

COMPUTEl's

APPLE IIGS
CHINE

LANGUAGE
FOR

BEGINNERS
Roger Wagner

~~~!:!~n!!~f~n?lications,lnc.9 
Greensboro , North Carolina 



Copyright 1987, COMPUTE! Publications, Inc. All rights reserved. 

Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the 
United States Copyright Act without the permission of the copyright owner is unlawful. 

Printed in the United States of America 

1098765432 

ISBN 0-87455-097-1 

The author and publisher have made every effort in the preparation of this book to insure the accuracy of the programs and 
information. However, the information and programs in this book are sold without warranty , either express or implied. Nei
ther the author nor COMPUTE! Publications , Inc. will be liable for any damages caused or alleged to be caused directly, indi
rectly, incidentally , or consequentially by the programs or information in this book. 

The opinions expressed in this book are solely those of the author and are not necessarily those of COMPUTE! Publica
tions , Inc. 

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro , NC 27403, (919) 275-9809, is a Capitol 
Cities/ ABC, Inc. Company, and is not associated with any manufacturer of personal computers . Apple IIGS 
and ProDOS are trademarks of Apple Computer, Inc. 



Dedication 

Once upon a time, a man was called upon to write a book to teach others the 
things he had spent a lifetime learning. His wife and child waited patiently for 
the dream to become real. I know one of my father's greatest joys was the 
accomplishment of that book. The wheel has turned, and now I dedicate this 
book to the most patient people I know, and the three most important and loved 
women in my life: my mother, Bea, my wife, Pam, and my daughter, Marta. 





Contents 
Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 

1. Applesoft BASIC and Beyond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
2. Real Machine Language Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
3. The Apple IIGS Mini-Assembler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 
4. Assembling a Program with Merlin 8/16 . . . . . . . . . . . . . . . . . . . . . . . . 57 
5. Assembling a Program with APW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 
6. Loops and Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 
7. Comparisons in Assembly Language ............................ 123 
8. Simple Math ................................................ 141 
9. Logical and Shift Operators .................................... 157 

10. Addressing Modes and Improved Printing ........................ 177 
11. Data Storage and Program Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 
12. Adding Machine Language Programs ............................ 223 
13. ProDOS .................................................... 245 
14. ProDOS 16 ................................................. 269 
15. A Look at Memory Use on the Apple IIGS ........................ 287 
16. The Apple IIGS Toolbox ....................................... 309 
17. The Memory Manager and Miscellaneous Tools ................... 335 
18. QuickDraw and the Event Manager ............................. 365 
19. The Window and Menu Managers .............................. 401 
20. A Drawing Program for the Apple IIGS .......................... 445 

Appendices .................................................... 471 
A. 65816 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 
B. The Apple IIGS Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589 
C. ProDOS 16 File Dump Utility .................................. 593 
D. Suggested Reading ........................................... 599 
E. ASCII Character Chart ........................................ 601 

Index ......................................................... 605 
Disk Coupon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611 





Foreword 
This is the definitive guide to programming in 65816 machine language on the 
Apple IIGS. It's a thorough introduction to machine language programming on 
the newest Apple II, a comprehensive tutorial for beginning machine language 
programmers, and an invaluable reference guide for the most experienced soft
ware developer. 

Roger Wagner's name is well known to Apple users and programmers. 
He is a popular columnist, a software developer with his own publishing com
pany, and the author of the bestselling Assembly Lines: The Book. He has used 
his years of Apple II experience to put together COMPUTE!'s Apple lIGS Ma
chine Language for Beginners, a book for both experienced and beginning ma
chine language programmers. 

Clearly written, with dozens of practical examples to show the way, this 
book includes more than the basics of machine language programming-it's a 
specific reference and guide to programming in 65816 machine language on the 
Apple IIGS. For instance, you'll find complete chapters on using the built-in as
sembler and on how to write and assemble source code with two popular as
semblers, the Merlin 8/16 and the APW. 

Other topics covered include ProDOS 8 and 16, Menu Manager, the 
Toolbox, the Memory Manager, QuickDraw, the Event Manager, the Window 
Manager, and how to add machine language to Applesoft BASIC programs. 
COMPUTE!'s Apple lIGS Machine Language for Beginners also contains exhaustive 
appendices that you can refer to in an instant. Among the appendices is a com
prehensive 65816 instruction set. 

Written for Apple IIGS programmers of every level of experience, COM
PUTE!'s Apple lIGS Machine Language for Beginners is the most complete guide 
and reference to 65816 programming around. If you want to learn how to pro
gram in machine language on the IIGS, or if you're already creating software 
masterpieces in machine language, you need COMPUTE!'s Apple II Machine 
Language for Beginners. 

All the programs in this book are ready to type in and use. There is also 
a disk available from COMPUTE! Books which includes all the source 
code from the book. An assembler is required to use the disk. To pur
chase the disk, use the coupon in the back of the book. 

vii 





Introduction 
Some BASIC programmers believe that machine language is some very difficult 
and obscure language used only by advanced programmers. As it happens, it's 
just different, and if you have successfully used Applesoft BASIC to write some 
of your own programs, there's no reason why you should have any difficulty 
learning to write machine language programs. 

This book will meet you at your current understanding of Applesoft 
BASIC and will introduce you to the fundamental principles of machine lan
guage programming. Your knowledge of BASIC will provide a valuable founda
tion for learning, and you'll even notice some similarities between BASIC and 
machine language programs. This is no accident. Part of BASIC's original pur
pose was to be an educational tool in the teaching of machine language 
programming. 

Using the BASIC environment as a starting point, you'll learn about 
memory organization and use, and you'll learn how to add simple machine 
language routines to your existing BASIC programs. Each new concept will be 
introduced as an extension to ideas already presented, making the learning pro
cess as absolutely clear and simple as possible. By the time you're done, you'll 
be able to write your own Apple IIGS machine language programs-ones com
pletely independent of BASIC-and you'll be able to use many advanced Ap
ple Iles features such as super hi-res graphics, the mouse, menus, and 
windows. 

Because the Apple IIGS is an amazingly complex machine, it's impossible 
for one book to provide every last detail of its operation. There are very large 
books written on just some of the many topics covered in this book. For ex
ample, the 700-page Apple Iles Technical Reference, by Michael Fischer, is about 
the IIGS Tools only; and the 600-page Programming the 65816, by David Eyes 
and Ron Lichty, is an encyclopedic reference dealing with just the 65816 in
structions. The goal of this book is not to provide the last word about each 
65816 instruction, or on every GS Tool call. Instead, the goal is to provide infor
mation that will build the foundation essential for your own further efforts. 

When you've completed this book, you'll have gained the knowledge 
and confidence necessary to write your own programs. The many examples of 
executable programs included will provide valuable subroutines and procedures 
that you can incorporate in your own programs. 

ix 



Introduction 

What You Need 
Like any creative process, having the right tools and materials can make all the 
difference in the world. We're going to make some assumptions about what 
materials you have as you read this book. 

Obviously, having an Apple IIGS on hand while you work through the 
examples is important. You'll also need to have a disk drive to save your pro
grams, although it doesn't matter whether you have a floppy disk of any par
ticular brand or capacity-in fact, even a hard disk is OK. Apple Computer's 
ProDOS will be used in those chapters that deal with file operations. 

When a person writes a letter or report on a computer, a word processor 
is the right tool for the job. When writing machine language programming, a 
good assembler is what you need. An assembler is essentially a word processor 
specifically designed for writing machine language programs. It also does many 
other things, so you'll need one to follow the examples in this book. Most of 
the examples use the Merlin 8/16 assembler, but there is also information on 
the APW (Apple Programmer's Workshop) assembler. I prefer the Merlin 8/16 in 
terms of ease of use, speed of assembly, and minimum explanation required for 
a beginning programmer; but you may use any assembler capable of assem
bling 65816 instructions. 

It's also important, especially as you do more programming, to have a 
solid reference library. For beginners, this book has all the information neces
sary to complete the examples, but you may wish to look at books listed in the 
bibliography for further reading material. 

Program Library 
In the early days of programming, programmers had to write programs that 
were completely self-contained, ones in which every operation of the program 
was covered by instructions the programmer had specifically written into the 
program. 

It soon became apparent, however, that time could be saved in program 
development if the most frequently used routines were available in a library 
that could be incorporated as the program was being written. That way, things 
like disk access, printing to the screen, reading the keyboard, and so forth, 
didn't have to be rewritten every time a new program was started-program
mers no longer have to "reinvent the wheel." 

In the Apple IIGS, a great number of useful routines and operations are 
not only already written for you, but are also built right into the machine, 

X 



Introduction 

much the same way that Applesoft BASIC is already there. Thus, your library 
is right in the machine. You don't have to add hundreds of lines of program in
structions from a disk file when you write a program; a simple call to a subrou
tine in the computer does the trick. Your program is smaller, development time 
is shorter, and writing a program is in general much more satisfying. 

One of the most valuable lessons you can learn from this book, beyond 
the simple commands that make up machine language, is how to use the 
routines already existing in the machine that make writing your programs 
much easier. You should also make a point of saving every program you write, 
so you can build your own collection of program operations for use in later 
programs as you create them. 

Just for the Fun of It 
One last warning before you start: Don't be discouraged if you're not an over
night expert in assembly language programming. 

Many people are discouraged when learning a new skill because they ex
pect instant results. Perhaps you know someone who got interested in art or 
music, and then became disappointed when their first attempts weren't beauti
ful works of art or they weren't able to play their favorite melody by just pick
ing up the instrument. 

Even some schools lose sight of the fact that not everything has to be 
justified by monetary or productivity standards. They teach only word process
ing and spreadsheets because these are the "practical" uses for a computer, and 
downplay the value of programming or using the computer for fun. Yet these 
same schools have no problem offering shop and art classes, even though very 
few students will go on to become professional carpenters or artists. 

The key to your own success is to set achievable goals, and to do things 
that you find personally rewarding. Don't worry that the first program you 
write isn't likely to be immediately publishable as a commercial product, or 
that it isn't big enough to do something "really important." By starting with a 
small project like drawing a single line on the screen, you'll have chosen a 
project that will teach you something, and in completing it, you'll gain the con
fidence and sense of satisfaction that will make you want to start your next 
project. As your experience grows, one day you'll suddenly realize that you've 
learned how to write all sorts of great programs and that programming has be
come more fun than work. 

The bottom line is this: The most important rule in programming is that 
you enjoy it. As in learning any subject, motivation and taking the time to ex
periment are more important than genius or prior experience. If you have the 
former, everyone will think you have the latter. 

xi 









Chapter 1 

Applesoft BASIC and Beyond 
A good starting point for learning machine language is to take a look at some
thing you're already familiar with, namely Applesoft BASIC. As it happens, 
Applesoft BASIC is a machine language program. When your program executes 
the command PRINT "HELLO", it's a machine language program that puts the 
characters on the screen. It is also possible to call custom-made machine lan
guage routines from within an Applesoft BASIC program. If this is all true, why 
learn machine language in the first place? 

What Is Machine Language and Why Bother Learning It? 
As discussed earlier, the primary reason for learning machine language is that 
you'll find the subject interesting and fun to experiment with. There are some 
more tangible reasons, though, that will make learning machine language more 
useful than, say, learning ancient Latin. One of the main reasons is speed. The 
Apple IIGS can execute about 100,000 machine language instructions per sec
ond, far more than Applesoft BASIC can execute, even when it's running in 
fast mode . 

Another reason to learn machine language is flexibility. Applesoft BASIC 
is an artificial environment that stands between you and the most fundamental 
level of your computer. When you type PRINT "HELLO" in a BASIC program, 
you really don't have any idea what causes the letters to appear on the screen. 
In machine language, you do. In addition, BASIC is limited to the different 
kinds of information, called data structures, that it can easily deal with. For ex
ample, in BASIC you can have string variables with lengths up to 255 charac
ters. Suppose you want to store a paragraph with 1000 characters in it
Applesoft BASIC has no direct variable defined for paragraph. Or suppose you 
want your program to handle graphics objects like points, rectangles, ovals, and 
so forth. Again, no variable types exist for these. 

In machine language, there is not specifically any data type; you still 
have to create these. But you do have the flexibility to create any kind of data 
structures you want. 

3 



Chapter 1 

On the Apple Iles, another good reason to program in machine lan
guage is to have access to all those features, such as super hi-res graphics, that 
are built into the machine, but are not directly accessible from Applesoft 
BASIC. With machine language, these are relatively easy to use. In fact, an in
teresting first application of your machine language programming skills can be 
using them to create a bridge between Applesoft BASIC and the Iles Tools. 

Finally, one of the best reasons to learn machine language is to gain a 
better idea of how a computer actually works. In machine language, you're 
dealing with the most fundamental levels of operation in the computer. You'll 
see how the microprocessor actually runs a program, how memory is used, 
how the hardware interacts with a program, and more. This knowledge will 
also make you more flexible as the hardware evolves and changes in the future, 
and it provides an excellent foundation should you ever wish to program on 
other computers. 

A World of Languages 
Programming is just a word to describe the process of telling your computer 
what you want it to do. In fact, this is the real power of a computer as a mod 
ern device. The beauty of a computer is that you can tell it how to help you 
solve problems that are unique to your own life, on your own terms, and at 
your convenience. 

How hard is it to program a computer? Not as hard as you might think. 
The only requirement is a language with which you can communicate with your 
computer. It doesn't understand English directly, but it's also not always neces
sary to use BASIC, PASCAL, or other formal computer languages. Some of the 
most successful commercial programs for the computer are just well-disguised 
programming languages. 

As an example, consider the classic spreadsheet program. It's always fun 
to hear someone say "Oh, I don't program. I just use programs like the Acme 
Spreadsheet." With a little thought, you realize that using a spreadsheet is 
much like programming. The user creates a set of numbers, variables and equa
tions that are used in a predictable order by the computer. Some more ad
vanced spreadsheet programs have enhancements like search and sort 
functions, IF-THEN testing, and more. It's programming all right-just in a dif
ferent language than we usually think of. 

Any language consists of a collection of words with specific meanings. In 
programming, these words are usually commands that make the computer do 
something in particular, such as add numbers, clear the screen, and so on. 

In Applesoft BASIC, there are just over 100 different commands to learn, 
expressions like PRINT, VTAB, INPUT. Once you've learned the commands, 

4 



Applesoft BASIC and Beyond 

you can put them together in a certain order and create a program. 
In machine language, there are still only about 100 commands to learn, 

and many fall into groups of similar functions that make learning them easier 
still. 

How It Really Works 
Lesson #1 starts with Wagner's Paradox: 
"Everything complex can be broken down into simple elements (and nothing is 
as simple as it seems)." 

Although sometimes it feels like life is an endless case of discovering the 
fine print, it's true that most things in life are quite simple when you consider 
the fundamental things that make them up. The computer is an excellent 
example. 

Even though the engineering required to build a computer is awe-inspiring, 
the underlying principle of their operation is almost trivial. 

The heart of your Apple IIGS is something called the 65816 
microprocessor. Another important part is its memory-thousands of places in 
the computer where a simple number can be stored. Each memory location can 
store an arbitrary number value in the range of O to 255. Number values larger 
than 255 must use a combination of bytes to store the number value. That's 
why, in Applesoft BASIC, you get an "ILLEGAL QUANTITY ERROR" if you 
try to use the POKE statement with a value larger than 255, such as in POKE 
768,1000. (Try this if you've never done it.) 

The 65816, like its cousins in other computers, works on the idea of 
scanning through memory, one location at a time, and performing some action 
depending on what number value it finds stored there. 

If it finds a 27 in one place, perhaps it will add some numbers; if it finds 
a 32, it will subtract them. In the 65816, as was mentioned earlier, there are 
about 100 general operations that the microprocessor will do, depending on 
what number it finds in a given memory location. A program is created by 
putting the possible commands in a certain meaningful order to tell the com
puter how to do a certain task. 

Obviously, the more memory a computer has, the more instructions (and 
information) it can hold. In the world of Applesoft BASIC, which was designed 
for an earlier microprocessor called the 6502, there are about 65000 memory lo
cations in which various numbers can be stored. Each memory location is 
called a byte of memory by most programmers. When you hear someone talk 
about 1 megabyte, they're talking about one million separate memory locations 

5 



Chapter 1 

in the computer. The 65816, a newer descendant of that original 6502, can ad
dress up to 16 million bytes of memory (16 megabytes). 

In Applesoft BASIC, however, which was created for the Apple Ils, we 
can only talk to 64K at a given time. (There are actually 65,536 locations in the 
computer. In the metric system, K is used as an abbreviation for thousand, but 
in computer jargon K refers to 1024 bytes.) 

BASIC vs. Machine Language 
The 65816 can directly interpret the numbers stored in memory as a program
a sequence of instructions. This sequence of number-instructions is called ma
chine language. Machine language, or ML, is the actual series of numbers in 
memory that the microprocessor can directly act on. There are no handy words 
like PRINT or HOME to make life easier for the human creating the program. 
Machine language programming in its literal sense is the process of placing 
numbers in memory, one at a time, to create a program that the computer can 
understand and carry out. Assembly language, as we'll see shortly, is actually 
what most people mean when they say they program in machine language. As
sembly language itself is an extension beyond true machine language-but 
more on that later. 

BASIC is sometimes called a high-level language. One way of looking at 
this term is that BASIC commands, like PRINT, are closer to English than more 
simplistic languages (like machine language). What it really means, though, is 
that a new command has been created, behind the scenes, from the primary 
100 commands at the machine language level, to do something fairly complex. 

An interesting analogy might be to consider that all the words you know 
are created with the 26 letters of the alphabet. As with human language, an in
finite number of specific high-level computer commands can be created from 
the 100 fundamental commands that are built into the computer. 

In its native mode, just the 65816 and some memory, the computer 
doesn't really understand words like PRINT. That's where the idea of Applesoft 
BASIC as language in itself comes in. 

When you type in RUN to start an Applesoft BASIC program, you're ac
tually triggering a machine language program in the computer that acts as a 
middleman between the lines of BASIC that you typed in and those 100 com
mands that the 65816 understands. 

When your program says PRINT "HELLO", this intermediate program 
looks up the word PRINT in a list of commands, and then executes a short, 
built-in ML program that prints HELLO on the screen. 

So, actually, Applesoft BASIC really is machine language. Each time a 
statement in your Applesoft BASIC program is executed, the computer carries 

6 



Applesoft BASIC and Beyond 

out a short machine language program (or more properly, a subroutine). 
The main reason Applesoft BASIC runs more slowly than a pure ma

chine language program is that it takes the Applesoft BASIC interpreter (the 
middleman) time to decide which routine to execute for each command in the 
various lines of BASIC. 

Peeking at Maps and Addresses 
If you know how to write even a simple program in Applesoft BASIC, you're 
well on your way to knowing how to write a program in machine language. 

For starters, we mentioned earlier that there are 65,536 locations in the 
original Apple II computers to store the parts of a machine language program. 
What a coincidence-line numbers in BASIC cover the same range. 

Figure 1-1. 
A Simple Apple IIGS 
Memory Map 

65535 
65534 
65533 

32768 
32767 
32766 

255 
254 
253 

3 
2 
1 
0 

In BASIC you identify a place in your program with 
a line number. For example, to jump to a given routine, 
you might use the statement GOSUB 1000. 

In machine language, each location is identified 
with an address. Computer people start counting with zero 
for the first item, so the addresses of those locations count 
0, 1, 2, 3-up to 65,535. (65,535 + the O byte = 65536). 

Just like the addresses of the houses on a street, 
each address of a location in memory lets you find one 
and only one spot in the computer to look at or store a 
number in. 

A useful chart can be made to show a diagram of 
the various memory locations in your Apple, and to show 
what different parts of memory are used for. Such a chart 
is called a memory map. Figure 1-1 is a simple memory 
map that represents the memory that Applesoft BASIC 
uses in the Apple IIGS. 

This memory map represents each single available 
memory location in the first 64K (65536) of memory. The 
zero byte is shown at the bottom, but this is arbitrary. It's 
also important not to confuse the contents of a memory lo
cation with its address. We've already said that the value 
of a number stored in a byte of memory cannot be larger 
than 255. However, the address of a given byte can be vir
tually any number at all, as shown by the memory map. 

7 



Chapter 1 

Another common way of drawing a memory map is horizontally, with 
low address values on the left, and the top of memory on the right, such as the 
one shown in Figure 1-2. 

Figure 1-2. Horizonal Memory Map 

I 32768 65535 

In normal Applesoft BASIC, there are two commands in particular, 
POKE and PEEK, that let you look at, and usually change, the contents of any 
of the first 64K of memory in your computer. These commands are the first 
links to the world of machine language. 

Many times, a machine language program will use the contents of some 
particular memory location to store a meaningful value or to look at the con
tents of a location to see what action should be taken. 

The Applesoft BASIC PEEK command is used to determine the contents 
of a given memory location in the Apple. 

By using the PEEK command to examine different memory locations, 
you can find out some useful things not normally accessible by the usual 
BASIC commands. For example, memory location 33 holds the width of the 
screen. Suppose you wanted to write a general-purpose program which would 
work on anybody's computer, in either 40 or 80 columns. By examining mem
ory location 33, your program could tell which mode is active when it is run. 
For example: 

IO TEXT: HOME 
20 CW = PEEK(33): REM DETERMINE COLUMN WIDTH 
30 T$ = "TITLE OF THIS PROGRAM" 
40 HTAB CW/2 - LEN(T$)/2: REM CENTER TITLE 
50 PRINT T$: REM PRINT CENTERED TITLE 

This program will always print a centered title on the screen, no matter 
what the video display mode. 

Another useful PEEK is at memory locations 218, 219, and 222. In an 
Applesoft BASIC program, errors can be trapped by the statement ONERR 
GOTO early in the program. Using this command, for example, Control-C can 
appear to be ignored by the running program. Usually, Control-C will stop a 
running program, but with ONERR, you can trap the error and continue pro
gram execution. Program 1-1 is a short example. 

8 



Program 1-1. ONERR Example 1 

5 HOME 
10 ONERR GOTO 100 
20 X = 1 
30 VTAB l:HTAB 1: PRINT X 
40 X = X + 1 
50 IF X < 10000 THEN 30 
60 END 
100 EC = PEEK (222) : REM ERROR CODE 
110 EL = PEEK (218) + 256 * PEEK (219) : REM ERR LINE# 

Applesoft BASIC and Beyond 

120 IF EC = 255 THEN VTAB 12: HTAB I: PRINT "I'M NITT DONE YET!" 
130 VTAB l:HTAB l:RESUME 

In this program, line 10 tells Applesoft BASIC to jump to line 100 if any 
error occurs. Whenever any error occurs in a running program, Applesoft 
BASIC always stores a code value for the error in location 222. It also stores 
the value for the line number. 

Storing the line number, however, creates a new problem. We men
tioned earlier that a single byte of memory could only store a value in the 
range of Oto 255. Since line numbers can have any value from Oto 65535, 
how can Applesoft BASIC store the number? It uses two bytes. The system is a 
little strange, though. First, Applesoft BASIC divides the line number the error 
occurred in by 256 (a number you'll see a lot in machine language program
ming). It stores the remainder in the first memory location-218-and then 
stores the result in the next memory location, 219. 

For example, if you press Control-C while the sample program is on line 
40, Applesoft BASIC stores 40 (the remainder) in location 218, and it stores O 
(40 divided by 256 = 0, remainder 40) in location 219. 

If you had a large program, and an error occurred when the program 
was executing line 600, then locations 218 and 219 would hold the values 88 
and 2, respectively (600 divided by 256 equals 2, remainder 88). 

You may wonder why we divide by 256. The main reason is that divid
ing a large line number like 63000 by any other number produces results or re
mainders larger than 255, and we couldn't store the result or remainder in a 
single byte. Using 256 as the divisor makes everything work smoothly. And 
one byte can hold any one of 256 different numbers (0-255). 

Now, back to the error handling routine. To reconstruct the line number 
that the error occurred on, the program needs to multiply the value at location 
219 by 256, and then add the result to the remainder value at 218. Line 110 
does this for purposes of illustration, although our program in particular 
doesn't use the result. 

9 



Chapter 1 

Finally, line 120 tests the error code to see if the error was caused by 
pressing Control-C (255 is the error code for Control-C). Any other error, such 
as a syntax error, generates a different code. 

When trying out this program press Control-C several times in a row. 
You'll notice the value for X at a given point is sometimes printed below the er
ror message when you press Control-C. This is because RESUME re-executes 
the last statement executed, not the last complete line. 

POKEing Around in Memory 
In Applesoft BASIC, a POKE is used to put a particular number value (always 
in the range of O to 255) into a particular memory location (in the range of O to 
65535). 

For example, the sample program just presented has a drawback: It ig
nores all errors, even typographical errors in the listing. If a syntax error due to 
a typing mistake occurs, the program gets stuck in an endless loop-resuming 
the line with the error, going to the ONERR routine, and resuming again. Try 
it-retype line 50 as 

50 IF X PRINT 10000 THEN 30: REM DELIBERATE ERROR 

Line 100 can tell the kind of error, but just how can we tum off the ONERR 
trap? 

The answer is to change memory location 216. This location is set with a 
certain number value when the ONERR GOTO statement is executed, and 
Applesoft BASIC uses this value as a flag, or indicator, of when to trap errors. 
If our program could reset location 216 to O (the ONERR off value), errors 
other than Control-C would be properly handled-the program would stop and 
a message would be printed. While we're at it, let's add the instruction GOTO 
30 to line 120 so as to re-execute the entire line when Control-C is pressed. 

Program 1-2 is the revised listing. 

Program 1-2. ONERR Example 2 

5. HOME 
10 ONERR Garo 100 
20 X = 1 
30 Vl'AB l:HTAB 1: PRINT X 
40X=X+l 
50 IF X < 10000 THEN 30 
60 END 

100 EC = PEEK (222) : REM ERROR CODE 
110 EL = PEEK (218) + 256 * PEEK (219) : REM ERR LINE # 
120 IF EC = 255 THEN Vl'AB 12: HTAB 1: PRINT 'TM NOT DONE YET!": Garo 30 

10 



125 POKE 216,0 : REM TURN OFF "ONERR" 
130 VTAB l:HTAB l:RESUME 

Applesoft BASIC and Beyond 

First, try this program as shown to verify that it works the way the first 
sample listing did. Then retype line 50 incorrectly as 

50 IF X PRINT 10000 THEN 30 : REM DELIBERATE ERROR 

and verify that the improved listing can distinguish between Control-C and 
other errors. By expanding the list of IF-THEN tests for different error codes, 
you can make your programs selectively respond to a wide variety of errors at 
different parts in your program. 

Using Applesoft BASIC's CALLS 
The other, and most important, link to machine language programming from 
Applesoft BASIC is the CALL command. 

If you've ever used a CALL statement in Applesoft BASIC, you've al
ready done the machine language equivalent to BASIC's GOSUB command. 
For example, a CALL 32768 from BASIC tells the computer to start running a 
machine language program at a certain location in memory (location number 
32768). As long as there is a machine language program there-and that pro
gram eventually ends with the usual RETURN code (or more accurately, its ML 
equivalent)-then, when the routine is finished, program control will return to 
your Applesoft BASIC program (Figure 1-3). 

Figure 1-3. GOSUB vs. CALL 

Applesoft BASIC 
Program 

(GOSUB XXX) 

! l 
(RETURN) 

Applesoft BASIC 
Program 

11 

Applesoft BASIC 
Program 

(CALL XXX) 

! l 
(RETURN) 

Machine Language 
Program 



Chapter 1 

For now, it's important to understand that where a machine language 
program is located in the computer (its address) is as important as the line 
numbers in a BASIC Program. 

Instant Machine Language Programming 
One of the first, and best ways to start using machine language programming 
techniques in your own programs is to just use Applesoft BASIC's CALL com
mand to execute short machine language routines that either already exist in 
the computer or that you have written yourself. 

We mentioned already that there were quite a number of preprogrammed 
routines built into your Apple computer that Applesoft BASIC uses for its own 
commands. Knowing some of these, like knowing some of the special memory 
locations to PEEK and POKE, can enhance your existing Applesoft BASIC 
programs. 

For instance, did you wonder why the sample ONERR program didn't 
use a FOR-NEXT loop? To find out, try running the program written using a 
FOR-NEXT loop (Program 1-3) and pressing Control-C. 

Program 1-3. ONERR Example 3 

5 HOME 
10 ONERR GOTO 100 
20 FOR X = 1 TO 10000 
30 VTAB 1 :HTAB 1: PRINT X 
40 NEXT X 
60 END 

100 EC = PEEK (222) : REM ERROR CODE 
110 EL = PEEK (218) + 256 * PEEK (219) : REM ERR LINE# 
120 IF EC = 255 THEN VTAB 12: HTAB 1: PRINT "I'M NOf DONE YET!": GOTO 30 
125 POKE 216,0: REM TURN OFF "ONERR" 
130 VTAB 1:HTAB 1:RESUME 

When you press Control-C in this program, you'll find that, although the 
code for handling the Control-C works OK, when the program tries to continue 
the FOR-NEXT loop, you get a NEXT WITHOUT FOR error. That's because 
Applesoft BASIC forgets where it's up to in the FOR-NEXT loop when the er
ror occurs. Does this mean you can never have an ONERR trap with a GOTO 
in a program that uses FOR-NEXT loops? It does-if you don't know a special 
CALL that you can do to fix the problem. Program 1-4 is the revised program. 

12 



Program 1-4. ONERR Example 4 

5 HOME 
10 ONERR GOTO 100 
20 FOR X = I TO 10000 
30 VTAB I :HTAB I: PRINT X 
40 NEXT X 
60 END 

100 EC = PEEK (222) : REM ERROR CODE 
110 EL = PEEK (218) + 256 * PEEK (219) : REM ERR LINE # 
115 CALL 62248: REM FIX ONERR HANDLING 

Applesoft BASIC and Beyond 

120 IF EC = 255 THEN VTAB 12: HTAB I: PRINT "I'M NITT DONE YET!": GOTO 30 
125 POKE 216,0: REM TURN OFF "ONERR" 
130 VTAB 1:HTAB 1:RESUME 

The added line, 115, does a CALL 62248 that restores Applesoft BASIC's 
memory (so to speak) about where in the FOR-NEXT loop it was when the er
ror occurred. CALL 62248 calls a part of the Applesoft RESUME routine that 
fixes the internal Applesoft information about any pending FOR-NEXT loops. If 
the error doesn't occur in a FOR-NEXT loop, the CALL 62248 doesn't hurt 
anything. 

There are a number of useful CALLs that you can do in an Applesoft 
BASIC program to routines already present in your computer. Here's a short 
list of some of those ML routines that you can call right from Applesoft BASIC. 

Address 
to Call 
64538 
64614 
64528 
64500 
64780 
64858 
64668 
64578 

Effect 
Move cursor up. 
Move cursor down. 
Move cursor left. 
Move cursor right. 
Wait for a keypress. 
Wait for a RETURN keypress. 
Clear to end of line from cursor. 
Clear to bottom of screen from cursor. 

Looking at the list, you'll notice all the addresses have rather high val
ues. That's because Applesoft BASIC uses a large number of machine language 
routines starting at location 53248. The particular routines in this list start at 
64500 and above, but you'll recall the ONERR fix was a CALL to location 
62248. Figure 1-4 is a memory map that shows where Applesoft BASIC ROM 
is located. 

13 



Chapter 1 

Figure 1-4. The Location of Applesoft BASIC ROM 

0 

Applesoft BASIC 
ROM 

Routines 

53248 t 65535 
64500+ 

(Routines in the list) 

The illustration indicates that the Applesoft BASIC routines are ROM 
routines. You've probably heard the terms RAM and ROM before. (ROM stands 
for Read Only Memory; RAM stands for Random Access Memory.) Your computer 
has both RAM and ROM in it. The difference is that RAM not only stores a 
number value, but the number value can be changed by writing a new value to 
that location at any time. That's what a POKE in Applesoft BASIC does: It 
writes a new number value to a given memory location. ROM memory, on the 
other hand, can only be read. That is, you can PEEK to see what's there, but a 
POKE will not change the contents. 

As an example, try this short BASIC program: 

10 PRINT PEEK (62000): REM SHOW WHAT'S AT WC. 62000 
20 POKE 62000,0 : REM TRY TO CHANGE IT 
30 PRINT PEEK (62000): REM SEE IF IT CHANGED. 
40 END 

What you should find is that, no matter how hard you try to change the 
contents of memory location 62000, it always holds the same value. 

The problem with RAM is that, generally speaking, when you turn off 
the computer's power, the contents of RAM are erased; therefore, you can't 
store anything permanent there. But there are some things, like Applesoft 
BASIC, that the computer designers wanted to keep in the machine while the 
power is off; these are stored in ROM. 

As a side-note: If we explain this much further, the latter part of Wagner's Par
adox will rear its ugly head. You've probably already noticed that both RAM 
and ROM can access any given byte at a time, so ROM is technically random 
access memory, too (as opposed to sequential access memory, where you have 
to look at each byte in a series before you can examine each successive byte). 
Also, when the power is off, your Apple IIGS remembers changeable things like 
the clock time and your Control Panel settings, and these have to be written 
somewhere to be stored. If you can't write to ROM, it must be RAM that they 
are written to. But we just said RAM lost its contents when the power is turned 

14 



Applesoft BASIC and Beyond 

off. The designers cheated by hooking up a battery to a small (256) number of 
bytes of memory to keep a few things, like the time and the Control Panel 
settings, on hand while the power is turned off. 

Since ROM routines are always in the machine at the same place all the time, 
you can CALL them from your Applesoft BASIC program, just like the ONERR 
fix. To see how these might be used, let's consider some more short examples. 

Waiting for a keypress. Usually, in an Applesoft BASIC program, when 
you want the program to wait for a keypress you must use GET A$ or some
thing similar to get the character from the keyboard. The only disadvantage is 
that a flashing cursor appears on the screen. Suppose you want to write a pro
gram that waits for a keypress, but doesn't put a flashing cursor on the screen. 
Using CALL 64780 from the previous chart, you could write a program like 
Program 1-5. 

Program 1-5. Waiting for Keypress 

10 HOME 
15 PRINT "WAIT FOR KEYPRESS DEMO" 
20 VTAB 12: PRINT "PRESS A KEY TO CONTINUE ... " 
25 CALL 64 780 
30 HOME 
35 VTAB 12: PRINT "THANK YOU!" 
40 END 

Moving around. This next program, Program 1-6, demonstrates how to 
move the cursor around on the screen, depending on what key is pressed. 
(These calls only work from 40-column mode.) 

Program 1-6. Moving the Cursor 

10 HOME: PRINT CHR$(17): REM 40-COLUMN MODE 
20 HTAB 20:VTAB 12:REM CENTER CURSOR 
30 GET A$ 
40 IF A$= "U" THEN CALL 64538 
50 IF A$="D" THEN CALL 64614 
60 IF A$="L" THEN CALL 64528 
70 IF A$= "R" THEN CALL 64500 
80 IF A$= "Q" THEN END 
90 GITTO 30 

Calling them by name. Another trick we can add to an Applesoft 
BASIC program to make the CALLs more understandable is to set Applesoft 
BASIC variables equal to the address you want to call. By making the names of 

15 



Chapter 1 

the variables a clue to the function of the routine itself, your program becomes 
more understandable. 

For example, let's take that last program, and change it just a bit (Pro
gram 1-7). 

Program 1-7. Using Meaningful Variable Names 

5 UP=64538: DOWN=64614:LEFf=64528:RIGHT=64500 
10 HOME: PRINT CHR$(17): REM 40-COLUMN MODE 
20 HTAB 20:VTAB 12:REM CENTER CURSOR 
30 GET A$ 
40 IF A$= "U" THEN CALL UP 
50 IF A$= "D" THEN CALL DOWN 
60 IF A$="L" THEN CALL LEFf 
70 IF A$= "R" THEN CALL RIGHT 
80 IF A$= "Q" THEN END 
90 GOTO 30 

In naming the routines in Applesoft BASIC, remember that only the first 
two letters of the name are really used by Applesoft BASIC. This means you 
can't use two different routines called MOVEUP and MOVEDOWN, for ex
ample. Also, you have to use legal variable names, and you must avoid the use 
of Applesoft BASIC keywords. You can't create a variable called PRINT, for 
example. 

Hardware Locations and Softswitches 
There is one other area of memory you should be aware of, the range from 
49152 to 53247. This area of memory contains addressable locations that are 
not necessarily either ROM or RAM. Instead, many of the memory locations in 
this area are direct electrical connections to part of your computer's hardware. 
The computer is designed so a program can examine certain of these locations 
to determine the status of physical parts of the computer, such as the keyboard, 
and to also change other parts that are hardware controlled, such as the 
speaker, text and graphics display, and other functions. Figure 1-5 shows the 
location in memory of hardware and softswitches. 

Figure 1-5. Memory Locations of Softswitches 

Hardware 
& 

Softswitches 

0 49152 
(to 53247) 

16 

Applesoft BASIC 
ROM 

Routines 

53248 65535 



Applesoft BASIC and Beyond 

For example, suppose you want to know if someone were pressing the 
Open Apple key on the keyboard. Since a GET A$ and an INPUT A$ (the 
usual methods of getting characters from the keyboard) won't work, you need 
some other alternative. Fortunately, memory location 49249 is directly con
nected to the Open Apple key. In this case, we use the term memory location in 
a very general sense. Although we can gain information with a PEEK (49249), 
there really isn't any RAM or ROM there-just a wire to the keyboard. 

To see how to use this in a program, try this sample program: 

10 PRINT "PRESS THE OPEN APPLE KEY ... " 
20 IF PEEK (49249) < 128 THEN 20 
30 PRINT "THANK YOU!" 
40 END 

You'll notice that what we're looking for is for the apparent "contents" 
of location 49249 to reach a value greater than 127. If you were to print the 
contents on a continuous basis (say in a program loop), you'd see all kinds of 
different values. The important change that takes place when the Open Apple 
key is pressed is that although a wide range of different values will still be 
seen, all of them will have a value greater than 127. Later on, you'll see what's 
so special about the values 127 and 128. 

There is also another group of these apparent memory locations that are 
called softswitches. A softswitch is an addressable switch that will change the 
state of something in the computer just by accessing the location. 

For example, if you want to switch from the text display to a view of 
whatever is on the hi-res page, the steps in Program 1-8 will do the trick. 

Program 1-8. Switching to Hi-Res 

IO PRINT "PRESS A KEY FOR THE HI-RES DISPLAY ... " 
20 GET A$ 
30 POKE 49239,0: REM HI-RES SWITCH 
40 POKE 49232,0: REM GRAPHICS DISPLAY 
50 POKE 49235,0 : REM MIXED DISPLAY 
60 VTAB 22: PRINT "PRESS A KEY FOR TEXT AGAIN ... " 
70 GET A$ 
80 POKE 49233,0: REM BACK TO TEXT 
90 END 

There are two separate softswitches that are used to control hi-res graph
ics. The first, 49239, is a control switch that tells the computer that you want 
hi-res (as opposed to lo-res) graphics. However, setting this switch doesn't ac
tually change the display. It's the other location, 49232, that switches the dis
play from text to graphics. 

Line 80 uses location 49233 to switch back to text. Many programs that 

17 



Chapter 1 

let you switch between text and graphics views use POKEs ( or an equivalent) 
to switch the display. 

It is important to note that it's the accessing of the location that does the 
switch, not any actual manipulation of the data there, because there is no RAM 
to be changed. You could just as easily use a POKE 49233,157 on line 80-it 
wouldn't make any difference. Zero is used just to keep things simple in the 
listing, but the computer doesn't care what you use. 

What You've Learned So Far 
The important thing so far is to understand that there are many levels of pro
grams in your Apple computer. You're familiar with Applesoft BASIC, but ulti
mately, the computer actually runs series of number values stored in memory, 
called a machine language program. 

A machine language program is called by jumping to a given address, 
rather than a line number as in BASIC. Most machine language routines are 
like BASIC subroutines, and they eventually return control back to the point 
from where they are called. This means that they can be used with a CALL 
statement from within an Applesoft BASIC program, just like BASIC subrou
tines, to enhance the programs you are writing today. 

Not every memory location has to contain an actual program, however. 
Some locations store flags to indicate the status of something. Others contain 
data, such as the words to print on the screen, and some may not be "real" 
memory at all, but instead are hardware locations that control certain computer 
functions or tell you something about what's going on in the system. 

The Applesoft BASIC commands POKE and PEEK can be used to both 
alter the contents of memory and to examine any given memory location to see 
what's already there. POKE can also be used to access hardware softswitches to 
change things like the screen display. 

You may want to go back to programs you've seen in magazines, or on 
your local user group program disks, and look for POKEs, PEEKs, and CALLs 
to see how these are used in many different Applesoft BASIC programs for a 
variety of results. 

Secret #1 
You can use POKEs to change the screen, background, and text colors on your 
Apple Iles right from within an Applesoft BASIC program. 

Here's a program that asks for new color screen values, and then 
changes the system accordingly. 

18 



0 REM SCREEN COi.DR DEMO 
5 DIM C$(15): FOR I = 0 TO 15: READ C$(1): NEXT I 
10 SY = PEEK (49186): REM SCREEN VALUE 
15 TX = INT (SY/ 16): REM TEXT COi.DR VALUE 
20 BK = SY· (TX• 16): REM BACKGROUND COi.DR VALUE 
25 REM 
30 BY = PEEK ( 49204): REM BORDER VALUE 
35 HY= INT (BY/ 16): REM OTHER HARDWARE VALUES 
40 BC = BY · (HY • 1_6): REM BORDER COi.DR VALUE 
45 OS = SV:OB = BY: REM SAVE ORIG. VALUES 
50 TEXT : HOME 
55 PRINT "BACKGROUND COi.DR IS: ";C$(BK) 
60 PRINT "TEXT COi.DR IS: ";C$(TX) 
65 PRINT "BORDER COi.DR IS: ";C$(BC) 
100 REM GET NEW COi.DRS 
105 PRINT 

Applesoft BASIC and Beyond 

110 INPUT "ENTER VALUE FOR BACKGROUND: (0-15)";BK$:BK = VAL (BK$): IF BK< 0 OR BK 
> 15 THEN 110 

115 INPUT "ENTER VALUE FOR TEXT: (0- 15) ";TX$:TX = VAL (TX$): IF TX < 0 OR TX > 15 
THEN 115 

120 IF BK = TX THEN PRINT: PRINT CUR$ (7);"YOU WON'T BE ABLE TO SEE WHAT": PRINT 
"YOU ARE TYPING!": GET A$: GOTO 100 

125 INPUT "ENTER VALUE FOR BORDER: (0-15) ";BC$:BC = VAL (BC$): IF BC< 0 OR BC> 
15 THEN 120 

200 REM RESET VALUES 
210 SY = TX • 16 + BK: POKE 49186,SV: REM SET BACKGROUND & TEXT 
220 BY= HY• 16 + BC: POKE 49204,BV: REM SET BORDER COi.DR 
230 PRINT: INPUT "TRY AGAIN? (Y/N)";I$ 
235 IF 1$ = "Y" OR 1$ = "y" THEN 100 
290 POKE 49186,0S: POKE 49204,08: REM RESTORE SCREEN 
299 END 
999 DATA BLACK,DEEP RED.DARK BLUE,PURPLE,DARK GREEN,DARK GRAY,MEDIUM BLUE,LIGHT 

BLUE,BROWN,ORANGE,LIGHT GRAY,PINK,GREEN,YELI.DW,AQUAMARINE,WHITE 

Although it may seem a little long, the basic principles are quite simple. 
The softswitch at location 49186 contains both the background color and the 
text color. Dividing by 16 separates text color value. Subtracting this value from 
the total value then yields the background color. Since each color range can only 
be in the range of O to 15, it is possible to pack both values into a single byte. 

Location 49204 holds the value for the border color, along with some 
other system values. The designers of the Apple Iles probably didn't want to 
waste half a byte. The array C$( ) has been set up with the words for each 
color value in the interest of making the program user-friendly. After inputting 
the new values, the new values are recombined by multiplying the text color 

19 



Chapter 1 

by 16 and then adding the background color (the reverse of the decoding pro
cess). When this value is POKEd back to location 49186, the background and 
text colors immediately change. The screen border byte is recalculated in a sim
ilar manner and is likewise updated with a POKE. 

The program saves the original contents of both locations so things can 
be restored when the program is finished. If you make a mistake entering the 
program and suddenly find yourself with black text on a black background, or 
something similarly unreadable, just press RESET to restore the colors you've 
already chosen in the Apple IIGS Control Panel. 

20 







Chapter 2 

Real Machine Language 
Programming 

Machine language programming is the process of storing the exact number val
ues in memory that the 65816 will be able to understand to carry out a set of 
instructions. 

In the last chapter, you saw how to CALL machine language program 
from Applesoft BASIC in much the same way as you would do a GOSUB to a 
BASIC subroutine. 

To see how a BASIC program can create and then run a short ML pro
gram, enter Program 2-1. 

Program 2-1. ML Programming Using BASIC POKEs 
10 HOME 
20 POKE 768,32 
30 POKE 769,12:POKE 770,253 
40 POKE 771,96 
50 PRINT "PRESS A KEY ... " 
60 CALL 768 
70 PRINT "THANKS!" 
80 END 

When you RUN this program, the screen should clear, and the PRESS A 
KEY prompt and a flashing cursor should appear on the screen. When you do 
press a key, THANKS! should appear and the program will end. 

Functionally, this program is equivalent to the "Waiting for Keypress" 
demo program in Chapter 1. In that program, a call to a built-in routine at 
64780 was done to wait for a keypress. How can the program above accomplish 
the same function by calling location 768? And what are all those POKEs for? 

If you examine the program closely, you can see that four memory loca
tions, starting at location 768, are being POKEd to hold various number values. 
The number series 32, 12, 253, 96 is understandable by the 65816 
microprocessor in your Apple to mean "wait for a keypress." 

23 



Chapter 2 

This is a true machine language program, which is placed in memory 
starting at location (address) 768. Line 60 of the Applesoft BASIC program then 
uses a CALL statement to execute the routine. Remember that a CALL is very 
much like a GOSUB, except that instead of going to a line number in your 
BASIC program, it jumps to a memory location, expecting to find a machine 
language program there. 

You know that every subroutine in BASIC must end with a RETURN to 
properly return to the main program. The same principle applies to machine 
language subroutines. Can you guess which number code in our machine lan
guage program is equivalent to the RETURN in an Applesoft BASIC program? 
If you guessed the last value, 96, you're right. 
_ You could look in a technical reference manual (or at the back of this 
book) to determine the meaning behind the other values, but there is an easier 
way-use the built-in Monitor that is present in every Apple IIGS computer. 
The word Monitor is used on many microcomputers to mean a sort of mini-lan
guage that is used at a lower level than BASIC to make life easier when dealing 
with machine language programs and data. 

The Monitor, like Applesoft BASIC, is itself a group of machine language 
routines. These routines start at memory location 63488 and go up to 65535. In 
fact, earlier, when we said that the Applesoft BASIC routines were in the range 
of 53248 to 65535, it wasn't quite the whole picture. Actually, the Applesoft 
BASIC routines start at 53248 but end at 63487. The next byte is then where 
the Monitor routines actually start. As it happens, Applesoft BASIC does call 
the Monitor routines to do many functions like cursor handling, keyboard in
put, and so on. That's why the cursor routines in Chapter 1 were in the Moni
tor memory range from 63488 to 65535. 

Figure 2-1 is a more complete memory map. 

Figure 2-1. Memory Map Showing the Location of the Monitor 

Hardware Applesoft BASIC 

0 

& 
Softswitches 

49152 
(to 53247) 

53248 
(to 63487) 

ROM 
Routines 

63488 

Monitor 
ROM 

Routines 

65535 

The Monitor is useful for examining any portion of the computer's mem
ory and has a number of other handy features as well, including a small assem
bler and the ability to list ML programs in an understandable way. 

One of the most common uses of the Monitor is to look at the contents 
of a range of memory locations. To examine the part of memory that holds the 

24 



Real Machine Language Programming 

machine language program POKEd into memory by the BASIC program, you 
need to first change to the Monitor command mode. To enter the Monitor vol
untarily,• type in: 

CALL -151 

and press RETURN. 
The Applesoft BASIC prompt ( ] ) should change to an asterisk ( • ), 

which indicates you are officially in the Monitor. That is to say, Applesoft 
BASIC commands are no longer recognized, and instead, Monitor commands 
are. You can try typing HOME at this point to confirm this (your computer 
should just beep at you), but don't try randomly typing anything else just yet. 
Now, to look at those numbers that make up our program, type in 

300.303 (and press RETURN) 

The screen should display 

*300.303 
00/0300:20 OC FD 60- . } ' 

At this point, you may justifiably say "Wait a minute-this doesn't look like 
the same numbers my BASIC program used. And I thought it started at loca
tion 768, not 300." 

You're almost right. The numbers don't look the same, but-believe it or 
not-they do represent the same values. 

Hexadecimal Numbers 
In explaining the numbering systems used in computers, people who write 
books and columns on machine language programming often talk about how 
we count by sets of 10 because we have 10 fingers. Ten is called the base of our 
numbering system because it's the foundation for how we count: We group 
quantities by tens. 

Regardless of why you think we count by lO's, it is true that in a math
ematical sense, the base for a counting system can be any number you want. In 
the computer, for various electrical and logical reasons that we won't discuss 

• As opposed to the surprise visits , usually accompanied by a beep , program crash, and a message something 
like: 

00/0320: 00 D8 BRK D8 
A=OOOO X=OOOO Y=OOOO S=01DD D=OOOO P=30 
B= OO K=OO M=OC Q=SO L=I m=I x=I e=I 

25 



Chapter 2 

here, your Apple computer likes to count by 2's at the machine level of opera
tion. 

This brings us back to the Monitor. Applesoft BASIC is written using 
12K of machine language routines to support the roughly 100 BASIC com
mands. The Monitor also has a limited space in which to create its commands, 
and it has to take care of things like reading the keyboard and managing the 
screen. Therefore, when they went to create the routines to print the numbers 
stored in a given memory location (or to decode numbers typed in by the user), 
it was much easier to deal with routines in a number system based on 16 (a 
power of 2) than it was 10. This number system, based on groups of 16, is 
called the hexadecimal number system, called hex for short. 

It really isn't necessary for you to be an expert in counting in base 16 to 
be able to use the hex numbers on your screen, but a brief explanation will 
make things a little easier. 

When counting in base 10, you count from Oto 9, and then use a second 
position (for the 1) to create the next number (10). In a sense, we're just putting 
a limit on how many symbols are legal in a given digit position. When count
ing from 10 to 99, we again limit ourselves to the digits O through 9, and thus 
have to move over another position for the value after 99. 

When the counting system for hex numbers was created, the mathema
ticians asked why they couldn't count past 9 by using other nonnumerical sym
bols. Seeing no reason to quit at nine, they began using letters to continue 
counting. 

When you count in hex, you start just like you did before: 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9 

but, when you get to 9, you begin using letters of the alphabet: 

... 8, 9, A, B, C, D, E, F 

Allowing characters up to the letter F lets us use just one digit position 
(now called a hexit) to count to what would normally be 15. In any case, when 
you continue, you now do just what you did to mark a group of 10 in base 
10-add a 1 to the left to mark a set of 16-and keep counting: 

... 8, 9, A, B, C, D, E, F, 10, 11, 12 ... 

Like before, when you use up the characters on the right, you just repeat the 
pattern: 

... 19, lA, lB, lC, lD, lE, lf, 20, 21, 22 ... 

Remember: Don't worry about being a math whiz at this point. All you 

26 



Real Machine Language Programming 

need to do is to believe that the symbol lB is a legitimate way of writing the 
number quantity denoted as 27 in base 10. 

1B (hex) = (1 X 16) + 11 = 27 (decimal) 

If you count high enough in hex numbers, the symbols run out again, 
and you'll have to add another number position: 

... 99, 9B, 9C, 90, 9E, 9F, AO, Al ... 

. . , F9, FA, FB, FC, FD, FE, FF, 100, 101 ... 

Some people get nervous at this point because they're not used to saying 
IA as a number, or they're not sure that 100 means one hundred anymore. Ac
tually, as long as the other person knows that you're talking hex addresses or 
numbers, saying one hundred, or even B-hundred (for BOO) is just fine. 

To avoid confusion in written text, however, a dollar sign is usually put 
in front of hex numbers (example: $BOO), so someone can tell at a glance which 
numbering system you're using. 

Now, back to that list of numbers you were looking at in the Monitor. 

00/0300:20 OC FD 60- . } ' 

The screen display shows that location $300 holds the value $20, 32 dec
imal, our first POKE in the Applesoft BASIC program. Each value that follows 
is a number in hexadecimal notation that indicates the value stored at the 
successive memory locations ($301, $302, and so forth). 

Note that no dollar sign is used in the Monitor. The Monitor only ex
pects hex values, so no dollar sign is needed. 

The Monitor also provides some extra information, to the right of the 
hex numbers, starting with the dash ( - ) character. We'll explain that a little 
later, so you can ignore whatever's printed there for the time being. 

To verify that these numbers are the same values as POKEd in by the 
BASIC program, you need to be able to convert a hexadecimal number back to 
a decimal. Actually, that's not too difficult. You just need to remember a few 
special tricks. The first is that the last six letters when counting in hex (A, B, C, 
D, E, F) stand for 10, 11, 12, 13, 14, and 15 in decimal. The second is that 
when you have more than one digit in a number, you multiply by either 16, 
256, or 4096 for numbers in the second, third, or fourth positions, respectively. 

SA= 10 
SB ... 11 
SC= 12 
SD= 13 
SE= 14 
SF= 15 

27 



Chapter 2 

Example of converting a multidigit number: 

$4321 = 4 X 4096 = 16384 
+ 3 X 256 758 
+ 2 X 16 32 
+ 1 X 1 1 

= 17185 

It's actually more confusing to explain than to do. Let's just look at a few 
examples. To convert the starting address, $300, you just need to know that the 
third number position gets multiplied by 256 to convert it to base 10: 3 X 256 
= 768. (For the time being, you can ignore the 00 in front of the / character in 
the address). 

For 20, remember that numbers in the second position get multiplied by 
16 to convert them to base 10: 2 X 16 = 32; that checks with the first number 
POKEd into memory on line 20 of the program. For the second value, $0C, the 
C is equivalent to 12 in base 10. For the next number, $FD, multiply 15 ($F = 
15) by 16; then add 13 ($0 = 13). That's (15 X 16) + 13 = 253, which agrees 
with the third POKE. At the very end, 60 represents 6 X 16 = 96, the value 
which instructs the 65816 to return from the machine language program. 

Don't worry about needing to convert back and forth between decimal 
and hex in order to program in machine language. Usually, your assembler will 
do the necessary math for you. The Monitor also has a built-in converter that 
will assist you. It's important to have a general idea of what's going on when 
the computer does the conversion for you. To see how the Monitor does the 
conversion, type in: 

20= 

and press Return. The screen will display: 

*20= 
Decimal-> 32 { +32} 

The Monitor has translated $20 to decimal 32 for you. That's a good fea
ture. Try typing the other hex numbers followed by an equal sign, and see if 
you get the decimal values calculated by hand, above. 

The Monitor can convert decimal to hex, also. Just put the equal sign at 
the beginning of the number instead of the end. For example, type in 

=32 

and press Return. The screen will display 

*=32 
Hex-> $00000020 

28 



Real Machine Language Programming 

Try the other decimal numbers used in the BASIC program, and verify 
that they agree with the hex values shown when you typed in 300-303. 

Why Bother with Hex Numbers? 
You may be wondering why you even need to bother with hexadecimal nota
tion. Couldn't the computer do all the translations automatically? It could, but 
it turns out that hex numbers are actually easier to work with in many cases. 

For example, you probably don't remember all the decimal addresses 
given as the boundaries between the hardware locations, Applesoft BASIC, and 
the Monitor ROM routines. That's understandable, especially considering how 
arbitrary the values seem. To refresh your memory, Figure 2-2 is the same 
memory map as Figure 2-1. Trying to remember all these addresses is difficult 
because there's no apparent pattern. 

Figure 2-2. Memory Map in Decimal 

Hardware Applesoft BASIC 
& ROM 

Softs witches Routines 

0 49152 
(to 53247) 

53248 
(to 63487) 

63488 

Next, look at the same chart using hex numbers, Figure 2-3. 

Figure 2-3. Memory Map in Hex 

Hardware Applesoft BASIC 
& ROM 

Softswitches Routines 

0 $COOO 
(to $CFFF) 

$0000 
(to $F7FF) 

$F800 

Monitor 
ROM 

Routines 

65535 

Monitor 
ROM 

Routines 

$FFFF 

Addresses like $2000, $4000 and even $F800 are much easier to remember 
than 8192, 16384, and 63488. 

This may seem like a lot to absorb right away, but be patient. These con
cepts will be covered again many times throughout the book. It will become 
clear to you later. So, be patient, allow yourself some breaks in between topics, 
and you'll find that learning hex is almost effortless. 

29 



Chapter 2 

It's Culture That Counts 
Many people have remarked that our choice of ten as a number base is 
related to the fact that we have ten fingers on our hands. One can only 
guess how a different set of circumstances would have profoundly 
changed our lives. Speculating, for instance, on which two command
ments would have been omitted had we only eight fingers is enough to 
keep you awake at night. 

A living example of this arbitrary nature of number bases was re
cently brought to light by the discovery of a long lost tribe living in the 
remote jungles of South America. The tribe had been isolated from the 
rest of the world for at least 7000 years. An important aspect of their 
life was a huge population of dogs living among the people. In fact, 
dogs so out-numbered the people (so to speak) that the people had 
evolved a counting system based on the number of legs on a dog, as 
opposed to our decimal system. They counted in the equivalent of base 
four. 

In counting, they would be heard to say, "one, two, three .... " 
For the next number, they just used what seemed a natural whole unit. 
They wrote it as 10 and called it doggy. Continuing to count they would 
say, "doggy-one (11), doggy-two (12), doggy-three (13) .... " Quite 
practical really, 13 = 1 dog, three legs. 

This system worked quite well, and they only needed four sym
bols to count with (0, 1, 2, 3). When they got to the number after 
doggy-three, they wrote it as 20 and called it twoggy. A similar proce
dure was used for 30. 

20 = twoggy 
21 = twoggy-one 
22 = twoggy-two 
23 = twoggy-three 

30 = troggy 
31 = troggy-one 
32 = troggy-two 
33 = troggy-three 

Now, upon reaching 33, adding one more meant writing the new 
number with three digits. 

You're probably wondering what they called it. The digits are 
naturally 100. Oh, the name. Why, of course, it's one houndred. 

POKES, PEEKS, and CALLS In the Monitor 
World sociology is just amazing, isn't it? Speaking of languages, you know how 
BASIC lets you change and examine memory locations using POKE and PEEK, 
and you now know how to run a machine language program from BASIC. 

30 



Real Machine Language Programming 

These operations are also present in the Monitor. 
You've seen how to examine a range of memory locations: Type in the 

addresses separated by a period and press RETURN. This is equivalent to BA
SIC's PEEK command. If you want to look at a single location, just type in the 
single hex address. To examine location $300, for example, just type 

300 

The screen should print 

*300 
00/0300:20-

You can also examine a set of different addresses, which are not neces
sarily continous in memory by typing the addresses to examine separated by 
spaces. For instance, type 

300 302 

and you should see 

*300 302 
00/0300:20-
00/0302:FD-} 

To do the equivalent of BASIC's POKE, type the address followed by a 
colon. For example, let's use a part of memory not currently used by our pro
gram, say location $30A. 

First, see what's there by typing 

30A 

and press Return. Make a note of what number value you find there. 
To change the value of the contents of location $30A from its current 

value, to $FF (or pick any number you want), type in 

30A: FF 

Now type 

30A 

The screen should print 

00/030A:FF-. 

The value has been changed. Typing an address followed by a colon and 
a number value is the equivalent of BASIC's POKE command. 

Now, what about the equivalent of a CALL statement? In the Monitor, 

31 



Chapter 2 

all commands are single letters, rather than complete words, and they follow 
the address of interest. To run your program from the Monitor, type in 

300G 

A blinking box should appear on the screen, waiting for you to press a 
key. When you do, the asterisk Monitor prompt should return. The letter G that 
followed the address 300 stands for Go and tells the Monitor to run a machine 
language program at the specified address. 

The Monitor LIST Command 
You're probably thinking by now that if you have to deal entirely with num
bers to do machine language programming, it's going to get old very fast-and 
you're right. Fortunately, few people program using soley the number values, 
and the Monitor has some features to do things a little easier. 

To list a machine language program, the monitor has a nifty command, 
just like BASIC does. Type in 

300L 

The screen should now list 20 lines on the screen that look like the ex
ample shown in Figure 2-4. 

Figure 2-4. A Monitor Listing 

l=m l=x O=LCbank (0/1) 

00/0300: 20 OC FD JSR FDOC 
00/0303: 60 RTS 
00/0304: 

l 
00/0306: 
00/0308: 
• 

t 
addresses object source 

code code 

L is the Monitor LIST command, and it tells the Monitor to display the 
contents of memory as an assembly language program. 

Now, since we keep tossing around both assembly language and machine 
language, you might well ask what's the difference? 

Once, programmers programmed their computers by entering pure num
bers to tell the microprocessor what to do for a given program. (That's probably 
when programming got a bad name.) 

Then one day, someone asked why letter codes couldn't represent the 

32 



Real Machine Language Programming 

commands, with the computer figuring out which numbers are represented by 
the character strings. Others thought it a good idea, so began searching for a 
way to do it. 

Since they were very-memory conscious at the time (in 1978, 16K of 
RAM for an Apple cost $300), they used short abbreviations for words, called 
mnemonics (pronounced neh-monics). Mnemonics are memory aids; program
mers use them to remember the code word for a given operation. The term 
code when talking about object code and source code probably originated then, 
too. 

Thus, at $303, you see that the Monitor has translated the $60 to RTS. 
This stands for ReTurn from Subroutine, and sounds a little like the RETURN 
that you'd put at the end of a BASIC subroutine. 

It's much easier to remember RTS when creating a program than it is to 
remember $60. 

A program that takes a list of mnemonic codes and then translates them 
into the proper series of numbers in memory is called an assembler. The listing 
that is typed in by the programmer is call a source listing, and it corresponds to 
the text in the rightmost column of the Monitor listing. 

The numbers that are put in memory by the assembler are called the ob
ject code, and they correspond to the numbers in the columns that were shown 
in Figure 2-1. The numbers at the far left are the addresses (or memory loca
tions) of the numbers that make up the object code and are displayed for 
convenience only. 

When you BLOAD or BSAVE a binary file that is a machine language 
program, you're loading or saving just a series of numbers that makes up the 
object code to a machine language program. 

In the technical sense then, assembly language is the programming of 
the computer by typing in the mnemonic codes, which are then assembled by 
an assembler. Machine language programming involves putting pure numbers 
directly into memory without the aid of an assembler. The end result is the 
same though, a machine language program. 

As it happens, most people use the two terms interchangeably. Few peo
ple write pure machine language programs of any size anymore. Assembly lan
guage and machine language really mean two different things, but, anymore, in 
general conversation the distinction is not that important. 

Imagine writing programs by POKEing each value into memory. 
From now on, we'll try to be somewhat consistent, and correct, in using 

the terms, but this means you may see both words in the same sentence, ap
parently referring to the same thing. There will be a difference though. What 
you'll write will be an assembly language program, using the mnemonics like 

33 



Chapter 2 

JSR and RTS. What you load and run in the computer is a machine language 
subroutine, made up of pure numbers. Therefore, you can expect to see a pas
sage something like: "After you've finished your assembly language program, 
save it to the disk. Your Applesoft BASIC program can then BLOAD and CALL 
the machine language subroutine as it's needed." 

Using Subroutines 
Now, back to our program in progress. In the listing, the first group of numbers 
in memory (20 OC FD) are translated as JSR FDOC. JSR is a mnemonic that 
stands for Jump to SubRoutine. A JSR in assembly language is very much like 
a GOSUB in BASIC. However, instead of jumping to a line number, a JSR goes 
to an address in memory. As long as the routine there ends with an RTS (like a 
RETURN in BASIC), control will eventually return to the calling program. 

In the case of the JSR, $FDOC has a decimal equivalent of 64780. Sound 
familiar? When we said that this sample program was functionally equivalent 
to the Waiting sample, the similarity was closer than you might have guessed. 
All we did in this program was put the CALL 64780 in our own machine lan
guage program at location 780 ($300). See Figure 2-5. 

Another incidental fact to note is that the address $FDOC is stored in 
memory at locations $301 and $302-in reverse order. That is, $0C comes first 
at $301, and $FD is stored at $302. This is similar to how the line number of 
an Applesoft BASIC error was stored by the ONERR routine in the demo pro
gram in Chapter 1. 

It turns out that this is the standard way microprocessors store, and ex
pect to find, address values in memory. The first stored value is sometimes 
called the low-order byte, and the second is the high-order byte. As a further ex
ample, for the address $2000 (the beginning of the first hi-res page), the low
order byte is 0, and the high-order byte is $20. This would be stored in 
memory as $0,$20. 

An important tip here is that the high- and low-order bytes for any hex 
number can be quickly determined by just visually splitting the number: $FDOC 
has a high-order byte of $FD, and a low-order byte of $0C. In decimal notation 
you have to divide by 256 to obtain the high-order byte, and use the remainder 
as the low-order byte. For example, 64780 ($FDOC) divided by 256 equals 253 
($FD = high-order byte) with a remainder of 12 ($0C = low-order byte). 

Finally, the program ends with a RTS, which returns control to either the 
Applesoft BASIC program that called it, or, if you did a 300G from the Moni
tor, back to the Monitor prompt. Generally speaking, all ML routines called 
from Applesoft BASIC should always end with RTS, so that control properly 

34 



Figure 2-5. CALling an ML Program 

Applesoft BASIC 
Program 

(CALL 64780) 

l 
$FDOC (RTS) 

Machine 
Language 
Routine in the 
Monitor 

I 

Real Machine Language Programming 

Applesoft BASIC 
Program 

(CALL 768) 

l i 
$300 (RTS) 

Machine 
Language 
Program 
OSR $FDOC) 

l i 
$FDOC (RTS) 

Machine 
Program 
Routine in the 
Monitor 

returns to the calling program. RTS in assembly language is very much like a 
RETURN in Applesoft BASIC-every subroutine should end with one. 

The remainder of the listing will vary from time to time and computer to 
computer, depending on a number of factors. 

By the way, any time you want to return to Applesoft BASIC from the 
Monitor, just press Control-C and press Return. This will get you back to 
Applesoft BASIC with any program you had there still intact. 

The Simplest ML Program 
The program just presented is almost the simplest machine language program 
possible. The only thing simpler could be RTS by itself. However, it has helped 
illustrate some of the key elements to machine language programming. 

35 



Chapter 2 

In this chapter you've learned about hex numbering, assemblers, the 
Monitor, Monitor commands, two assembly language commands (JSR and 
RTS), and more. 

Another key concept is that of flow of control. The computer is always 
executing some program somewhere. When you write a program, you're merely 
redirecting that flow of control temporarily to your own program. One program 
can pass control to another program, or to another part of itself. 

In our final example, control passed from the Applesoft BASIC program 
to our own machine language program, and from there to another routine at 
another location, and then back again through each level to the BASIC pro
gram. Mastering the ability to direct this process, and to control what happens 
along the way, is the essence of machine language programming . As you 
progress in this book, you'll learn how to make the computer do just about 
anything you want by using the proper set of instructions. 

36 







Chapter 3 

The Apple IIGS Mini-Assembler 

As you move through this book, you'll notice that each chapter builds on the 
material from previous chapters. In the last chapter, you saw how to create a 
machine language program by POI<Eing the appropriate values into memory, 
and then either CALLing it from BASIC, or using the Monitor GO command. 

In this chapter, you'll be introduced to your first assembler, the one 
that's built right into your Apple IIGS. Along the way, we'll also take a better 
look at the 65816 microprocessor and get a feel for how it manipulates data in 
the computer. 

Although there are a number of Applesoft BASIC programs available 
that create short subroutines with the POKE and CALL method, most programs 
are written using an assembler. You'll recall that an assembler is a program
mer's tool that lets you type in easy-to-remember abbreviations for micro
processor instructions. Then the assembler program translates these 
abbreviations into the proper number values. 

Full-featured assemblers, like word processors, are usually commercial 
software products that you buy as an addition to the computer itself. However, 
for short programs, and occasional corrections to an existing program, the Ap
ple IIGS has a built-in mini-assembler you can use without purchasing any sepa
rate software at all. Let's see how it could be used to create the same program 
that our BASIC program did. 

Starting and Using the Mini-Assembler 
From the Applesoft BASIC prompt, type CALL - 151 to get to the Monitor. 
When the Monitor prompt appears, type an exclamation mark ( ! ) and press 
Return. The prompt should change to an exclamation mark. This indicates that 
you are in the mini-assembler. 

The first thing to remember is that in assembly language, the addresses 
of each instruction take the place of line numbers in BASIC. To start a new 
program, you need to first tell the computer where you want the program to 
begin, much the same as you would start with some line number when begin
ning a new BASIC program. 

39 



Chapter 3 

We want our program to start at $300. To begin, type 

300: 

but don't press Return yet. Now type the first instruction for the program in as
sembly language 

300: JSR FDOC 

and press Return. Be sure that the 300 is at the very beginning of the line. You 
don't have to put a space between the 300: and the JSR, but you'll need a 
space after the JSR. The easiest way to keep things straight is to type them in 
so they look the best. (You don't need a dollar sign in front of any of the num
bers since the mini-assembler assumes everything will be in hex.) 

When you press Return, the text you've entered will be rewritten, and 
the screen should display 

00/0300: 20 OC FD JSR FDOC 
! 

A new ! prompt will await your next command. Notice how the mini-assembler 
has automatically translated the JSR FDOC into the proper machine language 
values and has placed them in memory for you. 

If you make a mistake, and, for example, type the letter O instead of a 
zero, the mini-assembler will try to help out with a beep and a" marker under 
where the error occurred. Unfortunately, it doesn't always put it in the right 
spot, and you'll usually get and something like 

*! 
!300:JSR FDOC 

If you do get the error display, retype the line carefully. 
Now you've successfully typed your first line of a true assembly lan

guage program. You might think that you'll have to now know the address for 
the next instruction ($303), but that's not so. The mini-assembler is keeping 
track of the current memory location for you. To continue the program, just 
type a single space and RTS, and then press Return. The space is very impor
tant here-a space must precede each instruction that you want added to the 
current program location. The screen should display 

00/0300: 20 OC FD JSR FDOC 
00/0303: 60 RTS 
! 

That's the whole program. To turn off the mini-assembler, press Return 
at the beginning of the line, and the Monitor prompt ("') should return. Now, 

40 



to verify that the program is there, type in 

300L 

The Apple IIGS Mini-Assembler 

You should get a listing exactly like that in Chapter 2 (at least for the 
first two lines that make up our program). To test the program, type 

300G 

from the Monitor as you did before. 
Now, let's write a BASIC program to call the routine. Press Control-C 

and Return to go back to Applesoft BASIC. Then type NEW and enter this 
program: 

IO HOME 
20 PRINT "PRESS A KEY ... " 
30 CALL 768 
40 PRINT "THANKS!" 
50 END 

After typing this in, enter RUN and press Return. The program should 
work exactly like the BASIC program in Chapter 2, except that you can see it 
didn't put the machine language program in memory itself-that was created 
by you using the mini-assembler. 

Saving a machine language program. The next question is, how can 
you save your work? Saving the BASIC program is easy-just save it like any 
other BASIC program. But what about the machine language part? 

To save a binary file under ProDOS, you must know the starting address 
and the length (number of bytes) to save. The starting address is $300. The 
length is four bytes. As a tip, you can always look at the number value imme
diately after the RTS at the end of your program and subtract the starting ad
dress from that to determine the length ($304-$300 = 4). Thus, to save this 
program, you would type in 

BSAVE BINARY. l ,A$300,L$4 

This is usually done from the immediate mode of Applesoft BASIC, but 
you can also do it right from the Monitor. You'll notice we use BSAVE (not 
SAVE) to save a machine language program (or any block of memory for that 
matter). 

When you want to run the program again, you'll have to get that binary 
file back in memory. The whole sequence for this would be: 

BLOAD BINARY. I 
LOAD MYPROGRAM 
RUN 

41 



Chapter 3 

BLOAD is used to load the binary file back into memory. You don't 
need to give the starting address, since ProDOS will remember where it came 
from. The second command loads your BASIC program, after which RUN gets 
everything going. I'm using the names BINARY.I and MYPROGRAM as exam
ples for the binary and BASIC programs, respectively, but you can use any 
names you'd prefer. 

As a side note, it really doesn't matter what order you do the BLOAD 
and LOAD in, as long as both files are in memory by the time you type RUN. 
As a matter of fact, the best approach is to have the BASIC program load the 
binary file itself. 

10 HOME 
15 PRINT CHR$(4);"BWAD BINARY.I" 
20 PRINT "PRESS A KEY .. . " 
30 CALL 768 
40 PRINT "THANKS!" 
50 END 

In this revised program, line 15 loads the binary file into memory auto
matically. This is the preferred arrangement, because then you (or the ultimate 
user) can just type in RUN MYPROGRAM to run the program right from the 
disk, without having to know which files to load . 

Storing Data in Memory with the 65816 
So far, we've been letting someone else do all the work, namely that routine at 
$FD0C. All our program did was tell the microprocessor where to go after it got 
to us via the Applesoft BASIC program. 

The first step to writing a true program is to learn how to control the 
memory contents of the computer. In fact, this is really all any program, no 
matter how complicated it is, ever does. When you type on a word processor, 
the program in the background just watches the keyboard as you type each 
key, and then it stores an appropriate value in memory. With 64K of memory 
just for Applesoft BASIC, we can store a lot of letters, even though we're using 
up one byte of memory for each character. 

With that inspiration, let's see how to write a program that prints a letter 
on the screen. Before we start though, you'll have to learn a little bit more 
about the 65816. 

You already know that the 65816 microprocessor works by just scanning 
through memory one byte at a time, and carrying out some instruction depend
ing on what it finds at each new location. To accomplish this, and many other 
important tasks, the microprocessor has the equivalent of built-in memory loca
tions, called registers that are used to keep track of things. 

42 



The Apple IIGS Mini-Assembler 

The most important of these is the Program Counter. The Program 
Counter (sometimes abbreviated PC) is a two-byte register, whose contents 
point to wherever in memory the microprocessor is currently operating. 

A byte associated with the Program Counter called the Program Bank 
Register, or PBR. Although Applesoft BASIC can only use the first 64K of mem
ory in the computer, remember that there can be up to 16 million bytes of 
memory. Counting in hex, the first 64K of addresses go from $0000 to $FFFF. It 
takes two bytes to store the pair of FFs for the last address. To count further, 
starting at $010000, you need a third byte. 

The 65816 can run programs and access data anywhere in the computer, 
so a third byte is needed to make a complete address. To make things easier to 
read, you can write the address $010000 like this: $01/0000. The first byte, 
stored in the Program Bank Register, tells us which group of 64K bytes, called a 
bank, we're talking about. The next four characters, representing two bytes, give 
the address in that bank. An address that uses all three bytes is called a long 
address, as opposed to a short address that only uses two bytes to give an ad
dress in a given bank, usually bank 0. 

When the Monitor lists the contents of address $300 as 

00/0300: 20 

it's giving the entire address, bank $00, address $300. 
To make things a little more visual, we'll make a model of the 65816 

that we'll add to as we introduce new facts about how it works. Our model is 
shown in Figure 3-1. 

Figure 3-1. The 65816 Microprocessor Model 1 

Prog. Bank Reg. (PBR) Program Counter (PC) 

Figure 3-1 shows the Program Bank Register and the Program Counter 
with their three bytes internal to the 65816. This means that the 65816 doesn't 
need to use any memory in the computer itself to store any of its "personal" 
information. The contents of both registers continually change as the 65816 ac
cesses different parts of memory in different banks . The registers are like RAM 
in that they lose their contents if the power is turned off. 

43 



Chapter 3 

The Busy Accumulator 
To make things easier, the designers also put in a number of other internal reg
isters that the 65816 can use. The most often-used is called the Accumulator 
(usually abbreviated as the A register). It's called the Accumulator because the 
result of each successive math operation is left in this register, and is used as 
the basis for each successive operation, thus letting the result accumulate. 

Figure 3-2. The 65816 Microprocessor Model 2 

Accumulator B A 

Prag. Bank Reg. (PBR) Program Counter (PC) 

Like the Program Counter, the Accumulator is made up of two bytes 
(see Figure 3-2). Sometimes programmers say the Accumulator is two bytes 
wide. When calling 65816 routines from Applesoft BASIC, only the first byte of 
the Accumulator is usually used. The second byte of the Accumulator is labeled 
B, to distinguish it from the first byte. 

The Accumulator can be loaded with either a specific number value, or 
the microprocessor can be instructed to use the contents of a given memory lo
cation as the value. The assembly language code for loading the Accumulator is 
LOA, which stands for LoaD Accumulator. Although the 65816 can be in
structed to load both bytes (A and B) with one instruction, the default mode 
when calling a routine from Applesoft BASIC is to use only the A part of the 
Accumulator. The number of bytes actually loaded into the Accumulator can be 
controlled by the programmer to be either one or two bytes, as desired. 
Routines called from Applesoft BASIC, or BRUN from ProDOS 8 or ProDOS 
8.SYSTEM files all default to one-byte operations and use only the~ part of 
the Accumulator. Chapter 7 discusses how to control this in your own pro
grams. For the time being, assume that all registers operations involve only one 
byte unless otherwise noted. 

For example, if you wanted to load the Accumulator with the value $05, 
you could enter 

LDA #05 

as the instruction in the mini-assembler. Notice the number sign ( # ) in front 
of the 5. This tells the mini-assembler to use the specific value 5. 

44 



The Apple IIGS Mini-Assembler 

An interesting alternative is to tell the computer to look in a memory lo
cation and place whatever value is stored there in the Accumulator. That in
struction looks like this: 

LDA 05 

This second form is used the most often; it lets you move a piece of data 
from one location in the computer to another. 

Using the Accumulator 
The text screen display in Applesoft BASIC (or any text-based program for that 
matter) is controlled by manipulating the contents of a specific part of memory, 
namely the range from $400 to $7FF. By putting a given value in the appropri
ate spot in memory, any character can be made to appear at any location on 
the screen. 

You've seen how to load the Accumulator with a given value or the con
tents of a memory location. To store that value somewhere, you use the in
struction STA (STore Accumulator). In a program, it looks like this: 

STA $06 

This instruction stores whatever was in the Accumulator in memory lo
cation $06. This can be combined with the LDA instruction to store a given 
value anywhere in memory. As an example, let's use the mini-assembler to 
write a program that prints the letter A in the center of the screen. If you're not 
already there, go the the Monitor, and then to the mini-assembler, and enter 
this program: 

300: LDA #Cl 
STA SBC 
RTS 

When you're finished entering the program (remember to press Return 
alone to exit the mini-assembler), the screen should display 

*! 
00/0300: A9 Cl 
00/0302: 80 BC 05 
00/0305: 60 
! 
• 

LDA #Cl 
STA OSBC 
RTS 

Although you can type 300G to run this program, let's keep BASIC 
around a little longer, even if just to clear the screen. Press Return to exit the 

45 



Chapter 3 

mini-assembler. Type Control-C, Return to go to Applesoft BASIC, and then 
enter this program: 

10 HOME 
20 CALL 768 
30 END 

When you run this program, the screen should clear, and the letter A 
will appear in the middle of the screen. 

The program works by first loading the Accumulator with the value $Cl, 
the code value for the letter A. Memory location $SBC is the byte assigned to 
the middle of the screen. By putting the value $Cl there, the A is instantly dis
played on the screen. 

For truly inquiring minds, suffice it to say that the final magic is accom
plished by electrical hardware that is constantly scanning memory from $400 to 
$7FF and using the contents of each memory location to control the video dis
play. If you're really interested in this, try to find a copy of one of Jim Sather's 
books on the Apple, particularly Understanding the Apple Ile, listed in the bib
liography of this book. Although his book was based on the Ile, much of it still 
applies to how the Apple IIGS behaves with an Applesoft BASIC program, and 
is interesting reading. 

The only remaining problem is that our program still needs the Apple
soft BASIC program to clear the screen. If only there were a way to clear the 
screen from machine language. 

There is. In fact, we can call the same routine, located at $FC58 that 
Applesoft BASIC uses to clear the screen. Try retyping the program like this: 

300: JSR FC58 
LDA #Cl 
STA SBC 
RTS 

When you're done, the screen should look like this: 

*! 
00/0300: 20 58 FC JSR FC58 
00/0303: A9 Cl LDA #Cl 
00/0305: SD BC 05 STA OSBC 
00/0308: 60 RTS 
! 
* 

If you type 300G now, the screen will clear without the Applesoft BASIC 
program. This complete program can be saved to the disk by typing 

BSAVE HOME.A,A$300,L$09 

46 



The Apple IIGS Mini-Assembler 

You've just written your own self-contained machine language program. 
This program can even be BRUN from the immediate mode of Applesoft 
BASIC. 

The X and Y Registers 
As long as we're talking about the various registers in the 65816, we might as 
well mention two more: the X and Y registers. (See Figure 3-3.) 

Figure 3-3. The 65816 Microprocessor Model 3 

Accumulator B A 

X Register X 

Y Register y 

Prog. Bank Reg. (PBR) Program Counter (PC) 

Having only one internal register in the microprocessor would make 
things rather limited, so they added two more, the X and Y registers, that you 
can use to hold data with. There are also some special tricks you can do with 
these registers that you can 't do with the Accumulator, but more on that later. 

Like the Accumulator, the X and Y registers are two bytes wide. Just as 
you can use LOA and STA to load and store data using the Accumulator, there 
are equivalents, LOX, LOY and STX and STY for the X and Y registers. Like 
the Accumulator, you can also use the number sign (#) in front of a number 
value to load either register with a specific value. The number of bytes loaded 
and stored defaults to 1 when calling a routine from Applesoft BASIC, but this 
also can be changed if desired. There is no separate name for the second bytes 
in the X and Y registers. 

As an exercise, try rewriting our HOME.A program using the X and Y 
registers instead of the Accumulator. You can BSAVE them to your disk with 
the names HOME.X and HOME.Y. When correctly entered, the programs 

47 



Chapter 3 

should look like this: 

HOME.X 
00/0300: 20 58 FC JSR FC58 
00/0303: A2 Cl LOX #Cl 
00/0305: SE BC 05 STX 058C 
00/0308: 60 RTS 

HOME.Y 
00/0300: 20 58 FC JSR FC58 
00/0303: AO Cl LOY #Cl 
00/0305: SC BC 05 STY 05BC 
00/0308: 60 RTS 

Moving Data in Memory 
The previous examples have shown how to load a register with a specific num
ber value, and to then store it in memory somewhere. 

In the word processor we were talking about, if all you could do was 
store a character in memory, editing would be pretty difficult. To write any 
program that does very much at all requires moving data from one place in 
memory to another. 

The general technique behind any movement of data is to first load the 
Accumulator, or one of the other registers, with the contents of some memory 
location, and to then store it somewhere else. Here's a variation on the pro
gram just presented that first stores the character to be printed on the screen in 
one location, and then uses a different register to pick that value up and move 
it to the special screen display location: 

00/0300: A9 Cl LOA #Cl 
00/0302: 85 06 STA 06 
00/0304: A6 06 LOX 06 
00/0306: SE BC 05 STX 058C 
00/0309: 60 RTS 

In this program, we first load the Accumulator with the code value for 
the letter A, and then temporarily store it in memory location 6. Choosing $06, 
by the way, is fairly arbitrary. It was chosen only because it happens to be a 
memory location that is never used by Applesoft BASIC, so it's a safe place, 
rather like the range from $300 to $3CF, where you can put machine language 
data without hurting anything. In fact, the bytes $06 through $09 are all avail
able for programs you write in assembly language. 

The next part of the program is the part that actually moves a byte of 
data from one place to another. First, it loads the X register with the value 

48 



The Apple IIGS Mini-Assembler 

#$Cl that we just stored, and then moves it to location $SBC, where it be
comes visible on the screen. This LOX/STX combination (or you can use 
LOA/STA or LOY /STY) is typical of how to move data from one place to 
another. 

There is also a special command for storing a zero in memory: STZ, 
STore Zero. Without this command, you would have to have these steps in a 
program to put a zero in location $06: 

LDA #$00 
STA $06 

With the STZ command, you only need 

STZ $06 

This takes fewer bytes, and doesn't require you to change the contents of 
the Accumulator. Because zeroing memory is done quite often, this is a very 
useful instruction. 

Moving Data Between Registers 
You've seen how to move data between one memory location and another, but 
suppose you want to move a byte from one register to another? To do that you 
just use the transfer instructions of the microprocessor. There are six transfer in
structions of immediate interest: 

TAX 
TXA 

TAY 
TYA 

TXY 
TYX 

TAX stands for Tranfer Accumulator to X, and does just that, it copies 
the value in the Accumulator into the X register. TXA is for Transfer X to Ac
cumulator, and provides the transfer in the reverse direction. There is also a 
set for transferring between the Accumulator and the Y register (TAY, TYA), 
and also for transferring between the X and Y registers directly (TXY, TYX). 
here's a list of these six transfer instructions: 

TAX Transfer Accumulator to X 
TXA Transfer X to Accumulator 
TAY Transfer Accumulator to Y 
TYA Transfer Y to Accumulator 
TXY Transfer X to Y 
TYX Transfer Y to X 

As an example, here's a variation on that last program that loads the 
value for the letter A into the Accumulator first, and then transfers it to the X 

49 



Chapter 3 

register for storage at $SBC: 

00/0300: A9 Cl LOA #Cl 
00/0302: AA TAX 
00/0303: SE BC OS STX OSBC 
00/0306: 60 RTS 

You can also use the B part of the Accumulator to store a byte temporar
ily, by using another transfer instruction, XBA. This swaps the A and B parts of 
the Accumulator. You could use it in a program like this: 

00/0300: A9 C2 LOA #C2 
00/0302: EB XBA 
00/0303: A9 Cl LOA #Cl 
00/0305: SD BC 05 STA OSBC 
00/0308: EB XBA 
00/0309: SD BD 05 STA OSBD 
00/030C: 60 RTS 

In this program we first load the Accumulator with the code value for 
the letter B, and then use the XBA swap command to move it to the B part of 
the Accumulator. The value for A is then loaded and stored on the screen as 
before. Finally, we use XBA again to retrieve the value for the letter B, and 
store it on the screen right next to the letter A. 

Long Addressing 
The use of JSR, LOA, and STA so far have been limited to simple two byte ad
dresses. When a routine is called from Applesoft, is BRUN, or is part of a 
ProOOS 8 System file (filetype SYS), it's assumed that the program, and any 
associated data is in the first bank of 64K of memory. Although occasional use 
may be made of the second bank by routines such as the SO-column drivers or 
Pro00S itself, access in these routines is done by switching banks using a 
softswitch, as was described in Chapter 1. 

The 65816, however, does allow direct access to any part of the 16-
megabyte address space ($00 /0000 to $FF /FFFF). This is done by using the 
long addressing mode, in which three bytes are used to determine the address. 
The long addressing mode is signified in the mini-assembler by just typing a 
three byte address after the LOA or STA, including any leading zeroes as 
needed. For example, if your program wanted to load a byte from bank 5, loca
tion $300, and then store it in bank 6, location $1AOO, the following lines could 
be typed in using the mini-assembler: 

! 
!300: LOA 050300 
! STA 061AOO 

50 



This would show on the screen as 

*! 
00/0300: AF 00 03 05 LDA 050300 
00/0304: SF 00 IA 06 STA 06IAOO 
! 

The Apple IIGS Mini-Assembler 

Try typing the lines again using only the two-byte addresses $0300 and 
$1AOO, and compare this with the mini-assembler output from the previous 
example. 

!300: LDA 0300 
! STA IAOO 

This will show on the screen as 

*! 
00/0300: AD 00 03 
00/0303: SD 00 IA 
! 

LOA 0300 
STA IAOO 

You can see that in the long address form, three bytes instead of two fol
low the opcodes for the LOA and STA instuctions. Notice also that the opcode 
values are different ($AF = LOA long; $AD = LOA short). 

You can also do the equivalent to a JSR to anywhere in memory, but this 
requires a new instruction, JSL (Jump Subroutine Long). A JSR will only jump 
to a two-byte address in the bank that a program is currently executing in 
(bank O for Applesoft, for instance). A JSL, however, has a three-byte operand, 
and can be used to jump to a subroutine anywhere. For example, you can use 
the mini-assembler to type in this instruction to jump to a subroutine at 
$05/0300: 

! 
!300: JSL 050300 

The screen will display 

00/0300: 22 00 03 05 JSL 050300 
! 

A routine must know whether it is being called with a JSR or a JSL, be
cause all routines called by a JSL must end with the instruction RTL (ReTurn 
from subroutine Long), not an RTS. If a routine does not end with the proper 
return instruction, the computer will not return to he proper place in memory. 
Thus, it's up to you, the programmer, to keep track of which routines you're 
calling, and how you are calling them. For the time being, we'll only be using 
the JSR instruction for Monitor subroutines, which all end in an RTS. 

51 



Chapter 3 

Using the Monitor to Debug a Program 
Before we leave the mini-assembler, there is one other technique that is very 
important to learn early on, and that is how to find out what's wrong with a 
program that isn't working the way you want it to. 

This process is called debugging a program. The term's origin goes back 
to the early days of computers, and consisted of very large machines that used 
electromechanical relays for memory. The story goes that one day a computer 
wasn't working properly. When some technicians went inside (ah, those were 
the days, when you really could get inside your computer), they found a poor 
moth caught in one of the relays. When they came out, and someone asked 
them what the problem was, one said "Oh, just a bug in the computer." Well, 
expressions have a way of sticking around, and pretty soon everybody was 
blaming everything on a bug somewhere. 

The result is that programmer's use the term bug to mean any error in 
the programming logic (or just plain typing error) that causes the program to 
not work the way they intended. Debugging a program is the process of track
ing down the cause of the problem, and, hopefully, correcting it. One of the 
easiest ways to fix a bug in a program is to describe it in the documentation, 
and give a good reason why it's there. Best of all is to describe the bug in a 
really creative way, and tell everyone it's a feature! 

For your programs, though, you'll probably just want them to work the 
way you intended, and so a few tips on how to track down these critters is in 
order. 

For starters, use the mini-assembler to enter this program: 

300: JSR FC58 
LDA Cl 
STA 5BC 
RTS 

This should list as: 

00/0300: 20 58 FC 
00/0303: A5 Cl 
00/0305: 8D BC 05 
00/0308: 60 

JSR FC58 
LDA Cl 
STA 05BC 
RTS 

When you run this program, either with a CALL 768 from Applesoft 
BASIC, or a 300G from the Monitor, the letter o should appear in the middle of 
the screen, instead of the expected A. What could the problem be? Generally 
speaking, the program looks pretty good. 

This is where debugging comes in. Usually the first step is to logically 
think through the part of the program that seems to be causing the problem. 

52 



The Apple IIGS Mini-Assembler 

The screen is clearing OK, so the JSR FC58 is probably not the problem. Since 
the letter o is appearing in the middle of the screen, maybe the Accumulator 
isn't holding what we think it is. The second line does say LDA Cl, but let's 
make sure. 

The way to check this is with a breakpoint. A breakpoint is a place in the 
program where you force the computer to stop executing the program. It's very 
much like a STOP instruction in BASIC, except that in the Apple, the break
handling function prints out some extra helpful information that you usually 
don't get with Applesoft BASIC's STOP command. 

The number code for a break is 0, pretty easy to remember. (The mne
monic is BRK, but this is probably the only machine language command that 
gets typed in 'more often directly by hand than with an assembler.) 

To put a break in our program, you just need to type Oat the point at 
which you want to see what the system status is. In our case, let's replace the 
RTS with a BRK. To do this type 

308: 00 

Now, type 300G to run the program. In the wink of an eye (and a quick 
wink at that), the screen should clear, the letter o will be placed on the screen, 
you'll hear a beep, and the top of the screen will show 

00/0308: 00 00 BRK 00 
A=OOEF X=OOOO Y=OOOO S=OIDD 0=0000 P=BO 
8=00 K=OO M=OC Q=80 L=l m=l x=l e=l 

* 

The beep happens whenever a break occurs. The computer then prints a 
display of the contents of all the registers, and the address at which the break 
occurred. 

Our break instruction was at $308, and this checks out with the display. 
You can also see the contents of the A, X, and Y registers, including both bytes 
in each (plus a whole lot more we haven't quite gotten to). 

You'll notice that the Accumulator holds the value $EF, not $Cl as we 
had intended. Just for fun, type in 

Cl 

and press Return. 
You should see 

00/00CI: EF ·O 

Aha-because the number sign was missing in front of the Cl in our 
program, the microprocessor loaded the Accumulator with the contents of loca
tion $Cl, rather than the specific value $Cl. This is confirmed by examining 

53 



Chapter 3 

the contents of location $Cl, which just happens to be $EF, consistent with 
what the break display showed. 

You'll also notice that the monitor shows the letter o to the right of the 
display of the contents of $Cl. That's the significance of these characters to the 
right of every memory display: If the number value shown were printed on the 
screen, the Monitor shows what text character would appear. This character is 
the character associated with the number in memory according to something 
called the ASCII value. ASCII character codes are explained in greater detail in 
Chapter 6. 

Even if you suspected earlier that the missing number sign was the cul
prit, this example still demonstrates one of the fundamental principles of de
bugging-placing a break point at a critical point in the program and observing 
whether the registers contain what you think they should. 

Debugging a program can be one of the most challenging (and frustrat
ing) parts of programming, but sooner or later everyone has to do it. Taking the 
time to carefully think through your programs as you're writing them, and 
thinking carefully about them again when problems occur, will make the pro
cess much easier. The secret is to try to narrow down the precise instant at 
which the program has deviated from the way you think it should be running, 
and to then look at what's not right at that particular spot. From there you can 
usually figure out what's gone wrong. 

There are commercial software programs (called debuggers) that let you 
step through a program one line at a time, with all the registers displayed for 
each step. These can be helpful sometimes, but for most of what's in this book, 
and in fact many of the problems you'll encounter even in large programs, the 
judicious use of just one or two BRK instructions can quickly solve most pro
gramming mysteries. 

54 



The Apple IIGS Mini-Assembler 

Nineteen Instructions 
With the completion of this chapter you've learned 19 assembly language 
commands: 

BRK JSL JSR LOA LOX 
LOY RTL RTS STA STX 
STY STZ TAX TAY TXY 
TXA TYA TYX XBA 

and a little bit about trouble-shooting a program. You've also written, run, and 
saved a self-contained assembly language program. In the next two chapters 
we'll discuss how to assemble programs using two popular assemblers. 

Secret #2 
Tum on your Apple lies but don't put a disk in the drive. You should get a 
bouncing Apple with the message, No Startup Device! 

Hold down the Control, Option, and Apple keys and press the N key. 
You should get a list of all the people that worked on the Apple lies. 

55 









Chapter 4 

Assembling a Program with 
Merlin 8/16 

The next two chapters will provide specific information on writing assembly 
language programs with the two most common assemblers for the Apple JIGS, 
Merlin 8/16 and APW (Apple Programmer's Workshop). 

There are at least two other assemblers that will create 65816 programs, 
namely the SC Assembler, from SC Software, and the assembler that comes with 
the book by William Sanders called Elementary Assembly Languge: Apple Iles. 
Each of these has advantages, especially Sander's price, but, as of the date this 
book was written, they didn't have the ability to create the special kind of files 
that we'll ultimately need to run some of the built-in JIGS tools like the pull
down menus and windows. 

If you only have the APW, you should still read this chapter because all 
of the listings throughout the remainder of the book use the Merlin 16 assem
bler. This chapter may help you understand the differences between the two 
systems and aid in the few changes that need to be made to a Merlin 16 source 
listing to assemble it using the APW. If you only have Merlin 8 /16, you may 
wish to skip Chapter 5. 

The specific technical facts presented in this chapter, such as assembler 
fields, labels, and so forth are repeated in Chapter 5, so you don't need to 
worry about missing anything really important if you only read one of the 
chapters. 

Both assemblers come with rather substantial manuals that explain how 
to use them. This book will not attempt in any way to duplicate that infor
mation, for obvious space reasons. We will, though, discuss the most basic file 
editing commands and how to assemble, save, and run programs using each. 
But it is assumed that any questions regarding specific functions in either as
sembler will be answered by their respective manuals. 

59 



Chapter 4 

Merlin 8/16 
Merlin 8/16 is actually a combination product. When you buy it, the package 
has three assemblers in it. They are: 

Assembler 
Merlin 8 
Merlin 8 
Merlin 16 

Operating System 
DOS 3.3 
ProDOS 
ProDOS 

System Required 
Apple Ile,llc or IIGS 
Apple Ile,Ilc or Iles 
Iles (or Ile with 65816 or 65802 installed) 

Merlin 8 is intended primarly for for use on Apple Ile and Ile computers, 
and creates code for the 6502/65C02 microprocessor, whose instructions are a 
subset of the 65816 instructions. 

Merlin 16 requires the presence of a 65816 to work properly, and is in
tended to assemble programs for the Apple Iles. When this book was written, 
however, it was running on any Apple Ile and Ile computers that have had a 
65816 (or 65802, a Ile/Ile compatible) microprocessor added to them, such as 
can be done with products from Applied Engineering and Checkmate Technologies. 

In the following instructions, we'll assume that you're familiar enough 
with ProDOS to be able to run Merlin 16 from BASIC, the Launcher, or some 
other program selector, and are able to successfully quit Merlin 16 and return to 
Applesoft BASIC. Later on, as the programs become more sophisticated, you'll 
be able to run them directly from the Launcher or a program selector. But, for 
now, a CALL from Applesoft BASIC is probably the best way. It's also easier to 
the Monitor for debugging if you run your programs from Applesoft BASIC. 

You should also have an initialized disk, formatted under ProDOS, on 
which you can save the sample programs as we go along. For our examples, 
we'll assume that disk has the volume name /PROGRAMS, but you can use 
any name you wish. If you have a disk you're already using to save the pro
grams presented earlier, you can continue to use that. 

Writing a Program Using the Merlin 16 
The first step is to get the Merlin 16 up and running. Use the Apple Program 
Launcher that comes on your Apple Iles System Disk to run MERLIN.16, or 
use whatever other technique you usually use to run a program. 

When run, the following title screen will appear. 

60 



Assembling A Program with Merlin 8/16 

Merlin-16 3.00+ 
Copyright (c) 1987 By Glen Bredon 

C :Catalog 
L :Load source 
S :Save source 
A :Append file 
D :Disk command 
E :Editor, command mode 
0 :Save object code 
@ :Set date 
Q :Quit 

Source: A$0901,L$0000 

Prefix: /MERLIN/ 

% 

14-NOV-87 8:55 

Merlin 16 has 3 levels of operation: the main menu, the full screen edi
tor, and the assembler/linker. 

The screen above is the main menu. Looking over the list of commands, 
you can see options for loading and saving source files, object files, executing 
disk commands and more. 

There is also a display of the current ProDOS prefix. Depending on what 
disk you have Merlin 16 on, this prefix will vary. 

You can use the main menu D command (for Disk) to change the prefix. 
Try it now by inserting your own program disk (we'll assume it's called /PRO
GRAM). Press D. The command prompt near the bottom of the screen should 
change to 

Disk command: 

Type in: 

PREFIX /PROGRAMS 

and press Return. The disk should on for a moment, and then the Prefix indi
cator should change to /PROGRAMS . 

You can view the disk catalog by pressing the C key (for Catalog). Mer
lin will prompt 

%Pathname: 

61 



Chapter 4 

Press Return alone to use the Prefix shown on the screen, which is presumably 
/PROGRAMS (or whatever the name of your data disk is) at this point. 

When you're done looking at the catalog, press Return to view the main 
menu again. 

To enter your first program, press F to go to the full screen editor mode 
of Merlin 16. 

The screen will clear, and the cursor will change to an inverse I, and 
you'll see a vertical bar, and the number 1 at the top of the screen. 

The vertical bar is a width indicator, set for most printers, to show how 
far to the right you can type before the text will be too wide for the printer. 
This position can be adjusted, and is explained in the Merlin 8/16 manual. 

The number at the upper right comer of the screen is a line number in
dicator, and gives you an idea of where you're at in your listing. Try it out now 
by pressing the down arrow, and then the up arrow to move the cursor up and 
down on the screen. The line number indicator will change as you move. Use 
the up arrow to bring the cursor back to line 1. 

A good assembler is like a word processor for programming. It should 
have features inserting and deleting text, moving blocks of text around, format
ted printing, and so forth-features that make dealing with source files easier. 
In the previous chapters, we called the list of LDAs, the source listing, even 
though they weren't saved separately in their own file. With a real assembler, 
they are . The lines you type in will eventually be saved as a text file. In fact, 
you could even use another word processor to edit the files if you liked, al
though you'll probably find the Merlin editor more convenient. 

The Merlin 16 assembler is also different from the mini-assembler in that 
it lets you add text as comments to your programs, very much like a REM 
statement in Applesoft. 

Entering your program. To start off our program, let's begin by putting 
a title at the beginning. With the cursor on line 1, hold down the Open Apple 
key, and then press 8. A row of asterisks should appear on line 1. In most as
semblers, any line that begins with an asterisk is considered a comment line, 
and anything after the first asterisk is ignored by the assembler when creating 
the actual program. In this case, we'll use asterisks to create a title box at the 
beginning of the program listing . 

If you haven't done so already, press Return to move the cursor to line 2 
of the listing. Now hold down the Open Apple key and press 9, but don't press 
Return yet. This time the line will be bracketed by asterisks, and the middle 
will be left blank. This is where we'll type the title. While we're on the subject, 
from now on, we'll just indicate Open Apple commands in the form Open Ap
ple-8, and assume you'll remember to hold down the Open Apple key while 

62 



Assembling A Program with Merlin 8/16 

you press 8. If you press the 8 key first, you'll just get the character 8 on the 
screen. 

Use the right-arrow key to move the cursor over a few spaces, then type 

1st Merlin Program 

You'll notice that as you type, the asterisk at the end of the line auto
matically moves ahead. This action is called the insert mode and means that the 
editor automatically inserts the characters in the line as you type them. To 
avoid this, first use the Delete key to erase what you've typed and move the 
cursor back to the third character position. Then press Control-I. 

This toggles the insert mode, and you'll see the cursor change to a solid 
block. Toggling means that the mode will flip on and off each time you press 
Control-I. When the insert mode is off, the cursor just types over what is al
ready on the screen, instead of creating new space as you type. This is called 
the overstrike mode and, for now, this is what you want. 

You can always tell what mode the editor is in by the appearance of the 
cursor: I indicates insert mode; a solid block means the overstrike mode. Now 
again type 

1st Merlin Program 

If you make a mistake typing, use the left-arrow key to back up. Delete will al
ways remove spaces, regardless of the Insert/Overstrike status. 

When everything looks OK, press Return to move the cursor to the next 
line. Now type Open Apple-9 again to create another line in the box, and fill it 
in with By and your name. It's a good idea to make up a title box for every 
program you write, so that when you look at the program later, you'll remem
ber what it does. You'll usually want to include even more information, such as 
the date, any commands the program may recognize, and any other useful 
information. 

This process is called documenting a program, and it is a very important 
step. While you're writing a program, you may remember what each part does, 
but even by the next morning you'll be much happier if you included lots of 
text information explaining what each part of the program does. 

When you're done filling in the third line, press Return. You should now 
be on line 4. Press Open Apple-8 to create another solid line for the bottom of 
the box. If you've done everything correctly, your program should look some
thing like this: 

•••••••••••••••••••••••••••••••••••••• 
• 1st Merlin 16 Program 
• By <your name> 

• 
• 

•••••••••••••••••••••••••••••••••••••• 

63 



Chapter 4 

While you're editing, there are a number of editor commands that can 
make your life easier. The four directional arrow keys will move the cursor 
around. You can also press Control-B to move to the beginning of a given line, 
and Control-N to move to the end. 

You can also use Control-I to toggle the insert mode, although using this 
with the arrow key and the delete key-and keeping everything lined up
takes a little practice. Even though this listing is rather short, you can also use 
Open Apple-Band Open Apple-N to move to the very beginning and the end 
of the entire source listing itself. 

When you're ready, press Return or use the down arrow to move to line 
6. This will leave a blank line below the title box. The assembler doesn't care 
about all this, but it makes the program look better. 

Before you enter the first line, let's review how you entered a line in the 
mini-assembler. There, you typed in 

300: JSR FC58 

There are three pieces of information here. At the left is the address to 
put the instruction. In the second position is the opcode for the particular in
struction you want, in this case JSR. In the third position is the address the JSR 
needs to go to. 

In a real assembler, these positions are also used, and are called fields. 
You usually separate them by spaces, just as you did in the mini-assembler. 

The first field is called the label field. In a true assembler, you don't have 
to worry about actual addresses at all. The Merlin 16 assembler starts off as
suming a default address of $8000 (32768 decimal) for every program. This 
value can be changed if you like, but more on that later. 

Adding labels. Since the assembler is going to keep track of actual ad
dresses for us, the first field can be given a name to represent the address of 
that instruction, and the assembler will make sure that any references to this 
name are eventually translated into the proper address when the program is 
assembled. 

There is no analogy in BASIC, since in Applesoft BASIC you can't say 
"line 100 = PRINT MENU", and then later on use the command GOSUB 
MENU. In an assembler, on the other hand, the line numbers are only of inci
dental interest, and all JSRs and references to addresses can use a label. This 
makes it much easier for the programmer, and in itself is a good reason to use 
a real assembler instead of the mini-assembler, which has no provision for 
labels. 

Let's call the first line of our program BEGIN. Type BEGIN, and then 
press the space bar once (don't press Return yet). Even though you only typed 

64 



Assembling A Program with Merlin 8/16 

one space, the cursor will automatically jump to the second field position on 
the line. The second field is called the opcode field and is where you put a given 
65816 instruction, such as JSR. Merlin automatically uses the space character to 
separate fields and to move the cursor to a given column so that the final list
ing will look orderly. 

In the second field, type JSR and press the space bar again. The cursor 
then moves to the third field, which is called the operand field. An operand is 
the information needed by an opcode. For example, a JSR by itself doesn't tell 
the assembler where the JSR was destined. Type $FC58 here for the operand, 
and press the space bar again. In the Merlin 16 assembler, you have to use the 
dollar sign ( $ ) in front of all hex numbers. If you don't, Merlin will treat it as 
a decimal number. 

The fourth, and last, field is called the comment field. This is where you 
can add text to explain what a specific line does. It's customary (some assem
blers, though not Merlin 16, insist on it) to begin a comment with a semicolon. 
Type ; CLEAR SCREEN and press Return. 

If all went well, your program should look like this: 

****************************************** 
* 1st Merlin 16 Program 
* By <your name> 

* 
* 

****************************************** 

BEGIN JSR $FC58 ; CLEAR SCREEN 

For the second line, we won't use a label. Actually, a label is always op
tional unless it is directly referenced somewhere else in the program, for ex
ample by a JSR somewhere. In that light, we didn't really need the label at the 
beginning of the first line of the program, but we'll leave it there since it 
doesn't hurt anything. 

Since we don't need a label for the second line, press the space bar once 
to move the cursor to the opcode field. Now type LOA, a space, and #$Cl. 
Then press the space bar once more, and type 

; LETTER "A" 

and press Return. For the next line, space to the second field and type in 

STA $SBC ; SCREEN LOCATION 

and press Return. Finally, finish the program with the label DONE, and RTS. 
You don't need an operand for RTS, and you can omit the comment, too. 

65 



Chapter 4 

Your program should now look like Program 4-1. 

Program 4-1. First Program 
•••••••••••••••••••••••••••••••••••••••••• 
• 1st Merlin 16 Program 
• By <your name> 

• 
• 

****************************************** 

BEGIN JSR $FC58 
LDA #$Cl 
STA $SBC 

DONE RTS 

; CLEAR SCREEN 
; LETTER "A" 
; SCREEN WCATION 

Assembling with Merlin 16 
To assemble the program, press Open Apple-0 (for Open dialog box). This will 
open a small dialog box on the Merlin screen in which you can enter direct 
Merlin system commands. 

The actual assembly is started by typing 

ASM 

When you press Return, text will suddenly appear on the screen, and 
things should look like Program 4-2. 

Program 4-2. Assembly of First Program 

I •••••••••••••••••••••••••••••••••••••••••• 
2 • 1st Merlin 16 Program • 
3 • By <your name> • 
4 •••••••••••••••••••••••••••••••••••••••••• 
5 

008000: 20 58 FC 6 BEGIN JSR 
008003: A9 Cl 7 LDA 
008005: 80 BC 05 8 STA 
008008: 60 9 DONE RTS 

--End Merlin-16 assembly, 9 bytes, Errors: 0 

Symbol table - alphabetical order: 

? BEGIN =$8000 ? DONE =$8008 

Symbol table - numerical order: 

? BEGIN =$8000 ? DONE =$8008 

$FC58 ; CLEAR SCREEN 
#$Cl ; LETTER "A" 
$SBC ; SCREEN WCATION 

66 



Assembling A Program with Merlin 8/16 

There are a number of things to notice. The first is that Merlin has cre
ated a listing at the far left of the addresses where each instruction will ulti
mately be put in memory. I mentioned that Merlin assumed a starting location 
of $8000, and you can see each line indicates the memory address followed by 
the actual machine language for each instruction of your program. If you want 
the listing to go by a little more slowly, you can press the space bar immedi
ately after typing ASM, and Merlin will step through the lines one at a time, 
keypress by keypress. Pressing Return resumes the normal speed listing. 

At the end of the listing is something called the symbol table. This prints 
a list of all the labels used in the program, such as BEGIN and DONE. The 
questions marks are printed by Merlin; they indicate that these labels are not 
called by name anywhere in the program. You can ignore them if you wish. 

To save the program to your disk, you need to go back to the main 
menu. Type Q (for Quit) now in the immediate mode of the editor. The main 
menu should reappear. 

C :Catalog 
L :Load source 
S :Save source 
A :Append file 
D :Disk command 

Merlin-16 3.00+ 

Copyright (c) 1987 By Glen Bredon 

14-NOV-87 8:55 

E :Editor, command mode 
0 :Save object code 
@ :Set date 
Q :Quit 

Source: A$0901,L$0000 
Object: A$8000,L$0009,8IN 

Prefix: /MERLIN/ 

% 

You can see that a new indicator has been added to the screen in the 
lower right comer, below the word Source. The heading Object: shows that 
there is now an object file in memory, and that it has a length of nine bytes. If 
this indicator does not show up, it's because either an error occurred during the 

67 



Chapter 4 

assembly or the file was assembled directly onto the disk, a problem that will 
be discussed later. 

There are now two files that need to be saved, the source file and the 
object file. To save the source file, press the S key (for save Source file). The 
prompt will change to 

%Save: 

Type in the name MERLIN .1 and press Return . The disk will come on 
and the source file will be saved to the disk. Then the prompt returns, you can 
view the disk catalog by pressing the C key (for Catalog). 

In the disk catalog you should see the file MERLIN.LS. The .S suffix is 
automatically added by Merlin when a source file is saved, or loaded, so don't 
worry about ever having to type this yourself. 

To save the object file, press the O key. The prompt 

%0bject:MERLIN.1 

will appear. Merlin is offering the same name as a default. Press the Y key (for 
Yes) to accept this default. Merlin will use this name without the .S suffix, so 
you don't have to worry about overwriting your source file. 

If you catalog the disk again, you'll see your source file saved as a text 
(TXT) file and the object file, MERLIN.I, saved as a binary (BIN) file. 

To run the assembled file, you'll have to quit Merlin and go to Applesoft 
BASIC, or a to a program selector other than Apple's Program Launcher, that 
can run binary files. Applesoft BASIC is the recommended method for now. 

Press the Q key to quit Merlin. It will ask you to confirm with the 
prompt 

%Quit 

Press Y to finish the quit and go to Applesoft BASIC. When you're in Applesoft 
you'll probably have to reset the prefix to your /PROGRAMS disk before you 
can run MERLIN .1. 

Assuming the prefix is correct, and that the /PROGRAMS disk is in a 
drive, you can now type either 

BRUN MERLIN.I 

or 

-MERLIN.I 

to run the program. You can also type 

BWAD MERLIN.I 
CALL 32768 

68 



Assembling A Program with Merlin 8/16 

This last bit may surprise you. Remember, though, that Merlin 16 used a 
default address of $8000 (32768) to assemble the program. That is also where 
the binary file will automatically load MERLIN.1 when you do a BLOAD. 

There are two ways of moving the code to $300 (768). The first is to 
specify the address as part of the BLOAD command 

BLOAD MERLIN.l,A$300 
CALL 768 

The other way to move the code is to tell the assembler where you want 
the code to ultimately run. To do that, we'll need to go back to Merlin 16. Type 
BYE in the immediate mode to quit BASIC back to a program launcher, or set 
the ProDOS prefix back to the Merlin program disk and type in 

-MERLIN.16 

Assembler Directives: ORG 
When Merlin is back up and running, load your source file MERLIN.1 from the 
main menu. Remember that you don't need to include the .S suffix with the 
name. 

When the source file is loaded, enter the editor/ assembler with the E 
command. Then press E to edit the file. The full-screen editor should start up, 
with the cursor on the first line, in the upper left corner of the screen. 

Move the cursor down, using the down arrow, to line 5 (the blank line) 
and press Return. A new blank line should be inserted. When the editor is in 
the insert mode, the cursor will be shown as an inverse I, and pressing Return 
will insert a new blank line. 

Press the space bar once to go to the opcode field, and type ORG. Then 
press the space bar once, and type $300 and press Return. The listing is shown 
in Program 4-3. 

Program 4-3. First Program 
****************************************** 
* 1st Merlin 16 Program 
* By <your name> 

* 
* 

•••••••••••••••••••••••••••••••••••••••••• 

; CLEAR SCREEN 
; LETTER "A" 

ORG $300 
BEGIN JSR $FC58 

LDA #$Cl 
STA $SBC ; SCREEN LOCATION 

DONE RTS 

69 



Chapter 4 

ORG is not a 65816 opcode. Instead, it's an instruction specifically for 
the assembler. ORG stands for Origin, and tells the assembler where the ma
chine language program will ultimately run. Instructions like ORG are called 
assembler directives, because they direct the assembler to take a certain action. 

After you've added the new line with ORG, press Open Apple-Escape, 
and then type ASM to assemble the program. If there are no errors, press Q to 
go back to the main menu. 

When you press S to save the modified source file, Merlin will prompt 
you with the name MERLIN.I. Merlin remembers the name of the file last 
loaded. To keep this name, just press Y (for Yes). After the source file is saved, 
press O to save the object file, and again accept the default name. 

When you've saved the new file, quit Merlin, go back to BASIC, and 
type: 

BWAD MERLIN.I 
CALL 768 

This time, the file is located at $300. That's because you told Merlin 
where you wanted the file to load with the ORG directive. 

More About Labels 
Now go back to Merlin again, and load MERLIN.I. The listing should look like 
Program 4-2. 

Looking at the listing, you can see addresses like $FC58 and $SBC, and 
the code value for the letter A, $Cl. As a program gets larger, and the listing 
longer, it can start to get rather confusing trying to remember many different 
number values. To make programming more convenient, most assemblers 
allow you to give routines a name and remember the address for you. 

Start by putting the cursor on line 7, press Return once, and type the 
following: 

HOME EQU $FC58 
SCREEN EQU $SBC 

Now move the cursor to this line: 

BEGIN JSR $FC58 ; CLEAR SCREEN 

Move the cursor to the end of the address $FC58, and press the Delete key un
til it's completely erased. Type HOME, but don't press Return. Now use the 
down-arrow key to move down two lines, and do the same thing to replace the 
address $SBC with SCREEN. 

Your program should now look like Program 4-4. 

70 



Program 4-4. First Program with EQU 
•••••••••••••••••••••••••••••••••••••••••• 
• 1st Merlin 16 Program 
• By <your name> 

• 
• 

•••••••••••••••••••••••••••••••••••••••••• 

HOME 
SCREEN 
BEGIN 

DONE 

ORG $300 
EQU $FC58 
EQU $SBC 
JSR HOME 
LDA #$Cl 
STA SCREEN 
RTS 

; CLEAR SCREEN 
; LETTER "A" 
; SCREEN WCATION 

Assembling A Program with Merlin 8/16 

Use Open Apple-0 and the command ASM again to assemble this list
ing. The assembly output is shown in Program 4-5. 

Program 4-5. Assembly of First Program With EQU 
1 •••••••••••••••••••••••••••••••••••••••••• 

2 • 1st Merlin 16 Program 
3 * By <your name> 

• 
• 

4 •••••••••••••••••••••••••••••••••••••••••• 
5 
6 
7 

ORG $300 

= FC58 8 HOME EQU $FC58 
= OSBC 9 SCREEN EQU $SBC 

000300: 20 58 FC 
000303: A9 Cl 
000305: SD BC 05 
000308: 60 

10 
11 BEGIN 
12 
13 
14 DONE 

JSR 
LDA 
STA 
RTS 

HOME 
#$Cl 
SCREEN 

--End Merlin-16 assembly, 9 bytes, Errors: 0 

Symbol table - alphabetical order: 

? BEGIN =$0300? DONE =$0308 HOME =$FC58 SCREEN =$05BC 

Symbol table - numerical order: 

? BEGIN =$0300? DONE =$0308 SCREEN =$05BC HOME =$FC58 

You'll notice that this time the assembler translates the labels HOME 
and SCREEN into their assigned addresses. Labels are always associated with 
some value in the source listing. If you look at the symbol table at the end of 
the listing, you'll also notice that there are no question marks next to the labels 

71 



Chapter 4 

HOME and SCREEN, like there are next to BEGIN and DONE. The assembler 
is telling us that the labels HOME and SCREEN are actually referenced by the 
program, whereas BEGIN and DONE are not. This is intended as a debugging 
aid, to point out any labels you defined, but might have forgotten to use. 

Whenever the assembler encounters a label, either at the beginning of a 
line, or following the EQU directive, it assigns a value, usually an address, to it. 
For EQU statements, it uses whatever value is on the line. If the label is at the 
beginning of the line, it uses its own internal address counter for where it's at 
in the program. 

For instance, since BEGIN is the first statement in the program, the as
sembler gives BEGIN a value of $300. As it continues to assemble each line, it 
keeps track of where it is. By the time it gets to DONE, the address counter is 
up to $308, and that's what it assigns to DONE. Thus, if you want some other 
part of the program to do a JSR, for example, to BEGIN or DONE, you just use 
the line 

JSR DONE 

or 

JSR BEGIN 

In this program, such a JSR wouldn't make much sense, just as a 
GOSUB to the first or last line in a BASIC program wouldn't make sense; but, 
as your programs get larger, you'll want to go to subroutines within the pro
gram. In assembly language, you use the labels, not line numbers, to tell the 
JSR where you want it to go. 

Labels can be used for more than addresses. We could also assign a label 
to the value for the letter A as shown in Program 4-6. 

Program 4-6. Using EOU to Define a Character 

•••••••••••••••••••••••••••••••••••••••••• 
• 1st Merlin 16 Program 
• By <your name> 

• 
• 

•••••••••••••••••••••••••••••••••••••••••• 

ORG $300 

HOME EQU $FCS8 
SCREEN EQU $SBC 
LETTERA EQU $Cl 

BEGIN JSR HOME ; CLEAR SCREEN 
LDA #LETTERA ; LETTER "A" 
STA SCREEN ; SCREEN WCATION 

DONE RTS 

72 



Assembling A Program with Merlin 8/16 

Using EQU for Constants 
However, there is an easier way. Enter the full-screen editor, and use the De
lete key to remove just the characters $Cl from line 12. Replace it with the 
characters "A" ( quotes included) like this: 

LDA #"A" ; LETTER "A" 

Now quit the editor and try another assembly. This time you'll see the 
assembler has correctly used the value $Cl for the letter A. That's because the 
letter codes have been standardized, and the assembler already knows all the 
codes for all the letters. 

You should also go back to BASIC, after saving the new source and ob
ject files, and run the new assembly, just to prove to yourself that the new list
ing works (and to make sure you haven't made any errors along the way). 

There's nothing wrong with assigning a constant (as opposed to an ad
dress) with an EQU statement, it just takes up a little more room in your listing 
and the computer's memory. This technique is used when you want to use a 
number value throughout a listing, but want to keep your options open on be
ing able to change your mind later. 

For instance, suppose you're testing a program that goes through a loop 
200 times, and that the number 200 is used many times in the program. During 
testing, it might be nice to just use the number 5 for a shorter loop, instead. 
Using the label 

COUNT EQU 5 

makes it easy to change later, without having to search through the listing for 
all the number S's on every line. 

There's one other common error you can avoid. Sometimes programmers 
will define a constant this way: 

COUNT EQU #$5 

and then, later in the listing, this way: 

LDA COUNT 

They think that the pound sign is included in the label COUNT. It isn't. The 
assembler evaluates each operand as a numeric expression, and then stores the 
result as a the number value, not the text of the line that generated the result. 
The instruction assembled as though the line read 

LDA $5 

73 



Chapter 4 

When the program runs, the accumulator is loaded with the contents of location 
$5, not the actual value 5. Because there is no error generated during the as
sembly, and because the value loaded into the accumulator can be almost any
thing (and usually is), this kind of mistake can be very difficult to track down. 

Therefore, be sure you remember to always put the pound sign in front 
of any labels that you want used as an absolute value. 

COUNT EQU $5 
LDA #COUNT 

As your programs get larger, so will the listing of all the lables at the 
end of the assembly. If you would like Merlin to omit the label list, you can 
add the instruction LST OFF to the end of your listing. LST is a Merlin directive 
that tells the assembler not to list the lines following that instruction to the 
screen or printer. With LST OFF at the end, your listing would look like this: 

STA SCREEN ; SCREEN WCATION 
DONE RTS 

LST OFF ; SUPPRESS SYMBOL TABLE 

Assembling Directly to Disk 
There is also one other assembly option in the Merlin 16 assembler that should 
be mentioned. In the previous examples, we assembled each file and then went 
to the main menu to save both the source and object files. In many assemblers, 
there is also the option to write the object file to disk as it's being created. This 
leaves more room in memory for the source file, although it does slow down 
the assembly because of the disk access. 

To try this out, insert this in the listing after the ORG directive, but 
before the actual program: 

OSK MERLIN.I 

OSK (for disk) is a special Merlin 16 directive to tell the assembler to 
save the object file as it's being created. No quotation marks are needed around 
the name. Because we are creating the object file, you also don't want to put an 
.S suffix; that is reserved for the source file. The amended listing is shown is 
Program 4-7. 

Assemble this file. During the assembly, the disk should come on as the 
file is automatically saved to disk. When you quit the editor/ assembler to go to 
the main menu, you'll also notice there is no Object: indicator. This is because 
the object file is not created in memory, but is written directly to disk. 

If you make changes to a source file, you'll still have to save it with the S 
command. Only the object file is automatically written to disk; the source file is not. 

74 



Assembling A Program with Merlin 8/16 

DSK can also be used with another Merlin 16 command, TYP (for file 
type) to create any legal ProDOS file type as an alternative to the usual binary 
(BIN) file type. This won't be needed right away, but it will come in handy 
later on. 

Program 4-7. Using the Merlin DSK Directive 
•••••••••••••••••••••••••••••••••••••••••• 
* 1st Merlin 16 Program • 
* By <your name> • 
•••••••••••••••••••••••••••••••••••••••••• 

ORG $300 

DSK MERLIN.I ; CREATE OBJECT FILE ON DISK 

HOME EQU $FC58 
SCREEN EQU $SBC 
LE1iERA EQU $Cl 

BEGIN JSR HOME ; CLEAR SCREEN 
LDA #LE1iERA ; LE1iER "A" 
STA SCREEN ; SCREEN WCATION 

DONE RTS 

Starting a New Program 
Whenever you want to erase the current source listing (be sure to save it to 
disk first), just press Open Apple-0 to open the dialog box, and type NEW. If 
you want to load a new file directly from the main menu, you don't have to 
type NEW first. 

Long Addresses In Merlin 16 
In the Merlin 16 assembler, there is a special opcode syntax for the long ad
dressing modes of the LDA and STA instructions. To indicate you want to· use 
a long address, use the greater than symbol ( > ) in front of the label to be as
sembled in the long address form. The long form of a JSR (JSL) requires no ad
ditional syntax. The reason Merlin requires a different opcode for a long LDA 
or STA is to resolve the potentially ambiguous case of LDA LABEL where LA
BEL equals a value less than $01/0000. For example, the statement LDA $300 
could be assembled as either a short form LDA $0300 ($AD 00 03), or as the 
long form LDA $000300 ($AF 00 03 00). 

Program 4-8 is a program segment that illustrates some of the different 
instructions possible. 

75 



Chapter 4 

Program 4-8. Long Addressing Example 

=050300 
=061AOO 
=0300 

008000: AD 00 03 
008003: SD 00 IA 

008006: AF 00 03 05 
00800A: SF 00 IA 06 

OOSOOE: AF 00 03 00 
008012: AD 00 03 

008015: 22 00 IA 06 

1 •••••••••••••••••••••••••••••••••••••••••••••• 
2 • 
3 • 

LONG ADDRESSING EXAMPLE 
MERLIN 16 ASSEMBLER 

• 
• 

4 •••••••••••••••••••••••••••••••••••••••••••••• 

5 
6 LABELI 
7 LABEL2 
8 LABEL3 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

EQU $050300 
EQU $061AOO 
EQU $300 

LDA LABELI 
STA LABEL2 

LDA >LABEL] 
STA >LABEL2 

LDA >LABEL3 
LDA LABEL3 

JSL LABEL2 

; $05/0300 
; $06/IAOO 
; $00/0300 

; SHORT ADDRESS ONLY 
; SHORT ADDRESS ONLY 

; LONG ADDRESS 
; LONG ADDRESS 

; LONG ADDRESS 
; SHORT FORM 

; LONG ADDRESS 

008019: AF 00 03 00 21 LDAL LABEL3 ; LONG ADDRESS 
22 

00801D: SF 00 IA 06 23 STAL >LABEL2 ; LONG ADDRESS 
-·End Merlin-16 assembly, 33 bytes, Errors: 0 

This listing shows how various label addresses are resolved by different 
opcodes, and it also shows the syntax of the JSL instruction. In the first case 
(lines 10, 11), LABELl and LABEL2 are truncated to two bytes, even though 
both evaluate to three bytes, and the short address mode of LDA and STA are 
used. In the second case (lines 13, 14), LABELl and LABEL2 are assembled 
using the long address form. Lines 16, 17 show the alternate possible outputs 
of assembling the address $300, depending on which form of LDA is used. Line 
19 shows the assembly of the JSL instruction. 

There is also another syntax available for telling Merlin to use the long 
form: add L to the opcode, as in LDAL LABEL or STAL LABEL. Lines 21 and 
23 show this. 

Merlin in Review 
If you've worked through the examples in this chapter, you should be able to 
enter, edit, assemble, and save both a source listing and the object file using 
the Merlin 16 assembler. To learn more about editing, such as how to cut, copy 
and paste sections, or how to use search and replace, you should read the man
ual that came with Merlin. 

76 



Assembling A Program with Merlin 8/16 

You should have an understanding of how to use labels in a source pro
gram to represent a given number value or address, how to use ORG and EQU 
to control the values that labels are assigned, and where the program will load 
into memory from disk. 

Merlin directives introduced in this chapter: 

EQU ORG LDAL STAL OSK TYP LST 

77 









Chapter 5 

Assembling a Program 
with APW 

The APW (Apple Programmer's Workshop) assembler is the second assembler 
we'll discuss in this book. The information presented about labels and assem
bler directives is roughly equivalent to that presented in the last chapter on the 
Merlin 16. 

If do not have the APW, you may wish to skip this chapter, so as to not 
add to the burden of remembering what's already been discussed that is spe
cific to the Merlin 16. In general, the Merlin 16 is a much simpler program to 
use, and this chapter may seem more difficult. This is because the APW was not 
designed with the novice programmer in mind. Is is, though, possible to master. 

Before beginning this section, you should spend at least some time re
viewing the documentation that came with the APW regarding installation and 
basic file handling procedures. 

A word of warning: The APW was not designed for the beginner. The 
discussion in this chapter has been made as clear as possible, but there is no 
getting around the fact that even a mimimal assembly with the APW seems like 
a lot of work at first. If you do have difficulties, don't be discouraged about pro
gramming altogether. The APW is covered in this book because it is likely that 
many people will have that assembler when they read this. However, it is not 
necessarily the best choice for someone who is not a professional programmer. 

Apple Programmer's Workshop 
The Apple Programmer's Workshop (APW) system is made up of many subunits, 
which create a program development environment. The APW can only be run 
on an Apple IIGS using the ProDOS 16 operating system. 

When the APW is run, what is actually in memory is a shell program 

81 



Chapter 5 

that has very few commands of its own. It knows how to load and run the 
other modules as you need them. The general theory of operation is as follows: 

Editor Edit and save FILE (SRC) 
Assembler Assembles and saves FILE.ROOT 
Linker Processes FILE.ROOT into loader file. 

source file 
object module 

Execute loader file run program 
Change file type to BIN, SYS, 516 or other type recog-
nizable by Program Launcher or SYSTEM boot process . 

First, the editor is used to create the original source listing from which 
the machine language program will ultimately be generated. When the source 
file is ready, it is saved to disk. The APW shell is then instructed to assemble 
the program. This generates a file called the object module that is an intermedi
ate file to the final usable program. The assembler automatically adds the suffix 
.ROOT to a name you specify as what you want for the final usable file. 

Next, the shell is instructed to process the intermediate file, through a 
process called linking. It processes it into a file, called a loader file, that is exe
cutable from within the APW shell. This program has the file type EXE (Execut
able), and can only be run from within the APW system. 

To create the final file that can be run from the Program Launcher or 
BASIC, the shell is given a command to tell it exactly what kind of final file 
type the program should have. This is so the programmer can create any of the 
legal ProDOS file types, such as ProDOS 16 system files (S16), ProDOS 8 sys
tem files (SYS), desk accessories (CDA), or others. Of course, the assembler 
can't tell if the program you have written is appropriate to the file type you 
specify. It's up to you to stay out of trouble. 

The assembly and link processes can be done in one step, and there is 
also a provision in the APW assembler for creating a command file that will do 
the entire process automatically by just executing the command file. 

In the following instructions, we'll assume that you're familiar enough 
with ProDOS to be able to run APW from the Launcher, or some other program 
selector, and are able to successfully quit APW and return to Applesoft BASIC. 
Later on, as the programs become more sophisticated, you'll be able to run 
them directly from the Launcher or a program selector. For now, a CALL from 
Applesoft BASIC is probably the best way. It is also easier to get into the Moni
tor for debugging if you run your programs from Applesoft. 

You should also have an initialized disk, formatted under ProDOS, on 
which you can save the sample programs as we go along. For our examples, 
we'll assume that disk has the volume name /PROGRAMS, but you can use 
any name you wish. If you have a disk you're already using to save the pro
grams presented earlier, you can continue to use that. 

82 



Assembling a Program with APW 

Writing a Program Using the APW 
The first step is to get the APW up and running. Use the Apple Program 
Launcher that comes on your Apple IIGS System Disk to run the APW, or use 
whatever other technique you have decided on to run the APW. 

When run, the following title screen will appear: 

# 

Apple IIGS Programmer's Workshop V2.0 
Copyright Byte Works, Inc. 1980-1986 
Copyright Apple Computer, Inc. 1986 

All Rights Reserved 

The screen you see is the main level of the APW shell. The pound sign 
( # ) is the APW shell prompt. There is no list of commands on the screen, but 
you can enter HELP to print a list of available help files. Type HELP now and 
press Return to see how this works. If you get a ProDOS: File not found error, 
it means there are no help files on your particular APW disk. See the APW 
manual for details on setting up help files. 

If you do have help files on your disk, you can also ask for help on a 
specific item by typing the word HELP followed by a space and one of the sub
ject names as printed in the HELP list. For example, if you wanted information 
about printing files, you could type in 

HELP PRINTER 

If you've prepared your own data disk, now would be a good time to set 
the prefix to tell the APW about it. To set the prefix, just type 

PREFIX /PROGRAMS 

and press Return. The disk should come on for a moment, and the prefix 
should now be set to /PROGRAMS. To look at your disk, and make sure that 
the prefix is properly set, type 

CATAWG 

and press Return. You should get the directory listing for your disk. Don't 
worry that this might cause the APW to forget where its help files are located
it still remembers where its own files are. 

To enter your first program, you'll need to go to the editor module of 
the APW. The editor requires any file it opens have a name, so you'll have to 
give it a name to begin. Type 

EDIT APW. l.S 

The .S suffix is not required for APW files, and the APW doesn't do any 

83 



Chapter 5 

automatic management of the filenames, but adding the .S makes it easier to 
keep your files straight. 

After a moment, the screen will change, and you'll be in the editor. At 
the bottom of the screen is a status line that tells you the line and column posi
tion of the cursor, how much memory is left, and the name of the current 
source file, which should read APW.1.S. 

Try it out now by using the directional arrow keys to move the cursor 
around on the screen. The line and column number indicators will change as 
you move. Use the up-arrow key to bring the cursor back to line 1, column 1. 

A good assembler is like a word processor for programming. It should 
have features like inserting and deleting text, moving blocks of text around, for
matted printing, and so forth. 

In the previous chapters, we called the list of instructions such as LDA, 
the source listing, even though they weren't saved separately in their own file. 
With a real assembler, they are. The lines you type in will eventually be saved 
as a text file. In fact, you can even use another word processor to edit the files 
if you like, although you'll probably find the APW editor more convenient. 

In contrast to the mini-assembler, this assembler also lets you add text as 
comments to your programs, very much like a REM statement in Applesoft. 

To start off our program, let's begin by putting a title at the beginning. 
With the cursor on line 1, type an asterisk ( •) and hold down until it starts re
peating. Fill the line to column 30 and then stop. If you go too far, just press 
the Delete key to back up and erase extra characters. 

In most assemblers, any line that begins with an asterisk is considered a 
comment line, and anything after the first asterisk is ignored by the assembler 
when creating the actual program. In this case, we'll use asterisks to create a ti
tle box at the beginning of the program listing. 

If you haven't done so already, press Return to move the cursor to line 2 
of the listing. Start this line with an asterisk also, space over a few spaces, then 
type 

1st APW Program 

Finally, use the space bar or right arrow until the cursor is again in column 30, 
type an asterisk, and then press Return. 

Type another line just like the second, only this time fill it in with By 
and your name. It's a good idea to make up a title box for every program you 
write, so that when you look at the program later, you'll remember what it 
does. You'll usually want to include even more information, such as the date, 
any commands the program may recognize, and any other information that 
may be useful. 

84 



Assembling a Program with APW 

This process is called documenting a program, and is a very important 
part. While you're writing a program, you may remember what each part does, 
but even by the next morning you'll be much happier if you include lots of text 
information explaining what each part of the program does. 

When you're done filling in the third line, press Return. You should now 
be on line 4. Now type another line of 30 asterisks to finish the bottom of the 
box. If you've done everything correctly, your program should look something 
like this: 

•••••••••••••••••••••••••••••••••••••••••• 
* I st APW Program * 
* By <your name> * 
•••••••••••••••••••••••••••••••••••••••••• 

While you're editing, there are a number of editor commands that will 
make life easier. The four directional arrow keys will move the cursor around. 
