APPLE
PROGRAMMER'S
AND DEVELOPER'S
ASSOCIATIDN

290 SW 43rd. Street

Renton, WA 98055
206-251-6548

Apple IlGs
ProDOS 16
Reference
Manual

November 13, 1986

APDA#: K2SP16

Apple IIcs ProDOS 16 Reference

Includes System Loader

APDA Draft
November 13, 1986

Apple Technical Publications

This document contains preliminary information. It does not include
* final editorial corrections
* final art work
* anindex

It may not include final technical changes.

Copyright © 1986 Apple Computer, Inc. All rights reserved.

& APPLE COMPUTER, INC.

This inanual is copyrighted by
Applc or by Apple’s suppliers,
with all rights reserved. Under
the copyright laws, this manual
may not be copied, in whole or
in part, without the written
consent of Apple Computer, Inc.
This exception does not allow
copies 1o be made for others,
whethcr or not sold, but all of
the material purchased may be
sold, given, or lent to another
person. Under the law, copying
includes translating into another
language.

© Apple Computer, Inc., 1986
20525 Mariani Avenue
Cupertino, California 95014
{408) 996-1010

Apple, the Apple logo,
AppleTalk, Disk II, and ProDOS
are registered trademarks of
Apple Computer, Inc.

Apple 1IGS, AppleWorks,
Macintosh, and Unidisk are
rademarks of Apple Computer,
Inc.

Simultaneously published in the
United States and Canada.

Contents

1 Preface

1 Road map to the Apple IIGS technical manuals
3 How to use this manual

3 Other materials you'll need

3 Hardware and software

4 Publications

5 Notations and conventions

5 Terminology

5 Typographic conventions

6 Watch for these

7 Part I: How ProDOS 16 Works

9 Chapter 1. About ProDOS 16
9 Background
9 Whatis ProDOS 167

10 Programming levels in the Apple 1IGS
11 Disks, volumes, and files

12 Memory use

12 External devices

12 ProDOS 16 and ProDOS 8

13 Upward compatibility

13 Downward compatibility

13 Eliminated ProDOS 8 system calls

14 New ProDOS 16 system calls

14 Other features

15 Summary of ProDOS 16 features

17 Chapter 2. ProDOS 16 Files
17 Using files

17 Filenames

17 Pathnames

19 Creating files

20 Opening files

20 The EOF and Mark

21 Reading and writing files
22 Closing and flushing files

APDA Drajt i 11713186

Apple I1GS ProDOS 16 Reference

27
27
28
28
29
30
30
31
32

35
35
36
36
36
36
37
37
37
37
38
38
40

41
41
41
42
43
44
44
45
47
47
47
47
48

File levels

File format and organization
Directory files and standard files
File organization
Sparse files

Chapter 3. ProDOS 16 and Apple IIGS Memory
Apple IIGS memory configurations

Special memory and shadowing

ProDOS 16 and System Loader memory map

Entry points and fixed locations
Memory management

The Memory Manager

Pointers and handles

How an application obtains memory

Chapter 4. ProDOS 16 and External Devices
Block devices
Character devices
Accessing devices
Named devices
Last device accessed
Block read and block write
Formatting a disk
Number of online devices
Device search at startup
Volume control blocks
Interrupt handling
Unclaimed interrupts

Chapter 5. ProDOS 16 and the Operating Environment

Apple 1IGS system disks
Complete system disk
The SYSTEM.SETUP/ subdirectory
Application system disks
System startup
Boot initialization
Startup program selection
Starting and quitting applications
PQUIT
Standard ProDOS 8§ QUIT call
Enhanced ProDOS 8 QUIT call
ProDOS 16 QUIT call

APDA Draft it

Apple HIGS ProDOS 16 Reference

48 QUIT procedure

50 Machine state at application launch
51 Pathname prefixes

53 Initial ProDOS 16 prefix values

54 ProDOS 8 prefix and pathname convention
55 Tools, firmware, and system software
55 The Memory Manager

56 The System Loader

56 The Scheduler

56 The User ID Manager

37 The System Failure Manager

59 Chapter 6. Programming With ProDOS 16
59 Application requirements
60 Stack and direct page

60 Automatic allocation of stack and direct page
60 Definition during program development
61 Allocation at run time

62 ProDOS 16 default stack and direct page
62 Manual allocation of stack and direct page
62 Managing system resources

63 Global variables

63 Prefixes

64 Native mode and emulation mode

64 Setting initial machine configuration

64 Allocating memory

64 Loading another program

65 Using interrupts

66 Accessing devices

66 File creation/modification date and time
67 Revising a ProDOS 8 application for ProDOS 16

68 Memory management

68 Hardware configuration

69 Converting system calls

69 Modifying interrupt handlers
69 Converting stack and zero page
69 Compilation/assembly

70 Apple IIGS Programmer's Workshop
70 Human Interface Guidelines

73 Chapter 7. Adding Routines to ProDOS 16
73 Interrupt handlers

APDA Draft i1 11713156

Apple lIGS ProDOS 16 Reference

73
74
74

77

79
79
g0
80
81
82
82
83
83
84

85
86
90
91
93
97
101
104
106
107

109
110
112
114
116
118
119
120
121
122
123
124
125

Interrupt handler conventions
Installing interrupt handlers
Making operating system calls during interrupts

Part II: ProDOS 16 System Call Reference

Chapter 8. Making ProDOS 16 Calls
The call block
The parameter block

Types of parameters

Parameter block format

Setting up a parameter block in memory
Register values
Comparison with the ProDOS 8 call method
The ProDOS 16 Exerciser
Format for system call descriptions

Chapter 9. File Housekeeping Calls
CREATE ($01)

DESTROY ($02)

CHANGE_PATH (504)

SET_FILE_INFO ($05)
GET_FILE_INFO (306)

VOLUME ($08)

SET_PREFIX ($09)

GET_PREFIX ($0A)
CLEAR_BACKUP_BIT ($0B)

Chapter 10. File Access Calls
OPEN ($10)
NEWLINE ($11)
READ ($12)
WRITE ($13)
CLOSE ($14)
FLUSH ($15)
SET_MARK ($16)
GET_MARK ($17)
SET_EOF ($18)
GET_EOF ($19)
SET_LEVEL ($1A)
GET _LEVEL ($1B)

APDA Draft iv

11/13/56

Apple IIGS ProDOS 16 Reference

127 Chapter 11. Device Calls
128 GET_DEV_NUM (520)

129 GET_LAST_DEV (821)

130 READ_BLOCK ($22)

131 WRITE_BLOCK ($23)

132 FORMAT ($24)

135 Chapter 12. Environment Calls
136 GET_NAME (827)

137 GET_BOOT_VOL ($28)

138 QUIT ($29)

141 GET_VERSION ($2A)

143 Chapter 13. Interrupt Control Calls
144 ALLOC_INTERRUPT ($31)
145 DEALLOC_INTERRUPT ($32)

147 Part III: The System Loader

149 Chapter 14. Introduction to the System Loader
149 What is the System Loader?

150 Loader terminology

151 Interface with the Memory Manager

152 Loading a relocatable segment

152 Load-file structure

153 Relocation

155 Chapter 15. System Loader Data Tables
155 Memory Segment Table
156 Jump Table

157 Creation of a Jump Table entry
158 Modification at load time

159 Use during execution

159 Jump Table diagram

161 Pathname Table
163 Mark List

APDA Draft v 1113186

Apple 11GS ProDOS 16 Reference

165 Chapter 16. Programming With the System Loader
165 Static programs

165 Programming with dynamic segments

166 Programming with run-time libraries

167 User control of segment loading

167 Designing a controlling program

169 Shutting down and restarting applications

169 Summary: loader calls categorized

171 Chapter 17. System Loader Calls
171 Introduction

171 How calls are made
172 Parameter types
172 Format for System Loader call descriptions

174 Loader Initialization ($01)

175 Loader Startup ($02)

176 Loader Shutdown ($03)

177 Loader Version ($04)

179 Loader Reset ($05)

180 Loader Status ($06)

181 Initial Load ($09)

184 Restart ($0A)

186 Load Segment by Number ($0B)
189 Unload Segment by Number ($0C)
191 Load Segment by Name ($0D)
193 Unload Segment ($0E)

195 Get Load Segment Info ($0F)
197 Get User ID ($10)

199 Get Pathname ($11)

201 User Shutdown ($12)

203 Jump Table Load

205 Cleanup

207 Appendixes

209 Appendix A. ProDOS 16 File Organization
209 Organization of information on a volume
210 Format and organization of directory files

211 Pointer fields
211 Volume directory headers
214 Subdirectory headers

APDA Draft - . 11/13/86

217
220
221
222
223
224
224
225
225
227
227
227
228
228
229
230

233
233
233
233
234
234
234
234
235
236
236
236
237
238

239
239
239
240
240
240
241

241

File entries
Reading a directory file
Format and organization of standard files
Growing a tree file
Seedling files
Sapling files
Tree files
Using standard files
Sparse files
Locating a byte in a file
Header and entry fields
The storage type attribute
The creation and last-modification fields
The access attribute
The file type attribute
The auxiliary type attribute

Apple IIGS ProDOS 16 Reference

Appendix B. Apple II Operating Systems

History
DOS
SOS
ProDOS 8
ProDOS 16
Pascal

File compatibility

Reading DOS 3.3 and Apple II Pascal disks

Operating system similarity
Input/Output
Filing calls
Memory management
Interrupts

Appendix C. The ProDOS 16 Exerciser

Starting the Exerciser
Making system calls
Other commands
List Directory (L)
Modify Memory (M)
Exit to Monitor (X)
Quit (Q)

APDA Draft vii

11113186

Apple 1IGS ProDOS 16 Reference

243 Appendix D. System Loader Technical Data
243 Object module format

243 File types

243 Segment kinds

244 Record codes

245 Load-file numbers

245 Load-segment nurnbers

245 Segment headers

245 Restrictions on segment header values
246 Page-aligned and bank-aligned segments

246 Entry point and global variables
246 User ID format

249 Appendix E. Error Codes
249 ProDOS 16 Errors

249 Nonfatal errors
253 Fatal errors

254 Bootstrap errors
255 System Loader Errors
255 Nonfatal errors
256 Fatal errors

257 Glossary

APDA Draft viil

11113186

2

10
11

19
21
24
24
25

29
32
33

39

45
46
50

61
153

155
1537
158
159
160
162
164

210
210
212
215
218

Figure P-1

Figure 1-1 -

Figure 1-2

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 4-1
Figure 5-1

Figure 5-2
Figure 5-3

Figure 6-1
Figure 14-1

Figure 15-1

Figure 15-2

Figure 15-3
Figure 15-4
Figure 15-5
Figure 15-6
Figure 15-7

Figure A-1
Figure A-2
Figure A-3
Figure A-4
Figure A-5

APDA Draft

Apple IIGS ProDOS 16 Reference

List of Figures

Roadmap to Apple IIGS technical manuals

Programming levels in the Apple IIGS
Example of a hierarchical file structure

Example of a ProDOS 16 file structure
Automatic movement of EOF and Mark
Directory file format

Block organization of a directory file
Block organization of a standard file

Apple IIGS memory map

ProDOS 16 and System Loader memory map
Pointers and handles

Memory allocatable through the Memory Manager

Interrupt handling through ProDOS 16

Boot initialization sequence
Startup program selection
Run-time program selection (QUIT call)

Automatic direct-page/stack allocation
Loading a relocatable segment

Memory Segment Table entry
Jump Table Directory entry

Jump Table entry (unloaded state)
Jump Table entry (loaded state)
How the Jump Table works
Pathname Table entry

Mark List format

Block organization of a volume
Directory file format and organization
The volume directory header

The subdirectory header

The file entry

ix 1113186

Apple 11GS ProDOS 16 Reference

223 Figure A-6
224 Figure A-7
225 Figure A-8
226 Figure A9
227 Figure A-10
228 Figure A-11
229 Figure A-12

244 Figure D-1
247 Figure D-2

APDA Draft

Format and organization of a seedling file
Format and organization of a sapling file
Format and organization of a tree file

An example of sparse file organization
File Mark format

Date and time format

Access byte format

Segment kind format
User ID format

11113186

28
30
31
38
42
43
52
53
55
63
152
169
228
229
235

242

Table P-1
Table 3-1
Table 3-2
Table 3-3
Table 4-1
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 6-1
Table 14-1
Table 16-1
Table A-1
Table A-2
Table B-1

Table C-1

APDA Draft

Apple IIGS ProDOS 16 Reference

List of Tables

The Apple IIGS technical manuals

Apple IIGS memory units

ProDOS 16 fixed locations

Memory block attributes

Smartport number, slot number, and device number assignments
Contents of a complete Apple IIGS system disk

Required contents of an Apple IIGS application system disk
Examples of prefix use

Initial ProDOS 16 prefix values

Initial ProDOS 8 prefix and pathname values

Apple IIGS equivalents to ProDOS 8 global page information
Load-segment/memory-block relationships (at load time)
System Loader functions categorized by caller

Storage type values
ProDOS file types

" Tracks and sectors to blocks (140K disks)

ASCII character set

xi 11/13/86

Apple IIGS ProDOS 16 Reference

APDA Draft Xii 11/13/86

Preface

The Apple 1IGS ProDOS 16 Reference is a manual for software developers, advanced
programmers, and others who wish to understand the technical aspects of the Apple IIGS™
operating system. In particular, this manual will be useful to you if you want to write

« stand-alone program that automatically runs when the computer is started up

» a routine that catalogs disks, manipulates sparse files, or otherwise interacts with the
Apple TIGS file system at a basic level

+ an interrupt handler
» u program that loads and runs other programs
 any program using segmented, dynamic code

The functions and calls in this manual are in assembly language format. If you are
programming in assembly language, you may use the same format to access operating
system features. If you are programming in a higher-level language (or if your assembler
includes a ProDOS 16 macro library), you will use library interface routines specific to
your language. Those library routines are not described here; consult your language
manual.

Road map to the Apple IIGS technical manuals

The Apple IIGS personal computer has many advanced features, making it more complex
than earlier models of the Apple II. To describe it fully, Apple has produced a suite of
technical manuals. Depending on the way you intend to use the Apple IIGS, you may need
to refer to a select few of the manuals, or you may need to refer to most of them.

The technical manuals are listed in Table P-1. Figure P-1 is a diagram showing the
relationships among the different manuals.

Table P-1. The Apple IIGS technical manuals

Title Subject

Technical Introduction to the Apple IIGS What the Apple IIGS is
Apple 11GS Hardware Reference Machine internals—hardware
Apple 11GS Firmware Reference Machine internals—firmware
Programmer’s Introduction to the Apple IIGS Concepts and a sample program
Apple IIGS Toolbox Reference: Volumes 1 and 2 How to use the Apple 1IGS tools
Apple 11GS Programmer’ s Workshop Reference The development environment
Apple IIGS Programmer’s Workshop Assembler Reference Using the APW assembler
Apple IIGS Programmer’s Workshop C Reference Using C on the Apple IIGS
ProDOS 8 Reference Standard Apple II operating system
Apple HGS ProDOS 16 Reference Apple 1IGS operating system and loader
Human Interface Guidelines Guidelines for the desktop interface
Apple Numerics Manual Numerics for all Apple computers

APDA Draft 1 11/13/86

Apple lIGS ProDOS 16 Reference

To start finding out

about the Apple IGS —-'ng;::_

To learn how the

Appic IGS works ; o
3« ~“Apple IGS Fimware -
; ‘Reference
To start learning to 7 a-;-_ et e
program the Apple 16§ ————ru Programmer’s Introduction

To use the Toolbox

To operate on files

P s 5
i -
el

S R

e

Technical InfroducTiol
= fo the Apple iGS

“*Apple IGS Hardware #
Reference

i ?ﬁ% Sanst
= Apple 1GS Toolbox
Reference Voi 1

o rhe_AppIe Ics

pple IIGS ProDOS 16

B e, eference
FE AP (IGS TOOIDOX jrese et tmasncc::

Reference Vol 2

- Apple IIGS Programmer’s
| Workshop Reference

B S ProDOS 8
To use the development g S : R Reference i
environment ¥ . SRR
 Apple IICS Programmer’s ;
Workshop C Reference fae

E é’m""" i 3" 25
To Use C o S g i Progremmer §

E & Workshop Assembler

To use assembly

Reference

language

APDA Draft

Figure P-1. Roadmap to the technical manuals

2 11113756

Apple 1IGS ProDOS 16 Reference

How to use this manual

The Apple 11GS ProDOS 16 Reference is both a reference manual and a learning tool. It is
divided into several parts, to help you quickly find what you need.

« Part I describes ProDOS® 16, the central part of the Apple IIGS operating system
« Part II lists and explains the ProDOS 16 operating system calls

« Part IlI describes the System Loader and lists all loader calls

» The final part consists of appendixes, a glossary, and an index

The first chapter in each part is introductory; read it first if you are not already familiar with
the subject. The remaining chapters are primarily for reference, and need not be read in any
particular order. The ProDOS 16 Exerciser, on a diskette included with the manual,
provides a way to practice making ProDOS 16 calls before actually coding them.

This manual does not explain 65C816 assembly language. Refer to Apple [IGS
Programmer’s Workshop Assembler Reference for information on Apple IIGS assembly
language programming.

This manual does not give a detailed description of ProDOS 8, the Apple I operating
system from which ProDOS 16 was derived. For a synopsis of the differences between
ProDGS 8 and ProDOS 16, see Chapter 1 of this manual. For more detailed information
on ProDOS 8, see ProDOS 8 Reference.

Other materials you’ll need

Hardware and software

To use the products described in this manual, you will need an Apple IIGS with at least one
external disk drive (Apple recommends two drives). ProDOS 16 and the System Loader
require only the minimum memory configuration (256K RAM), although Apple IIGS
Programmer’s Workshop and many application programs may require more memory.

You will also need an Apple IIGS system disk. A system disk contains ProDOS 16,
ProDOS 8, the System Loader, and other system software necessary for proper functioning
of the computer. A system disk may also contain application programs.

If you wish to practice making ProDOS 16 operating system calls you will need the
ProDOS 16 Exerciser, a program on the diskette included with this manual.

APDA Draft 3 11713186

Apple IIGS ProDOS 16 Reference

Publications

This manual is the only reference for ProDOS 16 and the System Loader. You may find
useful related information in any of the publications listed under “Roadmap to Apple IIGS
Technical Manuals™ in this preface; in particular, you may wish to refer to the following:

The technical introduction The Technical Introduction to the Apple IIGS is the
first book in the suite of technical manuals about the Apple 1IGS. It describes all
aspects of the Apple 1IGS, including its features and general design, the program
environments, the toolbox, and the development environment.

The programmer’s introduction When you start writing programs for the
Apple IIGS , the Programmer’s Introduction to the Apple IIGS provides the concepts
and guidelines you need. It is a starting point for programmers writing event-driven
and segmented applications that use routines in the Apple IIGS Toolbox.

the firmware reference manual: The Apple IIGS Firmware Reference describes
the routines that are stored in the machine’s read-only memory (ROM); it includes
information about interrupt routines and low-level I/O subroutines for the serial ports
and disk port. The Firmware Reference also describes the Monitor, a low-level
programming and debugging aid for assembly-language programs.

The toolbox manuals Like the Macintosh™, the Apple IIGS has a built-in
toolbox. The two volumes of the Apple IIGS Toolbox Reference introduce concepts
and terminology, show how to use the tools, and tell how to write and install your
own tool set. They also describe the workings of some of the system-level tool sets,
such as the Memory manager, that interact closely with proDOS 16 and the System
Loader.

The Programmer’s Workshop manuals: The development environment on the
Apple 1IGS is the Apple IIGS Programmer’s Workshop (APW). APW is a set of
programs that enable developers to create and debug application programs on the
Apple 1IGS. The Apple IIGS Programmer’s Workshop Reference includes information
about the parts of the workshop that all developers will use, regardless which
programming language they use: the shell, the editor, the linker, the debugger, and
the utilities. In addition, there is a separate reference manual for each programming
language. The manuals for the languages Apple provides are the Apple IIGS
Programmer’s Workshop Assembler Reference and the Apple IIGS Programmer’s
Workshop C Reference. ,

The ProDOS 8 manual: ProDOS 8 (previously called just ProDOS) is
compatible with all Apple Il computers, including the Apple IIGS. As a developer of
Apple IIGS programs, you may need to refer to the ProDOS 8 Reference if you are
developing programs to run on standard Apple II’s as well as on the Apple IIGS, or if
you are converting a ProDOS 8-based program to run under ProDOS 16.

APDA Draft 4 11113186

Apple 11GS ProDOS 16 Reference

Notations and conventions

To help make the manual more understandable, the following conventions and definitions
apply throughout.

Terminology

This manual may define certain terms, such as Apple II and ProDOS, slightly differently
than what you are used to. Please note:

Apple II: A general reference to the Apple II family of computers, especially those
that may use ProDOS 8 or ProDOS 16 as an operating system. It includes the 64k
Apple II Plus, the Apple Ilc, the Apple Ile, and the Apple IIGS.

standard Apple II: Any Apple II computer that is not an Apple IIGS. Since
previous members of the Apple II family share many characteristics, it is useful to
distinguish them as a group from the Apple IIGS. A standard Apple I may also be
called an 8-bit Apple 11, because of the 8-bit registers in its 6502 or 65C02
MiCroprocessor.

ProDOS: A general term describing the family of operating systems developed for
Apple II computers. It includes both ProDOS 8 and ProDOS 16; it does not include
DOS 3.3 or SOS.

ProDOS 8: The 8-bit ProDOS operating system, through version 1.2, originally
developed for standard Apple II computers but compatible with the Apple IIGS. In
previous Apple II documentation, ProDOS 8 is called simply ProDOS.

ProDOS 16: A 16-bit operating system developed for the Apple IIGS computer. It is
the system described in this manual.

Typographic conventions

Each new term introduced in this manual is printed first in bold type. That lets you know
that the term has not been defined earlier, and also indicates that there is an entry for it in
the glossary.

Assembly language labels, entry points, routine names, and file names that appear in text
passages are printed in a special typeface (for example, name length and

GET ENTRY). Function names that are English language terms are printed with initial caps
(for example, Load Segment By Number). When the name of a label or variable is used to
mean the valuze of that variable rather than its name, the word is printed in italics (for
example, “the first name_length bytes of this field contain the volume name...”).

APDA Draft 5 11113186

Apple 11GS ProDOS 16 Reference

Watch for these
The following words mark special messages to you:

Note: Text set off in this manner—-with a word or phrase such as Note or By
the way—presents sidelights or interesting points of information.

Important: Text set off in this manner—with the word Important:—presents
important information or instructions.

Warning! Text set off in this manner—with the word Warning!-—indicates
potential serious problems.

APDA Draft 6 11713156

Part1
How ProDOS 16 Works

This part of the manual gives a general description of ProDOS 16. ProDOS 16 is the
disk operating system for the Apple IIGS; it provides file management and
input/output capabilities, and controls certain other aspects of the Apple IIGS operating
environment.

APDA Draft ¥ 11713186

113186
APDA Draft 8 ;

Chapter 1

About ProDOS 16

This chapter introduces ProDOS 16. It gives background information on the development
of ProDOS 16, followed by an overview of ProDOS 16 in relation to the Apple IIGS. A
brief comparison of ProDOS 16 with ProDOS 8, its closest relative in the Apple II world,
is followed by a reference list of the most pertinent ProDOS 16 features.

The chapter’s organization roughly parallels that of Part I as a whole. Each section refers
you to the appropriate chapter for more information on each aspect of ProDOS 16.

Background

The Apple IGS is the latest Apple Il computer. Its microprocessor, the 65C816, is a
successor to the standard Apple s’ 6502 and functions in both 8-bit (6502 emulation)
mode and 16-bit (native) mode (see Technical Introduction to the Apple IIGS). In
accordance with the design philosophy governing all Apple II family products, the Apple
IIGS is compatible with standard Apple II software—most presently available Apple II,
Apple Ic, and Apple Ile applications will run without modification on the Apple IIGS.

To retain this compatibility while adding new features, the Apple IIGS requires two separate
operating systems, ProDOS 8 and ProDOS 16:

+ ProDOS 8 is the operating system for standard Apple Il computers. The Apple IIGS
uses ProDOS 8 and puts the processor into emulation mode in order to Tun
standard-Apple 1I applications.

« ProDOS 16 is a newly developed system; it takes advantage of Apple IIGS features
that standard Apple II computers do not have. The Apple IIGS uses ProDOS 16 and
puts the processor into native mode in order to run Apple IIGS applications.

The user need not worry about which operating system is active at any one time.
Whenever the Apple IIGS loads an application, it automatically loads the proper operating
system for it.

ProDOS & on the Apple IIGS functions identically to ProDOS 8 on other Apple 11
computers. For a complete description of ProDOS 8, see ProDOS 8 Reference.

What Is ProDOS 16?

ProDOS 16 is the central part, or kernel, of the Apple IIGS operating system. Although
other software components (such as the System Loader described in this manual) may be

APDA Draft 9 11/13/86

Apple 11GS ProDOS 16 Reference

thought of as parts of the overall operating system, ProDOS 16 is the key component. It
manages the creation and modification of files. It accesses the disk devices on which
the files are stored and retrieved. It dispatches interrupt signals to interrupt handlers. It
also controls certain aspects of the Apple IIGS operating environment, such as
pathname prefixes and procedures for quitting programs and starting new ones.

Programming levels in the Apple IIGS

Figure 1-1 is a simplified logical diagram of the Apple IIGS, from a programmer’s point of
view. Boxes representing parts of the system form a vertical hierarchy; arrows between the
boxes show the flow of control or execution from one level to the next. At the highest level
is the programmer or user; he directly manipulates the execution of the application program
that runs on the machine. The application, in turn, interacts directly with the next lower
level of software—the operating system. The operating system interacts with the very
lowest level of software in the machine: the built-in firmware and toolbox routines. Those
routines directly manipulate the switches, registers, and input/output devices that constitute
the computer’s hardware.

User

l

Apﬁ)llccﬂon
rogram

(character device (tool calls)
access) +
------llt-[ProDOS 16]
[Firmware | Toolbox
inforypts evanis

=[Hardware J

Figure 1-1. Programming levels in the Apple IIGS.

This hierarchical view shows that the operating system is an intermediary between the
application program and the computer hardware. A program need not know the details of
individual hardware devices it accesses; instead, it makes operating system calls. The
operating system then translates those calls into the proper instructions for whatever
devices are connected to the system. ‘

The lowest software level, between the operating system and hardware, is extensively
developed in the Apple IIGS. It consists of two parts: the firmware, a collection of
traditional ROM-based routines for performing such tasks as character I/O, interrupt
handling, and memory manipulation; and the toolbox, a large set of assembly-language
routines and macros useful to all levels of software. As the arrows on Figure 1-1 show,

APDA Draft 10 11713186

ProDQOS 16: Chapter 1

ProDOS 16 accesses the firmware/tools level of the Apple IIGS directly, but so do
application programs. In other words, for tool calls and certain types of I/O, applications
bypass ProDOS 16 and interact directly with low-level system software.

The arrows pointing upward along the diagram show a counterflow of information, in
which lower levels in the machine notify higher levels of important hardware conditions.
Interrupts from hardware devices are handled both by firmware and by ProDOS 16;
events are similar to interrupts but are handled by applications through tool calls.

Disks, volumes, and files

ProDOS 16 communicates with several different types of disk drives, but the type of drive
and its physical location (slot or port number) need not be known to a program that wants
to access that drive. Instead, a program makes calls to ProDOS 16, identifying the disk it
wants to access by its volume name or device name.

Information on a volume is divided into files. A file is an ordered collection of bytes that
has several attributes, including a name and a file type. Files are cither standard files
(containing any type of code or data) or directory files (containing the names and disk
locations of other files). When a disk is initially formatted, its volume directory file is
created; the volume directory has the same name as the volume itself.

ProDOS 16 supports a hierarchical file system, meaning that volume directories can
contain the names of either files or other directories, called subdirectories; subdirectories
in turn can contain the names of files or other subdirectories. In a hierarchical file system, a
file is identified by its pathname, a sequence of file names starting with the volume
directory and ending with the name of the file. Figure 1-2 shows the relationships among
files in a hierarchical file system. '

olume K
Directory

Subdireciq bubdirecto R

File File File File File

Figure 1-2. Example of a hierarchical file structure.

See Chapter 2 and Appendix A for detailed information on ProDOS 16’s file structure,
organization, and formats.

APDA Draft 11 11713186

Apple LIGS ProDOS 16 Reference

Memory use

ProDOS 16 and application programs on the Apple TIGS are relieved of most memory
management tasks. The Memory Manager, an Apple IIGS tool set, allocates all memory
space, keeps track of available memory, and frees memory no longer needed by programs.
If a program needs to allocate some memory space, it requests the space through a call to
the Memory Manager. If a program makes a ProDOS 16 call that results in memory
allocation, ProDOS 16 requests the space from the Memory Manager and allocates it to the
program.

The Memory Manager is described further in Chapter 3 of this manual, and in Apple IIGS
Toolbox Reference.

External devices

ProDOS 16 communicates only with block devices, such as disk drives. Programs thiit
wish to access character devices such as printers and communication ports must do so
directly, either through the device firmware or through Apple IIGS Toolbox routines written
for those devices. See Apple IIGS Firmware Reference and Apple 11GS Toolbox
Reference.

Certain devices generate interrupts to tell the computer that the device needs attention.
ProDOS 16 is able to handle up to 16 interrupting devices. You may place an interrupt-
handling routine into service through a ProDOS 16 call; your routine will then be called
each time an interrupt occurs. If you install more than one routine, the routines will be
polled in the order in which they were installed.

You may also remove an interrupt routine with a ProDOS 16 call. In writing, installing,
and removing interrupt handling routines, be sure to follow the conventions and
requirements given in Chapter 7, “Adding Routines to ProDOS 16.”

ProDOS 16 and ProDOS 8

ProDOS 16, although derived from ProDOS 8, adds several capabilities to support the new
features and operating configurations of the Apple IIGS. For example:

» Because the 65C816 microprocessor functions in both 8-bit (emulation) and 16-bit
(native) execution modes, ProDOS 16 is designed to accept system calls from
applications running in either 8-bit or 16-bit mode. ProDOS 8 accepts system calls
from applications running in 8-bit mode only.

» Because the Apple IIGS has a total addressable memory space of 16Mb, ProDOS 16
has the ability to accept system calls from anywhere in that memory space (addresses
up to $SFFFFFF), and those calls can manipulate data anywhere in memory. Under
ProDOS 8, system calls can be made from memory addresses below $FFFF
only—the lowest 64K of memory.

» ProDOS 16 relies on a sophisticated memory management system (see Chapter 3),
instead of the simple global page bit map used by ProDOS 8.

APDA Draft 12 11/13/86

ProDOS 16: Chapter |

» Applications under ProDOS 16 must make calls to allocate memory or to access
system global variables, such as date and time, system level, and I/O buffer
addresses. ProDOS 8 maintains that information in the system global page in
memory bank $00, but under ProDOS 16 the global page is not supported.

- ProDOS 16 also provides several programming conveniences not available under
ProDOS 8, including named devices and multiple, user-definable file prefixes.

Upward compatibility

In a strict sense, ProDOS 16 is not upwardly compatible from ProDOS 8. Programs
written to function under ProDOS 8 on an Apple II will not run on the Apple IIGS, under
ProDQOS 16, without some modification. Conceptually, however, ProDOS 16 is upwardly
compatible from ProDOS 8, in at least two ways:

1. The two operating systems are themselves similar in structure:

+ The set of ProDOS 16 system calls is a superset of the ProDOS 8 calls; for
(almost) every ProDOS 8 system call, there is a functionally equivalent ProDOS
16 call, usunally with the same name.

+ The calls are made in nearly identical ways in both ProDOS systems, and the
parameter blocks for passing values to functions are laid out similarly.

= ProDOS 16 uses exactly the same file system as ProDOS 8. It can read from and
write to any disk volume produced by ProDOS 8.

2. Both operating systems are included with the Apple IIGS. Most applications written
for ProDOS 8 on standard Apple Il computers will run without modification on the
Apple IIGS-—not under ProDOS 16, but under ProDOS 8.

Thus, even though the individual operating systems are not completely compatible, their
sum on the Apple IIGs computer is completely upwardly compatible from other Apple IT
computers. You never need be concerned with which operating system is functioning—if
you run an Apple II application, ProDOS 8 is automatically loaded; if you run an Apple
IIGS application, ProDOS 16 is automatically loaded. Chapter 5 explains the details of how
this is accomplished.

Downward compatibility

ProDOS 16 is not downwardly compatible to ProDOS 8. Applications written for
ProDOS 16 will not run on the Apple II, Ilc, or ITe. The extra memory needed by Apple
1IGS applications and the additional instructions recognized by the 65C816 microprocessor
make applications written for ProDOS 16 incompatible with standard Apple II computers.

Eliminated ProDOS 8 system calls
As mentioned under “Upward Compatibility,” most ProDOS 8 calls have functionally exact

equivalents in ProDOS 16. However, some ProDOS 8 calls do not appear in ProDOS 16
because they are unnecessary. The eliminated calls are

APDA Draft 13 11113186

Apple I1GS ProDOS 16 Reference

RENAME The ProDOS 16 CHANGE PATH call performs the same function.

GET_TIME Under ProDOS 16, the time and date are obtained through a call to
the Miscellaneous Tool Set (see Apple 1IGS Toolbox Reference).

SET BUF Under ProDOS 16, the Memory Manager, rather than the
application, allocates file I/O buffers.

GET_BUF This call is unnecessary under ProDOS 16 because the OPEN call
returns a handle to the file’s I/O buffer.

ONLINE This call is replaced in ProDOS 16 by the VOLUME call.

New ProDOS 16 system calls

The following operating system calls, not recognized by ProDOS 8, are part of
ProDOS 16:

CLEAR BACKUP BIT (clears one of a file's access bits)

CHANGE PATH (changes the pathname of a file within a volume)

SET LEVEL (sets the system file level)

GET LEVEL (returns the system file level)

GET_DEV_NUM (returns the device number for a named device)

GET LAST DEV (returns the number of the last devcie accessed)

FORMAT (formats a disk volume)

GET_NAME (returns the filename of the current application)
GET_BOOT_VOL (returns the name of the volume that contains ProDOS 16)
GET VERSION (returns the current ProDOS 16 version)

These and all other ProDOS 16 calls are described in detail in Chapters 9 through 13.

Other features

Like ProDOS 8, ProDOS 16 supports block devices only. It does not support I/O
operations for the built-in serial ports, mouse, Apple DeskTop Bus, sound generation
system, or any other nonblock device. Applications must access these devices through the
device firmware or the Apple IIGS Toolbox.

ProDOS 8 and ProDOS 16 have identical file structures. Each can read the other’s files,
but
« ProDOS 16 load files (types $B3 - $BE) cannot be executed under ProDOS 8
« ProDOS 8 system files (type $FF) or binary files (type $06) cannot be executed under
ProDOS 16

The default operating system on the Apple IIGS (after a cold or warm restart) can be either
ProDOS 8 or ProDOS 16, depending on the organization of files on the startup disk. See
“System Startup” in Chapter 5.

APDA Draft 14 11113156

ProDOS 16: Chapter !

Running under ProDOS 8 does not disable memory beyond the addresses ProDOS 8 can
reach, nor does it disable any other advanced Apple IIGs features. All system resources are
always available, even though an application itself may make use of only the “ProDOS
8—standard Apple II”’ portion.

Summary of ProDOS 16 features

The following lists summarize the principal features of ProDOS 16. Refer to the glossary
and to appropriate chapters for definitions and explanations of terms that may be unfamiliar
to you.

In general, ProDOS 16...
* 1s a single-task operating system
« supports a hierarchical, tree-structured file system
+ allows device-independent I/O for block devices

ProDOS 16 system calls...
« use the JSL instruction and a parameter block
« return error status in the A and P registers
+ preserve all other CPU registers
« can be made from 65C816 native mode or 6502 emulation mode
+ can be made from anywhere in memory ‘
+ can access parameter blocks that are anywhere in memory
* can use pointers that point anywhere in memory
« can transfer data anywhere in memory

The ProDOS 16 file management system...
+ uses a hierarchical file structure
 supports pathname prefixes (9 allowed)
+ allows byte-oriented access to both directory files and data files
» allocates files dynamically and noncontiguously on block devices
* supports sparse files
+» provides buffers automatically

* supports access attributes that enable/disable
reading
writing
renaming
destroying
backup

 assigns a system file level to open files

APDA Draft 15 11713186

Apple lIGS ProDOS 16 Reference

» automatically marks files with date and time
» uses a 512-byte block size

+ allows volume sizes up to 32 megabytes

+ allows data file sizes up to 16 megabytes

» allows up to 14 volumes on line

+ allows up to 8 open files

» allows 64 characters per pathname

» allows 64-character prefixes

+ allows 15 characters per volume name

» allows 15 characters per file name

The ProDOS 16 device management system...
+ supports the ProDOS 8 block device protocol
» names each block device
+ allows 15 characters per device name
« allows 14 devices on line simultaneously
+ provides a FORMAT call to initialize disks

The ProDOS 16 interrupt management system...
» receives hardware interrupts not handled by firmware
» dispatches interrupts to user-provided interrupt handlers
» allows installation of up to 16 interrupt handlers

For memory management, ProDOS 16...
« dynamically allocates and releases system buffers (through the Memory Manager)
» can directly access up to 224 bytes (16 megabytes) of memory

» can run with a minimum of 256K memory

In addition, ProDOS 16...

+ provides a QUIT call to cleanly exit one program and start another, with the option of
returning later to the quitting program

APDA Draft 16 11/13/86

Chapter 2

ProDOS 16 Files

The largest part of ProDOS 16 is its file management system. This chapter explains how
files are named, how they are created and used, and a little about how they are organized on
disks. It discusses ProDOS 16 file access and file housekeeping calls.

For more details of file format and organization, see Appendix A.

Using files

Filenames

Every ProDOS 16 file, whether it is a directory file, data file, or program file, is identified
by a filename. A ProDOS 16 filename can be up to 15 characters long. It must begin
with a letter, and may contain uppercase letters (A-Z), digits (0-9), and periods (.).
Lowercase letters are automatically converted to uppercase. A filename must be unique
within its directory. Some examples are :

MEMOS
CHAP11
MY . PROGRAM

An entire disk is identified by its volume name, which is the filename of its volume
directory. ~

Pathnames

A ProDOS 16 pathname is a series of filenames, each preceded by a slash (/). The first
filename in a pathname is the name of a volume directory. Successive filenames indicate
the path, from the volume directory to the file, that ProDOS 16 must follow to find a
particular file. The maximum length for a pathname is 64 characters, including slashes.
Examples are

/DISK86/CHARTS/SALES . JUN
/DISK86/MY.PROGRAM
/DISK86/MEMOS/CHAP11

All calls that require you to name a file will accept either a full pathname or a partial
pathname. A partial pathname is a portion of a pathname; you can tell that it is not a full
pathname because it doesn’t begin with a slash and a volume name. The maximum length
for a partial pathname is 64 characters, including slashes.

APDA Draft 17 11113186

Apple IIGS ProDOS 16 Reference

These partial pathnames are all derived from the sample pathnames above:

SALES . JUN

MY . PROGRAM
MEMOS/CHAP11
CHAP11

ProDOS 16 automatically adds a prefix to the front of partial pathnames to form full
pathnames. A prefix is a pathname that indicates a directory; it always begins with a slash
and a volume name. Several prefixes are stored internally by ProDOS 16.

For the partial pathnames listed above to indicate the proper files, their prefixes should be
set to

/DISKB6/CHARTS/
/DISKBG/
/DISKBG6/
/DISKB6/MEMOS/

respectively. The slashes at the end of these prefixes are optional; however, they are
convenient reminders that prefixes indicate directory files.

The maximum length for a prefix is 64 characters. The minimum length for a prefix is zero
characters, known as a null prefix. You set and read prefixes using the calls
SET_PREFIXandGET_PREFIX.

Note: Because both a prefix and a partial pathname can be up to 64 characters
long, it is possibe to have a pathname (partial pathname plus prefix) whose effective
length is up to 128 characters.

ProDOS 16 allows you to set more than one prefix, and then refer to each prefix by code
numbers. When, as in the above examples, no particular prefix number is specified,
ProDOS 16 adds the default prefix to the partial pathname you provide. See Chapter 5
for a more complete explanation and examples.

Figure 2-1 illustrates a hypothetical directory structure; it contains all the files mentioned
above. Note that, even though there are two files named PROFIT. 3RD in the volume
directory /DISK.86/, they are easily distinguished because they are in different
subdirectories (MEMOS/ and CHARTS/). That is why a full pathname is necessary to
completely specify a file.

APDA Draft 18 11113186

ProDOS 16: Chapter 2

=

aineem =<

PROFIT.3RD

SALES.JUN

/ \

CHAPTI PROFIT.3RD SALES.JUN

LT TITITTETTT

PROFIT.3RD

IR Dl | ot

Figure 2-1. Example of a ProDOS 16 file structure

Creating files

A file is placed on a disk by the CREATE call. When you create a file, you assign it the
following properties:

« A pathname. This pathname is a unique path by which the file can be identified and
accessed. This pathname must place the file within an existing directory.

» Anaccess byte. The value of this byte determines whether or not the file can be
written to, read from, destroyed, or renamed.

« A file type. This byte indicates to other applications the type of information to be
stored in the file. It does not affect, in any way, the contents of the file,

» A storage type. This byte determines the physical format of the file on the disk.
There are only two different formats: one is used for directory files, the other for
non-directory files.

When you create a file, the properties listed above are placed on the disk, along with the
current system date and time (called creation date and creation time), in a format as
shown in Appendix A. Once a file has been created, it remains on the disk until it is deleted

(using the DESTROY call).
To check what the properties for a given file are, use the GET FILE INFO call. To alter

its properties, use the SET_FTILE INFO call. To change the file’s name, use the
CHANGE PATH call.

APDA Draft 19 11113186

Apple 11GS ProDOS 16 Reference

Opening files =

Before you can read information from or write information to a file that has been created,
you must use the OPEN call to open the file for access. When you open a file you specify it
by pathname. The pathname you give must indicate a previously created file; the file must
be on a disk mounted in a disk drive.

The OPEN call returns a reference number (ref num) and the location of a buffer
(io_buffer) to be used for transferring data to and from the file. All subsequent references
to the open file must use its reference number. The file reriains open until you use the
CLOSE call.

Each open file’s 1/O buffer is used by the system the entire time the file is open. Thus, to
conserve memory space, it is wise to keep as few files open as possible. ProDOS 16
allows a maximum of 8 open files at a time.

When you open a file, some of the file’s characteristics are placed into a region of memory
called a file control block. Several of these characteristics—the location in memory of
the file’s buffer, a pointer to the end of the file (the EQF), and a pointer to the current
position in the file (the file Mark)—are accessible to applications via ProDOS 16 calls, and
may be changed while the file is open.

It is important to be aware of the differences between a file on the disk and an open file in

memory. Although some of the file’s characteristics and some of its data may be in

memory at any given time, the file itself still resides on the disk. This allows ProDOS 16

to manipulate files that are much larger than the computer’s memory capacity. As an -
application writes to the file and changes its characteristics, new data and characteristics are

written to the disk.

The EOF and Mark

To aid reading from and writing to files, each open file has one pointer indicating the end of
the file (the EOF), and another defining the current position in the file (the Mark). ProDOS
16 moves both EOF and Mark automatically when necessary, but an application program
can also move them independently of ProDOS 16.

The EOF is the number of readable bytes in the file. Since the first byte in a file has
number 0, the EOF, when treated as a pointer, points one position past the last character in
the file.

When a file is opened, the Mark is set to indicate the first byte in the file. Itis automatically
moved forward one byte for each byte written to or read from the file. The Mark, then,
always indicates the next byte to be read from the file, or the next byte position in which to
write new data. It cannot exceed the EOF.

If during a write operation the Mark meets the EOF, both the Mark and the EOF are moved
forward one position for every additional byte written to the file. Thus, adding bytes to the
end of the file automatically advances the EOF to accommodate the new information.
Figure 2-2 illustrates the relationship between the Mark and the EOF.

APDA Draft 20 11/13/86

ProDOS 16: Chaprer 2

(a). Beglnning Posltion:

MARK

(b). After Writing or Reading Two Bytes:

Old MARK MARK

(c). After Wilting Two More Byles: Cid EOEF EOF

e g g

Old MARK MARK

Figure 2-2. Automatic movement of EOF and Mark

An application can place the EOF anywhere, from the current Mark position to the
maximum possible byte position. The Mark can be placed anywhere from the first byte in
the file to the EOF. These two functions can be accomplished using the SET EOF and
SET_MARK calls. The current values of the EOF and the Mark can be determined using the
GET_EOF and GET_MARK calls.

Reading and writing files

READ and WRITE calls to ProDOS 16 transfer data between memory and a file. For both
calls, the application must specify three things:

« The reference number of the file (assigned when the file was opened).

* The location in memory of a buffer (data_buffer) that contains, or is to contain,
the transferred data. Note that this cannot be the same buffer (io_buffer) whose
location was returned when the file was opened.

+ The number of bytes to be transferred.

When the request has been carried out, ProDOS 16 passes back to the application the
number of bytes that it actually transferred.

A read or write request starts at the current Mark, and continues until the requested number
of bytes has been ransferred (or, on a read, until the end-of-file has been reached). Read
requests can also terminate when a specified character is read. To turn on this feature and
set the character(s) on which reads terminate, use the NEWLINE call. The newline read
mode is typically used for reading lines of text that are terminated by carriage returns.

APDA Draft 21 11/13/86

Apple IIGS ProDOS 16 Reference

By the Way: Neither a READ nor a WRITE call necessarily causes a disk access.
ProDOS’s I/O buffer for each open file is 1024 bytes in size, and can hold one
block (512 bytes) of data; it is only when a read or write crosses a block boundary
that a disk access occurs.

Closing and flushing files

When you finish reading from or writing to a file, you mus* use the CLOSE call to close the
file. When you use this call, you specify only the reference number of the file (assigned
when the file was opened).

CLOSE writes any unwritten data from the file’s I/O buffer to the file, and it updates the
file’s size in the directory, if necessary. Then it frees the 1024-byte buffer space for other
uses and releases the file’s reference number and file control block. To access the file once
again, you have to reopen it.

Information in the file’s directory, such as the file’s size, is normally updated only when
the file is closed. If the user were to press Control-Reset (typically halting the current
program) while a file is open, data written to the file since it was opened could be lost, and
the integrity of the disk could be damaged. This can be prevented by using the FLUSH call.

