASIC
& ROM
Softswitches Routines
0 49152 53248 65535
(to 53247)
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For example, suppose you want to know if someone were pressing the
Open Apple key on the keyboard. Since a GET A$ and an INPUT A$ (the
usual methods of getting characters from the keyboard) won't work, you need
some other alternative. Fortunately, memory location 49249 is directly con-
nected to the Open Apple key. In this case, we use the term memory location in
a very general sense. Although we can gain information with a PEEK (49249),
there really isn’t any RAM or ROM there—just a wire to the keyboard.

To see how to use this in a program, try this sample program:

10 PRINT “PRESS THE OPEN APPLE KEY...”
20 IF PEEK (49249) < 128 THEN 20

30 PRINT “THANK YOU!”

40 END

You’ll notice that what we're looking for is for the apparent “contents”
of location 49249 to reach a value greater than 127. If you were to print the
contents on a continuous basis (say in a program loop), you’d see all kinds of
different values. The important change that takes place when the Open Apple
key is pressed is that although a wide range of different values will still be
seen, all of them will have a value greater than 127. Later on, you'll see what’s
so special about the values 127 and 128.

There is also another group of these apparent memory locations that are
called softswitches. A softswitch is an addressable switch that will change the
state of something in the computer just by accessing the location.

For example, if you want to switch from the text display to a view of
whatever is on the hi-res page, the steps in Program 1-8 will do the trick.

Program 1-8. Switching to Hi-Res

10 PRINT “PRESS A KEY FOR THE HI-RES DISPLAY...”
20 GET A$

30 POKE 49239,0: REM HI-RES SWITCH

40 POKE 49232,0: REM GRAPHICS DISPLAY

50 POKE 49235,0 : REM MIXED DISPLAY

60 VTAB 22: PRINT “PRESS A KEY FOR TEXT AGAIN...”
70 GET A$

80 POKE 49233,0: REM BACK TO TEXT

90 END

There are two separate softswitches that are used to control hi-res graph-
ics. The first, 49239, is a control switch that tells the computer that you want
hi-res (as opposed to lo-res) graphics. However, setting this switch doesn’t ac-
tually change the display. It's the other location, 49232, that switches the dis-
play from text to graphics.

Line 80 uses location 49233 to switch back to text. Many programs that
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let you switch between text and graphics views use POKEs (or an equivalent)
to switch the display.

It is important to note that it’s the accessing of the location that does the
switch, not any actual manipulation of the data there, because there is no RAM
to be changed. You could just as easily use a POKE 49233,157 on line 80—it
wouldn’t make any difference. Zero is used just to keep things simple in the
listing, but the computer doesn’t care what you use.

What You’ve Learned So Far

The important thing so far is to understand that there are many levels of pro-
grams in your Apple computer. You're familiar with Applesoft BASIC, but ulti-
mately, the computer actually runs series of number values stored in memory,
called a machine language program.

A machine language program is called by jumping to a given address,
rather than a line number as in BASIC. Most machine language routines are
like BASIC subroutines, and they eventually return control back to the point
from where they are called. This means that they can be used with a CALL
statement from within an Applesoft BASIC program, just like BASIC subrou-
tines, to enhance the programs you are writing today.

Not every memory location has to contain an actual program, however.
Some locations store flags to indicate the status of something. Others contain
data, such as the words to print on the screen, and some may not be “real”
memory at all, but instead are hardware locations that control certain computer
functions or tell you something about what’s going on in the system.

The Applesoft BASIC commands POKE and PEEK can be used to both
alter the contents of memory and to examine any given memory location to see
what'’s already there. POKE can also be used to access hardware softswitches to
change things like the screen display.

You may want to go back to programs you’ve seen in magazines, or on
your local user group program disks, and look for POKEs, PEEKs, and CALLs
to see how these are used in many different Applesoft BASIC programs for a
variety of results.

Secret #1
You can use POKEs to change the screen, background, and text colors on your
Apple IIGS right from within an Applesoft BASIC program.

Here’s a program that asks for new color screen values, and then
changes the system accordingly.
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0 REM SCREEN COLOR DEMO

5 DIM C$(15): FOR I = 0 TO 15: READ C$(I): NEXT I

10 SV = PEEK (49186): REM SCREEN VALUE

15 TX = INT (SV / 16): REM TEXT COLOR VALUE

20 BK = SV - (TX * 16): REM BACKGROUND COLOR VALUE

25 REM

30 BV = PEEK (49204): REM BORDER VALUE

35 HV = INT (BV / 16): REM OTHER HARDWARE VALUES

40 BC = BV - (HV * 16): REM BORDER COLOR VALUE

45 0§ = SV:0B = BV: REM SAVE ORIG. VALUES

50 TEXT : HOME

55 PRINT “BACKGROUND COLOR IS: ”;C$(BK)

60 PRINT “TEXT COLOR IS: ”;C$(TX)

65 PRINT “BORDER COLOR IS: ”;C$(BC)

100 REM GET NEW COLORS

105 PRINT

110 INPUT “ENTER VALUE FOR BACKGROUND: (0-15)";BK$:BK = VAL (BK$): IF BK < 0 OR BK
> 15 THEN 110

115 INPUT “ENTER VALUE FOR TEXT: (0-15) ";TX$:TX = VAL (TX$): IFTX <0 ORTX > 15
THEN 115

120 IF BK = TX THEN PRINT : PRINT CHR$ (7);“YOU WON'T BE ABLE TO SEE WHAT"”: PRINT
“YOU ARE TYPING!": GET A$: GOTO 100

125 INPUT “ENTER VALUE FOR BORDER: (0-15) ";BC$:BC = VAL (BC$): IF BC < 0 OR BC >
15 THEN 120

200 REM RESET VALUES

210 SV = TX * 16 + BK: POKE 49186,SV: REM SET BACKGROUND & TEXT

220 BV = HV * 16 + BC: POKE 49204,BV: REM SET BORDER COLOR

230 PRINT : INPUT “TRY AGAIN? (Y/N)™;I$

2351IF I$ = “Y” OR I$§ = “y” THEN 100

290 POKE 49186,0S: POKE 49204,0B: REM RESTORE SCREEN

299 END

999 DATA BLACK,DEEP RED,DARK BLUE,PURPLE DARK GREEN,DARK GRAY,MEDIUM BLUE,LIGHT
BLUE,BROWN,ORANGE,LIGHT GRAY,PINK,GREEN,YELLOW,AQUAMARINE,WHITE

Although it may seem a little long, the basic principles are quite simple.
The softswitch at location 49186 contains both the background color and the
text color. Dividing by 16 separates text color value. Subtracting this value from
the total value then yields the background color. Since each color range can only
be in the range of 0 to 15, it is possible to pack both values into a single byte.

Location 49204 holds the value for the border color, along with some
other system values. The designers of the Apple IIGS probably didn’t want to
waste half a byte. The array C$( ) has been set up with the words for each
color value in the interest of making the program user-friendly. After inputting
the new values, the new values are recombined by multiplying the text color
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by 16 and then adding the background color (the reverse of the decoding pro-
cess). When this value is POKEd back to location 49186, the background and
text colors immediately change. The screen border byte is recalculated in a sim-
ilar manner and is likewise updated with a POKE.

The program saves the original contents of both locations so things can
be restored when the program is finished. If you make a mistake entering the
program and suddenly find yourself with black text on a black background, or
something similarly unreadable, just press RESET to restore the colors you've
already chosen in the Apple IIGS Control Panel.
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Real Machine Language
Programming

Machine language programming is the process of storing the exact number val-
ues in memory that the 65816 will be able to understand to carry out a set of
instructions.

In the last chapter, you saw how to CALL machine language program
from Applesoft BASIC in much the same way as you would do a GOSUB to a
BASIC subroutine.

To see how a BASIC program can create and then run a short ML pro-
gram, enter Program 2-1.

Program 2-1. ML Programming Using BASIC POKEs

10 HOME

20 POKE 768,32

30 POKE 769,12:POKE 770,253
40 POKE 771,96

50 PRINT “PRESS A KEY...”
60 CALL 768

70 PRINT “THANKS!”

80 END

When you RUN this program, the screen should clear, and the PRESS A
KEY prompt and a flashing cursor should appear on the screen. When you do
press a key, THANKS! should appear and the program will end.

Functionally, this program is equivalent to the “Waiting for Keypress”
demo program in Chapter 1. In that program, a call to a built-in routine at
64780 was done to wait for a keypress. How can the program above accomplish
the same function by calling location 768? And what are all those POKEs for?

If you examine the program closely, you can see that four memory loca-
tions, starting at location 768, are being POKEd to hold various number values.
The number series 32, 12, 253, 96 is understandable by the 65816
microprocessor in your Apple to mean “wait for a keypress.”
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This is a true machine language program, which is placed in memory
starting at location (address) 768. Line 60 of the Applesoft BASIC program then
uses a CALL statement to execute the routine. Remember that a CALL is very
much like a GOSUB, except that instead of going to a line number in your
BASIC program, it jumps to a memory location, expecting to find a machine
language program there.

You know that every subroutine in BASIC must end with a RETURN to
properly return to the main program. The same principle applies to machine
language subroutines. Can you guess which number code in our machine lan-
guage program is equivalent to the RETURN in an Applesoft BASIC program?
If you guessed the last value, 96, you're right.

You could look in a technical reference manual (or at the back of this
book) to determine the meaning behind the other values, but there is an easier
way—use the built-in Monitor that is present in every Apple IIGS computer.
The word Monitor is used on many microcomputers to mean a sort of mini-lan-
guage that is used at a lower level than BASIC to make life easier when dealing
with machine language programs and data.

The Monitor, like Applesoft BASIC, is itself a group of machine language
routines. These routines start at memory location 63488 and go up to 65535. In
fact, earlier, when we said that the Applesoft BASIC routines were in the range
of 53248 to 65535, it wasn't quite the whole picture. Actually, the Applesoft
BASIC routines start at 53248 but end at 63487. The next byte is then where
the Monitor routines actually start. As it happens, Applesoft BASIC does call
the Monitor routines to do many functions like cursor handling, keyboard in-
put, and so on. That’s why the cursor routines in Chapter 1 were in the Moni-
tor memory range from 63488 to 65535.

Figure 2-1 is a more complete memory map.

Figure 2-1. Memory Map Showing the Location of the Monitor

Hardware Applesoft BASIC Monitor
& ROM ROM
Softswitches Routines Routines
0 49152 53248 63488 65535
(to 53247) (to 63487)

The Monitor is useful for examining any portion of the computer’s mem-
ory and has a number of other handy features as well, including a small assem-
bler and the ability to list ML programs in an understandable way.

One of the most common uses of the Monitor is to look at the contents
of a range of memory locations. To examine the part of memory that holds the
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machine language program POKEd into memory by the BASIC program, you
need to first change to the Monitor command mode. To enter the Monitor vol-
untarily,” type in:

CALL —151

and press RETURN.

The Applesoft BASIC prompt ( ] ) should change to an asterisk ( * ),
which indicates you are officially in the Monitor. That is to say, Applesoft
BASIC commands are no longer recognized, and instead, Monitor commands
are. You can try typing HOME at this point to confirm this (your computer
should just beep at you), but don’t try randomly typing anything else just yet.
Now, to look at those numbers that make up our program, type in

300.303 (and press RETURN)
The screen should display

*300.303
00,/0300:20 0C FD 60- .}°

At this point, you may justifiably say “Wait a minute—this doesn’t look like
the same numbers my BASIC program used. And I thought it started at loca-
tion 768, not 300.”

You're almost right. The numbers don’t look the same, but—believe it or
not—they do represent the same values.

Hexadecimal Numbers

In explaining the numbering systems used in computers, people who write
books and columns on machine language programming often talk about how
we count by sets of 10 because we have 10 fingers. Ten is called the base of our
numbering system because it’s the foundation for how we count: We group
quantities by tens.

Regardless of why you think we count by 10’s, it is true that in a math-
ematical sense, the base for a counting system can be any number you want. In
the computer, for various electrical and logical reasons that we won’t discuss

* As opposed to the surprise visits, usually accompanied by a beep, program crash, and a message something
like:

00/0320: 00 D8  BRK D8
A=0000 X=0000 Y=0000 S=01DD D=0000 P=30
B=00 K=00 M=0C Q=80 L=1 m=1 x=1 e=1
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Chapter 3
The Apple IGS Mini-Assembler

As you move through this book, you'll notice that each chapter builds on the
material from previous chapters. In the last chapter, you saw how to create a
machine language program by POKEing the appropriate values into memory,
and then either CALLing it from BASIC, or using the Monitor GO command.

In this chapter, you'll be introduced to your first assembler, the one
that’s built right into your Apple IIGs. Along the way, we’ll also take a better
look at the 65816 microprocessor and get a feel for how it manipulates data in
the computer.

Although there are a number of Applesoft BASIC programs available
that create short subroutines with the POKE and CALL method, most programs
are written using an assembler. You'll recall that an assembler is a program-
mer’s tool that lets you type in easy-to-remember abbreviations for micro-
processor instructions. Then the assembler program translates these
abbreviations into the proper number values.

Full-featured assemblers, like word processors, are usually commercial
software products that you buy as an addition to the computer itself. However,
for short programs, and occasional corrections to an existing program, the Ap-
ple IIGS has a built-in mini-assembler you can use without purchasing any sepa-
rate software at all. Let’s see how it could be used to create the same program
that our BASIC program did.

Starting and Using the Mini-Assembler

From the Applesoft BASIC prompt, type CALL —151 to get to the Monitor.
When the Monitor prompt appears, type an exclamation mark ( ! ) and press
Return. The prompt should change to an exclamation mark. This indicates that
you are in the mini-assembler.

The first thing to remember is that in assembly language, the addresses
of each instruction take the place of line numbers in BASIC. To start a new
program, you need to first tell the computer where you want the program to
begin, much the same as you would start with some line number when begin-
ning a new BASIC program.

39




































































































































Assembling a Program with APW

Writing a Program Using the APW
The first step is to get the APW up and running. Use the Apple Program
Launcher that comes on your Apple IIGS System Disk to run the APW, or use
whatever other technique you have decided on to run the APW.

When run, the following title screen will appear:

Apple IIGS Programmer’s Workshop V2.0
Copyright Byte Works, Inc. 1980-1986
Copyright Apple Computer, Inc. 1986

All Rights Reserved

The screen you see is the main level of the APW shell. The pound sign
(# ) is the APW shell prompt. There is no list of commands on the screen, but
you can enter HELP to print a list of available help files. Type HELP now and
press Return to see how this works. If you get a ProDQOS: File not found error,
it means there are no help files on your particular APW disk. See the APW
manual for details on setting up help files.

If you do have help files on your disk, you can also ask for help on a
specific item by typing the word HELP followed by a space and one of the sub-
ject names as printed in the HELP list. For example, if you wanted information
about printing files, you could type in

HELP PRINTER

If you've prepared your own data disk, now would be a good time to set
the prefix to tell the APW about it. To set the prefix, just type

PREFIX /PROGRAMS

and press Return. The disk should come on for a moment, and the prefix
should now be set to /PROGRAMS. To look at your disk, and make sure that
the prefix is properly set, type
CATALOG
and press Return. You should get the directory listing for your disk. Don’t
worry that this might cause the APW to forget where its help files are located—
it still remembers where its own files are.

To enter your first program, you'll need to go to the editor module of

the APW. The editor requires any file it opens have a name, so you'll have to
give it a name to begin. Type

EDIT APW.1.S
The .S suffix is not required for APW files, and the APW doesn’t do any
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automatic management of the filenames, but adding the .S makes it easier to
keep your files straight.

After a moment, the screen will change, and you’ll be in the editor. At
the bottom of the screen is a status line that tells you the line and column posi-
tion of the cursor, how much memory is left, and the name of the current
source file, which should read APW.1.5.

Try it out now by using the directional arrow keys to move the cursor
around on the screen. The line and column number indicators will change as
you move. Use the up-arrow key to bring the cursor back to line 1, column 1.

A good assembler is like a word processor for programming. It should
have features like inserting and deleting text, moving blocks of text around, for-
matted printing, and so forth.

In the previous chapters, we called the list of instructions such as LDA,
the source listing, even though they weren’t saved separately in their own file.
With a real assembler, they are. The lines you type in will eventually be saved
as a text file. In fact, you can even use another word processor to edit the files
if you like, although you'll probably find the APW editor more convenient.

In contrast to the mini-assembler, this assembler also lets you add text as
comments to your programs, very much like a REM statement in Applesoft.

To start off our program, let’s begin by putting a title at the beginning.
With the cursor on line 1, type an asterisk ( * ) and hold down until it starts re-
peating. Fill the line to column 30 and then stop. If you go too far, just press
the Delete key to back up and erase extra characters.

In most assemblers, any line that begins with an asterisk is considered a
comment line, and anything after the first asterisk is ignored by the assembler
when creating the actual program. In this case, we'll use asterisks to create a ti-
tle box at the beginning of the program listing.

If you haven’t done so already, press Return to move the cursor to line 2
of the listing. Start this line with an asterisk also, space over a few spaces, then
type
1st APW Program

Finally, use the space bar or right arrow until the cursor is again in column 30,
type an asterisk, and then press Return.

Type another line just like the second, only this time fill it in with By
and your name. It’s a good idea to make up a title box for every program you
write, so that when you look at the program later, you'll remember what it
does. You'll usually want to include even more information, such as the date,
any commands the program may recognize, and any other information that
may be useful.
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This process is called documenting a program, and is a very important
part. While you're writing a program, you may remember what each part does,
but even by the next morning you’ll be much happier if you include lots of text
information explaining what each part of the program does.

When you're done filling in the third line, press Return. You should now
be on line 4. Now type another line of 30 asterisks to finish the bottom of the
box. If you’'ve done everything correctly, your program should look something
like this:

* 1st APW Program *
* By <your name> *

While you're editing, there are a number of editor commands that will
make life easier. The four directional arrow keys will move the cursor around.
You can also press Open Apple~< (or Open Apple-, ) to move to the beginning
of a given line, and Open Apple-> (or Open Apple-. ) to move to the end.

Open Apple-E controls the insert mode. When the editor is in insert
mode, it automatically inserts the characters in the line as you type them.

Open Apple-E toggles the insert mode, and you'll see the words at the
bottom of the screen change from EDIT to EDIT INSERT. Toggling means that
the mode will flip on and off each time you press Open Apple-E. When the in-
sert mode is off, the cursor just types over what is already on the screen, in-
stead of creating new space as you type. This is called the overstrike mode. If
you make a mistake typing, use the left-arrow key or the Delete key to back
up. Delete will always remove spaces, regardless of the Insert/Overstrike
status.

Don’t worry if it seems a little awkward at first. With a little practice, it
will become much easier. Although the listing is rather short, you can also use
Open Apple-1 and Open Apple-9 to move to the very beginning and the end
of the entire source listing itself. You might want to try out these commands
now to get a feel for things before we get to entering the actual program.

When you're ready, press Return, or use the down arrow to move to line
6. This will leave a blank line below the title box. The assembler doesn’t care
about all this, but it makes the program look better.

Before you enter the first line, let’s review how you entered a line in the
mini-assembler. You typed in

300: JSR FC58
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Program 5-3. Assembly of First APW Program

0001 0000

0002 0000 * 1st APW Program

0003 0000 * By <your name>

0004 0000

0005 0000

0006 0000 LONGA OFF

0007 0000

0008 0000 MAIN  START

0009 0000

0010 0000 20 58 FC BEGIN JSR $FC58 ; CLEAR SCREEN
0011 0003 A9 CI LDA #3$C1 ; LETTER “A”
0012 0005 8D BC 05 STA $5BC ; SCREEN LOCATION
0013 0008 60 DONE RTS

0014 0009

0015 0009 END

Symbols

000000 BEGIN 000008 DONE

15 source lines
0 macros expanded
0 lines generated

There are a number of things to notice here. First, APW has created a
listing at the far left of each line number in your program, and the relative ad-
dresses where each instruction will ultimately be put in memory. The APW is
different than the Merlin in that it doesn’t use any absolute memory addresses
until the very end of the program construction process, and sometimes it
doesn’t use them then.

You can see each line indicates a memory address, starting at 0000 fol-
lowed by the actual machine language codes for each instruction of your
program.

At the end of the listing is the symbol table. This prints a list of all the la-
bels used in the program, such as BEGIN and DONE.

In the ASSEMBLE command, the +L and +S tell the assembler to print
out the assembled listing to the screen and to add the symbol table at the end.
If you don’t wish to see these, just omit these parts of the command line.

To save the program to your disk, you need to tell the assembler what
filename to use. To do this, type

ASSEMBLE APW.1.S KEEP=APW.1

KEEP is an APW directive for saving the output file.
After the assembly is complete, type CATALOG. On the disk you should
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Whenever the assembler encounters a label, either at the beginning of a
line or following the EQU directive, it assigns a value (usually an address) to it.
For EQU statements, it uses whatever value is on the line. If the label is at the
beginning of the line, it uses its own internal address counter for where it is in
the program.

For example, since BEGIN is the first statement in the program, the as-
sembler gives BEGIN a relative value of $0. As it continues to assemble each
line, it keeps track of where it is. By the time it gets to DONE, its address
counter is at $8, and that’s what it assigns to DONE. Thus, if some other part
of the program wanted to do a JSR, for example, BEGIN or DONE, you could
just use the line

JSR DONE
or
JSR BEGIN

In this program, such a JSR wouldn’t make much sense—just as a
GOSUEB to the first or last line in a BASIC program wouldn’t make sense. But,
as your programs get larger, you'll want to go to subroutines within the pro-
gram. In assembly language, you use the labels, not line numbers, to tell the
JSR where you want it to go. The label MAIN is not included in the local sym-
bol table, because it is not considered to be within your program by APW. It’s
listed in the Global Symbol table, and it has been given an address value of
$300 there.

Lahels as Constants

Labels can be used for more than addresses. We could also assign a label to the
value for the letter A (Program 5-7).

There’s nothing wrong with assigning a constant (as opposed to an ad-
dress) with an EQU statement, it just takes up a little more room in your listing
and the computer’s memory. This technique is used when you want to use a
number value throughout a listing, but want to keep your options open so you
can change your mind later. For example, suppose you're testing a program
that goes through a loop 200 times, and that the number 200 is used in many
different places in the listing. During testing, it might be nice to just use the
number 5, for a shorter loop, instead. Using the label

COUNT EQU 5
makes it easy to change later, without having to search through the listing for
all the number 5’s on every line.
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Chapter 6

Loops and Counters

In BASIC, the FOR-NEXT loop is an important part of many programs; this is
also true in assembly language programming. The only difference is how the
loop-counter combination is actually carried out.

In BASIC, the testing of counters is done either by IF-THEN statements
or automatically in the NEXT statement of a FOR-NEXT loop. In assembly lan-
guage, the testing is done by examining flags in the Processor Status Register
(Figure 6-1). These flags indicate the results of the last mathematical operation
of the 65816; general zero/nonzero conditions of numbers loaded into the X, Y
and Accumulator registers; and other handy things within your program.

Figure 6-1. 65816 Microprocessor Model

Accumulator B A

X Register X

Y Register Y

Processor Status P
Prog. Bank Reg. (PBR) Program Counter (PC)

The Processor Status Register, abbreviated P in the 65816 model, is the
fourth register of the 65816, one not previously mentioned. Before going on
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through 9 and A through F we had 16 possibilities; thus we were in base 16.
With the on/off nature of the Apple, we're limited to 2 possibilities: 0 or 1.

How high can we count with just two symbols in one position? Not
very. We start at 0, then go to 1, and that’s it—we're out of symbols. Then we
have to add another position. The next number, therefore, is 10. As before, re-
member that, in this case, 10 represents what we usually call two. 100 would
represent the quantity 4 in base ten.

By using eight positions, we can go up to 11111111, which just happens
to be 255. This is the same maximum value as our bytes. And, if the truth be
known, it’s not just coincidence—the value 255 is a result of the computer be-
ing based on the binary system of numbering. We use the numbers 0 through
255 because we are using eight bits to make up each byte. Whether each bit is
0 or 1 depends on whether the part of the electrical circuit that is responsible
for that bit is off or on.

Counting in base 2:

Binary Hex Decimal
00000000 $00 000
00000001 $01 001
00000010  $02 002
00000011  $03 003
00000100  $04 004
00000101  $05 005
00000110 $06 006
00000111  $07 007
00001000 $08 008

00001001  $09 009
00001010 $0A 010
00001011 $0B 011
00001100 $0C 012
00001101 $0D 013
00001110 $0E 014
00001111 $O0F 015
00010000 $10 016

00010001  $11 017
00010010 $12 018
00010011 $13 019

11111000 $F8 248
11111001  $F9 249
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30 PRINT X

40 X=X—1

50 IF X=0 THEN 70
60 GOTO 30

70 END

In this case, the loop continues as long as X is not equal to zero. If it is,
the branch instruction is carried out and the program ends. The equivalent in
assembly language is shown in Program 6-2.

Program 6-2. Loop Demo Routine 2

LOOP PROGRAM #2
* MERLIN 8/16 ASSEMBLER *

ORG $300
=FC58 HOME EQU $FC58
=05BC SCREEN EQU $05BC

=FCA8 10 WAIT  EQU $FCA8
000300: 20 58 FC 12 BEGIN JSR HOME ; CLEAR SCREEN

000303: A2 FF 13 LDX #8FF ; START COUNTER AT 255
000305: 8E BC 05 14 LOOP  STX SCREEN ; PUT CHAR ON SCREEN
000308: A9 80 15 LDA #$80 ; TIME DELAY VALUE
00030A:20 A8 FC 16 JSR  WAIT

00030D:CA 17 DEX X=X-1

00030E:FO 03 =0313 18 BEQ DONE ;DONEIFX =0
000310:4C 05 03 19 JMP 100P ; NEXT CYCLE

000313: 60 20 DONE RTS ; ALL DONE!

--End Merlin-16 assembly, 20 bytes, Errors: 0

Notice that this program also uses a new command, JMP (Jump). JMP is
like a GOTO in BASIC. It doesn’t expect an eventual RTS. The JMP on line 19
will cause program execution to jump to the routine starting at LOOP each
time. Only when the X-register reaches zero does the BEQ take effect and cause
the program to skip to the RTS at end. Here is the way this would appear
when put into memory, and then listed with the L command from the Monitor:

*300L
l=m 1=x 1=LCbhank (0/1)
0/0300: 20 58 FC  JSR FC58
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00/0303: A2 FF LDX #FF
00/0305: 8E BC 05 STX 05BC
00/0308: A9 80 LDA #80
00/030A: 20 A8 FC JSR  FCA8
00/030D: CA DEX

00/030E: F0 03 BEQ 0313 {+03}
00/0310: 4C 05 03 JMP 0305
00/0313: 60 RTS

The assembler automatically translates the positions of LOOP and END
into the appropriate addresses to be used by the BEQ and JMP when it assem-
bles the code.

Remember that to the left are the addresses and the values for each
opcode and its accompanying operand. The more understandable translation to
the right is Apple’s interpretation of this data.

Notice that the JMP’s and JSR’s are immediately followed by the address
(reversed) that they’re to jump to, such as in the first JSR at $300.

However, branch instructions are handled a differently. As opposed to a
JSR or JMP that go to an absolute memory location, a branch goes to a relative
memory address. That is to say, it goes to an address relative to where the
branch instruction itself is located. At $30E, the $F0 is the opcode for BEQ. The
$03 that follows is an offset that tells the 65816 to branch down through the
code three bytes from the address of the next instruction that follows the
branch itself (at $310). Adding $03 to $310 gives us $313, the address of the
desired RTS.

Branching in the reverse direction (up through the listing) is also possi-
ble and is shown by operands greater than $80. There is not much need of go-
ing into great detail about the actual calculations used, since your assembler
will determine the proper values for you when assembling code, and Apple’s
disassembler will give the destination address when reading other code.

As the X register is incremented in this program, we’ll stuff the value
into the screen location so we can see something on the screen as the counter
advances.

There are also two other branch instructions, BRA (BRanch Always),
and BRL (BRanch Long), that you can use instead of a jump instruction. BRA
can only be used when you don’t have to branch more than 127 bytes forward
or backward. BRL will branch to any address in the 64K address space. The
main advantage of BRA is for creating programs that are position independent.

When a program is position independent, it doesn’t matter where it is
loaded into memory. It will run equally well anywhere. For example, if you
loaded Program 6-2 at location $8000, and tried to run it, what would happen
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Program 6-5. Two-Byte Decrement Example

1
2 * TWO-BYTE DECREMENT EXAMPLE  *
3 MERLIN ASSEMBLER *
4
5
=0006 6 PTR EQU $06 ; $06,07
7
008000: C6 06 8 INCR DEC PTR ; SUBTRACT FROM LOW BYTE
008002: A5 06 9 LDA PTR ; LOAD FOR CMP
008004: C9 FF 10 CMP #$FF ; WRAPAROUND?
008006: DO 02 =800A 11 BNE NEXT ; NOPE.
008008: C6 07 12 DEC PTR+1  ;SUBTR. 1 FROM HIGH BYTE
13
00800A: EA 14 NEXT  NOP ; YOUR PROGRAM CONTINUES HERE...

--End Merlin-16 assembly, 11 bytes, Errors: 0

We can’t use this code segment:

DEC  PTR ; SUBTRACT 1 FROM PTR
BNE  NEXT
DEC  PTR+1 ; SUBTRACT 1 FROM PTR+1

because PTR will reach 0 one cycle before we want to decrement PTR+1. Re-
member, the count-down will look like something like this:

Total Address: PTR PTR+1

$502 $02 $05
$501 $01 $05
$500 $00 $05
$4FF $FF $04

When PTR reaches $00, PTR+1 doesn’t change until the next cycle of
our code segment. Therefore, the CMP #$FF is required to see when the DEC
PTR has wrapped around to $FF, signifying it's time to decrement PTR+1.

In the two-byte mode, the program segment would be similar:

PTR EQU $06 ; $06,07,08,09
DECR DEC PTR ; DECREMENT $06 AND $07
LDA PTR
CMP S$FFFF
BNE NEXT ; IF NOT = $FFFF
DEC PTR+2 ; DECREMENT $08,09
NEXT NOP ; YOUR PROGRAM HERE...
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Chapter 7

Comparisons in
Assembly Language

In the last chapter, you learned how to use instructions like BEQ and BNE to
create simple loops. We used the X and Y registers as counters, and incre-
mented or decremented by 1 for each cycle of the loop.

Now let’s expand our repertoire of instructions by adding some new
ones, and in the process add some flexibility to what we can do with loops and
tests in general.

In previous programs, we relied on the counters reaching zero and test-
ing the Z-flag to take appropriate action. Suppose however, at you wish to
test for a value other than zero. This is done using two new kinds of instruc-
tions, compare and branch-on-carry.

