
APP LE
PROGRAMMER'S
AND DEVELOPER'S
ASSOC IATION

290 SW 43rd. Street
Renton, WA 98055
206-251-6548

AppiellGs
ProDOS 16
Reference
Manual
Includes System Loader

November 13, 1986

APDA#: K2SP16

Apple IIGS ProDOS 16 Reference

Includes System Loader

APDA Draft

November 13, 1986

Apple Technical Publications

This docwnent contains preliminary information. It cines not include

• final editorial corrections
• final art work
• an index

It may not include final technical changes.

Copyright © 1986 Apple Computer, Inc. All rights reserved.

.. APPLE COMPUTER, INC.

This manual is copyrighted by
Apple or by Apple's suppliers,
wi lh all righlS reserved. Under
the copyright laws, this manual
may not be copied, in whole or
in part, without the written
consen t of Apple Computer, Inc.
This exception does not allow
copies [0 be made for others,
whethcr or not sold, but all of
the material purchased may be
sold, given, or lent to another
person. Under the law, copying
includes translating into another
language.

© Apple Computer, Inc., 1986
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo,
AppleTalk, Disk II, and ProDOS
are registered trademarks of
Apple Computer, Inc.

Apple IIGS, AppleWorks,
Macintosh, and Unidisk are
trademarks of Apple Computer,
Inc.

Simultnneously published in the
United S taleS and Canada.

-.

Contents

1 Preface
1 Road map to the Apple IIGS technical manuals
3 How to use this manual
3 Other materials you'll need
3 Hardware and software
4 Publications
5 Notations and conventions
5 Terminology
5 Typographic conventions
6 Watch for these

7 Part I: How ProDOS 16 Works

9 Chapter 1. About ProD OS 16
9 Background
9 What is ProDOS 16?
10 Programming levels in the Apple IIGS
11 Disks, volumes, and files
12 Memory use
12 External devices
12 ProDOS 16 and ProDOS 8
13 Upward compatibility
13 DO»lllward compatibility
13 Eliminated ProDOS 8 system calls
14 New ProDOS 16 system calls
14 Other features
15 Summary of ProDOS 16 features

17 Chapter 2. ProDOS 16 Files
17 U sing files
17 Filenames
17 Pathnames
19 Creating files
20 Opening files
20 The EOF and Mark
21 Reading and writing files
22 Closing and flushing files

APDA Drqft 1 11113186

Apple II GS ProDGS 16 Reference

22 File levels
23 File format and organization
23 Directory fIles and standard files
24 File organization
25 Sparse files

27 Chapter 3. ProDOS 16 and Apple IIGS Memory
27 Apple IIGS memory configurations
28 Special memory and shadowing
28 ProDOS 16 and System Loader memory map
29 Entry points and fLXed locations
30 Memory management
30 The Memory Manager
31 Pointers and handles
32 How an application obtains memory

35 Chapter 4. ProDOS 16 and External Devices
35 B lock devices
36 Character devices
36 Accessing devices
36 Named devices
36 Last device accessed
37 Block read and block write
37 Formatting a disk
37 Number of online devices
37 Device search at startup
38 Volume control blocks
38 Interrupt handling
40 U nclairned interrupts

41 Chapter 5. ProDOS 16 and the Operating Environment
41 Apple nGS system disks
41 Complete system disk
42 The SYSTEM.SETUP! subdirectory
43 Application system disks
44 System startup
44 Boot initialization
45 Startup program selection
47 Starting and quitting applications
47 PQUIT
47 Standard ProDOS 8 QUIT call
47 Enhanced ProDOS 8 QUIT call
48 ProDOS 16 QUIT call

APDA Draft 11 11113186

'--

48
50
51
53
54
55
55
56
56
56
57

59
59
60
60
60
61
62
62
62
63
63
64
64
64
64
65
66
66
67
68
68
69
69
69
69
70
70

73
73

QUIT procedure
Machine state at application launch

Pathname prefIxes
Initial ProDOS 16 prefIx values
ProD OS 8 prefIx and pathname convention

Tools, finnware, and system software
The Memory Manager
The System Loader
The Scheduler
The User 10 Manager
The System Failure Manager

Apple lles ProD OS 16 Reference

Chapter 6. Programming With ProDOS 16
Application requirements
Stack and direct page

Automatic allocation of stack and direct page
DefInition during program development
Allocation at run time
ProD OS 16 default stack and direct page

Manual allocation of stack and direct page
Managing system resources

Global variables
PrefIxes
Native mode and emulation mode
Setting initial machine confIguration
Allocating memory
Loading another program
U sing interrupts
Accessing devices

File creation/modifIcation date and time
Revising a ProDOS 8 application for ProD OS 16

Memory management
Hardware confIguration
Converting system calls
Modifying interrupt handlers
Converting stack and zero page
Compilation/assembly

Apple IIGS Programmer's Workshop
Human Interface Guidelines

Chapter 7. Adding Routines to ProDOS 16
Interrupt handlers

APDA Draft ill 11113186

Apple IIGS ProDDS 16 Reference

73 Interrupt handler conventions
74 In stalling interrupt handlers
74 Making operating system calls during interrupts

77 Part II: ProDOS 16 System Call Reference

79 Chapter 8. Making ProD OS 16 Calls
79 The call block
80 The parameter block
80 Types of parameters
81 Parameter block format
82 Setting up a parameter block in memory
82 Register values
83 Comparison with the ProDOS 8 call method
83 The ProDOS 16 Exerciser
84 Format for system call descriptions

8S Chapter 9. File Housekeeping Calls
86 CREATE ($0 I)
90 DESTROY ($02)
91 CHANGEYATH($04)
93 SET_FILE_INFO ($05)
97 GET_FILE_INFO ($06)
101 VOLUME ($08)
104 SET_PREFIX ($09)
106 GETYREFIX ($OA)
107 CLEAR_BACKUP _BIT ($OB)

109 Chapter 10. File Access Calls
110 OPEN ($10)
112 NEWLINE ($11)
114 READ ($12)
116 WRITE ($13)
118 CLOSE ($14)
119 FLUSH ($15)
120 SET_MARK ($16)
121 GET_MARK ($17)
122 SET_EOF ($18)
123 GELEOF ($19)
124 SET_LEVEL ($IA)
125 GET_LEVEL ($IB)