FLUSH, like CLOSE, writes any unwritten data from the file’s I/O buffer to the file, and
updates the file’s size in the directory. However, it keeps the file’s buffer space and
reference number active, and allows continued access to the file, In other words, the file
stays open. If the user presses Control-Reset while an open but flushed file is in memory,
there is no loss of data and no damage to the disk.

Both the CLOSE and FLUSH calls, when used with a reference number of 0, normally

cause all open files to be closed or flushed. Specific groups of files can be closed or
flushed using the syszem file level (see next).

File levels

When a file is opened, it ts assigned a level, according to the value of a specific byte in
memory (the system file Ievel). If the file level is never changed, the CLOSE and
FLUSH calls, when used with a reference number of 0, cause all open files to be closed or
flushed. But if the level has been changed since the first file was opened, only the files
having a file level greater than or equal to the current system file level are closed or flushed.

The system file level feature may be used, for example, by a controlling program such as a
BASIC interpreter to implement an EXEC command:

1. The interpreter opens an EXEC program file when the level is $00.

2. The interpreter then sets the level to, say, $07.

3. The EXEC program opens whatever files it needs.

APDA Draft 22 11113186

ProDOS 16: Chapter?

4. The EXEC program executes a BASIC CLOSE command, to close all the files it has
opened. All files at or above level $07 are closed, but the EXEC file itself remains
open.

You assign a value to the system file level with a SET LEVEL call; you obtain the current
value by making a GET LEVEL call.

File format and organization

This portion of the chapter describes in general terms the organization of files on a disk.
For more detailed information, see Appendix A.

In general, structure refers in this manual to the hierarchical relationships among
files—directories, subdirectories, and files. Format refers to the arrangement of
information (such as headers, pointers and data) within a file. Organization refers to the
manner in which a single file is stored on disk, in terms of individual 512-byte blocks.
The three concepts are separate but interrelated. For example, because of ProDOS 16’s
hierarchical file structure, part of the format of a directory file includes pointers to the files
within that directory. Also, because files are organized as noncontiguous blocks on disk,
part of the format of every file larger than one block includes pointers to other blocks.

Directory files and standard files

Every ProDOS 16 file is a named, ordered sequence of bytes that can be read from, and to
which the rules of Mark and EOF apply. However, there are two types of files:

directory files and standard files. Directory files are special files that describe and
point to other files on the disk. They may be read from, but not written to (except by
ProDQOS 16). All nondirectory files are standard files. They may be read from and written
to.

A directory file contains a number of similar elements, called entries. The firstentry in a
directory file is the header entry: it holds the name and other properties (such as the number
of files stored in that directory) of the directory file. Each subsequent entry in the file
describes and points to some other file on the disk. Figure 2-3 shows the format of a
directory file.

The files described and pointed to by the entries in a directory file can be standard files or
other directory files.

An application does not need to know the details of directory format to access files with

known names. Only operations on unknown files (such as listing the files in a directory)
require the application to examine a directory’s entries. For such tasks, refer to Appendix
A.

Standard files have no such predefined internal format: the arrangement of the data
depends on the specific file type.

APDA Draft 23 11713186

Apple IIGS ProDOS 16 Reference

stapdurd Files or
Directory File Direciory Files

Header Enfry £ Fle A
File Entry
(Flle A)
File Entry :
FloB) File B
More Entries
More Flles

Flle Entry : .
(File W) ey
S " ey F“ew

Figure 2-3. Directory file format

File organization

Because directory files are generally smaller than standard files, and because they are
sequentially accessed, ProDOS 16 uses a simpler form of storage for directory files than it
does for standard files. Both types of files are stored as a set of 512-byte blocks, but the
way in which the blocks are arranged on the disk differs.

A directory file is a linked list of blocks: each block in a directory file contains a pointer to
the next block in the directory file as well as a pointer to the previous block in the directory.
Figure 2-4 illustrates this organization.

(iast block)

Figure 2-4. Block organization of a directory file

Data files, on the other hand, are often quite large, and their contents may be randomly
accessed. It would be very slow to access such large files if they were organized
sequentially. Instead, ProDOS 16 stores standard files using a tree organization. The
largest possible standard file has a master index block that points to 128 index
blocks. Each index block points to 256 data blocks and each data block can hold 512
bytes of data. The block organization of the largest possible standard file is shown in
Figure 2-5.

APDA Draft 24 11713186

ProDOS 16: Chaprer 2

Index

Figure 2-5. Block organization of a standard file

Most standard files do not have this exact organization. ProDOS 16 only writes a subset of
this form to the file, depending on the amount of data written. This technique produces
three distinct forms of standard file: seedling, sapling, and tree files. All three are
explained in Appendix A.

Sparse files

In most instances a program writes data sequentially into a file. But by writing data,
moving the EOF and Mark, and then writing more data, a program can also write
nonsequential data to a file. For example, a program can open a file, write a few characters
of data, and then move the EOF and Mark (thereby making the file bigger) by an arbitrary
amount before writing a few more bytes of data. Only those blocks that contain nonzero
information are actually allocated for the file, so it may take up as few as three blocks on
the disk (a total of 1536 bytes). However, as many bytes as are specified by the value of
EOF (up to 16 megabytes) can potentially be read from it. Such files are known as sparse
files. Sparse files are explained in more detail in Appendix A.

Important: In transferring sparse files, the fact that more data can be read from
the file than actually resides on the disk can cause a problem. Suppose that you
were trying to copy a sparse file from one disk to another. If you were to read data
from one file and write it to another, the new file would be much larger than the
original because data that is not actually on the disk can be read from the file. Thus
if your application is going to transfer sparse files, you must use the information in
Appendix A to determine which blocks should be copied, and which should not.

APDA Draft 25 11115186

Apple 1IGS ProDOS 16 Reference

The file utility programs supplied with the Apple IIGS automatically preserve the structure
of sparse files on a copy.

APDA Drqft 26 117113156

Chapter 3

ProDOS 16 and Apple IIcs Memory

Strictly speaking, memory management is separate from the operating system in the Apple
1IGS. This chapter shows how ProDOS 16 uses memory and how it interacts with the
Memory Manager.

Apple IIGS memory configurations

The Apple IIGS microprocessor is capable of directly addressing 16 megabytes (16Mb) of
memory. As shipped, the basic memory configuration for Apple IIGS is 256 kilobytes
(256K) of RAM and 128K of ROM, arranged within the 16Mb memory space as shown in
Figure 3-1.

Bank Numbers
-
' Y
S00 S0 SO02-83F o o o SEO SE1 o o o SFO-SFD SFE SFF
SFFFF emmmnnas psanRs
SECOD f :
$0000 s ! y
SCO00 ! ; §
F < ‘ ’
x| :
§ | 5
R P 8
x : <
[L}
: :
: E
: ;
sco00 E ! E
. e 7 \ > J
RAM ROM
[Basic Configuration i Expansion Memory

Bank-Switched Memory 1/O Memory

Figure 3-1. Apple IIGS memory map

The total memory space is divided into 256 banks of 64K bytes each (see Table 3-1).
Banks $00 and $01 are used for system software, ProDOS 16 applications, and are the
only memory space occupied by standard- Apple II programs running under ProDOS 8.
Banks $EO and $E1 are used principally for high-resolution video display, additional
system software, and RAM-based tools. Specialized areas of RAM in these banks include

APDA Draft 27 11113186

Apple 11GS ProDOS 16 Reference

[/O space, bank-switched memory, and display buffers in locations consistent with
standard Apple II memory configurations (see “Special Memory and Shadowing,” below).
Banks $FF and $FE are ROM,; they contain firmware and ROM-based tools. For more
detailed pictures of Apple IIGS Memory, see Technical Introduction to the Apple HGS,
Apple IIGS Hardware Reference and Apple IIGS Firmware Reference.

Table 3-1. Apple IIGS memory units

Unit Size

nibble 4 bits (one-half byte)

byte 8 bits

word 2 bytes

long word 4 bytes

page 256 bytes

block 512 bytes (for disk storage)
bank 65,536 bytes (256 pages)

With a 1-megabyte Apple 1IGS Memory Expansion Card, 16 additional banks of memory
are made available; they are numbered sequentially, from $02 to $11. Expansion banks
have none of the specialized memory areas shown for banks $00-$01 and $E(-$E1—all
64K bytes in each bank are available for applications.

Special memory and shadowing

For running standard Apple II software, the Apple IIGS memory configuration is set so that
banks $00 and $01 are identical to the Main and Auxiliary RAM and ROM on an Apple Il¢
or an Apple Ile with extended 80-column card. See Apple IIc Technical Reference Manual
or Apple Ile Technical Reference Manual for details. Because they are used for standard
Apple II emulation, both banks $00 and $01, as well as the display pages in banks $E0 and
$E1, are called special memory; there are restrictions on the placement of certain types of
code in special memory. For example, any system software that must remain active in the
standard Apple II configuration cannot be put in special memory. See "Memory Manager”
in Apple IIGS Toolbox Reference for more details.

Shadowing is the term used to describe a process whereby any changes made to one part
of the Apple IIGS memory are automatically and simultaneously made in another part.
Shadowing is necesssary because standard Apple II programs can directly access banks
$00 and $01 only, but all the fixed locations and data structures needed by those programs
are maintained in banks $EQ and $E1 (see Apple IIGS Hardware Reference). When the
proper shadowing is on, an application may, for example, update a display location in bank
$00; that information is automatically shadowed to bank $EQ, from where the video display
is actually controlled.

ProDOS 16 and System Loader memory map

ProDOS 16 and the System Loader together occupy nearly all addresses from $D000
through $FFFF in both banks $00 and $01. This is the same memory space that ProDOS &
occupies in a standard Apple II: all of the language card area (addresses above $D000),
including most of bank-switched memory.

APDA Draft 28 11/13/86

ProDOS 16: Chapter 3

In addition, ProDOS 16 reserves (through the Memory Manager) approximately 10.7K
bytes just below $C000 in bank $00 (in the region normally occupied by BASIC.SYSTEM
in a standard Apple II), for I/O buffers, ProDOS 8 interface tables, and other code.

The part of ProDOS 16 that controls loading of both ProDOS 16 and ProDOS 8 programs
is located in parts of bank-switched memory in banks $E0 and $E1. Other system software
occupies most of the rest of the language card areas of banks $EO and $E1.

None of these reserved memory areas is available for use by applications.

Bank Numbers
e

$00 $01 S02-$3F

P, :
$m " =' sm
$0D000 '
$CO00 j
:
$9600 :
:
H
H
H
H
H
i
.; , S00A8 (ProDOS 16)
30000 (Systern Loader)
Z ProDOS 16 System Loader

T Other system software

Figure 3-2. ProDOS 16 and System Loader memory map

Entry points and fixed locations

Because most Apple IIGS memory blocks are movable and under the control of the Memory
Manager (see next section), there are very few fixed entry points available to applications
programmers. References to fixed entry points in RAM are strongly discouraged, since
they are inconsistent with flexible memory management and are sure to cause compatibility
problems in future versions of the Apple IIGS. Informational system calls and referencing
by handles (see “Pointers and Handles" in this chapter) should take the place of access to
fixed entry points.

The single supported System Loader entry point is $E1 00 00. That location is the entry
point for all Apple IIGS tool calls.

The single supported ProDOS 16 entry point is $E1 00 A8. That location is the entry point

for all ProDOS 16 calls. In addition, ProDOS 16 supports a few other fixed locations in its
bank $EI vector space. Table 3-2 lists them.

APDA Draft 29 11113186

Apple IIGS ProDOS 16 Reference

Table 3-2. ProDOS 16 fixed locations

Address range Explanation

$E1 00 A8 —$E100 AB Entry vector for all ProDOS 16 system calls
$E100 AC—-$E1 00 B9 (reserved)

$E1 00 BA—-$E1 00BB Two null bytes (guaranteed to be zeros)

$E100 BC OS_KIND byte—indicates the currently running
operating system:
$00 = ProDOS 8
$01 = ProDOS 16

$E1 00 BD 0OS_BOOT byte—indicates the operating system that was
initially booted:
$00 = ProDOS 8
$01 =ProDOS 16

$E1 00 BE —$E1 00 BF Flag word. The bits are defined as follows:
bit 15 (ProDOS busy flag):
0 = ProDOS 16 is not busy
1 =ProDOS 16 is busy
Bits 14 -0:
(reserved)

The ProDOS busy flag is explained under "Making operating system calls during
interrupts,” in Chapter 7.

Note: ProDOS 16 does not support the ProDOS 8 global pﬁgc or any other fixed
locations used by ProDOS 8.

Memory management

ProDOS 16 itself does no memory management. All allocation and deallocation of memory
in the Apple IIGS is performed by the Memory Manager. The Memory Manager is an
Apple IIGS tool set; for a complete description of its functions, see Apple IIGS Toolbox
Reference.

The Memory Manager

The Memory Manager is a ROM-resident Apple IIGS tool set that controls the allocation,
deallocation, and repositioning of memory blocks in the Apple 1IGS. It works closely with
ProDOS 16 and the System Loader to provide the needed memory spaces for loading
programs and data and for providing buffers for input/output. All Apple IIGS software,
including the System Loader and ProDOS 16, must obtain needed memory space by
making requests (calls) to the Memory Manager.

The Memory Manager keeps track of how much memory is free and what parts are
allocated to whom. Memory is allocated in blocks of arbitrary length; each block

APDA Draft 30 11/13/86

ProDOS 16: Chapter 3

possesses several attributes that describe how the Memory Manager may modify it (such as
moving it or deleting it), and how it must be aligned in memory (for example, on a page
boundary). Table 3-3 lists the Memory Manager attributes that a memory block has.

Table 3-3. Memory block attributes

Attribute Explanation

fixed (yes/no) must the block remain at the same location in
memory?

fixed address (yes/no) Must it be at a specific adress?

fixed bank (yes/no) Must it be in a particular memory bank?

bank-boundary limited (yes/no) It is prohibited from extending across a bank
boundary?

special memory not usable (yes/no) Is it prohibited from residing in special memory
(banks $00, $01, and parts of banks $EQ, $E1)?

page-aligned (yes/no) Must it be aligned to a page boundary?

purge level (0 to 3) Can it be purged? If so, with what priority?

locked (yes/no) Is the block locked (temporarily fixed and
unpurgeable)?

Each block is also defined by it’s User ID, a code number that shows what program owns
it.

Besides creating and deleting memory blocks, the Memory Manager moves blocks when
necessary to consolidate free memory. When it compacts memory in this way, it of
course can move only those blocks that needn’t be fixed in location. Therefore as many
memory blocks as possible should be movable (not fixed), if the Memory Manager is to be
efficient in compaction.

When a memory block is no longer needed, the memory Manager either purges it (deletes
its contents but maintains its existence) or disposes it (completely removes it from
memory).

Pointers and handles

To access an entry point in a movable block, an application cannot use a simple pointer,
since the Memory Manager may move the block and change the entry point’s address.
Instead, each time the Memory Manager allocates a memory block, it returns to the
requesting application a handle referencing that block.

A handle is a pointer to a pointer; it is the address of a fixed (nonmovable) location, called
the master pointer, that contains the address of the block. If the Memory Manager
changes the location of the block, it updates the address in the master pointer; the value of
the handle itself is not changed. Thus the application can continue to access the block using
the handle, no matter how often the block is moved in memory. Figure 3-3 illustrates the
difference between a pointer and a handle.

APDA Draft 31 11713186

Apple IIGS ProDQS 16 Reference

If a block will always be fixed in memory (locked or unmovable), it can be referenced
by a pointer instead of by its handle. To obtain a pointer to a particular block or location.
an application can dereference the block’s handle. The application reads the address
stored in the location pointed to by the handle—that address is the pointer to the block. Of
course, if the block is ever moved that pointer is no longer valid.

ProDOS 16 and the System Loader use both pointers and handles to reference memory
locations. Pointers and handles must be at least three bytes long to access the full range of
Apple IIGS memory. However, all pointers and handles used as parameters by ProDOS 16
are four bytes long, for ease of manipulation in the 16-bit registers of the 65C816
MiCroprocessor.

a. Pointer: Memory Block
| SXXX s
Value of polnter =
starting address of memory block T T S0) =

b. Handle: _Memory Block

| BLIL ey

Value of handle =

address of master pointer el sxxx B

N N
X X

Master Pointer
SXX

i s222

Value af master pointer =
current starting address af
memory block

Figure 3-3. Pointers and handles

How an application obtains memory

Normal memory allocation and deallocation is completely automatic, as far as applications
are concerned. When an application makes a ProDOS 16 call that requires allocation of
memory (such as opening a file or writing from a file to a memory location), ProDOS 16
first obtains any needed memory blocks from the Memory Manager and then performs its
tasks. Likewise, the System Loader requests any needed memory either directly or
indirectly (through ProDOS 16 calls) from the Memory Manager. Conversely, when an
application informs the operating system that it no longer needs memory, that information
is passed on to the Memory Manager which in turn frees that application’s allocated
memory.

APDA Draft 32 11/13/56

ProDOS 16: Chapter 3

Any other memory that an application needs for its own purposes must be requested
directly from the Memory Manager. Figure 3-3 shows which parts of the Apple IIGS
memory can be allocated through requests to the Memory Manager. Applications for Apple
IIGS should avoid requesting absolute (fixed-address) blocks. Chapters 6 and 16 of this
manual discuss program memory management further; see also Programmer’s Introduction
to the Apple IIGS and Apple IIGS Toolbox Reference.

Bank Numbers
Py,
& e
$00 $01 $02-$3F SEO SE1
$FFFF
ssmeccc i I 1 1
SCO0
$2000
$0B00

e Allocatable [Not Allocatable

Figure 3-4. Memory allocatable through the Memory Manager

-

APDA Draft 33 11113786

Apple IIGS ProDOS 16 Reference

APDA Draft

34

11713186

Chapter 4

ProDOS 16 and External Devices

An external device is a piece of equipment that transfers information to or from the
Apple IIGS. Disk drives, printers, mice, and joysticks are external devices. The keyboard
and screen are also considered external devices. An inpur device transfers information to
the computer, an output device transfers information from the computer, and an
input/output device transfers information both ways.

This chapter discusses how ProDOS 16 provides an interface between applications and
certain external devices.

Block devices

A block device reads and writes information in multiples of one block of characters (512
bytes) at a time. Furthermore, it is a random-access device—it can access any block on
demand, without having to scan through the preceding or succeeding blocks. Block
devices are usually used for storage and retrieval of information, and are usually
input/output devices. Disk drives are block devices.

ProDOS 16 supports access to block devices. That is, you may read from or write to a
block device by making ProDOS 16 calls. In addition to READ, WRITE, and the other file
calls described in Chapter 2, ProDOS 16 also provides five “lower-level” device-access
calls. These calls allow you to access information on a block device without considering
what files the information is in. The calls are

GET DEV_NUM returns the device number associated with a particular named
device or online volume

GET_LAST DEV returns the device number of the last device accessed through
ProDOS 16

READ BLOCK reads one block (512 bytes) of data from a specified device

WRITE BLOCK writes one block (512 bytes) of data to a specified device

FORMAT formats (initializes) a volume in a device

A block device generally requires a device driver to translate ProDOS 16s logical block
device model into the tracks and sectors by which information is actually stored on the
physical device. The device driver may be circuitry within the disk drive itself

(Unidisk™ 3.5), it may be included as part of ProDOS 16 (Disk II®), or it may be on a
separate card in an expansion slot. This manual does not discuss device drivers.

Note on RAM disks: RAM disks are internal software constructs that the
operating system treats like external devices. Although ProDOS 16 provides no

APDA Draft 35 11/13/86

Apple IIGS ProDOS 16 Reference

particular support for RAM disks, any RAM disk that behaves like a block device in
all respects will be supported just as if it were an external device.

Character devices

A character device reads or writes a stream of characters in order, one at a time. Itisa
sequential-access device—it cannot access any position in a stream without first
accessing all previous positions. It can neither skip ahead nor go back to a previous
character. Character devices are usually used to pass information to and from a user or
another computer; some are input devices, some are output devices, and some are
input/output devices. The keyboard, screen, printer and communications port are character
devices.

Current versions of ProDOS 16 do not support character devices; that is, you cannot access
character devices through ProDOS 16 calls. Consult the appropriate firmware or tools
documentation, such as Apple IIGS Firmware Reference or Apple IIGS Toolbox Reference,
for instructions on how to make calls to the particular device you wish to use.

Accessing devices

Under ProDOS 16, you can access block devices through their device numbers, device
names, or the volume names of the volumes mounted on them.

Named devices

ProDOS 16 permits block devices to have assigned names. This ability is a convenience
for users, because they will no longer have to know the volume name to access a disk.

However, ProDOS 16's support for named devices is limited. Device names may be used
only in the VOLUME, GET DEV_ NUM, and FORMAT calls. Other calls that access devices
require either a volume name or the device number returned by the GET DEV NUM or
GET_LAST_DEV call.

Devices are named according to a built-in convention; assigned names may not be changed.
The naming convention is as follows:

Device Name
Any block device Dn

where n=a 1-digit or 2-digit number (assigned consecutively)

Last device accessed
An application may ask ProDOS 16 for the identity of the last block device accessed. The

last device accessed 1s defined here as the device to which the most recent call involving a
disk read or write (including a block read or write) was directed.

APDA Draf 36 11113186

ProDOS 16: Chapter 4

When an application makes the GET LAST DEV call, ProDOS 16 returns the device
number of the last block device accessed. The application can then use that information as
input to subsequent device calls.

Block read and block write

ProDOS 16 provides two device-access calls analogous to the file-access calls READ and
WRITE. These calls, READ BLOCK and WRITE BLOCK, allow you to transfer
information to and from a volume on a block device regardless of what files the volume
contains.

The device number of a device (returned by GET_DEV_NUM) is a required input for the
block read and write calls. The block read and write calls are powerful, but are not needed
by most applications—the filing calls described in Chapter 2 are sufficient for normal disk
I/0.

Formatting a disk

Your application can format (initialize) a disk in a device through the ProDOS 16 FORMAT
call. The call requires both a device name and a volume name as input. The disk in the
specified device is formatted and given the specified volume name.

The other required input to the FORMAT call is the file system ID. It specifies the class of
operating system for which the disk is to be formatted (such as DOS, ProDOS, or Pascal).
Under current versions of ProDOS 16, however, the FORMAT call can format disks for the
ProDOS/SOS file system only (file system ID = 1),

Number of online devices

ProDOS 16 supports up to 14 active devices at a time. The Apple IIGS normally accepts up
to 4 devices connected to its disk port (Smartport) and two devices per expansion slot (slots
1 through 7). It is possible, however, to have up to 4 devices on (a Smartport card in) slot

5. Nevertheless, the total number of devices on line still cannot exceed 14.

Device search at startup

When ProDOS 16 boots, it performs a device search to identify all built-in pseudo-slot
ROMs (internal ROMs) and all real physical slot ROMs (card ROMs). Every block device
found is incorporated into ProDOS 16’s list of devices, and assigned a device number
(dev_num) and device name (dev_name).

Note: Control Panel settings determine whether internal ROM or card ROM is

active for each slot. ProDOS 16 cannot simultaneously support both internal and
external devices with the same slot number.

APDA Draft 37 11113186

Apple IIGS ProDOS 16 Reference

In general, the device search proceeds from highest-numbered slots downward. For
example, a disk drive in slot 7 drive 1 will be device number 1; another drive in slot 7 drive
2 will then be device 2, and on downward through all the slots.

Smartport (slot 5’s internal ROM and diskport) is a special case. Up to 4 devices may be
connected to Smartport. However, because ProDOS 16 supports only 2 devices per slot,
the third and fourth devices are treated as if they were in slot 2. Despite the mapping of
devices 3 and 4 into slot 2, however, all devices connected to Smartport are given
consecutive numbers. Table 4-1 shown the relationships.

Table 4-1. Smartport number, slot number, and device number assignments

Smartport no.t slot and drive device number
1 slot 5 drive 1 n

2 slot 5 drive 2 n+l

3 slot 2 drive 1 n+2

4 slot 2 drive 2 n+3

TSmartport device number 1 is connected directly to Smartpost.
Subsequent devices are conected in daisy-chain fashion to the preceding
ones, so that device number 4 is the farthest from Smartport.

Apple Disk I and other related 5.25-inch disk drives are another special case. Because of

the relatively long time required to access a Disk II drive and to determine whether a disk is
present in it, Disk II drives are given the highest device numbers on the system. That way

they will be searched last in any scan of online devices.

Volume control blocks

For each device with nonremovable media (such as a hard disk) found at boot time, a
volume control block (VCB}) is created in memory. The VCB keeps track of the
characteristics of that online volume. For other devices (such as floppy disk drives) found
at boot time, VCB’s are created as files are opened on the volumes in those devices. A
maximum of eight VCB’s may exist at any one time; if you try to open a file on a device
whose volume presently has no open files, and if there are already eight VCB entries, error
$55 (VCB table full} is returned. Thus, even though there may be up to 14 devices
connected to your system, only eight (at most) can be active (have open files) at any one
moment.

Interrupt handling

On the Apple IIGS, interrupts may be handled at either the firmware or the software level.
The built-in interrupt handers are in firmware (see Apple IIGS Firmware Reference), user-
installed interrupt handlers are software and may be installed through ProDOS 16.

When the Apple IIGS detects an interrupt that is to be handled through ProDOS 16, it
dispatches execution through the interrupt vector at $00 03 FE (page 3 in bank zero). At
this point the microprocessor is running in emulation rmode, using the standard clock speed
and 8-bit registers. The vector at $00 03 FE has only two address bytes; in order to allow

APDA Draft 38 1111386

ProDOS 16: Chapter 4

access to all of Apple IIGS memory, it points to another bank zero location. The vector in
that location then passes control to the ProDOS 16 interrupt dispatcher. The interrupt
dispatcher switches the processor to full native mode (including higher clock speed) and
then polls the user-installed interrupt handlers.

Figure 4-1 is a simplified picture of what happens when a device generates an interrupt that
is handled through a ProDOS 16 interrupt handler.

IRQ signal causes

contrel to transfer tg Interrupt Vector | thento BuM-n
(SFFFE - SFFFF in . Intermupt handler
Bank $00)

Is the intemupt to be serviced
by the built-n handier?
Interrupt Is handied by firmware: ya L=
see Corftfand Firnware Reference
JSR to
User's Interupt Vector | JMP to PreDOS 16
at $0003 FE Interrupt
(used by ProDOS 16) Dispatcher
Poll each handler
in sequence:
Wil one accep!
the inferrupi?
no S
Unclaimed Interrupt: <— s
fatal error | 18 to
RTL back to PreDCS 16
interrupt Dispatcher
{then RTl back to buiti-in User-Installed
interupt handier) Handler

Handler

Processes Interrupt

Figure 4-1. Interrupt handling through ProDOS 16

ProDOS 16 supports up to 16 user-installed interrupt handlers. When an interrupt occurs
that is not handled by firmware, ProDOS 16 transfers control to each handler successively
until one of them claims it. There is no grouping of interrupts into classes; their priority
rankings are reflected only by the order in which they are polled.

If you write an interrupt-handling routine, to make it active you must install it with the
ALLOC__INTERRUPT call; to remove it, you must use the DEALLOC_INTERRUPT call.
Be sure to enable the hardware generating the interrupt only affer the routine to handle it is
allocated; likewise, disable the hardware before the routine is deallocated. See Chapter 7
for further details on writing and installing interrupt handlers.

APDA Draft 39 11113186

Apple 11GS ProDOS 16 Reference

Unclaimed interrupts

An unclaimed interrupt is defined as the condition in which the hardware Interrupt
Request Line (IRQ) is active (being pulled low), indicating that an interrupt-producing
device needs attention, but none of the installed interrupt handlers claims responsibility for
the interrupt. When an interrupt occurs and ProDOS 16 can find no handler to claim it, it
assumes that a serious hardware error has occurred. It issues a fatal error message to the
System Failure Manager (see Apple 11GS Toolbox Reference), and stops processing the
current application. Processing cannot resume until the user reboots the system.

APDA Draft 40 11/13/86

Chapter 5

ProDOS 16 and the Operating
Environment

ProDOS 16 is one of the many components that make up the Apple IIGS operating
environment, the overall hardware and software setting within which Apple IIGS
application programs run. This chapter describes how ProDOS 16 functions in that
environment and how it relates to the other components.

Apple IIGS system disks

An Apple IIGS system disk is a disk containing the system software needed to run any
application you wish to execute. Most system disks contain one or more operating systems
(ProDOS 16 and ProDOS 8), the System Loader, RAM-based tool sets, RAM patches to
ROM-based tool sets, fonts, desk accessories, boot-time initialization programs, and
possibly one or more applications.

There are two basic types of system disks: complete system disks and application system
disks. A complete system disk has a full set of Apple IIGS system software, as listed in
table 5-1. It is a resource pool from which application system disks can be constructed.
An application system disk has one or more application programs and only the specific
system software it needs to run the application(s). For exarnple, a word processor system
disk may include a large selection of fonts, whereas a spreadsheet system disk may have
only a few fonts.

Software developers may create application system disks for their programs. Users may
also create application system disks, perhaps by combining several individual apphcauon
disks into a multi-application system disk. Apart from the essential files listed in table 5-2
there is no single set of required contents for application system disks.

Complete system disk
Every Apple IIGS user (and developer) needs at least one complete system disk. It is a pool

of system software resources, and may contain files missing from any of the available
application system disks. Table 5-1 lists the contents of a complete system disk.

APDA Draft 41 11113186

Apple 11GS ProDOS 16 Reference

Table 5-1. Contents of a complete Apple IIGS system disk

Directory/File Description
PRODOS a routine that loads the proper operating system and selects
an application, both at boot time and whenever an application
quits
SYSTEM/ a subdirectory containing the following files:
P8 ProDOS 8 operating system
P16 ProDOS 16 operating system and Apple IIGS System Loader
START typically a program selector
LIBS/ a subdirectory containing the standard system libraries
TOOLS/ a subdirectory containing all RAM-based tools
FONTS/ a subdirectory containing all fonts
DESK.ACCS/ a subdirectory containing all desk accessories

SYSTEM.SETUP/ a subdirectory containing system initialization programs
TOOL .SETUP aload file containing patches to ROM and a program to
install them. This is the only required file in the
SYSTEM,. SETUP/ subdirectory; it is executed before any
others that may be in the subdirectory.

BASIC.SYSTEM The Applesoft BASIC system interface program

The complete system disk is an 800K byte, double-sided 3.5-inch diskette; the required
files will not fit on a 140K, single-sided 5.25-inch diskette.

When you boot a complete system disk, it executes the file SYSTEM/START. From the
START file, you may choose to call Applesoft BASIC, the only application program
available on the disk.

The SYSTEM.SETUP/ subdirectory

The SYSTEM. SETUP/ subdirectory may contain several different types of files, all of
which need to be loaded and initialized at boot time. They include the following:

+ the file TOOL.SETUP: This file must always be present; it is executed before
any others in SYSTEM.SETUP/. TOOL.SETUP installs and initializes any RAM
patches to ROM-based tool sets. After TOOL . SETUP is finished, ProDOS 16 loads
and executes the remaining files in the SYSTEM. SETUP/ subdirectory, which may
belong to any of the categories listed below.

« permanent initialization files (filetype $B6): These files are loaded and
executed just like standard applications (type $B3), but they are not shut down when
finished. They also must have certain characteristics:

1. They must be loaded in non-special memory.

2. They cannot permanently allocate any stack/direct-page space.

3. They must terminate with an RTL (Return from subroutine Long) rather than a
QUIT.

« temporary initialization files (type $B7): These files are loaded and executed
just like standard applications (type $B3), and they are shut down when finished.
They must terminate with an RTL rather than a QUIT.

APDA Draft 42 11/13/86

ProDQOS 16: Chapter 5

+ new desk accessories (type $B8): These files are loaded but not executed.
They must be in non-special memory.

. classic desk accessories (type $B9): These files are loaded but not executed.
They must be in non-special memory.

Application system disks

Each application program or group of related programs comes on its own application
system disk. The disk has all of the system files needed to run that application, but it may
not have all the files present on a complete system disk. Different applications may have
different system files on their application system disks.

For example, the ProDOS 16 Exerciser disk, included with this manual, is an application
system disk. It contains all the system files listed above, plus the file EXERCISER (the
exerciser itself).

Table 5-2 shows which files must be present on all application system disks, and which
files are needed only for particular applications. In some very restricted instances, it may
be possible to fit an application and its required system files onto a 5.25-inch (140K)
diskette; most applications, however, require an 800K diskette.

Table 5-2. Required contents of an Apple IIGS application system disk

Directory/File Required/(Required If...)

PRODOS required

SYSTEM/ required
P8 (required if the application is ProDOS 8-based)
P16 required
START (required if the program selector is to be used)
LIBS/ (required if system library routines are needed)
TOOLS/ (required if the application needs RAM-based tools)
FONTS/ (required if the application needs fonts)
DESK.ACCS/ (required if desk accessories are to be provided)

SYSTEM,SETUP/ required
TOOL.SETUP required

BASIC.SYSTEM (required if the application is written in Applesoft BASIC)

Important: the files PRODOS, P8 and P16 all have version numbers. Whenever
it loads an operating system (at startup or when launching an application),
PRODOS checks the P8 or P16 version number against its own, If they do not
match, it is a fatal error. Be careful not to construct an application system disk
using incompatible versions of PRODOS, P8 and P16 .

APDA Draft 43 11713186

Apple 11GS ProDOS 16 Reference

System startup

Disk blocks 0 and 1 on an Apple IIGS system disk contain the startup (boot) code. They
are identical to the boot blocks on standard Apple II system disks (ProDOS 8 system
disks). This allows ProDOS 8§ system disks to boot on an Apple IIGS, and it also means
that the initial part of the ProDOS 16 bootstrap procedure is identical to that for ProDOS &.

Boot initialization

Figure 5-1 shows the boot initialization procedure. First, the boot firmware in ROM reads
the boot code (blocks 0 and 1) into memory and executes it. For a system disk with a
volume name /V,

1. The boot code searches the disk’s volume directory for the first file named
/V/PRODOS with the file type $FF.

2. If the file is found, it is loaded and executed at location $2000 of bank $00.

From this point on, an Apple IIGS system disk behaves differently from a standard Apple I1
system disk. On a standard Apple II system disk, the file named PRODOS is the ProDOS §
operating system. On an Apple IIGS system disk, however, this PRODOS file is not the
operating system itself; it is an operating system loader and application selector. When it
receives control from the boot code, /V/PRODOS performs the following tasks (see also
Figure 5-1):

3. Itrelocates the part of itself named PQUIT to an area in memory where PQUIT will

reside permanently. PQUIT contains the code required to terminate one program
and start another (either ProDOS 8 or ProDOS 16 application).

4. /V/PRODOS loads the ProDOS 16 operating system and Apple 1IGS System Loader
(file /V/SYSTEM/P16).

5. /V/PRODOS performs any necessary boot initialization of the system, by executing
the files in the subdirectory /V/SYSTEM/SYSTEM.SETUP/. If there is a file
named TOOL . SETUP in that subdirectory, it is executed first—it loads RAM-based
tools and RAM patches to ROM-based tools.

Every file in the subdirectory /V/SYSTEM/SYSTEM. SETUP/ must be an Apple
1IGS load file of type $B6, $B7, $BS, or $B9. These file types are described under
“The SYSTEM. SETUP/ Subdirectory,” in this chapter. After executing

TOOL . SETUP, /V/PRODOS loads and executes, in turn, every other file that it
finds in the subdirectory.

APDA Draft 44 11713186

ProDOS 16: Chapter S

Power On

Fimnware/Tools initialzation

execute

Boot FiMmware
{in ROM)
Is there a readable disk?
e & boot failure:
joad & ‘check startup device®
axecu!ﬁ Boot Blocks
(blocks O and 1)
Is there a file named PRODOS?
B . D0 boot faiure:
load & *UNABLE TO LOAD PRODOS"
execufz fle named
PRODOS
(if this s a Cortland (if this is a Pre-Cortland
System Disk) ProDOS 8 Systemn Disk)
‘wc!E ProDOS 16/
System Loader
The file PRODOS Is ProDOS 8;
load 81‘ ft performs s own Inftialzation
Bxecule Inttlalization and brings up a ProDOS 8
— r?gtou ines sysiemg:)m%mm —see
[V/ISYSTEM/SETUP ProDCS 8 Reference

return to PRODOS I

.22) Desk Accessories

‘1‘0 ‘Srcrrug Program Selection”
(Figure 5-2)

Figure 5-1. Boot initialization sequence

Startup program selection
6. Now /V/PRODOS selects (= determines the pathname of) the system program or
application to run. Figure 5-2 shows this procedure.

a. It first searches for a type $B3 file named /V/SYSTEM/START. Typically,
that file is a program selector, but it could be any Apple IIGS application. If

START is found, it is selected.

APDA Draft 45 11/13186

Apple 11GS ProDOS 16 Reference

b. If there is no START file, /V/PRODOS searches the boot volume directory for a -
file that is either one of the following:

+ aProDOS 8 system program (type $FF) with the filename extension
.SYSTEM

» a ProDOS 16 application (type $B3) with the filename extension .SYS16
Whichever is found first is selected.

Note: If a ProDOS 8 system program is found first, but the ProDOS 8 operating
system (file /V/SYSTEM/P8) is not on the system disk, /V/PRODOS will then
search for and select the first ProDOS 16 application (ProDOS 16 is always on the
system disk).

c. If /v/PRODOS cannot find a file to execute (for example, if there is no START
file and there are no ProDOS 8 or ProDOS 16 applications), it will bring up an
interactive routine that prompts the user for the filename of an application to load.

7. Finally, /V/PRODOS passes control to an entry point in PQUIT. Itis PQUIT, not
/V/PRODOS, that actually loads the selected program. The next section describes
that procedure.

Note: PRODOS will write an error messsage to the screen if you try to boot it on
an Apple IT computer other than an Apple IIGS. This is because ProDOS 8 on an
Apple IIGS disk is in the file V/SYSTEM/P8, not in the file PRODOS.

from "Boot Initiolization®
(Figure 5-1)
(the file named PRODOS is In control)

Is there a file named /V/SYSTEM/ST ART?

yes no
ls there a SYSTEM or .SYS16 fle?
yes no
- Fatal eror:
Which & . 'no X.5YSTEM or
i x.5YSI6 file found®
.S5YS16 file found fist SYSTEM file found first
Execute a ProDOS 16 Execute an enhanced
QUIT call, using the ProDOS 8 QUIT call,
filename of the using the filaname
8YS16 program of the .SYSTEM program
loqdc&r v to *Run-time v’ro "Run-time
oxe .9 fle Program Selection® Program Selection”
fV/SYSTEM/START (Figure 5-3) (Figure 5-3)
START is typlcatlly

a program selectoer,
dllowing the user to choose
a program to load

Figure 5-2. Startup program selection

—

APDA Draft 46 11/13/86

ProDQS 16: Chapter 5

Starting and quitting applications

The Apple IIGS startup sequence ends when control is passed to the program selection
routine (PQUIT). This routine is entered both at boot time and whenever an application
terminates with a ProDOS 16 or ProDOS 8 QUIT call..

PQUIT

PQUIT is the ProDOS program dispatcher. It determines which ProDOS 8 or ProDOS 16
program is to be run next, and runs it. After startup, PQUIT is permanently resident in
memory; PQUIT loads ProDOS 16 programs through calls to the System Loader.

PQUIT has two entry points: PSPQUIT and P16PQUIT. Whenever a ProDOS 8
application executes a QUIT call, control passes through the P8PQUIT entry point.
Whenever a ProDOS 16 application executes a QUIT call, control passes through the
P16PQUIT entry point. To launch the first program at system startup, /V/PRODOS
passes control to PQUIT as if executing a QUIT call.

PQUIT supports three types of quit call: the standard ProDOS 8 QUIT call, an enhanced
ProDOS 8§ QUIT call, and the ProDOS 16 QUIT call.

Standard ProDOS 8 QUIT call

The standard ProDOS 8 QUIT call’s parameter block consists of a one-byte parameter
count field (which must have the value $04), followed by four null fields in this order:
byte, word, byte, word. As ProDOS 8 is currently defined, all fields must be present and
all must be set to zero. There is thus no way for a program to use the standard QUIT call to
specify the pathname of the next program to run.

Enhanced ProDOS 8 QUIT call

The enhanced ProDOS 8 QUIT call differs from the standard call only in the permissible
values of the first two parameters (its parameter count field must still have the value $04).
In the enhanced QUIT call, the first (byte) parameter is defined as the quir type. If itis
zero, the call is identical to a standard QUIT call; if it is $EE, PQUIT interprets the
following (word) parameter as a pointer to a string which is the pathname of the next
program to run.

The enhanced ProDOS 8 QUIT call is meaningful only on the Apple IIGS, and only when
PQUIT is present to interpret it. It behaves like the standard QUIT call in any other
situation.

Note: Because of the way ProDOS uses memory, a ProDOS 8 application must

not make an enhanced QUIT call (with a quit type of $EE) from any location in
page 2 of bank $00 (addresses $00 02 00 — $00 02 FF).

APDA Draft 47 11/13/86

Apple IIGS ProDOS 16 Reference

ProDOS 16 QUIT call

The ProDOS 16 QUIT call has two parameters: a pointer to the pathname of the next
program to execute, and a pair of boolean flags: one (theremrn flag)notifies PQUIT
whether or not control should eventually return to the program making the QUIT call; the
other one (the restart—from—memory flag) lets the System Loader know whether the
quitting program can be restarted from memory when it returns.

If the value of the return flag is true, PQUIT pushes the User ID of the calling (=quitting)
program onto an intemal stack. As subsequent programs run and quit, several User ID’s
may be pushed onto the stack. With this mechanism, multiple levels of shells may execute
subprograms and subshells, while ensuring that they eventually regain control when their
subprograms quit.

For example, the program selector (START file) might pass control to a software
development system shell, using the QUIT call to specify the shell and placing its own ID
on the stack. The shell in turn could hand control to a debugger, likewise puting its own
ID on the stack. If the debugger quits without specifying a pathname, control would pass
automatically back to the shell; when the shell quit, control would pass automatically back
to the START file.

This automatic return mechanism is specific to the ProDOS 16 QUIT call, and therefore is
not available to ProDOS 8 programs. When a ProDOS 8 application quits, it cannot put its
ID on the internal stack.

QUIT procedure

This is a brief description of how PQUIT handles all three types of QUIT call. Refer also
to Figure 5-3.

1. If a ProDOS 16 or enhanced ProDOS 8 QUIT call specifies a pathname, PQUIT
attempts to execute the specified file. Under certain conditions this may not be
possible: the file may not be on line, there may be insufficient memory , and so on.
In that case the QUIT call executes the interactive routine described below (step 3).

Note: PQUIT will load programs of file type $B3, $BS5, or $FF only.

2. If the QUIT call specifies no pathname, PQUIT pulls a User ID off its internal ID
stack and attempts to execute that program. Typically, programs with User ID’s on
the stack are in the System Loader’s dormant state (see “User Shutdown” in
Chapter 17), and it may be possible to restart them without reloading them from
disk. Under certain conditions it may not be possible to execute the program: the file
may not be on line, there may be insufficient memory , and so on. In that case the
QUIT call executes the interactive routine described next (step 3).

3. If the QUIT call specifies no pathname and the ID stack is empty, PQUIT executes
an interactive routine that allows the user to do any of these:

» reboot the system
» execute the file /V/SYSTEM/START
+ enter the pathname of a program to execute

APDA Draft 48 11/13/86

ProDOS 16: Chapter 5

4. If the quitting program is a ProDOS 16 program, PQUIT calls the loader’s User
Shutdown routine to place that program in a dormant state.

5. Once it has determined which program to load, PQUIT knows which operating
system is required. If it is not the current system,

a. PQUIT shuts down the current operating system and loads the required one.

b. PQUIT then makes Memory Manager calls to free memory used by the former
operating system and allocate memory needed by the new system. If the new
operating system is ProDOS 8, PQUIT allocates all special memory for the
program.

6. The new program is loaded. PQUIT calls the System Loader to load ProDOS 16
programs; for ProDOS 8 programs, PQUIT passes control to ProDOS 8, which then
loads and executes its own program directly.

7. Finally (if it is a ProDOS 16 program), PQUIT sets up various aspects of the
program’s environment, including the direct-register and stack-pointer values, and
passes control to the program.

APDA Draft 49 11113186

Apple 11GS ProDOS 16 Reference

ProDCS 16 ProDOS 8
Quit Call Quit Call

execute execute

PQUIT routine

Doos the QUIT call specify the
pathname of the next program?

yes no

Does the quitting program are there any UserD's
iater?
yes

wamnt fo refum on the refum stack?
yes no
poca 1t ™ Pull last UserD
UserlD on rompt user for
return stack off retum stack: Ff|)lehc:ﬁ'|e of
make that the next program
next program
g user selects
user selects a flename reboot”

e %

next program has been selected: ‘Boot Inificlzation®

Must a different operating system be loaded? (Figure 5-1)

yes
no lo Operating System
(ProDOS 8 or
ProDQOS 16)
purge memeory no longer nesded
and dllocate new memory
load
Set up i
program’s Selected Program
environment executg.

Figure 5-3. Run-time program selection (QUIT call)

Machine state at application launch

PQUIT initializes certain hardware and software components of the Apple IIGS before it
passes control to a program. There are many other factors the machine's state that are not
considered here, such as memory used by other software and the state of the dozens of soft
switches and pseudoregisters available on the Apple IIGS. This section summarizes only
those aspects of machine state explicitly set by ProDOS 16.

+ Reserved bank $00 space:

Addresses above approximately $9600 in bank zero are reserved for ProDOS 16, and
therefore unavailable to the application. A direct-page/stack space, of a size
determined either by ProDOS 16 or by the application itself, is reserved for the
application (see Chapter 6); it is located in bank $00 at an address determined by the
Memory Manager. ProDOS 16 requires no other space in RAM (other that the
language-card areas in banks $00, $01, $EO, and $E1—see Figure 3-2).

APDA Draft 50 11113186

ProDOS 16: Chapter S

+ Hardware registers:

The accumulator contains the User ID assigned to the application.

The X- and Y-registers contain zero ($0000).

The e-, m-, and x-flags in the processor status register are all set to zero, meaning that
the processor is in full native mode.

The stack register contains the address of the top of the direct-page/stack space (see
Chapter 6).

The direct register contains the address of the bottom of the direct-page/stack space
{see Chapter 6).

+ Standard input/output:

For both $B3 and $BS5 files, the standard input, output, and error locations are set to
the Pascal 80-column character device vectors. See "Text Tool Set" in Apple IIGS
Toolbox Reference.

+ Shadowing:
The value of the Shadow register is $1E, which means:

language card and I/O spaces: shadowing ON
text pages: shadowing ON
graphics pages: shadowing OFF

+ Vector space values:

Addresses between $00A8 and $00BF in bank $E1 constitute ProDQS 16’s vector
space—so named because it contains the entry point (vector) to all ProDOS 16 calls.