The compare instruction, with the mnemonic CMP, tells the computer to
compare the contents of the Accumulator against some other value. The other
value can be specified in a variety of ways. A simple test against a specific
value would look like this:

CMP #$A0

This would be read “Compare Accumulator with an immediate $A0.”
This would tell the 65816 to compare the Accumulator with 1e specific value
$A0. On the other hand, you may want to compare the Accumulator with the
contents of a given memory location. This would be indicated by

CMP $A0

In this case, the 65816 would go to location $A0, see what was there,
and compare that to the Accumulator. It's important to understand that the
contents of $A0 may be anything from $00 to $FF, and it is against the con-
tents that the Accumulator will be compared. In each case, the comparison is
done by subtracting the Accumulator from the specified value (although the re-
sult is invisible to the programmer).
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CPY

BCC
BEQ
BNE
BCS
BRA

Compares Y register

Branch if register < value
Branch if register = value

Branch if register < > value
Branch if register >= value

Branch always

Program 7-1. Loop Demo 4 Using CMP

000300:
000303:
000305:

000307:
000309:
000030B:

00030D:
00030F:

000311:

000314:
000316:

000318:

20
85
A5
90

C9
B0

20

E6
80

60

Comparisons in Assembly Language

LOOP PROGRAM #4
*  MERLIN 8/16 ASSEMBLER *

ORG

CTR EQU
=FC58 9 HOME EQU

=FDED 10 COUT EQU
11

58 FC 12 START ISR

00 13 LDA

06 14 STA
15

06 16 LOOP  LDA

Cl 17 CMP

07 =0314 18 BCC

19

DB 20 CMP

07 =0318 21 BCS
22

ED FD 23 JSR
24

06 25 L2 INC

EF =0307 26 BRA
27
28 DONE  RTS

$300

$06
$FC58
$FDED

HOME
#$00
CTR

CTR
#3Cl1
L2

#$DB
DONE

cout

CTR
LooP

--End Merlin-16 assembly, 25 bytes, Errors: 0

Reading Data from the Keyhoard
A good part of many formal machine language courses deal with just system
I/0, that is, getting data In and Out via different devices. Writing such things
as printer drivers, disk access routines, and hardware interface software are the
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; CLEAR SCREEN

; START COUNTER AT ‘0’
; STORE VALUE

; GET CURRENT VALUE

; “A” CHAR, HI BIT SET
; ASCIT “Z” + 1

; ALL DONE!

; PRINT CHARACTER

; CTR = CTR + 1
; ALWAYS BRANCH

; ALL DONE!
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areas that hardcore programmers spend their youth mastering. Using the built-
in routines on the Apple simplifies this greatly because you don’t have to do
most of thef I/O details. You've already seen this is true by having used COUT
(3FDED) for screen output, without having to know anything about how the
actual operation is carried out. The keyboard is even easier.

In the memory map we’ve been using for the Applesoft BASIC, the ad-
dress range from $C000 to $FFFF is devoted to hardware in that these memory
ranges cannot be altered by running programs (we’re ignoring the additional GS
RAM for the time being). The range from $D000 to $FFFF is used by the ROM
routines that we’ve been calling. The range from $C000 to $CFFF is assigned to
I/O devices. Typically the second digit from the left gives the slot number of
the device. For instance, if you have a printer in slot #1, a look at $C100 will
reveal the machine language code in ROM on the card that makes it work. At
$C600 you’ll probably find the code that makes the disk drive in slot 6 boot.

$C000 to $COFF is reserved not for slot 0, but for doing special things
with the hardware portions of the Apple itself.

An attempt to disassemble from $C000 will not produce a recognizable
listing, but it will probably cause your Apple to act a bit odd. This range is
made up of a number of memory locations actually wired to physical parts of
your Apple. If from the Monitor you type

* C030 <RETURN>

you’ll see some random value displayed and the speaker should click. (If it
doesn’t click the first time, try again.) Each time you access $C030, the speaker
will click as it moves in response to your action.

The keyboard is also tied into a specific location. By looking at the con-
tents of $C000, you can tell if a key has been pressed. In BASIC, it’s done with
a PEEK (—16384). In machine language, you would usually load a register with
the contents of $C000, such as:

LDA $C000

Because it is difficult to read the keyboard at exactly the instant someone
has pressed the key, the keyboard is designed to hold the value of the last key
pressed until either another key is pressed or you clear something called the
strobe, by accessing an alternate memory location, $C010. The strobe is wired
to clear a character off the keyboard once a program has read the keypress.

It's always a good idea to clear the keyboard when you're done with it,
otherwise you’ll have the value for the key pressed for your input still hanging
around for whatever reads the keyboard next, such as the next keyboard read
in your own program, or an INPUT statement in BASIC. The strobe is cleared
by any read or write operation. It's the mere access to it in any manner that ac-
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complishes the clear. However, because of the way the microprocessor and
hardware work, a read actually accesses the location twice.

Thus, although both a LDA $C010 or STA $C010 would clear the strobe,
the LDA has the double disadvantage of ruining the contents of the accumu-
lator, and clearing two characters off the keyboard if the keyboard buffer is turned
on. This is very important to keep in mind. Although the LDA command will
work (and some programs use this), it makes your program incompatible with
keyboard buffering. If the user were to type HELLO THERE, your program
would only see HLOTEE.

The last point to be aware of is that the keyboard is set up to tell you
when a key is pressed by the value that is read at $C000. Now you might think
that the logical way would be to keep 0 in $C000. Perhaps, but that’s not the
way it’s done. Instead, we must add $80 the ASCII value of the key pressed. If
a value less than $80 is at $C000, it means a key has not been pressed.

To illustrate all this, let’s look at some sample programs to read data
from the keyboard. Look at Program 7-2.

Program 7-2. Keyboard Demo 1

* KEYBOARD PROGRAM #1A *
* MERLIN 8/16 ASSEMBLER *

ORG $300

=C000 8 KYBD EQU $C000
=FDED 9 COUT EQU S$FDED
=FC58 10 HOME EQU $FC58

12
000300: 20 58 FC 13 START JSR HOME ; CLEAR SCREEN
14
000303: AD 00 CO 15 LOOP  LDA KYBD ; READ KEYBOARD
000306: C9 80 16 CMP #$80 ; KEY PRESSED
000308: 90 F9 =0303 17 BCC LOOP ; TRY AGAIN IF NOT...
18
00030A: C9 9B 19 CHECK CMP #3$9B ; ‘ESCAPE’ KEY
00030C: FO 05 =0313 20 BEQ DONE
21
00030E: 20 ED FD 22 PRINT JSR COUT ; PRINT ASCII CHARACTER
000311: 80 FO =0303 23 BRA LOOP ; DO IT AGAIN
24
000313: 60 25 DONE RTS
26

--End Merlin-16 assembly, 20 bytes, Errors: 0
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Line 15 loads the Accumulator from location $C000. This is then com-
pared to $80, the minimum value for a key down. If the value read was less
than $80, we go back for another look. Once a value greater than $80 is found,
we can then check to see exactly what key was pressed.

Like any well-written program, this one avoids being in an infinite loop
by allowing you to press the Escape key to stop it. The test specifically for the
Escape key is on line 19.

All keys other than Escape are passed on to be printed on line 22, after
which the program branches back to do it all over again.

You've probably noticed that the program runs on printing the same
character until you press another key. That’s because the strobe is never
cleared.

A better program is Program 7-3.

Program 7-3. Keyboard Demo 1B: A Better Way

1
2* KEYBOARD PROGRAM #1B *
3 MERLIN 8/16 ASSEMBLER *
4
5
6 ORG $300
7
=C000 8 KYBD EQU $C000
=C010 9 STROBE EQU $C010

=FDED 10 COUT EQU $FDED
=FC58 11 HOME EQU $FC58

12
13
000300: 20 58 FC 14 START JSR HOME ; CLEAR SCREEN
15
000303: AD 00 CO 16 LOOP  LDA KYBD ; READ KEYBOARD
000306: C9 80 17 CMP #380 ; KEY PRESSED
000308: 90 F9 =0303 18 BCC LOOP ; TRY AGAIN IF NOT...
19
00030A: 8D 10 CO 20 CLEAR STA STROBE ; CLEAR CHARACTER
21
00030D: C9 9B 22 CHECK CMP #$9B ; ‘ESCAPE’ KEY
00030F: FO 05 =0316 23 BEQ DONE
24
000311: 20 ED FD 25 PRINT JSR COUT ; PRINT ASCII CHARACTER
000314: 80 ED =0303 26 BRA LOOP ; DO IT AGAIN
27
000316: 60 28 DONE  RTS
29

--End Merlin-16 assembly, 23 bytes, Errors: 0
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This should work better. Here the keyboard is cleared whenever a char-
acter is read and printed. Why not clear it right after the read on line 15? If we
did it there, the only way we would see the character is if the user pressed the
key in the time between when the strobe was automatically cleared and when
the keyboard was checked again. This would create such a small time window
that keypresses would very likely be missed. It is a much better technique to
only clear the strobe after an actual keypress has been detected.

In trying out this program, you should type in enough text to wrap
around onto the next line, and you should also try the arrow keys and Return.
You may think all this performs as expected (with the exception of the missing
cursor), but this should not be taken for granted. Without the screen manage-
ment of COUT, you’d have to do quite a bit more programming to keep things
straight. Once more, this is the advantage of using the routines already present
in the computer, rather than have to worry about the details yourself.

The Emulation Bit

As mentioned eatrlier, there is a way to control the size of the Accumulator, X,
and Y registers. This is done using the Carry, along with two other bits, in the
Status Register.

On the first Apple II computers, before the Apple IIGS was a gleam in
anybody’s eye, the Accumulator, X, and Y registers were limited to only a sin-
gle byte. That's why Applesoft BASIC is designed to only use one byte of these
registers, and why when you call a machine language routine from Applesoft
BASIC, the default register size is only a single byte.

In addition, the Status Register used bit 4 for a Break instruction flag
(telling the system that a BRK instruction had been encountered), and bit 5 was
not used at all.

When the 65816 was designed, they wanted to create a system that was
compatible with the older machines, yet that was an improvement on the origi-
nal design of the 6502 microprocessor used in the first Apples.

Figure 7-2. The Status Register

7 6 5 4 3 2 1 0
B E

N \Y M D I Z
X C

Sign Overflow Accumulator  Break Decimal Interrupt Zero Carry
Size Select or or
X/Y Emulation
Register
Size Select
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The answer was to give the Carry bit a dual function (see Figure 7-2). By
adding a new command, XCE (eXchange Carry with Emulation bit), the de-
signers created a method for using two other bits in the Status Register for a
new function. This is done by telling the 65816 to change the meaning of the
Break flag to indicate the size of the X and Y registers (one or two bytes), and
to use the previously unused bit 5 to indicate the size of the Accumulator. In
the new state, bits 4 and 5 are labeled the m (Memory) and x (indeX) bits.

In the same way that XBA exchanged the current contents of the A part
of the Accumulator with the B part, the XCE instruction swaps the current
value of the Carry bit (0 or 1) with an invisible emulation bit. The emulation bit
is an extra bit, in addition to the eight bits that make up the Status Register,
but it can only be changed using the Carry flag and the XCE instruction.

When the Emulation bit is 1, the A, X, and Y registers are limited to a
single byte in size, and their size cannot be immediately changed. The m and x
bits have no real value at this point, because in the emulation mode they tech-
nically don'’t exist.

When the Emulation bit is 0 (native mode), the size of the Accumulator
can be changed by changing the m register, and the size of the X and Y regis-
ters can be controlled using the x register. Note that a lowercase x is used to
differentiate the x bit from the actual X register. The x bit controls the size of
both the X and Y registers together; they cannot be independently set to differ-
ent sizes.

Register Sizes:
Accumulator

m = 0 2 bytes (16 bits)

m = 1 1 byte (8 bits)
Xand Y

x = 0 2 bytes (16 bits)

x =1 1 byte (8 bits)

There is no underlying meaning to the 0 or the 1, as such. Rather they’re
just arbitrary flag values for the two modes. In general, 0 in the m or x flags in-
dicates the full 16-bit mode.

You've seen the status of the Emulation bit shown, when the BRK in-
struction was used in debugging a program in Chapter 3:

00/0308: 00 00 BRK 00
A=00EF X=0000 Y=0000 S=01DD D=0000 P=B0
B=00 K=00 M=0C Q=80 L=1 m=1 x=1 e=1

*

Along with the registers, the Processor Status Register, P = $BO0, is
shown. You can also see the display of the Emulation bit; e is set to 1, meaning
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that a BRK instruction will set bit 4 if encountered and that the size of the A, X,
and Y registers are limited to one byte and cannot be changed. Because the ¢
bit is a separate and invisible addition to the Status Register, its condition can-
not be determined by looking at the value of P in the register display itself.

The register display also shows the condition of the m and x bits. This
display is set up whenever a BRK instruction is encountered, and is used to
help you see what the entire system status is at a given point in a running
program.

Setting and clearing the Carry. To change the Emulation bit in a pro-
gram, you must first condition (set to a 0 or 1) the Carry bit. There are two
commands specifically for conditioning the Carry bit, SEC (SEt Carry) and
CLC (CLear Carry). SEC sets the Carry bit to 1; CLC sets it to 0.

If you want set clear the Emulation bit to 1 (sometimes called the Native
mode) so you can change register sizes, you must first put a zero in the Carry
(CLC), and then exchange this with the Emulation bit (XCE):

CLC ;c=0
XCE ;e = 0 = native mode

To set the Emulation bit back to 1 (called the Emulation mode), you
must set the Carry to 1 (SEC), and then do the exhange:

SEC ;¢ 1
XCE ;e 1 = emulation mode

To change the m and x bits in the Status Register, there are two com-
mands, SEP (SEt Processor status bits) and REP (REset Processor status bits).
Notice that the designers were a bit inconsistent here using set/clear for one
pair, and set/reset for the other.

In any event, REP and SEP are used to make any bit in the Status Regis-
ter either 0 or 1. They look like this in a program:

SEP  #$10 ; %00010000 binary
REP  #$30 ; %00110000 binary

The comments show the operand number in binary form. In the SEP in-
struction, you set the bits in the operand to match whatever bits in the Status
Register you want set to 1. In the REP instruction, the desired bits are also indi-
cated by 1’s in the operand; however, the corresponding bits in the Status Reg-
ister will be cleared to 0 by the instruction.

In the first line, SEP #10 sets bit 4, the m bit, to 1, thus setting the Accu-
mulator to a 1-byte size (8 bits). In the second line, REP #30 clears both the m
and x bits (bits 4 and 5), making both the Accumulator and index registers 2
bytes wide (16 bits).
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The most common use of the REP and SEP instructions is to clear or set
the m and x bits to control the A, X, and Y register sizes. They’re rarely used to
change any of the other Status Register bits, although nothing prohibits it.

To demonstrate the effects of these instructions, enter Program 7-4.

Program 7-4. e-, m-, and x-Bit Demo

1
2 e-, m- and x-bit demo
3 MERLIN 16 ASSEMBLER *
4
5
6 ORG $300
1
=FC58 8 HOME EQU S$FC58
9
=05BC 10 SCRN1 EQU $5BC ; SCREEN LOCATION #1
=063C 11 SCRN2 EQU $63C ; SCREEN LOCATION #2
12
000300: 20 58 FC 13 BEGIN JSR HOME ; CLEAR SCREEN
14
000303: A9 C1 15 LDA #“A” ; 1 BYTE LETTER “A”
000305: 8D BC 05 16 STA SCRNI1 ; PUT ONE BYTE ON SCREEN
17
000308: 18 18 CLC ;C=0
000309: FB 19 XCE ; E = 0 = NATIVE (16-BIT MODE)
20
00030A: C2 20 21 REP #$20 ; %00100000 = M = 0
22
00030C: A9 C1 00 23 LDA #“A” ; 2-BYTE LETTER “A”
00030F: 8D 3C 06 24 STA SCRN2 ; PUT TWO BYTES ON SCREEN
25
000312: 38 26 SEC ;C=1
000313: FB 27 XCE ; E = 1 = EMULATION (8-BIT MODE)
28 ; AUTOMATIC SEP #$30
29
000314: 60 30 DONE RTS
3

--End Merlin-16 assembly, 21 bytes, Errors: 0

After assembling, BLOAD and run the object file with a CALL 768.

The program starts off very much like the sample program in Chapter 3
with the minj-assembler. The ASCII value for the letter A is loaded into the Ac-
cumulator and then is stored at memory location $5BC, which makes it visible
as a screen character.

Now, the exciting part. Line 18 sets the carry to zero, in preparation for
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the XCE that immediately follows. The XCE sets the Emulation bit to zero,
which puts the 65816 into the native mode that enables the option of changing
register sizes. Line 21 uses the REP #$20 instruction to clear bit 5, the m bit, to
zero. This puts the Accumulator in the 2-byte (16-bit) mode.

When the 65816 encounters the LDA instruction on line 23, it now loads
two bytes into the Accumulator. This has two immediate, and important effects.
First, even though you think you’re loading the value $C1 into the Accumu-
lator, you need to be aware that the full 16-bit value, $00C1, is used. Second,
because this value does take two bytes, the instruction is assembled as a total
of three bytes, as opposed to only two when the 8-bit mode is used.

The one- or two-byte status of a register also applies to any store opera-
tions associated with it. In this program, the STA SCRN2 instruction on line 24
puts two bytes on the screen, for the complete value $00C1. Notice that the $C1
(the low-order byte) is stored first at $63C, followed byte $00 (the high-order
byte) at $63D. This is visual proof of the reversed-order use of byte pairs by
the 65816.

The final stage of our program is to return the computer to the 8-bit
emulation mode. This is a requirement for any routine that you call from
Applesoft BASIC that changes the register sizes or emulation bit. If you don’t
restore things properly, Applesoft BASIC itself will crash when you exit your
routine.

Line 26 sets the Carry bit (C = 1), so that the following XCE instruction
will set the emulation bit to 1. We don’t have to worry about resetting the reg-
ister sizes, because setting the emulation bit to 1 automatically removes the m-
and the x-bit functions, and makes all registers 1 byte wide.

To see how this program lists from the Monitor, go to the Monitor now,
and list the program starting at $300.

1=m 1=x 1=LCbank (0/1)
00/0300: 20 58 FC JSR FC58

00/0303: A9 Cl LDA #Cl
00/0305: 8D BC 05 STA 05BC
00,/0308: 18 CLC
00/0309: FB XCE
00/030A: C2 20 REP #20
00,/030C: A9 Cl LDA #Cl

00/030E: 00 8D BRK 8D
00/0310: 3C 06 38 BIT 3806X
00/0313: FB XCE
00/0314: 60 RTS

You may be surprised to see that the disassembly doesn’t look quite
right after the REP #20 instruction at $30A. This is because the disassembler
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doesn’t recognize the REP instruction as such, and it continues to disassemble
the instructions in the 8-bit mode. This shows what would happen if the Emu-
lation or the m or x bits were set incorrectly and you were to enter your pro-
gram at $30A—the program would not interpret the bytes there as you had
expected.

To properly disassemble the bytes from $30A, type in

0=m
and press Return. Now type 309L to list

0=m 1=x 1=LCbank (0/1)

00/030A: C2 20 REP #20
00/030C: A9 C1 00 LDA #00Cl1
00/030F: 8D 3C 06 STA 063C

00/0312: 38 SEC
00/0313: FB XCE
00/0314: 60 RTS

Notice that the m and x indicators at the top of the listing shows that m
is now set to 0. As you examine different parts of memory, you must specifi-
cally set these settings, when they’re not conditioned by hitting a BRK in a pro-
gram. The Monitor does not make any assumptions about the condition of the
various registers. This is so you can examine any part of memory at will and
set the registers as you think they will be when that part of your program is
executing. You can examine the current register settings at any time in the
Monitor by typing Control-E (Examine registers) and pressing Return.

Looking at the listing starting at $30C, you can now see the LDA with
the two-byte operand. The STA instruction still takes only one byte. The 65816
only needs to know the starting address of the byte pair, so the instruction lists
the same in either mode. What changes is how many bytes are written to mem-
ory starting at $63C.

The converse situation in listing also applies. Now that the m flag is set
to 0 (16-bit Accumulator mode), try listing starting at $300 again.

0=m 1=x 1=LCbank (0/1)

00/0300: 20 58 FC JSR FC58
00/0303: A9 C1 8D LDA #8DCI
00/0306: BC 05 18 LDY 1805X
00/0309: FB XCE
00/030A: C2 20 REP #20
00/030C: A9 C1 00 LDA #00C1
00/030F: 8D 3C 06 STA 063C

000/0312: 38 SEC
00/0313: FB XCE
00/0314: 60 RTS
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Notice that now the instructions at $303 and $306 list improperly. These
were assembled as 8-bit instructions. You are now disassembling in the 16-bit
mode.

Try rewriting the program using the long (16-bit; x = 0) X and Y mode,
instead of the long accumulator mode, and see how the listing changes. Be sure
to run your new program to make sure that it works, and that it returns to the
8-bit mode for Applesoft BASIC properly. You may wish to experiment with
different combinations of ¢, m, and x modes to get the feel for what your op-
tions are in any given program.

Notes for the APW Assembler

If you have the APW assembler, you'll need to use the directives LONGA
ON/OFF and LONGI ON/OFF to tell the assembler you're changing the m
and x modes, respectively. The Merlin assembler automatically changes its

Program 7-5. e-, m-, and x-Bit Demo for the APW Assembler

* e-, m- and x-bit demo
* APW ASSEMBLER *

KEEP EMX.DEMO

ORG  $300
LONGA OFF ; STARTING CONDITION
MSB ON ; HI BIT = ON
MAIN  START
HOME EQU  $FC58
SCRNI EQU  $5BC ; SCREEN LOCATION #1
SCRN2 EQU  $63C ; SCREEN LOCATION #2
BEGIN JSR HOME ; CLEAR SCREEN
LDA #A” ; 1 BYTE LETTER “A”
STA SCRN1 ; PUT ONE BYTE ON SCREEN
CLC ;C=10
XCE ; E = 0 = NATIVE (16 BIT MODE)
REP #8520 ; %00100000 = M = 0
LONGA ON
LDA #“A” ; 2 BYTE LETTER “A”
STA SCRN2 ; PUT TWO BYTES ON SCREEN
SEC ;C=1
XCE ; E =1 = EMULATION (8 BIT MODE)
* AUTOMATIC SEP #$30
DONE RTS

END 137



Chapter 7

mode when it sees the REP and SEP instructions in the listing. The APW, how-
ever, requires that the programmer include these assembler directives in the
listing. Program 7-5 is the example program in the APW format.

LONGA OFF is required at the beginning because Applesoft BASIC
CALLs our routine with all registers set to 8 bits. Then, after the REP #$20 in-
struction, the appropriate LONGA ON directive is again required to tell the as-
sembler we have switched modes.

MSB (Most Significant Bit) ON is also required at the beginning to tell
the assembler to use the hi-bit ASCII (value larger than $80) form when assem-
bling the LDA #“A” instructions.

More on Switching Modes

For those who may have previously done some programming on the 6502 or
65C02, it’s important to mention that changing the Emulation bit doesn’t have
a dramatic effect on how the 65816 operates. Virtually all of the same instruc-
tions are available in both modes. Because the terms emulation and native
modes are used, there is a tendency to think that one mode must exclude many
of the instructions of the other. This is not the case. There are a few instruc-
tions, like REP and SEP that are meaningless in a given mode, but they are just
ignored if encountered. REP and SEP are meaningless in the 8-bit mode be-
cause the A, X and Y registers are already limited to 8 bits, and REP and SEP
cannot change the m or x bits at the same time as the Emulation bit.

The main hazard to the programmer in switching modes is the change in
the length of certain instructions such as the LDA and STX instructions. As you
have seen from the sample disassemblies of our demonstration program, the
same segment of object code can be interpreted by the 65816 in very different
ways, depending on the status of the e, m, and x bits. If your program sets
these flags to one condition, and then jumps to another part of the program
that was written assuming a different set of conditions, very strange things are
likely to happen, and it can be very difficult to track down the problem. When
debugging programs that use mixed register sizes and modes, this should be
one of the first things you check when debugging a program.

Commands Learned So Far

Here are the new commands you’ve learned, plus the ones covered in previous
chapters:
In this chapter:

BCC BCS CLC CMP CPX
CPY REP SEC SEP XCE
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And in previous chapters:

BEQ BNE BRA BRK BRL JML
JMP JSL JSR LDA LDX LDY
NOP RTL RTS STA STX STY
STZ TAX TAY TXA TXY TYA
TYX XBA
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Chapter 8
Simple Math

This chapter will introduce the basic math operations of addition and subtrac-
tion in assembly language. To some extent, you've already seen how this is
done. In Chapter 6, you saw how the increment and decrement commands
could be used to add and subtract. Unfortunately it performs these functions
only by one each time (VALUE + 1 or VALUE — 1).

If you're really ambitious, you could, with the commands you know al-
ready, add or subtract any number by using a loop of repetitive operations, but
this would be a bit slow. Fortunately, a better method exists.

You'll recall that a byte is an individual memory location that can hold a
value from $00 to $FF (0-255 decimal). This number comes about as a direct
result of the way the computer is constructed, and the way in which you count
in base two. In base two, each position of the byte is called a bit, and the posi-
tions are numbered from right to left, from 0 to 7.

The pattern for counting is similar to normal decimal or hex notation.
The value is increased by adding 1 each time to the digit on the far right, carry-
ing as it becomes necessary. In base 10, you have to carry every tenth count; in
hex, every sixteenth. In base two, the carry is done every other time.

The first few numbers look like this:

Hex Decimal Binary

$00 0 00000000
$01 1 00000001
$02 2 00000010
$03 3 00000011
$04 4 00000100

Notice that in going from 1 to 2, we would add 1 to the 1 already in the
first position (bit 0). This generates the carry to increment the second position
(bit 1). Here is the end of the series:

$FD 253 11111101
$FE 254 11111110
$FF 255 11111111
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Observe what happens when the upper limit of the counter is finally
reached. At $FF (255) all positions are full. When the next increment is done,
we should carry 1 to the next position to the left; unfortunately that position
doesn't exist.

When you use an increment instruction, the byte value wraps around to
$00, and the extra bit just created is ignored. Suppose we were incrementing a
two-byte address pointer. When the low-order byte reached $FF, we would
want the next increment to add 1 to the high-order byte. For example:

Address Value High-Order Byte  Low-Order Byte

$01FF $01 $FF
+ 1 $00 $01
$0200 $02 $00

If you were using the INC instruction to add one each time, however,
you would lose the newly created bit from the increment at $FF. The way this
is usually handled in a loop is to use the BNE or BEQ test, like this:

PTR EQU $06 ; $06,07

LOOP INC PTR ; PTR =PTR + 1
BNE NEXT ; LESS THAN $00 SO CONTINUE
INC PTR+1

NEXT 77?7 ; REGULAR PROGRAM HERE. ..

This program segment will increment the two byte pointer PTR, PTR+1
by one each time. It works by testing for the specific condition in which PTR
(the low-order byte) has just been incremented from $FF to $00. In all other
cases, the BNE just branches out of the increment segment. When PTR is $00,
1 is added to PTR+1 (the high-order byte) to properly increment the address
value.

In the 16-bit mode of the 65816, this problem is temporarily avoided by
allowing this increment command to operate on both bytes of a two-byte
pointer. With the Emulation and Memory bits clear (e = 0, m = 0), the follow-
ing instruction works for a two-byte pointer:

INC PTR ; INCREMENTS PTR,PTR+1

This instruction automatically takes care of any bits that need to be carried
from the low-order to the high-order byte.

However, the solution is only temporary. Remember that the Apple IIGS
allows up to three bytes to be used to define an address (for example, $01/300
= Bank 1, location $300). What to do when the two-byte pointer reaches
$FFFF and we need to increment a bank byte?
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Add with Carry

The answer is to use some general-purpose instructions that will add and sub-
tract any value—not just 1—and condition the carry bit if appropriate.

The addition instruction we’ll use is ADC (ADd with Carry). When an
addition is done with this command, and the result would generate a bit in a
new position wider than the byte width indicated by m, the carry is set. ADC
can only be used to add to the value already in the Accumulator, so the x-bit
(for X and Y register sizes) is not a direct concern. The source of the value to be
added to the contents of the Accumulator is limited only by the addressing
modes available to the ADC instruction itself, which, as it happens, are rather
extensive.

Because ADC always adds the value of the carry bit to the calculated
sum, it’s important to clear the carry bit before doing the actual addition. For
example, consider this program segment:

LDA #$05
ADC #$07
STA RESULT

As it stands, there are two possible results. If the carry happened to be
clear when this was executed, the value in RESULT would be $0C (12 decimal).
If, however, the the carry had been set (perhaps as the result of some previous
operation), then RESULT would have be $0D (13 decimal).

This problem is avoided using the CLC (CLear Carry) instruction intro-
duced in Chapter 7.

CLC ; CLEAR CARRY IN PREPARATION FOR ADDITION.
LDA #$05 ; LOAD ACCUMULATOR WITH VALUE “5”
ADC #$07 ; ADD “7” TO IT.

; RESULT NOW = 12 ($0C)

This segment adds 5 and 7 using immediate values. Logically, the CLC
could have been done after the LDA #$05, but before the ADC #$07 itself. Al-
though it need only precede the ADC command, it has no effect on the LDA,
so it's put at the beginning of the routine for aesthetic purposes. It also helps
identify the overall unit as a math routine. Most program segments that use
CLC and ADC are usually written as shown.

The contents of two memory locations can also be added using the fol-
lowing instructions:

CLC

LDA MEM ; 1ST MEMORY LOCATION.
ADC MEM2 ; 2ND MEMORY LOCATION.
STA RSLT ; STORE RESULT SOMEWHERE.
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This gives the correct four-byte result of $02/0100, and is equivalent to:

$0001/FF00

+ $0000/0200
$0002/0100

In this example, you'll notice that all four hexadecimal digits of the bank
address are shown. In the Monitor listing, however, only one byte is shown for
the bank byte, because that is all that is maintained by the 65816 itself. If you
look at the long address operand generated by the mini-assembler in Chapter
3, or the assembler output from Merlin or APW, you'll see it also is only three
bytes.

Because it’s not convenient to switch between 8- and 16-bit modes for
the ADC and other operations, most long addresses on the Apple IIGS are
loaded and stored as four bytes. This is more practical than trying to handle the
minimal three bytes that are required. Thus, although the high byte of the high
word is always zero, it’s still carried around in calculations for efficiency’s sake.

Program 8-1 and 8-2 are sample programs using the ADC instruction.
Note the use of the CLC before each ADC.

Program 8-1. Math Demo 1

1
2 *  MATH DEMO PROGRAM #1
3> MERLIN ASSEMBLER *
4
5
6 ORG $300
7
=0006 8 N1 EQU $06
=0008 9 N2 EQU $08
=000A 10 RSLT  EQU $0A
11
000300: 18 12 BEGIN CLC ; GET READY FOR ADDITION
000301: A5 06 13 LDA NI ; GET 1ST NUMBER
000303: 65 08 14 ADC N2 ; ADD 2ND NUMBER
000305: 85 0A 15 STA RSLT ; STORE RESULT
000307: 60 16 DONE RTS ; ALL DONE!

--End Merlin-16 assembly, 8 bytes, Errors: 0
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In the first program, the value in N1 is added to the contents of N2 and
stored in RSLT. In the second program, N1 is added to the immediate value
#$80, and is also stored in RSLT. Note the CLC before the ADC to insure an
accurate result. This routine could be used either as a subroutine in part of a
larger assembly language program, or called from BASIC after passing the val-
ues to locations 6 and 8.

The main disadvantage to all these programs is that we're limited to
one-byte values for both the original values and the result of the addition.
Thus, if the result exceeds $FF, the carry is ignored.

The solution is to use the Carry bit to create a two-byte addition routine
(see Program 8-3).

Notice that N1, N2 and RSLT are all two-byte numbers, with the second
byte of each pair being used for the high-order byte. This allows us to use val-
ues and results from $00 to $FFFF (0-65535).

Once the two low-order bytes of N1 and N2 are added, and the partial
result is stored, the high-order bytes are added. If an overflow was generated in
the first addition, the Carry will be set and an extra unit will be added in the
second addition. Note that the Carry remains unaffected during the LDA
N1+1 operation.

You may want to BLOAD the object code for Program 8-3, and then call
it from this BASIC program, Program 8-4.

Program 8-4. Math Demo 3A BASIC CALL

0 REM MACHINE ADDITION ROUTINE
10 HOME

20 INPUT “N1,N2?“:N1,N2

30 N1 = ABS (N1):N2 = ABS (N2)

40 POKE 6,N1 - INT (N1 / 256) * 256: POKE 7, INT (N1 / 256)
50 POKE 8,N2 - INT (N2 / 256) * 256: POKE 9, INT (N2 / 256)
60 CALL 768

70 PRINT : PRINT “RESULT IS: “; PEEK (10) + 256 * PEEK (11)
80 PRINT : GOTO 20

The ABS( ) statements on line 30 of Program 8-4 eliminate values less
than zero. Although there are conventions for handling negative numbers, this
routine is not that sophisticated.