APDADrajt IV Il!l3186

Apple lIes ProD OS 16 Reference

127 Chapter 11. Device Calls
'~-- 128 GET_DEV _NUM ($20)

129 GET_LAST_DEV ($21)
130 READ_BLOCK ($22)
131 WRITE_BLOCK ($23)
132 FORMAT ($24)

135 Chapter 12. Environment Calls
136 GET_NAME ($27)
137 GET_BOOT_ VOL ($28)
138 QUIT ($29)
141 GET_VERSION ($2A)

143 Chapter 13. Interrupt Control Calls
144 ALLOC_INTERRUPT ($31)
145 DEALLOC_INTERRUPT ($32)

147 Part III: The System Loader

"- 149 Chapter 14. Introduction to the System Loader
149 What is the System Loader?
150 Loader tenninology
151 Interface with the Memory Manager
152 Loading a relocatable segment
152 Load-fIle structure
153 Relocation

155 Chapter 15. System Loader Data Tables
155 Memory Segment Table
156 Jump Table
157 Creation of a Jump Table entry
158 Modification at load time
159 Use during execution
159 Jump Table diagram
161 Pathname Table
163 Mark List

APDA Draft v llfJ3/86

Apple II GS ProDOS 16 Reference

165 Chapter 16. Programming With the System Loader
165 Static programs
165 Programming with dynamic segments
166 Programming with run-time libraries
167 User control of segment loading
167 Designing a controlling program
169 Shutting down and restarting applications
169 Summary: loader calls categorized

171 Chapter 17. System Loader Calls
171 intrOduction
171 How calls are made
172 Parameter types
172 Format for System Loader call descriptions
17 4 Loader Initialization ($0 I)
175 Loader Startup ($02)
176 Loader Shutdown ($03)
177 Loader Version ($04)
179 Loader Reset ($05)
180 Loader Status ($06)
181 Initial Load ($09) .- ,
184 Restan ($OA)
186 Load Segment by Number ($OB)
189 Unload Segment by Number ($OC)
191 Load Segment by Name ($00)
193 Unload Segment ($OE)
195 Get Load Segment Info ($OF)
197 Get User ID ($10)
199 Get Pathname ($11)
201 User Shutdown ($12)
203 Jump Table Load
205 Cleanup

207 Appendixes

209 Appendix A. ProDOS 16 File Organization
209 Organization of information on a volwne
210 Format and organization of directory files
211 Pointer fields
211 Volume directory headers
214 Subdirectory headers

APDA Draft vi 11113186

Apple JIGS ProD OS 16 Reference

217 File entries
220 Readin g a directory file
221 Format and organization of standard files
222 Growing a tree file
223 Seedling files
224 Sapling files
224 Tree files
225 Using standard files
225 Sparse files
227 Locating a byte in a file
227 Header and entry fields
227 The storage type attribute
228 The creation and last-modification fields
228 The access attribute
229 The flie type attribute
230 The auxiliary type attribute

233 Appendix B. Apple II Operating Systems
233 History
233 DOS
233 SOS
234 ProDOS 8
234 ProDOS 16
234 Pascal
234 File compatibility
235 Reading DOS 3.3 and Apple II Pascal disks
236 Operating system similarity
236 Input/Output
236 Filing calls
237 Memory management
238 Interrupts

239 Appendix C. The ProDOS 16 Exerciser
239 Starting the Exerciser
239 Making system calls
240 Other commands
240 List Directory (L)
240 Modify Memory (M)
241 Exit to Monitor (X)
241 Quit (Q)

APDA Draft Vll lJI131fi6

Apple IIGS ProDOS 16 Reference

243 Appendix D. System Loader Technical Data
243 Object module format
243 File types
243 Segment kinds
244 Record codes
245 Load-file numbers
245 Load-segment numbers
245 Segment headers
245 Restrictions on segment header values
246 Page-aligned and bank-aligned segments
246 Entry point and global variables
246 User ID format

249 Appendix E. Error Codes
249 ProDOS 16 Errors
249 Nonfatal errors
253 Fatal errors
254 Bootstrap errors
255 System Loader Errors
255 Nonfatal errors
256 Fatal errors

257 Glossary

.4PDA Draft V1ll 11113/86

2 Figure P-l

10 Figure 1-1
11 Figure 1-2

19 Figure 2-1
21 Figure 2-2
24 Figure 2-3
24 Figure 2-4
25 Figure 2-5

27 Figure 3-1
29 Figure 3-2
32 Figure 3-3
33 Figure 3-4

39 Figure 4-1

45 Figure 5-1
46 Figure 5-2
50 Figure 5-3

61 Figure 6-1

153 Figure 14-1

155 Figure 15-1
157 Figure 15-2
158 Figure 15-3
159 Figure 15-4
160 Figure 15-5
162 Figure 15-6
164 Figure 15-7

210 Figure A-I
210 Figure A-2
212 Figure A-3
215 Figure A-4
218 Figure A-5

APDADraji

Apple JIGS ProD OS 16 Reference

List of Figures

Roadmap to Apple IIGS technical manuals

Programming levels in the Apple IIGS

Example of a hierarchical me structure

Example of a ProDOS 16 me structure
Automatic movement of EOF and Mark
Directory file fOllIlat
Block organization of a directory file
Block organization of a standard file

Apple JIGS memory map
ProDOS 16 and System Loader memory map
Pointers and handles
Memory allocatable through the Memory Manager

Interrupt handling through ProDOS 16

Boot initialization sequence
Startup program selection
Run-time program selection (QUIT call)

Automatic direct-page/stack allocation

Loading a relocatable segment

Memory Segment Table entry
Jump Table Directory entry
Jump Table entry (unloaded state)
Jump Table entry (loaded state)
How the Jump Table works
Pathname Table entry
Mark List format

Block organization of a volume
Directory file format and organization
The volume directory header
The su bdirectory header
The file entry