It also contains other information useful to system software such as AppleTalk®.
The specific values an application finds in the vector space are listed in Table 3-2.
These are the only fixed locations supported by ProDQOS 16.

« Pathname prefix values:
The nine available pathname prefixes are set as described in the next section.

Pathname prefixes

A pathname prefix is a part of a pathname that starts with a volume name and ends with
the name of a subdirectory. A preassigned prefix is convenient when many files in the
same subdirectory are accessed, because it shortens the pathname references. A set of
prefixes is convenient when files in several different subdirectories must be repeatedly
accessed. The System Loader, for example, makes use of multiple prefixes. Once the
pathname prefixes are assigned, an application can refer to the prefixes by code instead of
keeping track of all the different pathnames.

ProDOS 16 supports 9 prefixes, referred to by the prefix numbers 0/, 1/, 2/,...,7/,
and * /. Each prefix number includes a terminating slash to separate it from the rest of the
pathname. A prefix number at the beginning of a partial pathname replaces the actual
prefix. One of the prefix numbers has a fixed value,and the others have default values
assigned by ProDOS 16 (see Table 5-4). The most important predefined prefixes are

APDA Draft 51 11/13/86

Apple IIGS ProDOS 16 Reference

* / the boot prefix—it is the name of the volume from which the presently running
ProDOS 16 was booted.

0/ the default prefix (automatically attached to any partial pathname that has no prefix
number)—it has a value dependent on how the current program was launched. In
some cases it is equal to the boot prefix.

1/ the application prefix—it is the pathname of the subdirectory that contains the
currently running application.

2 / the system library prefix—it is the pathname of the subdirectory (on the boot
volume) that contains the library files used by applications.

Your application may assign the rest of the prefixes. In fact, once your application is
running, it may also change the values of prefixes 0/, 1/, or 2/ (applications may not
change prefix * /).

Prefix 0/ is similar to the ProDOS 8 system prefix, in that ProDOS 16 automatically
attaches prefix 0/ to any partial pathname for which you specify no prefix. However, its
initial value is not always equivalent to the ProDOS 8 system prefix’s initial value. See
ProDOS 8 Reference.

The prefix numbers are set (assigned to specific pathnames) and retrieved through the
SET PREFIXand GET PREFIX calls. Althougha preﬁx number may be used as an
input to the SET PREFIX call, prefixes are always stored in memory as full pathnames
(that is, they inciude no prefix numbers themselves).

Table 5-3 shows some examples of prefix use. They assume that prefix 0/ is set to
/VOLUME1/ and that prefix 5/ is setto /VOLUME1/TEXT.FILES/. The pathname
provided by the caller is compared with the full pathname constructed by ProDOS 16.

Table 5-3. Examples of prefix use.

Full pathname provided:

as supplied: /VOLUME1l/TEXT.FILES/CHAP.3
as expanded by ProDOS 16: /VOLUME1/TEXT.FILES/CHAP.3

+ Partial pathname—implicit use of prefix /0:

as supplied: PRODOS
as expanded by ProDOS 16: /VOLUME1/PRODOS

» Explicit use of prefix /0:

as supplied: 0/SYSTEM/FINDER
as expanded by ProDOS 16: /VOLUME1/$SYSTEM/FINDER

» Use of prefix 5/:

as supplied: 5/CHAP .12
as expanded by ProDOS 16: /VOLUME1/TEXT.FILES/CHAP.12

APDA Draft 52 11113186

ProDOS 16: Chapiter 5

Initial ProDOS 16 prefix values

When an application is launched, all nine prefix numbers are assigned to specific
pathnames (some are meaningful pathnames, whereas others may be null strings).
Remember, an application may change the assignment of any prefix number except the boot
prefix (* /). Furthermore, in some cases certain initial prefix values may be left over from
the previous application. Therefore, beware of assuming a value for any particular prefix.

Table 5-4 shows the initial values of the prefix numbers that a ProDOS 16 application
receives, under the three different launching conditions possible on the Apple IIGS. At all
times during execution, GET _NAME returns the filename of the current application
(regardless of whether prefix 1/ has been changed), and GET BOOT VOL returns the boot
volume name, equal to the value of prefix */ (regardless of whether prefix 0/ has been
changed).

Table 5-4. Initial ProDOS 16 prefix values.
a. ProDOS 16 application launched at boot time:

Prefix no. Initial value

0/ boot volume name

1/ full pathname of the directory containihg the current
application

2/ full pathname of the application library directory
(/boot volume name/SYSTEM/LIBS)

3/ null string

4/ null string

S/ null string

&/ null string

7/ null string

*/ boot volume name

b. ProDOS 16 application launched after a ProDOS 8 application has quit:

Prefix no. Initial value

0/ unchanged from the ProDOS 8 system prefix under the
previous application

1/ full pathname of the directory containing the current
application

2/ full pathname of the application library directory
(/boot volume name/SYSTEM/LIBS)

3 null string

4/ null string

5/ null string

6/ null string

7/ null string

*/ boot volume name

APDA Draft 53 11/13186

Apple IIGS ProDOS 16 Reference

c. ProDOS 16 application launched after a ProDOS 16 application has quit:

Prefix no. Initial value

0/ unchanged from the previous application
1/ full pathname of the directory containing the current

application

2/ unchanged from the previous application
3/ unchanged from the previous application
4/ unchanged from the previous application
5/ unchanged from the previous application
6/ unchanged from the previous application
7/ unchanged from the previous application
*f unchanged from the previous application

ProDOS 8 prefix and pathname convention

ProDOS 8 supports a single prefix, called the system prefix (or current prefix). It has no
prefix number—it is attached automatically to any partial pathname (one that does not begin
with a slash and a volume name). Like the ProDOS 16 prefixes, the ProDOS 8 system
prefix may be changed by a SET_PREFIX call. On a standard Apple II, the default value
of the system prefix at startup is the boot volume name; however, system programs such as
the Applesoft BASIC interpreter commonly reset the system prefix to other values.

An application that is running under ProDOS 8 can always find its own pathname by
looking at location $0280 (in bank $00 on an Apple IIGS); ProDOS 8 stores the
application’s full or partial pathname there. For details of this and other ProDOS 8
pathname conventions, see ProDOS 8 Reference.

On the Apple IIGS, the PQUIT routine allows a ProDOS 8 application to be launched at
boot time, or after another ProDOS 8 application has quit, or after a ProDOS 16 application
has quit. The initial values of the system prefix and the pathname at location $0280 are
dependent on which way the application was launched. Table 5-5 lists the possibilities.

APDA Draft 54 11113186

ProDOS 16. Chapter 5

Table 5-5. Initial ProDOS 8 prefix and pathname values

1. ProDOS 8 application launched at boot time:

boot volume name
filename of the just-launched application

system prefix
location $0280 pathname

2. ProDOS 8 application launched through an enhanced ProDOS 8 QUIT call:

unchanged from the previous (ProDOS 8) application
the full or partial pathname given in the enhanced
ProDOS 8 QUIT call

system prefix
location $0280 pathname

ni

3a. ProDOS 8§ application launched through a ProDOS 16 QUIT call:
(If the ProDOS 16 QUIT call specified a full pathname)

system prefix
location $0280 pathname

the previous (ProDOS 16) application’s prefix 0/
the full pathname given in the ProDOS 16 QUIT call

3b. ProDOS 8 application launched through a ProDOS 16 QUIT call:
(If the ProDOS 16 QUIT call specified a partial pathname)

the prefix specified in the ProDOS 16 QUIT call
the partial pathname (minus the prefix number) given
in the ProDOS 16 QUIT call

Note: Conditions (2) through (3b) in Table 5-4 apply only to ProDOS 8
applications launched from an Apple IIGS booted on an Apple 1IGS system disk. 1f
a ProDOS 8 application on a standard Apple II system disk is booted on an Apple
IIGS, the Apple 1IGS acts like a standard Apple II and condition (1) is the only
possibility.

system prefix
location $0280 pathname

Tools, firmware, and system software

Although ProDOS 16 is the principal part of the Apple IIGS operating system, several
“operating system-like” functions are actually carried out by other software components.
This section briefly describes some of those components; for detailed information see the
references listed with each one.

The Memory Manager

As explained in Chapter 3, the Memory Manager takes care of all memory allocation,
deallocation, and housekeeping chores. Applications obtain needed memory space either
directly, through requests to the Memory Manager, or indirectly through ProDOS 16 or
System Loader calls (which in turn obtain the memory through requests to the Memory
Manager).

The Memory Manager is a ROM-resident Apple IIGS tool set; for more detailed information
on its functions and how to call them, see Apple IIGS Toolbox Reference.

APDA Draft 55 11713186

Apple 11GS ProDOS 16 Reference

The System Loader

The System Loader is an Apple IIGS tool set that works very closely with ProDOS 16 and
the Memory Manager. It resides on the system disk, along with ProDOS 16 and other
system software (see “Apple IIGS System Disks” in this chapter). All programs and datu
are loaded into memory by the System Loader.

The System Loader supports both static and dynamic loading of segmented programs and
subroutine libraries. It loads files that conform to a specific format (object module
format); such files are produced by the APW Linker and other components of the
Apple IIGS Programmer’s Workshop (see Apple 11GS Programmer’'s Workshop
Reference).

The System Loader is described in Part III of this manual.

The Scheduler

The Scheduler is a tool set that functions in conjunction with the Apple 1IGS Heartbeat
Interrupt signal (see “Scheduler” in Apple IIGS Toolbox Reference). Tts purpose is to
coordinate the execution of interrupt handlers and other interrupt-based routines such as
desk accessories.

The Scheduler is required only when an interrupt routine needs to call a piece of system
software, such as ProDOS 16, that is not reentrant. If ProDOS 16 is in the middle of a
call when an interrupt occurs, the interrupting routine cannot itself call ProDOS 16, because
that would disrupt the first (not yet completed) call. The system needs a way of telling an
interrupt routine to hold off until the system software it needs is no longer busy.

The Scheduler accomplishes this by periodically checking a word-length flag called the
Busy word and maintaining a queue of processes that may be activated when the Busy
word 15 cleared. Interrupt routines that make operating system calls must go through the
Scheduler (see Chapter 7).

The User ID Manager

The User ID Manager is a Miscellaneous tool set that provides a way for programs to
obtain unique identification numbers. Every memory block allocated by the Memory
Manager is marked with a User ID that shows what system software, application, or desk
accessory it belongs to.

Part of each block’s 2-byte User ID is a TypelD field, describing the category of load
segment that occupies it. All ProDOS 8 and ProDOS 16 blocks are type 3; System Loader
blocks are type 7; blocks of controlling programs (such as a shell or switcher) are type 2;
and blocks containing application segments are type 1. Appendix D diagrams the format
for the User ID word. See “Miscellaneous Tool Sets” in Apple 1IGS Toolbox Reference for
further details.

ProDOS 16 and the System Loader rely on User ID’s to help them restart or reload

applications. See “Quit Procedure” in this chapter, and “Restart” and “User Shutdown” in
Chapter 17.

APDA Draft - 56 11113186

ProDOS 16: Chapter

The System Failure Manager

All fatal errors, including fatal ProDOS 16 errors, are routed through the System Failure
Manager, a Miscellaneous Tool Set. It displays a default message on the screen, or, if
passed a pointer when it is called, displays an ASCII string with a user-chosen message.
Program execution halts when the System Failure Manager is called.

The System Failure Manager is described under “Miscellaneous Tool Sets” in Apple IIGS
Toolbox Reference .

APDA Draft 57 1113186

bl

Apple IIGS ProDOS 16 Reference

APDA Draft 58 11113186

Chapter 6

Programming With ProDOS 16

This chapter presents requirements and suggestions for writing Apple IIGS programs that
use ProDOS 16.

Programming suggestions for the System Loader are in Chapter 16 of this manual. More
general information on how to program for the Apple IIGS is available in Programmer’s
Introduction to the Apple IIGS. For language-specific programming instructions, consult
the appropriate language manual in the Apple IIGS Programmer’s Workshop (see “Apple
11GS Programmer’s Workshop” in this chapter).

Application requirements

As used in this manual, an application is a complete program, typically called by a user
(rather than another program), that can communicate directly with ProDOS 16 and any
other system software or firmware it needs. For example, word processors, spreadsheet
programs, and programming-language interpreters are examples of applications. Data files
and source-code files, as well as subroutines, libraries, and utilities that must be called
from other programs are not applications.
To be an application, an Apple IIGS program must

« consist of executable machine-language code

» be in Apple IIGS object module format (see Appendix D)

+ befile type $B3 (specialized applications may have other file types—see Appendix A)

 have a filename extension of . SYS16 (if you want it to be self-booting at system
startup—see Chapter 5)

« make ProDOS 16 calls as described in this manual (see Chapter 8)
* observe the ProDOS 16 QUIT conventions (see Chapter 5)

» observe all other applicable ProDOS 16 conventions, such as the conventions for
interrrupt handlers (see Chapter 7)

« get all needed memory from the Memory Manager (see Chapter 3)
Most other aspects of the program are up to you. The rest of this chapter presents

conventions and suggestions to help you create an efficient and useful application,
consistent with Apple IIGS programming concepts and practices.

APDA Draft 59 11713/86

Apple IIGS ProDOS 16 Reference

Stack and direct page

In the Apple IIGS, the 65C816 microprocessor’s stack-pointer register is 16 bits wide; that
means that, in theory, the hardware stack may be located anywhere in bank $00 of
.memory, and the stack may be as much as 64K bytes deep.

The direct page is the Apple IIGS equivalent to the standard Apple II zero page. The
difference is that it need not be page zero in memory. Like the stack, the direct page may
theoretically be placed in any unused area of bank $00—the microprocessor’s direct
register is 16 bits wide, and all zero-page (direct-page) addresses are added as offsets to the
contents of that register.

In practice, however, there are several, restrictions on available space. First, only the
lower 48K bytes of bank $00 can be allocated—the rest is reserved for I/O space and
system software. Also, because more than one program can be active at a time, there may
be more than one stack and more than one direct page in bank $00. Furthermore, many
applications may want to have parts of their code as well as their stacks and direct pages in
bank $00.

Your program should therefore be as efficient as possible in its use of stack and direct-page
space. The total size of both should probably not exceed about 4K bytes in most cases.
Still, that gives you the opportunity to write programs that require stacks and direct pages
much larger than the 256 bytes available for each on standard Apple II computers.

Automatic allocation of stack and direct page

Only you can decide how much stack and direct-page space your program will need when it
is running. The best time to make that decision is during program development, when you
create your source file(s). If you specify at that time the total amount of space needed,
ProDOS 16 and the System Loader will automatically allocate it and set the stack and direct
registers each time your program runs.

Definition during program development

You define your program’s stack and direct-page needs by specifying a “direct-page/stack”
object segment (KIND = $12; see Appendix D) when you assemble or compile your
program (Figure 6-1). The size of the segment is the total amount of stack and direct-page
space your program needs. It is not necessary to create this segment; if you need no such
space or if the ProDOS 16 default (see below) is sufficient, you may leave it out.

When the program is linked, it is important that the direct-page/stack segment not be
combined with any other object segments to make a load segment—the linker must create a
single load segment corresponding to the direct-page/stack object segment. If there is no
direct-page/stack object segment, the linker will not create a corresponding load segment.

APDA Draft 60 11/13/86

ProDOS 16: Chapier 6

@) object File: @ Load File:
You create a direct- Make sure the direct- Memory Bank $00
poge/schk segg'ben’r Fugelstgcéﬂsggment
in the object code s a sing segment @) ProDOS 16:
Segment Segment sefs the stack register
1] @ Systern Loader: to the highest address
Segment allocates a block in = <4—in the segment
2 Bank 500 equal in size to the
direct-pagefstack p.
bTTaTaTeT, egment load segment e " 4— sets the direct registar
T en 2 o to the lowest address
in the segment
& LOADER

Figure 6-1. Automatic direct-page/stack allocation

Allocation at run time

Each time the program is started, the System Loader looks for a direct-page/stack load
segment. If it finds one, the loader calls the Memory Manager to allocate a page-aligned.
locked memory block of that size in bank $00. The loader loads the segment and passes its
base address and size, along with the program’s User ID and starting address, to ProDOS
16. ProDOS 16 sets the A (accumulator), D (direct) , and S(stack) registers as shown,
then passes control to the program:

A =User ID assigned to the program
D = address of the first (lowest-address) byte in the direct-page/stack space
S = address of the last (highest-address) byte in the direct-page/stack space

By this convention, direct-page addresses are offsets from the base of the allocated space,
and the stack grows downward from the top of the space.

Important: ProDOS 16 provides no mechanism for detecting stack overflow or
underflow, or collision of the stack with the direct page. Your program must be
carefully designed and tested to make sure this cannot occur.

When your program terminates with a QUIT call, the System Loader’s Application
Shutdown function makes the direct-page/stack segment purgeable, along with the
program’s other static segments. As long as that segment is not subsequently purged, its
contents are preserved until the program restarts. See “Application Shutdown’ and
“Restart” in Chapter 17.

Note: There is no provision for extending or moving the direct-page/stack space
after its initial allocation. Because bank $00 is so heavily used, any additional
space you later request may be unavailable—the memory adjoining your stack is
likely to be occupied by a locked memory block. Make sure that the amount of
space you specify at link time fills all your program’s needs.

APDA Draft 61 11/13/86

Apple lIGS ProDOS 16 Reference

ProDOS 16 default stack and direct page

If the loader finds no direct-page/stack segment in a file at load time, it still returns the
program's User ID and starting address to ProDOS 16, but it does not call the Memory
Manager to allocate a direct-page/stack space and it returns zeros as the base address and
size of the space. ProDOS 16 then calls the Memory Manager itself, and allocates a 1K
direct-page/stack segment with the following attributes:

size: 1,024 bytes

owner: program with the User ID returned by the loader
fixed/movable: fixed

locked/unlocked: locked

purge level: 1

may cross bank boundary? no
may use special memory? yes

alignment: page-aligned
absolute starting address? no
fixed bank? yes—bank $00

See Apple IIGS Toolbox Reference for a general description of memory block attributes
assigned by the Memory Manager.

Once allocated, the default direct-page/stack is treated just as it would be if it had been
specified by the program: ProDOS 16 sets the A, D, and S registers before handing control
to the program, and at shutdown time the System Loader purges the segment.

Manual allocation of stack and direct page

You (your program, that is) may allocate your own stack and direct-page space at run time,
if you prefer. When ProDOS 16 transfers control to you, be sure to save the User ID value
left in the accumulator before doing the following:

1. Using the starting or ending address left in the D or S register by ProDOS 16, make
a FindHandle call to the Memory Manager, to get the memory handle of the
automatically-provided direct-page/stack space. Then, using that handle, get rid of
the space with a DisposeHandle call.

2. You can now allocate your own direct-page/stack space through the Memory

Manager NewHand le call. Make sure that the allocated block is purgeable, fixed,
and locked.

3. Place the appropriate values (beginning and end addresses of the segment) in the D
and S registers.

Managing system resources

Various hardware and software features of the Apple IIGS can provide an application with
useful information, or can otherwise increase its flexibility, This section suggests ways to
use those features. ‘

APDA Draft 62 11/13186

ProDOS 16: Chapter 6

Glebal variables

Under ProDOS 8, a fixed-address global page maintains the values of important
variables and addresses for use by applications. The global page is at the same address in
any machine or machine configuration that supports ProDOS 8, so an application can
always access those variables at the same addresses.

ProDOS 16 does not provide a global page. Such a set of fixed locations is inconsistent
with the flexible and dynamic memory management system of the Apple IIGS. Instead,
calls to ProDOS 16, tools, or firmware give you the information formerly provided by the
global page. Table 6-1 shows the Apple IIGS calls used to obtain information equivalent to
ProDOS 8 global page values.

Table 6-1. Apple IIGS equivalents to ProDOS 8 global page information
Global page Information Apple IIGS Equivalent

Global page entry points (not supported)

Device driver vectors (not supported)

List of active devices returned by VOLUME call (ProDOS 16)
Memory Map (responsibility of the Memory Manager)
Pointers to I/O buffers returned by OPEN call (ProDOS 16)

Interrupt vectors returned by ALLOC INTERRUPT call (ProDOS 16)
Date/Time returned by ReadTime call (Misc. tool set)
Systemn Level returned by GET LEVEL call (ProDOS 16)
MACHID (not supported)

Application version (not supported)

ProDOS 16 Version returned by GET_VERSION call (ProDOS 16)

Of course, the Apple IIGS always supports the ProDOS 8 global page when a ProDOS 8
application is running.

Prefixes

The nine available prefixes described in Chapter 5 offer convenience in coding pathnames
and flexibility in writing for different system and application disk volumes. For example,
any files on the boot disk can always be accessed through the prefix */, regardless of the
volume name of that particular boot disk. Any library routine in the system library
subdirectory will have the prefix 2/, regardless of which system disk is on line (unless
your program has changed the value of the prefix). If you put routines specific to your
application in the same subdirectory as your application, they can always be called with the
prefix 1/, regardless of what subdirectory or disk your program inhabits.

Your application can always change the values of any of the prefixes except */. For

example, it may change prefix 2/ if it wishes to access libraries (or any other files) on a
volume other than the boot volume. But be careful: once you change prefix 1/, for

APDA Draft 63 11713186

Apple IIGS ProDOS 16 Reference

example, you can no longer use it as the application prefix. Be sure to save the value of a
prefix number before you change it, if you may want to recover it later.

Native mode and emulation mode

You can make ProDOS 16 calls when the processor is in either emulation mode or native
mode. So if part of your program requires the processor to be in emulation mode, you
needn’t reset it to native mode before calling ProDOS 16. However, emulation-mode calls
to ProDOS 16 must be made from bank $00, and they can reference information (such as
parameter blocks) in bank $00 only. Furthermore, interrrupts must be disabled.

ProDOS 8 programs run entirely in emulation mode. If you wish to modify a ProDOS 8
program to run under ProDOS 16, or if you wish to use Apple IIGS features available only
in native mode, see “Revising a ProDOS 8 Application for ProDOS 16" in this chapter.
See also Programmer’s Introduction to the Apple IIGS.

Setting initial machine configuration

When an Apple HGS application (type $B3) is first launched, the Apple IIGS is in full native
mode with graphics shadowing off (see “Machine Configuration at Application Launch” in
Chapter 5). If your program needs a different machine configuration, it must make the
proper settings once it gains control.

ProDOS 16 does not initialize soft switches, firmware registers, or any hardware registers
other than those listed in Chapter 5. Your program is responsible for initializing any
needed switches and registers.

Allocating memory

All memory allocation is done through calls to the Memory Manager, described in Apple
11GS Toolbox Reference. Memory space you request may be either movable or
unnmovable (fixed). If it is movable, you access it through a memory handle; if it is
unnmovable, you may access it through a handle or through a pointer. Since the Memory
Manager does not return a pointer to an allocated block, you obtain the pointer by
dereferencing the handle (see Chapter 3).

ProDOS 16 parameter blocks are referenced by pointers; if you do not code them into your

program segments and reference them with labels, you must put them in unnmovable
memory blocks. See "Setting up a Parameter Block in Memory" in Chapter 8.

Loading another program
If you do not want your program to load another program when it finishes, it should use 2

ProDOS 16 QUIT call with all parameters set to 0. The QUIT routine performs all
necessary functions to shut down the current application, and normally brings up a

APDA Draft 64 11113186

ProDOS 16: Chapter 6

program selector which allows the user to choose the next program to load. Most
applications function this way.

However, if you want your application to load and execute another application, there are
several ways to do it. If you wish to pass control permanently to another application, use
the ProDOS 16 QUIT call with only a pathname pointer, as described in Chapter 5. If you
wish control to refurn to your application once the next application is finished, use also the
return flag parameter in the QUIT call. That way your program can function similarly to
shell——\ghenever it quits to another specified program, it knows that it will eventually be re-
executed.

If you wish to load but not necessarily pass control to another program, or if you want
your program to remain in memory after it passes control to another program, use the
System Loader’s Initial Load function (described in Chapter 17). When your program
actively loads other program files, it is called a controlling program; the APW Shell
(see “Apple IIGS Programmer’s Workshop” in this chapter) is a controlling program.
Chapter 16 gives suggestions for writing controlling programs.

You can load a ProDOS 8 application (type $FF) through the ProDOS 16 QUIT call, but
you cannot do so with the System Loader’s Initial Load call; the System Loader will load
only ProDOS 16 load files (types $B3-$BE).

Note: Because ProDOS 8 will not load type $B3 files, ProDOS 8-based
applications that load and run other applications cannot run any newer ProDOS 16
applications. This restriction is a natural consequence of the lack of downward
compatibility. If you wish to modify an older application to be able to use it with
ProDOS 16, see “Revising a ProDOS 8 Application for ProDOS 16,” later in this
chapter.

Using interrupts

ProDOS 16 provides conventions (see Chapter 7) to ensure that interrupt-handling routines
will function correctly. If you are writing a print spooler, game, communications program
or other routine that uses interrupts, please follow those conventions.

As explained in Chapter 4, an unclaimed interrupt causes a system failure: control is passed
to the System Failure Manager and execution halts. Your program may pass a message to
the System Failure Manager to display on the screen when that happens. In addition,
because the System Failure Manager is a tool, and because all tools may be replaced by
user-written routines, you may substitute your own error handler for unclaimed interrupts.
See Apple 1IGS Toolbox Reference for information on the System Failure Manager and for
instructions on writing your own tool set.

If ProDOS 16 is called while it is in the midst of another call, it issues a “ProDOS is busy”
error. This situation normally arises only when an interrupt handler makes ProDOS 16
calls; a typical application will always find ProDOS 16 free to accept a call. Chapter 7
provides instructions on how to avoid this error when writing interrupt handlers;
nevertheless, all programs should be able to handle the “ProDOS is busy” error code in
case it occurs.

APDA Draft 65 11/13/86

Apple IIGS ProDOS 16 Reference

Accessing devices

Under ProDOS 8, block devices on Apple II computers are specified by a unit number,
related to slot and drive number (such as slot 5, drive 1). ProDOS 16 does not directly
support that numbering system; instead, it identifies devices by device number and device
name. As explained in Chapter 4, device numbers are assigned in order of the device
search at system startup, and device names are assigned according to a simple ProDOS 16
convention. You must use device numbers or names in ProDOS 16 device calls.

For filing calls and for one device call (GET_DEV_NUM), you may also access a device
through the name of the volume on the device. In addition, you may use the
GET_LAST DEV call to identify the last device accessed, in case you wish to access it
again.

File creation/modification date and time

The information in this section is important to you if you are writing a file or disk utility
program, or any routine that copies files.

All ProDOS 16 files are marked with the date and time of their creation. When a file is first
created, ProDOS 16 stamps the file’s directory entry with the current date and time from the
system clock. If the file is later modified, ProDOS 16 then stamps it with a modification
date and time (its creation date and time remain unchanged).

The creation and modification fields in a file entry refer to the contents of the file, The
values in these fields should be changed only if the contents of the file change. Since data
in the file’s directory entry itself are not part of the file’s contents, the modification field
should not be updated when another field in the file entry is changed, unl/ess that change is
due to an alteration in the file’s contents. For example, a change in the file’s name is not a
modification; on the other hand, a change in the file’s EOF always reflects a change in its
contents and therefore is a modification.

Remember also that a file’s entry is a part of the contents of the directory or subdirectory
that contains that entry. Thus, whenever a file entry is changed in any way (whether or not
its modification field is changed), the modification fields in the entries for all its enclosing
subdirectories—including the volume directory—must be updated.

Finally, when a file is copied, a utility program must be sure to give the copy the same

creation and modification date and time as the original file, and not the date and time at

which the copy was created.

To implement these concepts, file utility programs should note the following procedures:
1. To create a new file:

a. Set the creation and modification fields of the file’s entry to the current system
date and time.

b. Set the modification fields in the entries of all subdirectories in the path
containing the file to the current system date and time.

APDA Draft 66 11/13/86

ProDOS 16: Chapter 0

2. To rename a file:
a. Do not change the file’s modification field.

b. Set the modification fields of all subdirectories in the path containing the file to
the current system date and time.

3. To alter the contents of a file:

a. ProDOS 16 considers a file’s contents to have been modified if any WRITE or
SET EOF operation has been performed on the file while it is open. If that
condition has been met, set the file’s modification field to the current system dasc
and time when the file is closed.

b. Also set the modification fields of all subdirectories in the path containing the file
to the current system date and time.

4. To delete a file:
a. Delete the file’s entry from the directory or subdirectory that contains it.

b. Set the modification fields of all subdirectories in the path containing the deleted
file to the current system date and time.

5. To copy a file:

a. Make a GET FILE INFO call on the source file (the file to be copied), to get its
creation and modification dates and times.

b. Make a CREATE call to create the destination file (the file to be copied to). Give it
the creation date and time values obtained in step (a).

Open both the source and destination files. Use READS and WRITES to copy the
source to the destination. Close both files.

Note: The procedure for copying sparse files is more complicated than this. See
Chapter 2 and Appendix A.

d. Make a SET FILE INFO call on the destination file, using all the information
returned from GET_FILE_INFO in step (a). This sets the modification date and
time values to those of the source file,

ProDOS 16 automatically carries out all steps in procedures (1) through (4). Procedure (5)
is the responsibility of the file copying utility.

Revising a ProDOS 8 application for ProDOS 16

If you have written a ProDOS 8-based program for a standard Apple I (64K Apple II Plus.
Apple 1le, or Apple Ilc), it will run without modification on the Apple IIGS. The only
noticeable difference will be its faster execution because of the greater clock speed of the
Apple IIGS. However, the program will not be able to take advantage of any advanced
Apple IIGS features such as large memory, the toolbox, the mouse-based interface, and
new graphics and sound abilities. This section discusses some of the basic alterations
necessary to upgrade a ProDOS 8 application for native mode execution under ProDOS 16
on the Apple IIGS.

APDA Draft 67 1113186

Apple HIGS ProDOS 16 Reference

Because ProDOS 16 closely parallels ProDOS 8 in function names and calling structure, it
is not difficult to change system calls from one ProDOS to the other. But several other
aspects of your program also must be redesigned if it is to run in native mode under
ProDOS 16. Depending on the program’s size and structure and the new features you wish
to install, those changes may range from minor to drastic.

Memory management

Because the Apple IIGS supports segmented load files, one of the first decisions to make is
whether and how to segment the program (both the original program and any added parts).
and where in memory to put the segments.

To help decide where in memory to place pieces of your program, consider that execution
speed 1s related to memory location: banks $EC and $E1 execute at standard clock speed,
and all the other banks execute at fast clock speed (see Apple IIGS Hardware Reference).
Those parts of your program that are executed most often should probably go into fast
memory, while less-used parts and data segments may be appropriate in standard-speed
memory. In the other hand, because all I/O goes through banks $EQ or $E1, program
segments that make heavy use of /O instructions might work best in standard-speed
memory. Performance testing of the completed program is the only way to accurately
determine where segments should go.

Memory management methods are completely different under ProDOS 16 than under
ProDOS 8. If your ProDOS 8 program manages memory by allocating its own memory
space and marking it off in the global page bit map, the ProDOS 16 version must be altered
so that it requests all needed space from the Memory Manager. Whereas ProDOS 8 does
not check to see if you are using only your marked-off space, the Memory Manager under
ProDOS 16 will not assign to your program any part of memory that has already been
allocated.

Hardware configuration

ProDOS 8 applications run only in 6502 emulation mode on the Apple IIGS. That does not
mean that applications converted to run under ProDOS 16 must necessarily run in native
mode. There are at least three configurations possible:

+ The program may run in emulation mode, but make ProDOS 16 calls.

» The program may run in native mode with the m- and x-bits set. The accumulator
and index registers will remain 8 bits wide.

+ The program may run in full native mode (m- and x-bits cleared).

Modifyving a program for the first configuration probably involves the least effort, but
returns the least benefit.

Modifying a program to run in full native mode is the most difficult, but it makes best use
of all Apple 1IGS features.

APDA Draft 68 11113186

ProDOS 16: Chapter 6

Converting system calls

For most ProDOS 8 calls, there is an equivalent ProDOS 16 call with the same name. Euch
call block must be modified for ProDOS 16: the JSR (Jump to Subroutine) assembly-
language instruction replaced with a JSL (Jump to Subroutine Long), the call number ficld
made 2 bytes long, and the parameter list pointer made 4 bytes long. The only other
conversion required is the reconstruction of the parameter block to the ProDOS 16 format.

For other ProDOS 8 calls, the ProDOS 16 equivalent performs a slightly different task, and
the original code will have to be changed to account for that, For example, in ProDOS 8 an
ON_LINE call can be used directly to determine the names of all online volumes; in
ProDOS 16 a succession of VOLUME calls is required. Refer to the detailed descriptions in
Chapters 9 through 13 to see which ProDOS 16 calls are different from their ProDOS 8
counterparts.

Still other ProDOS 8 calls have no equivalent in ProDOS 16. They are listed and described
under "Eliminated ProDOS 8 System Calls," in Chapter 1. If your program uses any of
these calls, they will have to be replaced as shown.

Modifying interrupt handlers

If you have written an interrupt handling routine, it needs to be updated to conform with the
ProDOS 16 interrupt handling conventions (Chapter 7). There are very few changes
necessary: making it return with an RTL (Return from subroutine Long) rather than an
RTS (Return from Subroutine) may be the only modification you need.

Converting stack and zero page

The fixed stack and zero-page locations provided for your program by ProDOS 8 are not
available under ProDOS 16. You may either let ProDOS 16 assign you a default 1,024-
byte space, or you may define a direct-page/stack segment in your object code. In either
case, the loader may place the segment anywhere in bank $00—you cannot depend on any
specific address being within the space. See “Stack and Direct Page,” in this chapter.

Compilation/assembly

Once your source code has been modified and augmented as desired, you need to
recompile/reassemble it. You must use an assembler or compiler that produces object files
in Apple IIGS object module format (OMF); otherwise the program cannot be properly
linked and loaded for execution. Using a different compiler or assembler may mean that, in
addition to modifying your program code, you might have to change some assembler
directives to follow the syntax of the new assembler.

If you have been using the EDASM assembler, you will not be able to use it to write Apple
IIGS programs. The Apple 1IGS Programmer’s Workshop is a set of development
programs that allow you to produce and edit source files, assemble/compile object files,
and link them into proper OMF load files. See “Apple 1IGS Programmer’s Workshop” in
this chapter.

APDA Draft 69 11/13/86

Apple 1IGS ProDOS 16 Reference

After your revised program is linked, assign it the proper Apple IIGS application file type
(normally $B3) with the APW File Type utility.

Apple IIGS Programmer’s Workshop

The Apple 1IGS Programmer’s Workshop (APW) is a powerful set of development
programs designed to facilitate the creation of Apple IIGS applications. If you are planning
to write programs for the Apple IIGS, APW will make your job much easier. The
Workshop includes the folowing components:

» Shell

» Editor

+ Linker

* Debugger

» Assembler

» C Compiler
All these components work together (under the Shell) to speed the writing, compiling or
assembling, and debugging of programs. The Shell acts as a command interpreter and an

interface to ProDOS 16, providing several operating system functions and file utilities that
can be called by users and by programs running under the Shell.

See the following manuals for more information on the Apple IIGS Programmer’s
Workshop:

» Apple IIGS Programmer’s Workshop Reference (describes the Shell, Editor, Linker,
and Debugger)

» Apple IIGS Programmer’'s Workshop Assembler Reference
» Apple IIGS Programmer’s Workshop C Reference

Human Interface Guidelines

All people who develop application programs for the Apple IIGS computer are strongly
encouraged to follow the principles presented in Human Interface Guidelines: The Apple
Desktop Interface. That manual describes the Desktop Interface through which the
computer user communicates with his computer and the applications running on it. This
section briefly outlines a few of the human interface concepts; please refer to the manual for
specific design information.

The Apple Desktop Interface, first introduced with the Macintosh™ computer, is designed
to appeal to a nontechnical audience. Whatever the purpose or structure of your
application, it will comunicate with the user in a consistent, standard, and non-threatening
manner if it adheres to the Desktop Interface standards. These are some of the basic
principles:

APDA Draft 70 11/13/86

ProDOS 16: Chapter 6

Human control: Users should feel that they are controlling the program, rather than
the reverse. Give them clear alternatives to select from, and act on their selections
consistently.

Dialog: There should be a clear and friendly dialog between human and computer.
Make messages and requests to the user in plain English.

Direct Manipulation and Feedback: The user’s physical actions should produce
physical results. When a key is pressed, place the comresponding letter on the screen.
Use highlighting, animation, and dialog boxes to show users the possible actions and
their consequences.

Exploration: Give the user permission to test out the possibilities of the program
without worrying about negative consequences. Keep error messages infrequent.
Warn the user when risky situations are approached.

Graphic design: Good graphic design is a key feature of the guidelines. Objects on
the screen should be simple and clear, and they should have visual fidelity (that is, thev
should look like what they represent). Icons and palettes are common graphic elements
that need careful design.

Avoiding modes: a mode is a portion of an application that the user has to formally
enter and leave, and that restricts the operations that can be performed while it’s in
effect. By restricting the user’s options, modes reinforce the idea that computers are
unnatural and unfriendly. Use modes sparingly.

Device-independence: Make your program as hardware-independent as possible.
Don’t bypass the tools and resources in ROM——your program may become
incompatible with future products and features.

Consistency: As much as possible, all applications sould use the same interface.
Don’t confuse the user with a different interface for each program.

Evolution: Consistency does not mean that you are restricted to using existing
desktop features. New ideas are essential for the evolution of the Human Interface
concept. If your application has a feature that is described in Human Interface
Guidelines, you should implement it exactly as described; if it is something new, make
sure it cannot be confused with an existing feature, It is better to do something
completely different than to half agree with the guidelines.

APDA Draft 71 11113186

Apple IIGS ProDOS 16 Reference

APDA Draft

72

11713156

Chapter 7

Adding Routines to ProDOS 16

This chapter discusses additional specific routines that may be used with ProDOS 16.
Because these routines are directly connected to ProDOS 16 and interact with it at a low
level, they are essentially transparent to applications and can be considered “part of”
ProDOS 16. Interrupt handlers are the only such extensions to ProDOS 16 presently
supported.

Interrupt handlers

The Apple IIGS has extensive firmware interrupt support (see Apple IIGS Firmware
Reference). In addition, ProDOS 16 supports up to 16 user-installed interrupt handlers
(see Chapter 4). If you write an interrupt handler, it should follow the conventions
described here. Note also the precautions you must take if your handler makes operating
system calls.

Interupt handler conventions

Interrupt handling routines written for the Apple IIGS must follow certain conventions.
The interrupt dispatcher will set the following machine state before passing control to an
interrupt handler:

0

i—-xa(‘p

o n

0
0
1
1

[

speed = high

Before returning to ProDOS 16, the interrupt handler must restore the machine to the
following state:

c
m
X
1
speed = high

| I
oo

In addition the c flag must be cleared (= 0) if the handler serviced the interrupt, and set (=
1) it the handler did not service the interrupt. The handler must return with an RTL
instruction.

APDA Draft 73 11/13/86

Apple IIGS ProDOS 16 Reference

When an interrupt is passed to ProDOS 16, ProDOS 16 first sets the processor to full
native mode, then successively polls the installed interrupt handlers. If one of them services
the interrupt, ProDOS 16 knows because it checks the value of the ¢ flag when the routine
returns. If the ¢ flag is cleared, ProDOS 16 switches back to a standard Apple II
configuration in emulation mode, and performs an RTI to the Apple IIGS firmware
interrupt handling system. If no handler services the interrupt, it is an unclaimed interrupt
(see Chapter 4).

Installing interrupt handlers

Interrupt handlers are installed with the ALLOC INTERRUPT call and removed with the
DEALLOC_INTERRUPT call. The ProDOS 16 interrupt dispatcher maintains an interrupt
vector table, an array of up to 16 vectors to interrupt handlers. As each successive
ALLOC_ INTERRUPT call is made, the dispaicher adds another entry to the end of the
table. Each time a DEALLOC_INTERRRUPT call is made to delete a vector from the tab'c,
the remaining vectors are moved toward the beginning of the array, filling in the gap.
Interrupt handling routines are polled by ProDOS 16 in the order in which their vectors
occur in the interrupt vector table.

There is no way to reorder interrupt vectors except by allocating and deallocating interrupts.
Interrupts that occur often or require fast service should be allocated first, so their vectors
will be near the beginning of the interrupt vector table. If you need extremely fast interrupt
service, install your interrupt handler directly in the Apple IIGS firmware interrupt
dispatcher, rather than through ProDOS 16. See Apple IIGS Firmware Reference for
further information.

Be sure to enable the hardware generating the interrupt only after the routine to handle it is
allocated; likewise, disable the hardware before the routine is deallocated. Otherwise, a
fatal unclaimed interrupt error may occur (see “Unclaimed Interrupts” in Chapter 4).

Making operating system calls during interrupts

ProDOS 16 is not reentrant. That is, it does not save its own state when interrupted. It
therefore is illegal to make an operating system call while another operating system call is in
progress; if a call is attempted, ProDOS 16 will return an error (number $07, “ProDOS is
busy™).

For applications this is not a problem; the operating system is always free to accept a call
from them. Only routines that are started through interrupts (such as interrupt handlers and
desk accessories) need be careful not to call ProDOS 16 while it is busy.

One acceptable procedure is for the interrupt handler to consult the ProDOS busy flag at
location $E100BE-SE100BF (see Table 3-3), and simply not make the system call unless
ProDOS 16 is not busy.

If an interrupt handler really needs to make an operating system call, it must be prepared 10
deal with a returned "ProDOS is busy" error. If that happens the handler should

1. Defer itself temporarily

APDA Draft 74 11713186

ProDOS 16: Chapter 7

2. Return control to the operating system so that the operating system may complete the
current call

3. Regain control when the operating system is no longer busy, and make its own
system call

The Scheduler, part of a ROM-based tool set, allows interrupt handlers to follow these
procedures in a simple, standard way. The Scheduler consults a system Busy word that
keeps track of non-reentrant system software that is in use. ProDOS 16 executes the
Scheduler routine INCBUSYFLAG whenever it is called, and DECBUS YF LAG before it
returns from a call. An interrupt handler may use the Scheduler’s SCHADDTASK routine to
place itself in a queue of tasks waiting for ProDOS 16 to complete any calls in progress.
See Apple IIGS Toolbox Reference for detailed information.

APDA Draft 7 HI/I3/86

Apple 1IGS ProDOS 16 Reference

APDA Draft 76 11713186

Part II
ProDOS 16 System Call Reference

This part of the manual describes the ProDOS 16 system calls in detail. The calls are
grouped into five categories:

+ File housekeeping calls (Chapter 9)

» File access calls (Chapter 10)
» Device calls (Chapter 11)
» Environment calls (Chapter 12
« Interrupt control calls (Chapter 13)

Chapter 8 shows how to make the calls, and explains the format for the call descriptions in
Chapters 9 through 13. See Appendix E for a list of all ProDOS 16 errors returned by the
calls.

APDA Draft 77 11/13/86

APDA Draft 78 11/13/86

Chapter 8

Making ProDOS 16 Calls

Any independent program in the Apple IIGS that makes system calls is known as a ProDOS
16 calling program or caller. The current application, a desk accessory, and an interrupt
handier are examples of potential callers. A ProDOS 16 caller makes a system call by
executing a call block. The call block contains a pointer to a parameter block. The
parameter block is used for passing information between the caller and the called function;
additional information about the call is reflected in the state of certain hardware registers.
This chapter discusses these aspects of system calls and compares them with the calling
method used in ProDOS 8.

Note: The phrase system call as used here is synonymous with operating system
call or ProDOS 16 call, and is equivalent to MLI call for ProDOS 8. It includes
all calls to the operating system for accessing system information and manipulating
open or closed files. It is not restricted to what are called “system calls” in the
ProDQOS Technical Reference Manual.

The call block

A system call block consists of a JSL (Jump to Subroutine Long) to the ProDOS 16 entry
point, followed by a 2-byte system call number and a 4-byte parameter block pointer.
ProDOS 16 performs the requested function, if possible, and returns execution to the
instruction immediately following the call block.

All applications written for the Apple IIGS under ProDOS 16 must use the system call block
format. When making the call, the caller may have the processor in emulation mode or full
native mode or any state in between (see Technical Introduction to the Apple IIGS).

Note: To call ProDOS 16 while running in emulation mode, your program must
be in bank $00 and interrupts must be disabled.

APDA Draft 79 11713186

Apple 1IGS ProDOS 16 Reference

The call block looks like this:

PRODOS GEQU $E100A8 ; fixed entry vector
JSL PRODOS ; Dispatch call to ProDOS 16 entry
DC IZ2‘CALLNUM’ ; 2-byte call number
DC I4‘PARMBLOCK’ ; 4-byte parameter block pointer
BCS ERROR ; If carry set, go to error handler

; otherwise, continue..
ERRCR ; error handler
PARMBLOCK ; parameter block

The call block itself consists of only the JSL instruction and the DC (Define Constant)
assembler directives. The BCS (Branch on Carry Set) instruction in this example is a
conditional branch to an error handler called ERROR.

A JSL rather than a JSR (Jump to Subroutine) is required because the JSL uses a 3-byte
address, allowing a caller to make the call from anywhere in memory. The JSR instruction
uses only a 2-byte address, restricting it to jumps and returns within the current (64K)
block of memory.

The parameter block

A parameter block is a specifically formatted table that occupies a set of contiguous bytes in
memory. It consists of a number of fields that hold information that the calling program
supplies to the function it calls, as well as information returned by the function to the caller.

Every ProDOS 16 call requires a valid parameter block (PARMBLOCK in the example just
given), referenced by a 4-byte pointer in the call block. The caller is responsible for
constructing the parameter block for each call it makes; the list may be anywhere in
memory. Formats for individual parameter blocks accompany the detailed system call
descriptions in Chapters 9 through 13.

Types of parameters

Each field in a parameter block contains a single parameter. There are three types of
parameters: values, results, and pointers. Each is either an input to ProDOS 16 from the
caller, or an output from ProDOS 16 to the caller.

» A value is a numerical quantity, 1 or more words long, that the caller passes to
ProDOS 16 through the parameter block. It is an inpuf parameter.

APDA Draft 80 11/13156

ProDOS 16: Chapter §

« A result is a numerical quantity, 1 or more words long, that ProDOS 16 places into
the parameter block for the caller to use. It is an output parameter.

+ A pointer is the 4-byte address of a location containing data, code, an address, or
buffer space in which ProDOS 16 can receive or place data. The pointer itself is an
input for all ProDOS 16 calls; the data it points to may be either input or output.