Many times the number being added to a base address is known to al-
ways be $FF or less, so only one byte for N2 is needed. A two/one addition
routine is shown in Program 8-5.

Notice that if the carry is set, the value in N1+1 gets incremented by
one, even though the ADC says an immediate $00. The $00 acts as a dummy
value to allow the carry to do its job.
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To be successful, then, what we must come up with is a system that will
be consistent with the arithmetic of signed numbers as you now know it.

Program 8-6. Subtraction Example 1

1
2+ SUBTRACTION EXAMPLE #1 *
3 MERLIN ASSEMBLER *
4
5
6 ORG $300
1
=0006 8 NI EQU $06 ; $06,07
=0008 9 N2 EQU $08 ; $08,09
=000A 10 RSLT EQU $0A ; $0A,0B
11
000300: 38 12 BEGIN  SEC ; SET CARRY = °‘CLEAR BORROW’
000301: A5 06 13 LDA NI ; GET LOW BYTE OF 1ST VALUE
000303: E5 08 14 SBC N2 ; SUBTRACT LOW BYTE OF 2ND VALUE
000305: 85 0A 15 STA  RSLT ; PUT IN LOW BYTE OF ‘RSLT”
16
G00367: A5 67 17 LDA N1+l ; GET HIGH BYTE OF 1ST VALUE
000309: E5 09 18 SBC N2+1 ; SUBTRACT N2 WITH BORROW IF NEEDED
00030B: 85 0B 19 STA RSLT+1  ; PUT IN HIGH BYTE OF ‘RSLT’
20
00030D: 60 21 DONE RTS ; DONE!
22

--End Merlin-16 assembly, 14 bytes, Errors: 0

Program 8-7. Subtraction Example BASIC CALL

0 REM MACHINE SUBTRACTION ROUTINE

10 HOME
20 INPUT “N1,N2?":N1,N2
30 NI = ABS(N1): N2 = ABS(N2):REM NO NEG. NUMBERS YET
35 IF N2 > N1 PRINT “WE CAN'T DO THAT YET!:END
40 POKE 6,N1 - INT (N1 / 256) * 256: POKE 7, INT (N1 / 256)
50 POKE 8,N2 - INT (N2 / 256) * 256: POKE 9, INT (N2 / 256)
60 CALL 768
70 PRINT : PRINT “RESULT IS: “; PEEK (10) + 256 * PEEK (11)
80 PRINT : GOTO 20

The Sign Bit

A good first approach to the problem is to just arbitrarily decide to use one of
the 8 bits in a byte as a flag to indicate whether the number is positive or nega-
tive. If the bit is clear, the number will be positive. If the bit is set, the number
will be regarded as negative. We'll use bit 7 (the eighth bit) for this. Thus +5
would be represented
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Now let’s see if we're any closer to a working system.
+5 00000101
+ —8 11110111

—3 11111100 = —3
(00000011 = +3)

That worked. Let’s try another:

—5 11111010
+ +8 00001000

3 00000010 = 2 (plus Carry)

Well, we seem to be closer. At least our answers will be right half the
time. Don’t despair, there is a final solution, and that is to use what is called
the twos complement system. The only difference between this and the ones
complement system is that, after deriving the negative number by reversing
each bit of its corresponding positive number, we add one.

Let’s see how it looks.

For —5: For —8:
5 = 00000101 8 = 00001000
ones complement...
11111010 11110111
now add one...
—5 = 11111011 —8 = 11111000
Now, let’s try the two earlier operations.
+5 00000101 —511111011
+ —811111000 + +8 00001000
-3 11111101 = —3 +3 00000011 (plus Carry)

Does 1111101 equal —3?

starting number: 00000011 = 3

ones complement: 11111100
add 1: +1

twos complement: 11111101 = —3

It works in both cases. It turns out that twos complement works in all
cases. Most of the time, you probably won’t have much need for negative num-
bers, but hopefully you've at least gained a little insight to why integer vari-
ables are limited to the size that they are, and if you ever do have to deal with
negative numbers, you'll be prepared.

The best thing about this lesson, however, is that we can now use the
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In this case, as long as the high bit stays clear (no keypress), the BPL
will be taken and the loop continued. As soon as a key is pressed, bit 7 will be
set to one, and the BPL will fail. The strobe is then cleared and the return done.

The Open Apple ($C061) and Option ($C062) keys (equivalent to push-
buttons on joysticks) work in a similar way. If bit 7 of the corresponding mem-
ory locations are set, the button is being pushed. Program 8-9 shows an
example.

Program 8-9. Button Test

1
2 BUTTON TEST *
3 MERLIN ASSEMBLER *
4
5
6 ORG $300
7
=C061 8 PBO EQU $C061 ; PUSH-BUTTON 0 OR OPEN APPLE KEY

9

000300: AD 61 CO 10 CHECK LDA PBO ; GET STATUS BYTE

000303: 10 FB =0300 11 BPL CHECK ; AGAIN IF NO BUTTON PUSH
12

000305: 60 13 DONE RTS

--End Merlin-16 assembly, 6 bytes, Errors: 0

A variation on Program 8-9 is to check for the high bit set with the BMI
instruction:
CHECK LDA PBO ; GET STATUS BYTE

BMI DONE ; BRANCH IF PUSHED

BRA CHECK ; BPL WOULD WORK TOO...
DONE RTS

Short Loops with BMI and BPL

BPL and BMI are also used to terminate a loop of less than 128 cycles that
must end when the Y register passes 0. For example:

ENTRY LDY #$50 ; STARTING VALUE FOR THE LOOP
LOOP DEY Y=Y-1
BPL LOOP ; AS LONG AS Y IS POSITIVE (for example, < $80)
DONE RTS
or:
ENTRY LDY #$A0 ; STARTING VALUE FOR THE LOOP
LOOP INY Y=Y+ 1
BMI LOOP ; AS LONG AS Y IS NEGATIVE (for example, > $7F)
DONE RTS
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Chapter 9

Logical and Shift Operators

In this chapter you’ll see how to use two important types of commands: shift
operators and logical operators. Shift operators are somewhat easier to under-
stand, so we’ll start with them.

Shift Operators: ASL

In the last chapter, you saw how to do simple addition and subtraction. This
was done with the ADC and SBC instructions. Although the 65816 doesn’t spe-
cifically have a multiply and divide instruction, there are instructions that come
close and can be used to build an actual multiply or divide routine.

The shift commands give you the option of shifting each bit in the Accu-
mulator or a given memory location one position to the left or right. The first
two shift commands we’ll look at are ASL (Arithmetic Shift Left) and LSR
(Logical Shift Right).

ﬁ76543210+0
-

C

ASL
(Arithmetic Shift Left)

In the case of ASL, each bit is moved to the left one position, with bit 7
going into the Carry, and bit 0 being forced to a zero. In addition to the Carry,
the Sign and Zero Flags are also affected, depending on the resulting condition
of bit 6 and whether the entire result is zero or not. Here are some examples
showing the result of doing an ASL on given values, and the resulting status of
the Carry, Sign, and Zero flags. The binary representation of each number has
been spaced in the middle for easier reading.
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Logical Shift Right: LSR

The complement of the ASL command is LSR (Logical Shift Right). It behaves
identically, except that the bits all shift to the right.

0—»|76[|5]4(3(2|1]|0

LSR
(Logical Shift Right

This can be used to divide by multiples of 2. It’s also a nice way to test
whether a number is even or odd: Even numbers always have bit 0 clear; odd
numbers will always have it set. By doing an LSR followed by a BCC or BCS,
you can test for this. LSR also conditions the Sign and Zero flags.

In both LSR and ASL, one end or the other always gets forced to a zero.
Sometimes this is not desirable. The rotate commands—ROL and ROR (ROtate
Left and ROtate Right)—are the solution to this.

~}

76543210<—|[>76543210
B o

ROL ROR
(Rotate One Bit Left) (Rotate One Bit Right)

With these commands, the Carry not only receives the pushed bit, but its
previous contents are used to load the now-available end position.

ROL and ROR are used rather infrequently, but they do turn up occa-
sionally in math functions such as multiply and divide routines.

Addressing modes for the shift operations include the absolute modes
and indexed modes using the X register (with the exception of (MEM,X). The Y
register cannot be used as an index in any of the shift operations.

Logical Operators
If you have ever used a statements like these:

IF X>5 AND Y=1 THEN 100
IF X=5 OR A$="“WORD” THEN PRINT “HELLO”
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AND
B
0 1
0 0 0
A
1 0 1
0ANDO =0
0AND1 =0
1ANDO =0
1AND1 =1

This table can be used to define a new mathematical function, AND. A
mathematical function is just a set of rules for determining what numbers
should result (the output) whenever a defined operation (function) is done on a
given starting group of numbers (the input).

Many years ago, you learned four fundamental mathematical func-
tions—multiply, divide, add, and subtract—and to do so you memorized a set
of rules (or instant-recall answers) for each of the functions.

The Function AND

AND is a mathematical function also. In fact, the idea that mathematical func-
tions could simulate logic was quite the rage in Lewis Carroll’s (of Alice in
Wonderland fame) time, and a fellow named George Boole did quite a bit of
work in the area. It's Boole’s name that’s been given to this topic of ANDs and
ORs—which is called Boolean math.

It’s actually quite an interesting subject. In the same way that multiplica-
tion and division have real-world examples with miles-per-hour and how many
yards of cloth are needed for a dress, Boolean functions can be applied to areas
outside BASIC programs and the logic of true and false. For example, consider
this setup of a battery, a light, and two switches.

We’ll put the two switches in line with one another between the battery
and the light:

s
Switch A Switch B

Battery <> Light
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In this setup, the light will only come on when both switch A AND B are
on. You can quickly see that the physical analogy of switches and lights is
identical to the mathematical function of AND. It also should give you a clue
as to why AND is a very easy function to implement on a computer.

Once you’ve created a rule for dealing with 1’s and 0’s, you can apply
those rules to the bits in a binary number.

Does 5 AND 3 have meaning? It turns out that it does, although the an-
swer will not be 8. As we look at these numbers on a binary level, how to get
the result of 5 AND 3 will be more obvious:

A=5 0101
=3 0011

AANDB 0001=1

If you use the chart created earlier and apply it to each set of matching
bits in A and B, you will obtain the result shown. Starting on the left, two 0’s
in bit-position 3 (the fourth bit from the right) give zero as a result. For the
next two bits, only a single 1 is present, in each case still giving zero as a result.
Only in the last position do you get the necessary 1’s in both number’s 0-bits to
yield one as the result.

Thus 5 AND 3 does have meaning, and the answer is 1.

AND is used for a variety of purposes. These include:

» To force 0’s in certain bit positions.
* As a mask to let only 1’s in certain positions ““through.”

Using ANDed in a Program

When an AND operation is done, the contents of the Accumulator are ANDed
with another specified value. The result of this operation is then put back in
the Accumulator. The other value may either be given by way of the immedi-
ate mode, or held in a memory location. Here are some of the possible address-
ing modes for AND:

LDA #3880
AND #87F
AND $06
AND $300,X
AND ($06),Y

To better understand how AND is used, let’s consider this scenario:

Suppose you have a program that gets a key from the keyboard, and
then checks to see if it’s a certain command. Let’s suppose for a moment that
your looking for the letter A in an input command. Your program would proba-
bly look something like this:
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GETKEY LDA KYBD ; CHECK KEYBOARD
BPL GETKEY ; NO KEY YET
STA STROBE ; KEY GOT - CLEAR KYBD

CHECK CMP #“A” ; §C1 = “A”
BEQ ROUTINE ; THAT'S FOR US!
BNE GETKEY ; TRY AGAIN...

This seems to be a good start, but what about when the user types the A
key with the CAPS LOCK key up (lowercase a)? You could check for both keys:

CHECK CMP #“A” ; $C1 = “A”
BEQ ROUTINE ; THAT'S FOR US!
CMP #“a" ;$E1 i ua"

BEQ ROUTINE ; THAT'S FOR US TOO!
BNE GETKEY ; TRY AGAIN...

This would do the job for this particular key, but what if your program
has 50 commands? Do you want to do a double-check for each key? Probably
not. It would be nice if there was a way to turn all lowercase input characters
to uppercase in one step, before all the testing was done. The answer is to use
the AND command. To see how this works, look at the binary values for the
letters A and a:

A = $C1 = 1100 0001
a = $E1 = 1110 0001

bit 5

Notice that the only difference is that a lowercase a has bit 5 set to one. If we
could clear just this bit, the value would correspond to an uppercase A.

The way to do this is with the AND command, and to create what is
called a mask. A mask, in engineering and art terms, is something that only lets
certain parts of an image through. If we treat the bit pattern for the letter a as
an image, what we want is a mask that will not let the one in bit 5 through.
That can be accomplished like this:

LDA VALUE ; $E1 = “a”
AND #$DF ; $DF = %1101 1111
; Result = “A”

Here’s the process illustrated:

a = $E1 = 1110 0001
AND #$DF = 1101 1111
A = $C1= 1100 0001
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Notice that at each position, the binary version of $DF has a one (except
bit 5). This means that ones and zeros in the input value, $E1, come through
unchanged. However, the zero at bit 5 in the mask value, $DF, forces a zero in
the output value at the same position.

AND is almost always used to force zeros in a given position, and to let
the other data in the pattern through unchanged. The Merlin assembler lets you
use binary numbers as an operand by putting a percent symbol ( % ) in front of
the number, like this:

LDA VALUE ; $E1 = “a”
AND #%11011111 ; $DF
: Result = “A”

This makes it easier to see exactly what mask you're using.
In general, AND is used to force zeros in a value. This is done using a
mask with all bits set to 1 except for those which you wish to force to 0:

LDA MEM ; GET VALUE TO WORK ON
AND #MASK ; FORCE BITS TO 0
STA MEM ; PUT IT BACK IN MEMORY

Clear Bits and Words

There is also an instruction specifically for clearing bits in a byte or word in
memory, called TRB (Test and Reset Bits). This probably should have been
named TCB for Test and Clear Bits, but those engineers like to keep you guess-
ing. The T for test is a bit redundant too. It just means that it uses the bits in
the Accumulator just like the AND instruction does.

TRB acts just like AND, except that it will only clear one or two bytes in
memory. The result is not left in the Accumulator, although the mask is required
to be in the Accumulator for its use.

Here’s a program segment that converts a lowercase a4 to A in a memory
location:

LDA #%11011111 ; $DF = MASK
TRB MEM ; CONVERT MEMORY LOC. VALUE

BIT

The command somewhat related to AND is BIT. This is provided to allow a
program to determine the condition of specific bits in a byte or word. It also
has some secondary uses. When BIT is executed, quite a number of things hap-
pen. First, bits 6 and 7 of the memory location referenced are transferred di-
rectly to the Sign and Overflow bits. Since we’ve not discussed the Overflow
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flag, let me say briefly that it is bit 6 in the Status Register, and has two associ-
ated branch instructions BVC (Branch on oVerflow Clear) and BVS (Branch
on oVerflow Set). After a BIT instruction, BVC, BVS, BPL, and BMI may be
used to test the status of bits 6 and 7 in the referenced memory location. For
example:

BIT MEM ; TEST A MEMORY LOCATION
BPL ROUTINEl ; BRANCHIFBIT7 = 0
BMI ROUTINE2 ; BRANCHIFBIT7 =1
BVC ROUTINE3 ;BRANCHIFBIT6 =0
BVS ROUTINE4 ; BRANCHIF BIT 6 = 1

The most frequent use of the BIT instruction is to either test a memory
location, like the keyboard byte, $C000 without affecting the contents of the
Accumulator, or to access a softswitch, like the keyboard strobe, again without
affecting the contents of the Accumulator. This program illustrates both:

LDA #%X” ; CHARACTER “X”
KYBD BIT $C000 ; WAIT FOR KEYPRESS
BPL KYBD ; NONE YET.
BIT $C010 ; CLEAR KEYBOARD STROBE
JSR COUT ; PRINT “X” NO MATTER WHAT KEY PRESSED.

The other use of BIT is to test to see if one or more bits in the memory
location match bits set in the Accumulator. If one or more do, the Zero flag will
be cleared (Z=0). If no match is made, the Zero flag will be set (Z=1). This is
done by ANDing the Accumulator and the memory location, and conditioning
the zero flag depending on the result. The confusing part is that the test (BNE
for a match) may seem backward. Alas, it’s unavoidable—it’s just one of those
notes to scribble in your book so as to remember the quirk each time you use it.

Here’s an example to test for bits 0 or 2 set:

LDA #805 ; 0000 0101
BIT MEM
BNE MATCH ; ONE OR BOTH BITS MATCH

BEQ NOMATCH ; NEITHER BIT IN MEM IS “ON"

BIT is usually used to test for a single bit being on. If you want to test
for all of a group of bits being on, the AND instruction can be combined with a

compare.
To test for both bits 6 and 7 being on:
LDA MEM
AND #$C0 ; 1100 0000 = BITS 6 & 7
CMP #$C0 ; COMPARE TO SAME VALUE
BEQ MATCH ; ONLY IF “BOTH” BITS ON

BNE NOMATCH ; IF BOTH NOT ON
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This last example is somewhat subtle, in that the result in the Accumu-
lator after the AND will only equal the value with which it was ANDed if each
bit set to one in the test value (the AND operand) has an equivalent bit on in
the Accumulator (loaded from the memory location).

Take note that TRB and TSB (discussed below) both condition the Zero
flag in the same way as the BIT instruction, and so could be used for a test, but
they also re-write the tested bits in memory.

ORA and EOR

These two commands bring up an interesting error of sorts in the English lan-
guage, and that is the difference between and inclusive OR and the exclusive
OR. When you say “I'll go to the store if it stops raining OR a bus comes by,”
it has two possible interpretations. The first is that if either event happens, then
the result will happen. This also includes the possibility that both may happen.
This is called an inclusive OR type statement.

The other possibility is that the conditions to be met must be one or the
other but not both. This might be called the most pure form of an or statement.
It’s either night OR day, but never both together. This would be called an ex-
clusive OR statement.

In assembly language, the inclusive or function is called ORA for OR
Accumulator. The other is called EOR for Exclusive OR. Here are the charts
for both functions:

ORA
Acc.
0 1
0 0 1
Memory
1 1 1
EOR
Acc
0 1
0 0 1
Memory
1 1 0
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First, consider the chart for ORA. If either or both corresponding bits in
the Accumulator and the test value match, then the result will be a 1. Only
when neither bit is 1 does a 0 value for that bit result. The main use for ORA is
to force a 1 at a given bit position. In this manner it is the complement to the
AND operator (which forces 0’s).

Here are some examples of the effect of the ORA command:

Example #1: Example #2:

Accumulator: $80 1000 0000 $83 1000 0011
ORA Value: #$03 0000 0011 #$0A 0000 1010
Result: $83 1000 0011 $8B 1000 1011

Use of ORA also conditions the Sign and Zero flags, depending on the
result, which is automatically put into the Accumulator.

_/

Switch A
Battery <> Light

Switch B

In this setup, the switches are in parallel, giving the electricity a choice
of paths to the light. The light will only come on when either switch A OR B
are on (inclusive).

To specifically set bits in a memory location to ones, there is a special
purpose instruction TSB (Test and Set Bits). This is used by loading the Accu-
mulator with a mask where the bits are set at each position that you want
forced to one in the memory location. For example, if you wanted to set the
high bit of a memory location, the following would do it:

LDA #$80 ; %1000 0000 = HIGH BIT SET
TSB MEM ; SET HIGH BIT IN MEMORY

Like TRB, the result is left only in memory, and the Accumulator is not
changed.

Exclusive OR: EOR
The EOR command is somewhat different in that the bits in the result are set to
1 only if one or the other corresponding bits in the Accumulator and test value

are set to 1, but not both.
EOR has a number of uses. The most common is in encoding data. An
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interesting effect of the table given is that for any given test value, the Accu-
mulator will flip back and forth between the original value and the result each
time the EOR is done. For example:

Example #1: Example #2:
First pass:
Accumulator:  $80 1000 0000 $83 1000 0011
ORA Value: #$03 0000 0011 $0A 0000 1010
Result: $83 1000 0011 $89 1000 1001

Second pass:

Accumulator:  $83 1000 0011 $89 1000 1001
ORA Value: #$03 0000 0011 $0A 0000 1010
Result: $80 1000 0000 $83 1000 0010

Program 9-1. Hi-Res Screen Inverter

1

2 * HI-RES SCREEN INVERTER

3> MERLIN ASSEMBLER *

4

5

6 ORG  $300

7

=0006 8 PTR EQU $06 ; $06,07
=2000 9 SCREEN EQU $2000 ; HIRES PAGE 1

10
000300: A9 20 11 ENTRY LDA #>SCREEN ; HIGH ORDER BYTE OF $2000
000302: 85 07 12 STA PTR+1 ; SET HIGH BYTE OF PTR
000304: A9 00 13 LDA #<SCREEN ; LOW ORDER BYTE OF $2000
000306: 85 06 14 STA PIR ; SET LOW BYTE OF PTR

15

16 * SETS PTR (6,7) TO $2000

17
000308: A0 00 18 START  LDY #$00 ; INIT Y-REGISTER

19
00030A: B1 06 20 LOOP LDA (PTR).Y ; GET EXISTING BYTE
00030C: 49 FF 21 EOR #$FF ; FLIP BITS
00030E: 91 06 22 STA  (PTR),Y ; PUT BACK IN MEMORY
000310: C8 23 INY ;Y=Y+1
000311: DO F7 =030A 24 BNE LOOP ; BRANCH WHILE Y = $1 TO $FF

25
000313: E6 07 26 NXT INC PTR+1 ; PTR GOES FROM $2000 TO $2100, ETC.
000315: A5 07 27 LDA PTR+1
000317: C9 40 28 CMP  #840 ; STOP WHEN PTR = $4000
000319: 90 ED =0308 29 BCC START ; NOT THERE YET

30
00031B: 60 31 EXIT RTS

--End Merlin-16 assembly, 28 bytes, Errors: 0
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This phenomenon is used extensively in Apple IIGS graphics to allow
images to overlay each other, without destroying the image below.

EOR can also be used to reverse specific bits. Simply place 1’s in the po-
sitions you wish reversed. EOR #$FF reverses all the bits in a byte.

Program 9-1 uses EOR to reverse, and then restore the entire Hi-Res
screen. It's just a variation on Screen Clear #1A in Chapter 10. Use Program 9-
2 to draw the screen (or BLOAD your favorite picture), and then change the
image.

Program 9-2. Hi-Res Screen Inverter Loader

10 PRINT CHR$ (4);“BLOAD HIRES.INVERT,A$300”
20 HGR

25 HCOLOR= 3

30 HPLOT 0,0

40 FOR1 = 1T0 50

45 HCOLOR= RND (1) * 7: HPLOT X,Y

50 X = RND (1) * 279

55Y = RND (1) * 159

60 HPLOT TO X,Y

70 NEXT 1

100 HOME : VTAB 22: PRINT “PRESS A KEY, ESCAPE TO END”
105 GET A$

110 IF A$ = CHR$ (27) THEN TEXT : END

120 CALL 768: GOTO 100

Program 9-3 is a final example of how to use a shift operator. This rou-
tine prints a number in the binary form to the screen. It works by successively
shifting each bit in the byte into the Carry. At that point, depending on
whether it was a one or a zero, the routine prints a one or a zero plus a space.
You can delete the part that prints spaces if you want a more compact display.

Program 9-4 will load the object file, and input the numbers to be
printed.
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Program 9-3. Binary Number Printer

1
2 BINARY NUMBER PRINTER
3= MERLIN ASSEMBLER *
4
5
6 ORG $300
7
=0006 8 NUM EQU $06
=0007 9 TEMP EQU $07 ; TEMPORARY WORK AREA
10
=FDED 11 cCouT EQU $FDED
12
13
000300: A5 06 14 PRBIT LDA NUM ; GET YALUE TO PRINT
000302: A2 08 15 LDX #$08 ; START COUNTER FOR # OF BITS
16
000304: 0A 17 TEST ASL ; GET A BIT FROM THE BYTE
000305: 85 07 18 STA TEMP ; SAVE THE ROTATED BYTE FOR A WHILE
000307: 90 OC =0315 19 BCC PZ ; GOTO PRINT ‘0’ IF BIT IS CLEAR
20
000309: A9 B1 21 PO LDA #“1”
00030B: 20 ED FD 22 JSR  cout ; PRINTA T
00030E: A9 A0 23 LDA #$A0 ; SPC
000310: 20 ED FD 24 JSR  CouT ; PRINT THE ‘SPACE’
000313: BO 0A =031F 25 BCS NXT ; GO FOR THE NEXT BIT IN THE BYTE
26
000315: A9 BO 21 Pz LDA #“0”
000317: 20 ED FD 28 JSR  COUT ; PRINT THE ‘0’
00031A: A9 A0 29 LDA  #$A0 ; ‘SPC
00031C: 20 ED FD 30 JSR  CouT
31
00031F: A5 07 32 NXT LDA TEMP ; GET THE ROTATING BYTE BACK
000321: CA 33 DEX X=X-1
000322: D0 E0 =0304 34 BNE TEST ; SHIFT IT AGAIN IF WE'RE NOT DONE
35
000324: 60 36 EXIT RTS
37

--End Merlin-16 assembly, 37 bytes, Errors: 0

Program 9-4. Binary Number Printer Loader

10 PRINT CHR$ (4);“BLOAD BINARY.PRINT,A$300"
20 INPUT “NUMBER TO CONVERT?*;N

25 IF N = 0 THEN END

30 POKE 6,N: REM STORE NUM FOR ROUTINE

35 PRINT N;” = ¢

40 CALL 768: REM CONVERT AND PRINT

50 PRINT : PRINT : GOTO 20
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Trouble Shooting
Computer repair specialists use the binary nature of numbers to help track
down the cause of a hardware-related computer errors. For example, suppose
you had a parallel printer that always printed an at sign ( @ ) where spaces
should be. The decimal ASCII values for a space is 96 and 64 for the @. This
information doesn’t appear to tell you very much.

Now look at the numbers in binary:

Space: 0110 0000
©@: 0100 0000

In examining the bit pattern, you can see that the patterns are identical,
except for bit 5. This indicates that the signal for bit 5 is not coming through,
and that checking the printer cable wire or connector that is associated with bit
5 would be a good idea.

Most disk- and memory-related data errors are caused by a similar prob-
lem, that is, a given bit flips from a one to a zero or vice versa. In modem com-
munications, where data is transmitted over a phone line, this type of error is
very likely. It's easy to miss a signal and drop a one to a zero, or for unex-
pected static to turn a zero into a one. To correct errors like this in transmis-
sion, a system of checksums has evolved. A checksum is just a number value
used to verify the accuracy of transmitted, or even stored, data.

For example, we could design a system where after every 10 bytes were
transmitted, we would then send the sum of those ten bytes. If the receiving
computer added up the values for the bytes received, and got a different sum, it
would know an error had occurred, and the data could be retransmitted. There
are a lot of different error-checking systems, but most follow this general
principle.

You can also build a checksum into your own programs, so that the run-
ning program can check to make sure that no damage has occurred to the pro-
gram or the data it uses. The Merlin assembler has a special pseudo-op, CHK
(CHecKsum) that stores a checksum byte in the program at the point where
the instruction is used. The checksum in Merlin is generated by doing
successive EORs on each byte of the program, and carrying the result of each
EOR along for the next one, until the entire program has been scanned. A sim-
ple version would look something like this:

LDA BYTEI ; GET 1ST BYTE

EOR BYTE2 ; EOR WITH 2ND BYTE, KEEP RESULT
EOR BYTE3 ; EOR WITH 3RD BYTE, KEEP RESULT
EOR BYTE4 ; ETC.
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The final result makes up the checksum byte. Program 9-5 is an example
that checks itself to make sure everything’s the way it should be. Program 9-6
is an Applesoft BASIC that checks the checksum program.

On the first pass, you should get the message “Program Checks OK.”.
Line 30 of the BASIC program then POKEs a foreign byte into the program, in
the middle of the error message, just so you can see something’s changed. On
the second run of the program, the program detects that it has been changed,
and prints out the error message.

If you're writing programs that others will have to type in, such as in a
club newsletter or magazine article, you may want to include the Merlin
checksum at the end of each your listings so that the person typing the pro-
gram in can make sure there have been no errors. On longer listings in the re-
mainder of this book, a CHK byte will be included at the end so you too can
make sure there are no errors in your listing. (COMPUTE! Publication’s MLX
and Automatic Proofreader programs use a similar checksum technique to the
one described here except that MLX and the Automatic Proofreader check each
line as it is entered.)

Your Apple IIGS also has a checksum, which is in the last byte of the
Applesoft BASIC ROM area at $F7FF. This byte is checked by the internal di-
agnostic routines that run when you press Control-Option-Open-Apple-Reset.
Some copy-protected programs do a checksum on the entire Applesoft BASIC/
Monitor ROMs when they run to make sure they’re not on a non-standard ma-
chine. This really isn't a good idea though, the programs then stop running
when Apple updates a ROM, or brings out a new machine.

Program 9-5. Checksum Demo

* PROGRAM CHECKSUM DEMO *

1
2
3 MERLIN ASSEMBLER *
4
5
6 ORG $300
1
=0006 8 PTR EQU $06
=0008 9 TEMP EQU $08 ; TEMPORARY WORK AREA
10
=FDED 11 couT EQU $FDED
12
000300: A9 00 13 CHECK LDA #<CHECK ; LOW BYTE OF BEG OF PROG.
000302: 85 06 14 STA PIR
000304: A9 03 15 LDA #>CHECK ; HIGH BYTE OF BEG OF PROG.
000306: 85 07 16 STA  PTR+1
17
000308: 64 08 18 STZ TEMP ; STORE STARTING VALUE
19
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Program 9-6. Checksum Demo Loader

10 PRINT CHR$ (4);“BLOAD CHECKSUM.TEST,A$300”
20 CALL 768: REM RUN THE TEST

30 POKE 861, ASC (“x') + 128: REM CREATE ERROR
40 CALL 768: REM RUN TEST AGAIN
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Chapter 13
ProD0S

ProDOS, which stands for Professional Disk Operating System, is a set of
routines loaded into RAM when the computer first starts up from the disk. The
routines are responsible for opening and reading files and for writing data to
the disk. Without a disk operating system in the machine, the Apple IIGS
doesn’t inherently know how to read a disk. You can prove this to yourself by
turning on the computer with no disk in the drive, and then pressing RESET to
go to Applesoft BASIC without starting up a disk. If you type CATALOG at
this point, you'll get a SYNTAX ERROR because the computer, without a DOS
loaded, doesn’t know anything about talking to the disk.

There are two main versions of ProDOS, ProDOS 8 and ProDOS 16.
ProDOS 8 was originally designed for the Apple Ile and Ilc, which use the
65C02 microprocessor. In this processor, the Accumulator, registers, and mem-
ory are always accessed one byte at a time, so these are called 8-bit machines.
ProDOS 8 will also run on the Apple IIGS, and is the required disk operating
system for Applesoft BASIC.

ProDOS 16 is the latest incarnation of ProDOS, and it’s designed specifi-
cally for the Apple IIGS. It will not run on a Ile or IIc, nor with Applesoft
BASIC. Fortunately, the user doesn’t have to worry about which operating sys-
tem is required by a given program, because the Apple IIGS automatically loads
the correct operating system when a program is loaded.

ProDOS 8

To get an idea of how ProDOS 8 is set up in the computer, let’s first consider a
hypothetical disk, with ProDOS 8 (named PRODOS), BASIC.SYSTEM, and an
Applesoft BASIC program named STARTUP on the disk. This disk can be
booted on either a IIGS, Ile, or Ilc.