You can also press Open Apple-< (or Open Apple-,) to move to the beginning 
of a given line, and Open Apple-> (or Open Apple-.) to move to the end. 

Open Apple-E controls the insert mode. When the editor is in insert 
mode, it automatically inserts the characters in the line as you type them. 

Open Apple-E toggles the insert mode, and you'll see the words at the 
bottom of the screen change from EDIT to EDIT INSERT. Toggling means that 
the mode will flip on and off each time you press Open Apple-E. When the in
sert mode is off, the cursor just types over what is already on the screen, in
stead of creating new space as you type. This is called the overstrike mode. If 
you make a mistake typing, use the left-arrow key or the Delete key to back 
up. Delete will always remove spaces, regardless of the Insert/Overstrike 
status. 

Don't worry if it seems a little awkward at first. With a little practice, it 
will become much easier. Although the listing is rather short, you can also use 
Open Apple-1 and Open Apple-9 to move to the very beginning and the end 
of the entire source listing itself. You might want to try out these commands 
now to get a feel for things before we get to entering the actual program. 

When you're ready, press Return, or use the down arrow to move to line 
6. This will leave a blank line below the title box. The assembler doesn't care 
about all this, but it makes the program look better. 

Before you enter the first line, let's review how you entered a line in the 
mini-assembler. You typed in 

300: JSR FC58 

85 



Chapter 5 

There are three pieces of information here. At the left is the address to 
put the instruction. In the second position is the opcode for the particular in
struction you want, in this case JSR. In the third position is the address the JSR 
needs to go to. 

In a real assembler, these positions are also used, and are called fields. 
You usually separate them by spaces, just as you did in the mini-assembler. 

The first field is called the label field. In a true assembler you almost 
don't have to worry about actual addresses at all. 

Since the assembler is going to keep track of actual addresses for us, the 
first field can be given a name to represent the address of that instruction, and 
the assembler will make sure that any references to this name are eventually 
translated into the proper address when the program is assembled. 

There is no analogy in BASIC, since in Applesoft BASIC you can't say 
line 100 = PRINT MENU, and then later on use the command GOSUB 
MENU. In an assembler, on the other hand, the line numbers are only of inci
dental interest, and all JSRs and references to addresses can use a label. This 
makes it much easier for the !_)rogrammer, and in itself is a good reason to use 
a real assembler instead of the mini-assembler, which has no provision for 
labels. 

Let's call the first line of our program BEGIN. Type BEGIN now, and 
then press the TAB key once (don't press Return yet). The cursor will automati
cally jump to the second field position on the line. The second field is called 
the opcode field, and is where you put a given 65816 instruction, such as JSR. 
APW uses any number of space characters to separate fields. The TAB key 
moves the cursor to a given column so that the final listing will look orderly. 

In the second field, type JSR and press the TAB key again. The cursor 
then moves to the third field, which is called the operand field. An operand is 
the information needed by an opcode. For example, a JSR by itself wouldn't tell 
the assembler where the JSR was destined. Type $FC58 here for the operand, 
and press the TAB key again. In the APW assembler, you have to use the dollar 
sign ( $) in front of all hex numbers. If you don't, APW will treat it at a deci
mal number. 

The fourth, and last, field is called the comment field. This is where you 
can add text to explain what a specific line does. It is customary (some other 
assemblers insist on it) to begin a comment with a semicolon. Type"; CLEAR 
SCREEN" and press Return. 

86 



Assembling a Program with APW 

If all went well, your program should look like this: 

****************************************** 
* 1st APW Program 
* By <your name> 

* 
* 

****************************************** 

BEGIN JSR $FCS8 ; CLEAR SCREEN 

For the second line, we won't use a label. Actually, a label is always op
tional unless it is directly referenced somewhere else in the program, for ex
ample by a JSR somewhere. In that light, we didn't really need the label at the 
beginning of the first line of the program, but we'll leave it there since it 
doesn't hurt anything. 

Since we don't need a label for the second line, press the TAB key once 
to move the cursor to the opcode field. Now type LDA, TAB, and #$Cl. Then 
press the TAB key once more, type 

; LETTER "A" 

and press Return. For the next line, TAB to the second field and type in: 

STA $SBC ; SCREEN LOCATION 

and press Return. Finally, finish the program with the label DONE, and an 
RTS. You don't need an operand for RTS, and you can omit the comment too. 
Program 5-1 shows how your program should now look. 

Program 5-1. First Program 

****************************************** 
* 1st APW Program 
* By <your name> 

* 
* 

*****************••······················· 

; CLEAR SCREEN 
; LETTER "A" 

BEGIN JSR $FCS8 
LOA #$Cl 
STA $SBC 

DONE RTS 
; SCREEN LOCATION 

Assembler Directives 
Before assembling, there's one more requirement. The APW assembler assumes, 
and rather insistently too, that everything you assemble is just a smaller part of 
some larger program . These pieces are called code segments, and every code 
segment must have a START and an END assembler command in it. 

It also assumes that our program will be operating with the Accumulator 
in the long, or two-byte wide, mode of the 65816 microprocessor. Since that 

87 



Chapter 5 

has not been covered yet, we'll need to add a line to tell it not to use the long 
Accumulator mode quite yet. 

To add these new lines to the listing, first go to the end of the listing, 
TAB to the second field, and type END. Then use the up arrow to move to line 
6, and insert these lines: 

l.DNGA OFF 
MAIN START 

The new listing is shown in Program 5-2. 

Program 5-2. First APW Program 
****************************************** 
* I st APW Program 
* By <your name> 

* 
* 

****************************************** 

l.DNGA OFF 

MAIN START 

BEGIN JSR $FC58 
LDA #$Cl 
STA $SBC 

DONE RTS 

END 

; CLEAR SCREEN 
; LETTER "A" 
; SCREEN l.DCATION 

START, END, and LONGA are not true 65816 opcodes. Instead, they're 
instructions specifically for the assembler and are called assembler directives, 
because they direct the assembler to take a certain action. Most assemblers 
have quite a number of directives to make assembling programs easier. 

START and END are special APW directives that mark out the beginning 
and end of a program segment. LONGA OFF is a directive that tells the as
sembler not to use the long mode for the LDA and STA instructions. 

Assembling a Program 
To assemble this program, you need to leave the full-screen editor. This is done 
by typing Control-Q. The screen will change to the editor file menu. Press S to 
save the source file to disk. Then press E to exit back to the APW shell. 

The actual assembly is started by typing 

ASSEMBLE +L +S APW.l.S 

When you press Return, the disk will come on for a while, the text 
shown in Program 5-3 will appear on the screen. 

88 



Assembling a Program with APW 

Program 5-3. Assembly of First APW Program 

0001 0000 
0002 0000 
0003 0000 
0004 0000 
0005 0000 
0006 0000 
0007 0000 
0008 0000 
0009 0000 
00 IO 0000 20 58 FC 
0011 0003 A9 Cl 
0012 0005 SD BC 05 
0013 0008 60 
0014 0009 
0015 0009 

Symbols 

****************************************** 
* 1st APW Program * 
* By <your name> * 
****************************************** 

WNGA OFF 

MAIN START 

BEGIN JSR $FC58 
LDA #$Cl 
STA $SBC 

DONE RTS 

END 

; CLEAR SCREEN 
; LETTER "A" 
; SCREEN WCATION 

000000 BEGIN 000008 DONE 

15 source lines 
0 macros expanded 
0 lines generated 

There are a number of things to notice here. First, APW has created a 
listing at the far left of each line number in your program, and the relative ad
dresses where each instruction will ultimately be put in memory. The APW is 
different than the Merlin in that it doesn't use any absolute memory addresses 
until the very end of the program construction process, and sometimes it 
doesn't use them then. 

You can see each line indicates a memory address, starting at 0000 fol
lowed by the actual machine language codes for each instruction of your 
program. 

At the end of the listing is the symbol table. This prints a list of all the la
bels used in the program, such as BEGIN and DONE. 

In the ASSEMBLE command, the + L and + S tell the assembler to print 
out the assembled listing to the screen and to add the symbol table at the end. 
If you don't wish to see these, just omit these parts of the command line. 

To save the program to your disk, you need to tell the assembler what 
filename to use. To do this, type 

ASSEMBLE APW.l.S KEEP=APW.l 

KEEP is an APW directive for saving the output file. 
After the assembly is complete, type CATALOG. On the disk you should 

89 



Chapter 5 

see your source file, APW.1.S, and also the file APW.1.ROOT. This is an inter
mediate file created by the APW assembler, and is called an object file by Apple 
Computer in the APW environment. Contrary to the common usage of the term 
object file, this file is not directly executable program code. Instead it consists of 
the program plus information to be used when that segment is ultimately com
bined with other segments in the big program. 

To convert the object file into something that can be used somewhere re
quires a few more steps. 

The Linker 
Another part of the APW shell is something called the Linker. This is the sys
tem that pulls all those pieces together when constructing a large program. For
tunately, there is a command that will both assemble the file and link our file 
into an almost-final file. To assemble and link your program, type 

ASML APW. l.S KEEP= APW. l 

ASML is the APW shell command to do both the assembly and the link 
of the source file. 

After this assembly, CATALOG the disk again. Now, in addition to your 
source file and the intermediate APW.1.ROOT file, you should see the desired 
APW.1 file. You'll notice that its file type is EXE. This means that it is a file 
type executable within the APW shell. Unfortunately, our programs aren't quite 
yet sophisticated enough to survive outside of the normal Applesoft BASIC/ 
ProDOS 8 environment, so we'll need one more step to get what we need. 

The file type you need is a binary type (BIN). To change the output file 
EXE into a binary file, you need to use the APW shell command MAKEBIN. To 
use this now, type 

MAKEBIN APW.1 ORG = $300 

ORG is another assembler directive used to tell the assembler where you 
want the program to run. In just a moment, we'll see how to include this in the 
assembly listing itself. 

If you catalog the disk again, you'll see the file type of APW.1 has now 
changed to BIN. 

To run the assembled file, you'll have to quit APW and go to Applesoft 
BASIC or to a program selector other than Apple's Program Launcher-one 
that can run Binary files. Applesoft BASIC is the recommended method for now. 

Type QUIT to quit the APW. 
When you're in Applesoft BASIC, you'll probably have to reset the pre

fix t_o your /PROGRAMS disk before you can run your program APW.1. 

90 



Assembling a Program with APW 

Assuming the prefix is correct, and that the /PROGRAMS disk is in a 
drive, you can now type either 

BRUN APW.l 

or 

-APW.l 

to run the program. You can also type 

BLOAD APW.l 
CALL 768 

You'll recall that in using the MAKBIN command, you specified the 
starting address $300 (768 decimal) for the file. Using the ORG= statement in 
the MAKBIN command is one way to tell the assembler where you want the 
code to ultimately run. The other is to put the ORG directive in the program 
source listing itself. To do that, we'll need to go back to the APW. Type BYE in 
the immediate mode to quit BASIC back to a program launcher, and from there 
go back to the APW. 

By the way, this long cycle time between the APW and Applesoft BASIC 
is the other disadvantage of using the APW at this stage in your learning. Even
tually, you'll be able to write self-contained programs that can be run directly 
from the Program Launcher, or even from within the APW shell, but for now, 
changing back and forth is necessary. 

More Assembler Directives: ORG, KEEP, and EQU 
When the APW is back up and running, load your source file APW.1 by typing 

EDIT APW. l.S 

Before entering any new text, type Open Apple-E to put the editor in 
the insert mode. When it is, the words EDIT INSERT will be displayed in the 
status line at the bottom of the screen. Move the cursor down, using the down 
arrow, to line 5 (the blank line) and press Return. A new blank line should be 
inserted. When the editor is in the insert mode, pressing Return will insert a 
new blank line. 

Press the TAB key once to go to the opcode field, and type ORG. Then 
press the TAB key, and type $300 and press Return twice. 

Next press the TAB key, type KEEP, tab to the next field, and type 
APW.1 and then press Return. The listing should now look like Program 5-4. 

91 



Chapter 5 

Program 5-4. First APW Program with KEEP Directive 
****************************************** 
* 1st APW Program * 
* By <your name> * 
****************************************** 

ORG $300 

KEEP APW.l 

LONGA OFF 

MAIN START 

BEGIN JSR $FC58 ; CLEAR SCREEN 
LOA #$CI ; LETTER "A" 
STA $SBC ; SCREEN LOCATION 

DONE RTS 

END 

Like ORG, KEEP is another assembler directive. It tells the assembler 
what name to use in creating the output files. 

After you've added the new lines with ORG and KEEP, press Control-Q 
to go to the editor file menu, and save the new listing with the S command. 
Then assemble and link the source file with the command 

ASML APW. l.S 

You'll notice that this time you don't need to use the KEEP command. 
When the assembly is done, convert the EXE file APW.1 to a binary file by 
typing 

MAKEBIN APW. l 

Since the ORG directive was included in the source file, you don't need 
to use it here. 

Try running this file from Applesoft BASIC to prove that it is equivalent 
to the first. You may also want to use the Monitor (CALL -151 from Applesoft 
BASIC) to look at the object file in memory. 

More About Labels 
Now go back to the APW again and load APW.1. The listing should look like 
Program 5-4. 

Looking at the listing, you can see addresses like $FC58 and $SBC, and 
the code value for the letter A, which is $Cl. As a program gets larger, and the 
listing longer, it can get confusing trying to remember a lot of different number 

92 



Assembling a Program with APW 

values. To make programming more convenient, most assemblers allow you to 
give routines a name and they remember the address for you. 

Start by putting the cursor on line 13, press Return once, and type the 
following: 

HOME EQU $FCS8 
SCREEN EQU $SBC 

Now move the cursor to the end of the address $FC58, and press the De
lete key until it's completely erased. Now type HOME, but don't press Return; 
instead, use the down arrow to move down two lines, and do the same thing to 
replace the address $SBC with SCREEN. The Program is shown in Program 5-5. 

Program 5-5. First APW Program with EQU 

****************************************** 
* 1st APW Program * 
* By <your name> * 
****************************************** 

KEEP APW.l 

ORG $300 

WNGA OFF 

MAIN START 

HOME EQU $FCS8 
SCREEN EQU $SBC 

BEGIN JSR HOME ; CLEAR SCREEN 
LDA #"A" ; LETTER "A" 
STA SCREEN ; SCREEN WCATION 

DONE RTS 

END 

Quit the editor with Control-Q, save the source file, and then assemble 
by typing 

ASML + L + S APW.l .S 

Since we've added the + L command, the listing will appear on the 
screen, and should look like Program 5-6. 

The main items of interest here are the listing itself and the Local Sym
bols listing, although you may find the other information interesting. 

You'll notice that this time the assembler translates the labels HOME 
and SCREEN into their assigned addresses. Labels are always associated with 
some value in the source listing. 

93 



Chapter 5 

Program 5-6. Assembly of First APW Program with EQU 

0001 0000 ****************************************** 
0002 0000 * 1st APW Program * 
0003 0000 * By <your name> * 
0004 0000 ****************************************** 
0005 0000 
0006 0000 
0007 0000 
0008 0000 
0009 0000 
0010 0000 
0011 0000 
0012 0000 MAIN 
0013 0000 
0014 0000 HOME 
0015 0000 SCREEN 
0016 0000 LETTERA 
0017 0000 
0018 0000 20 58 FC BEGIN 
0019 0003 A9 41 
0020 0005 80 BC 05 
0021 0008 60 DONE 
0022 0009 
0023 0009 END 

Local Symbols 

000000 BEGIN 000008 DONE 
0005BC SCREEN 

23 source lines 
0 macros expanded 
0 lines generated 
Link Editor Vl.O 83.2 

Segment: 

00000300 00000009 Code: MAIN 

Global symbol table: 

00000300 G O I 00 MAIN 

Segment Information: 

Number Type Length 

I $00 $00000009 

ORG $300 

KEEP APW.l 

LONGA OFF 

START 

EQU $FC58 
EQU $SBC 
EQU $Cl 

JSR HOME ; CLEAR SCREEN 
LOA #"A" ; LETTER "A" 
STA SCREEN ; SCREEN LOCATION 
RTS 

OOFC58 HOME OOOOCI LETTERA 

Org 

$00000300 

There is I segment, for a length of $00000009 bytes. 

94 



Assembling a Program with APW 

Whenever the assembler encounters a label, either at the beginning of a 
line or following the EQU directive, it assigns a value (usually an address) to it. 
For EQU statements, it uses whatever value is on the line. If the label is at the 
beginning of the line, it uses its own internal address counter for where it is in 
the program. 

For example, since BEGIN is the first statement in the program, the as
sembler gives BEGIN a relative value of $0. As it continues to assemble each 
line, it keeps track of where it is. By the time it gets to DONE, its address 
counter is at $8, and that's what it assigns to DONE. Thus, if some other part 
of the program wanted to do a JSR, for example, BEGIN or DONE, you could 
just use the line 

JSR DONE 

or 

JSR BEGIN 

In this program, such a JSR wouldn't make much sense-just as a 
GOSUB to the first or last line in a BASIC program wouldn't make sense. But, 
as your programs get larger, you'll want to go to subroutines within the pro
gram. In assembly language, you use the labels, not line numbers, to tell the 
JSR where you want it to go. The label MAIN is not included in the local sym
bol table, because it is not considered to be within your program by APW. It's 
listed in the Global Symbol table, and it has been given an address value of 
$300 there. 

Labels as Constants 
Labels can be used for more than addresses. We could also assign a label to the 
value for the letter A (Program 5-7). 

There's nothing wrong with assigning a constant (as opposed to an ad
dress) with an EQU statement, it just takes up a little more room in your listing 
and the computer's memory. This technique is used when you want to use a 
number value throughout a listing, but want to keep your options open so you 
can change your mind later. For example, suppose you're testing a program 
that goes through a loop 200 times, and that the number 200 is used in many 
different places in the listing. During testing, it might be nice to just use the 
number 5, for a shorter loop, instead. Using the label 

COUNT EQU 5 

makes it easy to change later, without having to search through the listing for 
all the number S's on every line. 

95 



Chapter 5 

There's also another common error to avoid. Sometimes people define a 
constant like this: 

COUNT EQU #$5 
·, 

and then later try to do this: 

LDA COUNT 

They think that the pound sign is included in the label COUNT. It isn't. The 
assembler evaluates each operand as a numeric expression, and then it stores 
tl1e result as a the number value, not the text of the line that generated the re
sult. The instruction is assembled as though the line read 

LDA $5 

When the program runs, the accumulator is loaded with the contents of location 
$5, not the actual value 5. Because there is no error generated during the as
sembly, and because the value loaded into the accumulator can be almost any
thing (and usually is), this kind of mistake can be very difficult to track down. 

Therefore, be sure to remember to always put the pound sign in front of 
any labels that you want used as an absolute value. 

COUNT EQU $5 

LDA #COUNT 

Program 5-7. Using EQU to Define a Character 

•••••••••••••••••••••••••••••••••••••••••• 
* 1st APW Program * 
* By <your name> * 
****************************************** 

ORG $300 

KEEP APW.l 

WNGA OFF 

MAIN START 

HOME EQU $FC58 
SCREEN EQU $SBC 
LETTERA EQU $Cl 

BEGIN JSR HOME ; CLEAR SCREEN 
LDA #LETTERA ; LE'ITER "A" 
STA SCREEN ; SCREEN WCATION 

DONE RTS 

END 

96 



Assembling a Program with APW 

Long Addresses in APW 
In the APW assembler, the assembler automatically decides which form, long or 
short, of LOA and STA to use, depending on operand. If the address evaluates 
to $FFFF or less, the short form is used. If the address evaluates to three or 
more bytes ($01/0000 or greater), the long address form is used. If you know 
your address will evaluate to only two bytes, and you still want to force the 
long addressing mode, you can precede the label with a greater-than sign ( > ). 

Program 5-8 is an assembly program segment that illustrates some of the 
different instructions possible. 

Program 5-8. APW Long Addressing Example 

0001 0000 ****************************************** 
0002 0000 * WNG ADDRESSING EXAMPLE * 
0003 0000 * APW ASSEMBLER • 
0004 0000 •••••••••••••••••••••••••••••••••••••••••• 
0005 0000 
0006 0000 MAIN START 
0007 0000 
0008 0000 LABELI EQU $050300 ; $05/0300 
0009 0000 LABEL2 EQU $061AOO ; $06/lAOO 
0010 0000 LABEL3 EQU $300 ; $00/0300 
0011 0000 
0012 0000 AF 00 03 05 LDA LABELI 
0013 0004 SF 00 IA 06 STA LABEL2 
0014 0008 
0015 0008 AF 00 03 00 LDA >LABEL3 
0016 oooc 8F 00 03 00 STA >LABEL3 
0017 0010 
0018 0010 AD 00 03 LDA LABEL3 
0019 0013 SD 00 03 STA LABEL3 
0020 0016 
0021 0016 22 00 IA 06 JSL LABEL2 
0022 OOIA 
0023 OOIA END 

In the first case (lines 12, 13), LABEL! and LABEL2 both evaluate to 
three bytes, so the long address mode of LOA and STA are used. In the second 
case (lines 15, 16), LABEL3 only evaluates to two bytes. $0300. The greater
than symbol is used to force the assembler to use the long address form. With
out the greater-than sign, the assembler would use the short address form, as 
shown on lines 18, 19. Line 21 shows the assembly of the JSL instruction. 

97 



Chapter 5 

APW in Review 
If you've worked through the examples in this chapter, you should be able to 
enter, edit, assemble, and save both a source listing and the object file using 
the APW assembler. To learn more about editing, such as how to cut, copy and 
paste sections, or how to use search and replace, you should read the manual 
that came with APW. 

You should also now understand how to use labels in a source program 
to represent a given number value or address, how to use ORG and EQU to 
control the values that labels are assigned, and where the program will load 
into memory from disk. 

98 







Chapter 6 

Loops and Counters 
In BASIC, the FOR-NEXT loop is an important part of many programs; this is 
also true in assembly language programming. The only difference is how the 
loop-counter combination is actually carried out. 

In BASIC, the testing of counters is done either by IF-THEN statements 
or automatically in the NEXT statement of a FOR-NEXT loop. In assembly lan
guage, the testing is done by examining flags in the Processor Status Register 
(Figure 6-1). These flags indicate the results of the last mathematical operation 
of the 65816; general zero/nonzero conditions of numbers loaded into the X, Y 
and Accumulator registers; and other handy things within your program. 

Figure 6-1. 65816 Microprocessor Model 

Accumulator B A 

X Register X 

Y Register y 

Processor Status p 

Prog. Bank Reg. (PBR) Program Counter (PC) 

The Processor Status Register, abbreviated Pin the 65816 model, is the 
fourth register of the 65816, one not previously mentioned. Before going on 

101 



Chapter 6 

with loops and counters, it's necessary to briefly discuss the Status Register and 
binary numbers. 

Different from the other three registers (the Accumulator and the X and 
Y registers) the Status Register only holds a single byte. You'll recall that each 
byte in the Apple can have a value from O to 255 ($00 to $FF). 

As it happens, there are many ways of looking at and interpreting num
bers. One common way of looking at numbers is to consider only size. When 
we notice that 255 is larger than 128, we gain a very simple bit of infor
mation-we learn whether a number is either less than, equal to, or greater 
than another number. 

A second way of looking at numbers is to use the digits that make up 
the number as a carrier of information. For example, street addresses generally 
increment by 100 for each city block, regardless how many houses are actually 
on the street. The address 9105 is usually one block further than 9005. The 
leading two digits tell you how many blocks away from the first street the ad
dress is. 

Binary Numbers 
In the binary number system, you're limited to counting by groups of 2. How
ever, this system allows you to see more information in a number. This in turn 
can make it that much more useful for an assembly language program. 

We have already seen how a single byte can be represented either as 0 
to 255 or $00 to $FF. In the binary system, the same byte can have the range of 
00000000 to 11111111. For instance, 133 (base ten) was represented as $85 
(hexadecimal). In binary it has the appearance of 10000101. Each of the eight 
positions in a binary number are called bits (a word created from the term Bl
nary digiTS). There are eight bits in a byte. In this case, each 1 or O can repre
sent the presence or absence of a given condition. Thus, eight distinct pieces of 
information are conveyed, as well as all the various combinations possible. 

Before you run shrieking from the room, remember that this is all done 
to make things easier (really), not harder. Besides, learning base sixteen (hex) 
wasn't that bad a few chapters back, was it? So, let's take a moment to see 
what these bits and bytes are all about. 

The Apple is an electronic device and, actually, in many ways, a simple 
one at that. In most parts of its circuitry, the flow of electricity is either off or on. 
That's it. No in-between. Having two possible conditions is perfect for base two. 

The idea of a number base has to do with how many symbols, or units, 
you use for counting. We normally use 10. There are a total of 10 possible sym
bols to write in a single position before we have to start doubling up and using 
two positions to represent a number. You'll recall that in hex, by using 0 

102 



Loops and Counters 

through 9 and A through F we had 16 possibilities; thus we were in base 16. 
With the on/off nature of the Apple, we're limited to 2 possibilities: 0 or 1. 

How high can we count with just two symbols in one position? Not 
very. We start at 0, then go to 1, and that's it-we're out of symbols. Then we 
have to add another position. The next number, therefore, is 10. As before, re
member that, in this case, 10 represents what we usually call two. 100 would 
represent the quantity 4 in base ten. 

By using eight positions, we can go up to 11111111, which just happens 
to be 255. This is the same maximum value as our bytes. And, if the truth be 
known, it's not just coincidence-the value 255 is a result of the computer be
ing based on the binary system of numbering. We use the numbers O through 
255 because we are using eight bits to make up each byte. Whether each bit is 
0 or 1 depends on whether the part of the electrical circuit that is responsible 
for that bit is off or on. 

Counting in base 2: 

Binary Hex Decimal 
00000,000 $00 000 
00000001 $01 001 
00000010 $02 002 
00000011 $03 003 
00000100 $04 004 
00000101 $05 005 
00000110 $06 006 
00000111 $07 007 
00001000 $08 008 

00001001 $09 009 
00001010 $0A 010 
00001011 $OB 011 
00001100 $DC 012 
00001101 $OD 013 
00001110 $OE 014 
00001111 $OF 015 
00010000 $10 016 

00010001 $11 017 
00010010 $12 018 
00010011 $13 019 

11111000 $F8 248 
11111001 $F9 249 

103 



Chapter 6 

Binary Hex Decimal 

11111010 $FA 250 
11111011 $FB 251 
11111100 $FC 252 
11111101 $FD 253 
11111110 $FE 254 
11111111 $FF 255 

Although binary numbers may seem overwhelming in the sheer visual 
size of each number, it's fairly unlikely you'll ever have to convert a binary 
number to decimal, or even to hexadecimal. It's discussed here mainly so that 
you'll have seen the underlying principles of how number values in the com
puter are created, and why the terms binary and bits show up once in a while. 

You might notice, however, that there is a distinct correlation between 
the binary number patterns and the hex number patterns, whereas there is no 
apparent visual relationship between binary and decimal. For example, in the 
hex column, the number changes to $10 at the same point that the binary num
ber changes from 00001111 to 00010000. In fact, the very observant will notice 
that the two digits in the hex number are made up from the upper and lower 
four bits (called a nibble) of the binary number. If you can count from $0 to $F 
(0 to 15 decimal) in the binary system, you can convert any binary number you 
see to its hexadecimal equivalent. 

For example: 

10011101 (binary) = 
1001 = 9 = $90 

1101 = 13 = $OD 
10011101 = $9D 

The Status Register 
As was mentioned above, the bits that make up a number can be used as flags 
or indicators for eight independent conditions. By individually setting or clear
ing the eight bits in a byte, the computer can store the status of eight different 
things in just one byte. That's the idea behind the Status Register. 

Here is a representation of a single byte, made up of eight bits. In par
ticular, the byte shown in Figure 6-2 is the Status Register of the 65816. The 
important difference between this register and the others is that it's not used to 
store number values. Instead, it indicates various conditions. 

104 



Loops and Counters 

Figure 6-2. The Status Register 

7 6 5 4 3 2 1 0 

B E 
N V M D I z 

X C 

Sign Overflow Accumulator Break Decimal Interrupt Zero Carry 
Size Select or or 

X/Y Emulation 
Register 

Size Select 

The bits of the Status Register are numbered from right to left, 0 to 7. 
Each bit in this register indicates the results of different operations, and is 
called a flag. It's by using this register that we can create counters and loops in 
our programs. Bit 1 is the zero flag. In terms of commands discussed so far, the 
zero flag is affected by an LOA, LOX, or LOY. 

If the value loaded into the Accumulator, X, or Y register were $00, the 
flag would be set to 1. If it were a nonzero number, the flag would be 0. Seem
ingly backward perhaps, but remember each flag is set to show the presence or 
absence of a given condition; in this case the presence of 0. The setting or 
clearing of each Status Register flag is done automatically by the 65816 after 
each program step, indicating the results of any particular operation. 

Incrementing and Decrementing 
To create a counter and then a loop, we'll use the Status Register to tell when a 
given register or memory location reaches zero. We will also need a way of 
changing the value of a counter in a regular fashion. In the 65816, this is done 
by incrementing or decrementing (adding or subtracting 1 each time) a memory 
location, or the X or Y register. This is done with one of the following commands: 

Accumulator X y Memory 
Register Register Location 

Increment: INC INX INY INC 
(Add 1) 

Decrement: DEC DEX DEY DEC 
(Subtract 1) 

This table shows the commands used to increment or decrement a par
ticular register or memory location. 

105 



Chapter 6 

The usual syntax for using these commands is an assembly listing as il-
lustrated by the following sample lines: 

INX ; Add 1 to the X register 
INY ; Add 1 to the Y register 
INC $0600 ; Add 1 to a memory location 
DEX ; Subtr. 1 from the X register 
DEY ; Subtr. 1 from the Y register 
DEC $AA53 ; Subtr. 1 from a memory location 

For the X and Y register operations, the command stands alone, with no 
need of an operand. In the case of INC and DEC, the memory locations to be 
operated on are given. 

In the Merlin assembler, INC and DEC are used for both the Accumu
lator and a memory location. For example, 

INC ; Add 1 to accumulator 
INC MEM ; Add 1 to location mem 

In the first line, INC alone tells the assembler to increment just the Ac
cumulator. By adding the label MEM, it knows it needs to increment a memory 
location. 

Some assemblers use the opcodes INA and DEA for incrementing and 
decrementing the Accumulator, others, like the APW, require you to put the let
ter A in the operand field, like this: 

INC A ; ADD 1 TO ACCUMULATOR 
DEC A ; SUBTRACT 1 FROM ACCUMULATOR 

The increment/ decrement commands affect the zero flag, depending on 
whether the result of the operation is O or not. 

One thing to mention here is the wraparound nature of all the opera
tions. To understand this, examine the following chart. 

Original Result of Result of Z-Flag Z-Flag 
Value Increment Decrement Set Contents 
$05 $06 $04 no;no O;O 
$OF $10 $OE no;no 0;0 
$01 $02 $00 no;yes O;l 
$FF $00 $FE yes;no l;O 
$00 $01 $FF no;no 0;0 

The effects of incrementing and decrementing different one-byte values 
are shown, along with the effects on the zero flag after the operation. The first 
case is simple: 5 + 1 = 6; 5 - 1 = 4. In both cases, the result is a nonzero 
number, so the zero flag is not set. For $OF, the same holds true . Remember 

106 



Loops and Counters 

that, in hex, the number after $OF is $10. In the case of $01, incrementing pro
duces $02. When we decrement $01, the result is $00; the zero flag is set. 

Here's where it gets interesting. When the starting value is $FF, adding 1 
would normally give $100. However, since a single byte only has a range of 
$00 to $FF, the new 1 is ignored, and the value becomes $00. This sets the zero 
flag. In the case of decrementing $FF, $FF - 1 = $FE, so the zero flag is not set. 

If we start with $00, although incrementing produces the expected $01, 
decrementing wraps around in the reverse of the previous case, giving $FF. 
Both results are nonzero, so Z (short for the Z-flag), is clear-that is, it's not 
set-for both operations. 

Looping with BNE 
The only thing missing now to enable you to create a loop is a way of testing 
the Z flag and then being able to get back to the top of the loop for another 
pass. In BASIC, a simple loop might look like this: 

10 HOME 
20 X = 255 
30 PRINT X 
40 X = X - 1 
50 IF X < > 0 THEN GOTO 30 
60 END 

In this program, the counter Xis set to 255. The value is printed and 
then decremented, and the process repeated until the counter reaches zero. We 
can make the loop execute any number of times by properly setting the initial 
value of X. 

In assembly language, the test and the GOTO are done with a branch in
struction. In this case, the one we'll use is BNE, which stands for Branch Not 
Equal (to zero). This is a conditional instruction, and will be executed only 
when a register is loaded with a nonzero number. This can happen either di
rectly with something like LDA #$01, or as the result of an arithmetic opera
tion, such as INX. Program 6-1 is the assembly language equivalent of the 
BASIC listing. 

This listing shows both the source lines, and the object code output on 
the left, as it would be printed during an assembly. 

The program can be tested by going to Applesoft BASIC, BLOADing it 
(it should load automatically at $300), and then doing a CALL 768. 

Note: If you're using the APW assembler, be sure to add the START, 
END, and KEEP directives. Review Chapter 5 if you are unsure as to how to 
create a binary file using APW. 

107 



Chapter 6 

The program starts with the usual screen clear, and then loads the X reg
ister with a starting value of $FF. The loop starts by storing the contents of the 
X register at $SBC; this will make the loop's action visible as a character on the 
screen for each pass through the loop. Lines 10, 15, and 16 introduce a new 
monitor routine, WAIT = $FCA8, which is a delay function based on the con
tents of the Accumulator. This is required because, without it, the loop would 
execute so quickly you couldn't see it in action. Experiment with different val
ues in the Accumulator on line 16 to see what effect they have; and try elimi
nating the JSR WAIT altogether for maximum speed. 

On line 17, DEX subtracts one from the current value of the X register. 
The BNE will then continue the loop back up to LOOP until the X register 
reaches $00, at which point the test will fail, and program execution will fall 
through to the RTS at the end of the program. 

Program 6-1. Loop Demo Routine 1 

1 ****************************************** 
2 * LOOP DEMO ROUTINE #1 * 
3 * MERLIN 8/16 ASSEMBLER * 
4 ****************************************** 
5 
6 
7 

ORG $300 

=FC58 
=05BC 
=FCA8 

8 HOME EQU $FC58 
9 SCREEN EQU $05BC 

10 WAIT EQU $FCA8 
11 

000300: 20 58 FC 12 BEGIN 
000303:A2 FF 13 
000305: SE BC 05 14 LOOP 
000308:A9 FF 15 
00030A: 20 AS FC 16 
00030D:CA 17 
00030E: DO F5 =0305 18 
000310: 60 19 DONE 

JSR 
LDX 
STX 
LDA 
JSR 
DEX 
BNE 
RTS 

HOME 
#$FF 
SCREEN 
#$FF 
WAIT 

LOOP 

--End Merlin-16 assembly, 17 bytes, Errors: 0 

Looping with BEQ 

; MONITOR WAIT ROUTINE 

; CLEAR VIDEO SCREEN 
; X = 255 
; PUT CHAR ON SCREEN 
; ACC = 255 
; MAXIMUM WAIT TIME 
;X=X-1 
; BRANCH IF X <> 0 
; THAT'S ALL FOLKS! 

The complement of the BNE instruction is BEQ, Branch EQual (to zero). It op
erates in just the opposite fashion as BNE, that is, branching only when the 
register or memory location reaches a value of zero. 

For example, consider this BASIC listing: 

10 HOME 
20 X=255 

108 



30 PRINT X 
40 X=X-1 
50 IF X=O THEN 70 
60 GOTO 30 
70 END 

Loops and Counters 

In this case, the loop continues as long as X is not equal to zero. If it is, 
the branch instruction is carried out and the program ends. The equivalent in 
assembly language is shown in Program 6-2. 

Program 6-2. Loop Demo Routine 2 
1 ****************************************** 
2 * WOP PROGRAM #2 * 
3 * MERLIN 8/16 ASSEMBLER * 
4 ****************************************** 
5 
6 ORG $300 
7 

=FC58 8 HOME EQU $FC58 
=05BC 9 SCREEN EQU $05BC 
=FCAS 10 WAIT EQU $FCA8 

11 
000300: 20 58 FC 12 BEGIN JSR HOME ; CLEAR SCREEN 
000303:A2 FF 13 LDX #$FF ; START COUNTER AT 255 
000305: SE BC 05 14 WOP STX SCREEN ; PUT CHAR ON SCREEN 
000308:A9 80 15 LDA #$80 ; TIME DELAY VALUE 
00030A: 20 AS FC 16 JSR WAIT 
00030D:CA 17 DEX ;X=X-1 
00030E: FO 03 =0313 18 BEQ DONE ; DONE IF X = 0 
000310: 4C 05 03 19 JMP WOP ; NEXT CYCLE 
000313:60 20 DONE RTS ; ALL DONE! 

--End Merlin-16 assembly, 20 bytes, Errors: 0 

Notice that this program also uses a new command, JMP Oump). JMP is 
like a GOTO in BASIC. It doesn't expect an eventual RTS. The JMP on line 19 
will cause program execution to jump to the routine starting at LOOP each 
time. Only when the X-register reaches zero does the BEQ take effect and cause 
the program to skip to the RTS at end. Here is the way this would appear 
when put into memory, and then listed with the L command from the Monitor: 

*300L 

1 = m 1 =x 1 = LCbank (0/1) 

0/0300: 20 58 FC JSR FC58 

109 



Chapter 6 

00/0303: A2 FF LDX #FF 
00/0305: SE BC 05 STX 05BC 
00/0308: A9 80 LDA #80 
00/030A: 20 AS FC JSR FCA8 
00/030D: CA DEX 
00/030E: FO 03 BEQ 0313 { +03} 
00/0310: 4C 05 03 JMP 0305 
00/0313: 60 RTS 

The assembler automatically translates the positions of LOOP and END 
into the appropriate addresses to be used by the BEQ and JMP when it assem
bles the code. 

T Remember that to the left are the addresses and the values for each 
opcode and its accompanying operand. The more understandable translation to 
the right is Apple's interpretation of this data. 

Notice that the JMP's and JSR's are immediately followed by the address 
(reversed) that they're to jump to, such as in the first JSR at $300. 

However, branch instructions are handled a differently. As opposed to a 
JSR or JMP that go to an absolute memory location, a branch goes to a relative 
memory address. That is to say, it goes to an address relative to where the 
branch instruction itself is located. At $30E, the $PO is the opcode for BEQ. The 
$03 that follows is an offset that tells the 65816 to branch down through the 
code three bytes from the address of the next instruction that follows the 
branch itself (at $310). Adding $03 to $310 gives us $313, the address of the 
desired RTS. 

Branching in the reverse direction (up through the listing) is also possi
ble and is shown by operands greater than $80. There is not much need of go
ing into great detail about the actual calculations used, since your assembler 
will determine the proper values for you when assembling code, and Apple's 
disassembler will give the destination address when reading other code. 

As the X register is incremented in this program, we'll stuff the value 
into the screen location so we can see something on the screen as the counter 
advances. 

There are also two other branch instructions, BRA (BRanch Always), 
and BRL (BRanch Long), that you can use instead of a jump instruction. BRA 
can only be used when you don't have to branch more than 127 bytes forward 
or backward. BRL will branch to any address in the 64K address space. The 
main advantage of BRA is for creating programs that are position independent. 

When a program is position independent, it doesn't matter where it is 
loaded into memory. It will run equally well anywhere. For example, if you 
loaded Program 6-2 at location $8000, and tried to run it, what would happen 

110 



Loops and Counters 

when it got to the JMP LOOP on line 19? Remember, the assembler assembled 
this line as JMP $305. If the program were loaded at $8000, there wouldn't be 
anything related to this program at $305 when the JMP was executed. This 
would probably result in a program crash, with one of those unpleasant BRK 
messages. 

An alternative is to use the BRA instruction as shown in Program 6-3. 

Program 6-3. Loop Demo Program 2A 

1 ****************************************** 
2 "' LOOP PROGRAM #2A "' 
3 "' MERLIN 8/16 ASSEMBLER "' 
4 ****************************************** 
5 
6 ORG $300 
7 

=FC58 8 HOME EQU $FC58 
=058C 9 SCREEN EQU $058C 
=FCA8 10 WAIT EQU $FCA8 

11 
000300: 20 58 FC 12 BEGIN JSR HOME ; CLEAR SCREEN 
000303:A2 FF 13 LDX #$FF ; START COUNTER AT 255 
000305: SE BC 05 14 LOOP STX SCREEN ; PUT CHAR ON SCREEN 
000308:A9 80 15 LDA #$80 ; TIME DELAY VALUE 
00030A: 20 AS FC 16 JSR WAIT 
00030D:CA 17 DEX ;X=X-1 
00030E:FO 02 =0312 18 BEQ DONE ; DONE IF X = 0 
000310: 80 F3 = 0305 19 BRA LOOP ; NEXT CYCLE 
000312:60 20 DONE RTS ; ALL DONE! 

--End Merlin-16 assembly, 19 bytes, Errors: 0 

This is also a good time to stress the importance of working through 
each of these examples on your own, step by step, to make sure that you un
derstand exactly what happens at each instruction, and how it relates to the 
rest of the program. 

Incrementing Two or More Bytes 
The discussion of the increment and decrement commands has so far been lim
ited to the assumption that a single byte is involved. Suppose, however, that 
you wanted to store the value for an address, which requires at least two bytes, 
not counting the bank byte. By using the BEQ instruction you can create a pro
cedure, or code segment, that will increment or decrement a pair of bytes. 

Code segment refers to a procedure, or to part of a procedure, that can 

111 



Chapter 6 

be embedded in your own programs to accomplish a given task. Although Pro
gram 6-4 has a title and an equate statement at the beginning, this program 
would never be used by itself, but rather would be used as a part of a larger 
program. 

Program 6-4. Two-Byte Increment Example 

1 
2 • TWO-BYTE INCREMENT EXAMPLE • 
3 • MERLIN ASSEMBLER • 
4 
5 

=0006 6 PTR EQU $06 ; $06,07 
7 

008000:E6 06 8 INCR INC PTR ; ADD 1 TO WW BYTE 
008002: DO 02 =8006 9 BNE NEXT ; SKIP IF NOf = $00 
008004:E6 07 10 INC PTR+l ; ADD 1 TO HIGH BYTE 

11 
008006:EA 12 NEXT NOP ; YOUR PROGRAM 
CONTINUES HERE ... 

13 

-- End Merlin-16 assembly, 7 bytes, Errors: 0 

In Program 6-4, a two-byte pair labeled PTR (PoinTeR) is defined. We'll 
assume that the two bytes contain the value for an address, with the low byte 
for the address in location $06, PTR. The high byte is stored in location $07. We 
could have used labels like PTRL and PTRH, for Pointer Low and Pointer High 
for locations $06 and $07. But a better, more commonly used system is to use the 
labels PTR and PTR + 1. Most assemblers can handle mathematical expressions in 
the operand field, so PTR+l will be properly calculated as $06+1 = $07. 

The program works by first incrementing the low byte, PTR. If the result 
of the increment is not zero, no wraparound has occurred, and the flow of con
trol goes to NEXT, where the body of your own program is found. If PTR is 
equal to $00, the BNE fails and PTR + 1, the high byte is incremented. 

The instruction at NEXT introduces a new, simple 65816 instruction, 
NOP. NOP stands for No Operation, and does just that-nothing. NOP is 
used in this example program so the assembly will be complete even though 
we don't know what might be placed at the NEXT statement. 

NOP actually generates a byte of code, $EA. This can be useful when 
you want to deactivate a part of a program you're debugging, without having 
to do a new assembly. By putting NOPs in memory where you want to erase 
part of your program, the program will still execute and will ignore the NOPs 
when it gets to that part of the program. If you over-write part of your program 
with zeros instead, a BRK would occur when the first O was encountered. 

112 



Loops and Counters 

If, at some point, you wish to just create a label in a program you're 
writing, this can also be done, although the actual technique varies depending 
on what assembler you are using. In the Merlin assembler, you can just type a 
label and leave the opcode and operand fields blank. A comment is allowed. 
For example: 

LABEL ; BEGINNING OF A SECTION 
LDA PTR 
ETC ... 

In the APW assembler, a specific APW directive, ANOP (Assembler 
NOP, not to be confused with the other NOP) must be used: 

LABEL ANOP ; BEGINNING OF A SECTION 
LDA PTR 
ETC ... 

You might ask why you would want to do this. One of the most com
mon reasons is as simple as convenience in editing. Suppose you are working 
on a part of your program, and it looks like this: 

LABEL STA SCRN ; STORE CHARACTER ON SCREEN. 

Suddenly realize you forgot to start the segment with LOA #$Cl, or 
some other important instruction. Normally, you would have to erase the text 
LABEL from the beginning of the current line, and then insert a new line above 
it with the new LABEL in it, like this: 

LABEL LDA #$Cl 
STA SCRN 

By making the beginning of the routine a label with no opcode, you can 
edit the lines below it at any time, adding or deleting instructions or data as 
you wish without having to retype the first line of the routine: 

LABEL ; BEGINNING OF SECTION 
LDA #$Cl 
STA SCRN 

In the APW, the lines look like this: 

LABEL ANOP ; BEGINNING OF A SECTION 
LDA #$Cl 
STA SCRN 

A label without an operand is also used at the beginning of a data stor
age section for similar reasons, namely easy adding and deleting of new entries. 
Data storage in an assembly source listing is discussed in Chapter 9. 

Going back to the idea of incrementing a two-byte pointer, it has been 

113 



Chapter 6 

mentioned before that the 65816 has a two-byte mode where all register (A, X, 
and Y) operations can be made to take place two bytes at a time. In such a 
mode, any of the increment or decrement commands will correctly operate on 
both bytes in one instruction. However, this does not eliminate the need for the 
multiple byte techniques discussed here, because in such programs you'll most 
likely be using four bytes (a long address) to store both the bank byte and ad
dress bytes of the address. Thus you'll still need a similar multibyte increment 
or decrement on occasion. When operating in the two-byte mode, the following 
program segment would increment four bytes properly: 

PTR EQU $06 ; $06,07,08,09 

INCR INC 
BNE 
INC 

NEXT NOP 

PTR 
NEXT 
PTR+2 

; INCREMENT $06 AND $07 
; IF NOT = $0000 
; $08,09 
; YOUR PROGRAM HERE ... 

The 65816 knows whether to increment one or two bytes with the INC 
command, depending on the condition of a special flag bit, as is described in 
Chapter 7. 

The pair of bytes that make up a two-byte address or half of a four-byte 
address are called data words. A word, in computer terminology, is the width in 
bytes or bits of data chunks as handled by the microprocessor. The 65816 has a 
bit of a split personality in this regard: It can use either 8-bit or 16-bit words. 
When dealing with a long address, the byte pairs are sometimes referred to as 
the low-order word and the high-order word, analogous to the low- and high
order bytes of a two-byte address. For the address $0006/lAOO, $0006 is the 
high-order word, $ lAOO is the low-order word. 

There are other computers, like the Apple Macintosh, that can deal with 
32 bits (4 bytes) at a time. Generally speaking, the greater the data width, the 
more powerful the machine-although this is a simplification that ignores clock 
speed (how fast each instruction is executed), the total number of instructions 
available to the microprocessor, overall system design, and other factors that 
contribute to the final net performance of a computer. 

Decrementing Two or More Bytes 
Decrementing a two-byte pointer is slightly different, only because we are look
ing for a transition from $00 to $FF (or $0000 to $FFFF). This is done using a 
compare instruction as part of the segment (see Program 6-5). 

114 



Loops and Counters 

Program 6-5. Two-Byte Decrement Example 

1 •••••••••••••••••••••••••••••••••••••••••••••••• 
2 * TWO-BYTE DECREMENT EXAMPLE • 

• 3 * MERLIN ASSEMBLER 
4 ************************************************ 

=0006 

008000:C6 06 
008002:AS 06 
008004:C9 FF 
008006: DO 02 = 800A 
008008:C6 07 

00800A:EA 

5 
6 PTR 
7 
8 INCR 
9 

10 
11 
12 
13 
14 NEXT 

EQU $06 

DEC PTR 
LDA PTR 
CMP #$FF 
BNE NEXT 
DEC PTR+l 

NOP 

--End Merlin-16 assembly, 11 bytes, Errors: 0 

We can't use this code segment: 

DEC PTR ; SUBTRACT 1 FROM PTR 
BNE NEXT 
DEC PTR + I ; SUBTRACT I FROM PTR + I 

; $06,07 

; SUBTRACT FROM LOW BYTE 
; LOAD FOR CMP 
; WRAPAROUND? 
; NOPE. 
;SUBTR. 1 FROM HIGH BYTE 

; YOUR PROGRAM CONTINUES HERE ... 

because PTR will reach O one cycle before we want to decrement PTR + 1. Re
member, the count-down will look like something like this: 

Total Address: PTR PTR + 1 
$502 $02 $05 
$501 $01 $05 
$500 $00 $05 
$4FF $FF $04 

When PTR reaches $00, PTR + 1 doesn't change until the next cycle of 
our code segment. Therefore, the CMP #$FF is required to see when the DEC 
PTR has wrapped around to $FF, signifying it's time to decrement PTR + 1. 

In the two-byte mode, the program segment would be similar: 

PTR EQU $06 ; $06,07,08,09 
DECR DEC PTR ; DECREMENT $06 AND $07 

LDA PTR 
CMP $FFFF 
BNE NEXT 
DEC PTR+2 

NEXT NOP 

; IF NOT = $FFFF 
; DECREMENT $08,09 
; YOUR PROGRAM HERE ... 

115 



Chapter 6 

Long Address Jump Instruction: JML 
Just as the JSR instruction had a long addressing counterpart in JSL, so the 
jump instruction has its counterpart, JML (JuMp Long). Like the short form 
jump instruction, JML is a one-way trip (use JSL for a returning subroutine). 
The only difference between JMP and JML is that JML jumps to an absolute 
three-byte address in a given bank. JMP is limited to the current bank that the 
program is executing in. 

In a program, JML would assemble like this (the address $06/lAOO is 
arbitrary): 

=O 61AOO 1 LABEL EQU $061AOO ; $06/lAOO 
2 

008000: 5C 00 lA 06 3 JML LABEL 
4 

--End Merlin-16 assembly, 4 bytes, Errors: 0 

Using the Monitor COUT Routine 
The loop shown earlier lets you print text and numbers in a very limited way
wouldn't it be nice to have a general text printing routine available? Such a 
routine already exists within the Monitor routines; it's labeled COUT (pro
nounced C-OUT, for Character Output), and is located at $FDED. COUT is 
used by loading the accumulator with the value for the character you wish to 
print, and then calling the routine. 

The neat part about using COUT is that you don't have to write your 
own routines to handle screen control (what the line length is, when to scroll, 
and so forth). Better still, COUT can also be used to send characters to a disk 
file or printer, but more on that later. 

We're not done yet, though. We would like to have the counter value in 
the accumulator so we can print it via COUT, but unfortunately many built-in 
routines like COUT change the contents of the accumulator and other registers 
when they're used. Thus, although the counter might be at 5 when we called 
COUT, the accumulator might hold 37 when control returned to our program. 

To solve this, we'll have to change the program. This time we'll use a 
memory location as the counter, and then load the Accumulator on each pass 
through to print out a visible sign of the counter's activity. Good locations to 
use for experimenting are locations $06 through $09. These are not used by 
Applesoft BASIC, DOS, or the Monitor. It's important to avoid conflicts with 
Apple's normal activities while running your own programs. 

We'll also go back to using BNE, since this requires fewer lines of source 
code, and is a better programming approach. In addition, a few blank lines 

116 



Loops and Counters 

have been added to the listing to break up the logical groups of instructions for 
easier reading (Program 6-6). 

Program 6-6. Loop Demo Program 28 

=0006 
=FC58 
=FDED 

000300: 20 58 FC 
000303:A9 FF 
000305: 85 06 

000307: AS 06 
000309: 20 ED FD 
00030C:C6 06 
00030E: DO F7 =0307 

000310: 60 

1 ****************************************** 
2 * 
3 * 

WOP PROGRAM #28 
MERLIN 8/16 ASSEMBLER 

* 
* 

4 ****************************************** 
5 
6 
7 
8 CTR 
9 HOME 

10 COUT 
11 
12 BEGIN 
13 
14 
15 
16 WOP 
17 
18 
19 
20 
21 DONE 

ORG $300 

EQU $06 
EQU $FC58 
EQU $FDED 

JSR HOME 
LDA #$FF 
STA CTR 

LDA CTR 
JSR COUT 
DEC CTR 
BNE WOP 

RTS 

; CLEAR SCREEN 
; START COUNTER TO 255 
; STORE IN 'CTR' 

; GET CURRENT VALUE 
; PRINT CHARACTER 
; CTR= CTR - 1 
; DONE IF CTR = 0 

; ALL DONE! 

--End Merlin-16 assembly, 17 bytes, Errors: 0 

A CALL to this routine via our usual 300G from the Monitor, or a CALL 
768 from BASIC, should clear the screen and then print all the available char
acters on your Apple-in all three display modes (normal, flashing, and in
verse). We no longer need the WAIT routine because the characters will be 
printed left to right, as opposed to all in the same spot on the screen. The beep 
you hear is from when the Control-G (Bell) is printed to the screen via COUT. 
The invisible control characters account for the blank region between the two 
main segments of output characters. 

The alphabet is backward because we started at the highest value and 
worked our way down. The BNE test works because the loop will continue un
til CTR reaches 0. 

You'll remember, though, that when a byte is incremented by 1 from $FF, 
the result also wraps around back to $00. This will produce an action also test
able by a BNE. Using this wraparound effect of the increment command, we 
can rewrite the program to be a little more conventional, counting in normal al
phabetical order (Program 6-7). 

117 



Chapter 6 

Program 6-7. Loop Demo Program 3 

=0006 
=FC58 
=FDED 

000300: 20 58 FC 
000303:A9 00 
000305: 85 06 

000307:A5 06 
000309: 20 ED FD 
00030C: E6 06 
00030E: DO F7 =0307 

000310:60 

1 ****************************************** 
2 * 
3 * 

LOOP PROGRAM #3 
MERLIN 8/16 ASSEMBLER 

* 
* 

4 ****************************************** 
5 
6 
7 
8 CTR 
9 HOME 

10 COUT 
11 

12 START 
13 
14 
15 
16 LOOP 
17 
18 
19 
20 
21 DONE 

ORG $300 

EQU $06 
EQU $FC58 
EQU $FDED 

JSR HOME 
LDA #$00 
STA CTR 

LDA CTR 
JSR COUT 
INC CTR 
BNE LOOP 

RTS 

; CLEAR SCREEN 
; START COUNTER AT 'O' 
; STORE VALUE 

; GET CURRENT VALUE 
; PRINT CHARACTER 
; CTR= CTR+ 1 
; GO AGAIN IF NITT 

; ALL DONE! 

--End Merlin-16 assembly, 17 bytes, Errors: 0 

A CALL to this routine should now print out the characters in a more fa
miliar manner. 

The ASCII System 
The examples used so far have each put characters on the screen by using a 
number code to represent a given character. This coding system is based on the 
ASCII character set. ASCII (American Standard Code for Information Inter
change) is a coding scheme for transmitting text. It's also used in the Apple for 
encoding text in memory, screen display, disk files, printer output, and many 
other areas. The chart in Appendix E gives all the characters and their ASCII 
values. 

You've probably already used the ASCII system if you've ever used the 
ASC( or CHR$( commands in Applesoft BASIC. A program line that says 

10 D$ = CHR$(4) 

assigns the string variable D$ to the ASCII character number 4, a Control-D. 
Likewise, the line 

50 PRINT CHR$(9);"80N" 

118 



Loops and Counters 

tells the program to print the character associated with the ASCII code 9, in 
this case a Control-I. Most Applesoft BASIC programs use the ASC( and CHR$( 
commands for creating control characters for printers, DOS, and so forth; but 
you can print any character, depending on the code you want. For instance, 
this line would print the letter A: 

100 PRINT CHR$(65) 

It turns out that it is possible to encode all the alphabetic characters 
(upper- and lowercase), numerics, special symbols, and control codes using 
only 128 number values. You can count to 128 using only the first seven bits of 
an eight-bit byte. This means that ASCII is considered a 7-bit code since all the 
information required to determine which character has been sent (or is stored 
in memory) is contained in bits O through 6 of the byte. This makes the condi
tion of bit 7 (the eighth bit) to be somewhat irrelevant. Thus $SA (10001100) is 
reasonably equivalent to $QA (00001100) as far as its ASCII interpretation is 
concerned. 

However, the matter of the high bit (bit 7) being set or clear can create 
considerable confusion when it's not the same as what the computer or output 
device (such as a printer) expects. This is because many hardware devices use 
the high bit to signal an alternate character set (such as inverse and flashing on 
the Apple screen) and block graphics characters on the some printers. 

Generally, the Applesoft BASIC assembly language routines and screen 
memory operate internally with the high bit set (set = on = 1) on all charac
ters. That is to say, characters retrieved from the keyboard via $COOO, and 
characters stored in the screen area of memory ($400 to $7F8), usually have the 
high bit set (values greater than $80). This is also the way Applesoft BASIC 
stores data within program lines. (To keep you on your toes though, strings 
within a program, such as A$ = "CAT", and ProDOS text files on disk, have 
the high bit clear.) When using COUT (the Monitor output routine), the high 
bit should be set (load the Accumulator with values greater than $80) before 
calling COUT or storing to the screen. 

The ASCII system doesn't start with A as the first character (code num
ber = 1). Instead, they assigned the first 32 values to what are called control 
characters. These were originally designed to be special codes to tell the me
chanical teletype machines when to feed a new sheet of paper, when the trans
mission was complete, and other commands. 

These codes are still used today, and your Apple lies keyboard has a 
key marked Control on it. When you hold down this key, it modifies the actual 
key pressed, much the same way a shift key changes a lowercase a into an up
percase A. For control characters, it creates the character Control-A. In printed 

119 



Chapter 6 

listings such as those found in magazines and books, control characters are 
sometimes indicated with a caret ( " ) symbol, like this: 

"A = Control-A 
"D = Control-D 

It turns out then, that Control-A, is ASCII character 1, Control-B = 2, 
and so on. In addition, the ASCII character set can be arranged in groups to 
make things easier to keep track of: 

ASCII character 
codes (decimal): 

0 to 31 
32 to 63 

64 to 95 

96 to 127 

ASCII character 
codes (hex): 
$00 to $1F 
$20 to $3F 

$40 to $5F 

$60 to $7F 

Characters in Group: 

Control characters 
Special characters 
(o/o,$,0-9,>,<, ... ) 
Uppercase letters 
(A,B,C, ... ) 
Lowercase letters 
(a,b,c, ... ) 

You can see that the groups seem more logical in their hex number 
groups rather than in their decimal groups. This is another example where be
ing comfortable with hex number makes your life a little easier. You still don't 
have to be able to convert a hex number to an ASCII character, but seeing the 
pattern helps keep everything straight in your head. 

By the way, you might also notice that each group is made up of $20 
characters (32 decimal). This means that by adding or subtracting $20 (32 deci
mal) from the ASCII value for an uppercase letter, you can print the equivalent 
control or lowercase letter. 

The Applesoft BASIC lines 

20 PRINT CHR$(65 + 32) 
30 PRINT CHR$(65 - 32) 

print a lowercase a, and Control-A, respectively. 

Commands Learned So Far 
Here are the new commands you've learned, plus the ones covered in previous 
chapters. 
In this chapter: 

BEQ BNE BRA BRL 
JML JMP NOP 

120 



And in previous chapters: 

BRK JSL JSR LOA LOX LOY 
RTL RTS STA STX STY STZ 
TAX TAY TXA TXY TYA TYX 
XBA 

Secret #3 

Loops and Counters 

If you ran either of the LOOP programs, you may have noticed that your 
cursor changed to a new character after the programs were run. 

The Apple IIGS has a special "hidden" command to make the cursor 
anything you want. 

For example, from Applesoft BASIC, type Control-Shift-6, then type an 
underline character (near the Delete key), followed by Return. 

The cursor should change to a blinking underline character. 
What's actually going oil is that whenever the computer sees a Control-A 

(ASCII code 30, decimal), it takes whatever the next character is and uses that 
for the cursor. You can do this from within a program with a line like this: 

10 PRINT CHR$(30);" +" : REM MAKE CURSOR A "+" 
Try this with different keyboard characters and see what cursors you can 

find for your own programs. To restore the cursor to normal, you can press 
Control-RESET, or set the cursor equal to the Delete key. 

121 









Chapter 7 

Comparisons in 
Assembly Language 

In the last chapter, you learned how to use instructions like BEQ and BNE to 
create simple loops. We used the X and Y registers as counters, and incre
mented or decremented by 1 for each cycle of the loop. 

Now let's expand our repertoire of instructions by adding some new 
ones, and in the process add some flexibility to what we can do with loops and 
tests in general. 

In previous programs, we relied on the counters reaching zero and test
ing the Z-flag to take appropriate action. Suppose however, that you wish to 
test for a value other than zero. This is done using two new kinds of instruc
tions, compare and branch-on-carry. 

The compare instruction, with the mnemonic CMP, tells the computer to 
compare the contents of the Accumulator against some other value. The other 
value can be specified in a variety of ways. A simple test against a specific 
value would look like this: 

CMP #$AO 

This would be read "Compare Accumulator with an immediate $AO." 
This would tell the 65816 to compare the Accumulator with the specific value 
$AO. On the other hand, you may want to compare the Accumulator with the 
contents of a given memory location. This would be indicated by 

CMP $AO 

In this case, the 65816 would go to location $AO, see what was there, 
and compare that to the Accumulator. It's important to understand that the 
contents of $AO may be anything from $00 to $FF, and it is against the con
tents that the Accumulator will be compared. In each case, the comparison is 
done by subtracting the Accumulator from the specified value (although the re
sult is invisible to the programmer). 

125 



Chapter 7 

The other new instructions are Branch-on-carry. Branch-on-carry in
structions, coincidentally enough, use the Carry fiag. This is used to determine 
the result of the comparison. Right next to the Z-flag (zero flag) in the Status 
Register is the bit called the Carry (Figure 7-1). 

Figure 7-1. The Carry Bit of the Status Register 

7 6 5 4 3 2 1 0 

E 
z 

C 

Zero Carry 
or 

Emulation 

This is used during addition and subtraction by the 65816. Because the 
compare operation involves subtraction, the Carry flag can also be used to test 
the result of a comparision. This is done with two branch instructions, BCC 
and BCS. BCC stands for Branch on Carry Clear. If the Accumulator is less 
than the value compared against, BCC will branch appropriately. BCS stands 
for Branch on Carry Set, and is taken whenever the Accumulator is equal to or 
greater than the value used. 

This means you can not only test for specific values, but also test for 
ranges. 

Program 7-1 is a variation on the LOOP program presented in Chapter 
6, that only prints the letters A through Z. 

This program is not designed for efficiency, but rather to demonstrate 
the principles of using BCC and BCS. The counter, CTR, is started at 0, as 
before. However, the LOOP part of the program has now been given some 
intelligence. It first compares the value of CTR with the ASCII value for the let
ter A, $Cl. If CTR is less than $Cl, program execution skips the use of COUT, 
and branches to L2, which increments CTR. Eventually, CTR reaches $Cl, and 
printing begins. When CTR reaches the ASCII value of Z plus 1, $DB, BCS 
takes effect and the program ends. Remember that because BCS tests for greater 
than or equal-test for one more than the last value you want to print. 

The X and Y registers can be compared in a similar manner by the codes 
CPX and CPY. 

BEQ and BNE are also still usable after a compare operation. Here's a 
summary: 

Command 
CMP 
CPX 

Action 
Compares Accumulator to something 
Compares X register 

126 



Comparisons in Assembly Language 

CPY Compares Y register 

BCC Branch if register < value 
BEQ Branch if register = value 
BNE Branch if register < > value 
BCS Branch if register > = value 
BRA Branch always 

Program 7-1. Loop Demo 4 Using CMP 
I ••••••••••••••••••************************ 
2 * LOOP PROGRAM #4 * 
3 * MERLIN 8/16 ASSEMBLER * 
4 ****************************************** 
5 
6 ORG $300 
7 

=0006 8 CTR EQU $06 
=FC58 9 HOME EQU $FC58 
=FDED 10 COUT EQU $FDED 

11 
000300: 20 58 FC 12 START JSR HOME ; CLEAR SCREEN 
000303: A9 00 13 LDA #$00 ; START COUNTER AT 'O' 
000305: 85 06 14 STA CTR ; STORE VALUE 

15 
000307: AS 06 16 LOOP LDA CTR ; GET CURRENT VALUE 
000309: C9 Cl 17 CMP #$Cl ; "A" CHAR, HI BIT SET 
0000308: 90 07 =0314 18 BCC L2 

19 
00030D: C9 DB 20 CMP #$DB ; ASCII "Z" + 1 
00030F: BO 07 =0318 21 BCS DONE ; ALL DONE! 

22 
000311: 20 ED FD 23 JSR COUT ; PRINT CHARACTER 

24 
000314: E6 06 25 L2 INC CTR ;CTR=CTR+l 
000316: 80 EF =0307 26 BRA LOOP ; ALWAYS BRANCH 

27 
000318: 60 28 DONE RTS ; ALL DONE! 

--End Merlin-16 assembly, 25 bytes, Errors: 0 

Reading Data from the Keyboard 
A good part of many formal machine language courses deal with just system 
1/0, that is, getting data In and Out via different devices. Writing such things 
as printer drivers, disk access routines, and hardware interface software are the 

127 



Chapter 7 

areas that hardcore programmers spend their youth mastering. Using the built
in routines on the Apple simplifies this greatly because you don't have to do 
most of thef 1/0 details. You've already seen this is true by having used COUT 
($FDED) for screen output, without having to know anything about how the 
actual operation is carried out. The keyboard is even easier. 

In the memory map we've been using for the Applesoft BASIC, the ad
dress range from $COOO to $FFFF is devoted to hardware in that these memory 
ranges cannot be altered by running programs (we're ignoring the additional GS 
RAM for the time being). The range from $0000 to $FFFF is used by the ROM 
routines that we've been calling. The range from $COOO to $CFFF is assigned to 
1/0 devices. Typically the second digit from the left gives the slot number of 
the device. For instance, if you have a printer in slot #l, a look at $C100 will 
reveal the machine language code in ROM on the card that makes it work. At 
$C600 you'll probably find the code that makes the disk drive in slot 6 boot. 

$COOO to $COFF is reserved not for slot 0, but for doing special things 
with the hardware portions of the Apple itself. 

An attempt to disassemble from $COOO will not produce a recognizable 
listing, but it will probably cause your Apple to act a bit odd. This range is 
made up of a number of memory locations actually wired to physical parts of 
your Apple. If from the Monitor you type 

* C030 <RETURN> 

you'll see some random value displayed and the speaker should click. (If it 
doesn't click the first time, try again.) Each time you access $C030, the speaker 
will click as it moves in response to your action. 

The keyboard is also tied into a specific location. By looking at the con
tents of $COOO, you can tell if a key has been pressed. In BASIC, it's done with 
a PEEK (-16384). In machine language, you would usually load a register with 
the contents of $COOO, such as: 

LDA $COOO 

Because it is difficult to read the keyboard at exactly the instant someone 
has pressed the key, the keyboard is designed to hold the value of the last key 
pressed until either another key is pressed or you clear something called the 
strobe, by accessing an alternate memory location, $C010. The strobe is wired 
to clear a character off the keyboard once a program has read the keypress. 

It's always a good idea to clear the keyboard when you're done with it, 
otherwise you'll have the value for the key pressed for your input still hanging 
around for whatever reads the keyboard next, such as the next keyboard read 
in your own program, or an INPUT statement in BASIC. The strobe is cleared 
by any read or write operation. It's the mere access to it in any manner that ac-

128 



Comparisons in Assembly Language 

complishes the clear. However, because of the way the microprocessor and 
hardware work, a read actually accesses the location twice. 

Thus, although both a LOA $C010 or STA $C010 would clear the strobe, 
the LOA has the double disadvantage of ruining the contents of the accumu
lator, and clearing two characters off the keyboard if the keyboard buffer is turned 
on. This is very important to keep in mind. Although the LOA command will 
work (and some programs use this), it makes your program incompatible with 
keyboard buffering. If the user were to type HELLO THERE, your program 
would only see HLOTEE. 

The last point to be aware of is that the keyboard is set up to tell you 
when a key is pressed by the value that is read at $COOO. Now you might think 
that the logical way would be to keep O in $COOO. Perhaps, but that's not the 
way it's done. Instead, we must add $80 the ASCII value of the key pressed. If 
a value less than $80 is at $COOO, it means a key has not been pressed. 

To illustrate all this, let's look at some sample programs to read data 
from the keyboard. Look at Program 7-2. 

Program 7-2. Keyboard Demo 1 
1 •••••••••••••••••••••••••••••••••••••••••• 
2 • KEYBOARD PROGRAM #IA • 
3 • MERLIN 8/16 ASSEMBLER • 
4 •••••••••••••••••••••••••••••••••••••••••• 

5 
6 ORG $300 
7 

=COOO 8 KYBD EQU $COOO 
=FDED 9 COUT EQU $FDED 
=FC58 10 HOME EQU $FC58 

11 
12 

000300: 20 58 FC 13 START JSR HOME ; CLEAR SCREEN 
14 

000303: AD 00 CO 15 LOOP LOA KYBD ; READ KEYBOARD 
000306: C9 80 16 CMP #$80 ; KEY PRESSED 
000308: 90 F9 = 0303 17 BCC LOOP ; TRY AGAIN IF NOT ... 

18 
00030A: C9 9B 19 CHECK CMP #$9B ; 'ESCAPE' KEY 
00030C: FO 05 =0313 20 BEQ DONE 

21 
00030E: 20 ED FD 22 PRINT JSR COUT ; PRINT ASCII CHARACTER 
000311: 80 FO =0303 23 BRA LOOP ; DO IT AGAIN 

24 
000313: 60 25 DONE RTS 

26 

--End Merlin-16 assembly, 20 bytes, Errors: 0 

129 



Chapter 7 

Line 15 loads the Accumulator from location $COOO. This is then com
pared to $80, the minimum value for a key down. If the value read was less 
than $80, we go back for another look. Once a value greater than $80 is found, 
we can then check to see exactly what key was pressed. 

Like any well-written program, this one avoids being in an infinite loop 
by allowing you to press the Escape key to stop it. The test specifically for the 
Escape key is on line 19. 

All keys other than Escape are passed on to be printed on line 22, after 
which the program branches back to do it all over again. 

You've probably noticed that the program runs on printing the same 
character until you press another key. That's because the strobe is never 
cleared. 

A better program is Program 7-3. 

Program 7-3. Keyboard Demo 1 B: A Better Way 

=COOO 
=COIO 
=FDED 
=FC58 

000300: 20 58 FC 

000303: AO 00 CO 
000306: C9 80 
000308: 90 F9 = 0303 

00030A: 80 10 CO 

00030D: C9 98 
00030F: FO 05 =0316 

000311: 20 ED FD 
000314: 80 ED =0303 

000316: 60 

1 •••••••••••••••••••••••••••••••••••••••••• 

2 • KEYBOARD PROGRAM #18 * 
3 • MERLIN 8/16 ASSEMBLER • 
4 •••••••••••••••••••••••••••••••••••••••••• 
5 
6 
7 

ORG $300 

8 KYBO EQU 
9 STROBE EQU 

10 COUT EQU 
11 HOME EQU 
12 
13 

$COOO 
$C010 
$FDEO 
$FC58 

14 START JSR HOME 
15 
16 WOP 
17 
18 
19 

LOA KYBO 
CMP #$80 
BCC WOP 

20 CLEAR STA STROBE 
21 
22 CHECK CMP #$98 
23 BEQ DONE 
24 
25 PRINT JSR COUT 
26 BRA WOP 
27 
28 DONE RTS 
29 

; CLEAR SCREEN 

; READ KEYBOARD 
; KEY PRESSED 
; TRY AGAIN IF N<Yf... 

; CLEAR CHARACTER 

; 'ESCAPE' KEY 

; PRINT ASCII CHARACTER 
; DO IT AGAIN 

--End Merlin-16 assembly, 23 bytes, Errors: 0 

130 



Comparisons in Assembly Language 

This should work better. Here the keyboard is cleared whenever a char
acter is read and printed. Why not clear it right after the read on line 15? If we 
did it there, the only way we would see the character is if the user pressed the 
key in the time between when the strobe was automatically cleared and when 
the keyboard was checked again. This would create such a small time window 
that keypresses would very likely be missed. It is a much better technique to 
only dear the strobe after an actual keypress has been detected. 

In trying out this program, you should type in enough text to wrap 
around onto the next line, and you should also try the arrow keys and Return. 
You may think all this performs as expected (with the exception of the missing 
cursor), but this should not be taken for granted. Without the screen manage
ment of COUT, you'd have to do quite a bit more programming to keep things 
straight. Once more, this is the advantage of using the routines already present 
in the computer, rather than have to worry about the details yourself. 

The Emulation Bit 
As mentioned earlier, there is a way to control the size of the Accumulator, X, 
and Y registers. This is done using the Carry, along with two other bits, in the 
Status Register. 

On the first Apple II computers, before the Apple Iles was a gleam in 
anybody's eye, the Accumulator, X, and Y registers were limited to only a sin
gle byte. That's why Applesoft BASIC is designed to only use one byte of these 
registers, and why when you call a machine language routine from Applesoft 
BASIC, the default register size is only a single byte. 

In addition, the Status Register used bit 4 for a Break instruction flag 
(telling the system that a BRK instruction had been encountered), and bit 5 was 
not used at all. 

When the 65816 was designed, they wanted to create a system that was 
compatible with the older machines, yet that was an improvement on the origi
nal design of the 6502 microprocessor used in the first Apples. 

Figure 7-2. The Status Register 

7 6 5 4 3 2 1 0 

B E 
N V M D I z 

X C 

Sign Overflow Accumulator Break Decimal Interrupt Zero Carry 
Size Select or or 

X/Y Emulation 
Register 

Size Select 

131 



Chapter 7 

The answer was to give the Carry bit a dual function (see Figure 7-2). By 
adding a new command, XCE (eXchange Carry with Emulation bit), the de
signers created a method for using two other bits in the Status Register for a 
new function. This is done by telling the 65816 to change the meaning of the 
Break flag to indicate the size of the X and Y registers (one or two bytes), and 
to use the previously unused bit 5 to indicate the size of the Accumulator. In 
the new state, bits 4 and 5 are labeled them (Memory) and x (indeX) bits. 

In the same way that XBA exchanged the current contents of the A part 
of the Accumulator with the B part, the XCE instruction swaps the current 
value of the Carry bit (0 or 1) with an invisible emulation bit. The emulation bit 
is an extra bit, in addition to the eight bits that make up the Status Register, 
but it can only be changed using the Carry flag and the XCE instruction. 

When the Emulation bit is 1, the A, X, and Y registers are limited to a 
single byte in size, and their size cannot be immediately changed. The m and x 
bits have no real value at this point, because in the emulation mode they tech
nically don't exist. 

When the Emulation bit is O (native mode), the size of the Accumulator 
can be changed by changing them register, and the size of the X and Y regis
ters can be controlled using the x register. Note that a lowercase xis used to 
differentiate the x bit from the actual X register. The x bit controls the size of 
both the X and Y registers together; they cannot be independently set to differ
ent sizes. 

Register Sizes: 
Accumulator 

m = 0 2 bytes (16 bits) 
m = 1 1 byte (8 bits) 

X and Y 
x = 0 2 bytes (16 bits) 
x = 1 1 byte (8 bits) 

There is no underlying meaning to the O or the 1, as such. Rather they're 
just arbitrary flag values for the two modes. In general, 0 in the m or x flags in
dicates the full 16-bit mode. 

You've seen the status of the Emulation bit shown, when the BRK in
struction was used in debugging a program in Chapter 3: 

00/0308: 00 00 BRK 00 

* 

A=OOEF X=OOOO Y=OOOO S=OIDD D=OOOO P=BO 
8=00 K=OO M=OC Q=BO L=l m=l x=l e=l 

Along with the registers, the Processor Status Register, P = $BO, is 
shown. You can also see the display of the Emulation bit; e is set to 1, meaning 

132 



Comparisons in Assembly Language 

that a BRK instruction will set bit 4 if encountered and that the size of the A, X, 
and Y registers are limited to one byte and cannot be changed. Because the e 
bit is a separate and invisible addition to the Status Register, its condition can
not be determined by looking at the value of P in the register display itself. 

The register display also shows the condition of the m and x bits. This 
display is set up whenever a BRK instruction is encountered, and is used to 
help you see what the entire system status is at a given point in a running 
program. 

Setting and clearing the Carry. To change the Emulation bit in a pro
gram, you must first condition (set to a O or 1) the Carry bit. There are two 
commands specifically for conditioning the Carry bit, SEC (SEt Carry) and 
CLC (Clear Carry). SEC sets the Carry bit to 1; CLC sets it to 0. 

If you want set clear the Emulation bit to 1 (sometimes called the Native 
mode) so you can change register sizes, you must first put a zero in the Carry 
(CLC), and then exchange this with the Emulation bit (XCE): 

CLC ;c=O 
XCE ; e = 0 = native mode 

To set the Emulation bit back to 1 (called the Emulation mode), you 
must set the Carry to 1 (SEC}, and then do the exhange: 

SEC ; c = 1 
XCE ; e = 1 = emulation mode 

To change them and x bits in the Status Register, there are two com
mands, SEP (SEt Processor status bits) and REP (REset Processor status bits) . 
Notice that the designers were a bit inconsistent here using set/clear for one 
pair, and set/reset for the other. 

In any event, REP and SEP are used to make any bit in the Status Regis-
ter either O or 1. They look like this in a program: 

SEP #$10 ; %00010000 binary 
REP #$30 ; %00110000 binary 

The comments show the operand number in binary form. In the SEP in
struction, you set the bits in the operand to match whatever bits in the Status 
Register you want set to 1. In the REP instruction, the desired bits are also indi
cated by l's in the operand; however, the corresponding bits in the Status Reg
ister will be cleared to O by the instruction. 

In the first line, SEP #10 sets bit 4, the m bit, to 1, thus setting the Accu
mulator to a 1-byte size (8 bits). In the second line, REP #30 clears both the m 
and x bits (bits 4 and 5), making both the Accumulator and index registers 2 
bytes wide (16 bits). 

133 



Chapter 7 

The most common use of the REP and SEP instructions is to clear or set 
the m and x bits to control the A, X, and Y register sizes. They're rarely used to 
change any of the other Status Register bits, although nothing prohibits it. 

To demonstrate the effects of these instructions, enter Program 7-4. 

Program 7-4. e-, m-, and x-Bit Demo 
I ****************************************** 
2 * e-, m- and x-bit demo * 
3 * MERLIN 16 ASSEMBLER * 
4 ****************************************** 
5 
6 ORG $300 
7 

=FC58 8 HOME EQU $FC58 
9 

=OSBC 10 SCRNI EQU $SBC ; SCREEN LOCATION #1 
=063C 11 SCRN2 EQU $63C ; SCREEN LOCATION #2 

12 
000300: 20 58 FC 13 BEGIN JSR HOME ; CLEAR SCREEN 

14 
000303: A9 Cl 15 LOA #"A" ; I BYTE LETTER "A" 
000305: SD BC 05 16 STA SCRNI ; PUT ONE BYTE ON SCREEN 

17 
000308: 18 18 CLC ; C = 0 
000309: FB 19 XCE ; E = 0 = NATIVE (16-BIT MODE) 

20 
00030A: C2 20 21 REP #$20 ; %00100000 = M = 0 

22 
00030C: A9 CI 00 23 LOA #"A" ; 2-BYTE LETTER "A" 
00030F: SD 3C 06 24 STA SCRN2 ; PUT TWO BYTES ON SCREEN 

25 
000312: 38 26 SEC ; C = I 
000313: FB 27 XCE ; E = I = EMULATION (8-BIT MODE) 

28 ; AUTOMATIC SEP #$30 
29 

000314: 60 30 DONE RTS 
31 

··End Merlin-16 assembly, 21 bytes, Errors: 0 

After assembling, BLOAD and run the object file with a CALL 768. 
The program starts off very much like the sample program in Chapter 3 

with the mini-assembler. The ASCII value for the letter A is loaded into the Ac
cumulator and then is stored at memory location $SBC, which makes it visible 
as a screen character. 

Now, the exciting part. Line 18 sets the carry to zero, in preparation for 

134 



Comparisons in Assembly Language 

the XCE that immediately follows . The XCE sets the Emulation bit to zero, 
which puts the 65816 into the native mode that enables the option of changing 
register sizes. Line 21 uses the REP #$20 instruction to clear bit 5, the m bit, to 
zero. This puts the Accumulator in the 2-byte (16-bit) mode. 

When the 65816 encounters the LOA instruction on line 23, it now loads 
two bytes into the Accumulator. This has two immediate, and important effects. 
First, even though you think you're loading the value $Cl into the Accumu
lator, you need to be aware that the full 16-bit value, $00Cl, is used. Second, 
because this value does take two bytes, the instruction is assembled as a total 
of three bytes, as opposed to only two when the 8-bit mode is used. 

The one- or two-byte status of a register also applies to any store opera
tions associated with it. In this program, the STA SCRN2 instruction on line 24 
puts two bytes on the screen, for the complete value $00Cl. Notice that the $Cl 
(the low-order byte) is stored first at $63C, followed byte $00 (the high-order 
byte) at $63D. This is visual proof of the reversed-order use of byte pairs by 
the 65816. 

The final stage of our program is to return the computer to the 8-bit 
emulation mode. This is a requirement for any routine that you call from 
Applesoft BASIC that changes the register sizes or emulation bit. If you don't 
restore things properly, Applesoft BASIC itself will crash when you exit your 
routine. 

Line 26 sets the Carry bit (C = 1), so that the following XCE instruction 
will set the emulation bit to 1. We don't have to worry about resetting the reg
ister sizes, because setting the emulation bit to 1 automatically removes the m
and the x-bit functions, and makes all registers 1 byte wide. 

To see how this program lists from the Monitor, go to the Monitor now, 
and list the program starting at $300. 

I=m I=x l=LCbank (0/1) 

00/0300: 20 58 FC JSR FC58 
00/0303: A9 Cl LDA #Cl 
00/0305: SD BC 05 STA 05BC 
00/0308: 18 CLC 
00/0309: FB XCE 
00/030A: C2 20 REP #20 
00/030C: A9 Cl LDA #Cl 
00/030E: 00 SD BRK SD 
00/0310: 3C 06 38 BIT 3806,X 
00/0313: FB XCE 
00/0314: 60 RTS 

You may be surprised to see that the disassembly doesn't look quite 
right after the REP #20 instruction at $30A. This is because the disassembler 

135 



Chapter 7 

doesn't recognize the REP instruction as such, and it continues to disassemble 
the instructions in the 8-bit mode. This shows what would happen if the Emu
lation or the m or x bits were set incorrectly and you were to enter your pro
gram at $30A-the program would not interpret the bytes there as you had 
expected. 

To properly disassemble the bytes from $30A, type in 

O=m 

and press Return. Now type 309L to list 

O=m I=x I=LCbank (0/1) 
00/030A: C2 20 REP #20 
00/030C: A9 Cl 00 LDA #OOCI 
00/030F: 8D 3C 06 STA 063C 
00/0312: 38 SEC 
00/0313: FB XCE 
00/0314: 60 RTS 

Notice that the m and x indicators at the top of the listing shows that m 
is now set to 0. As you examine different parts of memory, you must specifi
cally set these settings, when they're not conditioned by hitting a BRK in a pro
gram. The Monitor does not make any assumptions about the condition of the 
various registers. This is so you can examine any part of memory at will and 
set the registers as you think they will be when that part of your program is 
executing. You can examine the current register settings at any time in the 
Monitor by typing Control-£ (Examine registers) and pressing Return. 

Looking at the listing starting at $30C, you can now see the LDA with 
the two-byte operand. The STA instruction still takes only one byte. The 65816 
only needs to know the starting address of the byte pair, so the instruction lists 
the same in either mode. What changes is how many bytes are written to mem
ory starting at $63C. 

The converse situation in listing also applies. Now that the m flag is set 
to O (16-bit Accumulator mode), try listing starting at $300 again. 

O=m l=x l=LCbank (0/1) 

00/0300: 20 58 FC JSR FC58 
00/0303: A9 Cl 8D LDA #8DCI 
00/0306: BC 05 18 LDY 1805,X 
00/0309: FB XCE 
00/030A: C2 20 REP #20 
00/030C: A9 Cl 00 LDA #OOCI 
00/030F: 8D 3C 06 STA 063C 
000/0312: 38 SEC 
00/0313: FB XCE 
00/0314: 60 RTS 

136 



Comparisons in Assembly Language 

Notice that now the instructions at $303 and $306 list improperly. These 
were assembled as 8-bit instructions. You are now disassembling in the 16-bit 
mode. 

Try rewriting the program using the long (16-bit; x = 0) X and Y mode, 
instead of the long accumulator mode, and see how the listing changes. Be sure 
to run your new program to make sure that it works, and that it returns to the 
8-bit mode for Applesoft BASIC properly. You may wish to experiment with 
different combinations of e, m, and x modes to get the feel for what your op
tions are in any given program. 

Notes for the APW Assembler 
If you have the APW assembler, you'll need to use the directives LONGA 
ON/OFF and LONGI ON/OFF to tell the assembler you're changing them 
and x modes, respectively. The Merlin assembler automatically changes its 

Program 7-5. e-, m-, and x-Bit Demo for the APW Assembler 
****************************************** 
* e-, m- and x-bit demo * 
* APW ASSEMBLER * 
****************************************** 

KEEP EMX.DEMO 
ORG $300 
WNGA OFF ; STARTING CONDITION 
MSB ON ; HI BIT= ON 

MAIN START 
HOME EQU $FC58 
SCRNl EQU $SBC ; SCREEN WCATION #1 
SCRN2 EQU $63C ; SCREEN WCATION #2 
BEGIN JSR HOME ; CLEAR SCREEN 

LDA #"A" ; I BYTE LETTER "A" 
STA SCRNI ; PUT ONE BYTE ON SCREEN 
CLC ; C = 0 
XCE ; E = 0 = NATIVE (16 BIT MODE) 
REP #$20 ; %00100000 = M = 0 
WNGA ON 
LDA #"A" ; 2 BYTE LETTER "A" 
STA SCRN2 ; PUT TWO BYTES ON SCREEN 
SEC ; C = 1 
XCE ; E = I = EMULATION (8 BIT MODE) 

* AUTOMATIC SEP #$30 
DONE RTS 

END 137 



Chapter 7 

mode when it sees the REP and SEP instructions in the listing. The APW, how
ever, requires that the programmer include these assembler directives in the 
listing. Program 7-5 is the example program in the APW format. 

LONGA OFF is required at the beginning because Applesoft BASIC 
CALLs our routine with all registers set to 8 bits. Then, after the REP #$20 in
struction, the appropriate LONGA ON directive is again required to tell the as
sembler we have switched modes. 

MSB (Most Significant Bit) ON is also required at the beginning to tell 
the assembler to use the hi-bit ASCII (value larger than $80) form when assem
bling the LOA #" A" instructions. 

More on Switching Modes 
For those who may have previously done some programming on the 6502 or 
65C02, it's important to mention that changing the Emulation bit doesn't have 
a dramatic effect on how the 65816 operates. Virtually all of the same instruc
tions are available in both modes. Because the terms emulation and native 
modes are used, there is a tendency to think that one mode must exclude many 
of the instructions of the other. This is not the case. There are a few instruc
tions, like REP and SEP that are meaningless in a given mode, but they are just 
ignored if encountered. REP and SEP are meaningless in the 8-bit mode be
cause the A, X and Y registers are already limited to 8 bits, and REP and SEP 
cannot change them or x bits at the same time as the Emulation bit. 

The main hazard to the programmer in switching modes is the change in 
the length of certain instructions such as the LOA and STX instructions. As you 
have seen from the sample disassemblies of our demonstration program, the 
same segment of object code can be interpreted by the 65816 in very different 
ways, depending on the status of the e, m, and x bits . If your program sets 
these flags to one condition, and then jumps to another part of the program 
that was written assuming a different set of conditions, very strange things are 
likely to happen, and it can be very difficult to track down the problem. When 
debugging programs that use mixed register sizes and modes, this should be 
one of the first things you check when debugging a program. 

Commands Learned So Far 
Here are the new commands you've learned, plus the ones covered in previous 
chapters: 

In this chapter: 

BCC BCS CLC CMP CPX 
CPY REP SEC SEP XCE 

138 



Comparisons in Assembly Language 

And in previous chapters: 

BEQ BNE BRA BRK BRL JML 
JMP JSL JSR LDA LDX LDY 
NOP RTL RTS STA STX STY 
STZ TAX TAY TXA TXY TYA 
TYX XBA 

139 









Chapter 8 

Simple Math 

This chapter will introduce the basic math operations of addition and subtrac
tion in assembly language. To some extent, you've already seen how this is 
done. In Chapter 6, you saw how the increment and decrement commands 
could be used to add and subtract. Unfortunately it performs these functions 
only by one each time (VALUE + 1 or VALUE - 1). 

If you're really ambitious, you could, with the commands you know al
ready, add or subtract any number by using a loop of repetitive operations, but 
this would be a bit slow. Fortunately, a better method exists. 

You'll recall that a byte is an individual memory location that can hold a 
value from $00 to $FF (0-255 decimal). This number comes about as a direct 
result of the way the computer is constructed, and the way in which you count 
in base two. In base two, each position of the byte is called a bit, and the posi
tions are numbered from right to left, from O to 7. 

The pattern for counting is similar to normal decimal or hex notation. 
The value is increased by adding 1 each time to the digit on the far right, carry
ing as it becomes necessary. In base 10, you have to carry every tenth count; in 
hex, every sixteenth. In base two, the carry is done every other time. 

The first few numbers look like this: 

Hex 
$00 
$01 
$02 
$03 
$04 

Decimal 
0 
1 
2 
3 
4 

Binary 
00000000 
00000001 
00000010 
00000011 
00000100 

Notice that in going from 1 to 2, we would add 1 to the 1 already in the 
first position (bit 0). This generates the carry to increment the second position 
(bit 1). Here is the end of the series: 

$FD 253 1 1 1 1 1 1 0 1 
$FE 254 1 1 1 1 1 1 1 0 
$FF 255 1 1 1 1 1 1 1 1 

143 



Chapter 8 

Observe what happens when the upper limit of the counter is finally 
reached. At $FF (255) all positions are full. When the next increment is done, 
we should carry 1 to the next position to the left; unfortunately that position 
doesn't exist. 

When you use an increment instruction, the byte value wraps around to 
$00, and the extra bit just created is ignored. Suppose we were incrementing a 
two-byte address pointer. When the low-order byte reached $FF, we would 
want the next increment to add 1 to the high-order byte. For example: 

Address Value 
$01FF 

+ 1 
$0200 

High-Order Byte 
$01 
$00 
$02 

Low-Order Byte 
$FF 
$01 
$00 

If you were using the INC instruction to add one each time, however, 
you would lose the newly created bit from the increment at $FF. The way this 
is usually handled in a loop is to use the BNE or BEQ test, like this: 

PTR EQU $06 ; $06,07 
LOOP INC PTR ; PTR = PTR + 1 

BNE NEXT ; LESS THAN $00 SO CONTINUE 
INC PTR+l 

NEXT ??? ; REGULAR PROGRAM HERE ... 

This program segment will increment the two byte pointer PTR, PTR + 1 
by one each time. It works by testing for the specific condition in which PTR 
(the low-order byte) has just been incremented from $FF to $00. In all other 
cases, the BNE just branches out of the increment segment. When PTR is $00, 
1 is added to PTR + 1 (the high-order byte) to properly increment the address 
value. 

In the 16-bit mode of the 65816, this problem is temporarily avoided by 
allowing this increment command to operate on both bytes of a two-byte 
pointer. With the Emulation and Memory bits clear (e = 0, m = 0), the follow
ing instruction works for a two-byte pointer: 

INC PTR ; INCREMENTS PTR,PTR + 1 

This instruction automatically takes care of any bits that need to be carried 
from the low-order to the high-order byte. 

However, the solution is only temporary. Remember that the Apple Iles 
allows up to three bytes to be used to define an address (for example, $01/300 
= Bank 1, location $300). What to do when the two-byte pointer reaches 
$FFFF and we need to increment a bank byte? 

144 



Simple Math 

Add with Carry 
The answer is to use some general-purpose instructions that will add and sub
tract any value-not just 1-and condition the carry bit if appropriate. 

The addition instruction we'll use is ADC (ADd with Carry). When an 
addition is done with this command, and the result would generate a bit in a 
new position wider than the byte width indicated by m, the carry is set. ADC 
can only be used to add to the value already in the Accumulator, so the x-bit 
(for X and Y register sizes) is not a direct concern . The source of the value to be 
added to the contents of the Accumulator is limited only by the addressing 
modes available to the ADC instruction itself, which, as it happens, are rather 
extensive. 

Because ADC always adds the value of the carry bit to the calculated 
sum, it's important to clear the carry bit before doing the actual addition. For 
example, consider this program segment: 

LDA #$05 
ADC #$07 
STA RESULT 

As it stands, there are two possible results. If the carry happened to be 
clear when this was executed, the value in RESULT would be $QC (12 decimal). 
If, however, the the carry had been set (perhaps as the result of some previous 
operation), then RESULT would have be $OD (13 decimal). 

This problem is avoided using the CLC (Clear Carry) instruction intro
duced in Chapter 7. 

CLC ; CLEAR CARRY IN PREPARATION FOR ADDITION. 
LDA #$05 ; LOAD ACCUMULATOR WITH VALUE "5" 
ADC #$07 ; ADD "7" TO IT. 

; RESULT NOW= 12 ($0C) 

This segment adds 5 and 7 using immediate values. Logically, the CLC 
could have been done after the LOA #$05, but before the ADC #$07 itself. Al
though it need only precede the ADC command, it has no effect on the LOA, 
so it's put at the beginning of the routine for aesthetic purposes. It also helps 
identify the overall unit as a math routine. Most program segments that use 
CLC and ADC are usually written as shown. 

The contents of two memory locations can also be added using the fol
lowing instructions: 

CLC 
LDA MEM 
ADC MEM2 
STA RSLT 

; 1ST MEMORY LOCATION. 
; 2ND MEMORY LOCATION. 
; STORE RESULT SOMEWHERE. 

145 



Chapter 8 

When the result of an ADC instruction is greater than $FF (or $FFFF in 
the two-byte mode: m = 0), the Carry bit will be set to 1, and this will auto
matically be added to the result of the next addition or subtraction. For ex
ample, suppose you wanted to add $120 to the base address $1FO. You would 
start with the low-order bytes: 

Starting Lo Byte: $FO Carry = 0 
ADC #$20 $20 
Result: $10 Carry = 1 

And then add the high-order bytes: 

Current Hi Byte: $01 Carry = 1 
ADC #$01 $01 
Result: $03 Carry = 0 

This gives the correct two-byte result of $0210, and is equivalent to: 

$1FO 
+ $120 

$310 
Notice that the Carry is also automatically cleared if the result of the addition did not 
result in a new carry bit being generated. 
The steps above are equivalent to this source code segment: 

CLC 
LDA #<$1FO 
ADC #<$120 
STA RSLT 
LDA #>$1FO 
ADC #>$120 
STA RSLT+l 

; LOW-ORDER BYTE OF $IFO = $FO 
; ADD LOW-ORDER BYTE OF $120 = $20 
; STORE LOW-ORDER RESULT = $10 
; HIGH-ORDER BYTE OF $1FO = $01 
; ADD HIGH-ORDER BYTE OF $120 = $01 
; STORE HIGH-ORDER BYTE OF RESULT = $03 

In a two-byte mode, the operation is similar. Let's assume a base address 
of $01/$FFOO, to which we will add $00/0200: 

Starting Low Word: $FFOO Carry = 0 
ADC #$0200 $0200 
Result: $0100 Carry = 1 

Next addition: 

Current High Word: $0001 Carry = 1 
ADC #$0000 $0000 
Result: $0002 Carry = 0 

146 

..... 



Simple Math 

This gives the correct four-byte result of $02/0100, and is equivalent to: 

$0001/FFOO 
+ $0000/0200 

$0002/0100 

In this example, you'll notice that all four hexadecimal digits of the bank 
address are shown. In the Monitor listing, however, only one byte is shown for 
the bank byte, because that is all that is maintained by the 65816 itself. If you 
look at the long address operand generated by the mini-assembler in Chapter 
3, or the assembler output from Merlin or APW, you'll see it also is only three 
bytes. 

Because it's not convenient to switch between 8- and 16-bit modes for 
the ADC and other operations, most long addresses on the Apple IIGS are 
loaded and stored as four bytes. This is more practical than trying to handle the 
minimal three bytes that are required. Thus, although the high byte of the high 
word is always zero, it's still carried around in calculations for efficiency's sake. 

Program 8-1 and 8-2 are sample programs using the ADC instruction. 
Note the use of the CLC before each ADC. 

Program 8-1. Math Demo 1 

=0006 
=0008 
=OOOA 

000300: 18 
000301: AS 06 
000303: 65 08 
000305: 85 OA 
000307: 60 

I ****************************************** 
2 * 
3 * 

MATH DEMO PROGRAM #I 
MERLIN ASSEMBLER 

* 

* 
4 ****************************************** 
5 
6 
7 
8 NI 
9 N2 

10 RSLT 
11 
12 BEGIN 
13 
14 
15 
16 DONE 

ORG $300 

EQU $06 
EQU $08 
EQU $0A 

CLC 
LDA NI 
ADC N2 
STA RSLT 
RTS 

; GET READY FOR ADDITION 
; GET 1ST NUMBER 
; ADD 2ND NUMBER 
; STORE RESULT 
; ALL DONE! 

--End Merlin-16 assembly, 8 bytes, Errors: 0 

147 



Chapter 8 

Program 8-2. Math Demo 2 

=0006 

=OOOA 

000300: 18 
000301: A5 06 
000303: 69 80 
000305: 85 OA 
000307: 60 

I ****************************************** 
2 * MATH DEMO PROGRAM #2 * 

* 3 * MERLIN ASSEMBLER 
4 ****************************************** 
5 
6 ORG $300 
7 
8 NI EQU $06 
9 

10 RSLT EQU $0A 
11 
12 BEGIN CLC ; GET READY FOR ADDITION 
13 LDA NI ; GET 1ST NUMBER 
14 ADC #$80 ; ADD #$80 TO ACC. 
15 STA RSLT ; STORE RESULT 
16 DONE RTS ; ALL DONE 

--End Merlin-16 assembly, 8 bytes, Errors: 0 

Program 8-3. Math Demo 3A 

I ****************************************** 
2 * MATH DEMO PROGRAM #3A * 
3 * MERLIN ASSEMBLER * 
4 ****************************************** 
5 
6 ORG $300 
7 

=0006 8 NI EQU $06 
=0008 9 N2 EQU $08 
=OOOA IO RSLT EQU $0A 

11 
000300: 18 12 BEGIN CLC ; GET READY FOR ADDITION 
00030 I: A5 06 13 LDA NI ; GET 1ST NUMBER, W BYTE 
000303: 65 08 14 ADC N2 ; ADD 2ND NUMBER, W BYTE 
000305: 85 OA 15 STA RSLT ; STORE RESULT, W BYTE 

16 
000307: A5 07 17 LDA Nl+l ; GET 1ST NUMBER, HI BYTE 
000309: 65 09 18 ADC N2+1 ; ADD 2ND NUMBER, HI BYTE 
000308: 85 OB 19 STA RSLT+I ; STORE RESULT, HI BYTE 

20 
00030D: 60 21 DONE RTS ; ALL DONE 

22 

--End Merlin-16 assembly, 14 bytes, Errors: 0 

148 



Simple Math 

In the first program, the value in Nl is added to the contents of N2 and 
stored in RSLT. In the second program, Nl is added to the immediate value 
#$80, and is also stored in RSLT. Note the CLC before the ADC to insure an 
accurate result. This routine could be used either as a subroutine in part of a 
larger assembly language program, or called from BASIC after passing the val
ues to locations 6 and 8. 

The main disadvantage to all these programs is that we're limited to 
one-byte values for both the original values and the result of the addition. 
Thus, if the result exceeds $FF, the carry is ignored. 

The solution is to use the Carry bit to create a two-byte addition routine 
(see Program 8-3). 

Notice that Nl, N2 and RSLT are all two-byte numbers, with the second 
byte of each pair being used for the high-order byte. This allows us to use val
ues and results from $00 to $FFFF (0-65535). 

Once the two low-order bytes of Nl and N2 are added, and the partial 
result is stored, the high-order bytes are added. If an overflow was generated in 
the first addition, the Carry will be set and an extra unit will be added in the 
second addition. Note that the Carry remains unaffected during the LDA 
Nl + 1 operation. 

You may want to BLOAD the object code for Program 8-3, and then call 
it from this BASIC program, Program 8-4. 

Program 8-4. Math Demo 3A BASIC CALL 

0 REM MACHINE ADDITION ROUTINE 
10 HOME 
20 INPUT "Nl,N2?";Nl,N2 
30 NI = ABS (Nl):N2 = ABS (N2) 
40 POKE 6,Nl · INT (NI / 256) * 256: POKE 7, INT (NI / 256) 
50 POKE 8,N2 · INT (N2 / 256) * 256: POKE 9, INT (N2 / 256) 
60 CALL 768 
70 PRINT : PRINT "RESULT IS: "; PEEK (10) + 256 * PEEK (11) 
80 PRINT : GOl'O 20 

The ABS( ) statements on line 30 of Program 8-4 eliminate values less 
than zero. Although there are conventions for handling negative numbers, this 
routine is not that sophisticated. 

Many times the number being added to a base address is known to al
ways be $FF or less, so only one byte for N2 is needed. A two/ one addition 
routine is shown in Program 8-5. 

Notice that if the carry is set, the value in Nl + 1 gets incremented by 
one, even though the ADC says an immediate $00. The $00 acts as a dummy 
value to allow the carry to do its job. 

149 



Chapter 8 

Program 8-5. Math Demo 38 

=0006 
=0008 
=OOOA 

000300: 18 
00030 I: AS 06 
000303: 65 08 
000305: 85 OA 

000307: AS 07 
000309: 69 00 
000308: 85 OB 

00030D: 60 

1 ****************************************** 
2 * MATH DEMO PROGRAM #38 * 

* 3 * MERLIN ASSEMBLER 
4 ****************************************** 
5 
6 ORG $300 
7 
8 NI EQU $06 
9 N2 EQU $08 

10 RSLT EQU $0A 
11 
12 BEGIN CLC ; GET READY FOR ADDITION 
13 LDA NI ; GET 1ST NUMBER, WW BYTE 
14 ADC N2 ; ADD 2ND NUMBER, WW BYTE 
15 STA RSLT ; STORE RESULT, WW BYTE 
16 
17 LDA Nl+l ; GET 1ST NUMBER, HIGH BYTE 
18 ADC #$00 ; ADD CARRY ONLY (NO 2ND HIGH BYTE) 
19 STA RSLT+l ; STORE RESULT, HIGH BYTE 
20 
21 DONE RTS ; ALL DONE 

--End Merlin-16 assembly, 14 bytes, Errors: 0 

Subtraction in Assembly Language 
Subtraction is done very much like addition, except that a borrow is required. 
Rather than using a separate borrow flag for this operation, the computer uses 
the opposite of the Carry as a borrow. That is, a set Carry flag will be treated 
by the subtract command as a clear borrow (or no borrow taken); a clear Carry 
as a set borrow (borrow unit taken). 

The command for subtraction is SBC (SuBtract with Carry). The bor
row is cleared with the command SEC, for SEt Carry. (Remember, things look 
backward here). Program 8-6 is the subtraction equivalent of a our two-byte 
addition program presented earlier. 

The program can be called with a slight variation on the Applesoft 
BASIC program we used for the addition programs (Program 8-7). 

This assembly language routine will work fine for subtracting one posi
tive number from another, but how can we handle negative numbers? Negative 
numbers can be thought of as a way of handling certain common arithmetic 
possibilities, such as when subtracting a larger number from a smaller one, (for 
example, 3 - 5 = - 2), and when adding a positive number to a negative 
number (such as 5 + - 8 = -3) to obtain a given result. 

150 



Simple Math 

To be successful, then, what we must come up with is a system that will 
be consistent with the arithmetic of signed numbers as you now know it. 

Program 8-6. Subtraction Example 1 

1 •••••••••••••••••••••••••••••••••••••••••••••• 
2 • SUBTRACTION EXAMPLE #1 • 
3 • MERLIN ASSEMBLER • 
4 •••••••••••••••••••••••••••••••••••••••••••••• 
5 
6 ORG $300 
7 

=0006 8 Nl EQU $06 
=0008 9 N2 EQU $08 
=OOOA 10 RSLT EQU $0A 

11 
000300: 38 12 BEGIN SEC 
000301: A5 06 13 LDA Nl 
000303: ES 08 14 SBC N2 
000305: 85 OA 15 STA RSLT 

16 
000307: A5 07 17 LDA Nl+l 
000309: E5 09 18 SBC N2+1 
000308: 85 OB 19 STA RSLT+l 

20 
00030D: 60 21 DONE RTS 

22 

--End Merlin-16 assembly, 14 bytes, Errors: 0 

Program 8-7. Subtraction Example BASIC CALL 

0 REM MACHINE SUBTRACTION ROUTINE 
10 HOME 
20 INPUT "Nl,N2?";Nl,N2 

; $06,07 
; $08,09 
; $0A,OB 

; SET CARRY = 'CLEAR BORROW' 
; GET LOW BYTE OF 1ST VALUE 
; SUBTRACT LOW BYTE OF 2ND VALUE 
; PUT IN LOW BYTE OF 'RSLT' 

; GET HIGH BYTE OF 1ST VALUE 
; SUBTRACT N2 WITH BORROW IF NEEDED 
; PUT IN HIGH BYTE OF 'RSLT' 

; DONE! 

30 NI = ABS(Nl): N2 = ABS(N2):REM NO NEG. NUMBERS YET 
35 IF N2 > NI PRINT "WE CAN'T DO THAT YET!":END 
40 POKE 6,NI • INT (NI / 256) * 256: POKE 7, INT (NI / 256) 
50 POKE 8,N2 • INT (N2 / 256) • 256: POKE 9, INT (N2 / 256) 
60 CALL 768 
70 PRINT : PRINT "RESULT IS: "; PEEK (10) + 256 • PEEK (11) 
80 PRINT : GCYl'O 20 

The Sign Bit 
A good first approach to the problem is to just arbitrarily decide to use one of 
the 8 bits in a byte as a flag to indicate whether the number is positive or nega
tive. If the bit is clear, the number will be positive. If the bit is set, the number 
will be regarded as negative. We'll use bit 7 (the eighth bit) for this. Thus +s 
would be represented 

151 



Chapter 8 

00000101 

While - 5 would be shown as 

10000101 

Note that by sacrificing bit 7 to show the sign, we're now limited to val
ues from -128 to + 127. When using two bytes to represent a number, such as 
an address, this means we'll be limited to a range of -32768 to +32767. 
Sound familiar? If you've ever noticed the limits for integer variables in 
Applesoft BASIC, you'll recognize this as the same range. 

Although this new scheme is very pleasing in terms of simplicity, it does 
have one minor drawback-it doesn't work. If we attempt to add a positive 
and a negative number using this result, we get disturbing results: 

+s 00000101 
+ -8 10001000 

-3 10001101 = -13 

Although we should get - 3 as the result, using our signed bit system 
we get -13. There must be a better way. Well, with the help of what looks a 
lot like numeric magic, we can get something that works, although some of the 
conceptual simplicity gets lost in the process. 

What we'll invoke for this magic is the idea of number complements. 
You've probably heard of complementary angles (when dealing with two an
gles that add up to 180 degrees). In binary math, the simplest complement is 
called a ones complement. The ones complement of a number is obtained by re
versing each 1 and O throughout the original binary number. Let's try this as a 
negative number. 

For example, the ones complement to 5 is 

00000101 = + 5 

11111010 = -5 

For 8, it is 

00001000 = + 8 

11110111 = -8 

This process is essentially one of definition, that is to say that we declare 
to the world that 1110111 will now represent -8 without specifically trying to 
justify it. Undoubtedly there are lovely mathematical proofs of such things, pre
senting marvelous ways of spending an afternoon; but, for our purpose, a gen
eral notion of the system will be sufficient. Fortunately, computers are very 
good at following arbitrary numbering schemes. 

152 



Now let's see if we're any closer to a working system. 
+s 00000101 

+ -8 11110111 
-3 11111100 = -3 

(00000011 = +3) 

That worked. Let's try another: 

-5 11111010 
+ + 8 00001000 

3 00000010 = 2 (plus Carry) 

Simple Math 

Well, we seem to be closer. At least our answers will be right half the 
time. Don't despair, there is a final solution, and that is to use what is called 
the twos complement system. The only difference between this and the ones 
complement system is that, after deriving the negative number by reversing 
each bit of its corresponding positive number, we add one. 

Let's see how it looks. 

For -5: 
5 = 00000101 

ones complement ... 
11111010 

For -8: 
8 = 00001000 

11110111 

now add one ... 
-5 = 11111011 -8 = 11111000 

Now, let's try the two earlier operations. 

+5 00000101 
+ -8 11111000 

-5 11111011 
+ +8 00001000 

-3 11111101 = -3 +3 00000011 (plus Carry) 

Does 1111101 equal -3? 

starting number: 00000011 = 3 

ones complement: 11111100 
add 1: +1 
twos complement: 11111101 = - 3 

It works in both cases . It turns out that twos complement works in all 
cases. Most of the time, you probably won't have much need for negative num
bers, but hopefully you've at least gained a little insight to why integer vari
ables are limited to the size that they are, and if you ever do have to deal with 
negative numbers, you'll be prepared. 

The best thing about this lesson, however, is that we can now use the 

153 



Chapter 8 

term sign bit. In the Status Register, a flag is provided for the easy testing of bit 
7, and this flag is usually called the sign flag. Whenever a byte is loaded into a 
register, or any arithmetic operation is done, the sign flag will be conditioned 
according to what the final state of bit 7 (the sign bit) is. For example, LOA 
#$80 will set the sign flag to 1 (set), whereas a LOA #$40 will clear the flag. 
This is tested using the commands BPL (Branch on Plus) and BMI (Branch on 
Minus). 

The Sign Bit as a Flag 
Regardless of whether you're using signed numbers or not, these instructions 
can be very useful for testing bit 7 of a byte. Many times, bit 7 is used in vari
ous parts of the Apple to indicate the status of something. For example, the 
keyboard location, $COOO, sets the sign bit (we've also been calling it the high 
bit) whenever a key is pressed. Up until now, we've always tested by compar
ing the value returned from $COOO to the value #$80, such as in this partial 
listing: 

WOP LDA KYBD 
CMP #$80 
BCC WOP 

; READ KEYBOARD 
; KEY PRESSED? 
; TRY AGAIN IF NOf ... 

This program will stay in a loop until a key is pressed. The keypress is 
detected by the value returned in $COOO being equal or greater to $80. A more 
elegant method is to use the BPL command as shown in Program 8-8. 

Program 8-8. Keytest 

=COOO 
=COlO 

000300: AD 00 CO 
000303: IO FB =0300 

000305: SD IO co 
000308: 60 

1 ****************************************** 
2 * 
3 * 

KEYTEST PROGRAM #2 
MERLIN ASSEMBLER 

* 
* 

4 ****************************************** 
5 
6 ORG $300 
7 
8 KYBD EQU $COOO 
9 STROBE EQU $COIO 

IO 
11 CHECK LDA KYBD ; GET VALUE FROM KYBD 
12 BPL CHECK ; NO KEYPRESS, TRY AGAIN 
13 
14 CLR STA STROBE ; CLEAR KEYBOARD 
15 
16 DONE RTS 

--End Merlin-16 assembly, 9 bytes, Errors: 0 

154 



Simple Math 

In this case, as long as the high bit stays clear (no keypress), the BPL 
will be taken and the loop continued. As soon as a key is pressed, bit 7 will be 
set to one, and the BPL will fail. The strobe is then cleared and the return done. 

The Open Apple ($C061) and Option ($C062) keys (equivalent to push
buttons on joysticks) work in a similar way. If bit 7 of the corresponding mem
ory locations are set, the button is being pushed. Program 8-9 shows an 
example. 

Program 8-9. Button Test 

•••••••••••••••••••••••••••••••••••••••••••••• 
2 * BUTTON TEST * 
3 * MERLIN ASSEMBLER * 
4 •••••••••••••••••••••••••••••••••••••••••••••• 
5 
6 ORG $300 
7 

=C061 8 PBO EQU $C061 ; PUSH-BU'ITON O OR OPEN APPLE KEY 
9 

000300: AD 61 CO 10 CHECK LOA PBO ; GET S'FATUS BYTE 
000303: 10 PB = 0300 11 BPL CHECK ; AGAIN IF NO BU'ITON PUSH 

12 
000305: 60 13 DONE RTS 

14 

··End Merlin-16 assembly, 6 bytes, Errors: O 

A variation on Program 8-9 is to check for the high bit set with the BMI 
instruction: 

CHECK LOA PBO 
BMI DONE 
BRA CHECK 

DONE RTS 

; GET STATUS BYTE 
; BRANCH IF PUSHED 
; BPL WOULD WORK TOO ... 

Short Loops with BMI and BPL 
BPL and BMI are also used to terminate a loop of less than 128 cycles that 
must end when the Y register passes 0. For example: 

ENTRY LDY #$50 ; STARTING VALUE FOR THE WOP 
WOP DEY ; Y = Y • I 

BPL WOP ; AS WNG AS Y IS POSITIVE (for example, < $80) 
DONE RTS 

or: 

ENTRY LDY #$AO 
WOP INY 

BMI WOP 
DONE RTS 

; STARTING VALUE FOR THE WOP 
;Y=Y+l 
; AS WNG AS Y IS NEGATIVE (for example, > $7F) 

155 



Chapter 8 

In the first example, the Y register will wrap from $00 to $FF when it 
passes zero, causing the BPL to fail, thus terminating the loop. In the second 
example, the wrap is from $FF to $0, and BMI is used. The main drawback to 
this approach is that your loop counter must always be either positive or nega
tive until the critical point. In other words, you couldn't start at $FF and count 
down to zero because $FF is already negative, so the BPL wouldn't work to 
keep the loop going. 

156 







Chapter 9 

Logical and Shift Operators 

In this chapter you'll see how to use two important types of commands: shift 
operators and logical operators. Shift operators are somewhat easier to under
stand, so we'll start with them. 

Shift Operators: ASL 
In the last chapter, you saw how to do simple addition and subtraction. This 
was done with the ADC and SBC instructions. Although the 65816 doesn't spe
cifically have a multiply and divide instruction, there are instructions that come 
close and can be used to build an actual multiply or divide routine. 

The shift commands give you the option of shifting each bit in the Accu
mulator or a given memory location one position to the left or right. The first 
two shift commands we'll look at are ASL (Arithmetic Shift Left) and LSR 
(Logical Shift Right). 

ASL 
(Arithmetic Shift Left) 

In the case of ASL, each bit is moved to the left one position, with bit 7 
going into the Carry, and bit O being forced to a zero. In addition to the Carry, 
the Sign and Zero Flags are also affected, depending on the resulting condition 
of bit 6 and whether the entire result is zero or not. Here are some examples 
showing the result of doing an ASL on given values, and the resulting status of 
the Carry, Sign, and Zero flags. The binary representation of each number has 
been spaced in the middle for easier reading. 

159 



Chapter 9 

ASL 

Value Result (C) (N) (Z) 
Hex Binary Hex Binary Carry Sign Zero 
$00 0000 0000 $00 0000 0000 0 0 1 
$01 0000 0001 $02 0000 0010 0 0 0 
$80 1000 0000 $00 0000 0000 1 0 1 
$81 1000 0001 $02 0000 0010 1 0 0 
$FF 1111 1111 $FE 1111 1110 1 1 0 

In the first case, there is no net change to the Accumulator (or shifted 
memory location), although the Carry and Sign flags are cleared and the Zero 
flag is set (BCC, BPL and BEQ would work). The zero at each bit position was 
replaced by a zero to its right. 

However, in the case of $01, the value doubles to become $02 as the 1 
in bit O moves to the bit 1 position. In this case, all three flags are cleared. 

When the starting value is $80 or greater, the Carry will be set. In the 
case of $80 itself, the value returns to O after the shift, since the only 1 in the 
pattern, bit 7, is pushed out into the Carry. 

Notice that in the case of $FF, the Sign flag gets set as bit 6 moves into 
position 7. Remember that bit 7 is also called the Sign bit. 

ASL has the effect of doubling the byte being operated on. This can be 
used as an easy way to multiply by any power of 2. By using multiple ASLs, you 
can multiply by 2, 4, 8, 16, and so on, depending on how many ASLs you use. 

LDA #$05 ; STARTING VALUE = 5 
ASL ; ACC = 10 = 5 * 2 
ASL ; ACC = 20 = 5 * 4 
ASL ; ACC = 40 = 5 • 8 

The examples assume that them flag is in the 8-bit mode. If e and m = 0 (16-
bit memory mode), then two bytes will be shifted at a time: 

High-Order Byte Low Order Byte 
Two Byte ASL 

In the 16-bit mode, a zero is put in bit O of the low-order byte, bit 7 of 
the low-order byte is put in bit O of the high-order byte, and bit 7 of the high
order byte is put in the Carry. This still has the effect of doubling the two-byte 
value. 

160 



Logical and Shift Operators 

Logical Shift Right: LSR 
The complement of the ASL command is LSR (Logical Shift Right). It behaves 
identically, except that the bits all shift to the right. 

LSR 
(Logical Shift Right 

This can be used to divide by multiples of 2. It's also a nice way to test 
whether a number is even or odd: Even numbers always have bit O clear; odd 
numbers will always have it set. By doing an LSR followed by a BCC or BCS, 
you can test for this. LSR also conditions the Sign and Zero flags. 

In both LSR and ASL, one end or the other always gets forced to a zero. 
Sometimes this is not desirable. The rotate commands-ROL and ROR (ROtate 
Left and ROtate Right)-are the solution to this. 

C 7161 s~:~ 3121110 I 

ROL ROR 
(Rotate One Bit Left) (Rotate One Bit Right) 

With these commands, the Carry not only receives the pushed bit, but its 
previous contents are used to load the now-available end position. 

ROL and ROR are used rather infrequently, but they do tum up occa
sionally in math functions such as multiply and divide routines. 

Addressing modes for the shift operations include the absolute modes 
and indexed modes using the X register (with the exception of (MEM,X). The Y 
register cannot be used as an index in any of the shift operations. 

Logical Operators 
If you have ever used a statements like these: 

IF X>S AND Y=l THEN 100 
IF X = 5 OR A$= "WORD" THEN PRINT "HELW" 

161 



Chapter 9 

you have already used an Applesoft BASIC version of what are called logical, 
or Boolean, operators. In Applesoft BASIC, logical operators are used for testing 
a group of conditions. In assembly language, the intuitive ideas of AND and 
OR are extended to produce a specific mathematical function that has uses be
yond group conditional instructions. 

Let's start with one of the most commonly used commands, AND. 
You're already familiar with the basic idea of this one from your daily speech. 
If this and that are a certain way, then I'll do something. This same way of 
thinking can be applied to your computer. 

Let's consider a case where there are two things to be compared, A and 
B, and each can be a true or false. This will correspond to the statement "If A 
and B, then do something." 

It's possible to draw a simple chart that illustrates all the possibilities. 

AND 

B 
False True 

False No No 

A 

True No Yes 

The chart shows four possibilities. If A is false, and Bis false, then A 
AND B obviously aren't true, so we get a No answer. Likewise, if only one of 
either A or B is true, but not the other, then the result is still No. Only when 
both are true is the result Yes. 

These results can also be written out as 

False AND False= No 
False AND True - No 
True AND False = No 
True AND True = Yes 

For our purposes it would be more useful to rewrite the chart and sen
tences using 1 for True and Yes, and O for False and No. 

162 



Logical and Shift Operators 

AND 

B 
0 1 

0 0 0 

A 

1 0 1 

OANDO=O 
OAND1=0 
lANDO=O 
1AND1=1 

This table can be used to define a new mathematical function, AND. A 
mathematical function is just a set of rules for determining what numbers 
should result (the output) whenever a defined operation (function) is done on a 
given starting group of numbers (the input). 

Many years ago, you learned four fundamental mathematical func
tions-multiply, divide, add, and subtract-and to do so you memorized a set 
of rules (or instant-recall answers) for each of the functions. 

The Function AND 
AND is a mathematical function also. In fact, the idea that mathematical func
tions could simulate logic was quite the rage in Lewis Carroll's (of Alice in 
Wonderland fame) time, and a fellow named George Boole did quite a bit of 
work in the area. It's Boole's name that's been given to this topic of ANDs and 
ORs-which is called Boolean math. 

It's actually quite an interesting subject. In the same way that multiplica
tion and division have real-world examples with miles-per-hour and how many 
yards of cloth are needed for a dress, Boolean functions can be applied to areas 
outside BASIC programs and the logic of true and false. For example, consider 
this setup of a battery, a light, and two switches. 

We'll put the two switches in line with one another between the battery 
and the light: 

~----, 

Switch A Switch B 

Light 

163 



Chapter 9 

In this setup, the light will only come on when both switch A AND Bare 
on. You can quickly see that the physical analogy of switches and lights is 
identical to the mathematical function of AND. It also should give you a clue 
as to why AND is a very easy function to implement on a computer. 

Once you've created a rule for dealing with l's and O's, you can apply 
those rules to the bits in a binary number. 

Does 5 AND 3 have meaning? It turns out that it does, although the an
swer will not be 8. As we look at these numbers on a binary level, how to get 
the result of 5 AND 3 will be more obvious: 

A=S 0101 
B =3 0011 
AANDB 0001=1 

If you use the chart created earlier and apply it to each set of matching 
bits in A and B, you will obtain the result shown. Starting on the left, two O's 
in bit-position 3 (the fourth bit from the right) give zero as a result. For the 
next two bits, only a single 1 is present, in each case still giving zero as a result. 
Only in the last position do you get the necessary l's in both number's 0-bits to 
yield one as the result. 

Thus 5 AND 3 does have meaning, and the answer is 1. 
AND is used for a variety of purposes. These include: 

• To force O's in certain bit positions. 
• As a mask to let only l's in certain positions "through." 

Using ANDed in a Program 
When an AND operation is done, the contents of the Accumulator are ANDed 
with another specified value. The result of this operation is then put back in 
the Accumulator. The other value may either be given by way of the immedi
ate mode, or held in a memory location. Here are some of the possible address
ing modes for AND: 

LDA #$80 
AND #$7F 
AND $06 
AND $300,X 
AND ($06),Y 

To better understand how AND is used, let's consider this scenario: 
Suppose you have a program that gets a key from the keyboard, and 

then checks to see if it's a certain command. Let's suppose for a moment that 
your looking for the letter A in an input command. Your program would proba
bly look something like this: 

164 



Logical and Shift Operators 

GETKEY LDA KYBD ; CHECK KEYBOARD 
BPL GETKEY ; NO KEY YET 
STA STROBE ; KEY GOT · CLEAR KYBD 

CHECK CMP #"A" ; $Cl = "A" 
BEQ ROUTINE ; THAT'S FOR US! 
BNE GETKEY ; TRY AGAIN ... 

This seems to be a good start, but what about when the user types the A 
key with the CAPS LOCK key up (lowercase a)? You could check for both keys: 

CHECK CMP #"A" ; $Cl = "A" 
BEQ ROUTINE ; THAT'S FOR US! 
CMP #"a" ; $El = "a" 
BEQ ROUTINE ; THAT'S FOR US TOO! 
BNE GETKEY ; TRY AGAIN ... 

This would do the job for this particular key, but what if your program 
has 50 commands? Do you want to do a double-check for each key? Probably 
not. It would be nice if there was a way to tum all lowercase input characters 
to uppercase in one step, before all the testing was done. The answer is to use 
the AND command. To see how this works, look at the binary values for the 
letters A and a: 

A = $Cl = 1100 0001 
a = $El = 1110 0001 

bit 5 

Notice that the only difference is that a lowercase a has bit 5 set to one. If we 
could clear just this bit, the value would correspond to an uppercase A. 

The way to do this is with the AND command, and to create what is 
called a mask. A mask, in engineering and art terms, is something that only lets 
certain parts of an image through. If we treat the bit pattern for the letter a as 
an image, what we want is a mask that will not let the one in bit 5 through. 
That can be accomplished like this: 

LDA VALUE ; $El = "a" 
AND #$OF ; $OF = %1101 1111 

; Result = "A" 

Here's the process illustrated: 

a= $El= 1110 0001 
AND #$OF = 1101 1111 

A = $Cl= 1100 0001 

165 



Chapter 9 

Notice that at each position, the binary version of $OF has a one (except 
bit 5). This means that ones and zeros in the input value, $El, come through 
unchanged. However, the zero at bit 5 in the mask value, $OF, forces a zero in 
the output value at the same position. 

AND is almost always used to force zeros in a given position, and to let 
the other data in the pattern through unchanged. The Merlin assembler lets you 
use binary numbers as an operand by putting a percent symbol ( % ) in front of 
the number, like this: 

LOA VALUE ; $El = "a" 
AND #%11011111 ; $DF 

; Result = "A" 

This makes it easier to see exactly what mask you're using. 
In general, AND is used to force zeros in a value. This is done using a 

mask with all bits set to 1 except for those which you wish to force to 0: 

LOA MEM ; GET VALUE TO WORK ON 
AND #MASK ; FORCE BITS TO 0 
STA MEM ; PUT IT BACK IN MEMORY 

Clear Bits and Words 
There is also an instruction specifically for clearing bits in a byte or word in 
memory, called TRB (Test and Reset Bits). This probably should have been 
named TCB for Test and Clear Bits, but those engineers like to keep you guess
ing. The T for test is a bit redundant too. It just means that it uses the bits in 
the Accumulator just like the AND instruction does. 

TRB acts just like AND, except that it will only clear one or two bytes in 
memory. The result is not left in the Accumulator, although the mask is required 
to be in the Accumulator for its use. 

Here's a program segment that converts a lowercase a to A in a memory 
location: 

LOA #%11011111 ; $DF = MASK 
TRB MEM ; CONVERT MEMORY WC. VALUE 

BIT 
The command somewhat related to AND is BIT. This is provided to allow a 
program to determine the condition of specific bits in a byte or word. It also 
has some secondary uses. When BIT is executed, quite a number of things hap
pen. First, bits 6 and 7 of the memory location referenced are transferred di
rectly to the Sign and Overflow bits. Since we've not discussed the Overflow 

166 



Logical and Shift Operators 

flag, let me say briefly that it is bit 6 in the Status Register, and has two associ
ated branch instructions BVC (Branch on o Verflow Clear) and BVS (Branch 
on overflow Set). After a BIT instruction, BVC, BVS, BPL, and BMI may be 
used to test the status of bits 6 and 7 in the referenced memory location. For 
example: 

BIT 
BPL 
BMI 
BVC 
BVS 

MEM 
ROUTINE! 
ROUTINE2 
ROUTINE3 
ROUTINE4 

; TEST A MEMORY WCATION 
; BRANCH IF BIT 7 = 0 
; BRANCH IF BIT 7 = 1 
; BRANCH IF BIT 6 = 0 
; BRANCH IF BIT 6 = 1 

The most frequent use of the BIT instruction is to either test a memory 
location, like the keyboard byte, $COOO without affecting the contents of the 
Accumulator, or to access a softswitch, like the keyboard strobe, again without 
affecting the contents of the Accumulator. This program illustrates both: 

LDA #"X" ; CHARACTER "X" 
KYBD BIT $COOO ; WAIT FOR KEYPRESS 

BPL KYBD ; NONE YET. 
BIT $C010 ; CLEAR KEYBOARD STROBE 
JSR COUT ; PRINT "X" NO MATTER WHAT KEY PRESSED. 

The other use of BIT is to test to see if one or more bits in the memory 
location match bits set in the Accumulator. If one or more do, the Zero flag will 
be cleared (Z = 0). If no match is made, the Zero flag will be set (Z = 1 ). This is 
done by ANDing the Accumulator and the memory location, and conditioning 
the zero flag depending on the result. The confusing part is that the test (BNE 
for a match) may seem backward. Alas, it's unavoidable-it's just one of those 
notes to scribble in your book so as to remember the quirk each time you use it. 

Here's an example to test for bits O or 2 set: 

LDA #$05 ; 0000 0101 
BIT MEM 
BNE MATCH ; ONE OR BOTH BITS MATCH 
BEQ NOMATCH ; NEITHER BIT IN MEM IS "ON" 

BIT is usually used to test for a single bit being on. If you want to test 
for all of a group of bits being on, the AND instruction can be combined with a 
compare. 

To test for both bits 6 and 7 being on: 

LDA MEM 
AND #$CO 
CMP #$CO 
BEQ MATCH 
BNE NOMATCH 

; 1100 0000 = BITS 6 & 7 
; COMPARE TO SAME VALUE 
; ONLY IF "BOTH" BITS ON 
; IF BOTH NOT ON 

167 



Chapter 9 

This last example is somewhat subtle, in that the result in the Accumu
lator after the AND will only equal the value with which it was ANDed if each 
bit set to one in the test value (the AND operand) has an equivalent bit on in 
the Accumulator (loaded from the memory location). 

Take note that TRB and TSB (discussed below) both condition the Zero 
flag in the same way as the BIT instruction, and so could be used for a test, but 
they also re-write the tested bits in memory. 

ORA and EOR 
These two commands bring up an interesting error of sorts in the English lan
guage, and that is the difference between and inclusive OR and the exclusive 
OR. When you say "I'll go to the store if it stops raining OR a bus comes by," 
it has two possible interpretations. The first is that if either event happens, then 
the result will happen. This also includes the possibility that both may happen. 
This is called an inclusive OR type statement. 

The other possibility is that the conditions to be met must be one or the 
other but not both. This might be called the most pure form of an or statement. 
It's either night OR day, but never both together. This would be called an ex
clusive OR statement. 

In assembly language, the inclusive or function is called ORA for OR 
Accumulator. The other is called EOR for Exclusive OR. Here are the charts 
for both functions: 

ORA 

Acc. 
0 1 

0 0 1 

Memory 

1 1 1 

EOR 

Acc. 
0 1 

0 0 1 

Memory 

1 1 0 

168 



Logical and Shift Operators 

First, consider the chart for ORA. If either or both corresponding bits in 
the Accumulator and the test value match, then the result will be a 1. Only 
when neither bit is 1 does a O value for that bit result. The main use for ORA is 
to force a 1 at a given bit position. In this manner it is the complement to the 
AND operator (which forces O's). 

Here are some examples of the effect of the ORA command: 

Example #1: Example #2: 
Accumulator: $80 1000 0000 $83 1000 0011 
ORA Value: #$03 0000 0011 #$0A 0000 1010 
Result: $83 1000 0011 $BB 1000 1011 

Use of ORA also conditions the Sign and Zero flags, depending on the 
result, which is automatically put into the Accumulator. 

Switch A 

Battery Light 

Switch B 

In this setup, the switches are in parallel, giving the electricity a choice 
of paths to the light. The light will only come on when either switch A OR B 
are on (inclusive). 

To specifically set bits in a memory location to ones, there is a special 
purpose instruction TSB (Test and Set Bits). This is used by loading the Accu
mulator with a mask where the bits are set at each position that you want 
forced to one in the memory location. For example, if you wanted to set the 
high bit of a memory location, the following would do it: 

LOA #$80 ; %1000 0000 = HIGH BIT SET 
TSB MEM ; SET HIGH BIT IN MEMORY 

Like TRB, the result is left only in memory, and the Accumulator is not 
changed. 

Exclusive OR: EOR 
The EOR command is somewhat different in that the bits in the result are set to 
1 only if one or the other corresponding bits in the Accumulator and test value 
are set to 1, but not both. 

EOR has a number of uses. The most common is in encoding data. An 

169 



Chapter 9 

interesting effect of the table given is that for any given test value, the Accu
mulator will flip back and forth between the original value and the result each 
time the EOR is done. For example: 

Example #1: Example #2: 
First pass: 
Accumulator: $80 1000 0000 $83 1000 0011 
ORA Value: #$03 0000 0011 $DA 0000 1010 
Result: $83 1000 0011 $89 1000 1001 

Second pass: 
Accumulator: $83 1000 0011 $89 1000 1001 
ORA Value: #$03 0000 0011 $DA 0000 1010 
Result: $80 1000 0000 $83 1000 0010 

Program 9-1. Hi-Res Screen Inverter 

=0006 
=2000 

000300: A9 20 
000302: 85 07 
000304: A9 00 
000306: 85 06 

000308: AO 00 

00030A: Bl 06 
00030C: 49 FF 
00030E: 91 06 
000310: C8 
000311: DO F7 =030A 

000313: E6 07 
000315: A5 07 
000317: C9 40 
000319: 90 ED =0308 

000318: 60 

1 •••••••••••••••••••••••••••••••••••••••••••••• 
2 • HI-RES SCREEN INVERTER • 
3 • MERLIN ASSEMBLER • 
4 •••••••••••••••••••••••••••••••••••••••••••••• 
5 
6 ORG $300 
7 
8 PTR EQU $06 ; $06,07 
9 SCREEN EQU $2000 ; HIRES PAGE 1 

10 
11 ENTRY LDA #>SCREEN ; HIGH ORDER BYTE OF $2000 
12 STA PTR+l ; SET HIGH BYTE OF PTR 
13 LDA #<SCREEN ; WW ORDER BYTE OF $2000 
14 STA PTR ; SET WW BYTE OF PTR 
15 
16 • SETS PTR (6,7) TO $2000 
17 
18 START LDY #$00 ; INIT Y-REGISTER 
19 
20 WOP LDA (PTR),Y ; GET EXISTING BYTE 
21 EOR #$FF ; FLIP BITS 
22 STA (PTR),Y ; PUT BACK IN MEMORY 
23 INY ;Y=Y+l 
24 BNE WOP ; BRANCH WHILEY = $1 TO $FF 
25 
26 NXT INC PTR+l ; PTR GOES FROM $2000 TO $2100, ETC. 
27 LDA PTR+I 
28 CMP #$40 ; STOP WHEN PTR = $4000 
29 BCC START ; Nm' THERE YET 
30 
31 EXIT RTS 

--End Merlin-16 assembly, 28 bytes, Errors: 0 

170 



Logical and Shift Operators 

This phenomenon is used extensively in Apple IIGS graphics to allow 
images to overlay each other, without destroying the image below. 

EOR can also be used to reverse specific bits. Simply place l's in the po
sitions you wish reversed. EOR #$FF reverses all the bits in a byte . 