IX 11113/86

Apple II GS ProDOS 16 Reference

223 Figure A-6 Fonnaf and organization of a seedling file -
224 Figure A-7 Format and organization of a sapling file
225 Figure A-8 Format and organization of a tree fIle
226 Figure A-9 An example of sparse file organization
227 Figure A-lO File Mark fonnat
228 Figure A-ll Date and time format
229 Figure A-12 Access byte format

244 Figure D-l Segment kind format
247 Figure D-2 User ID fonnat

APDA Drift x 11113186

1 Table P-l

28 Table 3-1
30 Table 3-2
31 Table 3-3

38 Table 4-1

42 Table 5-1
43 Table 5-2
52 Table 5-3
53 Table 5-4
55 Table 5-5

63 Table 6-1

152 Table 14-1

169 Table 16-1

228 Table A-I
229 Table A-2

235 Table B-1

242 Table C-l

APDA Draft

Apple IIGS ProD OS 16 Reference

List of Tables

The Apple IIGS teclnllca1 manuals

Apple IIGS memory units
ProDOS 16 fixed locations
Memory block attributes

Smartport number. slot number. and device number assignments

Contents of a complete Apple IIGS system disk
Required contents of an Apple IIGS application system disk
Examples of prefIx use
Initial ProDOS 16 prefix values
Initial ProDOS 8 prefIx and pathname values

Apple IIGS equivalents to ProDOS 8 global page infonnation

Load-segment/memory-block relationships (at load time)

System Loader functions categorized by caller

Storage type values
ProDOS fIle types

. Tracks and sectors to blocks (I40K disks)

ASCII character set

xi 11113186

Apple lles ProDOS 16 Reference

-.

APDA Draft xii 11113/86

Preface

The Apple IIGS ProD OS 16 Reference is a manual for software developers, advanced
programmers, and others who wish to understand the technical aspects of the Apple IIGs""
operating system. In particular, this manual will be useful to you if you want to write

• a stand-alone program that automatically runs when the computer is started up

• a routine that catalogs disks, manipulates sparse files, or otherwise interacts with the
Apple IIGS fIle system at a basic level

• an interrupt handler

• a program that loads and runs other programs

• any program using segmented, dynamic code

The functions and calls in this manual are in assembly language format. If you are
programming in assembly language, you may use the same format to access operating
system features. If you are programming in a higher-level language (or if your assembler
includes a ProDOS 16 macro library), you will use library interface routines specific to
your language. Those library routines are not described here; consult your language
manual.

Road map to the Apple IIGS technical manuals
The Apple IIGS personal computer has many advanced features, making it more complex
than earlier models of the Apple II. To describe it fully, Apple has produced a suite of
technical manuals. Depending on the way you intend to use the Apple IIGS, you may need
to refer to a select few of the manuals, or you may need to refer to most of them.

The technical manuals are listed in Table P-l. Figure P-l is a diagram showing the
relationships among the different manuals.

Table pol. The Apple IIGS technical manuals

Title

Technical Introduction to the Apple JIGS
Apple IlGS Hardware Reference
Apple IlGS Firmware Reference
Programmer' s Introduction to the Apple IIGS
Apple IlGS Toolbox Reference: Volumes 1 and 2
Apple nGS Programmer' s Workshop Reference

Subject

What the Apple IIGS is
Machine internals-hardware
Machine internals- firmware

Concepts and a sample program
How to use the Apple IIGS tools

Apple JIGS Programmer's Workshop Assembler Reference
Apple fIGS Programmer's Workshop C Reference

The development environment
Using the APWassembler
Using C on the Apple IIGS

Standard Apple II operating system ProD OS 8 Reference
Apple JIGS ProDOS 16 Reference
Human Interface Guidelines
Apple Numerics Manual

APDADraft 1

Apple IIGS operating system and loader
Guidelines for the desktop interface

Numerics for all Apple computers

11113186

Apple IIGS ProDOS 16 Reference

To start finding out
about the Apple IIGS

To learn how the
App!e IIGS works ---

To start learning to
program the Apple IIGS

To use the Toolbox

To operate on files

To use the development
environment

To use C ------

To use assembly
lon[;uoge -----

Figure pol. Roadmap to the technical manuals

APDA Draft 2 11113186

Apple lIGS ProDOS 16 Reference

How to use this manual
The Apple JIGS ProDOS 16 Reference is both a reference manual and a learning tooL It is
divided into several parts, to help you quickly fmd what you need.

• Part I describes ProDOS® 16, the central part of the Apple IIGS operating system

• Part II lists and explains the ProD OS 16 operating system calls

• Part ill describes the System Loader and lists all loader calls

• The final part consists of appendixes, a glossary, and an index

The first chapter in each part is introductory; read it first if you are not already familiar wi th
[he subject. The remaining chapters are primarily for reference, and need not be read in any
particular order. The ProDOS 16 Exerciser, on a diskette included with the manual,
provides a way to practice making ProDOS 16 calls before actually coding them.

This manual does not explain 65C816 assembly language. Refer to Apple lIGS
Programmer's WorksJwp Assembler Reference for information on Apple IIGS assembly
language programming.

This manual does not give a detailed description of ProDOS 8, the Apple II operating
system from which ProDOS 16 was derived. For a synopsis of the differences between
ProDOS 8 and ProDOS 16, see Chapter 1 of this manual. For more detailed information
on ProD OS 8, see ProDOS 8 Reference.

Other materials you 'II need

Hardware and software

To use [he products described in this manual, you will need an Apple IIGS with at least one
external disk drive (Apple recommends two drives). ProDOS 16 and the System Loader
require only the minimum memory configuration (256K RAM), although Apple IIGS
Programmer's Workshop and many application programs may require more memory.

You will also need an Apple IIGS system disk. A system disk contains ProDOS 16,
ProDOS 8, the System Loader, and other system software necessary for proper functionin g
of the computer. A system disk may also contain application programs.

If you wish to practice making ProDOS 16 operating system calls you will need the
ProDOS 16 Exerciser, a program on the diskette included with this manual.