A parameter may be both a value and a result. Also, a pointer may designate a location that
contains a value, a result, or both.

Note: A handle is a special type of pointer; it is a pointer to a pointer. Itis the
4-byte address of a location that izself contains the address of a location containing
data, code, or buffer space. ProDOS 16 uses a handle parameter only in the OPEN
call (Chapter 10); in that call the handle is an output (result).

Parameter block format

All parameter fields that contain block numbers, block counts, file offsets, byte counts, and
other file or volume dimensions are 4 bytes long. Requiring 4-byte fields ensures that
ProDOS 16 will accommodate future large devices using guest file systems.

All parameter fields contain an even number of bytes, for ease of manipulation by the16-bit
65C816 processor. Thus pointers, for example, are 4 bytes long even though 3 bytes are
sufficient to address any memory location. Wherever such extra bytes occur they must be
set to zero by the caller; if they are not, compatibility with future versions of ProDOS 16
will be jeopardized.

Pointers in the parameter block must be written with the low-order byte of the low-order
word at the lowest address.

Comparison of ProDOS 16 parameter blocks with their ProDOS 8 counterparts reveals that
in some cases the order of parameters is slightly different. These alterations have been
made to facilitate sharing a single parameter block among a number of calls. For example,
most file access calls can be made with a single parameter block for each open file; under
ProDOS 8 this sharing of parameter blocks is not possible.

Important: A parameter’s field width in a ProDOS 16 parameter block is often
very different from the range of permissible values for that parameter. The fact that
all fields are an even number of bytes is one reason. Another reason is that certain
fields are larger than presently needed in anticipation of the requirements of future
guest file systems. For example, the ProDOS 16 CREATE call’s parameter block
includes a 4-byte aux_type field, even though, on disk, the aux_type field is
only 2 bytes wide (see “Format and Organization of Directory Files” in Appendix
A). The two high-order bytes in the field must therefore always be zero.

Ranges of permissible values for all parameters are given as part of the system call
descriptions in the following chapters. When coding a parameter block, note
carefully the range of permissible values for each parameter, and make sure that the
value you assign is within that range.

APDA Draft 81 11/13/56

Apple IIGS ProDOS 16 Reference

Setting up a parameter block in memory

Each ProDOS 16 call uses a 4-byte pointer to point to its parameter block, which may be
anywhere in memory. All applications must obtain needed memory from the Memory
Manager, and therefore cannot know in advance where the memory block holding such a
parameter block will be.

There are two ways to set up a ProDOS 16 parameter block in memory:

1. Code the block directly into the program, referencing it with a label. This is the
simplest and most typical way to do it. The parameter block will always be correctly
referenced, no matter where in memory the program code is loaded.

2. Use Memory Manager and System Loader calls to place the block in memory:

a. Request a memory block of the proper size from the Memory Manager. Use the
procedures described in Apple IIGS Toolbox Reference. The block should be
either fixed or locked.

b. Obtain a pointer to the block, by dereferencing the memory handle returned by
the Memory Manager (that is, read the contents of the location pointed to by the
handle, and use that value as a pointer to the block).

c. Set up your parameter block, starting at the address pointed to by the pointer
obtained in step (b).

Register values -

There are no register requirements on entry to a ProDOS 16 call. ProDOS 16 saves and
restores all registers except the accumulator (A) and the processor status register (P); those
two registers store information on the success or failure of the call. On exit, the registers
have these values:

A zero if call successful; if nonzero, number is the error code
X unchanged

Y unchanged

S unchanged

D unchanged

P (see below)

DB unchanged

PB unchanged

PC address of location following the parameter block pointer

“Unchanged” means that ProDOS 16 initially saves, and then restores when finished, the
value the register had just before the JSI,. PRODOS 8 instruction.

APDA Draft 82 11713156

ProDOS 16: Chapter 8

On exit, the processor status register (P) bits are

undefined

undefined

unchanged

unchanged

unchanged

unchanged

undefined

zero if call successfull, 1 if not
unchanged

®ONSQKg <

Note: ProDOS 16 treats several flags differently than ProDOS 8. The n and z
flags are undefined here; under ProDOS 8, they are set according to the value in the
accumulator. Here the caller may check the c flag to see if an error has occurred;
under ProDOS 8, both the ¢ and z flags determine error status.

Comparison with the ProDOS 8 call method

With the exceptions noted in Chapter 1, ProDOS 16 provides an identical call for each
ProDOS 8 system call. The ProDOS 16 call performs exactly the same function as its
ProDOS 8 equivalent, but it is in a format that fits the Apple IIGS environment:

» Asin ProDOS 8, the system call is issued through a subroutine jump to a fixed
system entry point. However, the jump instruction is a JSL rather than a JSR, and it
is to a location in bank $E1, rather than bank $00.

» The parameter block pointer in the system call is 4 bytes long rather than 2, so the
parameter block can be anywhere in memory.

+ All memory pointer fields within the parameter block are also 4 bytes long, so they
can reference data anywhere in memory.

» All 1-byte parameters are extended to 1 word in length, for efficient manipulation in
16-bit processor mode.

+ All file-position (such as EOF) and block-specification (such as block nurnber or
block count) fields in the parameter block are 4 bytes long, in anticipation of future
“guest file systems” that may support files larger than 16 Mb or volumes larger than
32 Mb.

Note: Although only 3 bytes are needed for memory pointers and block numbers
in the Apple IIGS, 4-byte pointers are used for ease of programming, The high-
order byte in each case is reserved and must be zero.

The ProDOS 16 Exerciser

To help you learn to make ProDOS 16 calls, there is a small program called the ProDOS 16
Exerciser, on a disk included with this manual. It allows you to execute system calls from
a menu, and examine the results of your calls. It has a hexadecimal memory editor for
reviewing and altering the contents of memory buffers, and it includes a catalog command.

APDA Draft 83 1113186

Apple IIGS ProDOS 16 Reference

When you use the Exerciser to make a ProDOS 16 call, you first request the call by its call
number and then specify its parameter list, just as if you were coding the call in a progran.
The call is executed when you press Return. You may then use the memory editor or
catalog command to examine the results of your call.

Instructions for using the ProDOS 16 Exerciser program are in Appendix C.

Format for system call descriptions

The following five chapters list and describe all ProDOS 16 operating system functions that
may be called by an application. They are divided into five categories:

» File housekeeping calls
» File access calls

» Device calls

» Environment calls
 Interrupt control calls

Each description includes these elements:

the function’s name and call number

a short explanation of its use

a diagram of its required parameter block

a detailed description of all parameters in the parameter block
a list of all possible operating system error messages.

* & & & ©

The parameter block diagram accompanying each call’s description is a simplified
representation of the parameter block in memory. The width of the diagram represents one
byte; the numbers down the left side represent byte offsets from the base address of the
parameter block. Each parameter field is further identified as containing a value, result, or
pointer.
The detailed parameter description that follows the diagram has the following headings:

» Offset: The position of the parameter (relative to the block’s base address)

« Label: The suggested assembly-language label for the parameter

» Description: Detailed information on the parameter, including:

parameter name: The full name of the parameter.

size and type: The size of the parameter (word or long word), and its
classification (value, result, or pointer). A word is 2 bytes; a
long word is 4 bytes.

range of values: The permissible range of values of the parameter. A
parameter may have a range much smaller than its size in
bytes.

Any additional explanatory information on the parameter
follows.

APDA Draft 84 11/13/86

Chapter 9

File Housekeeping Calls

These calls might also be called “closed-file” calls; they are made to get and set information
about files that need not be open when the calls are made. They do not alter the contents of
the files they access.

The ProDOS 16 file housekeeping calls are described in this order:

Number Function Purpose

$01 CREATE creates a new file

$02 DESTROY deletes a file

$04 CHANGE PATH changes a file’s pathname

$05 SET FILE INFO assigns attributes to a file

$06 GET FILE_INFO returns a file’s attributes

$08 VOLUME returns the volume on a device
$09 SET PREFIX assigns a pathname prefix
$0A GET PREFIX returns a pathname prefix

$0B CLEAR_BACKUP BIT zeroes a file’s backup attribute

APDA Draft _ 85 11713186

Apple lIGS ProDOS 16 Reference

CREATE ($01)

Every disk file except the volume directory file (and any Apple II Pascal region on a
partitioned disk) must be created with this call. It establishes a new directory entry for an

empty file.

Parameter Block:

0

; - pathname
ar

A

5F access

? - file_type

8 =3

< aux_type
Al _TYP

B

C

ol storage_type
E L create_date
1? - create_time

Qffset Label

$00-$03 pathname

APDA Draft

< pointer

value

value
value

value
value

value

Description

parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
pathname of the file to create.

86 11/13/86

$04-%05 access

$06-307 file type

$08-$0B aux_type

APDA Draft

ProDOS 16: Chapter 9

parameter name: access
size and type: word value (high-order byte zero)
range of values: $0000-3$00E3 with exceptions

A word whose low-order byte determines how the file may be
accessed. The access byte’s format is

Bi: |7§6{514{312{1}0
Value: |{D RNiB yeservediWiR

where D = destroy-enable bit
RN =rename-enable bit
B = backup-necded bit
W = write-enable bit
R =read-enable bit

and for each bit, 1 = enabled, 0 = disabled. Bits 2 through 4
are reserved and must always be set to zero (disabled). The
most typical setting for the access byte is $C3 (11000011).

parameter name: file type
size and type: word value (high-order byte zero)
range of values: $0000-$00FF

A number that categorizes the file by its contents (such as text
file, binary file, ProDOS 16 application). Currently defined
file types are listed in Appendix A.

parameter name: auxiliary type
size and type: long word value (high-order word zero)
range of values: 30000 0000-$0000 FFFF

A number that indicates additional attributes for certain file
types. Example uses of the auxiliary type field are given in
Appendix A.

87 11113186

Apple IIGS ProDOS 16 Reference

$0C-$0D storage type parameter name: storage type

$OE-$0F create date

$10-511 create time

APDA Draft

size and type: word value/result (high-order byte zero)
range of values: $0000-$000D with exceptions

A number that describes the logical organization of the file (sec
Appendix A):

$00 = inactive entry

$01 = seedling file

$02 = sapling file

$03 = tree file

$04 = Apple 1I Pascal region on a partitioned disk
$0D = directory file

$01 and $0D are the most typical input values for this field in
the CREATE call; any value in the range $00 through $03 is
automatically converted to an input (and output) of $01.

Note: $0E and $OF are not valid storage types; they are
subdirectory and volume key block identifiers.

parameter name: creation date
size and type: word value
range of values: limited range

The date on which the file was created. Its format is

Byte 1 Byte 0
Bit: [15{14{13{12{11§10{9 i8[7316i56{4i312i1:0
Value: Year Month Day

If the value in this field is zero, ProDOS 16 supplies the date
obtained from the system clock.

parameter name: creation time
size and type: word value
range of values: Iimited range

The time at which the file was created. Its format is

Byte 1 Byte O
B [15774713]12]11§10{9 18] 7]6[5]4]3}21110
value: 10{0 0 Hour 0i0 Minute

If the value in this field is zero, ProDOS 16 supplies the time
obtained from the system clock.

88 11/13/86

Possible ProDOS 16 Errors

$07
$10
$27
$2B
$40
$44
$45
$46
$47
$48
$49
S4B
$52
$53
$58
$5A

APDA Draft

ProDOS is busy

Device not found

1/O error

Disk write-protected
Invalid pathname syntax
Path not found

Volume not found

File not found

Duplicate pathname
Volume full

Volume directory full
Unsupported storage type
Unsupported volume type
Invalid parameter

Not a block device

Block number out of range

89

ProDOS 16: Chapter 9

11/13/186

Apple IIGS ProDOS 16 Reference

DESTROY ($02)

This function deletes the file specified by pathname. It removes the file’s entry from the
directory that owns it and returns the file’s blocks to the volume bit map.

Volume directory files, files with unrecognized storage types (other than $01, $02, 303, or
$0D), and open files cannot be destroyed. Subdirectory files must be empty before they
can be destroyed.

Note: When a file is destroyed, any index blocks it contains are inverted—that is,
the first half of the block and the second half swap positions. That reverses the
order of the bytes in all pointers the block contains. Disk scavenging programs can
use this information to help recover accidentally deleted files. See Appendix A for a
description of index block structure.

Parameter Block:

0

;- pathname <4 pointer

°t i
Offset Label Description
$00-303 pathname parameter name: pathname

size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
pathname of the file to delete.

Possible ProDOS 16 Errors

$07 ProDOS is busy

$10 Device not found

$27 1/O error

$2B Disk write-protected

$40 Invalid pathname syntax
$44 Path not found

$45 Volume not found

$46 File not found

$4A Version error

$4B Unsupported storage type
$4E Access: file not destroy-enabled
$50 File is open

$52 Unsupported volume type
$58 Not a block device

$5A Block number out of range

APDA Draft 90 11/13/86

ProDOS 16: Chapter 9

CHANGE_PATH ($04)

This function performs an intravolume file move. It moves a file’s directory entry from
one subdirectory to another within the same volume (the file itself is never moved). The
specified pathname and new pathname may be either full or partial pathnames in the same
volume. See Chapter 5 for an explanation of partial pathnames.

To rename a volume, the specified pathname and new pathname must be volume names
only. :

If the two pathnames are identical except for the rightmost file name (that is, if both the old
and new names are in the same subdirectory), this call produces the same result as the
RENAME call in ProDOS 8.
Note: In initial releases of ProDOS 16, CHANGE PATH is restricted to a filename
change only—that is, it is functionally identical to the RENAME call in ProDOS 8.

Parameter Block:

0

;- pathname « pointer

=k -

4

2- new_pathname 4 pointfer

S 4
Offset Label Description
$00-$03 pathname parameter name: pathname

size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the file’s
present pathname.

$04-$07 new pathname parameter name: new pathname
size and type: long word pointer (high-order byte zero)
range of values: 0000 0000-$00FF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the file’s
new pathname.

APDA Drafi 91 11/13/86

Apple IIGS ProDOS 16 Reference

Possible ProDOS 16 Errors

$07
$27
$2B
$40
$44
$45
$46
$47
$4A
$4B
$4E
$50
$52
$57
$58

APDA Draft

ProDOS is busy

I/O error

Disk write-protected
Invalid pathname syntax
Path not found

Volume not found

File not found

Duplicate pathname
Version error ‘
Unsupported storage type
Access: file not rename-enabled
File is open

Unsupported volume type
Duplicate volume

Not a block device

a2

11/13/86

ProDOS 16: Chapter Y

SET_FILE_INFO ($05)

This function modifies the information in the specified file’s directory entry. The call can
be made whether the file is open or closed; however, any changed access attributes are not
recognized by an open file until the next time the file is opened. In other words, this call
does not modify the accessibility of memory-resident information.

Note: Curent versions of ProDOS 16 ignore input values in the create date
and create_time fields of this function.

Parameter Block:

0 =
; - pathname -
st 4
g = access A
? L file_type g
8 p= -
G
A : aux_type :
B
g L (null field) -
E
ef create_date -’
10
n create_time J
12
i3l mod_date
} g I mod_time -
i5
Offset Label
$00-803 pathname

APDA Draft

pointer

vaue

vaue

vaue

vaiue
vaue
vaue
vaue

value

Description

parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the file's
pathname.

93 11113186

Apple IIGS ProDQOS 16 Reference

$04-305 access

$06-$07 file type

$08-$0B aux_type

$0C-$0D (null field)

$0E-$SOF create date

APDA Draft

parameter name: access
size and type: word value (high-order byte zero)
range of values: $0000-$00E3 with exceptions

A word whose low-order byte determines how the file may be
accessed. The access byte’s format is

Bi: [7§615{413{2{1i0
Value: |D RNiB reservediWiR

where D = destroy-enable bit
RN = rename-enable bit
B = backup-needed bit
W = write-enable bit
R =read-enable bit

and for each bit, 1 = enabled, O = disabled. Bits 2 through 4
are reserved and must always be set to zero (disabled). The
most typical setting for the access byte is $C3 (11000011).

parameter name: file type
size and type: word value (high-order byte zero)
range of values: $0000-$00FF

A number that categorizes the file by its contents (such as text
file, binary file, ProDOS 16 application). Currently defined
file types are listed in Appendix A.

parameter name: auxiliary type
size and type: long word value (high-order word zero)
range of values: $0000 0000-$0000 FFFF

A number that indicates additional attributes for certain file
types.. Example uses of the auxiliary type field are given in
Appendix A.

parameter name: (none)
size and type: word value
range of values: (undefined)

Values in this field are ignored.

parameter name: creation date
size and type: word value
range of values: limited range

The date on which the file was created. Its format is

Byte 1 Byte O
Bit: |15 14313§12§11E10§9 8]716}5 4?3E2§]E0
Value: Year Month Day

(Values in this field are ignored.)

94 11/13/86

ProDOS 16: Chapter 9

$10-$11 create time parameter name: creation time

$12-513 mod_date

$14-$15 mod time

APDA Draft

size and type: word value
range of values: limited range

The time at which the file was created. Its format is

Byte 1 Byte O
Bit: 15114113]12§1111019 {87 {615i413{2{1}0
Vae: |0§0§0 Hour 0i0 Minute

(Values in this field are ignored.)

parameter name: modification date
size and type: word value
range of values: limited range

The date on which the file was last modified. Its format is
identical to the create_ date format:

Byte 1 Byte 0
Bit: [15§14§13{12{11110§9:8[716}5:4{312]1}0
Value: Year Month Day

If the value in this field is zero, ProDOS 16 supplies the date
obtained from the system clock.

parameter name: modification time
size and type: word value
range of values: limited range

The time at which the file was last modified. Its format is
identical to the create_time format:

Byte 1 Byte 0
Bit: [15714713[12]11[10]918(71615]41312]1}0
Value: 0300 Hour 0i0 Minute

If the value in this field is zero, ProDOS 16 supplies the time
obtained from the system clock.

95 11/13/80

Apple 11GS ProDOS 16 Reference

Possible ProDOS 16 Errors

$07
$27

APDA Draft

ProDOS is busy

I/Oerror

Disk write-protected
Invalid pathname syntax
Path not found

Volume not found

File not found

Version error
Unsupported storage type
Access: file not write-enabled
Unsupported volume type
Invalid parameter

Not a block device

96

11713186

ProDOS 16: Chapter 9

GET_FILE_INFO ($06)

This function returns the information that is stored in the specified file’s directory entry.
The call can be made whether the file is open or closed. However, if you make the
SET FILE_INFO call to change the access byte of an open file, the access information
returned by GET FILE INFO may not be accurate until the file is closed.

Parameter Block:

0

! [pathname :
21 J
3

g 3 access 4
‘; L file_type -
81 aux_type A
9 |
X - or

g total_blocks
(D: - storage_type -
E - create_date -
10

11 create_time A
12
13l mod_date
141 mod_time E
15

16

171 i
18l blocks_used
19 i

Offset Label
$00-$03 pathname

APDA Draft

pointer

result

result
resuft

result
resuit
resuft
result

result

result

Description

parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
pathname.

of 11113186

Apple IIGS ProDOS 16 Reference

$04-%05 access parameter name: access
size and type: word result (high-order byte zero)
range of values: $0000-$00E3 with exceptions

A word whose low-order byte determines how the file may be
accessed. The access byte’s format is

Bt: [7§6151413i2{1]0
Value: |D RNiB feservediWiR

where D = destroy-enable bit
RN = rename-enable bit
B = backup-needed bit
W = write-enable bit
R =read-enable bit

and for each bit, 1 = enabled, 0 =disabled. Bits 2 through 4
are reserved and must always be set to zero (disabled). The
most typical setting for the access byte is $C3 (11000011).

$06-%$07 file type parameter name: file type
size and type: word result (high-order byte zero)
range of values: $0000-$00FF

A number that categorizes the file by its contents (such as text
file, binary file, ProDOS 16 application). Currently defined
file types are listed in Appendix A.

$08-$0B aux type parameter name: auxiliary type
size and type: long word result (high-order word zero)
range of values: $0000 0000-$0000 FFFF

A number that indicates additional attributes for certain file
types.. Example uses of the auxiliary type field are given in
Appendix A.

or

total blocks parameter name: total blocks
size and type: long word result (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

If the call is for a volume directory file, the total number of
blocks on the volume is returned in this field.

APDA Draft 98 11/13/86

ProDOS 16: Chapter 9

$0C-$0D storage type parameter name: storage type

$0E-$0F create date

$10-$11 create time

$12-%13 mod date

APDA Draft

size and type: word result (high-order byte zero)
range of values: $0000-$000D with exceptions

A number that describes the logical organization of the file (scc
Appendix A):

$00 = inactive entry

$01 = seedling file

$02 = sapling file

$03 = tree file

$04 = UCSD Pascal region on a partitioned disk
$0D = directory file

Note: $0E and $0F are not valid storage types; they are
subdirectory and volume key block identifiers.

parameter name: creation date
size and type: word result
range of values: limited range

The date on which the file was created. Its format is

Byte 1 Byte 0
Bt [15]14113112]11110j9 18] 7 161534:312]1150
Value: Year Month Day

parameter name: creation time
size and type: word result
range of values: limited range

The time at which the file was created. Its format is

Byte 1 Byte O
Bit: [15§14i13{12{11{10{9 {87 {6{5{4i3}2{1}0
Value: {03100 Hour Di0 Minute

parameter name: modification date
size and type: word result
range of values: limited range

The date on which the file was last modified. Its format is
identical to the create date format:

Byte 1 Byte 0
Bi: [15]714]13]12]11]10{9 i8]7 {615{4]3[2]1]0
Value: Year Month Day
99 11113186

Apple IIGS ProDOS 16 Reference

$14-$15 mod time

$16-$19 blocks used

parameter name: modification time
size and type: word result
range of values: limited range

The time at which the file was last modified. Its format is
identical to the create time format:

Byte 1 Byte O
Bit: |151141{13 12§11E101938 7i6 5§4;3¥2§1E0
Value: |0i01§{0 Hour 030 Minute

parameter name: blocks used
size and type: long word result
range of values: $0000 0000-$FFFF FFFF

The total number of blocks used by the file. It equals the value
of the blocks used parameter in the file’s directory entry.

ar

The total number of blocks used by all files on the volume (if
the call is for a volume directory).

Possible ProDOS 16 Errors

$07 ProDOS is busy

$27 I/O error

$40 Invalid pathname syntax
$44 Path not found

$45 Volume not found

$46 File not found

S4A Version error

$4B Unsupported storage type
$52 Unsupported volume type
$53 Invalid parameter

$58 Not a block device

APDA Draft

100 11713186

ProDOS 16: Chapter 9

VOLUME ($08)

When given the name of a device, this function returns:

the name of the volume that occupies that device

the total number of blocks on the volume

the current number of free (unallocated) blocks on the volume
the file system identification number of the volume

¢ & ¢ &

The volume name is returned with a leading slash (/).

To generate a list of all mounted volumes (equivalent to calling ON LINE in ProDOS 8
with a unit number of zero), call VOLUME repeatedly with successive device names (.D1,
.D2, and so on). When there are no more online volumes to name, ProDOS 16 returns
error $11 (Invalid device request).

Note: In certain cases (for example, when polling Disk II drives) ProDOS 16
cannot detect the difference between an empty device and a nonexistent device. It
may therefore assign a device name where there is no device connected, just to
make sure it hasn’t skipped over an empty device. Because of this, in making
VOLUME calls, you may occasionally find that there are more “valid” device names
than there are devices on line.

Parameter Block:

0]
B b
;[dev_name 4 poinfer
3 4
4
sh i
of vol_name - pointfer
oF N
8 - L
'z- total_blocks 4 resulf
N]
C e =
DE} free_blocks « result
ef i
:? - file_sys_id result

APDA Draft 101 11113186

Apple IIGS ProDOS 16 Reference

Offset Label Description

$00-$03 dev_name parameter name: device name
size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
device name.

$04-307 vol name parameter hame: volume name
size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
volume name (including a leading slash).

$08-$0B total blocks parameter name: total blocks
size and type: long word result (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The total number of blocks the volume contains.

$0C-$0F free blocks parameter name: free blocks
size and type: long word result (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The number of free (unallocated) blocks in the volume.

$10-$11 file sys id parameter name: file systemID
size and type: word result (high-order byte zero)
range of values: $0000-$00FF

A word whose low-order byte identifies the file system to
which the specified file or volume belongs. The currently
defined file system identification numbers include

0 = {reserved)

1 = ProDOS/SOS
2=D0S 33
3=DO0S 3.2,3.1

4 = Apple II Pascal

5 = Macintosh

6 = Macintosh (HFS)
7 =LISA

8 = Apple CP/M
9-255 = {reserved}

APDA Draft 102 111153186

Possible ProDOS 16 Errors

$07
$10
$11
$27
$28
$2E
$45
$4A
$52
$55
$57
$58

APDA Draft

ProDOS is busy

Device not found

Invalid device request

I/O error

No device connected
Disk switched: files open
Volume not found
Version error
Unsupported volume type
Volume control block full
Duplicate volume

Not a block device

103

ProDOS 16: Chapter 9

11113186

Apple 11GS ProDOS 16 Reference

SET _PREFIX ($09)

This function assigns any of 8 prefix numbers to the pathname indicated by the pointer
prefix. A prefix number consists of a digit followed by a slash: 0/,1/,2/,..., 7/.
When an application starts, the prefixes have default values that depend on the manner in
which the program was launched. See Chapter 5.

The input pathname to this call may be

» a full pathname.

 a partial pathname with a prefix number. The trailing slash on the prefix number is
optional.

+ a partial pathname with the special prefix number * / (asterisk-slash), which means
“boot volume name.” The trailing slash is optional.

* a partial pathname without a prefix number. In this case ProDOS 16 does not attach
the default prefix (number 0/). Instead, it appends the input pathname to the prefix
specified in the prefix_num field.

Note: This method can be used to append a partial pathname to an existing prefix
only. If the specified prefix is presently null, error $40 (invalid pathname syntax)
is returned.

Specifying a pathname whose length byte is zero, or whose syntax is otherwise illegal, sets
the designated prefix to null (unassigned).

Note: ProDOS 16 does not check to make sure that the designated volume is on

line when you specify a prefix; it only checks the pathname string for correct
syntax.

The boot volume prefix (* /) cannot be changed through this call.

Parameter Block:

?- prefid_num -4 vaue
2 e
3 - prefix 4 pointer
it 4
Offset Label Description

$00-$01 prefix num parameter name: prefix number
size and type: word value
range of values: $0000-$0007

One of the 8 prefix numbers, in binary (without a terminating
slash).

APDA Draft 104 11/13/86

ProDOS 16: Chapter 9

$02-$05 prefix parameter name: prefix
size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing a
directory pathname.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$40 Invalid pathname syntax

APDA Draft 105 11113186

Apple HIGS ProDOS 106 Reference

GET_PREFIX ($0A)

This function returns any of the current prefixes (specified by number), placing it in the
buffer pointed to by prefix. The returned prefix is bracketed by slashes (such as
/APPLE/ or /APPLE/BYTES/). If the requested prefix has been set to null (sce
SET PREFIX), a count of zero is retumed as the length byte in the prefix buffer.

The boot volume prefix (* /) cannot be returned by this call. Instead, use
GET BOOT VOL to find the boot volume’s name.

Parameter Block:

?- prefix_num - value
2
3- prefix « pointer
af o
Offset Label Description

$00-$01 prefix num parameter name: prefix number
size and type: word value
range of values: $0000-$0007

One of the 8 prefix numbers, in binary (without a terminating
slash).

$02-$05 prefix parameter name: prefix
size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The long word address of a buffer, in which ProDOS 16
places a length byte followed by an ASCII string representing
a directory pathname.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$53 Parameter out of range

APDA Draft 106 11713186

ProDOS 16: Chapter 9

CLEAR _BACKUP_BIT ($0B)

This is the only call that will clear the backup bit in a file’s access byte. Once cleared, the
bit indicates that the file has not been altered since the last backup. ProDOS 16
automatically resets the backup bit every time a file is altered.

Important: Only disk backup programs should use this function!

Parameter Block:

pathname

1

LR -0

-

Offset Label

$00-303 pathname

pointer

Description

parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the file's
pathname.

Possible ProDOS 16 Errors

$07 ProDOS is busy

$40 Invalid pathname syntax
$44 Path not found

$45 Volume not found

$46 File not found

$4A Version error

$52 Unsupported volume type
$58 Not a block device

APDA Draft

107 11/13/56

Apple IIGS ProDOS 16 Reference

APDA Draft 108 11713186

Chapter 10

File Access Calls

These might be called “open-file” calls. They are made to access and change the

information within files, and therefore in most cases the files must be open before the calls

can be made.

The ProDOS 16 file access calls are described in the following order:

Number
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
$1B

APDA Draft

Function
OPEN
NEWLINE
READ
WRITE
CLOSE
FLUSH

SET MARK
GET MARK
SET EOF
GET EOF
SET_LEVEL
GET_ LEVEL

109

Purpose

prepares file for access
enables newline read mode
transfers data from file
transfers data to file

ends access to file
empties [/O buffer to file
sets current position in file
returns current position in file
sets size of file

returns size of file

sets system file level
returns system file level

11/13/86

Apple 11GS ProDOS 16 Reference

OPEN ($10)

This function prepares a file to be read from or written to. It creates a file control block
(FCB) that keeps track of the current characteristics of the file specified by pathname. It
sets the current position in the file (Mark) to zero, and returns a reference number

(ref num) for the file; subsequent file access calls must refer to the file by its reference
number. It also returns a memory handle to a 1024-byte /O buffer used by ProDOS 16 for
reading from and writing to the file.

Up to 8 files may be open simultaneously.

Parameter Block:
? ref_num
2 o
3
al pathname
st
4
7 L io_buffer
B b
9

Offset Label

$00-501 ref num

$02-$05 pathname

$06-309 io buffer

APDA Draft

resuft

4 poinfer

4 resuft

Description

parameter name: reference number
size and type: word result (high-order byte zero)
range of values: $0000-$00FF

An identifying number assigned to the file by ProDOS 16. It
is used in place of the pathname in all subsequent file access
calls.

parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
pathname of the file to open.

parameter name: /O buffer
size and type: long word result (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

A memory handle. It points to a location where the address of
the I/O buffer allocated by ProDOS 16 is stored.

110 11713186

Possible ProDOS 16 Errors

$07
$27
$40
$42
$44
$45
$46
S4A
$4B
$4E
$50
$52
$57

ProDOS is busy

I/O error

Invalid pathname syntax
File control block table full
Path not found

Yolume not found

File not found

Version error
Unsupported storage type
Access: file not read-enabled
File is open

Unsupported volume type
Duplicate volume

APDA Draft

111

ProDOS 16: Chapter 10

11/13/86

Apple IIGS ProDOS 16 Reference

NEWLINE ($11)

This function enables or disables the newline read mode for an open file. When newline
is disabled, a READ call (described next) terminates only when the requested number of
characters has been read (unless the end of the file is encountered first). When newline is
enabled, the READ will also terminate when a newline character (as defined in the parameter
block) is read.
When a READ call is made and newline mode is enabled,

1. Each character read in is first transferred to the user’s data buffer.

2. The character is ANDed with the low-order byte of the newline enable mask
(specified in the NEWLINE call’s parameter block).

3. The result is compared with the low-order byte of the newline character.

4. If there is a match, the read is terminated.
The enable mask is typically used to mask off unwanted bits in the character that is read in.
For example, if the mask value is $7F (binary 0111 1111), a newline character will be

correctly matched whether or not its high bit is set. If the mask value is $FF (1111 1111),
the character will pass through the AND operation unchanged.

Newline read mode is disabled by setting the enable mask to $0000.

Parameter Block:

@]

r ref_num - resulf

:32' enable_mask 4 value

'g- newline_char 4 value
Offset Label Description
$00-$01 ref num parameter name: reference number

size and type: word result (high-order byte zero)
range of values: $0000-$00FF

The identifying number assigned to the file by the OPEN
function.

$02-%03 enable mask parameter name: enable mask
size and type: word value (high-order byte zero
range of values: $0000-$00FF

The current character is ANDed with the low order byte of this
word.

APDA Draft 112 11/13/86

ProDOS 16: Chapter 10

$04-$05 newline char parameter name: newline character
size and type: word value (high-order byte zero)
range of values: $0000—$00FF

Whatever character occupies the low-order byte of this field is
defined as the newline character.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$43 Invalid reference number

APDA Draft 113 11/13/86

Apple IIGS ProDOS 16 Reference

READ ($12)

When called, this function attempts to transfer the requested number of bytes (starting at the
current position of the file specified by ref_num) into the buffer pointed to by data_buffer.
When finished, the function returns the number of bytes actually transferred.

If, during a read, the end-of-file is reached before request _count bytes have been read,
transfer count is set to the number of bytes transferred. If newline mode is enabled
and a newline character is encountered before request_count bytes have been read,
transfer count is set to the number of bytes transferred (including the newline byte).

No more than 16,777,215 ($FF FF FF) bytes may be read in a single call.

Parameter Block:

? ref_num 4 value

2 = -}

3r- data_buffer 4 pointer

5

6 - -~

;' regquest_count + vaue

9

A - e

g = transfer_count & resulft

D
Offset Label Description
$00-$01 ref num parameter name: reference number

size and type: word value (high-order byte zero)
range of values: $0000-$00FF

The identifying number assigned to the file by the OPEN
function.

$02-$05 data buffer parameter name: data buffer
size and type: long word pointer (high-order byte zero)
range of values: $0000 0000—$00FF FFFF

The long word address of a buffer. The buffer should be large
enough to hold the requested data.

$06-309 request count parameter name: request count
size and type: long word value (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The number of bytes to be ransferred.

APDA Draft 114 11113186

ProDQOS 16: Chapter 10

$0A-$0D transfer_count parameter name: transfer count
size and type: long word result (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The actual number of bytes transferred.

Possible ProDOS 16 Errors

307 ProDOS is busy

$27 1/O error

$43 Invalid reference number

$4C EOF encountered (Out of data)
$4E Access: file not read-enabled

APDA Draft 115 11/13/86

Apple IIGS ProDOS 16 Reference

WRITE ($13)

When called, this function attempts to ransfer the specified number of bytes from the
buffer pomted to by data_buffer to the file specified by ref num (starting at the current
position in the file). When finished, the function returns the number of bytes actually
transferred.

After a write, the current file position (Mark) is increased by the transfer count. If
necessary, the end-of-file (EOF) is extended to accomodate the new data.

No more than 16,777,216 (3FF FF FF) bytes may be written in a single call.

Parameter Block:

?- ref_num 4 value

2 o

2. data_buffer] pointer

sf

6 - IS

;- requesi_count 4 value

9

A - 4

CB:' transfer_count 4 result

D
Offset Label Description
$00-801 ref num parameter name: reference number

size and type: word value (high-order byte zero)
range of values: $0000—$00FF

The identifying number assigned to the file by the OPEN
function.

$02-$05 data buffer parameter name: data buffer
size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The long word address of a buffer. The buffer should be large
enough to hold the requested data.

$06-$09 request count parameter name: request count
size and type: long word value (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The number of bytes to be transferred.

APDA Draft 116 11/13/86

ProDOS 16: Chapter 10

$0A-$0D transfer_ count parameter name: transfer count

size and type: long word result (high-order byte zero}
range of values: $0000 0000-$00FF FFFF

The actual number of bytes transferred.

Possible ProDOS 16 Errors

$07 ProDOS is busy

$27 1/O error

$2B Disk write-protected

$43 Invalid reference number

$48 Volume full

$4E Access: file not write-enabled
$5A Block number out of range

APDA Draft 117 11113186

Apple HHGS ProDOS 106 Reference

CLOSE ($14)

This function is called to release all resources used by an open file and terminate further
access to it. The file control block (FCB) is released; if necessary, the file’s I/O buffer is
emptied (written to disk) and the directory entry for the file is updated. Once a file is
closed, any subsequent calls using its ref num will fail (untl that number is assigned to
another open file).

If the specified ref numis 0, all open files at or above the curmrent file level (see

SET LEVEL and GET LEVEL calls) are closed. For exaniple, if files are open at levels 0,
1, and 2 and you have set the current level to 1, a CLOSE call with ref num set to () will
close all files at levels 1 and 2, but leave files at level 0 open.

Parameter Block:

? = ref_num 4 value
Offset Label Description
$00-301 ref num parameter name: reference number

size and type: word value (high-order byte zero)
range of values: $0000-$O0FF

The identifying number assigned to the file by the OPEN
function.

Possible ProDOS 16 Errors

807 ProDOS is busy

$27 /O error

$2B Disk write-protected

$43 Invalid reference number
$5A Block number out of range

APDA Draft 118 11113186

ProDOS 16: Chapter 10

FLUSH ($15)

This function is called to empty an open file’s buffer and update its directory. If ref num is
zero, all open files are flushed.

Note: Current versions of ProDOS 16 ignore ref num in this call. The FLUSH
call flushes all open files.

Parameter Block:

? F ref_num value
Offset Label Description
$00-$01 ref num parameter name: reference number

size and type: word value (high-order byte zero)
range of values: $0000-$00FF

The identifying number assigned to the file by the OPEN
function.

Possible ProDOS 16 Errors

$07 ProDOS is busy

$27 I/O error

$2B Disk write-protected

$43 Invalid reference number
$48 Volume full

$5A Block nuraber out of range

APDA Draft 119 11113186

Apple IIGS ProDOS I6 Reference

SET _MARK ($16)

For the specified open file, this function sets the current position (Mark, the position at
which subsequent reading and writing will occur) to the point specified by the position
parameter. The value of the current position may not exceed EOF (end-of-file; the size of

the file in bytes).

Parameter Block:

?_ ref_num 4 vaue
2

al " i

I position 4 value
o o

Offset Label

$00-$01 ref num parameter name:
size and type:
range of values:

Description

reference number
word value (high-order byte zero)
$0000-$00FF

The identifying number assigned to the file by the OPEN

function.

$02-%05 position parameter name:
size and type:
range of values:

position
long word value (high-order byte zero)
$0000 0000-$00FF FFFF

The value assigned to Mark. Itis the position, in bytes relative
to the beginning of the file, at which the next read or write will

oCcCur.

Possible ProDOS 16 Errors

$07 ProDOS is busy

$27 I/O error

$43 Invalid reference number
$4D Position out of range

$5A Block number out of range

APDA Draft 120

11/13/86

GET_MARK ($17)

ProDQOS 16: Chapter 10

This function returns the current position (Mark, the position at which subsequent reading
and writing will occur) for the specified open file.

Parameter Block:

L ref_num

position

NN —O

i

Offset Label

$00-$01 ref num

$02-805 position

vcaiue

resulf

Description

parameter name: reference number
size and type: word value (high-order byte zero)
range of values: $0000-$00FF

The identifying number assigned to the file by the OPEN
function.

parameter name: position
size and type: long word result (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The current value of Mark. It is the position, in bytes relative
to the beginning of the file, at which the next read or write will
occur.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$43 Invalid reference number

APDA Draft

121 11713186

Apple 11GS ProDOS 16 Reference

L}

SET _EOF ($18)

For the specified file, this function sets its logical size (in bytes) to the value specified by
EOF (end-of-file). If the specified EOF is less than the current EOF, then disk blocks past
the new EOF are released to the system and index-block pointers to those blocks are
zeroed. However, if the specified EOF is equal to or greater than the current EOF, no new
blocks are allocated until data are actually written to them.

The value of EOF cannot be changed unless the file is write-enabled.

Parameter Block:

?- ref_num 4 vaiue
2 fe =
j- eof -4 vaue
5 [’ -
Offset Label Description
$00-$01 ref num parameter name: reference number
size and type: word value (high-order byte zero)
range of values: $0000-$00FF
The identifying number assigned to the file by the OPEN
function.
$04-307 eof parameter name: end-of-file

size and type: long word value (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The specified logical size of the file. It represents the total
number of bytes that may be read from the file.

Possible ProDOS 16 Errors

sc7 ProDOS is busy

$27 1/O error

$43 Invalid reference number

$4D Position out of range

$4E Access: file not write-enabled
$3A Block number out of range

APDA Draft 122 11113186

ProDOS 16: Chapter 10

GET EOF ($19)

For the specified open file, this function returns its logical size, or EOF (end-of-file; the
number of bytes that can be read from it).

Parameter Block:

?L ref_num 4 vdlue
2)_ i
3
ar aof - result
st
Offset Label Description
$00-$01 ref num parameter name: reference number
size and type: word value (high-order byte zero)
range of values: $0000-$O0FF
The identifying number assigned to the file by the OPEN
function.
$04-$07 eof parameter name: end-of-file

size and type: long word result (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The current logical size of the file. It represents the total
number of bytes that may be read from the file.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$43 Invalid reference number

APDA Draft 123 11113186

Apple 1IGS ProDOS 16 Reference

SET _LEVEL ($1A)

This function sets the current value of the system file level (see Chapter 2). All subsequent
OPEN calls will assign this level to the files opened. All subsequent CLOSE calls for
multiple files (that is, those calls using a specified ref num of 0) will be effective only on

{hos«{: files that were opened when the system level was greater than or equal to the new
evel.

The range of legal system level values is $0000-$00FF. The file level initially defaults to
Zer0.

Parameter Block:

?- level 4 vaue
Offset Label Description
$00-301 1level parameter name: system file level

size and type: word value (high-order byte zero)
range of values: $0000-$00FF

The specified value of the system file level.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$59 Invalid file level

APDA Draft 124 11/13/86

ProDOS 16: Chapter 10

GET_LEVEL ($1B)

This function returns the current value of the system file level (see Chapter 2). All
subsequent OPEN calls will assign this level to the files opened. All subsequent CLOSE
calls for multiple files (that is, those calls using a specified ref num of 0) will be effective
only on those files that were opened when the system level was greater than or equal to its

current level.

Parameter Block:

0
1

L level

Offset Label

$00-501 level

result

Description

parameter name: systcm file level
size and type: word result (high-order byte zero)
range of values: $0000-$00FF

The current value of the system file level.

Possible ProDOS 16 Errors

$07 ProDOS is busy

APDA Draft

125 11113186

Apple IIGS ProDOS 16 Reference

APDA Draft 126 11113186

Chapter 11

Device Calls

Device calls access storage devices directly, rather than through the logical structure of the
volumes or files on them.

The ProDOS 16 device calls are described in the following order:

Number Function Purpose

$20 GET_DEV_NUM returns a device’s number

$21 GET_LAST DEV returns the last device accessed
$22 READ BLOCK transfers 512 bytes from a device
$23 WRITE_BLOCK transfers 512 bytes to a device
$24 FORMAT formats a volume in a device

APDA Drqft 127 11113186

Apple IIGS ProDOS 16 Reference

GET _DEV_NUM ($20)

For the device specified by name or by the name of the volume mounted on it, this function
returns its device number. All other device calls (except for FORMAT) must refer to the

device by its number.

Device numbers are assigned by ProDOS 16 at system startup (boot) time. They are
consecutive integers, assigned in the order in which ProDOS 16 polls external devices (sce

Chapter 4).

Note: Because a device may hold different volumes and because volumes may be
switched among devices, the device number returned for a particular volume name
may change. Likewise, the volume name associated with a particular device

number may change.

Parameter Block:

- dev_name

A

g dev_num

O bwN—0

Offset Label

$00-$03 dev_name

$04-$05 dev num

poinfer

resulf

Description

parameter name: device name/volume name
size and type: long word pointer (high-order byte zero)
range of values: $0000.0000-$00FF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
device name or the volume name.

parameter name: device number
size and type: word result (high-order byte zero)
range of values: $0000-$00FF

The device’s reference number, to be used in other device
calls.

Possible ProDOS 16 Errors

307 ProDOS is busy

$10 Device not found

$11 Invalid device request

$40 Invalid device name syntax
$45 Volume not found

APDA Draft

128 11/13/86

ProDQS 16: Chapter 11

GET_LAST DEV ($21)
This function returns the device number of the last device accessed. The last device

accessed is the last device to which a command was directed that caused a read or write to
occur.

Parameter Block:

? dev_num 1 result
Offset Label Description
$00-$01 dev_num parameter name: device number

size and type: word result (high-order byte zero)
range of values: $0000-$00FF

The device's reference number, to be used in other device
calls.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$60 Data unavailable

APDA Draft 129 11113186

Apple lIGS ProDOS 16 Reference

READ BLOCK ($22)

This function reads one block of information from a disk device (specified by dev_num)
into memory starting at the address pointed to by data_buffer. The buffer must be at least
512 bytes in length, because existing devices define a block as 512 bytes.

Parameter Block:

? L dev_num -
2 = -
3 L data_buffer e
5

b = =
g L block _num -
oF H

Offset Label

$00-$01 dev num

$02-$05 data_buffer

$06-30%9 block num

value

pointer

Description

parameter name: device number
size and type: word value (high-order byte zero)
range of values: $0000-$00FF

The device’s reference number, as returned by
GET DEV_NUM.

parameter name: data buffer
size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-300FF FFFF

The long word address of a buffer that will hold the data to be
read in.

parameter name: block number
size and type: long word value (high-order word zero)
range of values: $0000 0000-$0000 FFFF

The number of the block to be read in.

Possible ProDOS 16 Errors

$07 ProDOS is busy

$11 Invalid device request
$27 J/O error

$28 No device connected
$53 Parameter out of range

APDA Draft

130 11/13186

ProDOS 16: Chapter 11

WRITE_BLOCK ($23)

This function transfers one block of data from the memory buffer pointed to by data_buffer
to the disk device specified by dev_name. The block is placed in the specified logical block
of the volume occupying that device. For currently defined devices, the data buffer must

be at least 512 bytes long.

Parameter Block:

- dev_num -

- data_buffer 4

i block_num 4

VDO~ O D W~ O

Offset Label

$00-$01 dev num

$02-805 data buffer

$06-$09 block num

value

pointer

value

Description

parameter name: device number
size and type: word value (high-order byte zero)
range of values: $0000--$00FF

The device’s reference number, as returned by
GET DEV_NUM.

parameter name: data buffer
size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The long word address of a buffer that holds the data to be
written.

parameter name: block number
size and type: long word value (high-order word zero)
range of values: $0000 0000-$0000 FFFF

The number of the block to be written to.

Possible ProDOS 16 Errors

$07 ProDOS is busy

$11 Invalid device request
$27 /O error

$28 No device connected
$2B Disk write-protected
$53 Parameter out of range

APDA Draft

131 11113186

Apple IIGS ProDOS 16 Reference

FORMAT ($24)

This function formats the volume (disk) in the specified (by name) device, giving it the
specified volume name. The volume is formatted according to the specified file system ID.

Note: Current versions of ProDOS 16 support formatting for the ProDOS/SOS
file system only (file system ID = 1). Specifying any other file system will generate

error $5D.