Program 9-1 uses EOR to reverse, and then restore the entire Hi-Res 
screen. It's just a variation on Screen Clear #lA in Chapter 10. Use Program 9-
2 to draw the screen (or BLOAD your favorite picture), and then change the 
image. 

Program 9-2. Hi-Res Screen Inverter Loader 

10 PRINT CUR$ (4);"BWAD HIRES.INVERT,A$300" 
20 HGR 
25 HCOWR= 3 
30 HPWf 0,0 
40 FOR I = 1 TO 50 
45 HCOWR= RND (1) * 7: HPWf X,Y 
50 X = RND (1) * 279 
55 Y = RND (1) * 159 
60 HPWf TO X,Y 
70 NEXT I 
100 HOME : VTAB 22: PRINT "PRESS A KEY, ESCAPE TO END" 
105 GET A$ 
110 IF A$ = CUR$ (27) THEN TEXT : END 
120 CALL 768: GOTO 100 

Program 9-3 is a final example of how to use a shift operator. This rou
tine prints a number in the binary form to the screen. It works by successively 
shifting each bit in the byte into the Carry. At that point, depending on 
whether it was a one or a zero, the routine prints a one or a zero plus a space. 
You can delete the part that prints spaces if you want a more compact display. 

Program 9-4 will load the object file, and input the numbers to be 
printed. 

171 



Chapter 9 

Program 9-3. Binary Number Printer 

1 ********************************************** 
2 * BINARY NUMBER PRINTER * 
3 * MERLIN ASSEMBLER * 
4 ********************************************** 

=0006 
=0007 

=FDED 

000300: A5 06 
000302: A2 08 

000304: OA 
000305: 85 07 
000307: 90 oc =0315 

000309: A9 B 1 
000308: 20 ED FD 
00030E: A9 AO 
000310: 20 ED FD 
000313: BO OA =031F 

000315: A9 BO 
000317: 20 ED FD 
00031A: A9 AO 
00031C: 20 ED FD 

00031F: A5 07 
000321: CA 
000322: DO EO = 0304 

000324: 60 

5 
6 
7 

ORG $300 

8 NUM EQU $06 
9 TEMP EQU $07 

10 
11 COUT EQU $FDED 
12 
13 
14 PRBIT LDA NUM 
15 LDX #$08 
16 
17 TEST 
18 
19 
20 
21 PO 
22 
23 
24 
25 
26 
27 PZ 
28 
29 
30 
31 
32 NXT 
33 
34 
35 
36 EXIT 
37 

ASL 
STA TEMP 
BCC PZ 

LDA 
JSR 
LDA 
JSR 
BCS 

#"l" 
COUT 
#$AO 
COUT 
NXT 

LDA #"O" 
JSR COUT 
LDA #$AO 
JSR COUT 

LDA TEMP 
DEX 
BNE TEST 

RTS 

·-End Merlin-16 assembly, 37 bytes, Errors: 0 

Program 9-4. Binary Number Printer Loader 

10 PRINT CUR$ (4);"BWAD 8INARY.PRINT,A$300" 
20 INPUT "NUMBER TO CONVERT?";N 
25 IF N = 0 THEN END 
30 POKE 6,N: REM STORE NUM FOR ROUTINE 
35 PRINT N;" = "; 
40 CALL 768: REM CONVERT AND PRINT 
50 PRINT : PRINT : GOTO 20 

172 

; TEMPORARY WORK AREA 

; GET VALUE TO PRINT 
; START COUNTER FOR # OF BITS 

; GET A BIT FROM THE BYTE 
; SAVE THE ROTATED BYTE FOR A WHILE 
; GOTO PRINT 'O' IF BIT IS CLEAR 

; PRINT A '1' 
; 'SPC' 
; PRINT THE 'SPACE' 
; GO FOR THE NEXT BIT IN THE BYTE 

; PRINT THE 'O' 
; 'SPC' 

; GET THE ROTATING BYTE BACK 
; X = X • I 
; SHIFT IT AGAIN IF WE'RE NOT DONE 



Logical and Shift Operators 

Trouble Shooting 
Computer repair specialists use the binary nature of numbers to help track 
down the cause of a hardware-related computer errors. For example, suppose 
you had a parallel printer that always printed an at sign ( @ ) where spaces 
should be. The decimal ASCII values for a space is 96 and 64 for the@. This 
information doesn't appear to tell you very much. 

Now look at the numbers in binary: 

Space: 0110 0000 
@: 0100 0000 

In examining the bit pattern, you can see that the patterns are identical, 
except for bit 5. This indicates that the signal for bit 5 is not coming through, 
and that checking the printer cable wire or connector that is associated with bit 
5 would be a good idea. 

Most disk- and memory-related data errors are caused by a similar prob
lem, that is, a given bit flips from a one to a zero or vice versa. In modem com
munications, where data is transmitted over a phone line, this type of error is 
very likely. It's easy to miss a signal and drop a one to a zero, or for unex
pected static to turn a zero into a one. To correct errors like this in transmis
sion, a system of checksums has evolved. A checksum is just a number value 
used to verify the accuracy of transmitted, or even stored, data. 

For example, we could design a system where after every 10 bytes were 
transmitted, we would then send the sum of those ten bytes. If the receiving 
computer added up the values for the bytes received, and got a different sum, it 
would know an error had occurred, and the data could be retransmitted. There 
are a lot of different error-checking systems, but most follow this general 
principle. 

You can also build a checksum into your own programs, so that the run
ning program can check to make sure that no damage has occurred to the pro
gram or the data it uses. The Merlin assembler has a special pseudo-op, CHK 
(CHecKsum) that stores a checksum byte in the program at the point where 
the instruction is used. The checksum in Merlin is generated by doing 
successive EORs on each byte of the program, and carrying the result of each 
EOR along for the next one, until the entire program has been scanned. A sim
ple version would look something like this: 

LDA BYTEl ; GET 1ST BYTE 
EOR BYTE2 ; EOR WITH 2ND BYTE, KEEP RESULT 
EOR BYTE3 ; EOR WITH 3RD BYTE, KEEP RESULT 
EOR BYTE4 ; ETC. 

173 



Chapter 9 

The final result makes up the checksum byte. Program 9-5 is an example 
that checks itself to make sure everything's the way it should be. Program 9-6 
is an Applesoft BASIC that checks the checksum program. 

On the first pass, you should get the message "Program Checks OK.". 
Line 30 of the BASIC program then POKEs a foreign byte into the program, in 
the middle of the error message, just so you can see something's changed. On 
the second run of the program, the program detects that it has been changed, 
and prints out the error message. 

If you're writing programs that others will have to type in, such as in a 
club newsletter or magazine article, you may want to include the Merlin 
checksum at the end of each your listings so that the person typing the pro
gram in can make sure there have been no errors. On longer listings in the re
mainder of this book, a CHK byte will be included at the end so you too can 
make sure there are no errors in your listing. (COMPUTE! Publication's MLX 
and Automatic Proofreader programs use a similar checksum technique to the 
one described here except that MLX and the Automatic Proofreader check each 
line as it is entered.) 

Your Apple IIGS also has a checksum, which is in the last byte of the 
Applesoft BASIC ROM area at $F7FF. This byte is checked by the internal di
agnostic routines that run when you press Control-Option-Open-Apple-Reset. 
Some copy-protected programs do a checksum on the entire Applesoft BASIC/ 
Monitor ROMs when they run to make sure they're not on a non-standard ma
chine. This really isn't a good idea though, the programs then stop running 
when Apple updates a ROM, or brings out a new machine. 

Program 9-5. Checksum Demo 
1 •••••••••••••••••••••••••••••••••••••••••••••• 

2 * PROGRAM CHECKSUM DEMO * 
3 * MERLIN ASSEMBLER * 
4 •••••••••••••••••••••••••••••••••••••••••••••• 
5 
6 ORG $300 
7 

=0006 8 PTR EQU $06 
=0008 9 TEMP EQU $08 ; TEMPORARY WORK AREA 

10 
=FDED 11 COUT EQU $FDED 

12 
000300: A9 00 13 CHECK LDA #<CHECK ; WW BYTE OF BEG OF PROG. 
000302: 85 06 14 STA PTR 
000304: A9 03 15 LDA #>CHECK ; HIGH BYTE OF BEG OF PROG. 
000306: 85 07 16 STA PTR+l 

17 
000308: 64 08 18 STZ TEMP ; STORE STARTING VALUE 

19 

174 



00030A: AS 08 
00030C: 52 06 
00030E: 85 08 

000310: E6 06 

20 LOOP 
21 
22 
23 

000312: DO 02 =0316 
000314: E6 07 

24 NEXT 
25 
26 

000316: AS 07 
000318: C9 03 
00031A: 90 EE 
00031 C: AS 06 
00031 E: C9 6C 
000320: 90 ES 

000322: AS 08 

27 
28 NEXT2 
29 

=030A 30 
31 
32 

=030A 33 
34 

000324: CD 6C 03 
000327: DO OE =0337 

35 TEST 
36 
37 
38 

LDA TEMP 
EOR (PTR) 
STA TEMP 

INC PTR 
BNE NEXT2 
INC PTR+l 

PTR+l 

Logical and Shift Operators 

; EOR WITH MEMORY, RESULT IN ACC. 
; STORE RESULT 

; PTR = PTR+l 
; NO WRAP-AROUND 

LDA 
CMP 
BCC 
LDA 
CMP 
BCC 

#>CHKSUM ; AT END OF PROGRAM YET? 
LOOP ; NCYf YET ... 
PTR 
#<CHKSUM 
LOOP ; STOPS AT BYTE JUST BEFORE 'CHKSUM' 

LDA TEMP 
CMP CHKSUM 
BNE ERROR 

; GET CHECKSUM 
; COMPARE TO STORED VALUE 
; UHOH, SOMETHING'S CHANGED! 

000329: EA 39 PROGRAM NOP ; YOUR PROGRAM HERE ... 

00032A: AO 00 
00032C: 89 45 03 
00032F: FO 13 =0344 
000331: 20 ED FD 

40 
41 PRINT 
42 LOOPI 
43 
44 
45 000334: CS 

000335: 80 FS =032C 46 
47 

000337: AO 00 
000339: 89 59 03 
00033C: FO 06 = 0344 
00033E: 20 ED FD 

48 ERROR 
49 LOOP2 
50 
51 
52 000341: CS 

000342: 80 FS =0339 53 
54 

000344: 60 55 DONE 
56 

LDY 
LDA 
BEQ 
JSR 
INY 
BRA 

LDY 
LDA 
BEQ 
JSR 
INY 
BRA 

RTS 

#$00 
MSSGI,Y 
DONE 
COUT 

LOOPl 

#$00 
MSSG2,Y 
DONE 
COUT 

LOOP2 

; END OF MESSAGE 

; NEXT CHARACTER 

; NEXT CHARACTER 

00345: DO F2 
000349: F2 El 
000351: EB F3 

EF E7 57 MSSGl ASC "Program Checks Ok.",SD,00 
ED AO C3 ES ES E3 
AO CF EB AE SD 00 

58 
000359: CS F2 F2 
00035D: F2 AO E9 
000365: E7 F2 El 

EF 59 MSSG2 ASC "Error in Program!",SD,00 
EE AO DO F2 EF 
ED Al SD 00 

60 
00036C: 32 61 CHKSUM CHK ; STORE CHECKSUM 

62 

--End Merlin-16 assembly, 109 bytes, Errors: 0 

175 



Chapter 9 

Program 9-6. Checksum Demo Loader 

10 PRINT CUR$ (4);"BWAD CHECKSUM.TEST,A$300" 
20 CALL 768: REM RUN THE TEST 
30 POKE 861, ASC ("x") + 128: REM CREATE ERROR 
40 CALL 768: REM RUN TEST AGAIN 

176 







Chapter 10 

Addressing Modes and 
Improved Printing 

An addressing mode is a term that simply refers to the different ways a given 
65816 instruction can locate the data or memory location it needs. Addressing 
modes is a rather fundamental concept to programming that has been used 
throughout this book, we just haven't called it by name. 

Flexibility in the ways in which you can address memory is the key to 
even greater power in your own programs. Consider this chart of just a some of 
the addressing modes available on the Apple Iles: 

Addressing Mode Example Hex Bytes 
Immediate LOA #$AO A9 AO 
Absolute LOA $7FA AD FA 07 
Absolute Long LOA $0107FA AF FA 07 01 
Direct (Zero) Page LOA $80 AS 80 
Implicit/Implied TAY AB 
Relative BCC $3360 90 OF 
Indexed LOA $200,X BD 00 02 
Indexed Long LOA $010200,X BF 00 02 01 
Indirect LOA ($80) B2 80 
Indirect Long LOA [$80] A7 80 
Indirect Indexed LOA ($80),Y Bl 80 
Indirect Indexed Long LOA [$80],Y B7 80 
Indexed Indirect LOA ($80,X) Al 80 

also: JSR ($300,X) FC 00 03 

In looking at the examples, you should find all but the last six very fa
miliar. We have used each of them in previous programs presented in this book. 

This list does not present all of the available addressing modes on the 
65816, but they are the ones we will use most frequently. Let's take a look at 
each more closely. 

Immediate mode. The immediate mode was used to load a register with 
a specific value. In most assemblers this is indicated by the use of the # sign 

179 



Chapter 10 

preceding the value to be loaded. This contrasts the absolute mode in which the 
value is retrieved from a given memory location. In this mode, the exact ad
dress you're interested in is given. This line will load the Accumulator with the 
value $AO: 

LDA #$AO 

Loads the value $AO into the Accumulator. 
Absolute addressing mode. In contrast to the immediate mode, the ab

solute mode retrieves a value from a given memory location. In this mode the 
exact address you're interested in is given. 

LDA $7FA 

Copies the value found in location $7FA into the Accumulator. 
Direct page mode. Direct page addressing is really just a variation on the 

absolute mode. The main difference is that because the addresses referenced 
are always in the range of $00 to $FF, direct page addressing only takes two 
bytes for the complete instruction (see the third column), whereas in the more 
general case of absolute addressing, three or even four bytes per instruction are 
required. 

A page of memory is $100 (256 decimal) bytes. Starting at $0, the first 
page of memory is called the zero page. Addresses $100 to $ lFF are called 
page one, and so on . Direct page addressing is sometimes called zero page ad
dressing because the default location for the direct page is, in fact, page zero. 
The direct page area can be moved anywhere in the first 64K of memory, and 
this is described in the next chapter. 

LDA $80 

Copies the value found in location $80 into the Accumulator. 
Implicit addressing. Implicit (or implied) is certainly the most compact 

instruction in that only one byte of object code is generated by the assembler. 
The TAY command (Transfer Accumulator to the Y register) needs no addi
tional address bytes because the source and destination of the data are implied 
by the very instruction itself. 

TAY 

Copies the value found in the Accumulator into the Y register. 
Relative addressing. Relative addressing is done relative to where the 

instruction itself is found. Although the Example column (as listed by the Mon
itor L command) shows it as a branch to a specific address, you'll notice that 
the actual hex code is merely a plus or minus displacement from the branch 
point. This was discussed in a previous chapter. 

180 



Addressing Modes and Improved Printing 

Indexed addressing. At this point you should be able to create your 
own simple programs. The problem with the four modes discussed so far is 
that the programs created are rather inflexible in dealing with data from the 
outside world (such as in input routines), and in doing things like accessing ta
bles and large blocks of data. 

Indexed addressing is necessary to write input routines. In the pure 
form, the contents of the X or Y register are added to the address given in the 
instruction to determine the final address. In the example given (LDA $200, X), 
if the X register holds 0, the Accumulator will be loaded with the contents of 
location $200. If the X register instead holds a 4, location $204 will be accessed. 
Indexing is ideal for accessing tables of data, or any range of memory. 

This addressing mode works fine as long as you know exactly where in 
memory the data table is. What happens when the table could be in a movable 
location, such as when dealing with an interface card that could be in any slot? 
Another problem area would be in dealing with a large variety of possible base 
addresses, such as the starting address of each line on the text or graphics 
screens. To print a character or to plot a point, the computer uses the base ad
dress of each line and then adds an appropriate horizontal offset to get to the 
desired position. Using indexed addressing, there would have to be a specific 
instruction for each possible screen line since the address is built into the in
struction itself. 

Indirect addressing. The solution to this is to use the indirect indexed 
mode. This really is an elegant method. First the 65816 goes to the given direct 
page location (the base address must be a direct page address). Indirect address
ing is indicated in the assembly source listing by the use of parentheses. In the 
example, LDA ($80), the 65816 goes to locations $80 and $81 to get the low
and high-order bytes of the address stored there. Then it adds the value of the 
Y-register to that address (see Figure 10-1). 

Figure 10-1. Indirect Indexed Addressing 

65816: LDA ($80),Y (Y-register=$04) 

t 
Location: ($80 $81) ($204) 

• • Contents: $00 $02 $?? 

~ 
(Address = $200 + $04 = $204) _. • <ACCUMULATOR> 

181 



Chapter 10 

These two-byte direct page address pairs are often called pointers, and 
you will often hear them referred to in dealing with various programs on the 
Apple. In fact, by looking at various reference books available for the Apple, 
you'll observe quite a number of these byte pairs used by Applesoft BASIC, the 
Monitor, ProDOS and just about everything on the Apple. Pointers are used to 
keep track of all sorts of continually changing things, like where the program 
is, the locations of strings and other variables, and many other nifty items. 
Pointers find such frequent use because of the tremendous power of indirect 
addressing. 

If you want to simulate the LOA $200,X command with the indirect 
mode, you first store #$00 in $80 and #$02 in $81 (00 and 02 are the low and 
high order bytes of the address $200). Then you use the command LDA 
($80),Y. 

Indirect long addressing mode. There is a long addressing mode for in
direct indexed addressing, also. In that case, three bytes are retrieved starting at 
the direct page address. Long direct page addressing is indicated in the assem
bly source listing by using the square brackets instead of parentheses: 

LDA [$80],Y 

In this situation, data is loaded into the accumulator from the long address 
pointed to by $80,81,82, and the Y register is added to this data, as shown in 
Figure 10-2. 

Figure 10-2. Indirect Long Addressing 

65816: LDA ($80),Y (Y register=$04) 

• Location: ($80 $81 82) ($010204) 

• • Contents: $00 $02 $01 $?? 

• • (Address = $010200 + $04 = $204) _. <ACCUMULATOR> 

You don't have to define the pointer as three bytes just because the 
65816 only uses three bytes to determine the final address. In fact, doing so 
would create problems trying to load and store bytes there using the usual 
LDA/STA method. This is because the load/store of the low-order word would 
have to be in 16-bit mode, and the high-order word would have to be in 8-bit 
mode. The other alternative would be to do all three load/store operations in 
8-bit mode. 

182 



Addressing Modes and Improved Printing 

A better solution is to just define four bytes in your source listing 
equates. Then it will be much easier to just to do two load/store operations in 
the 16-bit mode to maintain a pointer. 

There is also a special case of indirect indexed addressing, simply called 
indirect. Because there are times when you just want to examine a variable 
memory location, without necessarily scanning an entire table, you can omit 
the use of the Y register in the instruction 

LOA ($80) 

This is equivalent to the instructions 

LOY #$00 
LOA ($80),Y 

but it saves an instruction and does not affect the Y register. This mode may 
also be used for long addresses: 

LOA [$80] 

Use of the X and Y index registers. You may have noticed that the X 
register was used in one case and the Y register in the other. It turns out that 
the X and Y registers cannot always be used interchangeably. The difference 
shows up depending on what actual instruction and which addressing mode 
you're using. As it happens, indirect indexed addressing can only be done using 
the Y register. To know what is legal, you should make use of Appendix A to 
see which addressing modes can be used with any given command. 

Indexed indirect addressing. The last addressing mode, indexed indirect, 
is probably the most unusual. In this case, the contents of the X register (Y can
not be used for this mode) are used at the beginning of the address calculation. 

In the case of the sample instruction in the chart, if the X register held 0, 
a LOA ($80,X) would go to $80 and $81 for the two-byte address, and then 
load the Accumulator with the contents of the indicated location. If instead the 
X register held a 04, the memory address would be determined by the contents 
of $84 and $85. 

Usually, then, the X register is loaded with multiples of 2 to access a se
ries of continuous pointers in zero page. 

183 



Chapter 10 

Figure 10-3. Indexed Indirect Addressing 

65816: LOA ($80,X) (X register=$04) 

• ($80 + $04 = $84) -- ... -. 

Location: $80 $81 $82 $83 ($81 $85) ($r) 
(Address = $400) --. <ACCUMULATOR> 

The most common use of this command is for creating tables of entry 
address for subroutines. You might at first think that since the location of sub
routines in your programs or in the Monitor seem to be fixed, such a process 
would not be necessary. Consider, however, the case of jumping to a routine 
on an interface card such as a printer card. There are also routines in the mouse 
firmware that may move in future revisions to the Apple lies. Because of this, 
it is handy to have a way to execute a JMP or JSR using an indirect address. 

This addressing mode also provides for an elegant command processor. 
Assume for a moment that your program will have an input of the values 1, 2, 
or 3, depending on a menu choice from the user. One method of handling the 
commands is to do a number of CMP and conditional branch instructions, like 
this: 

CHECK LDA CMD ; VALUE FOR COMMAND 
; ASSUME = "1", "2" OR "3" 

CMP #"l" 
BNE CHK2 
JSR CMD1 ; LOC OF ROUTINE #1 
JMP NEXT ; GO TO NEXT PART OF PROGRAM 

CHK2 CMP #"2" 
BNE CHK3 
JSR CMD2 ; LOC OF ROUTINE #2 
JMP NEXT ; GO TO NEXT PART OF PROGRAM 

CHK3 CMP #"3" 
BNE AGAIN ; CMD Nar HERE ... TRY AGAIN 
JSR CMD2 ; LOC OF ROUTINE #2 
JMP NEXT ; GO TO NEXT PART OF PROGRAM 

NEXT NOP ; MORE OF YOUR PROGRAM HERE . .. 

An alternative approach uses a table of all your subroutine entry points, 
and the indexed indirect addressing mode . Before you can see exactly how it's 

184 



Addressing Modes and Improved Printing 

done, though, you'll need to know how to have the assembler create a data ta
ble in the first place. 

Assembler Data Storage Pseudo-Ops 
Before all this can be put to work, there is still one more question to answer: 
How do you store just pure data within a program? 

All the commands discussed so far are actual commands for the 65816. 
There is no data command, as such. What is available are the pseudo-ops of 
your particular assembler. You'll recall that directives are commands used by 
the assembler itself (such as ORG and EQU) during the assembly of a source 
listing to tell the assembler to do something, like save a file to disk, or set the 
default BLOAD address. 

Pseudo-ops are assembler commands that look very much like assembly 
language instructions. The difference is that instead of generating a specific 
65816 instruction, they create a group of bytes which are not necessarily exe
cutable instructions-they're usually data. 

Assembler directives and pseudo-ops are also a little like porpoise and 
dolphin, or assembly language and machine language: Although they techni
cally have different meanings, the words are used rather interchangeably by 
many people. 

The rule-of-thumb is: Pseudo-ops generate assembled bytes of object 
code; directives tell the assembler to save a file, to print a new page, or to do 
some other housekeeping (but non-code generating) operation. 

Specific directives and pseudo-ops vary from one assembler to another, 
so you'll have to consult your own manual to see how your assembler operates. 

In general, the most common use of pseudo-ops is for data storage. The 
general procedure is to define a block of one or more bytes of data, and then 
either to put that data at the end of the program or to skip over that block with 
a branch or jump instruction when executing your program. Data can usually 
be entered either as hex bytes or as the ASCII characters you wish to use. The 
assembler will, in that case, automatically translate the ASCII characters into 
the proper hex numbers. 

Printing a String of Characters 
To print a string of characters on the screen, like Hello there, you'll need to use 
both an indirect addressing mode and an assembler pseudo-op to define some 
data. 

In the Merlin assembler, there is a HEX command for directly entering 
the hex bytes of a data table. Program 10-1 is a sample program using the in
dexed address mode. 

185 



Chapter 10 

Program 1 0-1. Print Demo 1 

=FDED 

000300: A2 00 

000302: BD 13 03 
000305: 20 ED FD 
000308: E8 
000309: EO OB 
000308: 90 F5 =0302 
00030D: A9 SD 
00030F: 20 ED FD 

000312: 60 

000313: C8 ES EC EC 
000317: EF AO F4 ES 

ES F2 ES 
23 

I •••••••••••••••••••••••••••••••••••••••••••••• 
2 * SAMPLE 'PRINT' PROGRAM #l * 
3 * MERLIN ASSEMBLER * 
4 •••••••••••••••••••••••••••••••••••••••••••••• 

5 
6 
7 
8 COUT 
9 

ORG $300 

EQU $FDED 

10 BEGIN LDX #$00 
11 
12 WOP 
13 
14 
15 
16 
17 
18 
19 

LDA 
JSR 
INX 
CPX 
BCC 
LDA 
JSR 

20 DONE RTS 
21 

DATA,X 
COUT 

#11 
WOP 
#$SD 
COUT 

; START WITH X = 0 

; READ A BYTE OF DATA 
; PRINT ASCII CHARACTER 
;X=X+l 
; DONE WITH LIST 
; X < 11 MEANS NO ... 
; #$SD = CARRIAGE RETURN 
; PRINT IT 

22 DATA HEX C8,E5,EC,EC,EF,AO,F4,E8,E5,F2,E5 

24 * DATA = 'Hello there' 

--End Merlin-16 assembly, 30 bytes, Errors: 0 

The hex values in the data table are the ASCII values for each letter plus $80. 
This sets the high bit of each number, which is what the Apple expects to have 
the letter printed out properly when using COUT. 

This program uses the X register as both a counter for the number of 
characters to print and as a pointer to the place in the data block from which 
the next character will be read. COUT does not affect the X register, so you 
don't have the concern about it being altered, as we did with the accumulator 
and COUT in the last chapter. 

Line 10 starts the program by setting the X register to 0. The main loop 
then uses the indexed addressing mode to add the value of the X register to the 
address of the DATA table at $313. As Xis incremented after each character is 
printed, it's checked against the number of character to be printed-the number 
of characters in the string. Notice that line 15 compares against the decimal 
value 11 by not using the dollar sign in front of the number. The pound sign is 
still needed to show it's an immediate mode value. 

186 



Addressing Modes and Improved Printing 

Note that there are 11 characters in the string, but the use of 11 
in the CPX instruction is almost coincidence. Remember that the first 
character read from the table is done with X starting at 0. On this basis, 
when X has reached 10, it has reached the last character of the string. In 
the program, however, X is incremented before the check. Thus, X will 
be 11 after the last character has been printed. 

When writing programs you must keep all of the following in 
mind: the starting value of the indexed register, which test you want to 
use to determine the end of the loop (BCC, BEQ, BNE, BCS, or another 
test), and whether the test occurs before or after an increment or decre
ment has been done. 

After printing, the program ends with a carriage return. Remember that 
in assembly language you must usually do everything yourselves. This means 
you cannot assume an automatic carriage return at the end a printed string. 

You'll notice the data table is put at the end of the program. This is be
cause the computer, as such, can't tell the difference between data and a pro
gram. It's up to you to keep your data tables from being executed as a program. 
For a closer look, BLOAD the assembled file and list it from the Monitor . 

*300L 

l=m l=x l=LCbank (0/1) 

00/0300: A2 00 LDX #00 
00/0302: BD 13 03 LDA 0313,X 
00/0305: 20 ED FD JSR FDED 
00/0308: ES INX 
00/0309: EO OB CPX #08 
00/0308: 90 F5 BCC 0302 {-OB} 
00/030D: A9 SD LDA #SD 
00/030F: 20 ED FD JSR FDED 
00/0312: 60 RTS 
00/0313: C8 INV 
00/0314: ES EC SBC EC 
00/0316: EC EF AO CPX AOEF 
00/0319: F4 ES ES PEA E5E8 
00/031C: F2 ES SBC (ES) 

Notice that after the RTS at $312, the data table lists as instructions also. 
This is because the Monitor disassemble command (like the 65816 while run
ning a program) has no way of knowing that the bytes from $313 to $31D are 
ASCII text (or any other kind of data for that matter). 

187 



Chapter 10 

Now, while still in the Monitor, type 

300.320 

The screen will display 

*300.320 

00/0300: A2 00 BD 13 03 20 ED FD-".= .. m} 
00/0308: E8 EO OB 90 FS A9 8D 20-h' .. u). 
00/0310: ED FD 60 C8 ES EC EC EF-m}'Hello 
00/0318: AO F4 E8 ES F2 ES 06 DO-there.P 
00/0320: 24-$ 
• 

To the right of the hex values, you can see the ASCII equivalents. The 
Monitor dump command normally only shows as printable characters those 
bytes whose high bit is set (value is greater than $7F). At the beginning of the 
dump, the assembly language instructions do not list as any intelligible charac
ters. At the bottom of the group you can see the phrase Hello there. 

By using both the Monitor list and dump commands, you can sometimes 
tell whether the part of memory you're looking at has a program or data in it. 
Of course, certain opcodes (like $AD for LOX) can appear like ASCII text in a 
dump, and ASCII text (like $CB = INY) can appear like an instruction. It's also 
possible that the data stored in a program is not necessarily ASCII text. Perhaps _ 
it's the sizes of different objects, the quantity of an item, or some other infor
mation. In general, though, a little thoughtful examination can decipher many 
programs, even without the source code. 

Some assmblers, like the Merlin 8 /16, also have utilities to create actual 
text file source listings from object code in memory. Even these, though, require 
thoughtful use to yield intelligent results. 

Sample Print Program # 1 with APW 
Program 10-2 is the same print demo as Program 8-1 for the APW assembler. 

The main differences with the APW listing are the START, END, 
LONGA and LONGI directives, and the way that stored data is defined with 
the DC pseudo-op. START and END were discussed in Chapter 5. LONGA and 
LONGI are directives that tell the assembler not to create object code that ex
pects 16-bit operations. 

Sixteen-bit refers to an operating mode of the 65816 where most of the 
registers are two bytes (16 bits) in size, instead of the 8-bit size we've been 
looking at so far. Because Applesoft BASIC was written on older Apples that 
only had one-byte registers, we've been limiting the programs written thus far 
to this same mode. In the APW assembler, you must start a source listing with 

188 



Addressing Modes and Improved Printing 

Program 10-2. Print Demo 1 for the APW Assembler 

•••••••••••••••••••••••••••••••••••••••••• 
* SAMPLE 'PRINT' PROGRAM #l * 

* * APW ASSEMBLER 
•••••••••••••••••••••••••••••••••••••••••• 

KEEP D.PROGI 

ORG $300 

LONGA OFF 
LONGI OFF 

MAIN START 

COUT EQU $FDED 

BEGIN LDX #$00 ; START WITH X = 0 

LOOP LDA DATA,X ; READ A BYTE OF DATA 
JSR COUT ; PRINT ASCII CHARACTER 
INX ;X=X+l 
CPX #ll ; DONE WITH LIST 
BCC LOOP ; X < 11 MEANS NO ... 
LDA #$SD ; #$SD = CARRIAGE RETURN 
JSR COUT ; PRINT IT 

DONE RTS 

DATA DC H'CS ES EC EC EF AO F4 ES ES F2 ES' 

* DATA = 'Hello there' 

END 

LONGA OFF and LONG! OFF if you want the following accumulator and in
dex register (X and Y) instructions to be compatible with Applesoft BASIC. In 
just a few chapters, you'll see how to use the extended register size in other 
programs. For the time being, though, just start any APW source listing with 
LONGA OFF and LONG! OFF. 

APW doesn't have a HEX pseudo-op. Instead, it has the pseudo-op DC 
(for Defined Constant), which is then followed by a modifier to tell the assem
bler what kind of number you want to define. For our program, H stands for 
Hex and tells the assembler to use the values that follow to determine how 
many bytes of hex data to include in the data block. The single apostrophe is 
call a delimiter, and it is used to contain the list of data. 

189 



Chapter 10 

ASCII Data Pseudo-Ops 
You might now be thinking that it's not very convenient to have to look up the 
ASCII values of each character that you want to print. It's also not much fun to 
have to count how many characters there are in the string. Well, you're in luck. 
There is a way of writing your program to eliminate both these inconveniences. 
Program 10-3 is the new program. 

Program 10-3. Print Demo 2 
1 •••••••••••••••••••••••••••••••••••••••••• 

2 * SAMPLE 'PRINT' PROGRAM #2 * 
3 * MERLIN ASSEMBLER • 
4 ****************************************** 
5 
6 
7 

ORG $300 

=FDED 8 COUT EQU $FDED 
9 

000300:A2 00 10 BEGIN LOX #$00 
11 

000302: BO OE 03 12 LOOP 
000305: FO 06 =0300 13 
000307: 20 ED FD 14 
00030A:E8 15 
000308:80 F5 =0302 16 

17 

LOA 
BEQ 
JSR 
INX 
BRA 

00030D:60 18 DONE RTS 
19 

DATA,X 
DONE 
COUT 

LOOP 

; START WITH X = 0 

; READ A BYTE OF DATA 
; 0 = END OF STRING 
; PRINT ASCII CHARACTER 
;X=X+l 
; NEXT CHARACTER 

00030E: C8 ES EC EC 20 DATA ASC "Hello there",80,00 
000312: EF AO F4 ES ES F2 ES 80 
00031A:OO 

21 

--End Merlin-16 assembly, 27 bytes, Errors: 0 

This program has two improvements. First, the pseudo-op ASC (ASCII) 
is used to automatically translate the text we want to print into the proper hex 
bytes in memory. The Merlin 8/16 uses quotes (") to signify bytes with the 
high bit on, and it uses the apostrophe to signify bytes with the high bit clear. 
In addition, Merlin's ASC command lets us end the string of characters with 
any hex values, by just using commas. 

We'll use this first to include the carriage return as part of the string, and 
then to put a zero at the end of the string that we can detect with a BEQ 
instruction. 

You can see that, on line 13 of the program, when a character is loaded 

190 



Addressing Modes and Improved Printing 

with a value of zero, the BEQ will detect it and branch to DONE. This means 
that we don't have to check for a specific length of a string, which makes 
editing the source listing much easier if you decide to change a printed message 
in a program. 

If you're using the APW assembler, the equivalent source listing is shown 
in Program 10-4. 

Program 10-4. APW Print Demo 2 
****************************************** 
* SAMPLE 'PRINT' PROGRAM #2 * 

* * APW ASSEMBLER 
****************************************** 

MAIN 

COUT 

BEGIN 

LOOP 

DONE 

DATA 

KEEP 

ORG 

LONGA 
LONGI 

MSB 

START 

EQU 

LDX 

LDA 
BEQ 
JSR 
INX 
BRA 

RTS 

DC 

END 

D.PROG2 

$300 

OFF 
OFF 

ON 

$FDED 

#$00 ; START WITH X = 0 

DATA,X ; READ A BYTE OF DATA 
DONE ; 0 = END OF STRING 
COUT ; PRINT ASCII CHARACTER 

;X=X+l 
LOOP ; GET NEXT CHARACTER 

C'Hello there',H'SD 00' 

The APW assembler uses C (for Character) to designate text data in the 
DC command. You can also mix data types on one line, so you can put the 
H'SD 00' bytes at the end of the string. 

VTAB and HTAB in Assembly Language 
Being able to print something on the screen is nice-you know how to clear 
the screen (HOME = $FC58) and print a string (COUT = $FDFO)-but what 
about positioning the cursor to control where the string is printed? 

The easiest way, for now, is to use the Monitor routine VTAB for the 

191 



Chapter 10 

vertical position, and to directly control the horizontal cursor location, CH (for 
Cursor Horizontal = memory location $24). 

Program 10-5. Print Demo 3 

I ****************************************** 
2 * SAMPLE 'PRINT' PROGRAM #3 * 
3 * MERLIN ASSEMBLER * 
4 ****************************************** 

=FC58 
=FDED 
=FC22 
=0025 
=0024 

000300: 20 58 FC 
000303:A9 OB 
000305: 85 25 
000307: 20 22 FC 
00030A:A9 09 
00030C: 85 24 

00030E:A2 00 

5 
6 
7 
8 HOME 
9 COUT 

IO VI'AB 
11 CV 
12 CH 
13 
14 
15 BEGIN 
16 
17 
18 
19 
20 
21 
22 
23 

000310: BD IC 03 24 LOOP 
000313: FO 06 =0318 25 
000315: 20 ED FD 26 
000318:ES 27 
000319: 80 FS =0310 28 

29 

ORG $300 

EQU 
EQU 
EQU 
EQU 
EQU 

JSR 
LDA 
STA 
JSR 
LDA 
STA 

$FC58 
$FDED 
$FC22 
$25 
$24 

HOME 
#11 
CV 
VI'AB 
#9 
CH 

LDX #$00 

LDA 
BEQ 
JSR 
INX 
BRA 

DATA,X 
DONE 
COUT 

LOOP 

000318:60 30 DONE RTS 
31 

; VI'AB TO CV 
; VERTICAL POSITION 
; HORIZ. CURSOR 

; CURSOR VERT. POSN. 
; VI'AB 12 
; HTAB 10 
; HORIZ. POSITION 

; START WITH X = 0 

; READ A BYTE OF DATA 
; 0 = END OF STRING 
; PRINT ASCII CHARACTER 
;X=X+l 
; NEXT CHARACTER 

00031C:C8 ES EC EC 32 DATA ASC "Hello there",8D,OO 
000320: EF AO F4 ES ES F2 ES SD 
000328:00 

33 

--End Merlin-16 assembly, 41 bytes, Errors: 0 

192 



Addressing Modes and Improved Printing 

As a working example, let's first create a program that will position the 
cursor somewhere on the screen and print a string starting at that position. 
Here's an equivalent Applesoft BASIC program: 

10 HOME 
20 VTAB 12 
30 HTAB 10 
40 PRINT "THIS IS A TEST" 
50 END 

Type in the third Print demo, Program 10-5. 
This program is fairly equivalent to the earlier one, except that it first 

clears the screen with a JSR HOME. Then it stores the desired vertical cursor 
position in the part of memory that Applesoft BASIC uses for the cursor's verti
cal position, CV (for Cursor Vertical = $25). To put the cursor in the proper 
vertical position, we need to do a JSR VTAB. VTAB ($FC22) is a routine that 
uses the value stored in CV and puts the cursor at the corresponding vertical 
position on the screen. CV counts from O to 23 (as opposed to Applesoft BA
SIC's 1 to 24), so if we want the twelfth line, we must store 11 in CV. 

Finally, a 9 is stored in CH to do the equivalent of HTAB 10. CH also 
counts starting at 0, so we must use a value that's one less than the normal po
sition value. 

From there, the rest of the program is identical to SAMPLE PRINT PRO
GRAM #2. 

Indirect Addressing 
The indirect addressing mode is used when you want to access one memory lo
cation depending on what you've stored in a different location, or when the 
range of data is greater than the 256-byte range we can access by incrementing 
the X register. 

Let's consider the problem of clearing the screen. In this case, we want 
to put a space character in every memory location in the screen block 
($400-$7FF). One way of doing this is shown in Program 10-6. 

First, locations $06 and $07 are initializing to hold the base address of 
$400, the address of the first byte of the screen memory area. The label PTR is 
used for location $06. Line 11 shows how the assembler can use STA PTR + 1 
to create STA $07. Doing it this way helps the source listing remind us that lo
cations $06,07 form a pair. The ASCII value for A is then put in the accumu
lator, and Y is initialized to $00 to begin the upcoming loop. 

Then we enter a loop which runs the Y register from $00 to $FF. Since 
this is added to the base address in $06,07 ($400), this stores an $AO (a space) 

193 



Chapter 10 

in every location from $400 to $4FF. When Y is incremented from $FF, it goes 
back to $00, a move that's detected by the BNE on line 22. At zero, it falls 
through, and location $07 is incremented from $04 to $05, giving a new base 
address of $500. 

This whole process is repeated until location $07 reaches a value of $08 
(corresponding to a base address of $800), at which point we return from the 
routine. Notice that we don't have to reinitialize the Y register to zero for each 
new pass through the loop. This is because the BNE test guarantees that the Y 
register will be zero when the new pass is started. 

Program 10-6. Clear Screen Demo 1 A 

=0006 

000300: A9 04 
000302: 85 07 
000304: A9 00 
000306: 85 06 

000308: A9 AO 
00030A: AO 00 

00030C: 91 06 
00030E: C8 
00030F: DO FB = 030C 

000311: E6 07 
000313: AS 07 
000315: C9 08 
000317: 90 EF =0308 

000319: 60 

1 •••••••••••••••••••••••••••••••••••••••••••••• 

2 * SCREEN CLEAR PROGRAM #lA * 
3 • MERLIN ASSEMBLER • 
4 •••••••••••••••••••••••••••••••••••••••••••••• 

5 
6 
7 
8 PTR 
9 

10 ENTRY 
11 
12 
13 
14 

ORG $300 

EQU $06 

LOA #$04 
STA PTR+l 
LOA #$00 
STA PTR 

15 • SETS PTR (6,7) TO $400 
16 
17 START LOA #$AO 
18 LOY #$00 
19 
20 WOP 
21 
22 
23 
24 NEXT 
25 
26 
27 
28 
29 EXIT 
30 
31 

STA (PTR),Y 
INY 
BNE WOP 

INC PTR+l 
LOA PTR+l 
CMP #$08 
BCC START 

RTS 

; $06,07 

; HIGH-ORDER BYTE OF $400 
; SET HIGH BYTE OF PTR 
; WW-ORDER BYTE OF $400 
; SET WW BYTE OF PTR 

; ASCII FOR 'SPACE' CHARACTER 

; PUT 'SPACE' IN MEMORY 
;Y=Y+l 
; BRANCH WHILEY = $1 TO $FF 

; PTR GOES FROM $400 TO $500, ETC. 

; STOP WHEN PTR = $800 
; Nar THERE YET 

··End Merlin-16 assembly, 26 bytes, Errors: 0 

194 



Addressing Modes and Improved Printing 

Clear to a Character 
By changing the value of the #$AO to some other character, you can clear the 
screen to any character you wish. In fact, you can get the value from the key
board as we've done in earlier programs. 

Let's take this opportunity to show some new assembler tricks. Program 
10-7 is the revised version. 

The first change to notice is that the beginning of the screen memory 
area has been given a label, SCRN (line 10). In general, it's a good idea to 
avoid specific addresses in the body of your programs. By assigning a label, 
you accomplish two things. First, if you ever want to change the memory area 
affected, you only need to change one line, rather than many individual uses of 
the address. Second, you make it possible for the assembler to help you dis
cover typing errors. 

It works like this: Suppose you used the address $313 in a program in a 
dozen different places, and in one of those uses you accidentally typed $314. 
The assembler has no way of knowing this is not what you intended, and it 
could take a long time to track down the mistake when debugging your pro
gram. On the other hand, if you assign $313 = LABEL, and then somewhere 
accidentally type LABLE, the assembler will automatically generate a Label Not 
Defined (or similar) error, which you can quickly remedy. 

Since the value of SCRN could now be almost anything, we can't use 
the LDA #$04 and LDA #$00 for the high and low bytes. Fortunately, the as
sembler will do the calculation for us. By using the < and > symbols after the 
pound sign and before the label, the assembler will automatically calculate the 
high- and low-order bytes of the address defined by SCRN, and it will use 
them when assembling the line (see lines 14 and 16). The low-order byte is in
dicated by<; the high-order byte is indicated by>. 

There's another change you might not see at first glance. Notice that 
lines 16 and 17 now use LDY, STY. As long as you know that SCRN will start 
at a page boundary ($400, $500, and so forth), you also know that the low-order 
byte will always be zero. You can use this fact to save an instruction to set the 
Y register to zero. Since it makes no difference which register is used on line 16 
and 17 to set up PTR, we can take care of the Y register at the same time. 

We've also added a check for the Escape key, so you can exit the pro
gram when you wish. 

If the Escape key is not pressed, the value is then temporarily held in 
the variable CHAR so that it can be retrieved each time after incrementing PTR 
in the NEXT section. 

With the screen display in the 40-column mode, BLOAD this program 
and run it from BASIC with a CALL 768. Each keypress will clear the screen 

195 



Chapter 10 

Program 10-7. Clear Screen Demo 1B 

l •••••••••••••••••••••••••••••••••••••••••••••• 
2 * SCREEN CLEAR PROGRAM #lB * 
3 • MERLIN ASSEMBLER • 
4 ********************************************** 
5 
6 ORG $300 
7 

=0006 8 PTR EQU $06 ; PTR = $06,07 
=0008 9 CHAR EQU $08 
=0400 10 SCRN EQU $400 
=COOO 11 KYBD EQU $COOO 
=COlO 12 STROBE EQU $C010 

13 
000300: A9 04 14 ENTRY LDA #>SCRN ; HIGH-ORDER BYTE OF $400 
000302: 85 07 15 STA PTR+l ; SET HIGH BYTE OF PTR 
000304: AO 00 16 LDY #<SCRN ; WW-ORDER BYTE OF $400 AND Y = 0 
000306: 84 06 17 STY PTR ; SET WW BYTE OF PTR 

18 
19 * SETS PTR (6,7) TO $400 
20 

000308: AD 00 co 21 READ LDA KYBD ; GET KYBD CHARACTER VALUE 
00030B: C9 80 22 CMP #$80 ; KEYPRESS 
00030D: 90 F9 =0308 23 BCC READ ; NO, THEN TRY AGAIN. 
00030F: 8D 10 co 24 STA STROBE ; CLEAR KYBD STROBE. 

25 
000312: C9 98 26 CHECK CMP #$9B ; ESCAPE 
000314: FO 13 =0329 27 BEQ DONE ; YES 

28 
000316: 85 08 29 STA CHAR ; SAVE CHARACTER VALUE 

30 
000318: AS 08 31 CLEAR LDA CHAR ; GET CHAR TO 'CLEAR' TO 

32 
00031A: 91 06 33 WOP STA (PTR),Y ; PUT CHAR IN MEMORY 
00031C: CS 34 INY ;Y=Y+l 
00031D: DO FB =031A 35 BNE WOP ; BRANCH WHILEY= $1 TO $FF 

36 
00031F: E6 07 37 NEXT INC PTR+l ; PTR GOES FROM $400 TO $500, ETC. 
000321: AS 07 38 LDA PTR+l ; GET VALUE INTO ACC. 
000323: C9 08 39 CMP #$08 ; STOP WHEN PTR = $800 
000325: 90 Fl =0318 40 BCC CLEAR ; NU!' THERE YET 

41 
000327: 80 D7 =0300 42 AGAIN BRA ENTRY ; GO BACK FOR MORE 

43 
000329: 60 44 DONE RTS ; ALL DONE! 

45 

--End Merlin-16 assembly, 43 bytes, Errors: 0 

196 



Addressing Modes and Improved Printing 

to a different character. The screen should also clear to the same character as 
the key you press, including space bar and special characters. This program 
shows you how fast machine language is. Clearing the screen requires over 
1000 different locations to be set to the given value. In Applesoft BASIC, this 
would be quite slow by comparison. Here you'll find that the screen will clear 
to different characters just as fast as you can type them. 

An interesting variation on this is to enter the graphics mode by typing 
in GR before calling the routine. Then the screen will clear to various colors 
and different line patterns. 

See what other variations you can make on this, try modifying the pro
gram to clear the hi-res screen ($2000-$3FFF). 

Using Indirect Indexed Addressing for a Better Screen Clear 
If you multiply the number of lines on a 40-column screen (24) by the number 
of characters ( 40), you get 960 (24 • 40 = 960). This is a smaller number than 
the actual memory allocated to the screen memory, $400 to $7FF = $400 bytes 
= 1024. 

It turns out that the Apple Iles uses an unusual system of assigning each 
character position on the screen to a byte of memory. You might think it would 
have been most logical to have the first 40 bytes of the first line correspond to 
the first 40 bytes of memory, and so on, but that's not the way it works. It 
turns out that such a linear calculation would take much longer, and would be 
harder to implement in the hardware circuitry of the computer, than the 
method that is actually used. At first look, the system seems to be rather 
chaotic: 

Screen Line 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Address Range: Hex 
$400-$427 
$480-$4A7 
$500-$527 
$580-$5A7 
$600-$627 
$680-$6A7 
$700-$727 
$780-$7A7 
$428-$44F 
$4A8-$4CF 
$528-$54F 
$5A8-$5CF 
$628-$64F 
$6A8-$6CF 
$728-$74F 

Address Range: Decimal 
1024-1063 
1152-1191 
1280-1319 
1408-1447 
1536-1575 
1664-1703 
1792-1831 
1920-1959 
1064-1103 
1192-1231 
1320-1359 
1448-1487 
1576-1615 
1704-1743 
1832-1871 

197 



Chapter 10 

Screen Line Address Range: Hex 

16 $7A8-$7CF 
17 $450-$477 
18 $4D0-$4F7 
19 $550-$577 
20 $5D0-$5F7 
21 $650-$677 
22 $6D0-$6F7 
23 $750-$777 
24 $7D0-$7F7 

Address Range: Decimal 

1960-1999 
1104-1143 
1232-1271 
1360-1399 
1488-1527 
1616-1655 
1744-1783 
1872-1911 
2000-2039 

As you look at the list, a certain pattern does emerge, but it is not neces
sary to go into any detail about the actual mechanics of the calculations. Suffice 
it to say that determining these addresses is precisely the purpose of the VTAB 
routine used in Program 10-3. 

As you study the table, you'll notice that the last eight bytes of memory 
used by the last eight screen lines are not used (64 bytes total). For example, 
the range of bytes from $478 to $47F (screen line 17) are never used in the 
screen display itself. These gaps in memory usage are called "screen holes," 
and they have been reserved for use by hardware devices assigned to each slot. 
The assignments are as follows: 

Slot Number 
0 1 2 3 4 5 6 7 

$478 $479 $47 A $47B $47C $47D $47E $47F 
$4F8 $4F9 $4FA $4FB $4FC $4FD $4FE $4FF 
$578 $579 $57 A $578 $57C $570 $57E $57F 
$5F8 $5F9 $5FA $5FB $5FC $5FD $5FE $5FF 
$678 $679 $67 A $67B $67C $67D $67E $67F 
$6F8 $6F9 $6FA $6FB $6FC $6FD $6FE $6FF 
$778 $779 $77 A $778 $77C $770 $77E $77F 
$7F8 $7F9 $7FA $7FB $7FC $7FD $7FE $7FF 

Since there really is no slot O on the Apple IlGS, the first group of bytes 
can be used by any slot. This means that a card using these locations should 
not assume they will be maintained if another card also has to use them. 

Generally speaking, it's a good idea to never use the first group. The 
groups for slots 1 through 7 are considered private memory, and cards may use 
these locations to store any required data. For the printer and communications 
ports (slots 1 and 2), this can include baud rate, parity, or other information. 
The 80-column firmware for example, which always looks like it's in slot 3, 
stores its current horizontal cursor position in location $57B. 

If you write your own programs that manipulate the horizontal cursor 

198 



Addressing Modes and Improved Printing 

position, as does Program 10-3, you must control the contents of $57B (CHSO 
is the common assembly label) in addition to $24 (CH40). 

The mouse firmware make extensive use of the screen holes for storing 
the current x,y position, the clamping values, and more. 

You may wonder why the slot/ address assignments didn't group all 
bytes for a given slot together, for example, $4F8 to 4FF for slot 1. The reason 
was to make indexed addressing easier. A printer card, for example, could be 
placed in any slot. 

TAY 
LDA 
STA 
LDA 
STA 
LDA 
STA 
LDA 
STA 

$478,Y 
$4F8,Y 
$578,Y 
$5F8,Y 
$678,Y 
$6F8,Y 
$778,Y 
$7F8,Y 

; PUT swr # IN Y (1-7) 
; GET A BYTE 
; PUT IT IN ANOTHER SCREEN HOLE 
; AND SO ON. 

Based on the above, you may have noticed that Program 10-6 cleared all 
the invisible screen holes-not a wise thing to do. If you run the program with 
DOS 3.3 active and then do a CATAWG, you'll hear the disk drive grind as it 
starts back up and discovers some of it's information stored in the screen holes 
has been altered. 

A better screen clear program uses the VTAB routine and indirect in
dexed addressing to clear just those bytes you see on the screen. Program 10-8 
is the improved listing. 

Notice that the VTAB routine sets up BASL (BASe address Low byte) 
with the address of the beginning of the line. We then use indirect indexed ad
dressing to store the character at each character position on a given line. 

There are two main loops in the program. Line 39 checks the Y Register 
to keep it in the range of O to 39 for the horizontal character loop. Line 44 
checks to see if the current line counter has reached the bottom of the screen. 
Remember that the horizontal and vertical counts go from Oto 39 and from 0 
to 23, respectively. BCC is thus the proper test to use, since this will branch as 
long as each counter is less than its prescribed limit. 

199 



Chapter 10 

Program 10-8. Screen Clear Demo 1 C 

1 •••••••••••••••••••••••••••••••••••••••••••••• 
2 • SCREEN CLEAR PROGRAM #IC * 
3 • MERLIN ASSEMBLER • 
4 ********************************************** 
5 
6 ORG $300 
7 

=0006 8 LINE EQU $06 ; WHAT LINE WE'RE ON 
=0008 9 CHAR EQU $08 
=COOO 10 KYBD EQU $COOO 
=COlO 11 STROBE EQU $C010 

12 
=0025 13 CV EQU $25 ; VERTICAL CURSOR POSN 
=FC22 14 VTAB EQU $FC22 
=0028 15 BASL EQU $28 ; $28,29 = BASE ADDRESS 

16 
17 

000300: AD 00 co 18 READ LDA KYBD ; GET KYBD CHARACTER VALUE 
000303: C9 80 19 CMP #$80 ; KEYPRESS? 
000305: 90 F9 =0300 20 BCC READ ; NO, THEN TRY AGAIN. 
000307: SD 10 co 21 STA STROBE ; CLEAR KYBD STROBE. 

22 
00030A: C9 98 23 CHECK CMP #$98 ; ESCAPE? 
00030C: FO 20 =032E 24 BEQ DONE ; YES 

25 
00030E: 85 08 26 STA CHAR ; SAVE CHARACTER VALUE 

27 
000310: 64 06 28 INIT STZ LINE ; SET LINE= 0 

29 
000312: AS 06 30 FINDV LDA LINE ; GET LINE VALUE 
000314: 85 25 31 STA CV ; VERTICAL CURSOR POSN 
000316: 20 22 FC 32 JSR VTAB ; CALCULATE BASE ADDRESS 

33 
000319: AS 08 34 CLEAR LDA CHAR ; GET CHAR TO 'CLEAR' TO 
000318: AO 00 35 LDY #$00 ; ZERO Y REGISTER 

36 
00031D: 91 28 37 WOP STA (BASL),Y ; PUT CHAR IN MEMORY 
00031F: C8 38 INV ;Y=Y+l 
000320: co 28 39 CPY #40 ; END OF LINE? 
000322: 90 F9 =03ID 40 BCC WOP ; NOPE: NEXT POSITION 

41 
000324: E6 06 42 NXTLN INC LINE ; LINE = LINE + 1 
000326: AS 06 43 LDA LINE 
000328: C9 18 44 CMP #24 ; DONE YET? 
00032A: 90 E6 =0312 45 BCC FINDV ; NOPE 

46 
00032C: 80 D2 =0300 47 AGAIN BRA READ ; GET ANOTHER CHARACTER! 

48 
00032E: 60 49 DONE RTS ; ALL DONE! 

50 
00032F: AB 51 CHK ; CHECKSUM FOR LISTING 

--End Merlin-16 assembly, 48 bytes, Errors: 0 
200 



Addressing Modes and Improved Printing 

Command Processing with Indexed Indirect Addressing 
The final example for this chapter is a demonstration of how indexed indirect 
addressing can be used to easily process a command. The principle behind the 
operation is to use the command as the X register index into a table of entry 
points to the desired routines. 

In the early example of indexed indirect addressing, a direct page ad
dress was used as the base address for a LDA instruction. For the JSR and JMP 
instructions, a complete 2-byte address can be used, like this: 

JSR ($0300,X) 

or 

JMP ($0300,X) 

What is needed now is a way to store, in the program itself, the ad
dresses of the routines that we want to call. The program can then load the X 
register with the value for a command and jump directly to the subroutine. 
Program 10-9 is an example. 

The first thing to notice is the use of a new assembler pseudo-op, DA 
(Defined Address) on lines 44-46. This instruction tells the assembler to create 
a pair of bytes in memory, as part of the object file, that have values equal to 
the label specified in the instruction. On line 44, the statement DA CMD1 tells 
the assembler to first evaluate the label CMD1, which in this assembly is equal 
to $32E (see line 48). The assembler then stores the address, low-order byte 
first, at the beginning of the data table, location $328. The next two DA state
ments store the address for CMD2 and CMD3. You can use the DA instruction 
in a program whenever you want to create two bytes of data that form a 
pointer to somewhere else in memory. 

Now, let's look at the program as a whole. After first clearing the screen, 
the program gets a keypress and then checks for the Escape key. Lines 26-29 
then check to see if the key is in the acceptable range-this program accepts 
keys 1, 2, and 3. The first test on lines 26, 27 compare against the value for 1. 
A BCC instruction will branch back if the value is less than 1. 

Because the next test will be done with a BCS instruction, which tests for 
greater than or equal to, we need to compare with a value one larger than the 
last allowable value. Lines 28, 29 do this test. 

At this point the accumulator holds the value $Bl, $B2, or $B3. This 
must first be converted to a command number of 0, 1, or 2. Lines 31-33 sub
tract #$Bl to get a result in this range. The table is made up of two-byte 

201 



Chapter 10 

groups; thus the proper entry points are stored at TABLE, TABLE+2 and TA
BLE+4 ($328, $32A and $32C). This means that the X register must be loaded 
with 0, 2, or 4 for the indirect JSR to work properly. 

Lines 35,36 add the value for CMD to itself (equivalent to multiplying 
by 2), and then put this value in the X register. Line 40 then does the actual in
direct JSR to the appropriate routine, which prints the characters A, B, or C, de
pending on which number key is pressed. 

This may seem a little more complicated than the alternative method of 
a CMP and direct JSR, but for large numbers of commands you may find this 
method of using the indirect JSR more efficient. 

APW user please note. In the APW assembler, lines 44-46 used the de
fined constant pseudo-op, and should look like this: 

DC 12'CMD1' 
DC 12'CMD2' 
DC 12'CMD3' 

Program 10-9. Command Processor Example 

=COOO 
=COlO 

=FC58 
=FDED 

=0006 

000300: 20 58 FC 

000303: AD 00 CO 
000306:C9 80 
000308: 90 F9 = 0303 
00030A: 80 IO CO 

00030D:C9 98 

1 ****************************************** 
2 * COMMAND PROCESSOR EXAMPLE * 
3 * MERLIN ASSEMBLER * 
4 ****************************************** 
5 
6 ORG 
7 
8 KYBD EQU 
9 STROBE EQU 

10 
11 HOME EQU 
12 COUT EQU 
13 
14 CMD EQU 
15 
16 ENTRY JSR 
17 
18 READ LOA 
19 CMP 
20 BCC 
21 STA 
22 
23 CHECK CMP 

$300 

$COOO 
$C010 

$FC58 
$FDED 

$06 

HOME 

KYBD 
#$80 
READ 
STROBE 

#$98 

; CLEAR SCREEN 

; GET KYBD CHARACTER VALUE 
; KEYPRESS? 
; NO, THEN TRY AGAIN. 
; CLEAR KYBD STROBE. 

; ESCAPE? 
00030F: FO 2F = 0340 24 BEQ DONE ; YES 

25 
00031 I: C9 Bl 26 CMP 
000313: 90 EE =0303 27 BCC 
000315: C9 84 28 CMP 

#"I" 
READ 
#"4" 

202 

; 1ST ALWWABLE CHARACTER 
; NOPE TRY AGAIN 
; LAST CHAR + I 



Addressing Modes and Improved Printing 

000317: BO EA =0303 29 BCS READ 
30 

000319:38 31 SEC ; GET READY TO SUBTRACT 
00031A:E9 Bl 32 SBC #$81 ; VALUE FOR 'I' 
0003IC: 85 06 33 STA CMD ; SAVE CMD VALUE 

34 
00031E: 18 35 CLC 
00031F: 65 06 36 ADC CMD ; ACC = 2 * CMD VALUE 

37 
000321:AA 38 TAX ; PUT CMD IN X REGISTER 

39 
000322: FC 28 03 40 PROCESS JSR (TABLE,X) ; GO TO APPROPRIATE ROUTINE 

41 
000325: 4C 03 03 42 JMP READ ; BACK FOR MORE! 

43 
000328:2E 03 44 TABLE DA CMDI ; WC OF ROUTINE #I 
00032A: 34 03 45 DA CMD2 ; WC OF ROUTINE #2 
00032C: 3A 03 46 DA CMD3 ; WC OF ROUTINE #3 

47 
00032E: A9 Cl 48 CMDI LOA #"A" 
000330: 20 ED FD 49 JSR COUT 
000333:60 50 RTS 

51 
000334: A9 C2 52 CMD2 LOA #"B" 
000336: 20 ED FD 53 JSR COUT 
000339:60 54 RTS 

55 
00033A: A9 C3 56 CMD3 LOA #"C" 
00033C: 20 ED FD 57 JSR COUT 
00033F:60 58 RTS 

59 
000340:60 60 DONE RTS ; ALL DONE! 

61 
000341: EB 62 CHK ; CHECKSUM FOR LISTING 

--End Merlin-16 assembly, 66 bytes, Errors: 0 

203 









Chapter 11 

Data Storage and 
Program Control 

This chapter starts with a question: When your program does a JSR to some 
other part of memory, how does the 65816 microprocessor keeps track of where 
to return? 

It's possible that there is some as-yet-unmentioned register in the 65816 
itself that could hold the returning address, but suppose your called subroutine 
does a JSR itself? With room for only one stored address, the microprocessor 
register would already be busy keeping track of the first address, and things 
would come to a screeching halt. 

The Stack 
The answer is to set aside an area of RAM in the computer itself to store a 
large number of temporary values. This area is called the stack, and, for 
Applesoft BASIC and simple related routines, it occupies all of page one 
($100-$1FF) of memory. The area can actually be reassigned anywhere in the 
first 64K of memory (Bank 0), but you'll see how to do that a little later. 

The area is called the stack because it acts something like a physical 
stack of items. If you put three items in a stack, one at a time, you can't get 
back to the first item until you remove the last two placed there. The stack in 
the Apple is the same way, and is often refered to as a last in, first out stack 
(LIFO). If you place the value 1, then 2, then 3 on the stack in memory, you 
get the values back in the reverse order, 3, 2, 1. 

You've already used the stack in a program by using the JSR instruction. 
When the 65816 encounters a JSR in a program, it first determines the address 
of the instruction which follows JSR. This address is then put on the stack for 
temporary storage, and the JSR to the target address is done. When the RTS at 
the end of the subroutine is reached, the 65816 takes the stored return address 
off the stack and goes back to executing the program at the instruction which 
follows the JSR. 

The stack can be used for more than maintaining JSRs however. You 

207 



Chapter 11 

can put the contents of any of the A, X, or Y registers on the stack with the ap
propriate push command: PHA (PusH Accumulator), PHX (PusH X), and PHY 
(PusH Y). These place a copy of whatever value is in the referenced register 
onto the stack. Whether this consists of one or two bytes depends on the condi
tion of the e, m, and x bits, which control register sizes. 

To get a value off the stack, you use the corresponding pull instructions: 
PLA (Pull Accumulator), PLX (Pull X), and PLY (Pull Y). 

As with the push instructions, the number of bytes removed from the 
stack also depend on the settings of the e, m, and x bits. 

You don't have to use the same register to remove data from the stack as 
you used to put it there. The only crucial requirement is that the number of 
bytes put on the stack be the same as the number removed. Here's a sample 
program that uses the stack: 

LDA #"A" ; VALUE FOR "A" IN ACCUMULATOR. 
PHA ; PUT VALUE (ONE BYTE) ON STACK. 
PLX ; RETREIVE VALUE INTO X REGISTER. 
STX $SBC ; PUT IT ON SCREEN. 

The program begins by loading the accumulator with the single-byte 
ASCII value for the letter A. This is then pushed onto the stack. Next, PLX 
pulls a single byte from the stack, and puts it in the X register. It's then stored 
in screen memory to make the byte visible. 

Keep It Balanced 
In using the stack, it's of critical importance that you keep all pushes and pulls 
balanced. That is, if your routine pushes two bytes onto the stack, your routine 
should also remove those same two bytes before your final RTS. All information in 
the stack is organized only by its position there. There are no labels or other 
identifiers. When Applesoft BASIC does a CALL to a routine, the return ad
dress for your BASIC program is put on the stack. If your program looked like 
these three lines, the computer will probably crash or lock up when you run it: 

LDA #"A" ; VALUE FOR "A" 
PHA ; PUT ONE BYTE ON STACK 
RTS ; RETURN TO WHERE? 

This is because you have left a byte on the stack that the computer will 
use as a return address. Remember it's expecting that the last two bytes on the 
stack are a return address from a JSR somewhere. You've now added a byte of 
your own, and have not removed it. Likewise, if you do a PHA with m = 1 (8-bit 
mode = 1 byte pushed on stack), and then later you do a PLA with m = 0 (16-bit 
mode = 2 bytes removed from stack), your final RTS won't work because part of the 

208 



Data Storage and Program Control 

return address will be missing. Like left and right parentheses in a BASIC pro
gram, it's up to you to see that all pushes and pulls in a machine language pro
gram are balanced. 

The Stack Pointer 
The 65816 uses a pointer, called the stack pointer, to keep track of data cur
rently on the stack. This pointer is abbreviated S (Stack) and is another register 
within the 65816 itself (see Figure 11-1). 

Figure 11-1. 65816 Microprocessor Model 

Accumulator B A 

X Register X 

Y Register y 

Processor Status p 

Stack Pointer s 

Prog. Bank Reg. (PBR) Program Counter (PC) 

When the Monitor displays the registers following a BRK, or with Con
trol-E, you can see the value of the stack pointer: 

A=OOEF X=OOOO Y=OOOO S=OIDD D=OOOO P=BO 
8=00 K=OO M=OC Q=80 L=l m=l x=l e=l 

For a routine called from Applesoft BASIC, the 65816 has the e bit set to 
emulation (e = 1), and the stack is confined to page one ($100-lFF). This is 
done by forcing the high byte of the stack pointer to $01, and letting the low 
byte range from $00 to $FF. 

In the native mode, however, the high byte can have any value in the 
range of $00 to $FF also, which means the stack can be of any size and can be 
located anywhere in the first 64K (Bank 0) of memory. 

209 



Chapter 11 

For efficiency purposes, the stack is operated by building down in mem
ory, with the stack pointer indicating the next available memory location. For 
example, with nothing on the stack in the emulation mode (such as Applesoft 
BASIC routines), a diagram of the the stack would look like this: 

$1FF: I $?? I- S = $01FF 

This shows nothing on the stack, and S is set to $ lFF. At this point, the actual 
contents of $1FF can be anything. 

Suppose now that the following program were executed: 

8000: 20 58 FC JSR $FC58 
8003: AS Cl LDA #Cl 
8005: SD BC 05 STA $SBC 
8008: 60 RTS 

At the point at which the program does the JSR to $FC58, for example, the 
stack would look like this: 

$1FF: 

$1FE: 

$1FD: 

$80 

$02 

$?? 

High Byte = $80 

Low Byte = $02 ($8002) 

-- S = $01FD 

Note that the address for the instruction following the JSR $FC58, $8003 
minus one ($8002) has been placed on the stack. When the microprocessor re
sumes execution with the next RTS, it adds one to the address on the stack, 
and proceeds from there . This may not seem to be the cleanest possible system, 
but is presumably a result of the original processor design. 

Using JSL and JSR. You'll recall from Chapter 3 that there is also an
other form of the JSR instruction that will jump to any location in memory, JSL 
(Jump Subroutine Long). Because JSR has only a 2-byte operand, it can only 
jump to an address in the current bank of memory. JSL is a four-byte instruc
tion, and it looks like this in a program: 

JSL $ElA55C 

This tells the microprocessor to go to the subroutine located at address 
$E1A55C. It can also be expressed as location $A55C in bank $El. A routine 
called by a JSL must be terminated by a RTL (ReTurn from subroutine Long). 

Whether you use a JSL or a JSR affects how many bytes are stored, and 
later retrieved, from the stack. For a JSL, three bytes are pushed onto the stack; 
a JSR pushes two bytes onto the stack. An RTL removes three; RTS removes two. 

210 



Data Storage and Program Control 

As an example, consider this program, running in Bank 0: 

00/8000: 22 SC AS El JSL $EIASSC 
00/8004: A9 Cl LOA #Cl 

The stack will look like this while the routine at $E1A55C is being executed: 

$1FF: $00 Bank= $00 

$1FE: $80 High Byte = $80 

$1FD: $03 Low Byte = $03 ($008003) 

$1FC: $?? - S = $01FD 

Setting the stack pointer. There are a number of commands that can be 
used to set the stack pointer, or to transfer its value to another register for 
examination or manipulation. These are as follows: 

TSX Transfer Stack pointer to X register. 
TXS Transfer X register to Stack pointer. 
TSC Transfer Stack pointer to C (full) Accumulator. 
TCS Transfer C (full) Accumulator to Stack pointer. 

Basically, your choices are to use the Accumulator or the X register to 
either receive from or send a value to the Stack pointer. For example, if, for 
some reason you wanted to set the Stack pointer to $1300, the following pro
gram would do it: 

CLC 
XCE 
SEP #$20 
LOA #$1300 
res 

; SET NATIVE MODE IF NOT THERE ALREADY. 
; 16-BIT ACCUMULATOR 
; ACC (C) = $1300 
; SETS = $1300 

This program assumes it is starting in emulation (e= 1) mode, as would 
be the case if it were called from Applesoft BASIC. It's not really a very realis
tic example, since there's not much point to moving the stack for a routine 
called from Applesoft BASIC, but it shows that such a feat is possible. 
You could also have used the TXS command to set S to $ 1300 if desired. 

Stack Relative Addressing 
With just the push and pull instructions, once a byte was on the stack, you 
couldn't access it until any bytes on top of it were removed. Fortunately, there 
is an addressing mode specifically for the stack that lets you retrieve any of the 
last 256 bytes pushed on the stack. It's called the stack relative addressing 

211 



Chapter 11 

mode, and looks like this: 

BEGIN LDA #$0100 ; 16-BIT MODE 
PHA ; PUT IT ON STACK 
LDA #$0200 ; ANOfHER VALUE 
PHA ; PUT IT ON STACK 

GET LDA l,S ; ACC WILL = $0200 
LDA 3,S ; ACC WILL = $0100 

In this addressing mode, you can retrieve a value off the stack by indi
cating the offset from the current stack pointer that you want to retrieve the 
data from. There are two things in particular to notice here. 

The first is that the first byte stored on the stack is at relative position 
one. That is because the stack pointer itself (relative position zero) always 
points to the next available byte, not the last stored. 

Second, remember to use the proper offset value. Because each push in 
the sample program was in the 16-bit mode, two bytes were put on the stack 
for each PHA. Therefore, the second LDA used an offset of 3 to get the second 
pair of bytes. 

Stack Relative Indirect Indexed Addressing 
There is an even more interesting addressing mode variation, called stack rela
tive indirect indexed. It looks like this: 

LDY #2 
LDA (l,S),Y 

This tells the 65816 to first go to the stack and get the address it finds at 
the first position on the stack (1,S). Then, it uses this as an indirect pointer to 
an address to which the offset in the Y register is added. This may seem rather 
convoluted, but it comes in very handy for following a JSR with data to be 
handled by a subroutine. 

Program 11-1 demonstrates how to create a subroutine that prints what
ever string follows the JSR to the routine. It works by first using the stack 
relative-indirect indexed mode. Because the return address for the JSR is on the 
stack when the print routine is called, that address can be used as a base ad
dress from which to read the characters that follow. The print loop itself is 
based on the print program from the last chapter. When the $00 at the end of 
the string is encountered, the print loop is terminated. 

At this point, an RTS in the print routine would return to the byte right 
after the JSR, namely the beginning of the string just printed. To skip over this 
data, lines 36-43 add the length of the string just printed to the value for the 
return address. The result is then replaced on the stack so that when the RTS at 

212 



Data Storage and Program Control 

DONE is executed, program control resumes at PROGRAM, the next instruc
tion after the end of the printed string. 

This technique is not limited to just print routines. You can use this 
method to pass any kind of data to a subroutine. The main restriction is that you 
must make sure that the subroutine has a way of knowing exactly how many bytes 
are passed to it. If you add too much or too little to the return address, program 
control will resume either past the desired instruction or in the middle of the 
data to be passed, both of which will have unpredictable results. 

Program 11-1. Stack Indirect Indexed Sample 

=FC58 
=FDED 
=0006 

000300: 20 58 FC 

000303: 20 41 03 
000306: D4 CS C9 D3 
00030A: AO C9 D3 AO 
000312: C6 C9 D2 D3 
00031A: D2 C9 CE C7 

000320: EA 

000321: 20 41 03 
000324: D4 CS C9 D3 
000328: AO C9 D3 AO 
000330: D3 CS C3 CF 
000338: D4 D2 C9 CE 

00033F: EA 

000340: 60 

000341: AO 01 

000343: 83 01 
000345: FO 06 =034D 
000347: 20 ED FD 
00034A: CS 

I •••••••••••••••••••••••••••••••••••••••••••••••••••••• 
2 • STACK INDIRECT INDEXED SAMPLE • 
3 • MERLIN ASSEMBLER • 
4 •••••••••••••••••••••••••••••••••••••••••••••••••••••• 

5 
6 
7 
8 HOME 
9 COUT 

IO LEN 
11 
12 
13 BEGIN 
14 

ORG $300 

EQU $FC58 
EQU $FDED 
EQU $06 

JSR HOME 

JSR PRINT 15 PRINTI 
16 ASC "THIS IS THE FIRST STRING",SD,00 
D4 CS 
D4 AO 
SD 00 
17 

CS AO 
D3 D4 

18 PROGRAM NOP 
19 

PRINT 

; MISC. PROGRAM STUFF HERE . . . 

20 PRINT2 
21 
D4 C8 
CE C4 
C7 SD 
22 

JSR 
ASC 
cs 
AO 
00 

"THIS IS THE SECOND STRING",SD,00 
AO 

23 PROGRAM NOP 
24 
25 EXIT 
26 
27 

RTS 

D3 

28 PRINT 
29 

LDY #$01 

30 WOP 
31 
32 
33 

LDA 
BEQ 
JSR 
INV 

(1,S),Y 
FIX 
COUT 

213 

; MORE PROGRAM STUFF HERE ... 

; ADD I TO RETURN ADDRESS 

; GET A CHARACTER TO PRINT 
; 0 = END OF STRING 
; PRINT ASCII CHARACTER 
;Y=Y+I 



Chapter 11 

000348: 80 F6 =0343 34 BRA 
35 

00034D: 84 06 36 FIX STY 
00034F: A3 01 37 LOA 
000351: 65 06 38 ADC 
000353: 83 01 39 STA 

40 
000355: A3 02 41 LOA 
000357: 69 00 42 ADC 
000359: 83 02 43 STA 

44 
000358: 60 45 DONE RTS 

46 
47 

-End Merlin-16 assembly, 92 bytes, Errors: 0 

Push Effective Instructions 

WOP 

LEN 
l,S 
LEN 
l,S 

2,S 
#$00 
2,S 

; NEXT CHARACTER 

; SAVE LEN OF STRING 
; GET WW BYTE OF RETURN ADDRESS 
; ADD TO LENGTH OF STRING 
; PUT BACK IN PLACE 

; GET HIGH BYTE OF RETURN ADDRESS 
; ADD CARRY IF NEEDED 
; PUT BACK IN PLACE 

; RETURN TO END OF STRING + I! 

Along with the push instructions already described, there is a special group of 
instructions that push address data, rather than register contents, onto the 
stack. These instructions are PEA (Push Effective Address), PEI (Push Effec
tive Indirect address), and PER (Push Effective Relative address). 

PEA pushes an absolute address onto the stack. It can also be used to 
push a data value. PEA always pushes two bytes onto the stack no matter what 
the setting of the e and m bits are (8-or 16-bit mode). 

The following instructions would push the values $0100 and $0200 onto 
the stack: 

PEA $0100 
PEA $0200 

This is equivalent to: 

LDA #$0100 
PHA 
LDA #$0200 
PHA 

; 2 BYTES IN 16-BIT MODE 
; PUSH BafH BYTES 

PEA can be used to pass any constant or address to a subroutine using 
the stack. Notice that in the PEA instruction, the pound sign ( #) is not used 
in front of the value pushed on the stack. 

PEI uses the contents of the indicated direct page locations as the data to 
put on the stack. This instruction: 

PEI ($06) ; PUSH TWO BYTES ON STACK 

214 



Is equivalent to: 

LDA $07 
PHA 
LDA $06 
PHA 

; GET HIGH BYTE BYTE 
; PUSH ON STACK 
; GET WW BYTE 
; PUSH ON STACK 

Data Storage and Program Control 

Notice that PEI pushes the high byte (LABEL+ 1) first, then the low
order byte (LABEL). Like PEA, PEI always pushes two bytes, regardless of the 
condition of e and m. 

PER is the most exotic of the three instructions. It pushes a relative offset 
from the current point in the program to the referenced address. This is very 
much like the calculation done for a branch instruction. In your source listing, 
you specify the target address. However, the assembler calculates a relative dis
tance, and uses this as the operand of PER in the actual assembly. 

PER can be used to reference data when you don't know exactly where 
in memory your program will run. In previous chapters, we discussed the im
pact of JMPs and JSRs to absolute addresses in a program. If a program has a 
JSR, for example, to $340, and that program is moved to $8000, then the JSR 
$340 will jump to a non-existent program at that point. Likewise, load and 
store instructions like LOA and STA that address absolute memory location will 
access non-existent data if the program is moved from its original location. 

One solution to this problem is to use the stack relative indexed indirect 
addressing mode and to use PER to put the correct address on the stack. Pro
gram 11-2 is another print program that will run at any location in memory. 

On line 12, the 65816 first uses the offset value in the operand of PER 
and adds that to the current program counter, such as the address of that in
struction. The result, namely the current address of DATA, is then pushed on 
the stack. Line 15 can then access that pointer on the stack. 

When using any of the push instructions, you must remember to keep 
the number of bytes pushed and pulled from the stack balanced. Lines 21, 22 
provide the balancing pulls in this example program. 

215 



Chapter 11 

Program 11-2. PER Sample Print Demo 

1 ********************************************** 
2 • 'PER' SAMPLE PRINT PROGRAM • 

* 3 • MERLIN ASSEMBLER 
4 •••••••••••••••••••••••••••••••••••••••••••••• 

=FC58 
=FDED 

008000: 20 58 FC 

008003: 62 10 00 
008006: AO 00 

008008: 83 01 
00800A: FO 06 =8012 
OOSOOC: 20 ED FD 

8 
9 

5 
6 HOME 
7 COUT 

10 BEGIN 
11 
12 PRINT 
13 
14 
15 WOP 
16 
17 
18 OOSOOF: C8 

008010: 80 F6 =8008 19 

008012: 68 
008013: 68 

20 
21 FIX 
22 
23 

EQU $FC58 
EQU $FDED 

JSR HOME 

PER DATA 
LDY #$00 

LDA 
BEQ 
JSR 
INV 
BRA 

PLA 
PLA 

(l,S),Y 
FIX 
COUT 

WOP 

008014: EA 24 PROGRAM NOP 

008015: 60 
25 
26 EXIT 
27 

RTS 

; PUSH ADDRESS OF 'DATA' 
; POSN OF 1ST CHARACTER 

; GET A CHARACTER TO PRINT 
; 0 = END OF STRING 
; PRINT ASCII CHARACTER 
;Y=Y+l 
; NEXT CHARACTER 

; FIX STACK (PULL 1 BYTE) 
; PULL SECOND BYTE 

; MISC. PROGRAM STUFF HERE ... 

008016: D4 C8 C9 D3 28 DATA ASC "THIS IS A TEST",SD,00 
00801A: AO C9 D3 AO Cl AO D4 CS 
008022: D3 D4 SD 00 

29 

-End Merlin-16 assembly, 38 bytes, Errors: 0 

The Direct Page Register: D 
In the previous chapter, we noted that although the direct page is usually the 
first $100 bytes from $00 to $FF, this area can be reassigned by a running pro
gram for its own use. This means that there can be several different programs 
in the computer at the same time, each with its own direct-page area, thus 
eliminating potential memory-use conflicts. 

Several programs in the computer at the same time may seem rather ex
otic, but even a running Applesoft BASIC program fits this category. Not only 
is Applesoft BASIC active, but usually ProDOS and certain Monitor routines 
are active, as well. These three were designed before the 65816 (for the 6502 
microprocessor), so each was designed to specifically avoid using bytes used by 
one of the others. With the Apple IIGS, you can design new programs without 

216 



Data Storage and Program Control 

Program 11-3. PHO Example 1 

SAVE PHO ; PUSH DIRECT PAGE ON STACK 
PLA ; GET WW BYTE (ASSUMES 8-BIT MODE) 
STA TEMP ; SAVE IT SOMEWHERE 
PLA ; GET HIGH BYTE 
STA TEMP+l ; SAVE IT 

LOA #>PAGE ; GET HIGH BYTE OF NEW WCATION 
PHA ; PUT IT ON STACK 
LOA #<PAGE ; GET WW BYTE OF NEW WCATION 
PHA 

PLO ; SET NEW DIRECT PAGE WCATION 

NOP ; YOUR PROGRAM HERE ... 

RESTORE LOA TEMP+l ; GET OLD DIRECT PAGE WC. HI BYTE 
PHA ; PUT IT ON STACK 
LOA TEMP ; GET OLD DP WW BYTE 
PHA 

PLO ; RESTORE DP WCATION 

EXIT RTS ; DONE 

having to worry about what direct-page bytes may be used by someone else. 
There is a specific 65816 command, PLO (Pull Direct page register), 

that lets the programmer reassign the direct page to any location in the first 
64K of memory ($0000 to $FFFF). This command can be very useful because 
page zero is heavily used by Applesoft BASIC, the Monitor, and ProDOS. 
There aren't very many free bytes left. The example programs shown so far 
have used locations $06-$09 because these happen to be free, but what hap
pens if you need more bytes? Using the PLO command is a way to define an 
entirely new direct page for your program's own use, thus allowing 256 bytes 
just for you. 

In the 65816 itself, there is a register, called the Direct Page Register, ab
breviated D, that keeps track of the current direct-page location. This defaults 
to $0000, which indicates the range from $00 to $FF, but you can change D to 
define a new direct page any time you'd like (see Figure 11-1). 

There is a hazard, however. Remember that, if you're calling your rou
tine from Applesoft BASIC, you must restore the direct page back to page zero 
when you're finished or before you call any Applesoft BASIC, Monitor, or 
ProDOS 8 routine. 

You can determine the current direct page at any time by using the com
mand PHO (PusH Direct page register). This pushes two bytes onto the stack 
that correspond to the current direct-page setting. For example, the program 

217 



Chapter 11 

segment shown in Program 11-3 assumes that the routine is operating in the 8-
bit mode (e and m = 1), as would be the starting case for a ProDOS 8 program 
or a routine called from Applesoft BASIC. However, if your program has 
shifted to the 16-bit mode (e and m = 0), the process is somewhat simpler as 
shown in the segment Program 11-4. 

Program 11-4. PHD Example 2 

SAVE PHD ; PUSH DIRECT PAGE ON STACK 
PLA ; GET DP WC (ASSUMES 16-BIT MODE) 
STA TEMP ; SAVE IT SOMEWHERE 

LDA #PAGE ; GET NEW WCATION 
PHA ; PUT IT ON STACK 

PLD ; SET NEW DIRECT PAGE WCATION 

NOP ; YOUR PROGRAM HERE ... 

RESTORE LDA TEMP ; GET OLD DIRECT PAGE WCATION 
PHA ; PUT IT ON STACK 

PLD ; RESTORE DP WCATION 

EXIT RTS ; DONE 

The Data Bank and Program Bank Registers: B and K 
In previous chapters, we've mentioned that the 65816 can run a program and 
access data in any of the memory banks. Remember that the bank is the first 
byte of the full three-byte address for a memory location. For example: 

01/0300 

would signify bank 1, address $300. For a running program, the Program 
Counter includes the Program Bank Register to make up the complete address 
for where the 65816 is currently executing an instruction (see Figure 11-2). 

The Program Bank Register is a single byte register that determines 
which bank the currently active program is in. When the Monitor prints out the 
registers, like this: 

A=OOEF X=OOOO Y=OOOO S=OIDD D=OOOO P=BO 
8=00 K=OO M=OC Q=SO L=l m=l x=l e=l 

the Program Bank is abbreviated K. The display here indicates the Program 
Bank Register is set to bank 0. The Program Bank Register is only modified 
when a JML, JSL, or RTL is executed. You can, however, determine it's current 

218 



Data Storage and Program Control 

Figure 11-2. 65816 Microprocessor Model 

Accumulator B A 

X Register X 

Y Register y 

Processor Status p 

Stack Pointer s 

Direct Page Register D 

Prog. Bank Reg. "K" Program Counter (PC) 

Data Bank Reg. "B" 

setting with a stack instruction, PHK (PusH program banK register). This in
struction always pushes a single byte, namely the current Program Bank value, 
onto the stack. 

The main purpose for the PHK command is to condition another impor
tant register, the Data Bank Register. 

The Data Bank Register: B 
So far, whenever you had a pair of instructions like 

LDA MEMI 
STA MEM2 

it was taken for granted that the bytes accessed would all be in the same bank. 
In every program so far, this has been limited to bank 0. This need not be the 

219 



Chapter 11 

case, however. By changing the Data Bank Register, B, your program can run in 
one bank and manipulate data in another. 

In the 65816 model (Figure 11-2), the Data Bank Register can be seen to 
be a single byte, like the Program Bank Register. Unlike the Program Bank 
Register, however, the Data Bank Register can be both read and set at any time. 
The two commands used are PUB (PusH data Bank register) and PLB (Pull 
data Bank register). PHB puts the current value of the data bank register on 
the stack. This would be used to save the current setting, so your program 
could restore it before it quit. 

For a routine called from Applesoft BASIC, BRUN, or a ProDOS 8 Sys
tem file, both the Program and Data Bank Registers are already set to the de
fault of bank 0. However, in a ProDOS 16 System file, the program can be 
loaded anywhere into memory. This means that when your program starts run
ning, the Program Data Bank most likely won't be set to the correct value. For
tunately, you do know that the Program Bank Register is correct-otherwise 
your program wouldn't be running. 

A program can properly set the Data Bank Register with the PLB com
mand, which sets the Data Bank Register, B, by pulling a value off the stack: 

BEGIN PHK ; PUSH PROGRAM BANK VALUE ON STACK 
PLB ; SET DATA BANK TO SAME VALUE 

You'll see these instructions at the beginning of almost every ProDOS 16 
program. ProDOS 16 is described in more detail in Chapter 14. 

Bank 1 Access: An BO-Column Screen Clear 
If you try the Screen Clear Program lC, Program 10-8, with 80 columns active, 
you'll notice it only clears every-other character on the screen. That's because 
the SO-column screen is made up of two $400-byte blocks-the first in bank 0, 
and the other (in the same address range) in bank 1. Thus, the SO-column 
screen is made up from memory with the addresses $00/400 to $00/7FF and 
$01/400 to $01/7FF. Screen Clear lC only clears the memory in bank 0. 

To create an SO-column screen clear, we can use the Data Bank Register 
to change which bank is being cleared (see Program 11-5). The main difference 
between Program 11-5 and Screen Clear lC, Program 10-8, is on lines 42-56. 
Line 42 first pushes the current Data Bank value on the stack. Even though we 
know it's equal to bank O for a routine called from Applesoft BASIC, this illus
trates the technique for saving it if the need should arise. It also illustrates how 
the stack itself can be used to save a value temporarily. The value to be saved 
is pushed onto the stack, and then is pulled off later (see line 56) to restore it. 

Lines 43-46 push the value 1 on the stack so the Data Bank Register can 
be set with a PLB. At this point, all 16-bit address access will be done in bank 

220 



Data Storage and Program Control 

1-not where the program is running in bank 0. It's important to notice that 
we're dealing with 16-bit addresses. What this means is that direct page and 
stack references are still in bank 0. This makes sense because the stack and di
rect page can only be in bank 0, so the Data Bank Register has no effect on 
these addresses or on instructions like LOA ($80),Y that reference them. 

Because the Accumulator was used to push the value on the stack, the 
value for the character to clear to is no longer there. Line 48 resets the Accu
mulator to the proper value. Line 49 resets the Y register to 0. Because it has 
just fallen through the test on 39, the Y register is equal to 40 without the reset. 

Lines 51-54 duplicate the loop used for bank 0, after which the Program 
Data Bank value is restored to its original value on line 56. 

More About Multi-Bank Access 
The Data Bank Register is not the only way to access other banks of memory 
from a running program. You've already seen how the LOA and STA instruc
tions can use a long address to access any byte directly. As an exercise, you 
should try rewriting Screen Clear Program 1 D using the Indirect Indexed Long 
instruction, STA [BASL],Y, to clear bank 0. Instead of using the Data Bank Reg
ister, modify BASL + 2 to be the bank byte. 

Program 11-5. Screen Clear Demo 1D 

=0006 
=0008 
=COOO 
=COIO 

=0025 
=FC22 
=0028 

000300: AD 00 CO 
000303:C9 80 
000305: 90 F9 = 0300 
000307: SD 10 CO 

1 ****************************************** 
2 * SCREEN CLEAR PROGRAM #ID * 
3 * MERLIN ASSEMBLER * 
4 ****************************************** 
5 
6 ORG $300 
7 
8 LINE EQU $06 
9 CHAR EQU $08 

10 KYBD EQU $COOO 
11 STROBE EQU $COI0 
12 
13 CV EQU $25 
14 VTAB EQU $FC22 
15 BASL EQU $28 
16 
17 
18 RE!tO LDA KYBD 
19 CMP #$80 
20 BCC READ 
21 STA STROBE 
22 

221 

; WHAT LINE WE'RE ON 

; VERTICAL CURSOR POSN 

; $28,29 = BASE ADDRESS 

; GET KYBD CHARACTER VALUE 
; KEYPRESS? 
; NO, THEN TRY AGAIN. 
; CLEAR KYBD STROBE. 



Chapter 11 

00030A: C9 98 23 CHECK CMP #$98 ; ESCAPE? 
00030C: FO 31 =033F 24 BEQ DONE ; YES 

25 
00030E: 85 08 26 STA CHAR ; SAVE CHARACTER VALUE 

27 
000310: 64 06 28 INIT STZ LINE ; SET LINE= 0 

29 
0003I2:A5 06 30 FINDV LDA LINE ; GET LINE VALUE 
000314: 85 25 31 STA CV ; VERTICAL CURSOR POSN 
000316: 20 22 FC 32 JSR VTAB ; CALCULATE BASE ADDRESS 

33 
0003I9:A5 08 34 CLEAR LDA CHAR ; GET CHAR TO 'CLEAR' TO 
000318:AO 00 35 LDY #$00 ; ZERO Y REGISTER 

36 
0003ID:91 28 37 WOPl STA (BASL),Y ; PUT CHAR IN MEMORY 
00031F:C8 38 INV ;Y=Y+l 
000320:CO 28 39 CPY #40 ; END OF LINE? 
000322: 90 F9 =031D 40 BCC WOPl ; NOPE: NEXT POSITION 

41 
000324:88 42 BANKl PHB ; SAVE CURRENT DATA BANK (0) 

43 
000325:A9 01 44 LDA #$01 ; BANK 1 VALUE 
000327:48 45 PHA ; PUT IT ON STACK 
000328:AB 46 PLB ; SET DATA BANK = 1 

47 
000329:A5 08 48 LDA CHAR ; PUT CHAR IN ACC AGAIN ... 
000328:AO 00 49 LDY #$00 ; ZERO Y REGISTER AGAIN ... 

50 
00032D:91 28 51 WOP2 STA (BASL),Y ; PUT CHAR IN MEMORY 
00032F:C8 52 INV ;Y=Y+l 
000330:CO 28 53 CPY #40 ; END OF LINE? 
000332: 90 F9 =032D 54 BCC WOP2 ; NOPE: NEXT POSITION 

55 
000334: AB 56 PLB ; RESTORE ORIG. DATA BANK (0) 

57 
000335:E6 06 58 NXTLN INC LINE ; LINE = LINE + 1 
000337:A5 06 59 LDA LINE 
000339:C9 18 60 CMP #24 ; DONE YET? 
000338:90 D5 =0312 61 BCC FINDV ; NOPE 

62 
00033D:80 Cl = 0300 63 AGAIN BRA READ ; GET AN<YI'HER CHARACTER 

64 
00033F:60 65 DONE RTS ; ALL DONE 

66 
000340:0C 67 CHK ; CHECKSUM FOR LISTING 

-End Merlin-16 assembly, 65 bytes, Errors: 0 

222 







Chapter 12 

Adding Machine Language 
Programs 

One of the first useful applications of your knowledge of assembly language 
programming can be the enhancement of your existing Applesoft programs. 
Such a combination of two languages is sometimes called a hybrid program, 
and many commercial programs are written by combining modules written in a 
variety of languages. In this way, particular functions in a program can be writ
ten in the language best suited to the task. 

For example, if you had to write a program that asked the user for 10 
names, just about the fastest way to do it would be with a short and simple 
Applesoft program that looked like this: 

IO FOR I = I TO IO 
20 INPUT N$(1) 
30 NEXT I 

This is much simpler than the equivalent program in assembly language. 
In cases where the tools already exist in Applesoft BASIC, and blinding speed 
is not a requirement, Applesoft BASIC is a completely acceptable solution. 

However, if you had to sort a list of 1000 names, speed would become a 
concern, and it would be worth considering whether the job could best be done 
in assembly language. 

As you've seen in previous chapters, it's possible to call a single machine 
language routine from within an Applesoft BASIC program with the CALL 
command. All of the example programs presented in this book so far assume 
that you're testing them with a CALL from Applesoft BASIC. As you have 
seen, by using the CALL statement, you can jump to any address in memory 
you want, and the routine there can perform virtually any function, subject 
only to the design of the routine. 

225 



Chapter 12 

Why Add Anything to Applesoft BASIC? 
You might ask, "Why add any routines at all to Applesoft BASIC?" You might 
think that there are only two choices when writing a program: Write the entire 
program in Applesoft BASIC, or write the entire program in assembly language. 
As you've seen, though, there is another option. By adding special machine 
language routines to your Applesoft BASIC programs, you can solve those 
problems that Applesoft BASIC can't quite manage. 

There are two fundamental reasons to add new functions to a BASIC 
program: speed and simpler programming. Applesoft BASIC has a little more 
than 100 commands like PRINT, VTAB, HOME, and so on. What happens 
when you want to sort a list? You have to combine a large number of these 
simpler commands to create a sort function. Usually, the resulting subroutine is 
not as fast as you'd like it. 

To be fair, it's not that BASIC itself is really slow. As first discussed in 
Chapter 1, when your program has a statement like PRINT 5 • 3, the command 
is ultimately executed at machine language speed, because Applesoft BASIC is 
a collection of machine language routines. It's when things slow down that you 
have to put together hundreds of these commands to do a complete subroutine 
like sort a list, format dollars and cents numbers, and so forth. 

If there were a way to replace all those BASIC commands with a ma
chine language routine that sorted an array, and a way to add a command 
named SORT to BASIC, it would be just as fast as a pure machine language 
program-because it would be in machine language. Best of all, your BASIC 
program listing would look simpler itself, since all you'll see is a single CALL 
statement to do the sort or whatever. This isn't to say, of course, that you won't 
still have to write hundreds of lines of assembly language source code to create 
your sort subroutine-it just won't be visible as part of your BASIC program. 

Passing Data Between Applesoft BASIC and Machine Language 
All of the sample programs you've seen so far are independent of any Apple
soft BASIC program that calls them. That is to say, there is no data in the form 
of variables passed either to or from the machine language routine that is called. 

To create any really useful routines, you'll want to be able to pass vari
ables back and forth between Applesoft BASIC and the machine language sub
routines. The only problem is, how? You should suspect by now that an Apple
soft BASIC program does not run, nor store data, in the same way as a machine 
language program. Then how can they talk to one another and share data? 

Remember for a moment that at some point Applesoft BASIC executes a 
machine language routine to carry out a BASIC command, so it seems only log
ical that routines must already exist within Applesoft BASIC to convert the 

226 



Adding Machine Language Programs 

Applesoft BASIC variables like X and A$ to a form that a machine language 
routine can deal with. To see how this is done, let's first take a brief look at 
how an Applesoft BASIC program is actually stored in memory. 

The Internal Structure of Applesoft BASIC 
Consider this simple program: 

10 HOME: PRINT "HELLO" 
20 END 

An interesting question arises: How does the computer actually store, 
and then later execute this program? 

To answer that, we'll have to go to the Monitor and examine the pro
gram data directly. Type in the BASIC program exactly as shown, then go to 
the Monitor with a CALL -151. 

The first question to answer is, exactly where in the computer is the pro
gram stored? This can be found by entering the Monitor and typing in: 

67 68 AF BO (and pressing RETURN) 

The computer should respond with: 

00/0067:01-. 
00/0068:08-. 
00/00AF:19-. 
00/0080:08-. 
* 

The first pair of numbers is the pointer for the program beginning, bytes 
reversed of course. They indicate that the program starts at $801. 

(You should be able to put this observation together with what you just 
learned about indirect addressing, and see why almost every important address 
value-like the beginning of a program, a variable list, and so forth-is stored 
as a pair of zero-page bytes. This allows us to access the data table, program, 
and so on with LDA ($67),Y, for example. By seeing how other programs are 
written, including Applesoft BASIC itself, you will get ideas about how to 
structure programs of your own.) 

The second pair of bytes is the program end pointer, and they show it ends 
at $818. Using this information, let's examine the program data by typing in: 

SOIL 

You should get: 

l=m l=x l=LCbank(0/1) 

00/0801: 10 08 8PL 0808 { +08} 

227 



Chapter 12 

00/0803: OA ASL 
00/0804: 00 97 BRK 97 
00/0806: 3A DEC 
00/0807: BA TSX 
00/0808: 22 48 45 4C JSL 4C4548 
00/0BOC: 4C 4F 22 JMP 224F 
00/0BOF: 00 16 BRK 16 
00/0811: 08 PHP 
00/0812: 14 00 TRB 00 
00/0814: 80 00 BRA 0816 { +OO} 
00/0816: 00 00 BRK 00 
00/0818: 00 BC BRK BC 
00/081A: E2 28 SEP #28 
00/081C: 31 37 AND (37),Y 
00/081E: 35 29 AND 29,X 
00/0820: CB INV 
00/0821: 32 35 AND (35) 
00/0823: 36 CA ROL CA,X 
00/0825: E2 28 SEP #28 
• 

Although at first you might think this looks like a machine language 
program, those BRK instructions are a clue that it's really not directly execut
able code. Now type in: 

801.819 

This will give: 

00/0801: 10 08 OA 00 97 3A BA-..... :: 
00/0808: 22 48 45 4C 4C 4F 22 00-"HELW". 
00/0810: 16 08 14 00 80 00 00 00-........ 
00/0818: 00 00-.. 

To understand this, let's break it down one section at a time. When the 
Apple stores a line of BASIC, it encodes each keyword as a single byte token. 
Literally, a token is any single marker of a larger quantity. In this case, the 
token is a single byte that stands for the five or six bytes that make up the 
Applesoft BASIC command. Thus, the word PRINT is stored as a $BA. This 
does wonders for conserving space. In addition, there is some basic overhead 
associated with packaging the line, namely a byte at the end to signify the end 
of the line, and a few bytes at the beginning of each line to hold information 
related to the length of the line, and also the line number itself. 

To be more specific: 

00/0801: 10 08 OA 00 97 3A BA-..... :: 
00/0808: 22 48 45 4C 4C 4F 22 00-"HELW". 

228 



Adding Machine Language Programs 

00/0810: 16 08 14 00 80 00 00 00-...... .. 
00/0818: 00 00-.. 

The first two bytes of every line of an Applesoft BASIC program are an 
index to the address of the beginning of the next line. At $801,802 we find the 
address $810 (bytes reversed). This is where line 20 starts. At $810 we find the 
address $816. This is where the next line would start, if there were one. The 
double 00 at $816 tells Applesoft BASIC that this is the end of the BASIC listing. 

The next information within a line is the line number itself: 

00/0801: 10 08 OA 00 97 3A BA-..... :: 
00/0808: 22 48 45 4C 4C 4F 22 00-"HELW". 
00/0810: 16 08 14 00 80 00 00 00-........ 
00/0818: 00 00-.. 

The OA 00 is the two-byte form of the number 10, the line number of the 
first line of the Applesoft BASIC program. Likewise, the 14 00 is the data for 
the line number 20. The bytes are again reversed. After these four bytes, we 
see the actual tokens for each line . 

00/0801: IO 08 OA 00 97 3A BA-..... :: 
00/0808: 22 48 45 4C 4C 4F 22} 00-"HELW". 
00/0810: 16 08 14 00 80 00 00 00-....... . 
00/0818: 00 00-.. 

All bytes with a value of $80 or greater are Applesoft BASIC keywords 
in token form. Bytes less than $80 represent normal ASCII data (letters of the 
alphabet, numbers, and so forth). Examining the data here, we see a $97 fol
lowed by $3A-$97 is the token for HOME, and $3A is the token for the colon. 
Next, $BA is the token for PRINT. This is followed by the quote ($22) and the 
text for HELLO ( 48 45 4C 4C 4F) and the closing quote ($22). Last of all, the 00 
indicates the end of the line. 

In line number 20, the $80 is the token for END. As before, the line is 
terminated with 00. 

Again, remember how indirect addressing worked: Applesoft BASIC lim
its the length of each stored line to 255 bytes. This is so the Y register can be 
incremented from Oto $FF as it scans the line in memory. The Oat the end is 
used so that a BEQ test will detect the end of the line. If you were writing your 
own Applesoft BASIC interpreter, the code shown in Program 12-1 would be a 
good place to start. 

When a program is executed, the interpreter scans through the data. 
Each time it encounters a token, such as the PRINT token, it looks up the value 
in a table to see what action should be taken. In the case of PRINT, this would 
be to output the characters following the token, namely HELLO. 

229 



Chapter 12 

Program 12-1. Interpreter 

BEG EQU $67 ; $67,68 
PTR EQU $06 ; $06,07 
NXTLN EQU $08 ; $08,09 

LINE LDA BEG 
STA PTR 
LDA BEG+l 
STA PTR+l ; PTR = ADDR OF 1ST LINE 

READ LDY #$00 ; START AT BEG OF LINE 
LDA (PTR),Y ; GET W BYTE OF NEXT LINE ADDR. 
STA NXTLN ; SAVE IT 
INY ; INCREMENT Y TO NEXT BYTE 
LDA (PTR),Y ; GET HI BYTE OF NEXT LINE ADDR. 
STA NXTLN+I ; SAVE IT 
INY 
INY ; SKIP LINE # BYTES 

WOP LDA (PTR),Y ; READ 1ST TOKEN 
BEQ NEXT ; 0 = END OF LINE 

; DO SOMETHING WITH IT ( ) 
INY ; INCREMENT Y TO NEXT BYTE 
BNE WOP ; READ NEXT TOKEN 

NEXT LDA NXTLN ; W BYTE OF LINE # 
STA PTR ; SET PTR = ADDR OF NEW LINE 
LOA NXTLN+l ; HI BYTE OF LINE # 
STA PTR+l 

CHECK LDA NXTLN ; CHECK FOR ADDR = 0 
BNE READ ; NOPE · GO FOR NEXT LINE 
LOA NXTLN+l ; GET HI BYTE OF ADDRESS 
BNE READ ; NOPE · GO FOR NEXT LINE 

DONE RTS ; ONLY GET HERE IF (NXTLN) = 0 

This constant translation is the reason for the use of the term interpreter 
for Applesoft BASIC. 

Machine code, on the other hand, is directly executable by the 65816 
microprocessor so is much faster since no table lookups are required. 

In Applesoft BASIC, a SYNTAX ERROR is generated whenever a series 
of tokens is encountered that is not consistent with what the interpreter expects 
to find. 

Take the time to look over the program that reads an Applesoft BASIC 
line. You have learned all the commands and addressing modes necessary to 
write a program like this, and taking a moment to make sure you understand 

230 



Adding Machine Language Programs 

what it's doing will help reinforce what you've learned already. And it will ce
ment the new facts about Applesoft BASIC in place. 

As another aside, armed with what you've already learned, and a chart 
of the Applesoft BASIC tokens, you could write a number of interesting pro
grams, including a utility to renumber the line numbers in an Applesoft BASIC 
program or one to make a list of all the variable names used in a program. 

Passing Variables from Applesoft BASIC to Machine language 
The easiest way to pass data to a machine language routine is to simply POKE 
the appropriate values into unused memory locations, and then to retrieve 
them when you get to your machine language routine. To illustrate this, we'll 
use the speaker location ($C030) and your knowledge of loops to write a sim
ple tone routine. 

To use this, enter and assemble Program 12-2, and BLOAD the final ob
ject code at $300. Then enter the accompanying Applesoft BASIC program, 
Program 12-3. 

Program 12-2. Sound Routine 1 

1 •••••••••••••••••••••••••••••••••••••••••••••• 
2 • SOUND ROUTINE #1 • 
3 • MERLIN ASSEMBLER • 
4 •••••••••••••••••••••••••••••••••••••••••••••• 
5 
6 ORG $300 
7 

=0006 8 PITCH EQU $06 
=0007 9 DURTN EQU $07 
=C030 10 SPKR EQU $C030 

11 
000300: AG 07 12 BEGIN LDX DURTN 

13 
000302: A4 06 14 WOP LDY PITCH ; STARTING VALUE FOR PITCH 
000304: AD 30 co 15 LDA SPKR ; CLICK SPEAKER 

16 
000307: 88 17 DELAY DEY ; COUNTDOWN DELAY (PITCH) 
000308: DO FD =0307 18 BNE DELAY 

19 
00030A: CA 20 DRTN DEX ; COUNTDOWN DURATION 
000308: DO F5 =0302 21 BNE WOP ; CONTINUE NCYfE 

22 
00030D: 60 23 DONE RTS 

24 

-End Merlin-16 assembly, 14 bytes, Errors: 0 

231 



Chapter 12 

This Applesoft BASIC program is used to call it: 

Program 12-3. Sound Routine 1 Loader 

10 INPUT "PITCH, DURATION ";P,D 
20 POKE 6,P: POKE 7 ,D 
30 CALL 768 
40 PRINT 
50 GOl'O 10 

The Applesoft BASIC program works by first requesting values for the 
pitch and duration of the tone from the user. These values are then POKEd 
into locations 6 and 7, and the tone routine is called. The tone routine uses 
these values to produce the desired sound, and then it returns to the calling 
program for another round (or sound). 

The tone is created by two loops, one within the other. The outer loop, 
from LOOP to DURTN, controls how many times the entire note-producing cy
cle will last, thus controlling the length, or duration of the note. The inner loop, 
at DELAY, cycles through the delay loop to waste a little time each time the 
speaker is clicked. The faster you click the speaker, the higher the pitch of the 
note played. The two loops together create a system where you can control 
both the pitch of the note and its duration. 

The technique used for passing the variables for pitch and duration 
works fine for limited applications, but having to POKE all the desired param
eters into various corners of memory is not very flexible, and strings are nearly 
impossible. There must be an alternative. 

Better Variable Passing 
The key to passing variables to your own machine language routines is to work 
with Applesoft BASIC in terms of routines already present in the machine. That 
way, you can name the variable you're dealing with right in the CALL statement. 

The secrets here are the identities of two components of the Applesoft 
BASIC interpreter: TXTPTR (TeXT PoinTeR) and CHRGET (CHaRacter GET). 
TXTPTR and CHRGET are names given to pointers and routines already 
present in the computer, like COUT. It's a good idea to use these names your
self in your own listings, but it's not required to have the program work. 

TXTPTR is the two-byte pointer ($BS, B9) that points to the next token 
to be analyzed. This is equivalent to the pointer PTR ($06,07) in the example 
line-scanning listing earlier. CHRGET ($Bl) is a very short routine that actually 
resides on the zero page, and which will read a given token into the Accumu
lator. This is equivalent to the line-scanner itself. In addition to occasionally be
ing called directly, many other routines use CHRGET to process a string of data 
in an Applesoft BASIC program line. 

232 



Adding Machine Language Programs 

Program 12-4 is the revised tone routine; Program 12-5 is its Applesoft 
BASIC loader. 

Program 12-4. Sound Routine 2 
•••••••••••••••••••••••••••••••••••••••••••••• 

2 • SOUND ROUTINE #2 • 
3 • MERLIN ASSEMBLER • 
4 ********************************************** 
5 
6 ORG 
7 

=0006 8 PITCH EQU 
=0007 9 DURTN EQU 
=C030 10 SPKR EQU 

11 
=E74C 12 COMBYTE EQU 

13 
000300: 20 4C E7 14 GE1VARS JSR 
000303: 86 06 15 STX 
000305: 20 4C E7 16 JSR 
000308: 86 07 17 STX 

18 
00030A: A6 07 19 BEGIN LOX 

20 
00030C: A4 06 21 WOP LOY 
00030E: AD 30 co 22 LOA 

23 
000311: 88 24 DELAY DEY 
000312: DO FD =0311 25 BNE 

26 
000314: CA 27 DRTN DEX 
000315: DO F5 =030C 28 BNE 

29 
000317: 60 30 DONE RTS 

31 

End Merlin-16 asembly, 24 bytes, Errors: 0 

Pogram 12-5. Sound Routine 2 Loader 

10 INPUT "PITCH, DURATION ";P,D 
20 CALL 768,P,D 
30 PRINT 
40 GOJ'O 10 

$300 

$06 
$07 
$C030 

$E74C 

COMBYTE GET COMMA & EXPRESSION 
PITCH STORE VALUE < 256 
COMBYTE GET NEXT COMMA & EXPRESSION 
DURTN ; STORE VALUE < 256 

DURTN 

PITCH ; STARTING VALUE FOR PITCH 
SPKR ; CLICK SPEAKER 

; COUNT DOWN DELAY (PITCH) 
DELAY 

; COUNT DOWN DURATION 
WOP ; CONTINUE NCYl'E 

This is a much more elegant way of passing the values, and it also 
doesn't require miscellaneous memory locations as such (although for purposes 
of simplicity the tone routine itself still uses the same zero page locations). 

The secret to the new technique is the use of another new routine, 

233 



Chapter 12 

COMBYTE ($E74C = COMma and BYTE processor). This is an Applesoft 
BASIC routine which checks for a comma and then evaluates whatever expres
sion follows the comma in the Applesoft BASIC statement. It then returns the 
result as a single-byte value between $00 and $FF (0-255) in the X register. 

It's normally used for evaluating commands such as POKE, HCOLOR=, 
and others, but it does the job very nicely here. It also leaves TXTPTR pointing to 
the end of the line (or to a colon if there was one) by using CHRGET to advance 
TXTPTR appropriate to the number of characters following each comma. Note 
also that any legal expression such as (X-5)/2 can be used to pass the data. 

To verify the importance of managing TXTPTR, try putting a simple RTS 
($60) at $300. Calling this, you'll get a SYNTAX ERROR-upon return 
Applesoft BASIC's TXTPTR will be on the first comma, and the phrase ",P,D" 
is not a legal Applesoft BASIC expression. 

Now what about two-byte quantities (values greater than 256), or 
strings? There are other routines in Applesoft BASIC that can be used for these, 
as well. 

The most concise way to explain the basic routines you'll need is with 
another example, Program 12-6. 

Program 12-6. Passing variables 
I •••••••••••••••••••••••••••••••••••••••••••••••••• 
2 • BASIC TO ASSEMBLY LANGUAGE 
3 • VARIABLE PASSING DEMO. 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

4 • 
5 • &Nl,N2,N$ 
6 • where N = Real variable, 
7 • with value up to 65535, 
8 • N2 is < 256, and N$ is any 
9 • string. 

10 • 
11 • Note that NI, N2 and N$ can 
12 • also be expressions. 
13 * 
14 • Merlin 8/16 Assembler 
15 • 
16 ************************************************** 
17 
18 BUFFER EQU $280 ; INPUT BUFFER FOR WORK AREA 
19 MEM EQU $270 ; SOME STORAGE BYTES ($270-272) 
20 
21 FRMNUM EQU $DD67 ; EVALUATE NUMERIC EXPRESSION 
22 GETADR EQU $E752 ; CONVERT PAC TO INTEGER 
23 LINNUM EQU $50 ; $50,51 
24 
25 FRMEVL EQU $DD7B ; EVALUATE ANY EXPRESSION 
26 FRESTR EQU $E5FD 
27 INDEX EQU $5E ; $5E,5F 

234 



Adding Machine Language Programs 

28 ILDIR EQU $E306 ; CHECK FOR DIRECT MODE 
29 
30 COMBYTE EQU $E74C ; GET COMMA AND VALUE < 256 
31 
32 CHRGCYf EQU $B7 
33 CHKCOM EQU $DEBE ; CHECK FOR COMMA 
34 
35 

8000: 20 06 E3 36 BEGIN JSR ILDIR ; MAKE SURE WE'RE NCYf IN IMMED MODE 
8003: 20 B7 00 37 JSR CHRGCYf ; CHECK CHAR AT TXTPTR 
8006: C9 2C 38 CMP #',' ; CHECK FOR COMMA 
8008: DO 03 39 BNE REAL ; NO COMMA 
800A: 20 BE DE 40 JSR CHKCOM ; ADVANCE TXTPTR 

41 
SOOD: 20 67 DD 42 REAL JSR FRMNUM ; EVALUATE EXPRESSION 
8010: 20 52 E7 43 JSR GETADR ; CONVERT TO INTEGER 
8013: AS 50 44 LDA LINNUM ; LOW BYTE OF RESULT 
8015: SD 70 02 45 STA MEM ; STORE IT 
8018: AS 51 46 LDA LINNUM + 1 ; HI BYTE OF RESULT 
801A: SD 71 02 47 STA MEM+l ; STORE IT 

48 
801D: 20 4C E7 49 SINGLE JSR COMBYTE ; CHECK COMMA AND EVALUATE 
8020: SE 73 02 50 STX MEM+3 ; STORE IT 

51 
8023: 20 BE DE 52 STRING JSR CHKCOM ; CHECK FOR NEXT COMMA 
8026: 20 78 DD 53 JSR FRMEVL ; EVALUATE STRING EXPRESSION 
8029: 20 FD ES 54 JSR FRESTR ; MAKE SURE IT'S A STRING AND 

55 ; SET UP POINTERS 
56 

802C: AS 57 COPY TAY ; PUT LEN IN Y REG 
8020: 88 58 DEY ; FIX LEN FOR XFER LOOP 
802E: Bl SE 59 LOOP LDA (INDEX),Y ; GET CHAR OF NAME STRING 
8030: 99 80 02 60 STA BUFFER,Y ; PUT IT IN NEW BUFFER 
8033: 88 61 DEY 
8034: CO FF 62 CPY #$FF ; DONE WITH LOOP 
8036: DO F6 63 BNE LOOP ; NOPE 

64 
8038: 60 65 DONE RTS ; ALL DONE! 

66 
8039: 84 67 CHK ;CHECKSUM 

FOR LISTING 

-End assembly, 58 bytes, Errors: 0 

This program will read a large (greater than 255) floating-point number 
stored in a real variable, convert it to a two-byte integer, and then store it 
somewhere. We'll also read a string and a number value less than 256, and will 
store the data of these variables as well. 

235 



Chapter 12 

Program 12-7. Passing Variables, Applesoft BASIC Loader 

10 PRINT CHR$(4);"BLOAD VARIABLE.l.DEMO,A$768" 
15 POKE 1014,0: POKE 1015,3: REM ($3F6,3F7) = $300 
20 NI = 513: N2 = 127: N$ = "TEST" 
30 & Nl,N2,N$ 
40 PRINT PEEK (624) + 256 * PEEK (625) 
45 PRINT PEEK (627) 
50 FOR I = 0 TO 3 
55 PRINT CUR$ ( PEEK (640 + I) ); 
60 NEXT I: PRINT 

Program 12-7 includes a few new concepts. The first is to have the 
BASIC program automatically BLOAD the object code file when it first runs. 
This isn't really all that new-Chapters 4 and 5 showed how to manually 
BLOAD a file after assembling it and saving the object code to disk. This pro
gram just adds the ProDOS BLOAD command as the first line of the program 
so you don't have to load it manually each time you run the program. This is a 
good idea for programs that use added machine language routines. 

Using & 
The other new feature of the BASIC program is using the ampersand character 
( & ). This is actually just a very limited version of the CALL command that 
you've already been using. The only differences are that the ampersand always 
does the equivalent of a CALL 1014 whenever it's encountered in a program, 
and, because the ampersand always CALLs 1014, you must remember to POKE 
the proper destination address at 1014, 1015 before the ampersand is first used. 
Location 1014 is equivalent to $3F5, and if you go to the Monitor and list start
ing at $3F5, you see the following: 

00/03F5: 4C 03 BE JMP BE03 
00/03F8: 4C 00 BE JMP BEOO 
00/03FB: 4C 59 FF JMP FF59 

You can see that all there is at $3F5 is a JMP command that you're re
writing with your POKEs. This JMP is called a vector, and is used to direct the 
running machine language program to a new place in memory. After running 
the BASIC program, go to the Monitor again, and you'll see $3F5 has changed 
to point to $300: 

00/03F5: 4C 00 03 
00/03F8: 4C 00 BE 
00/03FB: 4C 59 FF 

JMP 0300 
JMP BEOO 
JMP FF59 

The only advantage of using the ampersand is that it saves a few key
strokes compared to typing CALL 768 each time you call your routine. Other 

236 



Adding Machine Language Programs 

than that, it's identical to a CALL statement. 
The BASIC program itself simply loads the demo assembly language 

routine at $300 and then sets the ampersand vector to point to $300. 

A Closer Look 
Let's look at the assembly language program itself. In order of appearance, 
starting on line 36, here are the routines that are called, with a brief 
explanation: 

Applesoft BASIC almost always uses the memory range from $200 to 
$2FF, called the input buffer, to store the characters you're typing as part of an 
INPUT, or when you're entering a new line of your program. Because any IN
PUT command writes into this area, you can't store anything there, but it is 
available as a temporary area for your routines. 

We'll use this in our program as a temporary place to work with some 
string data, but the first thing to do is to make sure we're not in immediate 
mode, typing in the very area we want to store to. JSR ILDIR ($E306 = check 
for Illegal DIRect error) does this. It will generate an Applesoft BASIC ILLE
GAL DIRECT ERROR if our routine is not being called from within a running 
program. 

When the ampersand is first called on line 30, the memory pointer 
(TXTPTR) is pointing to the first variable ( or character) following the ampersand. 

First, because a comma follows the CALL statement, TXTPTR must be 
advanced past the comma. However, because you might later decide to use the 
ampersand, we can't be sure a comma will always be there. Therefore, the rou
tine is made more versatile by beginning it with a call to the routine CHRGOT 
($B7 = CHaRacter GOT). This is similar to CHRGET in that the accumulator is 
loaded with whatever character is pointed to by TXTPTR, but TXTPTR is not 
advanced after the read. This means you can check to see what's there before 
putting everything in motion. 

In this case, we check for a comma. If it's there, we advance TXTPTR 
using CHKCOM ($DEBE = CHecK for COMma), which moves TXTPTR past a 
comma and at the same time checks to make sure that it was in fact a comma 
being skipped. If there isn't a comma there (as will be the case if the routine is 
called with the ampersand syntax), it leaves everything alone and goes directly 
to the actual routine on line 36. All of this is so that you have the option of 
calling the routine either with a statement like CALL 768,Nl,N2,N$ or 
&Nl,N2,N$. Remember, if you use the CALL method, you don't have to set up 
the ar~lpersand vector. 

FRMNUM ($DD67 = evaluate a FoRMula for a NUMber) is a routine 
which will evaluate any numeric value, variable, or expression, and which will 

237 



Chapter 12 

return the result in the Floating Point Accumulator (FAC). You don't have to 
deal with the FAC cfuectly, however, because there is another routine, GETADR 
($E752 = GET ADdRess), that will convert a floating-point number in the FAC 
into a two-byte integer, placing the result in LINNUM, LINNUM + 1 ($50,51 = 
LINeNUMber). You might correctly guess that these two routines are used by 
Applesoft BASIC for handling line numbers and addresses. 

Our program then stores these two bytes in MEM, MEM + 1 ($270,271). 
During the evaluation, FRMNUM advances TXTPTR to the next character after 
the expression, in this case a comma before the next variable. FRMNUM will 
produce an automatic TYPE MISMATCH ERROR if you should try to use a 
string expression instead of a numeric expression in the first position. 

Sometimes you may want to pass a relatively small number (less than 
256); in this case you can use COMBYTE ($E74C) to check the comma, ad
vance TXTPTR, and then evaluate any numeric expression (remember an ex
pression can be just single numbers and variables). It then returns the result in 
the X register. If the result is greater than 255, it will automatically generate an 
ILLEGAL QUANTITY ERROR in the calling Applesoft BASIC program. This 
saves you a lot of testing and message printing in the BASIC program. The re
sult is stored at MEM + 3 just to set it off from the first two data bytes stored 
earlier. 

Finally, starting on line 52, we again check for an expected comma, but 
now we call the routine FRMEVL ($DD7B = general FoRMula EVaLuation). 
FRMEVL is like FRMNUM, except that it will evaluate any expression, string or 
numeric. To check for a string, we need to call FRESTR ($E5FD = FREe 
STRing), which checks to make sure we just evaluated a string and also leaves 
us with a pointer to the string data in INDEX, INDEX+ 1 ($5E,5F) and the 
length of the string in the accumulator. 

Lines 57 through 63 then use this information to copy the string to the 
middle of the input buffer (BUFFER = $280), just to demonstrate how the data 
can be moved or manipulated. 

Passing Variables from Machine Language to Applesoft BASIC 
Now that you can send any kind of information you want to a machine 
lanuage routine, how will that routine send its answers or other information 
back to Applesoft BASIC? The answer, again, is to use built-in routines. Since 
the statement X = Y + 2 • (5 /2) exists in Applesoft BASIC, there must be 
routines that, after doing the calculation, convert the result to the Applesoft 
BASIC variable X. 

Program 12-8 is a demonstration program that sends data from a ma
chine language program back to an Applesoft BASIC program as real, integer, 

238 



Adding Machine Language Programs 

and string variables. Program 12-9 is the Applesoft BASIC loader used with 
Program 12-8. 

Program 12-8. Passing Variables to an Applesoft BASIC Program 

1 ************************************************** 
2 * * 
3 * MACH. LANG. TO FP VAR DEMO * 
4 * SYNTAX: CALL 768,X%,Y,Z$ * 
5 * WHERE: • 
6 * X% = VALUE AT $270,271 • 
7 * Y = VALUE AT $272,273 • 
8 * Z$ = STRING AT $280+ * 
9 • • 

10 * MERLIN 8/16 ASSEMBLER • 
11 • • 
12 ************************************************** 
13 

=0085 14 FORPNT EQU $85 ; $85,86 
=0280 15 STR EQU $280 ; STRING BUFFER 
=0270 16 DATAl EQU $270 ; 1ST VALUE 
=0272 17 DATA2 EQU $272 ; 2ND VALUE 

18 
=0087 19 CHRGOT EQU $87 
=DEBE 20 CHKCOM EQU $DEBE 
=DFE3 21 PTRGET EQU $DFE3 
=DD6C 22 CHKSTR EQU $DD6C 
=E3E9 23 MAKSTR EQU $E3E9 
=DA9A 24 SAVD EQU $DA9A 
=E306 25 ILDIR EQU $E306 

26 
=DD6A 27 CHKNUM EQU $DD6A 
=EB9D 28 GIVAYF2 EQU $EB9D 
=EBF2 29 QINT EQU $EBF2 
=0011 30 VARTYPE EQU $11 ; STR$=$FF, NUM=$00 
=0012 31 NUMTYPE EQU $12 ; INT =$80, REAL = $00 
=DA63 32 LET2 EQU $DA63 
=DA68 33 LET3 EQU $DA68 
=009D 34 FAC EQU $9D 

35 
36 

008000: 20 06 E3 37 BEGIN JSR ILDIR ; MAKE SURE WE'RE NOT IN IMMED MODE 
008003: 20 87 00 38 JSR CHRGOT ; CHECK CHAR AT TXTPTR 
008006: C9 2C 39 CMP #'. . ; CHECK FOR COMMA 
008008: DO 03 =SOOD 40 BNE SEND1 ; NO COMMA 
00800A: 20 BE DE 41 JSR CHKCOM ; ADVANCE TXTPTR 

42 
00800D: 20 E3 DF 43 SEND1 JSR PTRGET ; FIND OR CREATE VARIABLE 
008010: 20 6A DD 44 JSR CHKNUM ; VAR= NUM 
008013: 85 85 45 STA FORPNT ; FOR USE BY LET2/LET3 
008015: 84 86 46 STY FORPNT+ 1 ; AS ADDR OF VARIABLE DATA 

47 

239 



Chapter 12 

008017: AC 70 02 48 LOY DATAI ; W BYTE OF RETURN VALUE 
00801A: AD 71 02 49 LOA DATAI+I ; HI BYTE 
00801D: 85 9E 50 STA FAC+I 
00801F: 84 9F 51 STY FAC+2 
008021: A2 90 52 LOX #$90 
008023: 25 12 53 AND NUMTYPE 
008025: 20 9D EB 54 JSR GIVAYF2 
008028: A5 12 55 LOA NUMTYPE 
00802A: 30 06 =8032 56 BMI SIA ; INTEGER VARIABLE 
00802C: 20 63 DA 57 JSR LET2 ; MAKE A REAL VAR 
00802F: 18 58 CLC 
008030: 90 06 =8038 59 BCC SEND2 ; ALWAYS BRANCH 

60 
008032: 20 F2 EB 61 SIA JSR QINT ; XVERT TO INTEGER 
008035: 20 68 DA 62 JSR LET3 ; THAT'S ALL. 

63 
008038: 20 BE DE 64 SEND2 JSR CHKCOM ; MOVE TXTPTR PAST COMMA 
008038: 20 E3 DF 65 JSR PTRGET ; FIND OR CREATE VARIABLE 
00803E: 20 6A DD 66 JSR CHKNUM ; VAR= NUM 
008041: 85 85 67 STA FORPNT ; FOR USE BY LET2/LET3 
008043: 84 86 68 STY FORPNT+ I ; AS ADDR OF VARIABLE DATA 

69 
008045: AC 72 02 70 LOY DATA2 ; W BYTE OF RETURN VALUE 
008048: AD 73 02 71 LOA DATA2+1 ; HI BYTE 
008048: 85 9E 72 STA FAC+I 
00804D: 84 9F 73 STY FAC+2 
00804F: A2 90 74 LOX #$90 
008051: 25 12 75 AND NUMTYPE 
008053: 20 9D EB 76 JSR GIVAYF2 
008056: A5 12 77 LOA NUMTYPE 
008058: 30 06 =8060 78 BMI S2A ; INTEGER VARIABLE 
00805A: 20 63 DA 79 JSR LET2 ; MAKE A REAL VAR 
00805D: 18 80 CLC 
00805E: 90 06 =8066 81 BCC SENDSTR ; ALWAYS BRANCH 

82 
008060: 20 F2 EB 83 S2A JSR QINT ; XVERT TO INTEGER 
008063: 20 68 DA 84 JSR LET3 ; THAT'S ALL. 

85 
86 

008066: 20 BE DE 87 SENDSTR JSR CHKCOM ; MOVE PAST COMMA 
008069: 20 E3 DF 88 JSR PTRGET 
00806C: 20 6C DD 89 JSR CHKSTR 
00806F: 85 85 90 STA FORPNT 
008071: 84 86 91 STY FORPNT+I 

92 
008073: A9 80 93 LOA #<STR ; WC OF STRING BUFFER 
008075: AO 02 94 LOY #>STR 
008077: A2 OD 95 LOX #$OD ; TERMINATOR CHARACTER 

96 
008079: 20 E9 E3 97 JSR MAKSTR ; CREATE STRING DESCRIPTOR 
00807C: 20 9A DA 98 JSR SAVD ; PUT DATA AT A,Y INTO VARIABLE 

99 

240 



00807F: 60 

008080: AS 

IOO DONE 
IOI 
I02 

RTS 

CHK 

-End Merlin-16 assembly, 129 bytes, Errors: 0 

Program 12-9. Applesoft BASIC Loader 

0 REM ML TO FP VAR DEMO 
5 PRINT CUR$ (4);"BLOAD VARIABLE.2.DEMO,A$300" 
10 A%= 200 
20 B = 45123 
30 C$ = "THIS IS A TEST" 
40 POKE 624,A% - INT (A% / 256) * 256: REM LO BYTE 
45 POKE 625, INT (A% / 256): REM HI BYTE 
50 POKE 626,8 - INT (8 / 256) * 256: REM LO BYTE 
55 POKE 627, INT (8 / 256): REM HI BYTE 
60 FOR I = 1 TO LEN (C$) 
65 POKE 639 + I, ASC ( MID$ (C$,I,1)) 
70 NEXT I 
75 POKE 639 + 1,13: REM 'RETURN' 
100 REM DISPLAY & CONVERT DATA 
105 PRINT "ORIGINAL DATA: A% = ";A%,"B = ";B 
110 PRINT "C$ = ";C$: PRINT 
115 CALL 768,X%,Y,Z$ 
120 PRINT "NEW DATA: : X% = ";X%,"Y = ";Y 
125 PRINT "Z$ = ";Z$: PRINT 
130 END 

Adding Machine Language Programs 

; CHECKSUM FOR LISTING 

Just for variety, Program 12-9 uses the CALL method and shows how 
the variables follow a the CALL statement and a comma. 

A Detailed Look 
As with the first variable passing example, we first check for a comma, and 
move TXTPTR past it, if necessary. 

Then, PTRGET ($DFE3 = PoinTeR GET), first called on line 43 of the 
listing, locates the variable in the Applesoft BASIC calling line. If a variable 
with that name has not yet been defined in the calling program, PTRGET cre
ates one. The JSR CHKNUM ($DD6A = CHecK for NUMber) on line 44 veri
fies that this variable is a numeric-not a string-variable. 

At this point, PTRGET has left the address of the variable data in the 
Accumulator and Y register, and lines 45 and 46 store this address in an 
Applesoft BASIC pointer, FORPNT ($85,86 = FORmula PoiNTer), to be used 
later when the variable data is actually sent back. 

Lines 48 and 49 transfer the data, which for this demo has already been 

241 



Chapter 12 

stored at locations $270, 271 into the Floating Point Accumulator (FAC = 
$9D). The remaining lines (52-62) identify whether the receiving variable was 
an integer or a real variable type, and then they send the data back using the 
appropriate internal Applesoft BASIC routines accordingly. 

For the purposes of this demo, the data is arbitrarily placed in memory 
by the Applesoft BASIC program. But, under normal circumstances, this data 
would have been already created by your assembly language program and 
could be located anywhere in memory. 

Lines 64-84 basically duplicate the same variable passing procedure for 
the second variable. You might think the program should be written to send 
only integers back to the first variable, and only reals back to the second. In 
practice, however, you should use the routine as presented here so that you 
don't have to remember whether to use a specific numeric variable type. The 
Applesoft BASIC demo uses both integers and reals just to prove it works, but 
the assembly language routine shown sends data to any numeric variable. 

Lines 87-98 assume that string data, ending with a carriage return ($00 
= 13), is in memory starting at $280. Again, PTRGET is used to identify the 
proper variable in the calling Applesoft BASIC program. This time, CHKSTR 
($DD6C = CHecKSTRing) is used to make sure it's a string variable. Sending 
the data back to Applesoft BASIC is even easier than it was for numbers-you 
need only load A and Y with the address of the beginning of the string, and X 
with the terminator character, and then call MAKSTR ($E3E9 = MAKe 
STRing). MAKSTR assumes that FORPNT has already been set up with the ad
dress of the variable data (lines 83 and 84), and it creates the preliminary string 
descriptor that SAVO ($DA9A = SAVe Descriptor) ultimately turns into a true 
Applesoft BASIC string variable. 

The Applesoft BASIC program (Program 12-9) is designed only to prove 
the routine works . Lines 10-30 define three variables, lines 40-75 POKE the 
data into memory so our routine will have something to work with, and line 
115 actually does all the work of returning the data, in the form of three new 
Applesoft BASIC variables, back to the calling program. 

In normal practice, this data would have been created by the machine 
language subroutine itself, and no POKEs would be used. 

How to Add Your Own Routines 
Our examples so far have all loaded the routines at $300. This is because the 
area from $300 to $3CF is not used by Applesoft BASIC or ProDOS for any
thing, so is available for short routines. 

As you create your own subroutines and programs, you'll have to decide 
where you want them to be located in the machine. Where you put them de
pends on how big the routine is (number of bytes), how many routines you're 

242 



Adding Machine Language Programs 

using (there may be room for one short routine at $300), and whether the rou
tine has to be put at a specific location in memory to work properly. Most large 
routines that are listed in computer magazines have to be loaded at a certain 
spot, and the article that explains them will give instructions on how to set 
things up. 

However, if you write the routine yourself, or you want to move a pub
lished routine to a new location, you'll have to decide where to put it. First, 
let's look at how a normal Applesoft BASIC program sits in memory (see Fig
ure 12-1). 

Figure 12-1. Normal Applesoft BASIC Program Memory Map 

$0 $800 
2048 

$2000 
4096 

$4000 
16384 

$6000 
24576 

HIMEM: $9600 
38000 34800 

DOS 
or 
ProDOS 

$FFFF 
64535 

When an Applesoft BASIC program is running, it uses all of the memory 
from $800 (2048 decimal) to $9600 (38400 decimal). The program itself starts at 
$800. LOMEM: defaults to the end of the BASIC program and determines 
where Applesoft BASIC will start storing all the variable names and numeric 
variable data that your program uses. HIMEM: defaults to just below the part 
of memory used by ProDOS (usually $9600), and the bytes for string data start 
here in memory, building down as new strings are defined. As more data is de
fined in the program as a whole, the two groups, numeric and string data, grow 
toward the middle of memory. 

If you want to add a routine to the system, there are three usual places 
to put it, as shown in Figure 12-2. 

Figure 12-2. Applesoft BASIC with Routines Memory Map 

$0 $800 
2048 

$2000 
4096 

$4000 
16384 

243 

$6000 
24576 

..,__ (variables) 

$9600 
34800 

DOS 
or 
ProDOS 

$FFFF 
64535 



Chapter 12 

If the routine is less than 200 bytes long, you can put it at $300 (768). 
Starting at $3DO are some important ProDOS pointers, so your program can't 
be larger than the space between $300 and $3DO if you want to put it here. 

Another option is to find the end of your program in memory, to BLOAD 
the routine there, and to set LOMEM: to a larger value to create a gap for your 
program. The listing for a BASIC program that did this might look like this: 

10 PRINT CHR$(4);"BWAD ROUTINE.A"; 
PEEK(l 75) + 256 * PEEK(l 76) 

20 REM ASSUME ROUTINE IS 200 BYTES WNG ... 
30 WMEM: PEEK(l 75) + 256 * PEEK(l 76) + 200 

Note that no variables are used in the calculations. Since you'll be 
changing LOMEM:, no variables may be used before LOMEM: is changed, 
since they will lose their values as soon as LOMEM: is moved (Applesoft 
BASIC won't know where to look for the old values). 