APDA Draft 3 1lI13186

Apple II es ProDOS 16 Reference

Publications

This manual is the only reference for ProDOS 16 and the System Loader. You may find
useful related information in any of the publications listed under "Roadmap to Apple IIGS
Technical Manuals" in this preface; in particular, you may wish to refer to the following:

The technical introduction The Technical Introduction to the Apple lIes is the
first book in the suite of technical manuals about the Apple IIGS. It describes all
aspects of the Apple IIGS, including its features and general design, the program
environments, the toolbox, and the development environment.

• The programmer's introduction When you start writing programs for the
Apple IIGS , the Programmer's Introduction to the Apple lIes provides the concepts
and guidelines you need. It is a starting point for programmers writing event-driven
and segmented applications that use routines in the Apple IIGS Toolbox.

the firmware reference manual: The Apple lIes Firmware Reference describes
the routines that are stored in the machine's read-only memory (ROM); it includes
information about interrupt routines and low-level I/O subroutines for the serial ports
and disk port. The Firmware Reference also describes the Monitor, a low-level
programming and debugging aid for assembly-language programs.

The toolbox manuals Like the Macintosh™, the Apple IIGS has a built-in
toolbox. The two volumes of the Apple lIes Toolbox Reference introduce concepts
and terminology, show how to use the tools, and tell how to write and install your
own tool set. They also describe the workings of some of the system-level tool sets,
such as the Memory manager, that interact closely with proDOS 16 and the System
Loader.

• The Programmer's Workshop manuals: The development environment on the
Apple IIGS is the Apple ilGS Programmer's Workshop (APW). APW is a set of
programs that enable developers to create and debug application programs on the
Apple IIGS. The Apple lIes Programmer's Workshop Reference includes information
about the parts of the workshop that all developers will use, regardless which
programming language they use: the shell, the editor, the linker, the debugger, and
the utilities. In addition, there is a separate reference manual for each programming
language. The manuals for the languages Apple provides are the Apple lIes
Programmer's Workshop Assembler Reference and the Apple IIGS Programmer's
Workshop C Reference.

The ProDOS 8 manual: ProDOS 8 (previously called just ProDOS) is
compatible with all Apple II computers, including the Apple IIGS. As a developer of
Apple IIGS programs, you may need to refer to the ProDOS 8 Reference if you are
developing programs to run on standard Apple II's as well as on the Apple IIGS, or if
you are converting a ProDOS 8-based program to run under ProDOS 16.

APDADraft 4 11113186

Apple lIes ProD OS 16 Reference

Notations and conventions
To help make the manual more understandable, the following conventions and defmitions
apply throughout.

Terminology

This manual may deflne certain terms, such as Apple II and ProDOS, slightly differently
than what you are used to. Please note:

Apple II: A general reference to the Apple II family of computers, especially those
that may use ProDOS 8 or ProDOS 16 as an operating system. It includes the 64k
Apple II Plus, the Apple llc, the Apple lie, and the Apple llGS.

standard Apple II: Any Apple II computer that is IWt an Apple llGs. Since
previous members of the Apple II family share many characteristics, it is useful to
distinguish them as a group from the Apple llGs. A standard Apple II may also be
called an 8-bit Apple 11, because of the 8-bit registers in its 6502 or 65C02
microprocessor.

ProDOS: A general term describing the family of operating systems developed for
Apple II computers. It includes both ProDOS 8 and ProDOS 16; it does not include
DOS 3.3 or SOS.

ProDOS 8: The 8-bit ProDOS operating system, through version 1.2, originally
developed for standard Apple II computers but compatible with the Apple llGS. In
previous Apple II documentation, ProDOS 8 is called simply ProDOS.

ProDOS 16: A 16-bit operating system developed for the Apple IIGS computer. It is
the system descri bed in this manual.

Typographic conventions

Each new ternl introduced in this manual is printed flrst in bold type. That lets you know
that the term has not been deflned earlier, and also indicates that there is an enuy for it in
the glossary.

Assembly language labels, enuy points, routine names, and file names that appear in text
passages are printed in a special typeface (for example, name _length and
GET ENTRY). Function names that are English language terms are printed with initial caps
(for example, Load Segment By Number). When the name of a label or variable is used to
mean the value of that variable rather than its name, the word is printed in italics (for
example, "the fIrst name_length bytes of this fleld contain the volume name ... ").

APDA Draft 5 11/13/8n

Apple lIas ProDOS 16 Reference

Watch for these

The following words mark special messages to you:

Note: Text set off in this manner-with a word or phrase such as Note or By
the way-presents sidelights or interesting points of information.

Important: Text set off in this manner-with the word Important:-presents
important information or instructions.

Warning! Text set off in this manner-with the word Warning!- indicates
potential serious problems.

APDA Draft 6 11113186

Part I

How ProDOS 16 Works

This part of the manual gives a general description of ProDOS 16. ProDOS 16 is the
disk operating system for the Apple IIGS; it provides file management and
input/output capabilities, and controls certain other aspects of the Apple IIGS operating
environment.

APDA Draft 7 1lI1318{J

APDADrajt 8 11/13/86

Chapter 1

About ProDOS 16

This chapter introduces ProDOS 16. It gives background information on the development
of ProDOS 16, followed by an overview of ProD OS 16 in relation to the Apple IIGS. A
brief comparison of ProDOS 16 with ProD OS 8, its closest relative in the Apple II world.
is followed by a reference list of the most pertinent ProDOS 16 features .

The chapter' s organization roughly parallels that of Part I as a whole. Each section refers
you to the appropriate chapter for more information on each aspect of ProDOS 16.

Background

The Apple IIGS is the latest Apple II computer. Its microprocessor, the 65C816, is a
successor to the standard Apple IIs' 6502 and functions in both 8-bit (6502 emulation)
mode and 16-bit (native) mode (see Technical Introduction to the Apple lIGS). In
accordance with the design philosophy governing all Apple II family products, the Apple
IIGS is compatible with standard Apple II software-most presently available Apple II,
Apple IIc, and Apple lIe applications will run without modification on the Apple IIGs.

To retain this compatibility while adding new features, the Apple IIGS requires two separa te
operating systems, ProDOS 8 and ProDOS 16:

• ProD OS 8 is the operating system for standard Apple II computers. The Apple IIGS
uses ProDOS 8 and puts the processor into emulation mode in order to run
standard-Apple II applications.