When the disk is first booted, the disk drive hardware is preprogrammed
to read in the first two blocks of data on the disk (blocks 0 and 1) and to exe-
cute this data as a program. This very small program then reads in more infor-
mation, and the process continues until an entire application program (in this
case STARTUP) is loaded and running. To the original designers of disk systems,
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this process of one bit of code loading some more that loads even more had an
almost magical feeling to it, reminding them of the phrase pulling yourself up
by your bootstraps. This inspired the term booting for starting up a disk.

The entire ProDOS 8 boot process goes like this: First, the code stored
on the disk in blocks 0 and 1 is loaded and run. This miniprogram looks for a
file in the main (root) directory named PRODOS. If it can’t find exactly that
name, or if some other problem occurs while it’s trying to load and run that
file, you'll get the Unable to Load ProDOS error message.

On our hypothetical disk, the file PRODOS is ProDOS 8, and the disk
operating system itself is loaded into the computer. This isn’t the end, though.
ProDOS 8 doesn’t understand CATALOG either. In fact, it has no user inter-
face at all, let alone a friendly one. It has various routines that access the disk,
but they all expect to be called with a JSR from some machine language pro-
gram. Many Applesoft BASIC programs, on the other hand, are written with
statements like PRINT CHR$(4);" CATALOG"”, that the programmer expects
will make something happen.

ProDOS 8 is called a kernel, in that it’s a central part of the operating
computer, but it contains none of the niceties that make up a complete program.
To bridge this gap, ProDOS 8 on our disk loads and runs BASIC.SYSTEM,
which in turn looks for a file called STARTUP that is an Applesoft BASIC file.

BASIC.SYSTEM need not be run. ProDOS 8 in general just looks for the
first file in the main directory whose name ends in .SYSTEM and whose file
type is SYS ($FF). Although BASIC.SYSTEM was the system file on our hypo-
thetical disk, it need not be. A program like AppleWorks, or any other applica-
tion program, has its own system file as the first system file on the disk, and it
doesn’t need BASIC.SYSTEM or any Applesoft BASIC program at all on the disk.

Writing .SYSTEM Files

So, how do you write your own stand-alone program that’s a SYSTEM file un-
der ProDOS 8? It’s actually quite simple. There are only a few things you need
to know:

1. SYSTEM files are automatically loaded starting at memory location $2000. If
your program is not totally position independent (if it has even one internal
address reference), it must be assembled with an ORG $2000.

2. The filetype of the object file must be $FF (SYS). In Merlin, the DSK and
TYP directives will take care of this. In APW, you must use the MAKEBIN
and FILETYPE commands.

3. Instead of ending with an RTS, you must execute a call (JSR) to ProDOS,
telling it you're finished. This Quit Call lets ProDOS return control to a pro-
gram selector or any other program that started your application. You should
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never end a program by telling the user to reboot, or, worse yet, by clearing
memory and forcing a reboot.

The discussion that follows assumes you're familiar with ProDOS direc-
tory structure (root directories and subdirectories), the meaning of different file
types, and so forth. This discussion will briefly introduce you to some of the
basic rules for working with ProDOS, and it will give you an idea of what’s in-
volved in dealing with ProDOS from assembly language.

The Machine Language Interface: MLI

To make using ProDOS from machine language as easy as possible, the design-
ers came up with a standard procedure to make any given call (JSR) to
ProDOS. This common calling point (and way of using ProDOS) is called the
Machine Language Interface (MLI). The general procedure is:

1. Call the MLI entry point. This is always done with a JSR $BF00.

2. The JSR is immediately followed by three bytes that encode the desired
ProDOS command. The first byte is the command code itself, followed by
two more bytes that form a pointer to a larger block called the parameter list
or parameter table (parm table). The parameter list may contain things like
the name of the file to open, and how many bytes to read. When the
ProDOS call returns, it always resumes execution immediately after these
three bytes. Program 11-1, the Stack Indirect Indexed Sample, showed a way
of displacing the return address after a JSR, and this is similar to what
ProDOS does with an MLI call.

3. After the three data bytes, there is usually a BCS ERROR instruction.
ProDQS sets the Carry if an error occurs, and it stores the error code in the
Accumulator. The BCS test will then branch to your own error routine to
take appropriate action. If no error occurs, the carry will be clear and your
program will continue. Notice that you are on your own now, and no longer
enjoy the support of Applesoft BASIC and BASIC.SYSTEM to handle errors
and print messages. If you want a CATALOG in your own SYSTEM type
program, you’ll have to write it yourself.

The Simplest Program

The first SYSTEM program (Program 13-1) we’ll write that uses ProDOS 8 will
be just about the simplest possible: It will clear the screen, ask for a keypress,
and then do the Quit Call. The command code for a Quit is $65.
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Program 13-1 can be tested by going to a program selector like the Ap-
ple Program Launcher, DeskTop, or your favorite program selector, and then
choosing P8.SYSTEM in the selector menu. When you press a key, you auto-
matically should be returned to the selector program. The name of this file,
P8.SYSTEM, has no connection to the file P8 on your Apple IIGS System Disk,
other than we are just using the characters P8 in these examples to indicate
that a ProDOS 8 file is being used.

Notice that every ProDOS 8 SYSTEM file starts up in the total 8-bit
mode, just as would a routine you were calling from Applesoft BASIC.

Looking at the source listing, lines 14 and 15 show how to create a file
with a specific file type in Merlin. The assemble-to-disk feature was described
in Chapter 4. The TYP (file TYPe) directive on line 15 should immediately fol-
low the DSK directive; it tells Merlin what the file type of the object file should
be. For a SYS file, this should be $FF. Other ProDOS file types are listed in Ta-
ble 13-1. Remember that when assembling to disk, you no longer have to save
the object file manually at the main menu of the Merlin assembler. Of course,
you will still have to save the source file after you've typed it in.

The program itself starts by clearing the screen, printing a message, and
then waiting for a keypress. I used the BIT instruction (see Chapter 9) more for
variety than necessity.

On line 30 is the JSR to MLI (defined with an Equate at the beginning as
$BF00). The DFB $65 on line 31 is a Merlin pseudo-op that assembles as only a
single byte, in this case the $65 for the Quit command. DFB (DeFine Byte) is a
data storage pseudo-op, similar to HEX, and is used whenever you want to put
a single byte, whose value may be defined by a label, in your program. Line 32
uses the DA pseudo-op, first mentioned in Chapter 10, that stores two bytes in
address form (low-order byte first). In this case the address is a pointer to the
parameter list (PARMTBL at $2021). These bytes are followed by a BCS to an
error routine, which, if everything is assembled correctly, will never be taken.
The BRK instruction on line 34 is likewise unused since a no-error Quit will
never actually return. In an assembly listing, it is best to use the instruction
BRK $00 (although just BRK with no operand is legal). This is because the
monitor always lists a BRK plus the byte which follows. If you use just BRK,
you’ll have trouble listing your programs with the monitor. The purpose of the
BRK is to halt the program if something is wrong. In this case, the only proba-
ble cause is if you mistyped the quit instruction, and ProDOS returned an error
code for some other command.

The structure of all ProDOS parameter lists, such as PARMTBL on line
36, follow a general pattern. The first byte in the table indicates the number of
parameters in the list, not the number of bytes. Since Quit, or any other
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ProDOS command, already knows how many parameters it requires, this first
byte is mainly for internal error checking by the MLI handler.

The byte on line 37 is a single-byte code for the type of quit call being
made. For the standard, no-frills ProDOS 8 quit call, this should be zero. This
will return you to the program launcher (if one is used) directly. There is also
another type of quit, called the ProDOS 8 Enhanced Quit, that can be used if
you boot ProDOS 16 first. In our example of the disk where PRODOS is
ProDOS 8, this is not an option. The next five bytes are not used for a standard
ProDOS 8 quit, so are set to zero.

It is essential that you use precisely the correct number of bytes, and ap-
propriate values, in the complete MLI call. If you use a DA on line 31 or a DFB
on line 32, or if you use the incorrect structure in the parameter list, very
strange and definitely unpredictable things will happen. Ninety percent of all
ProDOS programming errors stem from incorrect MLI calls. Consider yourself
warned.

APW users. If you're using APW, Program 13-2 is the corresponding list-
ing for P8.SYSTEM. After the ASML assembly (see Chapter 5), first type
MAKEBIN P8.SYS. This will convert the output EXE file into a binary file that
loads at $2000. Then type FILETYPE P8.SYSTEM SYS to change the filetype to
$FF (SYS). The file can then be launched from a program selector as described
earlier.

The main differences between the APW version and the Merlin listing are
as follows: First, to make sure the high bit is set on the print statements, the
APW has the assembler directive MSB ON. APW also assumes that everything
starts off in 16-bit mode. Since this is a ProDOS 8 file, we must include the
directives LONGA OFF and LONGI OFF to tell the assembler that the
microprocessor will be in the 8-bit mode. If this step is omitted, LDY #$00, for
example, would be assembled as A0 00 00 (three bytes) instead of A0 00 (two).

Finally, APW doesn’t have the DA or DFB pseudo-ops, but instead uses
the generic DC instruction, which is qualified by the leading characters in front
of the operand. Leading characters I1 tell it to assemble a single byte; 12 speci-
fies two bytes. Be very careful when constructing your MLI calls—it is very
easy to use the wrong byte length and mess up the entire call.

The APW’s assembly is two bytes longer than Merlin’s. This is because
APW assembled the BRK instructions as two-byte instructions, whereas Merlin
assembled them as just one byte. Because a BRK stops program execution no
matter what follows it, the use of one or two bytes is pretty much a program-
mer preference. You can force a two-byte BRK instruction in Merlin by includ-
ing the byte you want used as the second byte, as in

BRK $00
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Program 13-1. Simple P8 System File

002000:

002003:
002005:
002008:

00200A:
00200D:
00200E:

002010:
002013:
002015:

002018:

00201B:
00201C:
00201E:

002020:

002022:
002023:
002024:
002026:
002027:

002029:

00202B:
00202F:
002033:
002037:
00203B:

=BF00
=FDF0

FC58

=C000
=C010

00
00
00
cC
C5
Cs

D9

FC

20
=2010
FD

=2005

Co
=2010
Co

BF

=2029

¢ C1
A0 DO
D3 D3
A0 CB
A0 AD

OO0 =3 Tk LN =

. SIMPLE P8 SYSTEM FILE *
* MERLIN ASSEMBLER .
MLI EQU $BF00
COUT  EQU $FDFO
HOME EQU $FCS8
KYBD  EQU $C000
STROBE EQU $C010
ORG  $2000
DSK PS8.SYSTEM
TYP $FF : SYSTEM FILE TYPE
START  JSR HOME ; CLEAR SCREEN
PRINT  LDY #8500 : INIT Y-REG
LOOP  LDA MSSGY  ;GET CHAR TO PRINT
BEQ GETKEY
JSR  COUT : PRINT IT
INY ; NEXT CHAR
BNE LOOP ; WRAPAROUND PROTECT
GETKEY BIT KYBD : KEYPRESS?
BPL GETKEY  ; NOPE
BIT STROBE  ; CLEAR KEYPRESS
QUIT  JSR MLI : DO QUIT CALL
DFB  $65 : QUIT CODE
DA  PARMTBL ; ADDRESS OF PARM TABLE
BCS ERROR  ; NEVER TAKEN
BRK $00 : SHOULD NEVER GET HERE ...
PARMTBL DFB 4 : NUMBER OF PARMS
DFB 0 ; QUIT TYPE: 0 = STD QUIT
DA $0000 : NOT NEEDED FOR STD QUIT
DFB 0 : NOT USED AT PRESENT
DA $0000 : NOT USED AT PRESENT
ERROR BRK $00 : WE'LL NEVER GET HERE?
MSSG  ASC “PLEASE  PRESS A KEY ->*,00
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00203F: BE 00
45
002041: D2 46 CHK ; CHECKSUM FOR LISTING

End Merlin-16 assembly, 66 bytes, errors: 0

Program 13-2. Simple P8 System File for APW

0001 0000

0002 0000 * SIMPLE P8 SYSTEM FILE *

0003 0000 * APW ASSEMBLER *

0004 0000

0005 0000

0006 0000 KEEP  P8.SYSTEM

6007 0000 MSB ON

0008 0000

0009 0000 LONGA OFF

6010 0000 LONGI  OFF

0011 0000

0012 0000 ORG $2000

0013 0000

0014 0000 MAIN START

0015 0000

0016 0000 MLI EQU $BF00

0017 0000 couTt EQU $FDF0

0018 0000 HOME EQU $FC58

0019 0000 KYBD EQU $C000

0020 0000 STROBE EQU $C010

0021 0000

0022 0000

0023 0000 20 58 FC ENTRY ISR HOME

6024 6003

0025 0003 A0 00 PRINT LDY #3500 ; INIT Y-REG

0026 0005 B9 2B 00 Loop LDA MSSG,Y ; GET CHAR TO PRINT
0027 0008 FO 06 BEQ GETKEY ; END OF MSSG.

0028 000A 20 FO FD ISR cout ; PRINT IT

0029 000D C8 INY ; NEXT CHAR

0030 000E DO F5 BNE LOOP ; WRAPAROUND PROTECT
0031 0010

0032 0010 2C 00 CO GETKEY  BIT KYBD ; KEYPRESS?

0033 0013 10 FB BPL GETKEY ; NOPE

0034 0015 2C 10 CoO BIT STROBE ; CLEAR KEYPRESS

0035 0018

0036 0018 20 00 BF QUIT ISR MLI ; DO QUIT CALL

0037 001B 65 DC 11'$65 ; QUIT CODE

0038 001C 22 00 DC 12’PARMTBL’ ; ADDRESS OF PARM TABLE
0039 001E BO 09 BCS ERROR ; NEVER TAKEN

0040 0020 00 00 BRK $00 ; SHOULD NEVER GET HERE...
G041 0022

0042 0022 04 PARMTBL DC s ; NUMBER OF PARMS
0043 0023 00 DC e ; QUIT TYPE: 0 = STD QUIT
0044 0024 00 00 DC 12°0000° ; NOT NEEDED FOR STD QUIT
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0045 0026 00 DC o ; NOT USED AT PRESENT
0046 0027 00 00 DC 12°0000° ; NOT USED AT PRESENT
0047 0029

0048 0029 00 00 ERROR  BRK $00 ; WE'LL NEVER GET HERE?
0049 002B

0050 002B DO CC C5 C1 MSSG DC C'PLEASE PRESS A KEY >’

0051 0040 00 DC nme

0052 0041

0053 0041 END

The Enhanced ProD0S 8 Quit

If ProDOS 8 has been started up by the normal ProDOS-16 boot process (de-
scribed in greater detail in the next chapter), there is another quit option avail-
able, called the ProDOS 8 Enhanced Quit. In this command, you can specify
the pathname of the program you wish to quit to. In this way, your program it-
self becomes a program launcher. The specified program can be either a
ProDOS 8 or ProDOS 16 system file (SYS or S16).

The only changes that need to be made to our original program to dem-
onstrate this are to change the quit type code from $00 to $EE, and to change
the two bytes following to a pointer to the pathname for the program we want
to run next. In the next example, program 13-3, we’ll assume the you have the
file P8.SYSTEM, which you assembled earlier, on the disk in the same directory
as PS.LAUNCHER.

When you start up this program from a program selector, it will first
prompt you for a keypress and then will quit by running P8.SYSTEM. Then,
when P8.SYSTEM does its quit call, control will return back to the program se-
lector that launched P8. LAUNCHER.

Notice that lines 46-48 define a string with a leading length byte.
ProDOS uses a standard protocol that expects every string it deals with to be-
gin with a length byte. This is sometimes also called a PASCAL-format string,
from an obvious heritage.

P8.LAUNCHER should give you some ideas as to how you could create
your own ProDOS menu program that presented the user with a list of pro-
grams to run. By changing the pointer on line 38, or by rewriting the string it-
self, you can create the pathname for any file you wish.

Program 13-3. ProDOS 8 Launcher Demo

1
2 * PRODOS 8 ‘LAUNCHER’ DEMO *
3 * MERLIN ASSEMBLER *
4
5

=BF00 6 MLI EQU $BF00

=FDF0 7 COUT EQU $FDF0
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002000:

002003:
002005:
002008:
00200A:

00200D:

00200E:

002010:
002013:
002015:

002018:
00201B:
00201C:
00201E:
002020:

002022:
002023:
002024:
002026:
002027:

002029:

00202B:

00202F:
002033:
002037:

00203B:

00203F:
002043:
002047:

00204B:

00204E:
(0204F:
002053:
002057:

002058:

=FC58
=C000
=C010

20
00

FC

20
=2010
FD
=2005
Co
=2010
Co

BF

=2028

C5 D3

45
46
47

48
49

HOME EQU
KYBD EQU
STROBE EQU

ORG

DSK
TYP

START JSR

PRINT LDY
Loor LDA

GETKEY BIT

QuIT JSR

PARMTBL DFB

ERROR  BRK
MSSG ASC

NAME DFB
ASC

NAMEEND
CHK

—End Merlin-16 assembly, 89 bytes, Errors: 0

ProD0OS

$FC58
$C000
$C010
$2000
P8.LAUNCHER
$FF ; SYSTEM FILE TYPE
HOME ; CLEAR SCREEN
#300 ; INIT Y-REG
MSSG,Y ; GET CHAR TO PRINT
GETKEY
cout ; PRINT IT
; NEXT CHAR
Loor ; WRAPAROUND PROTECT
KYBD ; KEYPRESS?
GETKEY ; NOPE
STROBE ; CLEAR KEYPRESS
MLI ; DO QUIT CALL
$65 ; QUIT CODE
PARMTBL ; ADDRESS OF PARM TABLE
ERROR ; NEVER TAKEN
$00 ; SHOULD NEVER GET HERE...
4 ; NUMBER OF PARMS
$EE ; QUIT TYPE = PRODOS 8 ENHANCED
NAME ; POINTER TO PATHNAME TO LAUNCH
0 ; NOT USED AT PRESENT
$0000 ; NOT USED AT PRESENT
$00 ; WE'LL NEVER GET HERE?

“PRESS A KEY TO LAUNCH P8.SYSTEM ->“,00

NAMEEND-NAME-1
“P8.SYSTEM”

; CHECKSUM FOR LISTING
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ProDOS File Types

Table 13-1 is a list of file types. It shows some values in use under ProDOS 8
and ProDOS 16. New file types can be defined by Apple at any time, so the list
is subject to additions.

Table 13-1. ProDOS 8 Filetypes
File Type Name  Description

$00 Uncategorized file

$01 BAD Bad block file

$04 TXT ASCII text file

$06 BIN General binary file

$08 FOT Graphics screen file

$OF DIR Directory file

$19 ADB AppleWorks Data Base file

$1A AWP AppleWorks Word Processor file
$1B ASP AppleWorks Spread Sheet file
$1C-$AF Reserved

$BO SRC APW source file

$B1 OB] APW object file

$B2 LIB APW library file

$B3 516 ProDOS 16 application program file
$B4 RTL APW runtime library file

$B5 EXE ProDOS 16 shell application file
$B6 ProDOS 16 permanent initialization file
$B7 ProDOS 16 temporary initialization file
$BS NDA New Desk Accessory

$B9 CDA Classic Desk Accessory

$BA Tool set file

$BB-$BE Reserved for ProDOS 16 load files
$BF ProDOS 16 document file
$CO-$EE Reserved

$EF PAS Pascal area on a partitioned disk
$FO CMD ProDOS 8 CI added command file
$F1-$F8 ProDOS 8 user-defined files 1-8
$F9 ProDQOS 8 reserved

$FA INT Integer BASIC program file

$FB IVR Integer BASIC variable file

$FC BAS Applesoft BASIC program file

$FD VAR Applesoft BASIC variables file

$FE REL Relocatable code file (Merlin)

$FF SYS ProDOS 8 system program file
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Other ProDOS 8 MLI Commands
There are a total of 26 ProDOS 8 MLI commands. These are shown in Table
13-2.

Table 13-2. ProDOS 8 MLI Commands

Alloc_Interrupt $40 Place a pointer to an interrupt-handling routine into the
system-interrupt vector table.
Dealloc_Interrupt $41 Remove pointer from system-interrupt table.

Quit $65  Quit current program back to another system program.

Read_Block $80 Read a data block (512 bytes) from the disk.

Write_Block $81  Write a data block to disk.

Get_Time $82 Read current time using ProDOS built-in routine.

Create $C0O0 Create a new file or directory.

Destroy $C1 Remove name from directory.

Rename $C2 Change name of file.

Set_File_Info $C3  Set file’s type and all other associated information (dates
an so forth).

Get_File_Info $C4 Read directory information entry for a file.

On_Line $C5 Get slot, drive and volume name of one or all active
volumes.

Set__Prefix $C6 Set pathname to be used as prefix.

Get_Prefix $C7 Get current prefix.

Open $C8 Prepare a file to be read from or written to.

Newline $C9  Specify character that terminates a file read, such as a car-
riage return.

Read $CA Read any number of bytes into memory from a file.

Write $CB  Write any number of bytes from memory into a file.

Close $CC Finish file access. Update file directory entry if necessary.

Flush $CD Like a close, but doesn't release file buffers.

Set_Mark $CE Change current byte position in file.

Get_Mark $CF  Get current byte position in file.

Set_EOF $D0  Set length of file.

Get_EOF $D1  Get length of file.

Set_Buf $D2  Assign new location of input/output buffer for file.

Get_Buf $D3  Get current location of input/output buffer of an open file.

An assembly language program uses ProDOS by using a combination of
the appropriate commands to accomplish a given task. Program 13-4 uses the
ProDOS 8 MLI system. It displays the contents of a text file on the screen. It's
very simplistic. It offers no way to catalog a disk or to determine the names of
the volumes online. It’s error handling is minimal at best. However, it does
present a working example of a program that opens a file, reads and displays
the data, and then closes the file and exits with the standard Quit call.
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It also shows how, in the course of writing an actual application, other
issues become as important as the program itself. Such issues include error
handling, the user interface, and concerns about the system state when your
program starts up. Anyone that has written a commerical program can tell you
that the user interface and error handling can take as much or more time and
program code as the primary functions of the program itself.

In addition, this program introduces quite a number of new concepts in
programming style, assembler pseudo-ops, and more.

After you've typed in the program, be sure to check the checksum value
generated by the assembly on line 173. The byte in your program should
match the listing, CHK = $89. The program is longer than any presented so
far, and verifying the checksum will help avoid program bugs caused by typo-
graphical errors.

The program operates in general by first asking for the name of the file
to be dumped. If the name includes a slash ( /) as the first character of the
name, it will use the input as the complete pathname, and use the volume indi-
cated. If the name doesn’t include a slash, it will append in the given name to
the current prefix, and it will try to open that file. If the file is not found, or
there is any error in opening and reading the file, the ProDOS MLI error code
will be printed, and you can try again. A Monitor routine, PRBYTE ($FDDA =
“PRint BYTE"), is used to print the error code as a hex number. This routine
prints the contents of the Accumulator when called.

As the file is displayed, you can start and stop the text scrolling by
pressing Control-S. You can exit the program by typing QUIT for the filename.

When you run the program, it will make some difference how you actu-
ally start up the program. If you BRUN the file from BASIC without having
ever specifically set the prefix from BASIC, there will be no default prefix when
FDUMP.SYS runs. Hence you'll have to include the volume name for the file
you want to examine. This is because BASIC.SYSTEM does not specifically set
the internal ProDOS pathname when it runs. On the other hand, if you run
FDUMP.SYS from a program selector like the Program Launcher or DeskTop,
these programs will set the internal ProDOS prefix when they launch the sys-
tem file, and the prefix will be set to whatever volume and directory where the
file itself is located.

A Closer Look

Now let’s take a closer look at Program 13-4. The first thing to notice is a new
initialization routine that you'll be seeing a lot of in the remainder of the list-
ings in this book. When you call a routine from BASIC, if something goes
wrong, and the program BRKSs in the Monitor somewhere, you can always
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press RESET or Control-C to get back to BASIC and try it again.

With a ProDOS system file, things are a little different. Now there’s no
way to cleanly exit back to the program launcher without executing the
ProDOS Quit command. The SETQUIT routine at the beginning of this pro-
gram sets up some insurance in the way of the Control-Y vector, which is set to
jump to our Quit code. If your program should break in the Monitor, you may
be able to recover control by pressing Control-Y while in the Monitor.

In fact, once you get this program working, you may want to try deliber-
ately placing a BRK instruction in the listing—perhaps around line 66—and
then try pressing Control-Y in the Monitor to verify that the technique works.
This will come in very handy as we move into ProDOS 16 and the tools where
a BRK is even more likely, and when avoiding having to reboot the entire ma-
chine will be very helpful.

Once the Control-Y vector is set up, the very next thing the program
does is check a memory location, $C01F = RD80COL (ReaD 80-COLumn sta-
tus), which tells it whether the 80-column display is active. When the 80-
column display is active, bit 7 of RD80COL will be set (BMI will work).

The reason this is required is because it’s possible to run FDUMP.SYS
from a program selector that is running in 80 columns, and to have the pro-
gram start up in 40 columns. This is a function of the program selector and the
Apple IIGS, rather than FDUMP.SYS itself. The problem is, if a SYSTEM pro-
gram is run from an 80-column display, and comes up in 40 columns, the
screen width byte, $21 (WNDWDTH = WiNDow WiDTH) will still be set to
80 columns. This in turn means that text will not be printed correctly on the
screen.

To prevent all of this, the program first checks to see if we're in 40 col-
umns (80 columns not active). If we are, the program stores the correct width,
40, in WNDWDTH.

Line 36 clears the screen and prints a prompt message. You'll notice that
the PROMPT section uses something new, a local label. Local labels are tempo-
rary labels you can use in a source listing for the destination of branches and
loops so you don’t have to keep thinking of new names.

In a small program, branching back to LOOP is fine. As the program
gets larger, you can probably use the labels LOOP2 and LOOP3, but after
awhile it’s rather pointless. Readable labels exist only to add meaning to an en-
try point. If the meaning is obvious, you may want to consider using a local la-
bel. A local label is designated by a colon ( :) followed by a number between 1
and 9. Local labels are remembered by the assembler only between real (global)
labels. For example, if there is a label like CHAR on line 41, the assembler
won't know where to assign the BNE :1 on line 43, because the label CHAR
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would be between the branch and the target local label. Restrictions and syntax
for local labels vary by assembler, so you should read your assembler manual
to find out all the particulars.

In the PROMPT print loop, you might also notice that we use a BNE at
the bottom of the loop on line 43. As the Y register is incremented, line 40 is
already testing for the end of the string, marked by a zero. Logically, we could
have used a BRA or JMP on line 43. However, in the interest of possible de-
bugging, a BNE is used instead of BRA or JMP so that if a zero was somehow
left out of the string text (MSSG1), the loop would terminate when Y wrapped
around to $00. If BRA or JMP were used, the loop would go forever with an
omitted zero, and the program would seem to hang up.

After the prompt, line 45 uses a Monitor routine, GETLN2, which will
do the equivalent of an INPUT command for you. It even supports a cursor
and editing with the arrow keys. Believe me, this is not something that would
be fun to have to write yourself. A JSR to the Monitor is much easier.

GETLN2 returns when the user presses Return, and the name entered is
in the input buffer, $200 to $2FF. The X register contains the length.

Now for the next tricky part. Later on, we're going to tell ProDOS where
the pathname typed in is located. Right now, it starts at location $200. Remem-
ber that ProDOS expects every string to begin with a length byte. What we
need to do is to rewrite the pathname in the input buffer with a length byte at
the beginning. Lines 46-53 illustrate a very direct solution to this. Remember
that when indexing a string of bytes, the value for the length is usually one
unit too large for accessing the last byte of the string.

For example, suppose starting at $200, you have the characters A at
$200, B at $201, and C at $202. The string has a length of 3. Assume we’ll use
indexed addressing of the form LDA $200,X to access each character. You can
see that if X = 3, we will be accessing byte $203 ($200 + 3), which is actually
the fourth, and non-existent character, of the string. Normally, in a loop that
just scans a string in the input buffer, the length, as such, is used as an upper
limit to tell you when to stop, by going one byte too far.

Back to our routine. We can use the fact that $200,X will start at one
byte past the end of the current string as a method to move the entire string to
the right one byte. Line 48 reads LDA INBUF—1,X. This is a neat trick for
accessing one byte previous to INBUF X. The first time through the loop, LDA
INBUF-1,X will pick up the last character of the string, and STA INBUE,X will
move it to right one byte.

This will continue until the entire name has been shifted. At that point,
location $200 is now empty; there we can store the length, which has been
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saved on the stack. Look this over carefully until you're confident you under-
stand exactly how it works. It’s not enough to memorize a hundred or so as-
sembly language commands—you must also start to learn how to combine,
manipulate, and use them to accomplish your own programming goals.

The next step is to see if the user typed QUIT. A quick check is made on
line 55 to see if the input string was four characters long. If it wasn't, there’s no
reason to do an exact check. It’s true that machine language is so fast that this
test is more aesthetic than necessary, but it’s purpose is to illustrate further
techniques of programming.

CHK2 on lines 58-64 actually tests the input string to see if it's QUIT.
There are a few new tricks here as well. First, look at the definition of MSSG1
on lines 160-163. Although a simple message like this could have been defined
with one ASC instruction, breaking it up like this lets us assign a label to spec-
ify the word QUIT. Otherwise, the characters would have to be stored else-
where a second time for the testing loop at CHK2. The LABEL-1,X addressing
mode is again used. Now that the string has been moved to the right one char-
acter in the input buffer, the characters are now found at $201 to $201 + X.
This is nice, because we can now test for X reaching zero as it is decremented.
If it isn’t immediately obvious why this is an advantage, consider the more tra-
ditional loop to scan the input buffer. In this case, we'll pretend we want to
convert an input string to entirely uppercase:

START JSR GETLN2 ; GET INPUT STRING
; DATA @ $200+, LEN IN X-REG.

DEX ; CORRECT X FOR INDEXED ADDRESS
LOOP LDA $200X ; GET A CHARACTER

ORA #8DF ; CONVERT TO UPPER CASE

STA $200X ; PUT IT BACK

DEX ; X=X-1

CPX #8FF ; WAIT FOR WRAPAROUND

BNE LOOP ; STILL IN THE LOOP
DONE RTS ; THAT’S ALL!

Notice how the X register must first be decremented to make the indexed
addressing work out. Then, the end-of-loop test must look for a wraparound
from $00 to $FF. You can’t do a BNE test, because then you’d leave out the last
pass of the loop for X = 0 (first character of the buffer). You can’t use a BMI
(another way to test for $FF by looking for the high bit set), because if the
starting length of the string is greater than $7F (127 characters), the high bit
will set when you start, and you’ll never loop back.

All this is avoided in the CHK2 routine, because the string has been
moved up, to $201 + X. This makes it easy to pick up each character and then
use a BNE loop test. The only problem now is that the data for QUIT at WORD
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runs from WORD to WORD+3. No problem. By addressing it as CMP WORD-
1,X, the addresses will match up properly, and the check routine will work.

Now for the actual ProDOS part of the program. OPEN on line 66 calls
the ProDOS Open command. The three-byte MLI data block contains $C8 (the
Open command), and a pointer to PARMTBL2, where the specifics of what file
to open and where to store the data are kept. Look ahead to lines 147-150 to
examine this table.

Line 147 holds the value 3, for the number of parameters for the Open
command. Line 148 holds the pointer to $200 where the pathname of the file
to open is stored. Line 149 tells ProDOS where a 1024-byte working buffer has
been assigned. It will use this to read in each block from the disk. Line 150 re-
serves room for a reference number byte that ProDOS will use to make sure
everybody is talking about the same file.