Parameter Block:

0
; - dev_nhame
SF
4]
5 vol_name
& B

2
7
81 file_sys_ld
9

Offset Label

$00-$03 dev name

$04-%07 wvol name

APDA Draft

pointer

pointer

Description

parameter name: device name
size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$O0FF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
device name.

parameter name: volume name
size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
volume name (including a leading slash).

132 11/13186

ProDOS 16: Chapter 11

$10-$11 file_sys id parameter name: file system ID
size and type: word result (high-order byte zero)
range of values: $0000-$00FF

A word whose low-order byte identifies the file system to
which the formatted volume belongs. The currently defined
file system identification numbers include

0 = {reserved}

1 = ProDOS/SOS
2=D0S 3.3
3=DO0S 3.2,3.1

4 = Apple I1 Pascal

5 = Macintosh

6 = Macintosh (HFS)
7 = LISA

8 = Apple CP/M
9-255 = [reserved}

Possible ProDOS 16 Errors

$07 ProDOS is busy

$10 Device not found

$11 Invalid device request
$27 I/O error

$5D File system not available

APDA Draft , 133 11/13/86

Apple 1IGS ProDOS 16 Reference

APDA Draft 134 L3186

Chapter 12

Environment Calls

These calls deal with the Apple IIGS operating environment, the software and hardware
configuration within which applications run. They include calls to start and end
ProDOS 16 applications, and to determine pathnames and versions of system software.

The ProDOS 16 environment calls are described in the following order:

Number Function Purpose

$27 GET_NAME returns application filename

$28 GET BOOT VOL returns ProDOS 16 volume name
$29 QUIT terminates present application
$2A GET_VERSION returns ProDOS 16 version

APDA Draft 135 11113186

Apple IIGS ProDOS 16 Reference

GET_NAME ($27)
This function returns the filename of the currently running application.

To get the compete pathname of the current application, use GET PREF IX for prefix
number 1/, and affix that prefix to the file name returned by this call.

Note: If your program uses SET PREFIX to reset prefix 1/ to anything other
than its initial value, be sure it first uses GET PREFIX on 1/ and saves the results.

Otherwise there may be no way to recover the full pathname of the current
application.

Parameter Block:

data_buffer -{ poinfer

w N -0

Offset Label Description

$00-$03 data buffer parameter name: data buffer
size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
current application’s file name.

Possible ProDOS 16 Errors
$07 ProDOS is busy

APDA Draft 136 11/13/86

ProDOS 16: Chapter 12

GET_BOOT_VOL ($28)

This function returns the name of the volume from which the file named PRODOS was last
executed. PRODOS is the operating system loader; it loads both ProDOS 16 and ProDOS 8
into memory. Execution of PRODOS may occurr

* at system startup

+ from a reboot

+ by execution from an Applesoft BASIC dash (—) command

+ by loading PRODOS into memory at $002000 and executing a JMP to that address

The volume name returned by this call is identical to the prefix specified by */. See
Chapter 5.

Parameter Block:

data_buffer 4 poinfer

w N =0

Offset Label Description

$00-$03 data buffer parameter name: data buffer
size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the boot
volume’s name.

Possible ProDOS 16 Errors
$07 ProDOS is busy

APDA Draft 137 11/13/86

Apple I1GS ProDOS 16 Reference

QUIT ($29)

Calling this function terminates the present application. It also closes all open files, sets the
current system file level to zero, and deallocates any installed interrupt handlers.
ProDOS 16 can then do one of three things:

+ launch a file specified by the quitting program
« launch a file specified by the user
+ automatically launch a program specified in the quit return stack

The quit return stack is a table maintained in memory by ProDOS 16. It provides a
convenient means for a shell program to pass execution to subsidiary programs (even other
shells), while ensuring that control eventually returns to the shell.

For example, a program selector may push its User ID onto the quit return stack whenever
it launches an application (by making a QUIT call). That program may or may not specify
yet another program when it quits, and it may or may not push its own User ID onto the
quit return stack. Eventually, however, when no more programs have been specified and
no others are waiting for control to return to them, the program selector’s User ID will be
pulled from the stack and it will be executed once again.

Two QUIT call parameters control these options, as follows:
1. Pathname pointer:

a. If the pathname pointer in the parameter block points to a pathname of nonzero
length, the indicated program is loaded and executed.

b. If pathname is null (zero) or if it points to a null pathname (one with a zero
length byte), ProDOS 16 pulls a User ID from the quit return stack and executes
the program with that ID.

¢. If pathname is null and the quit return stack is empty, ProDOS 16 executes a
built-in interactive dispatcher that allows the user to

» reboot the computer
» execute the file SYSTEM/START on the boot disk
» enter the name of the next application to launch

2. Flag word:

The flag word contains two boolean values: areturn flag and a restart-from-
memory flag.

a. If the return flag value is TRUE (bit 15=1), the User ID of the program making
the QUIT call is pushed onto the quit return stack. If the return flag is FALSE,
no ID is pushed onto the stack.

b. If the value of the restart-from-memory flag is TRUE (bit 14=1), the program is
capable of being restarted from a dormant state in the computer’s memory. If
the restart-from-memory flag is FALSE, the program must always be reloaded
from disk when it is run. Every time a program’s User ID is pushed onto the
quit return stack, the information from this flag is saved along with it. The
System Loader uses this information when it reloads or restarts the program
later (see Chapter 17).

APDA Draft 138 11/13/86

ProDOS 16: Chapter 12

Note: The pathname designated in this call may be a partial pathname with an
implied or explicit prefix number. However, the total length of the expanded prefix
(the full pathname except for the file name) must not exceed 64 characters. Other
ProDOS 16 calls do not restrict pathname length as severely.

Further details of the operation of the QUIT function are explained in Chapter 5.

Parameter Block:

0
; . pathname 4 poinfer
ok .
i 1 flags 4 vaue
5
Offset Label Description
$00-$03 pathname parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$00FF FFFF
The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
pathname of the next file to execute.
$04-305 flags . parameter name: flag word

size and type: word value
range of values: $0000-$C000

Two boolean flags in a 16-bit field. The bits are defined as

follows:

bit significance

15 if = 1, place calling program’s
User ID on return stack

14 if = 1, calling program may be
restarted from memory

13-0 (reserved)

Possible ProDOS 16 Errors
QUIT never returns to the caller. Therefore, it cannot return an error. However, other

parts of ProDOS 16 may. For example, if an interrupting program (such as a desk
accessory) ignores established conventions and uses a QUIT call, error $07 (ProDOS is

APDA Draft 139 11/13/86

Apple IIGS ProDOS 16 Reference
busy) may occur. For programming rules covering such specialized applications, see
Programmer’s Introduction to the Apple IIGS.

If a nonfatal error occurs, execution passes to an interactive routine that allows the user to
select another program to launch. Errors that may cause this include:

$07 ProDOS is busy

$40 Invalid syntax

$46 File not found

$5C Not an executable file

$5D Operating system not available
$5E Cannot deallocate /RAM

$5F Return stack overflow

Fatal errors cause execution to halt. For example, If the QUIT call results in the loading of
a ProDOS 8-based application, and if the system disk has been altered with a different
version of ProDOS 8 (file P8), it is a fatal error ($11). Execution halts and the following
message is displayed on the screen:

Wrong OS version $0011
If the QUIT call results in the loading of a ProDOS 16-based application that is too large to
fit in the available memory or that for some other reason cannot be loaded, execution halts
and the following message is displayed on the screen:

Can’t run next application. Error=3$XXXX

where $ XXXXis an error code—typically a Tool Locator, Memory Manager, or System
Loader error code.

APDA Draft 140 11113186

ProDOS 16: Chapter 12

GET_VERSION ($2A)

This function returns the version number of the currently running ProDOS 16 operating
system.

The returned version number is placed in the version parameter field. Both byte and bit
values are significant. It has this format:
Byte 1 Byte O
o, [TSTTA[I3] 12109 [8] 716 5[4 13121110

Value: B | Major Release No. Minor Release No.

where

« Byte 0 is the minor release number (= 0 for ProDOS 16 version 1.0)
» Byte 1 is the major release number (= 1 for ProDOS 16 version 1.0)
+ B (the most significant bit of byte 1) = 0 for final releases

= 1 for all prototype releases

Parameter Block:

? version 4 resuft
Offset Label Description
$00-$01 version parameter name: version

size and type: word result (high-order byte zero)
range of values: $0000-$FFFF

The version number of ProDOS 16.

Possible ProDOS 16 Errors
$07 ProDOS is busy

APDA Draft 141 11113186

Apple lIGS ProDOS 16 Reference

APDA Draft 142 11113186

Chapter 13

Interrupt Control Calls

These calls allocate and deallocate interrupt handling routines.

The ProDOS 16 interrupt control calls are described in the following order:

Number Function Purpose
$31 ALLOC_INTERRUPT installs an interrupt handler
$32 DEALLOC INTERRUPT removes an interrupt handler

APDA Draft 143 11113186

Apple 11GS ProDOS 16 Reference

ALLOC_INTERRUPT ($31)

This function places the address of an interrupt-handling routine into the interrupt vector
table. You should make this call before enabling the hardware that can cause the interrupt.
It is your responsibility to make sure that the routine is installed at the proper location and
that it follows interrupt conventions (see Chapter 7).

The returned int_num is a reference number for the handler. Its only use is to identify the
handler when deallocating it; you must refer to a routine by its interrupt handler number to
remove it from the system (with DEALLOC_INTERRUPT).

When ProDOS 16 receives an interrupt, it polls the installed handlers in sequence,
according to their order in the interrupt vector table. The first handler installed has the
highest priority. Each new handler installed is added to the end of the table; each one
deallocated is removed from the list and the table is compacted.

Note: Under ProDOS 8, the interrupt handler number is equal to the handler’s
position in the polling sequence. By contrast, the value of int num under
ProDOS 16 is unrelated to the order in which handlers are polled.

Parameter Block:

?. int_num « result
2 - =
3- inf_code - pointer
o y
Offset Label Description
$00-501 int num parameter name: interrupt handler number
size and type: word result (high-order byte zero)
range of values: $0000-$00FF
The identifying number assigned to the interrupt handler by
ProDOS 16.
$02-305 int code parameter name: interrupt code

size and type: long word pointer (high-order byte zero)
range of values: $0000 0000-$00FF FFFF

The long word address of the interrupt handler routine.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$25 Interrupt vector table full
$53 Invalid parameter

APDA Draft 144 11713186

ProDOS 16: Chapter 13

DEALLOC INTERRUPT ($32)

"This function clears the entry (specified by int_nwm) for an interrupt handler from the
interrupt vector table.

Important: You must disable the associated interrupt hardware before making this
call. A fatal error will result if a hardware interrupt occurs after its entry has been
cleared from the vector table.

DEALLOC INTERRUPT has no effect on the order of the polling sequence for the

remaining handlers. Any subsequently allocated handlers will be added to the end of the
polling sequence.

Parameter Block:

?- inf_num « value
Offset Label Description
$00-$01 int num parameter name: interrupt handler number

size and type: word value (high-order byte zero)
range of values: $0000-$00FF

The identifying number assigned to the interrupt handler by
ProDOS 16.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$53 Invalid parameter

APDA Draft 145 11/13/86

Apple l1GS ProDOS 16 Reference

APDA Drdft 146 11/13/86

Part 111

The System Loader

The System Loader is an Apple IIGS tool set that works closely with ProDOS 16. Itis
responsible for loading all program code and data into the Apple IIGS memory. Itis
capable of static and dynamic loading and relocating of code and data segments,
subroutines, and libraries.

Chapter 14 explains in general terms how the System Loader works. Chapter 15 details
some of its functions and data structures. Chapter 16 gives programming suggestions for
using the System Loader. Chapter 17 shows how to make loader calls and describes each
call in detail. See Appendix E for a complete list of System Loader error codes.

APDA Draft 147 11113186

APDA Draft 148 11/13/86

Chapter 14

Introduction to the System Loader

This chapter gives a basic picture of the System Loader, defines some of the important
terms needed to describe what the loader does, describes its interactions with the Memory
Manager, and presents an outline of the procedures it follows when loading a program into
memory. Additonal related terms are defined in the Glossary.

What is the System Loader?

The System Loader is a set of software routines that manages the loading of program
segments into the Apple IIGS. It is an Apple IIGS tool set; as such, it is independent of
ProDOS 16. However, it works very closely with ProDOS 16 and with the Memory
Manager, another tool set. The System Loader has several improvements over the loading
method under ProDOS 8 on other Apple II computers:

+ It makes loading easier and more convenient. Under ProDOS 8, the only automatic
loading is performed by the boot code, which searches the boot disk for the first
. SYSTEM file (type $FF) and loads it into location $2000. If a system program
needs to call another application it must do all the work itself, either by making
ProDOS 8 calls or by providing its own loader. On the Apple IIGS, calls to the
System Loader perform the task more simply.

+ Itis a relocating loader: it loads relocatable programs at any available location in
memory. Under ProDOS 8, a program must be loaded at a fixed memory address, or
at an address specified by the system program that does the loading. The relocating
loader relieves the programmer of the burden (and restriction) of deciding where to
load programs.

» Itis a segment loader: it can load different segments of a program independently,
to use memory efficiently.

» ltis a dynamic loader: it can load certain program segments as they are needed
during execution, rather than at boot time only.

The System Loader handles files generated by the APW Linker; the linker handles files
produced by an Apple IIGS assembler or compiler. The linker, assembler, and
compilers are part of the Apple IIGS Programmer’s Workshop (APW), a powerful
and flexible set of development programs designed to help programmers produce Apple
1IGS applications efficiently and conveniently. See Chapter 6 of this manual for more
information and references on Apple IIGS Programmer’s Workshop.

APDA Draft 149 11113186

Apple 1IGS ProDOS 16 Reference

Loader terminology

The System Loader is a program that processes load files. Load files are ProDOS 16
applications or other types of program files. They contain machine-language code or data
and must follow object module format (OMF) specifications, as defined in the Apple IIGS
Programmer's Workshop Reference. Each load file consists of load segments that can
be loaded into memory independently.

Load segments can be either static or dynamic. A program’s static segments are loaded
into memory at initial load time (when the program is first started up); they must stay in
memory until the program is complete. Dynamic load segments, on the other hand, are not
placed in memory at initial Joad time; they are loaded as needed during program execution.
Dynamic loading can be automatic (through the Jump Table) or manual (at the specific
request of the application through System Loader function calls). When a dynamic
segment is no longer needed by the program that called it, it can be purged, or deleted, by
the Memory Manager.

Segments can be absolute, relocatable, or position-independent. An absolute
segment must be loaded into a specific location in memory, or it will not function properly.
A relocatable segment can execute correctly wherever the System Loader places it. Least
restricted of all is a position-independent segment; its functioning is totally unaffected by
its location in memory. It can even be moved from one location to another between
executions. Most Apple IIGS code is relocatable, but not position-independent.

Load files can contain segments of various kinds. Some segments consist of program code
or data; others provide location information to the loader. The Jump Table segment,
when loaded into memory, provides a mechanism by which segments in memory can
rigger the loading of other needed segments. Each load file can have only one Jump Table
segment. A load file can also have one segment called the Pathname segment, which
provides a cross-reference between file numbers (in the Jump Table segment) and
pathnames (on disk) of dynamic segments. A third special type of segment is the
initialization segment. It contains any code that has to be executed first, before the rest
of the segments are loaded.

When the System Loader is called to load a program, it loads all static load segments
including the Jump Table segment and the Pathname segment. The Jump Table and the
Pathname Table are constructed from these two segments, respectively. During this
process, a Memory Segment Table is also constructed in memory. These three tables
are discussed in more detail in the next chapter.

A controlling program is a program that requests the System Loader to perform an
initial load on another major program, usually an application. The User ID Manager
assigns a unique identification number (User ID) to that application, so the loader may
quickly locate all of the application’s segments if necessary. A switcher is an example of a
controlling program; ProDOS 16 and the APW Shell are also controlling programs. A
word processor is an example of an application.

APDA Draft 150 11713186

System Loader: Chapter 14

Interface with the Memory Manager

The System Loader and the Memory Manager work closely together. The Memory
Manager is an Apple IIGS tool set (firmware program) that is responsible for allocating
memory in the Apple IIGS. It provides space for load segments, tells the System Loader
where to place them, and moves segments around within memory when additional space is
needed.

When the System Loader loads a program segment, it calls the Memory Manager to allocate
a corresponding memory block. Memory blocks have attributes that are closely related
to the load segments in them. If the program segment is static, its memory block is marked
as unpurgeable (meaning that its contents cannot be erased) and fixed (meaning that its
position cannot be changed), as long as the program is running. If the program segment is
dynamic, its memory block is initially marked as purgeable but locked (temporarily
unpurgeable and fixed; subject to change during execution of the program). If the dynamic
segment is position-independent, its memory block is marked as movable; otherwise, it is
fixed.

To unload a segment, the System Loader calls the Memory Manager to make the
coresponding memory block purgeable. If the controlling program wishes to unload a/l
segments associated with a particular application (for example, at shutdown), it calls the
System Loader’s User Shutdown function, which in turn calls the Memory Manager to
purge the application’s memory blocks.

To speed up execution of a finder or switcher that may need to rapidly reload shut-down
applications, the User Shutdown function can optionally put an application into a dormant
state. The loader calls the Memory Manager to purge the application’s dynamic segments,
and make all static segments purgeable. This process frees space but keeps the unloaded
application’s essential segments in memory. However, if for any reason memory runs out
and the Memory Manager is forced to purge one of those static segments, that application
can no longer be used-—the next time it is needed, it must be loaded from its disk file. See
“User Shutdown” and “Restart” in Chapter 17.

Note: Strictly speaking, load segments are never purged or locked, those are
actions taken on the memory blocks that hold the segments. For simplicity,
however, this manual may in certain cases apply terms such as purged or locked to
segments.

A typical load segment will be placed in a memory block that is

Locked

Fixed

Purge Level = 0 (if the segment is static)
Purge Level = 3 (if the segment is dynamic)

Depending on other requirements the segment may have, such as alignment in memory, the
load segment-memory block relationship may be more complex. Table 14-1 shows all

APDA Draft 151 11113156

Apple IIGS ProDOS 16 Reference

possible relationships between the two that may hold at load time. The direct-page/stack
segment has special characteristics described in Chapter 6.

Table 14-1. Load-segment/memory-block relationships (at load time)

Load Segment Attribute Memory Block Attribute
static unpurgeable, fixed (unmovable)
dynamic purgeable, locked

absolute (ORG > 0) fixed address

relocatable (no specific relation)
position-independent not fixed (movable)

not postion-independent fixed (unmovable)

KIND = $11 fixed-bank

BANKSIZE =0 may cross bank boundary
BANKSIZE = $10 000 may not cross bank boundary
ALIGN =0 not bank- or page-aligned*
ALIGN = $100 page-aligned’

ALIGN = $10 000 bank-aligned®

direct-page/stack (KIND = §$12) purgeable, fixed-bank ($00), page-aligned

fAlignment may also be controlled by the value in
the BANKSTZE field—see Appendix D.

Note: ORG, KIND, BANKSIZE and ALIGN are segment header fields, described
in Appendix D of this manual and under “Object Module Format” in Apple IIGS
Programmer’s Workshop Reference.

A memory block can be purged through a call to the System Loader, but other attributes can
be changed only through Memory Manager calls. Memory block properties useful to an
application may include

» Start location

+ Size of block

» UserID (identifies the application the block is part of)
* Purge level (0 to 3: 0 =unpurgeable, 3 = most purgeable)

These properties may be accessed either through the Memory Segment Table (see

Chapter 15), or through the block’s memory handle, which is part of the Memory Segment
Table. If the memory handle is NIL (points to a null pointer), the memory block has been
purged.

Loading a relocatable segment
The following brief description of parts of the operation of the System Loader shows how

the linker, loader, and Memory Manager work together to produce and load a relocatable
program segment. Figure 14-1 shows the process in a simplified form.

APDA Draft ‘ 152 11/13/86

System Loader: Chapter 14

Load-file structure

Load files conform to a subset of object module format (OMF). In OMF, each module
(file) consists of one or more segments; each segment is further made up of one or more
records. In aload file specifically, each segment (apart from specialized segments such
as the load file tables described in Chapter 15) consists of a header followed by program
code or data, in turn followed (if the segment is relocatable) by a relocation dictionary.
The relocation dictionary is created by the linker as it converts an object segment into a load
segment. The program code or data consists of two types records: LCONST records,
which hold all code and data, and DS records, used for filling space with zeros. The
relocation dictionary consists of two general types of records: RELOC records, which give
the loader the information it needs to resolve local (intrasegment) references, and
INTERSEG records, which give the loader the information it needs to resolve external
(intersegment) references. ¢cRELOC, cINTERSEG, and SUPER records are also found in
relocation dictionaries—they are compressed versions of RELOC and INTERSEG records.
The detailed formats of all OMF records are presented in Apple IIGS Programmer's
Workshop Reference.

‘When a relocatable segment is loaded into memory, it is placed at a location determined by
the Memory Manager. Furthermore, only the first part of the segment (the program code
itself) is loaded into the part of memory reserved by the Memory Manager; the relocation
dictionary, if present, is loaded into a buffer or work area used by the loader. After loading
the segment, the loader relocates it, using the information in the relocation dictionary.

Memory Bank $XX
Object Flle: Load File: @
Segmen: [se mert]
! 01 @ ﬁff?m)_, ..., The Looder patches
Segmen: - Local_ referonces
2 The System Loader i Segmentn |z..! by using RELOC
Segmon: Segment loads the code part of Segment i 2 code records to caleulate
3 2 _Info memory at address n i - offtets from Ao
“i }i }l \ (assigned by the Memory Manager) & L Bf':aﬂwm_’ ey
. = ! Theloader patches
——— o :
b LOADER f'. Intersegment refevences to
12 k [~ } ——sogment p byusing
= header ! L INTERSEG records
. . . . « Tocdadale offsets from
N . . . A (the Loader gets the
Ay N 3 3 code | i vauefor A9 fromthe
t '\ } { Momory Segment Table)
(D Memory Bank 3YY
ezt :
relocafion :
The Linker produces load segment n : i
from one or more chiect segments. dicionary Sagment p o
The load segmentt confains a header, code [#-
code. ond relocatlon diclionary.
The iglocation dictionary has
RELOC and INTERSEG records.
D —

Figure 14-1. Loading a relocatable segment

APDA Draft 153 11/13186

Apple IIGS ProDQOS 16 Reference

Relocation

After the System Loader has placed a load segment in memory, it must (unless the segment
consists of absolute code) relocate its address references. Relocation describes the
processing of a load segment so that it will execute properly at the memory location at
which it has been loaded. It consists of patching (substituting the proper values for)
address operands that refer to locations both within and external to the segment. The
relocation dictionary part of the segment contains all the information needed by the loader to
do this patching. Relocation is performed as follows:

1. Local references in the load segment (coded in the original object file as offsets from
the beginning of the segment) are patched from RELOC records in the relocation
dictionary. Using the starting address of the segment (available from the Memory
Manager through the Memory Segment Table), the loader adds that address to each
offset, so that the correct memory address is referenced.

2. External references (references to other segments) are coded in the original object
module as global variables (subroutine names or entry points). The linker and loader
handle them as follows:

a. If the reference is to a static segment, the linker will have calculated the proper
file number, segment number, and offset of the referenced (external) segment,
and placed that information in an INTERSEG record in the relocation dictionary.
When the load segment is loaded, the loader uses the INTERSEG record and the
memory location of the external segment (available from the Memory Manager
through the Memory Segment Table), and then patches the external reference
with the proper memory address of the external segment.

b. If the reference is to a dynamic segment, the linker will have created a slightly
different INTERSEG record: instead of referencing the file number, segment,
and offset of the referenced external segment itself, the INTERSEG record
references the file number, segment number, and offset of an entry in the Jump
Table. Therefore, when the load segment is loaded, the loader patches the
reference to point to the Jump Table entry. That entry, in turn, is what transfers
control to the external segment at its proper memory address (if and when the
referenced segment is loaded).

The Jump Table and the reasons for this indirect referencing are described further in
Chapter 15. The main point of interest here is that, when it performs relocation, the
loader doesn’t care whether an intersegment reference is to a static or to a dynamic
segment—it treats both in exactly the same way.

The System Loader performs several other functions when it loads dynamic segments,
including searching for the name of the segment in the Pathname Table before loading, and
patching the appropriate Jump Table entry afterward. These and other functions are
described in more detail in the next two chapters.

APDA Draft 154 11/13/86

Chapter 15

System Loader Data Tables

This chapter describes the data tables set up in memory during a load, to provide cross-
reference information to the loader. The Memory Segment Table allows the loader to
keep track of which segments have been loaded and where they are in memory. The Jump
Table allows programs to reference routines in dynamic segments that may not currently
be in memory. The Pathname Table provides a cross-reference between file numbers
and file pathnames of dynamic segments. The Mark List speeds relocation by keeping
track of relocation dictionaries.

Memory Segment Table

The Memory Segment Table is a linked list, each entry of which describes a memory block
known to the System Loader. Memory blocks are allocated by the Memory Manager
during loading of segments from a load file, and each block corresponds to a single load
segment. Figure 15-1 shows the format of each entry in the Memory Segment Table.

handle to

- nextentry | 4bvies
handie to]

[previousentry 4 bytes

- UserlD . 2 bytes

memory handle 4 4 byfes

= E

load-file no. 4 2 bytes

- load-segment no. - 2 bytes

Lload-segment kind4 2 byfes

Figure 15-1. Memory Segment Table entry

APDA Draft 155 11113186

Apple I1GS ProDOS 16 Reference

The fields have the following meanings:

Handle to next entry: The memory handle of the next entry in the Memory
Segment Table. This number is O for the last entry.

Handle to previous entry: The memory handle of the previous entry in the
Memory Segment Table. This number is O for the first entry.

User ID: The identification number assigned to the memory block this segment
inhabits. Normally, the User ID is available directly from the Memory Manager
through the memory handle. However, if the block has been purged its handle is NIL
and the User ID must be read from this field.

Memory handle: The identifying number of the memory block, obtained from the
Memory Manager. Additional memory block information is available through this
handle. This handle is NIL if the block has been purged.

Load-file number: The number of the load file from which the segment was
obtained. If the segment is in the initial load file, the number is 1.

Load-segment number: The segment number of the segment in the load file.

Load-segment kind: The value of the KIND field in the load segment’s header.
Segment kinds are described in Appendix D.

Jump Table

When a program (load file) is initially loaded, only the static load segments are placed in
memory; at that point the System Loader has all the information it needs to resolve all
symbolic references among them. Until a dynamic segment is loaded, however, the loader
cannot resolve references to it because it does not know where in memory it will be. Thus
static segments may be directly referenced (by each other and by dynamic segments), but
dynamic segments can be referenced only through JST. (Jump to Subroutine Long) calls to
the Jump Table. This section describes how that mechanism works.

The Jump Table is a structure that allows a program to reference dynamic segments. It
consists of the Jump Table Directory and one or more Jump Table segments.

On disk, Jump Table segments are load segments (of kind $02), created by the linker to
resolve references to dynamic segments. Any load file or run-time library file may contain
a Jump Table segment.

In memory, the Jump Table Directory is created by the loader as it loads Jump Table
segments. The Jump Table Directory is a linked list, each entry of which points to a single
Jump Table segment encountered by the loader. Figure 15-2 shows the format of an entry
in the Jump Table Directory.

APDA Draft 156 11/13186

System Loader: Chapter 15

handle fo
nextentry | 4 bytes

handle to
previousentry 1 4 bytes

- UserlD 1 2 bytes

memory handle 1 4byfes

s]

T T

Figure 15-2. Jump Table Directory entry

The fields have the following meanings:

Handle to next entry: The memory handle of the next entry in the Jump Table
Directory. This number is O for the last entry.

Handle to previous entry: The memory handle of the previous entry in the Jump
Table Directory. This number is O for the first entry.

User ID: The identification number assigned to the Jump Table segment that this
Directory entry refers to.

Memory handle: The handle of the memory block containing the Jump Table
segment that this Directory entry refers to.

Like the Directory, the individual Jump Table segments consist of a series of entries. The
next three subsections describe the creation, loading, and use of a single Jump Table
segment entry. The entry is used to resolve a single JSL instruction in a program segment.

Note: Throughout this manual, the term Jump Table entry refers to a Jump Table
segment entry, not a Jump Table directory entry.

Creation of a Jump Table entry

The Jump Table load segment is created by the linker, as it processes an object file, Each
time the linker encounters a JSL to a routine in an external dynamic segment, it creates an
INTERSEG record in the relocation dictionary of the load segment, and (if it has not dene
so already) an entry for that routine in the Jump Table segment. The INTERSEG record
links the JSL to the Jump Table entry that was just created. Figure 15-3 shows the format
of the Jump Table entry that the linker creates. See also Figure 15-5a.

APDA Draft 157 11713186

Apple IIGS ProDOS 16 Reference

- UserD { 2byles

L loadHile no. 4 2bvies

_load-segmenit no. 4 2byfes

[load-segment | 4pytes

offset
3 JSL fo 1
L Jump Table Load 4 4 byfes
L. function -

Figure 15-3. Jump Table entry (unloaded state)

The fields have the following meanings:
User ID: The User ID of the referenced dynamic segment.
Load-file number: The load-file number of the referenced dynamic segment.

Load-segment number: The load-segment number of the referenced dynamic
segment.

Load-segment offset: The location of the referenced address within the referenced
dynamic segment.

JSL to Jump Table Load function: A long subroutine jump to the Jump Table
Load function. The Jump Table Load function is described in Chapter 17.

The final entry in a Jump Table segment has a load-file number of zero, to indicate that
there are no more entries in the segment.

Modification at load time

Atload time, the loader places the program segment and the Jump Table segment into
memory (it does not yet load the referenced dynamic segment). To link the Jump Table
segment with any other Jump Table segments it may have loaded, it creates the Jump Table
Directory. The Jump Table is now complete.

Using the information in the INTERSEG record, the loader patches the JSL instruction in

the program segment so that it references the proper part of the Jump Table in memory. It
also patches the actual address of the Jump Table Load function into the Jump Table entry.
The Jump Table segment is now in its unloaded state. See Figure 15-5b.

APDA Draft 158 11/13/86

System Loader: Chapter 15

Use during execution

During program execution, when the JSL instruction in the original load segment is
encountered, the following sequence of events takes place:

1. Control transfers to the proper Jump Table entry.

2. The JSL in the entry transfers control to the System Loader’s Jump Table Load
function.

3. The Jump Table Load function gets the load-file number, load-segment number, and
load-segment offset of the dynamic segment from the Jump Table entry. Then it gets
the file pathname of the dynamic segment from the Pathname Table.

4. The System Loader loads the dynamic segment into memory.

5. The loader changes the dynamic segment’s entry in the Jump Table to its loaded
state. The loaded state is identical to the unloaded state, except that the JSL to the
Jump Table Load function is replaced by a JML (unconditional Jump Long)to the
external reference itself. Figure 15-4 shows the format for the loaded state.

- UseriD 4 2byfes

- loadfile no. 1 2bytes

load-segment no. 4 2 byfes

i load-segment 4 bvies
3 offset v

JML to p
[the external 4 4byles
i reference

Figure 15-4. Jump Table entry (loaded state)

6. The loader transfers control to the dynamic segment. When the new segment has
finished its task (typically it is a subroutine and exits with an RTL), control returns to
the statement following the original JSL instruction. See Figure 15-5c.

Jump Table diagram
Figure 15-5 is a simplified diagram of how the Jump Table works. It follows the creation,

loading, and use of a single Jump Table entry, needed to resolve a single instruction in load
segment n. The instruction is a JSL to a subroutine named routine in dynamic segment a.

APDA Draft 159 11/13/86

Apple IIGS ProDOS 16 Reference

a. Creation by the linker:

Object Segment n @

(header)

JSL to routine

in dynamic
segment o

|

(code)

Jsi

a

Dynamic
Segment

routing

b. Modification at Load Time:

Lload Segment n

(header)

(code)
I JsL

(reloc?c’rion
dictionary)

L
T, iy

Jump Table Seg

(header

APDA Draft

The loader loads the load file

into memory, Including
segment n and the
Jump Table segment

: G| EE—

Load Segment n

When it encounters a JSL,
the Unker creates an
INTERSEG record In
the load segment and an
entry in the Jump Table segment

LINKER

(headen)

(code)
JsL

(reloéaﬂon
dictionary)

INTERSEG record

zzzgaa..— referencing the
Jump Table entry

Jump Table Segment

Lheader;

Memeory Bank $XX

Segment
(cor::le)

Jump Table entry
referencing routine
in dynamic segmenta

®

s, e sing the INTERSEG 1ecord,

.
.
.

Jump Table

RO RRARRRRRERRSIRRIS

1 |
Memory Bank $YY

BT ELALLRRRBEET g 4 g WEERRW

“dp -t

Ay

the Loader patches the
comect address of the
Jump Table enfry onto the JSL

@

<+ g the Loader patches the

correct address of the
Jump Table Load function
onto the Jump Table entry

Figure 15-5. How the Jump Table works

160

11113186

System Loader: Chapter 15

¢. Use During Execution:

Memory Bank $XX

Segwem

(code)

] JSL. to Jump Table
ertry encountered
during execution

M: Bi :
?m cank $YY Execution passes fo
Jump Toble Jump Table entry

Execufion passes to
| Jump Tabie Load function

Memery Bank $22 I I_ E
é)eymmli i) s
{ - L]
e o - Jump Table Load Memory Bank $Y¥ 1 k1 from ®
function loads } t
ky dynamic segment @ Jump Tabie| #520MeN) oader changes
i ! Jump Table entry 1o
to @ gt Its loaded state
R 1 $ @)
1 e
L] L] ‘. :
. | ' with an RTL back
: | i to segment n
Memory Bank $22 .
oyrame HMto . s
seggpent s @ Mermory Bank $2Z i
¢ |
’ Loader passes mic 1§
e, ':4 control fo ouline Segglen* 5
L]
]

3

Figure 15-5. How the Jump Table works (continued)

Pathname Table

The Pathname Table provides a cross-reference between file numbers and file pathnames,
to help the System Loader find the load segments that must be loaded dynamically. The
Pathname Table is a linked list of individual pathname entries; it starts with an entry for the
pathname of the initial load file, and includes any entries from segments of kind $04
(Pathname segments) that the loader encounters during the load. Also, if run-time library
files are referenced during program execution, their own pathname segments are linked to
the original one.

A load file’s Pathname segment (KIND = $04) is constructed by the linker and contains
one entry for each run-time library file referenced by the file. Each entry consists of a load-
file number, file date and time, and a pathname. The exact format for Pathname-segment
entries is given in Apple IIGS Programmer’s Workshop Reference.

APDA Draft 161 11/13/86

Apple IIGS ProDOS 16 Reference

The Pathname Table is constructed in memory by the loader; its entries are identical to
Pathname segment entries, except that each also contains two link handles, a User ID field,
and direct-page/stack information. Figure 15-6 shows the format of a Pathname Table

entry.

handieto]
next entry { 4 bytes

handleto]
previous entry A bwiey

UserD { 4 bytes

loadfile no, 4 2bvyfes

L file date J 2bytes

L file fime J 2bytes

address of 2 byfes
"direct page/stack]

size of
direct page/stack” 2iwies
(length byte)
- pathname 1

N

Figure 15-6. Pathname Table entry

The fields have the following meanings:

Handle to next entry: the memory handle of the next entry in the Pathname Table.
For the last entry, the value of the handle is 0.

Handle to previous entry: the memory handle of the previous entry in the
Pathname Table. For the first entry, the value of the handle is 0.

User ID: the ID associated with this entry. Generally, each load file has a unique
User ID, and a single entry in the Pathname Table. Each new run-time library
encountered during execution is assigned the application’s User ID.

File number: the number assigned to a specific load file by the linker. File number 1
is reserved for the initial load file.

APDA Draft 162 11/13/56

System Loader: Chapter 15

File date: the date on which the file was last modified.
File time: the time at which the file was last modified.

The file date and file time are ProDOS 16 directory items retrieved by the linker during
linking. They are included in the Pathname Table as an identity check on run-time
library files (they are ignored for other file types). To ensure that the run-time library
file used at program execution is the same one originally linked by the linker, the
System Loader compares these values to the directory entries of the run-time library file
to be loaded. If they do not match, the System Loader will not load the file.

Direct-page/stack address: the starting address of the buffer allocated (at initial
load) for the file’s direct page (zero page) and stack.

Direct-page/stack size: the size (in bytes) of the buffer allocated for the file’s direct
page and stack.

The direct-page/stack address and size fields are in the Pathname Table to allow the
Restart function to more quickly resurrect a dormant application (see “Restart” and
“User Shutdown” in Chapter 17). These two fields are ignored for run-time library
files.

File pathname: the full or partial pathname of this entry. Partial pathnames with the
following two prefix numbers are stored in the table unchanged (unexpanded):

1/ = the current application’s subdirectory

2/ = system library subdirectory (initially /V/SYSTEM/LIRBS, where /V/ is the
boot volume name)

The System Loader expands all other partial pathnames before storing them in the
Pathname Table.

The pathname is a Pascal string, meaning that it consists of a length byte (of value n)
followed by an ASCII string (n bytes long) that is the pathname itself.

Mark List

The Mark List is a table constructed by the System Loader to keep track of where, within a
load file, each segment’s relocation dictionary is located. The Mark List speeds relocation
because, once a code segment is loaded, the loader needn't search through it again to find
the relocation dictionary—the Mark List allows it to go directly to the location of the
segment’s relocation dictionary.

Figure 15-7 shows the format of the Mark List.

APDA Draft 163 11/13/86

Apple IIGS ProDOS 16 Reference

| next avallable

space] 4 bytes
" end of !
)‘ table 1 4 bytes

-load-segment no. f 2 byfes

L File Mark J 4 bytes

~load-segment no. 1 2 byfes

- Hie Mark 4 4 bytes

Figure 15-7. Mark List format

The fields have the following meanings:

Next available space: The relative offset (in bytes from the beginning of the Mark List)
to the next empty space in the Mark List.

end of table: The relative offset to the end of the Mark List—in other words, its size in
bytes.

load-segment number: The number of the load segment whose relocation dictionary is
specified in the following field.

File Mark: the relative offset (in bytes from the beginning of the load file) to the

relocation dictionary of the segment specified in the preceding field. File Mark in this table
has the same meaning as Mark, or current file position, in ProDOS 16 (see Chapter 2).

APDA Draft 164 11/13/86

Chapter 16

Programming With
the System Loader

This chapter discusses how you can use the capabilities of the System Loader at several
different levels, depending on the complexity of the programs you wish to write. It also
gives reqirements for designing controlling programs (shells)}—programs that control the
loading and execution of other programs.

Programming suggestions for ProDOS 16 are in Chapter 6 of this manual. More general
information on how to program for the Apple IIGS is available in Programmer’s
Introduction to the Apple IIGS. For language-specific programming instructions, consult
the appropriate language manual in the Apple IIGS Programmer’s Workshop (see “Apple
IIGS Programmer’s Workshop” in Chapter 6).

Static programs

The functioning of the System Loader is completely transparent to simple applications.
Any program that is loaded into memory in its entirety at the beginning of execution, and
which does not call any other programs or routines that must be loaded during run time,
need not know anything about the System Loader. If such a static program is in proper
object module format, it will be automatically loaded, relocated, and executed whenever it
is called.

Programming with dynamic segments

You may write Apple IIGS programs that use memory more efficiently than the simple
application described above. If your program is divided into static and dynamic segments,
only the static segments are loaded when the program is started up. Dynamic segments are
loaded only as needed during execution, and the memory they occupy is available again
when they are no longer needed.

Dynamic loading also is transparent to the typical application; no System Loader commands
are necessary to invoke it. If you segment your program as you write the source code, and
if you define the proper segments as dynamic and static when the object code is linked, the

loading and execution of dynamic segments will be completely automatic.

Because segments are specified as static or dynamic at link time, you may experiment with
several configurations of a single program after it has been assembled. For example, you
might first run the program as a single static segment, then run several different static-
dynamic combinations to see which gives the best performance for the amount of memory

APDA Draft 165 I1/13/186

Apple IIGS ProDOS 16 Reference

required. In this way the same program could be tailored to different machines with
different memory configurations.

In general, the least-used parts of a program are the best candidates for dynamic segments,
since loading and executing a dynamic segment takes longer than executing a static
segment. Furthermore, making a large, seldom-used segment dynamic might make the
initial load of a program faster, since the static part of the load file will be smaller.

Dynamic segments can be used as overlays (segments with the same fixed starting address
that successively occcupy the same memory area), but this structure is not recommended
for the Apple 1IGS. If all segments are instead relocatable, the Memory Manager has more
flexibility in finding the best place for each allocated segment, whether or not it happens to
be a space formerly occupied by another segment of the same program.

Programming with run-time libraries

Note: Although the System Loader supports run-time libraries, initial releases of
other Apple 1IGS system software may not. This section discusses how to program
for run-time libraries when full support for them becomes available.

A run-time library is a load file. Like other libraries or subroutine files, it contains general
routines that may be referenced by a program. As with other libraries, references to it are
resolved by the linker.

Unlike other libraries, however, its segments are not physically appended to the program
that references it; instead, the linker creates a reference to it in the program’s load file. The
run-time library remains on disk (or in memory) as an independent load file; when one of
its segments is referenced during program execution, the segment is then loaded and
executed dynamically.

As with dynamic segments, loading of run-time library segments is transparent to the
typical application. No System Loader commands are necessary to invoke it; as far as the
loader is concerned, the run-time library is just another load file with dynamic segments.

The most useful difference between run-time library segments and other dynamic segments
is that they may be shared among programs. Routines for drawing or calculating, dialog
boxes or graphic images, or any other segments that might be of use to more than one
program can be put into run-time libraries. And, being dynamic, they help keep the initial
load file small.

Important: In using both run-time libraries and other dynamic segments, make
sure that the volumes containing all needed segments and libraries are on line at run
time. A fatal error occurs if the System Loader cannot find a dynamic segment it
needs to load.

APDADrafi 166 11113186

System Loader: Chapter 16

User control of segment loading

To make the greatest use of the System Loader, programs may make loader calls directly.
For most applications this is not necessary, but for programs with specialized needs the
System Loader offers this capability.

Your application can manually load other segments using the Load Segment By Number
and Load Segment By Name calls. Load Segment By Number requires the application to
know the load file number and segment number of the segment to load; Load Segment By
Name uses the load file pathname and segment name of the desired segment. Both require
User ID as an input; the User ID for each segment and each pathname are available from the
Memory Segment Table and Pathname Table, respectively. Other segment information
available through the Get Load Segment Info call.

One advantage of manually loading a dynamic segment is that it can be referenced in a more
direct manner. Automatically-loaded dynamic segments can be referenced only through a
JSL to the Jump Table; however, if the segment is data such as a table of values, you may
wish to simply access those values rather than pass execution to the segment. By manually
loading the segment, locking it, and dereferencing its memory handle (obtaining a pointer
to the start of the segment), you may then directly reference any location in the table. Of
course, since the loader does not resolve any symbolic references in the manually loaded
segment, the application must know its exact structure.

Note: Manually-loaded dynamic segments on the Apple IIGS can be used for the
same purposes as resource files on the Macintosh.

A program is responsible for managing the segments it loads. That is, it must unload them
(using Unload Segment By Number) or make them purgeable and unlocked (through
Memory Manager calls) when they are no longer needed.

Designing a controlling program

A program may cause the loading of another program in one of two ways:

» The program can make a ProDOS 16 QUIT call. ProDOS 16 and the System Loader
remove the quitting program from memory, then load and execute the specified new
program.

» The program can call the System Loader directly. The loader loads the specified new
program without unloading the original program, then hands control back to the

original program.

A controlling program is an application that loads and executes other programs using
the second method. It uses powerful System Loader calls that are normally reserved for
use by ProDOS 16. Certain types of finders, switchers and shells may be controlling
programs; if you are writing such a program you should follow the conventions given here.

An application needs to be a controlling program only if it must remain in memory after it
calls another program. If it is necessary only that control resurn to the original program
after the called program quits, the ProDOS 16 QUIT call is sufficient for that. For
example, a finder, which always returns after an application that it calls quits, does not

APDA Draft 167 11713186

Apple IIGS ProDOS I6 Reference

have to be a controlling program; it is not in memory while the application is running. On
the other hand, the Apple IIGS Programmer’s Workshop Shell, which has functions needed
by the subprograms that it calls, is a controlling program; it remains active in memory while
its subprograms execute.

Note: Subprograms are file type $B5, called shell applzcanom. They too must
follow certain conventions. See “Object Module Format” in Apple IIGS
Programmer’s Workshop Reference, and Programmer’ s Introduction to the
Apple IIGS.

ST

If you write a controlling program, please follow these guicclines:

1. The controlling program should request a User ID for the subprogram, either directly
from the User ID Manager or indirectly, by calling the System Loader’s Initial Load
function with an input User ID (MainID) of zero. The controlling program should
then pass the returned User ID to the subprogram in the accumulator.

2. Use the System Loader’s Initial Load function to first load any subprogram. The
function returns the subprogram’s starting address and User ID to your controlling
program; the controlling program can then decide when and where to pass control to
the subprogram.

3. When your controlling program passes execution to the subprogram, it may also
pass parameters and an identifier string. The pointer to the buffer containing that
information should be placed in the X (high-order word) and Y (low-order word)
registers. The buffer should contain an 8-character shell identifier string, followed
by a null-terminated string consisting of the complete input line or command line
through which the subprogram was called.

Note: ProDOS 16 does not pass an identifier string or command line when it
launches a shell application. It places zeros in the X and Y registers.

4. Your controlling program is responsible for establishing the appropriate input and
output vectors for its subprograms. For example, when ProDOS 16 launches a $B5
file, it sets the global I/O hooks to point to the firmware Pascal drivers for 80-
column screen and keyboard. The identifier string your controlling program passes
to the subprogram allows it to check to make sure it is running in the proper I/O
environment (that is, under your controlling program and not another).

5. The controlling program should observe the ProDOS 16 conventions for register
initialization and direct-page/stack allocation. See Chapter 6.

6. If you want your controlling program to support shell applications that terminate
with a ProDOS 16 QUIT call, the controlling program must intercept all ProDOS 16
calls. That way when a subprogram quits, the controlling program, rather than
ProDOS 16, regains control.

7. When the shell application exits back to the controlling program, it leaves an error
code in the accumulator, Two values are reserved: $0000 means no error, and
SFFFF means a non-specific shell-application error. Your controlling program and
subprograms may define any other errors as needed.