• ProDOS 16 is a newly developed system; it takes advantage of Apple IIGS features
that standard Apple II computers do not have. The Apple IIGS uses ProDOS 16 and
puts the processor into native mode in order to run Apple IIGS applications.

The user need not worry about which operating system is active at anyone time.
Whenever the Apple IIGS loads an application, it automatically loads the proper operating
system for it.

ProDOS 8 on the Apple IIGS functions identically to ProDOS 8 on other Apple II
computers. For a complete description of ProDOS 8, see ProD OS 8 Reference.

What Is ProDOS 16?
ProD OS 16 is the central pan, or kernel, of the Apple IIGS operating system. Although
o ther software components (such as the System Loader described in this manual) may be

APDA Draft 9 IlIJ3i8f>

Apple llGS ProD OS 16 Reference

thought of as pans of the overall operating system, ProDOS 16 is the key component. It
manages the creation and modification of files. It accesses the disk devices on which
the ftIes are stored and retrieved. It dispatches interrupt signals to interrupt handlers . It
also controls certain aspects of the Apple liGS operating environment, such as
pathname prefixes and procedures for quitting programs and starting new ones.

Programming levels in the Apple IIGS

Figure 1-1 is a simplified logical diagram of the Apple liGS, from a programmer's point of
view. Boxes representing parts of the system form a vertical hierarchy; arrows between the
boxes show the flow of control or execution from one level to the next At the highest level
is the programmer or user; he directl y manipulates the execution of the application program
that runs on the machine. The application, in turn, interacts directly with the next lower
level of software--the operating system. The operating system interacts with the very
lowest level of software in the machine: the built-in firmware and toolbox routines. Those
routines directly manipulate the switches, registers, and input/output devices that constitute
the computer's hardware.

k:e (character dev
acce 55)

r U'1

~

I User I
r

A~lIcatlon r-- (tool
rogram

+
ProOOS 16

+ t

[Firmware I Taalbox ,
~ i

~

~ '7
inteirupl5 events

l.(Hordwore }l

calls)

1

Figure 1-1. Programming levels in the Apple IIas.

This hierarchical view shows that the operating system is an intermediary between the
application program and the computer hardware. A program need not know the details of
individual hardware devices it accesses; instead, it makes operating system calls. The
operating system then translates those calls into the proper instructions for whatever
devices are connected to the system.

The lowest software level, between the operating system and hardware, is extensively
developed in the Apple IIGs. It consists of two pans: the firmware, a collection of
traditional ROM-based routines for performing such tasks as character I/O, interrupt
handling, and memory manipulation; and the toolbox, a large set of assembly-language
routines and macros useful to all levels of software. As the arrows on Figure I-I show,

APDADrqft 10 llI13l&i

~.

ProDOS 16: Chaprcr I

ProD OS 16 accesses the fmnware/tools level of the Apple IIGS directly, but so do
application programs. In other words, for tool calls and certain types of I/O, applications
bypass ProDOS 16 and interact directly with low-level system software.

The arrows pointing upward along the diagram show a counterflow of information, in
which lower levels in the machine notify higher levels of important hardware conditions.
Interrupts from hardware devices are handled both by finnware and by ProDOS 16;
events are similar to interrupts but are handled by applications through tool calls.

Disks, volumes, and files

ProDOS 16 communicates with several different types of disk drives, but the type of drive
and its physical location (slot or port number) need not be known to a program that wants
to access that drive. Instead, a program makes calls to ProDOS 16, identifying the disk it
wants to access by its volume name or device name.

Information on a volume is divided into files. A file is an ordered collection of bytes that
has several attributes, including a name and a file type. Files are either standard files
(containing any type of code or data) or directory files (containing the names and disk
locations of other files). When a disk is initially formatted, its volume directory file is
created; the volume directory has the same name as the volume itself.

ProD OS 16 supports a hierarchical file system, meaning that volume directories can
contain the names of either files or other directories, called subdirectories; subdirectories
in turn can contain the names of files or other subdirectories. In a hierarchical fIle system, a
file is identified by its pathname, a sequence of file names starting with the volume
directory and ending with the name of the fIle. Figure 1-2 shows the relationships among
files in a hierarchical file system. .

olume

Directory

Figure 1·2. Example of a hierarchical file structure.

See Chapter 2 and Appendix A for detailed information on ProDOS 16's ftle structure,
organization, and formats.

APDrlDrafi 11 11113/86

Apple lies ProDOS 16 Reference

Memory use

ProDOS 16 and application programs on the Apple liGS are relieved of most memory
management tasks. The Memory Manager, an Apple liGS tool set, allocates all memory
space, keeps track of available memory, and frees memory no longer needed by programs.
If a program needs to allocate some memory space, it requests the space through a call to
the Memory Manager. If a program makes a ProDOS 16 call that results in memory
allocation. ProDOS 16 requests the space from the Memory Manager and allocates it to the
program.

The Memory Manager is described further in Chapter 3 of this manual, and in Apple lies
Toolbox Reference.

External devices

ProDOS 16 communicates only with block devices, such as disk drives. Programs that
wish to access character devices such as printers and communication ports must do so
directly, either through the device firmware or through Apple liGS Toolbox routines wri tten
for those devices. See Apple lieS Firmware Reference and Apple lies Toolbox
Ref erence.

Certain devices generate interrupts to tell the computer that the device needs attention.
ProDOS 16 is able to handle up to 16 interrupting devices. You may place an interrupt
handling routine into service through a ProDOS 16 call; your routine will then be called
each time an interrupt occurs. If you install more than one routine, the routines will be
polled in the order in which they were installed.

You may also remove an interrupt routine with a ProDOS 16 call. In writing, installing,
and removing interrupt handling routines, be sure to follow the conventions and
requirements given in Chapter 7, "Adding Routines to ProDOS 16."

ProDOS 16 and ProDOS 8
ProDOS 16, although derived from ProDOS 8, adds several capabilities to support the new
features and operating configurations of the Apple IIGS. For example:

• l3ecause the 65C8l6 microprocessor functions in both 8-bit (emulation) and l6-bit
(native) execution modes, ProDOS 16 is designed to accept system calls from
applications running in either 8-bit or l6-bit mode. ProDOS 8 accepts system calls
from applications running in 8-bit mode only.