After the call (line 70), if the Carry is set, indicating a ProDOS error has
occurred, a message will be printed that includes the ProDOS MLI error code,
and the program will jump back after a keypress to ask for a new pathname.

Assuming there is no error in the Open command (Table 13-3 lists the
error codes), lines 69 through 74 then read in 255 bytes at a time. Because the
parameter table for both a Read and Close (which will be used shortly) are so
similar, the same table can be used for both calls. The only consideration that
must be made is to customize the beginning number-of-parameters value at the
beginning of the table for each call. Lines 69,70 do this by storing a 4, which is
the number of parameters for a Read table, at the beginning of PARMTBL3.

In looking at PARMTBL3 (lines 142-146), notice that a different buffer
area is used for the data to actually be read from the file. DOSBUF is a 1024-
byte buffer that ProDOS uses to manage the file it's reading. The information
in that buffer is not directly accessed by an application, but rather is requested
using the Read command. The Read command itself must specify a separate
buffer (BUFFER in this case). The buffer must be at least as large as the number
of bytes specified to be read by the Read command parameter table. Our
BUFFER is $100 bytes long.

The ProDOS buffer, DOSBUF, must also begin at a page boundary (even
multiple of $100 such as $2000, $2100, and $2200), so we use another Merlin
pseudo-op, DS (Defined Storage). This pseudo-op is used whenever you want
to set aside a large block of bytes within your program without having to use a
lot of instruction, such as HEX and DA. Merlin allows a special form of DS (DS
followed by a Z) which pads the object file with empty bytes until the next
page boundary. At that point ($2200 in our program), BUFFER is defined.
BUFFER itself didn’t have to be on a page boundary, but its length of $100
makes it compatible with sandwiching between the DSZ instruction and
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DOSBUF. Notice also that DOSBUF is just a label without an associated DS (or
anything for that matter). Normally, all the empty bytes specified by a DS in-
struction are also saved to disk when the object file is saved. Since DOSBUF is
at the end, and we don’t need to save the empty bytes as part of the file, line
164 accomplishes what we need: It assigns DOSBUF an address.

If there is no error on the Read command, lines 76-83 print out the
characters read. At some point, an error ($4C = End of File) will be generated
when the end of the file is reached. This error is specifically tested for, and a
branch to CLOSE is done. Lines 90-96 rewrite the first byte of PARMTBL3 to
correspond to the Close command parameter list, and then execute the Close
command.

You might think that the Read command would generate an error (End-
of-File error) when it reads the last few bytes of the file and reaches the end of
file marker, since it will be rare when the length of the file will be an exact
multiple of the number of bytes you're requesting for each read.

Fortunately, Read is a little more sophisticated than that. Part of the
Read parameter table is NUMREAD, which returns the actual number of bytes
read from the file. When Read reaches the end of a file, it returns the number
of bytes successfully read in the NUMREAD position, and it does not generate
an End-of-File error. It is only the next or any successive attempts to read the
file that will generate an error. Thus, you don’t have to worry about any special
case handling to print the last few remaining characters in a file after an End-
of-File error has occurred.

Finally, a PRESS A KEY prompt is printed, and the program goes back
to the beginning.

It is important that you try to understand each part of this program. All
ProDOS programming uses MLI calls and techniques like those used in this ex-
ample. It may seem complicated when you're reading the explanation, but it
will begin to make sense as you read and reread the source listing. Also, re-
member this: Assembly language programs of any substance usually involve
very lengthy listings. Remember—you're trying to build skyscrapers out of very
little building blocks, and it takes a lot of blocks to make a single wall, let alone
the entire building. The trick is to stand back and look at the main labels for
each routine and to try to get the big picture of what’s going on.

Error Codes

ProDOS MLI error codes are not the same as Applesoft DOS error codes, so
Table 13-3 may be helpful in testing the program.
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Table 13-3

Error Code Meaning

$01
$04
$25
$27
$28
$2E
$40
$42
$43

$44
$45
$46
$47

$48
$4A
$4B

$4C
$4D

$4E

$50
$51

$52
$53
$55
$56

$57
$5A

Invalid MLI command number was used.

Incorrect number of parameters in PARMTBL.

ProDOS Interrupt Table is full (not relevent to this example).

Disk 1/0 error, such as open door, or bad disk.

No device connected. You removed the drive while nobody was looking.
A disk with an open file was removed from the drive.

Invalid pathname syntax (illegal characters).

No buffers available. Too many files open (more than eight).

File not open. Wrong reference number, or you tried to read a file without
opening it.

Subdirectory not found. Wrong name used.

Volume not found. Wrong name used.

File not found. Wrong name used.

Duplicate filename. You've tried to create a new file with the name that is
already in use (not relevent to this example).

Disk is full.

File itself is not in a ProDOS format.

File type mismatch. Since the example doesn’t check for a specific file
type, this isn't likely.

End of data. No more data in file. EOF.

Range error. Occurs when Set_Mark is used for a position past the end of
the file.

File locked. The file access bit in the directory information won't let you
in.

File busy. Somebody else is already talking to that file (file open).
Directory count is messed up and is different than the actual number of
files in the directory.

Disk is not a ProDOS format.

Some parameter is out of range.

Eight files on eight separate drives are open, and somebody wants still
more.

No buffers available. You're trying to assign a buffer to a place in memory
that’s already being used.

Duplicate volumes. There are two disks online that have the same name.
The disk bitmap says there’s a free block somewhere past the actual size
of the disk itself. The volume bitmap has been damaged.
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002000:
002002:
002005:
002007:

00200A:
00200C:

00200F:
002012:
002014:
002016:
002018:

00201B:

00201E:
002020:
002023:
002025:
002028:
002029:

00202B:
00202E:

00202F:
002032:
002035:

BD FF
9D 00

03
03
Co
=201B
05
FC
20
=202B
FD
=2020
FD

01
02

OO0 =3 U QOB =

ProDOS

P8 FILE DUMP DEMO PROGRAM  *

MERLIN ASSEMBLER *

ORG $2000

DSK FDUMP.SYS

TYP $FF ; SYSTEM FILE TYPE
MLI EQU $BF00 ; STD. PRODOS 8 ENTRY
CouT EQU $FDED
HOME EQU $FC58
RDKEY EQU $FDOC ; MONITOR READ KEY ROUTINE
GETLN2  EQU S$FD6F ; MONITOR INPUT ROUTINE W/O PROMPT
INBUF EQU $200 ; INPUT BUFFER
PRBYTE EQU $FDDA ; PRINT ACC. AS HEX NUMBER
RD80COL EQU $COIF ; BIT7 =1 = 80 COLS. “ON”
WNDWDTH EQU $21 ; TEXT WINDOW WIDTH
CH80 EQU $57B ; 80-COL HORIZ. CURSOR POSN
SETQUIT LDA #84C ; JMP INSTRUCTION

STA  $3F8 ; CTRLY VECTOR

LDA #<QUIT ; LOW BYTE OF QUIT ADDR.

STA  $3F9 ; LOW BYTE OF CTRL-Y VECTOR

LDA #>QUIT

STA $3FA ; HIGH BYTE OF CTRL-Y VECTOR
BEGIN BIT RD80COL ; 80 COLS ACTIVE?

BMI CLEAR ; YES

LDA #40 ; WINDOW WIDTH

STA WNDWDTH ; SET WIDTH, JUST IN CASE

STZ CH80 ; SET 80 COL CURSOR H = 0
CLEAR JSR  HOME ; CLEAR SCREEN
PROMPT LDY #$00 ; INIT Y-REG
|1 LDA MSSGLY ; PRINT PROMPT MSSG.

BEQ GETPATH

JSR  COUT ; PRINT IT

INY ; NEXT CHAR

BNE :1 ; WRAPAROUND PROTECT
GETPATH JSR  GETLN2 ; GET PATHNAME FROM USER
FIX PHX ; SAVE LENGTH OF INPUT STRING
|1 LDA INBUF-1X  ; GET LAST CHAR

STA INBUFX ; MOVE OVER ONE BYTE

DEX X=X-1
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002036:
002038:
002039:

00203C:
00203E:

002040:
002043:
002045:
002048:
00204A:

00204B:
00204D:

002050:
002053:
002054:
002056:

002058:

00205B:

00205E:

002061:
002064:

002067
002069:

00206C:

00206F:
002070:
002072:

002074:
002076:

002078:

00207B:
00207D:

002080:
002082:
002085:
002086:
002089:

00208B:

00208D:

00208F:
002092:

DO
FA
8E

E0
Do

F1

00

=202F

02

=2050
02

21
=2050

=2040
20

BF

=2061
20
20
20
20

20
BF

=207B

=208D

20

22
FD
20

=207D
=2067

20
BF

55 CHK1

58 CHK2

66 OPEN

76 OPEN2

79 READ

86 EOFCHK

91 PRINT
92 :1

99

100 CLOSE
101

102

BNE
STX

CPX
BNE

LDA
AND
CMP
BNE
DEX
BNE
JMP

ISR
DFB
DA

BCC

JSR

LDY
LDA

JSR
INY
CpPY
BCC
BCS

LDA
STA
JSR

11 ; NEXT CHARACTER

; RETRIEVE LENGTH
INBUF ; PUT AT BEG. OF STRING
#$04 ; 4 = LEN “QUIT”
OPEN ; IT'S NOT “QUIT”
INBUFX ; LAST CHAR OF INPUT
#$DF ; CONVERT TO UPPERCASE IF NEEDED
WORD-1,X ; “QUIT*?
OPEN ; NOPE
CHK2 ; NOT DONE YET
QuIT ; STR$ = “QUIT”
MLI
$C8 ; OPEN COMMAND
PARMTBL2  ; OPEN CMD TABLE
OPEN2 ; NO ERROR
ERROR ; PRODOS ERROR MESSAGE
RDKEY ; WAIT FOR A KEYPRESS
BEGIN ; TRY AGAIN IF ERROR

PARMTBL2+5 ; GET REFERENCE NUMBER
PARMTBL3+1 ; STORE REF NUMBER

#$04 ; # OF PARMS FOR ‘READ’
PARMTBL3  ; MODIFY TABLE ENTRY
MLI

$CA ; READ COMMAND
PARMTBL3  ; READ CMD TABLE
PRINT ; NO ERROR

#$4C ; ERROR = END OF FILE?
CLOSE ; YEP!

ERROR ; PRODOS ERROR MSSG
#$00 ; INIT Y-REG

BUFFER,Y

#$80 ; SET HIGH BIT

couT

NUMREAD  ; PRINT CHARS READ IN.
:1

READ : GET ANOTHER LINE OF TEXT
#$01 . REWRITE PARMTBL3
PARMTBL  : # OF PARMS = 1

MLI
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002095:
002096:
002098:
00209A:

00209D:
00209F:
0020A2:
0020A4:
0020A7:
0020A8:

0020AA:
0020AD:

0020B0:
0020B3:
0020B4:
0020B6:

0020B8:
0020B9:
0020BB:
0020BE:
0020C0:
0020C3:
0020C4:

0020C6:
0020CT7:
0020CA:
0020CC:
0020CF:
0020D1:
0020D4:
0020D5:
0020D7:

0020D8:
0020D9:
0020DA:
0020DC:

0020DD:

0020DF:
0020EO:
0020E2:
0020E4:

0020E5:
0020E6:
0020E7:
0020E9:

00
00
02
23

22
00

=209D
20

21
=20AA
FD
=209F

FD
20

BF

21
=20C6
FD

=20BB

FD
21
=20D7
FD

=20CC

103

104

105

106

107

108 DONE
109 :1

110

111

112

113

114

115 D2

116

117

118 QUIT
119

120

121

122

123 ERROR
124

125 :1

126

127

128

129

130

131 PRCODE
132

133

134 :1

135

136

137

138

139 ERDONE
140

141 PARMTBL
142

143

144

145

146

147 PARMTBL
148

149

150 REFNUM
151

152 PARMTBL
153

154

155

DFB

BCC
JSR

LDY
LDA
BEQ
ISR
INY
BNE

JSR
JMP

ISR
DFB

BRK

PHA
LDY
LDA
BEQ
JSR
INY
BNE

PLA
ISR
LDY
LDA
BEQ
JSR
INY
BNE
RTS

DFB
DFB
DA
DFB
DA

DFB

ProDOS

$CC ; CLOSE COMMAND
PARMTBL3  ; SAME TABLE AS ‘READ’
DONE ; NO ERRORS
ERROR ; PRODOS ERROR MSSG
#3500 ; INIT Y-REG
MSSG3.Y ; GET CHAR TO PRINT
D2
CcouT ; PRINT IT
; NEXT CHAR
11 ; WRAPAROUND PROTECT
RDKEY ; GET A KEYPRESS
BEGIN ; BACK TO THE BEGINNING
MLI ; DO QUIT CALL
$65 ; QUIT CALL COMMAND VALUE
PARMTBL ; ADDRESS OF PARM TABLE
$00 ; SHOULD NEVER GET HERE. ..
; SAVE ERROR CODE
#3500 ; INIT Y-REG
MSSG2,Y ; GET CHAR TO PRINT
PRCODE
CouT ; PRINT IT
; NEXT CHAR
|1 ; WRAPAROUND PROTECT
; RETRIEVE ERROR CODE
PRBYTE ; PRINT IT
#3500 ; INIT Y-REG
MSSG2A,Y ; GET CHAR TO PRINT
ERDONE ; END OF MSSG
couT ; PRINT IT
; NEXT CHAR
11 ; WRAPAROUND PROTECT
4 ; NUMBER OF PARMS
0 ; QUIT TYPE (0 = STD. QUIT)
$0000 ; NOT NEEDED FOR STD. QUIT
0 ; NOT USED AT PRESENT
$0000 ; NOT USED AT PRESENT
3 ; NUMBER OF PARMS FOR OPEN = 3
INBUF ; POINTER TO PATHNAME
DOSBUF ; POINTER TO PRODOS BUFFER
0 ; PRODOS FILE REFERENCE NUMBER
0 ; NUMBER OF PARMS FOR READ/CLOSE
0 ; REFERENCE NUMBER
BUFFER ; POINTER TO DATA BUFFER
255 ; 255 CHARACTERS TO READ

267



Chapter 13

0020EB: 00 00

0020ED:
002105:
00210A:
00210E:

002113:
002114:
002123:
002124:

D2
D2

00213D:
00213E: D2
002158:

002159:
002200:

00
00

CF

C5

C5

00
00

C4
D3

D3

00

156 NUMREAD DA
157

159

160 MSSGI1 ASC
161 ASC
162 WORD ASC
163 ASC
164

165 MSSG2 HEX
166 ASC
167 MSSG2A  HEX
168 ASC
169

170 MSSG3 HEX
171 ASC
172

173CHKSUM  CHK
174

175 DS
176 BUFFER DS
177

178 DOSBUF

179

180

181

End Merlin-16 assembly, 768 bytes, errors: 0

0 ; NUMBER OF CHARACTERS READ.
“PLEASE ENTER PATHNAME: “,8D
“(OR (31
IIQUIT!T
lﬂ) lly8D’00
8D ; PRINT RETURN FIRST
“PRODOS ERROR $*,00
8D ; ANOTHER CARRIAGE RETURN
“PRESS A KEY TO TRY AGAIN“,00
8D ; PRINT RETURN FIRST . ..
“PRESS A KEY FOR NEXT FILE",00

; CHECKSUM FOR VERIFICATION

; SKIP TO NEXT PAGE BOUNDARY
$100 ; DATA BUFFER FOR US
; 1024 BYTES FOR PRODOS BUFFER
; NOT IN PROGRAM SO AS TO NOT
; TAKE UP DISK SPACE. ..
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Chapter 14
ProD0S 16

Like ProDOS 8, ProDOS 16 is a set of disk access routines designed to be
called from machine language programs. Unlike ProDOS 8, there is no
BASIC.SYSTEM for Applesoft. In fact, in ProDOS 16, the assumption is that
Applesoft BASIC and the Monitor no longer exist. You're not entirely on your
own, however. It's in the ProDOS 16 environment that the new Apple IIGS
tools like super hi-res graphics, the Event Manager, the Memory Manager, and
other tools become available. On the one hand, you lose many of the points of
reference you're familiar with. On the other, you enter the real world of the
Apple IIGS, where memory seems unbounded, and the hundreds of built-in
Applesoft BASIC and Monitor routines are replaced by literally thousands of
Apple IIGs Toolbox commands. Future chapters will explore those tools in de-
tail; for now let’s look at ProDOS 16.

Starting Up ProDOS 16

On a disk set up to boot ProDOS 16, such as the Apple IIGS System Disk, the
boot process starts the same as it did for ProDOS 8—by reading and executing
the code stored in blocks 0 and 1 on the disk. This code is the same on any
ProDOS disk, regardless of whether it is set up for ProDOS 8 or 16. As before,
this code begins by running the file ProDOS on the disk. Here’s where things
under ProDOS 16 change considerably.

On a ProDOS 16 boot disk, the file PRODOS is now just an intermedi-
ate program itself, one that is not actually either version of ProDOS. Instead,
it's an initialization file whose job it is to determine the correct operating sys-
tem (ProDOS 8 or 16) for whatever the startup application on the disk is. When
the file PRODOS first runs, the first thing it does is copy part of itself and call
PQUIT (ProDOS Quit) to a part of memory outside the first 64K, where it will
remain permanently. PQUIT has two specific functions: First, it loads the ap-
propriate operating system for whatever application is about to be run. Second,
it contains a program selector of sorts, which actually starts up the application
named by a path name passed to it.

After PQUIT is installed, ProDOS 16 and the System Loader are loaded
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using the file P16 in the SYSTEM subdirectory. The System Loader is a sepa-
rate unit from ProDOS 16, even though they share the same file (P16) on the
disk. In ProDOS 8, every application is a .SYSTEM file and is loaded into
memory starting at location $2000 in bank zero. Under ProDOS 16, all of bank
zero becomes very valuable, and applications are loaded almost anywhere else
in the many other banks of available memory.

Because the actual final location at which a program will run is now
unknown to the programmer, simple object files cannot be used. Instead, a new
type of assembler-created file, called relocatable, must be used. A relocatable file
contains not only the object file as you see it assembled, but also additional
information such as all the internal reference JMPs, JSRs, and LDAs. Creating a
file like this with all the additional information means the actual program bytes
can be rewritten when the file is loaded into memory. This loading and rewrit-
ing is done by the System Loader (not ProDOS 16 itself).

Once ProDOS 16 and the System Loader have been installed, all the ap-
propriate Apple IIGS supporting files in the various subdirectories of the SYS-
TEM folder are loaded. For example, TOOL.SETUP in the SYSTEM.SETUP
folder contains a number of fixes to the Apple IIGS internal ROM routines. No
system is ever perfect, and the designers of the Apple IIGS knew errors in the
ROM were bound to be discovered after the machine was in production.

The solution was to design almost everything in ROM in such a way
that any ROM routine could be amended, or even replaced, by a substitute rou-
tine loaded into RAM when the system was booted. Much of this was accom-
plished with vectors to the various ROM routines. You'll recall from Chapter 12
that vectors are pointers in RAM that direct control to a certain routine. By
changing the vectors that correspond to a given ROM routine to a loaded RAM
routine, the substitution is made.

TOOL.SETUP is not the only file loaded during the boot process. Classic
Desk Accessories that may be on the disk are also loaded. Basically, any file
with the file types $B6 (for example TOOL.SETUP, a permanent initialization
file), $B7 (a temporary initialization file), $B8 (Classic Desk Accessories such as
SDUMP), or $B9 (New Desk Accessories like CLOCK) are loaded during this
startup process.

Now that everything is in place, the system looks for a $B3 type (appli-
cation) file named START. Usually, this is a program selector like the Apple
Program Launcher, but it can be any application you wish to write. If START is
found, it is loaded and run.

If START is not found, the system then searches the main directory for
the first file that is either a ProDOS 8 SYS ($FF) file whose name ends in .SYS-
TEM, or a ProDOS 16 application (type $B3 = S16) whose name ends in
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.5Y516. Depending on which type of file is found first, the appropriate operat-
ing system is selected (P8 is loaded if necessary), and the program is run.

Ultimately, it is the PQUIT routine that selects the proper operating sys-
tem and application pathname.

The Simplest ProDOS 16 Program: Quit
As with ProDOS 8, ProDOS 16 applications must end with a quit command,
not an RTS (or RTL). ProDOS 16 calls are made in a fashion similar to the MLI
call for ProDOS 8. For ProDOS 16, a JSL is done to location $E1/00AS; this is
followed by a six-byte data block. The first two bytes define the command
value, or call number. The next four bytes are a long-address pointer to a
ProDOS 16 parameter block. Notice that in the world of ProDOS 16, every-
thing assumes we are running in banks that can be anywhere in memory.

In general, every Apple IIGS ProDOS 16 application must meet the fol-
lowing requirements:

1. Have the filetype $B3 (S16). There are specialized applications that may
have other file types.

2. Be created in the relocatable file format called the Object Module Format
(OMF). This will be described in greater detail shortly.

3. Do a proper ProDOS 16 quit call. (No RTS, RTL or forced reset.)

4. Obtain any memory used externally to the program and its stack and direct
page from the Memory Manager.

Item 4 may seem new to you. With so much memory on the Apple IIGS,
it may seem like you should be able to use whatever you want. But answer
these questions: How will you know how much memory the user has installed
in his machine? How will you know where your program is actually running?
How will you share the available memory with other programs, such as desk
accessories, that may have been loaded during the boot process?

The Memory Manager
To make things as easy as possible for everyone that uses the Apple IIGS envi-
ronment, the system includes a tool called the Memory Manager. The Memory
Manager keeps track of all the things mentioned above so you can concentrate
on your application. Basically, whenever you need some memory for a file
buffer, a picture, or a data block, you just say, “Hey, get me 10K of memory.”
and the Memory Manager not only finds the memory for you, but also protects
it from everybody else in the system. The bottom line is: Use the memory man-
ager; don’t blaze your own trails.

For your first ProDOS 16 program, let’s write a ProDOS 16 equivalent of
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the P8.SYSTEM program (Program 13-1) that was presented in Chapter 13. The
main differences will be:

1. ProDOS 16 does an automatic screen clear when it starts up a program, so
the JSR HOME won'’t be needed.

2. You won’t have Applesoft BASIC or the Monitor to depend on, for three rea-
sons: Our program is now being started up in the full 16-bit mode (Accumu-
lator and index registers); we’ll undoubtedly be in a different bank than the
Monitor/Applesoft BASIC routines; and we now have our own stack and di-
rect page (automatically determined, allocated and assigned by the System
Loader and Memory Manager when our program was loaded). You're on
your own.

3. The quit command for ProDOS 16 is slightly different from that for ProDOS 8.

Simple System File

With all that in mind, take a look at Program 14-1, P16.SYSTEM. The APW
version of this program is Program 14-3. (Before assembling this program, you
may want to read the section on linking, below.)

Because the start-assembly default of Merlin is for the 8-bit mode, we
must begin Program 14-1 with a new Merlin directive, MX. This is equivalent
to APW’s LONGA and LONGI directives, and it tells the assembler what the
starting condition of the m and x bits are assumed to be. To indicate the 16-bit
mode, MX %00 is used. You may change Merlin’s startup default on an assem-
bly to be 16-bit, thus eliminating the need for this instruction. But keeping it in
the listing doesn’t hurt anything and is actually a good idea if you want to
avoid errors should you ever change the startup default.

Lines 8 and 9 show how to create a relocatable file ouput with Merlin.
The REL directive on line 8 tells Merlin to create a ProDOS REL type file ($FE)
on the disk during the assembly. This will be used by the Merlin linker to cre-
ate the OMF file needed for the final application. (This is more or less equiva-
lent to APW’s .ROOT output file).

Because the program is running in an indeterminant memory bank, the
first thing we need to do is set the data bank register equal to the program
bank register (the bank we’re running in). The PHK, PLB instructions will do
the trick here.

Next, the prompt message is printed to the screen. Because we can no
longer use COUT, the message is printed by storing the characters directly on
the screen, as was done when you first started all this in Chapter 3. Line 22
uses the STAL (STA Long) instruction to put the bytes on the text screen. Re-
member, the data bank register setting at this point means a STA $400,X would
store a byte (actually, two) in the bank you’re currently running in, not $00/$0400,
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where the text screen is. If the data bank were set to $00, the STA instruction
would work, but not the LDA MSSG,X. One or the other must use a long ad-
dressing mode instruction.

Also because the Accumulator is in the 16-bit (two byte) mode, charac-
ters are loaded and stored two at at time. This means the number of characters
in the string at MSSG (line 44) must be an even number. Also, because the Ac-
cumulator is in the 16-bit mode, two INX instructions are used to increment to
the next pair of bytes. To add insult to injury, the complete 80-column display
is made up by interleaving the address range from $400 to $7FF for both banks
0 and 1. Because we're only writing to bank 0, the characters only appear at
every other position on the screen.

The keyboard is read in a similar manner, and is thus a little different
from the ProDOS 8 version of this program. Because the LDA KYBD instruction
actually loads two bytes, one each from $C000 and $C001, it is necessary to do
an AND #$00FF to zero-out the high-order byte of the Accumulator.

The CMP #$0080 then checks to see if a key was pressed. (By the way,
for those of you who are really deep thinkers, yes, it’s true that the typed in-
structions AND #$FF, CMP #$80 would have been equivalent to AND #$00FF,
CMP #8$0080.) Leading zeros don’t do any more for the assembler than they do
for any other number—$000000012 is still $12. They were used in this case to
make it clear in the source listing that two bytes were involved in the opera-
tion. Perhaps this isn’t a bad idea for your own programs.

Now for the quit command itself: $0029 is the call number for a ProDOS
quit. This follows the JSL to the ProDOS 16 common entry point, $£1/00A8.
Following the call number is the 4-byte pointer to the parameter block. ADRL
(ADdRess Long) is the Merlin pseudo-op for a 4-byte address pointer.

The parameter block for the ProDOS 16 quit command consists of just
six bytes. The first four are a pointer to an optional pathname for the next
application to be run. This is similar to the ProDOS 8 Enhanced Quit Call. In
our program, this is set to zero, which tells ProDOS to just do a standard quit
back to the previous program.

The next two bytes define a flag that uses the upper two bits (bits 14 and
15), to flag certain exit conditions. The options are as follows:

If bit 15 is set, it means that you would like program control to return to
the program (the one doing the quit at that point), instead of going back to the
starting program selector. If this bit is clear, as in our P16.SYSTEM program, or
there is no pathname specified (pointer = $0), then a direct quit back to the
previous program is done.

If bit 15 is set, and there is a pathname for the program to quit to, our
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program itself now acts like a program selector, wherein it can launch a speci-
fied application. Control will return to it when that application is finished. This
is where bit 14 comes in. When you think about it, the PQUIT routine (the
thing really managing all this) is going to have to rerun your program when
the other one quits. The obvious way to do this is to reload it from disk. How-
ever, this is not only slow (relatively speaking), but it also requires the proper
disk be in the drive.

Since all that memory is lying around, why not just keep a copy of our
program in memory in a dormant state, and resurrect it when the time comes?
That is just what bit 14 is for. You can tell the system which you prefer. If bit
14 is set (flag = $C000), your program will be restarted from memory. On the
other hand, if you want to force a restart from disk, bit 14 can be left clear (flag
= $8000).

Program 14-1. Simple P16 System File

1
2 SIMPLE P16 SYSTEM FILE *
3 * MERLIN ASSEMBLER *
4
5
6
1 MX %00 ; FULL 16 BIT MODE
8 REL ; RELOCATABLE OUTPUT
9 DSK P16.SYSTEM.L
10
=E100A8 11 PRODOS EQU $E100A8 ; PRODOS 16 ENTRY POINT
=C000 12 KYBD EQU $C000
=C010 13 STROBE EQU $C010
=0400 14 SCREEN EQU $000400 ; LINE 1 ON SCREEN
15
008000: 4B 16 ENTRY PHK ; GET PROGRAM BANK
008001: AB 17 PLB ; SET DATA BANK
18
008002: A2 00 00 19 PRINT LDX #$00 ; INIT X-REG
008005: BD 34 80 20 LooP LDA MSSGX ; GET CHAR TO PRINT
008008: FO 08 =8012 21 BEQ GETKEY ; END OF MSSG.
00800A: 9F 00 04 00 22 STAL SCREENX ; “PRINT” IT
00800E: E8 23 INX ; NEXT TWO CHARS
00800F: E8 24 INX X=X+2
008010: DO F3 =8005 25 BNE LOOP ; WRAPAROUND PROTECT
26
008012: AD 00 CO 27 GETKEY LDA KYBD ; CHECK KEYBOARD
008015: 29 FF 00 28 AND #8$00FF ; CLEAR HI BYTE
008018: C9 80 00 29 CMP  #$0080 ; KEYPRESS?
00801B: 90 F5 =8012 30 BCC GETKEY ; NOPE
00801D: 2C 10 CoO 31 BIT STROBE ; CLEAR KEYPRESS
32
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008020: 22 A8 00 E1 33 QuIT JSL  PRODOS ; DO QUIT CALL
008024: 29 00 34 DA $29 ; QUIT CODE
008026: 2D 80 00 00 35 ADRL PARMBL ; ADDRESS OF PARM TABLE
00802A: BO 07 =8033 36 BCS ERROR ; NEVER TAKEN
00802C: 00 37 BRK ; SHOULD NEVER GET HERE. ..
38
00802D: 00 00 00 00 39 PARMBL ADRL $0000 ; PTR TO PATHNAME
008031: 00 00 40 FLAG DA  $00 ; ABSOLUTE QUIT
41
008033: 00 42 ERROR  BRK ; WE'LL NEVER GET HERE?
43
008034: DO CC C5 C1 44 MSSG ASC  “PLEASE PRESS A KEY -> “; EVEN NUMBER OF
CHARACTERS’

008038: D3 C5 A0 D0 D2 C5 D3 D3
008040: A0 C1 A0 CB C5 D9 A0 AD
008048: BE A0

00804A: 00 00 45 DA $0000 - TWO ZEROS
46
00804C: 54 47 CHK : CHECKSUM FOR LISTING

--End Merlin-16 assembly, 77 bytes, Errors: 0

The Launcher

To show how all this works, Program 14-2 is a ProDOS 16 version of the
P8.LAUNCHER (Program 13-3), called P16.LAUNCHER. The APW version of
the launcher is Program 14-4.

This program starts off the same way as P16.SYSTEM. The main differ-
ence is that now four inputs are allowed: the number keys 0, 1, 2, and 3.

Three is the most complex example (flag = $C000). This will launch the
previous program, P16.SYSTEM, from disk, and will store itself in memory.
When P16.SYSTEM quites, P16. LAUNCHER will resume instantly from mem-
ory. In principle, there can be many multiple levels of different programs, or
program modules, each running a successive module with control ultimately re-
turning to the master program.

Option 2 (flag = $0) simply starts P16.SYSTEM without leaving itself in
the return list. Thus, when P16.SYSTEM quits, control goes back to the previ-
ous program selector.

Option 1 is equivalent to the direct quit done by P16.SYSTEM.

Option 0 demonstrates what happens either when there is no program
left in the return list to go to, or when the file specified is not found. This acti-
vates the Apple IIGS ProDOS interactive restart menu that gives you the option
of rebooting, running the file named START, or specifying a startup program of
your own,

By the way, you may have been wondering why we didn’t just bracket
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the 8-bit operations in the program P16.SYSTEM in a pair of SEP and REP in-
structions like this:

SEP $30 ; 8-BIT MODE
PRINT LDX #8$00 ; INIT X-REG
LOOP LDA MSSGX ; GET CHAR TO PRINT

BEQ GETKEY ; END OF MSSG.
STAL SCREENX ; “PRINT” IT

INX ; NEXT TWO CHARS

INX X=X+2

BNE LOOP ; WRAPAROUND PROTECT
GETKEY LDA KYBD ; CHECK KEYBOARD

AND #$00FF ; CLEAR HI BYTE

CMP #$0080 ; KEYPRESS?