8. Your controlling program is totally responsible for the subprogram’s disposition.
When the subprogram is finished, the controlling program must remove it from
memory and release all resources associated with its User ID. The best way to do
this is to call the System Loader’s User Shutdown function,

9. If the subprogram itself manually loads other programs, then it is also a controlling ~
program and must observe all the conventions listed here. in particular, it must be

APDA Draft 168 11113186

System Loader: Chapter 16

certain to dispose of all memory resources associated with the subprogram that it
loaded, before itself quitting and passing control back to the original controlling
program.

The practice of using shell applications as controlling programs is discouraged.

Shutting down and restarting applications

Through alternate use of the User Shutdown and Restart functions, a controlling program
can rapidly switch execution among several applications. If none of an application's static
segments have been removed from memory since shutdown, Restart brings the application
back rapidly because disk access is not required.

However, only software that is restartable can be restarted in this way. Restartable
software reinitializes its variables every time it gains control; it makes no assumptions about
the state of the machine when it starts up. If a subprogram exits with a QUIT call, it
specifies whether it is restartable or not; otherwise, the controlling program is responsible
for deciding whether a program qualifies as restartable.

Summary: loader calls categorized

The following table categorizes System Loader calls by the types of programs that make
them. Most applications, whether their segments are static or dynamic, and whether or not
they use run-time libraries, need make none of these calls. Applications that load dynamic
segments manually may call any of the user-callable functions. Controlling programs and
ProDOS 16 call the system-wide functions. Only the System Loader itself may call the
internal functions. Functions not listed in Table 16-1 either do nothing or are executed only
at system startup.

Table 16-1. Systemn Loader functions categorized by caller

User-Callable System-Wide Internal

Loader Version Initial Load Jump Table Load
Loader Status Restart Cleanup

Load Segment By Number Get User ID

Unload Segment By Number Get Pathname

Load Segment By Name User Shutdown

Unload Segment

Get Load Segment Info

APDA Draft 169 11713186

Apple 11GS ProDOS 16 Reference

APDA Draft 170 - 11113186

Chapter 17

System Loader Calls

Introduction

This chapter explains how System Loader functions are called, and describes the following

calls:

Number
$01
$02
$03
$04
$05
$06
$09
$0A
$0B
$0C
$0D
$0E
$OF
$10
$11
$12

Function

Loader Initialization
Loader Startup

Loader Shutdown

Loader Version

Loader Reset

Loader Status

Initial Load

Restart

Load Segment By Number
Unload Segment By Number
Load Segment By Name
Unload Segment

Get Load Segment Info
Get User ID

Get Pathname

User Shutdown

Jump Table Load

Cleanup

How calls are made

Purpose

(executed at system startup)
(no function)

(no function)

returns System Loader version
(no function)

returns initialization status
loads an application

restarts a dormant application
loads a single segment

unloads a single segment

loads a single segment

unloads a single segment
returns a segment’s handle
returns User ID for a pathname
returns pathname for a User ID
makes an application dormant
loads a dynamic segment

frees memory space

The System Loader is an Apple 1IGS tool set (tool number 17, or hexadecimal $§11). You
call its functions using either macro calls (not described here) or the standard Apple IIGS
tool calling sequence, as follows:

1. Push any required space for returned results onto the stack.
2. Push each input value onto the stack, in the proper order.

APDA Draft

171

11/13/86

Apple IIGS ProDOS 16 Reference

3. Execute the following call block: —

LDX #511+FuncNum| 8
JSL Dispatcher

where

#$11 is the System Loader tool set number
FuncNum is the number of the function being called
(| 8 means “shift left by 8 bits™.)
Dispatcher is the address of the Tool Dispatcher ($E1 00 00).

It is the responsibility of the caller (usually a controlling program) to prepare the stack for
each function it calls, and to pull any results off the stack. Error status is returned in the
accumulator (A register); furthermore, the carry bit is set (1) if the call is unsuccessful, and
cleared (0) if the call is sucessful.

The Jump Table Load function does not use the above calling sequence, and cannot be
called directly by an application. It is called indirectly, through a call to a Jump Table
entry. The absolute address of the function is patched into the Jump Table by the System
Loader at load time.

Parameter types
There are four types of parameters passed in the stack: values, results, pointers, and
handles. Each is either an input to or an output from the loader function being called.

+ A value is a numerical quantity, either 2 bytes (word) or 4 bytes (long word) in
length, that the caller passes to the System Loader. It is an input parameter.

+ A result is a numerical quantity, either 2 bytes (word) or 4 bytes (long word) in
length, that the System Loader passes back to the caller. It is an output parameter.

+ A pointer is the address of a location containing data, code, or buffer space in which
the System Loader can receive or place data. A pointer may be 2 bytes (word) or 4
bytes (long word) in length, The pointer itself, and the data it points to, may be
either input or output.

+ A handle is a special type of pointer: it is a pointer to a pointer. It is the 4-byte
address of a location that izself contains the address of a location containing data,
code, or buffer space. In System Loader calls, a handle is always an output.

Format for System Loader call descriptions
The following sections describe the System Loader calls in detail. Each description
contains these elements:

» the full name of the call

« a brief description of what function it performs

« the call’s function number

« the call’s assembly-language macro name (use it if you make macro calls)

APDA Draft 172 11/13/86

System Loader: Chapter 17

+ the call’s parameter list (input and output)

+ the stack configuration both before and after making the call

+ a list of possible error codes

+ the sec}llliencc of events the call invokes (if the brief description is not complete
enough).

Parameter list note: In the parameter lists, input parameters are listed in the
order in which they are pushed onto the stack; output parameters are listed in the
order in which they are pulled from the stack. Check the stack diagrams if you are
uncertain of the proper order in which to push any of the parameters.

Stack diagram note: Unlike other memory tables in this manual, the stack

diagrams are organized in units of words—that is, each tick mark represents two
bytes of stack space.

APDA Draft 173 11/13/86

Apple IIGS ProDOS 16 Reference

Loader Initialization ($01)

This routine initializes the System Loader; it is called by the system software at boot time.
Loader Initialization clears all loader tables and sets the initial state of the system, making
no assumptions about the current or previous state of the machine. The System Loader’s
global variables (see Appendix D) are defined at this time.

The Initialization routine is required for all Apple IIGS tool sets.
Function Number: $01
Macro Name: <LoaderInit

Parameters:

(none)

Possible Errors:

(none)

APDA Draft 174 11/13/86

System Loader: Chapter 17

Loader Startup ($02)

The Startup routine is required for all Apple IIGS tool sets. For the System Loader, this
function does nothing and need never be called.

Function Number: $02
Macro Name: LoaderStartup

Parameters:

(none)

Possible Errors:

(none)

APDA Drdft 175 11113186

Apple IIGS ProDOS 16 Reference

Loader Shutdown ($03)

The Shutdown routine is required for all Apple IIGS tool sets. For the System Loader, this
function does nothing and need never be called.

Function Number: $03
Macro Name: LoaderShutdown

Parameters:

(none)

Possible Errors:

(none)

APDA Draft 176 11/13/186

System Loader: Chapter 17

Loader Version ($04)

The Loader Version function returns the version number of the System Loader currently in
use. The version number has this format:

Byte 1 Byte 0

Bit: wmglagmgn;log?;a 71615]41312]1]0
B

Value: Major Release No. | Minor Release No.

where

Byte 0 is the minor release number (= 0 for System Loader version 1.0)
» Byte 1 is the major release number (= 1 for System Loader version 1.0)
* B (the most significant bit of byte 1) = O for final releases
=] for all prototype releases

The Version routine is required for all Apple IIGS tool sets.

Function Number: $04

Macro Name: 1loaderversion

Parameters:
Name Size and Type
Input: (none)
Output: Loader version word result (2 bytes)

Stack Before Call;

previous contents

(result space)
[4—SP
Stack After Call:
previous contents
Version
4~ Sp

APDA Draft 177 11/13/86

Apple 1IGS ProDOS 16 Reference

Possible Errors:

(none)

APDA Draft

178

11713186

System Loader: Chapter 17

Loader Reset ($05)

The Reset routine is required for all Apple IIGS tool sets. For the System Loader, this
function does nothing and need never be called.

Function Number: $05
Macro Name: LoaderReset

Parameters:

(none)

Possible Errors:

(none)

APDA Draft 179 11713186

Apple IIGS ProDOS 16 Reference

Loader Status ($06)

This routine returns the current status (initialized or uninitialized) of the System Loader. A
nonzero result means TRUE (initialized); a zero result means FALSE (uninitialized). A
result of TRUE is always returned by this call because the System Loader is always in the
initialized state.

The Status routine is required for all Apple IIGS tool sets.
Function Number: $06

Macro Name: LoaderStatus

Parameters:
Name Size and Type
Input: (none)
Output: status word result (2 bytes)

Stack Before Call:

previous contents

(result space)
4—SP
Stack After Call:
previous contents
Status
4~ SP

Possible Errors:

(none)

APDA Draft 180 11/13/86

System Loader: Chapter 17

Initial Load ($09)

This function is called by a controlling program (such as a shell or a switcher) to ask the
System Loader to perform an initial load of a program.

Function Number: $09

Macro Name: 1Initialload

Parameters:
Name Size and Type
Input: User ID word value (2 bytes)
address of load-file pathname long word pointer (4 bytes)
special-memory flag word value (2 bytes)
Output: User ID word result (2 bytes)
starting address long word pointer (4 bytes)
address of direct-page/
stack buffer word pointer (2 bytes)
size of direct-page/
stack buffer word result (2 bytes)

Stack Before Call:

previous contents

(resuft space)
(result space)

- (result space) -

(result space)
UserD

address of
load-file name

special-memory flag

SP

APDA Draft 181 11113186

Apple IIGS ProDOS 16 Reference

Stack After Call:

previous contents

dir. page/stack size
dir. page/stack addr,

- starting address -
| UserlD
<4—SP
Possible Errors:
$1104 File is not a load file
$1105 System Loader is busy
$1109 SegNum out of sequence
$110A Illegal load record found
$110B Load segment is foreign
$00xx ProDOS 16 error
$02xx Memory Manager error

Sequence of Events:

When the Initial Load function is called, the following sequence of events occurs.
1. The function checks the Type ID and MainID fields of the specified User ID.

a. If both fields are nonzero, the System Loader uses it to allocate space for the
segments to be loaded.

b. If the TypeID field is zero, the System Loader obtains a new User ID from the
User ID Manager, to assign to all segments of that file. The new TypeID is
given the value 1, meaning that the new file is classified as an application.

c. Ifonly the MainID field is zero, the System Loader obtains a new User ID from
the User ID Manager, using the supplied TypeID and AuxID.

The User ID Manager (described in Apple lIGS Toolbox Reference) guarantees
that User ID’s are unique to each application, tool, desk accessory, and so forth.
See Appendix D of this manual for a brief description of the User ID format and
the TypeID field.

2. The function checks the value of the special-memory flag. If it is TRUE (nonzero),
the System Loader will not load any static segments into special memory (banks $00
and $01—see Chapter 3). The special-memory flag does not affect the load
addresses of dynamic segments.

3. The function calls ProDOS 16 to open the specified (by pathname) load file. If any
ProDOS 16 error occurs, or if the file is not a load file (type $B3-$BE), the System
Loader returns the appropriate error code.

Note: If the load file is a ProDOS 8 system file (type $FF) or a ProDOS 8 binary
file (type $06), the loader will not load it.

APDA Draft 182 11/13/86

Svystem Loader: Chapter 17

4. Once the load file is opened, the System Loader adds the load-file information to the
Pathname Table, and calls the Load Segment By Number function for each static
segment in the load file.

« If any static segment loaded is an Initialization Segment (segment kind=$10), the
System Loader immediately transfers control] to it. When the System Loader
regains control, it loads the rest of the static segments without passing control to
them.

» If a direct-page/stack segment (KIND=$92) is loaded, the System Loader returns
the segment’s starting address and size.

Note: The System Loader treats a direct-page/stack segment as a locked, dynamic
segment. The segment cannot be moved or purged as long is the application is
active, but it is purged at shutdown.

« If any of the static ségments cannot be loaded, the System Loader aborts the load
and returns the error from the Load Segment By Number function.

5. Once it has loaded all the static segments, the System Loader returns the starting
address of the first segment (other than an initialization segment) of load file 1 to the
controlling program. It then transfers execution to the controlling program. The
controlling program itself is responsible for setting the stack and direct registers and
for transferring control to the just-loaded program.

APDA Draft 183 11/13/86

Apple 1IGS ProDOS 16 Reference

Restart ($0A)

This function is called by a controlling program (such as a shell or a switcher) to ask the
System Loader to resurrect a dormant application—one that has been shut down (by the
User Shutdown function), but is still in memory.

Only programs that are restartable can be successfully resurrected through this call. A
restartable program always reinitializes its variables and makes no assumptions about
machine state each time it executes.

Function Number: $0A

Macro Name: Restart

Parameters:
Name Size and Type
Input: User ID word value (2 bytes)
Output: User ID word result (2 bytes)
starting address long word pointer (4 bytes)
address of direct-page/
stack buffer word pointer (2 bytes)
size of direct-page/
stack buffer word result (2 bytes)

Stack Before Call:

previous contents

(result space)
(resulf space)

= (result space) -

(result space)
UserlD

[—SP

APDA Draft 184 * 11/13/86

Stack

System Loader: Chapter 17

After Call:

previous contents

dir. page/stack size

dir. page/stack addar.

starting address 4

UserlD

4+—SP

Possibie Errors:

$1101
$1105
$1108
$00xx
$02xx

Application not found
System Loader is busy
User ID error

ProDOS 16 error
Memory Manager error

Sequence of Events:

When the

Restart function is called, the following sequence of events occurs.

1. An existing, nonzero User ID must be specified (the Aux ID part is ignored). If the
User ID is zero, error $1108 is returned. If the User ID is unknown to the System
Loader, error $1101 is returned.

2. The Restart function can work only if all of the specified program’s static segments

are

still in memory. What that means is that no segments in the Memory Segment

Table with the specified User ID can have been purged.

a.

b.

The System Loader checks the memory handle of each Memory Segment Table
entry with that User ID. If none are set to NIL the segments are all in memory.

The System Loader then resurrects the application by calling the Memory
Manager to make each of the application’s segments unpurgeable and locked.

The application’s complete User ID, the first segment’s starting address, and the
direct page and stack information (from the Pathname Table) are returned to the
caller.

3. If any of the application’s static segments are no longer in memory, the function
does the following;:

a.

It calls the Cleanup routine to purge all references to that User ID from the
System Loader’s tables and delete the User ID itself.

It calls the Initial Load function to load the application. The application receives a
new User ID, which is returned to the caller.

APDA Draft 185 117113186

Apple lIGS ProDOS 16 Reference

Load Segment By Number ($0B)

The Load Segment By Number routine is the workhorse function of the System Loader.
Other System Loader functions that load segments do so by calling this function. It loads a
specific load segment into memory; the segment is specified by its load-file number, load-
segment number, and User ID.

Note: Applications use this function to manually load dynamic segments. An
application may also use Load Segment By Number to manually load a szaric
segment. However, in that case the System Loader does not patch the correct
address of the newly loaded segment onto any existing references to it. Therefore
the segment can be accessed only through its starting address.

Function Number: $0B

Macro Name: LoadSegNum

Parameters:
Name Size and Type
Input: User ID word value (2 bytes)
load-file number word value (2 bytes)
load-segment number word value (2 bytes)
Output: address of segment long word pointer (4 bytes)

Stack Before Call:

previous contents

= (result space) -

UserlD
load-file number

lcad-segment no.

4—SP

Stack After Call:

previous contents

address of 4
segment

[4—5P

APDA Draft 186 11/13156

System Loader: Chapter 17

Possible Errors:

$1101 Segment not found

$1102 Incompatible OMF version
$1104 File is not a load file
$1105 System Loader is busy
$1107 File version error

$1109 SegNum out of sequence
$110A Tllegal load record found
$110B Load segment is foreign
$00xx ProDOS 16 error

$02xx Memory Manager error

Sequence of Events:

When the Load Segment By Number function is called, the following sequence of events
occurs.

1.

First the loader checks to find out if the requested load segment is already in
memory: it searches the Memory Segment Table to determine if there is an entry for
the segment. If the entry exists, the loader checks the value of the memory handle to
find out whether the corresponding memory block is still in memory. If so, the
function terminates without returning an error. If an entry exists but the memory
block has been purged, the entry is deleted.

. If the segment is not already in memory, the System Loader looks in the Pathname

Table to get the load-file pathname from the load-file number.

The System Loader checks the file type of the referenced file. If it is not a load file
(type $B3-$BE), then error $1104 is returned.

If the file is type $B4 (run-time library file), the System Loader compares the file’s
modification date and time values to the file date and file tme in the Pathname Table.
If they do not match, error $1107 is returned and the load is not performed.

ProDOS 16 is called to open the file. If ProDOS 16 cannot open the file, it retums
an appropriate error code.

After ProDOS 16 successfully opens the load file, the System Loader searches the
file for a load segment corresponding to the specified load-segment number. If none
is found, error $1101 is returned.

If the load segment is found, its header is checked (segment headers are described
under "Object Module Format" in Apple IIGS Programmer’s Workshop Reference).
If the segment’s OMF version number is incompatible with the current System
Loader version, error $1102 is returned. If the value in the header’s SEGNUM field
does not match the specified load-segment number, error $1109 is retumed. If the
values in the NUMSEX and NUMLEN fields are not O and 4, respectively, error $110B
is returned.

If the load segment is found and the header is correct, a memory block of the size
specified in the LENGTH field of the segment header is requested from the Memory
Manager. If the ORG field in the segment header is not zero, then a memory block

APDA Draft 187 11713186

Apple 11GS ProDQOS 16 Reference

starting at the address specified by ORG is requested (ORG is normally zero for Apple
IIGS programming; that is, most segments are relocatable). Other segment attributes
are set according to values in other segment header fields—see Chapter 14.

8. If a nonzero User ID is specified, the memory block is given that User ID. If the
specified User ID is zero, the memory block is given the current User ID (value of
USERID global variable).

9. If the requested memory is not available, the Memory Manager and System Loader
use these techniques to free space:

a. The Memory Manager unloads unneeded segments by purging their
corresponding memory blocks. Blocks are purged according to their purge
levels. For example, all level-3 blocks are purged before the first level-2 block is
purged. Any dynamic segment whose memory block’s purge level is zero cannot
be unloaded.

b. If all purgeable segments have been unloaded and the Memory Manager still
cannot allocate enough memory, it moves any movable blocks to enlarge
contiguous memory areas.

c. If all eligible memory blocks have been purged or moved, and the Memory
Manager still cannot allocate enough memory, the System Loader Cleanup
routine is called to free any unused parts of the System Loader’s memory. The
Memory Manager then tries once more to allocate the requested memory.

d. If the Memory Manager is still unsuccessful, the System Loader returns the last
Memory Manager error that occurred.

10. Once the Memory Manager has allocated the requested memory, the System Loader
puts the load segment into memory, and processes the relocation dictionary (if any).

Note: If any records within the segment are not of a proper type ($E2, $E3, $F1,
$F2, or $00), error $110A is returned. See Appendix D for an explanation of
record types.

11. An entry for the segment is added to the Memory Segment Table.

12. The System Loader returns the starting address of the segment to the controlling
program.

APDA Draft 188 11/13/86

System Loader: Chapter 17

Unload Segment By Number ($0C)

This function unloads a specific load segment from memory. The segment is specified by
its load-file number and load-segment number, and its User ID.

Function Number: $0C

Macro Name: UnLoadSegNum

Parameters:
Name Size and Type
Input: User ID word value (2 bytes)
load-file number word value (2 bytes)
load-segment number word value (2 bytes)
QOutput: (none)

Stack Before Call:

previous contents

UseriD
loead-file no.
load-segment no.
3P

Stack After Call:

| previous contents |

! le—spP

Possible Errors:

$1101 Segment not found
$1105 System Loader is busy
$00xx ProDOS 16 error
$02xx Memory Manager error

APDA Draft 189 11113186

Apple IIGS ProDOS 16 Reference

Sequence of Events:

When the Unload Segment By Number function is called, the following sequence of events
occurs. :

1. The System Loader searches the Memory Segment Table for the specified load-file
number and load-segment number. If there is no such entry, error $1101 is
returned.

2. If the Memory Segment Table entry is found, the loader calls the Memory Manager
to make purgeable (purge level = 3) the memory block in which the dynamic
segment resides .

3. The loader changes all entries in the Jump Table that reference the unloaded segment
to their unloaded states.

Special conditions:

+ If the specified User ID is zero, the current User ID (value of USERID) is assumed.

» If both the load-file number and load-segment number are nonzero, the specified
segment is unloaded regardless of whether it is static or dynamic. If either input is
zero, only dynamic segments are unloaded, as noted next.

+ If the specified load-file number is zero, all dynamic segments for that User ID are
unloaded.

« If the specified load-segment number is zero, all dynamic segments for the specified
load file are unloaded.

Note: If a static segment is unloaded, the application that it is part of cannot be
restarted from a dormant state. See "Restart” and "User Shutdown," in this
chapter. .

APDA Draft 190 11/13/86

System Loader: Chapter 17

Load Segment By Name ($0D)

This function loads a named segment into memory. The segment is named by its load file’s
pathname, and its segment name (from the SEGNAME field in the segment header). A
nonzero User 1D may be specified if the loaded segment is to have a User ID different from
the current User ID.

Function Number: $0D

Macro Name: LoadSegName

Parameters:
Name Size and Type
Input: User ID word value (2 bytes)
address of load-file name long word pointer (4 bytes)
address of load-segment name long word pointer (4 bytes)
Output: address of segment long word pointer (4 bytes)
load-file number word result (2 bytes)
load-segment number word result (2 bytes)

Stack Before Call;

previous contents

(result space)
(result space)

o (result space) 4

UserlD

address of
load-file name

address of
load-segment name 7

e—sp

APDA Draft 191 1111386

Apple IIGS ProDOS 16 Reference

Stack After Call;

previous contents
load-segment no.
load-file no.

B address of
segment
<SP
Possible Errors:
$1101 Segment not found
$1104 File is not a load file
$1105 System Loader is busy
$1107 File version error
$1109 SegNum out of sequence
$110A Illegal load record found
$110B Load segment is foreign
$00xx ProDOS 16 error
$02xx Memory Manager error

Sequence of Events:

When the Load Segment By Name function is called, the following sequence of events
OCCUIs.

1.

2

The System Loader gets the load-file pathname from the pointer given in the function
call.

. The System Loader checks the file type of the referenced file, from the file’s disk
directory entry. If it is not a load file (type $B3-$BE), error $1104 is returned.

If it is a load file, the loader calls ProDOS 16 to open the file. If ProDOS 16 cannot
open the file, it returns the appropriate error code.

After the load file has been successfully opened by ProDOS 16, the System Loader
searches the file for a segment with the specified name. If it finds none, error $1101
is returned. '

If the load segment is found, the System Loader notes the segment number. It also
checks the Pathname Table to see if the load file is listed. If the file is listed, the
loader gets the load file number from the table; if not, it adds a new entry to the
Pathname Table, assigning an unused file number to the load file.

Now that it has both the load-file number and the segment number of the requested
segment, the System Loader calls the Load Segment By Number function to load the
segment. If the Load Segment By Number function returns an error, the Load
Segment By Name function returns the same error. If the Load Segment By Number
function is successful, the Load Segment By Name function returns the load file
number, the load segment number, and the starting address of the memory block in
which the load segment was placed.

APDA Draft) 192 11/13/86

System Loader: Chapter 17

Unload Segment ($0E)

This function unloads the load segment containing the specified address. By using Unload
Segment, an application can unload a segment without having to know its load-segment
number, load-file number, name or User ID.

Function Number: $OE

Macro Name: UnloadSeg

Parameters:
Name Size and Type
Input: address in segment long word pointer (4 bytes)
QOutput: User ID word result (2 bytes)
load-file number word result (2 bytes)
load-segment number word result (2 bytes)

Stack Before Call:

previous contents
(result space)
(result space)
(result space)

~ address in segment A

SP
Stack After Call:
previous contents
load-segment no.
load-file no.
UserlD
9—SP

APDA Draft 193 11713186

Apple IIGS ProDOS 16 Reference

Possible Errors:

$1101 Segment not found
$1105 System Loader is busy
$00xx ProDOS 16 error
$02xx Memory Manager emror

Sequence of Events:

When the Unload Segment function is called, the following sequence of events occurs.

1. The function calls the Memory Manager to identify the memory block containing the
specified address. If the address is not within an allocated memory block, error
$1101 is returned. '

2. If the memory block is found, the function uses the memory handle returned by the
Memory Manager to find the block’s User ID. It then scans the Memory Segment
Table for an entry with that User ID and handle. If no such entry is found, error
$1101 is returned.

3. If the Memory Segment Table entry is found, the function does one of two things:

a. Ifthe Memory Segment Table entry refers to any segment other than a Jump
Table segment, the function extracts the load-file number and load-segment
number from the entry.

b. If the Memory Segment Table entry refers to a Jump Table segment, the function
extracts the load-file number and load-segment number in the Jump Table entry
at the address specified in the function call.

4. The function then calls the Unload Segment By Number function to unload the
segment.

The outputs of this function (load-file number, load-segment number, and User ID) can be
used as inputs to other System Loader functions such as L.oad Segment By Number.

APDA Draft 194 11113186

Get Load Segment Info ($0F)

System Loader: Chapter 17

This function returns the Memory Segment Table entry corresponding to the specified (by

number) load segment.

Function Number: $OF

Macro Name: GetLoadSegInfo

Parameters:
Name
Input: User ID
load-file number
load-segment number
address of user buffer
Output: (filled user buffer)

Stack Before Call:

previous contents
UseriD
load-file no.
load-segment no.
address of
user buffer T
4—5P
Stack After Call:
| previous contents |
| |4=SP
Possible Errors:
$1101 Entry not found
$1105 System Loader is busy
$00xx ProDOS 16 error
$02xx Memory Manager error

APDA Draft 195

Size and Type
word value (2 bytes)
word value (2 bytes)
word value (2 bytes)

long word pointer (4 bytes)

11113186

Apple 11GS ProDOS 16 Reference

Sequence of Events:

When the Get Load Segment Info function is called, the following sequence of events
occurs.

1. The Memory Segment Table is searched for the specified entry. If the entry is not
found, error $1101 is returned.

2. If the entry is found, the contents of the entry (except for the link pointers) are
copied into the user buffer.

APDA Draft 196 11/13/86

System Loader: Chapter 17

Get User ID ($10)

This function returns the User ID associated with the specified pathname. A controlling
programn can use this function to determine whether it can restart an application or must
perform an initial load.

Function Number: $10

Macro Name: GetUserID

Parameters:
Name Size and Type
Input: address of pathname long word pointer (4 bytes)
Output: User ID word result (2 bytes)

Stack Before Call:

previous contents

(result space)
address of
B pathname
€SP
Stack After Call:
previous contents
UseriD
4— 5P
Possible Errors:
$1101 Entry not found
$1105 System Loader is busy
$00xx ProDOS 16 error
$02xx Memory Manager error

APDA Draft 197 11113186

Apple IIGS ProDOS 16 Reference

Sequence of Events:

When the Get User ID function is called, the following sequence of events occurs.
1. The System Loader searches the Pathname Table for the specified pathname. If the
input pathname is a partial pathname and starts with a prefix number other than 1/ or
2/, it is expanded to a full pathname before the search.

2. If it finds a match, the loader returns the User ID from that entry in the Pathname
Table.

APDA Draft 198 11713186

System Loader: Chapter 17

Get Pathname ($11)

This function returns the pathname associated with the specified User ID. ProDOS 16 uses
this call to set the application prefix (1 /) for a program that is restarted from memory.

Function Number: $11

Macro Name: GetPathname

Parameters:
Name Size and Type
Input: UserID word value (2 bytes)
File number - word value (2 bytes)
Output: Address of pathname long word result (4 bytes)

Stack Before Call:

previous contents

= (result space) .
UserlD
load-file number
<SP
Stack After Call:
previous contents
address of
pathname ’
€SP
Possible Errors:
$1101 Entry not found
$1105 System Loader is busy
$00xx ProDOS 16 error
$02xx Memory Manager error

APDA Draft 199 11113186

Apple IIGS ProDOS 16 Reference

Sequence of Events:
When the Get Pathname function is called, the following sequence of events occurs.

1. The System Loader searches the Pathname Table for the specified User ID and file
number.

2. Ifiit finds a match, the loader returns the address of the pathname from that entry in
the Pathname Table.

APDA Draft 200 11/13/86

System Loader: Chapter 17

User Shutdown ($12)

This function is called by the controlling program to close down an application that has just
terminated.

Function Number: $12

Macro Name: UserShutdown

Parameters:
Name Size and Type
Input: User ID word value (2 bytes)
quit tlag word value (2 bytes)
Output: User ID word result (2 bytes)

Stack Before Call:

previous contents

(result space)
UserlD
quit flag
4 Sp
Stack After Call:
previous contents
UserlD
4 SP
Possible Errors:
$1105 System Loader is busy
$00xx ProDOS 16 error
$02xx Memory Manager error

APDA Draft 201 11713186

Apple IIGS ProDOS 16 Reference

Sequence of Events:

Note: This function is designed to support the options provided in the ProDOS 16
QUIT function. The quit flag in this call corresponds to the flag word parameter in
the ProDOS 16 QUIT call. Only bits 14 and 15 of the flag are significant: If bit 15
is set, the quitting program wishes control] to return to it eventually; if bit 14 is set,
the program is restartable. See the description of the Restart function in this
chapter.

When the User Shutdown function is called, the following sequence of events occurs.

1. The System Loader checks the specified User ID. If it is zero, the loader assumes it
is the current User ID (= value of USERID global variable). In any case, loader
ignores (by setting to zero) all values in the AuxID field of the User ID.

2. The loader checks the value of the quit flag.

a. If the quit flag is zero, the Memory Manager disposes (permanently deallocates)
all memory blocks with the specified User ID. The System Loader then calls its
Cleanup routine to purge the loader’s internal tables of all references to that User
ID. The User ID itself is deleted so that the system no longer recognizes it.

In this case the application is completely gone. It cannot be restarted from
memory or quickly reloaded.

b. If the quit flag is $800 (bit 15 set to 1), the Memory manager purges (temporarily
deallocates) all memory blocks with the specified User ID. The System Loader’s
internal tables for that User ID, including the Pathname Table entry, remain
intact.

In this case the application can be reloaded quickly but it cannot be restarted from
memory.

c. If the quit flag has any other value, the Memory Manager first disposes all blocks
corresponding to dynamic segments with the specified User ID, and the System
Loader removes their entries from the memory Segment Table. The loader also
removes all entries for that UserID from the Jump Table directory. The Memory
Manager then makes all static segments with the specified User ID purgeable.

The application is now in a dormant state—disconnected but not gone. It may
be resurrected very quickly by the System Loader because all its static segments
are still in memory. Once any of its static segments is purged by the Memory
Manager, however, the program is truly lost and must be reloaded from disk if it
is needed again.

APDA Draft 202 11115186

Jump Table Load

System Loader: Chapter 17

This function is called by an unloaded Jump Table entry in order to load a dynamic load
segment. Besides the function call, the unloaded Jump Table entry includes the load-file
number and load-segment number of the dynamic segment to be loaded. The Jump Table

is described in Chapter 15.

Function Number: none

Macro Name: none

Parameters:
Name Size and Type
Input: User ID word value (2 bytes)
load-file number word value (2 bytes)
load-segment number word value (2 bytes)
load-segment offset long word value (4 bytes)
Output: (none)

Stack Before Call:

previous contents
UserlD
load-file no.
load-segment no.

-~ load-segment offset A

[4—SP

Stack After Call:
| previous contents |

! 4-SP

APDA Draft 203 11113186

Apple IIGS ProDOS 16 Reference

Possible Errors:

$1101 Segment not found
$1104 File is not a load file
$1105 System Loader is busy
$00xx ProDOS 16 error
$02xx Memory Manager error:

Note: Because this function is never called directly by a controlling program, the
program need not know what parameters it requires.

Sequence of Events:

When the Jump Table Load function is called, the following sequence of events occurs.

1. The function calls the Load Segment By Number function, using the load-file
number and load-segment number in the Jump Table entry. If the Load Segment By
Number function returns any error, the System Loader considers it a fatal error and
calls the System Failure Manager.

2. If the Load Segment By Number function successfully loads the segment, the Jump
Table Load function changes the Jump Table entry to its loaded state: it replaces the
JSL to the Jump Table Load function with a JML to the absolute address of the
reference in the just-loaded segment.

3. The function transfers control to the address of the reference.

APDA Drgft 204 11113186

System Loader: Chapter 17

Cleanup

This routine is used to free additional memory when needed. It scans the Systern Loader’s
internal table and removes all entries that reference purged or disposed segments.

Note: Because this function is never called directly by a controlling program, the
program need not know what parameters it requires.

Function Number: none

Macro Name: none

Parameters:
Name Size and Type
Input: User ID word value (2 bytes)
QOutput: (none)

Stack Before Call:

previous contents

UseriD
< 5p
Stack After Call:
| previous contents |
P - le-sP

Possible Errors:

(none)

Sequence of Events:

When the Cleanup routine is called, the following sequence of events occurs.
1. If the specified User ID is 0:
a. The System Loader scans all entries in the Memory Segment Table.
b. All dynamic segments for all User ID’s are purged.

APDA Draft 205 11713786

Apple 1IGS ProDOS 16 Reference

2. If the specified User ID is nonzero:

a. The System Loader scans all entries in the Memory Segment Table with that
User ID.

b. Allload segments (both dynamic and static) for that User ID are purged.

c. All entries in the Memory Segment Table, Jump Table directory, and Pathname
Table for that User ID are deleted.

APDA Draft 206 11/13/86

Appendixes

APDA Draft 207 11113186

APDADraft 208 11/13/86

Appendix A

ProDOS 16 File Organization

This appendix describes in detail how ProDOS 16 stores files on disks. For most
applications, the operating system insulates you from this level of detail. However, you
must use this information if, for example, you want to

» List the files in a directory
= Copy a sparse file without increasing the file’s size
» Compare two sparse files

This appendix first explains the organization of information on volumes. Next, it shows the
format and organization of volume directories, subdirectories, and the various stages of
standard files. Finally it presents a set of diagrams showing the formats of individual
header and entry fields.

Note: In this appendix, format refers to the arrangement of information (such as
headers, pointers and data) within a file. Organization refers to the manner in
which a single file is stored on disk, in terms of individual 512-byte blocks.

Organization of information on a volume

When a volume is formatted for use with ProDOS 16, its surface is partitioned into an array
of tracks and sectors. In accessing a volume, ProDOS 16 requests not a track and sector,
but a logical block from the device corresponding to that volume. That device’s driver
translates the requested block number into the proper track and sector number; the physical
location of information on a volume is unimportant to ProDOS 16 and to an application that
uses ProDOS 16. This appendix discusses the organization of information on a volume in
terms of logical blocks, not tracks and sectors.

When the volume is formatted, information needed by ProDOS 16 is placed in specific
logical blocks, starting with the first block (block 0). A loader program is placed in blocks
0 and 1 of the volume. This program enables ProDOS 16 (or ProDOS 8) to be booted
from the volume. Block 2 of the volume is the key block (the first block) of the volume
directory file; it contains descriptions of (and pointers to) all the files in the volume
directory. The volume directory occupies a number of consecutive blocks, typically four,
and is immediately followed by the volume bit map, which records whether each block
on the volume is used or unused. The volume bit map occupies consecutive blocks, one
for every 4,096 blocks, or fraction thereof, on the volume. The rest of the blocks on the
disk contain subdirectory file information, standard file information, or are empty. The
first blocks of a volume look something like Figure A-1.

APDA Draft 209 11/13/86

Apple IIGS ProDOS 16 Reference

Biock 0 Block 1 Block 2
Loader Volume e e
Directory X [o]
(key block) (ast block) | (first block)

Figure A-1. Block organization of a volume

The precise format of the volume directory, volume bit map, subdirectory files and
standard files are explained in the following sections.

Format and organization of directory files

The format and organization of the information contained in volume directory and
subdirectory files 1s quite similar. Each consists of a key block followed by zero or more
blocks of additional directory information. The fields in a directory’s key block are:

a pointer to the next block in the directory

a header that describes the directory

a number of file entries describing, and pointing to, the files in that directory
zero or more unused bytes.

The fields in subsequent (nonkey) blocks in a directory are:

* pointers to the preceding and succeeding blocks in the directory
« a number of entries describing, and pointing to, the files in that directory
* zero or more unused bytes.

The format of a directory file is represented in Figure A-2.

Key Block Any Block Last Block
"0 J¢+— -+ <« pointer [¢— =+ «—{ pointer |
pointer f4—# *+* —»| pointer fr—# *** —»f 0 2
header | file entry | file entry |
flle entry file entry file entry

, more .':: ., more :': ' more ‘{:

: file X : file ae : file e
entries * entrles °, entries
fie enfry | flle entry | file entry
space |, space [space

Figure A-2. Directory file format and organization

APDA Draft 210 11113186

Appendix A

The header is the same length as all other entries in a directory file. The only difference
between a volume directory file and a subdirectory file is in the header format.

Pointer fields

The first four bytes of each block used by a directory file contain pointers to the preceding

and succeeding blocks in the directory file, respectively. Each pointer is a two-byte logical
block number—Ilow-order byte first, high-order byte second. The key block of a directory
file has no preceding block; its first pointer is zero. Likewise, the last block in a directory
file has no successor; its second pointer is zero.

Note: The block pointers described in this appendix, which hold disk addresses,
are two bytes long. All other ProDOS 16 pointers, which hold memory addresses,
are four bytes long. In either case, ProDOS 16 pointers are always stored with the
low-order byte first and the high-order byte last. See Chapter 3, “ProDOS 16 and
Apple IIGS Memory.”

Volume directory headers

Block 2 of a volume is the key block of that volume’s directory file. The volume directory
header is at byte position $0004 of the key block, immediately following the block’s two
pointers. Thirteen fields are currently defined to be in a volume directory header: they
contain all the vital information about that volume. Figure A-3 illustrates the format of a
volume directory header. Following Figure A-3 is a description of each of its fields.

APDA Draft 211 11113186

Apple IIGS ProDOS 16 Reference

APDA Draft

Byte of
Block
0
b (pointer) §
2 .
3f (pointen) 7
4 |storage_type | name_length
5
// flle_name %
13 1
14 ,
7 (reserved) /4
1B
1C
T creagte_date -
1E .
wr create_time -
2 version
21 min_version .
2 access
23 entry_length
24 entries_per_block
22 b file_count o
;; = bit_map_pointer -
29 - total_blocks
oA :

Fleld
Length

1 byte

15 bytes

8 bytes

2 bytes

2 bytes

1 byte
1 byte
1 byte
1 byte
1 byte

2 bytes

2 bytes

1 byte
1 byte

Figure A-3. The volume directory header

212

11/13/86

Appendix A

storage_type and name_length (1 byte): Two four-bit (nibble) fields are packed into
this byte. A value of $F in the high-order nibble (storage type) identifies the current
block as the key block of a volume directory file. The low-order nibble contains the length
of the volume’s name (see the £ile name field, below). The value of name_length
can be changed by a CHANGE PATH call.

file_name (15 bytes): The first n bytes of this field, where » is the value of

name length, contain the volume’s name. This name must conform to the file name
(volume name) syntax explained in Chapter 2. The name does not begin with the slash that
usually precedes volume names. This field can be changed by the CHANGE PATH call.

reserved (8 bytes): Reserved for future expansion of the file system.

create_date (2 bytes): The date on which this volume was initialized. The format of
these bytes is described under “Header and Entry Fields,” later in this appendix.

create_time (2 bytes): The time at which this volume was initialized. The format of these
bytes is described under “Header and Entry Fields,” later in this appendix.

version (1 byte): The file system version number of ProDOS 8 or ProDOS 16 under

which the file pointed to by this entry was created. This byte allows newer versions of
ProDOS 16 to determine the format of the file, and adjust their interpretation processes
accordingly. For ProDOS 16, version =0.

Note: Version in this sense refers to the file system version only. At present, all
ProDOS operating systems use the same file system and therefore have the same
file system version number (0). In particular, the file system version number is
unrelated to the program version number returned by the GET VERSION call.

min_version: Reserved for future use. For ProDOS 16, it is 0.

access (1 byte): Determines whether this volume directory can be read, written,
destroyed, or renamed. The format of this field is described under “Header and Entry
Fields,” in this appendix.

entry_length (1 byte): The length in bytes of each entry in this directory. The volume
directory header itself is of this length. For ProDOS 16, entry length = $27.

entries_per_block (1 byte): The number of entries that are stored in each block of the
directory file. For ProDOS 16, entries per block = $0D.

file_count (2 bytes): The number of active file entries in this directory file. An active file
is one whose storage_type is not 0. Figure A-5 shows the format of file entries.

bit_map_pointer (2 bytes): The block address of the first block of the volume’s bit map.
The bit map occupies consecutive blocks, one for every 4,096 blocks (or fraction thereof)
on the volume. You can calculate the number of blocks in the bit map using the

total blocks field, described below.

The bit map has one bit for each block on the volume: a value of 1 means the block is free;
0 means it is in use. If the number of blocks used by all files on the volume is not the same
as the number recorded in the bit map, the directory structure of the volume has been
damaged.

APDA Draft 213 11113186

Apple I1GS ProDOS 16 Reference

total_blocks (2 bytes): The total number of blocks on the volume.

Subdirectory headers

The key block of every subdirectory file is pointed to by an entry in a parent directory; for
example, by an entry in a volume directory (Figure A-2). A subdirectory’s header begins
at byte position $ of the key block of that subdirectory file, immediately following the
two pointers.

In format, a subdirectory header is quite similar to a volume directory header (only its last
three fields are different). A subdirectory header has fourteen fields; those fields contain all
the vital information about that subdirectory. Figure A-4 illustrates the format of a
subdirectory header. A description of all the fields in the header follows the figure.

APDA Draft 214 ‘ 11/13/86

Byle of
Block
0
10 {pointer) “
2 .
- (pointer) 4
3
4|storage_type | name_length
5
/P' 1
/ fle_name %
af 1
14 |
Y/ (reserved) f
1B -‘
:g - create_date -
1
. L create_time 4
1F
20 version
21 min_version
22 access
23 entry_length
24 entries_per_block
222 |. file_count o
7 arent_pointer
28 P -P -
Pats parent_entry_number
2A parent_entry_length

Appendix A

Fleld
Length

1 byte

15 bytes

8 bytes

2 bytes

2 bytes
1 byte
1 byte
1 byte
1 byte
1 byte

2 bytes

2 bytes

1 byte
1 byte

Figure A-4. The subdirectory header

APDA Draft

215

117113186

Apple 1IGS ProDOS 16 Reference

storage_type and name_length (1 byte): Two four-bit (nibble) fields are packed into
this byte. A value of $E in the high-order nibble (storage type) identifies the current
block as the key block of a subdirectory file. The low-order nibble contains the length of
the subdirectory’s name (see the £ile name field, below). The value of name length
can be changed by a CHANGE_PATH call.

file_name (15 bytes): The first name_length bytes of this field contain the subdirectory’s
name. This name must conform to the file name syntax explained in Chapter 2. This field
can be changed by the CHANGE_PATH call.

reserved (8 bytes): Reserved for future expansion of the file system.

create_date (2 bytes): The date on which this subdirectory was created. The format of
these bytes is described under “Header and Entry Fields,” later in this appendix.

create_time (2 bytes): The time at which this subdirectory was created. The format of
these bytes is described under “Header and Entry Fields,” later in this appendix.

version (1 byte): The file system version number of ProDOS 8 or ProDOS 16 under

which the file pointed to by this entry was created. This byte allows newer versions of
ProDOS 16 to determine the format of the file, and adjust their interpretation processes
accordingly. For ProDOS 16, version =0.

Note: Version in this sense refers to the file system version only. At present, all
ProDOS operating systems use the same file system and therefore have the same
file system version number (0). In particular, the file system version number is
unrelated to the program version number returned by the GET VERSION call.

min_version (1 byte): The minimum version number of ProDOS 8 or ProDOS 16 that
can access the information in this file. This byte allows older versions of ProDOS 8 and
ProDOS 16 to determine whether they can access newer files. For ProDOS 16,

min version =0.

access (1 byte): Determines whether this subdirectory can be read, written, destroyed, or
renamed, and whether the file needs to be backed up. The format of this field is described
under “Header and Entry Fields,” in this appendix. A subdirectory’s access byte can be
changed by the SET_FILE_INFO and CLEAR BACKUP_BIT calls.

entry_length (1 byte): The length in bytes of each entry in this subdirectory. The
subdirectory header itself is of this length. For ProDOS 16, entry length =$27.

entries_per_ block (1 byte): The number of entries that are stored in each block of the
directory file. For ProDOS 16, entries_per block = $0D.

file_count (2 bytes): The number of active file entries in this subdirectory file. An active
file is one whose storage_type is not 0. See “File Entries” for more information about
file entries.

parent_pointer (2 bytes): The block address of the directory file block that contains the

entry for this subdirectory. This and all other two-byte pointers are stored low-order byte
first, high-order byte second.

APDA Draft 216 11113186

Appendix A

parentﬂ_entry_numbe'r (1 byte): The entry number for this subdirectory within the block
indicated by parent pointer.

parent_entry length (1 byte): The entry length for the directory that owns this
subdirectory file. Note that with these last three fields you can calculate the precise position
on a volume of this subdirectory’s file entry. For ProDOS 16, parent entry length
= $27.

File entries

Immediately following the pointers in any block of a directory file are a number of entries.
The first entry in the key block of a directory file is a header, all other entries are file
entries. Each entry has the length specified by that directory’s entry_length field, and
each file entry contains information that describes, and points to, a single subdirectory file
or standard file.

An entry in a directory file may be active or inactive, that is, it may or may not describe a
file currently in the directory. If it is inactive, the first byte of the entry (storage type
and name_length) has the value zero.

The maximum number of entries, including the header, in a block of a directory is recorded
inthe entries per block field of that directory’s header, The total number of active
file entries, not including the header, is recorded in the £ile count field of that
directory’s header. :

Figure A-5 describes the format of a file entry.