• Because the Apple liGS has a total addressable memory space of 16Mb, ProDOS 16
has the ability to accept system calls from anywhere in that memory space (addresses
up to $FFFFFF), and those calls can manipulate data anywhere in memory. Under
ProDOS 8, system calls can be made from memory addresses below $FFFF
only-the lowest 64K of memory.

• ProDOS 16 relies on a sophisticated memory management system (see Chapter 3),
instead of the simple global page bit map used by ProDOS 8.

APDADra.!t 12 11113186

ProDOS 16: Chapter J

• Applications under ProDOS 16 must make calls to allocate memory or to access
system global variables, such as date and time, system level, and I/O buffer
addresses. ProDOS 8 maintains that information in the system global page in
memory bank $00, but under ProDOS 16 the global page is not supported.

ProDOS 16 also provides several programming conveniences not available under
ProDOS 8, including named devices and multiple, user-definable file prefixes.

Upward compatibility

In a strict sense, ProDOS 16 is not upwardly compatible from ProD OS 8. Programs
written to function under ProDOS 8 on an Apple II will not run on the Apple IIGS, under
ProDOS 16, without some modification. Conceptually, however, ProDOS 16 is upwardJ y
compatible from ProDOS 8, in at least two ways:

I. The two operating systems are themselves similar in structure:

• The set of ProD OS 16 system calls is a superset of the ProDOS 8 calls; for
(almost) every ProDOS 8 system call, there is a functionally equivalent ProDOS
16 call, usually with the same name.

• The calls are made in nearly identical ways in both ProD OS systems, and the
parameter blocks for passing values to functions are laid out similarly.

ProDOS 16 uses exactly the same file system as ProDOS 8. It can read from and
write to any disk volume produced by ProDOS 8.

2. Both operating systems are included with the Apple IIGS. Most applications written
for ProDOS 8 on standard Apple II computers will run without modification on the
Apple IIG5-not under ProDOS 16, but under ProD OS 8.

Thus, even though the individual operating systems are not completely compatible, their
sum on the Apple IIGs computer is completely upwardly compatible from other Apple II
computers. You never need be concerned with which operating system is functioning- if
you run an Apple II application, ProDOS 8 is automatically loaded; if you run an Apple
IIGS application, ProDOS 16 is automatically loaded. Chapter 5 explains the details of how
this is accomplished.

Downward compatibility

ProDOS 16 is not downwardly compatible to ProDOS 8. Applications written for
ProD OS 16 will not run on the Apple II, IIc, or lIe. The extra memory needed by Apple
IIGS 3pplications and the additional instructions recognized by the 65C816 microprocessor
make applications written for ProD OS 16 incompatible with standard Apple II computers.

Eliminated ProDOS 8 system calls

As mentioned under "Upward Compatibility," most ProDOS 8 calls have functionally exact
equivaients in ProDOS 16. However, some ProDOS 8 calls do not appear in ProDOS 16
because they are unnecessary. The eliminated calls are

APDA Draft 13 J1IJ3186

Apple llGS ProDOS 16 Reference

RENAME

GET TIME

SET BUF

GE T BUF

ONLINE

The ProDOS 16 CHANGE PATH call performs the same function.

Under ProDOS 16, the time and date are obtained through a call to
the Miscellaneous Tool Set (see Apple llGS Toolbox Reference).

Under ProDOS 16, the Memory Manager, rather than the
application, allocates file JJO buffers.

This call is unnecessary under ProDOS 16 because the OPEN call
returns a handle to the file's JJO buffer.

This call is replaced in ProDOS 16 by the VOLUME call.

New ProDOS 16 system calls

The following operating system calls, not recognized by ProDOS 8, are part of
ProD OS 16:

CLEAR BACKUP BIT
CHANGE PATH
SET LEVEL
GET LEVEL
GET DEV NUM
GET LbST DEV
FORMAT
GET NAME
GET BOOT VOL
GET VERSI ON

(clears one of a file's access bits)
(changes the pathname of a file within a volume)
(sets the system file level)
(returns the system file level)
(returns the device number for a named device)
(returns the number of the last devcie accessed)
(formats a disk volume)
(returns the filename of the current application)
(returns the name of the volume that contains ProDOS 16)
(returns the current ProDOS 16 version)

These and all other ProDOS 16 calls are described in detail in Chapters 9 through 13.

Other features

Like ProDOS 8, ProDOS 16 suppons block devices only. It does not suppon JJO
operations for the built-in serial pons, mouse, Apple DeskTop Bus, sound generation
system, or any other nonblock device. Applications must access these devices through the
device firmware or the Apple IIGS Toolbox.

ProDOS 8 and ProDOS 16 have identical me structures. Each can read the other's files ,
but

• ProDOS 16 load files (types $B3 - $BE) cannot be executed under ProDOS 8

• ProDOS 8 system mes (type $FF) or binary mes (type $06) cannot be executed under
ProDOS 16

The default operating system on the Apple IIGS (after a cold or warm restart) can be either
ProDOS 8 or ProDOS 16, depending on the organization of files on the startup disk. See
"System Startup" in Chapter 5.

APDADra{t 14 1l!13186

ProD OS 16: Chapter]

Running under ProDOS 8 does not disable memory beyond the addresses ProDOS 8 can
reach, nor does it disable any other advanced Apple JIGS features. All system resources are
always available, even though an application itself may make use of only the "ProDOS
8-standard Apple II" portion.

Summary of ProDOS 16 features
The following lists summarize the principal features of ProDOS 16. Refer to the glossary
and to appropriate chapters for definitions and explanations of terms that may be unfamili m'
to you.

In general, ProDOS 16 ...

• is a single-task operating system

• supports a hierarchical, tree-structured file system

• allows device-independent IJO for block devices

ProDOS 16 system calls ...

use the JSL instruction and a parameter block

• return error status in the A and P registers

• preserve all other CPU registers

• can be made from 65C816 native mode or 6502 emulation mode

• can be made from anywhere in memory

• can access parameter blocks that are anywhere in memory

• can use pointers that point anywhere in memory

• can transfer data anywhere in memory

The ProDOS 16 file management system ...