Locations 175, 176 ($AF,BO hex) are Applesoft BASIC's pointer to the 
end of the program, and PEEKing here tells us where the end of the BASIC 
program is. 

This last technique requires that your program is position independent 
(there are no JMPs or JSRs in the program to other parts of itself). You'll recall 
from the discussion in Chapter 6 that if there is a JMP or JSR in the program to 
another location within the program, and you move the program's position in 
memory to any other location other than the ORG address, it will crash when 
you try to run it. 

If you want to write programs that are not position independent, you 
can always pick an arbitrarily large memory address for the ORG and BLOAD, 
like $6000 (the top of hi-res page two), and set LOMEM: to, say, 28672 ($7000 
hex). $1000 hex is about 4000 bytes, which should be enough room for many 
routines. You just have to make sure your BASIC program never gets so large 
as to go past $6000, or that your machine language routine isn't larger than 
$1000 bytes. 

All this might seem like a lot to learn at once, but you'll find that includ
ing the lines necessary to pass variables back and forth fairly simple to use, 
once you try them a few times. 

By using these techniques in your own subroutines that work with 
Applesoft BASIC programs, I think you'll find it's a lot easier to use what 
you've learned about assembly language right away. 

244 







Chapter 13 

ProDOS 
ProDOS, which stands for Professional Disk Operating System, is a set of 
routines loaded into RAM when the computer first starts up from the disk. The 
routines are responsible for opening and reading files and for writing data to 
the disk. Without a disk operating system in the machine, the Apple IIGS 
doesn't inherently know how to read a disk. You can prove this to yourself by 
turning on the computer with no disk in the drive, and then pressing RESET to 
go to Applesoft BASIC without starting up a disk. If you type CATALOG at 
this point, you'll get a SYNTAX ERROR because the computer, without a DOS 
loaded, doesn't know anything about talking to the disk. 

There are two main versions of ProDOS, ProDOS 8 and ProDOS 16. 
ProDOS 8 was originally designed for the Apple Ile and lie, which use the 
65C02 microprocessor. In this processor, the Accumulator, registers, and mem
ory are always accessed one byte at a time, so these are called 8-bit machines. 
ProDOS 8 will also run on the Apple IIGS, and is the required disk operating 
system for Applesoft BASIC. 

ProDOS 16 is the latest incarnation of ProDOS, and it's designed specifi
cally for the Apple IIGS. It will not run on a lie or lie, nor with Applesoft 
BASIC. Fortunately, the user doesn't have to worry about which operating sys
tem is required by a given program, because the Apple IIGS automatically loads 
the correct operating system when a program is loaded. 

ProDOS 8 
To get an idea of how ProDOS 8 is set up in the computer, let's first consider a 
hypothetical disk, with ProDOS 8 (named PRODOS), BASIC.SYSTEM, and an 
Applesoft BASIC program named STARTUP on the disk. This disk can be 
booted on either a IIGS, lie, or lie. 

When the disk is first booted, the disk drive hardware is preprogrammed 
to read in the first two blocks of data on the disk (blocks O and 1) and to exe
cute this data as a program. This very small program then reads in more infor
mation, and the process continues until an entire application program (in this 
case STARTUP) is loaded and running. To the original designers of disk systems, 

247 



Chapter 13 

this process of one bit of code loading some more that loads even more had an 
almost magical feeling to it, reminding them of the phrase pulling yourself up 
by your bootstraps. This inspired the term booting for starting up a disk. 

The entire ProDOS 8 boot process goes like this: First, the code stored 
on the disk in blocks O and 1 is loaded and run. This miniprogram looks for a 
file in the main (root) directory named PRODOS. If it can't find exactly that 
name, or if some other problem occurs while it's trying to load and run that 
file, you'll get the Unable to Load ProDOS error message. 

On our hypothetical disk, the file PRODOS is ProDOS 8, and the disk 
operating system itself is loaded into the computer. This isn't the end, though. 
ProDOS 8 doesn't understand CATALOG either. In fact, it has no user inter
face at all, let alone a friendly one. It has various routines that access the disk, 
but they all expect to be called with a JSR from some machine language pro
gram. Many Applesoft BASIC programs, on the other hand, are written with 
statements like PRINT CHR$(4);"CATALOG", that the programmer expects 
will make something happen. 

ProDOS 8 is called a kernel, in that it's a central part of the operating 
computer, but it contains none of the niceties that make up a complete program. 
To bridge this gap, ProDOS 8 on our disk loads and runs BASIC.SYSTEM, 
which in tum looks for a file called STARTUP that is an Applesoft BASIC file. 

BASIC.SYSTEM need not be run. ProDOS 8 in general just looks for the 
first file in the main directory whose name ends in .SYSTEM and whose file 
type is SYS ($FF). Although BASIC.SYSTEM was the system file on our hypo
thetical disk, it need not be. A program like AppleWorks, or any other applica
tion program, has its own system file as the first system file on the disk, and it 
doesn't need BASIC.SYSTEM or any Applesoft BASIC program at all on the disk. 

Writing .SYSTEM Files 
So, how do you write your own stand-alone program that's a SYSTEM file un
der ProDOS 8? It's actually quite simple. There are only a few things you need 
to know: 

1. SYSTEM files are automatically loaded starting at memory location $2000. If 
your program is not totally position independent (if it has even one internal 
address reference), it must be assembled with an ORG $2000. 

2. The filetype of the object file must be $FF (SYS). In Merlin, the OSK and 
TYP directives will take care of this. In APW, you must use the MAKEBIN 
and FILETYPE commands. 

3. Instead of ending with an RTS, you must execute a call (JSR) to ProDOS, 
telling it you're finished. This Quit Call lets ProDOS return control to a pro
gram selector or any other program that started your application. You should 

248 



ProDOS 

never end a program by telling the user to reboot, or, worse yet, by clearing 
memory and forcing a reboot. 

The discussion that follows assumes you're familiar with ProDOS direc
tory structure (root directories and subdirectories), the meaning of different file 
types, and so forth. This discussion will briefly introduce you to some of the 
basic rules for working with ProDOS, and it will give you an idea of what's in
volved in dealing with ProDOS from assembly language. 

The Machine Language Interface: MLI 
To make using ProDOS from machine language as easy as possible, the design
ers came up with a standard procedure to make any given call OSR) to 
ProDOS. This common calling point (and way of using ProDOS) is called the 
Machine Language Interface (MLI). The general procedure is: 

1. Call the MLI entry point. This is always done with a JSR $BFOO. 
2. The JSR is immediately followed by three bytes that encode the desired 

ProDOS command. The first byte is the command code itself, followed by 
two more bytes that form a pointer to a larger block called the parameter list 
or parameter table (parm table). The parameter list may contain things like 
the name of the file to open, and how many bytes to read. When the 
ProDOS call returns, it always resumes execution immediately after these 
three bytes. Program 11-1, the Stack Indirect Indexed Sample, showed a way 
of displacing the return address after a JSR, and this is similar to what 
ProDOS does with an MLI call. 

3. After the three data bytes, there is usually a BCS ERROR instruction. 
ProDOS sets the Carry if an error occurs, and it stores the error code in the 
Accumulator. The BCS test will then branch to your own error routine to 
take appropriate action. If no error occurs, the carry will be clear and your 
program will continue. Notice that you are on your own now, and no longer 
enjoy the support of Applesoft BASIC and BASIC.SYSTEM to handle errors 
and print messages. If you want a CATALOG in your own SYSTEM type 
program, you'll have to write it yourself. 

The Simplest Program 
The first SYSTEM program (Program 13-1) we'll write that uses ProDOS 8 will 
be just about the simplest possible: It will clear the screen, ask for a keypress, 
and then do the Quit Call. The command code for a Quit is $65. 

249 



Chapter 13 

Program 13-1 can be tested by going to a program selector like the Ap
ple Program Launcher, DeskTop, or your favorite program selector, and then 
choosing PS.SYSTEM in the selector menu. When you press a key, you auto
matically should be returned to the selector program. The name of this file, 
PS.SYSTEM, has no connection to the file P8 on your Apple IIGS System Disk, 
other than we are just using the characters PB in these examples to indicate 
that a ProDOS 8 file is being used. 

Notice that every ProDOS 8 SYSTEM file starts up in the total 8-bit 
mode, just as would a routine you were calling from Applesoft BASIC. 

Looking at the source listing, lines 14 and 15 show how to create a file 
with a specific file type in Merlin. The assemble-to-disk feature was described 
in Chapter 4. The TYP (file TYPe) directive on line 15 should immediately fol
low the OSK directive; it tells Merlin what the file type of the object file should 
be. For a SYS file, this should be $FF. Other ProDOS file types are listed in Ta
ble 13-1. Remember that when assembling to disk, you no longer have to save 
the object file manually at the main menu of the Merlin assembler. Of course, 
you will still have to save the source file after you've typed it in. 

The program itself starts by clearing the screen, printing a message, and 
then waiting for a keypress. I used the BIT instruction (see Chapter 9) more for 
variety than necessity. 

On line 30 is the JSR to MLI (defined with an Equate at the beginning as 
$BFOO). The DFB $65 on line 31 is a Merlin pseudo-op that assembles as only a 
single byte, in this case the $65 for the Quit command. DFB (DeFine Byte) is a 
data storage pseudo-op, similar to HEX, and is used whenever you want to put 
a single byte, whose value may be defined by a label, in your program. Line 32 
uses the DA pseudo-op, first mentioned in Chapter 10, that stores two bytes in 
address form (low-order byte first). In this case the address is a pointer to the 
parameter list (PARMTBL at $2021). These bytes are followed by a BCS to an 
error routine, which, if everything is assembled correctly, will never be taken. 
The BRK instruction on line 34 is likewise unused since a no-error Quit will 
never actually return. In an assembly listing, it is best to use the instruction 
BRK $00 (although just BRK with no operand is legal). This is because the 
monitor always lists a BRK plus the byte which follows. If you use just BRK, 
you'll have trouble listing your programs with the monitor. The purpose of the 
BRK is to halt the program if something is wrong. In this case, the only proba
ble cause is if you mistyped the quit instruction, and ProDOS returned an error 
code for some other command. 

The structure of all ProDOS parameter lists, such as PARMTBL on line 
36, follow a general pattern. The first byte in the table indicates the number of 
parameters in the list, not the number of bytes. Since Quit, or any other 

250 



ProDOS 

ProDOS command, already knows how many parameters it requires, this first 
byte is mainly for internal error checking by the MLI handler. 

The byte on line 37 is a single-byte code for the type of quit call being 
made. For the standard, no-frills ProDOS 8 quit call, this should be zero. This 
will return you to the program launcher (if one is used) directly. There is also 
another type of quit, called the ProDOS 8 Enhanced Quit, that can be used if 
you boot ProDOS 16 first. In our example of the disk where PRODOS is 
ProDOS 8, this is not an option. The next five bytes are not used for a standard 
ProDOS 8 quit, so are set to zero. 

It is essential that you use precisely the correct number of bytes, and ap
propriate values, in the complete MLI call. If you use a DA on line 31 or a DFB 
on line 32, or if you use the incorrect structure in the parameter list, very 
strange and definitely unpredictable things will happen. Ninety percent of all 
ProDOS programming errors stem from incorrect MLI calls. Consider yourself 
warned. 

APW users. If you're using APW, Program 13-2 is the corresponding list
ing for PS.SYSTEM. After the ASML assembly (see Chapter 5), first type 
MAKEBIN PS.SYS. This will convert the output EXE file into a binary file that 
loads at $2000. Then type FILETYPE PS.SYSTEM SYS to change the filetype to 
$FF (SYS). The file can then be launched from a program selector as described 
earlier. 

The main differences between the APW version and the Merlin listing are 
as follows: First, to make sure the high bit is set on the print statements, the 
APW has the assembler directive MSB ON. APW also assumes that everything 
starts off in 16-bit mode. Since this is a ProDOS 8 file, we must include the 
directives LONGA OFF and LONGI OFF to tell the assembler that the 
microprocessor will be in the 8-bit mode. If this step is omitted, LOY #$00, for 
example, would be assembled as AO 00 00 (three bytes) instead of AO 00 (two). 

Finally, APW doesn't have the DA or DFB pseudo-ops, but instead uses 
the generic DC instruction, which is qualified by the leading characters in front 
of the operand. Leading characters 11 tell it to assemble a single byte; 12 speci
fies two bytes. Be very careful when constructing your MLI calls-it is very 
easy to use the wrong byte length and mess up the entire call. 

The APW's assembly is two bytes longer than Merlin's. This is because 
APW assembled the BRK instructions as two-byte instructions, whereas Merlin 
assembled them as just one byte. Because a BRK stops program execution no 
matter what follows it, the use of one or two bytes is pretty much a program
mer preference. You can force a two-byte BRK instruction in Merlin by includ
ing the byte you want used as the second byte, as in 

BRK $00 

251 



Chapter 13 

Program 13-1. Simple PB System File 

=BFOO 
=FDFO 
=FC58 
=COOO 
=COlO 

002000: 20 58 FC 

002003: AO 00 
002005: 89 28 20 
002008: FO 06 =2010 
00200A: 20 FO FD 
00200D: C8 
00200E: DO F5 = 2005 

002010: 2C 00 CO 
002013: 10 FB =2010 
002015: 2C 10 CO 

002018: 20 00 BF 
002018: 65 
0020 l C: 22 20 
00201E: BO 09 =2029 
002020: 00 00 

002022: 04 
002023: 00 
002024: 00 00 
002026: 00 
002027: 00 00 

002029: 00 00 

002028: DO CC C5 Cl 
00202F: D3 C5 AO DO 
002033: D2 C5 D3 D3 
002037: AO Cl AO CB 
002038: C5 D9 AO AD 

1 •••••••••••••••••••••••••••••••••••••••••••••• 
2 • 
3 • 

SIMPLE P8 SYSTEM FILE 
MERLIN ASSEMBLER 

• 
• 

4 •••••••••••••••••••••••••••••••••••••••••••••• 

5 
6 MLI 
7 COUT 
8 HOME 
9 KYBD 

10 STROBE 
11 
12 
13 
14 
15 
16 
17 START 
18 
19 PRINT 
20 WOP 
21 
22 
23 
24 
25 
26 GETKEY 
27 
28 
29 
30 QUIT 
31 
32 
33 
34 

EQU 
EQU 
EQU 
EQU 
EQU 

SBFOO 
SFDFO 
$FC58 
$COOO 
$C010 

ORG $2000 

DSK PS.SYSTEM 
TYP $FF 

JSR HOME 

LDY 
LDA 
BEQ 
JSR 
INV 
BNE 

#$00 
MSSG,Y 
GETKEY 
COUT 

WOP 

BIT KYBD 
BPL GETKEY 
BIT STROBE 

JSR 
DFB 
DA 
BCS 
BRK 

MLI 
$65 
PARMTBL 
ERROR 
$00 

35 
36 
37 
38 
39 
40 

PARMTBL DFB 
DFB 
DA 
DFB 
DA 

4 
0 
$0000 
0 
$0000 

41 
42 ERROR 
43 
44 MSSG 

BRK $00 

ASC "PLEASE 

252 

; SYSTEM FILE TYPE 

; CLEAR SCREEN 

; INIT Y-REG 
; GET CHAR TO PRINT 

; PRINT IT 
; NEXT CHAR 
; WRAPAROUND PROTECT 

; KEYPRESS? 
; NOPE 
; CLEAR KEYPRESS 

; DO QUIT CALL 
; QUIT CODE 
; ADDRESS OF PARM TABLE 
; NEVER TAKEN 
; SHOULD NEVER GET HERE .. . 

; NUMBER OF PARMS 
; QUIT TYPE: 0 = STD QUIT 
; NOT NEEDED FOR STD QUIT 
; NOT USED AT PRESENT 
; NOT USED AT PRESENT 

; WE'LL NEVER GET HERE? 

PRESS A KEY ·>",00 



00203F: BE 00 

002041: D2 
45 
46 CHK ; CHECKSUM FOR LISTING 

End Merlin-16 assembly, 66 bytes, errors: O 

Program 13-2. Simple P8 System File for APW 
0001 0000 ********************************************** 
0002 0000 * SIMPLE PS SYSTEM FILE * 
0003 0000 * APW ASSEMBLER * 
0004 0000 •••••••••••••••••••••••••••••••••••••••••••••• 
0005 0000 
0006 0000 KEEP PS.SYSTEM 
0007 0000 MSB ON 
0008 0000 
0009 0000 WNGA OFF 
0010 0000 WNGI OFF 
0011 0000 
0012 0000 ORG $2000 
0013 0000 
0014 0000 MAIN START 
0015 0000 
0016 0000 MLI EQU $BFOO 
0017 0000 COUT EQU $FDFO 
0018 0000 HOME EQU $FC58 
0019 0000 KYBD EQU $COOO 
0020 0000 STROBE EQU $C010 
0021 0000 
0022 0000 
0023 0000 20 58 FC ENTRY JSR HOME 
0024 0003 
0025 0003 AO 00 PRINT LOY #$00 ; INIT Y-REG 
0026 0005 89 28 00 WOP LOA MSSG,Y ; GET CHAR TO PRINT 
0027 0008 FO 06 BEQ GETKEY ; END OF MSSG. 
0028 OOOA 20 FO FD JSR COUT ; PRINT IT 
0029 OOOD CS INY ; NEXT CHAR 
0030 OOOE DO F5 BNE WOP ; WRAPAROUND PROTECT 
0031 0010 
0032 0010 2C 00 CO GETKEY BIT KYBD ; KEYPRESS? 
0033 0013 10 FB BPL GETKEY ; NOPE 
0034 0015 2C 10 co BIT STROBE ; CLEAR KEYPRESS 
0035 0018 
0036 0018 20 00 BF QUIT JSR MLI ; DO QUIT CALL 
0037 0018 65 DC 11'$65' ; QUIT CODE 
0038 OOlC 22 00 DC 12'PARMTBL' ; ADDRESS OF PARM TABLE 
0039 OOIE BO 09 BCS ERROR ; NEVER TAKEN 
0040 0020 00 00 BRK $00 ; SHOULD NEVER GET HERE ... 
0041 0022 
0042 0022 04 PARMTBL DC 11'4' ; NUMBER OF PARMS 
0043 0023 00 DC 11'0' ; QUIT TYPE: 0 = STD QUIT 
0044 0024 00 00 DC 12'0000' ; NOT NEEDED FOR STD QUIT 

253 

ProDOS 



Chapter 13 

0045 0026 00 DC 11'0' ; NOf USED AT PRESENT 
0046 0027 00 00 DC 12'0000' ; NOf USED AT PRESENT 
0047 0029 
0048 0029 00 00 ERROR BRK $00 ; WE'LL NEVER GET HERE? 
0049 0028 
0050 0028 DO CC CS Cl MSSG DC C'PLEASE PRESS A KEY >' 
0051 0040 00 DC 11'0' 
0052 0041 
0053 0041 END 

The Enhanced ProDOS 8 Quit 
If ProDOS 8 has been started up by the normal ProDOS-16 boot process (de
scribed in greater detail in the next chapter), there is another quit option avail
able, called the ProDOS 8 Enhanced Quit. In this command, you can specify 
the pathname of the program you wish to quit to. In this way, your program it
self becomes a program launcher. The specified program can be either a 
ProDOS 8 or ProDOS 16 system file (SYS or Sl6). 

The only changes that need to be made to our original program to dem
onstrate this are to change the quit type code from $00 to $EE, and to change 
the two bytes following to a pointer to the pathname for the program we want 
to run next. In the next example, program 13-3, we'll assume the you have the 
file PB.SYSTEM, which you assembled earlier, on the disk in the same directory 
as PB.LAUNCHER. 

When you start up this program from a program selector, it will first 
prompt you for a keypress and then will quit by running PB.SYSTEM. Then, 
when PS.SYSTEM does its quit call, control will return back to the program se
lector that launched PS.LAUNCHER. 

Notice that lines 46-48 define a string with a leading length byte. 
ProDOS uses a standard protocol that expects every string it deals with to be
gin with a length byte. This is sometimes also called a PASCAL-format string, 
from an obvious heritage. 

PB.LAUNCHER should give you some ideas as to how you could create 
your own ProDOS menu program that presented the user with a list of pro
grams to run. By changing the pointer on line 38, or by rewriting the string it
self, you can create the pathname for any file you wish. 

Program 13-3. ProDOS 8 Launcher Demo 

=BFOO 
=FDFO 

1 •••••••••••••••••••••••••••••••••••••••••••••• 
2 * 
3 * 

PRODOS 8 'LAUNCHER' DEMO 
MERLIN ASSEMBLER 

* 
* 

4 •••••••••••••••••••••••••••••••••••••••••••••• 
5 
6 MLI 
7 COUT 

EQU $BFOO 
EQU $FDFO 

254 



ProDOS 

=FC58 8 HOME EQU $FC58 
=COOO 9 KYBD EQU $COOO 
=COlO 10 STROBE EQU $C010 

11 
12 ORG $2000 
13 
14 OSK PS.LAUNCHER 
15 TYP $FF ; SYSTEM FILE TYPE 
16 

002000: 20 58 FC 17 START JSR HOME ; CLEAR SCREEN 
18 

002003: AO 00 19 PRINT LOY #$00 ; INIT Y-REG 
002005: 89 29 20 20 WOP LOA MSSG,Y ; GET CHAR TO PRINT 
002008: FO 06 =2010 21 BEQ GETKEY 
00200A: 20 FO FD 22 JSR COUT ; PRINT IT 
00200D: C8 23 INY ; NEXT CHAR 
00200E: DO FS =2005 24 BNE WOP ; WRAPAROUND PROTECT 

25 
002010: 2C 00 CO 26 GETKEY BIT KYBD ; KEYPRESS? 
002013: 10 FB =2010 27 BPL GETKEY ; NOPE 
002015: 2C 10 CO 28 BIT STROBE ; CLEAR KEYPRESS 

29 
002018: 20 00 BF 30 QUIT JSR MLI ; DO QUIT CALL 
002018: 65 31 DFB $65 ; QUIT CODE 
00201C: 21 20 32 DA PARMTBL ; ADDRESS OF PARM TABLE 
00201E: BO 08 =2028 33 BCS ERROR ; NEVER TAKEN 
002020: 00 34 BRK $00 ; SHOULD NEVER GET HERE ... 

35 
002022: 04 36 PARMTBL DFB 4 ; NUMBER OF PARMS 
002023: EE 37 DFB $EE ; QUIT TYPE = PRODOS 8 ENHANCED 
002024: 4C 20 38 DA NAME ; POINTER TO PATHNAME TO LAUNCH 
002026: 00 39 DFB 0 ; NOT USED AT PRESENT 
002027: 00 00 40 DA $0000 ; NOT USED AT PRESENT 

41 
002029: 00 42 ERROR BRK $00 ; WE'LL NEVER GET HERE? 

43 
002028: DO D2 CS D3 44 MSSG ASC "PRESS A KEY TO LAUNCH PS.SYSTEM ·>",00 
00202F: 03 AO Cl AO 
002033: CB CS D9 AO 
002037: D4 CF AO CC 
002038: Cl D5 CE C3 
00203F: C8 AO DO 88 
002043: AE D3 D9 D3 
002047: D4 CS CD AO 
002048: AD BE 00 

45 
00204E: 09 46 NAME DFB NAMEEND-NAME-1 
00204F: DO 88 AE D3 47 ASC "PS.SYSTEM" 
002053: 09 D3 D4 CS 
002057: CD 

48 NAMEEND 
002058: 53 49 CHK ; CHECKSUM FOR LISTING 

-End Merlin-16 assembly, 89 bytes, Errors: 0 

255 



Chapter 13 

ProDOS File Types 
Table 13-1 is a list of file types. It shows some values in use under ProDOS 8 
and ProDOS 16. New file types can be defined by Apple at any time, so the list 
is subject to additions. 

Table 13-1. ProDOS 8 Filetypes 

File Type 
$00 
$01 
$04 
$06 
$08 
$OF 
$19 
$IA 
$18 
$1C-$AF 
$BO 
$Bl 
$B2 
$B3 
$B4 
$BS 
$B6 
$B7 
$BB 
$B9 
$BA 
$BB-$BE 
$BF 
$CO-$EE 
$EF 
$FO 
$Fl-$F8 
$F9 
$FA 
$FB 
$FC 
$FD 
$FE 
$FF 

Name 

BAD 
TXT 
BIN 
FOT 
DIR 
ADB 
AWP 
ASP 

SRC 
OBJ 
LIB 
S16 
RTL 
EXE 

NDA 
CDA 

PAS 
CMD 

INT 
IVR 
BAS 
VAR 
REL 
SYS 

Description 
Uncategorized file 
Bad block file 
ASCII text file 
General binary file 
Graphics screen file 
Directory file 
AppleWorks Data Base file 
AppleWorks Word Processor file 
AppleWorks Spread Sheet file 
Reserved 
APW source file 
APW object file 
APW library file 
ProDOS 16 application program file 
APW runtime library file 
ProDOS 16 shell application file 
ProDOS 16 permanent initialization file 
ProDOS 16 temporary initialization file 
New Desk Accessory 
Classic Desk Accessory 
Tool set file 
Reserved for ProDOS 16 load files 
ProDOS 16 document file 
Reserved 
Pascal area on a partitioned disk 
ProDOS 8 CI added command file 
ProDOS 8 user-defined files 1-8 
ProDOS 8 reserved 
Integer BASIC program file 
Integer BASIC variable file 
Applesoft BASIC program file 
Applesoft BASIC variables file 
Relocatable code file (Merlin) 
ProDOS 8 system program file 

256 



ProDOS 

Other ProDOS 8 MLI Commands 
There are a total of 26 ProDOS 8 MLI commands. These are shown in Table 
13-2. 

Table 13-2. ProDOS 8 MU Commands 

Alloc_Interrupt 

Deallounterrupt 
Quit 
ReacLBlock 
Write_Block 
GeLTime 
Create 
Destroy 
Rename 
SeLFile-1nfo 

GeLFile-1nfo 
On_Line 

SeLPrefix 
GeLPrefix 
Open 
Newline 

$40 

$41 
$65 
$80 
$81 
$82 
$CO 
$Cl 
$C2 
$C3 

Place a pointer to an interrupt-handling routine into the 
system-interrupt vector table. 
Remove pointer from system-interrupt table. 
Quit current program back to another system program. 
Read a data block (512 bytes) from the disk. 
Write a data block to disk. 
Read current time using ProDOS built-in routine. 
Create a new file or directory . 
Remove name from directory. 
Change name of file. 
Set file's type and all other associated information (dates 
an so forth). 

$C4 Read directory information entry for a file. 
$CS Get slot, drive and volume name of one or all active 

volumes. 
$C6 
$C7 
$CS 
$C9 

Set pathname to be used as prefix. 
Get current prefix. 
Prepare a file to be read from or written to. 
Specify character that terminates a file read, such as a car
riage return. 

Read $CA Read any number of bytes into memory from a file. 
Write $CB Write any number of bytes from memory into a file. 
Close $CC Finish file access. Update file directory entry if necessary. 
Flush $CD Like a close, but doesn't release file buffers. 
SeLMark $CE Change current byte position in file. 
GeLMark $CF Get current byte position in file. 
SeLEOF $00 Set length of file. 
GeLEOF $01 Get length of file. 
SeLBuf $02 Assign new location of input/output buffer for file. 
GeLBuf $03 Get current location of input/output buffer of an open file. 

An assembly language program uses ProDOS by using a combination of 
the appropriate commands to accomplish a given task. Program 13-4 uses the 
ProDOS 8 MLI system. It displays the contents of a text file on the screen. It's 
very simplistic. It offers no way to catalog a disk or to determine the names of 
the volumes online. It's error handling is minimal at best. However, it does 
present a working example of a program that opens a file, reads and displays 
the data, and then closes the file and exits with the standard Quit call. 

257 



Chapter 13 

It also shows how, in the course of writing an actual application, other 
issues become as important as the program itself. Such issues include error 
handling, the user interface, and concerns about the system state when your 
program starts up. Anyone that has written a commerical program can tell you 
that the user interface and error handling can take as much or more time and 
program code as the primary functions of the program itself. 

In addition, this program introduces quite a number of new concepts in 
programming style, assembler pseudo-ops, and more. 

After you've typed in the program, be sure to check the checksum value 
generated by the assembly on line 173. The byte in your program should 
match the listing, CHK = $89. The program is longer than any presented so 
far, and verifying the checksum will help avoid program bugs caused by typo
graphical errors. 

The program operates in general by first asking for the name of the file 
to be dumped. If the name includes a slash ( / ) as the first character of the 
name, it will use the input as the complete pathname, and use the volume indi
cated. If the name doesn't include a slash, it will append in the given name to 
the current prefix, and it will try to open that file. If the file is not found, or 
there is any error in opening and reading the file, the ProDOS MLI error code 
will be printed, and you can try again. A Monitor routine, PRBYTE ($FDDA = 
"PRint BYTE"), is used to print the error code as a hex number. This routine 
prints the contents of the Accumulator when called. 

As the file is displayed, you can start and stop the text scrolling by 
pressing Control-S. You can exit the program by typing QUIT for the filename. 

When you run the program, it will make some difference how you actu
ally start up the program. If you BRUN the file from BASIC without having 
ever specifically set the prefix from BASIC, there will be no default prefix when 
FDUMP.SYS runs. Hence you'll have to include the volume name for the file 
you want to examine. This is because BASIC.SYSTEM does not specifically set 
the internal ProDOS pathname when it runs. On the other hand, if you run 
FDUMP.SYS from a program selector like the Program Launcher or DeskTop, 
these programs will set the internal ProDOS prefix when they launch the sys
tem file, and the prefix will be set to whatever volume and directory where the 
file itself is located. 

A Closer Look 
Now let's take a closer look at Program 13-4. The first thing to notice is a new 
initialization routine that you'll be seeing a lot of in the remainder of the list
ings in this book. When you call a routine from BASIC, if something goes 
wrong, and the program BRKs in the Monitor somewhere, you can always 

258 



ProDOS 

press RESET or Control-C to get back to BASIC and try it again. 
With a ProDOS system file, things are a little different. Now there's no 

way to cleanly exit back to the program launcher without executing the 
ProDOS Quit command. The SETQUIT routine at the beginning of this pro
gram sets up some insurance in the way of the Control-Y vector, which is set to 
jump to our Quit code. If your program should break in the Monitor, you may 
be able to recover control by pressing Control-Y while in the Monitor. 

In fact, once you get this program working, you may want to try deliber
ately placing a BRK instruction in the listing-perhaps around line 66-and 
then try pressing Control-Y in the Monitor to verify that the technique works. 
This will come in very handy as we move into ProDOS 16 and the tools where 
a BRK is even more likely, and when avoiding having to reboot the entire ma
chine will be very helpful. 

Once the Control-Y vector is set up, the very next thing the program 
does is check a memory location, $C01F = RD80COL (ReaD 80-COLumn sta
tus), which tells it whether the SO-column display is active. When the 80-
column display is active, bit 7 of RD80COL will be set (BMI will work). 

The reason this is required is because it's possible to run FDUMP.SYS 
from a program selector that is running in 80 columns, and to have the pro
gram start up in 40 columns. This is a function of the program selector and the 
Apple Iles, rather than FDUMP.SYS itself. The problem is, if a SYSTEM pro
gram is run from an SO-column display, and comes up in 40 columns, the 
screen width byte, $21 (WNDWDTH = WiNDow WiDTH) will still be set to 
80 columns. This in turn means that text will not be printed correctly on the 
screen. 

To prevent all of this, the program first checks to see if we're in 40 col
umns (80 columns not active). If we are, the program stores the correct width, 
40, in WNDWDTH. 

Line 36 clears the screen and prints a prompt message. You'll notice that 
the PROMPT section uses something new, a local label. Local labels are tempo
rary labels you can use in a source listing for the destination of branches and 
loops so you don't have to keep thinking of new names. 

In a small program, branching back to LOOP is fine. As the program 
gets larger, you can probably use the labels LOOP2 and LOOP3, but after 
awhile it's rather pointless. Readable labels exist only to add meaning to an en
try point. If the meaning is obvious, you may want to consider using a local la
bel. A local label is designated by a colon ( : ) followed by a number between 1 
and 9. Local labels are remembered by the assembler only between real (global) 
labels. For example, if there is a label like CHAR on line 41, the assembler 
won't know where to assign the BNE :1 on line 43, because the label CHAR 

259 



Chapter 13 

would be between the branch and the target local label. Restrictions and syntax 
for local labels vary by assembler, so you should read your assembler manual 
to find out all the particulars. 

In the PROMPT print loop, you might also notice that we use a BNE at 
the bottom of the loop on line 43. As the Y register is incremented, line 40 is 
already testing for the end of the string, marked by a zero. Logically, we could 
have used a BRA or JMP on line 43. However, in the interest of possible de
bugging, a BNE is used instead of BRA or JMP so that if a zero was somehow 
left out of the string text (MSSGl), the loop would terminate when Y wrapped 
around to $00. If BRA or JMP were used, the loop would go forever with an 
omitted zero, and the program would seem to hang up. 

After the prompt, line 45 uses a Monitor routine, GETLN2, which will 
do the equivalent of an INPUT command for you. It even supports a cursor 
and editing with the arrow keys. Believe me, this is not something that would 
be fun to have to write yourself. A JSR to the Monitor is much easier. 

GETLN2 returns when the user presses Return, and the name entered is 
in the input buffer, $200 to $2FF. The X register contains the length. 

Now for the next tricky part. Later on, we're going to tell ProDOS where 
the pathname typed in is located. Right now, it starts at location $200. Remem
ber that ProDOS expects every string to begin with a length byte. What we 
need to do is to rewrite the pathname in the input buffer with a length byte at 
the beginning. Lines 46-53 illustrate a very direct solution to this. Remember 
that when indexing a string of bytes, the value for the length is usually one 
unit too large for accessing the last byte of the string. 

For example, suppose starting at $200, you have the characters A at 
$200, B at $201, and C at $202. The string has a length of 3. Assume we'll use 
indexed addressing of the form LDA $200,X to access each character. You can 
see that if X = 3, we will be accessing byte $203 ($200 + 3), which is actually 
the fourth, and non-existent character, of the string. Normally, in a loop that 
just scans a string in the input buffer, the length, as such, is used as an upper 
limit to tell you when to stop, by going one byte too far. 

Back to our routine. We can use the fact that $200,X will start at one 
byte past the end of the current string as a method to move the entire string to 

· the right one byte. Line 48 reads LDA INBUF-1,X. This is a neat trick for 
accessing one byte previous to INBUF,X. The first time through the loop, LDA 
INBUF-1,X will pick up the last character of the string, and STA INBUF,X will 
move it to right one byte. 

This will continue until the entire name has been shifted. At that point, 
location $200 is now empty; there we can store the length, which has been 

260 



ProDOS 

saved on the stack. Look this over carefully until you're confident you under
stand exactly how it works . It's not enough to memorize a hundred or so as
sembly language commands-you must also start to learn how to combine, 
manipulate, and use them to accomplish your own programming goals. 

The next step is to see if the user typed QUIT. A quick check is made on 
line 55 to see if the input string was four characters long. If it wasn't, there's no 
reason to do an exact check. It's true that machine language is so fast that this 
test is more aesthetic than necessary, but it's purpose is to illustrate further 
techniques of programming. 

CHK2 on lines 58-64 actually tests the input string to see if it's QUIT. 
There are a few new tricks here as well. First, look at the definition of MSSGl 
on lines 160-163. Although a simple message like this could have been defined 
with one ASC instruction, breaking it up like this lets us assign a label to spec
ify the word QUIT. Otherwise, the characters would have to be stored else
where a second time for the testing loop at CHK2. The LABEL-1,X addressing 
mode is again used. Now that the string has been moved to the right one char
acter in the input buffer, the characters are now found at $201 to $201 + X. 
This is nice, because we can now test for X reaching zero as it is decremented. 
If it isn't immediately obvious why this is an advantage, consider the more tra
ditional loop to scan the input buffer. In this case, we'll pretend we want to 
convert an input string to entirely uppercase: 

START JSR GETLN2 

DEX 
LOOP LDA $200,X 

ORA #$OF 
STA $200,X 
DEX 
CPX #$FF 
BNE LOOP 

DONE RTS 

; GET INPUT STRING 
; DATA@ $200+, LEN IN X-REG. 
; CORRECT X FOR INDEXED ADDRESS 
; GET A CHARACTER 
; CONVERT TO UPPER CASE 
; PUT IT BACK 
; X = X -1 
; WAIT FOR WRAPAROUND 
; STILL IN THE LOOP 
; THAT'S ALL! 

Notice how the X register must first be decremented to make the indexed 
addressing work out. Then, the end-of-loop test must look for a wraparound 
from $00 to $FF. You can't do a BNE test, because then you'd leave out the last 
pass of the loop for X = 0 (first character of the buffer). You can't use a BMI 
(another way to test for $FF by looking for the high bit set), because if the 
starting length of the string is greater than $7F (127 characters), the high bit 
will set when you start, and you'll never loop back. 

All this is avoided in the CHK2 routine, because the string has been 
moved up, to $201 + X. This makes it easy to pick up each character and then 
use a BNE loop test. The only problem now is that the data for QUIT at WORD 

261 



Chapter 13 

runs from WORD to WORD+3. No problem. By addressing it as CMP WORD-
1,X, the addresses will match up properly, and the check routine will work. 

Now for the actual ProDOS part of the program. OPEN on line 66 calls 
the ProDOS Open command. The three-byte MLI data block contains $CS (the 
Open command), and a pointer to PARMTBL2, where the specifics of what file 
to open and where to store the data are kept. Look ahead to lines 147-150 to 
examine this table. 

Line 147 holds the value 3, for the number of parameters for the Open 
command. Line 148 holds the pointer to $200 where the pathname of the file 
to open is stored. Line 149 tells ProDOS where a 1024-byte working buffer has 
been assigned. It will use this to read in each block from the disk. Line 150 re
serves room for a reference number byte that ProDOS will use to make sure 
everybody is talking about the same file. 

After the call (line 70), if the Carry is set, indicating a ProDOS error has 
occurred, a message will be printed that includes the ProDOS MLI error code, 
and the program will jump back after a keypress to ask for a new pathname. 

Assuming there is no error in the Open command (Table 13-3 lists the 
error codes), lines 69 through 74 then read in 255 bytes at a time. Because the 
parameter table for both a Read and Close (which will be used shortly) are so 
similar, the same table can be used for both calls. The only consideration that 
must be made is to customize the beginning number-of-parameters value at the 
beginning of the table for each call. Lines 69,70 do this by storing a 4, which is 
the number of parameters for a Read table, at the beginning of PARMTBL3. 

In looking at PARMTBL3 (lines 142-146), notice that a different buffer 
area is used for the data to actually be read from the file. DOSBUF is a 1024-
byte buffer that ProDOS uses to manage the file it's reading. The information 
in that buffer is not directly accessed by an application, but rather is requested 
using the Read command. The Read command itself must specify a separate 
buffer (BUFFER in this case). The buffer must be at least as large as the number 
of bytes specified to be read by the Read command parameter table. Our 
BUFFER is $100 bytes long. 

The ProDOS buffer, DOSBUF, must also begin at a page boundary (even 
multiple of $100 such as $2000, $2100, and $2200), so we use another Merlin 
pseudo-op, OS (Defined Storage). This pseudo-op is used whenever you want 
to set aside a large block of bytes within your program without having to use a 
lot of instruction, such as HEX and DA. Merlin allows a special form of DS (DS 
followed by a Z) which pads the object file with empty bytes until the next 
page boundary. At that point ($2200 in our program), BUFFER is defined. 
BUFFER itself didn't have to be on a page boundary, but its length of $100 
makes it compatible with sandwiching between the DSZ instruction and 

262 



ProDOS 

DOSBUF. Notice also that DOSBUF is just a label without an associated OS (or 
anything for that matter). Normally, all the empty bytes specified by a OS in
struction are also saved to disk when the object file is saved. Since DOSBUF is 
at the end, and we don't need to save the empty bytes as part of the file, line 
164 accomplishes what we need: It assigns DOSBUF an address. 

If there is no error on the Read command, lines 76-83 print out the 
characters read. At some point, an error ($4C = End of File) will be generated 
when the end of the file is reached. This error is specifically tested for, and a 
branch to CLOSE is done. Lines 90-96 rewrite the first byte of PARMTBL3 to 
correspond to the Close command parameter list, and then execute the Close 
command. 

You might think that the Read command would generate an error (End
of-File error) when it reads the last few bytes of the file and reaches the end of 
file marker, since it will be rare when the length of the file will be an exact 
multiple of the number of bytes you're requesting for each read. 

Fortunately, Read is a little more sophisticated than that. Part of the 
Read parameter table is NUMREAD, which returns the actual number of bytes 
read from the file. When Read reaches the end of a file, it returns the number 
of bytes successfully read in the NUMREAD position, and it does not generate 
an End-of-File error. It is only the next or any successive attempts to read the 
file that will generate an error. Thus, you don't have to worry about any special 
case handling to print the last few remaining characters in a file after an End
of-File error has occurred. 

Finally, a PRESS A KEY prompt is printed, and the program goes back 
to the beginning. 

It is important that you try to understand each part of this program. All 
ProDOS programming uses MLI calls and techniques like those used in this ex
ample. It may seem complicated when you're reading the explanation, but it 
will begin to make sense as you read and reread the source listing. Also, re
member this: Assembly language programs of any substance usually involve 
very lengthy listings. Remember-you're trying to build skyscrapers out of very 
little building blocks, and it takes a lot of blocks to make a single wall, let alone 
the entire building. The trick is to stand back and look at the main labels for 
each routine and to try to get the big picture of what's going on. 

Error Codes 
ProDOS MLI error codes are not the same as Applesoft DOS error codes, so 
Table 13-3 may be helpful in testing the program. 

263 



Chapter 13 

Table 13-3 

Error Code 
$01 
$04 
$25 
$27 
$28 
$2E 
$40 
$42 
$43 

$44 
$45 
$46 
$47 

$48 
$4A 
$48 

$4C 
$40 

$4E 

$50 
$51 

$52 
$53 
$55 

$56 

$57 
$5A 

Meaning 
Invalid MLI command number was used. 
Incorrect number of parameters in PARMTBL. 
ProDOS Interrupt Table is full (not relevent to this example). 
Disk 1/0 error, such as open door, or bad disk. 
No device connected. You removed the drive while nobody was looking. 
A disk with an open file was removed from the drive . 
Invalid pathname syntax (illegal characters). 
No buffers available . Too many files open (more than eight). 
File not open. Wrong reference number, or you tried to read a file without 
opening it. 
Subdirectory not found. Wrong name used. 
Volume not found. Wrong name used. 
File not found. Wrong name used. 
Duplicate filename. You've tried to create a new file with the name that is 
already in use (not relevent to this example). 
Disk is full. 
File itself is not in a ProDOS format. 
File type mismatch. Since the example doesn't check for a specific file 
type, this isn't likely. 
End of data. No more data in file. EOF. 
Range error. Occurs when SeLMark is used for a position past the end of 
the file. 
File locked. The file access bit in the directory information won't let you 
in. 
File busy . Somebody else is already talking to that file (file open). 
Directory count is messed up and is different than the actual number of 
files in the directory. 
Disk is not a ProDOS format. 
Some parameter is out of range . 
Eight files on eight separate drives are open, and somebody wants still 
more. 
No buffers available. You're trying to assign a buffer to a place in memory 
that's already being used. 
Duplicate volumes. There are two disks online that have the same name. 
The disk bitmap says there's a free block somewhere past the actual size 
of the disk itself. The volume bitmap has been damaged. 

264 



ProDOS 

Program 13-4. PB File Dump Demo 

I •••••••••••••••••••••••••••••••••••••••••••••• 
2 • P8 FILE DUMP DEMO PROGRAM • 
3 * MERLIN ASSEMBLER • 
4 •••••••••••••••••••••••••••••••••••••••••••••• 
5 
6 ORG $2000 
7 
8 DSK FD UMP.SYS 
9 TYP $FF ; SYSTEM FILE TYPE 

IO 
=BFOO 11 MLI EQU SBFOO ; STD. PRODOS 8 ENTRY 
=FDED 12 COUT EQU SFDED 
=FC58 13 HOME EQU $FC58 
=FDOC 14 RDKEY EQU SFDOC ; MONITOR READ KEY ROUTINE 
=FD6F 15 GETLN2 EQU $FD6F ; MONITOR INPUT ROUTINE W/0 PROMPT 
=0200 16 INBUF EQU $200 ; INPUT BUFFER 
=FDDA 17 PRBYTE EQU SFDDA ; PRINT ACC. AS HEX NUMBER 
=COIF 18 RDSOCOL EQU $COIF ; BIT 7 = I = 80 COLS. "ON" 
=0021 19 WNDWDTH EQU $21 ; TEXT WINDOW WIDTH 
=0578 20 CHSO EQU $578 ; 80-COL HORIZ. CURSOR POSN 

21 
22 

002000: A9 4C 23 SETQUIT LDA #$4C ; JMP INSTRUCTION 
002002: SD FS 03 24 STA $3F8 ; CTRLY VECTOR 
002005: A9 BO 25 LDA #<QUIT ; WW BYTE OF QUIT ADDR. 
002007: SD F9 03 26 STA $3F9 ; WW BYTE OF CTRL-Y VECTOR 
00200A: A9 20 27 LDA #>QUIT 
00200C: SD FA 03 28 STA $3FA ; HIGH BYTE OF CTRL-Y VECTOR 

29 
00200F: 2C IF co 30 BEGIN BIT RDSOCOL ; 80 COLS ACTIVE? 
002012: 30 07 =20IB 31 BMI CLEAR ; YES 
002014: A9 28 32 LDA #40 ; WINDOW WIDTH 
002016: 85 21 33 STA WNDWDTH ; SET WIDTH, JUST IN CASE 
002018: 9C 78 05 34 STZ CHSO ; SET 80 COL CURSOR H = 0 

35 
0020IB: 20 58 FC 36 CLEAR JSR HOME ; CLEAR SCREEN 

37 
0020 IE: AO 00 38 PROMPT LDY #$00 ; !NIT Y-REG 
002020: B9 ED 20 39 :I LDA MSSGI,Y ; PRINT PROMPT MSSG. 
002023: FO 06 =2028 40 BEQ GETPATH 
002025: 20 ED FD 41 JSR COUT ; PRINT IT 
002028: C8 42 INV ; NEXT CHAR 
002029: DO F5 =2020 43 BNE :I ; WRAPAROUND PRCYfECT 

44 
00202B: 20 6F FD 45 GETPATH JSR GETLN2 ; GET PATHNAME FROM USER 

46 
00202E: DA 47 FIX PHX ; SAVE LENGTH OF INPUT STRING 
00202F: BD FF 01 48 :I LDA INBUF-1,X ; GET LAST CHAR 
002032: 9D 00 02 49 STA INBUF,X ; MOVE OVER ONE BYTE 
002035: CA 50 DEX ; X = X- I 

265 



Chapter 13 

002036: DO F7 =202F 51 BNE :1 ; NEXT CHARACTER 
002038: FA 52 PLX ; RETRIEVE LENGTH 
002039: SE 00 02 53 STX INBUF ; PUT AT BEG. OF STRING 

54 
00203C: EO 04 55 CHKl CPX #$04 ; 4 = LEN "QUIT" 
00203E: DO 10 =2050 56 BNE OPEN ; IT'S Nm "QUIT" 

57 
002040: BD 00 02 58 CHK2 LDA INBUF,X ; LAST CHAR OF INPUT 
002043: 29 DF 59 AND #$DF ; CONVERT TO UPPERCASE IF NEEDED 
002045: DD 09 21 60 CMP WORD-1,X ; "QUIT"? 
002048: DO 06 = 2050 61 BNE OPEN ; NOPE 
00204A: CA 62 DEX 
002048: DO F3 =2040 63 BNE CHK2 ; N(Yf DONE YET 
00204D: 4C BO 20 64 JMP QUIT ; STR$ = "QUIT" 

65 
002050: 20 00 BF 66 OPEN JSR MLI 
002053: cs 67 DFB $CS ; OPEN COMMAND 
002054: DF 20 68 DA PARMTBL2 ; OPEN CMD TABLE 

69 
002056: 90 09 =2061 70 BCC OPEN2 ; NO ERROR 

71 
002058: 20 88 20 72 JSR ERROR ; PRODOS ERROR MESSAGE 
002058: 20 OC FD 73 JSR RDKEY ; WAIT FOR A KEYPRESS 
00205E: 4C OF 20 74 JMP BEGIN ; TRY AGAIN IF ERROR 

75 
002061: AD E4 20 76 OPEN2 LDA PARMTBL2 + 5 ; GET REFERENCE NUMBER 
002064: SD E6 20 77 STA PARMTBL3 + l ; STORE REF NUMBER 

78 
002067: A9 04 79 READ LDA #$04 ; # OF PARMS FOR 'READ' 
002069: SD ES 20 80 STA PARMTBL3 ; MODIFY TABLE ENTRY 
00206C: 20 00 BF 81 JSR MLI 
00206F: CA 82 DFB $CA ; READ COMMAND 
002070: ES 20 83 DA PARMTBL3 ; READ CMD TABLE 
002072: 90 07 =2078 84 BCC PRINT ; NO ERROR 

85 
002074: C9 4C 86 EOFCHK CMP #$4C ; ERROR = END OF FILE? 
002076: FO 15 =208D 87 BEQ CWSE ; YEP! 

88 
002078: 20 88 20 89 JSR ERROR ; PRODOS ERROR MSSG 

90 
002078: AO 00 91 PRINT LDY #$00 ; !NIT Y-REG 
00207D: 89 00 22 92 :1 LDA BUFFER,Y 
002080: 09 80 93 ORA #$80 ; SET HIGH BIT 
002082: 20 ED FD 94 JSR COUT 
002085: cs 95 INY 
002086: CC EB 20 96 CPY NUMREAD ; PRINT CHARS READ IN. 
002089: 90 F2 = 207D 97 BCC :1 
002088: BO DA = 2067 98 BCS READ ; GET ANffiHER LINE OF TEXT 

99 
00208D: A9 01 100 CWSE LDA #$01 ; REWRITE PARMTBL3 
00208F: SD ES 20 101 STA PARMTBL3 ; # OF PARMS = l 
002092: 20 00 BF 102 JSR MLI 

266 



ProDOS 

002095: cc 103 DFB $CC ; CWSE COMMAND 
002096: ES 20 104 DA PARMTBL3 ; SAME TABLE AS 'READ' 
002098: 90 03 = 209D 105 BCC DONE ; NO ERRORS 
00209A: 20 BS 20 106 JSR ERROR ; PRODOS ERROR MSSG 

107 
00209D: AO 00 108 DONE LDY #$00 ; INIT Y-REG 
00209F: B9 3D 21 109 :1 LDA MSSG3,Y ; GET CHAR TO PRINT 
0020A2: FO 06 =20AA 110 BEQ D2 
0020A4: 20 ED FD 111 JSR COUT ; PRINT IT 
0020A7: C8 112 INV ; NEXT CHAR 
0020A8: DO F5 = 209F 113 BNE :1 ; WRAPAROUND PROfECT 

114 
0020AA: 20 OC FD 115 D2 JSR RDKEY ; GET A KEYPRESS 
0020AD: 4C OF 20 116 JMP BEGIN ; BACK TO THE BEGINNING 

117 
0020BO: 20 00 BF 118 QUIT JSR MLI ; DO QUIT CALL 
0020B3: 65 119 DFB $65 ; QUIT CALL COMMAND VALUE 
002084: DS 20 120 DA PARMTBL ; ADDRESS OF PARM TABLE 
0020B6: 00 00 121 BRK $00 ; SHOULD NEVER GET HERE ... 

122 
002088: 48 123 ERROR PHA ; SAVE ERROR CODE 
0020B9: AO 00 124 LDY #$00 ; !NIT Y-REG 
002088: B9 13 21 125 :1 LDA MSSG2,Y ; GET CHAR TO PRINT 
0020BE: FO 06 = 20C6 126 BEQ PRCODE 
0020CO: 20 ED FD 127 JSR COUT ; PRINT IT 
0020C3: C8 128 !NY ; NEXT CHAR 
0020C4: DO F5 =20BB 129 BNE :1 ; WRAPAROUND PROfECT 

130 
0020C6: 68 131 PRCODE PLA ; RETRIEVE ERROR CODE 
0020C7: 20 DA FD 132 JSR PRBYTE ; PRINT IT 
0020CA: AO 00 133 LDY #$00 ; !NIT Y-REG 
0020cc: B9 23 21 134 :1 LDA MSSG2A,Y ; GET CHAR TO PRINT 
0020CF: FO 06 =20D7 135 BEQ ERDONE ; END OF MSSG 
0020Dl: 20 ED FD 136 JSR COUT ; PRINT IT 
0020D4: C8 137 !NY ; NEXT CHAR 
0020D5: DO F5 =20CC 138 BNE :1 ; WRAPAROUND PROfECT 
0020D7: 60 139 ERDONE RTS 

140 
0020D8: 04 141 PARMTBL DFB 4 ; NUMBER OF PARMS 
0020D9: 00 142 DFB 0 ; QUIT TYPE (0 = STD. QUIT) 
0020DA: 00 00 143 DA $0000 ; Naf NEEDED FOR STD. QUIT 
0020DC: 00 144 DFB 0 ; Naf USED AT PRESENT 
0020DD: 00 00 145 DA $0000 ; Naf USED AT PRESENT 

146 
0020DF: 03 147 PARMTBL DFB 3 ; NUMBER OF PARMS FOR OPEN = 3 
0020EO: 00 02 148 DA INBUF ; POINTER TO PATHNAME 
0020E2: 00 23 149 DA DOSBUF ; POINTER TO PRODOS BUFFER 
0020E4: 00 150 REFNUM DFB 0 ; PRODOS FILE REFERENCE NUMBER 

151 
0020E5: 00 152 PARMTBL DFB 0 ; NUMBER OF PARMS FOR READ/CWSE 
0020E6: 00 153 DFB 0 ; REFERENCE NUMBER 
0020E7: 00 22 154 DA BUFFER ; POINTER TO DATA BUFFER 
0020E9: FF 00 155 DA 255 ; 255 CHARACTERS TO READ 

267 



Chapter 13 

0020EB: 00 00 156 NUMREAD DA 0 ; NUMBER OF CHARACTERS READ. 
157 
159 

0020ED: DO CC CS Cl 160 MSSGl ASC "PLEASE ENTER PATHNAME: ",SD 
002105: AS CF D2 AO 161 ASC "(OR"' 
00210A: DI D5 C9 D4 162 WORD ASC "QUIT" 
00210E: A7 A9 AO SD 163 ASC "') ",SD,00 

164 
002113: SD 165MSSG2 HEX SD ; PRINT RETURN FIRST 
002114: DO D2 CF C4 166 ASC "PRODOS ERROR $",00 
002123: SD 167 MSSG2A HEX SD ; ANCYI'HER CARRIAGE RETURN 
002124: DO D2 CS D3 168 ASC "PRESS A KEY TO TRY AGAIN",00 

169 
00213D: SD 170 MSSG3 HEX SD ; PRINT RETURN FIRST ... 
00213E: 80 D2 CS D3 171 ASC "PRESS A KEY FOR NEXT FILE",00 

172 
002158: EC 173CHKSUM CHK ; CHECKSUM FOR VERIFICATION 

174 
002159: 00 00 00 00 175 DS ; SKIP TO NEXT PAGE BOUNDARY 
002200: 00 00 00 00 176 BUFFER DS $100 ; DATA BUFFER FOR US 

177 
178DOSBUF ; 1024 BYTES FOR PRODOS BUFFER 
179 ; NCYI' IN PROGRAM SO AS TO NCYI' 
180 ; TAKE UP DISK SPACE ... 
181 

End Merlin-16 assembly, 768 bytes, errors: 0 

268 







Chapter 14 

ProDOS 16 

Like ProDOS 8, ProDOS 16 is a set of disk access routines designed to be 
called from machine language programs. Unlike ProDOS 8, there is no 
BASIC.SYSTEM for Applesoft. In fact, in ProDOS 16, the assumption is that 
Applesoft BASIC and the Monitor no longer exist. You're not entirely on your 
own, however. It's in the ProDOS 16 environment that the new Apple IIGS 
tools like super hi-res graphics, the Event Manager, the Memory Manager, and 
other tools become available. On the one hand, you lose many of the points of 
reference you're familiar with. On the other, you enter the real world of the 
Apple IIGS, where memory seems unbounded, and the hundreds of built-in 
Applesoft BASIC and Monitor routines are replaced by literally thousands of 
Apple IIGS Toolbox commands. Future chapters will explore those tools in de
tail; for now let's look at ProDOS 16. 

Starting Up ProDOS 16 
On a disk set up to boot ProDOS 16, such as the Apple IIGS System Disk, the 
boot process starts the same as it did for ProDOS 8-by reading and executing 
the code stored in blocks O and 1 on the disk. This code is the same on any 
ProDOS disk, regardless of whether it is set up for ProDOS 8 or 16. As before, 
this code begins by running the file ProDOS on the disk. Here's where things 
under ProDOS 16 change considerably. 

On a ProDOS 16 boot disk, the file PRODOS is now just an intermedi
ate program itself, one that is not actually either version of ProDOS. Instead, 
it's an initialization file whose job it is to determine the correct operating sys
tem (ProDOS 8 or 16) for whatever the startup application on the disk is. When 
the file PRODOS first runs, the first thing it does is copy part of itself and call 
PQUIT (ProDOS Quit) to a part of memory outside the first 64K, where it will 
remain permanently. PQUIT has two specific functions: First, it loads the ap
propriate operating system for whatever application is about to be run. Second, 
it contains a program selector of sorts, which actually starts up the application 
named by a path name passed to it. 

After PQUIT is installed, ProDOS 16 and the System Loader are loaded 

271 



Chapter 14 

using the file P16 in the SYSTEM subdirectory. The System Loader is a sepa
rate unit from ProDOS 16, even though they share the same file (P16) on the 
disk. In ProDOS 8, every application is a .SYSTEM file and is loaded into 
memory starting at location $2000 in bank zero. Under ProDOS 16, all of bank 
zero becomes very valuable, and applications are loaded almost anywhere else 
in the many other banks of available memory. 

Because the actual final location at which a program will run is now 
unknown to the programmer, simple object files cannot be used. Instead, a new 
type of assembler-created file, called relocatable, must be used. A relocatable file 
contains not only the object file as you see it assembled, but also additional 
information such as all the internal reference JMPs, JSRs, and LDAs. Creating a 
file like this with all the additional information means the actual program bytes 
can be rewritten when the file is loaded into memory. This loading and rewrit
ing is done by the System Loader (not ProDOS 16 itself). 

Once ProDOS 16 and the System Loader have been installed, all the ap
propriate Apple Iles supporting files in the various subdirectories of the SYS
TEM folder are loaded. For example, TOOL.SETUP in the SYSTEM.SETUP 
folder contains a number of fixes to the Apple Iles internal ROM routines. No 
system is ever perfect, and the designers of the Apple Iles knew errors in the 
ROM were bound to be discovered after the machine was in production. 

The solution was to design almost everything in ROM in such a way 
that any ROM routine could be amended, or even replaced, by a substitute rou
tine loaded into RAM when the system was booted. Much of this was accom
plished with vectors to the various ROM routines. You'll recall from Chapter 12 
that vectors are pointers in RAM that direct control to a certain routine. By 
changing the vectors that correspond to a given ROM routine to a loaded RAM 
routine, the substitution is made. 

TOOL.SETUP is not the only file loaded during the boot process. Classic 
Desk Accessories that may be on the disk are also loaded. Basically, any file 
with the file types $B6 (for example TOOL.SETUP, a permanent initialization 
file), $B7 (a temporary initialization file), $B8 (Classic Desk Accessories such as 
SDUMP), or $B9 (New Desk Accessories like CLOCK) are loaded during this 
startup process. 

Now that everything is in place, the system looks for a $B3 type (appli
cation) file named START. Usually, this is a program selector like the Apple 
Program Launcher, but it can be any application you wish to write. If START is 
found, it is loaded and run. 

If START is not found, the system then searches the main directory for 
the first file that is either a ProDOS 8 SYS ($FF) file whose name ends in .SYS
TEM, or a ProDOS 16 application (type $B3 = S16) whose name ends in 

272 



ProDOS 16 

.SYS16. Depending on which type of file is found first, the appropriate operat
ing system is selected (P8 is loaded if necessary), and the program is run. 

Ultimately, it is the PQUIT routine that selects the proper operating sys
tem and application pathname. 

The Simplest ProDOS 16 Program: Quit 
As with ProDOS 8, ProDOS 16 applications must end with a quit command, 
not an RTS (or RTL). ProDOS 16 calls are made in a fashion similar to the MLI 
call for ProDOS 8. For ProDOS 16, a JSL is done to location $El/OOA8; this is 
followed by a six-byte data block. The first two bytes define the command 
value, or call number. The next four bytes are a long-address pointer to a 
ProDOS 16 parameter block. Notice that in the world of ProDOS 16, every
thing assumes we are running in banks that can be anywhere in memory. 

In general, every Apple IIGS ProDOS 16 application must meet the fol
lowing requirements: 

1. Have the filetype $B3 (S16). There are specialized applications that may 
have other file types. 

2. Be created in the relocatable file format called the Object Module Format 
(OMF). This will be described in greater detail shortly. 

3. Do a proper ProDOS 16 quit call. (No RTS, RTL or forced reset.) 
4. Obtain any memory used externally to the program and its stack and direct 

page from the Memory Manager. 

Item 4 may seem new to you. With so much memory on the Apple IIGS, 
it may seem like you should be able to use whatever you want. But answer 
these questions: How will you know how much memory the user has installed 
in his machine? How will you know where your program is actually running? 
How will you share the available memory with other programs, such as desk 
accessories, that may have been loaded during the boot process? 

The Memory Manager 
To make things as easy as possible for everyone that uses the Apple IIGS envi
ronment, the system includes a tool called the Memory Manager. The Memory 
Manager keeps track of all the things mentioned above so you can concentrate 
on your application. Basically, whenever you need some memory for a file 
buffer, a picture, or a data block, you just say, "Hey, get me lOK of memory." 
and the Memory Manager not only finds the memory for you, but also protects 
it from everybody else in the system. The bottom line is: Use the memory man
ager; don't blaze your own trails. 

For your first ProDOS 16 program, let's write a ProDOS 16 equivalent of 

273 



Chapter 14 

the PS.SYSTEM program (Program 13-1) that was presented in Chapter 13. The 
main differences will be: 

1. ProDOS 16 does an automatic screen clear when it starts up a program, so 
the JSR HOME won't be needed. 

2. You won't have Applesoft BASIC or the Monitor to depend on, for three rea
sons: Our program is now being started up in the full 16-bit mode (Accumu
lator and index registers); we'll undoubtedly be in a different bank than the 
Monitor/ Applesoft BASIC routines; and we now have our own stack and di
rect page (automatically determined, allocated and assigned by the System 
Loader and Memory Manager when our program was loaded). You're on 
your own. 

3. The quit command for ProDOS 16 is slightly different from that for ProDOS 8. 

Simple System File 
With all that in mind, take a look at Program 14-1, P16.SYSTEM. The APW 
version of this program is Program 14-3. (Before assembling this program, you 
may want to read the section on linking, below.) 

Because the start-assembly default of Merlin is for the 8-bit mode, we 
must begin Program 14-1 with a new Merlin directive, MX. This is equivalent 
to APW's LONGA and LONGI directives, and it tells the assembler what the 
starting condition of the m and x bits are assumed to be. To indicate the 16-bit 
mode, MX %00 is used. You may change Merlin's startup default on an assem
bly to be 16-bit, thus eliminating the need for this instruction. But keeping it in 
the listing doesn't hurt anything and is actually a good idea if you want to 
avoid errors should you ever change the startup default. 

Lines 8 and 9 show how to create a relocatable file ouput with Merlin. 
The REL directive on line 8 tells Merlin to create a ProDOS REL type file ($FE) 
on the disk during the assembly. This will be used by the Merlin linker to cre
ate the OMF file needed for the final application. (This is more or less equiva
lent to APW's .ROOT output file). 

Because the program is running in an indeterminant memory bank, the 
first thing we need to do is set the data bank register equal to the program 
bank register (the bank we're running in). The PHK, PLB instructions will do 
the trick here. 

Next, the prompt message is printed to the screen. Because we can no 
longer use COUT, the message is printed by storing the characters directly on 
the screen, as was done when you first started all this in Chapter 3. Line 22 
uses the STAL (STA Long) instruction to put the bytes on the text screen. Re
member, the data bank register setting at this point means a STA $400,X would 
store a byte (actually, two) in the bank you're currently running in, not $00/$0400, 

274 



ProDOS 16 

where the text screen is. If the data bank were set to $00, the STA instruction 
would work, but not the LDA MSSG,X. One or the other must use a long ad
dressing mode instruction. 

Also because the Accumulator is in the 16-bit (two byte) mode, charac
ters are loaded and stored two at at time. This means the number of characters 
in the string at MSSG (line 44) must be an even number. Also, because the Ac
cumulator is in the 16-bit mode, two INX instructions are used to increment to 
the next pair of bytes. To add insult to injury, the complete SO-column display 
is made up by interleaving the address range from $400 to $7FF for both banks 
0 and 1. Because we're only writing to bank 0, the characters only appear at 
every other position on the screen. 

The keyboard is read in a similar manner, and is thus a little different 
from the ProDOS 8 version of this program. Because the LOA KYBD instruction 
actually loads two bytes, one each from $COOO and $COO!, it is necessary to do 
an AND #$00FF to zero-out the high-order byte of the Accumulator. 

The CMP #$0080 then checks to see if a key was pressed. (By the way, 
for those of you who are really deep thinkers, yes, it's true that the typed in
structions AND #$FF, CMP #$80 would have been equivalent to AND #$00FF, 
CMP #$0080.) Leading zeros don't do any more for the assembler than they do 
for any other number-$000000012 is still $12. They were used in this case to 
make it clear in the source listing that two bytes were involved in the opera
tion. Perhaps this isn't a bad idea for your own programs. 

Now for the quit command itself: $0029 is the call number for a ProDOS 
quit. This follows the JSL to the ProDOS 16 common entry point, $El/OOA8. 
Following the call number is the 4-byte pointer to the parameter block. ADRL 
(ADdRess Long) is the Merlin pseudo-op for a 4-byte address pointer. 

The parameter block for the ProDOS 16 quit command consists of just 
six bytes. The first four are a pointer to an optional pathname for the next 
application to be run. This is similar to the ProDOS 8 Enhanced Quit Call. In 
our program, this is set to zero, which tells ProDOS to just do a standard quit 
back to the previous program. 

The next two bytes define a flag that uses the upper two bits (bits 14 and 
15), to flag certain exit conditions. The options are as follows: 

If bit 15 is set, it means that you would like program control to return to 
the program (the one doing the quit at that point), instead of going back to the 
starting program selector. If this bit is clear, as in our P16.SYSTEM program, or 
there is no pathname specified (pointer = $0), then a direct quit back to the 
previous program is done. 

If bit 15 is set, and there is a pathname for the program to quit to, our 

275 



Chapter 14 

program itself now acts like a program selector, wherein it can launch a speci
fied application. Control will return to it when that application is finished. This 
is where bit 14 comes in. When you think about it, the PQUIT routine (the 
thing really managing all this) is going to have to rerun your program when 
the other one quits. The obvious way to do this is to reload it from disk. How
ever, this is not only slow (relatively speaking), but it also requires the proper 
disk be in the drive. 

Since all that memory is lying around, why not just keep a copy of our 
program in memory in a dormant state, and resurrect it when the time comes? 
That is just what bit 14 is for. You can tell the system which you prefer. If bit 
14 is set (flag = $COOO), your program will be restarted from memory. On the 
other hand, if you want to force a restart from disk, bit 14 can be left clear (flag 
= $8000). 

Program 14-1. Simple P16 System File 

I ********************************************** 
2 * SIMPLE Pl6 SYSTEM FILE * 
3 * MERLIN ASSEMBLER * 
4 ********************************************** 
5 
6 
7 MX %00 ; FULL 16 BIT MODE 
8 REL ; REWCATABLE OUTPUT 
9 OSK Pl6.SYSTEM.L 

IO 
=EIOOAS 11 PRODOS EQU $EIOOA8 ; PRODOS 16 ENTRY POINT 
=COOO 12 KYBD EQU $COOO 
=COIO 13 STROBE EQU $COIO 
=0400 14 SCREEN EQU $000400 ; LINE I ON SCREEN 

15 
008000: 48 16 ENTRY PHK ; GET PROGRAM BANK 
008001: AB 17 PLB ; SET DATA BANK 

18 
008002: A2 00 00 19 PRINT LDX #$00 ; INIT X-REG 
008005: BD 34 80 20 WOP LDA MSSG,X ; GET CHAR TO PRINT 
008008: FO 08 =8012 21 BEQ GETKEY ; END OF MSSG. 
00800A: 9F 00 04 00 22 STAL SCREEN,X ; "PRINT" IT 
OOSOOE: ES 23 INX ; NEXT TWO CHARS 
OOSOOF: ES 24 INX ;X=X+2 
008010: DO F3 =8005 25 BNE WOP ; WRAPAROUND PROfECT 

26 
008012: AD 00 co 27 GETKEY LDA KYBD ; CHECK KEYBOARD 
008015: 29 FF 00 28 AND #$00FF ; CLEAR HI BYTE 
008018: C9 80 00 29 CMP #$0080 ; KEYPRESS? 
008018: 90 F5 =8012 30 BCC GETKEY ; NOPE 
00801D: 2C IO co 31 BIT STROBE ; CLEAR KEYPRESS 

32 

276 



008020: 22 AS 00 E 1 
008024: 29 00 
008026: 2D 80 00 00 
00802A: BO 07 = 8033 
00802C: 00 

00802D: 00 00 00 00 
008031: 00 00 

008033: 00 

33 QUIT 
34 
35 
36 
37 
38 
39 PARMBL 
40 FLAG 
41 
42 ERROR 
43 

JSL PRODOS 
DA $29 
ADRL PARMBL 
BCS ERROR 
BRK 

ADRL $0000 
DA $00 

BRK 

; DO QUIT CALL 
; QUIT CODE 

ProDOS 16 

; ADDRESS OF PARM TABLE 
; NEVER TAKEN 
; SHOULD NEVER GET HERE ... 

; PTR TO PATHNAME 
; ABSOLUTE QUIT 

; WE'LL NEVER GET HERE? 

008034: DO CC CS Cl 44 MSSG ASC "PLEASE PRESS A KEY -> "; EVEN NUMBER OF 

008038: D3 CS AO DO D2 CS D3 D3 
008040: AO Cl AO CB CS D9 AO AD 
008048: BE AO 
00804A: 00 00 45 DA $0000 

46 
00804C: 54 47 CHK 

--End Merlin-16 assembly, 77 bytes, Errors: 0 

The Launcher 

CHARACTERS' 

; TWO ZEROS 

; CHECKSUM FOR LISTING 

To show how all this works, Program 14-2 is a ProDOS 16 version of the 
PS.LAUNCHER (Program 13-3), called Pl6.LAUNCHER. The APW version of 
the launcher is Program 14-4. 

This program starts off the same way as P16.SYSTEM. The main differ
ence is that now four inputs are allowed: the number keys 0, 1, 2, and 3. 

Three is the most complex example (flag = $COOO). This will launch the 
previous program, P16.SYSTEM, from disk, and will store itself in memory. 
When P16.SYSTEM quites, P16.LAUNCHER will resume instantly from mem
ory. In principle, there can be many multiple levels of different programs, or 
program modules, each running a successive module with control ultimately re
turning to the master program. 

Option 2 (flag = $0) simply starts P16.SYSTEM without leaving itself in 
the return list. Thus, when Pl6.SYSTEM quits, control goes back to the previ
ous program selector. 

Option 1 is equivalent to the direct quit done by P16.SYSTEM. 
Option O demonstrates what happens either when there is no program 

left in the return list to go to, or when the file specified is not found. This acti
vates the Apple IIGS ProDOS interactive restart menu that gives you the option 
of rebooting, running the file named START, or specifying a startup program of 
your own. 

By the way, you may have been wondering why we didn't just bracket 

277 



Chapter 14 

the 8-bit operations in the program P16.SYSTEM in a pair of SEP and REP in
structions like this: 

SEP $30 ; 8-BIT MODE 

PRINT LDX #$00 ; INIT X-REG 
WOP LDA MSSG,X ; GET CHAR TO PRINT 

BEQ GETKEY ; END OF MSSG. 
STAL SCREEN,X ; "PRINT" IT 
INX ; NEXT TWO CHARS 
INX ;X=X+2 
BNE WOP ; WRAPAROUND PROTECT 

GETKEY LDA KYBD ; CHECK KEYBOARD 
AND #$00FF ; CLEAR HI BYTE 
CMP #$0080 ; KEYPRESS? 
BCC GETKEY ; NOPE 
BIT STROBE ; CLEAR KEYPRESS 

REP $30 ; BACK TO 16-BIT MODE 

There are two reasons. First, to show you what alternative you may have 
when going to the 16-bit mode may be impractical, and second, because doing 
this as P16.LAUNCHER is a little impractical. 

Here's why. The SEP on line 22 or so of P16.LAUNCHER would work 
OK, but where can we put the REP $30? At the end of the print loop, around 
line 30, would work, but now the GETKEY routine is still in the 16-bit mode. 
You could move it to somewhere near line 36, but now you're comparing an 
Accumulator loaded in the 8-bit mode with 2-byte ASCII codes. 

If you try to move the REP $30 past the compares, you'll have to put 
four of them in, one for each entry point to the various quit commands. 

Program 14-2. ProDOS 16 Launcher Demo 

I ********************************************** 
2 * PRODOS 16 'LAUNCHER' DEMO * 
3 • LAUNCHES 2ND SYSTEM FILE, • 
4 * STAYS DORMANT, THEN REVIVED * 
5 * WHEN 2ND QUITS. * 
6 * * 
7 • MERLIN ASSEMBLER * 
8 ********************************************** 
9 

10 
11 
12 
13 
14 

MX %00 
REL 
DSK Pl6.LAUNCH.L 

278 

; FULL 16-BlT MODE 

; REWCATABLE OUTPUT 



ProDOS 16 

=EI00A8 15 PRODOS EQU $E100A8 ; PRODOS 16 ENTRY POINT 
=COOO 16 KYBD EQU $COOO 
=COlO 17 STROBE EQU $C010 
=0400 18 SCREEN EQU $400 ; LINE 1 ON SCREEN 

19 
008000: 48 20 ENTRY PHK ; PUSH CODE BANK 
008001: AB 21 PLB ; PULL DATA BANK 

22 
008002: A2 00 00 23 PRINT LOX #$00 ; INIT X-REG 
008005: BO 85 80 24 WOP LOA MSSG,X ; GET CHAR TO PRINT 
008008: FO 08 =8012 25 BEQ GETKEY ; END OF MSSG. 
00800A: 9F 00 04 00 26 STAL SCREEN,X ; "PRINT" IT' 
OOSOOE: ES 27 INX ; NEXT TWO CHARS 
00800F: ES 28 INX ;X=X+2 
008010: DO F3 =8005 29 BNE WOP ; WRAPAROUND PROTECT 

30 
008012: AD 00 co 31 GETKEY LOA KYBD ; KEYPRESS? 
008015: 29 FF 00 32 AND #$00FF ; MASK UPPER BYTE 
008018: C9 80 00 33 CMP #$80 ; HI BIT SET? 
008018: 90 FS =8012 34 BCC GETKEY ; NOPE 
0080 ID: 2C 10 co 35 BIT STROBE ; CLEAR KEYPRESS 

36 
008020: C9 BO 00 37 CHK CMP #"O" ; QUIT TO ROM ROUTINE? 
008023: FO 13 =8038 38 BEQ QUITO ; YES 
008025: C9 Bl 00 39 CMP #"l" ; REAL QUIT? 
008028: FO 1B = 8045 40 BEQ QUITI ; YES 
00802A: C9 82 00 41 CMP #"2" 
008020: FO 23 =8052 42 BEQ QUIT2 ; LAUNCH 2ND, DON'T RETURN 
00802F: C9 83 00 43 CMP #"3" 
008032: FO 28 = 805F 44 BEQ QUIT3 ; LAUNCH 2ND, RETURN 

45 
008034: SC 12 80 00 46 TRYAGN JML GETKEY ; TRY AGAIN 

47 
008038: 22 AS 00 El 48 QUITO JSL PRODOS ; DO QUIT CALL 
00803C: 29 00 49 DA $29 ; QUIT CODE 
00803E: 6C 80 00 00 50 ADRL PARMO ; ADDRESS OF PARM TABLE 
008042: BO 40 =8084 51 BCS ERROR ; NEVER TAKEN 
008044: 00 52 BRK ; WE'LL NEVER GET HERE? 

53 
008045: 22 AS 00 El 54 QUITl JSL PRODOS ; DO QUIT CALL 
008049: 29 00 55 DA $29 ; QUIT CODE 
008048: 72 80 00 00 56 ADRL PARMl ; ADDRESS OF PARM TABLE 
00804F: BO 33 =8084 57 BCS ERROR ; NEVER TAKEN 
008051: 00 58 BRK ; WE'LL NEVER GET HERE? 

59 
008052: 22 AS 00 El 60 QUIT2 JSL PRODOS ; DO QUIT CALL 
008056: 29 00 61 DA $29 ; QUIT CODE 
008058: 78 80 00 00 62 ADRL PARM2 ; ADDRESS OF PARM TABLE 
00805C: BO 26 = 8084 63 BCS ERROR ; NEVER TAKEN 
00805E: 00 64 BRK ; WE'LL NEVER GET HERE?? 

65 
00805F: 22 AS 00 El 66 QUIT3 JSL PRODOS ; DO QUIT CALL 
008063: 29 00 67 DA $29 ; QUIT CODE 

279 



Chapter 14 

008065: 7E 80 00 00 
008069: 80 19 =8084 
008068: 00 

68 
69 
70 
71 

ADRL PARM3 
BCS ERROR 
BRK 

00806C: 90 80 00 00 72 PARMO ADRL NAMEO 
008070: 00 00 73 FLAGO DA $00 

74 
008072: 00 00 00 00 75 PARMl ADRL $00 
008076: 00 00 76 FLAGl DA $00 

77 
008078: 9F 80 00 00 78 PARM2 ADRL NAMEl 
00807C: 00 00 79 FLAG2 DA $00 

80 
00807E: 9F 80 00 00 81 PARM3 ADRL NAMEl 
008082: 00 CO 82 FLAG3 DA $CODD 

83 
008084: 00 84 ERROR BRK 

85 

; ADDRESS OF PARM TABLE 
; NEVER TAKEN 
; WE'LL NEVER GET HERE?? 

; BAD PATH TO GEN ERROR 
; ABSOLUTE QUIT 

; NO PATHNAME 
; ABSOLUTE QUIT 

; PTR TO PATHNAME 
; BITS 15,14 = 0: DON'T RESTART 

; PTR TO PATHNAME 
; BITS 15,14 = 1: RESTART LATER 

; WE'LL NEVER GET HERE? 

008085: DO D2 CS D3 86 MSSG ASC "PRESS 0, 1, 2, OR 3 ·>"; EVEN NUMBER OF CHARACTERS" 
008089: D3 AO BO AC AO 81 AC AO 
008091: 82 AC AO CF D2 AO 83 AO 
008099: AD BE 
008098: 00 00 87 

88 
DA $00 

89 * 0 • QUIT TO ROM RE-START 
90 * 1 • QUIT TO PREVIOUS PROGRAM 
91 * 2 • LAUNCH "PIG.SYSTEM" 

; TWO ZEROS 

92 • 3 • LAUNCH "PIG.SYSTEM" AND RETURN WHEN DONE 

00809D: 01 
00809E: D8 

00809F: OA 
0080AO: DO 81 86 AE 
0080A4: D3 D9 D3 D4 

0080A6: SC 

93 
94 NAMEO DFB 
95 ASC "X" 
96 
97 NAMEl DFB NAMEND-NAMEl-1 
98 ASC "PIG.SYSTEM" 
CS CD 
99 NAMEND 
100 
101 CHK 

--End Merlin-16 assembly, 171 bytes, Errors: 0 

Merlin File Assembly and Linking Instructions 

; LEN OF ZERO 
; WON'T FIND THIS! 

; LEN OF PATHNAME 
; 2ND TEST SYS FILE 

; CHECKSUM FOR LISTING 

Linking is the process of combining several different program modules, that 
have already been assembled, into one or more final output object files. Re
member that a relocatable file contained information about the JSRs and ]MPs. 
It can also contain information about calls to routines in itself that other mod
ules might want to reference. 

For example, suppose there are three program modules, A, B, and C. 
Furthermore, let's suppose that Band C have the entry points READ and 

280 



ProDOS 16 

WRITE, respectively. Program A will represent the main program, and B and C 
are modules that read and write files to the disk. 

Program A will want to call the routines READ and WRITE in B and C, 
but remember these are being assembled separately. So, while the programmer 
is working on module A, he just tells the assembler that some other module 
will eventually have the external label READ in it. During the assembly, then, 
the assembler knows not to worry about the fact that READ hasn't been given 
a specific address yet. You may know from assembling files already that nor
mally an assembler will generate an error if a label is used that doesn't have an 
address defined for it. The EXT (EXTernal) is used to assign external labels. 

While working on B, the programmer tells the assembler that READ, 
which is a label in module B, is an entry point that other programs may want to 
use. This is done with another assembler directive, ENT (ENTry point). Mod
ule C will have WRITE defined in a similar way. 

Having assembled each of the three programs individually into its own 
relocatable files (type REL = $FE), this is where the linker comes in. The linker 
uses a list, usually a text file, of all the modules to be combined into one or 
more final output files. In the case of the Apple IIGS and Merlin 16, this will be 
an Object Module Format (OMF) file. The list may also contain specific com
mands for the Linker, telling it to save the output file, to re-assemble a file, or 
which file type should be used for the output file. 

Such a list might look like this: 

TYPE $B3 
LINK A 
LINK B 
LINK C 
SAVE PROGRAM 

During the linking process, the assembler will reconcile the calls to the 
READ and WRITE entry points in modules Band C with the JSRs (or what
ever) to those labels from module A. This is the purpose of linking a file. 

Also notice, however, that nothing insists that more than one input file 
be used. If all you want to do is to create an OMF file from a REL file, a link 
list with one file in it will do the trick. 

To assemble, link, and run P16.SYSTEM, you must first load and acti
vate the Merlin 16 linker. This is done from the main menu by BRUNning the 
file LINKER.GS on the Merlin 16 disk. You can type -LINKER.GS as a disk 
command to do this. The linker need only be installed once during a session. 

281 



Chapter 14 

From then on, any program can be assembled and linked by following these 
steps: 

1. Enter and assemble the listing, exactly as shown. Save the source file. This 
will give you two files on the disk, Pl6.SYSTEM.S and P16.SYSTEM.L (a 
REL file). Notice the special suffix, .L given the REL file to differentiate it 
from the source file and the final OMF file. The suffix was part of the name 
in the DSK instruction and is not added automatically by Merlin. 

2. After assembling and saving the source file, type in NEW to clear the editor 
workspace. Type this in: 

TYP $B3 ; Sl6 FILE 
LINK Pl6.SYSTEM.L ; CONVERT REL TO OMF 
SAVE Pl6.SYSTEM ; SAVE OUTPUT FILE 

3. Save this new file on the disk under the name P16.SYS.CMD. This is the 
linker command list. It cannot be directly assembled. Do not type ASM to ex
ecute it. 

4. To do the final link, type NEW again to clear the workspace, and then type: 

LINK "Pl6.SYS.CMD" 

and press Return. 
5. When the link is complete, you'll be returned to the main menu. Your final 

Sl6 file has already been saved on the disk. Return now to your program se
lector and try running P16.SYSTEM. It should work as described next. 

If there is only one file to be linked, Merlin 16 also has a shortcut link 
command that will link the last source file saved, and will create an OMF file, 
with the type S16. To do the quick link, type LINK"=" instead of an actual 
filename while at the command prompt ( : ) in the Editor. The final object file 
generated by the link will be saved under the name P16.SYSTEM, assuming 
you use the DSK command OSK Pl6.SYSTEM.L as the REL type output file in 
the source listing itself. 

This general procedure should be used to assemble, link and run all fur
ther ProDOS 16 Merlin programs. 

APWLinking 
Linking a file in APW will seem fairly easy, because you've already done it. Be
cause all files in APW must be linked, the linking process is part of the ASML 
command (ASseMble and Link). For ProDOS 8, presumably you've been 
reverse-converting the files after the ASML back to a standard object file with 
the MAKEBIN and FILETYPE commands. 

282 



ProDOS 16 

Normally, the output of the ASML command is an OMF file. After as
sembling with ASML, just type in FILETYPE 516. You can then quit APW and 
test the program by starting it from a program selector. Although APW will let 
you launch a program directly from within its command mode, it's better to use 
the program selector to avoid unexpected interactions between APW and your 
programs. 

For your reference, Program 14-3 and Program 14-4 are the APW ver
sions of the two programs. Since APW assumes a starting long mode for the Ac
cumulator and index registers, no LONGA ON, LONGI ON instructions are 
needed (although, like Merlin, it doesn't hurt, and it makes the starting condi
tions for the assembly clear}. 

Program 14-3. APW Simple P16 System File 

0001 0000 •••••••••••••••••••••••••••••••••••••••••••••• 
0002 0000 • SIMPLE P16 SYSTEM FILE • 
0003 0000 • APW ASSEMBLER • 
0004 0000 •••••••••••••••••••••••••••••••••••••••••••••• 
0005 0000 
0006 0000 KEEP PIG.SYSTEM 
0007 0000 MSB ON 
0008 0000 
0009 0000 MAIN START 
0010 0000 
0011 0000 PRODOS EQU $ElOOA8 ; PRODOS 16 ENTRY POINT 
0012 0000 KYBD EQU $COOO 
0013 0000 STROBE EQU $C010 
0014 0000 SCREEN EQU $000400 ; LINE 1 ON SCREEN 
0015 0000 
0016 0000 48 ENTRY PHK ; GET PROGRAM BANK 
0017 0001 AB PLB ; SET DATA BANK 
0018 0000 
0019 0002 A2 00 00 PRINT LDX #$00 ; INIT X-REG 
0020 0005 BD 36 00 LOOP LDA MSSG,X ; GET CHAR TO PRINT 
0021 0008 FO 08 BEQ GETKEY ; END OF MSSG. 
0022 OOOA 9F 00 04 00 STA >SCREEN,X ; "PRINT" IT 
0023 OOOE ES INX ; NEXT TWO CHARS 
0024 OOOF E8 INX ;X=X+2 
0025 0010 DO F3 BNE LOOP ; WRAPAROUND PRUl'ECT 
0026 0012 
0027 0012 AD 00 co GETKEY LDA KYBD ; CHECK KEYBOARD 
0028 0015 29 FF 00 AND #$00FF ; CLEAR HI BYTE 
0029 0018 C9 80 00 CMP #$0080 ; KEYPRESS? 
0030 0018 90 F5 BCC GETKEY ; NOPE 
0031 OOID 2C 10 co BIT STROBE ; CLEAR KEYPRESS 
0032 0020 
0033 0020 22 AS 00 El QUIT JSL PRODOS ; DO QUIT CALL 
0034 0024 29 00 DC 12'$29' ; QUIT CODE 
0035 0026 2E 00 00 00 DC 14'PARMBL' ; ADDRESS OF PARM TABLE 
0036 002A BO 08 BCS ERROR ; NEVER TAKEN 

283 



Chapter 14 

0037 002C 00 00 
0038 002E 
0039 002E 00 00 00 00 
0040 0032 00 00 
0041 0034 
0042 0034 00 00 
0043 0036 
0044 0036 DO CC CS Cl 

0045 004C 00 00 
0046 004E 
0047 004E 

4 7 source lines 
0 macros expanded 
0 lines generated 

PARMBL 
FLAG 

ERROR 

MSSG 

BRK ; SHOULD NEVER GET HERE ... 

DC 14'$0000' ; PTR TO PATHNAME 
DC 12'$00' ; ABSOLUTE QUIT 

BRK ; WE'LL NEVER GET HERE? 

DC C'PLEASE PRESS A KEY > '; EVEN NUMBER OF 
CHARACTERS' 

DC 11'0,0' ; TWO ZEROS 

END 

Program 14-4. APW ProDOS 16 Launcher Demo 

0001 0000 •••••••••••••••••••••••••••••••••••••••••••••• 
0002 0000 * PRODOS 16 'LAUNCHER' DEMO * 
0003 0000 * LAUNCHES 2ND SYSTEM FILE, * 
0004 0000 * STAYS DORMANT, THEN REVIVED * 
0005 0000 * WHEN 2ND QUITS. * 
0006 0000 * * 
0007 0000 * APW ASSEMLER * 
0008 0000 •••••••••••••••••••••••••••••••••••••••••••••• 
0009 0000 
0010 0000 KEEP PIG.LAUNCH 
0011 0000 MSB ON 
0012 0000 
0013 0000 MAIN START 
0014 0000 
0015 0000 PRODOS EQU $EIOOA8 ; PRODOS 16 ENTRY POINT 
0016 0000 KYBD EQU $COOO 
0017 0000 STROBE EQU $COIO 
0018 0000 SCREEN EQU $400 ; LINE I ON SCREEN 
0019 0000 
0020 0000 48 ENTRY PHK ; PUSH CODE BANK 
0021 0001 AB PLB ; PULL DATA BANK 
0022 0002 
0023 0002 A2 00 00 PRINT LDX #$00 ; INIT X-REG 
0024 0005 BD SA 00 WOP LDA MSSG,X ; GET CHAR TO PRINT 
0025 0008 FO 08 BEQ GETKEY ; END OF MSSG. 
0026 OOOA 9F 00 04 00 STA >SCREEN,X ; "PRINT" IT 
0027 OOOE ES INX ; NEXT TWO CHARS 
0028 OOOF ES INX ;X=X+2 
0029 0010 DO F3 BNE WOP ; WRAPAROUND PROTECT 
0030 0012 
0031 0012 AD 00 co GETKEY LOA KYBD ; KEYPRESS? 
0032 0015 29 FF 00 AND #$DOFF ; MASK UPPER BYTE 
0033 0018 C9 80 00 CMP #$80 ; HI BIT SET? 
0034 0018 90 FS DCC GETKEY ; NOPE 

284 



ProDOS 16 

0035 OOID 2C 10 co BIT STROBE ; CLEAR KEYPRESS 
0036 0020 
0037 0020 C9 BO 00 CHK CMP #'O' ; QUIT TO ROM ROUTINE? 
0038 0023 FO 13 BEQ QUITO ; YES 
0039 0025 C9 Bl 00 CMP #'l' ; REAL QUIT? 
0040 0028 FO lC BEQ QUITl ; YES 
0041 002A C9 82 00 CMP #'2' 
0042 002D FO 25 BEQ QUIT2 ; LAUNCH 2ND, DON'T RETURN 
0043 002F C9 83 00 CMP #'3' 
0044 0032 FO 2E BEQ QUIT3 ; LAUNCH 2ND, RETURN 
0045 0034 
0046 0034 5C 12 00 00 TRYAGN JML GETKEY ; TRY AGAIN 
0047 0038 
0048 0038 22 AS 00 El QUITO JSL PRODOS ; DO QUIT CALL 
0049 003C 29 00 DC 12'$29' ; QUIT CODE 
0050 003E 70 00 00 00 DC I4'PARMO' ; ADDRESS OF PARM TABLE 
0051 0042 80 44 BCS ERROR ; NEVER TAKEN 
0052 0044 00 00 BRK ; WE'LL NEVER GET HERE? 
0053 0046 
0054 0046 22 AS 00 El QUITl JSL PRODOS ; DO QUIT CALL 
0055 004A 29 00 DC 12'$29' ; QUIT CODE 
0056 004C 76 00 00 00 DC I4'PARMI' ; ADDRESS OF PARM TABLE 
0057 0050 80 36 BCS ERROR ; NEVER TAKEN 
0058 0052 00 00 BRK ; WE'LL NEVER GET HERE? 
0059 0054 
0060 0054 22 AS 00 El QUIT2 JSL PRODOS ; DO QUIT CALL 
0061 0058 29 00 DC 12'$29' ; QUIT CODE 
0062 005A 7C 00 00 00 DC 14'PARM2' ; ADDRESS OF PARM TABLE 
0063 005E 80 28 BCS ERROR ; NEVER TAKEN 
0064 0060 00 00 BRK ; WE'LL NEVER GET HERE?? 
0065 0062 
0066 0062 22 AS 00 El QUIT3 JSL PRODOS ; DO QUIT CALL 
0067 0066 29 00 DC 12'$29' ; QUIT CODE 
0068 0068 82 00 00 00 DC 14'PARM3' ; ADDRESS OF PARM TABLE 
0069 006C 80 lA BCS ERROR ; NEVER TAKEN 
0070 006E 00 00 BRK ; WE'LL NEVER GET HERE?? 
0071 0070 
0072 0070 A2 00 00 00 PARMO DC I4'NAMEO' ; BAD PATH TO GEN ERROR 
0073 0074 00 00 FLAGO DC 12'$00' ; ABSOLUTE QUIT 
0074 0076 
0075 0076 00 00 00 00 PARMl DC 14'$00' ; NO PATHNAME 
0076 007A 00 00 FLAGl DC 12'$00' ; ABSOLUTE QUIT 
0077 007C 
0078 007C A4 00 00 00 PARM2 DC 14'NAME1' ; PTR TO PATHNAME 
0079 0080 00 00 FLAG2 DC 12'$00' ; BITS 15,14 = 0: DON'T RESTART 
0080 0082 
0081 0082 A4 00 00 00 PARM3 DC I4'NAME1' ; PTR TO PATHNAME 
0082 0086 00 co FLAG3 DC I2'$COOO' ; BITS 15,14 = 1: RESTART LATER 
0083 0088 
0084 0088 00 00 ERROR BRK ; WE'LL NEVER GET HERE? 
0085 008A 
0086 008A DO 02 C5 D3 MSSG DC C'PRESS 0, 1, 2, OR 3 ·>'; EVEN NUMBER OF CHARACTERS' 

285 



Chapter 14 

0087 OOAO 00 00 
0088 OOA2 
0089 OOA2 
0090 OOA2 
0091 OOA2 
0092 OOA2 
0093 OOA2 
0094 OOA2 01 
0095 OOA3 D8 
0096 OOA4 
0097 OOA4 OA 
0098 OOAS DO BI 86 AE 
0099 OOAF 
0100 OOAF 
0101 OOAF 

10 I source lines 
0 macros expanded 
0 lines generated 

DC 11'0,0' 

* 0 • QUIT TO ROM RESTART 
* I - QUIT TO PREVIOUS PROGRAM 
* 2 - LAUNCH "PIG.SYSTEM" 

; TWO ZEROS 

* 3 · LAUNCH "PIG.SYSTEM" AND RETURN WHEN DONE 

NAMEO DC 11'1' ; LEN OF ZERO 
DC C'X' ; WON'T FIND THIS! 

NAMEI DC Il'NAMEND-NAMEl-1' ; LEN OF PATHNAME 
DC C'Pl6.SYSTEM' ; 2ND TEST SYS FILE 

NAMEND ANOP 

END 

286 







Chapter 15 

A Look at Memory Use on the 
Apple IIGS 

First of all, congratulations for having worked so hard to reach this point in the 
book. Going from only a simple understanding of BASIC to being able to write 
programs under both ProDOS 8 and ProDOS 16 is no trivial accomplishment. 

Reflect for a moment on what you've learned so far: over 75 assembly 
language instructions; how to input and print text to the screen; how to manip
ulate the hi-res screen; Boolean math; the intricacies of the direct page and the 
stack, and exotic addressing schemes; how to extend Applesoft BASIC with 
your own machine language routines; how to pass variables back and forth be
tween Applesoft BASIC and machine language; how to use the Monitor to ex
amine memory, write a program, and debug it; how to use an assembler; and 
most of all, general techniques in programming that go beyond just knowing a 
command or two. 

What all that gets you right now is the foundation to embark on writing 
your own programs for the Apple I!GS that would be impossible on any other 
machine. You see, the Apple IIGS, with its thousands of built-in routines, can 
act like an amplifier of your existing talent and let you write programs today 
that would be a super-human accomplishment for programmers just a few 
years ago. 

Before we start with the actual Apple IIGS Toolset, let's review the over
all memory use of the Apple I!GS by the different operating systems and 
applications. 

Now, with what you've learned in the previous chapters, the explanation 
of total memory usage on the Apple IIGS will seem easy to understand because 
you've already learned a lot of the most important details while you were 
learning about other major concepts. There will be new discoveries, like addi
tional banks of memory, but most of this new information will be for your own 
background as a soon-to-be expert on the Apple IIGS. After all, you can't claim 
to be an expert if you've never heard of bank-switching or the alternate 4K 
bank of memory, now can you? 

289 



Chapter 15 

The Apple II: Past lives 
Although it's not essential to know anything about previous Apple computers 
(like the Apple II+, Ile and Ile) to program on the Apple IIGS, a few facts 
about the past will help you understand why things are the way they are 
today. 

The original Apple II and II+ machines were 64K computers, whose 
memory was roughly equivalent to just bank O of the Apple IIGS today. Be
cause the first bank of memory on the GS is still used in very much the same 
way, and because Applesoft BASIC has not fundamentally changed since the 
Apple II+, let's look at bank O first (see Figure 15-1). 

Figure 15-1. Zero Page: $00 to $FF 

$FF 

$FE 

$FD 

$03 

$02 

$01 

$00 

The first 256 ($100) bytes are page zero. This is the default direct page 
on the Apple IIGS, and was the only possible direct page on all Apples before 
the Apple IIGs that used the 6502 or 65C02 microprocessors. Because of the 
importance of indirect and indexed addressing, this is the most important mem
ory use in the computer. 

In Applesoft BASIC, for example, every important pointer-such as to 
the size of the program in memory, which line is currently being executed and 
the character in the line which is being looked at-is stored in page zero. Even 
if you had no reference books whatsoever on the internal workings of the com
puter, quite a large amount of information could be deduced just by looking at 
the contents of page zero and seeing how the memory values changed as dif
ferent programs were loaded and run. 

This is exactly what many people did in the late 1970s, when the Apple 
computer was first produced, and much more technical information was to be 
found published by average owners of the computer who had taken the time to 
do a little investigation than by Apple Computer Company itself. 

290 



A Look at Memory Use on the Apple IIGS 

This tradition continues today, but the real message is that you don't al
ways have to depend on someone else to give you the information you desire. 
A little work and clear deductive thought can teach you a lot about the 
computer. 

On the Apple IIGS, the direct page can be relocated by a program by 
using the Direct Page Register . This is a valuable enhancement to the original 
Apple II design because now programs don't have to fight over the same part 
of memory. In the Applesoft BASIC environment, you've got Applesoft BASIC, 
the Monitor, ProDOS and your routine all trying to use the same 256 bytes of 
memory . Since the first three contenders are preprogrammed, this means 
you've got to be very careful choosing those zero-page bytes (we used $06-09) 
to not get in somebody else's way. 

With the Apple IIGS, even in routines called from Af plesoft BASIC, you 
can re-assign the direct page for your routine's use, as long as you're sure to re
store it to page zero before you return to Applesoft BASIC, call the ProDOS 8 
MLI, or call an internal Applesoft BASIC or Monitor routine (like COUT). 

By the way, another completely acceptable approach to using page zero 
is to just save the contents of the bytes you want to use in your routine, and 
then restore them when you're done. The ProDOS MLI instructions, for ex
ample, take this approach and save the contents of $40-$4E, and then restore 
them when the command is finished. The main thing to be careful not to do is 
save the contents, use the bytes for yourself, and then call some other routine 
that expects the original values to be there when instead you've changed them . 

For example, locations $28, 29 are used by COUT as the base address 
for the current text screen line being printed by the Monitor or Applesoft 
BASIC. If you saved the contents of these bytes, used $28,29 in your routine, 
and then restored them, no one would be any the wiser. However, if your rou
tine called COUT in the middle of all this, things would really go crazy because 
COUT would expect the original values to still be there. 

The Stack: $100 to $1FF 

$100-$1FF 

$00-$FF 

The Stack 

Zero (Direct) Page 

The next page of memory, $100 to $1FF, is the default stack area . In the 
Applesoft BASIC environment, the stack is limited to $100 bytes, and is filled 
from $1FF-downward with stored return addresses for JSRs and JSLs, and val
ues pushed on the stack by running programs. 

Like the direct page, this can also be changed by a routine, by changing 

291 



Chapter 15 

the Stack Pointer to any two-byte address in the first bank (bank 0) of memory. 
With the 65816 in the full 16-bit mode, the stack can be of any size, and it is 
up to the programmer to see that data in it does not collide with anything 
stored below it. 

The Input Buffer: $200 to $2FF 

$200-$2FF 

$100-$1FF 

$00-$FF 

The Input Buffer 

The Stack 

Zero (Direct) Page 

The area from $200 to $2FF is used by Applesoft BASIC and the Monitor 
to store characters as they are input from the keyboard. Certain ProDOS 8 pro
grams also use the second half of the input buffer ($280 to $2FF) to pass path
names between successive programs. When ProDOS is reading or writing a file 
from disk, a dedicated buffer defined elsewhere in memory is used, so the in
put buffer from $200 to $2FF is not used, although you may see the term input 
buffer used in reference to other data areas. 

Because the input buffer is so heavily used on a temporary basis, it 
makes an excellent choice for a temporary block of memory for your own pro
grams, especially for string operations. Just don't plan on leaving anything 
there after you leave your routine and expect to find it there when you come 
back. 

Page Three 
Figure 15-2 shows page three. The area from $300 to $3CF is considered an 
open area for user-defined machine language routines. This is the area used for 
most of the short demonstration programs so far in this book. 

Starting at $300 are a number of ProDOS and system vectors that 
should not be changed unless you know exactly what you are doing. The exis
tence and use of some of the vectors depend on whether you are in ProDOS 8 
or 16, or are using Applesoft BASIC. Vectors like this are usually self-evident. 
For example, a ProDOS 16 program doesn't have to worry about the Applesoft 
BASIC ampersand ( & ) vector at $3F5-3F7. 

Looking through the list, here's a brief discussion of each group of page
three bytes. A JMP instruction is held by $300-302 for the BASIC.SYSTEM 
warm-start entry. This is equivalent to being in the Monitor and typing Con
trol-C. The difference is that this will reconnect ProDOS if an 1/0 handler has 
gotten things confused. The same vector is contained in $303-$305. Once 
upon a time, in a disk operating system called DOS 3.3, they were different. 

292 



Figure 15-2. Page Three: $300 to $3FF 

$3FE-$3FF 

$3FB-$3FO 

$3F8-$3FA 

$3F5-$3F7 

$3F4 

$3F2-$3F3 

$3F0-$3Fl 

$3EF 

$3E0-$3EE 

$306-$3EC 

$303-$305 

$300-$302 

$300-$3CF 

$200-2FF 

$100-lFF 

$00-$FF 

Address for IRQ 
handler (interrupts). 

JMP vector for non-
maskable interrupts. 

JMP vector Control-Y 
Monitor command. 

JMP vector for BASIC 
& commands. 

Power-up byte. Must 
be EOR of contents of 
$3F3 with #$AS. 

Address for a RESET 
restart. 

Address of BRK 
handler. 

(Unused) 

Address to go to when 
XFER ($C314) is called. 

Reserved for use by 
a ProOOS 8 SYSTEM. 

BASIC.SYSTEM warm-
start entry vector. 

BASIC.SYSTEM warm-
start entry vector. 

Free Area 

The Input Buffer 

The Stack 

Zero (Direct) Page. 

A Look at Memory Use on the Apple IIGS 

293 



Chapter 15 

Locations $3D6 to $3EC are reserved for use by a ProDOS S system pro
gram. You can use the bytes here for a vector to routines in your own program. 
You might wonder why you would want to do this. Suppose you're debugging 
a large program that has a tendency to crash. Certain entry points that could be 
used to restart the program after a crash may be within the body of the pro
gram itself. Instead of trying to remember that $21A7 is the current assembly's 
warm-start (restart without clearing variables), you could put a permanent 
warm-start vector of your own at $3D6-$3DS (for example, JMP $21A7). That 
way, each reassembly will put the correct reentry vector at $3D6, and you only 
have to remember one address. 

Locations $3ED and 3EE hold an address for something called the XFER 
(for transfer) routine. The XFER routine is derived from use on Apple Ile and 
Ile machines that used the 65C02 microprocessor, and could not do long
address JMPs or JSRs to other banks of memory. In the case of the Ile and Ile, 
there is only one other bank of memory (ignoring expansion RAM cards for the 
moment), bank 1, also called auxiliary memory or AUXMEM. XFER is a routine 
designed to transfer program control from one bank to another. 

For example, if you had a program running in bank Oat $300, and 
wanted to jump to $300 in bank 1, you could store the bytes $00,$03 in loca
tions $3ED,3EE, and do a JMP $C314 (the XFER routine). The $C314 address is 
a clue that the routine is on a peripheral card in slot 3, and it's true. The SO
column display uses bank 1 for every-other character on the screen, and there 
are a number of built-in routines associated with the SO-column firmware and 
the extra memory in bank 1. The SO-column display routines appear as though 
they are on a peripheral card in slot 3. XFER is one of those routines. 

Locations $3FO and 3Fl hold the address that the computer will jump to 
after it has encountered a BRK instruction and has taken care of its own busi
ness with the event. The existence of this vector makes debuggers and pro
grams that step through and trace assembly language programs possible. 

Suppose we wrote a program that could keep track of a simulated pro
gram counter-where in memory a program was executing. That program 
could place a BRK instruction after the current instruction; then JMP to it. 
When the BRK was encountered after the instruction, the vector at $3FO, 3Fl 
would point back to our program, which would restore the byte where the BRK 
was and advance our own program counter to this now-current instruction. 
Then a new BRK would be written after this instruction, and the process would 
repeat. In this way, we would get control back after each and every program 
step in the target program. This is how a step-and-trace (or debugger) is written 
for the Apple computer. 

The next three bytes, $3F2-3F4 are the address of where to jump to after 

294 



A Look at Memory Use on the Apple IIGS 

a RESET, followed by a special checksum byte. When RESET is pressed, a 
number of things are reinitialized that don't include reconnecting 
BASIC.SYSTEM under ProDOS 8. If things were not fixed up, typing CATA
LOG after a RESET would just give a SYNTAX ERROR. Likewise, for a SYS
TEM program of your own, it's very good practice to trap RESET, so that the 
user isn't dumped into the Monitor if RESET is pressed. 

The checksum byte is used by the Monitor to make sure that the vector 
that's there is intended. When you first tum on the machine, some value has to 
be there. One of the ways the computer knows it has just been turned on is by 
doing an exclusive-OR (EOR) of the contents of location $3F3 with the constant 
value $AS. It then compares the result to a checksum byte stored in location 
$3F4. If they don't match, the computer assumes that it has just been turned 
on, and a total reboot is done. Needless to say, p~tting a zero at $3F4 is pretty 
much equivalent to saying you want reboot on RESET-not a friendly thing to 
do (but not unknown in the world of commercial software). 

In the interest of completeness for this book, Program 15-1 is a short 
listing of a short ProDOS 8 system program (in fact, a variation on 
PS.SYSTEM) that traps RESET while it's waiting to do a quit. 

The program should be pretty much self-explanatory. There are no new 
principles introduced other than the idea of saving the existing RESET vector at 
$3F2-$3F4 and then restoring it before the program quits. Try out the program 
and notice how RESET is now controlled by the system program itself. 

Program 15-1. ProDOS Reset Demo 

=BFOO 
=FDFO 
=FC58 
=COOO 
=COIO 
=03F2 
=03F4 

002000: 20 58 FC 

002003: AD F2 03 

l •••••••••••••••••••••••••••••••••••••••••••••• 
2 • PRODOS 8 RESET DEMO PROG. • 
3 • MERLIN ASSEMBLER • 
4 •••••••••••••••••••••••••••••••••••••••••••••• 
5 
6 MLI EQU $BFOO 
7 COUT EQU $FDFO 
8 HOME EQU $FC58 
9 KYBD EQU $COOO 

10 STROBE EQU $COIO 
11 RESET EQU $3F2 ; RESET VECTOR 
12 CHK EQU $3F4 ; CHECKSUM BYTE 
13 
14 ORG $2000 
15 
16 OSK PS.SYS.RESET 
17 TYP $FF ; SYSTEM FILE TYPE 
18 
19 START JSR HOME ; CLEAR SCREEN 
20 
21 SAVE LOA RESET ; GET OLD VECTOR 

295 



Chapter 15 

002006: SD 90 20 22 STA OLORESET ; SAVE IT 
002009: AD F3 03 23 LOA RESET+l 
00200C: SD 91 20 24 STA OLORESET+l 
00200F: AD F4 03 25 LOA CHK 
002012: SD 92 20 26 STA OLORESET+2 

27 
002015: A9 72 28 SET LOA #<HANDLER ; OUR RESET ROUTINE 
002017: SD F2 03 29 STA RESET 
00201A: A9 20 30 LOA #>HANDLER 
00201C: SD F3 03 31 STA RESET+l ; ALL SET! 
00201F: 49 AS 32 EOR #$AS ; CHECKSUM 
002021: SD F4 03 33 STA CHK 

34 
002024: AO 00 35 PRINT LOY #$00 ; lNIT Y-REG 
002026: 89 SC 20 36 WOP LOA MSSG,Y ; GET CHAR TO PRINT 
002029: FO 06 =2031 37 BEQ GETKEY 
002028: 20 FO FD 38 JSR COUT ; PRINT IT 
00202E: C8 39 INY ; NEXT CHAR 
00202F: DO F5 =2026 40 BNE WOP ; WRAPAROUND PROl'ECT 

41 
002031: 2C 00 CO 42 GETKEY BIT KYBD ; KEYPRESS? 
002034: 10 FB =2031 43 BPL GETKEY ; NOPE 
002036: 2C 10 CO 44 BIT STROBE ; CLEAR KEYPRESS 

45 
002039: AD 90 20 46 RESTORE LOA OLORESET ; GET ORIG. VECTOR 
00203C: SD F2 03 47 STA RESET 
00203F: AD 91 20 48 LOA OLORESET+l 
002042: SD F3 03 49 STA RESET+l 
002045: AD 92 20 50 LOA OLORESET+2 
002048: SD F4 03 51 STA CHK 

52 
002048: 20 00 BF 53 QUIT JSR MLI ; DO QUIT CALL 
00204E: 65 54 DFB $65 ; QUIT CODE 
00204F: 54 20 55 DA PARMTBL ; ADDRESS OF PARM TABLE 
002051: BO 08 =2058 56 BCS ERROR ; NEVER TAKEN 
002053: 00 57 BRK ; SHOULD NEVER GET HERE ... 

58 
002054: 04 59 PARMTBL DFB 4 ; NUMBER OF PARMS 
002055: 00 60 DFB 0 ; QUIT TYPE: 0 = STD QUIT 
002056: 00 00 61 DA $0000 ; NOi' NEEDED FOR STD QUIT 
002058: 00 62 DFB 0 ; NOi' USED AT PRESENT 
002059: 00 00 63 DA $0000 ; NOi' USED AT PRESENT 

64 
002058: 00 65 ERROR BRK ; WE'LL NEVER GET HERE? 

66 
00205C: DO CC CS Cl 67 MSSG ASC "PLEASE PRESS A KEY ·>",00 
002060: D3 CS AO DO D2 CS D3 D3 
002068: AO Cl AO CB CS D9 AO AD 
002070: BE 00 

68 
002072: 20 58 FC 69 HANDLER JSR HOME ; OUR RESET HANDLER 

70 

296 



71 PRINT2 002075: AO 00 
002077: B9 93 
00207A: FO 06 
00207C: 20 FO 
00207F: C8 
002080: DO F5 

20 72 :1 
LDY 
LDA 
BEQ 
JSR 
INY 
BNE 

=2082 73 
FD 74 

75 
=2077 76 

002082: 2C 00 CO 
002085: 10 FB =2082 
002087: 2C 10 CO 

00208A: 20 58 FC 
00208D: 4C 24 20 

002090: 00 00 
002092: 00 

77 
78 GETKEY2 BIT 
79 BPL 
80 BIT 
81 
82 
83 
84 

JSR 
JMP 

85 OLDRESET DA 
86 DFB 
87 

A Look at Memory Use on the Apple IIGS 

#$00 ; INIT Y-REG 
MSSG2,Y ; GET CHAR TO PRINT 
GETKEY2 
COUT ; PRINT IT 

; NEXT CHAR 
:I ; WRAPAROUND PROI'ECT 

KYBD ; KEYPRESS? 
GETKEY2 ; NOPE 
STROBE ; CLEAR KEYPRESS 

HOME ; CLEAR SCREEN 
PRINT ; TRY AGAIN ... 

$0000 ; OLD RESET VECTOR 
$00 ; OLD CHECKSUM 

002093: CD CI D9 C2 88 MSSG2 ASC "MAYBE YOU SHOULD TRY ANOI'HER KEY?",8D 
002097: CS AO D9 CF D5 AO D3 C8 
00209F: CF D5 CC C4 AO D4 D2 D9 
0020A7: AO Cl CE CF D4 CS CS D2 
0020AF: AO CB CS D9 BF SD 
0020B5: DO D2 CS D3 89 
0020B9: D3 AO Cl AO CB CS D9 AO 
0020CI: D4 CF AO D4 D2 D9 AO Cl 
0020C9: C7 Cl C9 CE AE AE AE SD 
0020Dl: 00 

0020D3: 27 
90 
91 

ASC "PRESS A KEY TO TRY AGAIN ... ",SD,00 

CHK ; CHECKSUM FOR LISTING 

··End Merlin-16 assembly, 211 bytes, Errors: 0 

Bytes $3F5-$3F7 hold a JMP instruction for where to go when an Apple
soft BASIC program encounters the ampersand ( & ) character. This is a handy 
way of adding new commands to BASIC, and was discussed in Chapter 12. 

Locations $3F8-$3FA hold a JMP instruction indicating where to go 
when Control-Y is pressed in the Monitor. Merlin, the Monitor itself, and the 
Classic Desk Accessory called Mangler all use this vector. It's a convenient way 
to re-enter any program from the Monitor. 

Bytes $3FB-$3FD create the vector for what are called nonmaskable inter
rupts. Interrupts are a signal that can occur at any time to tell the computer to 
stop what it is doing and to execute a program somewhere else in the com
puter. Usually, control soon returns to the program that was interrupted. Inter
rupts allow the computer to seem as though it's doing more than one thing at 
once, and they are an essential part of the Apple IIGS environment. There are 
different kinds of interrupts. The BRK instruction is, in a way, a kind of inter
rupt. It tells the microprocessor to stop executing the program it's in, and to 
jump through the vector at $3FO, 3Fl. This allows us to run a debugging utility 

297 



Chapter 15 

at the same time as another program, namely the program being debugged. 
A nonmaskable interrupt is an interrupt that can never be ignored (see 

maskable IRQs, next). This is usually used in dedicated microprocessor devices 
to detect an outside event. It is provided for in the Apple lies, but rarely used. 

There is another kind of interrupt, called a maskable IRQ (Interrupt Re
Quest), that is vectored through location $3FE, 3FF. That type of interrupt can 
be ignored by the operating program by just using the instruction SEI (SEt In
terrupt disable). This tells the computer to ignore any maskable or discretion
ary interrupts. This type of interrupt is disabled when the disk is reading or 
writing to a drive, for example, because timing is very important at that point
an interruption could not be tolerated. Because interrupts are so important on 
the Apple IIGS, it is not advisable to ever turn them off completely. Instead, 
your program should only turn them off briefly, when absolutely necessary, 
and then restore the interrupt status to its previous state as soon as possible. 

The Text Display 
The memory range from $400 to $7FF in bank O is used for the 40-column text 
display (see Figure 15-3). You have seen in previous chapters how a character 
can be printed to the screen by storing a byte directly in this part of memory. 

In this range, 64 bytes in bank O are also used as screen holes by certain 
peripheral cards, as was discussed in a previous chapter. 

Figure 15-3. The Text Display: $400 to $?FF 

$400-$7FF Text Display 

$300-$3FF Free Space and Vectors 

$200-$2FF The Input Buffer 

$100-$1FF The Stack 

$00-$FF Zero (Direct) Page 

Applesoft BASIC 
For Applesoft BASIC, a program starts in memory at $800 and grows upward 
in memory (see Figure 15-4). This is complicated by the fact that two hi-res dis
plays are located in the range of $2000 to $3FFF (hi-res page one), and $4000 
to $5FFF (hi-res page two). There are utility routines that will split an Applesoft 
BASIC program around the hi-res pages, or you can just move the entire pro
gram up above the pages in memory. 

298 



A Look at Memory Use on the Apple IIGS 

Applesoft BASIC variables are stored beginning at the end of the BASIC 
program itself. String data is stored at the top of memory and works downward 
as new strings are defined. 

Figure 15-4. Applesoft BASIC Programs: $800 to $95FF 

Bank 0 

$FFFF 

$BFOO-$BFFF 

$BEFF 

$9600 

$95FF 

$5FFF 

$4000 

$3FFF 

$2000 

$800 

$7FF 

$400 

$3FF 

$000 

ProDOS 8 
Global Page 

BASIC.SYSTEM 

Hi-Res 
Page 2 

Hi-Res 
Page 1 

Applesoft BASIC 
Program 

299 



Chapter 15 

BASIC.SYSTEM: $9600 to $BEFF 
The next major memory boundary occurs at $9600, which is the default lower 
boundary of BASIC.SYSTEM under ProDOS 8. Although BASIC.SYSTEM var
ies this lower boundary as files are opened and closed, this gives you a general 
idea of how much memory is normally available to an Applesoft BASIC pro
gram. You'll recall that BASIC.SYSTEM is used as a middleman between 
Applesoft BASIC and ProDOS 8. It is not required, nor is it in memory when a 
ProDOS system file is running. 

The ProDOS Global Page: $BF00 to $BFFF 
The area from $BFOO to $BFFF is called the ProDOS global page and is used to 
store information about the computer state under ProDOS that other programs 
may want to access. The MLI places all information that might be useful to a 
system program in this area of memory. You may want to consult the books 
specific to ProDOS 8 listed in Appendix D for more information on the 
ProDOS global page and other ProDOS 8 functions. 

If you are running a ProDOS 8 system program, such as PS.SYSTEM, 
then BASIC.SYSTEM is not loaded into memory and your system file will be 
loaded starting at $2000. Obviously, if you intend to use the hi-res pages in 
such a program, you must relocate your program to some other nonconflicting 
part of memory. This can be done with a memory move routine in your own 
program, or using the 65816 memory move instructions. (See the 65816 in
structions reference section in Appendix A). 

1/0 ROM 
The next important area of memory is that from $COOO to $CFFF. This is typi
cally assigned totally to hardware in the form of either softswitches ($COOO to 
$COFF) or ROM-based firmware on the peripheral interface cards, such as 
printer cards. See Figure 15-5. 

The memory from $C100 to $C7FF has been allocated to the seven ex
pansion slots (or built-in ports) in $100-byte (one page) increments. The normal 
implementation is for the peripheral card to have a ROM program on it, which 
appears in the address space corresponding to its slot. For example, the 
firmware for the printer port, which on the Apple IlGS appears as though it is 
in slot 1, appears in memory at $C100 to $C1FF. For the mouse interface, 
which is assigned to slot 4, the routines appear starting at $C400. When you 
type PR#4, for example, the computer is programmed to do a JMP to $C400. 
This is presumed to be an initialization routine in the ROM associated with the 
device assigned to slot 4. 

300 



A Look at Memory Use on the Apple IIGS 

In addi ··0n, the area from $C800 to $CFFF (2K) is a shared address space 
for all slots. When a device is turned on, it maps its own ROM into the com
plete space in this 2K area. Obviously, if two cards are active at the same time, 
and try to each use their own ROMs in this space, a conflict will occur. There
fore, there is a protocol for cards recognizing requests from other cards to 
switch in a new ROM assignment. 

Figure 15-5. 1/0 ROM Space: $COOO to $CFFF 

$FFFF 

$C800-$CFFF 

$C700-$C7FF 

$C600-$C6FF 

$C500-$C5FF 

$C400-$C4FF 

$C300-$C3FF 

$C200-$C2FF 

$C100-$C1FF 

$COOO-$COFF 

$000 

Bank 0 

Expansion 
ROM for 

Slots 

Slot 7 

Slot 6 

Slot 5 

Slot 4 

Slot 3 

Slot 2 

Slot 1 

Softs witches 

301 



Chapter 15 

Bank-Switched RAM and ROM 
The area from $D000 to $FFFF gets really interesting. In Applesoft BASIC, the 
space starting at $D000 and going up to $F7FF is assigned to the Applesoft 
BASIC ROM routines. And $F800 to $FFFF is the area for Monitor routines. 
However, there is another 16K of RAM also assigned to this space. It is 
accessed by the use of a softswitch which switches out the Applesoft BASIC 
and Monitor ROMs, and reroutes addressing to the RAM memory. This area is 
usually occupied by ProDOS. When a ProDOS system file (other than 
BASIC.SYSTEM) is running, Applesoft BASIC is not even needed, so this part 
of memory stays set to RAM for most, if not all, of the time. 

It's pointless trying to decide which memory, RAM or ROM, is the 
"real" memory from $D000 to $FFFF. In fact, all of the memory in the Apple 
Iles is scattered about in different physical locations. For some parts of mem
ory, not even all the bits that make up a single byte are found in a single chip. 
Like the 2K of expansion ROM in the $C800-$CFFF range, this remapping is 
done all electronically. Memory is not actually moved, but rather, all addressing 
to that range is redirected to the proper physical memory (RAM or ROM). 

It gets even stranger though. If you recheck that address range, $D000-
$FFFF, you'll see that it corresponds to only 12K ($FFFF to $D000 = $3000 = 
3 * 4096 = 12288 bytes). But 16K is allocated to this area. And it is. Still an
other softswitch is used to switch the extra 4K of RAM from $D000 to $DFFF 
with the other 4K in that space. Thus, using exactly the same addresses in the 
range of $D000 to $DFFF, it is possible to be looking at one of three distinctly 
different sets of data: Applesoft BASIC ROM, RAM, or bank-switched RAM. By 
the way, it's in this alternate RAM bank that ProDOS 8 stores the routine ulti
mately called by the ProDOS quit command (called the quit code). By rewriting 
this area, programs under ProDOS 8 can establish their own quit procedures or 
dead-end the return process altogether (not recommended). 

The actual softswitch protocols for switching between the RAM and 
ROM banks are varied and somewhat involved. You may wish to consult Ap
ple Ile and Apple lies technical manuals for all the details on how to use bank
switched memory. Under ProDOS 16, with the long addressing modes of the 
65816, bank-switching is required only for switching in and out the extra 4K 
(Applesoft BASIC being ignored). If it's any consolation, under ProDOS 16, it is 
unlikely you'll ever have to even concern yourself with this part of memory. 

Two for the Price of One: 
The Apple lie/lie and Bank 1 
When the Apple Ile and (later) the Ile machines were introduced, they increased 
the amount of memory available with a elegantly simple solution: The first 64K 
of memory was just doubled with matching RAM, as shown in Figure 15-6. 

302 



Figure 15-6. The First 64K 

$FFFF 

$F800 

$F7FF 

$EOOO 

$DFFF 

$DODO 

$COOO-$CFFF 

$BFOO-$BFFF 

$BEFF 

$9600 

$5FFF 

$3FFF 

$2000 

$800 

$400-$7FF 

$3FF 

$000 

Bank 0 

Monitor 
ROM 

routines 

Applesoft BASIC 

ROM 
routines 

1/0 ROM 
and 

softs witches 

ProDOS 8 
Global Page 

BASIC.SYSTEM 

Hi-Res 
Page Two 

Hi-Res 
Page One 

Applesoft BASIC 
Program 

Text Screen 

A Look at Memory Use on the Apple IIGS 

Bank 1 

ProDOS 8 

ProDOS 8 
(Reserved) 

DHR 
Interleave 
Page Two 

DHR 
Interleave 
Page One 

80-Column 
Interleave 

Text Screen 

303 

Additional 
4K Bank

switched RAM 



Chapter 15 

The Apple Ile and Ile are called 128K machines because memory is set 
up in two parallel banks of memory, each addressed from $0000 to $FFFF. This 
is almost like having two computers side by side. Although each has its own 
zero page, stack, and other areas, these areas are not really very usable as such, 
and are more relevant in the Ile and Ile environment. It's unlikely that you will 
ever have to be concerned with these functions on the Apple IIGS. 

In bank 1 memory, the range from $400 to $7FF is used to augment the 
40-column text display, thus creating the SO-column display (every-other char
acter is from the alternate bank). You have seen in Chapter 10 how a character 
can be printed to the screen by storing a byte directly in this part of memory. 
Also, you saw how the identical address range in bank 1 was used to complete 
the SO-column display and how clearing this part of memory was required for a 
full SO-column screen clear. In the SO-column display, each byte from one bank 
is interleaved with each byte from the other. All even character-position bytes 
(0, 2, 4, and so on) are in bank 1 (AUXMEM), and all odd character-position 
bytes (1, 3, 5, and so on) are in bank 0. 

Double hi-res graphics were actually discovered by accident on the Ap
ple Ile and Ile after the implementation of the SO-column text display. It was 
discovered that a similar interleaving of bytes would double the graphics screen 
resolution of hi res from 280 pixels horizontally to 560 for double hi res. 

The gap in the memory map for bank 1 is there to indicate that when 
you try to address, for example, $C300 in bank 1, you are actually addressing 
$C300 in bank 0. As mentioned earlier, it's possible, through simple wiring, to 
make the contents of any RAM or ROM address appear at any one, or several, 
addresses. It's a little like call forwarding: You can request access to an address; 
the computer will determine where that ultimately takes you. 

The Apple IIGS: 256 for the Price of One 
The Apple IIGS was designed to not only expand the capabilities of the earlier 
Apple Ile and Ile machines, but also to retain compatibility with software de
signed to run on those machines as well. The result is system that retains the 
underlying structure of the Ile and Ile environment, yet one that extends it in a 
way that makes the transition to ProDOS 16 programming very easy. 

Some people try to conceptualize what goes on in the Apple IIGS be
tween ProDOS 8 and ProDOS 16 as operating modes that are exclusive of one 
another. While it's true that Applesoft BASIC cannot run under ProDOS 16, 
many Apple IIGS tools can be called from within even an Applesoft BASIC pro
gram. You have also seen that although the e-bit's name, emulation bit, implies 
a separate and distinct operating mode, in fact, it serves mainly to enable the 
16-bit width selection of data handling. Therefore, try to avoid the temptation 

304 



A Look at Memory Use on the Apple IIGS 

to restrict the IIGS environment into separate operating modes, and rather real
ize that it is a superset, not a seperate set, of the earlier Ile and Ile computers. 

The Apple IIGS has 256 ($00 to $FF) addressable (though not necessarily 
installed) banks of 64K memory. Banks $00 through $El are RAM. Banks $FE 
and $FF are ROM memory that include not only the Applesoft BASIC and 
Monitor routines, but also the Apple IIGS ROM toolset as well. The area from 
$FO to $FD is reserved for expansion ROM, possibly in the form of a fast-boot 
ROM disk, or of permanently resident applications. 

In addition, all memory except for banks $EO and $El is what is called 
fast memory-all accessing to it can be done at the faster 3.1 MHz speed of the 
65816, as opposed to the 1 MHz speed used to access banks $EO and $El. 

The reason for this difference is that the video circuitry on the Apple re
lies on a certain timing and speed of operation to properly generate the video 
display. If this were arbitrarily sped up, your video monitor would no longer 
work. Remember that the video data areas in the Apple Ile and Ile are the text 
and hi-res pages in banks $00 and $01. At the same time, Apple knew people 
would expect that programs running in these banks would be faster because of 
the faster processor (clock speed) operation. Now here's a dilemma: how to 
speed up the program in banks O and 1, and leave the video display areas at a 
slower rate. 

The solution was to do something called shadowing, in which data writ
ten to the video areas ($400 to $7FF and $2000 to $5FFF) of banks O and 1 
would be automatically reproduced electronically, in the same memory range in 
banks $EO and $El. This way, as your program writes bytes to the text screen 
in bank 0, the data automatically appears in bank $EO. The video circuitry 
looks only at bank $EO, and it interacts only at the slower speed. Hence, every
thing works out. On the Apple IIGS, the video display you see is the contents 
only of banks $EO and $El. In fact, if you turn shadowing off, it's possible to 
write to the text or graphics pages in banks O and 1, and to have the results re
main entirely invisible as the user continues to view the displays generated 
from banks $EO and $El. 

Not every byte banks O and 1 are automatically shadowed into banks 
$EO and $El. The areas actually shadowed are controlled by a status byte at 
$C035, called the shadow register. Bits set and cleared in this byte determine 
which parts of memory will be automatically copied into banks $EO and $El as 
they are written to in banks O and 1. 

The control bits are as follows: 

Bit O Text page one 
Bit 1 Hi-res page one 
Bit 2 Hi-res page two 
Bit 3 Auxmem for both hi-res pages (double hi-res) 

305 



Chapter 15 

Bit 4 Super hi-res area ($2000-$9FFF) in bank 1 
Bit 5 Reserved; always write as zero 
Bit 6 Exchange 4K language card RAM with $COOO space 

(Write zero if you know what's good for you!) 
Bit 7 Reserved: always write as zero 

If you're wondering where the Applesoft BASIC and Monitor ROM 
routines are, the answer is in bank $FF. If you've gone to the Monitor and 
typed 00 /FC58L to list the HOME routine, you probably didn't find much. 
That is because under ProDOS 8, FF /0000 to FF /FFFF is remapped into bank 
0 when the Applesoft BASIC and Monitor ROMS are being selected by a pro
gram there. However, in the normal ProDOS 16 environment, you won't find 
the Applesoft BASIC routines in bank 0, but rather in bank $FF. 

If you compare the size of the 4K bank-switched expansion RAM to the 
$COOO to $CFFF space, you'll notice that they are each 4K in size. In the Apple 
IIGS, it's possible to flip this expansion RAM down into the $COOO to $CFFF 
space in every bank of RAM, including bank 0. However, this is very tricky be
cause you no longer have access to any of the softswitches or system status 
bytes that are so important to system control. Normally, the $COOO to $CFFF 
1/0 area is mapped into each bank so that a program running in any bank can 
directly access the 1/0 space. 

The Apple Iles also has a new display mode, called super hi-res graphics, 
that uses the memory area in bank $El from $2000 to $9FFF (32K). It is possi
ble to turn on shadowing for this display also, so that any writing to bank 1 in 
this memory range will automatically be copied into bank $El so that it will be 
in the video display. 

Banks $EO and $El are the main parts of memory used by the Apple 
IIGS internal system software and the system tools for such things as the super 
hi-res display, data storage and work areas for AppleTalk, the Miscellaneous 
Tool set, the Memory Manager, Text Tools, and more. 

In general, it's best not to put any code directly here, but rather to use 
the Memory Manager, which will find and allocate memory as it's available 
throughout the entire computer. 

For those who are curious, Figure 15-7 shows some of the memory use 
of banks $EO and $El. 

306 



Figure 15-7. Banks $EO and $E1 
Bank $EO 

$FFFF 

$EOOO 

$DFFF 

$0000 

$COOO-$CFFF 

$BFFF 

$AOOO 

$9FFF 

$6000 

$5FFF 

$4000 

$3FFF 

$2000 

$1FFF 

$1EOO 

$lDDF 
$1008 

$1007 
$1000 

$lDCF 

$10BO 

$OAF 

$19B8 

$19B7 

$15FE 

$15FD 

$15CD 

$15CC 

$15Cl 

$15CO 

$15AA 

Shared: 
ProDOS 16 

Loader 
and 

AlteTalk 
uffers 

1/0 ROM 
and 

softs witches 

Free 

Memory 

Hi-Res 
Page Two 

Hi-Res 
Page One 

QuickDraw 
Vectors 

Desk 

Accessory 
Buffer 

307 

A Look at Memory Use on the Apple IIGS 

Bank $El 

Apple Talk 
routines 

and 

buffers 

Free 
Memory 

Super Hi-Res 
Display 

OHR 
Interleave 
Page Two 

OHR 
Interleave 
Page One 

Serial 
Input Buffer 

Misc. Tools 
Buffer 

Sound 
Variables 

Buffer 

Reserved 

Memolt Mgr. 
Bu fer 

Reserved 

Serial Port 
Variables 

Text Tools 
Data 



Chapter 15 

$15A9 

$ISSA 

$1589 

$154A 

$1549 

$14E2 

$14El 

$1000 

$FFF 

$FFB 

$FFA 

$FD6 

$FD5 

$FOO 

$FCF 

$COO 

$BFF 

$800-$BFF 

$800 

$7FF 

$400-$7FF 

$400 

$3FF 

$3EO 

$3DF 

$3DO 

$3EF 

$3CO 

$3BF 

$300 

$2FF 

$2CO 

$2BF 

$2B8 

$2B7 

$000 

Text Screen 
Page Two 

Text Screen 
Page One 

·~ 
Desk 

Accessory 
Buffer 

,, 

Reserved 

Serial Port 
Variables 

ADB Address 
& attribute 

list 

SmartPort 
usage 

Apple Talk 
Data 

Storage 

Serial 
Port 

Storage 

ADB 
Storage 

Misc. Tools 
usage 

Disk 
Transfer 
Buffer 

BO-Column 
Interleave 

Text Screen 
Page Two 

BO-Column 
Interleave 

Text Screen 
Page One 

Clock 
Buffer 

ADB 
Interrupt 

Queue 

Tool 
Locator 

Variables 

Battery 
RAM 

Buffer 

Mouse 
Clamp 
Data 

User access 
vectors-
Monitor 

Entry Points 

308 







Chapter 16 

The Apple IIGS Toolbox 

For an assembly language programmer, one of the nicest things about the Ap
ple IIGS is the enormous set of built-in (and loadable) routines that can be 
called by an application. This simplifies the programming process in that you 
do not have to write as many of the supporting routines to clear the screen, to 
use graphics, or even to catalog disks. All of these functions are available in the 
Apple IIGS Toolbox. 

Banks $FE and $FF contain a number of the tools used most often. Oth
ers, including tools you create yourself, can be loaded in from disk. 

The routines available are organized by tool sets, which are a group of 
related Toolbox commands. Each Toolbox command is called through a com
mon vector, much the same way that ProDOS 8 and 16 commands were called. 
The main difference for the Toolbox commands is that information for each 
command is passed back and forth between the application and the command 
using the stack. The entry point for the Toolbox routines is at $El/OOOO, and is 
called in the following fashion: 

1. Push zeros (or anything) on the stack to make room for any results that may 
be returned by the routine. Nothing need be pushed on the stack if there are 
no results to be returned. 

2. Load the X register with a two-byte value that identifies the tool set to use 
($00 to $FF), and the command value ($00 to $FF). Thus, to call tool set 
number 5, and use command $27, you would use the instruction: 

LOX #$2705 ; TOOL $05, COMMAND = $27 

3. Do a JSL $E10000 to call the Toolbox dispatcher. 
4. Pull any returned results off the stack. Not required if there are no results 

returned. 
5. Check the carry flag for an error. The carry will be set if there was a problem 

executing the Toolbox command, and the Accumulator will hold the error 
code. If there was no error, the carry will be clear, and the Accumulator will 
be set to zero. 