BCC GETKEY ; NOPE
BIT STROBE ; CLEAR KEYPRESS

REP $30 ; BACK TO 16-BIT MODE

There are two reasons. First, to show you what alternative you may have
when going to the 16-bit mode may be impractical, and second, because doing
this as P16.LAUNCHER is a little impractical.

Here’s why. The SEP on line 22 or so of P16.LAUNCHER would work
OK, but where can we put the REP $30? At the end of the print loop, around
line 30, would work, but now the GETKEY routine is still in the 16-bit mode.
You could move it to somewhere near line 36, but now you're comparing an
Accumulator loaded in the 8-bit mode with 2-byte ASCII codes.

If you try to move the REP $30 past the compares, you'll have to put
four of them in, one for each entry point to the various quit commands.

Program 14-2. ProDOS 16 Launcher Demo

* PRODOS 16 ‘LAUNCHER’ DEMO *
* LAUNCHES 2ND SYSTEM FILE, *
* STAYS DORMANT, THEN REVIVED *
* WHEN 2ND QUITS. *
* *

*

* MERLIN ASSEMBLER

MX %00 ; FULL 16-BIT MODE
REL
DSK P16.LAUNCH.L ; RELOCATABLE OUTPUT

bbb bbbk
GO DN = O WO =1 U WD
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008000:
008001:

008002:
008005:
008008:

00800A:

00800E:
00800F:
008010:

008012:
008015:
008018:

00801B:
00801D:

008020:
008023:
008025:
008028:

00802A:
00802D:

00802F:
008032:

008034:
008038:

00803C:
00803E:

008042:
008044:

008045:
008049:

00804B:

00804F:
008051:

008052:
008056:
008058:

00805C:
00805E:

00805F:
008063:

=E100A8
=C000
=C0I0
=0400

00
85

00

=8045
=8052
00

=805F
80 00
00 EI
00 00
=38084
00 El
00 00
=8084
00 EIl
00 00
=8084

00 EI

PRODOS EQU
KYBD EQU
STROBE EQU
SCREEN EQU

ENTRY PHK
PLB

PRINT  LDX

Loop LDA
BEQ
STAL
INX
INX
BNE

GETKEY LDA
AND
CMP
BCC
BIT

CHK CMP
BEQ
CMP
BEQ
CMP
BEQ
CMP
BEQ

TRYAGN JML
QuUIT0O  JSL

QuiT1  JSL

QuiT2  JSL

QUIT3  JSL

$EI00A8
$C000
$C010
$400

#300
MSSG,X
GETKEY
SCREEN,X

Loop

KYBD
#$00FF
#$80
GETKEY
STROBE

#0”
QUITO
#9”
QUITI
#2"
QUIT2
#3"
QUIT3

GETKEY

PRODOS
$29
PARMO
ERROR

PRODOS
$29
PARMI
ERROR

PRODOS
$29
PARM2
ERROR

PRODOS
$29
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; PRODOS 16 ENTRY POINT

; LINE 1 ON SCREEN

; PUSH CODE BANK
; PULL DATA BANK

; INIT X-REG

; GET CHAR TO PRINT

; END OF MSSG.

; “PRINT” IT'

; NEXT TWO CHARS
(X=X+2

; WRAPAROUND PROTECT

; KEYPRESS?

; MASK UPPER BYTE
; HI BIT SET?

; NOPE

; CLEAR KEYPRESS

; QUIT TO ROM ROUTINE?
; YES

; REAL QUIT?

: YES

; LAUNCH 2ND, DON'T RETURN
; LAUNCH 2ND, RETURN
; TRY AGAIN

; DO QUIT CALL

; QUIT CODE

; ADDRESS OF PARM TABLE
; NEVER TAKEN

; WE'LL NEVER GET HERE?

: DO QUIT CALL
: QUIT CODE

; ADDRESS OF PARM TABLE
: NEVER TAKEN

: WE'LL NEVER GET HERE?

; DO QUIT CALL

; QUIT CODE

; ADDRESS OF PARM TABLE
; NEVER TAKEN

; WE'LL NEVER GET HERE??

; DO QUIT CALL
; QUIT CODE
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WRITE, respectively. Program A will represent the main program, and B and C
are modules that read and write files to the disk.

Program A will want to call the routines READ and WRITE in B and C,
but remember these are being assembled separately. So, while the programmer
is working on module A, he just tells the assembler that some other module
will eventually have the external label READ in it. During the assembly, then,
the assembler knows not to worry about the fact that READ hasn’t been given
a specific address yet. You may know from assembling files already that nor-
mally an assembler will generate an error if a label is used that doesn’t have an
address defined for it. The EXT (EXTernal) is used to assign external labels.

While working on B, the programmer tells the assembler that READ,
which is a label in module B, is an entry point that other programs may want to
use. This is done with another assembler directive, ENT (ENTry point). Mod-
ule C will have WRITE defined in a similar way.

Having assembled each of the three programs individually into its own
relocatable files (type REL = $FE), this is where the linker comes in. The linker
uses a list, usually a text file, of all the modules to be combined into one or
more final output files. In the case of the Apple IIGS and Merlin 16, this will be
an Object Module Format (OMF) file. The list may also contain specific com-
mands for the Linker, telling it to save the output file, to re-assemble a file, or
which file type should be used for the output file.

Such a list might look like this:

TYPE $B3

LINK A

LINK B

LINK C

SAVE PROGRAM

During the linking process, the assembler will reconcile the calls to the
READ and WRITE entry points in modules B and C with the JSRs (or what-
ever) to those labels from module A. This is the purpose of linking a file.

Also notice, however, that nothing insists that more than one input file
be used. If all you want to do is to create an OMF file from a REL file, a link
list with one file in it will do the trick.

To assemble, link, and run P16.SYSTEM, you must first load and acti-
vate the Merlin 16 linker. This is done from the main menu by BRUNning the
file LINKER.GS on the Merlin 16 disk. You can type -LINKER.GS as a disk
command to do this. The linker need only be installed once during a session.
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From then on, any program can be assembled and linked by following these
steps:

1. Enter and assemble the listing, exactly as shown. Save the source file. This
will give you two files on the disk, P16.SYSTEM.S and P16.SYSTEM.L (a
REL file). Notice the special suffix, .L given the REL file to differentiate it
from the source file and the final OMF file. The suffix was part of the name
in the DSK instruction and is not added automatically by Merlin.

2. After assembling and saving the source file, type in NEW to clear the editor
workspace. Type this in:

TYP  $B3 ; S16 FILE
LINK PI6.SYSTEM.L  ; CONVERT REL TO OMF
SAVE  P16.SYSTEM ; SAVE OUTPUT FILE

3. Save this new file on the disk under the name P16.SYS.CMD. This is the
linker command list. It cannot be directly assembled. Do not type ASM to ex-
ecute it.

4. To do the final link, type NEW again to clear the workspace, and then type:

LINK “P16.§YS.CMD”

and press Return.

5. When the link is complete, you'll be returned to the main menu. Your final
S16 file has already been saved on the disk. Return now to your program se-
lector and try running P16.SYSTEM. It should work as described next.

If there is only one file to be linked, Merlin 16 also has a shortcut link
command that will link the last source file saved, and will create an OMF file,
with the type S16. To do the quick link, type LINK “="" instead of an actual
filename while at the command prompt ( :) in the Editor. The final object file
generated by the link will be saved under the name P16.SYSTEM, assuming
you use the DSK command DSK P16.SYSTEM.L as the REL type output file in
the source listing itself.

This general procedure should be used to assemble, link and run all fur-
ther ProDOS 16 Merlin programs.

APW Linking

Linking a file in APW will seem fairly easy, because you've already done it. Be-
cause all files in APW must be linked, the linking process is part of the ASML
command (ASseMble and Link). For ProDOS 8, presumably you’ve been
reverse-converting the files after the ASML back to a standard object file with
the MAKEBIN and FILETYPE commands.
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Normally, the output of the ASML command is an OMF file. After as-
sembling with ASML, just type in FILETYPE S16. You can then quit APW and
test the program by starting it from a program selector. Although APW will let
you launch a program directly from within its command mode, it’s better to use
the program selector to avoid unexpected interactions between APW and your
programs.,

For your reference, Program 14-3 and Program 14-4 are the APW ver-
sions of the two programs. Since APW assumes a starting long mode for the Ac-
cumulator and index registers, no LONGA ON, LONGI ON instructions are
needed (although, like Merlin, it doesn’t hurt, and it makes the starting condi-
tions for the assembly clear).

Program 14-3. APW Simple P16 System File

0001 0000

0002 0000 * SIMPLE P16 SYSTEM FILE

0003 0000 * APW ASSEMBLER *

0004 0000

0005 0000

0006 0000 KEEP  P16.SYSTEM

0007 0000 MSB  ON

0008 0000

0009 0000 MAIN START

0010 0000

0011 0000 PRODOS EQU  $E100A8 ; PRODOS 16 ENTRY POINT
0012 0000 KYBD EQU  $Co00

0013 0000 STROBE EQU  $C010

0014 0000 SCREEN EQU  $000400 ; LINE 1 ON SCREEN
0015 0000

0016 0000 4B ENTRY PHK ; GET PROGRAM BANK
0017 0001 AB PLB ; SET DATA BANK
0018 0000

0019 0002 A2 00 00 PRINT  LDX  #$00 ; INIT X-REG

0020 0005 BD 36 00 Loop LDA  MSSGX ; GET CHAR TO PRINT
0021 0008 FO 08 BEQ  GETKEY ; END OF MSSG.

0022 000A SF 00 04 00 STA >SCREEN.X ; “PRINT” IT

0023 000E E8 INX ; NEXT TWO CHARS
0024 000F EB INX X=X+2

0025 0010 DO F3 BNE  LOOP ; WRAPAROUND PROTECT
0026 0012

0027 0012 AD 00 CO GETKEY LDA  KYBD ; CHECK KEYBOARD
0028 0015 29 FF 00 AND  #800FF ; CLEAR HI BYTE

0029 0018 C9 80 00 CMP  #$0080 ; KEYPRESS?

0030 001B 90 F5 BCC  GETKEY ; NOPE

0031 001D 2C 10 CO BIT STROBE ; CLEAR KEYPRESS
0032 0020

0033 0020 22 A8 00 E1 QUIT JSL PRODOS ; DO QUIT CALL

0034 0024 29 00 DC 12’829’ ; QUIT CODE

0035 0026 2E 00 00 00 DC 14'PARMBL’ ; ADDRESS OF PARM TABLE
0036 002A B0 08 BCS ERROR ; NEVER TAKEN
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0037 002C
0038 002E
0039 002E
0040 0032
0041 0034
0042 0034
0043 0036
0044 0036

0045 004C
0046 004E
0047 004E

00 00

00 00
00 00

00 00

00 00

D0 CC C5 C1

00 00

47 source lines

0 macros expanded

0 lines generated

Program 14-4. APW ProDOS 16 Launcher Demo

0001 0000
0002 0000
0003 0000
0004 0000
0005 0000
0006 0000
0007 0000
0008 0000
0009 0000
0010 0000
0011 0000
0012 0000
0013 0000
0014 0000
0015 0000
0016 0000
0017 0000
0018 0000
0019 0000
0020 0000
0021 0001
0022 0002
0023 0002
0024 0005
0025 0008
0026 000A
0027 000E
0028 000F
0029 0010
0030 0012
0031 0012
0032 0015
0033 0018
0034 001B

D0 F3

AD 00
29 FF
C9 80
90 F5

00
00

04 00

Co
00

BRK ; SHOULD NEVER GET HERE....
PARMBL DC 1450000 ; PTR TO PATHNAME
FLAG  DC  12%00° ; ABSOLUTE QUIT
ERROR  BRK ; WE'LL NEVER GET HERE?
MSSG  DC  CPLEASE PRESS A KEY > *; EVEN NUMBER OF
CHARACTERS'
DC  IreQ ; TWO ZEROS
END
* PRODOS 16 ‘LAUNCHER’ DEMO .
* LAUNCHES 2ND SYSTEM FILE, .
* STAYS DORMANT, THEN REVIVED ~ *
* WHEN 2ND QUITS. .
» ”
* APW ASSEMLER .
KEEP  PI6.LAUNCH
MSB  ON
MAIN  START
PRODOS EQU  SE100A8 ; PRODOS 16 ENTRY POINT
KYBD  EQU  $C000
STROBE EQU  $C010
SCREEN EQU  $400 : LINE 1 ON SCREEN
ENTRY  PHK ; PUSH CODE BANK
PLB ; PULL DATA BANK
PRINT  LDX  #500 ; INIT X-REG
LOOP  LDA  MSSGX ; GET CHAR TO PRINT
BEQ  GETKEY ; END OF MSSG.
STA  >SCREENX ; “PRINT” IT
INX ; NEXT TWO CHARS
INX (X =X+2
BNE  LOOP ; WRAPAROUND PROTECT
GETKEY LDA  KYBD ; KEYPRESS?
AND  #$00FF ; MASK UPPER BYTE
CMP  #380 ; HI BIT SET?
BCC  GETKEY : NOPE
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0035 001D
0036 0020
0037 0020
0038 0023
0039 0025
0040 0028
0041 002A
0042 002D
0043 002F
0044 0032
0045 0034
0046 0034
0047 0038
0048 0038
0049 003C
0050 003E
0051 0042
0052 0044
0053 0046
0054 0046
0055 004A
0056 004C
0057 0050
0058 0052
0059 0054
0060 0054
0061 0058
0062 005A
0063 005E
0064 0060
0065 0062
0066 0062
0067 0066
0068 0068
0069 006C
0070 006E
0071 0070
0072 0070
0073 0074
0074 0076
0075 0076
0076 007A
0077 007C
0078 007C
0079 0080
0080 0082
0081 0082
0082 0086
0083 0088
0084 0088
0085 008A
0086 008A

2C

Co
00
00
00
00

00
00
00

00
00

00
00

00

00

00

00

00

00

C5

00
El
00

El
00

El
00

El

00

00

00

00

00

D3

CHK

TRYAGN
QUITO

QUIT1

QUIT2

QUIT3

PARMO
FLAGO

PARMI1
FLAG1

PARM2
FLAG2

PARM3
FLAG3

ERROR
MSSG

BIT
CMP

ProDOS 16

STROBE ; CLEAR KEYPRESS
#0 ; QUIT TO ROM ROUTINE?
QUITO ; YES
#1' ; REAL QUIT?
QUIT1 ; YES
#2
QUIT2 ; LAUNCH 2ND, DON'T RETURN
#3
QUIT3 ; LAUNCH 2ND, RETURN
GETKEY ; TRY AGAIN
PRODOS ; DO QUIT CALL
12'$29’ ; QUIT CODE
14°PARMO’ ; ADDRESS OF PARM TABLE
ERROR ; NEVER TAKEN

; WE'LL NEVER GET HERE?
PRODOS ; DO QUIT CALL
12'§29° ; QUIT CODE
I4°PARMYI’ ; ADDRESS OF PARM TABLE
ERROR ; NEVER TAKEN

; WE'LL NEVER GET HERE?
PRODOS ; DO QUIT CALL
12'§29' ; QUIT CODE
14'PARM2’ ; ADDRESS OF PARM TABLE
ERROR ; NEVER TAKEN

; WE'LL NEVER GET HERE??
PRODOS ; DO QUIT CALL
12'629' ; QUIT CODE
14'PARM3’ ; ADDRESS OF PARM TABLE
ERROR ; NEVER TAKEN

; WE'LL NEVER GET HERE??
14'NAME(’ ; BAD PATH TO GEN ERROR
12'$00’ ; ABSOLUTE QUIT
14’800 ; NO PATHNAME
12'$00° ; ABSOLUTE QUIT
[4'NAMEY’ ; PTR TO PATHNAME
12'$00’ ; BITS 15,14 = 0: DON'T RESTART
I4£NAMET ; PTR TO PATHNAME
12'$C000’ ; BITS 15,14 = I: RESTART LATER

; WE'LL NEVER GET HERE?
C'PRESS 0, 1, 2, OR 3 ->’; EVEN NUMBER OF CHARACTERS’
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0087 00A0 00 00 DC 11'0,0° ; TWO ZEROS

0088 00A2

0089 00A2 * 0 - QUIT TO ROM RESTART

0090 00A2 * 1 - QUIT TO PREVIOUS PROGRAM

0091 00A2 * 2 - LAUNCH “P16.SYSTEM”

0092 00A2 * 3 - LAUNCH “P16.SYSTEM” AND RETURN WHEN DONE

0093 00A2

0094 00A2 01 NAMEO DC nmr ; LEN OF ZERO

0095 00A3 D8 DC cx ; WON'T FIND THIS!

0096 00A4

0097 00A4 0A NAME1 DC I'NAMEND-NAMEL-1"  ; LEN OF PATHNAME
0098 00A5 DO Bl B6 AE DC C'P16.SYSTEM’ ; 2ND TEST SYS FILE
0099 00AF NAMEND ANOP

0100 00AF

0101 00AF END

101 source lines
0 macros expanded
0 lines generated
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A Look at Memory Use on the
Apple IGS

First of all, congratulations for having worked so hard to reach this point in the
book. Going from only a simple understanding of BASIC to being able to write
programs under both ProDOS 8 and ProDOS 16 is no trivial accomplishment.
Reflect for a moment on what you’ve learned so far: over 75 assembly

language instructions; how to input and print text to the screen; how to manip-
ulate the hi-res screen; Boolean math; the intricacies of the direct page and the
stack, and exotic addressing schemes; how to extend Applesoft BASIC with
your own machine language routines; how to pass variables back and forth be-
tween Applesoft BASIC and machine language; how to use the Monitor to ex-
amine memory, write a program, and debug it; how to use an assembler; and
most of all, general techniques in programming that go beyond just knowing a

command or two.
What all that gets you right now is the foundation to embark on writing

your own programs for the Apple IIGS that would be impossible on any other
machine. You see, the Apple IIGS, with its thousands of built-in routines, can
act like an amplifier of your existing talent and let you write programs today
that would be a super-human accomplishment for programmers just a few
years ago.

Before we start with the actual Apple IIGS Toolset, let’s review the over-
all memory use of the Apple IIGS by the different operating systems and
applications.

Now, with what you've learned in the previous chapters, the explanation
of total memory usage on the Apple IIGS will seem easy to understand because
you've already learned a lot of the most important details while you were
learning about other major concepts. There will be new discoveries, like addi-
tional banks of memory, but most of this new information will be for your own
background as a soon-to-be expert on the Apple IIGS. After all, you can’t claim
to be an expert if you've never heard of bank-switching or the alternate 4K
bank of memory, now can you?
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This tradition continues today, but the real message is that you don't al-
ways have to depend on someone else to give you the information you desire.
A little work and clear deductive thought can teach you a lot about the
computer.

On the Apple IIGs, the direct page can be relocated by a program by
using the Direct Page Register. This is a valuable enhancement to the original
Apple II design because now programs don’t have to fight over the same part
of memory. In the Applesoft BASIC environment, you've got Applesoft BASIC,
the Monitor, ProDOS and your routine all trying to use the same 256 bytes of
memory. Since the first three contenders are preprogrammed, this means
you've got to be very careful choosing those zero-page bytes (we used $06~-09)
to not get in somebody else’s way.

With the Apple 1IGs, even in routines called from Applesoft BASIC, you
can re-assign the direct page for your routine’s use, as long as you're sure to re
store it to page zero before you return to Applesoft BASIC, call the ProDOS 8
ML, or call an internal Applesoft BASIC or Monitor routine {like COUT).

By the way, another completely acceptable approach to using page zero
is to just save the contents of the bytes you want to use in your routine, and
then restore them when you’re done. The ProDOS MLI instructions, for ex-
ample, take this approach and save the contents of $40-$4E, and then restore
them when the command is finished. The main thing to be careful not to do is
save the contents, use the bytes for yourself, and then call some other routine
that expects the original values to be there when instead you've changed them.

For example, locations $28, 29 are used by COUT as the base address
for the current text screen line being printed by the Monitor or Applesoft
BASIC. If you saved the contents of these bytes, used $28,29 in your routine,
and then restored them, no one would be any the wiser. However, if your rou-
tine called COUT in the middle of all this, things would really go crazy because
COUT would expect the original values to still be there.

The Stack: $100 to $1FF
$100-$1FF The Stack
$00-$FF Zero (Direct) Page

The next page of memory, $100 to $1FF, is the default stack area. In the
Applesoft BASIC environment, the stack is limited to $100 bytes, and is filled
from $1FF~downward with stored return addresses for JSRs and JSLs, and val-
ues pushed on the stack by running programs.

Like the direct page, this can also be changed by a routine, by changing
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the Stack Pointer to any two-byte address in the first bank (bank 0) of memory.
With the 65816 in the full 16-bit mode, the stack can be of any size, and it is
up to the programmer to see that data in it does not collide with anything
stored below it.

The Input Buffer: $200 to $2FF

$200-$2FF The Input Buffer
$100-$1FF The Stack
$00-$FF Zero (Direct) Page

The area from $200 to $2FF is used by Applesoft BASIC and the Monitor
to store characters as they are input from the keyboard. Certain ProDOS 8 pro-
grams also use the second half of the input buffer ($280 to $2FF) to pass path-
names between successive programs. When ProDOS is reading or writing a file
from disk, a dedicated buffer defined elsewhere in memory is used, so the in-
put buffer from $200 to $2FF is not used, although you may see the term input
buffer used in reference to other data areas.

Because the input buffer is so heavily used on a temporary basis, it
makes an excellent choice for a temporary block of memory for your own pro-
grams, especially for string operations. Just don’t plan on leaving anything
there after you leave your routine and expect to find it there when you come
back.

Page Three

Figure 15-2 shows page three. The area from $300 to $3CF is considered an
open area for user-defined machine language routines. This is the area used for
most of the short demonstration programs so far in this book.

Starting at $3D0 are a number of ProDOS and system vectors that
should not be changed unless you know exactly what you are doing. The exis-
tence and use of some of the vectors depend on whether you are in ProDOS 8
or 16, or are using Applesoft BASIC. Vectors like this are usually self-evident.
For example, a ProDOS 16 program doesn’t have to worry about the Applesoft
BASIC ampersand ( & ) vector at $3F5-3F7.

Looking through the list, here’s a brief discussion of each group of page-
three bytes. A JMP instruction is held by $3D0~3D2 for the BASIC.SYSTEM
warm-start entry. This is equivalent to being in the Monitor and typing Con-
trol-C. The difference is that this will reconnect ProDOS if an I/O handler has
gotten things confused. The same vector is contained in $3D3-$3D5. Once
upon a time, in a disk operating system called DOS 3.3, they were different.
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Figure 15-2. Page Three: $300 to $3FF

$3FE-$3FF

$3FB-$3FD

$3F8-$3FA

$3F5-$3F7

$3F4

$3F2-$3F3

$3F0-$3F1

$3EF
$3ED-$3EE

$3D6-$3EC

$3D3-$3D5

$3D0-$3D2

$300-$3CF
$200-2FF
$100-1FF
$00-$FF

Address for IRQ
handler (interrupts).

JMP vector for non-
maskable interrupts.

JMP vector Control-Y
Monitor command.

JMP vector for BASIC
& commands.

Power-up byte. Must
be EOR of contents of
$3F3 with #$A5.

Address for a RESET
restart.

Address of BRK
handler.

(Unused)

Address to go to when

XFER ($C314) is called.

Reserved for use by
a ProDOS 8 SYSTEM.

BASIC.SYSTEM warm-
start entry vector.

BASIC.SYSTEM warm-
start entry vector.

Free Area

The Input Buffer

The Stack

Zero (Direct) Page.
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Locations $3D6 to $3EC are reserved for use by a ProDOS 8 system pro-
gram. You can use the bytes here for a vector to routines in your own program.
You might wonder why you would want to do this. Suppose you're debugging
a large program that has a tendency to crash. Certain entry points that could be
used to restart the program after a crash may be within the body of the pro-
gram itself. Instead of trying to remember that $21A7 is the current assembly’s
warm-start (restart without clearing variables), you could put a permanent
warm-start vector of your own at $3D6-$3D8 (for example, JMP $21A7). That
way, each reassembly will put the correct reentry vector at $3D6, and you only
have to remember one address.

Locations $3ED and 3EE hold an address for something called the XFER
(for transfer) routine. The XFER routine is derived from use on Apple Ile and
Ilc machines that used the 65C02 microprocessor, and could not do long-
address JMPs or JSRs to other banks of memory. In the case of the Ile and Ilc,
there is only one other bank of memory (ignoring expansion RAM cards for the
moment), bank 1, also called auxiliary memory or AUXMEM. XFER is a routine
designed to transfer program control from one bank to another.

For example, if you had a program running in bank 0 at $300, and
wanted to jump to $300 in bank 1, you could store the bytes $00,$03 in loca-
tions $3ED,3EE, and do a JMP $C314 (the XFER routine). The $C314 address is
a clue that the routine is on a peripheral card in slot 3, and it’s true. The 80-
column display uses bank 1 for every-other character on the screen, and there
are a number of built-in routines associated with the 80-column firmware and
the extra memory in bank 1. The 80-column display routines appear as though
they are on a peripheral card in slot 3. XFER is one of those routines.

Locations $3F0 and 3F1 hold the address that the computer will jump to
after it has encountered a BRK instruction and has taken care of its own busi-
ness with the event. The existence of this vector makes debuggers and pro-
grams that step through and trace assembly language programs possible.

Suppose we wrote a program that could keep track of a simulated pro-
gram counter—where in memory a program was executing. That program
could place a BRK instruction after the current instruction; then JMP to it.
When the BRK was encountered after the instruction, the vector at $3F0, 3F1
would point back to our program, which would restore the byte where the BRK
was and advance our own program counter to this now-current instruction.
Then a new BRK would be written after this instruction, and the process would
repeat. In this way, we would get control back after each and every program
step in the target program. This is how a step-and-trace (or debugger) is written
for the Apple computer.

The next three bytes, $3F2-3F4 are the address of where to jump to after
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a RESET, followed by a special checksum byte. When RESET is pressed, a
number of things are reinitialized that don’t include reconnecting
BASIC.SYSTEM under ProDOS 8. If things were not fixed up, typing CATA-
LOG after a RESET would just give a SYNTAX ERROR. Likewise, for a SYS-
TEM program of your own, it’s very good practice to trap RESET, so that the
user isn’t dumped into the Monitor if RESET is pressed.

The checksum byte is used by the Monitor to make sure that the vector
that’s there is intended. When you first turn on the machine, some value has to
be there. One of the ways the computer knows it has just been turned on is by
doing an exclusive-OR (EOR) of the contents of location $3F3 with the constant
value $A5. It then compares the result to a checksum byte stored in location
$3F4. If they don’t match, the computer assumes that it has just been turned
on, and a total reboot is done. Needless to say, putting a zero at $3F4 is pretty
much equivalent to saying you want reboot on RESET—not a friendly thing to
do (but not unknown in the world of commercial software).

In the interest of completeness for this book, Program 15-1 is a short
listing of a short ProDOS 8 system program (in fact, a variation on
P8.SYSTEM) that traps RESET while it’s waiting to do a quit.

The program should be pretty much self-explanatory. There are no new
principles introduced other than the idea of saving the existing RESET vector at
$3F2-$3F4 and then restoring it before the program quits. Try out the program
and notice how RESET is now controlled by the system program itself.

Program 15-1. ProDOS Reset Demo

1
2" PRODOS 8 RESET DEMO PROG. *
3 MERLIN ASSEMBLER *
4
5
=BF00 6 MLI EQU $BF00
=FDF0 7 COUT EQU $FDFO0
=FC58 8 HOME EQU $FCs8
=C000 9 KYBD EQU $C000
=C010 10 STROBE EQU $C010
=03F2 11 RESET EQU $3F2 ; RESET VECTOR
=(3F4 12 CHK EQU $3F4 ; CHECKSUM BYTE
13
14 ORG  $2000
15
16 DSK P8.SYS.RESET
17 TYP SFF ; SYSTEM FILE TYPE
18
002000: 20 58 FC 19 START JSR  HOME ; CLEAR SCREEN
20
002003: AD F2 03 21 SAVE LDA RESET ; GET OLD VECTOR
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002006:
002009:

00200C:

00200F:
002012:

002015:
002017:

00201A:
00201C:

00201F:
002021:

002024:
002026:
002029:

00202B:

00202E:
00202F:

002031:
002034:
002036:

002039:

00203C:

00203F:
002042:
002045:
002048:

00204B:
00204E:

00204F:
002051:
002053:

002054:
002055:
002056:
002058:
002059:

00205B:

00205C:
002060:
002068:
002070:

002072:

00
00

cC
s
C1
00

58

03
03
03
20
=2031
FD

=2026

=205B

C5 C1

A0 DO D2 C5 D3 D3
A0 CB C5 D9 A0 AD

FC

67

68

69 HANDLER

70

SET

PRINT
Loor

GETKEY

RESTORE

QUIT

PARMTBL

ERROR

MSSG

STA
LDA
STA
LDA
STA

LDA
STA
LDA
STA
EOR
STA

LDY
LDA
BEQ
JSR
INY
BNE

BIT
BPL
BIT

LDA
STA
LDA
STA
LDA
STA

JSR
DFB

BCS
BRK

DFB
DFB

DFB
DA

BRK

ASC

JSR

OLDRESET ; SAVE IT

RESET+1
OLDRESET +1
CHK
OLDRESET+2
#<HANDLER ; OUR RESET ROUTINE
RESET
#>HANDLER
RESET +1 ; ALL SET!
#$A5 ; CHECKSUM
CHK
#$00 ; INIT Y-REG
MSSG,Y ; GET CHAR TO PRINT
GETKEY
couTt ; PRINT IT

; NEXT CHAR
Loop ; WRAPAROUND PROTECT
KYBD ; KEYPRESS?
GETKEY ; NOPE
STROBE ; CLEAR KEYPRESS
OLDRESET ; GET ORIG. VECTOR
RESET
OLDRESET +1
RESET+1
OLDRESET+2
CHK
MLI ; DO QUIT CALL
$65 ; QUIT CODE
PARMTBL ; ADDRESS OF PARM TABLE
ERROR ; NEVER TAKEN

; SHOULD NEVER GET HERE. ..
4 ; NUMBER OF PARMS
0 ; QUIT TYPE: 0 = STD QUIT
$0000 ; NOT NEEDED FOR STD QUIT
0 ; NOT USED AT PRESENT
$0000 ; NOT USED AT PRESENT

; WE'LL NEVER GET HERE?

“PLEASE PRESS A KEY ->“,00

HOME ; OUR RESET HANDLER
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002075: A0 00 71 PRINT2 LDY #$00 ; INIT Y-REG
002077: B9 93 20 72 :1 LDA  MSSG2Y ; GET CHAR TO PRINT
00207A: FO 06 =2082 73 BEQ GETKEY2
00207C: 20 F0 FD 74 JSR  CouT ; PRINT IT
00207F: C8 75 INY ; NEXT CHAR
002080: DO F5 =2077 76 BNE :1 ; WRAPAROUND PROTECT
77
002082: 2C 00 CO 78 GETKEY2 BIT KYBD ; KEYPRESS?
002085: 10 FB =2082 79 BPL GETKEY2 ; NOPE
002087: 2C 10 CO 80 BIT STROBE ; CLEAR KEYPRESS
81
00208A: 20 58 FC 82 JSR  HOME ; CLEAR SCREEN
00208D: 4C 24 20 83 JMP PRINT ; TRY AGAIN . ..
84
002090: 00 00 85 OLDRESET DA  $0000 ; OLD RESET VECTOR
002092: 00 86 DFB  $00 ; OLD CHECKSUM
87

002093: CD C1 D9 C2 88 MSSG2 ASC “MAYBE YOU SHOULD TRY ANOTHER KEY?”,8D
002097: C5 A0 D9 CF D5 A0 D3 C8
00209F: CF D5 CC C4 A0 D4 D2 D9
0020A7: A0 C1 CE CF D4 C8 C5 D2
0020AF: AG CB C5 D9 BF 8D
0020B5: DO D2 C5 D3 89 ASC  “PRESS A KEY TO TRY AGAIN ... ”,8D,00
0020B9: D3 A0 C1 A0 CB C5 D9 A0
0020C1: D4 CF A0 D4 D2 D9 Ab C1
0020C9: C7 C1 C9 CE AE AE AE 8D
0020D1: 00
90
0020D3: 27 91 CHK ; CHECKSUM FOR LISTING

--End Merlin-16 assembly, 211 bytes, Errors: 0

Bytes $3F5-$3F7 hold a JMP instruction for where to go when an Apple-
soft BASIC program encounters the ampersand ( & ) character. This is a handy
way of adding new commands to BASIC, and was discussed in Chapter 12.