• uses a hierarchical fIle structure

• supports pathname prefixes (9 allowed)

• allows byte-oriented access to both directory fIles and data fIles

• allocates fIles dynamically and noncontiguously on block devices

• 5 upports sparse files

• provides buffers automatically

• supports access attributes that enable/disable
reading
writing
renaming
destroying
backup

• assigns a system fIle level to open fIles

APDi1 Drqft 15 IlI13/86

Apple II GS ProDOS 16 Reference

• automatically marks files with date and time

• uses a 512-byte block size

• allows volume sizes up to 32 megabytes

• allows data file sizes up to 16 megabytes

• allows up to 14 volumes on line

• allows up to 8 open files

• allows 64 characters per pathname

• allows 64-character prefIxes

• allows 15 characters per volume name

• allows 15 characters per file name

The ProDOS 16 device management system ...

• supports the ProDOS 8 block device protocol

• names each block device

• allows 15 characters per device name

• allows 14 devices on line simultaneously

• provides a FORMAT call to initialize disks

The ProDOS 16 interrupt management system ...

• receives hardware interrupts not handled by firmware

• dispatches interrupts to user-provided interrupt handlers

• allows installation of up to 16 interrupt handlers

For memory management, ProD OS 16 ...

• dynamically allocates and releases system buffers (through the Memory Manager)

• can direcdy access up to 224 bytes (16 megabytes) of memory

• can run with a minimum of 256K memory

In addition, ProDOS 16 ...

• provides a QUIT call to cleanly exit one program and start another, with the option of
remming later to the quitting program

APDADraft 16 11113186

-~

Chapter 2

ProD OS 16 Files

The largest part of ProDOS 16 is its file management system. This chapter explains how
files are named, how they are created and used, and a little about how they are organized on
disks. It discusses ProDOS l6file access andfile housekeeping calls.

For more details of file format and organization, see Appendix A.

Using files

Filenames

Every ProDOS 16 file, whether it is a directory file, data file, or program file, is identified
by a filename. A ProDOS 16 filename can be up to 15 characters long. It must begin
with a letter, and may contain uppercase letters CA-Z), digits C0-9), and periods C.).
Lowercase letters are automatically converted to uppercase. A fIlename must be unique
within its directory. Some examples are

MEMOS
CHAPll
MY . PROGRAM

An entire disk is identified by its volume name, which is the fIlename of its voltune
directory.

Pathnames

A ProDOS 16 pathname is a series of filenames, each preceded by a slash (fl. The first
filename in a pathname is the name of a volume directory. Successive filenames indicate
the path, from the volume directory to the file, that ProDOS 16 must follow to find a
particular file . The maximum length for a pathname is 64 characters, including slashes.
Examples are

/DIS K8 6/CHARTS/SALES.JUN
/DIS K86/MY.PROGRAM
/D ISK86/MEMOS /CHAPll

All calls that require you to name a file will accept either a full pathname or a partial
pathname. A partial pathname is a portion of a pathname; you can tell that it is not a full
pathname because it doesn't begin with a slash and a volume name. The maximum length
for a partial pathname is 64 characters, including slashes.

APDADraft 17 11113/86

Apple II GS ProDOS 16 Reference

These partial pathnames are all derived from the sample pathnames above:

SALES .JUN
MY. PROGRAM
MEMOS/ CHAPl l
CHAPll

ProDOS 16 automatically adds a prefix to the front of partial pathnames to form full
pathnames. A prefix is a pathname that indicates a directory; it always begins with a slash
and a volume name. Several prefixes are stored internally by ProD OS 16.

For the partial pathnames listed above to indicate the proper ftles, their prefixes should be
set to

/DISK86/CHART S/
/DISK86/
/DISK86/
/DISK86/MEMOS/

respectively. The slashes at the end of these prefixes are optional; however, they are
convenient reminders that prefixes indicate directory ftles .

The maximum length for a prefix is 64 characters. The minimum length for a prefix is zero
characters, known as a null prefix. You set and read prefixes using the calls
SET P REFIX and GET PREFIX.

Note: Because both a prefix and a partial pathnarne can be up to 64 characters
long, it is possibe to have a pathname (partial pathname plus prefix) whose effective
length is up to 128 characters.

ProDOS 16 allows you to set more than one prefix, and then refer to each prefix by code
numbers. When, as in the above examples, no particular prefix number is specified,
ProDOS 16 adds the default prefix to the partial pathname you provide. See Chapter 5
for a more complete explanation and examples.

Figure 2-1 illustrates a hypothetical directory structure; it contains all the ftles mentioned
above. Note that, even though there are two ftles named PROFIT. 3RD in the volume
directory /D ISK. 8 6/, they are easily distinguished because they are in different
subdirectories (MEMOS / and CHARTS/). That is why a full pathname is necessary to
completely specify a file.

APDADraft 18 11113186

PROfIT.3RD
LOSS.4TH
C>lAPll

~7:;~~.~.;D ~:~.~~;.~~ ~~;~.~.
~~ .. --. ._----- -._-_.-------- ------- ._------._ ---- '.----. -- . _--.

IDl$K86/

MEMOS(
Ct-tARTS{
MV.PROGRAM

CHARTS!

PROfIT.3RO
SALES.JUN

1111111111111111 1111111111111111

ProDOS 16: Chapter 2

MY.PROGIU.M

Figure 2-1. Example of a ProDOS 16 fIle structure

Creating files

A file is placed on a disk by the CREATE call. When you create a file, you assign it the
following properties:

• A pathname. This pathname is a unique path by which the file can be identified and
accessed. This pathname must place the file within an existing directory.

• An access byte. The value of this byte determines whether or not the file can be
written to, read from, destroyed, or renamed.

• A file type. This byte indicates to other applications the type of information to be
stored in the file. It does not affect, in any way, the contents of the file.

• A storage type. This byte detennines the physical format of the file on the disk.
There are only two different formats: one is used for directory files, the other for
non-directory files.