311 



Chapter 16 

Table 16-1. The First 28 Tools 

1 Tool Locator 

2 Memory Manager 
3 Miscellaneous Tools 

4 QuickDraw II 
5 Desk Manager 
6 Event Manager 

7 Scheduler 
8 Sound Tools 

9 Apple DeskTop Bus 

10 SANE 

11 Integer Math Tools 
12 Text Tools 
13 cs System Tools 
14 Window Manager 

15 Menu Manager 
16 Control Manager 

The foundation routines that manage and locate all other 
tools. 
Handles the allocation of all system memory. 
Miscellaneous functions such as time and simple mouse 
control. 
Super hi-res graphics routines. 
Manages classic and new desk accessories. 
Reports in an organized way all input events such as the key
board, mouse clicks, and other input devices. 
Used to delay the execution of certain system commands . 
Intermediate level routines to access the sound synthesizer in 
the Apple Iles. 
Specific commands for the keyboard, mouse and other at
tached input devices. 
Standard Apple Numeric Environment. Extended precision 
math routines. 
Routines for multiplication and division of integer values. 
Text screen input and output routines. 
Internal tool set of the Iles. 
Routines for managing windows on the DeskTop (super hi
res, QuickDraw display). 
Manages entries and item selection in pull-down menus. 
Routines for handling scroll bars, check boxes, and any other 
control device on the DeskTop. 

17 Loader ProDOS 16 System Loader. 
18 QuickDraw Auxiliary Supplemental QuickDraw routines. 
19 Print Manager Standard printer drivers. 
20 Line Edit Graphics display (DeskTop) line input and editing routines. 
21 Dialog Manager Routines for drawing and controlling dialog boxes on the 

22 Scrap Manager 
DeskTop. 
Handles common data, of either a graphics or text nature, to 
be transferred between applications. 

23 Standard File Tools Standardized routines for displaying disk directories, selecting 

24 Disk Utilities 
25 Note Synthesizer 

26 Note Sequencer 

27 Font Manager 

28 List Manager 

a file, and so forth. 
Commands for formatting disks and other disk functions. 
More advanced interface to sound synthesizer with instru
ment definitions. 
Routines for playing sequences of sounds, musical 
performances . 
Manages the many possible fonts in the graphics environ
ment, including loading, scaling and drawing fonts. 
Displays lists of items with standardized routines. 

312 



The Apple IIGS Toolbox 

There are, at this writing, 28 tool sets for the Apple Iles. Programmers 
can also define their own tool sets, and more tools are sure to be released by 
Apple as time goes on. Table 16-1 shows the first 28 tools. 

Tools 1 through 13 are ROM-based, that is, they're stored in the upper 
two banks of ROM memory in the Apple Iles, banks $FE and $FF. All other 
tools must be loaded into memory using the Tool Locator LoadTool command. 

Although it would be impossible in this book to cover every single tool 
in detail, we can get a good understanding of the general principles involved 
by exploring a half-dozen or so of the most often-used tools. 

Lets start with the most important, the Tool Locator. 

The Tool locator 
The Tool Locator tool set is the set of commands used to load RAM tools from 
disk, and to manage all the other tools currently in the system. The main entry 
point, $E10000 is itself part of the Tool Locator. 

Generally speaking, each tool must be started up by an application when 
the application first runs, and then later shut down before the application does 
its quit command. This is so that memory used by a particular tool set may by 
freed for use by other tools or applications once it is no longer needed. 

In practice, there are a number of tools, like the Tool Locator, that are al
ways on because they're used by the Apple Iles system itself. The computer it
self could not function without the Tool Locator, so even if you try to shut it 
down, nothing actually happens. As a result, many programs do not specifically 
start up or shut down the Tool Locator, or tools like the Text Tools, as they 
probably should. 

The probably is because, at the present, it doesn't make any difference 
one way or the other. However, if Apple ever changes these apparently safe 
tools and requires some sort of initialization, programs which don't follow the 
proper procedures may not work. 

Table 16-2 lists some of the commands in the Tool Locator tool set. 
The first six tool-set functions are a constant for every tool. Tool call 

$04xx, for example, will always return the version number of the tool set 
called, where xx represents its tool number. For some tools, the answer may be 
obvious, such as whether the Tool Locator is active (tool call $0601). The Tool 
Locator has to be active or the call to find out whether it was or not wouldn't 
work. Despite this, there is value in establishing a standard for tools whose sta
tus may not be active, and these six calls are guaranteed to be supported in ev
ery Iles tool set. 

Tool calls $0901 through $0001 deal with internal work areas and point
ers to particular tool calls. It's unlikely you'll ever need to use any of these. 

313 



Chapter 16 

Table 16-2. Selected Commands in the Tool Locator Tool Set 
Command Command 

Value Name 
$0101 Bootlnit 

$0201 
$0301 
$0401 
$0501 

$0601 
$0901 
$0A01 
$0B01 
$0C01 
$0001 
$0E01 
$0F01 
$1001 
$1101 

TLStartUp 
TLShutDown 
TLVersion 
TLReset 

TLStatus 
GetTSPtr 
SetTSPtr 
GetFuncPtr 
GetWAP 
SetWAP 
Load Tools 
Load One Tool 
UnloadOneTool 
TLMountVolume 

Description 
Initialized by system on boot. Not used by 
application. 
Starts up Tool Locator. 
Shuts down Tool Locator. 
Returns version number of Tool Locator. 
Re-initializes Tool Locator and all other ROM-based 
tool sets on a system reset. 
Indicates whether Tool Locator is active. 
Get Function Pointer Table of a specified tool set. 
Set Function Pointer Table of a specified tool set. 
Get pointer to a specified function in a tool set. 
Get pointer to work area for a tool set. 
Set pointer to work area for a tool set. 
Load a group of RAM-based tools from disk. 
Load a single RAM-based tool from disk. 
Release memory for a single RAM-based tool. 
DeskTop (graphics) message usually for asking user 
to insert system disk. May be used for other 
messages. 

$1201 

$1301 

TLTextMountVolume Text screen message usually for asking user to insert 

$1401 
$1501 

SaveTextState"' 

RestoreTextState"' 
MessageCenter"' 

system disk. May be used for other messages. 
Saves current text screen and switches display to text 
screen. Usually for TLTextMountVolume, but could 
be used for other reasons. 
Restores saved state of text screen. 
Allows common point to pass text data between dif
ferent applications. 

"' Available on ProDOS 16 versions 1.2 or later. 

LoadTools ($0E01) and LoadOneTool ($0F01) are used to load RAM-based tools 
from disk. These tools are always assumed to be in the TOOLS subdirectory of 
the SYSTEM folder on the boot disk. 

UnloadOneTool ($1001) is used to free memory used by a RAM-loaded 
tool so that other applications aren't hindered by memory used by previous 
applications and their tools. 

TLMountVolume ($1101) and TLTextMountVolume ($1201) are routines 
to put a message on the screen when one of the LoadTools commands can't 
find the system disk. One routine is for the super hi-res display, and the other 
is for the 40-column text screen. Note that QuickDraw and the Event Manager 
must have been started up already for the graphics-based TLMountVolume 
command to work. 

314 



The Apple IIGs Toolbox 

If you were using the text screen, then TLTextMountVolume would de
stroy whatever was on the screen, so two other commands, SaveTextScreen 
($1301), and RestoreTextScreen ($1401) have been provided to save and restore 
the screen state when you used TLTextMountVolume. 

The last routine MessageCenter ($1501), is used to pass brief text data 
between applications. For example, suppose you had written two applications 
that changed back and forth between each other. MessageCenter would provide 
a way to communicate things like the active data disk prefix, the user's name, 
or whatever else you wanted, while avoiding the necessity of using a disk text 
file or the Scrap Manager to temporarily store the information. 

The Tool Locator is actually pretty boring as far as suggesting interesting 
demo programs, but this is a good time to show how to call a tool from both 
Applesoft BASIC or ProDOS 8 and ProDOS 16 applications. 

Program 16-1 is another variation on the PS.SYSTEM program that 
shows how to use the TLTextMountVolume command to print any message on 
the text screen. 

Program 16-1. ProDOS 8 Tool Locator Demo 

1 •••••••••••••••••••••••••••••••••••••••••••••• 
2 * PRODOS 8 TOOL WCATOR DEMO * 
3 * MERLIN ASSEMBLER * 
4 •••••••••••••••••••••••••••••••••••••••••••••• 
5 

=BFOO 6 MLI EQU $BFOO 
=FDFO 7 COUT EQU $FDFO 
=FC58 8 HOME EQU $FC58 
=COOO 9 KYBD EQU $COOO 
=COlO 10 STROBE EQU $C010 

11 
12 ORG $2000 
13 
14 OSK PS.TOOL.DEMO 
15 TYP $FF ; SYSTEM FILE TYPE 
16 
17 

002000: A9 4C 18 SETQUIT LOA #$4C ; JMP INSTRUCTION 
002002: SD F8 03 19 STA $3F8 ; CTRLY VECTOR 
002005: A9 SC 20 LOA #<QUIT ; WW BYTE OF QUIT ADDR. 
002007: 80 F9 03 21 STA $3F9 ; WW BYTE OF CTRL-Y VECTOR 
00200A: A9 20 22 LOA #>QUIT 
00200C: 80 FA 03 23 STA $3FA ; HIGH BYTE OF CTRL-Y VECTOR 

24 
00200F: 18 25 M0DE16 CLC 
002010: FB 26 XCE ; ENABLE 16 BIT SELECT 
002011: C2 30 27 REP $30 ; FULL 16 BIT MODE 

28 
002013: A2 01 02 29 STARTUP LOX #$0201 ; TLStartUp 

315 



Chapter 16 

002016: 22 00 00 El 30 JSL $El0000 ; START UP TOOL WCATOR 
00201A: 90 02 =201E 31 BCC BOX 
00201C: 00 00 32 BRK $00 ; TOOL ERROR (NOT LIKELY) 

33 
00201E: F4 00 00 34 BOX PEA $0000 ; PUSH SPACE FOR RESULT 

35 
002021: F4 00 00 36 PEA "LINEl ; HIGH WORD OF LINEl 
002024: F4 6F 20 37 PEA LINEl ; WW WORD OF LINEl 
002027: F4 00 00 38 PEA "LINE2 
00202A: F4 84 20 39 PEA LINE2 
00202D: F4 00 00 40 PEA "BUTTONl 
002030: F4 9A 20 41 PEA BUTTONl 
002033: F4 00 00 42 PEA "BUTTON2 
002036: F4 A9 20 43 PEA BUTTON2 

44 
002039: A2 01 12 45 LOX #$1201 ; TLTextMountVolume 
00203C: 22 00 00 El 46 JSL $El0000 ; DO TOOLBOX CMD 
002040: 90 02 =2044 47 BCC TEST 
002042: 00 00 48 BRK $00 

49 
002044: 68 50 TEST PLA ; GET BUTTON VALUE 
002045: C9 01 00 51 CMP #1 ; BUTTON 1 = QUIT 
002048: FO 05 =204F 52 BEQ SHUTDOWN 

53 
00204A: EE 98 20 54 INC LlNE2+20 ; INCREMENT COUNTER 
00204D: 80 CO =200F 55 BRA MODE16 ; TRY AGAIN ... 

56 
00204F: A2 01 03 57 SHUTDOW LOX #$0301 ; TLShutDown 
002052: 22 00 00 El 58 JSL $El0000 ; TOOL WCATOR SHUTDOWN 
002056: 90 02 = 205A 59 BCC MODES 
002058: 00 00 60 BRK $00 

61 
00205A: 38 62 MODES SEC 
002058: FB 63 XCE ; BACK TO 8 BITS ... 

64 
00205C: 20 00 BF 65 QUIT JSR MLI ; DO QUIT CALL 
00205F: 65 66 DFB $65 ; QUIT CODE 
002060: 66 20 67 DA PARMTBL ; ADDRESS OF PARM TABLE 
002062: BO 09 =206D 68 BCS ERROR ; NEVER TAKEN 
002064: 00 00 69 BRK $00 ; SHOULD NEVER GET HERE ... 

70 
002066: 04 71 PARMTBL DFB 4 ; NUMBER OF PARMS 
002067: 00 72 DFB 0 ; QUIT TYPE: 0 = STD QUIT 
002068: 00 00 73 DA $0000 ; NOT NEEDED FOR STD QUIT 
00206A: 00 74 DFB 0 ; NOT USED AT PRESENT 
002068: 00 00 75 DA $0000 ; NOT USED AT PRESENT 

76 
00206D: 00 00 77 ERROR BRK $00 ; WE'LL NEVER GET HERE? 

78 
00206F: 14 DO D2 CF 79 LINEl STR "PRODOS 8 TEST SYSTEM" 
002073: C4 CF D3 AO 
002077: 88 AO D4 CS 

316 



002078: D3 D4 AO D3 
00207F: D9 D3 D4 CS 
002083: CD 

The Apple IIGS Toolbox 

002084: 15 DO F2 ES 80 LINE2 
002088: F3 F3 AO El 

STR "Press a key. (Try #l)" 

00208C: AO EB ES F9 
002090: AE AO AS D4 
002094: F2 F9 AO A3 
002098: BI A9 

81 
00209A: OE D2 ES F4 82 BUTTONI STR "Return to Quit" 
00209E: F5 F2 EE AO 
0020A2: F4 EF AO DI 
0020A6: F5 E9 F4 
0020A9: 10 CS F3 E3 83 BUTTON2 STR "Esc to Try Again" 
0020AD: AO F4 EF AO 
002081: D4 F2 F9 AO 
002085: Cl E7 El E9 
002089: EE 

00208A: 7A 
84 
85 CHK 

--End Merlin-16 assembly, 187 bytes, errors: 0 

Calling Tools from Pro DOS 8 

; CHECKSUM FOR LISTING 

Apple IIGS tools can be called from ProDOS 8 (or even from Applesoft BASIC). 
The only requirement is that the accumulator and registers both be set to the 
16-bit mode before any actual tool calls are done. 

Lines 25-27 of Program 16-1 switch to the 16-bit mode. We could've de
layed the transition, but since a tool call is the first thing the program does, the 
mode switch must be at the beginning. The Tool Locator tool set is then started 
up on lines 29 and 32. 

In general, every tool used by a program should be started at the begin
ning of the program and shut down before the program quits. At the present 
time, not every tool absolutely requires this, but it is a good practice because it 
insures that your program will be compatible with future versions of the tools. 

TLTextMountVolume has the following parameter requirements. 
First, each of these must be pushed onto the stack: 

1. A two-byte word to make room for the result (which key is pressed). 
2. A 4-byte, long-address pointer to the string that will be used as the title for 

the message box. 
3. A 4-byte, long-address pointer to the string that will be used as the second

ary line of text in the message box. 
4. A 4-byte, long-address pointer to the string that will be used as the text for 

button 1 in the message box. 

317 



Chapter 16 

5. A 4-byte, long-address pointer to the string that will be used as the text for 
button 2 in the message box. 

When each of these has been pushed onto the stack, the X register will 
load with the immediate value #$1201 (tool call $12, tool set number $01). 
This tool sets the display mode to the 40-column text display and draws a dia
log box with two lines of text and two button indicators. The user may press 
the Return key for one choice and the Escape key for the other. Normally, Re
turn accepts the request, or message, while Escape indicates the user wants to 
cancel. 

If you've ever launched a program with the boot-up system disk not in 
the drive, you have probably seen this dialog box used in its intended fashion, 
that is, to prompt the user to insert a desired disk volume. 

The tool call returns with a value on the stack equal to either 1 for but
ton 1 pressed or 2 for button 2. This value can then be pulled off the stack. Fig
ure 16-1 and 16-2 are diagrammatical ways of showing the input and output 
parameters for a tool call. 

Figure 16-1. Input and Output Parameters for Tool Calls: Stack Before Call 

Previous Contents 

Space for Result 

. Line 1 Pointer 

Line 2 Pointer 

Button 1 Pointer 

. Button2Pointer 

Word: Allow space for result. 

Long: Pointer to the string 
appear at top of box. 

Long: Pointer to the string 
appear below line 2. 

Long: Pointer to the string 
appear for Buttonl. 

Long: Pointer to the string 
appear for Buton 2. 

f- SP: Stack pointer after 
setup. 

318 



The Apple IIGS Toolbox 

Figure 16-2. Input and Output Parameters for Tool Calls: The Stack After Call 

Previous Contents 

Which Button 
Word: Specifies which button 

was chosen. 

~SP: Stack Pointer after 
return from routine. 

Lines 34-43 push the needed values on the stack for the call. Remember 
PEA (Push Effective Absolute address) pushes the value of the operand on 
the stack (2 bytes). Line 34 pushes a zero on the stack to reserve space for the 
result returned by the Toolbox routine. Next, line 36 pushes the high word, or 
bank value, of the address of the string to be used as the title of the dialog box. 
Notice the use of the caret symbol ("),a Merlin 16,addressing protocol, to sig
nify the high-order portion of the address assigned to the label LINEl. Line 37 
then pushes the low-order word for the address on the stack. No special sym
bol is required to differentiate the low-order word. Because data may be located 
anywhere in memory, all Toolbox commands generally require four-byte point
ers to data. 

When the stack is prepared, line 45 loads the X register with the proper 
command value ($1201), and line 46 does the actual call to the tool function 
dispatcher at $£10000. 

Assuming no error occurs, line 50 pulls the value for the choice off the 
stack and stores it for a comparison to be made shortly. 

Error Codes 
Then, the carry is checked to see if an error has occurred. For simplicity's sake, 
a BRK is used as our error handler. By examining the Accumulator in such a 
case, you qn see what error occurred. Naturally, a more friendly error-handler 
is recommended for any program of your own. 

There are a few particular error codes you should know about. 

Error Code = $xx01 This tool set is not available. 
(You haven't loaded the tool.) 

= $xx02 This tool command is not available. 
(You used the wrong command number.) 

In addition, each tool set and routine has a variety of other individual 
errors that may be returned, depending on the actual call made. For example, 

319 



Chapter 16 

here are some of the possible errors when using the Tool Locator: 

Error Code = $0110 Version error (a tool with the minimum version number could 
not be found). 

= $0100 Couldn't find system startup (boot) volume. 
= $xxxx Any System Loader/ProDOS error is returned unchanged. 

In general, error codes return the tool set that generated the error in the 
high-order byte, and the actual error code in the low-order byte. Not every tool 
call has a potential error. Some, like TLStartUp, will never generate an error. 

You'll also notice that the check for the error has been done after any re
sults are pulled off the stack. If you do the test first, and then branch to an 
error-handling routine without removing data from the stack, any subsequent 
RTS or RTL instructions will be executed incorrectly. You also need to be care
ful about forgetting to reset the microprocessor back to the 8-bit mode before 
doing the quit call in ProDOS 8. A common mistake is to branch past the mode 
switch to an error routine that then tries to return to ProDOS 8 or Applesoft 
BASIC in the 16-bit mode, with disasterous results. 

Finally, the Tool Locator is shut down before the final ProDOS quit call 
is done. 

ProDOS 16 Tool Locator 
In ProDOS 16, the only variation is that you need not specifically set and clear 
the 16-bit mode, since that is the system state when your program begins. Also, 
don't forget to set the data bank register equal to the program bank register 
when you start your program. See Program 16-2. 

The only other major change is that the Merlin directive TR ON (for 
TRuncate ON) has been added on line 81. If you compare this listing to that for 
the ProDOS 8 Tool Demo program, you'll see that TR ON limits the bytes 
printed for data blocks like those created by the STR pseudo-op to a single line. 
The remaining bytes are, of course, assembled-just not listed. 

Program 16-2. ProDOS 16 Tool Locator Demo 

=ElOOA8 

•••••••••••••••••••••••••••••••••••••••••••••• 
2 * PRODOS 16 TOOL WCATOR DEMO * 
3 * MERLIN ASSEMBLER * 
4 •••••••••••••••••••••••••••••••••••••••••••••• 

5 
6 
7 
8 
9 

MX %00 
REL 
DSK P16.TOOL.DEMO.L 

10 PRODOS EQU $ElOOA8 
11 

320 

; FULL 16-BIT MODE 
; REWCATABLE OUTPUT 

; PRODOS 16 ENTRY POINT 



The Apple IIGS Toolbox 

12 •••••••••••••••••••••••••••••••••••••••••••••• 
13 

008000: 48 14 BEGIN PHK ; GET PROGRAM BANK 
008001: AB 15 PLB ; SET DATA BANK 

16 
008002: E2 30 17 SETRES SEP $30 ; 8-BIT MODE 
008004: A9 SC 18 LDA #$SC ; JML (JMP LONG) 
008006: SF FS 03 00 19 STAL $3F8 ; CTRLY VECTOR 
00800A: C2 30 20 REP $30 ; 16-BIT MODE 
OOSOOC: A9 6F 80 21 LDA #RESUME 
00800F: SF F9 03 00 22 STAL $3F9 ; $3F9,3FA 
008013: A9 00 00 23 LDA #.RESUME 
008016: SF FB 03 00 24 STAL $3FB ; $3FB,3FC 

25 
00801A: A2 01 02 26 STARTUP LDX #$0201 ; TLStartUP 
00801D: 22 00 00 El 27 JSL $EI0000 ; START UP TOOL LOCATOR 
008021: 90 02 =8025 28 BCC BOX ; NO ERROR 
008023: 00 00 29 BRK $00 ; BRK IF THERE IS 

30 
008025: F4 00 00 31 BOX PEA $0000 ; PUSH SPACE FOR RESULT 

32 
008028: F4 00 00 33 PEA "LINE I ; HIGH WORD OF LINEl 
008028: F4 80 80 34 PEA LINEl ; LOW WORD OF LINEl 
00802E: F4 00 00 35 PEA "LINE2 
008031: F4 96 80 36 PEA LINE2 
008034: F4 00 00 37 PEA "BUTIONl 
008037: F4 AC 80 38 PEA BUTTONl 
00803A: F4 00 00 39 PEA ·suTTON2 
00803D: F4 BB 80 40 PEA BUTION2 

41 
008040: A2 01 12 42 LDX #$1201 ; TLTextMountVolume 
008043: 22 00 00 El 43 JSL $EI0000 ; DO TOOLBOX CMD 
008047: 90 02 =8048 44 BCC TEST ; NO ERROR? 
008049: 00 00 45 BRK $00 ; BRK TO SEE WHAT ERROR IS ... 

46 
008048: 68 47 TEST PLA ; RETRIEVE CHOICE VALUE 
00804C: C9 01 00 48 CMP #1 ; BUTION 1 = QUIT 
00804F: FO 05 =8056 49 BEQ SHUTDOWN 

50 
008051: EE AA 80 51 INC LINE2+20 ; INCREMENT COUNTER 
008054: 80 CF =8025 52 BRA BOX ; TRY AGAIN ... 

53 
008056: A2 01 03 54 SHUTDOW LDX #$0301 ; TLShutDown 
008059: 22 00 00 El 55 JSL $EI0000 ; SHUT DOWN TOOL LOCATOR 
00805D: 90 02 =8061 56 BCC QUIT ; NO ERROR 
00805F: 00 00 57 BRK $00 ; ERROR 

58 
008061: 22 AS 00 El 59 QUIT JSL PRODOS ; DO QUIT CALL 
008065: 29 00 60 DA $29 ; QUIT CODE 
008067: 78 80 00 00 6.1 ADRL PARMBL ; ADDRESS OF PARM TABLE 
008068: BO 11 =807E 62 BCS ERROR ; NEVER TAKEN 
00806D: 00 00 63 BRK $00 ; SHOULD NEVER GET HERE ... 

64 

321 



Chapter 16 

65 •••••••••••••••••••••••••••••••••••••••••••••• 
66 

00806F: 4B 67 RESUME PHK 
008070: AB 68 PLB ; SET OUR DATA BANK 
008071: 18 69 CLC 
008072: FB 70 XCE ; SET NATIVE MODE 
008073: C2 30 71 REP $30 ; 16-BIT MODE 
008075: 4C 56 80 72 JMP SHUTDOWN ; TRY TO SHUTDOWN 

73 
74 •••••••••••••••••••••••••••••••••••••••••••••• 
75 

008078: 00 00 00 00 76 PARMBL ADRL $0000 ; PTR TO PATHNAME 
00807C: 00 00 77 FLAG DA $00 ; ABSOLUTE QUIT 

78 
00807E: 00 00 79 ERROR BRK $00 ; WE'LL NEVER GET HERE 

80 
81 TR ON ; TRUNCATE BYTES PRINTED. 
82 

008080: 15 DO D2 CF 83 LINEI STR "PRODOS 16 TEST SYSTEM" 
008096: 15 DO F2 ES 84 LINE2 STR "Press a key. (fry #1)" 

85 
0080AC: OE D2 ES F4 86 BUTTONl STR "Return to Quit" 
0080BB: 10 CS F3 E3 87 BUTTON2 STR "Esc to Try Again" 

88 
0080CC: 63 89 CHK ; CHECKSUM FOR LISTING 

--End Merlin-16 assembly, 205 bytes, errors: 0 

Using Macros in a Source Listing 
There are times in writing an assembly language source listing that you'll find 
yourself typing the same sort of lines over and over again. You may even find 
yourself wishing there was some abbreviated way of telling the assembler to 
create an often-used block of code, perhaps even with certain customized as
pects to it. 

Let's start with a simple example: Incrementing a two-byte pointer in the 
8-bit mode takes several steps in assembly language: 

INCR INC $06 ; INCREMENT WW-ORDER BYTE 
BNE DONE ; NO CARRY, SKIP NEXT STEP 
INC $07 ; INCREMENT HIGH-ORDER BYTE 

DONE NOP ; YOUR PROGRAM CONTINUES HERE 

Assuming you have to use this routine often within a program, you can 
avoid retyping it by creating a macro definition. Macro is short for a macro
instruction, meaning a larger pseudo-instruction created out of several primary 
instructions. A macro can be defined in the assembler at the beginning of a 
source listing or in a separate file of definitions called a macro library. A macro 
library can be referenced once at the beginning of an assembly, and from then 

322 



The Apple IIGS Toolbox 

on any macro defined in the library will automatically be recognized during the 
assembly. 

A Merlin macro definition looks like this: 

INCR MAC 
INC $06 
BNE DONE 
INC $07 

DONE NOP 
EOM 

BEGIN INCR 

; BEGIN MACRO DEFINITION 
; INCREMENT WW-ORDER BYTE 
; NO CARRY, SKIP NEXT STEP 
; INCREMENT HIGH-ORDER BYTE 
; YOUR PROGRAM CONTINUES HERE 
; END OF MACRO DEFINITION 

; NEW INSTRUCTION = MACRO 'INCR' 

A Merlin macro definition begins with the assembler directive MAC. The 
label used on that line will be the name assigned to the defined macro. The 
lines which follow define each instruction that is to be part of the macro. To 
terminate a macro definition, use the directive EOM (End Of Macro), or, alter
natively, use the characters < < < . 

After the definition, the macro name can be used in the opcode field, 
just as though it were an assembly language instruction. When the file is as
sembled, all of the bytes associated with the macro definition will be created, 
just as though the lines of the macro had been typed at that spot in the listing. 
The macro definition itself at the beginning of the listing is not assembled as 
such. Program 16-3 shows the way the two-byte increment program would 
assemble. 

Program 16-3. Two-Byte Increment Example 
1 INCR MAC ; BEGIN MACRO DEFINITION 
2 INC $06 ; INCREMENT LOW-ORDER BYTE 
3 BNE DONE ; NO CARRY, SKIP NEXT STEP 
4 INC $07 ; INCREMENT HIGH-ORDER BYTE 
5 DONE NOP ; YOUR PROGRAM CONTINUES HERE 
6 EOM ; END OF MACRO DEFINITION 
7 
8 BEGIN !NCR 

008000: E6 06 8 INC $06 
008002: DO 02 =8006 8 BNE DONE 
008004: E6 07 8 INC $07 
008006: EA 8 DONE NOP 

8 EOM 
9 

--End Merlin-16 assembly, 7 bytes, Errors: 0 

Notice that no bytes of object code are generated during the macro defi
nition itself. Object code is generated only when the macro is actually used in 
the program. In the listing, you can see line 8 repeated as each line of the 

323 



Chapter 16 

macro is played out. Each time INCR is used, locations $06 and $07 will be 
incremented. 

Now, suppose that later in the listing you want to increment locations 
$08 and $09. Do you have to create a new macro definition? No, because you 
can rewrite the original definition with variables, like this: 

INCR MAC 
INC ]1 
BNE DONE 
INC ]1 + I 

DONE NOP 
EOM 

BEGIN INCR $06 

INCR $08 

; BEGIN MACRO DEFINITION 
; INCREMENT WW-ORDER BYTE 
; NO CARRY, SKIP NEXT STEP 
; INCREMENT HIGH-ORDER BYTE 
; YOUR PROGRAM CONTINUES HERE 
; END OF MACRO DEFINITION 

; INCREMENT WCATIONS $06,07 

; INCREMENT WCATIONS $08,09 

The characters ]1 represent a variable that will be filled in with whatever 
value or label is in the operand field following the macro call. For example, 
Program 16-4 defines the macro INCR and the memory locations LOCl as $06 
and LOC2 as $08. 

Program 16-4. Macro Example 

I 
=0006 2 WCI EQU $06 ; $06,07 
=0008 3 WC2 EQU $08 ; $08,09 

4 
5 INCR MAC ; BEGIN MACRO DEFINITION 
6 INC JI ; INCREMENT WW-ORDER BYTE 
7 BNE DONE ; NO CARRY, SKIP NEXT STEP 
8 INC JI +I ; INCREMENT HIGH-ORDER BYTE 
9 DONE NOP ; YOUR PROGRAM CONTINUES HERE 

IO EOM ; END OF MACRO DEFINITION 
11 
12 BEGIN !NCR WCI 

008000: E6 06 12 INC WCI 
008002: DO 02 =8006 12 BNE DONE 
008004: E6 07 12 INC WCl+l 
008006: EA 12 DONE NOP 

12 EOM 
13 
14 INCR WC2 

008007: E6 08 14 INC WC2 
008009: DO 02 =SOOD 14 BNE DONE 
00800B: E6 09 14 INC WC2+1 
00800D: EA 14 DONE NOP 

14 EOM 
15 

--End Merlin-16 assembly, 14 bytes, Errors: 0 

324 



The Apple IIGS Toolbox 

You can include up to 9 variables in a macro definition using the vari
ables ]1 through ]9, separating each variable in the operand field with a 
comma. For example, here's a macro definition with three variables: 

SWAP MAC ; EXAMPLE MACRO 
LDA JI ; GET IST BYTE 
STA J3 ; SAVE IN TEMP WCATION 
LDA J2 ; GET 2ND VALUE 
STA JI ; PUT IN 1ST WCATION 
LDA J3 ; GET ORIG. 1ST VALUE 
STA J2 ; MOVE TO POSITION 2 
EOM ; END OF DEFINITION 

This could then be used within the program like this: 

PROGRAM SWAP $06,$08,$0A 

or like this: 

SWAP MEMI,MEM2,MEM3 

Macro definitions are used extensively in Apple lies programming be
cause the same programming procedures are used over and over again. For ex
ample, you've seen how every tool call begins with pushing data on the stack, 
followed by loading the X register with the command value and doing the JSL 
to $E10000. Apple has established a standard set of tool macros using 
predefined names for each tool. For example TLStartUp is defined as: 

TLStartUp LDX #$0201 
JSL $EIOOOO 

In a program, you'd just see: 

BEGIN TLStartUp 

The APW assembler precedes all the tool macro names with an under
score (as in _TLStartUp), but otherwise the names are the same. 

In addition to not having to type as much, macros have the advantage of 
conserving space in the listing and making it easier to see the big picture. It's 
also easier to remember the name TLStartUp for a function than the code num
ber #$0201. 

Program listings that use macros like this assume that there is a 
predefined macro library on the disk with the source file, and that all the refer
ence macros have been defined. 

The disadvantage is that if a listing only shows the macro name, and not 
the expanded lines generated, you don't see the actual lines of code. And, if 
you don't have the macro definition used in a program on your assembler disk, 

325 



Chapter 16 

you won't be able to assemble the program without writing the macro code 
yourself. 

Because the source listings for Apple IIGS programs that use the tools 
can get very large, it will be essential in the next few chapters that we make 
some use of macros to minimize the length of the presented listings. In addi
tion, this will introduce you to the idea of using macros in your own programs 
on a regular basis. In the interest of keeping the listings short, and as clear as 
possible, only a half-dozen macro definitions will be used here. 

Building a Macro Library 
You can create this macro library yourself with either Merlin 16 or APW. We'll 
define a standard tool call macro that includes our JSL $E10000 plus the test 
for an error and a BRK. Normally, you wouldn't include a BRK as an error han
dler in a program anyone else was going to use, but it's handy here to help de
bug your programs. Just be sure to include the Control-Y resume routine so 
you can get back to a program launcher if the program does break. 

The first macro, ToolCall, will be defined as follows: 

ToolCall MAC ; DEFINE THE MACRO ToolCall 
LDX #)l ; GET THE CALL NUMBER 
JSL $E10000 ; DO THE CALL 
BCC CONT ; CONTINUE WITH PROGRAM 
BRK $00 ; BREAK ON ERROR 

CONT ; YOUR PROGRAM CONTINUES HERE 
EOM ; END OF MACRO DEFINITION 

This macro, ToolCall, will simply load the X register with the value for 
the call number, and then JSL to $E10000. The BCC CONT instruction will 
then test for an error and cause the program to continue with whatever instruc
tion follows the BRK if no error is detected. Remember that, in Merlin, an in
struction isn't required after a label, so this will achieve the desired result of 
making CONT equivalent to the address of the next instruction in the program 
the macro is used in. You'll see the call numbers as part of each macro, and the 
official name of each call will be included in the comment field, like this: 

ToolCall $0201 ; TLStartUp 

Because many of the Apple IIGS tools require information to be pushed 
on the stack prior to a call, it will also be useful to define some macros for this. 
For example, we can create a macro called PushWord that will push a two-byte 
word onto the stack. It would look like this in a program: 

PushWord LABEL 

326 



The Apple IIGS Toolbox 

However, now we have a new challenge. How will you distinguish be
tween when you want to push the contents of the location LABEL on the stack, 
and when you want to push the address value of LABEL itself? 

The answer is to use a conditional statement in a macro . A conditional 
statement is just like an IF-THEN test in BASIC. It will let you test certain as
pects of the inputs to the macro and generate different expansions accordingly. 
For example, here's a macro definition for PushWord: 

PushWord MAC ; DEFINE MACRO PushWord 
IF #,)1 ; IS 1ST CHAR OF )1 A"#" 
PEA #) 1 ; YES, PUSH VALUE ON STACK 
ELSE ; OfHERWISE, 
LOA ] 1 ; WAD CONTENTS 
PHA ; AND STORE THAT 
FIN ; END OF CONDITIONAL PORTION 
EOM ; END OF MACRO DEFINITION 

The macro definition directive IF tells the assembler to look at the first 
character of the input variable ]1. If it's the pound sign(# ), signifying an im
mediate value, the value itself is pushed on the stack using the PEA instruction. 

The ELSE directive begins the block of instructions of what to do if the 
test fails, which in this case is to then load the Accumulator with the contents 
of ]l, and to push that onto the stack. 

FIN defines the end of the conditional part of the macro and tells the as
sembler to assemble everything from that point on (or until the next IF). This is 
where any code to be found in both possible macro expansions would be en
tered (or it's before the IF at the beginning). 

With this macro, you can now have two uses of Push Word: 

PushWord #LABEL ;PUSH VALUE OF THE LABEL ON STACK 
PushWord LABEL ;PUSH CONTENTS OF LABEL ON THE STACK 

The same technique can be used to create a PushLong macro to push 
four bytes, a long address, for example, on the stack: 

PushLong MAC ; DEFINE MACRO PushLong 
IF #,) 1 ; IMMEDIATE VALUE? 
PEA A] 1 ; YES, PUSH HIGH WORD 
PEA )1 ; PUSH WW WORD 
ELSE ; OfHERWISE, 
LOA )1 +2 ; GET HIGH WORD CONTENTS 
PHA ; PUSH ON STACK 
LOA ] 1 ; GET WW WORD CONTENTS 
PHA ; PUSH ON STACK 
FIN ; END OF CONDITIONAL PORTION 
EOM ; END OF MACRO DEFINITION 

327 



Chapter 16 

In a similar manner, it would be nice to be able to pull data off the 
stack. In this case, the data pulled off the stack will be stored in a specified 
memory location. Here's two macros, PullWord and PullLong that do just that: 

PuJIWord MAC ; DEFINE MACRO PullWord 

PullLong 

PLA ; GET TWO BYTES OFF STACK 
STA ]I ; STORE IN MEMORY 
EOM ; END OF MACRO DEFINITION 

MAC 
PLA 
STA ]I 
PLA 
STA ]I +2 
EOM 

; DEFINE MACRO PullLong 
; GET WW WORD OFF STACK 
; STORE IT 
; GET HIGH WORD OFF STACK 
; STORE IT 
; END OF MACRO DEFINITION 

Not every macro will be used in every program, but having these defini
tions in one library that we'll call UTIL.MACS will make it easy to use any of 
them in a given program. 

Program 16-5 is an example of what a complete program using the Mer
lin Apple IIGS disk-based macro library might look like using these macros. 

When you assemble Program 16-5, be sure to verify that the checksum 
on line 82 agrees with your own assembly. This checksum is the same for both 
the macro and nonmacro versions of this program. 

This listing appears much longer because the contents of the macro file 
itself are printed at the beginning, and because each use of a macro is ex
panded within the listing. By using the Merlin directives LST OFF and LST 
ON on either side of the USE UTIL.MACS instruction, the listing of the macro 
file itself can be suppressed. There is also another Merlin directive, EXP OFF 
(EXPand macros-OFF) that will keep each macro from being expanded during 
the assembly. 

In the interest of conserving space for the listings in the following chap
ters, most programs will use the UTIL.MACS macro library, and will not be ex
panded in the listings. If you should forget what a particular macro does in 
looking at a listing, you can always refer back to this chapter. Of course, in 
your own assemblies, you may also just omit the LST OFF or EXP OFF 
directives when you want a complete listing of all the assembled bytes in an 
object file. 

328 



The Apple IIGS Toolbox 

Program 16-5. ProDOS 16 Tool Locator Demo with Macros 

=EIOOA8 

008000: 48 
008001: AB 

I ********************************************** 
2 * PRODOS 16 TOOL WCATOR DEMO * 
3 * --USING MACROS-- * 
4 * MERLIN ASSEMBLER * 
5 ********************************************** 
6 
7 
8 
9 

IO 

MX %00 ; FULL 16-BIT MODE 
REL ; REWCATABLE OUTPUT 
DSK Pl6.TOOL.DEMO.L 

11 PRODOS EQU $EIOOA8 ; PRODOS 16 ENTRY POINT 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 BEGIN 
22 
23 
24 SETRES 
25 

LST OFF 
USE UTIL.MACS 
LST ON 

EXP OFF 

PHK 
PLB 

$30 

; DON'T LIST MACROS 
; USE MACRO LIBRARY 
; LISTING BACK "ON" 

; DON'T EXPAND MACROS 

; GET PROGRAM BANK 
; SET DATA BANK 

; 8-BIT MODE 008002: E2 30 
008004: A9 SC 
008006: SF F8 03 
00800A: C2 30 
00800C: A9 6F 80 
00800F: SF F9 03 
008013: A9 00 00 
008016: SF FB 03 

00 26 

SEP 
LDA 
STAL 
REP 
LDA 
STAL 
LDA 
STAL 

#$SC 
$3F8 

; JML (JMP WNG) 
; CTRLY VECTOR 

27 
28 

00 29 
30 

00 31 
32 

$30 
#RESUME 
$3F9 
#RESUME 
$3FB 

; 16-BIT MODE 

; $3F9,3FA 

; $3FB,3FC 

33 STARTUP ToolCall $0201 ; TLStartUP 

008048: 68 
00804C: C9 01 00 
00804F: FO 05 =8056 

008051: EE AA 80 
008054: 80 CF =8025 

34 
35 BOX 
36 
37 
38 
39 
40 
41 
42 
43 
44 TEST 
45 
46 
47 
48 
49 
50 

PushWord #$0000 ; PUSH SPACE FOR RESULT 

PushLong #LINEI ; PUSH LINEI 
PushLong #LINE2 ; and so on 
PushLong #BUTTONI 
PushLong #BUTTON2 

TooICall $1201 

PLA 
CMP #1 
BEQ SHUTDOWN 

INC LINE2 + 20 
BRA BOX 

329 

; TLTextMountVoiume 

; RETRIEVE CHOICE VALUE 
; BUTTON I = QUIT 

; INCREMENT COUNTER 
; TRY AGAIN ... 



Chapter 16 

51 SHUTDOWN ToolCall $0301 ; TLShutDown 
52 

008061: 22 AS 00 El 53 QUIT JSL PRODOS ; DO QUIT CALL 
008065: 29 00 54 DA $29 ; QUIT CODE 
008067: 78 80 00 00 55 ADRL PARMBL ; ADDRESS OF PARM TABLE 
00806B: BO 11 =807E 56 BCS ERROR ; NEVER TAKEN 
00806D: 00 00 57 BRK $00 ; SHOULD NEVER GET HERE . . . 

58 
59 ********************************************** 
60 

00806F: 48 61 RESUME PHK 
008070: AB 62 PLB ; SET OUR DATA BANK 
008071: 18 63 CLC 
008072: FB 64 XCE ; SET NATIVE MODE 
008073: C2 30 65 REP $30 ; 16-BIT MODE 
008075: 4C 56 80 66 JMP SHUTDOWN ; TRY TO SHUTDOWN 

67 
68 ********************************************** 
69 

008078: 00 00 00 00 70 PARMBL ADRL $0000 ; PTR TO PATHNAME 
00807C: 00 00 71 FLAG DA $00 ; ABSOLUTE QUIT 

72 
00807E: 00 00 73 ERROR BRK $00 ; WE'LL NEVER GET HERE? 

74 
75 TR ON ; TRUNCATE BYTES PRINTED. 
76 

008080: 15 DO D2 CF 77 LINEI STR "PRODOS 16 TEST SYSTEM" 
008096: 15 DO F2 E5 78 LINE2 STR "Press a key. (Try #1)" 

79 
OOSOAC: OE D2 E5 F4 80 BUTTONI STR "Return to Quit" 
0080BB: IO C5 F3 E3 81 BUTTON2 STR "Esc to Try Again" 

82 
OOSOCC: 63 83 CHK ; CHECKSUM FOR LISTING 

--End Merlin-16 assembly, 205 bytes, errors: 0 

APWMacros 
Defining macros with the APW assembler is similar in concept, although differ
ent in actual procedure. 

In APW, the macro library must be defined as a separate file-it cannot 
be included as part of the main source file itself. A macro definition in such a 
file begins with the directive MACRO. This is followed on the next line by the 
name of the macro. In the example below, this is INCR (INCRement). The 
macro definition ends with the directive MEND (Macro END). 

330 



The Apple IIGS Toolbox 

MACRO ; DEFINE 'INCR' 
INCR 
INC $06 ; INCREMENT $06 
BNE DONE ; NO WRAPAROUND 
INC $07 

DONE ANOP 
MEND ; END OF DEFINITION 

The macro is then used in a source program with the directive MCOPY 
(for Macro COPY). This places a copy of the macro library specified in the list 
of available macro libraries. A source program that uses a macro library would 
look like this: 

MCOPY MYMACROS 
GEN ON 

MAIN START 

PROGRAM INCR 

END 

The macro is invoked by using the macro name in the opcode field as 
though it were an assembly language instruction. The GEN ON directive is 
used if you want each macro instruction generated listed. Program 16-6 is the 
output of an assembly using the macro file and the source file above: 

Program 16-6. Sample APW Program Using Macros 

0001 0000 
0002 0000 
0003 0000 
0004 0000 
0005 0000 
0006 0000 
0007 0000 

0000 
0002 
0004 
0006 

0008 0006 
0009 0006 

E6 06 
DO 02 
E6 07 

9 source lines 
I macros expanded 
4 lines generated 

MAIN 

PROGRAM 
+ 
+ 
+ 
+DONE 

MCOPY MYMACROS 
GEN ON 

START 

INCR 
INC $06 
BNE DONE 
INC $07 
ANOP 

END 

331 

; INCREMENT $06 
; NO WRAPAROUND 



Chapter 16 

It's also possible to include variables in APW macros as well. A macro 
definition that uses a variable label looks like this: 

MACRO ; DEFINE 'INCR' 
INCR &LOC 
INC &LOC ; INCREMENT $06 
BNE DONE ; NO WRAPAROUND 
INC &LOC+l 

DONE ANOP 
MEND ; END OF DEFINITION 

The requirements are that the use of a variable label be called out on the 
first line of the macro definition by following the name of the macro by the ex
pected variable list to be used when the macro is called. 

The program calling the macro then follows its use of the macro name 
by the values or labels it wishes substituted in the macro. To increment loca
tion $06 and $07, for example, the listing would look like this: 

MCOPY MYMACROS2 
GEN ON 

MAIN START 

PROGRAM INCR $06 

END 

Which would generate the assembly in Program 16-7. 

Program 16-7. Increment Location 

0001 0000 
0002 0000 
0003 0000 
0004 0000 
0005 0000 
0006 0000 
0007 0000 

0000 E6 06 
0002 DO 02 
0004 E6 07 
0006 

0008 0006 
0009 0006 

9 source lines 
1 macros expanded 
4 lines generated 

MAIN 

PROGRAM 
+ 
+ 
+ 
+DONE 

MCOPY MYMACROS2 
GEN ON 

START 

INCR $06 
INC $06 
BNE DONE 
INC $06+1 
ANOP 

END 

332 

; INCREMENT $06 
; NO WRAPAROUND 



The Apple IIGS Toolbox 

If a macro used several labels, the definition would look like this: 

MACRO ; DEFINE 'SWAP' 
SWAP &WCI,&WC2,&WC3 
LDA &WCI ; GET 1ST VALUE 
STA &WC3 ; STORE IN TEMP WC 
LDA &WC2 ; GET 2ND VALUE 
STA &WCI ; PUT IN 1ST POSITION 
LDA &WC3 ; GET ORIG. 1ST VALUE 
STA &WC2 ; PUT IN 2ND POSITION 

DONE ANOP 
MEND ; END OF DEFINITION 

This would be called in a program like this: 

MCOPY MYMACROS3 
GEN ON 

MAIN START 

PROGRAM SWAP $06,$07,$08 

END 

Which would assemble as follows: 

0001 0000 
0002 0000 MCOPY MYMACROS3 
0003 0000 GEN ON 
0004 0000 
0005 0000 MAIN START 
0006 0000 
0007 0000 PROGRAM SWAP $06,$07,$08 

0000 AS 06 + LDA $06 ; GET 1ST VALUE 
0002 85 08 + STA $08 ; STORE IN TEMP WC 
0004 AS 07 + LDA $07 ; GET 2ND VALUE 
0006 85 06 + STA $06 ; PUT IN 1ST POSITION 
0008 AS 08 + LDA $08 ; GET ORIG. 1ST VALUE 
OOOA 85 07 + STA $07 ; PUT IN 2ND POSITION 
oooc + 
oooc +DONE ANOP 

0008 oooc 
0009 oooc END 

9 source lines 
I macros expanded 
8 lines generated 

333 



Chapter 16 

The APW disk also contains an Apple IIGS resource macro library with 
macro definitions for all of the Apple IIGS tools. As with Merlin 16, these mac
ros can be used to simplify a listing that uses the Apple IIGS tools. 

In addition, the macro library M16.UTILITY contains the Push and Pull 
macros just discussed for Merlin. You will have to add the definition for 
ToolCall if you wish to use it as part of M16.UTILITY. 

334 







Chapter 17 

The Memory Manager and 
Miscellaneous Tools 

The multiple program operating environment of the Apple IIGS would not be 
possible without some supervising system to manage memory for the various 
applications, desk accessories, and the operating system itself. The Memory 
Manager tool set is a collection of routines for allocating, moving, and de-allo
cating blocks of memory that are used by different applications and the operat
ing system. Even in the 64K Applesoft BASIC environment, you've seen how 
Applesoft BASIC, the Monitor, ProDOS and your own program all compete for 
the same memory in bank 0. 

In the Apple IIGS, there are even more program entities such as desk ac
cessories and the tool sets themselves-all in memory at the same time. For 
proper integration of all of this, it is essential that there be a central manager of 
all memory, to which each individual program goes to be assigned any memory 
it needs. This is the job of the Memory Manager. 

The Memory Manager 
As with most things, the Memory Manager is actually quite simple. When 
ProDOS 16 first loads a program, it asks the Memory Manager to find sufficient 
memory for the application from within any memory that is not already in use. 

On boot up, most memory is available, and when the application is 
loaded, the Memory Manager marks the area occupied by the program as in 
use. The Memory Manager then creates two data structures to keep track of 
that memory. The first is an identification number, called the User ID. This ID 
number is associated with a particular application, and can then be associated 
with any additional blocks of memory allocated to that program. Then, when 
the program quits, all associated-but perhaps physically separate-blocks of 
memory for that application can be de-allocated and returned to the pool of 
available memory. The second data structure is called a handle, and is a pointer 
to the memory block while it's in use. 

The ID number of a block of memory is made up of several components, 

337 



Chapter 17 

or fields. These are called the Main, Aux, and Type fields, and are assigned to 
specific bit positions in the ID number (a two-byte value): 

IFIElolclalAl9lsl7l6ls141312l1lol 
Type 
Field 
$0-$F 

Aux ID 
Field 
$0-$F 

Main 
ID Field 
$00-$FF 

The Main ID field is assigned by the ID Manager, and ranges from $00 
to $FF for each particular Type. The value $00 is reserved for the system, and 
so Main ID values in this field start with $01. 

The Type field is an indicator of whom the ID value belongs to. The pos
sible values, in the range of $0 to $F have been assigned as shown in Table 17-1. 

Table 17-1. Type Field Indicator 

0 Memory Manager use (for example, in allocating RAM disk space) 
1 Application 
2 Control Program 
3 ProDOS 
4 Tool Sets 
5 Desk Accessories 
6 Runtime Libraries 
7 System Loader 
8 Firmware 
9 Tool Locator 
A Setup File 
B Undefined 
C Undefined 
D Undefined 
E Undefined 
F Undefined 

For example, the first ProDOS 16 application to own memory in the sys
tem might have an ID of $1001 (application, first ID). 

When ProDOS 8 is run from ProDOS 16, much of the memory in banks 
0 and 1 will have already been assigned, and the ProDOS 8 program will be 
considered part of that memory allocation. A ProDOS 8 System file (or even an 
Applesoft BASIC routine requesting memory), would probably get the ID value 
$3001 (ProDOS, first ID). 

Note that by the time your application gets control when it starts up, in 
either ProDOS 8 or ProDOS 16, this ID value has already been assigned to the 
memory your program occupies. For ProDOS 16, this will be just the memory 
occupied by your program, plus an additional $400 bytes given as a default di
rect page and stack to every ProDOS 16 program, unless otherwise directed 

338 



The Memory Manager and Miscellaneous Tools 

during the assembly of the program. 
For ProDOS 8, this memory is just generally assigned to the entire range 

of $800 to $BFFF in banks O and 1, and the shadowed graphics display areas in 
banks $EO and $El: $E0/2000 to $EO/SFFF for hi-res, and $El/2000 to $El/ 
9FFF for double and super hi-res displays. (Yes, as a matter of fact, they did 
provide the option of an Applesoft BASIC or ProDOS 8 system file accessing 
the bank 1 super hi-res area and then shadowing this to bank $El to make the 
display visible. Try a POKE 49193,161 in Applesoft BASIC to enable the super 
hi-res display. You'll have to carefully type POKE 49193,33 to restore things, 
since you won't be able to see what you're typing.) 

The $00 to $7FF and $COOO to $FFFF parts of banks O and 1 are marked 
as permanently "in use" by the memory manager, regardless of whether you're 
using ProDOS 8 or ProDOS 16, and need no special attention from your 
application. 

Loading ProDOS 8 Directly 
It is possible, but not advisable, to boot directly into ProDOS 8 on the Apple 
IIGS, as was described in Chapter 13. There are two big drawbacks to this ap
proach. The first, and most important, is that none of the RAM patches to the 
built-in tool sets are loaded and activated, since the Tool.Setup file is not used 
in a simple ProDOS 8 boot. This means that virtually every ROM-based tool in 
the system is operating with known bugs, and is likely to perform less than 
perfectly. The whole purpose of the Tool.Setup file under ProDOS 16 is to 
make sure that every running Apple IIGS machine is functionally equivalent, 
regardless of its manufacture date, when started up with the current tool sets 
and setup files. If you're not using any of the Apple Iles tools, you can boot di
rectly into ProDOS 8. However, if you intend to use any of the routines in 
these chapters discussing the tools, you should always boot into ProDOS 16 
first, even if you intend to ultimately end up in ProDOS 8. 

The second disadvantage of booting directly into ProDOS 8 is that the 
Memory Manager only marks minimal areas of memory, including the ramdisk 
allocation, $00/0000 to $00/7FF, $00/COOO to $00/FFFF, and $01/COOO to 
$01/FFFF as in use (along with a very few others); thus, you must allocate your 
own memory in banks O and 1 if you want to call the Memory Manager. As a 
matter of interest, in such cases you can first call the Miscellaneous Tools 
GetNewID to get an ID for your itself, then use NewHandle ($0902) to allocate 
the memory your program occupies at that moment, and then finally call 
MMStartUp ($0202) to get things going (MMStartUp will give you your same 
User ID back). This is really not the recommended approach, though, and it 
does nothing to alleviate the tool bug problem. 

The real moral is, if you're going to use the tools, boot ProDOS 16 first. 

339 



Chapter 17 

Auxiliary IDs 
While an application is running, it may request additional memory blocks. 
These are usually associated with the Main ID of the application itself, and the 
application may then assign auxiliary IDs to these blocks. This is the purpose of 
the Aux ID field in the ID value. This field is controlled entirely by the applica
tion and is used to further classify blocks of memory. 

For example, suppose an application loads two documents, each with a 
text and a graphics portion, for a total of four distinct blocks of memory. Let's 
suppose the application's Main ID, issued to it by the System Loader when it 
was started up, is $1001. The application itself may then generate two new 
sub-IDs as follows: 

LDA ID 
ORA #$0100 
STA SIDl 
LDA ID 
ORA #$0200 
STA SID2 

; $1001 
; $1101 
; SAVE SUB-ID #1 
; $1001 
; $1201 
; SAVE SUB-ID #2 

The application can then assign sub-ID #l to the two blocks of memory 
for the first document, and the second sub-ID to the memory used by the sec
ond document. 

The advantage is that the application may then later selectively de
allocate all the memory (which for some applications may be dozens of mem
ory blocks per document) in one tool call, using the sub-ID (for example, SID2 
= $1201) for the particular document. The alternative would be to create a 
loop to run through each data block and de-allocate it individually. The sub-ID 
method provides a much more efficient approach. 

These sub-IDs should be used for any additional memory your program 
requires for its own use, such as additional direct-page areas or data blocks. 

It's also possible, although rare, to spinoff completely separate programs 
from the one currently loaded. For example, suppose you had an application 
that wanted to install a classic desk accessory. You would want the accessory's 
memory to remain marked as in use even after your start up application had 
departed the scene. 

New IDs may be obtained from within an application using the Miscella
neous tool set, specifically with the call GetNewID (call number = $2003). This 
new ID is a completely new entity and would only be required if you wanted 
to allocate memory for some routine or data structure that was to remain in 
memory after your program quit and had its own memory de-allocated by the 
System Loader. In the normal course of events, you should never have to call 
GetNewlD. The Miscellaneous tool set, as its name implies, is a collection of 

340 



The Memory Manager and Miscellaneous Tools 

miscellaneous tool commands that can be useful during program execution. 
These include not only the GetNewID routine, but also routines to read the 
mouse, determine the system time and others. The Miscellaneous tool set is de
scribed in greater detail below. 

Handles 
If a given ID number is not unique for a given memory block, that is, the same 
ID number may be assigned to several blocks of memory, how does the Mem
ory Manager identify a single block? It identifies it with the second data struc
ture created when memory is allocated, called a handle. A handle contains a 
pointer to the location of the block of memory, its size (length), and the ID 
number of the application to which that block of memory is assigned (the User 
ID), and some additional information. To reference a block of memory, most 
Apple IIGS tool calls use the address of the handle to a memory block, not the 
address of the block itself. 

This is because the Memory Manager, from time to time, moves blocks 
of memory, providing they are designated as movable, from their current loca
tion to a new one. This is usually done to try to make room for another mem
ory request, either from an application or the System Loader trying to load a 
new application, but it could be related to any system function that requires 
more memory, including desk accessories. 

For this reason, the Memory Manager a,nd most other Apple IIGS tools 
deal with handles as the indicator and descriptor of a particular block of mem
ory. You can also think of a handle as a pointer to a pointer. The handles 
themselves are allocated in bank $El, and are guaranteed not to move. Thus, 
whenever you want to access your block of memory, you give the handle ad
dress, and the system then looks there to determine where your block of mem
ory is being kept at the moment. 

Not all memory in the Apple IIGS is managed in the same way by the 
Memory Manager. The Memory in the Apple IIGS falls into three categories: 

Normal Memory. Memory managed by the Memory Manager, this in
cludes banks $02 through $DF and a little of banks $EO and $El, specifically 
$E0/6000 to $EO/BFFF and $El/ AOOO to $El/BFFF. 

Special Memory. This is memory managed by the Memory Manager, 
but it has restrictions on it because it is used by programs designed for the Ap
ple Ile and Ile. By keeping this memory restricted, the memory is more likely to 
be usable if the user wants to start up a ProDOS 8 or other 64K or 128K Apple 
II-type application. Special memory includes $00/800 to $00/BFFF, $01/800 to 
$01/BFFF, $E0/2000 to $E0/5FFF (the shadowed hi-res pages), and $El/2000 
to $El/9FFF (the shadowed double and super hi-res display pages). 

341 



Chapter 17 

Unmanaged Memory. The remaining memory, the area from $00 to 
$800 and $COOO to $FFFF (including the 4K expansion RAM area) in banks 
$00, $01, $ED and $El, and the $800 to $1FFF areas in banks $ED and $El, are 
called reserved memory and are not controlled by the Memory Manager. This 
area is always marked as in use by the Memory Manager. 

Requesting Memory 
Ordinarily when requesting memory, the Memory Manager will allocate a 
block in nonspecial, or normal, memory. If, however, you have a specific rea
son for using special memory, for example using the super hi-res page directly 
in bank $El, then you can include that as part of your request to the Memory 
Manager. 

When requesting memory, there are a number of variable attributes that 
you can require of the memory block. These are controlled by a 2-byte attribute 
word, where certain bits are used to flag a given attribute. These are shown in 
Table 17-2. 

Table 17-2. variable Attributes 

Bit 
0 
1 
2 

3 
4 

5-7 
8, 9 
10-13 
14 
15 

Fixed Bank 
Fixed Address 
Page Aligned 

Special Memory 
Bank Boundary 

Unused 
Purge Level 
Unused 

1 = Block must be in a particular bank. 
1 = Block must start at a specific address. 
1 = Block must start at a page boundary ($100, $200, $300, 
and so on). 
1 = Block may NOT use special memory areas 
1 = Block cannot extend across a bank boundary (for ex
ample, from $02/FOOO to $03/0100). 

(0-3) = Priority level for de-allocation (purging) . 

Fixed Address 1 = Block cannot be moved in memory. 
Locked 1 = Block is temporarily unmovable and unpurgeable. 

When the System Loader loads your program, its memory is allocated as 
not page aligned; it cannot cross bank boundaries (or your LDA/STAs wouldn't 
work); it cannot be in special memory, and it must be unmovable, locked, and 
with a purge level of O (cannot be de-allocated). A typical attribute byte for a 
ProDOS 16 application would be $C018 (%1100 0000 0001 1000). This is as
signed automatically, more or less, but it is possible to change these attributes 
during the assembly and linking of an application. Ordinarily, you will not 
have to be concerned with controlling the attribute bytes for your application. 

You'll have to specify the attribute byte for any memory your application 
requests from the Memory Manager. For most instances, an attribute byte of 

342 



The Memory Manager and Miscellaneous Tools 

$0014 (bank boundary limited, page aligned) or $0000 (no special require
ments) is adequate. 

When a ProDOS 16 application is started up by the System Loader, it is 
given two blocks of memory. The first block is for the program itself, the sec
ond is a $400-byte block used for that application's private stack ($300 bytes) 
and direct-page areas ($100 bytes) . However, many of the Apple IIGS tools, 
QuickDraw, for example, require that you obtain more bank O direct-page space 
for their operation. This is obtained through the memory manager, and the ad
dress of that block (not its handle) is passed to the tool when starting it up. 

In those cases, you will need a fixed and locked block specifically in 
bank 0. The attribute byte for this type of memory is .$COOL You need not 
memorize these values, as they will be included in the examples that follow, 
and you can refer to this chapter or the sample listings in the future as you 
need them. 

Memory Allocation and Movement 
When the Memory Manager allocates a block of memory, it first tries to obtain 
the block in available memory. If it can't locate enough memory, it first com
pacts memory. Compacting is done by trying to move all the in-use blocks into 
one area, to free larger sections of available memory. Movable memory is 
moved to the top of memory, making available areas of free memory at the 
bottom. Any block that is immovable remains where it stands. 

The only problem is that some blocks, such as applications themselves, 
have already been designated as immovable, and they may reside in the middle 
of memory forming barriers to relocation of other blocks. In this case, the 
Memory Manager tries to relocate movable blocks as high in memory as possi
ble without going past a fixed block that it may encounter. The Memory Man
ager will never relocate a movable block past a fixed block. 

After compacting, if enough memory to satisfy the request is still not 
available, the Memory Manager will try to purge any blocks marked as 
purgeable. A priority level of O to 3 has been established. 

3 Most purgeable (assigned by System Loader) 
2 Next-most purgeable 
1 Least purgeable 
0 Not purgeable 

When purging, the Memory Manager looks for level 3 blocks to purge 
first. If this is not sufficient, it starts purging blocks at level 2, and so on. Blocks 
at level O are most likely the application itself, or other important data blocks, 
and so are not purged. If sufficient memory cannot be found, the Memory 
Manager will return an insufficient memory error. 

343 



Chapter 17 

The reason for purge levels is to allow the application to set aside mem
ory on a priority basis. For example, suppose your program has a help list that 
it can load from disk. Each time the user asks for help, the program has to re
load the file from disk. You could get some memory from the Memory Man
ager and store your help list in memory, but what happens when the user's 
document becomes very large? It would be a shame to limit the usefulness of 
the program because of memory used for the help list. 

The answer is to load the help list when memory is available, but to 
mark it as purgeable. Then, if the application's document starts growing large, 
the Memory Manager will automatically dispose of the help list to make room 
for the document. Obviously, in such schemes you've got to check to see if 
your data block is still in the computer whenever you want to print the help 
list. This is fairly simple though. Whenever the Memory Manager purges a data 
block, it sets the pointer within the handle to zero, but it doesn't delete the ' 
handle itself. Thus, the handle can be checked prior to use to make sure the 
data is still there. 

Normally, this is done by dereferencing the handle. Dereferencing is the 
process of looking into the handle to see what actua1memory address it points 
to. The actual technique of dereferencing will be described in a later dem
onstration program. 

It is also possible to check for a nil ( equal to zero) handle by calling 
RestoreHandle ($0B02) each time you want to access a possibly purged handle. 
RestoreHandle tries to re-allocate a purged block to its original size (although 
the data contents have presumably already been lost). For our purposes, it re
turns an error if the data block still contains information (the block was not 
really purged before), or if there is insufficient memory to re-allocate the block. 
You can use this call to check to see if a handle has already been purged. If the 
error NotEmptyErr ($0203) is returned, you know the data is still there. On the 
other hand, if you get a MemoryErr ($0201) or no error at all, then you know 
your data is long gone. 

To summarize the data structures then, each block of memory has a han
dle and a UserlD associated with it. The UserID is specific to an application, 
and is obtained from MMStartUp when the application starts. The application 
may use the Aux ID field to create sub-IDs for any additional memory it re
quires. Purging memory releases the memory, but does not remove the handle 
with the UserID embedded in it from the Memory Manager's list. Disposing of 
a handle both de-allocates the memory block and removes the handle with the 
UserID from the handle list of the Memory Manager. The UserlD is at that 
point still active in the ID list (a separate function from memory handles). 

When a program quits, it should first call DisposeAll to de-allocate any 
additional memory it has obtained, and then call MMShutDown to tell the 

344 



The Memory Manager and Miscellaneous Tools 

memory manager it is finished with its memory related operations. During the 
ProDOS quit, the system will then de-allocate the memory for the application 
itself and remove the application's UserID (and any sub-IDs) from the ID list. 

DeletelD, a Miscellaneous tool set call, is only required if the application 
has established other IDs (not sub-IDs) using GetNewID, which are separate 
from the main ID given the application when it first started up. 

The Memory Manager Tools 
The Memory Manager tool set contains a wide variety of routines for allocating, 
moving, and de-allocating memory, as well as routines for setting the purge 
levels and other attributes. Table 17-3 lists some of the routines (tool com
mands) available in the Memory Manager. Other commands may be added by 
Apple Computer at any time. 

Table 17-3. Memory Manager Tools 

Command Value 
$0102 

$0102 
$0302 

$0402 

$0502 

$0602 

$0902 

$0A02 

$0B02 

$1002 

$1102 

$1202 
$1302 

Command Name 
MMBootlnit 

MMStartUp 
MMShutDown 

MMVersion 

MMReset 

MMStatus 

NewHandle 

ReAllocHandle 

RestoreHandle 

DisposeHandle 

Dispose All 

PurgeHandle 
PurgeAll 

Description 
Initialized by system on boot. 
Not used by application. 
Starts up Memory Manager. 
Tells Memory Manager 
you're finished. 
Returns version number of 
the Memory Manager. 
Reinitializes MM on 
reset. Should not be 
called by an application. 
Indicates whether MM is 
active. 
Creates a new block of 
memory and returns handle. 
Re-allocates a block that 
was purged. 
Re-allocates a handle that 
was purged. 
Disposes of a specified 
memory block and its 
handle. 
Disposes of all memory and 
handles belonging to a 
specified UserID. The ID, 
however, remains active. 
Purges a specified block. 
Purges all blocks for a 
specified ID. 

345 



Chapter 17 

$1802 GetHandleSize 

$1902 SetHandleSize 

$1A02 FindHandle 

$1802 FreeMem 

$1C02 MaxBlock 

$1D02 TotalMem 

$1E02 CheckHandle 

$1F02 CompactMem 
$2002 HLock 

$2102 HLockAll 

$2202 HUnLock 
$2302 HUnLockAll 

$2402 SetPurge 

$2502 SetPurgeAll 

$2B02 BlockMove 

$2802 PtrToHand 

$2902 HandToPtr 

$2A02 Hand To Hand 

Returns the size of a 
specified block. 
Changes the size of a 
specified block. 
Returns the handle of the 
block containing the 
specified memory address. 
Returns the total number 
of free bytes of memory. 
Returns size of largest 
free block in memory. 
Returns total memory size 
of system. 
Checks to see if a given 
handle exists in the handle 
list. 
Forces memory compaction. 
Locks a handle ( cannot be 
purged or moved). 
Locks all handles for a 
given ID. 
Unlocks a given handle. 
Unlocks all handles for a 
given ID. 
Sets purge level for a 
block. 
Sets purge level for all 
blocks for a given ID. 
Copies a range of memory 
from one address to 
another . 
Copies a range of memory 
from one address to a block 
specified with a handle. 
Copies a range of memory 
from a block specified with 
a handle to a given 
address. 
Copies a range of memory 
from a block specified with 
a handle to a block 
specified with another 
handle. 

Table 17-4 lists some of the possible errors which may be encountered 
from Memory Manager routines. 

346 



The Memory Manager and Miscellaneous Tools 

Table 17-4. Memory Manager Errors 

$0201 MemoryErr Unable to allocate block. 
$0202 EmptyErr Illegal operation on empt)' 

handle. 
$0203 NotEmptyErr Empty handle expected for 

that operation. 
$0204 LockErr Illegal operation on a 

locked or immovable block. 
$0205 PurgeErr Attempt to purge an 

unpurgeable block. 
$0206 HandleErr Invalid handle given. 

Using the Memory Manager 
Program 17-1 is a ProDOS 8 application that will load a number of hi-res pic
tures from disk, store each away in memory using the Memory Manager, and 
then successively move them back onto the hi-res screen to create a fast-action 
slide show. 

Any regular hi-res pictures will work with this program; the only re
quirement is that they be named PICTURE.A, PICTURE.B, PICTURE.C, and so 
forth on the same disk as this sample program. If you don't have any hFres 
pictures, Program 17-2 is an Applesoft BASIC program that will create 18 hi-res 
pictures in something just vaguely like animation. You may want to configure 
your Apple IIGS RAM disk to SOOK to hold all the pictures, or you can use a 
formatted, but otherwise blank, 3½-inch disk to hold the pictures and the slide 
show object file. 

Without going into great detail, suffice it to say that the Applesoft BASIC 
program simulates the dropping of a box, which then bounces off to the right 
of the screen. Unfortunately, because of the size of disk space, the program is 
limited to about 20 frames. The result is a very spotty animation. Most impor
tantly, the assembly language program demonstrates just how quickly the 
Memory Manager can move large blocks of memory. If you've got the disk 
space and the inclination, you can change the 20 in line 105 to a larger number 
and the value of ACC on line 35 to 3. 

This is the longest source listing presented so far in this book. It is true 
that assembly language programs of any consequence tend to be very long in 
terms of lines of code. Even a simple program on the Apple IIGS that uses the 
various tools can easily run from 1000 to 4000 lines of source code. Fortu
nately, each line is only a few characters for each instruction, and the typing 
goes quickly. As with previous listings, a checksum is included at the end of 
the listing to help you be sure the lines have been entered correctly. 

You'll notice that the program is similar to, and in fact a derivative of, 

347 



Chapter 17 

the PS File Dump Sample program in Chapter 13. You may find it easier to 
start with that listing and to use the existing parameter blocks at the end and . 
error message routines within it as a starting point for this program. 

Because many of the ProDOS file-handling principles have been dis
cussed in earlier chapters, we'll concentrate the discussion on just those parts of 
the program that deal with the Memory Manager, or that are otherwise 
unusual. 

Program 17-1. Memory Manager Demo: Slide Show 

=BFOO 
=FDED 
=FC58 
=FDOC 
=FDDA 
=F3D8 
=F399 
=COOO 
=COIO 

=4000 
=0006 

002000: 20 D8 F3 

002003: A9 4C 
002005: 80 F8 03 
002008: A9 91 
00200A: 80 F9 03 
00200D: A9 21 
00200F: 80 FA 03 

002012: 18 
002013: FB 

1 ********************************************** 
2 * MEMORY MANAGER DEMO PROGRAM * 
3 * PRODOS 8 SYSTEM FILE * 
4 * MERLIN ASSEMBLER * 
5 ********************************************** 
6 
7 
8 

ORG $2000 

9 * DSK MM.DEMO.PS 
IO TYP $FF 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

MLI 
COUT 
HOME 
RDKEY 
PRBYTE 
HGR2 
SETTXT 
KYBD 
STROBE 

22 SCREEN 
23 HNDPTR 
24 
29 

EQU $BFOO 
EQU $FDED 
EQU $FC58 
EQU $FD0C 
EQU $FDDA 
EQU $F3D8 
EQU $F399 
EQU $COOO 
EQU $COIO 

EQU $4000 
EQU $06 

; SYSTEM FILE TYPE 

; STD. PRODOS 8 ENTRY 

; MONITOR READ KEY ROUTINE 
; PRINT ACC. AS HEX NUMBER 
; Applesoft BASIC 'HGR2' ROUTINE 
; Applesoft BASIC 'TEXT' ROUTINE 

; HI-RES PAGE TWO MEMORY 
; $06,07 

30 ********************************************** 
31 * SETUP STARTING CONDITIONS 
32 ********************************************** 
33 
34 START 
35 
36 SETRES 
37 
38 
39 
40 
41 
42 
43 SETUP 
44 

JSR 

LOA 
STA 
LOA 
STA 
LOA 
STA 

CLC 
XCE 

HGR2 

#$4C 
$3F8 
#<RESUME 
$3F9 
#>RESUME 
$3FA 

348 

; DO EQUIV. OF HGR2 

; JMP INSTRUCTION 
; CTRLY VECTOR 
; WW BYTE OF SHUTDOWN ADDR. 
; WW BYTE OF CTRL-Y VECTOR 

; HIGH BYTE OF CTRL-Y VECTOR 



The Memory Manager and Miscellaneous Tools 

002014: C2 30 45 REP $30 ; SET FULL 16-BIT MODE 
46 
47 TLSTART TooICall $0201 ; TLStartUp 
48 
49 MMSTART TooICall $0202 ; MMStartUp 
50 

00202C: 68 51 PLA ; GET OUR ID 
00202D: SD 58 22 52 STA ID ; KEEP IT ON HAND 

53 
002030: 09 00 01 54 MAKEID ORA #$0100 ; SET AUX ID = I 
002033: SD SA 22 55 STA ID2 ; SAVE SUB-ID 

56 
002036: A9 DC 21 57 INIT LDA #HNDLl ; ADDRESS OF 1ST PICTURE HANDLE 
002039: 85 06 58 STA HNDPTR ; POINTER TO IT. 

59 
60 ; FREE 16-BIT OPERATIONS 
61 

002038: 38 62 SEC 
00203C: FB 63 XCE ; BACK TO 8 BITS ... 

64 
65 ********************************************** 
66 • OPEN THE FILE 
67 •••••••••••••••••••••••••••••••••••••••••••••• 
68 

00203D: 20 00 BF 69 OPEN JSR MLI 
002040: C8 70 DFB $CS ; OPEN COMMAND 
002041: 9F 21 71 DA OPENTBL ; OPEN CMD TABLE 
002043: 90 11 =2056 72 BCC OPEN2 ; NO ERROR 

73 
002045: C9 46 74 CMP #$46 ; FILE NOT FOUND ERR 
002047: DO OA =2053 75 BNE :1 
002049: AE DB 21 76 LDX NAMEEND-1 ; FILE COUNTER BYTE 
00204C: EO CI 77 CPX #"A" ; 1ST FILE? 
00204E: FO 03 =2053 78 BEQ :I ; YEP 
002050: 4C DD 20 79 JMP SHOW ; NOPE, WE GOT AT LEAST ONE! 

80 
002053: 4C 66 21 81 :I JMP ERROR ; PRODOS ERROR 

82 
002056: AD A4 21 83 OPEN2 LDA REFNUM ; GET REFERENCE NUMBER 
002059: SD A6 21 84 STA REFNUMI ; STORE REF NUMBER 

85 
86 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
87 • READ $2000 BYTES OF DATA FROM THE FILE 
88 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
89 

00205C: A9 04 90 READ LDA #$04 ; # OF PARMS FOR 'READ' 
00205E: SD AS 21 91 STA READTBL ; MODIFY TABLE ENTRY 
002061: 20 00 BF 92 JSR MLI 
002064: CA 93 DFB $CA ; READ COMMAND 
002065: AS 21 94 DA READTBL ; READ CMD TABLE 
002067: 90 03 =206C 95 BCC CLOSE ; NO ERRORS ... 

349 



Chapter 17 

002069: 4C 66 21 96 JMP ERROR ; PRODOS ERROR MSSG 
97 
98 •••••••••••••••••••••••••••••••••••••••••••••• 
99 * CWSE THE FILE 
100 •••••••••••••••••••••••••••••••••••••••••••••• 
IOI 

00206C: A9 01 102 CWSE LDA #$01 ; REWRITE READTBL 
00206E: 8D AS 21 103 STA READTBL ; # OF PARMS = I 
002071: 20 00 BF 104 JSR MLI 
002074: cc 105 DFB $CC ; CWSE COMMAND 
002075: AS 21 106 DA READTBL ; SAME TABLE AS 'READ' 
002077: 90 03 =207C 107 BCC :1 ; NO ERROR 
002079: 4C 66 21 108 JMP ERROR ; PRODOS ERROR 

109 :I ; PROGRAM CONTINUES HERE ... 
110 
111 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
I 12 * REQUEST A MEMORY BWCK TO STORE PICTURE 
113 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
114 

00207C: 18 115 CLC 
002070: FB 116 XCE 
00207E: C2 30 117 REP $30 ; FULL 16-BIT MODE 

118 
119 GETHNDL PushLong #$0000 ; PUSH ROOM FOR RESULT 
120 PushLong #$2000 ; SIZE OF BWCK NEEDED 
121 PushWord ID2 ; GET DATA ID AND PUSH IT 
122 PushWord #$0000 ; ATTRIBUTE BYTE 
123 ; UNWCKED, N(Jf PURGEABLE 
124 PushLong #$0000 ; ADDRESS (NONE NEEDED) 
125 
126 ToolCall $0902 ; NewHandle 
127 ; GET BWCK OF MEMORY 
128 

0020A4: 68 129 :1 PLA ; GET WW WORD OF HANDLE 
0020A5: 92 06 130 STA (HNDPTR) ; STORE IN WW WORD POSN 
0020A7: AO 02 00 131 LDY #$02 
0020AA: 68 132 PLA ; GET HIGH WORD OF HANDLE 
0020AB: 91 06 133 STA (HNDPTR),Y ; STORE IN HIGH WORD POSN 

134 
135 •••••••••••••••••••••••••••••••••••••••••••••••••• 
136 * MOVE FROM SCREEN TO GS MEMORY 
137 •••••••••••••••••••••••••••••••••••••••••••••••••• 
138 
139 STORE PushLong #SCREEN ; SCREEN ADDRESS (DATA SOURCE) 

002083: AO 02 00 140 LDY #$02 
002086: Bl 06 141 LDA (HNDPTR),Y ; GET HIGH WORD OF HANDLE 
002088: 48 142 PHA ; PUSH ON STACK (DESTINATION) 
002089: 82 06 143 LDA (HNDPTR) ; GET WW WORD OF HANDLE 
002088: 48 144 PHA 

145 PushLong #$2000 ; NUMBER OF BYTES TO BE COPIED 
146 
147 ToolCall $2802 ; PtrToHand 

350 



0020CD: 18 
0020CE: AS 06 
0020DO: 69 04 00 
0020D3: 85 06 

0020D5: 38 
0020D6: FB 

0020D7: EE DB 21 
0020DA: 4C 3D 20 

0020DD: 18 
0020DE: FB 
0020DF: C2 30 

0020El: A9 DC 21 
0020E4: 85 06 

0020E6: AO 02 00 
0020E9: Bl 06 
0020EB: 48 
0020EC: 82 06 
0020EE: 48 

002I06: AD 00 
002I09: 29 FF 
002IOC: C9 80 
002IOF: 90 06 
002111: 2C IO 

co 
00 
00 
=2117 
co 

The Memory Manager and Miscellaneous Tools 

148 
149 

; PTRTO-HANDLE MOVE COMMAND 

150 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
151 • ADVANCE HANDLE STORAGE TO NEXT GROUP 
152 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
153 
154 NXTHNDL 
155 
156 
157 
158 

CLC 
LDA 
ADC 
STA 

HNDPTR 
#$04 
HNDPTR 

; ADVANCE 4 BYTES 

159 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
160 * INCREMENT SUFFIX TO PICTURE NAME ... 
161 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

162 
163 NXTFILE 
164 
165 
166 
167 
168 

SEC 
XCE 

INC NAMEEND-1 
JMP OPEN 

; BACK TO 8 BlTS ... 

; INCREMENT FILE COUNTER 
; GET THE NEXT NAME 

169 •••••••••••••••••••••••••••••••••••••••••••••••••• 

170 * CYCLE THROUGH "SLIDE SHOW'' 
171 •••••••••••••••••••••••••••••••••••••••••••••••••• 

172 
173 SHOW 
174 
175 
176 
177 FIRST 
178 
179 

CLC 
XCE 
REP $30 

LDA #HNDLl 
STA HNDPTR 

; FULL 16-BIT MODE 

; ADDRESS OF 1ST PICTURE HANDLE 
; POINTER TO IT. 

180 •••••••••••••••••••••••••••••••••••••••••••••••••• 

181 • MOVE PICTURE DATA ONTO SCREEN 
182 •••••••••••••••••••••••••••••••••••••••••••••••••• 
183 
184 XFER 
185 
186 
187 
188 
189 
190 
191 
192 
193 

194 
195 CHKKEY 
196 
197 
198 
199 

LDY #$02 
LDA (HNDPTR),Y 
PHA 
LDA (HNDPTR) 
PHA 
PushLong #SCREEN 
PushLong #$2000 

TooJCall $2902 

LDA KYBD 
AND #$00FF 
CMP #$0080 
BCC NEXT 
BIT STROBE 

351 

; HIGH WORD OF HANDLE 

; LOW WORD OF HANDLE 

; DESTINATION 
; NUMBER OF BYTES TO COPY 

; HandToPtr 
; HANDLE-TO-POINTER MOVE 
COMMAND 

; CLEAR HIGH BYTE 

; NO KEYPRESS 
; CLEAR KEYBOARD 



Chapter 17 

002114: 4C 2D 21 

002117: 18 
002118: A5 06 
00211A: 69 04 00 
0021 lD: 85 06 

0021 lF: 82 06 
002121: DO C3 =20E6 
002123: AO 02 00 
002126: Bl 06 
002128: FO 87 =20El 

00212A: 4C E6 20 

002156: 38 
002157: FB 

002158: 20 99 F3 
002158: 20 58 FC 

00215E: 20 00 BF 
002161: 65 
002162: 98 21 
002164: 00 00 

002166: 48 
002167: 20 99 F3 
00216A: 20 58 FC 

00216D: AO 00 
00216F: 89 AD 21 
002172: FO 06 =217A 
002174: 20 ED FD 

200 
201 

JMP SHUTDOWN ; KEYPRESS = TIME TO QUIT 

202 •••••••••••••••••••••••••••••••••••••••••••••••••• 

203 * INCREMENT HNDPTR TO NEXT HANDLE 
204 •••••••••••••••••••••••••••••••••••••••••••••••••• 
205 
206 NEXT 
207 
208 
209 
210 
211 
212 
213 
214 
215 

216 
217 

CLC 
LDA 
ADC 
STA 

LDA 
BNE 
LDY 
LDA 
BEQ 

JMP 

HNDPTR 
#$04 
HNDPTR 

(HNDPTR) 
XFER 
#$02 
(HNDPTR),Y 
FIRST 

XFER 

; ADVANCE 4 BYTES 

; WW WORD OF NEXT HANDLE 
; >$00 MEANS REAL DATA 

; HIGH WORD OF NEXT HANDLE 
; $00 = END OF LIST = AN<YI'HER 

ROUND 

218 ********************************************** 
219 * SHUTDOWN THINGS AND QUIT 
220 ********************************************** 
221 
222 SHUTDOWN PushWord ID2 ; GET DATA (PICTURE) ID 
223 Too!Call $1102 ; DisposeAII 
224 ; RELEASE ALL DATA BWCKS 
225 
226 MMSHUT PushWord ID ; MAIN ID (APPLICATION) 
227 ToolCall $0302 ; MMShutDown 
228 ; TELL MM WE'RE DONE 
229 
230 TLSHUT ToolCall $0301 ; TLShutDown 
231 
232 SEC 
233 XCE ; BACK TO 8 BITS ... 
234 
235 JSR SETTXT ; BACK TO TEXT MODE 
236 JSR HOME 
237 
238 QUIT JSR MLI ; DO QUIT CALL 
239 DFB $65 ; QUIT CALL COMMAND VALUE 
240 DA QUITTBL ; ADDRESS OF PARM TABLE 
241 BRK $00 ; SHOULD NEVER GET HERE ... 
242 
243 ERROR PHA ; SAVE ERROR CODE 
244 JSR SETTXT ; SET TEXT MODE 
245 JSR HOME ; CLEAR SCREEN 
246 
247 LDY #$00 ; INIT Y-REG 
248 :1 LDA MSSGl,Y ; GET CHAR TO PRINT 
249 BEQ PRCODE 
250 JSR COUT ; PRINT IT 

352 



The Memory Manager and Miscellaneous Tools 

002177: C8 251 INV ; NEXT CHAR 
002178: DO F5 =216F 252 BNE :1 ; WRAPAROUND PROfECT 

253 
00217A: 68 254 PRCODE PLA ; RETRIEVE ERROR CODE 
002178: 20 DA FD 255 JSR PRBYTE ; PRINT IT 
00217E: AO 00 256 LDY #$00 ; !NIT Y-REG 
002180: 89 BD 21 257 :1 LDA MSSGIA,Y ; GET CHAR TO PRINT 
002183: FO 06 =2188 258 BEQ ERDONE ; END OF MSSG 
002185: 20 ED FD 259 JSR COUT ; PRINT IT 
002188: cs 260 INV ; NEXT CHAR 
002189: DO F5 =2180 261 BNE :1 ; WRAPAROUND PROfECT 

262 
002188: 20 OC FD 263 ERDONE JSR RDKEY ; WAIT FOR KEYPRESS 
00218E: 4C SE 21 264 JMP QUIT ; QUIT PROGRAM .. . 

265 
266 ********************************************** 
267 

002191: 18 268 RESUME CLC 
002192: FB 269 XCE 
002193: C2 30 270 REP $30 ; 16-BIT MODE ... 
002195: 4C 2D 21 271 JMP SHUTDOWN 

272 
273 ********************************************** 
274 

002198: 04 275 QUITTBL DFB 4 ; NUMBER OF PARMS FOR QUIT 
002199: 00 276 DFB $00 ; QUIT TYPE (0 = STD. QUIT) 
00219A: 00 00 277 DA $0000 ; NOf NEEDED FOR STD. QUIT 
00219C: 00 278 DFB $00 ; NOf USED AT PRESENT 
00219D: 00 00 279 DA $0000 ; NOf USED AT PRESENT 

280 
281 

00219F: 03 282 OPENTBL DFB 3 ; NUMBER OF PARMS FOR OPEN = 3 
0021AO: D2 21 283 PNAME DA NAME ; POINTER TO PATHNAME 
0021A2: 00 23 284 DA DOSBUF ; POINTER TO PRODOS BUFFER 
0021A4: 00 285 REFNUM DFB $00 ; PRODOS FILE REFERENCE NUMBER 

286 
287 

0021A5: 00 288 READTBL DFB $00 ; NUMBER OF PARMS FOR READ/CLOSE 
0021A6: 00 289 REFNUMl DFB $00 ; REFERENCE NUMBER ( = REFNUM) 
0021A7: 00 40 290 DA $4000 ; POINTER TO DATA BUFFER (HGR2) 
0021A9: 00 20 291 DA $2000 ; READ ENTIRE SCREEN 
0021AB: 00 00 292 DA $0000 ; NUMBER OF CHARACTERS READ. 

293 
294 •••••••••••••••••••••••••••••••••••••••••••••• 
295 
297 

0021AD: SD 298 MSSGI HEX SD ; PRINT RETURN FIRST 
0021AE: DO D2 CF C4 299 ASC "PRODOS ERROR $",00 
0021BD: SD 300 MSSGlA HEX SD ; ANOfHER CARRIAGE RETURN 

353 



Chapter 17 

0021BE: DO D2 CS D3 301 ASC "PRESS A KEY TO QUIT",00 
302 
303 

002102: 09 DO C9 C3 304 NAME STR "PICTURE.A" 
305 NAMEEND ; ONE BYTE PAST END OF NAME 
306 
307 •••••••••••••••••••••••••••••••••••••••••••••• 

308 
0021DC: 00 00 00 00 309 HNDLI ADRL $0000 
0021EO: 00 00 00 00 310 OS 120,0 

311 
312 

002258: 00 00 313 ID DA $0000 
00225A: 00 00 314 ID2 DA $0000 

315 
316 
317 

00225C: CA 318 CHKSUM CHK 
319 

00225D: 00 00 00 00 320 OS \. 
321 
322 DOSBUF 
323 
324 

·-End Merlin-16 assembly, 768 bytes, errors: 0 

Program 17-2. Animation Generator 

0 REM ANIMATION GENERATOR 
5 REM SIMULATES A BOUNCING BOX ... 
10 X = 20:Y = 20: REM STARTING POSITION 
20 XV = 0: REM HORIZONTAL VELOCITY 
30 YV = 0: REM VERTICAL VELOCITY 
35ACC=5 
40 W = 10: REM WIDTH OF BOX 
50 H = 9: REM HEIGHT OF BOX 
60 HGR : HCOLOR = 3: HPWf 0,0 
65 CALL 62454 
70 POKE· 16302,0: REM FULL MODE 
80 PRINT CHR$ (4);"PREFIX /RAMS" 
100 REM DROP BOX 
105 FOR T = I TO 20 
110 HCOLOR= 3: HPWf 0,0 
115 CALL 62454: REM CLEAR TO COLOR 
120 HCOLOR= 0: HPWf 0,170 + H TO 279,170 + H 
140 HCOLOR= 2: REM BLUE 
150 FOR I = X TO X + W 

354 

; 4-BYTE SPACE FOR A HANDLE 
; ENOUGH ROOM FOR 29 MORE 

PICTURES 
; AUT0$0000 AT END OF ACTIVE LIST 

; OUR APPLICATION'S ID 
; ID'S FOR DATA (PICTURES) 

; CHECKSUM FOR VERIFICATION 

; SKIP TO NEXT PAGE BOUNDARY 

; 1024 BYTES FOR PRODOS BUFFER 
; NOT IN PROGRAM SO AS TO NOT 
; TAKE UP DISK SPACE ... 



155 HPLOT l,Y TO l,Y + H 
160 NEXT I 

The Memory Manager and Miscellaneous Tools 

170 X = X + XV:Y = Y + YV:YV = YV + ACC: IF INT (X / 2) < > X / 2 THEN X = X + 1: 
REM MAKE EVEN 

180 IF Y > 170 THEN Y = 170:XV = ACC • 5:YV = YV - 3 • ACC:YV = YV • - 1 
190 IF X + W > 279 THEN 999 
200 REM SAVE IMAGE 
210 PRINT CUR$ (4);"BSAVE PICTURE."; CUR$ (192 + T);",A$2000,L$1FF8" 
215 NEXT T 
999 GET A$: TEXT 

A Closer Look at the Slide Show 
The program begins with clearing the hi-res screen using an internal Applesoft 
routine, HGR = $F3D8, which is equivalent to the HGR command in BASIC. 
As with the ProDOS 8 file dump program, the program then sets up the Con
trol-Y vector as a "back door" should the program unexpectedly crash at some 
point. The difference in this program is that, instead of pointing directly to a 
ProDOS quit routine, the Control-Y vector is now set up to point to a small 
routine called RESUME at the end of our listing. Because we'll need to shut 
down the tool sets our program has started up, and to de-allocate any memory 
that may have been allocated at that point, it will be necessary to make sure 
we're in the full native 16-bit mode of the 65816 before jumping to the tool 
shutdown routines in our program, and, ultimately, to the ProDOS quit command. 

The RESUME routine, lines 268-271, simply sets the processor to the 
16-bit native mode before jumping to SHUTDOWN, which we'll talk about 
shortly. 

Lines 47-58 do something you'll be seeing a lot of in future Apple Iles 
programs, namely starting up the GS tools needed for a particular application. 
In this case, they're the Tool Locator and the Memory Manager. When the 
Memory Manager is started up, it gives us the ID for our application; this is 
modified to create a sub-ID for our data blocks that will hold the loaded pic
tures. Since we're not creating a separate application, there is no need to 
startup the Miscellaneous Tools, nor to get a new ID from that tool set. 

The call diagram for MMStartUp looks like this: 

MMStartUp ($0202) 

Stack Before Call: 

Previous Contents 

~SP: 

355 



Chapter 17 

Stack After Call: 

Previous Contents 

UserID W d
. ID Memory Mgr. returns 

or . f 1· . or app 1cat1on. 

+-SP: 

You should also notice that the parameter block for the READ command 
(lines 288-292) is different from the file dump command in that this time it 
reads the entire $2000 bytes directly into the hi-res page, without using any 
other buffer area. This makes for a very fast and efficient file load. 

As each picture is loaded (lines 69-108), a 16K block of memory will be 
allocated, and a handle to that memory block will be returned by the Memory 
Manager (lines 119-133). These handles, which are the only true identifiers of 
each memory block, will be stored in a data table at the end of the program, 
starting at HNDL1 (line 309). To make the program flexible and able to 
accomodate a variable number of pictures, the data block within the program at 
HNDLl is 124 bytes long-enough room for 30 pictures plus 4 zeros at the end 
to flag the end of the list. If fewer pictures are read in, a zero will still be found 
at the end of the list because we've used the Merlin OS 120,0 instruction, 
which fills the data block entirely with zeros. You can increase the 120 to a 
larger value if you wish to load more pictures. 

To allocate each memory block, the program shifts to the 16-bit mode 
and uses the NewHandle call to request a memory block. Figure 17-1 is the call 
diagram for NewHandle. 

Figure 17-1. NewHandle ($0902) 

Stack Before Call: 

Previous Contents 

Longs pace 

Blocksize 

UserID 

MemAttributes 

MemLocation 

Long: Space for result. 

Long: Size of block to create. 

Word: ID of program using block. 

Word: Attribute mask byte. 

Long: Bank and/ or address of memory block 
if required by attribute byte. 

+-SP: Stack pointer after setup. 

356 



The Memory Manager and Miscellaneous Tools 

Stack After Call: 

Previous Contents 

The Handle Long: Address of handle to new block. 
. 

+-SP: Stack pointer after return from routine. 

When the handle is returned, its address is stored in the HNDL1 data ta
ble using the pointer HNDPTR, which was set up at the beginning of the pro
gram on lines 57,58. As each picture is loaded and a handle is assigned, 
HNDPTR will be incremented to the next storage position in the section 
NXTHNDL, lines 154-157. 

Once the memory block to store the picture has been obtained, the pic
ture data is moved to the allocated memory block by the PtrToHand tool call. 
This call uses a pointer to a memory location and transfers the specified num
ber of bytes to a memory block specified by a handle. It's important to note 
that no particular check is done to make sure that the receiving block is large 
enough for the number of bytes you're writing to it, so you must make sure 
you've allocated a large enough block for the data. The call diagram for 
PtrToHand is shown in Figure 17-2. 

Figure 17-2. PtrToHand ($2802) 

Stack Before Call: 

Previous Contents 

SourcePointer 

DestHandle 

. Count 

Stack After Call: 

Previous Contents 

Long: Pointer to beginning address of block. 

Long: Address of handle to destination block. 

Long: Number of bytes to copy . 

+-SP: Stack pointer after setup. 

+-SP: Stack pointer after return from routine. 

After incrementing the pointer to the handle storage list, NXTFILE (line 
163) increments the suffix letter on the filename A to B, B to C, and so on, and 
loops back until a File Not Found error ($46) indicates there are no more pic
tures to be loaded. 

357 



Chapter 17 

Once all the pictures are loaded, the SHOW routine cycles through the 
handle list, transferring the data back from the memory block, indicated by 
each handle, to the screen. The tool call HandToPtr is used for that. The call 
diagram is similar to PtrToHand (Figure 17-3). 

Figure 17-3. HandToPtr ($2902) 

Stack Before Call: 

Previous Contents 

" SourceHandle 

DestPointer 

Count 

Stack After Call: 

Previous Contents 

Long: Address of handle to source block. 

Long: Pointer to beginning address of destination. 

Long: Number of bytes to copy. 

+-SP: Stack pointer after setup. 

+-SP: Stack pointer after return from routine. 

Each time through the transfer loop, the list of handles is scanned until a 
handle address of $00/0000 is encountered (lines 206-216), at which point the 
cycle is repeated. When a keypress is detected, the program jumps to the 
SHUTDOWN routines. 

Whenever a routine using the Apple IIGS tools quits, it should first de-al
locate any additional memory it has obtained. Lines 222, 223 take care of this 
by passing the sub-ID to the command DisposeAll, which de-allocates all mem
ory blocks associated with the sub-ID. You must be very sure not to do this call 
with your application's ID; otherwise you will have de-allocated yourself at 
that point, so will be vulnerable immediately to another application somewhere 
in the computer using your memory while you're trying to execute the last few 
instructions of your program. 

Once the memory has been de-allocated, the Memory Manager and Tool 
Locators are also shut down, and the ProDOS quit command will return us to 
whatever program selector was used to launch our application. 

Obviously, the Tool Locator and Memory Manager tools are used by the 
system itself, so cannot really be shut off. The real purpose of the startup and 
shutdown calls is to just tell these tools that you would like their assistance at 
the beginning of your program, and to then tell them that you're finished at the 

358 



The Memory Manager and Miscellaneous Tools 

end. At the present, these calls for some tools may not do anything at all, but 
you should build them into all of your programs to provide for the possibility 
that at some point in the future the startup and shutdown calls for even appar
ently permanent tools like the Tool Locator may be required for proper system 
operation. 

The Miscellaneous Tool Set 
The Miscellaneous tool set is a collection of routines that do not fall into a ma
jor group the way the Memory Manager and other tools do. They also include 
some of the more fundamental tool functions that are called by the internal 
routines of the other tool sets to create the more complex functions. 

For example, the Miscellaneous tool set includes the GetNewID function. 
Although your program will probably never need to use this, the function is 
used by the System Loader in assigning new UserlDs to applications as they 
are loaded. Other Miscellaneous tool set commands include reading the mouse. 
Again, these are rarely used by themself in an application, but a more sophisti
cated tool set, the Event Manager, uses the mouse routines to create the more 
generalized command, GetNextEvent, which includes not only mouse clicks, 
but keyboard activity as well. 

Although we've listed most of the tool calls in the Tool Locator and 
Memory Manager tools, these lists can get quite large. For example, there are 
over 200 calls in the QuickDraw tool set alone. For this reason, the list below 
just describes some of the highlights of each tool set discussed. 

It should also be mentioned again that it is impossible for this book to 
really give a thorough discussion of all the Apple IIGS tools. The intent now is 
to introduce you to the major concepts so that you have a foundation for the 
information presented in other books. For specific information on the the Apple 
IIGS tools, I recommend Exploring the Apple lIGs by Gary Little and COM
PUTE!'s Mastering the Apple lIGS Toolbox by Morgan Davis and Dan Gookin. 

Miscellaneous Tool Set Calls 

Command Value 
$0102 
$0302 
$0003 

$0F03 

$1703 
$1803 
$1C03 

Command Name 
MTS tart Up 
MTShutDown 
ReadTimeHex 

ReadTimeASCII 

ReadMouse 
InitMouse 
Clamp Mouse 

Description 
Starts up Miscellaneous tool set. 
Tells Miscellaneous tool set you're finished. 
Returns date and time in number value for
mat, including the day of the week (0-6). 
Returns data and time as a string of 
characters. 
Returns position and status of mouse. 
Initializes mouse. 
Sets clamp values for mouse. 

359 



Chapter 17 

$2003 
$2103 

$2503 

$2603 

$2703 

GetNewID 
DeleteID 

GetTick 

PackBytes 

UnPackBytes 

Create new UserID. 
Delete specified ID from ID list. Doesn't de
allocate any memory. 
Returns number of ticks (1/60 of a second) 
since computer was started up. 
Compresses a block of data into a smaller 
space by encoding it. 
Unpacks encoded data back into its original 
form. 

The most likely Miscellaneous tool error is in connection with 
GetNewID . It is $030B for IDNotAvailable, which is returned when there are 
already 255 UserIDs assigned to a given Type, and an additional ID tag is not 
available. 

Program 17-3 shows how the Miscellaneous tool set clock-reading 
routines might be used from an Applesoft BASIC program to return both the 
time and the day of the week. 

This program uses the string-variable passing techniques presented in 
Chapter 12. The new additions, of course, are the routines to read the built-in 
Apple IIGS clock. Two calls are needed because ReadTimeHex returns the day 
of the week, but not the time as a string. ReadTimeASCII, on the other hand, 
returns the time as a string, but does not include the day of the week. Figure 
17-4 and 17-5 show call diagrams for these two commands. 

This routine can be tested with Program 17-4. 

Figure 17-4. ReadTimeHex ($0003) 

Stack Before Call: 

Previous Contents 

Space for Result 

Space for Result 

Space for Result 

Space for Result 

Word: Allow space for result. 

Word: Allow space for result. 

Word: Allow space for result. 

Word: Allow space for result. 

~SP: Stack pointer after setup. 

360 



The Memory Manager and Miscellaneous Tools 

Stack After Call: 

Previous Contents 

WeekDay Null 

Month Day 

Year Hour 

Minute Second 

Byte: 1-7 

Byte: 0-11 

Byte: 0-99 

Byte: 9-59 

Byte: Null 

Byte: 0-30 

Byte: 0-23 

Byte: 0-59 

SP: Stack pointer after return from routine. 

Figure 17-5. ReadTimeASCII ($0F03) 

Stack Before Call: 

Previous Contents 

. " Buffer Address Long: Address of where to write time string . 

+-SP: Stack pointer after setup. 

Stack After Call: 

Previous Contents 

+-SP: Stack pointer after return from routine. 

Program 17-3. Clock Reading 

1 •••••••••••••••••••••••••••••••••••••••••••••• 
2 • • 
3 • IIGS TIME ROUTINE • 
4 • SYNTAX: CALL 768,A$ [,DJ • 
5 • WHERE A$ IS RETURNED WITH • 
6 • TIME STRING, AND OPTIONAL D • 
7 • RETURNS DAY OF WEEK (0-6), • 
8 • WHERE O = SUNDAY. • 
9 • • 

10 • MERLIN 16 ASSEMBLER • 
II • • 
12 •••••••••••••••••••••••••••••••••••••••••••••• 
13 

=0083 14 VARPNT EQU $83 ; $83,84 
=0085 15 FORPNT EQU $85 ; $85,86 
=0200 16 BUFF EQU $200 ; INPUT BUFFER 

17 
=0087 18 CHRGCJI' EQU $87 
=DA9A 19 SAVD EQU $DA9A 

361 



Chapter 17 

=DD6C 20 CHKSTR EQU $DD6C 
=DEBE 21 CHKCOM EQU $DEBE 
=DFE3 22 PTRGET EQU $DFE3 
=E3E9 23 MAKSTR EQU $E3E9 

24 
=DD6A 25 CHKNUM EQU $DD6A 
=EB9D 26 GIVAYF2 EQU $EB9D 
=EBF2 27 QINT EQU $EBF2 
=0011 28 VARTYPE EQU $11 ; STR$=$FF, NUM=$00 
=0012 29 NUMTYPE EQU $12 ; INT = $80, REAL = $00 
=DA63 30 LET2 EQU $DA63 
=DA68 31 LET3 EQU $DA68 
=009D 32 FAC EQU $9D 
=0006 33 DAY EQU $06 ; $3C,3D 

34 
35 

008000: 20 87 00 36 BEGIN JSR CHRGOT ; CHECK CHAR AT TXTPTR 
008003: C9 2C 37 CMP #',' ; COMMA? 
008005: DO 03 =800A 38 BNE :1 ; NOPE 
008007: 20 BE DE 39 JSR CHKCOM ; GOBBLE COMMA IF NEEDED 

40 
00800A: 20 E3 DF 41 :I JSR PTRGET ; WCATE VARIABLE 
00800D: 20 6C DD 42 JSR CHKSTR ; MAKE SURE IT'S A STRING 
008010: 85 85 43 STA FORPNT ; SAVE WC. OF DATA 
008012: 84 86 44 STY FORPNT+l 

45 
008014: 18 46 CLC 
008015: FB 47 XCE 
008016: C2 30 48 REP $30 ; FULL 16-BIT MODE 

49 
008018: A2 02 03 50 MTSTART LDX #$0203 ; MISC. TOOLS STARTUP 
008018: 22 00 00 El 51 JSL $EI0000 ; NO ERROR LIKELY 

52 
00801F: F4 00 00 53 WEEK PEA $0000 
008022: F4 00 00 54 PEA $0000 
008025: F4 00 00 55 PEA $0000 
008028: F4 00 00 56 PEA $0000 ; MAKE ROOM FOR 8 BYTES TO RETURN 

57 
008028: A2 03 OD 58 LDX #$0D03 ; ReadTimeHex 
00802E: 22 00 00 El 59 JSL $EI0000 ; READ NUMBER VALUES FOR TIME 
008032: 68 60 PLA ; GET MIN, SEC & DISCARD 
008033: 68 61 PLA ; GET YR, HRS, AND SO ON 
008034: 68 62 PLA ; GET MONTH, DAY 
008035: 68 63 PLA ; GET DAY OF WEEK (HI BYTE) 
008036: 85 06 64 STA DAY ; 2 BYTES FOR LATER USE. 

65 
008038: F4 00 00 66 TIME PEA ABUFF ; POINTER TO BUFFER 
008038: F4 00 02 67 PEA BUFF 
00803E: A2 03 OF 68 LDX #$F03 ; ReadTimeASCII 
008041: 22 00 00 El 69 JSL $EI0000 ; WRITE STRING TO MEMORY 

70 
008045: A2 02 03 71 MTSHUT LDX #$0303 ; MISC. TOOLS SHUTDOWN 

362 



The Memory Manager and Miscellaneous Tools 

008048: 22 00 00 El 72 JSL $El0000 ; NO ERROR LIKELY 
73 

00804C: 38 74 SEC 
00804D: FB 75 XCE ; BACK TO 8 BITS 

76 
00804E: A2 13 77 LDX #19 ; LEN OF TIME STRING 
008050: BD 00 02 78 TLOOP LDA BUFF,X ; GET A CHARACTER 
008053: 29 7F 79 AND #$7F ; FIX HI BIT 
008055: 9D 00 02 80 STA BUFF,X ; PUT IT BACK 
008058: CA 81 DEX 
008059: 10 FS =8050 82 BPL TLOOP ; TILL WE'RE DONE 

83 
008058: A9 00 84 LDA #<BUFF ; LOCATION OF STRING DATA 
00805D: AO 02 85 LIJV #>BUFF 
00805F: A2 FF 86 LDX #$FF ; TERMINATOR CHARACTER 
008061: SE 14 02 87 STX BUFF+20 ; PUT AT END OF STRING 

88 
008064: 20 E9 E3 89 JSR MAKSTR 
008067: 20 9A DA 90 JSR SAVD ; STRING CREATED AND SENT 

91 
92 *=========================== 

00806A: 20 87 00 93 CHECK JSR CHRGOf ; CHECK NEXT CHARACTER 
00806D: DO 01 =8070 94 BNE DAYWEEK ; END OF-LINE OR COLON 
00806F: 60 95 RTS 

96 
008070: 20 BE DE 97 DAYWEEK JSR CHKCOM ; GOBBLE NEXT COMMA 
008073: 20 E3 DF 98 JSR PTRGET ; LOCATE VARIABLE 
008076: 20 6A DD 99 JSR CHKNUM ; VAR= NUM? 
008079: 85 85 100 STA FORPNT ; FOR USE BY LET2/LET3 
008078: 84 86 101 STY FORPNT+ 1 ; AS ADDR OF VARIABLE DATA 

102 
008070: A4 07 103 LIJV DAY+l ; LO BYTE OF RETURN VALUE (DAY IS HI) 
00807F: A9 00 104 LDA #$00 ; HI BYTE AIWAYS ZERO 
008081: 85 9E 105 STA FAC+l 
008083: 84 9F 106 STY FAC+2 
008085: A2 90 107 LDX #$90 
008087: 25 12 108 AND NUMTYPE 
008089: 20 9D EB 109 JSR GIVAYF2 
00808C: AS 12 110 LDA NUMTYPE 
00808E: 30 03 = 8093 111 BMI Pl 
008090: 4C 63 DA 112 JMP LET2 ; MAKE A REAL VAR AND GO HOME. 

113 
008093: 20 F2 EB 114 Pl JSR QINT ; XVERT TO INTEGER 
008096: 4C 68 DA 115 JMP LET3 ; THAT'S ALL! 

116 
008099: 51 117 CHKSUM CHK ; CHECKSUM FOR LISTING 

--End Merlin-16 assembly, 154 bytes, errors: 0 

363 



Chapter 17 

Program 17-4. Applesoft Clock Test 

5 D$ = CUR$ (4) 
IO PRINT D$"BL0AD TIME.TB,A$300" 
15 FOR I = 1 TO 7: READ D$(1): NEXT I 
20 TEXT : HOME 
30 CALL 768,A$,D 
40 VTAB 1: PRINT D$(D);" ";A$ 
50 IF PEEK (- 16384) < 128 THEN 30 
55 POKE - 16368,0: END 
99 DATA SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY 

364 







Chapter 18 

QuickDraw and the 
Event Manager 

The G in Apple IIGS stands for graphics. In Applesoft BASIC, the normal hi-res 
graphics screen has 280 horizontal and 192 vertical pixel positions (pixel is an 
abbreviation for picture element and is a measure of the visual graphics points 
on the screen). There are a choice of eight colors, although effectively there are 
only six, since black and white are each counted twice in the list of possible 
colors. The hi-res screen doesn't have a resolution of 280 dots in eight colors. 
That's because you can't plot any color you want at every dot position. If you 
don't care about the color (perhaps you're using a monochrome monitor), the 
screen does have 280 pixels. However, in a given color, the resolution is only 
140 pixels, since half the dots are no longer usable. 

Double Hi-Res 
Double hi-res adds more physical positions across the screen, so that the mono
chrome resolution is 560 pixels, but again, there is a limitation introduced by 
adding colors (16 possible) that returns the effective resolution to 140 pixels in 
color. Some people insist that because a double hi-res color can be plotted any
where, the resolution is really 560 pixels, but all you have to do is to set the 
Control Panel Display option to Color while you're in the DeskTop program (a 
double hi-res display) to see how adding color decidedly reduces the resolution 
(clarity) of the screen. 

The Apple IIGS introduces a new graphics mode, called super hi-res 
graphics, which has a greater resolution with true color choice at every pixel. In 
the first mode, the screen is 320 pixels wide by 200 high, and there are 16 col
ors available for each pixel at every position. There is a second mode, 640 
pixels wide by 200 high, in which only 4 colors are available for a given posi
tion. However, through some clever planning in hardware, it's possible to put 
more colors on the entire line by mixing colors in a process called dithering. 
This works by putting, for example, a red pixel next to a yellow pixel to create 
the color orange. 

367 



Chapter 18 

Storing Information 
You may have already noticed that there seems to be a relationship between 
resolution and the number of colors possible. This is easy to understand once 
you grasp the concept of information storage. Information as a concept, in rela
tion to computers, has to do with the mathematical idea of uniquely describing 
some entity. This can be a letter of the alphabet, a word in a sentence, a for
mula for a calculation, or a visual element in a picture. There is a finite limit to 
how much information you can put in a single byte, or more precisely, in a sin
gle bit of any given byte. 

For current hardware, a bit can only have two states, 0 or 1. This means 
that the information contained in that bit is limited to two states. We create 
meaningful information by combining bits to represent larger numbers, for ex
ample %01001011 = $47 = 71 can represent the seventy-first ASCII character, 
or the letter G. The challenge in computing is to devise schemes to pack as 
much unique information into the smallest memory space possible. 

For a graphics screen, let's start with the idea of a screen eight pixels 
wide by eight pixels high. For the time being, we'll ignore color, and will just 
display a graphics image in black and white. A direct solution is to use the bits 
in eight bytes to represent each of the possible pixel positions. If a bit is 0, we'll 
say that dot is off, or black. If the bit is 1, it will represent an illuminated spot. 
By adjusting the values of the eight bytes, we can create an image like this: 

Byte 0: 00000000 = $00 
Byte 1: 0 0 0 11 0 0 0 = $18 
Byte 2: 001111 0 0 = $3C 
Byte 3: 01111110 = $7E 
Byte 4: 11111111 = $FF 
Byte 5: 00011000 = $18 
Byte 6: 00011000 = $18 
Byte 7: 00011000 = $18 

This is how it might look on a screen: 

368 



QuickDraw and the Event Manager 

With a little squinting, this looks a little like an arrow. Now suppose you 
wanted to increase the clarity of the image. This is another way of saying you 
want to increase the resolution of the image. Clarity is a way of saying you 
want more information communicated to your brain. By doubling the resolution 
to 16 X 16, we'll get a better image, but it will require four times as much 
memory: 

Word 0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = $0000 
Word 1: 0000000000000000 = $0000 
Word 2: 0000000110000000 = $0180 
Word 3: 0000001111000000 = $03CO 
Word 4: 0000011111100000 = $07EO 
Word 5: 0000111111110000 = $0FFO 
Word 6: 0001111111111000 = $1FF8 
Word 7: 00111111111111 0 0 = $3FFC 
Word 8: 0111111111111110 = $7FFE 
Word 9: 1111111111111111 = $FFFF 
Word A: 0 0 0 0 0 0 11111 0 0 0 0 0 = $03DO 
Word B: 00000011111 0 0 0 0 0 = $03DO 
Word C: 0000001111100000 = $03DO 
Word D: 0000001111100000 = $03DO 
Word E: 0000001111100000 = $03DO 
Word F: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = $0000 

Even without the more graphic drawing, you can probably see the arrow 
much more clearly using zeros and ones, but remember it took much more 
memory to increase the resolution. Now suppose you wanted to have four col
ors, or even just four shades of gray. (It really doesn't matter which because we 
can design the computer video output hardware to translate any value from 0 
to 3 into whatever color or shade of gray we wish.) 

However, adding the color or shading will take still more memory. For 
four possible states, we'll have to use two bits in a byte somewhere (two bits = 
four possible values: %00 = 0, %01 = 1, %10 = 2, %11 = 3). 

As you can see, adding graphics to any computer system puts great de
mands on the available memory. A normal hi-res graphics screen in Applesoft 
BASIC uses SK of memory for the display. The super hi-res display uses 32K. 
The memory's fixed size creates the trade-off situation of either 320 pixels in 16 
colors or 640 pixels in four colors. 

369 



Chapter 18 

QuickDraw and the Drawing Environment 
In Applesoft BASIC, there are half a dozen or so commands for drawing on the 
hi-res screen. The Apple IIGS has a built-in tool set called QuickDraw that con
tains over 200 commands for super hi-res graphics operations. These include 
not just the mundane clearing of the screen and line-drawing routines, but also 
operations for defining rectangles, ovals, complex regions, as well as filling 
these with both colors and patterns. In addition, you have control over the en
tire drawing area as things are being drawn, and you can create clipping regions 
to automatically omit lines from any part of the final image. In fact, there are 
more commands in QuickDraw than there are in all the commands in either 
Applesoft BASIC or 65816 machine language. 

But don't let this large number of available commands discourage you. 
Fortunately, the important one, QDStartUp (QuickDraw StartUp) sets all of the 
defaults for you, and it only takes a few lines of actual code to draw lines and 
rectangles, to set colors, or to do the other things you're likely to want to use. 
The hundreds of other commands are provided to create an immense flexibility 
for more exotic applications. For example, suppose you want to create a graph
ics image in memory that is larger than the screen-like a blueprint for a build
ing-and you have QuickDraw create the entire image within the computer. 
Using some of those more advanced commands, it is possible to draw any
where in memory-not just the super hi-res display itself-and to have a 
drawing area limited only by the available memory in your computer. 

When QuickDraw is started, the default drawing area is the super hi-res 
screen. This corresponds to the part of memory in bank $El from $2000 to 
$9FFF (32K). The drawing area itself is the first 32000 bytes (200 lines X 160 
bytes per line = 32000), from $2000 to $9CFF. 

Remember that 32K is really 32,768. This leaves another 768 bytes to 
account for. The next 200 bytes are called scan line control bytes, or SCBs. 
There is one SCB for each line on the screen, and these can be used to individ
ually assign the set of 16 colors that will be used on that line, whether that line 
is in 320 or 640 mode (yes, it's possible to mix them on the same screen), and 
more. These are assigned the area from $9DOO to $9DFF. This amounts to 256 
bytes, which leaves 56 bytes unused. Apple, however, calls these reserved for 
future use. 

The next two pages of memory, $9EOO to $9FFF are used to store the 
color tables, or palettes, for the picture. Each color entry in a palette requires 
two bytes, so a complete palette of 16 colors requires 32 bytes. Two pages of 
memory provide room for up to 16 separate palettes. Each line of the screen 
display can use its SCB to select one of 16 possible palettes for that line's 
choice of colors. 

When a super hi-res picture is saved to disk, the SCBs and color tables 

370 



QuickDraw and the Event Manager 

are saved along with the picture, for a total file size of 32K (32,768 bytes). 
For the most part, this information is more for background than for actual 

use. When QuickDraw is started up, each line is set to use the default (#0) color 
table, and you won't have to explicitly set up either the SCBs or a color table. 

The call diagram for QDStartUp is shown in Figure 18-1. 

Figure 18-1. QDStartUp ($0204) 

Stack Before Call: 

Previous Contents 

DirectPageLoc 

MasterSCB 

MaxWidth 

UserID 

Stack After Call: 

Previous Contents 

Word: Address of Direct Page for QuickDraw. 

Word: SCB to use for every screen line 
(0=320; $80=640). 

Word: Image width ($0=full screen). 

Word: ID of application 

f-SP: 

f-SP: 

To start up QuickDraw, you first need to get three pages of memory in 
bank Oto use as its QuickDraw's direct page. This is done using NewHandle in 
the Memory Manager, which will be detailed in the example program coming up. 

The Master SCB entry is the value that QuickDraw will use for each of 
the 200 lines on the screen display when it starts. This is your opportunity to 
tell QuickDraw whether you want the 320 or 640 mode for the entire screen. 
Use an SCB value of $0000 for the 320 mode, $0080 for the 640 mode. 

It's possible to create drawing areas both larger and smaller than the su
per hi-res screen. The MaxWidth parameter is the width, in bytes of the image 
area. For most applications, just use zero here, for the full screen width. 

The last parameter is the UserID you got from MMStartUp; it tells 
QuickDraw who is starting it up. 

Drawing Data Structures: Pens, Lines and Rectangles 
QuickDraw supports a very advanced drawing environment: You can control 
virtually every aspect of the image being created. To support this environment, 
there are a number of specific data structures that have been created, which 
will be referenced while using QuickDraw. 

371 



Chapter 18 

The first is the idea of a drawing pen. The pen is a pixel image, much 
like the arrow image just discussed, that can be moved around on the screen, 
leaving a trail as it is moved. 

It's possible to redefine the pen to be any image you wish, as you have 
probably seen in the many Apple IIGS painting programs available. 

The pen pattern, as it's called, can also be made to draw in a variety of 
modes, such as reversing the background it draws on or painting a color or a 
pattern there. These different effects are done internally by QuickDraw using 
the Boolean AND, EOR, or ORA functions described in earlier chapters. 

The pen pattern can be set to a specific color with the command Set
SolidPenPat ($3704), in which a color value in the range $0 to $F (0 to 15) is 
passed to the routine. 

When QuickDraw is initialized, the pen is a single pixel, and the color is 
black. Moving the pen as such does not draw a line. Instead, specific drawing 
commands like LineTo, discussed shortly, create the image. 

To draw an image, another data structure is used, called a point, which is 
defined by an X and Y position. The Y coordinate comes first, and each is a 
two-byte value. Thus, the data structure for a point looks like this: 

POINT DA $0000 ; Y COORDINATE 
DA $0000 ; X COORDINATE 

This will take four bytes in memory to store. For some operations, the 
values for a point will be pushed directly on the stack. For others, a pointer to 
the POINT data structure may be put on the stack so the routine will know 
where to find the coordinates to use. 

Examples of these types of routines are MoveTo ($3A04) and LineTo 
($3C04). MoveTo repositions the current pen location to the specified coordi
nate. To use it, you simply push the values for the coordinates on the stack 
before doing the call. Figure 18-2 is the call diagram for MoveTo. 

Figure 18-2. MoveTo ($3A04) 

Stack Before Call: 

Previous Contents 

H 

V 

Word: Horizontal coordinate of point. 

Word: Vertical coordinate of point. 

~SP: 

372 



QuickDraw and the Event Manager 

Stack After Call: 

Previous Contents 

~SP: 

LineTo is similar, but it draws a line using the current pen from the cur
rent position to the point specified. The call diagram for LineTo is the same as 
that for MoveTo. 

A rectangle is defined by two points, one for the upper left comer, the 
second for the lower right comer. The data structure for a rectangle looks like 
this: 

RECT 
VI 
HI 
V2 
H2 

DA $0000 
DA $0000 
DA $0000 
DA $0000 

; RECTANGLE DEFINITION 
; VERT. POSN OF UPPER LEFT 
; HORIZ. POSN OF UPPER LEFT 
; VERT. POSN OF LOWER RIGHT 
; HORIZ. POSN OF LOWER RIGHT 

This takes a total of eight bytes. Rectangle-related objects are usually 
drawn by passing a pointer to the rectangle, rather than the values for the rec
tangle itself. We say rectangle-related, because the definition of a rectangle can 
be used as the basis for a variety of shapes. For example, an oval can be de
fined as the ellipse that fits inside the defined rectangle. A square rectangle de
fines a circle (see Figure 18-3). 

Figure 18-3. Oval Defined by a Rectangle 
....................................... ::::····;;,;" .. _ ... ______ ... _ .... =::'""'""'""'" .. ''"""""'''""'''"' 

...................................... := ..... ::: .... ~ .... ~ .... ----- .. ~ .... ~ .... ::::::-............................................ . 

In addition, a rectangle-related object can either be framed (the outline 
drawn), painted (filled in with a color or pattern), or inverted (the interior 
pixels are inverted). 

Figure 18-4 is the call diagram for FrameRect, which draws the outline 
of the rectangle using the current pen and color. 

373 



Chapter 18 

Figure 18-4. FrameRect ($5304) 

Stack Before Call: 

Previous Contents 

.. RectPtr 

Stack After Call: 

Previous Contents 

Starting QuickDraw 

Long: Pointer to rectangle 

f-SP: 

f-SP: 

Program 18-1 starts up QuickDraw, draws a line and a variety of shapes on the 
screen, and even includes some printed text. 

When you run Program 18-1, the screen should clear to black, and a di
agonal red line will be drawn across the screen. You should also see four 
shapes drawn, including rectangles, an oval, and a rounded rectangle. Pressing 
any key will quit the program and return to whatever program selector started 
up the program. 

Let's look at the listing to see how everything works. Of course, as with 
the others, it begins with setting the data bank equal to our program bank, and 
there is also the emergency recovery code set up with the Control-Y vector. 
That way, if any error should occur while you're testing the program, you can 
press Control-Y to get back to the assembler. 

There is one thing that will be different here: If the program crashes 
while the super hi-res display is on, you won't be able to see the BRK message, 
since that is presented on the text screen. The only indication will be the beep 
heard when the BRK is encountered. If your program does stop, type 

El/C029: 21 

and press Return. This will clear the super hi-res display bit (bit 7) in $C029 
and will return the display to the text mode. You should be able to see the reg
ister dump from the BRK instruction at that point. Make a note of the address 
printed for the BRK and of the contents of the Accumulator. The address will 
tell you which tool call was not executed properly, and the Accumulator will 
hold the error code. Although certain error codes are provided in this book, 
you should get the official Apple Toolbox Reference by Addison-Wesley, or 

374 



QuickDraw and the Event Manager 

COMPUTE!'s Mastering the Apple Iles Toolbox by Gookin and Davis, for com
plete information on the tool calls and associated error messages. 

After noting the necessary information, press Control-Y to go back to 
your program selector. 

After starting up the Tool Locator and Memory Manager, a sub-ID is 
produced by setting the Aux field (found in the ID the Memory Manager gives 
us) to 1 (lines 37-39). This will be used when obtaining the direct-page mem
ory block that QuickDraw requires. 

The GETDP (Get Direct Page) section uses NewHandle to obtain a $300-
byte block in bank 0. The attribute byte $C001 marks this as immovable and 
locked, and in a fixed bank (bank 0), which is necessary for a direct-page block. 

NewHandle will return the handle to this block, but will not return its 
address. Remember that a handle is a pointer to a pointer, and that the actual 
address of the block is now part of the handle itself. Normally, you would not 
use an absolute address for a memory block, but since we know this block has 
been designated as immovable, its address will be constant until it's de-allocated. 

The process of examining a handle is called dereferencing. It is done by 
putting the address of the handle in our own direct-page pointer, and then 
using indirect addressing to look at the first four bytes of the handle. The first 
four bytes are always the actual address of the memory owned by that handle. 

Line 50 pulls the handle off the stack for the direct page gotten from 
NewHandle, and stores that handle's address in byte $00 of our own direct 
page. Line 51 then uses indirect addressing long to look into the first four bytes 
of the handle. The two-byte value loaded into the Accumulator at that point 
will be the address in bank O of the new direct page. Because we know this is 
in bank 0, there's no need to look at the third and fourth bytes for the high 
word of the address, although if you were dereferencing just any old handle, 
this would be required. 

In the full, nonmacro version, here are the instructions to dereference a 
handle: 

DEREF LOA 
STA 
LOA 
STA 
LOA 
STA 
LOY 
LOA 
STA 

HNDL 
PTR 
HNDL+2 
PTR+2 
[PTR] 
ADDR 
#$02 
[PTR],Y 
ADDR+2 

; GET LOW WORD OF HANDLE 
; STORE IN OUR OWN DP POINTER 
; GET HIGH WORD OF HANDLE 
; STORE IN DP HIGH WORD. 
; GET LOW WORD OF ADDRESS. 
; SOME STORAGE LOCATION 
; PREPARE FOR NEXT INSTR. 
; GET HIGH WORD OF ADDRESS 
; SAVE THAT TOO. 

375 



Chapter 18 

Program 18-1 looks much simpler because a macro, PullLong, sets up our 
own direct-page pointer, and we only need the LOA [PTR] to retrieve the low 
word of the address. 

Once a direct-page block for QuickDraw has been obtained, we can start 
things going. The label QD (line 54) begins the section that starts up 
QuickDraw. Referring back to the call diagram for QuickDraw, you can see 
we're starting up in the 320-pixel mode. Since the direct-page address is still in 
the Accumulator from the LDA [$00] instruction on line 47, this can be pushed 
on the stack as the first line of QD. 

When QuickDraw starts, the pen pattern color is black. SETCOLOR 
(lines 60-61 sets the pen pattern to the solid color red (color #7). You can use 
other values here for other colors. The standard color values for the 320 mode 
are as follows: 

Color Entry 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Color 
Black 
Dark Gray 
Brown 
Purple 
Blue 
Dark Green 
Orange 
Red 
Beige 
Yellow 
Green 
Light Blue 

Master Value 
$0000 
$0777 
$0841 
$072C 
$000F 
$0080 
$0F70 
$0000 
$0FA9 
$0FFO 
$00EO 
$04DF 

Lilac 
Periwinkle Blue 
Light Gray 
White 

$0DAF 
$078F 
$DCCC 
$0FFF 

The column titled Color Value shows the two-byte value actually stored 
in color table (palette) #0 when QuickDraw starts up. If you look at just a se
lect few of the colors, you'll see how the final color is determined from the 
number value: 

4 Blue 
7 Red 

10 Green 

$000F 
$0000 
$00EO 

Starting with the color values for Blue, Red and Green, you can see that 
each of these color values has a single hexidecimal digit in just one field. In 
fact, that is the meaning of each field in the color value. The pattern is: 

$0RGB 

376 



QuickDraw and the Event Manager 

The color video monitor for the Apple lies is called an RGB Monitor for 
a reason: It refers to the fact that, like your color TV, the image is formed by il
luminating red, green and blue dots on the screen. Other colors are created by 
mixing these three colors. The value in the range of $0 to $F for each position 
in the color value tells the video hardware how brightly to illuminate the par
ticular color dot. 

For each color value, the first nibble (4 bits) is unused, and so is equal to 
$0. Black is designated by setting all three color elements to $0; white is made 
by turning all three up to the maximum value. 

0 Black $0000 
15 White $0FFF 

Shades of gray (14 in all, plus black and white) are made by varying the 
matching strengths of each color. 

1 Dark Gray $0777 
14 Light Gray $0CCC 

A particular color can be created by adjusting the strength of one color 
element: 

5 Dark Green $0080 

by mixing two together: 

9 Yellow $0FFO 

or by mixing all three together in varying proportions: 

13 Periwinkle Blue $078F 

Although this program doesn't create new colors, you can add the tool 
call SetColorEntry ($1004) to the program to create new colors if you wish. 
The call diagram for SetColorEntry is shown is Figure 18-5. 

Figure 18-5. SetColorEntry ($1004) 

Stack Before Call: 

Previous Contents 

TableNumber 

Entry Number 

NewColorValue 

Word: Table # ($0 to $F) default = #0. 

Word: Entry you want to change ($0 to $F). 

Word: New Color Value. 

+-SP: 

377 



Chapter 18 

Stack After Call: 

Previous Contents 

+-SP: 

Once the color has been set, the MoveTo and LineTo commands are 
used to draw a line from one comer of the screen to another (lines 63-70). 

Lines 71-75 then change the pen color to blue (#4), and draw a rectan
gle form using FrameRect ($5304). Notice that the address to RECT, defined on 
lines 179-183, is pushed on the stack as the input for FrameRect. 

The process is then repeated for a filled-in rectangle (PaintRect = 
$5404), and oval (PaintOval = $5904), and a rounded rectangle (PaintRRect = 
$5E04). For the rounded rectangle, the width and height of another imaginary 
rectangle are passed. The final rounded rectangle is produced by replacing 
square corners of the rectangle with the corner of an oval specified by the 
height and width parameters. 

As each new geometric figure is drawn, the subroutine SHIFT (lines 
127-140) changes the horizontal and vertical starting coordinates of where the 
drawing begins. This is rewritten directly into the definition of the rectangle 
used for each of the figures. 

Printing Text in Super Hi Res 
There are also a number of routines in QuickDraw specifically for drawing text 
in different styles, called fonts, on the super hi-res screen. Although additional 
fonts can be loaded from disk, QuickDraw starts up with a default font, whose 
definition is stored in ROM, as the standard font. When text is drawn, the 
routines use both a color for the text itself, and for the background behind the 
text. At startup, this defaults to a black foreground for the text and a white 
background. 

Since our screen is black, the first thing to do is to set the foreground 
and background colors for the text printing routines . Lines 103-108 do this 

378 



QuickDraw and the Event Manager 

with SetBackColor ($A204) and SetForeColor ($A004). Printing the text is as 
simple as passing a pointer to the string, which is presumed to end in a zero, to 
the routine DrawCString ($A604). The MoveTo command is used to position 
the pen at the appropriate spot before drawing the text. 

In Program 18-1, the string is defined on line 172. Notice that the high 
bit is clear for the string (Merlin uses single quotation marks to designate high 
bit clear; APW uses the directive MSB OFF). The high bit must be clear for the 
QuickDraw text printing routines to work properly. 

If you want to print a ProDOS-type string with a leading length byte, an 
alternate routine, DrawString ($A504), can be used; the only difference is that 
DrawString expects a leading length byte in the string to be printed. 

RDKEY then just waits for a keypress before doing the ProDOS quit 
command. As you can see, QuickDraw really is quite simple to use. 

You'll hear a lot about clipping windows, something called the 
BoundsRect, and other things, but these are for the most part managed automat
ically by the system, and are of only minor concern if you're actually doing 
windows that can be scrolled and dragged around the screen, as we'll see in 
the next chapter. However, even in the windowed environment, it's still very 
easy to create just about any image you want. 

Although there are over 200 different tool calls in QuickDraw, Table 18-1 
lists a few to give you an idea of what's available. 

Program 18-1. Simple Quickdraw Demo 

008000: 48 
008001: AB 

=ElOOA8 

=COOO 
=COIO 

l 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

•••••••••••••••••••••••••••••••••••••••••••••• .. SIMPLE QUICKDRAW DEMO .. 
* MERLIN ASSEMBLER * 
•••••••••••••••••••••••••••••••••••••••••••••• 

MX %00 ; TELL MERLIN WE'RE IN 16 BITS 
REL 
DSK QD.DEMO.L 

LST OFF ; DON'T PRINT MACRO LISTING 
USE UTIL.MACS ; USE MACRO LIBRARY 
LST ON ; LISTING BACK "ON" 
EXP OFF ; DON'T EXPAND MACROS 

PRODOS EQU $EIOOA8 ; STD. PRODOS 16 ENTRY 

KYBD EQU $00COOO 
STROBE EQU $00C010 

•••••••••••••••••••••••••••••••••••••••••••••• 

STARTUP PHK 
PLB ; DATA BANK = PROG. BANK 

379 



Chapter 18 

008002: E2 30 24 SETRES SEP $30 ; 8-BIT MODE 
008004: A9 SC 25 LOA #$SC ; JML (JMP WNG) 
008006: SF FS 03 00 26 STAL $3F8 ; CTRLY VECTOR 
00800A: C2 30 27 REP $30 ; 16-BIT MODE 
OOSOOC: A9 ED 8 I 28 LOA #RESUME 
OOSOOF: SF F9 03 00 29 STAL $3F9 ; $3F9,3FA 
008013: A9 00 00 30 LOA #.RESUME 
008016: SF FB 03 00 31 STAL $3FB ; $3FB,3FC 

32 
33 TL ToolCall $0201 ; TLStartUp 
34 
35 MM PushWord #$0000 ; SPACE FOR RESULT 
36 ToolCall $0202 ; MMStartUp 
37 PuJIWord ID ; PULL ID OFF STACK & SAVE 

008037: 09 00 01 38 ORA #$0IOO ; OUR SUB-ID 
00803A: SD 10 82 39 STA ID2 

40 
41 GETDP PushLong #$0000 ; SPACE FOR RESULT 
42 PushLong #$300 ; AMT OF MEMORY NEEDED 
43 ; 3 PAGES FOR QUICKDRAW 
44 PushWord ID2 ; ID FOR OUR APPLICATION 
45 PushWord #$COOi ; TYPE: WCKED, FIXED 
46 PushLong #$0000 ; BANK = $00, NO SPECIFIC ADDR. 
47 ToolCall $0902 ; NewHandle 
48 ; OBTAIN A MEMORY BWCK IN BANK 0 
49 
50 PuJILong $00 ; GET HANDLE & STORE IN OUR DP 

008067: A7 00 51 LOA ($00] ; WNG INDIRECT WAD 
52 ; GETS NEW DP ADDRESS FOR TOOLS 
53 

008069: 48 54 QD PHA ; PUSH DP ADDRESS ON STACK 
55 PushWord #$0000 ; MASTER SCB = DEFAULT (320) 
56 PushWord #$0000 ; MAX SCREEN SIZE 
57 PushWord ID ; OUR APPLICATION'S ID 
58 ToolCall $0204 ; QDStartUp 
59 
60 SETCOWR PushWord #$7 ; COWR = 'RED' 
61 ToolCall $3704 ; SetSolidPenPat 
62 
63 BEGINLN PushWord #$0000 ; HORIZ (X) = $00 
64 PushWord #$0000 ; VERT (Y) = $00 
65 ToolCall $3A04 ; MoveTo 
66 
67 DRAWLN PushWord #319 ; X = 320TH PIXEL 
68 PushWord #199 ; Y = 200TH PIXEL 
69 ToolCall $3C04 ; LineTo 
70 
71 COWRI PushWord #$4 ; COWR = 'BLUE' 
72 ToolCall $3704 ; SetSolidPenPat 
73 
74 DRAWRCT PushLong #RECT ; ADDR. OF RECTANGLE DEFINITION 
75 ToolCall $5304 ; FrameRect 
76 

380 



QuickDraw and the Event Manager 

OOSOCE: 20 88 81 77 NEXTl JSR SHIFf 
78 
79 COWR2 PushWord #$A ; COWR = 10 = 'GREEN' 
80 ToolCall $3704 ; SetSolidPenPat 
81 
82 PAINTRCT PushLong #RECT ; ADDR. OF RECTANGLE DEFINITION 
83 ToolCall $5404 ; PaintRect 
84 

OOSOFO: 20 88 81 85 NEXT2 JSR SHIFf 
86 
87 COWR3 Push\\urd #$6 ; COWR = 'ORANGE' 
88 ToolCall $3704 ; SetSolidPenPat 
89 
90 PAINTOV PushLong #RECT ; ADDR. OF RECTANGLE DEFINITION 
91 ToolCall $5904 ; PaintOval 
92 

008112: 20 88 81 93 NEXT3 JSR SHIFf 
94 
95 COWR4 PushWord #$3 ; COWR = 'PURPLE' 
96 ToolCall $3704 ; SetSolidPenPat 
97 
98 ROUNDRCT PushLong #RECT ; ADDR. OF RECTANGLE DEFINITION 
99 Push\\urd #15 ; WIDTH OF ROUNDING OVAL 
100 PushWord #15 ; HEIGTH OF ROUNDING OVAL 
101 ToolCall $5E04 ; PaintRRect 
102 
103 TITLE PushWord #$0000 ; COWR = BLACK (0) 
104 ToolCall $A204 ; SetBackColor 
105 ; BACKGROUND FOR TEXT DRAWING 
106 
107 T2 PushWord #$000F ; COWR = WHITE (15) 
108 ToolCall $A004 ; SetForeColor 
109 ; SET TEXT COWR = WHITE 
110 
111 T3 PushWord #20 ; X = 20 
112 PushWord #199 ; Y = 199 
113 ToolCall $3A04 ; MoveTo 
114 
115 T4 PushLong #MSSG ; HIGH WORD OF TITLE DATA 
116 ToolCall $A604 ; DrawCString 
117 

008178: AF 00 co 00 118 RDKEY LDAL KYBD ; CHECK KEYBOARD 
00817C: 29 FF 00 119 AND #$00FF ; CLEAR HIGH WORD 
00817F: C9 80 00 120 CMP #$0080 ; KEYPRESS? 