Locations $3F8-$3FA hold a JMP instruction indicating where to go
when Control-Y is pressed in the Monitor. Merlin, the Monitor itself, and the
Classic Desk Accessory called Mangler all use this vector. It’s a convenient way
to re-enter any program from the Monitor.

Bytes $3FB-$3FD create the vector for what are called nonmaskable inter-
rupts. Interrupts are a signal that can occur at any time to tell the computer to
stop what it is doing and to execute a program somewhere else in the com-
puter. Usually, control soon returns to the program that was interrupted. Inter-
rupts allow the computer to seem as though it’s doing more than one thing at
once, and they are an essential part of the Apple IIGS environment. There are
different kinds of interrupts. The BRK instruction is, in a way, a kind of inter-
rupt. It tells the microprocessor to stop executing the program it’s in, and to
jump through the vector at $3F0, 3F1. This allows us to run a debugging utility
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at the same time as another program, namely the program being debugged.

A nonmaskable interrupt is an interrupt that can never be ignored (see
maskable IRQs, next). This is usually used in dedicated microprocessor devices
to detect an outside event. It is provided for in the Apple IIGS, but rarely used.

There is another kind of interrupt, called a maskable IRQ (Interrupt Re-
Quest), that is vectored through location $3FE, 3FF. That type of interrupt can
be ignored by the operating program by just using the instruction SEI (SEt In-
terrupt disable). This tells the computer to ignore any maskable or discretion-
ary interrupts. This type of interrupt is disabled when the disk is reading or
writing to a drive, for example, because timing is very important at that point—
an interruption could not be tolerated. Because interrupts are so important on
the Apple IIGS, it is not advisable to ever turn them off completely. Instead,
your program should only turn them off briefly, when absolutely necessary,
and then restore the interrupt status to its previous state as soon as possible.

The Text Display

The memory range from $400 to $7FF in bank 0 is used for the 40-column text

display (see Figure 15-3). You have seen in previous chapters how a character

can be printed to the screen by storing a byte directly in this part of memory.
In this range, 64 bytes in bank 0 are also used as screen holes by certain

peripheral cards, as was discussed in a previous chapter.

Figure 15-3. The Text Display: $400 to $7FF

$400-$7FF Text Display

$300-$3FF Free Space and Vectors

$200-$2FF The Input Buffer
$100-$1FF The Stack
$00-$FF Zero (Direct) Page

Applesoft BASIC

For Applesoft BASIC, a program starts in memory at $800 and grows upward
in memory (see Figure 15-4). This is complicated by the fact that two hi-res dis-
plays are located in the range of $2000 to $3FFF (hi-res page one), and $4000
to $5FFF (hi-res page two). There are utility routines that will split an Applesoft
BASIC program around the hi-res pages, or you can just move the entire pro-
gram up above the pages in memory.
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Applesoft BASIC variables are stored beginning at the end of the BASIC
program itself. String data is stored at the top of memory and works downward
as new strings are defined.

Figure 15-4. Applesoft BASIC Programs: $800 to $95FF

$FFFF

$BF00-$BFFF
$BEFF

$9600
$95FF

$5FFF

$4000
$3FFF

$2000

$800
$7FF

$400
$3FF

$000

Bank 0

ProDOS 8
Global Page

BASIC.SYSTEM

Hi-Res
Page 2

Hi-Res
Page 1

Applesoft BASIC
Program
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In addition, the area from $C800 to $CFFF (2K) is a shared address space
for all slots. When a device is turned on, it maps its own ROM into the com-
plete space in this 2K area. Obviously, if two cards are active at the same time,
and try to each use their own ROMs in this space, a conflict will occur. There-
fore, there is a protocol for cards recognizing requests from other cards to
switch in a new ROM assignment.

Figure 15-5. |/0 ROM Space: $C000 to $CFFF

Bank 0
$FFFF
Expansion
$C800-$CFFF ROM for
Slots
$C700-$C7FF Slot 7
$C600-$C6FF Slot 6
$C500-$C5FF Slot 5
$C400-$C4FF Slot 4
$C300-$C3FF Slot 3
$C200-$C2FF Slot 2
$C100-$C1FF Slot 1
$C000-$COFF Softswitches
$000
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Figure 15-6. The First 64K

Bank 0 Bank 1
$FFFF
Monitor
ROM
routines
$F800 ProDOS 8
$F7FF
$E000 | Applesoft BASIC
$DFFF ROM Additional
routines 4K Bank-
switched RAM
$D000
I/0 ROM
$C000-$CFFF and
softswitches
ProDOS 8 ProDOS 8
$BF00-$BFFF Global Page (Reserved)
$BEFF
BASIC.SYSTEM
$9600
$5FFF Hi-Res DHR
Page Two Interleave
Page Two
$3FFF Hi-Res DHR
Page One Interleave
$2000 Page One
Applesoft BASIC
Program
$800
80-Column
$400-$7FF Text Screen Interleave
Text Screen
$3FF
$000
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to restrict the IIGS environment into separate operating modes, and rather real-
ize that it is a superset, not a seperate set, of the earlier Ile and Ilc computers.

The Apple IIGS has 256 ($00 to $FF) addressable (though not necessarily
installed) banks of 64K memory. Banks $00 through $E1 are RAM. Banks $FE
and $FF are ROM memory that include not only the Applesoft BASIC and
Monitor routines, but also the Apple IIGS ROM toolset as well. The area from
$F0 to $FD is reserved for expansion ROM, possibly in the form of a fast-boot
ROM disk, or of permanently resident applications.

In addition, all memory except for banks $E0 and $E1 is what is called
fast memory—all accessing to it can be done at the faster 3.1 MHz speed of the
65816, as opposed to the 1 MHz speed used to access banks $E0 and $E1.

The reason for this difference is that the video circuitry on the Apple re-
lies on a certain timing and speed of operation to properly generate the video
display. If this were arbitrarily sped up, your video monitor would no longer
work. Remember that the video data areas in the Apple Ile and Ilc are the text
and hi-res pages in banks $00 and $01. At the same time, Apple knew people
would expect that programs running in these banks would be faster because of
the faster processor (clock speed) operation. Now here’s a dilemma: how to
speed up the program in banks 0 and 1, and leave the video display areas at a
slower rate.

The solution was to do something called shadowing, in which data writ-
ten to the video areas ($400 to $7FF and $2000 to $5FFF) of banks 0 and 1
would be automatically reproduced electronically, in the same memory range in
banks $E0 and $E1. This way, as your program writes bytes to the text screen
in bank 0, the data automatically appears in bank $E0. The video circuitry
looks only at bank $E0, and it interacts only at the slower speed. Hence, every-
thing works out. On the Apple IIGS, the video display you see is the contents
only of banks $E0 and $E1. In fact, if you turn shadowing off, it’s possible to
write to the text or graphics pages in banks 0 and 1, and to have the results re-
main entirely invisible as the user continues to view the displays generated
from banks $E0 and $E1.

Not every byte banks 0 and 1 are automatically shadowed into banks
$EO0 and $E1. The areas actually shadowed are controlled by a status byte at
$C035, called the shadow register. Bits set and cleared in this byte determine
which parts of memory will be automatically copied into banks $E0 and $E1 as
they are written to in banks 0 and 1.

The control bits are as follows:

Bit 0 Text page one

Bit 1 Hi-res page one

Bit 2 Hi-res page two

Bit 3 Auxmem for both hi-res pages (double hi-res)
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Figure 15-7. Banks $EO and $E1

$FFFF

$E000
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Bank $EO Bank $E1
Shared:

ProDOS 16 AppleTalk
Loader routines
and and

AppleTalk
Euffers buffers
1/0 ROM
and
softswitches
Free
Memory
Free
Memory
Super Hi-Res
Display
Hi-Res DHR
Page Two Interleave
Page Two
Hi-Res DHR
Page One Interleave
Page One
QuickDraw
Vectors
Serial
Input Buffer
Desk
Accessory Misc. Tools
Buffer Buffer
Sound
Variables
Buffer
Reserved
Memory Mgr.
Buffer
Reserved
Serial Port
Variables
Text Tools
Data
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$15A9 Serial Port
Variables
$158A
$1589 ADB Address
& attribute
$154A list
$1549 SmartPort
usage
$14E2
$14E1 AppleTalk
Data
$1000 Storage
$FFF Serial
Port
$FFB Storage
$FFA ADB
Storage
$FD6
$FD5 Misc. Tools
usage
$FDO
$FCF Disk
Transfer
$C00 Buffer
$BFF
80-Column
$800-$BFF Text Screen Interleave
Page Two Text Screen
$800 Page Two
$7FF
80-Column
$400-$7FF Text Screen Interleave
Page One Text Screen
$400 Page One
$3FF Clock
Buffer
$3E0
$3DF l ADB
Interrupt
$3D0 Desk Queue
$3EF Accessory Tool
Buffer Locator
$3C0 | Variables
$3BF
Battery
$300 RAM
$2FF Buffer
$2C0
$2BF Mouse
Reserved Clamp
$2B8 Data
$2B7 User access
vectors-
Monitor
$000 Entry Points
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RTL/RTS

RTL/RTS: Return from (Long) Subroutine

Description

This restores the program counter to the address stored on the stack plus one,
usually the address of the next instruction after the JSR that called the routine.
Analgous to a RETURN to a GOSUB in BASIC. (See also JSL/JSR.) RTS only
returns to an address within the current program bank; RTL changes the pro-
gram bank register, and can return to an address anywhere in addressable
memory.

Flags & Registers Affected (none)
N V - B D I Z C Acc X Y Mem

Addressing Modes Available

Common Hex
Mode Syntax Coding
Implied Only RTS 60
Implied Only RTL 6B

Uses
RTS is, surprisingly enough, most often used to return from subroutines. It can
on occasion be used to simulate a JMP instruction, by using PHA or PER in-
structions to put a false return address on the stack and then executing the
RTS. See the sections on PHA and PER and Chapter 11 for more details.
An RTS can be POPed one level by the execution of two PLA instruc-
tions if in the 8-bit mode (m = 1), or one PLA if in the 16-bit mode (m = 0).
RTL is the return instruction for a JSL (Jump Subroutine Long); it pulls
three bytes off the stack (Address Low Byte, Address High Byte, then Bank Byte).
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SBC

One-Byte (Word) Subtraction:

ENTRY SEC
LDA
SBC
STA
DONE RTS

MEM
#$80
RSLT

; PREPARE FOR SUBTRACTION
; GET 1ST VALUE

; SUBTRACT #$80

; STORE RESULT

Two-Byte (Word) Subtraction:

ENTRY SEC
LDA
SBC
STA
LDA
SBC
STA
DONE RTS

MEM
#3580
RSLT
MEM+1(2)
#$00
RSLT+1(2)

; PREPARE FOR SUBTRACTION

; GET LOW-ORDER BYTE (WORD)

; SUBTRACT #$80

; SAVE LOW-ORDER BYTE (WORD)

: GET HIGH-ORDER BYTE (WORD)

: SUBTRACT HIGH-ORDER BYTE (WORD) OF #$80
; SAVE HIGH-ORDER RESULT
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SEl

SEl: Set Interrupt Disable

Description
SEI is used to disable the interrupt response to an IRQ (a maskable interrupt).
This does not disable the response to an NMI (Non-Maskable Interrupt) or RESET.

Flags & Registers Affected
N \% - B D | V4 C Acc X Y Mem

Addressing Modes Available

Common Hex
Mode . Syntax Coding
Implied Only SEI 78

Uses

SEI is automatically set whenever an interrupt occurs so that no further inter-
rupts can disturb the system while it is going through the $FFFE, FFFF vector
path. ProDOS typically does a SEI/CLI operation when entering and exiting
from the routines that read and write data on the disk, so interrupts do not
interfere with the highly timing-dependent disk read/write routines. (See
PHP also.)
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STA

STA: Store Accumulator
Description
Stores the contents of the Accumulator into the specified memory location. The
contents of the Accumulator are not changed, nor are any of the status register
flags. One byte is stored if m = 1 (8-bit mode); two bytes are stored if m = 0
(16-bit mode).
Flags & Registers Affected (none)

N V - B D I Y4 C Acc X Y Mem

Addressing Modes Available

Common Hex
Mode Syntax Coding
Absolute STA $FFff 8D ff FF
Absolute Long STA $00FFff 8F ff FF 00
Direct Page STA $FF 85 FF
Direct Page Indirect STA ($FF) 92 FF
Direct Page Indirect Long STA [$FF] 87 FF
Absolute Indexed, X STA $FFff X 9D ff FF
Absolute Long Indexed, X STA $00FFff,X 9F ff EF 00
Absolute Indexed,Y STA $FFffY 99 ff FF
Direct Page Indexed,X STA $FEX 95 FF
Direct Page Indexed Indirect,X STA ($FF,X) 81 FF
Direct Page Indirect Indexed,Y STA ($FF),Y 91 FF
Direct Page Indirect Long Indexed,Y STA [$FF],Y 97 FF
Stack Relative STA $FF,S 83 FF
Stack Relative Indirect Indexed,Y STA ($FE,S),Y 93 FF

Uses
STA is another highly used instruction, being used at the end of many opera-
tions to put the final result into a memory location.

In general, the LDA/STA combination is used to transfer bytes from one
location to another.
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STX

STX: Store the X Register

Description

Stores the contents of the X Register in the specified memory location. The X
Register is unchanged and none of the status register flags are affected. One

byte is stored if x = 1 (8-bit register); two bytes (a word) are stored if x = 0
(16-Dbit registers).

Flags & Registers Affected (none)
N \' - B D I V4 C Acc X Y Mem

Addressing Modes Available

Common Hex
Mode Syntax Coding
Absolute STX $FFff 8E ff FF
Direct Page STX $FF 86 FF
Direct Page Indexed,Y STX $FF,Y 96 FF

Uses

STX is another alternative to using LDA/STA to transfer data. In some in-
stances, the Accumulator will already hold a value you wish to preserve while
you transfer another byte or word. The X Register is also used by the Monitor
GETLN routine to return the length of the input string.
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TAX

Although the Accumulator is in the 8-bit mode, both bytes are trans-
ferred (A and B portions) if the X Register is in the 16-bit mode. This is a com-
mon source of program bugs. If the Accumulator is in the 8-bit mode, it is
possible that the Accumulator is still carrying along some value (not necessarily
zero) from millions of previous instructions in the hidden B register. You
should never assume the B register in the Accumulator is zero unless you have
explicitly set it that way.

m x  Accumulator X Register
1(8) 1(8) $FFff - $00ff

This is equivalent to the e = 1 (emulation mode) transfer.

Uses
Most simply, TAX is used for transferring data in the manner which it implies.
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TSX

TSX: Transfer Stack Pointer to X Register

Description

This puts the contents of the Stack Pointer into the X Register. The N (sign)
and Z (zero) flags are conditioned. The stack pointer is unchanged. If x = 0,
two bytes are transferred, otherwise only the low-order byte of the Stack
Pointer will be used.

Flags & Registers Affected
N V - B D 1 Z C Acc X Y Mem

Addressing Modes Available

Common Hex
Mode Syntax Coding
Implied Only TSX BA

Uses
The most obvious use of TSX is in preserving the value of the stack pointer at a
particular moment.

Another use for TSX is in retrieving data from the stack without having
to do a PLA instruction. Although stack relative addressing can be used to ac-
cess data on the stack, TSX can be used to retrieve information that is officially
lost at that point. This lets you retrieve data that is lower in memory than the
current stack pointer, and which would be overwritten by the next PHA
instruction.

One example of this is in using a JSR to a known RTS in the Monitor for
no other purpose than to be able to immediately retrieve the otherwise lost re-
turn address. This is done so that position-independent code has a way of find-
ing out where it’s currently located. Although there is really not room here for
an in-depth explanation, here’s the routine that uses a JSR to a known RTS, and
then examines the stack to determine where in memory it is currently executing.

ENTRY PHP ; SAVE INTERRUPT STATUS
SEI ; SET INTERRUPT DISABLE
JSR RETURN ; $FF58
TSX ; GET STACK POINTER
LDA STACKX ; $100,X
STA PTR+1 ; SAVE HIGH BYTE OF RETURN ADDRESS
DEX ; MOVE TO NEXT POSITION
LDA STACKX ; GET LOW BYTE OF RETURN ADDRESS
STA PTR ; (PTR) = ENTRY+2.
PLP ; RESTORE INTERRUPT STATUS
DONE RTS
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TSX

This technique was originally developed for the 6502 microprocessor,
and code similar to this is used on peripheral cards that must determine which
slot they're assigned to. On the Apple IIGS with the 65816 microprocessor, this
is not really needed because the PER instruction will put an address on the stack
without the worry of illegal stack use, or conflict with interrupts. (See PER.)

Caution: Most Step and Trace utilities will not properly trace code like
this because of the somewhat illegal use of the stack. Strictly speaking, good
programming principles dictate that once data is officially off the stack, it is
counted as being effectively lost. This is especially true in the case of interrupts,
where an interrupt in the middle of the dummy JSR, RTS, and retrieval process
could produce a completely invalid result in PTR,PTR+1. That is why our rou-
tine temporarily disables interrupts while it examines the dead area of the
stack.
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TYA

TYA: Transfer Y Register to Accumulator

Description

This puts the contents of the Y Register into the Accumulator, thus condition-
ing the status register as if an LDA instruction had been executed. The Y Regis-
ter is unaffected by the operation. The actual data transferred depends on the
condition of the e, m, and x bits. See the discusson of TAX for detailed examples.

Flags & Registers Affected
N V - B D I Z C Acc X Y Mem

Addressing Modes Available

Common Hex
Mode Syntax Coding
Implied Only TYA 98

Uses

TYA provides a way of retrieving the value in the Y Register for appropriate
processing by the program. This comes in handy when scanning a data block,
and information as to certain locations is to be processed. As mentioned under
TXA, the Accumulator has far greater flexibility than the Y Register in terms of
addressing modes, logical operators available, and so on.
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WAI

WAI: Wait for Interrupt

Description

This brings current program execution to a stop until the next interrupt or RE-
SET occurs.

Flags & Registers Affected (none)

N \" - B D I Z C Acc X Y Mem

Addressing Modes Available

Common Hex
Mode Syntax Coding
Implied Only WAI CB

Uses

WAL is designed for use with other hardware devices that may use the 65816
microprocessor, or for peripheral cards or specialized devices on the Apple IIGS
that require synchronized interrupts. While the processor is waiting, the power
consumption of the 65816 is reduced (though not as low as for the STP instruc-
tion). The WAI instruction can also be used to cause the microprocessor to re-
spond nearly instantly to an interrupt event. Ordinarily, if an interrupt occurs
while an instruction is executed, several cycles of the microprocessor may
elapse while that instruction is completed before the interrupt is processed. The
WAL instruction allows hardware designers to insure that the microprocessor
will respond instantly to an interrupt.
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Direct Page,
Program Bank,
Data Bank

XCE

The Direct Page, Program Bank, and Data Bank registers do
not explictly change. Although ProDOS 8 and other Apple II
software may expect the Direct Page, Program Bank, and Data
Bank values to be $0000, it is up to the application to make
sure this is the case if any of these have been reset by the
application, and a switch is made to emulation for the purpose
of executing a Monitor routine, Applesoft BASIC program, and
so forth.

Emulation to Native

CLC

XCE
Other Effects:
m=1

Direct Page,
Program Bank,
Data Bank

;¢ = 0 = NATIVE

Accumulator/Memory operations default to 8 bits. Accumu-
lator continues to hold both A and B portions intact. Data size
may then be changed with REP or SEP instructions at will.
Index Register size defaults to 8 bits. The high-order bytes of
X and Y are set to zero. Register size may then be changed
with REP or SEP instructions at will.

The stack is left set to page one ($1xx), bank zero, and but is
no longer limited to one page in size. Program may then use
TCS or any other relevant instruction to change the stack loca-
tion as desired to anywhere in bank 0.

The Direct Page, Program Bank and Data Bank Registers do
not explictly change. Although ProDOS 8 and other Apple II
software may have set the Direct Page, Program Bank, and
Data Bank values to be $0000, the application may change
these as desired. ProDOS 16 automatically sets the Program
Bank Register when an application is loaded and run, and as-
signs $400 bytes somewhere in bank 0 for the Direct Page
($100 bytes) and the Stack ($300 bytes). Under ProDOS 16,
the program must set its own Data Bank Register as needed.
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Appendix B

1234: 01 02 03

1234: “TEST”

1234: ‘ABCD’

0<1234.5679Z
800<1234.5678M
800<1234.5678V

“A"”<1234.5678P
25<1234.5678P
“ABCD""<1234.5678P

25 7F 3E<1234.5678P

Number Conversions

Sample Instruction
1234=
=1234

Store the values $01, $02, $03 in locations $1234, $1235, and
$1236.

Store the ASCII values for the characters T-E-S-T in locations
$1234, $1235, $1236, and $1237, with the high bit conditioned
by the filter value.

Store the ASCII values for the characters in the reverse order
that they appear on the line. Thus the characters D-C-B-A
would be stored starting at location $1234. This is called flip
ASCIL.

Fills memory locations $1234 through $5678 with 0.

Moves memory from $1234 to $5678 to location $800+.
Compares each byte in the range of $1234 to $5678 to the cor-
responding byte starting at $800. Any bytes that do not match
are reported.

Search for the ASCII characters from $1234 to $5678.

Search for the value $25 in memory in the range of $1234 to
$5678.

Search for the pattern of ASCII characters ABCD in the mem-
ory in the range of $1234 to $5678.

Search for the pattern of hex bytes 25 7F 3E in memory in the
range of $1234 to $5678.

Description
Convert $1234 to decimal.
Convert 1234 (decimal) to hex.

Program Execution and Register Display

Sample Instruction
Control-E

Control-N

Control-R
300G

02,/0300X

Description

Display contents of registers. These registers are set when a
BRK is encountered, or they may be set by the user.

Returns e, m, and x bits to Native mode (0).

Returns registers and flags to default Monitor configuration.
Run a program in bank 0 (only). All registers are set using the
stored values in the register display before the Go is executed.
The routine should end with an RTS for control to return to the
Monitor.

Execute a program in any bank. All registers are set using the
stored values in the register display before the Go is executed.
The routine should end with an RTL for control to return to the
Monitor.
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The Apple llGS Monitor

The following commands change the registers and flags in the stored
register and flag display:

1234=A Set Accumulator to $1234.
1234=X Set X Register to $1234.

1234=Y Set Y Register to $1234.

1234=D Set Direct-Page Register to $1234.

12=B Set Data Bank to bank $12.

12=K Set Program Bank to bank $12.

1234=S Set Stack Pointer to $1234.

12=P Set Status Register to $12.

12=M Set machine state for the next Go or eXecute command to $12.

12=Q Set Quagmire state for next Go or eXecute command to $12. Quagmire

bits are defined as follows:

Bit 7 =1 High speed mode.
Bit 6 = 1 Stop Language Card, I/O shadowing.
Bit5 = 1 Must always be zero.
Bit 4 = 1 Stop bank 1 hi-res shadowing.
Bit 3 = 1 Stop super hi-res shadowing.
Bit 2 = 1 Stop hi-res page 2 shadowing.
Bit1 = 1 Stop hi-res page 1 shadowing.
Bit 0 = 1 Stop text page 1 shadowing.
0=m Set m bit to 0 (or 1).
0=c¢e Set e bit to 0 (or 1).
0=x Set x bit to 0 (or 1).
(See Control-N and Control-R.)
0=L Change language card RAM to first bank.
1=1L Change language card RAM to second bank.
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008078:
00807B:

00807E:

008081:
008082:
008085:
008088:
008089:

00808C:
00808F:

008092:
008095:

008097:
00809A:
00809D:
00809F:
0080A2:
0080A5:

0080A7:

0080AA:
0080AD:
0080AF:
0080B2:

0080C2:
0080C6:
0080C8:
0080CC:

0080CE:

0080D1:
0080D4:

0080DT7:
0080DB:
0080DD:
0080E1:

0080E3:
0080ES:

F8
90

C9
FO

00
7k

34

00
83

80

00 El

00 00
=80D1

81

81
81

00 E1l

00 00
=80EB

00
=8144

110
m
112
113
114
115
116

ECHO

GOTPATH
CHK1

CHK2

FIX

CLRSCRN

OPEN

OPEN2

READ

LDA
STA

JMP

PHA
INC
LDX
PLA
STA

JmMP
LDX

CPX
BNE

LDA
CMP
BNE
LDA
CMP
BNE

JMP

LDA
SEP
STA
REP

#500
INBUFX

INPUT

LEN
LEN

INBUF.X
INPUT
LEN

#$04
FIX

INBUF+1
WORD

FIX
INBUF+3
WORD+2
FIX

QuIT

LEN
$30
INBUF
$30

PushWord #$008C
ToolCall $180C

JSL
DA
ADRL
BCC

JMP

LDA
STA

JSL
DA
ADRL
BCC

CmpP
BEQ

PRODOS
$10
OPENBLK
OPEN2

ERROR

OPENBLK
READBLK

PRODOS
$12
READBLK
PRINT

#$4C
CLOSE
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ProDOS 16 File Dump Utility

; PUT ZERO AT END
; (DELETES OLD NTH CHAR).
; GO GET SOME MORE

; SAVE CHARACTER

; ADD 1 TO LENGTH

; PUT IN XREG

; RETRIEVE CHARACTER

; ADD TO STRING

; AUTO ‘0’ AT END! (HIGH BYTE)
; GO GET SOME MORE

; GET LENGTH OF INPUT

; 4 = LEN “QUIT”
; IT’S NOT “QUIT”

; 1ST & 2ND CHARS OF INPUT
; “QUIT*?

; NOPE

; 3RD & 4TH CHARS

; NOPE

; STR$ = “QUIT”

; 8-BIT MODE

; CHANGE TO PRODOS STR$
; BACK TO 16 BITS

; HOME & CLEAR SCREEN

; WriteChar

; OPEN COMMAND
; OPEN CMD TABLE
; NO ERROR

; PRODOS ERROR MESSAGE
; GET REFERENCE NUMBER
; STORE REF NUMBER

; READ COMMAND
; READ CMD TABLE
; NO ERROR. ..

; ERROR = END OF FILE?
; YEP!
