APDA Draft 217 11713186

Apple IIGS ProDOS 16 Reference

Entry Fleld
Offset Length
Ofstorage_type [name_length | 1 byte
1
- 4
2% file_name // 16 bytes
Py
F F '
10 file_type 1 byte
1; R key_pointer 4 2 bytes
13
1l blocks_used 4 2 bytes
15
16 EQOF 3 bytes
17 1
:g 2 create_date 4 2 bytes
1A create_time 4 2 bytes
18 [
1C version 1 byte
1D min_version 1 byte
1E access 1 byte
1F
aux] 4 2 bytes
0 -typ yt
21
o mod_date - 2 bytes
2
23
o4 mod_time 2 bytes
25 A
% header_pointer 4 2 bytes

Figure A-5. The file entry

APDA Draft 218 11113186

Appendix A

storage_type and name_length (1 byte): Two four-bit (nibble) fields are packed into
this byte. The value in the high-order nibble (storage_type) specifies the type of file
pointed to by this file entry:

$1 = Seeding file
$2 = Sapling file
$3 = Tree file

$4 = Pascal area
$D = Subdirectory

Seedling, sapling, and tree files are described under “Format and Organization of Standard
Files,” in this appendix. The low-order nibble contains the length of the file’s name (see
the file name field, below). The value of name length can be changed by a
CHANGE PATH call.

file_name (15 bytes): The first name_length bytes of this field contain the file’s name.
This name must conform to the file name syntax explained in Chapter 2. This field can be
changed by the CHANGE _PATH call.

file_type (1 byte): A descriptor of the internal format of the file. Table A-1 (at the end of
this appendix) is a list of the currently defined values of this byte.

key_pointer (2 bytes): The block address of:

« the master index block (if the file is a tree file)
« the index block (if the file is a sapling file)
» the data block (if the file is a seedling file)

blocks_used (2 bytes): The total number of blocks actually used by the file. For a
subdirectory file, this includes the blocks containing subdirectory information, but not the
blocks in the files pointed to. For a standard file, this includes both informational blocks
(index blocks) and data blocks. See “Format and Organization of Standard Files” in this
appendix.

EQOF (3 bytes): A three-byte integer, lowest byte first, that represents the total number of
bytes readable from the file. Note that in the case of sparse files, EOF may be greater than
the number of bytes actually allocated on the disk.

create_date (2 bytes): The date on which the file pointed to by this entry was created.
The format of these bytes is described under “Header and Entry Fields,” later in this
appendix.

create_time (2 bytes): The time at which the file pointed to by this entry was created.
The format of these bytes is described under “Header and Entry Fields,” later in this
appendix.

version (1 byte): The file system version number of ProDOS 8 or ProDOS 16 under

which the file pointed to by this entry was created. This byte allows newer versions of
ProDOS 16 to determine the format of the file, and adjust their interpretation processes
accordingly. For ProDOS 16, version =0.

Note: Version in this sense refers to the file system version only. At present, all
ProDOS operating systems use the same file system and therefore have the same

APDA Draft 219 11/13/86

Apple 1IGS ProDOS 16 Reference

file system version number. The file system version number is unrelated to the
program version number returned by the GET_VERSION call.

min_version (1 byte): The minimum version number of ProDOS 8 or ProDOS 16 that
can access the information in this file. This byte allows older versions of ProDOS 8 and
ProDOS 16 to determine whether they can access newer files. For ProDOS 16,

min version=0.

access (1 byte): Determines whether this file can be read, written, destroyed, or renamed,
and whether the file needs to be backed up. The format of this field is described under
“Header and Entry Fields,” later in this appendix. The value of this field can be changed
by the SET FILE_INFO and CLEAR BACKUP BIT calls. You cannot delete (destroy) a
subdirectory that contains any files.

aux_type (2 bytes): A general-purpose field in which an application can store additional
information about the internal format of a file. For example, the ProDOS 8 BASIC system
program uses this field to record the load address of a BASIC program or binary file, or the
record length of a text file.

mod_date (2 bytes): The date on which the last CLOSE operation after a WRITE was
performed on this file. The format of these bytes is described under “Header and Entry
Fields,” later in this appendix. This field can be changed by the SET_FILE_INFO call.

mod_time (2 bytes): The time at which the last CLOSE operation after a WRITE was
performed on this file. The format of these bytes is described under “Header and Entry
Fields,” later in this appendix. This field can be changed by the SET FILE INFO call

header_pointer (2 bytes): This field is the block address of the key block of the
directory that owns this file entry. This and all two-byte pointers are stored low-order byte
first, high-order byte second.

Reading a directory file

This section deals with the general techniques of reading from directory files, not with the
specifics. The ProDOS 16 calls with which these techniques can be implemented are
explained in Chapters 9 and 10.

Before you can read from a directory, you must know the directory’s pathname. With the
directory’s pathname, you can open the directory file, and obtain a reference number

(ref _numo) for that open file. Before you can process the entries in the directory, you must
read three values from the directory header:

» Length of each entry in the directory (entry_length)
» Number of entries in each block of the directory (entries_per block)
» Total number of files in the directory (file_count).

Using the reference number to identify the file, read the first 512 bytes from the file, and
into a buffer (ThisBlock in the following example). The buffer contains two two- -byte
pointers, followed by the entries; the first entry is the directory header. The three values
are at positions $1F through $22 in the header (positions $23 through $26 in the buffer).

APDA Draft 220 11/13186

Appendix A

In this example, these values are assigned to the variables EntryLength,
EntriesPerBlock,and FileCount.,

Open (DirPathname, RefNum) ; {Get reference number }
ThisBlock := Read512Bytes (RefNum); {Read a block into buffer}
EntryLength := ThisBlock[$23]; {Get directory info }
EntriesPerBlock := ThisBlock([$24];

FileCount := ThisBlock[$25] + (256 * ThisBlock[$261);

Once these values are known, an application can scan through the entries in the buffer,
using a pointer (EntryPointer) to the beginning of the current entry, a counter
(BlockEntries) that indicates the number of entries that have been examined in the
current block, and a second counter (Act i veEntries) that indicates the number of
active entries that have been processed.

An entry is active and is processed only if its first byte, the storage _type and

name length, is nonzero. All entries have been processed when ActiveEntries is equal
to FileCount. 1f all the entries in the buffer have been processed, and ActiveEntries doesn’t
equal FileCount, then the next block of the directory is read into the buffer.

EntryPointer = EntryLength + 504; {Skip header entry}
BlockEntries = $02; {Prepare to process entry two}
ActiveEntries = $00; {No active entries found yet]

while ActiveEntries < FileCount do begin
if ThisBlock[EntryPointer] <> $00 then begin {Active entry}
ProcessEntry (ThisBlock [EntryPointer]);
ActiveEntries := ActiveEntries + 501
end;
if ActiveEntries < FileCount then {More entries to process}
if BlockEntries = EntriesPerBlock

then begin {ThisBlock done. Do next onel}
ThisBlock := Read512Bytes (RefNum) ;
BlockEntries := $01;
EntryPointer := 504

end

else begin {Do next entry in ThisBlock }
EntryPointer := EntryPointer + EntryLength;

BlockEntries BlockEntries + 501

end
end;
Close (RefNum) ;

This algorithm processes entries until all expected active entries have been found. If the
directory structure is damaged, and the end of the directory file is reached before the proper
number of active entries has been found, the algorithm fails.

Format and organization of standard files

Each active entry in a directory file points to the key block (the first block) of another file,
which itself is either a subdirectory file or a standard file. As shown below, the key block

of a standard file may have several types of information in it. The storage_type field
in that file’s entry must be used to determine the contents of the key block. This section

APDA Draft 221 11/13/86

Apple IIGS ProDOS 16 Reference

explains the organization of the three stages of standard file: seedling, sapling, and tree. =5
These are the files in which all programs and data are stored.

Every block in a standard file is either a data block or an index block. Data blocks
have no predefined format—they contain whatever information the file was created to hold.
Index blocks, on the other hand, have a very specific format-—they consist of nothing but
2-byte pointers, giving the (disk) adresses of other blocks that make up the file.
Furthermore, the low-order byte of each pointer is in the first half of the block, whereas the
high-order byte of the pointer is in the second half of the block. An index block can have
up to 256 pointers, so if a pointer’s low-order byte is at address 7 in the block, its high-
order byte is at address n+256.

Note: Deleting a file or changing its logical size (EOF) can alter the contents of its
index blocks. See “DESTROY” in Chapter 9 and “SET_EOF”’ in Chapter 10.

Growing a tree file

The following scenario demonstrates the growth of a tree file on a volume. This scenario is
based on the block allocation scheme used by ProDOS 16 on a 280-block flexible disk that
contains four blocks of volume directory, and one block of volume bit map. Larger
capacity volumes might have more blocks in the volume bit map, but the process would be
identical.

A formatted, but otherwise empty, ProDOS 16 volume is used like this:

Blocks 0-1 Loader

Blocks 2-5 Volume directory
Block 6 Volume bit map
Blocks 7-279 Unused

If you open a new file of a nondirectory type, one data block is immediately allocated to
that file. An entry is placed in the volume directory, and it points to block 7, the new data
block, as the key block for the file. The key block is indicated below by an arrow.

The volume now looks like this:

Blocks 0-1 Loader

Blocks 2-5 Volume directory

Block 6 VYolume bit map
—> Block 7 Data block 0

Blocks 8-279 Unused

This is a seedling file: its key block contains up to 512 bytes of data. If you write more
than 512 bytes of data to the file, the file grows into a sapling file. As soon as a second
block of data becomes necessary, an index block is allocated, and it becomes the file's
key block: this index block can point to up to 256 data blocks (it uses two-byte pointers).
A second data block (for the data that won’t fit in the first data block) is also allocated.

APDA Draft 222 11113186

Appendix A

The volume now looks like this:

Blocks 0-1 Loader

Blocks 2-5 Volume directory

Block 6 Volume bit map

Block 7 Data block 0
—> Block 8 Index block 0

Block 9 Data block 1

Blocks 10-279 Unused

This sapling file can hold up to 256 data blocks: 128K of data. If the file becomes any
bigger than this, the file grows again, this time into a tree file. A master index block
is allocated, and it becomes the file’s key block: the master index block can point to up to
128 index blocks, and each of these can point to up to 256 data blocks. Index block 0
becomes the first index block pointed to by the master index block. In addition, a new
index block is allocated, and a new data block to which it points.

Here’s a new picture of the volume:

Blocks 0-1 Loader

Blocks 2-5 Volume directory

Block 6 Volume bit map

Block 7 Data block 0

Block 8 Index block 0

Blocks 9-263 Data blocks 1-255
—> Block 264 Master index block

Block 265 Index block 1

Block 266 Data block 256

Blocks 267-279 Unused

As data is written to this file, additional data blocks and index blocks are allocated as
needed, up to a maximum of 129 index blocks (one a master index block), and 32,768 data
blocks, for a maximum capacity of 16,777,215 bytes of data in a file. If you did the
multiplication, you probably noticed that a byte was lost somewhere. The last byte of the
last block of the largest possible file cannot be used because EOF cannot exceed
16,777,216. If you are wondering how such a large file might fit on a small volume such
as a flexible disk, refer to the description of sparse files in this appendix.

This scenario shows the growth of a single file on an otherwise empty volume. The
process is a bit more confusing when several files are growing—or being
deleted—simultaneously. However, the block allocation scheme is always the same: when
a new block is needed, ProDOS 16 always allocates the first unused block in the volume bit
map.

Seedling files

A seedling file is a standard file that contains no more than 512 data bytes (30 <= EOF
<= $200). This file is stored as one block on the volume, and this data block is the file’s
key block.

The organization of such a seedling file appears in Figure A-6.

APDA Draft 223 11/13/86

Apple IIGS ProDOS 16 Reference

key__ p 0 Inf er B .,.}'.v:::-:-:c‘:;'.-:::;;»o\:-:;:c::;:;:,::;—;l-

512 bytes long {

SO<EOF<$200

Figure A-6. Format and organization of a seedling file

The file is called a seedling file because it is the smallest possible ProDOS 16 standard file;
if more than 512 data bytes are written to it, it grows into a sapling file, and thence into a
tree file.

The storage _type field of a directory entry that points to a seedling file has the value
$1.

Sapling files

A sapling file is a standard file that contains more than 512 and no more than 128K bytes
(3200 < EOF <= $20000). A sapling file comprises an index block and 1 to 256 data
blocks. The index block contains the block addresses of the data blocks. Flgure A-7
shows the organization.

key_pointer

=

$200<EOF<$20 000

e,

]

Figure A-7. Format and organization of a sapling file

APDA Draft 224 11713186

Appendix A

The key block of a sapling file is its index block. ProDOS 16 retrieves data blocks in the
file by first retrieving their addresses in the index block.

The storage_type field of a directory entry that points to a sapling file has the value $2.

Tree files

A tree file contains more than 128K bytes, and less than 16Mb ($20000 < EOF <
$1000000). A tree file consists of a master index block, 1 to 128 index blocks, and 1 to
32,768 data blocks. The master index block contains the addresses of the index blocks,
and each index block contains the addresses of up to 256 data blocks. The organization of
a tree file is shown in Figure A-8,

key_polnfer — > B

Upto 128
2-byte polniers t
Index blocks

.

$20 O00<ECOF<$1 000 000

Figure A-8. Format and organization of a tree file

The key block of a tree file is the master index block. By looking at the master index
block, ProDOS 16 can find the addresses of all the index blocks; by looking at those
blocks, it can find the addresses of all the data blocks.

The storage_type field of a directory entry that points to a tree file has the value $3.

APDA Draft 225 11/13/86

Apple IIGS ProDOS 16 Reference

Using standard files

An application program operates the same on all three types of standard files, although the
storage type in the file’s entry can be used to distinguish between the three. A
program rarely reads index blocks or allocates blocks on a volume: ProDOS 16 does that.
The program need only be concerned with the data stored in the file, not with how they are
stored.

All types of standard files are read as a sequence of bytes, numbered from 0 to (EOF-1), as
explained in Chapter 2.

Sparse files

A sparse file is a sapling or tree file in which the number of data bytes that can be read
from the file exceeds the number of bytes physically stored in the data blocks allocated to
the file. ProDOS 16 implements sparse files by allocating only those data blocks that have
had data written to them, as well as the index blocks needed to point to them.

For example, you can define a file whose EOF is 16K, that uses only three blocks on the
volume, and that has only four bytes of data written to it. Refer to figure A-9 during the
following explanation.

1. If you create a file with an EOF of $0, ProDOS 16 allocates only the key block (a
data block) for a seedling file, and fills it with null characters (ASCII $00).

2. If you then set the EOF and Mark to position $0565, and write four bytes, ProDOS
16 calculates that position $0565 is byte $0165 ($0564—+$0200 * 2)) of the third
block (block $2) of the file. It then allocates an index block, stores the address of
the current data block in position 0 of the index block, allocates another data block,
stores the address of that data block in position 2 of the index block, and stores the
data in bytes $0165 through $0168 of that data block. The EQF is now $0569.

3. If you now set the EOF to $4000 and close the file, you have a 16K sapling file that
takes up three blocks of space on the volume: two data blocks and an index block
(shaded in figure A-9). You can read 16384 bytes of data from the file, but all the
bytes before $0565 and after $0568 are nulls.

APDA Draft 226 11113186

Appendix A

Data Blocks

AR

key-poinfer 2 LR {
1 8

Blocks actually
7/:, written 1o disk

EOF = $4000 4

S3FFF

Figure A-9. An example of sparse file organization

Thus ProDOS 16 allocates volume space only for those blocks in a file that actually contain
data. For tree files, the situation is similar: if none of the 256 data blocks assigned to an
index block in a tree file have been allocated, the index block itself is not allocated.

Note: The first data block of a standard file, be it a seedling, sapling, or tree file,
is always allocated. Thus there is always a data block to be read in when the file is
opened.

Locating a byte in a file
This is how to find a specific byte within a standard file:

The File Mark is a three-byte value that indicates an absolute byte position within a file. If
the file is a tree file, then the high-order seven bits of the Mark determine the number (0 to
127) of the index block that points to the byte. That number is also the location of the low
byte of the index block address within the master index block. The location of the high
byte of the index block address is that number plus 256.

APDA Draft 227 11/13/86

Apple IIGS ProDOS 16 Reference

Byte 2 Byte | Byte O
Bt: [7{615{413[2i1j0]7}615{4}3{2}1{0]7i6{5f4]j3]2}1{0
Value: Index Block No. Data Block Number Byte of Block
L. J—_ . -
Applies fo: Tree File only Tree and Sapling All Three

Figure A-10. File Mark format

If the file is a tree file or a sapling file, then the next eight bits of the Mark determine the
number (0-255) of the data block pointed to by the indicated index block. That number is
also the location of the low byte of the data block address within the index block. The high
byte of the index block address is found at that value plus 256.

For tree, sapling, and seedling files, the value of the low nine bits of the Mark is the
location of the byte within the selected data block.

Header and entry fields

The storage type attribute

The value in the storage type field, the high-order four bits of the first byte of an
entry, defines the type of header (if the entry is a header) or the type of file described by the
entry. Table A-1 lists the currently defined storage type values.

Table A-1. Storage type values

$0 indicates an inactive file entry

$1 indicates a seedling file entry (EOF <= 256 bytes)

$2 indicates a sapling file entry (256 < EOF <= 128K bytes)

$3 indicates a tree file entry (128K < EOF < 16M bytes)

$4 indicates a Pascal operating system area on a partitioned disk
$D indicates a subdirectory file entry

SE indicates a subdirectory header

$F indicates a volume directory header

ProDOS 16 automatically changes a seedling file to a sapling file and a sapling file to a tree
file when the file’s EOF grows into the range for a larger type. If a file’s EOF shrinks into

the range for a smaller type, ProDOS 16 changes a tree file to a sapling file and a sapling
file to a seedling file.

The creation and last-modification fields

The date and time of the creation and last modification of each file and directory is stored as
two four-byte values, as shown in Figure A-11.

APDA Draft 228 11/13/86

Appendix A

Byte 1 Byte 0
Bif: [15{14113]12{11§10{9§8|7 6i65{4}312} 10
Value: Year Month Day

Byte 1 Byte O
Bit: |15i14313 12E11§‘|0§9£8 76 514{312“%0
Value: |0i0i0 Hour 0j0 Minute

Figure A-11. Date and time format

The values for the year, month, day, hour, and minute are stored as binary integers, and
may be unpacked for conversion to normal integer values.

The access attribute

The access attribute field, or access byte (Figure A-12), determines whether the file can be
read from, written to, deleted, or renamed. It also contains a bit that can be used to indicate
whether a backup copy of the file has been made since the file’s last modification,

Bit: [7{6i5(4{3{2;1i0
Value: |D RNiB feservedWiR

where
D = destroy-enable bit
RN =rename-enable bit
B = backup-needed bit
W = write-enable bit
R =read-enable bit

Figure A-12. Access byte format
A bit set to 1 indicates that the operation is enabled; a bit cleared to 0 indicates that the
operation is disabled. The reserved bits are always 0. The most typical setting for the
access byte is $C3 (11000011).
ProDOS 16 sets bit 5, the backup bit, to 1 whenever the file is changed (that is, after a
CREATE, RENAME, CLOSE after WRITE, or SET FILE INFO opcration). This bit
should be reset to 0 whenever the file is duplicated by a backup program.

Note: Only ProDOS 16 may change bits 2-4; only backup programs should clear
bit 5 (using CLEAR BACKUP_BIT).

APDA Draft 229 11/13186

Apple IIGS ProDOS 16 Reference

The file type attribute

The file type field in a directory entry identifies the type of file described by that entry.
This field should be used by applications to guarantee file compatibility from one
application to the next. The currently defined hexadecimal values of this byte are listed in
Table A-2.

Table A-2 also lists the 3-character mnemonic file-type codes that should appear on catalog
listings. For any file type without a specified mnemonic code, the catalog program should
substitute the hexadecimal file type number.

Note: SOS file types are included in Table A-2 because SOS and ProDOS have
identical file systems.

Table A-2. ProDOS file types

File Mnemonic

type ‘Code Description

$00 Uncategorized file (SOS and ProDOS 8)
$01 BAD Bad block file

$02 PCD Pascal code file
$03 PTX Pascal text file

304 TXT ASCII text file (SOS and ProDOS 8)
$05 PDA Pascal data file

$06 BIN General binary file (SOS and ProDOS 8)
$07 FNT Font file

$08 FOT Graphics screen file

$09 t BA3 Business BASIC program file
$0A DA3 Business BASIC data file
$0B t WPF Word Processor file

$0C SOS SOS system file

$0D-$0E (SOS reserved)

$OF DIR Directory file (S§OS and ProDOS)
$10 ¢ RPD RPS data file

$11 ¢ RPI RPS index file

$12 ¢ AppleFile discard file

$13 ¢ AppleFile model file

$14 ¢ AppleFile report format file

$15 ¢ Screen Library file

$16-$18 T (SOS reserved)

$19 ADB AppleWorks Data Base file

$1A AWP AppleWorks Word Proc. file

$1B ASP AppleWorks Spreadsheet file
$1C-$AF (reserved)

$BO SRC APW source file

$B1 OBJ APW object file

$B2 LIB APW library file

$B3 S16 ProDOS 16 application program file
$B4 RTL APW run-time library file

$B5 EXE ProDOS 16 shell application file
$B6 ProDOS 16 permanent initialization file
$B7 ProDOS 16 temporary initialization file
$B8 New desk accessory

APDA Draft 230 11/13/86

Appendix A

$B9 Classic desk accessory

$BA Tool set file

$BB-$BE (reserved for ProDOS 16 load files)
$BF ProDOS 16 document file
$CO-SEE (reserved)

$EF PAS Pascal area on a partitioned disk
$FO CMD ProDOS 8 CI added command file
$F1-$F8 ProDOS 8 user defined files 1-8
$F9 (ProDOS 8 reserved)

$FA INT Integer BASIC program file

$FB IVR Integer BASIC variable file

$FC BAS Applesoft program file
$FD VAR Applesoft variables file
SFE REL Relocatable code file (EDASM)
$FF SYS ProDOS 8 system program file

Tapply to SOS (Apple IIT) only

The auxiliary type attribute

Some applications use an another field in a file’s directory entry, the auxiliary type field
(aux_type), to store additional information not specified by the file type. Catalog listings
may display the contents of this field under the heading “Subtype.”

For example, APW source files (file type $B0) include a language-type designation in the
aux_type field. The starting address for ProDOS 8 executable binary files (file type $06)
may be in the aux_type field. The record size for random-access text files (file type $04)
may be specified in the auxiliary type field.

ProDOS 16 and ProDOS 8 impose no restrictions (other than size) on the contents or

format of the auxiliary type field. Individual applications may use those 2 bytes to store
any useful information.

APDA Draft 231 11/13186

Apple 1IGS ProDOS 16 Reference

APDA Draft

232

11/13/86

Appendix B

Apple II Operating Systems

This appendix explains the relationships between ProDOS 16 and three other operating
systems developed for the Apple II family of computers (DOS, ProDOS 8, and Apple Il
Pascal), as well as two developed for the Apple III (SOS and Apple III Pascal).

If you have written programs for one of the other systems or are planning to write
programs concurrently for ProDOS 16 and another system, this appendix may help you see
what changes will be necessary to transfer your program from one system to another. If
you are converting files from one system to another, this appendix may help you
understand why some conversions may be more successful than others.

The first section gives a brief history. The next two sections give general comparisons of
the other operating systems to ProDOS 16, in terms of file compatibility and operational
similarity.

History

DOS

DOS stands for Disk Operating System. It is Apple’s first operating system; before DOS,
the firmware Monitor program controlled program execution and input/output.

DOS was developed for the Apple II computer. It provided the first capability for storage
and retrieval of various types of files on disk (the Disk II); the System Monitor had allowed
input/output (of binary data) to cassette tape only.

The latest version of DOS is DOS 3.3. It uses a 16-sector disk format, like ProDOS 8 and
ProDOS 16. Earlier versions use a 13-sector format that cannot be read by ProDOS 8 or
ProDOS 16.

SOS

SOS is the operating system developed for the Apple Il computer. Its name is an acronym
for Sophisticated Operating System, reflecting its increased capabilities over DOS. On the
other hand, SOS requires far more memory space than either DOS or ProDOS 8 (below),
which makes it impractical on computers with less than 256K of RAM.

APDA Draft 233 11113186

Apple IIGS ProDOS 16 Reference

ProDOS 8§ sy

ProDOS 8 (for Professional Disk Operating System) was developed for the newer
members of the Apple II family of computers. It requires at east 64K of RAM memory,
and can run on the Apple Ile, Apple Ilc, and 64K Apple II Plus.

ProDOS 8 brings some of the advanced features of SOS to the Apple II family, without
requiring as much memory as SOS does. Its commands are essentially a subset of the SOS
commands.

The latest version of ProDOS 8 developed specifically for the Apple Ile and IIc is ProDOS
8 (1.1.1). An even more recent version, developed for the Apple IIGS but compatible with
the ITe and Ilc, is ProDOS 8 (1.2).

Note: Prior to development of ProDOS 16, ProDOS 8 was called simply
ProDOS.

ProDOS 16

ProDOS 16 is an extensive revision of ProDOS 8, developed specifically for the Apple
IIGS (it will not run on other Apple IT's). The 16 refers to the 16-bit internal registers in the
Apple IIGS 65C816 microprocessor.

ProDOS 16 permits access to the entire 16 Mb addressable memory space of the Apple TIGS

(ProDOS 8 1s restricted to addressing 64K) and it has more “SOS-like” features than i
ProDOS 8 has. It also has some new features, not present in SOS, that ease program

development.

There are two versions of ProDOS 16. Version 1.0 is a first-release system, consisting of

a ProDOS 8 core surrounded by a “ProDOS 16-like” user interface. Version 2.0 is the
complete implementation of the ProDOS 16 design.

Pascal

The Pascal operating system for the Apple II is modified and extended from UCSD Pascal,
developed at the University of California at San Diego. The latest version, written for the
Apple Ile/TIc and 64K Apple II Plus, is Pascal 1.3. It also runs on an Apple IIGS.

Pascal for the Apple III is a modified version of Apple II Pascal. It uses SOS for most of
its operating system functions.

File compatibility

ProDOS 16, ProDOS 8, and SOS all use a hierarchical file system with the same format
and organization. Every file on one system’s disk can be read by either of the other
systems. DOS and Pascal use significantly different forrnats. T

APDA Draft 234 11/13/86

Appendix B

The other systems compare to ProDOS 16 as follows:

ProDOS 8: ProDOS 16 and ProDOS 8 have identical file system organizations
—therefore, ProDOS 16 can read all ProDOS 8 files. However, the System
Loader under ProDOS 16 will not execuze ProDOS 8 executable binary files
(type $06). Likewise, ProDOS 8 can read but will not execute file types
$B3-$BE; those file types are specific to ProDOS 16.

SOS: ProDOS 16 and SOS have identical file system organizations —therefore,
ProDOS 16 can read (but not execute) all SOS files.

DOS: DOS does not have a hierarchical file system. ProDOS 16 cannot directly
read DOS files (but see “Reading DOS 3.3 and Apple II Pascal Disks,” in
the following section).

Pascal: Apple II Pascal does not have a hierarchical file system. ProDOS 16 cannot
directly read Apple II Pascal files (but see “Reading DOS 3.3 and Apple II
Pascal Disks,” below).

Apple UI Pascal uses the SOS file system. Therefore ProDOS 16 can read
(but not execute) all Apple III Pascal files.

Reading DOS 3.3 and Apple II Pascal disks

Both DOS 3.3 and ProDOS 8 140K flexible disks are formatted using the same 16-sector
layout. As a consequence, the ProDOS 16 READ BLOCK and WRITE BLOCK calls are
able to access DOS 3.3 disks too. These calls know nothing about the organization of files
on cither type of disk.

When using READ _BLOCK and WRITE BLOCK, you specify a 512-byte block on the
disk. When using RWTS (the DOS 3.3 counterpart to READ BLOCK and
WRITE_BLOCK), you specify the track and sector of a 256-byte chunk of data, as
explained in the DOS Programmer’s Manual. To use READ BLOCK and WRITE BLOCK
to access DOS 3.3 disks, you must know what 512-byte block corresponds to the track and
sector you want.

Table B-1 shows how to determine a block number from a given track and sector. First
multiply the track number by 8, then add the sector offset that corresponds to the sector
number. The half of the block in which the sector resides is determined by the half-of-
block line (1 is the first half; 2 is the second).

Table B-1. Tracks and sectors to blocks (140K disks)
Block number = (8*track number) + sector offset

Sector: 0 1 2 3 4 5 6 7 8 9 A B CDEF
Sector offset: ¢ 7 6 6 5§ 5 4 4 3 3 2 2 1 1 0 7
Half of block: 112 1212121212122

Refer to the DOS Programmer’s Manual for a description of the file organization of DOS
3.3 disks.

APDA Draft 235 11/13/86

Apple 11GS ProDOS 16 Reference

Operating system similarity

This section compares the functional similarities among the operating systems. Functional
similarity between two systems implies that they perform closely related operations, but it
does not mean that thay have identical procedures or commands.

Input/Qutput

ProDOS 16 can perform I/O operations on files in disk drives (block devices) only. Under
ProDOS 16, therefore, the current application is responsible for knowing the protocol
necessary to communicate with character devices (such as the console, printers, and
communication ports).

The other systems compare to ProDOS 16 as follows:
ProDOS 8: Like ProDOS 16, ProDOS 8 performs I/O on block devices only.

SOS: SOS communicates with all devices, both character devices and block
devices, by making appropriate file access calls (such as open, read write,
close). Under SOS, writing to one device is essentially the same as writing
to another.

DOS: DOS allows communication with one type of device only—the Disk IT
drive. DOS 3.3 uses a 16-sector disk format; earlier versions of DOS use a
13-sector format. 13-sector Disk II disks cannot be read directly by DOS
3.3, SOS, ProDOS 8, or ProDOS 16.

Pascal: Apple II and Apple III Pascal provide access to both block devices and
character devices, through File 1/0, Block 1/0, and Device 1/0 calls to the
volumes on the devices.

Filing calls

SOS, ProDOS 8, and ProDOS 16 filing calls are all closely related. Most of the calls are
shared by all three systems; furthermore, their numbers are identical in ProDOS 8 and SOS
(ProDOS 16 calls have a completely different numbering system from either ProDOS 8 or
SOS).

The other systems compare to ProDOS 16 as follows:
ProDOS 8: The ProDOS 8 ON_LINE call corresponds to the ProDOS 16 VOLUME call.
When given a device name, VOLUME returns the volume name for that

device. When given a unit number (derived from the slot and drive
numbers), ON_LINE returns the volume name.

APDA Draft 236 11/13/86

Appendix B

The ProDOS 8 RENAME call corresponds to the ProDOS 16
CHANGE PATH call, except that RENAME can change only the last name in
a pathname.

SOS: The SOS GET_FILE_INFO call returns the size of the file (the value of
EOF). With ProDOS 16 you must first open the file and then use the
GET_EOF call.

The SOS VOLUME call corresponds to the ProDOS 16 VOLUME call. When
given a device name, VOLUME returns the volume name for that device.

The SOS calls SET MARK and SET_EOF can use a displacement from the
current position in the file. ProDOS 16 accepts only absolute positions in
the file for these calls.

DOS: DOS calls distinguish between sequential-access and random-access text
files. ProDOS 16 makes no such distinction, although the ProDOS 16
READ call in NEWLINE mode functions as a sequential-access read.

DOS uses APPEND and POSITION commands, roughly similar to ProDOS
16’s SET_MARK, to set the current position in the file and to automatically
extend the size of the file.

The CLOSE command in DOS can be given in immediate (from the
keyboard) or deferred (in a program) mode. No ProDOS 16 commands can
be given in immediate mode.

Pascal: Apple II Pascal distinguishes among text files, data files, and code files,
each with different header formats; all ProDOS 16 files have identical header
formats. The Pascal procedures REWRITE and RESET correspond to
ProDOS 16’s CREATE and OPEN calls. Pascal has more procedures for
reading from and writing to files and devices than does ProDOS 16.

Because Apple ITI Pascal uses the SOS file system, its filing calls
correspond directly to SOS calls.

Memory management

Under ProDOS 16, neither the operating system nor the application program perform
memory management; allocation of memory is the responsibility of the Memory Manager,
an Apple IIGS ROM-based tool set. When an application needs space for its own use, it
makes a direct request to the Memory Manager. When it makes a ProDOS 16 call that
requires the allocation of memory space, ProDOS 16 makes the appropriate request to the
Memory Manager. The Apple IIGS Memory Manager is similar to the SOS memory
manager, except that it is more sophisticated and is not considered part of the operating
system.

The other systems compare to ProDOS 16 as follows:

ProDOS 8: A ProDOS 8 application is responsible for its own memory management. It
must find free memory, and then allocate it by marking it off in the ProDOS

APDA Draft 237 11713186

Apple 1IGS ProDOS 16 Reference

SOS:

DOS:

Pascal:

Interrupts

8 global page’s memory bit map. ProDOS 8 protects allocated areas by -
refusing to write to any pages that are marked on the bit map. Thus it

prevents the user from destroying protected memory areas (as long as all

allocated memory is properly marked off, and all data is brought into

memory using ProDOS 8 calls).

SOS has a fairly sophisticated Memory Manager that is part of the operating
system itself. An application requests memory from SOS, either by location
or by the amount needed. If the request can be satisfied, SOS grants it.
That portion of memory is then the sole responsibility of the requestor until
it is released.

DOS performs no memory management. Each application under DOS is
completely responsible for its own memory allocation and use.

Apple II Pascal uses a simple memory management system that controls the
loading and unloading of code and data segments and tracks the size of the
stack and heap.

Apple IIT Pascal uses SOS for memory management.

ProDOS 16 does not have any built-in interrupt-generating device drivers. Interrupt

handling routines are therefore installed into ProDOS 16 separately, using the o
ALLOC_INTERRUPT call. When an interrupt occurs, ProDOS 16 polls the handling

routines in succession until one of them claims the interrupt.

The other systems compare to ProDOS 16 as follows:

ProDOS 8:

SOS:

DOS:

Pascal:

APDA Draft

ProDOS 8 handles interrupts identically to ProDOS 16, except that it allows
fewer installed handlers (4 vs. 16).

In SOS, any device capable of generating an interrupt must have a device
driver capable of handling the interrupt; the device driver and its interrupt
handler are inseparable and are considered to be part of SOS. In addition,
SOS assigns a distinct interrupt priority to each device in the system.
DOS does not support interrupts.

Apple II Pascal versions 1.2 and 1.3 support interrupts; earlier versions of
Apple 11 Pascal do not.

Apple III Pascal uses the SOS interrupt system.

238 11113186

Appendix C

The ProDOS 16 Exerciser

The ProDOS 16 Exerciser is a program that lets you practice making operating system calls
without writing an application. All ProDOS 16 functions execute just as they would when

called from a program,; therefore you can test how the calls work and, if necessary, correct

any programming errors before coding your routines.

Starting the Exerciser

First, make a copy of the Exerciser disk and put the original away in a safe place. Consult
your owner’s manual if you need instructions on how to copy a disk.

The Exerciser may be the startup program on the diskette provided with this manual. If so,
it should execute automatically when you turn on the machine and insert the diskette.
Otherwise, select it from the desktop or program launcher that comes up when you start up
the system. The program’s filename is EXERCISER.

The first display is the menu screen. It shows all ProDOS 16 calls by number and name,
as well as a few other commands you may enter. The menu screen always returns between
execution of calls or commands.

Making system calls

You make system calls from the exerciser by entering their call numbers. The number you
enter is displayed at the bottom of the menu screen. You may clear the number at any time
by pressing zero twice in succession.

After entering the number, press the Retumn key. The parameter block for the call you
selected is displayed. Enter a value (or select the default provided by pressing the Return
key) for each parameter; each time you press Return, the cursor moves downward one
position in the parameter block. The cursor does not stop at any parameter that is a result
only (that has no input value).

Note: If, while you are entering parameters, you wish to correct a value, press the
Escape key—it positions the cursor back at the top of the parameter block. At any
other time, however, the Escape key returns you to the main menu.

Pathnames and other text strings are passed to and from ProDOS 16 in buffers referenced
by pointers in the parameter blocks. Therefore, to enter or read a pathname you must
provide a buffer for ProDOS 16 to read from or write to. In most cases, the Exerciser sets
up a default buffer, pointed to by a default pointer parameter (see, for example, the

APDA Draft 239 117113186

Apple 11GS ProDOS 16 Reference

CREATE call). The contents of the location referenced by that pointer are displayed on the
screen, below the parameter block. For convenience, you can directly edit the displayed
string on the screen; you needn't access the memory location itself.

After you have entered all the required parameters, press the Return key once more to
execute the call. If everything has gone right, the parameter list now contains results
returned by ProDOS 16, and the message " $00 call successful" appears at the bottom of
the screen. If a ProDOS 16 error occurrs, the proper error number and message are
displayed instead. In addition, if an error occurrs a small “c" should appear at the lower
right comer of the screen, to indicate that the microprocessor's carry bit has been set.

Other Commands

In addition to practicing system calls, you may issue commands that allow you to list the
contents of a directory, modify any part of the Apple [IGS RAM memory, enter the Monitor
program, or quit the Exerciser.

List Directory (L)

Press L and you are prompted for the pathname of the volume or subdirectory whose
contents you wish to list. For each file in the directory, the listing shows file name, file
type (see table A-2), number of blocks used, date and time of last modification, date and
time of creation, EOF (logical size in bytes), and subtype (value of the auxiliary type field).
Press the Escape key to return to the main menu.

Modify Memory (M)

You use the Modify Memory command to place data in memory for ProDOS 16 to read, or
to inspect the contents of a buffer that ProDOS 16 has written to.

Press M and you are prompted for a pointer to the part of memory you wish to access.
Enter the proper address and press the Return key. A 256-byte (one-page) portion of
memory is displayed, as 16 rows of 16 bytes each, beginning on a page boundary. Each
row is preceded by the address of the first byte in that row; to the right of each row are the
ASCII representations of the values of the bytes in the row.

Use the arrow keys to move the cursor around on the screen. To change the value of a
byte, type the new value right over the old one. You can enter data in hexadecimal format
only; the results of your entry are displayed on the screen in both hexadecimal and ASCIL.
For reference, Table C-1 lists ASCII characters and their decimal, hexadecimal, and binary
equivalents.

You may undo up to the last 16 changes you made by typing U successively. To display
the preceding or succeeding page in memory, press < or >,

Warning! Modify Memory does not prevent you from changing values in parts of

memory that are already in use. You can conceivably alter the Exerciser itself or
other critical code, causing a system crash. Be careful what you modify!

APDA Draft 240 11/13/86

Appendix C

Exit to Monitor (X)

The Monitor is a firmware program (see Apple IIGS Firmware Reference) that allows you
to inspect and modify the contents of memory, assemble and disassemble code in a limited
manner, and execute code in memory. You may enter the Monitor from the ProDOS 16
Exerciser.

To call the Monitor, press M. When the Monitor prompt (*) appears, you may issue any
Monitor command. To leave the Monitor and return to the Exerciser, you must reboot the
computer (press Control-(3-Reset) and, if necessary, re-execute the Exerciser from the
desktop or program launcher.

Quit (Q)
To quit the ProDOS 16 exerciser, simply press Q. Of course, you may also quit by

selecting the ProDOS 16 QUIT call ($27), filling out the parameter block, and executing the
call.

APDA Draft 241 11713186

Apple IIGS ProDOS 16 Reference
Table C-1. ASCII character set

Char Dec Hex Binary Char Dec Hex Binary Char Dec Hex Binary
nil 0 0 00000000 - 45 2D 00101101 Z 90 5A 01011010
soh 1 1 00000001 . 46 2E 00101110 [91 5B 01011011
stx 2 2 00000010 / 47 2F 00101111 \ 92 5C 01011100
ex 3 3 00000011 0 48 30 00110000] 93 5D 01011101
eot 4 4 00000100 1 49 31 00110001 A 094 5E 01011110
eng 5 5 00000101 2 50 32 00110010 _ 95 5F 01011111
ack 6 6 00000110 3 51 33 00110011 96 60 01100000
bel 7 7 00000111 4 52 34 00110100 a 97 61 01100001
bs 8 8 00001000 5 53 35 00110101 b 98 62 01100010
ht 9 9 00001001 6 54 36 00110110 c 99 63 01100011
If 10 A 00001010 7 55 37 00110111 d 100 64 01100100
vt 11 B 00001011 8 56 38 00111000 e 101 65 01100101
ff 12 C 00001100 9 57 39 00111001 f 102 66 01100110
e 13 D 00001101 ¢ 58 3A 00111010 g 103 67 01100111
so 14 E 00001110 . 59 3B 00111011 h 104 68 01101000
si 15 F 00001111 < 60 3C 00111100 i 105 69 01101001
de 16 10 00010000 = 61 3D 00111101 j 106 6A 01101010
dcl 17 11 00010001 > 62 3E 00111110 k 107 6B 01101011
dc2 18 12 00010010 ? 63 3F 00111111 1 108 6C 01101100
dc3 19 13 00010011 @ 64 40 01000000 m 109 6D 01101101
ded 20 14 00010100 A 65 41 01000001 n 110 6E 01101110
nak 21 15 00010101 B 66 42 01000010 o 111 6F 01101111
syn 22 16 00010110 C 67 43 01000011 p 112 70 01110000
etb 23 17 00010111 D 68 44 01000100 q 113 71 01110001
can 24 18 00011000 E 69 45 01000101 r 114 72 01110010
em 25 19 00011001 F 70 46 01000110 s 115 73 01110011
sub 26 1A 00011010 G 71 47 01000111 t 116 74 01110100
esc 27 1B 00011011 H 72 48 01001000 u 117 75 01110101
~fs 28 1C 00011100 I 73 49 01001001 v 118 76 01110110
gs 29 1D 00011101 J 74 4A 01001010 w 119 77 01110111
rs 30 1E 00011110 75 4B 01001011 x 120 78 01111000
us 31 1F 00011111 76 4C 01001100 y 121 79 01111001
sp 32 20 00100000 77 4D 01001101 z 122 7A 01111010

! 33 21 00100001 78 4E - 01001110 { 123 7B 01111011
" 34 22 00100010 79 4F 01001111 | 124 7C 01111100
35 23 00100011 80 50 01010000 } 125 7D 01111101
$ 36 24 00100100 81 51 01010001 ~ 126 7E 01111110
% 37 25 00100101 01010010 del 127 7F 01111111

& 38 26 00100110
' 39 27 00100111

83 53 01010011
834 54 01010100

40 28 00101000

(85 55 01010101
) 41 29 00101001

*

+

86 56 01010110
87 57 01010111
88 58 01011000
89 59 01011001

42 2A 00101010
43 2B 00101011
. 44 2C 00101100

KHEELC RuedOw O0ZZr R
(o' =]
[\]
Lh
(3]

APDA Draft 242 11/13/86

Appendix D

System Loader Technical Data

This appendix assembles some specific technical details on the System Loader. For more
information, see the referenced publications.

Object module format
The System Loader can load only code and data segments that conform to Apple IIGS

object module format. Object module format is described in detail in Apple IIGS
Programmer’s Workshop Reference.

File types

File types for load files and other OMF-related files are listed below. For a complete list of
ProDOS file types, see Table A-2 in Appendix A.

File type Description

$BO Source file (aux_type defines language)
$B1 Object file

$B2 Library file

$B3 Application file

$B4 Run-time library file

$BS Shell application file

$B6 - $BE Reserved for system use. Currently defined types include:
$B6 Permanent inititialization file

$B7 Temporary initialization file

$B8 New desk accessory

$B9 Classic desk accessory

Segment Kinds

Whereas files are classified by type, segments are classified by kind. Each segment has a
kind designation in the KIND field of its header. The five high-order bits in the KIND field
describe specific attributes of the segment; the value in the low-order five-bit field describes
the overall type of segment. Different combinations of attributes and type values yield
different results for the segment kind.

The KIND field is two bytes long. Figure D-1 shows its format.

APDA Draft 243 11113186

Apple 1IGS ProDOS 16 Reference

Byte 1 Byte O

Bit: |15i14$13

12

019 f8[716]57413211]0

Value:

Type

Figure D-1. Segment kind format

where the attribute bits (11-15) mean the following:

SD (bit 15) = static/dynamic (0 = static; 1 = dynamic)
Pr (bit 14) = private (0 =no; 1 =yes)
PI (bit 13) = position-independent (0 =no; 1 = yes)
SM (bit 12) = may bein special memory (0 = yes; 1 =no)
AB (bit 11) = absolute-bank (0 =no; 1 =yes)
and the type field (bits 0-4) describes one of the following classifications of the segment:
Value of Type Description
$00 code segment
$01 data segment
$02 Jump Table segment
$04 Pathname segment
$08 library dictionary segment
$10 initialization segment
$12 "~ direct-page/stack segment

Segment attributes can be combined with particular types to yield different resultant values
for KIND. For example, a dynamic Initialization Segment has KIND = $8010.

Record codes

Load segments, like all OMF segments, are made up of records. Each type of record has
a code number and a name. For a complete list of record types, see Apple IIGS
Programmer’s Workshop Reference. The only record types recognized by the System

Loader are these:

Record Code Name

$E2
$E3

$F1
$F2

$F5

APDA Draft

RELOC

INTERSEG

DS
LCONST

cRELOC

Description

intrasegment relocation record (in relocation
dictionary)

intersegment relocation record (in relocation
dictionary)

zero-fill record

long-constant record (the actual code and data for
each segment)

compressed intrasegment relocation record (in
relocation dictionary)

244 11/13/86

Appendix D

$F6 cINTERSEG compressed intersegment relocation record (in
relocation dictionary)

$E7 SUPER super-compressed relocation record (the equivalent
of many ¢cRELOC or ¢ INTERSEG records)

$00 END the end of the segment

If the loader encounters any other type of record in a load segment, it returns error $110A.

Load-file numbers

Load files processed by the Apple IIGS Programmer’s Workshop Linker at any one time
are numbered consecutively from 1. Load file 1 is called the initial load file. All other
files are considered to be run-time libraries.

A load-file number of 0 in a Jump Table segment or a Pathname segment indicates the end
of the segment.

Load-segment numbers

In each load file created by the linker, segments are numbered consecutively by their
position in the load file, starting at 1. The loader determines a segment’s number by
counting its position from the beginning of the load file. As a check, the loader also looks
at the segment number in the segment’s header.

The first static segment in a load file, which need not be segment number 1, is called the
main segment—it is loaded first (except for any preceding initialization segments) and
never leaves memory while the program is executing. Because a run-time library need have
no static segments at all, it typically has no main segment.

Segment headers

The first part of every object module format segment is a segment header; it contains 17
fields that give the name, size, and other important information about the segment.

Restrictions on segment header values

Because OMF supports capabilities that are more general than the System Loader’s needs,
the System Loader permits load files to have only a subset of all possible OMF
characteristics. The loader does this by restricting the values of several segment header
fields:

NUMSEX: must be 0
NUMLEN: must be 4
BANKSIZE: must be less than or equal to $10 000
ALIGN: must be less than or equal to $10 000

APDA Draft 245 11713186

Apple IIGS ProDOS 16 Reference

If the System Loader finds any other values in any of the above fields, it returns error
$110B (“Segment is Foreign™). The restrictions on BANKSIZE and ALIGN are enforced
by the APW Linker also.