008182: 90 F4 =8178 121 BCC RDKEY ; NOPE 
008184: SF 10 co 00 122 STAL STROBE ; CLEAR KEYBOARD 
008188: 4C Bl 81 123 JMP SHUTDOWN 

124 
125 
126 

00818B: 18 127 SHIFf CLC ; SHIFf RECTANGLE 
00818C: AD 12 82 128 LDA VI ; VI = VI + 30, ETC. 

381 



Chapter 18 

00818F: 69 IE 00 129 ADC #30 
008192: SD 12 82 130 STA VI 
008195: AD 14 82 131 LOA HI ; CARRY NEVER SET, SO 
008198: 69 IE 00 132 ADC #30 ; NO NEED TO RE-CLR 
008198: SD 14 82 133 STA HI 
00819E: AD 16 82 134 LOA V2 
0081Al: 69 IE 00 135 ADC #30 
0081A4: SD 16 82 136 STA V2 
0081A7: AD 18 82 137 LOA H2 
0081AA: 69 IE 00 138 ADC #30 
0081AD: SD 18 82 139 STA H2 ; ENTIRE BOX SHIFTED 
008180: 60 140 RTS 

141 
142 
143 
144 SHUTDOWN ToolCall $0304 ; QDShutDown 
145 
146 PushWord ID2 ; GET THE SUB-ID 
147 ToolCall $1 I 02 ; DisposeAII 
148 
149 TooICall $0302 ; MMShutDown 
150 
151 ToolCall $0301 ; TLShutDown 
152 

0081El: 22 AS 00 El 153 QUIT JSL PRODOS ; DO QUIT CALL 
0081E5: 29 00 154 DA $29 ; QUIT CALL COMMAND VALUE 
0081E7: F6 81 00 00 155 ADRL QUITBLK ; ADDRESS OF PARM TABLE 
0081EB: 00 00 156 BRK $00 ; SHOULD NEVER GET HERE .. . 

157 
158 ********************************************** 
159 

0081ED: 48 160 RESUME PHK 
0081EE: AB 161 PLB ; SET OUR DATA BANK 
0081EF: 18 162 CLC 
0081FO: FB 163 XCE ; SET NATIVE MODE 
0081Fl: C2 30 164 REP $30 ; 16-BIT MODE 
0081F3: 4C Bl 81 165 JMP SHUTDOWN ; TRY TO SHUTDOWN 

166 
167 •••••••••••••••••••••••••••••••••••••••••••••• 
168 

0081F6: 00 00 00 00 169 QUITBLK ADRL $0000 ; NO PATHNMAME 
0081FA: 00 00 170 DA $0000 ; STD. QUIT 

171 
0081FC: 51 75 69 63 172 MSSG ASC 'QuickDraw Demo #l',00 
008200: 68 44 72 61 
008204: 77 20 44 65 
008208: 6D 6F 20 23 
00820C: 31 00 

173 
174 • IMPORTANT! TEXT FOR QUICKDRAW MUST HAVE HIGH BIT CLEAR! 
175 

382 



QuickDraw and the Event Manager 

00820E: 00 00 176 ID DA $0000 ; OUR APPLICATION'S ID # 
008210: 00 00 177 ID2 DA $0000 ; OUR SUB-ID 

178 
179 RECT ; RECTANGLE DATA STRUCTURE 

008212: lE 00 180 Vl DA 30 ; UPPER LEFT VERTICAL POSN 
008214: 14 00 181 HI DA 20 ; UPPER LEFT HORIZ. POSN 
008216: 32 00 182 V2 DA 50 ; WWER RIGHT VERTICAL POSN 
008218: 46 00 183 H2 DA 70 ; WWER RIGHT HORIZ. POSN 

184 
00821A: 81 185 CHKSUM CHK ; CHECKSUM FOR VERIFICATION 

--End Merlin-16 assembly, 539 bytes, errors: 0 

Table 18-1. QuickDraw Toolset Calls 

Command Command 
Value Name 
$0204 QDStartUp 

$0304 QDShutDown 

$0E04 SetColorTable 
$1004 SetColorEntry 
$1104 GetColorEntry 
$1504 ClearScreen 
$1804 OpenPort 
$1A04 ClosePort 
$1804 SetPort 
$1C04 GetPort 
$1D04 SetPortLoc 

$1E04 GetPortLoc 

$1F04 SetPortRect 
$2004 GetPortRect 

$2304 SetOrigin 

$2704 HidePen 

$2804 ShowPen 
$2904 GetPen 

$2C04 SetPenSize 
$2E04 SetPenMode 
$3004 SetPenPat 
$3704 SetSolidPenPat 

Description 
Starts up QuickDraw, clears screen, initializes Gra£Port 
to defaults. 
Frees any memory used by QuickDraw, returns screen to 
text mode. 
Rewrites a given color table with contents of another. 
Sets value of a color in a specified table. 
Returns color value for a given color in a given table. 
Clears entire screen to a given color. 
Initializes a new part of memory as a Gra£Port. 
De-allocates a Gra£Port. 
Make specified Gra£Port the current port. 
Returns pointer to current Gra£Port. 
Set current Gra£Port's information structure to a speci
fied table. 
Write current Gra£Port information structure into a given 
table. 
Set current port rectangle to specified rectangle. 
Writes current port's rectangle values into a specified 
table. 
Adjusts PortRect and BoundsRect so that the origin of 
the current PortRect is equal to a given value (usually 
0,0). 
Sets pen to no-draw. Does not refer to whether cursor is 
visible or not. 
Sets pen to drawing mode. 
Returns pointer to location where current pen coordi
nates are stored. 
Sets pen to given size. 
Set drawing mode of pen (ORA, EOR, AND). 
Set pen to a given pattern. 
Set pen to solid color. 

383 



Chapter 18 

Command Command 
Value Name 
$3404 SetBackPat 
$3804 SetSolidBackPat 
$3A04 MoveTo 
$3B04 Move 
$3C04 LineTo 
$3004 Line 

$5304 FrameRect 
$5404 PaintRect 

$5504 EraseRect 

$5604 InvertRect 
$5704 FillRect 
$5804 FrameOval 
$5904 PaintOval 
$5004 FrameRRect 
$5E04 PaintRRect 
$BC04 FramePoly 
$BD04 PaintPoly 
$C604 SetClipHandle 
$C704 GetClipHandle 
$7904 FrameRgn 
$7A04 PaintRgn 

$7E04 ScrollRect 
$7F04 PaintPixels 

$0604 PPToPort 

$9404 SetFont 
$9C04 SetTextMode 
$A004 SetForeColor 
$A204 SetBackColor 
$9E04 SetSpaceExtra 

$0404 SetCharExtra 
$A404 DrawChar 
$A504 DrawString 
$A604 DrawCString 
$A804 Char Width 
$A904 String Width 
$AA04 CStringWidth 

Description 
Set background pattern. 
Set background to a color. 
Move pen to given position. 
Move pen a distance relative to current position. 
Draw a line from current pen position to specified point. 
Draw line from current pen position to a new relative 
position. 
Draw boundary of a rectangle. 
Paint interior of rectangle with current pen color or 
pattern. 
Paint interior of a rectangle with background color or 
pattern. 
Inverts pixels in a given rectangle. 
Fills interior of rectangle with specified pattern. 
Draw boundary of oval. 
Paint interior of oval. 
Draw boundary of rounded rectangle. 
Paint interior of rounded rectangle. 
Draw boundary of polygon. 
Paint interior of polygon. 
Set ClipRgn in GrafPort to region identified by a handle. 
Get handle that identifies ClipRgn for a GrafPort. 
Draws boundary of a region. 
Paints interior of a region with current pen color or 
pattern . 
Shift pixels in a rectangle in any direction. 
Transfers pixels from one region to another, all specified 
with a parameter block. 
Transfer pixels from source image to current port, clip
ping as necessary. 
Set current font. 
Set text drawing mode (ORA, EOR, AND). 
Set color of text drawing. 
Set color of text background. 
Set size of space character in pixels. Used to fill-justify 
text. 
Set size of space between all characters. 
Draw a character. 
Draw a string whose first byte is a length-byte. 
Draw a string that terminates in a zero. 
Return width in pixels of a character in the current font. 
Return width in pixels of a string in the current font. 
Return width in pixels of a string ending with a zero, in 
the current font. 

384 



Command Command 
Value Name 

$4004 SectRect 

$4E04 UnionRect 

$4F04 PtlnRect 

$8404 LocalToGlobal 

$8504 GlobalToLocal 
$8E04 SetCursor 
$9004 HideCursor 
$9104 ShowCursor 
$9204 ObscureCursor 
$CA04 InitCursor 
$8604 Random 

$8804 GetPixel 

QuickDraw and the Event Manager 

Description 
Calculates intersection of two rectangles and places re
sult in specified rectangle data structure. (And you 
thought you'd never have to remember difference be
tween union and intersection.) 
Calculates union of two rectangles and places result in 
specified rectangle data structure. (Union is sum of two 
rectangles, the intersection is only the common area 
shared, which may be zero.) 
Detects whether a point is in rectangle. Saves you all 
those greater-than and less-than tests. 
Converts a point from the local coordinates based on the 
BoundsRect to the global coordinates in which 0,0 is the 
upper left comer of the pixel image. 
Converts a point from global coordinates to local. 
Set cursor image to a specified pixel image. 
Make cursor invisible. 
Make cursor visible. 
Hide cursor until next mouse movement. 
Reinitializes cursor to visible arrow. 
Returns random number so you can write those demos 
with lines shooting everywhere. 
Returns value of pixel at specified point. (For all you 
who still miss the SCRN function from lo-res graphics 
that was never included in Applesoft BASIC hi-res.) 

Table 18-2. Possible QuickDraw Errors 

$0401 Alreadyinitialized QuickDraw has already been started up. QD can't be 

$0410 ScreenReserved 

$0411 BadRect 
$0450 BadTable 

started if it's already active. 
Memory Mgr. says screen area ($El/2000-9FFF) is al
ready in use. 
Invalid rectangle definition. 
You got that table by the kitchen again. No, not really. 
This means you specified a color table number not in 
the range of $0-$F. 

$0451 BadColorNum You must use a color number in the range $0-$F. 
$0420 NotEqualChunkiness Returned when transferring pixels from regions with dif

ferent display modes (320 vs. 640). 

The Event Manager 
So far, our programs have just looked at $COOO whenever they needed a 
keypress, but this really isn't very appropriate for an application program. What 
we need is a way to monitor all the possible input from the user, and to easily 

385 



Chapter 18 

respond to keypresses, mouse clicks, special option key modifiers, and other 
input. 

In the Apple Iles, this is handled by the Event Manager, who's job is to 
provide the application program with an orderly presentation of events as they 
occur. An event is most easily defined as a transition from one state to another. 
In practice, an event is usually user-initiated and consists of a key or mouse 
button changing from up to down, or some other user input. In addition, the 
Event Manager gives you an automatic buffering of events, so that if your pro
gram happens to be busy doing something when a key is pressed, or a mouse 
clicked, the event won't be lost. It maintains this list of stored events in what is 
called the Event Queue. 

Events are delivered by the Event Manager into a data structure called 
the Event Record, which you define in your program. By looking at the event 
record, you can determine which of a number of possible events have occurred. 
The event record itself looks like this: 

EVENTREC 
EVENT 
TYPE 
TIME 
YPOS 
XPOS 
MOD 

DA 
ADRL 
ADRL 
DA 
DA 
DA 

$0000 
$0000 
$0000 
$0000 
$0000 
$0000 

; EVENT RECORD DATA STRUCTURE 
; EVENT CODE 
; TYPE OF EVENT ( 4 BYTES) 
; TIME ( 4 BYTES) 
; Y POSN OF MOUSE 
; X POSN OF MOUSE 
; EVENT MODIFIER 

When an event occurs, a number code for the event is stored in EVENT, 
along with the position of the mouse at that instant, a time in tics (a tic is 1/60 
second since the computer was started up), and additional information in the 
form of the TYPE and MOD bytes. Table 18-3 lists the possible event code. 

When an event is detected, the application can then look at the TYPE 
field to obtain additional information. For example, if it is a key-down or auto
key event, the TYPE field will contain the ASCII value for the key pressed in 
the first byte of the TYPE field. In the case of an activate or update event, 
TYPE (also called MSSG) contains a handle for the for the window that needs 
to be updated or activated. 

The modifier field contains additional information about the event. For 
keypress events, this is whether additional keys such as the shift, control, or 
option keys were also pressed. You can also determine whether the Caps Lock 
key is up or down and whether a number key is coming from the keypad or 
the main keyboard. 

386 



Table 18-3. Possible Event codes 

Event 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Description 
Null event 
Mouse-down event 
Mouse-up event 
Key-down event 
Undefined 
Auto-key event 
Update event (for windows) 
Undefined 
Activate event (for windows) 
Switch event 
Desk accessory event 
Device driver event 
Application-defined event 
Application-defined event 
Application-defined event 
Application-defined event 

QuickDraw and the Event Manager 

Each modifier is indicated by setting a bit in the modifier word (2 bytes) 
as shown in Table 18-4. 

Table 18-4. Event Code Bit Modifiers 

Bit 
0 
1 
2-5 
6 
7 
8 
9 

10 
11 
12 
13 
14-15 

Description 
Active Flag (for windows) 
Change Flag (for windows) 
Unused 
Buttonl up 
ButtonO up 
Apple (command) key 
Shift key 
Caps Lock key 
Option key 
Control key 
KeyPad 
Unused 

Events are usually detected in the application by calling GetNextEvent 
($0A06). When calling this, you can (and in fact must) include a mask, with ap
propriate bits set for what types of events you want to accept at that moment. 
The bits in the mask are set as shown in Table 18-5. 

387 



Chapter 18 

Table 18-5. Event Mask 

Bit 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12-15 

Description 
Unused 
Mouse down 
Mouse up 
Key down 
Unused 
Auto-key 
Update (for windows) 
Unused 
Activate (for windows) 
Switch 
Desk accessory 
Device driver 
Application defined 

For example, if you only want to deal with key-down events, you can 
set a mask of $0008 (%0000000000001000). If you want to include mouse 
events and keys being held down continuously (auto-key events), you can use 
a mask of $002E (%0000000000101 l 10). 

The other nice thing about the event mask is that you can retrieve cer
tain events even though they may have occurred after others. For example, 
suppose there were a key-down and a mouse-down event waiting in the Event 
Manager for you. If your mask requested only mouse-down events, you would 
get the mouse-down event, and the key-down event would remain in the 
queue until you requested it. 

In practice, because you can also just ignore events once the code has 
been passed to you, an event mask of $FFFF works just fine. The event queue 
(event buffer) holds a finite number of events, and if you don't pull them off, 
sooner or later the queue could fill up with the events you haven't dealt with. 

The call diagram for GetNext Event is shown in Figure 18-6. 

Figure 18-6. GetNext Event ($0A06) 

Stack Before Call: 

Previous Contents 

Space for Result 

EventMask 

EventPointer 

Word: Allow space for result. 

Word: Which types of events are of interest. 

Long: Pointer to the event record data structure. 

~SP: 

388 



Stack after Call: 

Previous Contents 

EventFlag 

Event-Driven Programs 

QuickDraw and the Event Manager 

Word: True (>0) if event occurs. Zero if not. 
+-SP: 

Part of the underlying idea of the Event Manager and other Apple IIGS tools is 
the idea of an event-driven program. What this means is that the program is 
designed around a central loop that continually looks for an event, namely a 
user input. It then executes a routine related to that event, and returns as soon 
as possible back to the main loop. This is in contrast to a modal program where 
the user's command puts the program into a certain mode. In that mode, the 
commands may be completely different than at the main level, and commands 
available at the main level may no longer be available. 

In an event-driven program, the goal is to create an environment where 
there are no modes, and the user is free to execute any logical command at 
any time. 

As an example of a modeless , event-driven program, albeit a small one, 
here is a program that continually checks for an event and prints a message, 
depending on the event. 

Program 18-2 begins very much like the QuickDraw demo program, and 
in fact, you may wish to use a copy of that source listing as a starting point for 
this program to cut down on the number of lines you'll have to type in. As 
usual, a checksum is provided at the end of the listing to assist you in verifying 
that your entered listing is identical to the printed source. 

The first difference in this program is that the GETDP routine now ob
tains four pages ($400) of direct-page space. This is because the Event Manager, 
like QuickDraw, requires a block of direct-page memory for itself. The easiest 
way to handle this is to just tack its space onto the end of that assigned to 
QuickDraw. 

In this particular program, the Event Manager is started up before 
QuickDraw, but it really doesn't matter which one is started first. The Event 
Manager is started up with the call EMStartUp, whose input parameters in
clude the address of the direct page it is to use, the size of the event queue
how many events it will buffer-and the minimum and maximum clamping 
values for the mouse . In addition, the Event Manager requires a UserID for the 
application starting it up. Figure 18-7 is the call diagram for EMStartUp. 

389 



Chapter 18 

Figure 18-7. EMStartUp ($0206) 

Stack Before Call: 

Previous Contents 

DirectPageAddr 

QueueSize 

XMinClamp 

XMaxClamp 

YMinClamp 

YMaxClamp 

UserID 

Stack After Call: 

Previous Contents 

A Closer Look 

Word: Starting address in bank O for work area. 
Word: Maximum number of events in queue. 

(O=default 20). 
Word: Minimum mouse X value. 

Word: Maximum mouse X value. 

Word: Minimum mouse Y value. 

Word: Maximum mouse Y value. 

Word: ID Event Mgr. will use to get memory. 

~SP: 

~SP: 

Lines 64-71 start up the Event Manager with the default values, and clamping 
set to 0-320 for X, and 0-200 for Y, corresponding to the size of the super hi
res display screen. As before, the sub-ID for the program is used so that the 
memory may be disposed of during the tool shutdown phase of the program. 

QuickDraw is started up in the same way as in the QuickDraw demo 
program, but this time the messages on the screen will be printed a little differ
ently. Because there are six different messages printed on the screen in various 
places, this program includes a generalized PRINT and CR (for Carriage Re
turn) routine for printing text. Text is printed by doing a JSR PRINT, and fol
lowing the JSR PRINT with the string you want printed, which should include 
a length byte at the beginning (use the STR pseudo-op). 

The PRINT routine itself is a variation on Program 11-1, the Stack Indi
rect Indexed sample program in Chapter 11. The routine uses the stack indirect 
indexed addressing mode in the instruction LOA 1,5 to load the return address 
from the JSR to the print routine. This value will be one byte less than the be
ginning of the string data, whose first byte is the length of the string to print. 

The PRINT routine then saves this address in a pointer (MSSGPTR) that 
will be used to set up the DrawString command. 

390 



QuickDraw and the Event Manager 

Before doing that, however, it adjusts the return address on the stack to 
resume program execution immediately after the string data following the JSR 
PRINT that called it. 

After printing a string, it then uses the QuickDraw routine StringWidth, 
which returns the width, in pixels of the string. This is used to advance CH to 
the right so that any successive PRINT calls will continue on the same line. 

The PRINT routine is first called on lines 97-104, where the message at 
the bottom of the screen is printed. The routine CR simple moves the print po
sition down 10 pixels, and returns CH to zero, which is equivalent to printing a 
carriage return in a text-based program. 

That was just the setup. The working part of the program is the main 
loop on lines 112 to 128. Starting at MAIN, a call is done to GetNextEvent, 
with the mask of $FFFF to allow all events. Each time through the loop, the 
subroutine MOUSE is called to continually print the coordinates of the cursor 
as the mouse is moved around. 

MOUSE (lines 179-207) uses an interesting Toolbox routine, namely 
Int2Dec from the Integer Math tool set, which converts a number value into a 
string. Int2Dec converts a two-byte value into an ASCII string in decimal. 
Later, we'll use another Integer Math tool, Int2Hex, which creates an ASCII 
string in hexadecimal notation. The Integer Math tool set does not need to be 
specifically started up or shut down, so these calls are omitted from the program. 

Int2Dec requires that the address of the buffer into which the string 
characters will be written be provided. In this case, the buffer area is part of the 
messages about to be printed on lines 199-205. 

For error-trapping purposes, Int2Dec also requires that the length of the 
output string, and whether the number is a signed number (>$7FFF is a nega
tive number), be input as well. 

When entering the listing, be sure to include the extra two spaces after 
the 0000 characters. These are included to automatically erase text left on the 
screen from previous print messages as the number goes from a large value to a 
smaller one with fewer digits. If you're not sure what this does, try the pro
gram without the spaces at the end to see what I mean. 

When MOUSE was called in the main loop, the stack held the event flag 
from GetNextEvent. TEST pulls this off the stack and checks to see if an event 
has occurred. This value will be zero if no event has occurred, and the program 
will loop back to MAIN with the BEQ MAIN instruction. 

If the Accumulator is nonzero, an event has occurred, and the event code 
is loaded into the Accumulator from within the Event Record (EVRECORD). If 
it's equal to 3, it was a keydown event, and control is passes to the routine 
KEYON (for KeyDown). If any other event occurs, a JSR is done to the to the 

391 



Chapter 18 

routine that prints out the identity of the event, EVMSSG. 
KEYON loads the first word of TYPE from the Event Record to see spe

cifically if the Q key was pressed, for a quit. If not, it too passes control to 
EVMSSG. 

EVMSSG is a subroutine that prints out a description of the event that 
occurred, the value of TYPE, and the ASCII character associated with TYPE. 
After first setting, the next PRINT coordinates to 0, 50, EVMSSG prints the 
phrase Event: . For each possible event code from Oto 15, a message has been 
set up in a table of text labeled EVENTMSSG (lines 323-340). Each descriptor 
(including the length byte) is 16 bytes long. 

By multiplying the event code by 16, the offset into the message table 
can be determined. The Multiply routine from the Integer Math tool set is 
used. This routine takes as its input two words (2 bytes each) for each value to 
be multiplied, and returns a long (4-byte) result on the stack. For our values, 
the lower two bytes of the result will be sufficient to contain the offset value. 

After printing the event message, the TYP portion of the program con
verts the value of the TYPE field of the event record into a hex value, and also 
embeds the corresponding character into the string to be printed. Lines 
249-253 show a technique of splitting up a string to make labeling pieces of it 
more convenient. However, this could have been done just as easily with lines 
239 and 245 using an offset into a string defined with a simple SIR, as was 
done in the MOUSE routine. 

Be sure to look at how the main loop portion of the program continually 
processes events. In a larger program, an indirect jump table can be created to 
handle each type of event. However, virtually every Apple IIGS program should 
be designed to have a central continuous loop, as opposed to modal subsections. 

When you run this demonstration program, try pressing Open Apple
Escape to go to the Classic Desk Accessory Menu on the Apple IIGS. You'll no
tice that, when you return, the program picks up the desk accessory event. 

As an additional challenge, you might want to try expanding the pro
gram to also print out the appropriate message for the Modifier byte. As a hint 
in that direction, try constructing the modifier message table the same way as 
the event message table, but use a loop the does 16 LSRs on the Modifier byte. 
On each pass through the loop, check to see whether the carry was set or clear, 
and print the appropriate message. A starting pointer, like MSSGPTR should be 
set up to point to the beginning of the table, and 16 should be added each time 
through the loop. 

392 



QuickDraw and the Event Manager 

Program 18-2. Event Manager Demo 

008000: 48 
008001: AB 

=E100A8 

=0000 

=0004 

008002: A9 00 00 
008005: 85 06 

008007: E2 30 
008009: A9 SC 
008008: SF F8 03 00 
00800F: C2 30 
008011: A9 AE 81 
008014: 8F F9 03 00 
008018: A9 00 00 
008018: 8F FB 03 00 

00803C: 09 00 01 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

•••••••••••••••••••••••••••••••••••••••••••••• 
* EVENT MANAGER DEMO * 
* MERLIN ASSEMBLER * 
•••••••••••••••••••••••••••••••••••••••••••••• 

MX %00 ; TELL MERLIN WE'RE IN 16 BITS 
REL 
DSK EM.DEMO.L 

LST OFF ; DON'T PRINT MACRO LISTING 
USE UTIL.MACS ; USE MACRO LIBRARY 
LST ON ; LISTING BACK "ON" 
EXP OFF ; DON'T EXPAND MACROS 
TR ON ; DON'T PRINT ALL BYTES 

PRODOS EQU $E100A8 ; STD. PRODOS 16 ENTRY 

PTR EQU $00 ; OUR OWN DIRECT-PAGE PTR 
; $00,01,02,03 

MSSGPTR EQU $04 ; POINTER TO ANY MESSAGE 

•••••••••••••••••••••••••••••••••••••••••••••• 
* STARTUP THE ENVIRONMENT 
•••••••••••••••••••••••••••••••••••••••••••••• 

STARTUP PHK 
PLB 

; DON'T NEED TO START MATH TOOLS 

LDA #ASTARTUP ; GET OUR DATA BANK 
STA MSSGPTR+2 ; HIGH WORD IS OUR DATA BANK 

SETRES SEP $30 ; 8-BIT MODE 
LDA #$SC ; JML (JMP WNG) 
STAL $3F8 ; CTRLY VECTOR 
REP $30 ; 16-BIT MODE 
LDA #RESUME 
STAL $3F9 ; $3F9,3FA 
LDA #ARESUME 
STAL $3FB ; $3FB,3FC 

TL ToolCall $0201 ; TLStartUp 

MM PushWord #$0000 ; SPACE FOR RESULT 
ToolCall $0202 ; MMStartUp 
PullWord ID ; PULL ID AND SAVE 
ORA #$0100 ; SET SUB-ID 

393 



Chapter 18 

00803F: SD 17 83 50 STA ID2 
51 
52 GETDP PushLong #$0000 ; SPACE FOR RESULT 
53 PushLong #$400 ; AMT OF MEMORY NEEDED 
54 ; 3 PAGES FOR QUICKDRAW 
55 ; 1 PAGE FOR EVENT MGR. 
56 PushWord ID2 ; ID FOR OUR APPLICATION 
57 PushWord #$COOi ; TYPE: WCKED, FIXED 
58 PushLong #$0000 ; BANK= $00 
59 ToolCall $0902 ; NewHandle 
60 PullLong PTR ; GET HANDLE & DEREFERNCE 

00806C: A 7 00 61 LDA [PTR] ; WNG INDIRECT WAD 
00806E: SD 19 83 62 STA DP ; SAVE THE DP ADDRESS 

63 
008071: 48 64 EM PHA ; PUSH DP ADDRESS (IN ACC.) 

65 PushWord #$0000 ; QUEUE SIZE = DEFAULT = 20 
66 PushWord #$0000 ; MIN X CLAMP FOR MOUSE = 0 
67 PushWord #320 ; MAX X CLAMP = 320 
68 PushWord #$0000 ; MIN Y CLAMP = 0 
69 PushWord #200 ; MAX Y CLAMP = 200 
70 PushWord ID2 ; PUSH OUR SUB-ID 
71 ToolCall $0206 ; EMStartUp 
72 

008090: AD 19 83 73 QD LDA DP ; GET STARTING DP MEMORY ADDR. 
008093: 18 74 CLC ; ADD $100 FOR WHAT EM JUST USED 
008094: 69 00 01 75 ADC #$100 
008097: SD 19 83 76 STA DP ; PUT THINGS BACK 

77 
00809A: 48 78 PHA ; PUSH DP ADDRESS ON STACK 

79 PushWord #$0000 ; MASTER SCB = DEFAULT (320) 
80 PushWord #$0000 ; MAX SCREEN SIZE FOR BOUNDSRECT 
81 PushWord ID2 ; OUR SUB-ID 
82 ToolCall $0204 ; QDStartUp 
83 
84 TEXT PushWord #$0000 ; COWR = BLACK (0) 
85 Too!Call $A204 ; SetBackColor (FOR TEXT) 
86 ; (DEFAULT WAS WHITE) 
87 
88 PushWord #$000F ; COWR = WHITE (15) 
89 ToolCall $A004 ; SetForeColor (FOR TEXT) 
90 ; (DEFAULT WAS BLACK) 
91 

0080CC: A9 14 00 92 TITLE LDA #20 ; X = 20 
0080CF: SD 1B 83 93 STA CH 
0080D2: A9 BD 00 94 LDA #189 ; Y = 189 
0080D5: SD ID 83 95 STA CV 

96 
0080D8: 20 Bl 82 97 JSR PRINT 
0080DB: 15 45 76 65 98 MSSGl STR 'Event Manager Demo #l' 
0080Fl: 20 04 83 99 JSR CR ; SIMULATE A RETURN 

100 
0080F4: A9 14 00 101 LDA #20 ; X = 20 

394 



0080F7: SD 1B 83 
OOSOFA: 20 Bl 82 
OOSOFD: 1B 50 72 65 

008138: 20 BD 81 

00813E: 68 
00813F: FO E3 =8124 

008141: AD IF 83 
008144: C9 03 00 
008147: FO 06 =814F 

008149: 20 22 82 
00814C: 4C 24 81 

00814F: AD 21 83 
008152: 29 DF 00 
008155: C9 51 00 
008158: DO 03 =815D 
00815A: 4C 63 81 

00815D: 20 22 82 

008160: 4C 24 81 

QuickDraw and the Event Manager 

102 STA CH 
103 JSR PRINT 
104 MSSG2 STR 'Press keys ; use "Q" to Quit' 
105 
106 SHOWCURS TooICall $9104 ; SHOW CURSOR COMMAND 
107 
108 ********************************************** 
109 * MAIN EVENT WOP 
110 ********************************************** 
111 
112 MAIN PushWord #$0000 ; SPACE FOR RESULT 
113 PushWord #$FFFF ; MASK = USE ALL EVENTS 
114 PushLong #EVRECORD ; RECORD ADDRESS 
115 ToolCall $0A06 ; GetNextEvent 
116 ; EVENT ON STACK HERE ... 
117 
118 JSR MOUSE ; CONTINUALLY SHOW MOUSE POSN 
119 
120 TEST PLA ; GET EVENT TO WOK AT 
121 BEQ MAIN ; NOfHING HERE ... 
122 
123 :1 LDA EVENT ; GET EVENT CODE 
124 CMP #$3 ; KEYDOWN? 
125 BEQ KEYDN 
126 
127 :2 JSR EVMSSG ; PRINT EVENT MESSAGE 
128 JMP MAIN ; BACK TO THE WOP 
129 
130 ********************************************** 
131 
132 KEYDN LDA TYPE ; KEYCODE IF ANY 
133 AND #$DF ; CONVERT TO UC IF NEEDED 
134 CMP #'Q' ; ESCAPE KEY (HI BIT CLR)? 
135 BNE :1 ; NOPE 
136 JMP SHUTDOWN 
137 
138 :1 JSR EVMSSG ; PRINT THE EVENT MESSAGE 
139 
140 :2 JMP MAIN ; BACK FOR MORE 
141 
142 ********************************************** 
143 
144 SHUTDOWNTooICall $0304 ; QDShutDown 
145 
146 TooICall $0306 ; EMShutDown 
147 
148 PushWord ID2 ; SUBID 
149 TooICall $1102 ; DisposeAII 
150 
151 PushWord ID ; OUR APPLICATION'S ID 
152 ToolCall $0302 ; MMShutDown 
153 

395 



Chapter 18 

154 ToolCall $0301 ; TLShutDown 
155 
156 ********************************************** 
157 

0081A2: 22 AS 00 El 158 QUIT JSL PRODOS ; DO QUIT CALL 
0081A6: 29 00 159 DA $29 ; QUIT CALL COMMAND VALUE 
0081A8: 87 81 00 00 160 ADRL QUITBLK ; ADDRESS OF PARM TABLE 
0081AC: 00 00 161 BRK $00 ; SHOULD NEVER GET HERE ... 

162 
163 ********************************************** 
164 

0081AE: 48 165 RESUME PHK 
0081AF: AB 166 PLB ; SET OUR DATA BANK 
008180: 18 167 CLC 
000181: FB 168 XCE ; SET NATIVE MODE 
008182: C2 30 169 REP $30 ; 16-BIT MODE 
008184: 4C 63 81 170 JMP SHUTDOWN ; TRY TO SHUTDOWN 

171 
172 ********************************************** 
173 

008187: 00 00 00 00 174 QUITBLK ADRL $0000 ; NO PATHNMAME 
00818B: 00 00 175 DA $0000 ; STD. QUIT 

176 
177 
178 
179 MOUSE ; PRINT MOUSE POSITION 
180 
181 XPOSN PushWord XPOS ; GET X POSITION 
182 PushLong #XMSG+5 ; ADDR. OF BUFFER 
183 PushWord #4 ; 4 CHAR OUTPUT 
184 PushWord #$0001 ; SIGNED NUMBER FLAG 
185 ToolCall $260B ; Int2Dec 
186 ; CONVERT TO ASCII DECIMAL STR$ 
187 
188 YPOSN PushWord YPOS ; GET Y POSITION 
189 PushLong #YMSG + 5 ; ADDR. OF BUFFER 
190 PushWord #4 ; 4 CHAR OUTPUT 
191 PushWord #$0001 ; SIGNED NUMBER FLAG 
192 ToolCall $2608 ; lnt2Dec 
193 

0081F3: A9 00 00 194 LOA #0 ; X = 0 
0081F6: 80 18 83 195 STA CH 
0081F9: A9 OA 00 196 LOA #10 ; y = IO 
0081FC: 80 ID 83 197 STA CV 

198 
0081FF: 20 Bl 82 199 JSR PRINT 
008202: OA 58 20 30 200 XMSG STR 'X = 0000' 
00820D: 20 04 83 201 JSR CR 

202 
008210: 20 Bl 82 203 JSR PRINT 
008213: OA 59 20 30 204 YMSG STR 'Y = 0000' 

396 



QuickDraw and the Event Manager 

00821E: 20 04 83 205 JSR CR 
206 

008221: 60 207 RTS 
208 
209 ********************************************** 
210 * PRINT THE EVENT MESSAGE 
211 ********************************************** 
212 

008222: A9 00 00 213 EVMSSG LDA #0 ; X = 0 
008225: SD I B 83 214 STA CH 
008228: A9 32 00 215 LDA #50 ; Y = 50 
008228: SD ID 83 216 STA CV 

217 
00822E: 20 Bl 82 218 JSR PRINT 
008231: OA 45 76 65 219 EMSSG STR 'Event: ' 

220 
221 PushLong #$0000 ; SPACE FOR RESULT 
222 PushWord EVENT ; EVENT CODE 
223 PushWord #16 ; MULTIPLY BY 16 
224 Too!Call $0908 ; Multiply 
225 

008254: 18 226 CLC ; ALREADY CLEAR, BUT IT WOKS 
BETTER 

008255: 68 227 PLA ; PULL RESULT WW WORD 
008256: 69 2F 83 228 ADC #EVENTMSSG ; ADDR. OF MSSG DATA 
008259: 85 04 229 STA MSSGPTR ; STORE IT IN OUR TEMPORARY WC. 
008258: 68 230 PLA ; PULL HIGH WORD OF RESULT & 

231 ; THROW AWAY ... 
232 
233 PushLong MSSGPTR ; MSSG ADDRESS 
234 Too!Call $A604 ; DrawCString 
235 

00826D: 20 04 83 236 JSR CR 
237 
238 TYP PushWord TYPE ; GET EVENT TYPE 
239 PushLong #HEXSTR + I ; ADDR. OF BUFFER 
240 PushWord #4 ; 4 CHAR OUTPUT 
241 Too!Call $2208 ; Int2Hex 
242 

008288: E2 30 243 SEP $30 ; 8-BIT ACC. 
00828A: AD 2 I 83 244 LDA TYPE 
00828D: SD AA 82 245 STA CHAR 
008290: C2 30 246 REP $30 ; BACK TO 16 BITS 

247 
008292: 20 Bl 82 248 JSR PRINT 
008295: 17 249 TMSSG DFB TMSGEND-TMSSG-1 
008296: 54 79 70 65 250 ASC 'Type: 
0082Al: 24 30 30 30 251 HEXSTR ASC '$0000 = "' ; BUFFER FOR Int2Hex 
0082AA: 58 22 20 252 CHAR ASC 'X"' 

253 TMSGEND 

397 



Chapter 18 

0082AD: 20 04 83 254 JSR CR 
255 

008280: 60 256 RTS ; GO BACK FOR MORE ... 
257 
258 ********************************************** 
259 
260 PRINT PushWord CH ; HORIZ. CURSOR POSN 
261 PushWord CV ; VERT. CURSOR POSN 
262 ToolCall $3A04 ; MoveTo 
263 
264 ; ADDR. OF MSSG-1 ON STACK 
265 ; FROM 'JSR' INSTR. 

0082C4: A3 01 266 LOA l,S ; GET ADDR. OF MSSG-1 
0082C6: IA 267 INC ; + 1 = MSSG ADDRESS 
0082C7: 85 04 268 STA MSSGPTR ; (MSSGPTR) = MSSG ADDRESS 
0082C9: AO 00 00 269 LOY #$00 ; 1ST CHAR OF MSSG DATA (LEN) 
0082CC: 81 04 270 LOA (MSSGPTR),Y ; GET LEN OF STRING TO PRINT 
0082CE: 29 FF 00 271 AND #$00FF ; CLEAR HIGH BYTE OF ACC. 
0082Dl: 38 272 SEC ; TRICK TO ADD + 1 TO RESULT 
0082D2: 63 01 273 ADC 1,S ; ADD TO WW WORD OF RTS ADDRESS 
0082D4: 83 01 274 STA l,S ; REWRITE RTS TO AFTER MSSG TEXT 

275 
276 PushLong MSSGPTR ; ADDR. OF MSSG TEXT 
277 ToolCall $A504 ; Drawstring 
278 
279 PushWord #$0000 ; SPACE FOR RESULT 
280 PushLong MSSGPTR ; ADDR. OF MSSG 
281 ToolCall $A904 ; StringWidth 
282 

0082FB: 18 283 CLC 
0082FC: 68 284 PLA ; GET WIDTH OF STRING 
0082FD: 60 18 83 285 ADC CH ; MOVE CURSOR TO RIGHT 
008300: 80 18 83 286 STA CH 

287 
008303: 60 288 RTS ; RETURN TO CODE 'AFTER' MSSG 

TEXT 
289 
290 
291 

008304: 18 292 CR CLC 
008305: AD ID 83 293 LOA CV 
008308: 69 OA 00 294 ADC #10 ; SIMULATE A CARRIAGE RETURN 
008308: SD ID 83 295 STA CV ;Y=Y+IO 
00830E: A9 00 00 296 LOA #$00 
008311: 80 18 83 297 STA CH ; X = 0 
008314: 60 298 RTS 

299 
300 
301 

008315: 00 00 302 ID DA $0000 ; OUR APPLICATION'S ID # 
008317: 00 00 303 ID2 DA $0000 ; SUBID FOR DP 

304 

398 



008319: 00 00 

008318: 00 00 
0083 ID: 00 00 

00831F: 00 00 
008321: 00 00 
008325: 00 00 
008329: 00 00 
008328: 00 00 
00832D: 00 00 

00 00 
00 00 

00832F: 4E 75 6C 6C 
00833F: 4D 6F 75 73 
00834F: 4D 6F 75 73 
00835F: 48 65 79 20 
00836F: 55 6E 64 65 
00837F: 41 75 74 6F 
00838F: 55 70 64 61 
00839F: 55 6E 64 65 
0083AF: 41 63 74 69 
0083BF: 53 77 69 74 
0083CF: 44 65 73 68 
0083DF: 44 65 76 69 
0083EF: 55 73 65 72 
0083FF: 55 73 65 72 
00840F: 55 73 65 72 
00841F: 55 73 65 72 

00842F: 78 

305 DP 
306 
307 CH 
308 CV 
309 
310 
311 
312 EVRECORD 
313 
314 EVENT 
315 TYPE 
316 TIME 
317 YPOS 
318 XPOS 
319 MOD 
320 
321 
322 
323 EVENTMSS 
324 
325 EO 
326 El 
327 E2 
328 E3 
329 E4 
330 ES 
331 E6 
332 E7 
333 ES 
334 E9 
335 ElO 
336 El 1 
337 El2 
338 El3 
339 El4 
340 EIS 
341 

QuickDraw and the Event Manager 

DA $0000 

DA $0000 
DA $0000 

DA $0000 
ADRL $0000 
ADRL $0000 
DA $0000 
DA $0000 
DA $0000 

; TEMP STORAGE FOR THE DP VALUE 

; HORIZ. CURSOR POSITION 
; VERT. CURSOR POSITION 

; DATA BLOCK WRITTEN BY EV MGR. 

; EVENT CODE 
; TYPE OF EVENT 
; TIME SINCE STARTUP 
; Y POSITION OF MOUSE 
; X POSITION OF MOUSE 
; EVENT MODIFIER 

; TABLE OF EVENT DESCRIPTORS 

ASC 'Null Event ',00 ; EACH ENTRY = 16 CHARS! 
ASC 'Mouse Down ',00 
ASC 'Mouse Up ',00 
ASC 'Key Down ',00 
ASC 'Undefined ',00 
ASC 'Auto-Key ',00 
ASC 'Update ',00 
ASC 'Undefined ',00 
ASC 'Activate ',00 
ASC 'Switch ',00 
ASC 'Desk Acc. ',00 
ASC 'Device Driver ',00 
ASC 'Userl ',00 
ASC 'User2 ',00 
ASC 'User3 ',00 
ASC 'User4 ',00 

342 ********************************************** 
343 
344 CHKSUM CHK ; CHECKSUM FOR VERIFICATION 

--End Merlin-16 assembly, 1072 bytes, errors: 0 

399 









Chapter 19 

The Window and Menu 
Managers 

In past chapters, you've seen how to use QuickDraw and the Event Manager 
and how to use other Apple JIGS tools to make your programming easier. Of 
course, what you really want to do is to put all those neat-looking windows 
and menus on the screen. This chapter will show you how to do it. 

QuickDraw and Windows 
When you started up QuickDraw, it was already operating in a window envi
ronment. A window just means that the entire drawing region will be subdi
vided into a smaller portion for the drawing or viewing actions at that moment. 
If you imagine these subregions as rectangles, it's easy to explain that 
QuickDraw starts up with both the drawing space and the active area both set 
to the entire screen. How could it be otherwise? Just imagine that your drawing 
space was either bigger than the screen or than just one corner of it. At startup, 
the upper left corner of the screen has the coordinates 0,0; and the lower right 
corner (at least in the 320 mode) has 199, 319. 

QuickDraw doesn't have to use these coordinates, however. It can make 
the upper left or lower right corner almost any values you wish, as long as the 
entire screen remains in the range of -16384 to + 16384 both horizontally and 
vertically. This imaginary drawing space can be represented as a field on which 
the screen is moved around (see Figure 19-1 ). 

The area representing the total document, a picture, for example, is 
called the BoundsRect, for Boundaries Rectangle, and defines the absolute maxi
mum area for drawing. It's possible to set the BoundsRect to a larger or smaller 
space, and to even point it off into some other part of memory for drawing off
screen, but this is fairly unusual and need not concern you for the moment. 

The one thing that is constant for all of the regions discussed here is that 
the units of measurement, or scaling units, are the same, and are defined in 
pixel units. That is to say, you cannot arbitrarily take the screen area of 320 

403 



Chapter 19 

Figure 19-1. QuickDraw's Drawing Screen 

Drawing Space 

a +16384 

-16384 0,0 +16384 -- -
Screen 

(BoundsRect) 

o -16384 

pixels wide and rescale it to a new width of 100 units in the same area. All 
measurements within QuickDraw and the Window Manager are done in the 
same pixel units. 

There is another rectangle that defines what part of the image (in this 
case, the screen) will be drawn to at a particular moment. It's easy to see that if 
you wanted to create a smaller window than the entire screen, you could either 
have a smaller BoundsRect, or create new rectangle that represented a subdi
vision of the BoundsRect. 

This subdivision is called the PortRect, and it represents that actual part 
to be drawn to. This rectangle exists to provide for the possibility that the en
tire document might be larger than the screen, and that a smaller rectangle 
would be required to clip the display to just that part available to the screen. 
When QuickDraw starts up, the PortRect and BoundsRect are both set to the 
full screen. When you want to use a window, the Window Manager will auto
matically set the PortRect to the interior of the window you're using (called the 
content region), and automatically adjust it as the window is sized smaller or 
larger. 

While drawing in the PortRect, it's also possible to further clip the draw
ing within regions. Regions are different from rectangles in that they can be 
any shape at all. These regions are called the ClipRgn (for Clipping Region) and 
VisRgn (for Visible Region). The ClipRgn is a mask set up by the application to 
describe how to clip the image about to be drawn. For example, suppose you 
wanted to draw a circle with grid lines across it, like this: 

404 



The Window and Menu Managers 

./ 
,,,_. r-

r--..... 
/ r\. 

I 

! 

~ / 
....... 
~ --.,,, 
Rather than having to start and end each vertical line on the circumfer

ence of the circle within some routine, it is much easier to define a circular 
ClipRgn, and then draw a rectangular grid over it. The ClipRgn will make it so 
that only the lines within the circle are drawn. 

The VisRgn is used most often by the Window Manager to further clip 
what it has to draw when one window is laid on top of another, and only a 
certain part is visible. It's similar to the program's use of the ClipRgn, but gen
erally not something you have to be aware of. 

All of the parameters for drawing including the BoundsRect, PortRect, 
Clipping Regions, the pen color, the pen state, and more are grouped together 
into a total definition of the drawing state called the GrafPort (for Graphics 
Port). The Gra£Port data structure (which is a considerable entity) defines all 
the variables for drawing at that instant. Still more impressive is the fact that 
the Apple IIGS can maintain a flexible number of individual Gra£Ports all at the 
same time, and quickly switch between them as necessary. This is what makes 
the multiwindow, multiapplication environment possible on the Apple IIGS. 

Generally speaking, though, you won't have to worry about any of these 
regions other than the PortRect when you use the Window Manager, because 
all the necessary clipping will take place automatically. All of these rectangles 
and regions so far mentioned are part of QuickDraw. The purpose of the Win
dow Manager is to insulate you from having to deal with regions and coordi
nate systems, and to automate the creation and maintenence of windows in 
which your program will display its data and messages. 

The Window Manager: ROM vs. RAM Tool Sets 
There is one very outstanding difference between the Window Manager and 
the QuickDraw tool sets: The Window Manager must be loaded into memory 
from disk for your program to use it. QuickDraw at least starts out as a ROM
based tool, and-even though patches are made to the basic routines during 
the boot process for ProDOS 16-it's available to any assembly language rou
tine that wants to call it, including ProDOS 8 system files and routines added 
to Applesoft BASIC. 

405 



Chapter 19 

The Window Manager, on the other hand, must be loaded from an 
application running under ProDOS 16, and the System Loader automatically 
deactivates all RAM tools when switching to ProDOS 8, thus making their use 
from that environment very difficult. 

However, in the ProDOS 16 environment, loading any RAM-based tools 
your program may require is very simple. The Tool Locator tool set includes a 
command called LoadTools, which only requires that you provide it with a pointer 
to a list of the code numbers for the tool sets you wish to load. That list also 
includes the minimum version number for each tool that is acceptable to you. 
For most applications, specifying zero for the version number will work fine, as 
this tells the LoadTool command to load whatever version is on the disk. 

Tools are stored on the disk with the names TOOL014, TOOL015, and 
so forth, where the number corresponds to the tool set number given in Chap
ter 16. The Window Manager is tool number 14, and can be loaded using 
LoadTools with a code segment like this: 

TOOLS PushLong #TOOLTABL ; PUSH ADDR. OF TABLE 
ToolCall $0E01 ; LoadTools 

and somewhere in your program ... 

TOOLTABL DA 1 
DA 14 
DA 0 

; NUMBER OF TOOLS TO LOAD 
; WINDOW MGR. = #14 
; 0 = ANY VERSION WILL DO 

All you do is call LoadTools and tell it where the list of the RAM tools 
you want to load are. RAM tools are always loaded from the SYSTEM/TOOLS 
directory of the startup disk. Of course, this is one spot in your program where 
an error is even more likely to be returned if the desired tool is not on the sys
tem disk, and so it's generally a good idea to include some code for handling 
such an error. 

You can load more tools by changing the 1 at the beginning of 
TOOLTABL to equal however many tools will be in the list. For each tool, you 
must include the tool number and the version number. Zero is the usual default 
for the version number. 

Window Definitions 
Like the Event Manager with its Event Record, the Window Manager makes 
heavy use of something, coincidentally enough, called the Window Record. The 
Window Record includes not only the Grafport for each window, but also 
information such as the various regions currently displayed in that window, 
whether there is a title bar at the top, whether there are scroll bars, where to 
go in memory to execute a window update routine when needed, and more. 

406 



The Window and Menu Managers 

When a window is created using the Window Manager tool NewWindow, the 
application receives a handle to the Window Record, which is used from then 
on as a unique identifier for that window. 

There are many different types of windows. How you set up your Win
dow Record will determine how windows produced will appear and operate. 

A Window Record is created using NewWindow and a defined param
eter list. The contents of that parameter list are shown here and include sample 
settings for a window with scroll bars, and an UPDATE routine, and can be 
used as a model for your own Window Records. 

Window Parameter List 
The window parameter is listed below as it would appear in an assembly list
ing. Notice that lowercase labels are acceptable in a source listing, and help 
make the longer labels more readable. 

WPTR ADRL $0000 ; STORAGE FOR HANDLE IDENTIFIER 

WTITLE 

WINDOW 

paramlength 
wFrame 

wTitle 
wRefCon 
wZoom 
wColor 
wOrigin 
wDataSiz 
wMaxSiz 
wScroll 

STR 

DA 
DA 

ADRL 
ADRL 
DA 
ADRL 
DA 
DA 
DA 
DA 

'Window Mgr. Demo #I' 

; DATA STRUCTURE FOR WINDOW 

windend-WINDOW ; LENGTH OF DATA BLOCK 
%1101111111100101 ; WINDOW FRAME DEFINITION 

; BIT 15 = TITLE 

WTITLE 
$0000 
0,0,0,0 
$0000 
0,0 
200,320 
150,290 
4,16 

407 

; BIT 14 = CLOSE BOX 
; BIT 13 = (NOT) AN ALERT BOX 
; BIT 12 = VERTICAL SCROLL BAR 
; BIT 11 = HORIZ. SCROLL BAR 
; BIT 10 = GROW BOX 
; BIT 9 = FIXED ORIGIN ON GROW OR ZOOM 
; BIT 8 = ZOOMABLE 
; BIT 7 = DRAGGABLE 
; BIT 6 = ACTIVATE ON CONTENT 
; BIT 5 = WINDOW IS VISIBLE 
; BIT 4 = (NO) INFORMATION BAR 
; BIT 3 = (NO) INDEPENDENT CTRLS 
; BIT 2 = ALLOCATED BY NEWWINDOW 
; BIT I = (NOT) CURRENTLY ZOOMED 
; BIT O = HIGHLIGHTED 
; POINTER TO TITLE 
; REFERENCE CONSTANT 
; ZOOM RECTANGLE 
; COLOR TABLE 
; ORIGIN OFFSET 
; HEIGHT, WIDTH DATA AREA 
; HEIGHT, WIDTH MAX WINDOW 
; VERT., HORIZ. SCROLL INCREMENT 



Chapter 19 

wPage 
wlnfoRefCon 
wlnfoHeight 
wFrameDef Proc 
wlnfoDefProc 
wContDef Proc 
wPosition 
WVI 
WHI 
WV2 
WH2 
wPlane 
wStorage 
windend 

DA 
ADRL 
DA 
ADRL 
ADRL 
ADRL 

DA 
DA 
DA 
DA 
ADRL 
ADRL 

40,160 
$0000 
0 
$0000 
$0000 
UPDATE 

30 
20 
100 
200 
-1 
$0000 

; VERT., HORIZ. PAGE INCREMENT 
; INFO BAR REFERENCE CONSTANT 
; INFO BAR HEIGHT (NONE) 
; FRAME PROCEDURE ADDR. (NONE) 
; INFO BAR PROCEDURE ADDR (NONE) 
; CONTENT PROCEDURE ADDR. 
; CONTENT REGION OF WINDOW 
; UPPER LEFT VERT. POSITION 
; UPPER LEFT HORIZ. POSN 
; LOWER RIGHT VERT. POSN 
; LOWER RIGHT HORIZ. POSN 
; PUT WINDOW AT FRONT ($FFF .. = -1) 
; STORAGE 
; END OF DATA STRUCTURE 

The first two lines, WPTR and WTITLE, are not actually part of the win
dow record, but they are kept close by for aesthetic reasons. Each window is 
uniquely identified by a handle to its Window Record, and WPTR is a storage 
location to keep the handle to a window. WTITLE is the string of text that you 
would like to be used as the title to the window. 

The window parameter list actually begins at WINDOW, which marks 
the beginning of the data structure . Paramlength, the first entry in the table, is 
an error-checking device. A properly set up parameter list should use $ lE 
bytes, and the Window Manager will check this number to make sure your ta
ble is properly constructed . 

wFrame is a two-byte value that defines which of the many possible 
window elements will be used in the frame of your window . Each bit in 
wFrame determines whether a particular element is active. The wFrame value 
used in this example produces a draggable, resizable window that is typical of 
the windows used in many Apple lies applications. 

Each bit is assigned as follows: 

Bit 0: HiLited. This is set to 1 when your window is highlighted. This is 
automatically set when the window is first started up with the Window Man
ager call NewWindow, so the value in the assembled table doesn't matter. The 
main use is to provide the option of checking to see whether a window has 
been highlighted while you weren't looking. 

Bit 1: Zoomed. This indicates whether the window is in a zoomed or 
unzoomed state. Setting this in your definition tells the window manager 
which state to start off with. The zoom box is a control, present at the upper 
right corner of a window, if so specified in the Window Record. The user clicks 
in the zoom box to automatically resize the window, most often to the full size 
of the screen. If the Zoom bit (bit 8) in the wFrame word is not set, this bit is 
ignored. 

408 



The Window and Menu Managers 

Bit 2: Allocated. This is set to indicate that the memory used for the 
Window Record was not allocated automatically using the NewWindow com
mand. This must be zero if wStorage is zero (the most common situation). 

Bit 3: Control Tie. This is usually set to O to specify that when the win
dow is not active, its controls, such as scroll bars, will be deactivated. Other
wise the controls are independent of the window's active status. 

Bit 4: Information Bar. Some windows may include a bar below the title 
bar called the information bar. In a word processor this might be an ongoing 
display of the number of words in the document, the line and page you were 
on, or whatever else the designer wished to display. Leave this set to O for 
now. Set bit 4 to 1 if you want an information bar below the title bar. 

Bit 5: Visible. This bit can be set to zero if you want to allocate a win
dow without making it visible. ShowWindow can then be called later, when 
you want the window to appear. For most applications, however, set this bit to 
1 (visible). 

Bit 6: QContent. Although it hasn't been discussed yet, there is a part of 
the Window Manager called TaskMaster that will handle certain operations 
automatically for you. Setting this bit tells TaskMaster that you want it to auto
matically activate a window that the user has clicked the mouse in, and then to 
pass the mouse-down event to your application. If this is set to 0, TaskMaster 
will still activate the window, but it will not pass the mouse-down event to 
your application. This means the user will have to double-click in the window 
to actually make something happen, once to activate the window, a second 
time for your application to see the click at all. 

How you set bit 6 is a combination of personal choice in program de
sign, and a consideration of the impact of automatically passing the event 
through. Try it both ways in the demonstration programs that follow, and see 
which you prefer. 

Bit 7: Move. This determines whether the window can be moved by 
dragging the title bar. This setting is entirely up to you . Generally speaking, a 
setting of 1 for this bit is most common (window is draggable). 

Bit 8: Zoom. If set to 1, the Window Manager will automatically put a 
zoom box in the upper right corner of the window frame. The window must 
have a title bar specified (bit 15 = 1) if this is to be used. Zooms can also be 
automatically handled by TaskMaster, so this is a nice touch. 

Bit 9: Flex. This bit tells the Window Manager what to do when the 
window grows larger than the data you have to fill it with. If set to 1, the ori
gin (the upper left corner) of the window area stays fixed and white space ap
pears in the lower right corner as the window in enlarged. If the bit is clear, the 
white space will be padded in the upper left of the window, and the origin will 

409 



Chapter 19 

move down and to the right (that is, what you're drawing will move with the 
lower right corner). 

Bit 10: Grow. Setting this tells the Window Manager to put a grow box 
in the lower right corner of the window. This can only be specified if there is 
also a horizontal scroll bar (bit 11 = 1), a vertical scroll bar (bit 12 = 1), or 
both. The grow box allows the user to resize the window dynamically on the 
screen. This bit is set in the demonstration program. 

Bit 11: Bottom (horizontal) Scroll. This tells the Window Manager to in
clude the scroll bar for horizontally adjusting the content region of the window. 
If the window grows or is set to the maximum size, the scroll control will be 
deactivated automatically. Set to 1 for a horizontal scroll bar. 

Bit 12: Right (vertical) Scroll. This tells the Window Manager to include 
the scroll bar for vertically adjusting the content region of the window. If the 
window grows or is set to the maximum size, the scroll control will be deacti
vated automatically. Set to 1 for a vertical scroll bar. 

Bit 13: Alert. Used by the Window Manager for creating dialog boxes 
and so forth that have a double-line frame, called an alert box. For windows 
you define in your application, this bit should be 0. 

Bit 14: Close. If this bit is set to 1, the Window Manager will automati
cally provide a close box in the upper left corner of the window. If the user 
clicks in the close box, this event will be passed to your application, at which 
point you have to handle it by closing the window, erasing the contents, or 
whatever other action you desire. 

Bit 15: Title. Set this bit to display a title at the top of your window. If 
you do set this bit, you should include a pointer to the string to use in the 
wTitle part of the Window Record. 

That finishes the bit definitions in wFrame. Here are the other param
eters in the list: 

wTitle is a pointer to the location of the title of the window, presuming 
that the Title bit (bit 15) in wFrame has been set. The string should begin with 
a length byte. 

wRefCon (for window Reference Constant) defines a storage area that 
your application can store a 4-byte value in. What you store there, if anything, 
is entirely up to you. Some programs use these four bytes to store the handle 
to the Window Record (this example uses WPTR for this, instead). 

wZoom defines the maximum rectangle size to be used when the user 
clicks in the zoom box. This presumes that bit 8 has been set in the wFrame 
mask. Specifying a rectangle of 0,0,0,0 defaults a zoom to the entire size of the 
screen, minus the menu bar, if it's there. If you start with the zoomed flag (bit 
1 in wFrame) set to 1, the Window Manager uses this value to determine the 

410 



The Window and Menu Managers 

opening size of the window. If bit O in wFrame is clear (not zoomed), the Win
dow Manager uses the wPosition rectangle as the starting size for the window. 
Once things are rolling along, clicking in the zoom box alternates between the 
wZoom rectangle and the previous size of the window, even if that has 
changed from wPosition because the user has resized the window. 

For wZoom, and most other QuickDraw point and rectangle definitions, 
remember that the Y coordinate is given first, then the X coordinate. Thus 
wZoom is defined as Vl,Hl,V2,H2 where Vl,Hl are the vertical and horizontal 
coordinates of the upper left comer of the window, and V2,H2 are the vertical 
and horizontal coordinates of the lower right corner of the window. 

Although most windows look fairly standard, and use black, gray and 
white to draw the window, it is possible-and easy-to redefine the different 
parts of the window frame. wColor in the window parameter list specifies 
which color table you would like used in drawing the window frame. The de
fault entry for this is $0000, which defaults to color table #0, but you can put 
the address of one of the other color tables or a table you've put somewhere 
else in memory here. 

wOrigin determines where in the underlying coordinate system the win
dow will be opened. Ordinarily, you would start with this offset value being 
0,0, but you can make it anything you want. 

Let's suppose that you have a drawing that is 200 pixels in height and 
width. For sake of illustration, further suppose that the window you are going 
to open to display this image is only 100 pixels in height and width. This ne
cessitates a choice on your part: You can either open the window on the upper 
left corner of your picture (origin = 0,0), or choose to more-or-less center the 
window on the document (origin = 25,25), or perhaps even the last place the 
person made a change to the picture (origin = variables). 

wDataSiz represents that maximum size of the data the window will be 
scrolling over, which is necessary for the scroll bar thumbs (the movable box) 
to be properly scaled and positioned. 

wMaxSiz lets you specify what the maximum size of the content (inte
rior) portion of the window will be. With any kind of controls, such as the title 
bar or other control, the window itself will be larger than this, so remember to 
take this into account when calculating your largest size. You can set this to 
zero if growing to the maximum size of the DeskTop is acceptable to you. 

wScroll sets the number of pixels you want the window to change when 
the arrow controls are pressed (when using a scroll bar). 

wPage permits the user to click in the open space on either side of the 
scroll thumb to move a screen (or page) at a time. 

wlnfoRefCon is a storage location in which you can put a 4-byte value 

411 



Chapter 19 

that will be passed to the routine that draws the contents of the information 
bar (see winfoDe£Proc parameter description). This could be the pointer to a 
string, or to any other value your routines might require. (Set this to zero for 
most cases.) 

wlnfoHeight defines how tall, in pixels, the information bar will be. Set 
this to zero if you're not using an information bar. 

wFrameDefProc (for window Frame Definition Procedure) defines the 
address of a routine which will draw the entire window frame. Use a zero here 
unless you're very creative. Although most windows you see all seem to be 
about the same, it's possible to have your own routine create the window, in
stead of the Window Manager, if you wish. 

wlnfoDefProc (for window Information Bar Definition Procedure) speci
fies the address of the routine that will be used to fill in the information bar. If 
you're not using an information bar, set this to zero. 

Whenever a window is moved, opened, or made visible by another win
dow on top of it being moved or closed, it is necessary to update (redraw) the 
contents of that window. Many times, this update will be required because of 
something completely unrelated to that window, such as the opening or mov
ing of a desk accessory, or the activity of other windows on the DeskTop. 

wContDefProc (for window Content Definition Procedure) defines the 
address in memory where the routine to draw the contents of your window is 
located. In the sample listing discussed earlier, this is shown as UPDATE, the 
label to a routine elsewhere in the program. This may be set to zero if you 
want to manage all the updating yourself, but it is much easier to have the 
Window Manager call your routine for you as needed. 

wPosition is used to determine its initial size and position on the Desk
Top when your window is first opened, . This is usually specified assuming 
that 0,0 is the upper left of the DeskTop. This will be the same as the upper 
left of the screen if there is no menu bar. If a menu bar is used, 0,0 corresponds 
to the upper left corner of the active DeskTop area just below the menu bar. 

wPlane allows the positioning of windows in other front to back 
positons. When a window is opened, you normally want it in front of any 
other windows on the DeskTop at that point. However, you may want to be 
able to position the window in other front to back positions. If you set wPlane 
= $FFFFFFFF (-1), the window will be opened in front of any other windows. 
If wPlane = 0, the window will be opened behind any other windows on the 
DeskTop. For any other position, you must specify the handle of the window 
behind which the new window should be placed. At that point, it is up to your 
application to determine and manage the handles to other windows on the 
DeskTop as needed. 

412 



The Window and Menu Managers 

wStorage is an optional address to where the Window Record will be 
created. Normally, this is zero, and the Window Manager, through 
NewWindow, sets aside about 300 bytes somewhere in memory to keep its 
own Window Record. However, this parameter is provided to allow for the 
possibility that you might want to allocate your own Window Record some
where in memory other than that normally set up by NewWindow . This is 
flagged by bit 2 in wFrame being set, and by specifying the address of a Win
dow Record area you have provided for in the wStorage field. 

Local and Global Coordinates 
You have seen how the screen is given a set of coordinates, usually in the 
range of 0-199 and 0-319 . If you think about it, though, what you really want 
are your own set of coordinates within the window as it is moved around on 
the DeskTop. Ideally, moving the window should have no effect on your appli
cation's attempts to draw data within the window. The difference in coordinate 
systems leads to the concepts of the global and local coordinate systems. When 
specifying where to open a window on the DeskTop, you are dealing with 
global coordinates, in which 0,0 (the origin) is usually in the upper left corner. 

When drawing in a window whose scroll bars are in their home position 
(not scrolled), you want the upper left corner to be 0,0, regardless of where the 
window is at on the DeskTop. Within the window, your location is defined in 
local coordinates, local to that window. As the scroll bars are used, the Window 
Manager will automatically adjust the local coordinate system so that the co
ordinates of the upper left corner of the screen is appropriate for the current 
scroll position . 

Obviously, 0,0 can't be simultaneously the upper left corner of both the 
screen and the window. The next best thing though is to have the Window 
Manager switch coordinate values as needed, depending on whether you are 
drawing in a window or dealing with the DeskTop. When the window has 0,0 
within it, the global coordinates of the upper left of the screen will temporarily 
become negative. However, this won't matter to you because at that moment 
your window will be your frame of reference (an appropriate choice of words). 

TaskMaster 
With the tools you're familiar with so far, managing windows would still be 
pretty involved. Imagine your program in the main loop calling the Event Man
ager. A mouse-down event comes back, and now you have to determine 
whether it was in a window, which window it was, and whether it was on a 
scroll bar, on the close box, and so on. Once you've determined where the 
event took place, you then have to be able to move the window if necessary, or 

413 



Chapter 19 

resize it, or otherwise handle the possible changes to the window. 
As it happens, there are specific routines, like FindWindow ($170E), that 

will help you determine where a mouse-down took place, and other tool calls, 
like SizeWindow ($1COE), that you can use, but there is an even easier way. 
Part of the Window Manager includes a routine called Taskmaster. 

TaskMaster is an automated function built into the Window Manager 
that handles things like scrolling, zooming, dragging a window, and more-all 
without the slightest bother to your application . When the user clicks in a win
dow, or drags the grow box or the title bar, the appropriate action is automati
cally handled by TaskMaster. The window is resized, or repositioned on the 
DeskTop, or has done whatever else needs to be done without you having to 
put any equivalent routines in your own program. What this really means is 
that you can write a very professional-looking program in far fewer lines of 
code than would otherwise be required. 

TaskMaster itself involves more than just the Event Manager, QuickDraw, 
and the Window Manager. The scroll bars in a window are called controls, and 
require the services of another Apple IIGS tool, the Control Manager. A control 
is any user-input display item including scroll bars, push buttons, check boxes, 
dials, and other elements in any window or dialog box. In addition, TaskMaster 
will also help with user input with menus, and will return to your application a 
number code for the menu item chosen. This, however, requires interaction 
with another Apple IIGS tool, the Menu Manager. 

Not too surprisingly, the Menu Manager is the set of routines related to 
creating, displaying and manipulating pull-down menus on the Apple IIGS. 

If you want to write a program that only uses simple windows without 
scroll bars or grow boxes, and that uses GetNextEvent for all the input, it is 
possible to use the Window Manager, QuickDraw, and the Event Manager by 
themselves. However, for any program using TaskMaster, the Control Manager 
must be loaded and started up if the windows will use scroll bars or other con
trols, and the Menu Manager must also be loaded and started up if you intend 
to use menus in your application. 

Like the Window Manager, the Control Manager and the Menu Manager 
are RAM-based tools that must be loaded using the LoadTool command in the 
Tool Locator. All three tools can be easily loaded with a code segment some
thing like this: 

TOOLS PushLong #TOOLTABL 
ToolCall $0E01 

; PUSH ADDR. OF TABLE 
; LoadTools 

414 



The Window and Menu Managers 

and somewhere in your program ... 

TOOLTABL DA 3 
DA 14 
DA 0 
DA 15 
DA 0 
DA 16 
DA 0 

The Menu Manager 

; NUMBER OF TOOLS TO WAD 
; WINDOW MGR. = #14 
; 0 = ANY VERSION WILL DO 
; MENU MGR. = #15 
; 0 = ANY VERSION WILL DO 
; CONTROL MGR. = #16 
; 0 = ANY VERSION WILL DO 

To put menus in a program without the Apple IIGS tools, you first have to allo
cate an area at the top of the screen and print the available menu headers 
there, and then you have to wait for a mouse-down event in a menu header, 
indicating the user wants to view a menu. You also have to create a data struc
ture somewhere in memory that contains a list of all of the choices for each 
menu item, along with any additional indicator bytes, such as whether a par
ticular menu item has a check mark by it or is disabled (printed in dimmed 
text). You might also want to allow the user to press a keyboard equivalent of 
the menu choice. Of course, that means every time a key is pressed, you'll have 
to scan your complete list of menu entries to see if there is a match. 

The Menu Manager is a tool set of routines that makes this process easier 
than having to write everything yourself. There are routines like DrawMenuBar, 
which automatically draws the entire menu bar, and InsertMenu, which tells 
the Menu Manager to add a new list of menu choices to the menu bar . There 
are even functions like Enableltem and Disableltem to make a menu choice 
disabled or not. But the best news is yet to come: TaskMaster also helps with 
the menu selecting process itself, and the net result is that you don't have to 
look for the mouse-down in a menu, or even a keyboard equivalent. TaskMas
ter will handle all of this for you, and will return as an event an identifying 
code number for whatever, if any, menu item selected by the user. 

The menu bar in an application is supported by an internal menu list 
that keeps track of each menu (indicated by the various headings, or menu ti
tles) in the list, and the individual items (menu items) in each menu. The menu 
list can be added to or altered at any time by adding new menus across the top, 
or by changing individual menu items in a particular menu. 

Table 19-1 lists some of the Menu Manager calls used most often. 

415 



Chapter 19 

Table 19-1. Menu Manager Tool Set Calls 

Command 
Value 
$010F 
$030F 

$2DOF 
$2EOF 
$130F 

$2AOF 
$2COF 

$0DOF 
$0EOF 
$0FOF 
$100F 
$300F 
$310F 

$320F 

Command 
Name 

MenuStartUp 
MenuShutDown 

NewMenu 
Dispose Menu 
FixMenuBar 

DrawMenuBar 
HiliteMenu 

lnsertMenu 
Delete Menu 
Insertltem 
Deleteltem 
Enableltem 
Disableltem 

Checkltem 

Menu Definition 

Description 
Starts up Menu Manager. 
Shuts down Menu Manager and frees the top of the 
screen, the memory allocated to menus, and so forth. 
Adds a new menu to menu list. 
Removes a menu from menu list. 
Menu Mgr. recalculates width of each menu and 
entries for proper appearance after changes have been 
made. 
Draws current menu bar, along with menu titles. 
Highlights, or unhighlights, the title of a specified 
menu. Call after TaskMaster returns a menu event to 
unhighlight the title. 
Inserts a new menu in menu list. 
Deletes menu from menu list. 
Inserts item in a menu. 
Deletes item from menu. 
Displays menu item normally. 
Displays menu item in dimmed text and disallows it 
from being selected. 
Adds or removes check mark from an item. 

Defining a menu centers around creating a data structure which contains the 
items in a particular menu. One of the simplest possible menu definitions 
would look like this: 

MENU ASC 
ASC 
ASC 
ASC 

'>> Title \Nl',00 
'--Item I \ N257' ,00 
'--Item2 \ N258' ,00 

A menu definition is made up of successive ASCII strings, each termi
nated by a zero (or alternatively, a carriage return (decimal 13 = $OD)). The 
beginning of each string contains two more-or-less arbitrary characters that 
help define the menu title, each item in the menu, and the end of the items for 
that menu. 

In the example, the characters>> signify the beginning of a menu and 
designate that string as the title of that menu. The next two lines each begin 
with the characters -- . These signify the individual items in the menu, and the 
leading characters must be different from the title characters. The menu is ter
minated by using a character different than the item characters. Notice that 

416 



The Window and Menu Managers 

only one termination character is needed, and it is not necessary to terminate 
that string with a zero or carriage return. 

You may use any leading characters you wish as long as the item char
acters are different from the title and terminator characters. For example, an 
equally legal menu definition could look like this: 

MENU ASC '## Title ,NI',00 
ASC ' .. Item I , N257',00 
ASC ' .. ltem2 , N258',00 
ASC '?' 

As a matter of appearance, it's generally best to put a space on either 
side of menu titles, and to end each menu item with a space, but this is not 
required. 

The title and item names themselves are delimited at the end by the 
reverse slash ( '\ ), after which follows the identifier number for that menu or 
menu item. Each menu title must be uniquely numbered in the range of 1 to 
249, and each menu item (also unique) must be in the range of 256 to 65535. 
The missing numbers of 250 to 255 are reserved for special editing items, 
specifically: 

Item# 
250 
251 
252 
253 
254 
255 

Description 
Undo Cancels last editing operation. 
Cut Cuts selected text and puts it on clipboard. 
Copy Copies selected text and puts it on clipboard. 
Paste Inserts text on clipboard in document. 
Clear Cuts selected text but doesn't put on clipboard. 
Close Closes active window. 

By using these ID numbers for these functions, any Desk Accessory that 
uses TaskMaster will automatically have access to these menu choices while its 
window is active. 

Although you can give the menu items almost any number value you 
want, most program listings you'll see start with 256 for the first menu choice, 
and number from there. This is so they can use the same indexed indirect ad
dressing mode for the command handler discussed in Chapter 10. For example, 
suppose you had the menu ID numbers 256, 257 and 258. These could all be 
handled with a code segment like this: 

LDA MITEM ; GET MENU ITEM # 
SEC 
SBC 256 
ASL 
JSR (MENTBL,X) 
JMP MAIN 

; ADJUST TO 0,1,2 .. . 
; TIMES 2 = 0,2,4 .. . 
; USE TABLE OF ADDRESSES 
; BACK TO MAIN WOP 

417 



Chapter 19 

MENTBL DA 
DA 
DA 

ITEMI 
ITEM2 
ITEM3 

; ROUTINE FOR ITEM I 
; ROUTINE FOR ITEM 2 
; ROUTINE FOR ITEM 3 

If you want to be really tricky and save a line of code, you can also use 
the AND instruction to mask off the high byte from the value for the menu 
item. This is equivalent to subtracting 256 as long as you don't have a menu 
item number greater than 511 ($1FF): 

LDA MITEM ; GET MENU ITEM # 
AND #$00FF ; ADJUST TO 0,1,2 .. . 
ASL ; TIMES 2 = 0,2,4 .. . 
JSR (MENTBL,X) ; USE TABLE OF ADDRESSES 
JMP MAIN ; BACK TO MAIN WOP 

Even though it only saves one byte, it's mentioned here since you may 
come across it in sample listings. 

You can also include a few special characters at the beginning of your ti
tle or menu item string for certain effects. The first is the use of a dash charac
ter as the first character of a menu item string, like this: 

ASC ' .. · '\ N258D',OO 

The Menu Manager interprets a dash to signify a horizontal line in the 
menu at that position. Notice that as a menu item, it must still have its own ID 
number, in this example, 258. The D at the end is used to disable that line, so 
the user doesn't inadvertently select it. Special menu modifiers like D will be 
discussed in more detail shortly. 

In a complete menu, the use of the dash would look like this: 

MENU ASC '>> Title '\Nl',00 
ASC ' .. Item I '\ N257',00 
ASC ' .. · '\ N258D',OO 
ASC ' .. Item2 '\ N259',00 
ASC '%' 

The other special menu name is the symbol @ (at sign) for the Apple 
logo character as a menu bar title. This is only used as the title for the first 
(left-hand) title in the menu bar, and appears as follows: 

MENU ASC '>>@ '\NIX',00 
ASC '-Iteml '\N256',00 
ASC '.' 

The @ symbol must not have any spaces or other characters other than 
the title character and end-of-title delimiter. The Apple menu is also different 
in that a special form of highlighting must be specified, called color-replace 

418 



The Window and Menu Managers 

highlighting. Because the title, that is the Apple icon, is in color, the normal in
verting would make the Apple colors change as well. In color-replace highlight
ing, only the white background of a colored object is inverted. If for some 
reason you had a color title or an item name, you would request this type of 
highlighting. Color-replace highlighting is signified with the X character at the 
end of the title definition string. 

The Apple menu is used as the heading for any desk accessories that 
may be available, and any other special functions you wish to include. How
ever, it's not possible to define a menu with zero entries. Because there may 
not be any desk accessories available when your program runs, you should al
ways include at least one of your own menu items in the Apple menu. Usually 
this is the About This Program . .. item that many programmers use to tell 
about the application. 

Designators 
Each string in the list of menu items has encoded into it not only the string and 
identifying number for the menu title or item, but also optional special desig
nator characters that indicate whether that menu item is disabled, what the 
keyboard equivalent is, if any, and other such information. You have already 
seen some of these in the form of the X and D characters mentioned a little ear
lier. The reverse slash ( \ ) is used to terminate a menu title or item name. 
There is no way to include the character \ in a name itself. The special desig
nator characters are placed at the end of the title or item string following the 
name terminator ( \ ) and may be used in any order you wish. 

These designators may be used in either a title or a menu item name and 
are used as follows: 

Character 
N 
H 
D 
X 

Description 
Title or item ID # (decimal) follows. 
Title or item ID # (hex) follows. 
Disables title or name. 
Uses color-replace highlighting. 

Item numbers may be either included in the string as an ASCII string 
value or defined as a two-byte word. The character N designates an ASCII 
number, which is stored a character at a time. For example, in the string: 

ASC '--lteml , N256',00 

The number 256 is stored as $32 $35 $36, the ASCII characters for 256. 
If for some reason you want to encode the menu item as a number value, you 

419 



Chapter 19 

can define the line like this: 

ASC '--Item I \ H' 
DA $103 
ASC 'D',00 

In this case the special character H tells the Menu Manager to expect a 
two-byte value for the menu item, which is then followed by the special char
acter D for a disabled menu item, and the string terminator $00. 

There are also a few other special characters which can only be used in 
the menu item names, not in a title. They are as follows: 

Character 
B 

Description 
Displays the item in bold text. 
Displays the item in italic text. 
Underlines the item name. 

I 
u 
• 
C 
V 

Keyboard {Open Apple) equivalent letters follow (two characters, always) . 
(Check)Mark character follows. 
Puts dividing line under this name. 

The B, I, and U characters are self-explanatory. The asterisk is used to 
specify the characters that you will accept as a keyboard equivalent for that 
menu item. For example, if we wanted to accept Open Apple-Q to quit our 
program, this menu item would do it the trick: 

ASC '--Quit \ N258*Qq',OO 

Generally, the second keyboard character is the lowercase equivalent of 
the first character, so that the status of the Caps Lock key won't matter when 
the user presses the Q key, but in theory the two characters can be anything 
you want. 

The letter C is used to designate the check-mark character that will be 
used at the far left of the menu item. This is usually used to show that a menu 
item, for example show page breaks, is active. The check character can be any
thing you wish. For example, this would define an x as the mark for a menu 
item: 

ASC '--Show Page Breaks \.N258Cx',OO 

As you noticed in the Event Manager demonstration program, ASCII 
characters 17, 18, 19 and 20 ($12, $13, $14 and $15 = Control-Q, Control-R, 
Control-S, and Control-I) have been given special definitions. To get a real 
check mark in your menu, you can embed the proper ASCII value in your 
menu string like this: 

ASC '--Show Page Breaks \ N258C', 12,00 

420 



The Window and Menu Managers 

This puts the value $12 (18 decimal) after the C in the menu item 
definition. 

Although the dash is available to create a dividing line between menu 
items as mentioned earlier, you can also include a V character in the special 
characters at the end of the name to create a solid underline that goes all the 
way across the menu underneath a given item. This avoids having to define a 
disabled item to create the line, and it also means you can fit more items in the 
complete vertical menu. 

A menu item with an underline divider below it would look like this: 

ASC '--Iteml '\N256V',OO 

You can combine as many of these special characters as you wish in a 
single menu-item definition. Although crowded, this is legal: 

ASC '--Iteml '\N256VX8IUCx*Aa',OO 

A typical menu list could look like this: 

MENU2 ASC '>> Title2 '\N2',00 
ASC '--Iteml '\N257V*Aa',OO 
ASC '--ltem2 '\ N258D*Bb',12,00 
ASC '--Item3 '\ N259V',OO 
ASC '--Item4 '\ N260*Qq' ,00 
ASC '--- '\ N26ID',OO 
ASC '' 

A menu is added to the Menu Manager's menu list by calling NewMenu 
($2DOF) and passing it the address of the new menu data structure, like this: 

PushLong MENU2 ; POINTER TO OUR DEFINITION 
ToolCall $2DOF ; NewMenu 
PullLong MENUHD ; SAVE MENU MGR. HANDLE 

Construction of the Menu Bar 
Defining a menu doesn't put it in the menu bar, however; this just returns a 
handle to the menu definition so you can add it when you want later. Con
structing the menu bar itself is done by repeatedly calling the tool InsertMenu 
($0DOF). Although you can pass this tool a position value for where you want 
the new menu inserted, a simple application can just keep calling the routine 
and inserting each new menu at the far left. Thus, if you want the menu titles 
FILE, EDIT, and PENS in the menu bar, you call InsertMenu three times with 
PENS, EDIT and FILE, in that order. 

PushLong MENUHD ; PUSH HANDLE TO MENU 
PushWord #$0000 ; INSERT AT LEFT 
ToolCall $0DOF ; InsertMenu 

421 



Chapter 19 

Because the Apple icon menu involves desk accessories that the applica
tion itself will not know about, there is a call to the Desk Manager tool set, 
FixAppleMenu ($ lEOS) that is done to automatically add any available desk 
accessories to the specified menu. Since this is usually menu #l with the Apple 
icon, this call looks like: 

PushLong #$0001 
ToolCall $1E05 

; MENU NUMBER 
; FixAppleMenu 

Once all the menus have been defined and inserted in the menu bar, the 
Menu Manager needs to be told to calculate some internal constants for the size 
of the longest menu names, and the height of each name and the menu bar 
using the current font. This is done with FixMenuBar ($130F): 

PushWord #$0000 ; SPACE FOR RESULT 
ToolCall $130F ; FixMenuBar 
PullWord HT ; RETURNS HEIGHT OF BAR 

This call returns the height of the menu bar in pixels, but this is unlikely 
to be needed by your application, so is usually ignored. (You do have to pull it 
off the stack, but you don't have to keep the result.) You must call FixMenuBar 
whenever you change any menu item or list. 

That pretty much takes care of it, except for one thing: We've got to 
draw the new menu on the screen. This is done with DrawMenu: 

ToolCall $2AOF ; DrawMenu 

Program 19-1 will create just about the simplest menu bar there is, and 
it will open a single window. 

A Simple Menu Bar 
Although Program 19-1 looks like the previous ProDOS 16 examples, there are 
some significant additions. When run, it opens a window on the DeskTop that 
you can drag by its title bar, resize with the zoom or grow box, or close (along 
with quit the program) by clicking in the go-away box. There is a very empty 
menu bar at the top of the screen with the Apple icon. If you have any New 
Desk Accessories, such as the clock, on your startup disk, these will appear in 
this menu. 

Try opening a desk accessory and moving it around on the DeskTop 
with the sample window. Notice what happens when one window overlaps an
other. Click in the content region of each window successively and notice how 
each is activated while the other becomes inactive. When you're done with the 
program, click in the go-away (close) box, and the program will return to what
ever program selector was used to run it. 

422 



The Window and Menu Managers 

Although similar to the Event Manager demo program, this program 
adds some new techniques needed for a program that supports the Window 
and Menu Managers. The first change is found in the STARTUP section, 
where the instruction TDC (Transfer Direct Page to C Accumulator) is found. 
This instruction copies the Direct Page Register address (a two-byte value) into 
the Accumulator. The letter C is used for the Accumulator to remind you that 
two bytes are always transferred, regardless of whether the Accumulator is cur
rently in the 8- or 16-bit mode at that instant. 

Once transferred to the Accumulator, the direct-page value is saved in 
MYDP. This will be needed in the routine that refreshes the contents of our 
window, called the update routine. This routine is called by TaskMaster auto
matically, and at that time the direct page on entry to our routine will be that 
used by TaskMaster, not our program. If our routine needs any direct-page 
space, such as for an indirect pointer, it will have to temporarily save TaskMaster's 
direct page, switch to ours, do the update, and then restore TaskMaster's direct 
page. This will require that our direct page value be on hand when UPDATE is 
called. Storing it in MYDP accomplishes this. 

The next new item is the generation of a third UserID in the MM (Mem
ory Manager startup) routine. Strictly speaking, the ORA $0200 on line 49 does 
not produce the second ID possible ($1202 for example), but rather produces 
the third ($1303) because the Accumulator at that point already holds $1102 
from the previous instructions ($1102 ORA $0200 = $1302). In our case though, 
it really doesn't matter as long as the UserID is different from the other two. 

In GETDP, because we'll need direct page for the Menu Manager and 
Control Managers in addition to that previously obtained for the Event Man
ager and QuickDraw, a total of 6 pages ($600) of memory are obtained, and the 
base address is stored in our variable DP. As each block of direct page is as
signed, DP will be incremented by the amount just used so that each new as
signment will begin at the next available address (see lines 114 to 117 for 
example). 

LOADTOOLS, on line 92, loads the RAM-based tools using the table 
TOOLTBL on lines 343-350. If you examine TOOLTBL, you'll see that the 
Menu Manager, Window Manager and Control Manager are loaded from the 
startup disk. 

Once these are loaded, WM, CTRL and MENU start up each tool, fol
lowed by DESK, which starts up the Desk Accessory Manager in preparation of 
setting up the Apple icon. 

APPLE begins the portion of the program that actually creates and dis
plays the menu bar. NewHandle is first used to allocate memory in the Menu 

423 



Chapter 19 

Manager for MENUl, which will be the Apple icon menu. Looking at MENUl, 
you can see there is only one entry with a message you can customize . This 
menu item has a dividing underline to set it off from any desk accessories that 
may be listed. At least one menu item must be defined here to protect against 
the possibility that there are no desk accessories on the disk, which would re
sult in an empty menu. 

Once the handle for the menu has been obtained and stored, the menu 
is added at the left of the menu bar with InsertMenu. DESKACC then calls 
FixAppleMenu to add any desk accessories to this menu. FIXBAR completes the 
menu bar definition followed by DRAWMENU, which displays the complete 
menu bar. If you had further menus you wanted to define and add to the menu 
bar, those instructions would be inserted before the APPLE routine, and they 
would be inserted in reverse order. There will be an example of this in an up
coming program. 

Now it's time to open a window. Since this is a generalized routine that 
may be called many times within a program, OPEN is set off as a separate rou
tine on lines 209 to 215. Let's see what OPEN does. As you can see, the rou
tine is very short. All it does is pass a pointer to a window definition, 
WINDOW (lines 373-416), and call NewWindow ($090E), from which is re
turned the handle to the Window Manager's window record for this window. 
This is saved for future reference in WPTR, and the OPEN routine is finished. 

If the visible bit is set in the wFrame definition, the act of calling 
NewWindow automatically opens the defined window at the position and size 
indicated within the window parameter list. TaskMaster will automatically keep 
track of the window from then on, until the window is closed, which will be 
discussed shortly. The parameter list for the defined window is based on the 
list described earlier in this chapter. You should look it over carefully to make 
sure you understand each component of the data structure. 

The main event loop is on lines 153-184, in the sections MAIN, EVT 
and DOCMDS. MAIN is similar to the Event Manager demonstration program, 
except that this time we call TaskMaster ($1 DOE) on lines 153-156. Notice that 
the call structure with the event mask, points to each item in the identical as in 
GetNextEvent. 

The main difference in using TaskMaster over GetNextEvent is that the 
event record, EVRECORD (lines 314-339) must be extended to add two new 
variables, TDATA and TMASK. TDATA is where TaskMaster will return infor
mation about which menu item (first two bytes, TDATA) and which menu title 
(third and fourth bytes, TDATA+2) were chosen. TMASK is a mask used to 
tell TaskMaster which events it should handle automatically. Each bit in 

424 



The Window and Menu Managers 

TMASK specifies a certain type of event, as follows: 

Bit 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

13-31 

Description 
Menu keys. 
Update handling. 
Find window. 
Menu select. 
Open New Desk Accessories. 
Clicks in New Desk Accessory windows. 
Drag window. 
Select window if click in content region. 
Track go-away box. 
Track zoom box. 
Track drag box. 
Handle scrolling. 
Handle special menu (#s 250-255) events. 
These bits always clear (reserved). 

By selectively setting specific bits, you can elect to have TaskMaster 
automate only certain functions. Functions not handled by TaskMaster will be 
passed on to your application as an event. When TaskMaster is called, an event 
code indicating some type of window or DeskTop event is returned on the 
stack. The event could be related to the user clicking in a window, in a window 
control like a zoom box, or in a menu event like selecting an item from a menu. 

Event Code Abbreviation Description 
$0000 wNoHit No event. 
$0010 winDesk In desktop, but not in a window or menu. 
$0011 winMenuBar In the menu. 
$0013 wlnContent Within the content region of a window. 
$0014 wlnDrag Within the window's drag region. 
$0015 wlnGrow Within the window's grow box. 
$0016 wlnGoAway Within the window's go-away (close) box. 
$0017 wlnZoom Within the window's zoom box. 
$0018 wlnlnfo Within the window's information bar. 
$0019 wlnSpecial Special menu item selected. 
$001A wlnDeskltem Desk Accessory was selected. 
$0018 wlnFrame Within the frame of a window. 
$8xxx wlnSysWindow Within a desk accessory window. 

Not all of these codes will always be returned. They are actually origi
nally generated by the Window Manager tool FindWindow ($170E), which 
TaskMaster uses to see where a click or other mouse-down event occurred. If 
the TaskMaster TMASK has been set to handle the event, your application may 
not see an event code at all. For example, if the Track Zoom Box is enabled (bit 
9 in TMASK), TaskMaster will handle the zoom action for you. Other events, 

425 



Chapter 19 

like selecting a menu item, are returned by TaskMaster as an event, at which 
your application should check TDATA and TDATA + 2 to handle the menu 
item selected. 

The Main Loop 
Let's look at the main event loop to see how various events returned by Task
Master are handled in the sample program. 

GETEV starts the processing by pulling the result of the TaskMaster call 
off the stack. If the value is zero, then either no event has occurred or Task
Master has handled some particular event for us and nothing remains to be 
done. The application will spend most of its time looping back to MAIN in this 
part of the program. 

When an event that TaskMaster could not complete occurs, the BEQ test 
fails, and program execution falls through to EVT. At this point, I've included a 
JSR to a do-nothing routine called SPECIAL that could be used to do any spe
cial processing for every event, regardless of what type it is. This routine will 
be expanded in an upcoming program example. Remember that the Accumu
lator now holds the TaskMaster event code (any routine at SPECIAL must take 
care to preserve this), and line 167 checks to see if the event was a menu event 
($11). If so, a JSR to the routine DOMENU is called. 

DOMENU looks at TDATA for the menu item number that was selected, 
and tests to see if is was our custom message. In this case, it is ignored by 
jumping to the exit to the DOMENU routine, but a real application would han
dle the menu choice any way it wanted at that point. Any additional menu 
items can be tested and handled in a similar manner. 

When a menu item has been selected, TaskMaster leaves the menu title 
inverted when it returns to your application. After completing whatever action 
for that menu item you wish, your application should unhighlighting the menu 
title. NORMAL does this by calling HiLiteMenu ($2COF). This tool is used by 
passing it either a zero (for unhighlight) or a nonzero value (for highlight), and 
the menu title number for the menu you wish to highlight. NORMAL sets the 
highlight to unhighlight and uses TDATA + 2 to determine the current menu ti
tle that was selected. 

The idea behind unhighlighting being the last action in a menu event 
handler is that the user can see something has happened while waiting for the 
routine to do its job. This may seem unneccessary for a routine that acts in
stantly, but for any function that may take more than a few seconds, it lets the 
user know something has happened. Particularly with a keyboard equivalent, 
leaving the menu title highlighted may be the user's only indication as to why 
the keyboard appears to be no longer responding. 

426 



The Window and Menu Managers 

If the TaskMaster event doesn't indicate a menu event, we next check for 
a click in the close box ($16). If there is one, the program jumps to SHUT
DOWN. In addition to the usual shutting down of any tools and de-allocating 
any memory we've used, SHUTDOWN now closes the window with the rou
tine CLOSE (lines 235-249). Closing a window can mean two different things, 
and it's important to understand the difference. 

When the user closes a window, it may mean just hiding the window 
from view, or it may mean actually disposing of the window and any associ
ated documents or memory blocks in use related to that window. Our CLOSE 
routine does the latter, completely removing our window from the control of 
the Window Manager and TaskMaster, and de-allocating any memory associ
ated with that window. CLOSE in this form should be called only when you're 
absolutely done with a window and its data. 

If there are several windows open on the screen when your application 
receives the close event, you will need to first determine which window was 
active and needs to be closed. The Window Manger routine FrontWindow 
($150E) returns the handle identifier for the currently active (and therefore in 
front) window. In Program 19-1 there is only one window active (TaskMaster 
will handle closing any desk accessory windows automatically), so the handle 
returned by FrontWindow is pulled off the stack and put in PTR as an easy 
way to ignore it. 

Any memory associated with that window should then be disposed of, 
and the third UserlD, ID3 is passed to DisposeAll to do this. This SHELL pro
gram does not have any document or application-generated memory associated 
with the window, but this step is included to show what would normally be 
done here. 

Finally, the window is closed and Window Manager-associated memory 
de-allocated with the call CloseWindow. Remember, this is not the same as 
temporarily hiding a window. That technique will be discussed shortly. 

Returning our attention to the main event loop, if a close event was not 
detected on line 172, then control passes to the handler of Event Manager 
events, in the routine DOCMDS (DO CoMmanDS). The Event Manager event 
codes will all be in the range of O to 15, as was explained in the Chapter 18 on 
the Event Manager. Knowing this, we can create a vector table to be used with 
indirect indexed addressing, as was also described in previous chapters, and 
also mentioned in this chapter with respect to handling menu commands. 

Lines 354-369, titled CMOS, define the entry points for the routine to 
handle each possible event. This SHELL program is pretty fancy, as you can 
tell; every possible event is routed to IGNORE (a simple RTS). However, if 
your program were a word processor, you would look for keydown events and 

427 



Chapter 19 

process them accordingly. A drawing program might use the mouse-down 
event to start drawing. The DOCMDS routine (lines 179-184) shifts the event 
code (equivalent to multiplying by 2), and then does a JSR to the appropriate 
routine. 

Program 19-1. SHELL Program 

I ********************************************** 
2 • SHELL PROGRAM • 
3 • MERLIN ASSEMBLER • 
4 •••••••••••••••••••••••••••••••••••••••••••••• 
5 
6 MX %00 ; TELL MERLIN WE'RE IN 16 BITS 
7 REL 
8 DSK SHELL.L 
9 

IO LST OFF ; DON'T LIST MACROS 
11 USE UTIL.MACS ; USE MACRO LIBRARY 
12 LST ON ; LISTING BACK "ON" 
13 EXP OFF ; DON'T EXPAND MACROS 
14 TR ON ; DON'T PRINT ALL BYTES 
15 

=EIOOA8 16 PRODOS EQU $EIOOA8 ; STD. PRODOS 16 ENTRY 
17 

=0000 18 PTR EQU $00 ; OUR OWN DIRECT-PAGE PTR 
19 ; $00,01,02,03 
20 
21 
22 
23 •••••••••••••••••••••••••••••••••••••••••••••• 
24 * STARTUP THE ENVIRONMENT 
25 ********************************************** 
26 

008000: 48 27 STARTUP PHK 
008001: AB 28 PLB 
008002: 78 29 TDC ; PUT DIRECT PG IN ACC. 
008003: SD Fl 82 30 STA MYDP 

31 
008006: E2 30 32 SETRES SEP $30 ; 8-BIT MODE 
008008: A9 SC 33 LDA #$SC ; JML (JMP LONG) 
00800A: SF F8 03 00 34 STAL $3F8 ; CTRLY VECTOR 
00800E: C2 30 35 REP $30 ; 16-BIT MODE 
008010: A9 EO 82 36 LDA #RESUME 
008013: SF F9 03 00 37 STAL $3F9 ; $3F9,3FA 
008017: A9 00 00 38 LDA #ARESUME 
00801A: SF FB 03 00 39 STAL $3FB ; $3FB,3FC 

40 
41 TL ToolCall $020 I ; TOOL LOCATOR STARTUP 
42 
43 MM PushWord #$0000 ; SPACE FOR RESULT 
44 ToolCall $0202 ; MEMORY MGR. STARTUP 

428 



The Window and Menu Managers 

45 PullWord ID ; SAVE OUR ID 
46 ; LIKELY = $ 1002 

008038: 09 00 01 47 ORA #$0100 ; CREATE SUB-ID 
00803E: SD EB 82 48 STA ID2 ; LIKELY = $1102 
008041: 09 00 02 49 ORA #$0200 ; 2ND SUB-ID FOR PICTURE DATA 
008044: SD ED 82 50 STA ID3 ; LIKELY = $1302 

51 
52 GETDP PushLong #$0000 ; SPACE FOR RESULT 
53 PushLong #$600 ; AMT OF MEMORY NEEDED 
54 ; 3 PAGES FOR QUICKDRAW 
55 ; 1 PAGE FOR EVENT MGR. 
56 ; 1 PAGE FOR MENU MGR. 
57 ; 1 PAGE FOR CTRL. MGR. 
58 PushWord ID2 ; SUBID 
59 PushWord #$COOi ; TYPE: WCKED, FIXED 
60 PushLong #$0000 ; BANK= $00 
61 ToolCall $0902 ; NewHandle 
62 
63 PullLong PTR ; GET HANDLE FOR NEW DP 

008071: A7 00 64 LDA [PTR] ; WNG INDIRECT WAD 
008073: SD EF 82 65 STA DP ; SAVE THE DP ADDRESS 

66 
008076: 48 67 EM PHA ; PUSH DP ADDRESS (IN ACC.) 

68 PushWord #$0000 ; QUEUE SIZE = DEFAULT = 20 
69 PushWord #$0000 ; MIN X CLAMP FOR MOUSE = 0 
70 PushWord #320 ; MAX X CLAMP = 320 
71 PushWord #$0000 ; MIN Y CLAMP = 0 
72 PushWord #200 ; MAX Y CLAMP = 200 
73 PushWord ID2 ; SUBID 
74 ToolCall $0206 ; EMStartUp 
75 

008095: 18 76 CLC 
008096: AD EF 82 77 LDA DP ; GET STARTING DP MEMORY 

ADDR. 
008099: 69 00 01 78 ADC #$100 ; JUST USED BY EVENT. MGR. 
00809C: SD EF 82 79 STA DP 

80 
00809F: 48 81 QD PHA ; PUSH DP ADDRESS ON STACK 

82 PushWord #$0000 ; MASTER SCB = DEFAULT (320) 
83 PushWord #$0000 ; MAX SCREEN SIZE FOR 

BOUNDSRECT 
84 PushWord ID2 ; SUBID 
85 ToolCall $0204 ; QDStartUp 
86 

008085: 18 87 CLC 
008086: AD EF 82 88 LDA DP 
008089: 69 00 03 89 ADC #$300 ; JUST USED BY QD 
0080BC: SD EF 82 90 STA DP 

91 
92 WADTOOLS PushLong #TOOLTBL 
93 ToolCall $0EOI ; LoadTools 
94 

429 



Chapter 19 

008103: 18 
008104: AD EF 82 
008107: 69 00 01 
00810A: SD EF 82 

008120: 18 
008121: AD EF 82 
008124: 69 00 01 
008127: SD EF 82 

008186: 68 

95 WM 
96 
97 
98 
99 
100 
101 CTRL 
102 
103 
104 
105 
106 
107 
108 
109 
110 MENU 
111 
112 
113 
114 
115 
116 
117 
118 
119 DESK 
120 
121 APPLE 
122 
123 
124 
125 
126 
127 
128 

129 
130 
131 DESKACC 
132 
133 

134 

PushWord ID2 
ToolCall $020E 

PushLong #$0000 
ToolCall $390E 

PushWord ID2 
PushWord DP 
TooICall $0210 

CLC 
LDA DP 
ADC #$100 
STA DP 

PushWord 102 
PushWord DP 
TooICall $020F 

CLC 
LDA DP 
ADC #$100 
STA DP 

TooICall $0205 

PushLong #$0000 
PushLong #MENUl 
ToolCall $2DOF 

PullLong MENUIHD 

PushLong MENUl HD 
PushWord #$0000 

ToolCall $0DOF 

PushWord #$0001 
ToolCall $1E05 

135 FIXBAR PushWord #$0000 
136 TooICall $130F 
137 
138 
139 PLA 
140 
141 DRAWMENU ToolCall $2AOF 
142 
143 

430 

; WMStartUp 

; 0 = DRAW ENTIRE SCREEN 
; Refresh (DRAW DESKTOP) 

; SUBID 
; DP AREA FOR CTRL MGR. 
; CtIStartUp 

; $100 JUST USED BY CTRL MGR. 

; SUBID 
; DP AREA FOR MENU MGR. 
; MenuStartUp 

; $ 100 JUST USED BY MENU MGR. 

; DeskStartup 

; SPACE FOR RESULT 
; ADDR. OF MENU STRUCTURE 
; NewMenu 

; HANDLE FOR 1ST MENU 

; INSERT AT THIS POSITION 
(FRONT) 
; InsertMenu 

; APPLE MENU 1D 
; FixAppleMenu 
; ADD DA NAMES TO APPLE 
MENU 

; SPACE FOR RESULT 
; FixMenuBar 
; CALC SIZES FOR EVERY MENU 

; GET MENU HEIGHT & DISCARD 

; DrawMenuBar 
; DRAW MENU, WWER WINDOW 



008192: 20 FA 81 

008187: 68 
008188: FO E6 =81AO 

00818A: 20 F9 81 

00818D: C9 11 00 
0081CO: DO 06 =SICS 
0081C2: 20 DB 81 
0081C5: 4C AO 81 

0081C8: C9 16 00 
0081CB: DO 03 =81DO 

0081 CD: 4C 60 82 

0081DO: AD F7 82 
0081D3: OA 
0081D4: AA 
0081D5: FC ID 83 

0081D8: 4C AO 81 

0081DB: AD 07 83 
0081DE: C9 00 01 
0081El: DO 03 =81E6 
0081E3: 4C E6 81 

The Window and Menu Managers 

144 WIND 
145 

JSR OPEN 

146 SHOWCURS TooICall $9104 
147 
148 
149 ********************************************** 
150 • MAIN EVENT WOP 
151 ********************************************** 
152 
153 MAIN 
154 
155 
156 
157 
158 GETEV 
159 
160 

PushWord #$0000 
PushWord #$FFFF 
PushLong #EVRECORD 
ToolCall $1DOE 

PLA 
BEQ MAIN 

161 ********************************************** 
162 • HANDLE THE EVENT 
163 •••••••••••••••••••••••••••••••••••••••••••••• 

164 
165 EVT 
166 
167 
168 
169 
170 
171 
172 :1 
173 
174 
175 
176 

JSR 

CMP 
BNE 
JSR 
JMP 

SPECIAL 

#$ll 
:1 
DOMENU 
MAIN 

CMP #$16 
BNE DOCMDS 

JMP SHUTDOWN 

177 •••••••••••••••••••••••••••••••••••••••••••••• 
178 
179 DOCMDS 
180 
181 
182 
183 
184 
185 

LDA 
ASL 
TAX 
JSR 

EVENT 

(CMDS,X) 

JMP MAIN 

186 •••••••••••••••••••••••••••••••••••••••••••••• 

187 
188 DOMENU 
189 
190 
191 
192 
193 :1 
194 
195 NORMAL 

LDA 
CMP 
BNE 
JMP 

TDATA 
#256 
:I 
NORMAL 

PushWord #$0000 

431 

; OPEN A WINDOW 

; ShowCursor 

; SPACE FOR RESULT 
; ALWW ALL EVENTS 
; RECORD ADDRESS 
; TaskMaster 

; GET EVENT CODE IN ACC. 
; NO EVENT 

; ANY SPECIAL EVENT HANDLING 

; MENU EVENT? 
; NOPE 
; HANDLE IT 
; BACK FOR MORE 

; CWSE BOX 

; ALL DONE! 

; EVENT• 2 
; PUT IN X REG 

; BACK FOR MORE 

; MENU ITEM NUMBER 
; APPLE MENU MSSG? 
; NOPE 
; IGNORE (BUT UNHILITE) 

; CYI'HER TESTS HERE ... 

; 0 = UNHIGHLIGHT 



Chapter 19 

196 Push Word TDATA + 2 ; MENU HEADER # 
197 TooICall $2COF ; HiLiteMenu 
198 

0081F8: 60 199 RTS 
200 
201 ********************************************** 
202 
203 SPECIAL ; SPECIAL EVENT HANDLING 
204 

0081F9: 60 205 RTS 
206 
207 
208 
209 OPEN PushLong #$0000 ; SPACE FOR RESULT 
210 PushLong #WINDOW ; ADDR. OF WINDOW DEFINITION 
211 TooICall $090E ; NewWindow 
212 
213 PullLong WPTR ; GET WIND. MGR. HANDLE FOR 

THIS 
214 

008219: 60 215 RTS 
216 
217 •••••••••••••••••••••••••••••••••••••••••••••• 
218 

00821A: 88 219 UPDATE PHB ; SAVE OTHER'S DATA BANK 
008218: 48 220 PHK 
00821C: AB 221 PLB ; DATA BANK = OURS 

222 
0082ID: OB 223 PHD ; SAVE THE DIRECT PAGE 
00821E: AD Fl 82 224 LDA MYDP ; USE OURS FOR NOW ... 
008221: 58 225 TCD 

226 
227 * DO ANY WINDOW UPDATING HERE ... 
228 

008222: 28 229 PLD ; RESTORE THE DIRECT PAGE 
008223: AB 230 PLB ; RESTORE THE ORIG. DATA 

BANK 
008224: 68 231 RTL ; BACK TO TASKMASTER! 

232 
233 
234 
235 CWSE PushLong #$0000 ; SPACE FOR RESULT 
236 TooICall $150E ; FrontWindow 
237 ; GETS HANDLE TO ACTIVE 

WINDOW 
238 ; WE DON'T REALLY NEED THIS 

IN 
239 ; THIS PROGRAM, BUT IT'S GOOD 

FORM. 
240 
241 PullLong PTR ; STORE HANDLE, PTR IS AVAIL. 
242 

432 



00825E: 60 

00825F: 60 

008260: 20 25 82 

0082CE: 22 AS 00 El 
0082D2: 29 00 
0082D4: DA 82 00 00 
0082D8: 00 00 

0082DA: 00 00 00 00 
0082DE: 00 00 

0082EO: 48 
0082El: AB 

The Window and Menu Managers 

243 
244 
245 
246 
247 
248 
249 
250 

PushWord ID3 
ToolCall $1102 

PushLong WPTR 
ToolCall $OBOE 

RTS 

251 ********************************************** 
252 
253 IGNORE 
254 

RTS 

255 ********************************************** 
256 
257 SHUTDOWN 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 

JSR CWSE 

ToolCall $0305 

ToolCall $030F 

ToolCall $0310 

ToolCall $030E 

ToolCall $0304 

ToolCall $0306 

PushWord ID2 
ToolCall $1102 

PushWord ID 
ToolCall $0302 

ToolCall $0301 

279 ********************************************** 
280 

281 QUIT 
282 
283 
284 
285 

JSL PRODOS 
DA $29 
ADRL QUITBLK 
BRK $00 

286 ********************************************** 
287 
288 QUITBLK ADRL $0000 
289 DA $0000 
290 
291 •••••••••••••••••••••••••••••••••••••••••••••• 

292 
293 RESUME 
294 

PHK 
PLB 

433 

; SUBID FOR PICTURE DATA 
; DisposeAII 

; HANDLE TO WINDOW RECORD 
; CloseWindow 

; CWSE THE WINDOW 

; DeskShutdown 

; MenuShutdown 

; CtlShutdown 

; WMShutdown 

; QDShutdown 

; EMShutdown 

; DisposeAII 

; MMShutdown 

; TLShutdown 

; DO QUIT CALL 
; QUIT CALL COMMAND VALUE 
; ADDRESS OF PARM TABLE 
; SHOULD NEVER GET HERE ... 

; NO PATHNMAME 
; STD. QUIT 

; SET OUR DATA BANK 



Chapter 19 

0082E2: 18 295 CLC 
0082E3: FB 296 XCE ; SET NATIVE MODE 
0082E4: C2 30 297 REP $30 ; 16-BIT MODE 
0082E6: 4C 60 82 298 JMP SHUTDOWN ; TRY TO SHUTDOWN 

299 
300 •••••••••••••••••••••••••••••••••••••••••••••• 
301 

0082E9: 00 00 302 ID DA $0000 ; OUR APPLICATION'S ID # 
0082EB: 00 00 303 ID2 DA $0000 ; SUB-ID FOR MEMORY BLOCKS 
0082ED: 00 00 304 ID3 DA $0000 ; 2ND SUB-ID 

305 
0082EF: 00 00 306 DP DA $0000 ; TEMP STORAGE FOR THE DP 

VALUE 
0082Fl: 00 00 307 MYDP DA $0000 ; TO STORE OUR DP ADDRESS 

308 
0082F3: 00 00 309 YLOC DA $0000 ; LOCAL Y POSN 
0082F5: 00 00 310 XLOC DA $0000 ; LOCAL X POSN 

311 
312 •••••••••••••••••••••••••••••••••••••••••••••• 
313 
314 EVRECORD ; DATA BLOCK WRITTEN BY EV 

MGR. 
315 

0082F7: 00 00 316 EVENT DA $0000 ; EVENT CODE 
0082F9: 00 00 00 00 317 TYPE ADRL $0000 ; TYPE OF EVENT 
0082FD: 00 00 00 00 318 TIME ADRL $0000 ; TIME SINCE STARTUP 
008301: 00 00 319 YPOS DA $0000 ; Y-POSITION OF MOUSE 
008303: 00 00 320 XPOS DA $0000 ; X-POSITION OF MOUSE 
008305: 00 00 321 MOD DA $0000 ; EVENT MODIFIER 

322 
008307: 00 00 00 00 323 TDATA ADRL $0000 ; TASK MASTER MENU & ITEM # 
008308: FF 324 TMASK DFB %11111111 ; TASK MASTER EVENT MASK 

(LOW BYTE) 
325 ; BIT O = MENU KEYS 
326 ; BIT 1 = UPDATE HANDLING 
327 ; BIT 2 = FIND WINDOW 
328 ; BIT 3 = MENU SELECT 
329 ; BIT 4 = OPEN NDAS 
330 ; BIT 5 = SYSTEM (NDA) CLICKS 
331 ; BIT 6 = DRAG WINDOW 
332 ; BIT 7 = SELECT WINDOW IF IN 

CONTENT 
00830C: IF 333 DFB %00011I 11 ; (HIGH BYTE) 

334 ; BIT 8 = TRACK GO-AWAY BOX 
335 ; BIT 9 = TRACK ZOOM BOX 
336 ; BIT 10 = TRACK DRAG BOX 
337 ; BIT 11 = SCROLLING 
338 ; BIT 12 = SPECIAL MENU 

EVENTS 
00830D: 00 00 339 DA $0000 ; BITS 16-31 ALWAYS CLEAR 

(HIGH WORD) 
340 

434 



The Window and Menu Managers 

341 •••••••••••••••••••••••••••••••••••••••••••••• 
342 

00830F: 03 00 343 TOOLTBL DA 3 ; THREE TOOLS TO WAD 
344 

008311: OE 00 345 DA 14 ; WINDOW MGR 
008313: 00 00 346 DA 0 ; ANY VERSION 
008315: OF 00 347 DA 15 ; MENU MGR 
008317: 00 00 348 DA 0 ; ANY VERSION 
008319: 10 00 349 DA 16 ; CONTROL MGR. 
008318: 00 00 350 DA 0 ; ANY VERSION 

351 
352 •••••••••••••••••••••••••••••••••••••••••••••• 
353 

008310: SF 82 354 CMDS DA IGNORE ; NULL EVENT 
00831F: SF 82 355 Cl DA IGNORE ; MOUSE DOWN 
008321: SF 82 356 C2 DA IGNORE ; MOUSE UP 
008323: 5F 82 357 C3 DA IGNORE ; KEY DOWN 
008325: SF 82 358 C4 DA IGNORE ; UNDEFINED 
008327: 5F 82 359 C5 DA IGNORE ; AUTOKEY 
008329: 5F 82 360 C6 DA IGNORE ; UPDATE WINDOW EVENT 
008328: 5F 82 361 C7 DA IGNORE ; UNDEFINED 
00832D: 5F 82 362 C8 DA IGNORE ; ACTIVATE WINDOW EVENT 
00832F: 5F 82 363 C9 DA IGNORE ; SWITCH EVENT 
008331: 5F 82 364 ClO DA IGNORE ; DESK ACCESSORY EVENT 
008333: 5F 82 365 Cll DA IGNORE ; DEVICE DRIVER EVENT 
008335: 5F 82 366 C12 DA IGNORE ; APPLICATION DEFINED EVENT 
008337: SF 82 367 C13 DA IGNORE ; APPLICATION DEFINED EVENT 
008339: 5F 82 368 C14 DA IGNORE ; APPLICATION DEFINED EVENT 
008338: 5F 82 369 C15 DA IGNORE ; APPLICATION DEFINED EVENT 

370 
371 •••••••••••••••••••••••••••••••••••••••••••••• 

372 
00833D: 00 00 00 00 373 WPTR ADRL $0000 ; POINTER TO WINDOW RECORD 

374 
008341: 11 41 70 70 375 WTITLE STR 'Apple IIGS Window' 

376 
008353: 4E 00 377 WINDOW DA WIND END-WINDOW ; LENGTH OF DATA BWCK 
008355: E5 DD 378 DA %1101110111100101 ; WINDOW FRAME DEFINITION 

379 ; BIT 15 = TITLE 
380 ; BIT 14 = CWSE BOX 
381 ; BIT 13 = (NOT) AN ALERT BOX 
382 ; BIT 12 = VERTICAL SCROLL 

BAR 
383 ; BIT 11 = HORIZ. SCROLL BAR 
384 ; BIT 10 = GROW BOX 
385 ; BIT 9 = FLEXIBLE ORIGIN ON 

GROW OR ZOOM 
386 ; BIT 8 = ZOOMABLE 
387 ; BIT 7 = DRAGGABLE 
388 ; BIT 6 = ACTIVATE ON 

CONTENT 
389 ; BIT 5 = WINDOW IS VISIBLE 

435 



Chapter 19 

008357: 41 83 00 00 
008358: 00 00 00 00 
00835F: 00 00 00 00 
008367: 00 00 00 00 
008368: 00 00 00 00 
00836F: CS 00 40 01 
008373: 96 00 22 01 
008377: 04 00 IO 00 

008378: 28 00 AO 00 
00837F: 00 00 00 00 

008383: 00 00 
008385: 00 00 00 00 

008389: 00 00 00 00 

00838D: IA 82 00 00 

008391: IE 00 
008393: 14 00 
008395: 64 00 
008397: C8 00 
008399: FF FF FF FF 

00839D: 00 00 00 00 

0083Al: 3E 3E 40 SC 
0083A9: 2D 20 59 6F 
0083C7: 2E 

0083C8: 00 00 00 00 

0083CC: 48 

390 ; BIT 4 = (NO) INFORMATION 
BAR 

391 ; BIT 3 = (NO) INDEPENDENT 
CTRLS 

392 ; BIT 2 = ALWCATED BY 
NEWWINDOW 

393 ; BIT l = (NOT) CURRENTLY 
ZOOMED 

394 ; BIT O = HIGHLIGHTED 
395 ADRL WTITLE ; POINTER TO TITLE 
396 ADRL $0000 ; REFERENCE CONSTANT 
397 DA 0,0,0,0 ; ZOOM RECTANGLE 
398 ADRL $0000 ; COWR TABLE 
399 DA 0,0 ; ORIGIN OFFSET 
400 DA 200,320 ; HEIGHT, WIDTH DATA AREA 
401 DA 150,290 ; HEIGHT, WIDTH MAX WINDOW 
402 DA 4,16 ; VERT., HORIZ. SCROLL 

INCREMENT 
403 DA 40,160 ; VERT., HORIZ. PAGE INCREMENT 
404 ADRL $0000 ; INFO BAR REFERENCE 

CONSTANT 
405 DA 0 ; INFO BAR HEIGHT (NONE) 
406 ADRL $0000 ; FRAME PROCEDURE ADDR. 

(NONE) 
407 ADRL $0000 ; INFO BAR PROCEDURE ADDR 

(NONE) 
408 ADRL UPDATE ; CONTENT PROCEDURE ADDR. 
409 WRECT ; CONTENT REGION OF WINDOW 
410 WVl DA 30 ; UPPER LEFT VERT. POSITION 
411 WHl DA 20 ; UPPER LEFT HORIZ. POSN 
412 WV2 DA 100 ; WWER RIGHT VERT. POSN 
413 WH2 DA 200 ; WWER RIGHT HORIZ. POSN 
414 ADRL -1 ; PUT WINDOW AT FRONT ($FFF .. 

= -1) 
415 ADRL $0000 ; STORAGE 
416 WINDEND ; END OF DATA STRUCTURE 
417 
418 •••••••••••••••••••••••••••••••••••••••••••••• 
419 
420 MENUI 
421 

ASC '>>@ZNlX ',00 ; APPLE MENU 
ASC '--Your Message Here ... ZN256V',OO 

422 ASC '.' ; END OF MENU 
423 
424 MENUIHD ADRL $0000 ; STORAGE FOR HANDLE 
425 
426 
427 
428 CHKSUM CHK ; CHECKSUM FOR VERIFICATION 

--End Merlin-16 assembly, 973 bytes, errors: 0 

436 



The Window and Menu Managers 

Monitoring Events in a Window 
Although the demonstration program just presented should work properly for 
you, it lacks routines to actually update the window with any information. In 
addition, it would be worthwhile to have a program that could provide a little 
more information about what is actually going on in the system each time an 
event occurrs. 

EVENT.DISPLAY, our next program, combines the SHELL program just 
presented with parts of the Event Manager demonstration program from the 
previous chapter. EVENT.DISPLAY will display a description of each event as 
it occurs within the window on the DeskTop, and it will print out not only the 
mouse global mouse coordinates (relative to the BoundsRect-the DeskTop) but 
also the local coordinates within the window. 

By experimenting with activities like moving the mouse around, opening 
a New Desk Accessory and moving it around, and other actions on the Desk
Top, you'll gain a better understanding of the entire DeskTop and window 
environment, and also how TaskMaster handles certain events and passes others 
through to the application. 

Because the listing for the total program would be fairly large (about 
1000 lines), we'll step through how to combine the two existing programs using 
source listings you've already entered, rather than retyping the entire program. 

Start with the SHELL program, and save it under the new name, 
EVENT.DISPLAY. You may also want to change the title banner at the top of 
the source listing to this: 

********************************************* 
* 
* 

WINDOW WITH EVENT DISPLAY 
MERLIN ASSEMBLER 

* 

* 
********************************************* 

Having saved this new source file, load Program 18-2, EVENT MAN
AGER DEMO from Chapter 18, and delete lines 310-320, which are the Event 
Record. It is already present in the SHELL. Next, delete lines 301-305. This re
moves the duplicate labels ID, ID2, and DP, which are also already in SHELL. 
Finally, delete lines 1-176, and the checksum instruction at the end. Save the 
resulting program segment under the name EVENT.SEGMENT. This will be 
added to the SHELL program in a moment. This program segment could be 
linked into the SHELL program by defining the necessary EXT (external) and 
ENT (entry) labels for the Merlin or APW assemblers, but, for a relatively short 
program like this, it's probably just as easy to combine them in one listing. 

The easiest way to do this is to first use the text copy command in your 
assembler to copy the entire source list for EVENT.SEGMENT onto the clip
board of the assembler's editor. In Merlin, this is done by positioning the cursor 

437 



Chapter 19 

on the first line of the program and then pressing Open Apple-C to start the 
copy selection. Next, press Open Apple-Q to select from that point to the very 
end of the listing. Finally, press Open Apple-C again to complete the copy of 
this text onto Merlin's clipboard. 

Now, load the program EVENT.DISPLAY and press Open Apple-N to 
move to the end of that listing; then move the cursor to line 428, which should 
correspond to the checksum instruction. Pressing Open Apple-V (for paste) at 
that point should make the entire EVENT.SEGMENT code appear as it is 
pasted from the Merlin clipboard into the program. Check to make sure every
thing looks OK, and then resave this new version back to the disk under the 
current name, EVENT.DISPLAY. If you're using the APW assembler, use follow 
the same procedure using the APW editor commands to copy and paste text. 

Now, the only remaining changes are to add a few lines here and there 
to make the UPDATE routine fill in the event message within our window, and 
to do a few other minor changes. 

For each change, we'll reprint the neighboring lines so you can see ex
actly what the finished portion should look like. 

The beginning of the program first needs to be modified to set up 
MSSGPTR as was done in the Event Manager demonstration program. You'll 
recall that MSSGPTR will be used as a pointer into the list of event descrip
tions as each event occurs. 

PTR 

MSSGPTR 

STARTUP 

SETRES 

EQU $00 

EQU $04 

PHK 
PLB 
TDC 
STA MYDP 

LDA #ASTARTUP 
STA MSSGPTR+2 

SEP $30 

; OUR OWN DIRECT PAGE PTR 
; $00,01,02,03 

; POINTER TO ANY MESSAGE 

; PUT DIRECT PG IN ACC. 

; GET OUR DATA BANK 
; WRITE HIGH WORD TO OUR DATA BANK 

; 8-BIT MODE 

The next modification is to the main event loop, which starts at the label 
MAIN. 

MAIN PushWord #$0000 
PushWord #$FFFF 
PushLong #EVRECORD 
ToolCall $ lDOE 

; SPACE FOR RESULT 
; ALLOW ALL EVENTS 
; RECORD ADDRESS 
; TaskMaster 

438 



JSR MPOSN 

GETEV PLA 
BEQ MAIN 

The Window and Menu Managers 

; GET EVENT CODE IN ACC. 
; NO EVENT 

The only change here is to insert a JSR to the routine MPOSN, which 
will print out the current mouse position for each pass through the event loop, 
regardless of whether an event has actually occurred or not. MPOSN will be 
described shortly . 

In the SHELL program there was a JSR to a routine called SPECIAL, 
which consisted of nothing more than a JSR. This is where we will print out 
the description of each and every event that is passed on by TaskMaster. Add 
the instruction JSR PRINTEV to the SPECIAL routine: 

SPECIAL ; SPECIAL EVENT HANDLING 
JSR PRINTEV ; EVENT VERSION 

RTS 

With the Window Manager, a vector can be set up in the window pa
rameter list to point to the routine which should be called whenever the win
dow needs to be updated by TaskMaster. For example, this would occur when 
the window was resized, or when another window that partially obscured ours 
was moved out of the way. The SHELL program already contains the founda
tion of any update routine, namely the setting of the data bank and program 
registers to those of our application and then restoring them after the update 
action takes place. Notice that the UPDATE routine always ends with an RTL 
(never an RTS). Simply insert the JSR EVMSSG into the update routine so that 
it looks like: 

UPDATE PHB ; SAVE UfHER'S DATA BANK 
PHK 
PLB ; DATA BANK = OURS 

PHD ; SAVE THE DIRECT PAGE 
LDA MYDP ; USE OURS FOR NOW . .. 
TCD 

JSR EVMSSG ; PRINT EVENT MGR. MSSG 

PLD ; RESTORE THE DIRECT PAGE 
PLB ; RESTORE THE ORIG. DATA BANK 
RTL ; BACK TO TASKMASTER! 

Now for the MPOSN routine. At the beginning of the EVENT.SEGMENT 
code that you added to the program, insert two new routines, MPOSN and 
PRINTEV. These routines correspond to the code that would be executed 
whenever the application updated its own window. The key points are that two 

439 



Chapter 19 

Window Manager routines, StartDrawing and SetOrigin, must be at the begin
ning and end of any routine which draws in a window during the application. 

Although the local coordinates of the upper left corner of the visible 
window shift as the scroll bars are adjusted, QuickDraw internally always 
keeps the upper left corner at 0,0. When UPDATE is called, the Window Man
ager temporarily sets the origin back to the proper value while our UPDATE 
routine is drawing on the screen, but then it immediately reverts back to 0,0 
when our routine exits. 

When executing a window update within an application (but separate 
from the window definition update vector), it is neccessary to manually reset 
the coordinates of the window to the proper local coordinates with the com
mand StartDrawing. StartDrawing and SetOrigin are used by passing the han
dle to the specified window record. Once the window update is complete, the 
tool call SetOrigin is used to return the upper left corner of the window back to 
0,0 for the Window Manager. 

MPOSN prints the local and global coordinates of the mouse on a con
tinual basis. PRINTEV is only called from within SPECIAL, which is executed 
whenever an actual event occurs. 

MPOSN PushLong WPTR 
ToolCall $4DOE 

JSR MOUSE 

PushWord #$0000 
PushWord #$0000 
ToolCall $2304 

RTS 

; PRINT MOUSE POSITION 
; StartDrawing 
; MUST DO THIS FOR A DRAW 
; OUTSIDE THE UPDATE ROUTINE 
; TO SET ORIGIN CORRECTLY 

; X = 0 
; y = 0 
; SetOrigin 
; MUST DO THIS FOR A DRAW 
; OUTSIDE THE UPDATE ROUTINE 
; TO RETURN ORIGIN TO 0,0 

********************************************* 
• PRINT EVENT DESCRIPTION • 
••••••••••••••••••••••••••••••••••••••••••••• 

PRINTEV PHA 

PushLong WPTR 
ToolCall $4DOE 

JSR EVMSSG 

PushWord #$0000 
PushWord #$0000 

; SAVE EVENT CODE IN ACC. 

; HANDLE FOR WINDOW TO DRAW IN 
; StartDrawing 

; UPDATE EVENT DESCRIPTION 

; X = 0 
; y = 0 

440 



ToolCall $2304 

PLA 

RTS 

The Window and Menu Managers 

; SetOrigin (BACK TO 0,0) 

; PUT EVENT CODE BACK IN ACC. 

This would pretty much take care of things, except that the MOUSE rou
tine from the Event Manager demonstration program only printed out the 
global coordinates of the mouse. Rewrite the MOUSE routine as follows: 

MOUSE PushLong #YWC ; DATA TO REWRITE 
ToolCall $0C06 ; GetMouse (WCAL) 

XPOSN PushWord XPOS ; GET X POSITION 

YPOSN 

X2 

Y2 

XMSG 

YMSG 

PushLong #XMSG+5 ; ADDR. OF BUFFER 
PushWord #4 ; 4 CHAR OUTPUT 
PushWord #$0001 ; SIGNED NUMBER FLAG 
ToolCall $2608 ; Int2Dec 

PushWord YPOS 
PushLong #YMSG + 5 
PushWord #4 
PushWord #$0001 
ToolCall $2608 

PushWord XWC 
PushLong #XMSG + 23 
PushWord #4 
PushWord #$0001 
ToolCall $2608 

PushWord YWC 
PushLong #YMSG + 23 
PushWord #4 
PushWord #$0001 
ToolCall $2608 

LDA #0 
STA CH 
LDA #10 
STA CV 

JSR PRINT 
STR 'X = 0000 
JSR CR 

JSR PRINT 
STR 'Y = 0000 
JSR CR 

RTS 

; CONVERT TO ASCII DECIMAL STR$ 

; GET Y POSITION 
; ADDR. OF BUFFER 
; 4 CHAR OUTPUT 
; SIGNED NUMBER FLAG 
; Int2Dec 

; GET X WCAL 
; ADDR. OF BUFFER 
; 4 CHAR OUTPUT 
; SIGNED NUMBER FLAG 
; Int2Dec 
; CONVERT TO ASCII DECIMAL STR$ 

; GET Y WCAL 
; ADDR. OF BUFFER 
; 4 CHAR OUTPUT 
; SIGNED NUMBER FLAG 
; Int2Dec 

; X = 0 

; Y = 10 

Local X = 0000 ' 

Local Y = 0000 ' 

441 



Chapter 19 

The main change here is to lengthen the output strings for XMSG and 
YMSG to include the local coordinates, and to use the tool call GetMouse, 
which returns the coordinates of the mouse in local (within-the-window = 
PortRect) coordinates. GetMouse writes the position into a data structure indi
cated by the pointer pushed on the stack when the routine is called. 

In our new program, the local mouse coordinates will be written into 
YLOC and XLOC, which were included in the original SHELL program. As 
usual, the Y point is allocated first in the data structure. 

When you've made the changes indicated here, double-check the listing, 
then assemble and link it as usual. Remember to save the new listing to disk 
before you assemble and link it. 

If the changes are made exactly as described here, the new checksum at 
the end of the listing should be $28, and the program should assemble to be 
1780 bytes long ($6F4). 

Running the Event Display Program 
When you run the Event Display program, there are some things to try and no
tice, things that illustrate some very important concepts about how the Window 
Manager works. 

When the program first runs, before you even move the mouse, an event 
is displayed called update. This is the Window Manager telling the application 
that the window has been opened and may need to be updated. In our applica
tion, the update takes place when SPECIAL calls PRINTEV, which then calls 
the EVMSSG routine. The contents will also be automatically updated via the 
Window Manager and the UPDATE routine specified in the window parameter 
list whenever the window is resized or scrolled, or the like, bringing a previ
ously obscured portion of the window into view. 

With the cursor in the upper left corner of the screen, notice that the 
global coordinates of the mouse, as reported by the Event Manager in the event 
record (EVRECORD), are 0,0. Because the upper left corner of the content re
gion of our application's window is also 0,0 in local coordinates, the DeskTop 
corner at this moment corresponds to - 20, - 30 (local). 

Move the cursor to the upper left corner of the content region of the 
window to demonstrate this, and notice that the content region's global coordi
nates are 20,30 as specified in the wPosition field of the window parameter list. 
You can move the cursor and explore the coordinates assigned to the entire 
window and DeskTop areas at this point. The lower right corner of the content 
region should have global coordinates of 200,100, also as specified in the win
dow parameter list. 

Now drag the window by its title bar to a new location on the DeskTop. 

442 



The Window and Menu Managers 

Notice that the local coordinates within the window remain fixed, while the 
global coordinates of the window change as expected. 

Click the mouse in the content region of the window, and see the 
mouse-down and mouse-up events displayed on the screen. Notice that, as you 
click in the title bar, the mouse-down and mouse-up events are not passed 
through by TaskMaster, because it has already handled these itself. Click in the 
zoom box to make the window fill the screen. The event passed through now 
becomes update. Click a few times in the window, then zoom back to the pre
vious size. 

Now press the down-arrow key once on the vertical scroll bar in the 
window frame. The text printed in the window is automatically clipped as it 
scrolls out of view. Move the cursor and see that the local coordinates of the 
upper left corner of the content region are now 0,4. The vertical scroll incre
ment as specified in the window parameter list was four pixels. Experiment 
with the scroll controls, including paging and sliding the thumb control, and 
observe how the local coordinates automatically change. 

If at some point your application wanted to know what was currently in 
view in the window, there is a QuickDraw routine called GetPortRect ($1E04), 
that returns the current rectangle in local coordinates; this routine can be used 
to determine exactly what part of the underlying data area is being viewed. 
There is also a Window Manager routine, GetCOrigin ($3FOE), that returns the 
current local coordinates of the origin (upper left corner) of the content window 
at that moment. 

Before continuing, return the window scroll bars to their starting position 
so that 0,0 is the origin of the window once more, and you can see the com
plete event display. Now click once in the menu bar-in the middle, away 
from the Apple icon. Notice that no event is passed through. Now select the 
Apple menu, and select Your Message .... The menu will flash when it is se
lected, and then the NORMAL routine in our DOMENU section of the program 
will unhighlight the title. 

If you have a desk accessory listed (if you don't, try to put one on your 
system disk to try this out), select it to open a second window on the DeskTop. 
Click in one window and then the other to see how one is activated and the 
other is de-activated automatically. If you click in a window, you'll see the 
event activate show up. This tells the application that windows are being 
changed, and is different from an update event. When an activate or update 
event occurs, the handle to the related window is passed in the TYPE field of 
the event record (also called the message field). 

After you've thoroughly explored the DeskTop and window environ
ment, click in the close box of the application window to quit the program. 

443 









Chapter 20 

A Drawing Program for the 
Apple IIGS 

QuickDraw and the Window Manager don't care whether the drawing they're 
doing is on the screen or a real document in memory. This also means that just 
drawing something in a window does not automatically constitute any perma
nent record of that image anywhere in the computer. 

If all you want to do is to draw something on the screen, and you don't 
need an associated permanent record, then the techniques presented so far will 
be adequate. 

Unfortunately, this is rarely the case. It's a simple matter to rewrite the 
SHELL program to draw lines on the screen whenever a mouse-down event is 
detected. However, as soon as you scrolled whatever you drew out of view, it 
would be lost forever because there is no underlying document associated with 
the window. In Event Display program, when you changed the viewing win
dow with the scroll bars or the grow box, any part of the message clipped from 
being printed just didn't exist. The illusion, of course, is that the missing or 
clipped letters are just out of sight behind the window frame, but that's all it 
is-an illusion. 

If you want actions taken in your window to be permanently recorded, 
it's up to you to create a block of memory somewhere else in the computer, 
and to store data there as is appropriate to your application. 

This information may not always be graphics images. If you're writing a 
database, for example, the document itself would consist of the words and 
numbers that made up your file. The display would be done by expressing a 
portion of that data as a graphics printout within an open window. You nor
mally would not, as a matter of course, generate an entire graphics version of 
the document that the window then scrolled over. 