Hex
$39
$3A
$3B
$3C
$3D
$3E
$3F

$40
$41
$42
$43
$44
$45
$46
$47
$48
$49
$4A
$4B
$4C
$4D
$4E
$4F

$50
$51
$52
$53
$54
$55
$56
$57
$58
$59
$5A
$5B
$5C
$5D
$5E
$5F

$60
$61

Dec

57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96
97

Binary

0011 1001
0011 1010
0011 1011
0011 1100
0011 1101
0011 1110
0011 1111

0100 0000
0100 0001
0100 0010
0100 0011
0100 0100
0100 0101
0100 0110
0100 0111
0100 1000
0100 1001
0100 1010
0100 1011
0100 1100
0100 1101
0100 1110
0100 1111

0101 0000
0101 0001
0101 0010
0101 0011
0101 0100
0101 0101
0101 0110
0101 0111
0101 1000
0101 1001
0101 1010
0101 1011
0101 1100
0101 1101
0101 1110
0101 1111

0110 0000
0110 0001

Hex

$B9
$BA
$BB
$BC
$BD
$BE
$BF

$Co
$C1
$C2
$C3
$C4
$C5
$C6
$C7
$C8
$C9
$CA
$CB
$CC
$CD
$CE
$CF

$D0
$D1
$D2
$D3
$D4
$D5
$D6
$D7
$D8
$D9
$DA
$DB
$DC
$DD
$DE
$DF

$EO
$E1

Dec

185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

224
225

Binary

1011 1001
1011 1010
1011 1011
1011 1100
1011 1101
1011 1110
1011 1111

1100 0000
1100 0001
1100 0010
1100 0011
1100 0100
1100 0101
1100 0110
1100 0111
1100 1000
1100 1001
1100 1010
1100 1011
1100 1100
1100 1101
1100 1110
1100 1111

1101 0000
1101 0001
1101 0010
1101 0011
1101 0100
1101 0101
1101 0110
1101 0111
1101 1000
1101 1001
1101 1010
1101 1011
1101 1100
1101 1101
1101 1110
1101 1111

1110 0000
1110 0001
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Appendix E

Hex
$62
$63
$64
$65
$66
$67
$68
$69
$6A
$6B
$6C
$6D
$6E
$6F

$70
$71
$72
$73
$74
$75
$76
$77
$78
$79
$7A
$7B
$7C
$7D
$7E
$7F

Dec
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Binary

0110 0010
0110 0011
0110 0100
0110 0101
0110 0110
0110 0111
0110 1000
0110 1001
0110 1010
0110 1011
0110 1100
0110 1101
0110 1110
0110 1111

0111 0000
0111 0001
0111 0010
0111 0011
0111 0100
0111 0101
0111 0110
0111 0111
0111 1000
0111 1001
0111 1010
0111 1011
0111 1100
0111 1101
0111 1110
0111 1111

Hex
$E2
$E3
$E4
$E5
$E6
$E7
$E8
$E9
$EA
$EB
$EC
$ED
$EE
$EF

$F0
$F1
$F2
$F3
$F4
$F5
$F6
$F7
$F8
$F9
$FA
$FB
$FC
$FD
$FE
$FF

Dec
226
227
228
229
230
231
232
233
234
235
236
237
238
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

Binary

1110 0010
1110 0011
1110 0100
1110 0101
1110 0110
1110 0111
1110 1000
1110 1001
1110 1010
1110 1011
1110 1100
1110 1101
1110 1110
1110 1111

1111 0000
1111 0001
1111 0010
1111 0011
1111 0100
1111 0101
1111 0110
1111 0111
1111 1000
1111 1001
1111 1010
1111 1011
1111 1100
1111 1101
1111 1110
1111 1111
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Index

absolute addressing mode 180, 474
absolute indexed,X addressing mode 475
absolute indexed,Y addressing mode 475
absolute long addressing mode 474
absolute long indexed,X addressing mode 476
absolute long indirect addressing mode 477
accumulator 44-47, 48, 116, 125, 131, 132, 164,
274-75
changing effective size of 132
ADC (ADd with Carry) instruction 145-49, 151,
478-79
addition 143-50
address 7
addressing modes 179-204, 474-77
absolute 180, 474
absolute indexed,X 475
absolute indexed,Y 475
absolute long indexed,X 476
absolute long indirect 477
direct page 180, 475
direct page indexed indirect,X 476
direct page indexed,X 476
direct page indexed,Y 476
direct page indirect 475
direct page indirect long 475
direct page indirect long indexed,Y 477
immediate 179-80, 475
relative stack 211-12
relative stack indirect indexed 212-14
stack relative 477
stack relative indexed,Y 477
ADRL Merlin pseudo-op 275
& BASIC statement 236
AND instruction 163-66
AND logical operator 162-68, 480-82

Apple I computers, development history of 290-92

Apple IIGS computer, enhanced features of 271

Apple 1IGS mini-assembler 39-55. See also mini-

assembler
Apple IIGS Technical Reference x
Apple Macintosh computer 114
Applesoft BASIC x
Applesoft BASIC, ML and 3-21
Applesoft BASIC, Monitor and 24-25

APW (Apple Programmer’s Workshop) assembler x,

59, 81-98, 137-38, 251
ASSEMBLE command 88-89
assembler directives 87-88
assembling a program and 88-90
code segments 87
comment field 86-87

605

editor 83-87
EQU directive 92-95
filenames and 92
how different from Merlin 81
KEEP directive 89-90, 91-92
label field 86
labels and 92-96
linking and 82, 282-83
loader file 82
loading 83
long addresses and 87-88, 97
macros and 325, 330-33
object file 82
opcode field 86
operand field 86
ORG directive 90-91
restrictions on use of 81
shell 82, 83
theory of operation 82
A register. See accumulator
ASCII codes 54, 118-20, 185, 186
ASC instruction (Merlin) 190-91
ASL (Arithmetic Shift Left) instruction 159-60,
483-84
ASM command (Merlin) 66, 67
ASSEMBLE command (APW) 88-89
assembler directives, APW 87-88
assemblers, other 59
assembling a program, APW and 88-90
assembling to disk, Merlin and 74-75
assembly language 6
how different from ML 32-34
AUX field 338, 340-41
bank of memory 43, 218-22, 273, 274
banks, parallel
in Ile and Ilc 302-4
in IIGS 304-8
bank-switched RAM and ROM, location of 302
BASIC. See also Applesoft BASIC
calls, list of available from 13
eight-bit mode and 135
error trapping in 8-10
FOR-NEXT loop equivalent of 101-21
how related to ML 6-7
interpreter 6-7, 229-31
limitations of 3—-4
memory organization of 298-300
ML programs, adding to 225-44
ML routines, calling from 11-21
ML routines, POKEing from 23-34
Monitor, entering from 25






event code bit modifiers 387
event codes 387
event-driven programs 389-92
Event Manager 385-99, 413
“Event Manager Demo” (program) 393-99
event mask 388
event queue 386
event record 386
EXT (EXTernal) Merlin directive 281
fast memory 305
file handling, ProDOS 8 MLI and 257-68
filenames, APW and 92
file read command, ProDOS 262-63
file types, ProDOS 256
FramErect QuickDraw routine 373
GETCORIGIN QuickDraw routine 443
GETDP (GET Direct Page) tool call 375
GETLN2 Monitor command 260
GetNextEvent Event Manager routine 391, 414
GetPortRect QuickDraw routine 443
global page, ProDOS 300
GOSUB BASIC statement 23, 24
ML equivalent of 34
graphics information, storing 368-69
handle 337, 341-42, 344
hardware connections
memory locations of 16-18
reading 128-29
hexadecimal numbers 25-27, 30
converting to decimal 27-28
reason for using 29-30
HEX instruction (Merlin) 185

HIDEWINDOW Window Manager command 461

high bit, ASCII codes and 119
hi-res graphics 367

hot spot, cursor 464-65

immediate addressing mode 179-80
implicit addressing 180

INC instruction 105-6, 144, 515
incrementing 105-7

incrementing multiple bytes 111-14
indexed addressing 181

indexed indirect addressing 183-85, 201-2
indirect addressing 181-82, 193-94
indirect long addressing 182-83
input buffer 237

input from Monitor 262

input, monitoring 385-86
InsertMenu Merlin directive 415
instructions, 65816 473-587
interpreter, BASIC 6-7, 229-31
interrupt, maskable 298

INX instruction 105-6, 275, 516
INY instruction 105-6, 517

1/0 ROM, location of 300-301

JML (JuMp Long) instruction 116, 518
JMP instruction 235, 518

JSL (Jump Subroutine Long) instruction 51, 75, 97,

210, 519-20
JSR instruction 34, 50, 65, 75, 207, 519-20
maintaining with stack 207

KEEP directive (APW) 89-90, 91-92
kernel 248
keyboard 275
address of 128
buffering 129
reading data from 127-31
K register. See program bank register
label field
APW 86
Merlin 64
labels
APW and 92-96
Merlin 8/16 and 64-65, 70-76
languages, programming 4
Launcher program selector 60, 83
LDA (LoaD Accumulator) instruction 44, 45, 47,
50, 73-74, 75, 97, 129, 145, 195, 275
LDX instruction 47, 522
LDY instruction 47, 195, 523
library routines x-xi
LineTo QuickDraw routine 372
linker, APW 90
linkin
APW and 82, 282-83
Merlin and 280-82
LIST BASIC statement, Monitor equivalent of
32-34, 188
L Monitor command 32-34
loader file, APW 82
loading an ML program 41-42
logical and shift operators 159-75
logical operators 161-71
long addresses 43, 50-51, 114
addition and 147
APW and 87-88, 97
Merlin and 75-76
looping
BEQ and 108-10
BNE and 107-8
LSR (Logical Shift Right) instruction 159, 161,
524-25
MAC (MACro definition) Merlin directive 322
macro, assembly-language 322-33
APW and 325, 330-33
library, building 325-30
Merlin and 325-30
main field 338
mask 165-66
math 143-56
memory
addressable 5-6
compacting 343
examining with Monitor 24-25
graphics and 369
map 7-8
organization, Apple I1IGS 289-308
purging 343-44
requesting 342-43
special 341
storing data in 42-43
unmanaged 342






“ProDOS Reset Demo” (program) 295-97
ProDOS 16 220, 247, 271-86, 406
application requirements 273
starting 271-73
“ProDOS 16 File Dump Utility” (program)
593-604
“ProDOS 16 Launcher Demo” (program) 278-80
“ProDOS 16 Tool Locator Demo with Macros”
(program) 328-30
“ProDOS 16 Tool Locator Demo” (program)
320-31
Professional Disk Operating System. See ProDOS
program bank register 43, 218-19
program control 207-22
program counter 43
program documentation 85
Programming the 65816 ix
pseudo-op 185
pun 30
QuickDraw (QuickDraw) tool set 370-99, 403-5
calls, list of 383-85
starting 374-75
Quit command, ProDOS 16 273, 302
rectangle 373
registers 42-51
D 216-18
Data Bank 218, 219-20
Direct Page 291
moving data between 49-50
PHB (PusH data Bank) instruction 220
PHD (PusH Direct page) instruction 218
PHK (PusH program banK) instruction 219
PLB (PuLl data Bank) instruction 220
PLD (PulLl Direct page ) instruction 217
Program Bank 43, 218-19
S 209-11, 292
Shadow 305-6
stack and 208
Status 101-2, 104-5, 126, 131-37, 167
relative addressing 180
relative stack addressing mode 211-12
relative stack indirect indexed addressing mode
212-14
relocatable files 272
relocating ML program in memory 70, 90-91, 274
REP (REset Processor status bits) instruction 133,
550
RESET key 295
RETURN BASIC statement, ML equivalent of 24,
34-35
ROL (ROtate Left) instruction 161, 551
ROM routines 14-16, 128, 231-44
naming with variables in BASIC 15-16
ROR (ROtate Right) instruction 161, 552
RTI (ReTurn from Interrupt) instruction 553
RTL (ReTurn from subroutine Long) instruction 51,
554
RTS (ReTumn from Subroutine) instruction 33, 51,
67, 207, 554
saving an ML program 41
SBC (SuBtract with Carry) instruction 150, 151,
555-56

609

SCB (Scan line Control Byte) 370-71
screen, location of in memory 46
“Screen Color Demo” (program) 18-21
screen manipulation 185-203
SEC (SEt Carry) instruction 133, 150, 557
SED (SEt Decimal mode) instruction 558
SEI (SEt Interrupt disable) instruction 298, 559
SEP (SEt Processor status bits) instruction 133, 560
SetBackColor QuickDraw routine 379
SetColorEntry QuickDraw routine 377
SETCOLOR QuickDraw routine 376
SETCURSOR QuickDraw routine 464
SetForeColor QuickDraw routine 379
SETRECT call 451
SetSolidPenPat QuickDraw routine 372
shadowing 305
shadow register 305-6
“Shell” (program) 422-36
shift operators 159-61
short address 43
sign bit 151-55
sign flag, in status register 154
“Simple P8 System File” (program) 252-54
“Simple P16 System File” (program) 277-78
“Simple QuickDraw Demo’’ (program) 379-83
“SIMPLE.SKTCH"” (program) 451-57
65816 microprocessor 5, 23, 42
6502 microprocessor 5
“Slide Show” (program) 347-59
softswitches 17-18, 302
sound ix, 231-34
“Sound Routine” example programs 230-33
source file 67-68
S register 209-11, 292
stack 207-18, 291-92
keeping track of 208-9
pushing addresses to 214-15
“Stack Indirect Indexed Example” (program)
213-14
stack pointer. See S register
stack pointer, setting 211
stack relative addressing mode 477
stack relative indexed,Y addressing mode 477
STA (STore Accumulator) instruction 45-45, 47,
50, 75, 97, 561
status register 101-2, 104-5, 126, 131-37, 167
STILLDOWN Event Manager routine 465
STP (STop Processor) instruction 562
StringWidth QuickDraw routine 391
strobe 128
STX instruction 563
STY instruction 195, 564
STZ instruction 49, 565
subroutines, ML 34-35
subtraction 150-54
super hi-res graphics ix, 367-79
location of 306
super hi-res screen, defining memory equivalent to
448-50
“Switching to Hi-Res” (program) 17
symbol table, Merlin 67
SYSTEM.SETUP file 272



.SYSTEM files 248-49
system I/0 127
system loader 271-72
system startup, ProDOS 16 and 271
Taskmaster Window Manager routine 414
TAX (Transfer Accumulator to X) instruction 49,
566-67
TAY (Transfer Accumulator to Y) instruction 49,
568
TCD (Transfer aCcumulator to Direct-page register)
instruction 569
TCS (Transfer aCcumulator to Stack) instruction
211, 570
TDC (Transfer Direct page to aCcumulator) instruc-
tion 423, 571
text, printing in super hi-res with QuickDraw
78-79
text display, location in memory 298
toggling 63
TOOL.SETUP file 272
Toolbox, Apple 1IGS 311-33
Tool call ix
Tool Locator tool set 313-17
command list 314
ProDOS 16 and 320-21
tools
bugs in 338
calling 311
calling from ProDOS 8 317-19
list of 312
Memory Manager 344-47
TRB (Test and Reset Bits) instruction 166, 572
TR ON (TRuncate ON) Merlin directive 320
TSB (Test and Set memory Bits) 573
TSC (Transfer Stack to aCcumulator) instruction
211, 574
TSX (Transfer Stack to X) instruction 211, 575-76
TXA (Transfer X to Accumulator) instruction 49,
577-78
TXS (Transfer X to Stack) instruction 211, 579
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TXTPTR BASIC ROM routine 232, 234, 237
TXY (Transfer X to Y) instruction 49, 580
TYA (Transfer Y to Accumulator) instruction 49,
581
TYP directive 250
type field 338
TYX (Transfer Y to X) instruction 49, 582
User ID 337
“Using Meaningful Variable Names” (program) 16
variables
passing from BASIC to ML 231-38
passing from ML to BASIC 238-44
vector 236, 295
video circuitry 305
VTAB BASIC statement, assembler equivalent of
191-93
VTAB Monitor routine 191-92
WAI (WAit for Interrupt) instruction 583
WDM instruction 584
WFRAME parameter 407, 408-13
window
monitoring events in 437-43
moving 413
windows ix, 403-15
text files and 447-48
window data, recording elsewhere in memory
447-48
window definitions 406-7
Window Manager 405~15
window parameter list 407-8
window record 406
word processor x
XBA (eXchange A and B accumulators) instruction
50, 132, 585
XCE (eXchange Carry with Emulation bit) instruc-
tion 132
X register 47-49, 125, 131, 132, 181, 183
Y register 47-49, 125, 131, 133, 181, 183
zero flag 125, 126
zero page 290-91
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Programming the 65816

The Apple HGS takes the Apple Il personal computer to a new level of
technology. With its power and speed, however, comes a steep learning
curve. On the HIGs, machiné language programming—which always pro-
duces the most elegant, the most campact, and the fastest software—re-
quires that you learn how to use the machine’s powerful microprocessor,
the 65816. COMPUTE!'s Apple 11Gs Machine Language for Beginners is the
perfect introduction and tutorial to 65816 machine language on the latest
Apple 1.

This step-by-step guide is written in a light but informative style
that's packed with information, yet is easy to read. Written for both begin-
ning and experienced machine language programmers, COMPUTE!"s Apple
11Gs Machine Language for Beginners is the definitive guide to programming
in machine language on the Apple llcs. It goes beyond the fundamentals to
show you how to take advantage of the advanced features of this powerful
computer. It's the one book every 1IGS machine language programmer
should own.

Here's a sample of what's inside:

« Complete tutorials for using the Merlin 8/16 and APW assemblers

« Clear explanations of the most important 65816 instructions, with compre-
hensive examples

= How to add machine language routines to Applesoft BASIC

» How to use the Toolbox routines in your machine language programs

» Managing windows and menus

« Using QuickDraw and the Event Manager

» A complete 65816 reference section

« Scores of programming examples

» And much more

The author, Roger Wagner, is a popular magazine columnist; guest
speaker, software developer, and author of the popular book on 6502 ma-
chine language: Assembly Lines: The Book. Formerly a math and science
teacher, Mr. Wagner is now president of Roger Wagner Publishing, Inc., a
publisher of software for Apple computers.

$19.95 <o ISBN 0-87455-097-1
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Errata:

Apple IIGS Machine Language for Beginners
by Roger Wagner
(revised 8/29/90 - ECM)

Page 19: Line 290 of the program should read:

290 POKE 49186,0S: POKE 49204,0B: REM RESTORE SCREEN

Pages 61, 67: The Main Menu of Merlin 16 displays F: Full Screen Editor, not "E: Editor, command mode."

Page 67: Paragraph 3: After a successful assembly, it is not necessary to type Q to Quit, as Merlin
automatically returns to the Main Menu.

Page 69: Assembler Directives, paragraph 2: When a source file is loaded, Merlin 16 automatically goes to
the editor, so pressing a command key is not necessary.

Page 93: The KEEP and ORG line positions should be interchanged so that ORG comes before the KEEP
directive. In the program itself, the instruction to load the Accumulator with the letter "A" should
read:

LDA #sC1 ; LETTER "A"
Page 94: The output listing for Program 5-6 is incorrect, and is more similar to, although not identical to,

the output when assembling Program 5-7.

Chapter 6: APW users should note that when entering the example programs, the listings shown assume the 8
bit mode of the 65816. When using the APW assembler, you will have to remember to include the
directives LONGA OFF and LONGI OFF at the beginning of your source listings. LONGI OFF
tells the APW assembler to use the 8 bit mode for Index’ register cperations such as LDX, STY,
etc.

Page 115: In the listing at the bottom of the page, the CMP instruction should be CMP #$FFFF. This
compares the Accumulator to the immediate value of $FFFF, not the memory location $FFFF.

Page 133: Setting and clearing the Carry, paragraph 2: "If you want to clear the Emulation bit to 0
(sometimes called..."

Above the last paragraph, the instructions should read:
SEP #$20 ; %00100000 binary
REP #$30 ; %00110000 binary

In the last paragraph, the text should read "...SEP #$20 sets bit 5, the m bit, to 1, thus setting the
Accumulator ..." In the next sentence, the text should read "... REP #$30..."

Page 134: In the third paragraph, the last sentence should end: "... the 65816, i.e., the letter "A" followed by
an inverse "@". Note that this program should be tested in the 40-column display mode."

Page 138: REP and SEP: The Monitor vs. Merlin: In Merlin 16, the instructions REP and SEP do
not required the pound-sign ("#"). Thus, both REP #$20 and REP $20 are acceptable forms of the
instructions. The dollar-sign ("$") is required to tell the assembler that the number is in
hexadecimal notation. When using the Monitor to List (disassemble), however, you'll notice that
the dollar-sign is not displayed. This is because the Monitor assumes all numbers shown (or
entered in the Mini-Assembler) are in hex.

Page 146: "This gives the correct two-byte result of $0310, and is equivalent to..."

Page 152: Paragraph 4: Complementary angles are those two angles whose sum is 90 degrees, not 180
degrees. Sigh...



Page 170:

Page 182:

Page 213:

Page 214:

Page 230:
Page 237:

Page 251:

Page 259:

Page 261:

Page 262:

Page 263:
Page 267:

Page 268:

Pages 266, 267:

Page 275:

The two "ORA Value:" lines should read "EOR Value". The result of the second EOR operation
for Example #2 is $83 = 1000 0011.

In Figure 10-2, the LDA instruction should appear in the form:
LDA ([$80],Y

Between lines 16 and 17 of Program 11-1, the bytes for addresses $00030A-$00031F are data
generated by the assembler for the ASC data on line 16, and should not be confused as text to be
added by the reader. These bytes will not be tabbed as shown in the book into the assembler fields,
but rather, will appear normally in the data area to the left during the assembly.

Between lines 36 and 37 in Program 11-1, you should insert the instruction CLC in preparation
for the addition operation. This will change the length of the assembled file to 93 bytes.

Insert a line with the instruction INY just before the label LOOP in program 12-1.
Second paragraph from the bottom, the reference to line 36 should instead refer to line 42.

The last paragraph should be ignored since all Merlin listings in the book using BRK $00, and thus
give the same object file length and listing appearance as the APW assembler.

Last paragraph, regarding local labels in Merlin: Local labels can be any label following a colon
(example :LOOP), in addition to :1 through :9.

The program example should use AND #$DF, not ORA #$DF.

Paragraph 5: Reference to lines 69 through 74 should be 79 through 84; reference to lines 69, 70
should be 79,80.

Last paragraph: ".., (DS followed by a \) which...", not "...followed by a Z...". The very last line
should read DS \, not DSZ.

Paragraph 2, reference to "lines 76-83" should be 21-98. "Lines 90-96" should be 100-106.
The label on line 147 should be PARMTBLZ2; the label on line 152 should be PARMTBL3.

The byte displayed for location $00213E should be $D0, not $80. Line 175 should be DS\, a
Merlin command that defines a dummy block sufficient to fill to the next page boundary in
memory. Line 158 was omitted from the listing, and should read:

158 TR ON ; DON'T PRINT ALL HEX BYTES

Line 173 (the checksum) should have a value of $F6, with the changes made above.

Although the program will work as listed, the error handling on lines 89 and 106 is not really
correct. When an error occurs during the reading of a ProDOS file, the file should be closed as part
of the error-handling routine. Therefore, a better design would be for the JSR ERROR on line 89
to be followed by 2 JSR RDKEY and a JMP CLOSE, similar to the lines 72-74 above. Short of
writing an entire routine to ask the user to re-insert disks, etc., an error in trying to close the file
(line 106) can be handled with a JSR RDKEY and JMP BEGIN, as is done on lines 72-74.

Because of an early change to ProDOS 16, the listings shown in the book that access the keyboard
and strobe locations no longer work unless they are done using long addressing. These programs
will work with version 1.1 of ProDOS 16, but all later versions of ProDOS will require a change
to the programs. In paragraph 3, the LDA KYBD should be LDAL KYBD.



Page 276:

Page 277;

Page 278:

Page 279:

Page 280:

Page 281:

Page 282:

Pages 305-306:

Page 315:

Page 316:

Page 317:

Page 321:

Page 325:

Lines 12-14 of Program 14-1 should be:

12 KYBD EQU $EO0C000 ; KEYBOARD SOFTSWITCH
13 STROBE EQU S$E0CO010 ; KEYBOARD STROBE
14 SCREEN EQU $E00400 ; LINE 1 ON SCREEN

Line 27 of Program 14-1 should be LDAL KYBD. Because the BIT instruction does not have a
long addressing form, line 31 should be replaced with STAL STROBE. If you get a Fatal
System Error $110A when trying to run this program, it means you are using the original version
of ProDOS 16 (v. 1.1). Merlin 16 defaults to the later versions, so to solve your problem you need
only re-boot and try the program again with version 1.2 or later of ProDOS 16.

The byte value displayed for the checksum (line 47) will be $0A after the changes above.

Because the program listing shown is in the 8-bit mode, only a single INX instruction is needed in
the LOOP part of the program. The comment after the first INX should read "NEXT CHAR".

Lines 16-18 of Program 14-2 should be:

12 KYBD EQU $E0C000 ; KEYBOARD SOFTSWITCH
13 STROBE EQU S$E0CO010 ; KEYBOARD STROBE
14 SCREEN EQU S$E00400 ; LINE 1 ON SCREEN

Line 31 should read LDAL KYBD; line 35 should be STAL STROBE.
The checksum value in line 101 will be $CC after you make the changes above.

Make sure that when entering the text for the Linker command file shown, that you have the
opcodes TYPE, LINK, etc. in the opcode column, and not the label column. It is also not
necessary to run the Linker.GS as indicated in the manual, since all versions of Merlin.16 defauit to
loading the Linker.GS when it starts up.

The instructions here are directed to assembling and linking program 14-1, the P16.SYSTEM
program. The first paragraph after step 5 should read "To do the quick link, first load the
P16.SYSTEM source file, and then immediately type NEW from the Command Box. Then type
LINK with no specified pathname in the Command Box (CO). Merlin will use the last name
(P16.SYSTEM) as a source file and will automatically assemble and link the file. The final object
file generated by the link..."

The descriptions of Bit 3 and Bit 4 of the shadow register are reversed. Bit 3 controls the Super
Hi-Res area, and Bit 4 controls Auxmem.

The labels COUT, HOME, KYBD, and STROBE on lines 7-10 are not used in the program, and as
such are not needed in the program.

Line 55 should read BRA BOX. The label on line 57 should be SHUTDOWN. The checksum
for this listing will then be $46.

Calling Tools from ProDOS 16: The reference to lines 29 and 32 in the second paragraph of the
text should read lines 29 through 32.

The label on line 54 should be SHUTDOWN,

The example macro for _TLStartUp should read:

_TLStartUp MAC
LDX #$0201
JSL $E10000
EOM

In the interest of standardization, the Merlin 16 GS Tool Macro Library does use the underscore at
the beginning of each tool name, contrary to the indication of the book.



Page 327:
Page 328:

Page 329:
Page 345:

Page 347:

Page 348:

Page 349:
Page 354:
Page 355:
Page 359:

Page 361:

Page 363:

Page 376:
Page 381:

Page 392:

Page 395:

Page 396, 397:

Page 399:

The third line of the PushWord macro should be:
PEA 11

Contrary to the second paragraph from the bottom, the macros in listing 16-5 are not expanded
since the listing does use the Merlin 16 LST OFF and EXP OFF directives.

Line 30 should read LDA #ARESUME.
The Command Value for MMStartUp should be $0202, not $0102.

Second paragraph of "Using the Memory Manager:" You do not have to set your RAM disk to
800K to hold all the pictures created. Only about 144K is really needed. It will also take 144K of
system (non-RAM disk) memory to store all the pictures, so you will need at least 512K of
expansion RAM for program 17-1 to work. Program 17-1 does not set the ProDOS prefix, 5o you
will have to put the program file on /RAMS (or wherever) with the pictures to be loaded.

Line 9 of Program 17-1 should not have an asterisk (which makes the line a comment). Rather
DSK should appear in the opcode column with MM.DEMO.PS as the operand. Lines 25-28 are
missing from the listing, and appear as follows:

25 LST OFF ; DON'T PRINT MACROS
26 USE UTIL.MACS ; USE MACRO.LIBRARY
27 LST ON ; LISTING BACK "ON"
28 EXP COFF ; DON'T EXPAND MACROS

MMSTART on line 49 should begin with a PushWord #$0000, with the ToolCall $0202 on
the next line. This will involve inserting a new line into the listing.

The checksum on line 318 will be $0B after the changes above.
In the first paragraph of text, the references to HGR should be HGR2. At the bottom of the page,

the diagram for MMStartUp should have shown the requirement of pushing a word onto the stack as
space for the result prior to doing the call.

-The Command Value for MTStartUp should be $0103; the value for MTShutDown should be

$0303.
The byte range indicated for the Minute value should be 0-59, not 9-59,

The opcodes SEC and DEX on lines 74 and 81 should be indented to the opcode column in the
listing.

The fourth paragraph text reference to the Color Value column should refer to Master Value.
The comment on line 119 should read "CLEAR HIGH BYTE"

The end of the second paragraph should inlude: "(Add enough spaces to the end of each message so
that the single quote mark is directly below the letter "L" in the word "TABLE" on line 323.)

On line 104, the semi-colon is not the beginning of a comment. The line should read:
MSSG2 STR 'Press keys; use "Q" to Quit’

The comment on line 134 should read "QUIT" KEY (HI BIT CLR)?

Note that for lines 200 and 204, there should be 2 spaces after each 0000. On page 397, there
should be 4 spaces after Event: and 6 spaces after Type:

The label on line 323 should be EVENTMSSG. Be sure to add enough spaces to each of the
messages on lines 325-340 so that there are 16 characters including the 00 at the end. When entered
properly, the closing quote for each message will line up with the "L" in "TABLE" on line 323.



Page 417, 418:

Page 420:

Page 423:
Page 432:

Page 436:

Page 438:

Page 439:

Page 441:

Page 452:

Page 452, 453:

Insert the instruction TAX (to transfer the value of the Acc. to the X-register) between the
instructions ASL and JSR (MENTBL X) on both pages.

At the bottom of the page, the hexadecimal values for the characters in the Event Mgr. demo should
be $11, $12, $13 and $14.

The last line on the page should refer to NewMenu in place of NewHandle.
The RTS on line 215 should be in the opcode column, not the label column.

Lines 420 and 421: the Z should be the \ character. On line 414, the comment should read "PUT
WINDOW AT FRONT ($FFFF = -1)".

Merlin 16 uses Open-Apple-Y to select to the end of the listing, not Open-Apple-Q.

In the second paragraph, the first sentence should end "... called SPECIAL, which consisted of
nothing more than an RTS."

On the lines with XMSG and YMSG, there should be 4 spaces after the 1st 0000, and 2 spaces after
the 2nd 0000.

In the source listing, the third line from the bottom should have a second INY instruction added, so
that there are two INY's. (needed to increment two bytes forward).

The ERASE routine has a bug in it. The DOCSETUP routine calls ERASE in order to erase the
window. The ERASE routine fills the memory occupied by the window region with color #14 and
then adds the rectangle to the current update region (causing the system to redraw it during the next
call to TaskMaster). This works fine when ERASE is picked from the menu because the window
has already been created... however, when DGCSETUP calls ERASE, the window has not been
created yet, causing the GetPortRect and InvalidRect calls to lead to unexpected results (a.k.a.
system crashes).

In order to fix this bug, change the label ERASE to ERASEZ2, and the JSR ERASE in
DOCSETUP to JSR ERASE?. Finally, move the four lines above the RTS at the top of page 453
(PushLong #WINRECT, ToolCall $2004, PushLong #WINRECT, ToolCall $3A0E) above the
new label ERASE?2 and place the label ERASE on the first PushLong statement.

The final chunk of code should look like this:

¢ e ol o o v ok e e e e 3 ok i Y e i o g gk ok gk ok o o e o

ERASE PushLong #WINRECT ; POINTER TO WINDOW RECTANGLE
ToolCall $2004 ; GetPortRect
; MAKE WINRECT = WINDOW

PushLong #WINRECT ; THE WINDOW RECTANGLE
ToolCall $3A0E ; InvalidRect
; FORCE TASKMASTER TO UPDATE

ERASE2 PushlLong PICHNDL
ToolCall $2002 ; HLock
; MAKE SURE IT DOESN'T MOVE

LDA [PICHNDL] ; LONG INDIRECT LOAD
STA PTR ; GET THE MEM ADDRESS
LDY #502
LDA [PICHNDL], Y
STA PTR+2 : (PTR) = ADDR. OF PICTURE
CLR LDA #SEEEE ; CLEAR BLOCK OF MEMORY TO COLOR #14

LDY #0000 ; BEG. OF BLOCK



01 STA [PTR],Y

INY

INY

CPY #32000 ; DONE YET?
BCC :1 ; NOPE

UNLOCK PushLong PICHNDL

ToolCall $2202 ; HUnlock
RTS
% % % % % % % J ok % % % ok %k % vk vk ke ke vk % ok %k kR k ok
Page 454: The tool calls SetPenSize and SetSolidPenPat work with the current port. In order to change the

pen size and color in the drawing window, we must set make that window's GrafPort current. So,
before the line with the label SETPEN, insert these two lines:

PushLong WPTR ; SET PORT TO OUR WINDOW
ToolCall $1B0O4 ; SetPort
Page 466: With the changes above, the checksum for the new sketcher program will be $96, not $05.
Page 485: The hex byte for the BCC opcode should be $90, not $6D.
Page 497: The Addressing Modes examples for BRL should be:
Common Hex
Mode Syntax Coding
Relative Only BRL LABEL 82 FF FF
BRL S$FFFF 82 ff ff
Page 518: In the example program segment, there should be a TAX instruction after the ASL and before the
JMP (CMDTBL.X).
Page 520: In the example program segment, there should be a TAX instruction after the ASL and before the
JMP (CMDTBL,X).
Page 525: In the odd/even example program segment, EVEN and ODD are feversed. It should read BCS ODD
and BCC EVEN,
Page 526: In accordance with the expressed preference of Apple Computer, the assembler syntax for the MVN

and MVP instructions should be revised to reflect the requirement for a complete label as the
operand for these instructions. Although the instruction itself only encodes the source and
destination bank bytes, the assembler requires that the complete address be used. There is also an
error in the hex code shown for the MVP instruction. Thus, the Addressing Mode Available chart
should appear as follows:

Common Hex
Mode Syntax Coding
Implied Only MVN LABEL1l, LABEL2 54 00 FF

MvP LABEL1l, LABEL2 . 44 00 FF

and the last line of the program segment on page 527 should read as:

MVN SRCE,DEST ; SOURCE AND DEST. ADDRESSES



Page 530: ORA can also be used to convert upper case letters to lower case:

ENTRY LDA CHAR ; GET CHARACTER
CMP  #$C1 ; "A" - ASSUMES HIGH BIT ASCII
BCC DONE ; LESS THAN "A"
CMP #SEO ; 1ST LOWER CASE LETTER
BCS DONE ; GREATER OR EQUAL
XVERT ORA #520 ; SET BIT 5: UC -> LC
STA CHAR ; PUT CHAR BACK
DONE RTS
Page 531: The Addressing Modes examples for PEA should be:
Common Hex
Mode Syntax Coding
Immediate Only PEA SFFLf F4 ff FF
Page 533: The Addressing Modes examples for PEI should be:
Common Hex
Mode Syntax Coding
Indirect Only PEI ($£f) D4 ff
Page 534: The Addressing Modes examples for PER should be:
Common Hex
Mode Syntax Coding
Relative Only PER $FFff 62 xx XX

The first line of the PER. example should read:

8000: 62 03 00 PER LABEL ; XVRTED TO 3 BY ASSEMBLER

In addition, the first paragraph after the example should read "The microprocessor will take the
relative offset of 3 (the operand of the PER instruction), add this to the program counter for the
next instruction ($8003), and push the result ($8006) on the stack.”

Page 553: RTI is equivalent to:

PLP
RTS (or RTL)

in that the status register is restored from the stack, and a return (RTS or RTL, depending on the
processor status) is done using the address remaining on the stack.

Page 590: The correct syntax for the Pattern Search command is as follows:

\"A"\<1234.5678P
\25\<1234.5678P
\"ABCD"\<1234.5678P
\25 7F 3E\<1234.5678P



	gs1-25
	gs26-76
	gs77-124
	gs125-176
	gs177-244
	gs245-308
	gs309-400
	gs401-472
	gs473-552
	gs553-612