Page-aligned and bank-aligned segments

In OMF, the values of BANKSIZE and ALIGN may be any multiple of 2. But because the
Memory Manager and System Loader support only two types of alignment (page- and
bank-alignment) and one bank size (64K), the System Loader uses both BANKSIZE and
ALIGN values to control segment alignment, as follows.

1. If BANKSIZE is 0 or $10 000, its value has no effect on segment alignment.

2. If BANKSIZE is any other value, the greater of BANKSIZE and ALIGN is called the
alignment factor. Alignment in memory is controlled by the alignment factor in this
way:

a. If the alignment factor is 0, the segment is not aligned to any memory boundary.

b. If the alignment factor is greater than 0 and less than or equal to $100, the
segment is page-aligned.

c. If the alignment factor is greater than $100, the segment is bank-aligned.

Note: The Memory Manager itself does not directly support bank-alignment. The
System Loader forces bank alignment where needed by requesting blocks in
successive banks until it finds one that starts on a bank boundary.

Entry point and global variables

There is only one entry point needed for all System Loader calls (actually, all tool calls). It
is to the Apple TIGS tool dispatcher, at the bottom of bank $E1 (address $E1 00 00).
Although the System Loader maintains memory space and a table of loader functions in
other parts of memory, locations in those areas are not supported. Please make all System
Loader calls with a JSL to $E1 00 00, as explained in Chapter 17 (or with macro calls or
other higher-level interface, if appropriate for your langunage).

The following variables are of global significance. They are defined at the system level, so
any application that needs to know their values may access them. However, only USERID
is important to most applications, and it should be accessed only through proper calls to the
System Loader. The other variables are needed by controlling programs only, and should
not be used by applications.

SEGTBL Absolute address of the Memory Segment Table
JMPTBL Absolute address of the Jump Table Directory
PATHTBL Absolute address of the Pathname Table
USERID User ID of the current application

APDA Draft 246 11113186

User ID format

The User ID Manager is discussed in Chapter 5, and fully explained in Apple 7IGS Toolbox
Reference. Only the format of the User ID number, needed as a parameter for System
Loader calls, is shown here.

Appendix D

There is a 2-byte User ID associated with every allocated memory block. It is divided into
three fields: MainID, AuxID, and TypeID. The MainID field contains the unique
number assigned to the owner of the block by the User ID Manager, every allocated block
has a nonzero value in its Main ID field. The AuxID field holds a user-assignable
identification; it is ignored by the System Loader, ProDOS 16, and the User ID Manager.
The TypeID field gives the general class of software to which the block belongs.

Byte 1 Byte O
Bit: TS;ME'ISiHH;]OiQEB 71615i4183i21110
Value: | Type ID Aux ID Main ID

Figure D-2. User ID format

MainID can have any value from $01 to $FF (0 is reserved).

AuxID can have any value from $00 to $OF.

TypeID values are defined as follows:

0

1
2
3
4
5
6
7
8
9
A-

Memory Manager
application

controlling program
ProDOS 8 and ProDOS 16
tool set

desk accessory

run-time library

System Loader
firmware/system function
Tool Locator

F (undefined)

APDA Draft 247

11113186

Apple 11GS ProDOS 16 Reference

APDA Draft 248 11713186

Appendix E

Error Codes

This appendix lists and describes all error codes returned by ProDOS 16 and the System
Loader. Each error code is followed by the error’s suggested name or screen message, and
a brief description of its significance.

When an error occurs during a call, ProDOS 16 or the System Loader places the error
number in the accumulator (A-register), sets the status register carry bit, and returns control
1o the calling routine. :

If, after a call, the carry bit is clear and the accumulator contains 0, that signifies a
successful completion (no error).

ProDOS 16 errors

Nonfatal errors

A nonfatal error signifies that a requested call could not be completed properly, but
program execution may continue.

Number Message and Description
General En‘ors:.
$00 (no error)
$01 Invalid call number: a nonexistent command has been issued.
$07 ProDOS is busy: the call cannot be made because ProDOS 16 is busy
with another call.

Device call errors:

$10 Device not found: there is no device on line with the given name
(GET_DEV_NUM call)

APDA Draft 249 11113186

Apple 11GS ProDOS 16 Reference

$11

$25

$27

$28

$28

$2D

$2E

$2F

Invalid device request: the given device name or reference number is
not in ProDOS 16s list of active devices (VOLUME, READ BLOCK and
WRITE BLOCK calls)

Interrupt vector table full: the maximum number of user-defined
interrupt handlers (16) has already been installed; there is no room for
another (ALLOC_INTERRUPT call).

I/O error: a hardware failure has prevented proper data transfer to or from
a disk device. This is a general code covering many possible error
conditions.

No device connected: There is no device in the slot and drive specified
by the given device number (READ _BLOCK, WRITE BLOCK, and
VOLUME calls).

Write-protected: The specified volume is write-protected (the “write-
protect” tab or notch on the disk jacket has been enabled). No operation that
requires writing to the disk can be performed.

Invalid block address: An attempt was made to read data from a RAM
disk, at an address beyond its limits.

Disk switched: The requested operation cannot be performed because a
disk containing an open file has been removed from its drive,

Warning: Apple II drives have no hardware method for detecting disk
switches. This error is therefore returned only when ProDOS 16 checks a
volume name during the normal course of a call. Since most disk access
calls do not involve a check of the volume name, a disk-switched error can
easily go undetected.

Device not on line: A device specified in a call is not connected to the
system, or has no volume mounted on it. This error may be returned by
device drivers that can sense whether or not a specific device is on line.

$30 - $3F Device-specific errors: (error codes in this range are to be defined and

$40

$42

$43

APDA Draft

used by individual device drivers.)

File call errors:

Invalid pathname or device name syntax: The specified pathname
or device name contains illegal characters (other than A7, 0-9, . ,/,*)

FCB table full: The table of file control blocks is full; the maximum
permitted number of open files (8) has already been reached. You may not
open another file (OPEN call).

Invalid file reference number: the specified file reference number
does not match that of any currently open file.

250 11713186

$44

$45

$46

$47

$48

$49

$4A

Appendix E

Path not found: A subdirectory name in the specified pathname does not
exist (the pathname’s syntax is otherwise valid).

Volume not found: The volume name in the specified pathname does
not exist (the pathname’s syntax is otherwise valid).

File not found: The last file name in the specified pathname does not
exist (the pathname’s syntax is otherwise valid).

Duplicate pathname: An attempt has been made to create or rename a
file, using an already existing pathname (CREATE, CHANGE PATH calls).

Volume full: an attempt to allocate blocks on a disk device has failed, due
to lack of space on the volume in the device (CREATE, WRITE calls). If
this error occurs during a write, ProDOS 16 writes data is until the disk is
full, and still permits you to close the file.

Volume directory full: No more space for entries is left on the volume
directory (CREATE call). In ProDOS 16, a volume directory can hold no
more than 51 entries. No more files can be added to this directory until
others are destroyed (deleted).

Version error (incompatible file format): The version number in the
specified file’s directory entry does not match the present ProDOS 8-
ProDOS 16 file format version number. This error can only occur in future
versions of ProDOS 186, since for all present versions of ProDOS 8 and
ProDOS 16 the file format version number is zero.

Note: The version number referred to by this error code concemns the file format
only, not the version number of the operating system as a whole. In particular, it is
unrelated to the ProDOS 16 version number returned by the GET_VERSION call.

$4B

$4C

$4D

$4E

$50

APDA Draft

Unsupported (or incorrect) storage type: The organization of the
specified file is unknown to ProDOS 16. See Appendix A for a list of valid
storage types.

This error may also be returned if a directory has been tampered with, or if a
prefix has been set to a nondirectory file.

End-of-file encountered (out of data): A read has been attempted,
but the current file position (Mark) is equal to end-of-file (EOF), and no
further data can be read.

Position out of range: The specified file position parameter (Mark) is
greater than the size of the file (EOF).

Access not allowed: One of the attributes in the specified file’s access
byte forbids the attempted operation (renaming, destroying, reading, or
writing).

File is open: An attempt has been made to perform a disallowed
operation on an open file (OPEN, CHANGE PATH, DESTROY calls).

251 11/13/86

Apple 1IGS ProDOS 16 Reference

$51

$52

$53

$54

$55

$57

$58

$59

$5A

$5B

$5C

$5D

APDA Draft

Directory structure damaged: The number of entries indicated in the
directory header does not match the number of entries the directory actually
contains.

Unsupported volume type: The specified volume is not a ProDOS 16,
ProDOS 8, or SOS disk. Its directory format is incompatible with ProDOS
16.

Parameter out of range: The value of one or more parameters in the
parameter block is out of its range of permissible values.

Out of Memory: A ProDOS 8 program specified by the QUIT call is too
large to fit into the memory space available for ProDOS 8 applications.

VCB table full: The table of volume control blocks is full; the maximum
permitted number of online volumes/devices (8) has already been reached.
You may not add another device to the system. The error occurs when 8
devices are on line and a VOLUME call is made for another device that has no
open files.

Duplicate volume: Two or more online volumes have identical volume
directory names. This message is a warning; it does not prevent access to
either volume. However, ProDOS 16 has no way of knowing which
volume is intended if the volume name is specified in a call; it will access the
first one it finds.

Not a block device: An attempt has been made to access a device that is
not a block device. Current versions of ProDOS 16 support access to block
devices only.

Invalid level: The value specified for the system file level is out of range
(SET_LEVEL call).

Block number out of range: The volume bit map indicates that the
volume contains blocks beyond the block count for the volume. This error
may indicate a damaged disk structure.

Illegal pathname change: the pathnames on a CHANGE PATH call
specify two different volumes. CHANGE PATH can move files among
directories only on the same volume.

Not an executable file: The file specified in a QUIT call is nota
launchable type. All applications launched by the QUIT call must be type
$B3 (ProDOS 16 application), $B5 (shell application), or $FF (ProDOS 8
system file).

Operating system/file system not available: (1) The QUIT call has
specified a ProDOS 8 application to be launched, but the ProDOS 8
operating system is not on the system disk. (2) The FORMAT call is unable
to format a disk for the specified file system.

252 11713186

$5E:

$5F

$60

Appendix E

Cannot deallocate /RAM: in quitting from a ProDOS 8-based program
and launching a ProDOS 16-based program, PQUIT is not able to remove
the ProDOS 8 RAM disk in bank $01 (QUIT call).

Return stack overflow: An attempt was made to add another User ID to
the return stack maintained by PQUIT, but the stack already has 16 entries,
its maximum permitted number (QUIT call).

Data unavailable: the system has invalid information on which device
was last accessed (GET LAST DEV call)

Fatal errors

A fatal error signifies the occurrence of a malfunction so serious that processing must halt.
To resume execution following a fatal error, you must reboot the system.

Number

$01

$11

$0A

$0B

$0C

$0D

APDA Draft

Message and Description

Unclaimed interrupt: An interrupt signal has occurred and none of the
installed handlers claims responsibility for it. This error may occur if
interrupt-producing hardware is installed before its associated interrupt
handler is allocated.

Wrong OS version: The version number of the file P16 or P8 is
different from the version number of the file PRODOS. PRODOS, which
loads ProDOS 16 (P16) and ProDOS 8 (P 8), requires compatible versions
of both.

VCB unusable: The volume control block table has been damaged. The
values of certain check bytes are not what they should be, so ProDOS 16
cannot use the VCB table.

FCB unusable: The file control block table has been damaged. The
values of certain check bytes are not what they should be, so ProDOS 16
cannot use the FCB table.

Block zero allocated illegally: Write-access to block zero on a disk
volume has been attempted. Block zero on all volumes is reserved for boot
code.

Interrupt occurred while I/O shadowing off: The Apple IIGS has
soft switches that control shadowing from banks $E0 and $E1 to banks
$00 and $01. If an interrupt occurrs while those switches are off, the
firmware interrupt-handling code will not be enabled. See Apple IIGS
Firmware Reference.

253 11713186

Apple IIGS ProDOS 16 Reference

If a QUIT call results in the loading of a ProDOS 16-based application that is too large to fit
in the available memory or that for some other reason cannot be loaded, execution halts and
the following message is displayed on the screen:

Can’t run next application. Error=$XXxx

where $XXXX is an error code—typically a Tool Locator, Memory Manager, or System
Loader error code.

Bootstrap errors

Bootstrap errors can occur when the Apple IIGS attempts to start up a ProDOS 16 system
disk. Errors can occur at several points in this process:

1. If there is no disk in the startup drive, a “sliding apple” symbol (__@&—)appears on
the screen along with the message:

Check startup device!

Place a system disk in the drive and press Control-C3-Reset to restart the boot
procedure.

2. Ifthere is a disk in the drive, but it is not a ProDOS 8 or ProDOS 16 system disk
(that is, there is no type $FF file named PRODOS on it), the following message
appears:

UNAELE TO LOAD PRODOS

Remove the disk and replace it with another containing the proper files, then press
Control-G-Reset to restart the boot procedure.

3. If the file named PRODOS is found, but another essential file is missing, a message
such as

No SYSTEM/Plé file found
or
No x.SYSTEM or x.5YS1l6 file found

may appear. Remove the disk and replace it with another containing the proper files,
then press Control-G-Reset to restart the boot procedure.

Another type of ProDOS 16 bootstrap error occurs on other Apple II systems. If you try to
boot a ProDOS 16 system disk on a standard Apple II computer (one that is noz an Apple
1IGS), the following error message is displayed:

PRODOS 16 REQUIRES APPLE IIGS HARDWARE

When this occurs the disk will not boot. You can boot an Apple IIGS System Disk only on
an Apple IIGS computer.

APDA Draft 254 11/13186

Appendix E

System Loader errors

Nonfatal errors

Number
$0000
$1101

$1102

$1104

$1105

$1107

Message and Description
(no error)

Not found: The specified segment (in the load file) or entry (in the
Pathname Table or Memory Segment Table) does not exist. If the
specified load file itself is not found, a ProDOS 16 error $46 (file not
found) is returned.

Incompatible OMF version: The object module format version of a
load segment (as specified in its header) is incompatible with the current
version of the System Loader. The loader will not load such a segment.

File is not a load file: the specified load file is not type $B3-$BE.
See Appendix A or D for descriptions of these file types.

Loader is busy: The call cannot be made because the System Loader
is busy with another call.

File version error: The specified file cannot be loaded because its
creation date and time do not match those on its entry in the Pathname
Table.

Note: This error applies to run-time library files only.

$1108

$1109

$110A

$110B

$001-$05F

APDA Draft

User ID error: The specified User ID either doesn’t exist
(Application Shutdown), or doesn’t match the User ID of the specified
segment (Unload Segment By Number).

SegNum out of sequence: the value of the SEGNUM field in the
segment’s header doesn’t match the number by which the segment was
specified (Load Segment By Number, Initial Load).

Illegal load record found: A record in the segment is of a type not
accepted by the loader.

Load segment is foreign: The values in the NUMSEX and NUMLEN
fields in the specified segment’s header are not 0 and 4, respectively
(Load Segment By Number).

(ProDOS 16 I/O errors—see “ProDOS 16 Errors™ in this appendix)

255 11/13/86

Apple lIGS ProDOS 16 Reference

$201-$20A (Memory Manager errors—see Apple IIGS Toolbox Reference) s,

Fatal errors

If a ProDOS 16 error or Memory Manager error occurs while the System Loader is making
an internal call, it is a fatal error. The most common case is when a Jump Table Load is
attempted for a dynamic load segment or run-time library segment whose volume is not on

line. Control is transferred to the System Failure Manager, and the following message
appears on the screen:

Error loading Dynamic Segment—XXXX

where XXXX is the error code of the ProDOS 16 or Memory manager error that occurred.

APDA Draft 256 11113186

Glossary

absolute: Characteristic of a load segment or other program code that must be loaded at a
specific address in memory, and never moved. Compare relocatable.

access byte: An attribute of a ProDOS 16 file that determines what types of operations,
such as reading or writing, may be performed on the file.

accumulator: The register in the microprocessor where most computations are
performed.

address: A number that specifies the location of a single byte of memory. Addresses
can be given as decimal or hexadecimal integers. The Apple IIGS has addresses ranging
from 0 to 16,777,215 (in decimal) or from $00 00 00 to $FF FF FF (in hexadecimal)., A
complete address consists of a 4-bit bank number ($00 to $FF) followed by a 16-bit
address within that bank ($00 00 to $FF FF).

Apple IIGS Programmer’s Workshop: The development environment for the
Apple IIGS computer. It consists of a set of programs that facilitate the writing, compiling.
and debugging of Apple IIGS applications.

application program (or application): (1) A program that performs a specific task
useful to the computer user, such as word processing, data base management, or graphics.
Compare controlling program, shell application, system program. (2) On the
Apple IIGS, a program (such as the APW Shell) that accesses ProDOS 16 and the Toolbox
directly, and that can be called or exited via the QUIT call. ProDOS 16 applications are
file type $B3.

APW: see Apple IIGS Programmer’s Workshop.

APW Linker: The linker supplied with APW.

ASCII: Acronym for American Standard Code for Information Interchange. A code in
which the numbers from 0 to 127 stand for text characters. ASCII code is used for
representing text inside a computer and for transmitting text between computers or between
a computer and a peripheral device.

assembler: A program that produces object files (programs that contain machine-
language code) from source files written in assembly language. Compare compiler.

AuxID: One of three fields in the User ID, a number that identifies each application.

backup bit: A bit in a file’s access byte that tells backup programs whether the file has
been altered since the last time it was backed up.

bank: A 64K (65,536-byte) portion of the Apple IIGS internal memory. An individual
bank is specified by the value of one of the 65C816 microprocessor’s bank registers.

APDA Draft 257 11/13/86

Apple 1IGS ProDOS 16 Reference

bank-switched memory: On Apple II computers, that part of the language card
memory in which two 4K-portions of memory share the same address range
($D000-$DFFF).

binary file: (1) A file whose data is to be interpreted in binary form. Machine-language
programs and pictures are stored in binary files. Compare text file. (2) A file in binary
file format.

binary file format: The ProDOS 8 loadable file format, consisting of one absolute
memory image along with its destination address. A file in binary file format has ProDOS
file type $06 and is referred to as a BIN file. The System Loader cannot load BIN files.

bit: A contraction of binary digit . The smallest unit of information that a computer can
hold. The value of a bit (1 or 0) represents a simple two-way choice, such as yes or no or
on or off,

bit map: A set of bits that represents the positions and states of a corresponding set of
items. See, for example, global page bit map or volume bit map.

block: (1) A unit of data storage or transfer, typically 512 bytes. (2) A contiguous, page-
aligned region of computer memory of arbitrary size, allocated by the Memory Manager.
Also called a memory block.

block device: A device that transfers data to or from a computer in multiples of one
block (512 bytes) of characters at a time. Disk drives are block devices.

boot: Another way to say start up. A computer boots by loading a program into memory
from an external storage medium such as a disk. Boot is short for bootstrap load: Starting
up is often accomplished by first loading a small program, which then reads a larger
program into memory. The program is said to “pull itself up by its own bootstraps.”

buffer: A region of memory where information can be stored by one program or device
and then read at a different rate by another; for example, a ProDOS 16 I/O buffer.

Busy word: a firmware flag, consulted by the Scheduler, that protects system software
that is not reentrant from being called while processing another call.

byte: A unit of information consisting of a sequence of 8 bits. A byte can take any value
between 0 and 255 ($0 and $FF hexadecimal). The value can represent an instruction,
number, character, or logical state.

call: (v.) To request the execution of a subroutine, function, or procedure. (n.) A request
from the keyboard or from a program to execute a named function.

call block: The sequence of assembly—language instructions used to call ProDOS 16 or
System Loader functions.

carry flag: A status bit in the microprocessor, used as an additional high-order bit with
the accumulator bits in addition, subtraction, rotation, and shift operations.

character: Any symbol that has a widely understood meaning and thus can convey
information. Most characters are represented in the computer as one-byte values.

APDA Draft 258 11113186

Glossary

character device: A device that transfers data to or from a computer as a stream of
individual characters. Keyboards and printers are character devices.

close: To terminate access to an open file. When a file is closed, its updated version is
written to disk and all resources it needed when open (such as its I/O buffer) are released.
The file must be opened before it can be accessed again.

compact: To rearrange allocated memory blocks in order to increase the amount of
contiguous unallocated (free) memory. The Memory Manager compacts memory when
needed.

compiler: A program that produces object files (containing machine-language code)
from source files written in a high-level language such as C. Compare assembler.

controlling program: A program that loads and runs other programs, without itself
relinquishing control. A controlling program is responsible for shutting down its
subprograms and freeing their memory space when they are finished. A shell, for
example, is a controlling program.

current application: The application program currently loaded and running. Every
application program is identified by a User ID number; the current application is defined as
that application whose User ID is the present value of the USERID global variable.

data block: A 512-byte portion of a ProDOS 16 standard file that consists of whatever
kind of information the file may contain.

dereference: To substitute a pointer for a memory handle. When you dereference a
memory block’s handle, you access the block directly (through its master pointer) rather
than indirectly (through its handle).

desk accessories: Small, special-purpose programs that are available to the user
regardless of which application is running—such as the Control Panel, Calculator, Note
Pad, and Alarm Clock.

desktop: The visual interface between the computer and the user. In computers that
support the desktop concept, the desktop consists of a menu bar at the top of the screen,
and a gray area in which applications are opened as windows. The desktop interface was
first developed for the Macintosh computer.

device: A piece of equipment (hardware) used in conjunction with a computer and under
the computer’s control. Also called a peripheral device because such equipment is often
physically separate from, but attached to, the computer.

device driver: A program that manages the transfer of information between a computer
and a peripheral device.

direct page: A page (256 bytes) of bank $00 of Apple IIGS memory, any part of which
can be addressed with a short (one byte) address because its high address byte is always
$00 and its middle address byte is the value of the 65C816 direct register. Co-resident
programs or routines can have their own direct pages at different locations. The direct page
corresponds to the 6502 processor’s zero page. The term direct page is often used
informally to refer to any part of the lower portion of the direct-page/stack space.

APDA Draft 259 11113186

Apple 11GS ProDOS 16 Reference

direct-page/stack space: A portion of bank $00 of Apple IIGS memory reserved for a
program’s direct page and stack. Initially, the 65C816 processor’s direct register
contains the base address of the space, and its stack register contains the highest
address. In use, the stack grows downward from the top of the direct-page/stack space,
and the lower part of the space contains direct-page data.

direct register: A hardware register in the 65C816 processor that specifies the start of
the direct page.

directory file: One of the two principal categories of ProDOS 16 files. Directory files
contain specifically formatted entries that contain the names and disk locations of other
files. Compare standard file. Directory files are either volume directories or
subdirectories.

disk device: see block device.

disk operating system: An operating system whose principal function is to manage
files and communication with one or more disk drives. DOS and ProDOS are two
families of Apple II disk operating systems.

dispose: To permanently deallocate a memory block. The Memory Manager disposes of
a memory block by removing its master pointer. Any handle to that pointer will then be
invalid. Compare purge.

dormant: Said of a program that is not being executed, but whose essential parts are all in
the computer’s memory. A dormant program may be quickly restarted because it need
not be reloaded from disk.

DOS: An Apple Il disk operating system. DOS is an acronym for Disk Operating
System.

dynamic segment: A segment that can be loaded and unloaded during execution as
needed. Compare static segment.

e flag: A flag bit in the 65C816 that determines whether the processor is in native mode
or emulation mode.

8-bit Apple II: see standard Apple IL

emulation mode: The 8-bit configuration of the 65C816 processor, in which it functions
like a 6502 processor in all respects except clock speed.

EOF (end-of-file): The logical size of a ProDOS 16 file; it is the number of bytes that
may be read from or written to the file.

error (or error condition): the state of a computer after it has detected a fault in one or
more commands sent to it.

error code: a number or other symbol representing a type of error.

event: A notification to an application of some occurrance (such as an interrupt generated
by a keypress) that the application may want to respond to.

APDA Draft | 260 11/13/86

Glossary

event-driven: A kind of program that responds to user inputs in real time by repeatedly
testing for events posted by interrupt routines. An event-driven program does nothing until
it detects an event such as a keypress.

external device: See device.
fatal error: An error serious enough that the computer must halt execution.
file: A named, ordered collection of information stored on a disk.

file control block (FCB): A data structure set up in memory by ProDOS 16 to keep
track of all open files. -

file entry or file directory entry: The part of a ProDOS 16 directory or subdirectory
that describes and points to another file. The file so described is considered to be “in” or
“under” that directory.

file level: See system file level.

filename: The string of characters that identifies a particular file within its directory.
ProDOS 16 filenames may be up to 15 characters long, Compare pathname.

file system ID: a number describing the general category of operating system to which a
file or volume belongs. The file system ID is an input to the ProDOS 16 FORMAT call, and
a result from the VOLUME call.

file type: An attribute in a ProDOS 16 file’s directory entry that characterizes the contents
of the file and indicates how the file may be used. On disk, file types are stored as
numbers; in a directory listing, they are often displayed as three-character mnemonic codes.

filing calls: Operating system calls that manipulate files. In ProDOS 16, filing calls are
subdivided into file housekeeping calls andfile access calls.

finder: A program that performs file and disk utilities (formatting, copying, renaming,
and so on) and also starts applications at the request of the user.

firmware: Programs stored permanently in the computer’s read-only memory (ROM).
They can be executed at any time but cannot be modified or erased.

fixed: Not movable in memory once allocated. Also called unmovable. Program
segments that must not be moved are placed in fixed memory blocks. Opposite of
movable.

flush: To update an open file (write any updated information to disk) without closing it.
global page: Under ProDOS 8, 256 bytes of data at a fixed location in memory,
containing useful system information (such as a list of active devices) available to any
application.

global page bit map: A portion of the ProDOS 8 global page that keeps track of

memory use in the computer. Applications under ProDOS 8 are responsible for marking
and clearing parts of the bit map that correspond to memory they have allocated or freed.

APDA Draft 261 11113186

Apple 11GS ProDOS 16 Reference

guest file system: A file system, other than ProDOS 16’s, whose files can be read by
ProDOS 16.

handle: See memory handle.

hexadecimal: The base-16 system of numbers, using the ten digits O through 9 and the
six letters A through F. Hexadecimal numbers can be converted easily and directly to
binary form, because each hexadecimal digit corresponds to a sequence of four bits. In
Apple manuals hexadecimal numbers are usually preceded by a dollar sign ($).

high-order: The most significant part of a numerical quantity. In normal representation,
the high-order bit of a binary value is in the leftmost position; likewise, the high-order byte
of a binary word or long word quantity consists of the leftmost eight bits.

Human Interface Guidelines: A set of software development guidelines developed by
Apple Computer to support the desktop concept and to promote uniform user interfaces in
Apple II and Macintosh applications.

image: A representation of the contents of memory. A code image consists of machine-
language instructions or data that may be loaded unchanged into memory.

index block: A 512-byte part of a ProDOS 16 standard file that consists entirely of
pointers to other parts (data blocks) of the file.

initial load file: The first file of a program to be loaded into memory. It contains the
program’s main segment and the load file tables (Jump Table segment and Pathname
segment) needed to load dynamic segments and run-time libraries.

initialization segment: A segment in an initial load file that is loaded and executed
independently of the rest of the program. It is commonly cxccutcd first, to perform any
initialization that the program may require. n

input/output: the transfer of information between a computer’s memory and peripheral
devices.

interrupt: A temporary suspension in the execution of a program that allows the
computer to perform some other task, typically in response to a signal from a device or
source external to the computer.

interrupt handler: A program, associated with a particular external device, that executes
whenever that device sends an interrupt signal to the computer. The interrupt handler
performs its tasks during the interrupt, then returns control to the computer so it may
resume program execution.

interrupt vector table: A table maintained in memory by ProDOS 16 that contains the
addresses of all currently active (allocated) interrupt handlers.

INTERSEG record: A part of a relocation dictionary. It contains relocation information
for external (intersegment) references.

1/0: See input/output.

APDA Draft 262 11/13/86

Glossary

JML: unconditional Long Jump; a 65C816 assembly-language op code. It takes a 3-byte
address operand. A JML can reach any address in the Apple IIGS memory space.

JMP: unconditional Jump; a 6502 and 65C816 assembly-language op code. It takes a 2-
byte address operand. A JMP can reach addresses only within a single 64K bank of the
Apple TIGS memory space.

JSL: Long Jump to Subroutine; a 65C816 assembly-language op code. It takes a 3-byte
address operand. A JSL can access any address in the Apple IIGS memory space.

JSR: Jump to Subroutine; a 6502 and 65C816 assembly-language op code. It takes a 2-
byte address operand. A JSR can access addresses only within a single 64K bank of the
Apple IIGS memory space.

Jump Table: A table contructed in memory by the System Loader from all Jump Table
segments encountered during a load. The Jump Table contains all references to dynamic
segments that may be called during execution of the program.

Jump Table directory: A master list in memory, containing pointers to all segments
that make up the Jump Table.

Jump Table segment: A segment in a load file that contains all references to dynamic
segments that may be called during execution of that load file. The Jump Table segment is
created by the linker. In memory, the loader combines all Jump Table segments it
encounters into the Jump Table.

K: Kilobyte. 1024 (210) bytes.

kernel: The central part of an operating system. ProDOS 16 is the kemnel of the Apple
IIGS operating system.

key block: The first block in any ProDOS 16 file.
kind: See segment kind.

language card: Memory with addresses between $D000 and $FFFF on any

Apple II-family computer. It includes two RAM banks in the $Dxxx space, called
bank-switched memory. The language card was originally a peripheral card for the
48K Apple II or Apple II Plus that expanded its memory capacity to 64K and provided
space for an additional dialect of BASIC.

level: See system file level.

library file: An object file containing program segments, each of which can be used in
any number of programs. The linker can search through the library file for segments that
have been referenced in the program source file.

linker: A program that combines files generated by compilers and assemblers, resolves
all symbolic references, and generates a file that can be loaded into memory and executed.

load file: The output of the linker. Load files contain memory images that the system

loader can load into memory, together with relocation dictionaries that the loader uses
to relocate references.

APDA Drafi 263 11/13/86

Apple IIGS ProDOS 16 Reference

load segment: A segment in a load file.

lock: To prevent a memory block from being moved or purged. A block may be locked
or unlocked by the Memory Manager, or by an application through a call to the System
Loader.

long word: A double-length word. For the Apple IIGS, a long word is 32 bits (4 bytes)
long.

low-order: The least significant part of a numerical quantity. In normal representation,
the low-order bit of a binary number is in the rightmost position; likewise, the low-order
byte of a binary word or long word quantity consists of the rightmost eight bits.

m flag: A flag in the 65C816 processor that determines whether the accumulator is 8 bits
wide or 16 bits wide.

macro: a single predefined assembly-language pseudo-instruction that an assembler
replaces with several actual instructions. Macros are almost like higher-level instructions
that can be used inside assembly-language programs, making them easier to write.

MainID: One of three fields in the User ID, a number that identifies each application.

main segment: The first static segment (other than initialization segments) in the initial
load file of a program. It is loaded at startup and never removed from memory until the
program terminates.

Mark: The current position in an open file. It is the point in the file at which the next read
or write operation will occur.

‘Mark List: A table maintained in memory by the System Loader to help it perform
relocation rapidly.

master index block: The key block in a ProDOS 16 tree file, the largest organization
of a standard file that ProDOS 16 can support. The master index block consists solely
of pointers to one or more index blocks.

master pointer: A pointer to a memory block; it is kept by the Memory Manager. Each

allocated memory block has a master pointer, but the block is normally accessed through its
memory handle (which points to the master pointer), rather than through the master pointer
itself.

Mb: Megabyte. 1,048,576 (220) bytes.
memory block: See block (2).

memory handle: The identifying number of a particular block of memory. Itis a pointer
to the master pointer to the memory block. A handle rather than a simple pointer is needed
to reference a movable memory block; that way the handle will always be the same though
the value of the pointer may change as the block is moved around.

Memory Manager: A program in the Apple IIGS Toolbox that manages memory use.

The Memory Manager keeps track of how much memory is available, and allocates
memory blocks to hold program segments or data.

APDA Draft 264 11113186

Glossary

Memory Segment Table: A linked list in memory, created by the loader, that allows
the loader to keep track of the segments that have been Joaded into memory.

MLI: Machine Language Interface—the part of ProDOS 8 that processes operating system
calls.

monitor: See video monitor.

Monitor program: A program built into the firmware of Apple I computers, used for
directly inspecting or changing the contents of main memory and for operating the
computer at the machine—language level.

move: To change the location of a memory block. The Memory Manager may move
blocks to consolidate memory space.

movable: A memory block attribute, indicating that the Memory Manager is free to move
the block . Opposite of fixed. Only position-independent program segments may be
in movable memory blocks. A block is made movable or fixed through Memory Manager
calls.

native mode: The 16-bit operating configuration of the 65C816 processor.

newline mode: A file-reading mode in which each character read from the file is
compared to a specified character (called the newline character); if there is a match, the read
is terminated. Newline mode is typically used to read individual lines of text, with the
newline character defined as a carriage return.

nibble: a unit of information consisting of one-half of a byte, or 4 bits. A nibble can
take on any value between 0 and 15 ($0 and $F hexadecimal).

NIL: Pointing to a value of 0. A memory handle is NIL if the address it points to is filled
with zeros. Handles to purged memory blocks are NIL.

object file: The output from an assembler or compiler, and the input to a linker. It
contains machine-language intructions. Also called object program or object code.
Compare source file.

object module format: The general format used in Apple IIGS object files, library files,
and load files.

OMF file: Any file in object module format.
op code: See operation code.
open: To allow access to a file. A file may not be read from or written to until it is open.

operand: The part of an assembly language instruction that follows the operation code.
The operand is used as a value or an address, or to calculate a value or an address.

operating environment: The overall hardware and software setting within which a
program runs. Also called execution environment.

operating system: A program that organizes the actions of the various parts of the
computer and its peripheral devices. See also disk operating system.

APDA Drafi 265 11113186

Apple IIGS ProDOS 16 Reference

operation code: The part of a machine-language instruction that specifies the operation
to be performed. Often called op code.

page: (1) A portion of memory 256 bytes long and beginning at an address that is an
even multiple of 256, Memory blocks whose starting addresses are an even multiple of
256 are said to be page-aligned. (2) An area of main memory containing text or graphical
information being displayed on the screen.

parameter: A value passed to or from a function or other routine.

parameter block: A set of contiguous memory locations, set up by a calling program to
pass parameters to and receive results from an operating system function that it calls.
Every call to ProDOS 16 must include a pointer to a properly constructed parameter block.

partial pathname: A portion of a pathname including the filename of the desired file
but excluding the volume directory name (and possibly one or more of the subdirectories in
the pathname). It is the part of a pathname following a prefix—a prefix and a partial
pathname together constitute a full pathname. A partial pathname does not begin with a
slash because it has no volume directory name.

patch: To replace one or more bytes in memory or in a file with other values. The
address to which the program must jump to execute a subroutine is patched into memory at
load time when a file is relocated.

pathname: the complete name by which a file is specified. It is a sequence of filenames
separated by slashes, starting with the filename of the volume directory and following the
path through any subdirectories that a program must follow to locate the file. A complete

pathname always begins with a slash (/), because volume directory names always begin
with a slash.

Pathname segment: A segment in a load file that contains the cross-references between
load files referenced by number (in the Jump Table segment) and their pathnames (listed in
the file directory). The Pathname segment is created by the linker.

Pathname Table: A table constructed in memory from all individual Pathname segments
encountered during loads. It contains the cross-references between load files referenced by
number (in the Jump Table) and their pathnames (listed in the file directory).

pointer: An item of information consisting of the memory address of some other item.
For example, the 65C816 stack register contains a pointer to the top of the stack.

position-independent: Code that is written specifically so that its execution is
unaffected by its position in memory. It can be moved without needing to be relocated.

prefix: A portion of a pathname starting with a volume name and ending with a
subdirectory name. It is the part of a pathname before the partial pathname—a prefix
and a partial pathname together constitute a full pathname. A prefix always starts with a
slash (/) because a volume directory name always starts with a slash.

prefix number: A code used to represent a particular prefix. Under ProDOS 16, there

are nine prefix numbers, each consisting of a number (or asterisk) followed by a slash:
Oy L o y8T, A1E %/,

APDA Draft 266 _ 11/13/86

Glossary

ProDOS: A family of disk operating systems developed for the Apple II family of
computers. ProDOS stands for Professional Disk Operating System, and includes both
ProDQOS 8 and ProDQOS 16.

ProDOS 8: A disk operating system developed for standard Apple II computers. It runs
on 6502-series microprocessors. It also runs on the Apple IIGS when the 65C816
processor is in 6502 emulation mode.

ProDOS 16: A disk operating system developed for 65C816 native mode
operation on the Apple IIGS. It is functionally similar to ProDOS 8 but more powerful.

pull: To remove the top entry from a stack, moving the stack pointer to the entry below
it. Synonymous with pop. Compare push.

purge: To temporarily deallocate a memory block. The Memory Manager purges a block
by setting its master pointer to NIL (0). All handles to the pointer are still valid, so the
block can be reconstructed quickly. Compare dispose.

purge level: An attribute of a memory block that sets its priority for purging. A purge
level of 0 means that the block is unpurgeable.

purgeable: A memory block attribute, indicating that the Memory Manager may purge the
block if it needs additional memory space. Purgeable blocks have different purge levels,
or priorities for purging; these levels are set by Memory Manager calls.

push: To add an item to the top of a stack, moving the stack pointer to the next entry
above the top. Compare push.

queue: A list in which entries are added at one end and removed at the other, causing
entries to be removed in first-in, first-out (FIFO) order. Compare stack.

quit return stack: A stack maintained in memory by ProDOS 16. It contains a list of
programs that have terminated but are scheduled to return when the presently executing
program is finished.

random-access device: See block device.

record: A component of an load segment. All OMF file segments are composed of
records, some of which are program code and some of which contain cross-reference or
relocation information.

reentrant: Said of a routine that is able to accept a call while one or more previous calls to
it are pending, without invalidating the previous calls. Under certain conditions, the
Scheduler manages execution of programs that are not reentrant.

reference: (n) The name of a segment or entry point to a segment; same as symbolic
reference. (v) To refer to a symbolic reference or to use one in an expression or as an
address.

RELOC record: A part of a relocation dictionary that contains relocation information for
local (within-segment) references.

APDA Draft 267 11113186

Apple IIGS ProDOS 16 Reference

relocate: To modify a file or segment at load time so that it will execute correctly at its
current memory location. Relocation consists of patching the proper values onto address
operands. The loader relocates load segments when it loads them into memory. See also
relocatable.

relocatable: Characteristic of a load segment or other program code that includes no
absolute addresses, and so can be relocated at load time. A relocatable segment can be
static, dynamic, or position independent. It consists of a code image followed by a
relocation dictionary, Compare absolute.

relocation dictionary: A portion of a load segment that contains relocation information
necessary to modify the memory image portion of the segment. See relocate.

restart: To reactivate a dormant program in the computer’s memory. The System
Loader can restart dormant programs if all their static segments are still in memory. If any
critical part of a dormant program has been purged by the Memory Manager, the program
must be reloaded from disk instead of restarted.

restartable: Said of a program that reinitializes its variables and makes no assumptions
about machine state each time it gains control. Only restartable programs can be executed
from a dormant state in memory.

result: an item of information returned to a calling program from a function. Compare
value.

RTL: Return from subroutine Long; a 65C816 assembly-language instruction. It is used
in conjunction with a JSL instruction.

RTS: Return from Subroutine; a 6502 and 65C816 assembly-language instruction. It is
used in conjunction with a JSR instruction.

run-time library file: A load file containing program segments—each of which can be
used in any number of programs—that the System Loader loads dynamically when they are
needed.

sapling file: An organizational form of a ProDOS 16 standard file. A sapling file
consists of a single index block and up to 256 data blocks.

Scheduler: a firmware program that manages requests to execute interrupted software
that is not reentrant. If, for example, an interrupt handler needs to make ProDOS 16
calls, it must do so through the Scheduler because ProDOS 16 is not reentrant.
Applications need not use the Scheduler because ProDOS 16 is not in an interrupted state
when it processes applications’ system calls.

sector: A division of a track on a disk. When a disk is formatted, its surface is divided
into tracks and sectors.

seedling file: An organizational form of a ProDOS 16 standard file. A seedling file
consists of a single data block.

segment: A component of an OMF file, consisting of a header and a body. In load files,
each segment incorporates one or more subroutines.

APDA Draft 268 11/13/86

Glossary

segment kind: A numerical designation used to classify a segment in object module
format. It is the value of the KIND field in the segment’s header.

sequential-access device: See character device.

shadowing: The process whereby any changes made to one part of the Apple IIGS
memory are automatically and simultaneously copied into another part. When shadowing
is on, information written to bank $00 or $01 is automatically copied into equivalent
locations in bank $EQ or $E1. Likewise, any changes to bank $EO0 or $E1 are immediately
reflected in bank $00 or $01.

shell application: A type of program that is launched from a controlling program
and runs under its control. Shell applications are ProDOS 16 file type $B5.

soft switch: A location in memory that produces some specific effect whenever its
contents are read or written.

source file: An ASCII file consisting of instructions written in a particular language,
such as Pascal or assembly language. An assembler or compiler converts source files into
object files.

sparse file: A variation of the organizational forms of ProDOS 16 standard files. A
sparse file may be either a sapling file or a tree file; what makes it sparse is the fact that
its logical size (defined by its EOF) is greater than its actual size on disk. This occurs
when one or more data blocks contain nothing but zeros. Those data blocks are
considered to be part of the file, but they are not actually allocated on disk until nonzero
data is written to them.

stack: A listin which entries are added (pushed) and removed (pulled) at one end only
(the top of the stack), causing them to be removed in last-in, first-out (LIFQO) order. The
term the stack usually refers to the particular stack pointed to by the 65C816’s stack
register. Compare queue.

stack register: A hardware register in the 65C816 processor that contains the address of
the top of the processor’s stack.

standard Apple II: Any computer in the Apple II family except the Apple IIGS. That
includes the Apple 11, the Apple II Plus, the Apple Ile, and the Apple Ilc.

standard file: One of the two principal categories of ProDOS 16 files. Standard files
contain whatever data they were created to hold; they have no predefined internal format.
Compare directory file.

start up: To get the system running. It involves loading system software from disk, and
then loading and running an application. Also called boot.

static segment: A segment that is loaded only at program boot time, and is not unloaded
during execution. Compare dynamic segment.

storage type: An attribute of 2 ProDOS 16 file that describes the file’s organizational
form (such as directory file, seedling file, or sapling file).

subdirectory: A ProDOS 16 directory file that is not the volume directory.

APDA Draft 269 11113186

Apple 1IGS ProDOS 16 Reference

switcher: A controlling program that rapidly transfers execution among several
applications.

system: A coordinated collection of interrelated and interacting parts organized to perform
some function or achieve some purpose—for example, a computer system comprising a
processor, keyboard, monitor, disk drive, and software.

system disk: A disk that contains the operating system and other system software
needed to run applications.

System Failure Manager: A firmware program that processes fatal errors by
displaying a message on the screen and halting execution.

system file: See system program.

system file level: A number between $00 and $FF associated with each open ProDOS
16 file. Every time a file is opened, the current value of the system file level is assigned to
it. If the system file level is changed (by a SET_LEVEL call), all subsequently opened files
will have the new level assigned to them. By manipulating the system file level, a
controlling program can easily close or flush files opened by its subprograms.

System Loader: The program that manages the loading and relocation of load segments
(programs) into the Apple [IGS memory. The System Loader works closely with
ProDOS 16 and the Memory Manager.

system program: (1) A software component of a computer system that supports
application programs by managing system resources such as memory and I/O devices.
Also called system software. (2) Under ProDOS 8, a stand-alone and potentially self-
booting application. A ProDOS 8 system program is of file type $FF; if it is self-booting,
its filename has the extension . SYSTEM.

system software: The components of a computer system that support application
programs by managing system resources such as memory and I/O devices.

tool: see tool set.

tool set: A group of related routines (usually in firmware), available to applications and
system software, that perform necessary functions or provide programming convenience.
The Memory Manager, the System Loader, and QuickDraw II are tool sets.

toolbox: A collection of built-in routines on the Apple IIGS that programs can call to
perform many commonly-needed functions. Functions within the toolbox are grouped into
tool sets.

track: One of a series of concentric circles on a disk. When a disk is formatted, its
surface is divided into tracks and sectors.

tree file: An organizational form of a ProDOS 16 standard file. A tree file consists of
a single master index block, up to 127 index blocks, and up to 32,512 data
blocks.

TypelD: One of three fields in the User ID, a number that identifies each application.

APDA Draft 270 11/13/86

Glossary

unload: To remove a load segment from memory. To unload a segment, the System
Loader does not actually “unload” anything; it calls the Memory Manager to either purge
or dispose of the memory block in which the code segment resides. The loader then
modifies the Memory Segment Table to reflect the fact that the segment is no longer in
memory.

unmovable: See fixed.

unpurgeable: Having a purge level of zero. the Memory Manager is not permitted to
purge memory blocks whose purge level is zero.

User ID: An identification number that specifies the owner of every memory block
allocated by the Memory Manager. User ID’s are assigned by the User ID Manager.

User ID Manager: A tool set that is responsible for assigning User ID’s to every block
of memory allocated by the Memory Manager.

value: An item of information passed from a calling routine to a function. Compare
result.

video monitor: a display device that receives video signals by direct connection only.

version: A number indicating the release edition of a particular piece of software.
Version numbers for most system software (such as ProDOS 16 and the System Loader)
are available through function calls.

volume: An object that stores data; the source or destination of information. A volume
has a name and a volume directory with the same name; information on a volume is stored
in files. Volumes typically reside in devices; a device such as a floppy disk drive may
contain one of any number of volumes (disks).

volume bit map: A portion of every ProDOS 16-formatted disk that keeps track of free
disk space.

volume control block (VCB): A data structure set up in memory by ProDOS 16 to
keep track of all volumes/devices connected to the computer.

volume directory: A ProDOS 16 directory file that is the principal directory of a
volume. It has the same name as the volume. The pathname of every file on the volume
starts with the volume directory name.

volume name: The name by which a particular volume is identified. It is the same as the
filename of the volume directory file.

word: A group of bits that is treated as a unit. For the Apple IIGS, a word is 16 bits (2
bytes) long.

zero page: The first page (256 bytes) of memory in a standard Apple II computer (or in
the Apple IIGS computer when running a standard Apple II program). Because the high-
order byte of any address in this part of memory is zero, only a single byte is needed to
specify a zero-page address. Compare direct page.

APDA Draft 271 11/13/86

Apple IIGS ProDOS 16 Reference

APDA Draft 272 11/13/86