For instance, if the origin of the scrolled window was currently 0,200, 
and you knew that each line of text in your list of names was 10 pixels high, a 
quick calculation (200/10 = 20) would tell you that you could start printing in 
the window with the twentieth name in your list. A look at the PortRect would 

447 



Chapter 20 

tell you how high the window was, and dividing that height also by 10 would 
tell you how many names to print. All text to the left and right would be auto
matically clipped depending on the horizontal scroll position and width of the 
window. Thus, your program would only print, for example, records 20 
through 25. It would not have converted the entire document to a graphics im
age that the window then scrolled over. 

In the case of a paint program, there is an underlying graphics docu
ment. That document is a pixel image of the entire picture, and is stored in 
memory as continuous block of memory allocated by the memory manager. 

QuickDraw allows for the definition of a new drawing area by either cre
ating a new Gra£Port or by redirecting the memory controlled by the current 
Gra£Port to a new location. The memory controlled by the Gra£Port is de
scribed by a data structure called the PortLoclnfo, which looks like this: 

PortLoclnfo ; DATA STRUCTURE FOR PortLoclnfo 
PortSCB DFB $00 ; MASTER SCB BYTE 

DFB $00 ; RESERVED BYTE 
Loe ADRL $0000 ; WNG ADDRESS OF MEMORY BWCK 
Width DA $0000 ; WIDTH IN BYTES OF IMAGE 
BoundsRect ; RECTANGLE COORDINATES IN PIXELS 
Vl DA $0000 ; VERTICAL UPPER LEFT COORD. 
H1 DA $0000 ; HORIZ. UPPER LEFT COORD. 
V2 DA $0000 ; VERTICAL WWER RIGHT COORD. 
H2 DA $0000 ; HORIZ. WWER RIGHT COORD. 

Defining a Block of Memory 
To define a block of memory equivalent to the super hi-res screen, the follow
ing PortLoclnfo structure could be used: 

PICBLK ; PortLoclnfo for a new image 
DFB $00 ; $00 = 320 MODE 
DFB $00 ; UNUSED 
ADRL $E10000 ; SUPER HI-RES SCREEN 
DA 160 ; 160 BYTES WIDE 
DA 0,0 ; UPPER LEFT = 0,0 
DA 200,320 ; WWER RIGHT = 320,200 

The PortLoclnfo data structure can be generalized into a definition of 
any pixel memory area, called the Loclnfo block. By changing the address of the 
pixel image, and passing this to the Gra£Port using a QuickDraw call 
SetPortlnfo, you can redirect QuickDraw to draw anywhere into memory. 
We'll see how to do that a little later. 

You can use a Loclnfo data structure in two other QuickDraw com
mands, PPToPort ($D604) and PaintPixels ($7F04). 

448 



A Drawing Program for the Apple IIGS 

PPToPort (Paint Pixels To Port) will be used for our update routine. It 
transfers part of a pixel image somewhere in memory into the current PortRect 
of the GrafPort, using the current clipping windows. The result is that the en
tire window is updated using the pixels from a graphic document we'll create 
in memory. Figure 20-1 is the call diagram for PPToPort. 

Figure 20-1. PPToPort ($0604) 

Stack Before Call: 

Previous Contents 

SourceLocPointer 

DestinationX 

DestinationY 

Transfer Mode 

Stack After Call: 

Previous Contents 

Long: Pointer to Loclnfo for source image. 

Word: Upper left X of destination. 

Word: Upper left Y of destination. 

Word: Command byte like that for pen mode. 

~SP: Stack pointer after setup. 

~SP: Stack pointer after return from routine. 

The source parameter block determines where the pixel image is in 
memory. The address of the image is stored within the Info block for the image 
must usually be filled in by dereferencing the handle to the memory block 
you've allocated as the graphics document. 

PPToPort allows you to specify a rectangle as just part of the entire doc
ument to copy into the current window's PortRect. This can be determined by 
calling the GetPortRect, but Program 20-1 just takes the brute force approach of 
copying the entire document image to the window, letting the normal clipping 
functions filter out the excess. 

Destination X and Y specify where in the destination port the image will 
be transferred. For our update routine, both the source rectangle and the des
tination point will use 0,0. These are equivalent to the local coordinates when 
dealing with the window. Again, the fact that the window may be currently 
scrolled so that its origin is no longer 0,0 is not a concern since we'll be copy
ing the entire image over the window, and the clipping regions of the Window 
Manager will ensure that only the content region of the active window is 
changed. 

The transfer mode refers to a code value that tells the routine whether to 

449 



Chapter 20 

use an AND, ORA, or other function in transferring the pixels from our docu
ment to the window. If you wanted to blend two images, for example, you 
could use a different transfer mode than a straight copy. Table 20-1 is a sum
mary of the possible transfer modes. 

Table 20-1. Transfer Mode 

Value 
$0000 
$8000 
$0001 
$8001 
$0002 

Mode 
Copy 
NotCopy 
OR 
NotOR 
XOR 

Description 
Copy pixels to destination, overwriting whatever is already there. 
Copy inverse of pixels to destination, as in Copy. 
Use OR logic to overlay (blend) pixels. 
Overlay inverted pixels. 
Exclusive OR pixels with destination. This allows you to undo the 
transfer by repeating the transfer with XOR again. 

$8002 NotXOR Exclusive OR of inverted pixels. 
$0003 BIC A special logic function for Bit Clear ANDing. This clears bits in the 

destination corresponding to bits set in the source image. 
$8003 NotBIC BIC function using inverse of pixel image. 

One of the easiest ways to experiment with these would be to add the 
QuickDraw tool call SetPenMode ($2E04) to set the drawing mode to the value 
of your choice. SetPenMode looks like this in a program: 

PushWord #MODE 
ToolCall $2E04 

In fact, once you get this program running as it is presented here, it 
would be an excellent exercise for you to add a new menu of pen modes to try 
out what you've learned. 

Updating the Screen 
Getting back to the update routine, PPToPort is designed specifically for trans
ferring a portion of the existing document to the current window (port). This is 
fine for the update routine, but how do we transfer the image of a line just 
drawn on the screen into the actual document somewhere in memory? To do 
this we could probably change the current port to be our document, and the 
source document to be the PortRect of the window, and then call PPToPort, 
but there is another routine, called PaintPixels, which is generalized for trans
ferring pixels from one place to another. 

PaintPixels is passed a pointer to another parameter block, which in tum 
points to several Loclnfo data structures to determine which pixels to transfer. 
The structure of the PaintPixels parameter block is as follows: 

450 



Data Type Name 
Pointer PtrToSourceLoclnfo 

Pointer 
Pointer 
Pointer 
Word 
Handle 

PtrToDestLoclnfo 
PtrToSourceRect 
PtrToDestPoint 
Mode 
MaskHandle (ClipRgn) 

A Drawing Program for the Apple IIGS 

Description 
Pointer to the Loclnfo structure for the source 
pixel. 
Pointer to the Loclnfo for the destination image. 
Pointer to rectangle within source image. 
Pointer to point at which transfer will begin. 
Transfer mode to use. 
Handle to region to use as mask over destination. 

Setting up the clipping region for MaskHandle is the new item here. A 
region is a special data structure within QuickDraw that can describe all sorts of 
strange shapes, like the profile of W.C. Fields and his cigar. You can use a re
gion as a clipping mask so that only a portion of an entire pixel image will be 
transferred to the destination. 

For our purposes, a rectangle will do just fine; this can be defined using 
two calls: NewRgn ($6704), which creates a region data structure, including the 
automatic allocation of some memory from the Memory Manager; and SetRect 
($6B04), which sets a given region equal to a rectangle passed to that routine. 
With these two calls, we can create a rectangular region equal to our document 
in memory that will satisfy the requirement for the PaintPixel command. 

You may have already guessed that there are a number of options in 
using these commands that will all produce the same results. We could just as 
easily set the source and destination rectangles equal to the entire screen and 
the entire document respectively, and then set the Clip Region equal to just the 
part of our document to be updated from the window. But in the end the re
sults are all the same. You can design your application to use whichever ap
proach best suits your programming style. 

Constructing the Paint Program 
Hopefully, this gives you an idea of where we're headed to put together a sim
ple sketching program using QuickDraw and the Window Manager. To do this, 
we'll again start with the SHELL program, Program 19-1, and then we'll add 
some routines to turn it into a drawing program. As before, start off by loading 
the source file SHELL, and save it under a new name. We'll call the new pro
gram SIMPLE.SKTCH. 

Now add a block of new code to the end of the program, just before the 
checksum byte. Use Program 20-1 for the new addition. 

451 



Chapter 20 

Program 20-1. Sketcher 
(See instructions above before entering program.) 

************************************************ 
* SKETCHER ADDITIONS TO SHELL * 
************************************************ 

DOCSETUP PushLong #$0000 ; SPACE FOR RESULT 
PushLong #$8000 ; HOW MUCH MEM WE NEED 
PushWord ID3 ; SUB-ID 
PushWord #$0000 ; MEM ATTRIBUTE = NO RESTRICTIONS 
PushLong #$0000 ; WCATION NCYf IMPORTANT 
TooJCall $0902 ; NewHandle 

PullLong PICHNDL ; GET HANDLE TO MEMORY BWCK 

JSR ERASE ; ERASE PICTURE AREA 

SETREGN PushLong #$0000 ; SPACE FOR RESULT 
TooJCall $6704 ; NewRgn (GET AN OFFSCREEN 

; DRAWING AREA.) 

PullLong PREGION ; GET HANDLE AND SAVE IT 

PushLong PREGION 
PushWord #$0000 ; H1 = 0 
PushWord #$0000 ; Vl = 0 
PushWord #320 ; H2 = 320 
PushWord #200 ; V2 = 200 
TooJCall $6B04 ; SetRect 

; MAKE THE REGION A RECTANGLE 

RTS 

****************************************** 

ERASE PushLong PICHNDL 
TooJCall $2002 ; HLock 

CLR 

: I 

LOA [PICHNDL] 
STA PTR 
LOY #$02 
LOA [PICHNDL],Y 
STA PTR+2 

LOA #$EEEE 
LOY #$0000 
STA [PTR],Y 
INV 
CPY #32000 
BCC :1 

; MAKE SURE IT DOESN'T MOVE 

; WNG INDIRECT WAD 
; GET THE MEM ADDRESS 

; (PTR) = ADDR. OF PICTURE 

; CLEAR BWCK OF MEMORY TO COWR #14 
; BEG. OF BWCK 

; DONE YET? 
; NOPE 

452 



A Drawing Program for the Apple IIGS 

UNWCK PushLong PICHNDL 
ToolCall $2202 ; HUnlock 

PushLong #WINRECT ; POINTER TO WINDOW RECTANGLE 
TooICall $2004 ; GetPortRect 

; MAKE WINRECT = WINDOW 

PushLong #WINRECT ; THE WINDOW RECTANGLE 
ToolCall $3AOE ; InvalidRect 

; FORCE TASKMASTER TO UPDATE 

RTS 

****************************************** 

PAINT PushLong PICHNDL 
ToolCall $2002 

LDA [PICHNDL] 
STA PICWC 
LDY #$02 
LDA [PICHNDL],Y 
STA PICWC+2 

; HLock 

; WNG INDIRECT WAD 
; SET THE MEM ADDRESS 

PushLong #PICBLK ; POINTER TO PARM BWCK 
PushLong #PAINTRECT ; POINTER TO DATA RECT 
PushWord #$0000 ; DESTINATION X = 0 
PushWord #$0000 ; DESTINATION Y = 0 
PushWord #$0000 ; XFER MODE = 'COPY' 
ToolCall $D604 ; PPtoPort 

; COPY THE PICTURE TO THE WINDOW 

PushLong PICHNDL 
ToolCall $2202 ; HUnlock 

RTS 

****************************************** 

PENS PushWord #$0000 
PushWord PEN 
TooICall $320F 

PushWord #$FFFF 
PushWord TDATA 
STA PEN 
ToolCall $320F 

RTS 

; 0 = UNCHECK 
; CHANGE CHECK MARK (MENU ITEM #) 
; Checkltem (UNCHECK) 

; BOOLEAN TRUE = CHECK ITEM 
; GET MENU ITEM AND PUSH 
; SET NEW CURRENT PEN ( = MENU ITEM #) 
; Checkltem (CHECK) 

****************************************** 

COWRS PushWord #$0000 
PushWord COWR 
TooICall $320F 

; 0 = UNCHECK 
; CHANGE CHECK MARK (MENU ITEM #) 
; Checkltem (UNCHECK) 

453 



Chapter 20 

PushWord #$FFFF 
PushWord TDATA 
STA COWR 
ToolCall $320F 

RTS 

; BOOLEAN TRUE = CHECK ITEM 
; GET MENU ITEM AND PUSH 
; SET NEW CURRENT PEN (MENU ITEM #) 
; Checkltem (CHECK) 

****************************************** 

MDOWN 

SETPEN 

SETCOL 

BLUE 

RED 

BLACK 

SETCOWR 

DRAW 

PushLong #CURSOR 
ToolCall $8E04 

LDA PEN 
SEC 
SBC #261 
ASL 
ASL 
INC 
PHA 
PHA 
ToolCall $2C04 

LDA COWR 
CMP #265 
BEQ BLACK 
CMP #266 
BEQ RED 

PushWord #$0004 
JMP SETCOWR 

PushWord #$0007 
JMP SETCOWR 

PushWord #$0000 

ToolCall $3704 

PushLong WPTR 
ToolCall $4DOE 

PushLong #YPOS 
ToolCall $0C06 

LDA XPOS 
STA OLDX 
LDA YPOS 
STA OLDY 

; NEW CURSOR ADDRESS 
; SetCursor 

; (MENU ITEM #) 

; RESULT = 0, I, 2 

; RESULT * 4 = 0, 4, 8 
; RESULT = I, 5, 9 
; PUSH PEN WIDTH 
; PUSH SAME FOR HEIGHT 
; SetPenSize 

; (MENU ITEM #) 
; BLACK MENU ITEM 

; RED MENU ITEM 

; 4 = BLUE 

; 7 = RED 

; 0 = BLACK 

; SetSolidPenPat (COWR) 

; IDENTIFY THE WINDOW 
; StartDrawing 
; MUST DO THIS FOR A DRAW 
; OUTSIDE THE UPDATE ROUTINE 
; TO RETURN ORIGIN TO ACTUAL 
; WCAL COORDINATES 

; TABLE TO REWRITE 
; GetMouse (WCAL) 

; GET X POSN OF MOUSE 
; SAVE ORIG. POSN 
; GET Y POSN OF MOUSE 
; SAVE THAT TOO ... 

454 



STILL 

:1 

LOCL 

PushWord #$0000 
PushWord #$0000 
ToolCall $0E06 

PLA 
BNE :1 
JMP UP 

PushWord OLDX 
PushWord OLDY 
ToolCall $3A04 

PushLong #YPOS 
ToolCall $0C06 

PushWord XPOS 
PushWord YPOS 
ToolCall $3C04 

LOA XPOS 
STA OLDX 
LOA YPOS 
STA OLDY 

JMP STILL 

A Drawing Program for the Apple IIGS 

; SPACE FOR RESULT 
; MOUSE BUTTON (#0) 
; StillDown 
; SEE IF MOUSE BUTTON STILL DOWN 

; GET BOOLEAN RESULT 

; DONE DRAWING ... 

; X POSN OF MOUSE 
; Y POSN OF MOUSE 
; MoveTo 

; ADDR. OF Y AND X DATA 
; GetMouse (LOCAL) 

; X POSN OF MOUSE 
; Y POSN OF MOUSE 
; LineTo 

; MAKE OLD X = CURRENT X 

; OLD Y = CURRENT Y 

; BACK FOR MORE ... 

* -------------------------------

UP ToolCall $9004 ; HideCursor (DON'T COPY THAT!) 

PushLong #$0000 ; SPACE FOR RESULT 
ToolCall $C704 ; GetClipHandle 

PullLong CLIP ; SAVE CLIP REGION HANDLE 

PushLong #WINBLK ; POINTER TO WINDOW LOC INFO BLOCK 
ToolCall $1E04 ; GetPortlnfo 

; WRITE IT TO WINBLK 

PushLong #WINRECT ; POINTER TO WINDOW RECTANGLE 
ToolCall $2004 ; GetPortRect 

LOA WINRECT 
STA PICRECT 
LOA WINRECT + 2 
STA PICRECT+2 

; WRITE IT TO WINRECT 

; SET PICRECT = WINRECT 
; SO PaintPixels WILL XFER 
; WINDOW AREA TO OUR PICTURE 

PushLong #PAINTBLK ; POINTER TO PARM BLOCK 
ToolCall $7F04 ; PaintPixels 

; COPY NEW IMAGE TO PICTURE IN MEM 

455 



Chapter 20 

PushWord #$0000 
PushWord #$0000 
ToolCall $2304 

ToolCall $CA04 

RTS 

; X = 0 
; y = 0 
; SetOrigin 
; MUST DO THIS FOR A DRAW 
; OUTSIDE THE UPDATE ROUTINE 
; TO RETURN ORIGIN TO 0,0 

; lnitCursor 

****************************************** 

SHOW PushLong WPTR 
ToolCall $130E 

PushWord #257 
ToolCall $300F 

PushWord #259 
ToolCall $300F 

PushWord #258 
ToolCall $3IOF 

LDA #MDOWN 
STA Cl 

RTS 

; ShowWindow 

; ITEM # FOR 'ERASE' 
; Enableltem 

; ITEM # FOR CLOSE 
; Enableltem 

; ITEM # FOR OPEN 
; Disableltem 

; ADDRESS FOR MDOWN ROUTINE 
; REWRITE MDOWN VECTOR 

****************************************** 

HIDE PushLong WPTR 
ToolCall $120E 

PushWord #257 
ToolCall $3IOF 

PushWord #259 
ToolCall $3IOF 

PushWord #258 
ToolCall $300F 

LDA #IGNORE 
STA Cl 

RTS 

; HideWindow 

; ITEM # FOR ERASE 
; Disableltem 

; ITEM # FOR CLOSE 
; Disableltem 

; ITEM # FOR OPEN 
; Enableltem 

; ADDRESS FOR IGNORE ROUTINE 
; REWRITE MDOWN VECTOR 

****************************************** 

PEN 
COLOR 

OLDX 
OLDY 

DA #261 
DA #265 

DA $0000 
DA $0000 

; CURRENT PEN CHOICE (MENU ITEM #) 
; CURRENT COLOR CHOICE (MENU ITEM #) 

; OLD MOUSE X 
; OLD MOUSEY 

456 



PAINTBLK ADRL WINBLK 
ADRL PICBLK 
ADRL WINRECT 
ADRL PICRECT 
DA $0000 

CLIP ADRL $0000 

A Drawing Program for the Apple IIGS 

; WINDOW WCINFO BWCK 
; PICTURE WCINFO BWCK 
; POINTER TO WINDOW RECTANGLE 
; POINTER TO PICTURE POINT 
; XFER MODE (COPY) 
; CLIP REGION HANDLE 

****************************************** 

CURSOR 

IMAGE 

MASK 

HOTSPOT 

DA 
DA 

HEX 
HEX 
HEX 

HEX 
HEX 
HEX 

DA 
DA 

3 ; CURSOR HEIGHT (3 SLICES) 
2 ; CURSOR WIDTH (2 WORDS) 

0000,0000 ; LAST WORD MUST ALWAYS BE $0000! 
Of00,0000 ; F + F = BLACK CURSOR 
0000,0000 ; 0 + 0 = NO IMAGE 

OF00,0000 ; F + 0 = WHITE BORDER 
FFF0,0000 
OF00,0000 

I ; y = I 
I ; X = I 

****************************************** 

PICBLK DA $0000 ; 0 = 320 MODE 
PICWC ADRL $0000 ; POINTER TO PICTURE DATA 

DA 160 ; WIDTH OF IMAGE IN BYTES 
DA 0,0,200,320 ; RECT OF DATA 

PICRECT DA 0,0,200,320 ; RECT OF PIXELS TO XFER 

PAINTRECT DA 0,0,200,320 ; RECT OF PIXELS FOR 'PAINT' 

PREGION ADRL $0000 ; STORAGE FOR HANDLE 

* ---. ------. -------. ---.... -........... 
WINBLK ; WILL BE WRIITEN BY GETPORTWC 

DA $0000 ; 0 = 320 MODE 
WINWC ADRL $El2000 ; ADDR. OF SUPER HI-RES SCREEN 

DA 160 
DA o,o,o,o ; MAX SCREEN SIZE 

WINRECT DA o,o,o,o ; RECT OF PIXELS TO XFER 

WREGION ADRL $0000 ; STORAGE FOR HANDLE 

****************************************** 

CHKSUM CHK ; CHECKSUM FOR VERIFICATION 

457 



Chapter 20 

After you've added this to the end of your source listing, make the fol
lowing changes to the main body of the program itself. As before, each addi
tion will be presented in the context of its surroundings, and we'll use the 
introduction of each addition as the opportunity to discuss the related text that 
you've added at the end of the listing. 

The first modification is to add a new direct-page pointer, PICHNDL, in 
the same spot as you added the pointer MSSGPTR for the Event Display pro
gram. PICHNDL will be used to dereference the address of our memory block 
that holds the actual document we're painting. 

PRODOS EQU $ElOOA8 ; STD. PRODOS 16 ENTRY 

PTR EQU $00 ; OUR OWN DIRECT PAGE PTR 
; $00,01,02,03 

PICHNDL EQU $04 ; HANDLE OF OUR PICTURE 

This program will make use of two new menus, one called FILE that will 
have the Quit option in it, along with some options for opening and closing the 
document window, and erasing the document if you want to start over. The 
second menu is called PENS, and offers choices of pen sizes and colors for draw
ing. You'll recall from earlier discussions that additional menus are added by first 
telling the Menu Manager about them via the NewMenu command, and then 
adding these menus with lnsertMenu. Menus are inserted in the order in which 
they appear from right to left, so the Apple icon menu will always be defined 
last, at least using this method. InsertMenu actually lets you insert a menu any
where, but remember that menu position zero always does the insert at the far 
left. 

DESK ToolCall $0205 ; DeskStartup 

PENMENU PushLong #$0000 ; SPACE FOR RESULT 
PushLong #MENU3 ; ADDR. OF MENU STRUCTURE 
ToolCall $2DOF ; NewMenu 

PullLong MENU3HD ; STORE HANDLE TO 3RD MENU 

PushLong MENU3HD 
PushWord #$0000 ; INSERT AT THIS POSITION (FRONT) 
ToolCall $0DOF ; InsertMenu (ADD TO MENU BAR) 

FILE PushLong #$0000 ; SPACE FOR RESULT 
PushLong #MENU2 ; ADDR. MENU STRUCTURE 
ToolCall $2DOF ; NewMenu 

PullLong MENU2HD ; STORE 2ND MENU HANDLE 

PushLong MENU2HD 
PushWord #$0000 ; INSERT AT THIS POSITION (FRONT) 
ToolCall $0DOF ; InsertMenu 

APPLE PushLong #$0000 ; SPACE FOR RESULT 



A Drawing Program for the Apple IIGS 

These lines show the new menus being defined and inserted just previ
ous to the Apple icon menu. The new menu definitions should be added right 
after the definition for MENU1 in the shell program, and will look like this: 

MENUI ASC '>>@ '\NIX',00 ; APPLE MENU 
ASC '--Your Message Here . . . \ N256V' ,00 
ASC '.' ; END OF MENU 

MENUIHD ADRL $0000 ; STORAGE FOR HANDLE 

MENU2 ASC '>> File \N2',00; FILE MENU 
ASC '--Erase Picture \N257V*Ee',OO 
ASC '--Open Window \N258D*Oo',OO 
ASC '--Close Window \N259V*Hh',OO 
ASC '--Quit\ N260*Qq',OO 
ASC " 

MENU2HD ADRL $0000 

MENU3 ASC '>> Pens \N3',00; PENS MENU 
ASC '--Small Pen \ N26IC',12,00 
ASC '--Medium Pen \N262C ',00 
ASC '--Large Pen \N263C ',00 
ASC '--- \N264D',OO 
ASC '--Black \ N265C',I2,00 
ASC '--Red '\N266C ',00 
ASC '--Blue \N267C ',00 
ASC " 

MENU3HD ADRL $0000 

The menu items for Small Pen and Black include a startup default check 
mark, defined with the value $12 after the C special character. Once the menus 
have been defined and the menu bar has been drawn, we will want to open up 
the document window. Just prior to that, though, it wouldn't hurt to create the 
document itself by allocating some memory and clearing it to whatever back
ground color you want to use. A good place to insert the routine to set up a 
new document would be at the label WIND (for Window) in the SHELL program: 

DRAWMENU TooICall $2AOF ; DrawMenuBar 

WIND JSR DOCSETUP 

JSR OPEN 

SHOWCURS ToolCall $9104 

; DRAW MENU, LOWER WINDOW 

; START A NEW DOCUMENT 

; OPEN A WINDOW, SET DEFAULTS 

; ShowCursor 

The instructions for DOCSETUP (Document Setup) have already been 
entered at the end of the listing. The beginning of DOCSETUP first uses the 

459 



Chapter 20 

Memory Manager call NewHandle to allocate a 32K block of memory equiva
lent to the super hi-res display screen. Although the actual pixel area is only 
32,000 bytes and leaves some unused memory in the block, it is a convenient 
memory definition. In a more advanced drawing program, you would use the 
extra memory to store a copy of the SCBs and color tables used for that par
ticular drawing. Since this program has no provision for loading or saving pic
tures, we won't have to worry about that. 

You're also not limited to a document size equal to that of the screen. 
It's only arbitrary that the window parameter list and the document itself have 
specified a data area equal to the screen. By adjusting wDataSize in the win
dow parameter list, obtaining more memory for the document, and adjusting 
the Loclnfo parameter block accordingly, we can create a document limited 
only by the amount of available memory. 

Once memory has been obtained, DOCSETUP does a JSR to the ERASE 
routine. ERASE works by dereferencing the handle to the memory block to de
termine exactly where in memory the picture is currently located. Before 
dereferencing a movable block, the block must be temporarily locked to make 
sure some other application doesn't force a memory compaction that would 
move the block while our program was trying to erase it. Locking the block 
was not a concern in dereferencing the direct page block, because the attributes 
of the direct page specified the block as unmovable at creation time. 

The drawing program could have requested that the document memory 
be fixed, but this is not a good practice because it unnecessarily jams up mem
ory that other applications may want to use. 

Once the block is locked and dereferenced, the CLR (CLeaR) loop puts 
the value $E in every pixel location. This corresponds to dark gray, but you can 
use any value you want. Each nibble should have the same value ($5555, 
$AAAA, $3333, and so on). Once the block is erased, it is unlocked, and we 
continue with the DOCSETUP routine. 

SETREGN is then used to create a rectangular region that will be used 
by PaintPixels as the Clip Region each time we copy a new line that has been 
drawn on the screen into the picture in memory. Once the region has been set 
up, and the handle to it is stored in PREGION (Picture REGION), DOCSETUP 
is done, and we resume the overall setup portion of our program. 

Once everything is set up and the window opened, this brings us to the 
main event loop of the program. SPECIAL will remain a do-nothing routine, 
and the JSR SPECIAL could be removed if you were so inclined. In the interest 
of minimizing changes while you're debugging, though, we'll leave it alone. 

460 



A Drawing Program for the Apple IIGS 

More Changes 
The main change to the beginning of the event loop will be to replace the JSR 
SHUTDOWN response to the close box with a JSR HIDE: 

****************************************** 
* HANDLE THE EVENT 
****************************************** 

EVT JSR SPECIAL ; ANY SPECIAL EVENT HANDLING 

CMP #$11 ; MENU EVENT? 
BNE :I ; NOPE 
JSR DOMENU ; HANDLE IT 
JMP MAIN ; BACK FOR MORE 

: I CMP #$16 ; CWSE BOX 
BNE DOCMDS 

JSR HIDE ; CWSE THE WINDOW 
JMP MAIN 

****************************************** 

HIDE is the routine that will actually be called when the user selects 
Close from the File menu or clicks in the close box. HIDE has already been 
added to the end of the listing, and is fairly simple. There is a Window Man
ager command, HideWindow ($120E), that makes the specified window invisi
ble. While we're doing this, however, we'll want to change the menu choices to 
disable Close and Erase (since there's nothing on the screen to close or erase), 
and enable the choice Open Window. This is done with the Menu Manager 
commands Enableltem ($300F) and Disableltem ($3 lOF). 

Since we can't draw in a hidden window, the HIDE routine finishes by 
rewriting the MDOWN (Mouse-DOWN) vector to ignore mouse events. You 
might think the answer would be to set the TaskMaster mask TMASK, or the 
event mask used in the actual call to TaskMaster to ignore a mouse-down 
event. But then mouse-down events would be ignored everywhere-something 
you probably wouldn't want. 

HIDE, along with the other menu functions, is supported in the 
DOMENU part of the event loop. In the SHELL program, only one menu item 
is tested for. In this program, we can set up an indexed indirect command pro
cessor to jump to the appropriate routine for each menu choice. This is only 
possible when each menu item is successively numbered (or at least with mini
mal skipping of items). 

461 



Chapter 20 

DOMENU 

: I 

LDA 
CMP 
BNE 
JMP 

SEC 
SBC 
ASL 
TAX 
JSR 

TDATA 
#256 
:I 
NORMAL 

#256 

(MENUCMDS,X) 

NORMAL PushWord #$0000 
PushWord TDATA+2 
ToolCall $2COF 

RTS 

MENUCMDS DA 
DA 
DA 
DA 
DA 
DA 
DA 
DA 
DA 
DA 
DA 
DA 

IGNORE 
ERASE 
SHOW 
HIDE 
SHUTDOWN 
PENS 
PENS 
PENS 
IGNORE 
COLORS 
COLORS 
COLORS 

; MENU ITEM NUMBER 
; APPLE MENU MSSG? 
; NOPE 
; IGNORE (BUT UNHILITE) 

; ADJUST TO ZERO 
; TIMES 2 FOR OFFSET 

; 0 = UNHIGHLIGHT 
; MENU HEADER # 
; HiLiteMenu 

; "YOUR MESSAGE" 
; "ERASE" 
; "OPEN" 
; "CLOSE" 
; "QUIT" 
; "SMALL" 
; "MEDIUM" 
; "LARGE" 
; (DIVIDING LINE) 
; "BLACK" 
; "RED" 
; "BLUE" 

****************************************** 

OPEN PushLong #$0000 ; SPACE FOR RESULT 

The routines supported in the DOMENU handler are IGNORE, ERASE, 
SHOW, HIDE, SHUTDOWN, PENS and COLORS. You've already seen some 
of these; let's look at the new ones. 

SHOW is the opposite of the HIDE routine, and calls the Window Man
ager tool ShowWindow. Like HIDE, the remainder of SHOW then properly en
ables and disables related menu choices. Erase and Close are enabled, Open is 
disabled. The mouse-down vector in the command table is also reactivated to 
use the MDOWN routine, which will be discussed shortly. 

For simplicity's sake, PENS and COLORS both just store the menu item 
value as the code number for a pen size or color. This makes it easy to change 
the check mark for each menu item as a new choice is selected. It's in the ac
tual drawing routine, MDOWN, that converts the current code value for the pen 
and color to a value usable by the QuickDraw SetPenSize and SetSolidPenPat 
routines. 

462 



A Drawing Program for the Apple IIGS 

Revising UPDATE 
The next part of the SHELL program to change is the UPDATE routine that 
will bring new portions of the document into view as we scroll or resize the 
window. This addition will be minor, and will consist of a JSR to the PAINT 
routine that fills in the window. 

UPDATE PHB 
PHK 
PLB 

PHO 
LOA MYDP 
TCD 

JSR PAINT 

PLO 
PLB 
RTL 

The PAINT Routine 

; SAVE OfHER'S DATA BANK 

; DATA BANK = OURS 

; SAVE THE DIRECT PAGE 
; USE OURS FOR NOW ... 

; PAINT THE PICTURE IN THE WINDOW 

; RESTORE THE DIRECT PAGE 
; RESTORE THE ORIG. DATA BANK 

PAINT was included in the text added at the end, and looked like this: 

PAINT PushLong PICHNDL 
TooICall $2002 

LOA [PICHNDL] 
STA PICWC 
LOY #$02 
LOA [PICHNDL],Y 
STA PICWC+2 

PushLong #PICBLK 
PushLong #PAINTRECT 
PushWord #$0000 
PushWord #$0000 
PushWord #$0000 
ToolCall $D604 

PushLong PICHNDL 
TooICall $2202 

RTS 

; HLock 

; WNG INDIRECT WAD 
; SET THE MEM ADDRESS 

; POINTER TO PARM BWCK 
; POINTER TO DATA RECT 
; DESTINATION X = 0 
; DESTINATION Y = 0 
; XFER MODE = 'COPY' 
; PPToPort 
; COPY THE PICTURE TO THE WINDOW 

; HUnlock 

The idea here is to first dereference the handle to our document (the pic
ture), and to then store this address in the Loclnfo structure for our picture, 
PICBLK. In addition, a rectangle definition, PAINTRECT has been set up to 

463 



Chapter 20 

equal the entire size of our document. PPToPort is then called to actually trans
fer the pixels from memory onto the active window. After unlocking the mem
ory block, PAINT then returns to UPDATE, and we're all done repainting the 
window. 

The last change to make to the original SHELL program is to rewrite the 
mouse-down vector (previously IGNORE) to point to the heart of our drawing 
program, MDOWN: 

CMOS DA IGNORE 
Cl DA MDOWN 
C2 DA IGNORE 
C3 DA IGNORE 

; NULL EVENT 
; MOUSE DOWN 
; MOUSE UP 
; KEY DOWN 

The Mouse-Down Drawing Loop 
Here's where the real work gets done. MDOWN is called whenever the main 
event loop determines that the mouse is being held down. If the program were 
only slightly more refined, it would also check the TaskMaster code on the 
stack to make sure that the mouse-down was in the content region of the win
dow, but that would preclude a demonstration that will be the grand finale of 
the book. 

Once the mouse-down is detected, the gears start turning and the pro
gram gets ready to draw. First, the cursor is changed from an arrow to a very 
little dot. This is done with SetCursor ($8E04). A cursor definition consists of a 
data structure that includes the height of the cursor in rows (slices), and the 
width in words. One of the restrictions to a cursor definition is that the last 
word of each slice by $0000. A cursor definition consists of two patterns. The 
first is the image itself, wherein any black portion is indicated with a nibble set 
to $F. 

To keep the cursor from disappearing on a black background, there is 
also a mask as part of the cursor record, which includes a larger pattern of $F's 
that create the border. Wherever there is an $Fin both the image and the 
mask, the cursor is solid black. Wherever both the image and the mask are $0, 
there is no cursor, that is, you can just see whatever's under the cursor. Wher
ever the cursor image is $0 and the mask is $F, a white pixel is shown, which 
creates the outline to the cursor. 

If you want to get really fancy, you can put an $F in the mask but leave 
the corresponding pixel in the image $0. This will invert whatever is on the 
screen at that point or pattern, producing a really interesting result. The $0 and 
$Fare also used to specify black and white. If you want a colored cursor, you 
can use other pixel values as you desire. 

Finally, each cursor record also contains a definition of the hot spot for 

464 



A Drawing Program for the Apple IIGS 

that cursor. The hot spot is just the part of the cursor that will be assigned to 
the current mouse position as the mouse is moved around. It's called the hot 
spot because this also has the effect of being the part of the cursor that counts 
when you are checking to see if the user clicked on a certain part of the screen, 
for example in a window control. 

With this information, you may wish to experiment with this program in 
designing new and more creative cursors. 

Once the new cursor has been assigned, the routines SETPEN and 
SETCOL use the store PEN and COLOR values to determine a value to use for 
the QuickDraw SetPenSize and SetSolidPenPat routines. 

Now, although the pen and cursor have been set up, the coordinate sys
tem of the window is still set for the QuickDraw internal routines with the ori
gin (upper left corner of the content region) at 0,0. The command StartDrawing 
fixes this, which is followed by the GetMouse instruction to figure out where 
the mouse is in terms of the local coordinates of the window. To enable con
tinuous drawing, and to help with some other techniques to be discussed later, 
we also start two new position variables called OLDX and OLDY. This will 
allow us, as we get each new mouse position, to know where the previous one 
was to use as a starting point to draw a line. 

The section STILL uses an Event Manager routine called StillDown that 
returns a zero or nonzero value that tells us whether or not the mouse is still 
down after the initial mouse-down. On each pass through the STILL(down) 
loop, we'll draw a line between the last mouse position on the screen and the 
current one. Only when StillDown fails, which means the user has released the 
mouse button, do we complete the drawing operation and copy the line just 
drawn to the document in memory. 

The part of code beginning with the local label :1 and continuing to the 
jump back to STILL executes the actual drawing loop, and continually cycles 
the mouse position just used into the OLDX and OLDY variables for the next 
pass through the loop. 

This is all pretty straightforward. The tricky part comes when the user 
releases the mouse button, and the program branches to UP, which then has to 
copy the new lines into the document in memory. 

The first thing UP does is to hide the cursor completely. Otherwise, the 
image of the cursor would be copied into our picture as well. The remaining 
block of code then determines the current clip handle and PortLoclnfo for the 
window's Gra£Port, and saves this in CLIP and the storage block WINBLK. 
There are two Loclnfo structures used in the PaintPixel transfer-one each for 
the destination and source images. WINBLK is the Loclnfo structure for the 
window; PICBLK is the corresponding Loclnfo structure for our picture. 

465 



Chapter 20 

The next information needed is the actual local coordinate description of 
the content rectangle of the window. That is, where do the users think they're 
drawing on the document? GetPortRect ($2004) will write this into a Rect data 
structure for us, and, in the interest of efficiency, I've set it up to write directly 
into the WINBLK Loclnfo structure that will be used in just a moment by 
PaintPixels . When that rectangle is returned, I also copy it into the destination 
Loclnfo structure for PICBLK. 

Now the moment of truth. PAINTBLK is the supervisory parameter 
block for PaintPixels, and it is already set up to point to WINBLK and PICBLK 
as the source and destination Loclnfo data structures. It's actually the PaintPixel 
call that does all the work in copying the currently visible part of the window 
onto the corresponding portion of our document in memory. 

Once that's completed, SetOrigin is used to return the origin of the win
dow back to 0,0 for QuickDraw, the cursor is restored to the arrow with 
InitCursor ($CA04), and the routine returns to the main event loop. 

One last comment. On first reading, it's easy to become disoriented with 
all the new terms referring to clipping regions, the PortRect, and so on. Try not 
to be discouraged, though. The learning phase of any new vocabulary is a 
stressful time while your brain sorts out all the new words and concepts. 

One way to make your programming easier to to just concentrate on the 
terms used in the particular tool call you need to use to accomplish a particular 
function. Learn to be a tool browser. Get in the habit of skimming through 
your tool reference books to find the particular tool that sounds relevant at a 
given moment, and don't worry about all those other cryptic entries flashing 
by, trying to distract you. 

Trying Out the Drawing Program 
After you've made all the above changes, you should get a final checksum of 
$05. However, don't panic if you get a different number on your first assembly. 
If you don't get this checksum, it's possible you 've added an extra space or 
character to a menu item, and it may not be a fatal error. Try running your pro
gram and see if everything works all right. 

If you have problems, remember to type El/C029: 21 when you hear 
the BRK bell, and look at the place where the program broke and at the con
tents of the Accumulator for clues as to what went wrong . Then type Control-Y 
to try to return to your program selector. If you do have problems, be sure to 
double-check all the uses of Push Long and Push Word in your source file to 
make sure they agree with the listings in this book. When those fingers get fly
ing along, it's easy to go into autopilot an absent-mindedly type a PushLong 
when it should have been Push Word, or vice versa. 

466 



A Drawing Program for the Apple IIGS 

When the program is running successfully, try drawing with the different 
pens and colors. Also notice that your drawing isn't destroyed by closing the 
window. It's right there when you open the window again. 

You might also notice that even when you press the mouse button out
side of the window, the cursor still changes and the routine tries to draw out
side the window. Of course, nothing happens because the Window Manager 
has already established a clipping window that prevents you from drawing out
side of the window. This could have been prevented by just checking the Task
Master code returned on the stack to make sure we were in the content region 
of the window when the mouse-down event occurred. However, leaving it this 
way lets you explore another issue. 

As an experiment, try drawing a circle or box that goes outside the win
dow area, and then use the scroll bars or grow box to make the window bigger 
to see what happened. What you'll see is that the only part of your line that 
was copied into your document was the portion that was drawn within the 
content portion of the window and then copied to the document with PaintPixels. 

This makes sense, but brings up the question: Suppose you wanted to 
draw a square or an object bigger than the window under program control, per
haps in an object-oriented drawing program? If you've ever seen MacPaint or 
MousePaint for the Apple Ile, you may have noticed that when you try to use 
an eraser or to fill a background with the paint function, only the visible part of 
the screen is changed, leaving a big unaffected area for everything offscreen at 
the time of the action. 

One solution is to continually duplicate any drawing action in the visible 
window, and to also draw directly into the offscreen document. With this ap
proach, you should be able to uncover and view an entire shape, even if it was 
drawn with the cursor outside the active window. Of course, a real program 
wouldn't let the user do this, but the technique used will illustrate how you 
could do any QuickDraw command into a document that was not entirely visi
ble through an active window. 

The Better Sketcher Program 
Save the source listing for SIMP.SKTCH once it's all working, and then save a 
duplicate under the new name BETTER.SKTCH. The only part of the program 
that needs to be changed is the MDOWN drawing routine. 

To do this, rewrite the MDOWN routine starting at LOCL so that it 
looks like this: 

WCL PushLong #YPOS 
TooICall $0C06 

; ADDR. OF Y AND X DATA 
; GetMouse (WCAL) 

467 



Chapter 20 

PushWord XPOS ; X POSN OF MOUSE 
PushWord YPOS ; Y POSN OF MOUSE 
TooICall $3C04 ; LineTo 

OFFSCRN PushLong #WINBLK ; POINTER TO WINDOW WC INFO BWCK 
TooICall $ I E04 ; GetPortLoclnfo 

; WRITE IT TO WINBLK 

SAVEW PushLong #WINRECT ; POINTER TO WINDOW RECTANGLE 
ToolCall $2004 ; GetPortRect 

; WRITE IT TO WINRECT 

PushLong #$0000 ; SPACE FOR RESULT 
ToolCall $C904 ; GetVisHandle 

PullLong WREGION ; SAVE HANDLE TO WINDOW VIS REGION 

SETOFF PushLong PREGION ; PICTURE VIS REGION 
ToolCall $C804 ; SetVisHandle 

; GET VIS REGION FOR ENTIRE PICTURE 

PushLong #PICBLK 
ToolCall $ ID04 ; SetPortLoc 

; SET PORT WC TO PICTURE 

PushLong #PICRECT ; POINTER TO PICTURE RECT DEF. 
TooICall $ IF04 ; SetPortRect 

; PORT = ENTIRE PICTURE 

DRAWOFF PushWord OLDX ; X POSN OF MOUSE 
PushWord OLDY ; Y POSN OF MOUSE 
ToolCall $3A04 ; MoveTo 

PushWord XPOS ; X POSN OF MOUSE 
PushWord YPOS ; Y POSN OF MOUSE 
TooICall $3C04 ; LineTo 

SETWIN PushLong WREGION ; GET WINDOW VIS REGION HANDLE 
TooICall $C804 ; SetVisHandle 

; MAKE VIS REGION WINDOW AGAIN 

PushLong #WINBLK 
Tool Call $ ID04 ; SetPortLoc 

; SET PORT WC BACK TO WINDOW 

PushLong #WINRECT ; POINTER TO WINDOW RECT DEF. 
ToolCall $1F04 ; SetPortRect 

; PORT = ACTIVE WINDOW 

LDA XPOS ; MAKE OLD X = CURRENT X 
STA OLDX 
LDA YPOS ; OLD Y = CURRENT Y 
STA OLDY 

468 



A Drawing Program for the Apple IIGS 

JMP STILL ; BACK FOR MORE ... 

****************************************** 

UP PushWord #$0000 
PushWord #$0000 
ToolCall $2304 

ToolCall $CA04 

RTS 

; X = 0 
; y = 0 
; SetOrigin 
; MUST DO THIS FOR A DRAW 
; OUTSIDE THE UPDATE ROUTINE 
; TO RETURN ORIGIN TO 0,0 

; InitCursor 

This revised routine changes things by adding another step to the draw
ing process. As each line segment is drawn from OLDX, OLDY to XPOS, YPOS 
in the main window, a repeat performance is made after switching the Gra£Port 
Loclnfo pointer to our offscreen document. Let's look at the actual program 
steps to see how this is done . 

The offscreen portion begins at the label OFFSCRN, where the current 
Gra£Port Loclnfo data is written to our data block WINBLK. This stores the cur
rent window's address information (this will make a lot more sense if you re
view the listing while you read each reference). SAVEW then uses GetPortRect 
to get the local coordinates of the window into WINRECT and the VisRgn clip
ping region handle into WREGION. These are saved because these are pre
cisely the Gra£Port attributes we are about to change to get the next drawing 
command to draw directly into our document. 

SETOFF initiates this change-over by setting the VisRgn for the Gra£Port 
to the rectangular region created for our document when it was first created. 
That region definition was stored in the handle PREGION. It then uses 
SetPortLoc to switch the drawing area to the part of memory designated by the 
Loclnfo structure PICBLK. Finally, the PortRect is set to the entire document 
size of 200 X 320 pixels. This guarantees there will be no clipping as long as 
the drawing action is still within our document boundaries. 

The actual offscreen drawing takes place starting at DRAWOFF, and only 
takes a few instructions. 

SETWIN then starts the process of restoring the Gra£Port back to the 
window on the display screen. The VisRgn is restored using the stored handle 
in WREGION; the PortLoclnfo parameters are restored with the data stored in 
WINBLK, and finally the PortRect is restored to that of the open window using 
the values stored in WINRECT. 

Because the drawing takes place in both the window and the offscreen 
document almost simultaneously, the UP routine no longer needs to do any 

469 



Chapter 20 

pixel copying, and so only needs to restore the origin and the cursor before re
turning to the event loop. 

This is not the only approach to drawing offscreen, and probably not 
even the best one. The QuickDraw call OpenPort is designed specifically for 
opening many Gra£Ports, none of which are required to be visible on the 
screen. The techniques shown here were chosen to give you a hands-on feel for 
what actually happens at the lower levels with various regions and data struc
tures when you use commands like OpenPort and other Apple IIGS tools. 

Conclusion 
Well, here we are at last. Even though there is a lot to learn on the Apple IIGS, 
I hope you've found that in the end, everything really can be reduced to very 
simple elements. 

The information presented here is only the beginning of the process of 
discovering the many facets of the Apple Iles, and assembly language pro
gramming in general. 

The real challenge begins now. In the end, a teacher only shows stu
dents what they were on the verge of discovering for themselves. As a facilita
tor to your own path of discovery, I hope you'll continue the process you've 
begun in this book and use each demonstration program as a starting point for 
many other explorations and experiments. Not every answer has to come out of 
a book, and now is as good a time as any to begin to discover your own secrets 
to the Apple IIGS. 

It is the very fact that a computer has no defined purpose that makes it 
the ideal vehicle for the human imagination. You now have the ability and 
tools to make your Apple IIGS do what you want it to do. You're no longer lim
ited to programs "off the shelf," someone else's preconceived notion of what 
the computer can do. 

Remember that the most important person to please in writing programs 
is yourself, and it is your own quest for challenges and accomplishments that 
determine the value of the computer in your life. I hope this book has helped 
influence that process and helped nurture the seeds that will grow into the fu
ture reality of computers for everyone. 

470 







Appendix A 

65816 Instructions 

This section will provide you with a quick reference for various 65816 
instructions. 

Although the terms native and emulation are used for the 16- and 8-bit 
modes of the 65816, it probably would have been better if thee bit had stood 
for enable bit, in regard to enabling the options of the 16-bit modes. The term 
emulation implies that the 65816 is somehow limited when in the emulation 
mode to a subset of the 65816 that emulates the 6502, and that many of the 
65816 instructions are not available when in the emulation mode. This is not 
true, and you should not forget that even in the emulation mode, you have the 
full complement of 65816 instructions available to you. The main limitations in 
the emulation mode are simply in register size and the stack size and location. 

Most instructions operate on either a byte or word (2 bytes) depending on 
the status of the e, m, and x bits. 

For Accumulator and Memory operations: 
e = 1 (emulation): byte operation (m and x not applicable) 
e = 0 (native), m = 0: word operation 
e = 0 (native), m = 1: byte operation 

For Index Register operations: 
e = 1 (emulation): byte operation (m and x not applicable) 
e = 0 (native), x = 0: word operation 
e = 0 (native), x = 1: byte operation 

Because the relevance of the m and x bits are directly dependent on the 
status of the e bit, individual instructions may be commented with a phrase like 
"How many bytes are transferred is dependent on the condition of the m bit." 
Obviously the e bit is also a factor, but because the m bit can only be condi
tioned if e = 0, the mention of it would be redundant. There are a few instruc
tions, notably the transfer commands like TAX, that involve both the m and x 
bits, and where some question may exist about the effect of the e bit, so appro
priate discussion of all the status bits is included. 

473 



Appendix A 

Although many of the example code segments use an 8-bit mode in the 
interest of clarity, it should be easy for you to anticipate the 16-bit version. 
Most actions with softswitches, hardware registers, and ASCII data are only 
done in the 8-bit mode, and many of the best illustrations of the uses of in
structions like CMP and BIT are in reference to these operations. Remember 
that the 8-bit mode for a particular instruction doesn't require that the 
microprocessor be in the emulation mode (e = 1), only that the m or x bit be 
set for that particular instruction as appropriate. 

For each instruction, the addressing modes are indicated . Note that un
der Common Syntax, lowercase letters are used within each example, like this: 

Absolute Long ADC $00FFff 6F ff FF 00 

These are used only to clarify which byte of a word is allocated at a 
given position in the final assembly. You would not normally use lowercase let
ters in the operand of an instruction, although nothing specifically prohibits 
you from doing so. 

For some examples, binary numbers are indicated in the form 

%01100100 

This is supported in the Merlin assembler, but may not be in the particu
lar assembler you're using. This form of the operand is not required for any 
particular instruction and is used only in the interest of clearly showing the bi
nary operation in any particular example. 

Summary of Addressing Modes 
Although the various addressing modes available on the 65816 are covered in 
greater detail in the main body of this book, here is an exampled summary of 
some of the modes available. 

Absolute LOA $1234 
Loads one or two bytes from locations $1234 (low byte), $1235 (high 

byte) in the current data bank. 

Absolute Long LOA $FF1234 
Loads one or two bytes from locations $1234 (low byte), $1235 (high 

byte) in bank $FF, regardless of the current data bank setting. 

474 



Summary of Addressing Modes 

Direct Page LOA $12 
Loads one or two bytes from relative positions $12 (low byte) and $13 

(high byte) on the direct page. Remember the base address of the direct page 
depends on the setting of the direct page register, but this need not be consid
ered within the context of any particular instruction. 

Direct Page Indirect LOA ($12) 
A 16-bit address is determined by examining the contents of bytes $12 

and $13 (low byte, high byte) on the direct page. The resulting address in the 
current data bank is then used as the source of the data to be loaded into the 
Accumulator. It's only at that point that the condition of the m bit is taken into 
account and will affect how many bytes are loaded into the Accumulator. 

Direct Page Indirect Long LOA [$12] 
A 24-bit address is determined by examining the contents of bytes $12, 

$13 and $14 (low byte, high byte, bank byte) on the direct page. The resulting 
address is then used as the source of the data to be loaded into the Accumu
lator. It's only at that point that the condition of the m bit is taken into account 
and will affect how many bytes are loaded into the Accumulator. 

Immediate LOA #$12 
The value specified, in this example, $12, is loaded into the Accumu

lator. If m = 0 (16 bits), two bytes will be loaded ($0012). 

Absolute lndexed,X 
Absolute Indexed, Y 

LOA $1234,X 
LOA $1234,Y 

A 16-bit address is determined by adding the contents of the X or Y Reg
ister to the base address specified in the current data bank. The resulting ad
dress is then used as the source of the data to be loaded into the Accumulator. 
If the calculated address exceeds the end of the current data bank, data will be 
accessed in the next bank of memory. This allows data blocks to cross bank 
boundaries. One or two bytes will then be loaded into the Accumulator de
pending on the condition of the m bit. If the X or Y Registers held the value 
$05, then the examples above would load the data from $1239, $123A. 

475 



Appendix A 

Absolute Long lndexed,X LOA $FF1234,X 
A 16-bit address is determined by adding the contents of the X Register 

to the base address specified. The resulting address is then used as the source 
of the data to be loaded into the Accumulator. If the calculated address exceeds 
the end of the base address bank, data will be accessed in the next bank of 
memory. This allows data blocks to cross bank boundaries. One or two bytes 
will then be loaded into the Accumulator depending on the condition of the m 
bit. If the X Register held the value $05, then the example above would load 
the data from $FF1239, $FF123A. 

Direct Page lndexed,X LOA $12,X 
Loads one or two bytes from position $12 plus the contents of the X 

Register on the direct page. Thus, if the X Register contained $05, the bytes 
would be loaded from locations $17, $18. Remember the base address of the 
direct page depends on the setting of the direct page register, but this need not 
be considered within the context of any particular instruction. 

Direct Page Indexed lndirect,X LOA ($12,X) 
A 16-bit address in bank zero is determined by adding the contents of 

the X Register to the specified direct-page address. One or two bytes are then 
loaded from the resulting relative address (low byte, high byte) on the direct 
page. Remember that the base address of the direct page depends on the set
ting of the direct-page register, but this need not be considered within the con
text of any particular instruction. If the X Register held the value $05, then the 
example above would first use the contents of locations $17, $18 to determine 
the target address. If $17, $18 pointed to location $1000, the data would then 
be loaded from $1000, $1001. 

Direct Page Indirect Indexed, Y LOA ($12),Y 
A 16-bit address is determined by examining the contents of bytes $12 

and $13 (low byte, high byte) on the direct page. The contents of the Y Register 
are then added to the address in $12, $13, and the resulting address is then 
used as the source of the data to be loaded into the Accumulator. If the calcu
lated address exceeds the end of the current data bank, data will be accessed in 
the next bank of memory. This allows data blocks to cross bank boundaries. It 
is only at that point that the condition of the m bit is taken into account and 
will affect how many bytes are loaded into the Accumulator. If the Y Register 
contained $05, and locations $12, $13 pointed to location $1000, the bytes 
would be loaded from locations $1005, $1006. 

476 



Summary of Addressing Modes 

Direct Page Indirect Long Indexed, Y LDA ($12],Y 
A 24-bit address is determined by examining the contents of bytes $12, 

$13 and $14 (low byte, high byte, bank byte) on the direct page. The resulting 
address is then added to the contents of the Y Register, and the result is used 
as the source of the data to be loaded into the Accumulator. If the calculated 
address exceeds the end of the base address bank, data will be accessed in the 
next bank of memory. This allows data blocks to cross bank boundaries. It is 
only at that point that the condition of the m bit is taken into account and will 
affect how many bytes are loaded into the Accumulator. If $12, $13, and $14 
pointed to $FF1000, and the Y Register held $05, the data would be loaded 
from locations $FF1005, $FF1006. 

Stack Relative LDA $12,S 
This instruction adds the value in the operand ($12) to the current Stack 

Pointer value and loads the Accumulator with one or two bytes from the result
ing address in the current data bank. Because the Stack Pointer always points 
to the next available position on the stack, which is empty, the first meaningful 
byte of data is always found at l,S. 

Stack Relative Indirect Indexed, Y LDA ($12,S),Y 
This is similar to the Stack Relative addressing mode, but instead uses 

the contents of ($12,S) as a two-byte pointer to an address in the current data 
bank. The contents of the Y Register are then added to this address to deter
mine the actual locations from which one or two bytes will be loaded into the 
Accumulator. If the calculated address exceeds the end of the current data 
bank, data will be accessed in the next bank of memory. This allows data 
blocks to cross bank boundaries. 

Absolute Indexed Indirect JSR ($1234,X) 
This instruction uses the contents of locations $1234, $1235 (low byte, 

high byte) as a base address to which the contents of the X Register are added. 
The resulting address in the current program bank is used as the target for 
the JSR. 

477 



ADC 

ADC: Add with Carry 
Description 
This instruction adds the contents of a memory location or immediate value to 
the contents of the Accumulator, plus the carry bit, if it was set. The result is 
put back in the Accumulator. ADC works for both the binary and BCD modes. 

Flags & Registers Affected 

N V B D I 

I · I · I 
Addressing Modes Available 

Mode 
Absolute 
Absolute Long 
Direct Page 
Direct Page Indirect 
Direct Page Indirect Long 
Immediate 
Absolute Indexed,X 
Absolute Long Indexed,X 
Absolute Indexed, Y 
Direct Page Indexed,X 

z 

Direct Page Indexed Indirect,X 
Direct Page Indirect Indexed, Y 
Direct Page Indirect Long Indexed,Y 
Stack Relative 
Stack Relative Indirect Indexed,Y 

Uses 

C Ace 

Common 
Syntax 

X 

ADC $FFff 
ADC $00FFff 
ADC $FF 
ADC ($FF) 
ADC [$FF) 
ADC #$FF 
ADC $FFff,X 
ADC $00FFff,X 
ADC $FFff,Y 
ADC $FF,X 
ADC ($FF,X) 
ADC ($FF),Y 
ADC [$FF],Y 
ADC $FF,S 
ADC ($FF,S),Y 

Y Mem 

Hex 
Coding 
60 ff FF 
6F ff FF 00 
65 FF 
72 FF 
67 FF 
69 FF 
70 ff FF 
7F ff FF 00 
79 ff FF 
75 FF 
61 FF 
71 FF 
77 FF 
63 FF 
73 FF 

Peculiarly enough, ADC is most often used to add numbers together. Here are 
some common examples: 

Adding a constant to the Accumulator or memory location: 

CLC ; GET READY TO ADD 
LDA MEM ; GET FIRST VALUE (BYTE OR WORD) 
ADC #$80 ; ADD #$80 
STA RSLT ; STORE RESULT 

(RSLT = MEM + #$80) 

478 



Adding a constant (such as an offset) to a 2-byte (or 2-word) memory 
value: 

2-Byte Form 2-Word Form 
CLC CLC ; GET READY TO ADD 
LDA MEM LDA MEM ; GET WW BYTE (WORD) OF MEM 
ADC #$80 ADC #$80 ; ADD WW BYTE (WORD) OF #$80 
STA MEM STA MEM ; SAVE WW BYTE (WORD) RESULT 
LDA MEM + 1 LDA MEM + 2 ; GET HIGH BYTE (WORD) OF MEM 
ADC #$00 ADC #$00 ; ADD HIGH BYTE (WORD) OF #$80 
STA MEM+l STA MEM+2 ; SAVE HIGH BYTE (WORD) RESULT 

(MEM,MEM + 1(2) = MEM,MEM + 1(2) + #$80) 

Adding two 2-byte (or word) values together: 

2-Byte Form 2-Word Form 
CLC CLC ; Get ready to add 
LDA MEM LDA MEM ; GET WW BYTE (WORD) OF MEM 
ADC MEM2 ADC MEM2 ; ADD WW BYTE (WORD) OF MEM2 
STA MEM STA MEM ; SAVE WW BYTE (WORD) RESULT 
LDA MEM + 1 LDA MEM + 2 ; GET HIGH BYTE (WORD) OF MEM 
ADC MEM2 ADC MEM2 ; ADD HIGH BYTE (WORD) OF MEM2 
STA MEM+l STA MEM+2 ; SAVE HIGH BYTE (WORD) RESULT 

(MEM,MEM + 1(2) = MEM,MEM + 1(2) + #$80) 

479 

ADC 



AND 

AND: Logical AND 
Description 
This instruction takes each bit of the Accumulator and performs a logical AND 
with each corresponding bit of the specified memory location or immediate 
value. The result is put back in the Accumulator. The memory location speci
fied is unaffected. (See ORA also.) 

The truth table used is: Example: 

AND: 
0 1 Accumulator: 0 0 1 1 0 0 1 1 

0 EHE 
Memory: 0 1 0 1 0 1 0 1 

1 
Result 0 0 0 1 0 0 0 1 

1 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

l __ ·_l _______ l_·_____.I I· I 
Addressing Modes Available 

Mode 
Absolute 
Absolute Long 
Direct Page 
Direct Page Indirect 
Direct Page Indirect Long 
Immediate 
Absolute Indexed,X 
Absolute Long Indexed,X 
Absolute Indexed,Y 
Direct Page Indexed,X 
Direct Page Indexed Indirect,X 
Direct Page Indirect Indexed,Y 
Direct Page Indirect Long Indexed 
Stack Relative 
Stack Relative Indexed,Y 

Uses 

Common 
Syntax 
AND $FFff 
AND $00FFff 
AND $FF 
AND ($FF) 
AND [$FFJ 
AND #$FF 
AND $FFff,X 
AND $00FFff,X 
AND $FFff,Y 
AND $FF,X 
AND ($FF,X) 
AND ($FF),Y 
AND [$FF),Y 
AND $FF,S 
AND ($FF,S),Y 

Hex 
Coding 
2D ff FF 
2F ff FF 00 
25 FF 
32 FF 
27 FF 
29 FF 
3D ff FF 
3F ff FF 00 
39 ff FF 
35 FF 
21 FF 
31 FF 
37 FF 
23 FF 
33 FF 

I • 

AND is used primarily as a mask, that is, to let only certain bit patterns 
through a section of a program. The mask is created by putting l's in each bit 
position where data is to be allowed through, and O's where data is to be 
suppressed. 

480 



AND 

For example, it's frequently desirable to mask out the high-order bit of 
ASCII data, such as would come from the keyboard or another input device 
(like a disk file). The routine shown assures that no matter what value is gotten 
from DEVICE, the high-order bit of the value put in MEM will always be clear: 

Routine: Sample Input: 
LDA DEVICE 
AND #7F 
STA MEM 

Accumulator: 01010111 or 11010111 
#$7F 01111111 01111111 

Result: 01010111 01010111 

As an example, when reading the keyboard directly, without the benefit 
of the Event Manager (8-bit mode, usually in Applesoft BASIC or ProDOS 8), it 
is necessary to clear the high-order bit (bit 7). Here is the way this is usually done: 

WATCH LOA KYBD 
BPL WATCH 

; $COOO 
; AGAIN IF < #$80 

BIT STROBE 
AND #$7F 
STA MEM 

; CLEAR STROBE: $C010 
; CLR HIGH BIT 

Furthermore, because the only difference between upper- and lowercase 
characters is that lowercase characters have bit 5 set, AND can be used to nor
malize input to all uppercase: 

LDA CHAR ; INPUT CHARACTER 
AND #$OF ; %1101 1111 (LC ·> UC) 
STA CHAR ; CONVERTS LOWERCASE TO UPPER. 

Another way of looking at this same effect is to say that AND can be 
used to force a zero in any desired position in the bit pattern of a byte or word. 
(See ORA to force l's). A zero is put in the mask value at the positions to be 
forced to 0, and all remaining positions are set to 1. Whenever a data byte is 
ANDed with this mask, a zero will be forced at each position marked with a 
zero in the mask, while all other positions will be unaffected, remaining O's or 
l's as was their original condition. 

In graphics operations, AND has the effect of creating the result of the 
intersection of two other images. For example: 

00011000 00000000 00000000 
00011000 00000000 00000000 
00011000 00000000 00000000 
00011000 AND 11111111 00011000 
00011000 11111111 00011000 
00011000 00000000 00000000 
00011000 00000000 00000000 
00011000 00000000 00000000 

481 



AND 

This is the underlying logical function behind the mask used in the 
cursor mask or a clipping region. 

There are also rather obscure uses for the AND instruction. The first of 
these is to do the equivalent of a MOD function, involving a piece of data and 
a power of two. You'll recall that the MOD function produces the remainder in 
a division operation. For example: 12 MOD 4 = 0; 14 MOD 4 = 2; 18 MOD 4 
= 2; 17 MOD 2 = 1; and so on. The general formula is: 

Acc. MOD 2n = RESULT 

The actual operation is carried out by using a value of (2n - 1) as the 
mask value. The theory of operation is that only the last n bits of the data byte 
are let through, thus producing the result corresponding to a MOD function. 

Example: 

LDA MEM 
AND #$07 
STA MEM 

; %00000111 = 23 - 1 
; MEM = MEM MOD 8 

This technique provides one of several ways of testing for the odd/even 
attribute of a number: 

LDA MEM 
AND #$01 
BEQ EVEN 
BNE ODD 

; %00000001 = 21 - 1 

The result of the AND of any number and #$01 will always be either 0 
or 1, depending on whether the number was odd or even. This can also be 
used to determine if any variable number is an even multiple of a power of 2. 

Another application is in determining if a given bit pattern is present 
among the other data in a number . For example, to test if bits 0, 3, and 7 are 
on, enter: 

LDA MEM 
AND #$89 
CMP #$89 
BEQ MATCH 
BNE NOMATCH 

; %10001001 

The general technique is to first AND the data against a mask with just 
the desired bits set to 1 (all others 0), and then to immediately do a CMP to the 
same value. If the all the specified bits match, a BEQ will succeed. 

Note: BIT (described later) can be used to test for one or more matches, but the 
AND technique described here confirms that all the bits of interest match. 

482 



ASL: Arithmetic Shift Left 
Description 

ASL 

This instruction moves each bit of the Accumulator or memory location speci
fied one position to the left. A zero is forced at the bit O position, and the high
order bit of the byte or word (bit 7 for a byte, bit 15 for a word) falls into the 
carry. The result is left in the Accumulator or memory location. 

(See also ROL, also LSR and ROR.) 

Flags & Registers Affected 

N V B D I z C Ace X Y Mem 

I · I 

~ 716 ls 1713 I 2 I 1 Io 1--o 

ASL 
(Arithmetic Shift Left) 

Addressing Modes Available 

Mode 
Accumulator 
Absolute 
Direct Page 
Absolute Indexed,X 
Direct Page,X 

Uses 

Common 
Syntax 
ASL 
ASL $FFff 
ASL $FF 
ASL $FFFF,X 
ASL $FF,X 

Hex 
Coding 
OA 
OE ff FF 
06 FF 
1E ff FF 
16 FF 

The most common use of ASL is for multiplying by a power of two. You are al
ready familiar with the effect in base ten: 123 * 10 = 1230 (shift left). For 
example: 

LOA MEM 
ASL 
ASL 
STA MEM 

; TIMES 2 
; TIMES 2 AGAIN 2 
; MEM = MEM * 4 ( 4 = 2 ) 

ASL can also be used in a loop to successively test each bit of a byte or 
word. 

483 



ASL 

LDX #$07 ; 7 FOR A BYTE, 15 FOR A WORD 
PHA ; SAVE VALUE 

WOP PLA ; RETRIEVE CURRENT VALUE 
ASL ; SHIFT HIGH-ORDER BIT INTO CARRY 
PHA ; SAVE SHIFTED VALUE 
BCC CLEAR ; BIT X CLEAR 
BCS SET ; BIT X SET 

CLEAR NOP ; YOUR HANDLER HERE 
SET NOP ; YOUR HANDLER HERE 

DEX ; X = X - I FOR NEXT BIT 
BPL WOP ; ANOTHER CYCLE 

484 



BCC: Branch Carry Clear 
Description 

BCC 

Executes a branch if the carry flag is clear. Ignored if carry is set. Many assem
blers have an equivalent mnemonic, BLT (Branch Less Than, not to be confused 
with the sandwich), since BCC is often used immediately following a compari
son to see if the Accumulator held a value less than the specified value. BCC is 
limited to a relative branch distance of -128 to + 127 bytes. (See also BCS.) 

Flags & Registers Affected 

N V B O I Z C Ace X Y Mem 

...___.____.____.___.___.......__.______.____.I I....._____.___..........__.......____. 
Addressing Modes Available 

Mode 
Relative Only 

Uses 

or: 

Common 
Syntax 
BCC LABEL 

Hex 
Coding 
60 ff 

BCC $FFFF 60 ff 

As mentioned, BCC is used to detect when the Accumulator is less than a spec
ified value. The usual appearance of the code is listed below. Note that in a 
two-byte or two-word comparison, the high-order bytes/words are checked 
first. (See also BCS.) 

One-Byte (Word) Comparison 
ENTRY LDA MEM 

CMP MEM2 
BCC LESS 
BCS EQ/GRTR 

Goes to LESS if 
MEM < MEM2) 

Two-Byte (Word) Comparison 
ENTRY LDA MEM + 1(2) 

CMP MEM2 + I (2) 
BCC LESS 
BEQ CHK2 
BCS GRTR 

CHK2 LDA MEM 
CMP MEM2 
BCC LESS 
BCS EQ/GRTR 

Goes to LESS only if 
MEM,MEM + 1(2) < MEM2,MEM2 + 1(2) 

485 



BCS 

BCS: Branch Carry Set 
Description 
Executes the branch only if the carry flag is set. Some assemblers support the 
mnemonic BGT (for Branch Greater Than), since this command is used to test 
for the Accumulator equal to or greater than the specified value. BCS is limited 
to a relative branch distance of -128 to + 127 bytes. 

Flags & Registers Affected 
N V B D I Z C Ace X Y Mem 

.___ ___ __.._ ___________ II._____.___.___..._______. 
Addressing Modes Available 

Mode 
Relative Only 

Uses 

or: 

Common 
Syntax 
BCS LABEL 

Hex 
Coding 
BO ff 

BCS $FFFF BO ff 

Used to detect Accumulator equal to or greater than a specified value. Can be 
combined with BEQ to detect a greater-than relationship. Note that in the 2-
byte or 2-word comparison, the high-order bytes/words are checked first. 

One-Byte (Word) Comparison 
ENTRY LDA MEM 

CMP MEM2 
BCC LESS 
BEQ EQUAL 
BCS GREATER 

Goes to GREATER if 
MEM > MEM2, or EQUAL 
if MEM = MEM2 

Two-Byte (Word) Comparison 
ENTRY LDA MEM + 1 (2) 

CMP MEM2+ 1(2) 
BCC LESS 
BEQ CHK2 
BCS GREATER 

CHK2 LDA MEM 
CMP MEM2 
BCC LESS 
BEQ EQUAL 
BCS GREATER 

Goes to GREATER only if 
MEM,MEM + 1(2) > MEM2,MEM2 + 1(2), or 
to EQUAL if MEM,MEM + 1 = MEM2,MEM2 + 1 

486 



BEQ: Branch if Equal 
Description 

BEQ 

Executes a branch if the Z flag (zero flag) is set, indicating that the result of a 
previous operation was zero. See BCS to see how a comparison for the Accu
mulator equal to a value is done. BEQ is limited to a relative branch distance of 
-128 to + 127 bytes. 

Flags & Registers Affected 

N V B D I 

Addressing Modes Available 

Mode 
Relative Only 

Uses 

or: 

z C 

Common 
Syntax 
BEQ LABEL 

Ace X 

Hex 
Coding 
FO ff 

BEQ $FFFF FO ff 

Y Mem 

In addition to being used in conjunction with compare operations, BEQ is used 
to test whether the result of a variety of other operations has resulted in a 
value of zero. The common classes of these operations are increment/decrement, 
logical operators, shifts, and register loads. Even easier to remember is the gen
eral principle that whenever you've done something that results in zero, 
chances are good the Z flag has been set. Likewise, any nonzero result of an 
operation is likely to clear the Z flag. 

BEQ is used to check for the end of a string by using zero as a delimiter. 

LDX #$00 ; BEGINNING OF DATA 
LOOP LDA DATA,X ; GET A CHARACTER (8 BIT) 

BEQ DONE ; CHAR = 0 = END OF STRING 
WORK NOP ; YOUR PROGRAM HERE 

INX ; NEXT CHARACTER IN STRING 
JMP LOOP 

DONE RTS 

BEQ can be used to terminate a loop by waiting for the counter to reach 
zero. (See BNE also.) When BEQ follows the decrement instruction at the end 
of the loop, the counter is initialized with the value for the number of times for 
the loop to execute. 

LDX #25 
LOOP JSR ROUTINE 

DEX 
BEQ DONE 
JMP LOOP 

; LOOP 25 TIMES 
; DO SOMETHING 
; COUNT DOWN 
; X = 0 = FINISHED 
; BACK FOR MORE 



BIT 

BIT: Compare Accumulator Bits with Contents of Memory 
Description 
Performs a logical AND on the bits of the Accumulator and the contents of the 
memory location. The result of the AND will be zero or nonzero, and the Z 
flag is conditioned accordingly. What this means is that if any bits set in the 
Accumulator happen to match any set in the value specified, the Z flag will be 
cleared. If no match is found, it will be set. BNE is used to detect a match, BEQ 
detects a no-match condition. 

Fully understanding the function and various applications of this instruc
tion is a sign of having arrived as an assembly language programmer, and sug
gests you are probably the hit of parties, thrilling your friends by doing hex 
arithmetic in your head and reciting ASCII codes on command. 

Flags & Registers Affected 
N V B D I Z C Ace X Y Mem 

I • I • I I • I I..____._____.___._____, 
+ + 

m7, m6 for byte operations, 
ml5, m14 for word operations. 

Addressing Modes Available 

Mode 
Absolute 
Direct Page 
Immediate 
Absolute Indexed,X 
Direct Page Indexed,X 

Uses 

Common 
Syntax 
BIT $FF££ 
BIT $FF 
BIT #$FF 
BIT $FFff,X 
BIT $FF,X 

Hex 
Coding 
2C ff FF 
24 FF 
89 FF 
3C ff FF 
34 FF 

BIT provides a means of testing whether a given bit is on in a byte of data. 
Important: BIT will only indicate that at least one of the bits in question match. 
It does not indicate how many actually do match. See the AND instruction on 
how to do a check for all matching. The mask is created by setting l's in the bit 
positions you are interested in, and leaving all remaining positions set to 0. 
Thus, if you are only interested in testing a specific bit, your mask should only 
have that bit set. BIT is almost always used in conjunction with branch instruc
tions including BMI, BPL, BEQ and BNE. Be sure to look over the descriptions 
of these instructions as well. 

488 



Examples: 
Showing the results of the BIT operation: 

Ace: 1 0 0 1 1 0 1 1 
Mem: 0 1 0 1 0 1 0 1 Z flag effect: 
Result: 00010001-+1 clr BNE works 

BEQ not taken 

Status Register 
N V B D I z C 

I 0 I 1 I 0 

m7 m6 

Ace: 1 0 0 1 1 0 1 1 
Mem: 01000100 Z flag effect: 
Result: 00000000 -+O set BEQ works 

BNE not taken 

Status Register 

N V B D I z C 

1 

m7 m6 

Testing a given bit: 

Test memory for bit 4 on 
LDA #$10 ; %00010000 

Test Acc. for bit 4 on 
ENTRY LDA DEVICE 

BIT #$10 ; %00010000 BIT MEM 
BNE MATCH 
BEQ NOMATCH 

BNE MATCH 
BEQ NOMATCH 

BIT 

Also important is the fact that a BIT instruction does not change the con
tents of the Accumulator. Here is an example of an 8-bit mode program that 
waits for a keypress while maintaining a unique value in the Accumulator. 

LDA #$41 
LOOP BIT KYBD 

BPL LOOP 
BIT STROBE 
JSR COUT 

DONE RTS 

; "A" 
; $COOO 
; VAL < 128 = NO PRESS 
; $C010 
; PRINTS LETTER "A" 

489 



BIT 

Notice that in this example, no data is actually retrieved from the key
board. Only a wait is done until the keypress. 

The BIT STROBE step in the previous example also provides an illustra
tion of a another application of BIT, which is to access a hardware location 
(often called a softswitch) without changing the contents of the Accumulator. 

Important: Many ProDOS 8 and Applesoft BASIC routines set 
softswitches using the BIT instruction. For example, the instruction BIT $C050 
enables the graphics display, BIT $C051 switches to text. However, this only 
works in the 8-bit mode. This is because in the 16-bit mode, the instruction BIT 
$C050 accesses both $C050 and $C05 l (remember, it is then a 2-byte opera
tion). The result is that $C051 is accessed last, and the final state is the text dis
play, which is probably not what you intended. BIT instructions of softswitches 
should only be done in the 8-bit mode. 

BIT also sets the N and V flags, and thus provides a very fast way of 
testing bits 6 and 7 of a byte or bits 14 and 15 of a word. When examining 
hardware registers, BIT can be combined with BMI to test for a high bit set. For 
example, in the Apple lies, location $C036 uses the high-order bit to indicate 
whether the system speed is configured to the normal or fast modes. BIT and 
BMI can be used to easily test this (in the 8-bit mode, of course). 

TEST BIT $C036 ; CONFIGURATION REGISTER 
BMI FAST ; BIT 7 = I = FAST MODE 
BPL SWW ; BIT 6 = 0 = SWW MODE 

Some applications use BIT to facilitate using a single byte or word as a 
flag to hold several status bits. For example, suppose our application wanted to 
set up a flag for whether the screen was black-and-white or color, and whether 
the printer was an lmageWriter or LaserWriter. Bit 7 could hold the color flag, 
bit 6 the printer code, and one BIT instruction could test for everything. 

Bit 7: 0 = black-and-white, 1 = color 
Bit 6: 0 = ImageWriter, 1 = LaserWriter 
TEST BIT FLAG 

BPL COWR 
BMI BLACKWH 
BVC IMAGE 
BVS LASER 

; BIT 7 = 0 
; BIT 7 = I 
;B1T6=0 
; BIT 6 = I 

This routine works because the BIT instruction automatically transfers 
bits 6 and 7 to the Status Register. In the 16-bit mode, bits 14 and 15 would 
have to store the flags for transfer to the N and V bits of the Status Register. 

490 



BMI: Branch on Minus 
Description 

BMI 

Executes branch only if the N flag (sign flag) is set. N flag is set by any opera
tion producing a result in the range of $80 to $FF for byte operations, and 
$8000 to $FFFF for word operations (for example, high bit set). BMI is limited 
to a relative branch distance of -128 to + 127 bytes. 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

..____.___.____..___.__..___.__......__I .__I ------
Addressing Modes Available 

Mode 
Relative Only 

or: 

Common 
Syntax 
BMI LABEL 

Hex 
Coding 
30 ff 

BMI $FFFF 30 ff 

Uses 
BMI is used to detect negative numbers when signed binary math is used. 
However, because the high-order bit is frequently used to indicate a wide vari
ety of special conditions, BMI, along with BPL, is used to test the high-order 
bit, irrespective of its negative number connotations. See also the BIT instruction. 

The high-order bit of many hardware registers is used to indicate signifi
cant conditions. BMI is usually used to test these. Because the registers use only 
a single byte, this testing is usually done in the 8-bit mode. For example, here's 
a typical way of watching the keyboard hardware location, $COOO, for a 
keypress. (See BIT.) 

WOP LDA KYBD 
BMI PRESS 
BPL WOP 

; 8-BIT MODE 
; DATA> $7F 
; DATA< $80 

Since bit 7 is the high-order bit and has no effect on the ASCII character 
associated with a byte, this can be quite handy. For example, some word pro
cessing applications store formatting characters (such as flags for underlining, 
bold, and so forth among the text of a document. The high-order bit of each 
byte is used to indicate whether that byte is a text byte (high bit clear) or a for
matting byte (high bit set). 

READ LDA CHAR ; GET CHARACTER FROM TEXT 
BMI FORMAT ; SPECIAL FORMAT ENCODING 

CONT NOP ; CONTINUE WITH TEXT READER HERE 

491 



BMI 

BMI is also useful for terminating a loop that you want to reach 0, and 
where the loop will otherwise stay out of the $80 to $FF range. Notice that a 
loop terminated by a decrement and a BMI test will loop n + 1 times, where n 
is the starting value of the counter. 

ENTRY LDX #$20 ; TO WOP 33 TIMES 
WOP DEX 

BMI DONE ; WHEN X = $FF 
BPL WOP ; WHILE X > $FF 

DONE RTS 

492 



BNE: Branch Not Equal 
Description 

BNE 

Executes the branch if the Z flag (zero flag) is clear, that is to say, if the result 
of an operation was a nonzero value. BNE is limited to a relative branch dis
tance of -128 to +127 bytes. 

Flags & Registers Affected 
N V B D I Z C Ace X Y Mem 

.._____.____,____.____._____.__....,___.......____.I I.____.___........________, 
Addressing Modes Available 

Mode 
Relative Only 

Uses 

or: 

Common 
Syntax 
BNE Label 

Hex 
Coding 
DO FF 

BNE $FFFF DO ff 

Often used in loops to branch until the counter reaches zero. Also used in data 
input loops to verify the nonzero nature of the last byte loaded, as when check
ing for the end of a string. 

BNE can be used to terminate a loop by waiting for the counter to reach 
zero. (See BEQ also.) When BNE follows the decrement instruction at the end 
of the loop, the counter is initialized with the value for the number of times for 
the loop to execute. 

LDX #25 
WOP JSR ROUTINE 

DEX 
BNE WOP 

DONE RTS 

; WOP 25 TIMES 
; DO SOMETHING 
; COUNT DOWN 
; BACK FOR MORE 
; COUNTER HAS REACHED ZERO 

BNE can be used in a way similar to that for BEQ to check for the end of 
a string by using zero as a delimiter. 

Example: 

LDX 
WOP LDA 

BNE 
JMP 

WORK NOP 
INX 

#$00 
DATA,X 
WORK 
DONE 

JMP WOP 
DONE RTS 

; BEGINNING OF DATA 
; GET A CHARACTER 
; CHAR NOT END OF STRING 
; 0 = END OF STRING 
; YOUR PROGRAM HERE 
; NEXT CHARACTER IN STRING 

493 



BPL 

BPL: Branch on Plus 
Description 
Executes branch only if the N flag (Sign Flag) is clear, as would be the case 
when the result of an operation is in the range of $00 to $7F (high bit clear) for 
byte operations, and $0000 to $7FFF for word operations. BPL is limited to a 
relative branch distance of -128 to + 127 bytes. (See also BMI.) 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

.______.__.____.____.__.......___.___.__~I .....__I ____ .......__......____. 
Addressing Modes Available 

Mode 
Relative Only 

or: 

Common 
Syntax 
BPL LABEL 

Hex 
Coding 
10 ff 

BPL $FFFF 10 ff 

Uses 
BPL is an easy way of staying in a loop until the high bit is set. It is also used 
in general to detect the status of the high bit. 

Here's our familiar keypress check using BPL: 

ENTRY LDA KYBD ; $COOO, 8-BIT MODE 
BPL ENTRY ; WOP UNTIL DATA> $7F 
BIT STROBE ; CLR $COIO 
STA MEM ; SAVE VALUE 

DONE RTS 

Also used for short loops (counters less than 128) that you want to reach 
zero. 

ENTRY LDX #$20 
WOP DEX 

BPL WOP 
DONE RTS 

; WILL WOP 33 TIMES 
;X=X-1 
; UNTIL X = $FF 

494 



BRA: Branch Always 
Description 

BRA 

Always executes a branch. BRA is limited to a relative branch distance of -128 
to + 127 bytes. (See BRL.) 

Flags & Registers Affected 

N V 8 D I 

Addressing Modes Available 

Mode 
Relative Only 

Uses 

or: 

z C 

Common 
Syntax 
BRA LABEL 

Ace X 

Hex 
Coding 
80 FF 

BRA $FFFF 80 FF 

Y Mem 

BRA is used mainly as a substitute for a JMP instruction in code that must be 
position independent without the benefit of a relocating loader like the 
System.Loader. In situations where the routine must be as small as possible, 
BRA also takes fewer bytes (2 vs. 3) than a JMP instruction. 

Here's a loop that uses a BRA instead of a JMP: 

LDX #25 ; LOOP 25 TIMES 
LOOP JSR ROUTINE ; DO SOMETHING 

DEX ; COUNT DOWN 
BEQ DONE ; X = 0 = FINISHED 
BRA LOOP ; BACK FOR MORE 

BRK: Break (Software Interrupt) 
Description 
When a BRK is encountered in a program, program execution halts, and the 
user generally sees something like the following: 

00/0308: 00 00 BRK 00 
A=OOAO X=OOOO Y=OOOI S=OI37 D=OOOO P=D9 
8=00 K=OO M=OC Q=80 L=l m=l x=l e=l 

495 



BRK 

Flags & Registers Affected 

N V B D I z C Ace X Y Mem 

......_.....____._____.I__,...· .......... I ____.__~.....___.I I....__....__.___...____. 
+ 

Emulation mode only (e = 1) 

Addressing Modes Available 

Mode 
Implied Only 

Common 
Syntax 
BRK 00 

Hex 
Coding 
00 00 

What happens is that the program counter plus two is saved on the 
stack. What happens next depends on which mode-emulation or native-the 
65816 is in when the BRK occurs. 

Emulation mode. The status register, where the BRK bit has been set, is 
pushed on the stack. The processor jumps to the address pointed to by the 
bytes at $00/FFFE,FFFF. This currently points to $00/C074, which jumps again 
to the Apple IIGS break handler at $El/0010. For ProDOS 8 applications, con
trol ultimately passes to a vector at $3F0,3Fl. 

Native mode. There's not a BRK bit in the status register, so, instead 
of setting a bit, the processor jumps to a vector pointed to by locations 
$00/FFE6,FFE7-the native mode BRK handler. 

Uses 
BRK can be very useful in debugging ML programs. Insert a BRK into the code 
at stategic points in the routine. When the program halts, examine the status of 
various memory locations and registers to see if all is as it should be. This pro
cess can be formalized, and considerably improved, by using a software utility 
called a debugger, which allows you to step through a program one instruction 
at a time. 

Because BRK advances the program counter two bytes, the Monitor dis
assembles it as a two-byte instruction. Although Merlin lets you enter a single
byte BRK instruction in a source listing, your programs will disassemble better 
if you create each one in the BRK $00 form. If conserving memory is an issue, 
once your program is debugged, go back and replace the BRK $00 instructions 
with a simple one-byte BRK. 

496 



I 

BRL: Branch Always Long 
Description 

BRL 

Always executes a branch. BRL is different from BRA in that it supports a two
byte displacement and is limited only to a target address within the current 
program bank. 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

.........___.. _ __.._~.-.............___.____.I .__I ___.___.__.....___. 
Addressing Modes Available 

Mode 
Relative Only 

or: 

Common 
Syntax 
BRL LABEL 

Hex 
Coding 
80 FF 

BRL $FFFF 80 FF 

Uses 
BRL is used mainly as a substitute for a JMP instruction in code that must be 
position independent without the benefit of a relocating loader like the 
System.Loader. 

Here's a loop that uses a BRL instead of a JMP: 

LDX #25 ; WOP 25 TIMES 
WOP JSR ROUTINE ; DO SOMETHING 

DEX ; COUNT DOWN 
BEQ DONE ; X = 0 = FINISHED 
BRL WOP ; BACK FOR MORE 

497 



BVC 

BVC: Branch on Overflow Clear 
Description 
Executes a branch only if the V flag (overflow flag) is clear. The overflow flag is 
cleared whenever the result of an operation did not entail the carry of a bit 
from position 6 to position 7 (or bit 14 to 15 for words). The overflow flag can 
also be cleared with a CLV command. BVC is limited to a relative branch dis
tance of -128 to + 127 bytes. 

Flags & Registers Affected 

N V B D I z C Ace X Y Mem _________ I I _ _..._----... 
Addressing Modes Available 

Mode 
Common 
Syntax 

Hex 
Coding 
50 ff Relative Only BVC LABEL 

or: 
BVC $FFFF 50 ff 

The overflow bit is only conditioned by the instructions ADC, SBC, BIT, 
PLP, REP and SEP. That is to say, just loading a value into the Accumulator 
or a register doesn't automatically condition the V flag, as is the case with the 
N flag. 

Uses 
BVC is used primarily in detecting a possible overflow from the data portion of 
the byte into the sign bit when using signed binary numbers. For example: 

ENTRY CLC 
LDA 
ADC 
BVC 

ERR RTS 

#$64 
#$40 
STORE 

STORE STA MEM 

; %01100100 = + 100 
; %01000000 = + 64 
; NCYf TAKEN HERE 
; RESULT = + 164 = %10100100 > $7F 

BVC can also be used as a forced branch when writing position-independent 
code. The advantage is that the carry remains unaffected, thus allowing it to be 
tested later in the conventional manner. 

CLV 
BVC LABEL 

; CLEAR V FLAG 
; (ALWAYS) 

498 



BYS: Branch Overflow Set 
Description 

BVS 

Executes the branch only when the V flag ( overflow flag) is set. The overflow 
flag is set only when the result of an operation causes a carry of a bit from po
sition 6 to position 7 (or bit 14 to 15 for words). Note that there is not a com
mand to specifically set the overflow flag (as would correspond to a SEC 
command for the carry.) BVS is limited to a relative branch distance of -128 to 
+ 127 bytes. 

Flags & Registers Affected 
N V B D I z C Ace X Y Mem 

____ ..___.. ___ I I._____.___....__~ 
Addressing Modes Available 

Mode 
Common 
Syntax 

Hex 
Coding 
70 ff Relative Only BVS LABEL 

or: 
BVS $FFFF 70 ff 

The overflow bit is only conditioned by the instructions ADC, SBC, BIT, 
PLP, REP and SEP. That is to say, just loading a value into the Accumulator 
or a register does not automatically condition the V flag as is the case with the 
N flag. 

Uses 
BVS is used primarily in detecting a possible overflow from the data portion of 
the byte into the sign bit, when u§ing signed binary numbers. For example: 

ENTRY CLC 
LDA #$64 
ADC #$40 
BVS ERR 

STORE STA MEM 
DONE RTS 
ERR JSR BELL 

; %01100100 = + 100 
; %01000000 = + 64 
; RESULT = + 164 = %10100100 > $7F 

; ALERT TO OVERFLOW 

The overflow bit can be explicitly set by using the BIT instruction on an 
Accumulator or memory location value with the appropriate bit (bit 6 or bit 14) 
set. (See also BVC.) For example: 

BIT $FF58 
BVS SET 

; ASSUMES 8-BIT MODE ... 
; GUARANTEED TO BE #$60 
; BRANCH ON OVERFLOW SET 

499 



CLC 

CLC: Clear Carry 
Description 
Clears the carry bit of the status register. 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

clr I ...._I _________ ........ 

Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
CLC 

Hex 
Coding 
18 

CLC is usually required before the first ADC instruction of an addition opera
tion, to make sure the carry hasn't inadvertently been set somewhere else in 
the program, and thus incorrectly added to the values used in the routine itself. 

CLC ; PREPARE TO ADD 
LDA MEM ; GET FIRST VALUE 
ADC MEM2 ; ADD 2ND VALUE 
STA RSLT ; SAVE RESULT 

CLC is also prior to an XCE instruction to set the 65816 microprocessor 
to the native mode. 

CLC 
XCE ; e = 0 = NATIVE MODE 

A CLC can also be used to force a branch when writing position
independent code, such as: 

CLC 
BCC LABEL ; (ALWAYS) 

500 



CLO: Clear Decimal Mode 
Description 

GLD 

CLD is used to enter the binary mode (which the Apple is usually in by de
fault), so as to properly use the ADC and SBC instructions. (See SEO for setting 
decimal mode.) 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

I clr I II...__ __ .......__..........___. 
Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
CLD 

Hex 
Coding 
DB 

The arithmetic mode of the 65816 is an important point to keep in mind when 
using the ADC and SBC instructions. If you are in the wrong mode from what 
you might assume, rather unpredictable results can occur. See the SED instruc
tion entry for more details on the other mode. 

501 



cu 

CLI: Clear Interrupt Mask 
Description 
This instruction enables interrupts by clearing bit 2 of the Status Register. 

Flags & Registers Affected 

N V B D I 

Addressing Modes Available 

Mode 
Implied Only 

Uses 

z C 

Common 
Syntax 
CLI 

Ace X 

Hex 
Coding 
58 

Y Mem 

CLI tells the 65816 to recognize incoming IRQ (Interrupt ReQuest) signals. The 
Apple's default is to have interrupts enabled, but after the first interrupt, all 
succeeding interrupts are disabled by the 65816 until a CLI is re-issued, which 
usually happens automatically at the end of the given interrupt routine. Be
cause timing-dependent operations such as writing to a disk drive cannot' be in
terrupted without damaging the data being written, interrupts are usually 
disabled during a disk access. That's why you can't always get to the Classic 
Desk Accessory menu with Control-Open Apple-Escape when the disk drive is 
on. Certain operating systems like Pascal and ProDOS 8 version 1.1.1 disable 
interrupts when they first start up. If you wish to enable the Desk Accessory 
menu in these operating systems, you must execute a CLI instruction. (See also 
SEI.) 

502 



CLV: Clear Overflow Flag 
Description 
This clears the overflow flag by setting the V bit of the status register to 0. 

Flags & Registers Affected 
N V B D I Z C Ace X Y Mem 

1~1 I _I-~~ 
Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
CLV 

Hex 
Coding 
BB 

CLV 

Because the overflow flag is automatically cleared by a non-overflow result of 
an ADC instruction, it is not usually necessary to clear the flag prior to an addi
tion operation. It is, however, occasionally used as a way of forcing a branch 
instruction when writing position-independent code. 

CLV ; CLEAR OVERFLOW FLAG 
BVC ROUTINE ; BRANCH TO ROUTINE 

This technique has the advantage of leaving the carry flag undisturbed should 
your program wish to test the carry flag after the forced branch. 

503 



CMP 

CMP: Compare to Accumulator 
Description 
CMP compares the Accumulator to a specified value or memory location. The 
N (sign), Z (zero), and C (carry) flags are conditioned. A conditional branch is 
usually then done to determine whether the Accumulator was less than, equal 
to, or greater than the data. 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

I · I I · I · I ,__! ____ ..___ 

Addressing Modes Available 

Mode 
Absolute 
Absolute Long 
Direct Page 
Direct Page Indirect 
Direct Page Indirect Long 
Immediate 
Absolute Indexed,X 
Absolute Long Indexed,X 
Absolute Indexed, Y 
Direct Page Indexed,X 
Direct Page Indexed Indirect,X 
Direct Page Indirect Indexed, Y 
Direct Page Indirect Long Indexed, Y 
Stack Relative 
Stack Relative Indirect Indexed, Y 

Uses 

Common 
Syntax 
CMP $FFff 
CMP $00FFff 
CMP $FF 
CMP ($FF) 
CMP [$FF] 
CMP #$FF 
CMP $FFff,X 
CMP $00FFff,X 
CMP $FFff,Y 
CMP $FF,X 
CMP ($FF,X) 
CMP ($FF),Y 
CMP [$FF],Y 
CMP $FF,S 
CMP ($FF,S),Y 

Hex 
Coding 
CDff FF 
CF ff FF 00 
CS FF 
D2FF 
C7 FF 
C9 FF 
DDff FF 
DF ff FF 00 
D9 ff FF 
DSFF 
Cl FF 
Dl FF 
D7FF 
C3 FF 
D3 FF 

CMP is used to check the value of a byte against certain values such as would 
be done in loops, or in data processing routines. The routine typically decides 
whether the result is less than, equal to, or greater than a critical value. The 
usual pattern is: 

BCC: Acc. < value 
BCS: Acc. > = value 
BEQ, BCS: Acc. > value 

See the sections on BCC through BCS for specific examples. 

504 



CMP 

Important: A CMP #$00 followed by a BCC or BCS as the test to the end of a 
loop should never be done. Consider this example: 

ENTRY LDY #$FF 
WOP DEY 

CPY #$00 
BCS WOP ; (ALWAYS TAKEN!) 
BCC DONE 

DONE RTS 

Because $01 through $FF is larger than zero, the branch will be taken 
while the Y register is in this range. Since $0 = $0, when Y reaches 0, the 
branch will still be taken. Therefore, the example creates an endless loop which 
will never terminate. 

Similarly, if a BCC is done first, it will never be taken, since there is no 
value less than zero to trigger it. 

This bug is most likely to show up when you design a loop that uses a 
memory location to store, for example, the length of a string. 

ENTRY LDY #$FF 
WOP DEY 

CPY LEN 
BCS WOP 

DONE RTS 

; LEN HOLDS LENGTH OF STRING 
; ALWAYS TAKEN IF (LEN) = 0 

As long as the length of the string is nonzero, everything works fine. 
However, a zero-length string will cause the routine to loop forever, making 
the system appear to hang up. 

505 



COP 

COP: Co-Processor Enable 
Description 
This is a special instruction similar to the BRK instruction, but which is de
signed to allow access to a secondary microprocessor to the 65816. For ex
ample, the Apple IIGS contains additional microprocessors for the keyboard and 
sound generation operations. 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

...____,____._.....____..j _c1_r ..... ! _se_t ..... I _......___.! !...__.........____...__ ............. ~ 
Addressing Modes Available 

Mode 
Implied Only 

Common 
Syntax 
COP 00 

Hex 
Coding 
02 00 

Like the BRK instruction, a COP instruction causes the program counter 
plus two to be saved on the stack. The 65816 then jumps to the address indi
cated by the vector stored in locations $00/FFF4,FFF5. Unlike the BRK instruc
tion, the byte following the COP instruction is presumed to have a specific 
meaning, and is used to pass an instruction to the other microprocessor. 
Operands in the range of $80 to $FF have been reserved by Western Design 
Center, the designer of the 65816. Operands in the range of $00 to $7F are 
available. 

506 



CPX: Compare data to the X Register. 
Description 

CPX 

CPX compares the contents of the X Register against a specified value or mem
ory location. (See also CMP.) 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

I · I 
Addressing Modes Available 

Mode 
Absolute 
Direct Page 
Immediate 

Uses 

Common 
Syntax 
CPX $FF££ 
CPX $FF 
CPX #$FF 

Hex 
Coding 
EC ff FF 
E4 FF 
EOFF 

CPX is primarily used in loops which read data tables, with the X-Register be
ing used as the offset in the Absolute,X addressing mode. The X Register is 
usually loaded with zero and then is incremented until it reaches the length of 
the data stream to be read. For example: 

ENTRY LDX #$00 ; INITIALIZE OFFSET 
LOOP LDA DATA,X ; GET A CHARACTER 

JSR PRINT ; PRINT IT 
INX ; X = X + I 
CPX #$05 ; DONE WITH THE LOOP? 
BCC LOOP ; NOPE (LESS THAN 5) 

DONE RTS ; ALL DONE 
DATA ASC "TEST!" ; STRING DATA TO PRINT 

For the same reasons discussed under CMP, a CPX #$00 or CPX MEM 
followed by BCC or BCS should not be used. (See CMP for details.) 

507 



CPY 

CPY: Compare Data to the Y Register 
Description 
CPY compares the contents of the Y Register against a specified value or mem
ory location. (See also CMP.) 

Flags & Registers Affected 
N V B D I Z C Ace X Y Mem 

I · I 
Addressing Modes Available 

Mode 
Absolute 
Direct Page 
Immediate 

Uses 

Common 
Syntax 
CPY $FFff 
CPY $FF 
CPY #$FF 

Hex 
Coding 
CCff FF 
C4 FF 
CO FF 

The Y Register is used when reading a stream of data indirectly from a direct
page pointer. CPY allows for checking the current value of the Y Register 
against a critical value. In this example, the Y Register is used to retrieve and 
print the first five bytes of a string. 

ENTRY LDY #$00 ; INITIALIZE OFFSET 

WOP 

DONE 
DATA 

LDA #<DATA ; WW BYTE OF DATA 
STA PTR 
LDA #>DATA 
STA PTR+I 

LDA (PTR),X 
JSR PRINT 
INY 
CPY #$05 
BCC WOP 
RTS 
ASC "TEST!" 

; HIGH BYTE OF DATA 
; (PTR) = DATA 

; GET A CHARACTER 
; PRINT IT 
;X=X+l 
; DONE WITH THE WOP? 
; NOPE (LESS THAN 5) 
; ALL DONE 
; STRING DATA TO PRINT 

For the same reasons discussed under CMP, a CPY #$00 or CPY MEM 
followed by BCC or BCS should not be used. (See CMP for details.) 

508 



DEC: Decrement a Memory Location 
Description 

DEC 

The contents of the specified memory location (byte or word) are decremented 
by one. If the original contents were equal to #$00, then the result would wrap 
around, giving a result of #$FF (or #$FFFF for a word). 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

..__I • __ l ____ __.___.....____.___ ......... I _. .........__.I ..__I ___ .........___. 

Addressing Modes Available 

Mode 
Implied (Accumulator) 
Absolute 
Direct Page 
Absolute Indexed,X 
Direct Page Indexed,X 

Uses 

Common 
Syntax 
DEC 
DEC $FFff 
DEC $FF 
DEC $FFff,X 
DEC $FF,X 

Hex 
Coding 
3A 
CE ff FF 
C6 FF 
DE ff FF 
D6 FF 

DEC is usually used when decrementing a one-byte memory value (such as a 
counter), or a two-byte memory pointer (word). Here are the common 
examples: 

One-Byte or Word Value 
ENTRY DEC MEM 
DONE RTS 

Two-Word Pointer: 
ENTRY DEC MEM 

LDA MEM 
CMP #$FFFF 
BNE DONE 
DEC MEM+l 

Two-Byte Pointer 
ENTRY DEC MEM 

LDA MEM 
CMP #$FF 
BNE DONE 
DEC MEM+l 

DONE RTS 

; WW WORD 

; WRAP AROUND? 
; NO 
; HIGH WORD 

; 8-BIT MODE 
; GET WW BYTE 
; WRAP AROUND? 
; NO 
; YES: DEC MEM + 1 

After the DEC operation, the N and Z flags are often checked to see if 
the result was negative or a zero/nonzero value, respectively. 

The technique shown for the two-byte decrement operation is not neces
sarily the most efficient for a two-word (or two-byte in the 8-bit mode) decre
ment. See the SBC entry for an alternative method. 

509 



DEX 

DEX: Decrement the X Register 
Description 
The X Register is decremented by 1. When the original value was #$00, the re
sult will wrap around to give a result of #$FF-or of #$FFFF, for a word. (See 
also DEC.) 

Flags & Registers Affected 

N V B D I z C Ace X y Mem 

I • I I • I I I • 
Addressing Modes Available 

Common Hex 
Mode Syntax Coding 
Implied Only DEX CA 

Uses 
DEX is often used in reading a data block via indexed addressing, for example, 
LOA $1234,X. Here is a simple example: 

ENTRY LDX #$05 ; START COUNTER = 5 
WOP LDA DATA-1,X ; 8-BIT ACCUMULATOR 

JSR PRINT ; PRINT THE CHARACTER 
DEX ; X = X - I 
BNE WOP ; NOf DONE YET 

DONE RTS 
DATA ASC "!TSET" 

Note: There are several points of interest in this example. Besides the 
general use of the X Register in the indexed addressing mode, notice that the 
loop runs backward from #$05 to #$01. The loop is terminated when the X 
Register reaches zero. Because the loop runs from high memory down, the 
ASCII string is put in memory in reverse order, as evidenced in the listing. Also 
note that the base address of the loop is DATA-1. This allows the use of the 
#$05 to #$01 values of the X Register. 

510 



DEY: Decrement the Y Register 
Description 

DEY 

The Y Register is decremented by 1. When the original value was #$00, the re
sult will wrap around to give a result of #$FF, or a result of #$FFFF, for a 
word . (See also DEC.) 

Flags & Registers Affected 
N V B D I Z C Ace X Y Mem 

_I · __ l _________ l_· _____ I I I· 
Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
DEY 

Hex 
Coding 
88 

DEY is usually used when decrementing a reverse scan of a data block, using a 
direct-page pointer via indirect indexed addressing (such as LDA ($FF),Y). 
Reverse scans are often used because it's so easy to use a BEQ instruction to 
detect when you're done. DEY is also used when making a counter for a small 
number of cycles. Here's a routine which outputs a variable number of carriage 
returns, as indicated by the contents of MEM. 

ENTRY LOY MEM ; GET COUNTER VALUE 
BEQ DONE ; PROTECT AGAINST (MEM) = 0 

WOP LOA #$80 ; <RETURN> 
JSR COUT ; PRINT IT 
DEY 
BNE WOP ; TILL Y=O 

DONE RTS 

511 



EOR 

EOR: Exclusive Or with Accumulator 
Description 
The contents of the Accumulator are exclusive ORed with the specified data. 
The N (sign) and Z (zero) flags are also conditioned depending on the result. 
The result is put back in the Accumulator. The memory location (if specified) is 
unaffected. 

The truth table used is: Example: 

AND: 
0 1 Accumulator: 0 0 1 1 0 0 1 1 

0 Bffi 
Memory: 0 1 0 1 0 1 0 1 

1 
Result: 01100110 

0 

Flags & Registers Affected 
N V B D I Z C Ace X Y Mem 

I.__ ·__._1---------~~I-· ...._____.I I · I · 
Addressing Modes Available 

Mode 
Absolute 
Absolute Long 
Direct Page 
Direct Page Indirect 
Direct Page Indirect Long 
Immediate 
Absolute Indexed,X 
Absolute Long lndexed,X 
Absolute Indexed,Y 
Direct Page Indexed,X 
Direct Page Indexed Indirect,X 
Direct Page Indirect Indexed, Y 
Direct Page Indirect Long Indexed, Y 
Stack Relative 
Stack Relative Indirect Indexed,Y 

Uses 

Common 
Syntax 
EOR $FFff 
EOR $00FFff 
EOR $FF 
EOR ($FF) 
EOR [$FF] 
EOR #$FF 
EOR $FFff,X 
EOR $00FFff,X 
EOR $FFff,Y 
EOR $FF,X 
EOR ($FF,X) 
EOR ($FF),Y 
EOR [$FF],Y 
EOR $FF,S 
EOR ($FF,S),Y 

Hex 
Coding 
4D ff FF 
4F ff FF 00 
45 FF 
52 FF 
47 FF 
49 FF 
SD ff FF 
SF ff FF 00 
59 ff FF 
55 FF 
41 FF 
51 FF 
57 FF 
43 FF 
53 FF 

EOR has a wide variety of uses. One is to encode data by doing an EOR with 
an arbitrary one-byte key. The data may then be decoded later by again doing 
an EOR of each data byte with the same key again. 

512 



CODE LDX #$05 
WOP LDA DATA-1,X 

EOR #$7D 
STA $300,X 
DEX 
BNE WOP 

DONE RTS 
DATA ASC "TEST!" 

DECODE LDX #$05 
WOP LDA $300,X 

EOR #$7D 
STA $380,X 
DEX 
BNE WOP 

DONE RTS 

; INITIALIZE COUNTER 
; GET CHARACTER 
; ARBITRARY "KEY" 
; REWRITE TABLE 

; TILL X=O 

; INITIALIZE COUNTER 
; RETRIEVE CODED DATA 
; REVERT TO ORIG. VALUE 
; PUT IN NEW WC. 

EOR 

Another application of EOR is to reverse a given bit of a data byte. The 
mask is created by putting 1 in the positions that you wish to have reversed. A 
zero is put in all remaining positions. When the EOR with the mask is done, 
bits in the specified positions will reverse; for example, ones will become ze
roes, and vice versa. See the truth table for this entry to verify this effect. 

The Z (zero) flag will be set if either the Accumulator or memory or both 
equal zero: 

ENTRY LDA MEM 
EOR MEM2 
BEQ ZERO 
BNE NOTZ 

; MEM = 0 and/or MEM2 = 0 
; NEITHER MEM NOR MEM2 = 0 

EOR is useful in producing the twos complement of a number for use in 
signed binary arithmetic. 

ENTRY LDA #$34 ; %00110100 = +52 
; TO BE CVRTD TO -52 

EOR #$FF ; %11111111 = $FF 
; RSLT = %11001011 

CLC 
ADC #$01 ; RSLT = RSLT + 1 

' 
= %11001100 = $CC 

STA MEM ; STORE RSLT 
DONE RTS 

513 



EOR 

And to convert signed negative numbers back: 

ENTRY LDA #$CC ; % 1100 I I 00 = $CC = -52 
; TO BE CVRTD BACK 

SEC 
SBC #$01 ;ACC=ACC-1 

' = %11001011 = $CB 
EOR #$FF ; REVERSE ALL BITS 

; RSLT = %00110100 = $34 = +52 
STA MEM ; STORE RESULT 

DONE RTS 

In graphics, doing an EOR using #$FF (or #$FFFF for words) will reverse 
the visible image: 

10000000 
01000000 
00100000 
00010000 EOR 
00001000 
00000100 
00000010 
00000001 

11111111 
11111111 
11111111 
11111111 
11111111 
11111111 
11111111 
11111111 

01111111 
10111111 
11011111 
11101111 
11110111 
11111011 
11111101 
11111110 

514 



INC: Increment Memory 
Description 

INC 

The contents of a specified memory location are incremented by 1. If the origi
nal value was #$FF (or #$FFFF for a word), then incrementing will result in a 
wrap around, giving a result of #$00. The N (sign) and Z (zero) flags are condi
tioned depending on the result. 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

I · I I · I I I · 
Addressing Modes Available 

Mode 
Implied (Accumulator) 
Absolute 
Direct Page 
Absolute Indexed,X 
Direct Page Indexed,X 

Uses 

Common 
Syntax 
INC 
INC $FFff 
INC $FF 
INC $FFff,X 
INC $FF,X 

Hex 
Coding 
lA 
EE ff FF 
E6 FF 
FE ff FF 
F6 FF 

INC is most often used for incrementing a one-byte (or word) value (such as a 
counter) or a two-byte or two-word pointer. Here are the most common forms: 

8-bit Accumulator/Memory (e = 1): 

One-Byte Value 
ENTRY INC MEM 

RTS 

Two-Byte Pointer 
ENTRY INC MEM 

BNE DONE 
INC MEM+I 

DONE RTS 

16-bit Accumulator/Memory (e = 0, m = 0): 

One-Word Value 
ENTRY INC MEM 

RTS 

Two-Word Pointer 
ENTRY INC MEM 

BNE DONE 
INC MEM+2 

DONE RTS 

After the INC operation, the N and/or Z flags are often checked to see if the 
result was negative or a zero/nonzero value, respectively. 

515 



INX 

INX: Increment the X Register 
Description 
The contents of the X Register are incremented by one. If the original value 
was #$FF (or #$FFFF for a word), then incrementing will result in a wrap 
around, giving a result of #$00. The N (sign) and Z (zero) flags are conditioned 
depending on the result. 

Flags & Registers Affected 
N V B D I Z C Ace X Y Mern 

.._I ·__._I ___._____._____.__......._ __ I _· .....______.I _I _I_· __ 
Addressing Modes Available 

Mode 
Implied Only: 

Uses 

Common 
Syntax 
INX 

Hex 
Coding 
EB 

INX is used in forward scanning loops which digest a DATA stream as shown 
here: 

ENTRY 
LOOP 

DONE 
DATA 

LDX 
LDA 
BEQ 
JSR 
BRA 
RTS 
ASC 
HEX 

#$00 ; INITIALIZE INDEX 
DATA,X ; GET A CHARACTER 
DONE ; DELIMITER? 
PRINT 
LOOP ; NEXT CHAR 

"TEST!" 
00 ; END OF DATA 

INX can also be used as a general purpose counter for miscellaneous 
routines. 

ENTRY LDX #$00 
LDA #$8D 

LOOP JSR PRINT 
INX 
CPX #$05 
BCC LOOP 

DONE RTS 

; <RETURN> 

; TILL X = 5 
; PRINTS 5 CR'S 

Note that in forward scanning loops that check a length or limit value, 
the base address can be DATA itself. (See DEX for another situation.) 

516 



INY: Increment the Y Register 
Description 

INY 

The contents of the Y Register are incremented by one. If the original value 
was #$FF (or #$FFFF for a word), then incrementing will result in a wrap 
around giving a result of #$00. The N (sign) and Z (zero) flags are conditioned 
depending on the result. 

Flags & Registers Affected 

N V B D I z C Ace X y Mern 

I • I I • I I I • 
Addressing Modes Available 

Common Hex 
Mode Syntax Coding 
Implied Only INY CB 

Uses 
INY is used in forward scanning loops that use the indirect indexed addressing 
mode (for example, LDA ($FF),Y). This is quite common in routines which pro
cess strings for certain characters, such as search routines. Here is a routine that 
scans an input buffer for the first carriage return: 

ENTRY LOA #<BUF ; WW BYTE OF BUFFER ADDRESS 
STA PTR ; WW BYTE OF POINTER 
LOA #>BUF ; HIGH BYTE OF BUFFER ADDRESS 
STA PTR ; (PTR) = BUFFER 
LDY #$00 ; INITIALIZE INDEX 

WOP LDA (PTR),Y ; GET A CHARACTER 
CMP #$8D ; CHR = <CR>? 
BEQ FOUND ; LEAVE WOP 
INY ; Y = Y + I 
BNE WOP ; 'TILL Y = $00 AGAIN 

DONE RTS 
FOUND STY MEM ; SAVE POSITION OF FOUND CHAR. 

BRA DONE ; (ALWAYS) 

517 



JML/JMP 

JML/ JMP: Jump to Address 
Description 
Causes program execution to jump to the address specified. Except for the long 
address form of JMP (JML), a JMP instruction always goes to the operand ad
dress within the current program bank. A JML automatically changes the Pro
gram Bank Register to the bank of the target address. 

Flags & Registers Affected (none) 

N V B D I Z C Ace X Y Mem 

.....___._____.______.___ __ ......___._ ___ __.I .__I ___ __. 
Addressing Modes Available 

Mode 
Absolute 
Absolute Long 
Absolute Indirect 
Absolute Indexed Indirect 
Absolute Indirect Long 

Uses 

Common 
Syntax 
JMP $FFff 
JML $00FFff 
JMP ($FFff) 
JMP ($FFff,X) 
JML [$FFff] 

Hex 
Coding 
4C ff FF 
SC ff FF 00 
6C ff FF 
7C ff FF 
DCff FF 

Besides the obvious application of the usual absolute addressed JMP instruc
tion, the indirect JMP is used when creating vectored jumps. The Apple IIGS 
makes extensive use of these vectors for handling everything from the RESET 
vector to the patches to the tool set calls. 

By creating a table of vectors, your application can use an input value 
and the Absolute Indexed Indirect JMP to go to a particular routine. 

LDA CMD ; GET COMMAND VALUE $0 TO $2 
ASL ; MULTIPLY BY 2 = 0,2,4 
JMP (CMDTBL,X) ; GO TO VECTORED ROUTINE 

CMDTBL DA ROUTINE! ; ADDRESS OF ROUTINE! (2 BYTES) 
DA ROUTINE2 ; ADDRESS OF ROUTINE2 (2 BYTES) 
DA ROUTINE3 ; ADDRESS OF ROUTINE3 (2 BYTES) 

518 



JSL/ JSR: Jump to Subroutine 
Description 

JSL/JSR 

The address of the last byte of the JSR instruction is pushed onto the stack. 
This is equivalent to the return address minus one. The address of the operand 
for the JSR is then jumped to. When an RTS in the called subroutine is encoun
tered, a return to the location on the stack plus one (the address of the next in
struction after the JSR) is done. This is analgous to a GOSUB in BASIC. Except 
for the long address form of JSR QSL), a JSR always goes to the operand ad
dress within the current program bank. 

Flags & Registers Affected (none) 
N V B D I Z C Ace X Y Mem 

.____.____.___...___ ____ ......._____.. ___ 1 ,__! ---------

Addressing Modes Available 

Mode 
Absolute 
Absolute Indexed Indirect 
Absolute Long 

Uses 

Common 
Syntax 
JSR $FFff 
JSR ($FFff,X) 
JSL $00FFff 

Hex 
Coding 
20 ff FF 
FC ff FF 
22 ff FF 00 

JSR is one of the most commonly used instructions, being used to call often 
needed subroutines. The disadvantage of the instruction is that if the JSR's ref
erence addresses within the code (as opposed to routines external to the pro
gram, such as in the ROM), the code can only be executed at the location for 
which the code was originally assembled. This problem can be avoided by 
using the System Loader and creating ProDOS 16 files in a relocatable format, 
or by writing the program so as to be position independent (no internal address 
references). 

Because the calling address is saved on the stack, a JSR to a known RTS 
can be done, and the data can be retrieved to determine where in memory the 
routine is currently being executed. (See PER.) 

The Absolute Indexed Indirect form of the JSR is often used in Apple 
IIGS programs using the Event Manager and Menu Manager because of the 
easy vectoring to an appropriate subroutine. The addresses for each subroutine 
to be called are defined in a common table, and the command value times 2 is 
used as the offset for the JSR. 

519 



JSL/JSR 

LDA CMD 
ASL 
JSR (CMDTBL,X) 
JMP MAIN 

CMDTBL DA ROUTINE! 
DA ROUTINE2 
DA ROUTINE3 

; GET COMMAND VALUE $0 TO $2 
; MULTIPLY BY 2 = 0,2,4 
; GO TO VECTORED ROUTINE 
; BACK TO MAIN ROUTINE 

; ADDRESS OF ROUTINE! (2 BYTES) 
; ADDRESS OF ROUTINE2 (2 BYTES) 
; ADDRESS OF ROUTINE3 (2 BYTES) 

520 



LOA: Load Accumulator 
Description 

LOA 

Loads the Accumulator with either a specified value or the contents of the des
ignated memory location. One byte is loaded in the 8-bit mode, 2 bytes (a 
word) in the 16-bit mode. The N (Sign) and Z (Zero) flags are conditioned 
when a value with either the high bit set or a zero value are loaded, 
respectively. 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

._I · __ l _______ ---.....l_·_..._____.I I· 

Addressing Modes Available 

Mode 
Absolute 
Absolute Long 
Direct Page 
Direct Page Indirect 
Direct Page Indirect Long 
Immediate 
Absolute Indexed,X 
Absolute Long Indexed,X 
Absolute Indexed, Y 
Direct Page Indexed,X 
Direct Page Indexed Indirect,X 
Direct Page Indirect Indexed, Y 
Direct Page Indirect Long Indexed, Y 
Stack Relative 
Stack Relative Indirect Indexed,Y 

Uses 

Common 
Syntax 
LOA $FF££ 
LOA $00FFff 
LOA $FF 
LOA ($FF) 
LOA [$FF] 
LOA #$FF 
LOA $FFff,X 
LOA $00FFff,X 
LOA $FFff,Y 
LOA $FF,X 
LOA ($FF,X) 
LOA ($FF),Y 
LOA [$FF],Y 
LOA $FF,S 
LOA ($FF,S),Y 

Hex 
Coding 
AD££ FF 
AF ff FF 00 
AS FF 
B2 FF 
A7 FF 
A9 FF 
BD ff FF 
BF ff FF 00 
B9 ff FF 
BS FF 
Al FF 
Bl FF 
B7 FF 
A3 FF 
B3 FF 

LOA is probably the most used of any instruction. The vast majority of opera
tions center around the Accumulator, and this instruction is used to get data 
into the important register. 

521 



LDX 

LDX: Load the X Register 
Description 
Loads the X Register with either a specified value, or the contents of the desig
nated memory location. The N (sign) and Z (zero) flags are conditioned when a 
value with either the high bit set or a zero value are loaded, respectively. One 
byte is loaded when the x bit is 1, a word (2 bytes) is loaded when xis 0. 

Flags & Registers Affected 

N V B O I Z C Ace X Y Mem 

I...._ ·__._I __.____._____._____.____._I _. ........_____.I __ I __._I _· ____ ____, 
Addressing Modes Available 

Mode 
Absolute 
Direct Page 
Immediate 
Absolute Indexed,Y 
Direct Page Indexed, Y 

Uses 

Common 
Syntax 
LOX $FFff 
LOX $FF 
LOX #$FF 
LOX $FFff,Y 
LOX $FF,Y 

Hex 
Coding 
AE ff FF 
A6 FF 
A2 FF 
BE ff FF 
B6 FF 

This is the primary way in which data is placed into the X Register. 

522 



LDY: Load the Y Register 
Description 

LDY 

Loads the Y Register with either a specified value or the contents of the desig
nated memory location. The N (sign) flag is conditioned when the high bit is 
set, and the Z (zero) flag is conditioned when a zero value is loaded. One byte 
is loaded when the x = 1, a word (2 bytes) when x = 0. 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

.___I ·__._I ___ __.....__......___.,I_· _.____.I ...._I __.__ ......... I _· .....____. 
Addressing Modes Available 

Mode 
Absolute 
Direct Page 
Immediate 
Absolute Indexed,X 
Direct Page lndexed,X 

Uses 

Common 
Syntax 
LDY $FF££ 
LDY $FF 
LDY #$FF 
LDY $FFff,X 
LDY $FF,X 

Hex 
Coding 
ACff FF 
A4 FF 
AO FF 
BC ff FF 
B4 FF 

This is the primary way in which data is placed into the Y Register. 

523 



LSR 

LSR: Logical Shift Right 
Description 
This instruction moves each bit of the Accumulator or memory location speci
fied one position to the right. A zero is forced at the bit 7 position (the high
order bit) for a byte, and bit 15 for a word. Bit zero falls into the carry. The 
result is left in the Accumulator or memory location. (See also ROL, ASL, and 
ROR.) 

Flags & Registers Affected 
N V B D I z C Ace X Y Mem 

I • I • I ...__l • ......... I __.____.__I ·__, 

0 ---171615141~ 121110 ~ 

LSR 
(Logical Shift Right 

Addressing Modes Available 

Mode 
Accumulator 
Absolute 
Direct Page 
Absolute Indexed,X 
Direct Page Indexed,X 

Uses 

Common 
Syntax 
LSR 
LSR $FFff 
LSR $FF 
LSR $FFff,X 
LSR $FF,X 

Hex 
Coding 
4A 
4E ff FF 
46 FF 
SE ff FF 
56 FF 

ASL provides an easy way of dividing by a power of two. The corresponding 
effect in decimal arithmetic is well known: 123/10 = 12.3 (shift right). As an 
example: 

ENTRY LDA MEM 
LSR 
LSR 
STA MEM 

; GET ORIGINAL VALUE 
; DIV BY 2 
; DIV BY 2 AGAIN 2 
; MEM = MEM/4 (4 = 2) 

524 



LSR 

ASL also provides a way of detecting whether a number is odd or even: 

ENTRY LDA MEM 
LSR 
BCS EVEN 
BCC ODD 

Since bit O determines the odd/even nature of a number, this is easily 
transferred to the carry via the LSR, and then checked via the BCS /BCC 
instructions. 

In double hi-res graphics and SO-column text, the bytes that make up the 
screen display are interleaved. For example, in SO-column text, each even posi
tion character (0, 2, 4, and so on) is located in bank 1 (AuxMem). Each odd po
sition character is located in bank O (MainMem). Thus, the actual byte offset 
from the base address for the left edge of the screen for each line is equal to 
the horizontal position divided by two. Which bank is used is determined by 
whether the given horizontal position is an even or an odd number. These 
characteristics are ideal for the use of LSR in an SO-column print routine: 

PRINT LDA CV ; VERTICAL POSITION 
JSR VTAB ; MONITOR ROUTINE TO CALCULATE BASE ADDRESS 
LDA CH ; HORIZONTAL POSITION 
LSR ; DIVIDE BY TWO, CARRY SET IF ODD 
TAY ; PUT RESULT IN Y REGISTER 
BCS MAIN ; MAIN MEMORY IF ODD 

AUX BIT PAGE2 ; SOFTSWITCH FOR BANK I 
STA BASL,Y ; WRITE CHARACTER 
BRA CONT ; ALWAYS BRANCH TO CONTINUE 

MAIN BIT PAGEI ; SOFTSWITCH FOR BANK 0 
STA BASL,Y ; WRITE CHARACTER 

CONT NOP ; PROGRAM CONTINUES HERE 

525 



MVN/MVP 

MVN/MVP: Block Move Next/Previous 
Description 
Moves an entire block of memory from one location to another. The source and 
destination blocks must not cross bank boundaries, but the destination block 
may be in a different bank than the source. 

The next in MVN refers to the source block being after the destination 
block, but within the same bank. MVN (vs. MVP) is specifically required when 
the destination block is lower in memory, but within the same bank, as the 
source block. Otherwise either MVN or MVP may be used. 

The previous in MVP refers to the source block being ahead of, or previ
ous to, the destination block, but within the same bank. MVP is specifically re
quired in that case. 

Flags & Registers Affected 

N V B D I z C Ace X Y Mem 

_________ I I · I · I · I · 
(Requires use of A, X and Y Registers.) 

Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
MVN $00,$FF 
MVP $00,$FF 

Hex 
Coding 
54 00 FF 
54 00 FF 

In processors previous to the 65816, such as the 65C02 in the Apple lie and lie, 
moving data was accomplished by calling a routine. For small amounts of 
memory, this was perfectly adequate. However, for a machine with the large 
amounts of memory like the Apple IIGS, conventional methods of moving 
memory would just be too slow. Fortunately, the 65816 includes two move in
structions, MVN and MVP which automate the moving of memory to enable 
large blocks of memory to be moved much faster. 

In practice, it's usually easier to use the Memory Manager calls 
PtrToHand, PtrToPtr, HandToHand, and BlockMove to move blocks of mem
ory than it is to use the MVN or MVP instructions. That's because the operands 
that describe the source and destination banks for MVN and MVP must be 
hard coded into the instruction. This means that you must either limit your 
moves to within predefined banks (fine for ProDOS 8 and Applesoft BASIC), or 
you must use self-modifying code to achieve flexibility for inter-bank transfers. 
In addition, should the source or destination blocks cross a bank boundary, ad
ditional code must be included to handle the separate blocks of memory. The 

526 



MVN/MVP 

built-in routines of the Memory Manager already take all these considerations 
into account and use the MVN and MVP instructions to their best advantage 
while the machinations remain transparent to the programmer. 

You have already seen from the demonstration program in Chapter 17 
that the Memory Manager can move large blocks of memory quite quickly with 
the standard tool calls. However, in the event you should ever wish to use the 
MVN or MVP instructions explicitly, here is an appropriate code segment: 

ENTRY LDX START ; STARTING ADDRESS 
LDY DEST ; DESTINATION ADDRESS 
LDA LENGTH ; NUMBER OF BYTES TO MOVE - 1 
MVN SBNK,DBNK ; SOURCE BANK, DESTINATION BANK 

; OR MVP IF NECESSARY 

Note that normal use presumes that both m and x are equal to O (full 16-
bit mode), but that MVN and MVP can be used with 8-bit m or x bits-or even 
in emulation mode. In any particular case, if the X or Y register has a high-or
der byte equal to zero (as would be the case withe = 1 or x = 1), then the 
source and destination will be limited to page zero ($00 to $FF), irrespective of 
the direct-page register. The complete Accumulator (C) is used for the length, 
regardless of the setting of the e or m bits. 

527 



NOP 

NOP: No Operation 
Description 
Does nothing for one instruction. 

Flags & Registers Affected (none) 

N V B D I Z 

Addressing Modes Available 

Mode 
Implied Only 

Uses 

C 

Common 
Syntax 
NOP 

Ace X Y Mem 

Hex 
Coding 
EA 

NOP is used primarily to disable portions of code written by other program
mers that you have decided you can live without. Additionally, NOPs may be 
used during debugging to disable certain steps. 

528 



ORA: Inclusive OR with the Accumulator 
Description 

ORA 

This instruction takes each bit of the Accumulator and performs a logical OR 
with each corresponding bit of the specified memory location or immediate 
value. The result is put back in the Accumulator. The memory location, if spec
ified, is unaffected. Conditions the N (Sign) and Z (Zero) flags depending on 
the result. One byte is operated on when them bit = 1, a word (2 bytes) is op
erated on when m = 0. (See ORA and AND also.) 

Inclusive OR means if either or both bits are 1 then the result is 1. Only 
when both bits are O is the result 0. 

The truth table used is: Example: 

ORA: 
0 1 Accumulator : 0 0 1 1 0 0 1 1 

0 tHE 
Memory: 

1 
Result 

1 

Flags & Registers Affected 
N V B D I Z 

Addressing Modes Available 

Mode 
Absolute 
Absolute Long 
Direct Page 
Direct Page Indirect 
Direct Page Indirect Long 
Immediate 
Absolute Indexed,X 
Absolute Long Indexed,X 
Absolute Indexed, Y 
Direct Page Indexed,X 
Direct Page Indexed Indirect,X 
Direct Page Indirect Indexed, Y 
Direct Page Indirect Long Indexed, Y 
Stack Relative 
Stack Relative Indirect Indexed,Y 

0 1 0 1 0 1 0 1 

0 1 1 1 0 1 1 1 

C Ace X Y Mem 

Common 
Syntax 
ORA $FFff 
ORA $00FFff 
ORA $FF 
ORA ($FF) 
ORA [$FF] 
ORA #$FF 
ORA $FFff,X 
ORA $00FFff ,X 
ORA $FFff,Y 
ORA $FF,X 
ORA ($FF,X) 
ORA ($FF),Y 
ORA [$FF],Y 
ORA $FF,S 
ORA ($FF,S), Y 

Hex 
Coding 
OD ff FF 
OF ff FF 00 
OS FF 
12 FF 
07 FF 
09 FF 
lD ff FF 
lF ff FF 00 
19 ff FF 
15 FF 
01 FF 
11 FF 
17 FF 
03 FF 
13 FF 

529 



ORA 

Uses 
ORA is used primarily as a mask to force l's in specified bit positions. (See 
AND to force O's.) To create the mask, 1 is put in each bit position which is to 
be forced to one. All other positions are set to 0. For example, here is a routine 
which will set the high bit on any ASCII data going out through a print routine 
in your application: 

ENTRY LOA DATA,X 
ORA #$80 

; GET CHARACTER TO PRINT 
; %10000000 
; SET HIGH BIT 

JSR PRINT 
RTS 

In graphics, ORA has the effect of blending two images on a common 
background: 

00011000 
00011000 
00011000 
00011000 ORA 
00011000 
00011000 
00011000 
00011000 

00000000 
00000000 
00000000 
11111111 
11111111 
00000000 
00000000 
00000000 

00011000 
00011000 
00011000 
11111111 
11111111 
00011000 
00011000 
00011000 

ORA can also be used when checking for a pointer equal to zero that is 
stored in two bytes in the 8-bit mode, or in four bytes, as would be the case for 
a handle in the 16-bit mode: 

8-Bit Mode, Two Bytes 
LOA MEMI ; LOW-ORDER BYTE 
ORA MEMI + 1 ; HIGH-ORDER BYTE 
BEQ ZERO ; BEQ TAKEN IF BOfH = ZERO 

16-Bit Mode, Two Words 
LOA MEMI ; LOW-ORDER WORD 
ORA MEMI +2 ; HIGH-ORDER WORD 
BEQ ZERO ; BEQ TAKEN IF BOTH = ZERO 

530 



PEA: Push Effective Address 
Description 

PEA 

Pushes 16-bit address indicated by operand onto stack, regardless of the e, m, 
or x bits. 

Flags & Registers Affected (none) 

N V B D I Z C Ace X Y Mem 

___________ I .__I ............__.___....____. 

Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
PEA 

Hex 
Coding 
F4 

PEA is most often used to push an immediate value onto the stack in prepara
tion for a call to an Apple IIGS tool set routine. This value may either be an im
mediate value, for example the X coordinate of a point, or an address, such as 
that of a label: 

PEA $0002 
PEA LABEL 
PEA ALABEL 

; PUSH #$2 ON STACK 
; PUSH LOW WORD OF LABEL ON STACK 
; PUSH HIGH WORD OF LABEL ON STACK 

Note that even though the immediate mode character(#) is not used, 
the value of LABEL, not its contents, will be pushed on the stack. 

PEA could also be used to push an artificial return address on the stack 
for a subroutine. By using a JMP to access the routine which then ended in an 
RTS, program execution would resume at the byte immediately after the ad
dress pushed on the stack: 

PEA LABEL-I ; RETURN ADDRESS-I 
JMP SUBR ; ROUTINE TO 'JSR' TO 
BRK $00 ; SHOULD NEVER GET HERE ... 

LABEL NOP ; PROGRAM RESUMES HERE 

SUBR NOP 
RTS 

; SOME SORT OF SUBROUTINE 
; RETURNS TO 'LABEL' 

531 



PEA 

As long as the subroutine knows that an alternate return address is on 
the stack, you can also use PEA with a JSR for two or more possible return 
addresses: 

PEA RTRN2-l ; ALTERNATE RETURN ADDRESS-I 
JSR SUBR ; ROUTINE TO JSR TO 

RTRNI NOP ; NORMAL RETURN ADDRESS 
PLA ; PULL UNUSED PEA ADDRESS OFF 
NOP ; MORE OF YOUR PROGRAM HERE 

RTRN2 NOP ; ALTERNATE RETURN ADDRESS 
NOP ; MORE OF YOUR PROGRA HERE . . . 

SUBR NOP ; SOME SORT OF SUBROUTINE 
BEQ NORML ; ARBITRARY FLAG FOR NORMAL RETURN 
PLA ; PULL NORMAL RETURN OFF 

; NEXT RTS WILL BE TO RTRN2! 
NORML RTS 

532 



PEI: Push Effective Indirect Address 
Description 

PEI 

Pushes 16-bit address found at the direct-page address (low byte, high byte) in 
the operand onto the stack, regardless of the e, m, or x bits. The high byte of 
the address is pushed first, followed by the low byte. 

Flags & Registers Affected (none) 

N V B D I Z C Ace X Y Mem 

._____._~__.___.__...___.__,______.! I.___.____...___.______. 
Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
PEI 

Hex 
Coding 
04 

This instruction allows the program to push a vector or other 16-bit address 
stored on the direct page onto the stack. For example, suppose the direct page 
register is set to $8000, and you use the instruction 

PEI ($25) ; PUSH EFFECTIVE INDIRECT 

The microprocessor will go to locations $8025, $8026 (low-byte, high
byte) for the address held there. Assuming the contents of $8025, $8026 = 
$1234, the value $1234 would then be pushed on the stack. 

Like PEA, PEI can also be used to push an artificial return address on 
the stack for a subroutine, the only difference being that the source of the re
turn address would be a direct-page pointer. See PEA for examples of the gen
eral technique. 

533 



PER 

PER: Push Effective Relative Address 
Description 
Pushes a 16-bit address relative to the current program counter, regardless of 
the e, m or x bits. This is more or less equivalent in function to doing a PEA 
with a LABEL of an address (as opposed to a constant), except that no absolute 
address is used in the PER instruction, and it can thus be used to create posi
tion-independent code. 

Flags & Registers Affected (none) 

N V B D I Z C Ace X Y Mem 

______________________ I __ I --------
Addressing Modes Available 

Mode 
Implied Only 

USE 

Common 
Syntax 
PER 

Hex 
Coding 
62 

This instruction allows the program to push a 16-bit address determined by the 
relative offset generated as the operand by the assembler label. For example, 
consider the following code segment located at $8000: 

8000: 62 05 00 PER LABEL 
8003: 20 08 80 JSR SUBR 
8006: EA LABEL NOP 
8007: 60 RTS 

8008: EA 
8009: 68 
800A: EA 
8008: 60 

SUBR NOP 
PLA 
NOP 
RTS 

; JSR TO A SUBROUTINE 
; MORE OF YOUR PROGRAM 
; THIS PART IS DONE 

; SOME SUBROUTINE 
; RETRIEVE VALUE OF LABEL 
; SOME MORE PROGRAM 
; RETURN 

The microprocessor will take the relative offset of 5 (the operand of the 
PER instruction), add this to the program counter for the next instruction 
($8003), and push the result ($8008) on the stack. The result is the actual ad
dress of the assembler operand, LABEL. This value is then available to SUBR. 
With ProDOS 16 and the System Loader, it is just as easy to use a PEA LABEL 
to achieve the same result, but you may find this variation useful. 

A more likely scenario would be in writing position-independent code 
that for whatever reason did not have the benefit of the ProDOS 16 System 
Loader (for example a ProDOS 8 application). In such a case, the PER can be 
used to generate the current address that the program is running at for an indi
rect accessing of data. 

534 



PER 

PER DATA ; PUSH WHERE DATA IS ON THE STACK 
PLA ; RETRIEVE IT 
STA PTR ; WRITE DIRECT-PAGE PTR (2 BYTES) 
LDX #$00 ; INITIALIZE INDEX 

WOP LDA (PTR),X ; GET A CHARACTER 
BEQ DONE ; 0 = END OF STRING 
NOP ; DO SOMETHING WITH IT 
INX ; NEXT CHARACTER 
BNE WOP ; UNTIL X REACHES O AGAIN 
RTS ; WE'RE DONE HERE 

DATA ASC "TEST",00 ; SAMPLE DATA 

This code segment can read the characters at DATA, and yet it uses no abso
lute addressing that would prevent it from running anywhere in memory. 

Like PEA, PER can also be used to push an artificial return address on 
the stack for a subroutine. See PEA for examples of the general technique. 

PER can also be used to simulate a JSR to an internal address in position
independent code: 

ENTRY PER RTRN-1 
PER SUBR-1 
RTS 

RTRN NOP 

SUBR NOP 
RTS 

; RETURN ADDRESS-I 
; SUBROUTINE TO "JSR" TO 
; DO EQUIV. OF JSR TO SUBR 
; YOUR PROGRAM CONTINUES HERE 

; SOME SUBROUTINE 
; RETURNS TO "RTRN" 

535 



PHA 

PHA: Push Accumulator 
Description 
This pushes the contents of the Accumulator onto the stack. The Accumulator 
and status register are unaffected. When two bytes are pushed (a word, m = 
0), the high byte is pushed first; then the low byte is pushed. (See also PLA.) 

Flags & Registers Affected (none) 

N V B D I Z C Ace X Y Mem 

_______ __.__ _________ __.I I _ ____.___ 
Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
PHA 

Hex 
Coding 
48 

This is one of the most common ways of temporarily storing a byte or two. It is 
combined with PLA to retrieve the data. Generally speaking, each PHA must 
be matched by a PLA later in the routine. Otherwise the final RTS of your rou
tine will deliver you, not back to the calling BASIC program or immediate 
mode, but rather to some unpredictable location. 

This and other stack operations are used extensively in sending data to 
the various tool set routines by pushing the input data onto the stack and then 
doing a JSL $El0000. 

A more obscure use of PHA is to set up an artificial JMP by executing an 
RTS for which a JSR was never done. Providing two PHAs have been done 
prior to the RTS, the pseudo-jump will be executed. This is similar to the ap
proach used to adjust the return address of a pending RTS as was discussed in 
Chapter 11, and the fourth example in the description of PER. 

536 



PHB: Push Data Bank Register 
Description 

PHB 

Pushes the single byte value of the data bank register on the stack, regardless 
of the condition of the e, m, and x bits. 

Flags & Registers Affected (none) 

N V B D I Z C 

Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
PHB 

Ace X 

Hex 
Coding 
88 

Y Mem 

This is done to save the current data bank value, in antipation of changing and 
then later restoring it. This could be because your application wishes to access 
data in another bank or because your subroutine has been called by another 
program elsewhere. An example of this is the UPDATE routine used in a pro
gram that uses the Window Manager. 

In general, the procedure for saving and restoring the data bank register 
would look like this: 

PHB 
PHK 
PLB 
NOP 
PLB 
RTL 

; SAVE CURRENT DATA BANK 
; PUSH OUR PROGRAM BANK 
; SET DATA BANK = OUR PROGRAM BANK 
; MORE PROGRAM HERE .. . 
; RESTORE DATA BANK TO ORIGINAL 
; BACK TO WHEREVER 

537 



PHO 

PHO: Push Direct-Page Register 
Description 
Pushes the 16-bit value of the data bank register on the stack, regardless of the 
condition of the e, m, or x bits. 

Flags & Registers Affected (none) 

N V B D I Z C 

Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
PHD 

Ace X 

Hex 
Coding 
OB 

Y Mem 

This is done to save the current direct-page value, in anticipation of changing 
and then later restoring it. This could be because a subroutine in your applica
tion wishes to use a different direct page than the rest of the application or be
cause your subroutine has been called by another program with its own direct 
page elsewhere. An example of this is the UPDATE routine used in a program 
that uses the Window Manager. 

In general, the procedure for saving and restoring the direct page register 
would look like this: 

PHD 
LDA MYDP 
TCD 
NOP 
PLD 
RTS 

; SAVE CURRENT DIRECT PAGE 
; DP ADDRESS FOR OUR ROUTINE 
; SET DP = MYDP 
; MORE PROGRAM HERE ... 
; RESTORE DIRECT PAGE TO ORIGINAL 
; BACK TO WHEREVER 

538 



PHK: Push Program Bank Register 
Description 
Pushes the single-byte value of the program bank register on the stack. 

Flags & Registers Affected (none) 

N V B D I Z C Ace X Y Mem 

....__.___.______.__.__.._____.___._____.I .__I --------.... 
Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
PHK 

Hex 
Coding 
4B 

PHK 

This is usually done to determine the current program bank value, so as to be 
able to set the data bank equal to the bank the program was running in. This is 
required for the proper operation of all JSRs and JMPs (non-long address) and 
internal references to data such as LOA LABEL. 

In general, the procedure for using the program bank to set the data 
bank would look like this: 

PHB 
PHK 
PLB 
NOP 
PLB 
RTL 

; SAVE CURRENT DATA BANK 
; PUSH OUR PROGRAM BANK 
; SET DATA BANK = OUR PROGRAM BANK 
; MORE PROGRAM HERE ... 
; RESTORE DATA BANK TO ORIGINAL 
; BACK TO WHEREVER 

539 



PHP 

PHP: Push Processor Status 
Description 
This pushes the status register onto the stack for later retrieval. The status reg
ister itself is unchanged, and none of the registers are effected. PHP always 
pushes only one byte onto the stack, regardless of the condition of the e, m, 
and x bits. 

Flags & Registers Affected (none) 

N V B D I Z C 

Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
PHP 

Ace X 

Hex 
Coding 
08 

Y Mem 

PHP is done to preserve the status register for later testing for a specific condi
tion. This is handy if you don't want to test a flag right then, but the next in
struction would ruin what you want to test for. By putting the status register on 
the stack, and then later retrieving it, you can test things like the sign flag or 
carry when it's most convenient. 

ENTRY 

DONE 

ENTRY 

DONE 

CLC 
PHP 
SEC 
PLP 
BCC 
BRK 
RTS 

LDA 
PHP 
LDA 
PLP 
BEQ 
BRK 
RTS 

; CLR CARRY 
; SAVE REG 
; SET CARRY 
; RETRIEVE REG 

DONE ; (ALWAYS!) 
; (NEVER) 

#$00 ; SET Z FLAG 
; SAVE REG 

#$FF ; DESTROY 
; RETRIEVE 

DONE ; (ALWAYS!) 
; (NEVER) 

If it's ever necessary for your application to disable interrupts, it should 
use the PHP and PLP instructions to properly save and restore the interrupt 
status external to your routine. This is done by first saving the Status Register 
with a PHP instruction, and then later restoring it with PLP. This has the effect 

540 



PHP 

of re-enabling interrupts (CLI) if they, in fact, had been previously enabled, and 
does not enable them if the interrupt disable bit (bit 2 in the Status Register) 
had been set (no interrupts). 

START PHP ; SAVE INTERRUPT STATUS 
SEI ; SET INTERRUPT DISABLE 
NOP ; DO YOUR STUFF HERE ... 
PLP ; RESTORE INTERRUPT STATUS 

DONE RTS ; BACK TO WHEREVER 

Important: Like the PHA instruction, PHP should always be accompa
nied by an equal number of PLP instructions to keep the Apple happy. A com
mon cause of problems in programs is to use a PHP to push the Status Register 
on the stack (1 byte), and to then use a PLA in the 16-bit mode to examine the 
value later, resulting in pulling a byte of your return address off with the byte 
put there by the PHP. 

541 



PHX 

PHX: Push X Register 
Description 
This pushes the contents of the X Register onto the stack. The X Register and 
status register are unaffected. When two bytes are pushed (a word, x = 0), the 
high byte is pushed first, then the low byte. (See also PLX.) 

Flags & Registers Affected (none) 

N V B D I Z C 

Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
PHX 

Ace X 

Hex 
Coding 
DA 

Y Mem 

This is one of the most common ways of temporarily storing the contents of the 
X Register. It is combined with PLX to retrieve the data. 

542 



PHY: Push Y Register 
Description 

PHY 

This pushes the contents of the Y Register onto the stack. The Y Register and 
status register are unaffected. When two bytes are pushed (a word, x = 0), the 
high byte is pushed first, then the low byte. (See also PLY.) 

Flags & Registers Affected (none) 

N V B D I Z C Ace X Y Mem 

-------------....1 !....._____._ ___ ____.__ __ 
Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
PHY 

Hex 
Coding 
SA 

This is one of the most common ways of temporarily storing the contents of the 
Y Register. It is combined with PLY to retrieve the data. 

543 



PLA 

PLA: Pull Accumulator 
Description 
This is the converse of the PHA instruction. PLA retrieves one byte (8-bit 
mode, m = 1) or one word (16-bit mode, m = 0) from the stack and places it 
in the Accumulator. This accordingly conditions the N (sign) and Z (zero) flags, 
just as though an LDA instruction had been done. 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

_I · __ l _____ ~l_· ____ I I· I 
Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
PLA 

Hex 
Coding 
68 

This is combined with PHA to retrieve data from the stack. See PHA for an ex
ample of this. 

Description 
Pulls a single byte from the stack, and sets the data bank register to that value, 
regardless of the condition of the e, m, and x bits. 

544 



PLB: Pull Data Bank Register 
Description 

PLB 

Pulls a single byte from the stack, and sets the data bank register to that value, 
regardless of the condition of the e, m and x bits. 

Flags & Registers Affected 
N V B D I Z C Ace X Y Mem 

_I • __ I ________ I_· ______ I ....._I ____ _______, 

Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
PLB 

Hex 
Coding 
AB 

This is used to set the current data bank value. This could be because your 
application wishes to access data in another bank or because your application 
or subroutine has been called by another program elsewhere. This should al
ways be done as one of the first instructions in a ProDOS 16 application that is 
running in an indeterminant bank of memory. 

In general, the procedure for saving and restoring the data bank register 
looks like this: 

PHB 
PHK 
PLB 
NOP 
PLB 
RTL 

; SAVE CURRENT DATA BANK 
; PUSH OUR PROGRAM BANK 
; SET DATA BANK = OUR PROGRAM BANK 
; MORE PROGRAM HERE ... 
; RESTORE DATA BANK TO ORIGINAL 
; BACK TO WHEREVER 

Changing the data bank register does not change direct page references, 
for example LOA ($25),Y, within the program because by definition these are 
restricted to bank zero. However, the indirect address indicated on the direct 
page in bank zero will be interpreted to reside in the bank indicated by the cur
rent bank register, unless Indirect Indexed Long addressing is used. 

545 



PLO 

PLO: Pull Direct-Page Register 
Description 
Pulls a 16-bit value from the stack and sets the direct page register to that 
value, regardless of the condition of the e, m, or x bits. If e = 1 (emulation 
mode), this instruction pulls two bytes from the stack and changes the direct
page register accordingly. 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

_I ·___._I _ _...._ ________ I _. _____ I ...._I __ __ 

Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
PLD 

Hex 
Coding 
2B 

This is used to set the current direct page value from a value stored on the 
stack. This could be because a subroutine in your application wishes to use a 
different direct page then the rest of the application or because your subroutine 
has been called by another program with its own direct page elsewhere. An ex
ample of this is the UPDATE routine used in a program that uses the Window 
Manager. 

In general, the procedure for saving and restoring the direct page register 
would look like this: 

PHD 
LDA MYDP 
TCD 
NOP 
PLD 
RTS 

; SAVE CURRENT DIRECT PAGE 
; DP ADDRESS FOR OUR ROUTINE 
; SET DP = MYDP 
; MORE PROGRAM HERE . .. 
; RESTORE DIRECT PAGE TO ORIGINAL 
; BACK TO WHEREVER 

546 



PLP: Pull Processor Status 
Description 

PLP 

This is used after a PHP to retrieve the status register data from the stack. The 
byte is put in the status register, and all the flags are conditioned corresponding 
to the status of each bit in the byte placed there. The Accumulator and other 
registers are unaffected. This always pulls a single byte, regardless of the condi
tion of the e, m, and x bits. (See PHP.) 

Flags &t Registers Affected 

N V B D I Z C Ace X Y Mem 

I · I · I · I · I · I · I · I · I ~I ~~~ 
Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
PLP 

Hex 
Coding 
28 

PLP is used to retrieve the status register after a PHP has stored the flags at an 
earlier time. See PHP for examples. 
As with the PHA/PLA set, PLPs should always be matched with a correspond
ing number of PHP instructions in a one-to-one relationship. Failure to observe 
this requirement can result in some very strange results. 

547 



PLX 

PLX: Pull X Register 
Description 
This pulls one (x = 1) or two (x = 0) bytes off the stack and sets the X Regis
ter equal to that value. When two bytes are pulled (a word), the low byte is 
pulled first, then the high byte is pulled. (See also PHX.) 

Flags & Registers Affected 
N V B D I Z C Ace X Y Mem 

...--I ---1------.--------, -. ......---I I I · 
Addressing Modes Available 

Common Hex 
Mode Syntax Coding 
Implied Only PLX FA 

If x = 1 (8-bit mode), the high-order byte of the X Register will always 
be zero. 
Uses 
This is one of the most common ways of temporarily storing and retrieving the 
contents of the X Register. It is combined with PHX to store the data. 

548 



PLY: Pull Y Register 
Description 

PLY 

This pulls one or two bytes off the stack, depending on the condition of the e 
and x bits, and it sets the Y Register equal to that value. When two bytes are 
pulled (a word), the low byte is pulled first, then the high byte is pulled . (See 
PHY also.) 

Flags & Registers Affected 
N V B D I z C Ace X Y Mem 

.__I ·_I ___._______.__.__ __ I _· ......____.I .__I ___.____..._I _. ------.. 
Addressing Modes Available 

Common Hex 
Mode Syntax Coding 
Implied Only PLY 7 A 

If x = 1 (8-bit mode), the high-order byte of the Y Register will always 
be zero . 
Uses 
This is one of the most common ways of temporarily storing and retrieving the 
contents of the Y Register. It is combined with PHY to store the data. 

549 



REP 

REP: Reset (Clear) Bits in Status Register 
Description 
This clears bits in the Status Register according to which bits are set in the op
erand. If the e bit is 1 (emulation), bit 4 (break flag) and bit 5 (unused) are ig
nored. If e is O (native), then bits 4 and 5 respectively condition the m and x bits. 

Flags & Registers Affected 

N V B D I z C Ace X Y Mem 

........ 1 ·........___._I _... .....__I _... I.....____.__I _. ___ I ........ 1 ____ ....___. 

I 
m x only if in native mode (e = 0) 

Addressing Modes Available 

Mode 
Immediate 

Uses 

Common 
Syntax 
REP $FF 

Hex 
Coding 
C2 FF 

Although this can be used to condition any of the bits in the Status Register, 
REP is used most often in the native mode to clear them and/or x bits to en
able 16-bit operations for the Accumulator and memory locations and/or the 
index registers (X and Y). 

REP $30 ; M AND X = 0 (16 BITS BOTH) 
REP $20 ; M = 0, X UNAFFECTED 
REP $ IO ; X = 0, M UNAFFECTED 
REP $00 ; NOTHING IS AFFECTED 

In the Merlin assembler, the assembler will automatically adjust its inter
nal register size assumptions for future instructions, such as LOA and LOX, 
after each particular REP or SEP instruction. However, if the m and x bit status 
within a code segment is ambiguous, or not consistent with the current internal 
settings, the directive MX may be used. 

MX %11 ; M = 1, X = 1 
MX %01 ; M = 0, X = 1 

In the APW assembler, each occurrence of REP or SEP must be accompa
nied with the appropriate LONGA ON/OFF and/or LONGI ON/OFF directive. 

550 



ROL: Rotate Left 
Description 

ROL 

This instruction moves each bit of the Accumulator or memory location speci
fied one position to the left. The carry bit is pushed into position O and is re
placed by bit 7 (the high-order bit). The N (sign) and Z (zero) flags are also 
conditioned depending on the result of the shift. ROL shifts either a byte (m = 
1) or a word (m = 0). (See also ROR, ASL, and LSR.) 

Flags & Registers Affected 

N V B D I 

I · I 

c7 161s:4
~31

2
1

1
101 

ROL 
(Rotate One Bit Left) 

Addressing Modes Available 

Mode 
Accumulator 
Absolute 
Direct Page 
Absolute Indexed,X 
Direct Page Indexed,X 

Uses 

z C Ace X Y Mem 

I • I • I ...._I ·--1 ____._____.__I ·____. 

Common 
Syntax 
ROL 
ROL $FF££ 
ROL $FF 
ROL $FFff,X 
ROL $FF,X 

Hex 
Coding 
2A 
2E ff FF 
26 FF 
3E ff FF 
36 FF 

ROL is used to shift multiple byte or word groups as a unit: 

SHIFT ASL MEM ; SHIFT LOW BYTE (WORD) 
ROL MEM + 1(2) ; COMPLETE SHIFT ON HIGH-ORDER BYTE (WORD) 

; MEM, MEM + 1(2) TIMES 2 

551 



ROR 

ROR: Rotate Right 
Description 
This instruction moves each bit of the Accumulator or memory location speci
fied one position to the right. The carry bit is pushed into position 7 (the high 
order bit) in a byte operation (bit 15 for a word) and is replaced by bit 0. The N 
(sign) and Z (zero) flags are also conditioned depending on the result of the 
shift. (See also ROL, ASL, and LSR.) 

Flags & Registers Affected 

N V B D I 

I · I 

ROR 
(Rotate One Bit Right) 

Addressing Modes Available 

Mode 
Accumulator 
Absolute 
Direct Page 
Absolute Indexed,X 
Dircect Page Indexed,X 

z C Ace X Y Mem 

I • I • I ...._I • __ I ______ I ·-

Common 
Syntax 
ROR 
ROR $FFff 
ROR $FF 
ROR $FFff,X 
ROR $FF,X 

Hex 
Coding 
6A 
6E ff FF 
66 FF 
7E ff FF 
76 FF 

SHIFT ROR MEM + 1(2) ; SHIFT HIGH-ORDER BYTE (WORD) 
LSR MEM ; COMPLETE ON SHIFT LOW BYTE (WORD) 

; MEM, MEM + 1(2) DIVIDED BY 2 

552 



RTI: Return from Interrupt 
Description 

RTI 

This restores both the program counter and the status register in preparation to 
resuming the routine being executed at the time of the interrupt. All flags of 
the status register are reset to the original values. As an RTS is to a JSR, so RTI 
is the return instruction for an interrupt routine. 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

I · I · I · I · I · I · I · I · I I ___ _ 

Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
RTI 

Hex 
Coding 
40 

RTI is used in much the same way that an RTS would be used in returning 
from a JSR. After an interrupt has been handled and the background operation 
has been performed, the return is done via the RTI command. Usually the pro
gram will want to restore the A, X, and Y registers prior to returning. Because 
the number of bytes pulled off the stack for the return address depends on 
whether the processor is in the native or emulation mode, it is essential that 
the RTI be done with the processor status the same as it was when the inter
rupt occurred. 

553 



RTL/ATS 

RTL/RTS: Return from (Long) Subroutine 
Description 
This restores the program counter to the address stored on the stack plus one, 
usually the address of the next instruction after the JSR that called the routine. 
Analgous to a RETURN to a GOSUB in BASIC. (See also JSL/JSR.) RTS only 
returns to an address within the current program bank; RTL changes the pro
gram bank register, and can return to an address anywhere in addressable 
memory. 

Flags & Registers Affected (none) 

N V B D I Z C Ace X Y Mem 

--------------------....1 ...._I ____ ___ 
Addressing Modes Available 

Mode 
Implied Only 
Implied Only 

Uses 

Common 
Syntax 
RTS 
RTL 

Hex 
Coding 
60 
68 

RTS is, surprisingly enough, most often used to return from subroutines. It can 
on occasion be used to simulate a JMP instruction, by using PHA or PER in
structions to put a false return address on the stack and then executing the 
RTS. See the sections on PHA and PER and Chapter 11 for more details. 

An RTS can be POPed one level by the execution of two PLA instruc
tions if in the 8-bit mode (m = 1), or one PLA if in the 16-bit mode (m = 0). 

RTL is the return instruction for a JSL (Jump Subroutine Long); it pulls 
three bytes off the stack (Address Low Byte, Address High Byte, then Bank Byte). 

554 



SBC: Subtract with Carry 
Description 

SBC 

Subtracts the contents of the memory location or a specified value from the Ac
cumulator. The opposite of the carry is also subtracted, and in this instance, the 
carry is called a borrow. The N (sign), V (overflow), Z (zero), and C (carry) 
flags are all conditioned by this operation, and are often used to detect the na
ture of the result of the subtraction. The result of the subtraction is put back in 
the Accumulator. The memory location, if specified, is unchanged. SBC works 
for both the binary and BCD arithmetic modes. The operation involves one 
byte if m = 1, two bytes (a word) if m = 0. 

Important: A SEC should always be done prior to the first SBC opera
tion. This is equivalent to clearing the borrow, and is analgous to the CLC done 
prior to an ADC instruction. 

Flags & Registers Affected 

N V B D I 

I · I · I 
Addressing Modes Available 

Mode 
Absolute 
Absolute Long 
Direct Page 
Direct Page Indirect 
Direct Page Indirect Long 
Immediate 
Absolute Indexed,X 
Absolute Long Indexed,X 
Absolute Indexed,Y 
Direct Page Indexed,X 
Direct Page Indexed Indirect,X 
Direct Page Indirect Indexed, Y 
Direct Page Indirect Long Indexed, Y 
Stack Relative 
Stack Relative Indirect Indexed, Y 

Uses 

z C 

Common 
Syntax 

Ace 

SBC $FF££ 
SBC $00FFff 
SBC $FF 
SBC ($FF) 
SBC [$FF] 
SBC #$FF 
SBC $FFff,X 
SBC $00FFff ,X 
SBC $FFff,Y 
SBC $FF,X 
SBC ($FF,X) 
SBC ($FF),Y 
SBC [$FF),Y 
SBC $FF,S 
SBC ($FF,S),Y 

X Y Mem 

Hex 
Coding 
ED ff FF 
EF ff FF 00 
ES FF 
F2 FF 
E7 FF 
E9 FF 
FD ff FF 
FF ff FF 00 
F9 ff FF 
FS FF 
El FF 
Fl FF 
F7 FF 
E3 FF 
F3 FF 

SBC is used for subtracting a constant or memory value from the contents of 
the Accumulator. 

555 



SBC 

One-Byte (Word) Subtraction: 
ENTRY SEC ; PREPARE FOR SUBTRACTION 

LDA MEM ; GET 1ST VALUE 
SBC #$80 ; SUBTRACT #$80 
STA RSLT ; STORE RESULT 

DONE RTS 

Two-Byte (Word) Subtraction: 
ENTRY SEC ; PREPARE FOR SUBTRACTION 

LDA MEM ; GET WW-ORDER BYTE (WORD) 
SBC #$80 ; SUBTRACT #$80 
STA RSLT ; SAVE WW-ORDER BYTE (WORD) 
LDA MEM + 1(2) ; GET HIGH-ORDER BYTE (WORD) 
SBC #$00 ; SUBTRACT HIGH-ORDER BYTE (WORD) OF #$80 
STA RSLT+ 1(2) ; SAVE HIGH-ORDER RESULT 

DONE RTS 

556 



SEC: Set Carry 
Description 
This sets the carry flag of the status register. 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 
I • I I____....... _____ __, 

Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
SEC 

Hex 
Coding 
38 

SEC is usually used just prior to a SBC operation. (See SBC.) 
The carry is set prior to using the instruction XCE to set the 65816 

microprocessor to the emulation mode. 

SEC 
XCE ; EMULATION MODE 

SEC 

The carry is also used very often to indicate an error when returning 
from a call to a routine, as is done by ProDOS and the Apple IIGS tool sets. In 
these instances, the carry is set to indicate an error. This would be detected by 
the calling program upon return from the routine. 

JSR PRODOS 
BCS ERROR 

SEC is also sometimes used to force a branch. For example: 

SEC 
BCS ADDRESS ; (ALWAYS) 

557 



SEO 

SED: Set Decimal Mode 
Description 
SED sets the 65816 to the Binary Coded Decimal (BCD) mode, in preparation 
for an ADC or SBC operation. 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

I · I I _I ____ _______. 
Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
SEO 

Hex 
Coding 
F8 

BCD math is used to encode decimal data in a flexible number of bytes. In this 
mode, each four bits (nibble) of a byte represent one digit of a base ten num
ber. Although not discussed in this book, here is a brief example of a BCD ad
dition operation: 

ENTRY SED 
CLC 
LDA #$25 
ADC #$18 
STA RSLT 
CLD 

DONE RTS 

; SET DEC MODE 
; PREPARE FOR ADDITION 
; %00101001 = #25 
; %00011000 = #18 
; RSLT = %01000011 = #43 
; CLR DEC MODE 

558 



SEI: Set Interrupt Disable 
Description 

SEI 

SEI is used to disable the interrupt response to an IRQ (a maskable interrupt). 
This does not disable the response to an NMI (Non-Maskable Interrupt) or RESET. 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

________ l _· ________ I ...__l ____ _.______. 

Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
SEI 

Hex 
Coding 
78 

SEI is automatically set whenever an interrupt occurs so that no further inter
rupts can disturb the system while it is going through the $FFFE,FFFF vector 
path. ProDOS typically does a SEI/CLI operation when entering and exiting 
from the routines that read and write data on the disk, so interrupts do not 
interfere with the highly timing-dependent disk read/write routines. (See 
PHP also.) 

559 



SEP 

SEP: Set Bits in Status Register 
Description 
This sets bits in the Status Register according to which bits are set in the oper
and. If the e bit is 1 (emulation), bit 4 (break flag) and bit 5 (unused) are ig
nored. If e = 0 (native), then bits 4 and 5 condition the m and x bits, respectively. 

Flags & Registers Affected 
N V B D I Z C Ace X Y Mem 

m x only if in native mode, e = 0 

Addressing Modes Available 

Mode 
Immediate 

Uses 

Common 
Syntax 
SEP $FF 

Hex 
Coding 
E2 FF 

Although this can be used to condition any of the bits in the Status Register, 
SEP is used most often in the native mode to set the m and/ or x bits to enable 
8-bit operations for the Accumulator and memory locations and/or the index 
registers (X and Y). 

SEP $30 
SEP $20 
SEP $10 
SEP $00 

; MAND X = I (8 BITS BITTH) 
; M = l, X UNAFFECTED 
; X = 1, M UNAFFECTED 
; NITTHING IS AFFECTED 

In the Merlin assembler, the assembler will automatically adjust its inter
nal register size assumptions for future instructions (like LOA, LOX, and so on) 
that follow a particular REP or SEP instruction. However, if the m- and x-bit 
status within a code segment is ambiguous or inconsistent with the current in
ternal settings, the directive MX may be used. 

MX %11 
MX %01 

; M = 1, X = 1 
; M = 0, X = I 

In the APW assembler, each occurrence of REP or SEP must be accompa
nied with the appropriate LONGA ON/OFF and/or LONG! ON/OFF directive. 

560 



STA: Store Accumulator 
Description 

STA 

Stores the contents of the Accumulator into the specified memory location. The 
contents of the Accumulator are not changed, nor are any of the status register 
flags. One byte is stored if m = 1 (8-bit mode); two bytes are stored if m = O 
(16-bit mode). 

Flags & Registers Affected (none) 

N V B D I Z 

Addressing Modes Available 

Mode 
Absolute 
Absolute Long 
Direct Page 
Direct Page Indirect 
Direct Page Indirect Long 
Absolute Indexed,X 
Absolute Long Indexed,X 
Absolute Indexed,Y 
Direct Page Indexed,X 
Direct Page Indexed Indirect,X 
Direct Page Indirect Indexed, Y 
Direct Page Indirect Long Indexed, Y 
Stack Relative 
Stack Relative Indirect Indexed, Y 

Uses 

C Ace X Y Mem 

Common 
Syntax 
STA $FFff 
STA $00FFff 
STA $FF 
STA ($FF) 
STA [$FF] 
STA $FFff,X 
STA $00FFff,X 
STA $FFff,Y 
STA $FF,X 
STA ($FF,X) 
STA ($FF),Y 
STA [$FF],Y 
STA $FF,S 
STA ($FF,S), Y 

Hex 
Coding 
80 ff FF 
BF ff FF 00 
85 FF 
92 FF 
87 FF 
90 ff FF 
9F ff FF 00 
99 ff FF 
95 FF 
81 FF 
91 FF 
97 FF 
83 FF 
93 FF 

STA is another highly used instruction, being used at the end of many opera
tions to put the final result into a memory location. 

In general, the LOA/STA combination is used to transfer bytes from one 
location to another. 

561 



STP 

STP: Stop Processor 
Description 
This brings the whole system to a nearly permanent halt by stopping the 
microprocessor's clock input. RESET is the only way to resume operation. 

Flags & Registers Affected (none) 
N V B D I Z C Ace X Y Mem 

....____.___.______._____.___.,____,.____,_____.I ....... I _.___....._.......___, 
Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
STP 

Hex 
Coding 
DB 

STP is really designed for other hardware devices that may use the 65816 
microprocessor. When the clock input is stopped, the power consumption of 
the 65816 drops almost to zero. In the case of the Apple IIGS, this really 
doesn't save much because of all those other peripheral cards, the video cir
cuitry, the power supply itself, the monitor sitting on top of the computer, and 
so on. 

562 



STX: Store the X Register 
Description 

STX 

Stores the contents of the X Register in the specified memory location. The X 
Register is unchanged and none of the status register flags are affected. One 
byte is stored if x = 1 (8-bit register); two bytes (a word) are stored if x = 0 
(16-bit registers). 

Flags & Registers Affected (none) 

N V B D I Z C Ace X Y Mem 

______________ ..._____._ __ ___,I ...._I ______ I ·___. 

Addressing Modes Available 

Mode 
Absolute 
Direct Page 
Direct Page Indexed, Y 

Uses 

Common 
Syntax 
STX $FFff 
STX $FF 
STX $FF,Y 

Hex 
Coding 
BE ff FF 
86 FF 
96 FF 

STX is another alternative to using LOA/STA to transfer data. In some in
stances, the Accumulator will already hold a value you wish to preserve while 
you transfer another byte or word. The X Register is also used by the Monitor 
GETLN routine to return the length of the input string. 

563 



STY 

STY: Store the Y Register 
Description 
STY stores the contents of the Y Register in the specified memory location. The 
Y Register is unchanged, and none of the status register flags are affected. One 
byte is stored if x = 1 (8-bit register), two bytes (a word) if x = 0 (16-bit 
registers). 

Flags & Registers Affected (none) 

N V B D I Z C Ace X Y Mem 

._____ __ ___.____..____._ ____ ___.I __ I __ ......__...__I ·___. 

Addressing Modes Available 

Mode 
Absolute 
Direct Page 
Direct Page Indexed,X 

Uses 

Common 
Syntax 
STY $FFff 
STY $FF 
STY $FF,X 

Hex 
Coding 
BC ff FF 
84 FF 
94 FF 

STY is used to store the value of the Y Register, usually from within string or 
data scanning loops. For example, here is a routine which returns the position 
of the first control character in a block of data. 

ENTRY LDY #$00 ; ZERO COUNTER 
WOP LDA DATA,Y ; GET CHARACTER 

BEQ NOTF ; CHAR = 0 = END OF STRING 
CMP #$20 ; 'SPC' 
BCS NXT ; CHR > CTRL'S 

FOUND STY POS ; SAVE Y-REG 
DONE RTS 

NXT INV ;Y=Y+l 
BNE WOP ; TILL Y=O AGAIN. 
BRA DONE ; BRANCH ALWAYS 

NOTF LDY #$FF ; FLAG NOTFOUND 
BRA FOUND ; BRANCH ALWAYS 

564 



STZ: Store Zero in Memory 
Description 

STZ 

STZ stores a one-byte (m = 1) or two-byte (m = 0) zero value in the memory 
location indicated by the operand. 

Flags & Registers Affected (none) 

N V B D I Z C Ace X Y Mem 

---.........--------------' __ I ____ I ·___, 
Addressing Modes Available 

Mode 
Absolute 
Direct Page 
Absolute Indexed,X 
Direct Page Indexed,X 

Uses 

Common 
Syntax 
STZ $FFff 
STZ $FF 
STZ $FFff,X 
STZ $FF,X 

Hex 
Coding 
9C ff FF 
64 FF 
9E ff FF 
74 FF 

STZ is a convenient alternative to using LOA/STA to zero a memory location. 
In some instances, the Accumulator will already hold a value you wish to pre
serve while you zero out another byte or word. 

LDA #$00 
STA MEM 

is replaced by 

STZ MEM 

565 



TAX 

TAX: Transfer Accumulator to X Register 
Description 
Puts contents of Accumulator into the X Register. Doesn't affect the 
Accumulator. 

Flags & Registers Affected 

N V B D I z C Ace X y Mem 

I • I I • I I I • 
Addressing Modes Available 

Common Hex 
Mode Syntax Coding 
Implied Only TAX AA 

The actual data transferred depends significantly on the condition of the 
e, m, and x bits at the moment of transfer: 

e = 1 = Emulation 
m x Accumulator X Register 

1 (8) 1 (8) $FFff _, $00ff 

In emulation mode, both the Accumulator and the X Register are one byte 
in size. Although the Accumulator has a hidden B portion (the high-order byte), 
this is not transferred to the X Register because, in the 8-bit mode, the high-or
der byte of the X Register is always forced to zero. Thus, the result in the X 
Register is always $00ff, regardless of the high-order byte of the Accumulator. 

e = 0 = Native 
m x Accumulator X Register 

0 (16) 0 (16) $FFff _, $FF££ 

Transfer as expected. 

m x Accumulator X Register 
0 (16) 1 (8) $FF££ _, $00££ 

The high-order byte of the X Register is always zero in the 8-bit mode. 

m x Accumulator X Register 
1 (8) 0 (16) $FFff _, $FF££ 

566 



TAX 

Although the Accumulator is in the 8-bit mode, both bytes are trans
ferred (A and B portions) if the X Register is in the 16-bit mode. This is a com
mon source of program bugs. If the Accumulator is in the 8-bit mode, it is 
possible that the Accumulator is still carrying along some value (not necessarily 
zero) from millions of previous instructions in the hidden B register. You 
should never assume the B register in the Accumulator is zero unless you have 
explicitly set it that way. 

m x Accumulator X Register 
1 (8) 1 (8) $FFff ... $00ff 

This is equivalent to the e = 1 (emulation mode) transfer. 

Uses 
Most simply, TAX is used for transferring data in the manner which it implies. 

567 



TAY 

TAY: Transfer Accumulator to Y Register 
Description 
Puts contents of Accumulator into the Y Register. Does not effect the Accumu
lator. See TAX for a discussion of the impact of the condition of the e, m, and 
X bits. 

Flags & Registers Affected 

N V B D I z C Ace X Y Mem 

.__I • .......... I __.____.___...____..__..._I _. ....__.I !.......___.___._I _· .....__. 
Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
TAY 

Hex 
Coding 
AS 

TAY is used for transferring data from the Accumulator to the Y Register. 

568 



TCD: Transfer Accumulator to Direct-Page Register 
Description 

TCD 

Transfers a 16-bit value from the Accumulator and sets the direct-page register 
to that value, regardless of the condition of the e, m, or x bits. 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
TCD 

Hex 
Coding 
SB 

This is used to set the current direct-page value from a value stored in the Ac
cumulator. This could be because a subroutine in your application wishes to 
use a different direct page then the rest of the application, or because your sub
routine has been called by another program with its own direct page elsewhere. 
An example of this is the UPDATE routine used in a program that uses the 
Window Manager. 

In general, the procedure for saving and restoring the direct-page register 
would look like this: 

PHD 
LDA MYDP 
TCD 
NOP 
PLD 
RTS 

; SAVE CURRENT DIRECT PAGE 
; DP ADDRESS FOR OUR ROUTINE 
; SET DP = MYDP 
; MORE PROGRAM HERE ... 
; RESTORE DIRECT PAGE TO ORIGINAL 
; BACK TO WHEREVER 

569 



TCS 

TCS: Transfer Accumulator to Stack 
Description 
This puts the contents of the Accumulator into the stack pointer. None of the 
status register flags are affected, nor is the Accumulator itself changed. How 
many bytes are transferred depends on the condition of thee and x bits. 

Flags & Registers Affected (none) 

N V B D I Z C Ace X Y Mem 

------------' _l ----

Addressing Modes Available 

Mode 
Implied Only 

Common 
Syntax 
res 

Hex 
Coding 
18 

If the processor is in the native mode (e = 0), then 16 bits are transferred from 
the Accumulator to the Stack Pointer regardless of the condition of the m bit. If 
thee = 1 (emulation mode), then only the lower byte (A) of the Accumulator 
is transferred to the Stack Pointer, because the high-order byte of the Stack 
Pointer is locked to $01 (page $100). 

Uses 
This provides a way of directly setting the stack pointer. 

570 



TDC: Transfer Direct Page Register to Accumulator 
Description 
Transfers the 16-bit value in the direct page register to the Accumulator, re
gardless of the condition of the e, m, or x bits. 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

_I · __ l _____ l_· ____ I I· I 
Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
TDC 

Hex 
Coding 
7B 

TDC 

This is used to determine, and optionally to save, the current direct-page value. 
This could be because a subroutine in your application wishes to use a different 
direct page then the rest of the application, or because your subroutine has 
been called by another program with its own direct page elsewhere. An ex
ample of this is the UPDATE routine used in a program that uses the Window 
Manager. 

In general, the procedure for saving and restoring the direct-page register 
using TDC would look like this: 

TDC ; PUT CURRENT DIRECT PAGE IN ACC. 
PHA ; SAVE CURRENT DIRECT PAGE 
LOA MYDP ; DP ADDRESS FOR OUR ROUTINE 
TCD ; SET DP = MYDP 
NOP ; MORE PROGRAM HERE ... 
PLO ; RESTORE DIRECT PAGE TO ORIGINAL 
RTS ; BACK TO WHEREVER 

571 



TRB 

TRB: Test and Reset (Clear) Memory Bits 
Description 
Clears bits in memory corresponding to each bit set in the Accumulator. Also 
conditions the Z flag depending on the result in the same way as the BIT in
struction. That is, Z will be clear (BNE will work) if any of the tested bits were 
set before being cleared. Whether the operation involves a byte or a word de
pends on the status of the e and m bits. 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

Addressing Modes Available 

Mode 
Absolute 
Direct Page 

Uses 

Common 
Syntax 
TRB $FFff 
TRB $FF 

Hex 
Coding 
lC ff FF 
14 FF 

TRB is an alternative to using the AND instruction to force zeros in given bit 
positions. It has the advantage of combining the function of the BIT instruction 
in telling you whether any of the bits you just cleared were set beforehand. Use 
an operand with only one bit set for cases where you want to test and clear a 
specific bit. (See also TSB.) Operates on one byte if m = 1, two bytes if m = 0. 

LOA #$80 ; %10000000 
TRB MEM ; CLEAR BIT 7 
BNE SET ; BIT SET BEFOREHAND 

572 



TSB: Test and Set Memory Bits 
Description 

TSB 

Sets bits in memory corresponding to each bit set in the Accumulator. Also 
conditions the Z flag depending on the result in the same way as the BIT in
struction. That is, Z will be set (BEQ will work) only if all of the tested bits 
were clear before being set. Operates on one byte if m = 1, on two bytes if 
m = 0. 

Flags &: Registers Affected 
N V B D I z C Ace X Y Mem 

.______._____.__.______.__ __ ........ I _. .....____.I !.....____ _____ I ·___. 
Addressing Modes Available 

Mode 
Absolute 
Direct Page 

Uses 

Common 
Syntax 
TSB $FFff 
TSB $FF 

Hex 
Coding 
OC ff FF 
04 FF 

TSB is an alternative to using the ORA instruction to force l's in given bit posi
tions. It has the advantage of combining the function of the BIT instruction in 
telling you whether any of the bits you just set were clear beforehand. Use an 
operand with only one bit set for cases where you want to test and set a spe
cific bit. (See also TRB.) 

LDA #$80 
TSB MEM 
BEQ CLR 

; %10000000 
; SET BIT 7 
; BIT CLEAR BEFOREHAND 

573 



TSC 

TSC: Transfer Stack Pointer to Accumulator 
Description 
This puts the 16-bit contents of the Stack Pointer into the Accumulator, regard
less of the condition of the e or m bits. The N (sign) and Z (zero) flags are con
ditioned. The stack pointer is unchanged. When e = 1 (emulation), the high
order byte of the Accumulator will always be set to $01, since that is the high 
byte of the Stack Pointer in the emulation mode (page $100). 

Flags & Registers Affected 

N V B D I z C Ace X 

_I · __ l ______ l_· __ I I· I 
Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
TSC 

Hex 
Coding 
38 

Y Mem 

TSC is used in examining the value of the stack pointer at a particular moment. 
(See also TSX.) 

574 



TSX: Transfer Stack Pointer to X Register 
Description 
This puts the contents of the Stack Pointer into the X Register. The N (sign) 
and Z (zero) flags are conditioned. The stack pointer is unchanged. If x = 0, 
two bytes are transferred, otherwise only the low-order byte of the Stack 
Pointer will be used. 

Flags & Registers Affected 

N V B D I 

I · I 
Addressing Modes Available 

Mode 
Implied Only 

Uses 

z C 

I • 
Common 
Syntax 
TSX 

Ace X y Mem 

I I I • 
Hex 
Coding 
BA 

TSX 

The most obvious use of TSX is in preserving the value of the stack pointer at a 
particular moment. 

Another use for TSX is in retrieving data from the stack without having 
to do a PLA instruction. Although stack relative addressing can be used to ac
cess data on the stack, TSX can be used to retrieve information that is officially 
lost at that point. This lets you retrieve data that is lower in memory than the 
current stack pointer, and which would be overwritten by the next PHA 
instruction. 

One example of this is in using a JSR to a known RTS in the Monitor for 
no other purpose than to be able to immediately retrieve the otherwise lost re
turn address. This is done so that position-independent code has a way of find
ing out where it's currently located. Although there is really not room here for 
an in-depth explanation, here's the routine that uses a JSR to a known RTS, and 
then examines the stack to determine where in memory it is currently executing. 

ENTRY PHP ; SAVE INTERRUPT STATUS 
SEI ; SET INTERRUPT DISABLE 
JSR RETURN ; $FF58 
TSX ; GET STACK POINTER 
LOA STACK,x ; $100,X 
STA PTR + I ; SAVE HIGH BYTE OF RETURN ADDRESS 
DEX ; MOVE TO NEXT POSITION 
LDA STACK,X ; GET LOW BYTE OF RETURN ADDRESS 
STA PTR ; (PTR) = ENTRY+ 2. 
PLP ; RESTORE INTERRUPT STATUS 

DONE RTS 

575 



TSX 

This technique was originally developed for the 6502 microprocessor, 
and code similar to this is used on peripheral cards that must determine which 
slot they're assigned to. On the Apple IIGS with the 65816 microprocessor, this 
is not really needed because the PER instruction will put an address on the stack 
without the worry of illegal stack use, or conflict with interrupts. (See PER.) 

Caution: Most Step and Trace utilities will not properly trace code like 
this because of the somewhat illegal use of the stack. Strictly speaking, good 
programming principles dictate that once data is officially off the stack, it is 
counted as being effectively lost. This is especially true in the case of interrupts, 
where an interrupt in the middle of the dummy JSR, RTS, and retrieval process 
could produce a completely invalid result in PTR,PTR + 1. That is why our rou
tine temporarily disables interrupts while it examines the dead area of the 
stack. 

576 



TXA: Transfer X Register to Accumulator 
Description 

TXA 

This puts the contents of the X Register into the Accumulator, and thus condi
tions the status register just as if a LOA instruction had been executed. The 
X Register is unaffected by the operation . (See also TAX.) 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

_I ·_l _____ l_· ______ I I· I 
Addressing Modes Available 

Mode 
Implied Only 

Common 
Syntax 
TXA 

Hex 
Coding 
BA 

The actual data transferred depends significantly on the condition of the 
e, m, and x bits at the moment of transfer: 

e = 1 = Emulation 
m x X Register Accumulator 

1 (8) 1 (8) $00ff ... $FFff 

In emulation mode, both the Accumulator and the X Register are one 
byte in size. However, the Accumulator has a hidden B portion (the high-order 
byte), that is not overwritten by the X Register because it is in the 8-bit mode. 
Thus, the result in the Accumulator still contains the high-order byte, regard
less of the high-order byte of zero in the X Register. 

e = 0 = Native 
m x X Register Accumulator 

0 (16) 0 (16) $FFff ... $FFff 

Transfer as expected. 

m x X Register Accumulator 
0 (16) 1 (8) $xxff ... $FFff 

The high-order byte of Accumulator (B) is not overwritten by the high
order byte of the X Register. 

m x X Register Accumulator 
1 (8) 0 (16) $00ff ... $00ff 

577 



TXA 

Because the Accumulator is in the 16-bit mode, both bytes of the X Reg
ister are transferred even though the X Register is in the 8-bit mode. This is a 
common source of program bugs. Although you may have had some value in the 
B portion of the Accumulator, it will be overwritten by TXA even if x = 1 (8-
bit mode). 

m x X Register Accumulator 
1 (8) 1 (8) $00ff ... $FFff 

This is equivalent to thee = 1 (emulation mode) transfer. The B portion 
of the Accumulator retains its value. 

Uses 
TXA provides a way of retrieving the value in the X Register for appropriate 
processing by the program. In the case of string-related routines, this is often 
the length of the string just entered or scanned. The Accumulator can then go 
about the things it does so well in terms of putting the value into the most use
ful part of memory. Notice that there are more addressing modes available to 
the STA command, not to mention the overall powers granted the Accumulator 
in terms of logical operators and so forth. 

578 



TXS: Transfer X Register to Stack Pointer 
Description 

n<S 

This puts the contents of the X Register into the Stack Pointer. None of the sta
tus register flags are affected, nor is the X-Register itself changed. If e = 1 
(emulation), then only the low-order byte of the X Register is transferred, since 
the stack is fixed to page 1 ($100-$1FF). If e = 0 (native) and x = 0 (16-bit 
registers), then both bytes of the X Register are used. If e = 0 and x = 1 (8-bit 
register), then the low-order byte of the X Register is transferred, and the high
order byte is forced to zero. This puts the stack in page zero of bank zero. 

Flags & Registers Affected (none) 

N V B D I Z C Ace X Y Mem 

_____ ____.______.____.___........__........____.I I...____..___.___..._____. 
Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
TXS 

Hex 
Coding 
9A 

This provides a way of directly setting the stack pointer. 

579 



TXY 

TXY: Transfer X Register to Y Register 
Description 
This puts the contents of the X Register into the Y Register, and conditions the 
status register just as if a LOY instruction had been executed. The X Register is 
unaffected by the operation. One byte is transferred if x = 1; two bytes are 
transferred if x = 0. 

Flags & Registers Affected 
N V B D I Z C Ace X Y Mem 

~I ·~l__.____.__._ __ ~l_·-J-..----JI I I· 
Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
TXY 

Hex 
Coding 
98 

TXY provides a way of transferring the contents of the X Register to the Y Reg
ister. This could either be because you want to temporarily store the contents of 
the X Register while you use it for something else, or because you want to use 
the index in the X Register in an addressing mode only supported by the Y 
Register. For example: 

LDX #$00 
LOOP LDA BUFF,X 

TXY 
STA (PTR),Y 
INX 
CPX LEN 
BCC LOOP 

DONE RTS 

; INITIALIZE COUNTER 
; GET CHARACTER FROM ABSOLUTE ADDR. 
; SET Y = X 
; STORE USING INDIRECT ADDRESSING 

; LENGTH OF STRING YET? 
; NOPE 

580 



TY A: Transfer Y Register to Accumulator 
Description 

TVA 

This puts the contents of the Y Register into the Accumulator, thus condition
ing the status register as if an LDA instruction had been executed. The Y Regis
ter is unaffected by the operation. The actual data transferred depends on the 
condition of the e, m, and x bits. See the discusson of TAX for detailed examples. 

Flags & Registers Affected 
N V B D I Z C Ace X Y Mem 

~' ·-L-l_._ _____ _.____._l_·___.I I· I 
Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
TYA 

Hex 
Coding 
98 

TYA provides a way of retrieving the value in the Y Register for appropriate 
processing by the program. This comes in handy when scanning a data block, 
and information as to certain locations is to be processed. As mentioned under 
TXA, the Accumulator has far greater flexibility than the Y Register in terms of 
addressing modes, logical operators available, and so on. 

581 



TYX 

TYX: Transfer Y Register to X Register 
Description 
This puts the contents of the Y Register into the X Register, and conditions the 
status register just as if a LDX instruction had been executed. The Y Register is 
unaffected by the operation. One byte is transferred if x = 1, and two bytes are 
transferred if x = 0. 

Flags & Registers Affected 

N V B D I z C Ace X y Mem 

I • I I • I I I • 
Addressing Modes Available 

Common Hex 
Mode Syntax Coding 
Implied Only TYX BB 

Uses 
TYX provides a way of transferring the contents of the Y Register to the X Reg
ister. This could either be because you want to temporarily store the contents of 
the Y Register while you use it for something else, or because you want to use 
the index in the Y Register in an addressing mode only supported by the X 
Register. For example: 

LDY #$00 
LOOP LDA (PTR),Y 

TYX 
STA BUFF,X 
INY 
CPY LEN 
BCC LOOP 

DONE RTS 

; INITIALIZE COUNTER 
; GET CHARACTER USING INDIRECT 
; SET X = Y 
; STORE USING ABSOLUTE WITH INDEX 

; LENGTH OF STRING YET? 
; NOPE 

582 



WAI: Wait for Interrupt 
Description 

WAI 

This brings current program execution to a stop until the next interrupt or RE
SET occurs. 

Flags & Registers Affected (none) 
N V B D I Z C 

Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
WAI 

Ace X 

Hex 
Coding 
CB 

Y Mem 

WAI is designed for use with other hardware devices that may use the 65816 
microprocessor, or for peripheral cards or specialized devices on the Apple IIGS 
that require synchronized interrupts. While the processor is waiting, the power 
consumption of the 65816 is reduced (though not as low as for the STP instruc
tion). The WAI instruction can also be used to cause the microprocessor to re
spond nearly instantly to an interrupt event. Ordinarily, if an interrupt occurs 
while an instruction is executed, several cycles of the microprocessor may 
elapse while that instruction is completed before the interrupt is processed. The 
WAI instruction allows hardware designers to insure that the microprocessor 
will respond instantly to an interrupt. 

583 



WDM 

WDM: William D. Mensch, Jr. 
Description 
This instruction is included as a bridge to a possible, though not yet imple
mented, expanded instruction set. The characters WDM are the initials of the 
designer of the 65816, William D. Mensch, Jr., of the Western Design Center, 
Inc. WDM is a minimum two-byte instruction. Bytes following the initial 
opcode are subject to future definition, and may involve one or more additional 
bytes. 

Flags & Registers Affected 

N V B D I Z C Ace X Y Mem 

l?l?lrl?l?I?? ?I I???? 
Addressing Modes Available 

Mode 
Implied Only: 

Common 
Syntax 
WDM?? 

584 

Hex 
Coding 
42 ?? 



XBA: Exchange B and A Accumulators 
Description 

XBA 

This swaps the A and B portions of the Accumulator, regardless of the condi
tion of the e or m bits. B is the high-order byte; A, the low-order. The resulting 
condition of the N and Z flags depends on the contents of the A portion of the 
Accumulator result. N is set (BMI) if bit 7 is set, Z is set (BEQ) if the A Accu
mulator is zero. 

Flags & Registers Affected 

N V B D I z C Ace X y Mem 

I • I I • I I • I 
Addressing Modes Available 

Common Hex 
Mode Syntax Coding 
Implied Only XBA EB 

Uses 
XBA can be used to swap the hidden B Accumulator in the 8-bit mode with the 
A Accumulator. It can also be used to swap the low- and high-order bytes in 
the 16-bit mode (same operation, different interpretation). 

Although it's not particularly more efficient than just adding $100 with 
the ADC instruction, here's a way to increment the high-order byte of an ad
dress in the Accumulator: 

LOA MEM 
XBA 
INC 
XBA 
STA MEM 

This is equivalent to 

CLC 
LOA MEM 
ADC #$100 
STA MEM 

; GET VALUE FROM MEMORY 
; PUT HIGH BYTE IN "A" 
; ADD 1 
; NET: ACC = ACC + $100 
; SAVE RESULT 

; PREPARE FOR ADDITION 
; GET VALUE FROM MEMORY 
; ADD $100 
; SAVE RESULT 

585 



XCE 

XCE: Exchange Carry and Emulation Bits 
Description 
This swaps the contents of the Carry flag with the emulation bit. If the Carry is 
clear, the result is e = 0, and the microprocessor is put into the native mode 
(16 bits enabled, but not yet selected). If the Carry is set, the result is e = 1, 
and the microprocessor is put in the emulation mode (8 bits only for Accumu
lator, index registers, and memory operations). 

Flags & Registers Affected 

N V B D I z C Ace X y Mem 

I • I • I I • I I I • I • 
m X 

If e is cleared (native), then m and x are set to 1 (8 bit). If e is set (emulation), m 
and x disappear in function, and are replaced by the Break flag for bit 4 and by 
an unused bit for bit 5. 

Addressing Modes Available 

Mode 
Implied Only 

Uses 

Common 
Syntax 
XCE 

Hex 
Coding 
FB 

XCE is the only way to switch the microprocessor from the native to emulation 
mode, and vice versa. Here's a review of the action in each direction. 

Native to Emulation 
SEC 
XCE 

Other Effects: 
m = 1 

X = 1 

Stack 

; e = I = EMULATION 

Accumulator/Memory operations locked to 8 bits. Accumu
lator continues to hold both A and B portions intact. 
Index Register size locked to 8 bits. The high-order bytes of X 
and Y are set to zero. 
The stack is set to page one ($ lxx), bank zero, and is limited 
to one page in size ($100 to $ lFF). 

586 



Direct Page, 
Program Bank, 
Data Bank 

XCE 

The Direct Page, Program Bank, and Data Bank registers do 
not explictly change. Although ProDOS 8 and other Apple II 
software may expect the Direct Page, Program Bank, and Data 
Bank values to be $0000, it is up to the application to make 
sure this is the case if any of these have been reset by the 
application, and a switch is made to emulation for the purpose 
of executing a Monitor routine, Applesoft BASIC program, and 
so forth. 

Emulation to Native 
CLC 
XCE 

Other Effects: 
m = 1 

X = 1 

Stack 

Direct Page, 
Program Bank, 
Data Bank 

; e = 0 = NATIVE 

Accumulator/Memory operations default to 8 bits. Accumu
lator continues to hold both A and B portions intact. Data size 
may then be changed with REP or SEP instructions at will. 
Index Register size defaults to 8 bits. The high-order bytes of 
X and Y are set to zero. Register size may then be changed 
with REP or SEP instructions at will. 
The stack is left set to page one ($ lxx), bank zero, and but is 
no longer limited to one page in size. Program may then use 
TCS or any other relevant instruction to change the stack loca
tion as desired to anywhere in bank 0. 
The Direct Page, Program Bank and Data Bank Registers do 
not explictly change. Although ProDOS 8 and other Apple II 
software may have set the Direct Page, Program Bank, and 
Data Bank values to be $0000, the application may change 
these as desired. ProDOS 16 automatically sets the Program 
Bank Register when an application is loaded and run, and as
signs $400 bytes somewhere in bank O for the Direct Page 
($100 bytes) and the Stack ($300 bytes). Under ProDOS 16, 
the program must set its own Data Bank Register as needed. 

587 





Appendix B 

The Apple IIGS Monitor 

Early chapters in this book introduced the Apple lies Monitor and some of the 
commands that make life easier for the assembly language programmer. This 
appendix provides a quick reference guide for some of the additional and useful 
commands in the Monitor not discussed in the main body of the book. 

The Monitor is entered by typing CALL-151 from Applesoft BASIC. The 
mini-assembler is started by typing the exclamation mark ( ! ) and is described 
in Chapter 3. You can exit the mini-assembler by typing Return alone on a line. 
You can return to Applesoft BASIC from the monitor by typing Control-C or 
by pressing Q (for Quit). 

The following sections organize the Monitor commands by function. As
sume that each sample instruction is terminated by pressing Return. 

Memory Operations 
Sample Instruction 
02/ 
1234 
1234.5678 
$1234-$5678. 
{Return} 

02/1234.5678 

1234: 56 
02/1234: 56 

Control-X (No C/R) 
1234: "A" 

FF= F 
7F = F 

Description 
Set current examination bank to $02. 
Display contents of location $1234. 
Display hex and ASCII values from memory in the range. 

Return alone displays the next 8 or 16 bytes starting at the cur
rent address depending on whether the screen is in 40 or 80 
columns. 
Sets current examination bank to $02, and dumps contents of 
$1234 through $5678 in bank $02. 
Stores $56 in location $1234 in the current examination bank. 
Stores $56 in location $1234 in bank $02. Note: The bank byte 
may be included in any of the following memory instructions 
as you wish. 
Terminates a memory dump in progress. 
Stores the ASCII value ($41 or $Cl) for the letter A in location 
$1234. Whether the high bit is set or not depends on the status 
of the filter value. 
Change filter value for ASCII characters to $FF for high bit on. 
Change filter value for ASCII characters to $7F for high bit off. 

589 



Appendix B 

1234: 01 02 03 

1234: "TEST" 

1234: 'ABCD' 

0<1234.56792 
800<1234 .5678M 
800<1234.5678V 

"A" <1234.5678P 
25<1234.5678P 

"ABCD" <1234.5678P 

25 7F 3E<1234 .5678P 

Number Conversions 
Sample Instruction 
1234= 
=1234 

Store the values $01, $02, $03 in locations $1234, $1235, and 
$1236. 
Store the ASCII values for the characters T-E-5-T in locations 
$1234, $1235, $1236, and $1237, with the high bit conditioned 
by the filter value. 
Store the ASCII values for the characters in the reverse order 
that they appear on the line. Thus the characters D-C-B-A 
would be stored starting at location $1234. This is called flip 
ASCII. 
Fills memory locations $1234 through $5678 with 0. 
Moves memory from $1234 to $5678 to location $800+. 
Compares each byte in the range of $1234 to $5678 to the cor
responding byte starting at $800. Any bytes that do not match 
are reported. 
Search for the ASCII characters from $1234 to $5678. 
Search for the value $25 in memory in the range of $1234 to 
$5678. 
Search for the pattern of ASCII characters ABCD in the mem
ory in the range of $1234 to $5678. 
Search for the pattern of hex bytes 25 7F 3E in memory in the 
range of $1234 to $5678. 

Description 
Convert $1234 to decimal. 
Convert 1234 (decimal) to hex. 

Program Execution and Register Display 
Sample Instruction 
Control-E 

Control-N 
Control-R 
300G 

02/0300X 

Description 
Display contents of registers. These registers are set when a 
BRK is encountered, or they may be set by the user. 
Returns e, m, and x bits to Native mode (0). 
Returns registers and flags to default Monitor configuration. 
Run a program in bank O (only). All registers are set using the 
stored values in the register display before the Go is executed. 
The routine should end with an RTS for control to return to the 
Monitor. 
Execute a program in any bank. All registers are set using the 
stored values in the register display before the Go is executed. 
The routine should end with an RTL for control to return to the 
Monitor. 

590 



The Apple IIGS Monitor 

The following commands change the registers and flags in the stored 
register and flag display: 

1234=A Set Accumulator to $1234. 
1234=X Set X Register to $1234. 
1234=Y Set Y Register to $1234. 
1234=0 Set Direct-Page Register to $1234. 
12=8 Set Data Bank to bank $12. 
12=K Set Program Bank to bank $12. 
1234=5 Set Stack Pointer to $1234. 
12=P Set Status Register to $12. 
12=M Set machine state for the next Go or eXecute command to $12. 
12=Q Set Quagmire state for next Go or execute command to $12. Quagmire 

bits are defined as follows: 

Bit 7 = 1 
Bit 6 = 1 
Bit 5 = 1 
Bit 4 = 1 
Bit 3 = 1 
Bit 2 = 1 
Bit 1 = 1 
Bit O = 1 

O=m 
0 = e 
O=x 

O=L 
1 = L 

High speed mode. 
Stop Language Card, 1/0 shadowing. 
Must always be zero. 
Stop bank 1 hi-res shadowing. 
Stop super hi-res shadowing. 
Stop hi-res page 2 shadowing. 
Stop hi-res page 1 shadowing. 
Stop text page 1 shadowing. 

Set m bit to O (or 1). 
Set e bit to O (or 1). 
Set x bit to O (or 1). 
(See Control-N and Control-R.) 
Change language card RAM to first bank. 
Change language card RAM to second bank. 

591 





Appendix C 

ProDOS 16 File Dump Utility 

This program, Program C-1, demonstrates how a ProDOS 16 application opens, 
reads, and closes a file. In addition, the routine handles ProDOS errors by 
printing an error code and gives the user a chance to try again. 

Support of text input and output on the Apple Iles is very limited. Ap
ple really doesn't want people to write programs that use the text display, so 
very little effort went into the text tools. 

In particular, although there is a ReadString command in the text tools 
that will input a line of text from the keyboard, it does not support any editing 
functions such as the backspace or delete key, so is nearly useless. This sample 
program demonstrates how a very simple editing routine is built by handling 
the left- and right-arrow keys and Delete. ReadChar could have been used for 
getting a character from the keyboard, but there is a dilemma in how to handle 
control characters vs. normal text. You want to echo normal characters to the 
screen, but not control characters. ReadChar doesn't distinguish between these 
in its echo parameter. In addition, a pause function is included that will start 
and stop the text output with a keypress. 

For these reasons, the program deals directly with the keyboard register, 
$COOO for input, but it uses various text tools for output. Since the primary pur
pose of this program is to illustrate ProDOS 16 file techniques, I will leave it as 
an exercise for you to improve upon the input routine. 

Program C-1. P16 File Dump 
1 •••••••••••••••••••••••••••••••••••••••••••••• 

2 • P16 FILE DUMP DEMO PROGRAM * 
3 • MERLIN ASSEMBLER * 
4 •••••••••••••••••••••••••••••••••••••••••••••• 

5 
6 
7 
8 
9 

IO 
11 
12 

MX 
REL 
DSK 

LST 
USE 
LST 

%00 

FDUMP.SYS16.L 

OFF 
UTIL.MACS 
ON 

593 

; TELL MERLIN WE'RE IN 16 BITS 

; DON'T PRINT MACRO LISTING 
; USE MACRO LIBRARY 
; LISTING BACK "ON" 



Appendix C 

13 EXP OFF ; DON'T EXPAND MACROS 
14 

=EIOOA8 15 PRODOS EQU $EIOOA8 ; STD. PRODOS 16 ENTRY 
=COOO 16 KYBD EQU $00COOO 
=COIO 17 STROBE EQU $00C010 

18 
008000: 48 19 STARTUP PHK ; NOTE THAT TEXT TOOLS AND THE 
008001: AB 20 PLB ; MATH TOOLS DO NOT NEED TO BE 

21 ; STARTED UP. 
22 

008002: E2 30 23 SETRES SEP $30 ; 8-BIT MODE 
008004: A9 5C 24 LDA #$5C ; JML (JMP WNG) 
008006: 8F F8 03 00 25 STAL $3F8 ; CTRL-Y VECTOR 
00800A: C2 30 26 REP $30 ; 16-BIT MODE 
00800C: A9 A8 83 27 LDA #RESUME 
00800F: 8F F9 03 00 28 STAL $3F9 ; $3F9,3FA 
008013: A9 00 00 29 LDA #ARESUME 
008016: 8F FB 03 00 30 STAL $3FB ; $3FB,3FC 

31 
32 PROMPT PushLong #MSSGI ; POINTER TO STRING TO PRINT 
33 ToolCall $200C ; WriteCString 
34 

008028: A9 8D 00 35 GETPATH LDA #$8D ; GET PATHNAME 
00802E: 8D 7E 83 36 STA INBUF 
008031: 9C 7C 82 37 STZ LEN ; LENGTH= 0 

38 
39 INPUT PushLong #INBUF ; PRINT EXISTING PATHNAME 
40 ToolCall $200C ; WriteCString 
41 
42 GETCHAR PushWord #$0000 ; SPACE FOR RESULT 
43 PushWord #$0000 ; NO ECHO 
44 ToolCall $220C ; ReadChar 

008056: 68 45 PLA ; RETRIEVE CHARACTER 
46 

008057: 29 FF 00 47 :] AND #$00FF ; CLEAR HIGH BYTE 
00805A: C9 FF 00 48 CMP #$FF ; DELETE CHAR? 
00805D: FO OF =806E 49 BEQ EDIT 

50 
00805F: C9 AO 00 51 CMP #$AO ; IS IT A CTRL CHAR? 
008062: 80 ID =8081 52 BCS ECHO ; NOPE 

53 
008064: C9 8D 00 54 CTRL CMP #$8D ; RETURN = DONE? 
008067: FO 26 =808F 55 BEQ GOTPATH 

56 
008069: C9 88 00 57 CMP #$88 ; BACKSPACE? 
00806C: DO C6 =8034 58 BNE INPUT ; IGNORE, BACK FOR MORE 

59 
00806E: AD 7C 82 60 EDIT LDA LEN ; GET LEN CHAR 
008071: FO Cl =8034 61 BEQ INPUT ; IGNORE 
008073: AA 62 TAX ; KEEP OLD LEN IN X-REG 
008074: 3A 63 DEC ; SUBTRACT l 
008075: 8D 7C 82 64 STA LEN ; LEN= LEN l 

594 



ProDOS 16 File Dump Utility 

008078: A9 00 00 65 LDA #$00 
008078: 9D 7E 83 66 STA INBUF,X ; PUT ZERO AT END 

67 ; (DELETES OLD NTH CHAR). 
00807E: 4C 34 80 68 JMP INPUT ; GO GET SOME MORE 

69 
008081: 48 70 ECHO PHA ; SAVE CHARACTER 
008082: EE 7C 82 71 INC LEN ; ADD 1 TO LENGTH 
008085: AE 7C 82 72 LDX LEN ; PUT IN XREG 
008088: 68 73 PLA ; RETRIEVE CHARACTER 
008089: 9D 7E 83 74 STA INBUF,X ; ADD TO STRING 

75 ; AUTO 'O' AT END! (HIGH BYTE) 
00808C: 4C 34 80 76 JMP INPUT ; GO GET SOME MORE 

77 
00808F: AE 7C 82 78 GCYfPATH LDX LEN ; GET LENGTH OF INPUT 

79 
008092: EO 04 00 80 CHKl CPX #$04 ; 4 = LEN "QUIT" 
008095: DO 13 =BOAA 81 BNE FIX ; IT'S NCYf "QUIT" 

82 
008097: AD 7F 83 83 CHK2 LDA INBUF+I ; 1ST & 2ND CHARS OF INPUT 
00809A: CD 23 82 84 CMP WORD ; "QUIT"? 
00809D: DO OB =80AA 85 BNE FIX ; NOPE 
00809F: AD 81 83 86 LDA INBUF+3 ; 3RD & 4TH CHARS 
0080A2: CD 25 82 87 CMP WORD+2 
0080A5: DO 03 =80AA 88 BNE FIX ; NOPE 

89 
0080A7: 4C 79 81 90 JMP QUIT ; STR$ = "QUIT" 

91 
0080AA: AD 7C 82 92 FIX LDA LEN 
0080AD: E2 30 93 SEP $30 ; 8-BIT MODE 
0080AF: 8D 7E 83 94 STA INBUF ; CHANGE TO PRODOS STRS 
008082: C2 30 95 REP $30 ; BACK TO 16 BITS 

96 
97 CLRSCRN Push'"'rd #$008C ; HOME & CLEAR SCREEN 
98 ToolCall $180C ; WriteChar 
99 

0080C2: 22 AS 00 El 100 OPEN JSL PRODOS 
0080C6: 10 00 101 DA $10 ; OPEN COMMAND 
0080C8: EE 81 00 00 102 ADRL OPENBLK ; OPEN CMD TABLE 
0080CC: 90 03 =80Dl 103 BCC OPEN2 ; NO ERROR 

104 
0080CE: 4C 85 81 105 JMP ERROR ; PRODOS ERROR MESSAGE 

106 
0080Dl: AD EE 81 107 OPEN2 LDA OPENBLK ; GET REFERENCE NUMBER 
0080D4: 8D F8 81 108 STA READBLK ; STORE REF NUMBER 

109 
0080D7: 22 AB 00 El 110 READ JSL PRODOS 
0080DB: 12 00 lll DA $12 ; READ COMMAND 
0080DD: F8 81 00 00 112 ADRL READBLK ; READ CMD TABLE 
0080EI: 90 08 =80EB 113 BCC PRINT ; NO ERROR .. . 

114 
0080E3: C9 4C 00 115 CMP #$4C ; ERROR = END OF FILE? 
0080E6: FO SC =8144 116 BEQ CWSE ; YEP! 

595 



Appendix C 

0080E8: 4C 85 81 ll7 JMP ERROR ; PRODOS ERROR MSSG 
ll8 

OOSOEB: A2 01 00 ll9 PRINT LOX #$01 ; 1ST CHAR OF BUFFER 
120 

OOSOEE: AF 00 co 00 121 PRWOP LOAL KYBD ; CHECK FOR A PAUSE KEY 
0080F2: 29 FF 00 122 AND #$00FF ; CLEAR HIGH BYTE 
0080F5: C9 80 00 123 CMP #$80 ; KEYPRESS? 
0080F8: 90 14 =810E 124 BCC PRCHAR ; NOPE 
OOSOFA: SF 10 co 00 125 STAL STROBE ; CLEAR KEYBOARD 

126 
OOSOFE: AF 00 co 00 127 PAUSE LOAL KYBD 
008102: 29 FF 00 128 AND #$00FF 
008105: C9 80 00 129 CMP #$80 
008108: 90 F4 =SOFE 130 BCC PAUSE ; WAIT FOR KEYPRESS 
00810A: SF 10 co 00 131 STAL STROBE 

132 
00810E: BO 7E 82 133 PRCHAR LOA BUFFER,X 
008111: 29 FF 00 134 AND #$00FF ; CLEAR HIGH BYTE OF ACC. 
008114: DA 135 PHX ; SAVE OUR XPOSITION 
008ll5: 48 136 PHA ; SAVE THE CHAR FOR LATER 

137 
008116: 48 138 PHA ; PUSH THE CHARACTER 

139 ToolCall $180C ; WriteChar 
140 

008122: 68 141 NXTCHAR PLA ; GET CHAR JUST PRINTED 
008123: 29 7F 00 142 AND #$007F ; CLEAR HIGH BIT 
008126: C9 OD 00 143 CMP #$0000 ; WAS IT A RETURN? 
008129: DO OE =8139 144 BNE :2 ; NO, CONTINUE PRINTING 

145 PushWord #$008A ; LINE FEED 
146 ToolCall $180C ; WriteChar 
147 

008139: FA 148 :2 PLX ; RETRIEVE X VALUE 
00813A: E8 149 INX ; NEXT CHAR IN BUFFER 
008138: EC 02 82 150 CPX NUMREAD ; ALL CHARS PRINTED YET? 
00813E: 90 AE =SOEE 151 BCC PRWOP ; NOPE 
008140: FO AC =SOEE 152 BEQ PRWOP ; THIS WILL BE THE LAST ONE 
008142: BO 93 =8007 153 BCS READ ; GET ANOTHER BATCH 

154 
008144: 22 AS 00 El 155 CWSE JSL PRODOS 
008148: 14 00 156 DA $14 ; CWSE COMMAND 
00814A: FS 81 00 00 157 ADRL READBLK ; SAME TABLE AS 'READ' 
00814E: 90 03 =8153 158 BCC DONE ; NO ERRORS 
008150: 4C 85 81 159 JMP ERROR ; PRODOS ERROR MSSG 

160 
161 DONE PushLong #MSSG3 ; END OF FILE MSSG. 
162 ToolCall $200C ; WriteCString 
163 
164 RDKEY2 PushWord #$0000 ; SPACE FOR RESULT 
165 PushWord #$0000 ; ECHO FLAG = NO ECHO 
166 ToolCall $220C ; ReadChar 
167 

008175: 68 168 PLA ; RETRIEVE CHARACTER 

596 



ProDOS 16 File Dump Utility 

008176: 4C IA 80 169 JMP PROMPT ; TRY AGAIN 
170 

008179: 22 AS 00 El 171 QUIT JSL PRODOS ; DO QUIT CALL 
008 I 7D: 29 00 172 DA $29 ; QUIT CALL COMMAND VALUE 
00817F: ES 81 00 00 173 ADRL QUITBLK ; ADDRESS OF PARM TABLE 
008183: 00 00 174 BRK $00 ; SHOULD NEVER GET HERE ... 

175 
008185: SD 75 82 176 ERROR STA ERRCODE 

177 PushLong #MSSG2 ; ADDRESS OF MSSG TEXT 
178 TooICall $200C ; WriteCString 
179 

008199: AD 75 82 180 PRCODE LDA ERRCODE ; RETRIEVE ERROR CODE 
00819C: 48 181 PHA ; PUT IT ON STACK 

182 PushLong #HEXSTR + 1 ; STRING DATA BUFFER 
183 PushWord #4 ; MAX LENGTH OF OUTPUT STRING. 
184 TooICall $2208 ; Int2Hex 
185 
186 :1 PushLong #HEXSTR ; POINTER TO STRING DATA 
187 ToolCall $1COC ; WriteCString 
188 
189 PRERR2. PushLong #MSSG2A ; ADDRESS OF MSSG TEXT 
190 TooICall $200C ; WriteCString 
191 
192 ERDONE PushWord #$0000 ; SPACE FOR RESULT 
193 PushWord #$0000 ; ECHO FLAG = NO ECHO 
194 TooICall $220C ; ReadChar 
195 ; WAIT FOR KEYPRESS 

0081E4: 68 196 PLA ; RETRIEVE CHAR. 
197 

0081E5: 4C IA 80 198 JMP PROMPT ; TRY AGAIN IF ERROR 
199 
200 

0081E8: 00 00 00 00 201 QUITBLK ADRL $0000 ; NO PATHNMAME 
0081EC: 00 00 202 DA $0000 ; STD. QUIT 

203 
0081EE: 00 00 204 OPENBLK DA $0000 ; FILE REFERENCE NUMBER 
0081FO: 7E 83 00 00 205 ADRL INBUF ; POINTER TO PATHNAME 
0081F4: 00 00 00 00 206 ADRL $0000 ; HANDLE TO PRODOS BUFFER 

207 
0081F8: 00 00 208 READBLK DA $0000 ; FILE REFERENCE NUMBER 
0081FA: 7F 82 00 00 209 ADRL BUFFER+ 1 ; POINTER TO DATA BUFFER 
0081FE: FF 00 00 00 210 ADRL 255 ; 255 CHARACTERS TO READ 
008202: 00 00 00 00 211 NUMREAD ADRL $0000 ; NUMBER OF CHARS READ 

212 
213 TR ON ; DON'T PRINT ALL THE CHARS 
214 

008206: SC 215 MSSGI HEX SC ; HOME & CLEAR SCREEN 
008207: DO CC C5 Cl 216 ASC "PLEASE ENTER PATHNAME: " 
00821E: AS CF 02 AO 217 ASC u(QR ,n 

008223: DI DS C9 D4 218 WORD ASC "QUIT" 
008227: A7 A9 AO SD 219 ASC '") ",SD,SA,00 

220 

597 



Appendix C 

00822D: SD SA 
00822F: DO D2 CF C4 
00823E: SD SA 
008240: DO D2 CS D3 

008259: SD SA 
008258: DO D2 CS D3 

008275: 00 00 

008277: 04 80 80 BO 

00827C: 00 00 

00827E: 00 00 00 

00837E: SD 00 
008380: 00 00 00 

0083A8: 48 
0083A9: AB 
0083AA: 18 
0083AB: FB 
0083AC: C2 30 
0083AE: 4C 79 81 

008381: 94 

00 

00 

221 MSSG2 HEX 8D,8A ; PRINT RETURN, LF FIRST 
222 ASC "PRODOS ERROR $",00 
223 MSSG2A HEX 8D,8A ; AN<JfHER CARRIAGE RETURN, LF 
224 ASC "PRESS A KEY TO TRY AGAIN",00 
225 
226 MSSG3 HEX 8D,8A ; PRINT RETURN, LF FIRST ... 
227 ASC "PRESS A KEY FOR NEXT FILE",00 
228 
229 ERRCODE DA $0000 
230 
231 HEXSTR STR "0000" 
232 
233 LEN DA $0000 ; LENGTH OF STRING IN INBUF 
234 
235 BUFFER OS $100 ; DATA BUFFER FOR US 
236 
237 INBUF HEX SD,00 ; BEG. STRING AT LEFT 
238 OS 40 ; ROOM FOR 40 CHARS 
239 
240 ********************************************** 
241 
242 RESUME 
243 
244 
245 
246 
247 
248 
249 CHKSUM 

PHK 
PLB 
CLC 
XCE 
REP $30 
JMP QUIT 

CHK 

; SET OUR DATA BANK 

; SET NATIVE MODE 
; 16-BIT MODE 
; TRY TO QUIT 

; CHECKSUM FOR VERIFICATION 

--End Merlin-16 assembly, 946 bytes, errors: 0 

598 



Appendix D 

Suggested Reading 

The Apple IIGS is such an involved and extended system that no one book can 
hope to cover more than just a portion of the information that is available on 
the machine. The following list is provided to help you in selecting additional 
references that will be helpful in programming the Apple Iles. 
Apple Computer Co., Inc. Apple Ile Technical Reference Manual. Reading, MA: 

Addison-Wesley Publishing Co., Inc. 

--. Apple lIGS Firmware Reference. Reading, MA: Addison-Wesley Publish
ing Co., Inc. 

--. Apple lIGS Hardware Reference. Reading, MA: Addison-Wesley Publish
ing Co., Inc. 

--. Apple lIGS Toolbox Refe.rence. Reading, MA: Addison-Wesley Publishing 
Co., Inc. 

--. ProDOS User's Manual. Reading, MA: Addison-Wesley Publishing Co., 
Inc. 

--. Technical Introduction to the Apple lIGS. Reading, MA: Addison-Wesley 
Publishing Co., Inc. 

Doms, Dennis and Tom Weishaar. ProDOS Inside and Out. Blue Ridge Summit, 
PA: TAB Books, Inc. 

Eyes, David and Ron Lichty. Programming the 65816. New York: Brady Commu
nications Co., Inc. 

Fischer, Michael. Apple lIGS Technical Reference. Berkeley, CA: Osborne 
McGraw-Hill. 

--. 65816/65802 Assembly Language Programming. Berkeley, CA: Osborne 
McGraw-Hill. 

Goodman, Danny. The Apple lIGS Toolbox Revealed. New York, NY: Bantam 
Books. 

Gookin, Dan and Morgan Davis. Mastering the Apple lIGS Toolbox. Greensboro, 
NC: COMPUTE! Publications, Inc. 

599 



Appendix D 

Little, Gary. Exploring the Apple Iles. Reading, MA: Addision-Wesley Publish
ing Co., Inc. 

--. Apple ProDOS: Advanced Features for Programmers. New York, NY: 
Brady Communications Co., Inc. 

Sanders, William B. The Elementary Apple Iles . Greensboro, NC: COMPUTE! 
Publications, Inc. 

---. Elementary Assembly Language on the Apple Iles and the 65816. Glencoe, 
IL: Scott Foresman. 

--. Graphics and Sound for the Apple Iles . Greensboro, NC: COMPUTE! 
Publications, Inc. 

Sather, Jim. Understanding the Apple Ile. New York, NY: Brady Communica
tions Co., Inc. 

Wagner, Roger. Assembly Lines: The Book, Volume II. Santee, CA: Roger Wagner 
Publishing, Inc. 

Worth, Don and Pieter Lechner. Beneath Apple ProDOS. New York, NY: Brady 
Communications Co., Inc. 

600 



Appendix E 

ASCII Character Chart 

This chart shows some of the possible forms of a byte value in memory. The 
first three columns show the hex value and its decimal and binary equivalents. 
This can be handy when conversions are needed. The next three columns show 
the same value with the high bit set. 

The ASCII character column shows the character assigned to the two 
values (high bit clear and set). For control characters, the standard ASCII abbre
viation is also given, along with a notation for those characters that have some 
particular significance on the Apple IIGS. 

Note that for control characters, the A symbol is used. Thus a Control-A 
would be indicated A A. 

Hex Dec 
$00 0 
$01 1 
$02 2 
$03 3 
$04 4 
$05 5 
$06 6 
$07 7 
$08 8 
$09 9 
$0A 10 
$OB 11 
$DC 12 
$OD 13 
$OE 14 
$OF 15 
$10 16 
$11 17 
$12 18 
$13 19 
$14 20 

Binary 
0000 0000 
0000 0001 
0000 0010 
0000 0011 
0000 0100 
0000 0101 
0000 0110 
0000 0111 
0000 1000 
0000 1001 
0000 1010 
0000 1011 
0000 1100 
0000 1101 
0000 1110 
0000 1111 
0001 0000 
0001 0001 
0001 0010 
0001 0011 
0001 0100 

Hex Dec 
$80 128 
$81 129 
$82 130 
$83 131 
$84 132 
$85 133 
$86 134 
$87 135 
$88 136 
$89 137 
$8A 138 
$8B 139 
$8C 140 
$8D 141 
$8E 142 
$8F 143 
$90 144 
$91 145 
$92 146 
$93 147 
$94 148 

Binary 
1000 0000 
1000 0001 
1000 0010 
1000 0011 
1000 0100 
1000 0101 
1000 0110 
1000 0111 
1000 1000 
1000 1001 
1000 1010 
1000 1011 
1000 1100 
1000 1101 
1000 1110 
1000 1111 
1001 0000 
1001 0001 
1001 0010 
1001 0011 
1001 0100 

601 

ASCII Character 
A@ NUL Null 
AA SOH 
AB STX 
Ac ETX 
AD EOT 
AE ENQ 
AF ACK 
AG BEL Bell 
AH BS Backspace 
AI HT TAB 
AJ LF Linefeed 
AK VT Up arrow 
AL FF Formfeed 
AM CR Return 
AN so 
Ao SI 
AP DLE 
AQ DCl XON 
AR DC2 
As DC3 XOFF 
AT DC4 



Appendix E 

Hex Dec Binary Hex Dec Binary ASCII Character 

$15 21 0001 0101 $95 149 1001 0101 AU NAK Right arrow 
$16 22 0001 0110 $96 150 1001 0110 Av SYN 
$17 23 0001 0111 $97 151 1001 0111 Aw ETB 
$18 24 00011000 $98 152 10011000 AX CAN Cancel line 
$19 25 00011001 $99 153 1001 1001 Ay EM 
$1A 26 0001 1010 $9A 154 1001 1010 AZ SUB 
$1B 27 0001 1011 $9B 155 1001 1011 A[ ESC Escape 
$1C 28 00011100 $9C 156 1001 1100 A' FS 
$10 29 0001 1101 $90 157 1001 1101 A] GS 
$1E 30 0001 1110 $9E 158 1001 1110 AA RS 
$1F 31 0001 1111 $9F 159 1001 1111 A- us 
$20 32 0010 0000 $AO 160 1010 0000 space 
$21 33 0010 0001 $Al 161 1010 0001 ! 
$22 34 0010 0010 $A2 162 1010 0010 II 

$23 35 0010 0011 $A3 163 1010 0011 # 
$24 36 0010 0100 $A4 164 1010 0100 $ 
$25 37 0010 0101 $AS 165 1010 0101 % 
$26 38 0010 0110 $A6 166 1010 0110 & 
$27 39 0010 0111 $A7 167 1010 0111 
$28 40 0010 1000 $AB 168 1010 1000 ( 
$29 41 0010 1001 $A9 169 1010 1001 ) 
$2A 42 0010 1010 $AA 170 1010 1010 • 
$2B 43 0010 1011 $AB 171 1010 1011 + 
$2C 44 0010 1100 $AC 172 1010 1100 I 

$20 45 0010 1101 $AD 173 1010 1101 
$2E 46 0010 1110 $AE 174 1010 1110 
$2F 47 0010 1111 $AF 175 1010 1111 I 
$30 48 0011 0000 $BO 176 1011 0000 0 
$31 49 0011 0001 $Bl 177 1011 0001 1 
$32 50 0011 0010 $B2 178 1011 0010 2 
$33 51 0011 0011 $B3 179 1011 0011 3 
$34 52 0011 0100 $B4 180 1011 0100 4 
$35 53 0011 0101 $BS 181 1011 0101 5 
$36 54 0011 0110 $B6 182 1011 0110 6 
$37 55 0011 0111 $B7 183 1011 0111 7 
$38 56 0011 1000 $B8 184 1011 1000 8 

602 



ASCII Character Chart 

Hex Dec Binary Hex Dec Binary ASCII Character 
$39 57 0011 1001 $B9 185 1011 1001 9 

$3A 58 0011 1010 $BA 186 1011 1010 

$3B 59 0011 1011 $BB 187 1011 1011 

$3C 60 0011 1100 $BC 188 1011 1100 < 

$3D 61 0011 1101 $BO 189 1011 1101 

$3E 62 0011 1110 $BE 190 1011 1110 > 

$3F 63 0011 1111 $BF 191 1011 1111 ? 

$40 64 0100 0000 $CO 192 1100 0000 

$41 65 0100 0001 $Cl 193 1100 0001 A 

$42 66 0100 0010 $C2 194 1100 0010 B 

$43 67 0100 0011 $C3 195 1100 0011 C 

$44 68 0100 0100 $C4 196 1100 0100 D 

$45 69 0100 0101 $CS 197 1100 0101 E 

$46 70 0100 0110 $C6 198 1100 0110 F 

$47 71 0100 0111 $C7 199 1100 0111 G 

$48 72 0100 1000 $CB 200 1100 1000 H 

$49 73 0100 1001 $C9 201 1100 1001 I 

$4A 74 0100 1010 $CA 202 1100 1010 J 
$4B 75 0100 1011 $CB 203 1100 1011 K 

$4C 76 0100 1100 $CC 204 1100 1100 L 

$4D 77 0100 1101 $CD 205 1100 1101 M 
$4E 78 0100 1110 $CE 206 1100 1110 N 

$4F 79 0100 1111 $CF 207 1100 1111 0 

$50 80 0101 0000 $DO 208 1101 0000 p 

$51 81 0101 0001 $D1 209 1101 0001 Q 
$52 82 0101 0010 $D2 210 1101 0010 R 

$53 83 0101 0011 $D3 211 1101 0011 s 

$54 84 0101 0100 $D4 212 1101 0100 T 

$55 85 0101 0101 $D5 213 1101 0101 u 

$56 86 0101 0110 $D6 214 1101 0110 V 

$57 87 0101 0111 $D7 215 1101 0111 w 

$58 88 0101 1000 $DB 216 1101 1000 X 

$59 89 0101 1001 $D9 217 1101 1001 y 

$SA 90 0101 1010 $DA 218 1101 1010 z 

$SB 91 0101 1011 $DB 219 1101 1011 

$SC 92 0101 1100 $DC 220 1101 1100 ' 

$5D 93 0101 1101 $DD 221 1101 1101 

$SE 94 0101 1110 $DE 222 1101 1110 
� 

$SF 95 0101 1111 $OF 223 1101 1111 

$60 96 0110 0000 $EO 224 1110 0000 

$61 97 0110 0001 $El 225 1110 0001 a 

603 



Appendix E 

Hex Dec Binary Hex Dec Binary ASCII Character 

$62 98 0110 0010 $E2 226 1110 0010 b 

$63 99 0110 0011 $E3 227 1110 0011 C 

$64 100 0110 0100 $E4 228 1110 0100 d 

$65 101 0110 0101 $ES 229 1110 0101 e 

$66 102 0110 0110 $E6 230 1110 0110 f 

$67 103 0110 0111 $E7 231 1110 0111 

$68 104 0110 1000 $EB 232 1110 1000 h 

$69 105 0110 1001 $E9 233 1110 1001 

$6A 106 0110 1010 $EA 234 1110 1010 

$68 107 0110 1011 $EB 235 1110 1011 k 

$6C 108 0110 1100 $EC 236 1110 1100 I 
$6D 109 0110 1101 $ED 237 1110 1101 m 

$6E 110 0110 1110 $EE 238 1110 1110 n 

$6F 111 0110 1111 $EF 239 1110 1111 0 

$70 112 0111 0000 $FD 240 1111 0000 

$71 113 0111 0001 $Fl 241 1111 0001 

$72 114 0111 0010 $F2 242 1111 0010 r 

$73 115 0111 0011 $F3 243 1111 0011 s 

$74 116 0111 0100 $F4 244 1111 0100 t 

$75 117 0111 0101 $F5 245 1111 0101 u 

$76 118 0111 0110 $F6 246 1111 0110 V 

$77 119 0111 0111 $F7 247 1111 0111 w 

$78 120 0111 1000 $F8 248 1111 1000 X 

$79 121 0111 1001 $F9 249 1111 1001 y 
$7A 122 0111 1010 $FA 250 1111 1010 z 
$78 123 0111 1011 $FB 251 1111 1011 { 
$7C 124 0111 1100 $FC 252 1111 1100 I 

$7D 125 0111 1101 $FD 253 1111 1101 } 
$7E 126 0111 1110 $FE 254 1111 1110 

$7F 127 0111 1111 $FF 255 1111 1111 Delete 

604 



Index 

absolute addressing mode 180, 474 
absolute indexed,X addressing mode 475 
absolute indexed,Y addressing mode 475 
absolute long addressing mode 474 
absolute long indexed,X addressing mode 476 
absolute long indirect addressing mode 477 
accumulator 44-47, 48, 116, 125, 131, 132, 164, 

274-75 
changing effective size of 132 

ADC (ADd with Carry) instruction 145-49, 151, 
478-79 

addition 143-50 
address 7
addressing modes 179-204, 474-77 

absolute 180, 474 
absolute indexed,X 475 
absolute indexed,Y 475 
absolute long indexed,X 476 
absolute long indirect 477 
direct page 180, 475 
direct page indexed indirect,X 476 
direct page indexed,X 476 
direct page indexed,Y 476 
direct page indirect 4 75 
direct page indirect long 4 75 
direct page indirect long indexed,Y 477 
immediate 179-80, 475 
relative stack 211-12 
relative stack indirect indexed 212-14 
stack relative 477 
stack relative indexed,Y 477 

ADRL Merlin pseudo-op 275 
& BASIC statement 236 
AND instruction 163-66 
AND logical operator 162-68, 480-82 
Apple II computers, development history of 290-92 
Apple IIGS computer, enhanced features of 271 
Apple IIGS mini-assembler 39-55. See also mini-

assembler 
Apple IIGS Technical Reference x 
Apple Macintosh computer 114 
Applesoft BASIC x 
Applesoft BASIC, ML and 3-21 
Applesoft BASIC, Monitor and 24-25 
APW (Apple Programmer's Workshop) assembler x, 

59, 81-98, 137-38, 251 
ASSEMBLE command 88-89 
assembler directives 87-88 
assembling a program and 88-90 
code segments 87 
comment field 86-87 

605 

editor 83-87 
EQU directive 92-95 
filenames and 92 
how different from Merlin 81 
KEEP directive 89-90, 91-92 
label field 86 
labels and 92-96 
linking and 82, 282-83 
loader file 82 
loading 83 
long addresses and 87-88, 97 
macros and 325, 330-33 
object file 82 
opcode field 86 
operand field 86 
ORG directive 90-91 
restrictions on use of 81 
shell 82, 83 
theory of operation 82 

A register. See accumulator 
ASCII codes 54, 118-20, 185, 186 
ASC instruction (Merlin) 190-91 
ASL (Arithmetic Shift Left) instruction 159-60, 

483-84 
ASM command (Merlin) 66, 67 
ASSEMBLE command (APW) 88-89 
assembler directives, APW 87-88 
assemblers, other 59 
assembling a program, APW and 88-90 
assembling to disk, Merlin and 74-75 
assembly language 6 

how different from ML 32-34 
AUX field 338, 340-41 
bank of memory 43, 218-22, 273, 274 
banks, parallel 

in Ile and Ile 302-4 
in IIGS 304-8 

bank-switched RAM and ROM, location of 302 
BASIC. See also Applesoft BASIC 

calls, list of available from 13 
eight-bit mode and 135 
error trapping in 8-10 
FOR-NEXT loop equivalent of 101-21 
how related to ML 6-7 
interpreter 6-7, 229-31 
limitations of 3-4 
memory organization of 298-300 
ML programs, adding to 225-44 
ML routines, calling from 11-21 
ML routines, POKEing from 23-34 
Monitor, entering from 25 



ProDOS and 247 
ProDOS 16 and 271, 274 
program, organization of in memory 227-31 
ROM, Applesoft, location of 14 
tokens 228 
when preferable over ML 225 

BCC (Branch on Carry Clear) instruction 126, 160, 
161, 187, 485 

BCS (Branch on Carry Set) instruction 126, 161, 
187, 486 

BEQ (Branch if EQal) instruction 108-10, 111, 125, 
126, 160, 187, 487 

binary numbers 102-4 
BIT instruction 166-68, 488-90 
BWAD BASIC statement 68-69 
BWAD BINARY BASIC statement 41-42 
BMI (Branch on Minus) instruction 154, 155, 156, 

167, 491-92 
BNE (Branch if Not Equal) instruction 107-8, 117, 

125, 126, 187, 493 
Boolean logic 161-62 
borrowing, subtraction and 150 
BPL (Branch on PLus) instruction 154, 155, 160, 

167, 494 
BRA (BRanch Always) instruction 110, 495 
branch-on-carry instructions 126 
B register. See data bank register 
BRK instruction 53, 54, 495-96 
BRL (BRanch always Long) instruction 110, 497 
BRUN BASIC statement 68 
BSAVE BINARY BASIC statement 41 
BVC (Branch on overflow Clear) instruction 167, 

498 
BVS (Branch on oVerflow Set) instruction 167, 499 
CALL BASIC statement 11-21, 23, 24, 52, 117, 225 

Monitor equivalent of 31-32 
calls, list of available from Applesoft BASIC 13 
carry flag 126, 131, 145, 159 
changing memory locations with the Monitor 31 
checksum 173-74 
CHK pseudo-op (Merlin) 173 
CHRGET BASIC ROM routine 232, 234 
CLC (CLear Carry) instruction 133, 145, 500 
CLD (CLear Decimal mode) instruction 501 
clear screen 195-99 

SO-column 220-22 
indexed addressing and 197-99 

CLI (CLear Interrupt mask) instruction 502 
"Clock Reading" (program) 361-64 
CLV (CLear oVerflow flag) instruction 503 
CMP (CoMPare) instruction 125-38, 504-5 

types of 125 
code segments, APW 87 
color, QuickDraw and 376-77 
colors, graphics modes and 367-68 
command processing 201-2 
"Command Processor Example" (program) 202-3 
comment field 

APW 86-87 
Merlin 65 

comments, in assembly language programs 62 

606 

comparisons 125-39 
computer memory 5 
constants, Merlin and 73-74 
control characters 119 
control key 119-20 
COP (CO-Processor enable) instruction 506 
COUT (Character OUTput) Monitor routine 

116-18, 128, 131, 181, 291 
CPX (ComPare to X register) instruction 507 
CPY (ComPare to Y register) instruction 508 
cursor movement 15-16 
data bank register 218, 219-20 
data storage 207-22 
data storage, assembler 185 
data structures 3 
data word 114 
debugging, Monitor and 52-54 
DEC instruction 105-6, 509 
decrementing 105-7 
decrementing multiple bytes 114-15 
designator, menu item 419-21 
DEX instruction 105-6, 510 
DEY instruction 105-6, 511 
DFB (DeFine Byte) pseudo-op 250 
direct page 290-91 
direct page addressing mode 180 
direct page indexed indirect,X addressing mode 476 
direct page indexed,X addressing mode 476 
direct page indexed,Y addressing mode 476 
direct page indirect long indexed,Y addressing 

mode 477 
direct page register 291 
Disableltem Menu Manager routine 415, 461 
disk access, ProDOS and 247 
dithering 367 
DOS 3.3 operating system 60 
double hi-res graphics 367 
DrawCString QuickDraw routine 379 
drawing program 447-70 
DrawMenuBar Menu Manager routine 415 
DrawString QuickDraw routine 379 
D register 216-18. See also direct page register 
DS (Define Storage) pseudo-op, Merlin 262 
DSK Merlin directive 74-75 
EMStartup call 389 
emulation bit 131-37 
Enableltem Menu Manager routine 415, 461 
enhanced quit option, ProDOS 8 254-55 
ENT (ENTry point) Merlin directive 281 
EOM (End Of Macro) Merlin directive 322 
EOR instruction 169-71, 173, 512-14 
EQU directive 185 

APW 92-95 
Merlin 70-74 

error codes 
ProDOS MLI 263-64 
Tool Locator 319-20 

error messages, QuickDraw 385 
error trapping, ProDOS system files and 258-59 
"EVENT.DISPLAY" (program) 437-43 
"EVENT.SEGMENT" (program) 437 



event code bit modifiers 387 
event codes 387 
event-driven programs 389-92 
Event Manager 385-99, 413 
"Event Manager Demo" (program) 393-99 
event mask 388 
event queue 386 
event record 386 
EXT (EXTemal) Merlin directive 281 
fast memory 305 
file handling, ProDOS 8 MLI and 257-68 
filenames, APW and 92 
file read command, ProDOS 262-63 
file types, ProDOS 256 
FramErect QuickDraw routine 373 
GETCORIGIN QuickDraw routine 443 
GETDP (GET Direct Page) tool call 375 
GETLN2 Monitor command 260 
GetNextEvent Event Manager routine 391, 414 
GetPortRect QuickDraw routine 443 
global page, ProDOS 300 
GOSUB BASIC statement 23, 24 

ML equivalent of 34 
graphics information, storing 368-69 
handle 337, 341-42, 344 
hardware connections 

memory locations of 16-18 
reading 128-29 

hexadecimal numbers 25-27, 30 
converting to decimal 27-28 
reason for using 29-30 

HEX instruction (Merlin) 185 
HIDEWINDOW Window Manager command 461 
high bit, ASCII codes and 119 
hi-res graphics 367 
hot spot, cursor 464-65 
immediate addressing mode 179-80 
implicit addressing 180 
INC instruction 105-6, 144, 515 
incrementing 105-7 
incrementing multiple bytes 111-14 
indexed addressing 181 
indexed indirect addressing 183-85, 201-2 
indirect addressing 181-82, 193-94 
indirect long addressing 182-83 
input buffer 237 
input from Monitor 262 
input, monitoring 385-86 
InsertMenu Merlin directive 415 
instructions, 65816 473-587 
'interpreter, BASIC 6-7, 229-31 
interrupt, maskable 298 
INX instruction 105-6, 275, 516 
INY instruction 105-6, 517 
1/0 ROM, location of 300-301 
JML ijuMp Long) instruction 116, 518 
JMP instruction 235, 518 
JSL ijump Subroutine Long) instruction 51, 75, 97, 

210, 519-20 
JSR instruction 34, 50, 65, 75, 207, 519-20 

maintaining with stack 207 

607 

KEEP directive (APW) 89-90, 91-92 
kernel 248 
keyboard 275 

address of 128 
buffering 129 
reading data from 127-31 

K register. See program bank register 
label field 

APW 86 
Merlin 64 

labels 
APW and 92-96 
Merlin 8/16 and 64-65, 70-76 

languages, programming 4 
Launcher program selector 60, 83 
LOA (LoaD Accumulator) instruction 44, 45, 47, 

50, 73-74, 75, 97, 129, 145, 195, 275 
LOX instruction 47, 522 
LOY instruction 47, 195, 523 
library routines x-xi 

LineTo QuickDraw routine 372 
linker, APW 90 
linking 

APW and 82, 282-83 
Merlin and 280-82 

LIST BASIC statement, Monitor equivalent of 
32-34, 188

L Monitor command 32-34 
loader file, APW 82 
loading an ML program 41-42 
logical and shift operators 159-75 
logical operators 161-71 
long addresses 43, 50-51, 114 

addition and 147 
APW and 87-88, 97 
Merlin and 75-76 

looping 
BEQ and 108-10 
BNE and 107-8 

LSR (Logical Shift Right) instruction 159, 161, 
524-25

MAC (MACro definition) Merlin directive 322 
macro, assembly-language 322-33 

APW and 325, 330-33 
library, building 325-30 
Merlin and 325-30 

main field 338 
mask 165-66 
math 143-56 
memory 

addressable 5-6 
compacting 343 
examining with Monitor 24-25 
graphics and 369 
map 7-8 
organization, Apple IIGS 289-308 
purging 343-44 
requesting 342-43 
special 341 
storing data in 42-43 
unmanaged 342 



Memory Manager system tool 273-74, 337-60 
menu bar, creating 421-22 
menu definition 416-19 
Menu Manager call list 416 
Menu Manager tool 414, 415-28 
menu program example 422-36 
Merlin 8/16 assembler x, 59-81, 250 

ADRL pseudo-op 275 
ASC instruction 190-91 
ASM command 66, 67 
assembling to disk and 74-75 
assembling with 66-77 
CHK pseudo-op 173 
comment field 65 
constants and 73-74 
DS (Define Storage) pseudo-op 262 
OSK directive 74-75 
how different from APW 81 
label field 64 
labels and 64-65, 70-76 
linking and 280-82 
long addresses and 75-76 
macros and 325-30 
main menu 61 
operand field 65 
saving programs from 68 
symbol table 67 

mini-assembler, entering 39 
miscellaneous tool set 359-60 
ML 

instructions 6 
programs, adding to Applesoft BASIC 225-44 
routines, calling from BASIC 11-21. See also 

ROM routines 
routines, POI<Eing from BASIC 23-34 
why learn 3-4 

MLI (machine language interface), ProDOS 249, 
257 

Monitor 24-25, 26, 27, 39, 135-37, 187, 589-91 
entering from BASIC 25 
ProDOS 16 and 217, 274 

MoveTo QuickDraw routine 372 
moving data between registers 49-50 
moving data in memory 48-49 
"Moving the Cursor" (program) 15 
multiple programs sharing memory 216-18 
multiplication 159, 160 
MVN (block MoVe Next) instruction 526-27 
MVP (block MoVe Previous) instruction 526-27 
MX Merlin directive 274 
NewHandle Memory Manager command 371 
NEWRGN call 451 
nonmaskable interrupt 297-98 
NOP (No oPeration) instruction 112, 528 
object file 6 7-68 

APW 82 
opcode 64 
opcode field, APW 86 
OPEN command, ProDOS 262 
operand field 

APW 86 
Merlin 65 

608 

operating system 247 
OR 

exclusive 168, 169-71 
inclusive 168 
logical 168-71 

ORA (OR Accumulator) instruction 168-69, 529-30 
ORG assembler directive (Merlin) 69-70, 185 
ORG directive (APW) 90-91 
overflow flag 166-67 
page three 292 
PAINTPIXELS QuickDraw routine 448 
palette 370 
Pascal computer language 4 
"Passing Variables" (program) 234-36 
"Passing Variables to an Applesoft BASIC Pro-

gram" (program) 239-40 
pathname 254, 258, 260 
PEA (Push Effective Address) instruction 214-15, 

531-32 
PEEK BASIC statement 8-10 
Monitor equivalent of 30-31 
"PB File Dump Demo" (program) 258-68 
PEI (Push Effective Indirect address) instruction 

214-15, 533 
pen 372 
PER (Push Effective Relative address) instruction 

214-15, 534-35 
PHA (PusH Accumulator) instruction 208, 536 
PHB (PusH data Bank register) instruction 220, 537 
PHO (PusH Direct page register) instruction 218, 

538 
PHK (PusH program banK register) instruction 219, 

539 
PHP (PusH Processor status) instruction 540-41 
PHX (PusH X) instruction 208, 542 
PHY (PusH Y) instruction 208, 543-44 
PLA (PuLl Accumulator) instruction 208, 544 
PLB (PuLI data Bank register) instruction 220, 545 
PLO (PuLI Direct page register) instruction 217, 

546 
PLP (PuLI Processor status) instruction 547 
PLX (PuLI X) instruction 208, 548 
PLY (PuLI Y) instruction 208, 549 
POKE BASIC statement 10-11, 23-34 

Monitor equivalent of 31 
passing variables to ML with 231-32 

PORTLOCINFO data structure 448 
PPToPort (Paint Pixels To Port) QuickDraw routine 

448-50 
PQUIT ProDOS 16 routine 271 
procedures in ML 111-14 
Processor Status Register 101-2. See also status 

register 
ProDOS x, 41, 44, 50, 60, 216, 247-86 

Applesoft BASIC and 247 
calling from ML 249 
compatibility of 247 
file types 82 

ProDOS 8 247-68 
loading directly 339 

"ProDOS 8 Launcher Demo" (program) 254-55 
"ProDOS 8 Tool Locator Demo" (program) 315-17 



"ProDOS Reset Demo" (program) 295-97 
ProDOS 16 220, 247, 271-86, 406 

application requirements 273 
starting 271-73 

"ProDOS 16 File Dump Utility" (program) 
593-604

"ProDOS 16 Launcher Demo" (program) 278-80 
"ProDOS 16 Tool Locator Demo with Macros" 

(program) 328-30 
"ProDOS 16 Tool Locator Demo" (program) 

320-31
Professional Disk Operating System. See ProDOS 
program bank register 43, 218-19 
program control 207-22 
program counter 43 
program documentation 85 
Programming the 65816 ix
pseudo-op 185 
pun 30 
QuickDraw (QuickDraw) tool set 370-99, 403-5 

calls, list of 383-85 
starting 374-75 

Quit command, ProDOS 16 273, 302 
rectangle 373 
registers 42-51 

D 216-18 
Data Bank 218, 219-20 
Direct Page 291 
moving data between 49-50 
PHB (PusH data Bank) instruction 220 
PHD (PusH Direct page) instruction 218 
PHK (PusH program banK) instruction 219 
PLB (PuLI data Bank) instruction 220 
PLD (PuLI Direct page ) instruction 217 
Program Bank 43, 218-19 
S 209-11, 292 
Shadow 305-6 
stack and 208 
Status 101-2, 104-5, 126, 131-37, 167 

relative addressing 180 
relative stack addressing mode 211-12 
relative stack indirect indexed addressing mode 

212-14
relocatable files 272 
relocating ML program in memory 70, 90-91, 274 
REP (REset Processor status bits) instruction 133, 

550 
RESET key 295 
RETURN BASIC statement, ML equivalent of 24, 

34-35
ROL (ROtate Left) instruction 161, 551 
ROM routines 14-16, 128, 231-44 

naming with variables in BASIC 15-16 
ROR (ROtate Right) instruction 161, 552 
RTI (ReTum from Interrupt) instruction 553 
RTL (ReTum from subroutine Long) instruction 51, 

554 
RTS (ReTum from Subroutine) instruction 33, 51, 

67,207, 554 
saving an ML program 41 
SBC (SuBtract with Carry) instruction 150, 151, 

555-56

609 

SCB (Scan line Control Byte) 370-71 
screen, location of in memory 46 
"Screen Color Demo" (program) 18-21 
screen manipulation 185-203 
SEC (SEt Carry) instruction 133, 150, 557 
SED (SEt Decimal mode) instruction 558 
SEI (SEt Interrupt disable) instruction 298, 559 
SEP (SEt Processor status bits) instruction 133, 560 
SetBackColor QuickDraw routine 379 
SetColorEntry QuickDraw routine 377 
SETCOLOR QuickDraw routine 376 
SETCURSOR QuickDraw routine 464 
SetForeColor QuickDraw routine 3 79 
SETRECT call 451 
SetSolidPenPat QuickDraw routine 372 
shadowing 305 
shadow register 305-6 
"Shell" (program) 422-36 
shift operators 159-61 
short address 43 
sign bit 151-55 
sign flag, in status register 154 
"Simple PB System File" (program) 252-54 
"Simple P16 System File" (program) 277-78 
"Simple QuickDraw Demo" (program) 379-83 
"SIMPLE.SKTCH" (program) 451-57 
65816 microprocessor 5, 23, 42 
6502 microprocessor 5 
"Slide Show" (program) 347-59 
softswitches 17-18, 302 
sound ix, 231-34 
"Sound Routine" example programs 230-33 
source file 67-68 
S register 209-11, 292 
stack 207-18, 291-92 

keeping track of 208-9 
pushing addresses to 214-15 

"Stack Indirect Indexed Example" (program) 
213-14

stack pointer. See S register 
stack pointer, setting 211 
stack relative addressing mode 477 
stack relative indexed,Y addressing mode 477 
STA (STore Accumulator) instruction 45-45, 47, 

50, 75, 97, 561 
status register 101-2, 104-5, 126, 131-37, 167 
STILLDOWN Event Manager routine 465 
STP (STop Processor) instruction 562 
StringWidth QuickDraw routine 391 
strobe 128 
STX instruction 563 
STY instruction 195, 564 
STZ instruction 49, 565 
subroutines, ML 34-35 
subtraction 150-54 
super hi-res graphics ix, 367-79 

location of 306 
super hi-res screen, defining memory equivalent to 

448-50
"Switching to Hi-Res" (program) 17 
symbol table, Merlin 67 
SYSTEM.SETUP file 272 



.SYSTEM files 248-49 
system J/0 127 
system loader 271-72 
system startup, ProDOS 16 and 271 
Taskmaster Window Manager routine 414 
TAX (Transfer Accumulator to X) instruction 49, 

566-67
TAY (Transfer Accumulator to Y) instruction 49, 

568 
TCD (Transfer accumulator to Direct-page register) 

instruction 569 
TCS (Transfer accumulator to Stack) instruction 

211, 570 
TDC (Transfer Direct page to accumulator) instruc

tion 423, 571 
text, printing in super hi-res with QuickDraw 

378-79
text display, location in memory 298 
toggling 63 
TOOL.SETUP file 272 
Toolbox, Apple IIGS 311-33 
Tool call ix 
Tool Locator tool set 313-17 

command list 314 
ProDOS 16 and 320-21 

tools 
bugs in 338 
calling 311 
calling from ProDOS 8 317-19 
list of 312 
Memory Manager 344-47 

TRB (Test and Reset Bits) instruction 166, 572 
TR ON (TRuncate ON) Merlin directive 320 
TSB (Test and Set memory Bits) 573 
TSC (Transfer Stack to accumulator) instruction 

211, 574 
TSX (Transfer Stack to X) instruction 211, 575-76 
TXA (Transfer X to Accumulator) instruction 49, 

577-78
TXS (Transfer X to Stack) instruction 211, 579 

610 

TXTPTR BASIC ROM routine 232, 234, 237 
TXY (Transfer X to Y) instruction 49, 580 
TYA (Transfer Y to Accumulator) instruction 49, 

581 
TYP directive 250 
type field 338 
TYX (Transfer Y to X) instruction 49, 582 
User ID 337 
"Using Meaningful Variable Names" (program) 16 
variables 

passing from BASIC to ML 231-38 
passing from ML to BASIC 238-44 

vector 236, 295 
video circuitry 305 
VTAB BASIC statement, assembler equivalent of 

191-93
VTAB Monitor routine 191-92 
WAI (WAit for Interrupt) instruction 583 
WDM instruction 584 
WFRAME parameter 407, 408-13 
window 

monitoring events in 437-43 
moving 413 

windows ix, 403-15 
text files and 447-48 

window data, recording elsewhere in memory 
447-48

window definitions 406-7 
Window Manager 405-15 
window parameter list 407-8 
window record 406 
word processor x 
XBA (eXchange A and B accumulators) instruction 

50,132,585 
XCE (eXchange Carry with Emulation bit) instruc-

tion 132 
X register 47-49, 125, 131, 132, 181, 183 
Y register 47-49, 125, 131, 133, 181, 183 
zero flag 125, 126 
zero page 290-91 



To order your copy of Apple IIGS Machine Language for 
Beginners Disk. call our toll-free US order line: 1-800-346-6767 
(in NY 212-887-8525) or send your prepaid order to: 

Apple I/GS Machine Language for Beginners Disk 
COMPUTEI Books 
F.D.R. Station
P.O. Box 5038
New York. NY l 0150 

All orders must be prepaid (check. charge, or money order). NC 
residents add 5% sales tax. NY residents add 8.25% sales tax. 

Send __ copies of Apple I/Gs Machine Language for Beginners 
Disk at $15.95 per copy. (971 BDSK) 

Subtotal $, ___ _ 

Shipping and Handling: $2.00/disk $, ___ _

Sales tax (If applicable) $, ___ _ 

Total payment enclosed $, ___ _ 

o Payment enclosed
o Charge o Visa o MasterCard o American Express

Acct. No. ____________ Exp. Date __ _ 
(Required) 

Name ___________________ _ 

Address ___________________ _ 

City __________ State ___ Zip __ _ 

Please allow 4-5 weeks for delivery. 

611 





Programming the 65816
The Apple lIGs takes the Apple II personal computer to a new level of
technology. With its power and speed, however, comes a steep learning
curve On the lIcs, machine language programming—which always pro-
duces the most elegant, the most compact, and the fastest software—re-
quires that you learn how to use the machine’s powerful microprocessor,
the 6581 6 COMPUTE’ c Apple lics Machine Language for Beginners is the
perfect introduction and tutorial to 6581 6 machine language on the latest
Apple II.

This step-by-step guide is written in a light but informative style
that s packed with information yet is easy to read Written for both begin-
ning and experienced machine language programmers, COMPUTE’ s Apple
llcs Machine Language for Beginners is the definitive guide to programming
in machine language on the Apple lIcs It goes beyond the fundamentals to
show you how to take advantage of the advanced features of this powerful
computer. It’s the one book every lIcs machine language programmer
should own.

Here’s a sample of what’s inside:

. Complete tutorials for using the Merlin B/16 and APW assemblers

. Clear explanations of the most important 6581 6 instructions, with compre
hensive examples

. How to add machine language routines to Applesoft BASIC

. How to use the Toolbox routines in your machine language programs

. Managing windows and menus

. Using QuickDraw and the Event Manager

. A complete 6581 6 reference section

. Scores of programming examples

. And much more
The author, Roger Wagner, is a popular magazine columnist; guest

speaker, software developer and author of the popular book on 6502 ma-
chine language Assembly Lines The Book Formerly a math and science
teacher, Mr. Wagner is now president of Roger Wagner Publishing, Inc., a
publisher of software for Apple computers. . .,.

$19.95 , .

ree*u•.pknntina

:i t:’
t_ —— . —



Page 19: 

Pages 61, 67: 

Page 67: 

Page 69: 

Page 93: 

Page 94: 

Chapter 6: 

Page 115: 

Page 133: 

Page 134: 

Page 138: 

Page 146: 

Page 152: 

Errata: 
Apple IIGS Machine Language for Beginners 

by Roger Wagner 
(revised 8/29/90 - ECM) 

Line 290 of the program should read: 

290 POKE 49186,0S: POKE 49204,0B: REM RESTORE SCREEN 

The Main Menu of Merlin 16 displays F: Full Screen Editor, not "E: Editor, command mode." 

Paragraph 3: After a successful assembly, it is not necessary to type Q to Quit, as Merlin 
automatically returns to the Main Menu. 

Assembler Directives, paragraph 2: When a source file is loaded, Merlin 16 automatically goes to 
the editor, so pressing a command key is not necessary. 

The KEEP and ORG line positions should be interchanged so that ORG comes before the KEEP 
directive. In the program itself, the instruction to load the Accumulator with the letter "A" should 
read: 

LDA it$Cl ; LETTER "A" 

The output listing for Program 5-6 is incorrect, and is more similar to, although not identical to, 
the output when assembling Program 5-7. 

APW users should note that when entering the example programs, the listings shown assume the 8 
bit mode of the 65816. When using the APW assembler, you will have to remember to include the 
directives LONG A OFF and LONGI OFF at the beginning of your source listings. LON GI OFF 
tells the APW assembler to use the 8 bit mode for 'Inden:' register operations such as LOX, STY, 
etc. 

In the listing at the bottom of the page, the CMP instruction should be CMP #$FFFF. This 
compares the Accumulator to the immediate value of $FFFF, not the memory location $FFFF. 

Setting and clearing the Carry, paragraph 2: "If you want to clear the Emulation bit to 0 
(sometimes called. .. " 

Above the last paragraph, the instructions should read: 
SEP 1$20 ; %00100000 binary 

REP ir$30 ; %00110000 binary 

In the last paragraph, the text should read " ... SEP #$20 sets bit 5, the m bit, to 1, thus setting the 
Accumulator ... " In the next sentence, the text should read " ... REP #$30 ... " 

In the third paragraph, the last sentence should end: " ... the 65816, i.e., the letter "A" followed by 
an inverse "@". Note that this program should be tested in the 40-column display mode." 

REP and SEP: The Monitor vs. Merlin: In Merlin 16, the instructions REP and SEP do 
not required the pound-sign ("#"). Thus, both REP #$20 and REP $20 are acceptable forms of the 
instructions. The dollar-sign ("$") is required to tell the assembler that the number is in 
hexadecimal notation. When using the Monitor to List (disassemble), however, you'll notice that 
the dollar-sign is not displayed. This is because the Monitor assumes all numbers shown (or 
entered in the Mini-Assembler) are in hex. 

"This gives the correct two-byte result of $0310, and is equivalent to ... " 

Paragraph 4: Complementary angles are those two angles whose sum is 90 degrees, not 180 
degrees. Sigh ... 



Page 170: 

Page 182: 

Page 213: 

Page 214: 

Page 230: 

Page 237: 

Page 251: 

Page 259: 

Page 261: 

Page 262: 

Page 263: 

Page 267: 

Page 268: 

The two "ORA Value:" lines should read "EOR Value". The result of the second EOR operation 
for Example #2 is $83 = 1000 0011. 

In Figure 10-2, the LDA instruction should appear in the form: 

LDA [$80].Y 

Between lines 16 and 17 of Program 11-1, the bytes for addresses $00030A-$00031F are data 
generated by the assembler for the ASC data on line 16, and should not be confused as text to be 
added by the reader. These bytes will not be tabbed as shown in the book into the assembler fields, 
but rather, will appear normally in the data area to the left during the assembly. 

Between lines 36 and 37 in Program 11-1, you should insert the instruction CLC in preparation 
for the addition operation. This will change the length of the assembled file to 93 bytes. 

Insert a line with the instruction INY just before the label LOOP in program 12-1. 

Second paragraph from the bottom, the reference to line 36 should instead refer to line 42. 

The last paragraph should be ignored since all Merlin listings in the book using BRK $00, and thus 
give the same object file length and listing appearance as the APW assembler. 

Last paragraph, regarding local labels in Merlin: Local labels can be any label following a colon 
(example :LOOP), in addition to :1 through :9. 

The program example should use AND #$DF, not ORA #$DP. 

Paragraph 5: Reference to lines 69 through 74 should be 79 through 84; reference to lines 69, 70 
should be 79,80. 

Last paragraph: " .. , (DS followed by a\) which ... ", not " ... followed by a Z ... ". The very last line 
should read DS \, not DSZ. 

Paragraph 2, reference to "lines 76-83" should be 91-98. "Lines 90-96" should be 100-106. 

The label on line 147 should be PARMTBL2; the label on line 152 should be PARMTBL3. 

The byte displayed for location $00213E should be $DO, not $80. Line 175 should be DS \, a 
Merlin command that defines a dummy block sufficient to fill to the next page boundary in 
memory. Line 158 was omitted from the listing, and should read: 

158 TR ON ; DON'T PRINT ALL HEX BYTES 

Line 173 (the checksum) should have a value of $F6, with the changes made above. 

Pages 266, 267: Although the program will work as listed, the error handling on lines 89 and 106 is not really 
correct When an error occurs during the reading of a ProDOS file, the file should be closed as part 
of the error-handling routine. Therefore, a better design would be for the JSR ERROR on line 89 
to be followed by a JSR RD KEY and a JMP CLOSE, similar to the lines 72-7 4 above. Short of 
writing an entire routine to ask the user to re-insert disks, etc., an error in trying to close the file 
(line 106) can be handled with a JSR RD KEY and JMP BEGIN, as is done on lines 72-74. 

Page 275: Because of an early change to ProDOS 16, the listings shown in the book that access the keyboard 
and strobe locations no longer work unless they are done using long addressing. These programs 
will work with version 1.1 of ProDOS 16, but all later versions of ProDOS will require a change 
to the programs. In paragraph 3, the LDA KYBD should be LDAL KYBD. 



Page 276: 

Page 277: 

Page 278: 

Page 279: 

Lines 12-14 of Program 14-1 should be: 
12 KYBD EQU $EOCOOO 
13 STROBE EQU $EOC010 
14 SCREEN EQU $E00400 

KEYBOARD SOFTSWITCH 
KEYBOARD STROBE 
LINE 1 ON SCREEN 

Line 27 of Program 14-1 should be LDAL KYBD. Because the BIT instruction does not have a 
long addressing form, line 31 should be replaced with ST AL STROBE. If you get a Fatal 
System Error $1 lOA when trying to run this program, it means you are using the original version 
of ProDOS 16 (v. 1.1). Merlin 16 defaults to the later versions, so to solve your problem you need 
only re-boot and try the program again with version 1.2 or later of ProDOS 16. 

The byte value displayed for the checksum (line 47) will be $0A after the changes above. 

Because the program listing shown is in the 8-bit mode, only a single INX instruction is needed in 
the LOOP part of the program. The comment after the first INX should read "NEXT CHAR". 

Lines 16-18 of Program 14-2 should be: 
12 KYBD EQU $EOCOOO 
13 STROBE EQU $EOC010 
14 SCREEN EQU $E00400 

KEYBOARD SOFTSWITCH 
KEYBOARD STROBE 
LINE 1 ON SCREEN 

Line 31 should read LDAL KYBD; line 35 should be ST AL STROBE. 

Page 280: The checksum value in line 101 will be $CC after you make the changes above. 

Page 281: Make sure that when entering the text for the Linker command file shown, that you have the 
opcodes TYPE, LINK, etc. in the opcode column, and not the label column. It is also not 
necessary to run the Linker.GS as indicated in the manual, since all versions of Merlin.16 default to 
loading the Linker.GS when it starts up. 

Page 282: The instructions here are directed to assembling and linking program 14-1, the Pl6.SYSTEM 
program. The first paragraph after step 5 should read "To do the quick link, first load the 
P16.SYSTEM source file, and then immediately type NEW from the Command Box. Then type 
LINK with no specified pathname in the Command Box (00). Merlin will use the last name 
(Pl6.SYSTEM) as a source file and will automatically assemble and link the file. The final object 
file generated by the link ... " 

Pages 305-306: The descriptions of Bit 3 and Bit 4 of the shadow register are reversed. Bit 3 controls the Super 
Hi-Res area, and Bit 4 controls Auxmem. 

Page 315: The labels COUT, HOME, KYBD, and STROBE on lines 7-10 are not used in the program, and as 
such are not needed in the program. 

Page 316: Line 55 should read BRA BOX. The label on line 57 should be SHUTDOWN. The checksum 
for this listing will then be $46. 

Page 317: Calling Tools from ProDOS 16: The reference to lines 29 and 32 in the second paragraph of the 
text should read lines 29 through 32. 

Page 321: The label on line 54 should be SHUTDOWN. 

Page 325: The example macro for _'ILStartUp should read: 

_TLStartUp MAC 
LOX !$0201 
JSL $El0000 
EOM 

In the interest of standardization, the Merlin 16 GS Tool Macro Library does use the underscore at 
the beginning of each tool name, contrary to the indication of the book. 



Page 327: 

Page 328: 

·Page 329: 

Page 345: 

Page 347: 

Page 348: 

Page 349: 

Page 354: 

Page 355: 

Page 359: 

Page 361: 

Page 363: 

Page 376: 

Page 381: 

Page 392: 

Page 395: 

Page 396, 397: 

Page 399: 

The third line of the Push Word macro should be: 
PEA ]l 

Contrary to the second paragraph from the bottom, the macros in listing 16-5 are not expanded 
since the listing does use the Merlin 16 LST OFF and EXP OFF directives. 

Line 30 should read LDA #" RESUME. 

The Command Value for MMStartUp should be $0202, not $0102. 

Second paragraph of "Using the Memory Manager:" You do not have to set your RAM disk to 
800K to hold all the pictures created. Only about 144K is really needed It will also take 144K of 
system (non-RAM disk) memory to store all the pictures, so you will need at least 512K of 
expansion RAM for program 17-1 to work. Program 17-1 does not set the ProDOS prefix, so you 
will have to put the program file on /RAMS (or wherever) with the pictures to be loaded. 

Line 9 of Program 17-1 should not have an asterisk (which makes the line a comment). Rather 
OSK should appear in the opcode column with MM.DEMO.PS as the operand. Lines 25-28 are 
missing from the listing, and appear as follows: 

25 
26 
27 
28 

LST OFF 
USE UTIL.MACS 
LST ON 
EXP OFF 

DON'T PRINT MACROS 
USE MACRO.LIBRARY 
LISTING BACK "ON" 
DON'T EXPAND MACROS 

MMSTART on line 49 should begin with a Push Word #$0000, with the ToolCall $0202 on 
the next line. This will involve inserting a new line into the listing. 

The checksum on line 318 will be $OB after the changes above. 

In the first paragraph of text, the references to HGR should be HGR2. At the bottom of the page, 
the diagram for MMStartUp should have shown the requirement of pushing a word onto the stack as 
space for the result prior to doing the call. 

· The Command Value for MTStartUp should be $0103; the value for MTShutDown should be 
$0303. 

The byte range indicated for the Minute value should be 0-59, not 9-59. 

The opcodes SEC and DEX on lines 74 and 81 should be indented to the opcode column in the 
listing. 

The fourth paragraph text reference to the Color Value column should refer to Master Value. 

The comment on line 119 should read "CLEAR HIGH BYTE" 

The end of the second paragraph should inlude: "(Add enough spaces to the end of each message so 
that the single quote mark is directly below the letter "L" in the word "TABLE" on line 323.) 

On line 104, the semi-colon is not the beginning of a comment The line should read: 
MSSG2 STR 'Press keys; use "Q" to Quit' 

The comment on line 134 should read "QUIT" KEY (HI BIT CLR)? 

Note that for lines 200 and 204, there should be 2 spaces after each 0000. On page 397, there 
should be 4 spaces after Event: and 6 spaces after Type: 

The label on line 323 should be EVENTMSSG. Be sure to add enough spaces to each of the 
messages on lines 325-340 so that there are 16 characters including the 00 at the end. When entered 
properly, the closing quote for each message will line up with the "L" in "TABLE" on line 323. 



Page 417,418: 

Page 420: 

Page 423: 

Page 432: 

Page 436: 

Page 438: 

Page 439: 

Page 441: 

Page 452: 

Page 452, 453: 

Insert the instruction TAX (to transfer the value of the Acc. to the X-register) between the 
instructions ASL and JSR (MENTBL,x) on both pages. 

At the bottom of the page, the hexadecimal values for the characters in the Event Mgr. demo should 
be $11, $12, $13 and $14. 

The last line on the page should refer to NewMenu in place of New Handle. 

The RTS on line 215 should be in the opcode column, not the label column. 

Lines 420 and 421: the Z should be the\ character. On line 414, the comment should read "PUT 
WINDOW ATFRONT($FFFF=-l)". 

Merlin 16 uses Open-Apple-Y to select to the end of the listing, not Open-Apple-Q. 

In the second paragraph, the first sentence should end " ... called SPECIAL, which consisted of 
nothing more than an RTS." 

On the lines with XMSG and YMSG, there should be 4 spaces after the 1st 0000, and 2 spaces after 
the 2nd 0000. 

In the source listing, the third line from the bottom should have a second INY instruction added, so 
that there are two INY's. (needed to increment two bytes forward). 

The ERASE routine has a bug in it The DOCSETIJP routine calls ERASE in order to erase the 
window. The ERASE routine fills the memory occupied by the window region with color #14 and 
then adds the rectangle to the current update region (causing the system to redraw it during the next 
call to TaskMaster). This works fine when ERASE is picked from the menu because the window 
has already been created ... however, when DOCSETUP calls ERASE, the window has not been 
created yet, causing the GetPortRect and InvalidRect calls to lead to unexpected results (a.k.a. 
system crashes). 

In order to fix this bug, change the label ERASE to ERASE2, and the JSR ERASE in 
DOCSETUP to JSR ERASE2. Finally, move the four lines above the RTS at the top of page 453 
(PushLong #WINRECT, ToolCall $2004; PushLong #WINRECT, ToolCall $3AOE) above the 
new label ERASE2 and place the label ERASE on the first PushLong statement. 

The final chunk of code should look like this: 

******************************** 

ERASE PushLong #WINRECT POINTER TO WINDOW RECTANGLE 
ToolCall $2004 GetPortRect 

MAKE WINRECT = WINDOW 

PushLong #WINRECT THE WINDOW-RECTANGLE 
Too!Call $3AOE InvalidRect 

FORCE TASKMASTER TO UPDATE 

ERASE2 PushLong PICHNDL 
ToolCall $2002 HLock 

MAKE SURE IT DOESN'T MOVE 

LDA [PICHNDL] LONG INDIRECT LOAD 
STA PTR GET THE MEM ADDRESS 
LDY #$02 
LDA [PICHNDL],Y 
STA PTR+2 (PTR) = ADDR, OF PICTURE 

CLR LDA #$EEEE CLEAR BLOCK OF MEMORY TO COLOR #14 
LDY #$0000 BEG. OF BLOCK 



Page 454: 

Page 466: 

Page 485: 

Page 497: 

Page 518: 

Page 520: 

Page 525: 

Page 526: 

: 1 STA [PTRJ, Y 

INY 
INY 

CPY it32000 DONE YET? 

BCC : 1 NOPE 

UNLOCK PushLong PICHNDL 

ToolCall $2202 HUnlock 

RTS 

******************************** 

The tool calls SetPenSize and SetSolidPenPat work with the current port. In order to change the 
pen size and color in the drawing window, we must set make that window's GrafPort current. So, 
before the line with the label SETPEN, insert these two lines: 

PushLong WPTR 
ToolCall $1B04 

SET PORT TO OUR WINDOW 
; SetPort 

With the changes above, the checksum for the new sketcher program will be $96, not $05. 

The hex byte for the BCC opcode should be $90, not $6D. 

The Addressing Modes examples for BRL should be: 

Mode 
Relative Only 

Common 
Syntax 
BRL LABEL 
BRL $FFFF 

Hex 
Coding 
82 IT FF 
82 ff ff 

In the example program segment, there should be a TAX instruction after the ASL and before the 
JMP (CMDTBLX,). 

In the example program segment, there should be a TAX instruction after the ASL and before the 
JMP (CMDTBL,X). 

In the odd/even example program segment, EVEN and ODD are reversed. It should read BCS ODD 
and BCC EVEN. . 

In accordance with the expressed preference of Apple Computer, the assembler syntax for the MVN 
and MVP instructions should be revised to reflect the requirement for a complete label as the 
operand for these instructions. Although the instruction itself only encodes the source and 
destination bank bytes, the assembler requires that the complete address be used. There is also an 
error in the hex code shown for the MVP instruction. Thus, the Addressing Mode Available chart 
should appear as follows: 

Mode 
Implied Only 

Common 
Syntax 
MVN LABELl, LABEL2 
MVP LABELl, LABEL2 

Hex 
Coding 
54 00 FF 
44 00 FF 

and the last line of the program segment on page 527 should read as: 

MVN SRCE,OEST ; SOURCE AND DEST. ADDRESSES 



Page 530: 

Page 531: 

Page 533: 

Page 534: 

Page 553: 

Page 590: 

ORA can also be used to convert upper case letters to lower case: 

ENTRY LOA CHAR GET CHARACTER 
CMP !$Cl "A" - ASSUMES HIGH BIT ASCII 
BCC DONE LESS THAN "A" 
CMP !$EO 1ST LOWER CASE LETTER 

BCS DONE GREATER OR EQUAL 

XVERT ORA lt$20 SET BIT 5: UC 
STA CHAR PUT CHAR BACK 

DONE RTS 

The Addressing Modes examples for PEA should be: 

Mode 
Immediate Only 

Common 
Syntax 
PEA $FFff 

The Addressing Modes examples for PEI should be: 

Mode 
Indirect Only 

Common 
Syntax 
PEI ($ff) 

The Addressing Modes examples for PER should be: 

Mode 
Relative Only 

Common 
Syntax 
PER $FFff 

The first line of the PER exa'llple should read: 

-> LC 

Hex 
Coding 
F4 ff FF 

Hex 
Coding 
D4 ff 

Hex 
Coding 
62 xx XX 

8000: 62 03 00 PER LABEL ; XVRTED TO 3 BY ASSEMBLER 

In addition, the first paragraph after the example should read "The microprocessor will take the 
relative offset of 3 (the operand of the PER instruction), add this to the program counter for the 
ne~t instruction ($8003), and push the result ($8006) on the stack." 

RTI is equivalent to: 

PLP 

RTS (or RTL) 

in that the status register is restored from the stack, and a return (RTS or RTL, depending on the 
processor status) is done using the address remaining on the stack. 

The correct syntax for the Pattern Search command is as follows: 

\"A"\<1234.5678P 
\25\<1234.5678P 
\"ABCD"\<1234.5678P 
\25 7F 3E\<1234.5678P 


	gs1-25
	gs26-76
	gs77-124
	gs125-176
	gs177-244
	gs245-308
	gs309-400
	gs401-472
	gs473-552
	gs553-612