When you create a file, the properties listed above are placed on the disk, along with the
current system date and time (called creation date and creation time), in a format as
shown in Appendix A. Once a file has been created, it remains on the disk until it is deleted
(using the DESTROY call).

To check what the properties for a given file are, use the GET_FILE _INFO call. To alte r
its properties , use the SET_FILE _ INFO caIl. To change the file's name, use the
CHANGE PATH call.

.4PDADraft 19 ll li318!i

Apple llGS ProDOS /6 Reference

Opening files

Before you can read information from or write information to a file that has been created,
you must use the OPEN call to open the file for access. When you open a file you specify it
by pathname. The pathname you give must indicate a previously created file; the file must
be on a disk mounted in a disk drive.

The OPEN call returns a reference number (ref num) and the location of a buffer
(fo _buffer) to be used for transferring data to and from the file. All subsequent references
to the open file must use its reference number. The file remains open until you use the
CLOSE call.

Each open file's I/O buffer is used by the system the entire time the file is open. Thus, to
conserve memory space, it is wise to keep as few files open as possible. ProDOS 16
allows a maximum of 8 open files at a time.

When you open a file, some of the file's characteristics are placed into a region of memory
called a file control block. Several of these characteristics-the location in memory of
the me's bnffer, a pointer to the end of the file (the EOF), and a pointer to the current
position in the file (the file Mark}-are accessible to applications via ProDOS 16 calls, and
may be changed while the file is open.

It is important to be aware of the differences between a file on the disk and an open file in
memory. Although some of the file's characteristics and some of its data may be in
memory at any given time, the fIle itself still resides on the disk. This allows ProDOS 16
to manipulate fIles that are much larger than the computer's memory capacity. As an
application writes to the me and changes its characteristics, new data and characteristics are
written to the disk.

The EOF and Mark

To aid reading from and writing to files, each open file has one pointer indicating the end of
the fIle (the EOF), and another defming the current position in the fIle (the Mark). ProDOS
16 moves both EOF and Mark automatically when necessary, but an application program
can also move them independently of ProDOS 16.

The EOF is the number of readable bytes in the fIle. Since the first byte in a fIle has
number 0, the EOF, when treated as a pointer, points one position past the last character in
the file.

When a file is opened, the Mark is set to indicate the first byte in the file. It is automatically
moved forward one byte for each byte written to or read from the me. The Mark, then,
always indicates the next byte to be read from the file, or the next byte position in which to
write new data. It cannot exceed the EOF.

If during a write operation the Mark meets the EOF, both the Mark and the EOF are moved
forward one position for every additional byte written to the file. Thus, adding bytes to the
end of the fIle automatically advances the EOF to accommodate the new information.
Figure 2-2 illustrates the relationship between the Mark and the EOF.

APDADraft 20 1///3/86

ProDOS 16: Chapler2

(b). After WrijJng Of Reading Two Bytes: Er
rTTTl~a

Old MARK MARK

(0' AA"'-(~rrTrrrr¢
Old MARK MARK

Figure 2·2. Automatic movement of EOF and Mark

An application can place the EOF anywhere, from the current Mark position to the
maximurn possible byte position. The Mark can be placed anywhere from the first byte in
the file to the EOF. These two functions can be accomplished using the SE T EOF and
SET_MARK calls. The current values of the EOF and the Mark can be detemrlned using the
GET EOF and GET MARK calls. - -

Reading and writing files

READ and WRITE calls to ProDOS 16 transfer data between memory and a file. For both
calls, the application must specify three things:

• The reference number of the file (assigned when the me was opened).

• The location in memory of a buffer (data buffer) that contains, or is to contain,
the transferred data. Note that this cannot be the same buffer (io buffer) whose
location was returned when the file was opened. -

• The number of bytes to be transferred.

When the request has been carried out, ProDOS 16 passes back to the application the
number of bytes that it actually transferred.

A read or write request stans at the current Mark, and continues until the requested number
of bytes has been transferred (or, on a read, until the end-of-file has been reached) . Read
requests can also terminate when a specified character is read. To tum on this feature and
set the character(s) on which reads terminate, use the NEWLINE call. The newline read
mode is typically used for reading lines of text that are terminated by carriage returns.

APDA Draft 21 11113186

Apple IIGS ProDOS 16 Reference

By the Way: Neither a READ nor a WRITE call necessarily causes a disk access.
ProDOS's I/O buffer for each open fIle is 1024 bytes in size, and can hold one
block (512 bytes) of data; it is only when a read or write crosses a block boundary
that a disk access occurs.

Closing and flushing files

When you finish reading from or writing to a fIle, you must use the CLOSE call to close the
file. When you use this call, you specify only the reference number of the fIle (assigned
when the file was opened).

CLOSE writes any unwritten data from the file's I/O buffer to the fIle, and it updates the
file's size in the directory, if necessary. Then it frees the 1024-byte buffer space for other
uses and releases the file's reference number and file control block. To access the fIle once
again, you have to reopen it.

Information in the fIle's directory, such as the fIle's size, is normally updated only when
the file is closed. If the user were to press Control-Reset (typically halting the current
program) while a file is open, data written to the file since it was opened could be lost, and
the integrity of the disk could be damaged. This can be prevented by using the FLUSH call.

FLUSH, like CLOSE, writes any unwritten data from the file's I/O buffer to the fIle, and
updates the fIle's size in the directory. However, it keeps the fIle's buffer space and
reference number active, and allows continued access to the fIle. In other words, the fIle
stays open. If the user presses Control-Reset while an open but flushed file is in memory,
there is no loss of data and no damage to the disk.

Both the CLOSE and FLUSH calls, when used with a reference number of 0, normally
cause all open fIles to be closed or flushed. Specific groups of fIles can be closed or
flushed using the system file level (see next).

File levels

When a file is opened, it is assigned a level, according to the value of a specific byte in
memory (the system file level). If the file level is never changed, the CLOSE and
FLUSH calls, when used with a reference number of 0, cause all open fIles to be closed or
flushed. But if the level has been changed since the first file was opened, only the fIles
having a file level greater than or equal to the current system file level are closed or flushed.

The system file level feature may be used, for example, by a controlling program such as a
BASIC interpreter to implement an EXEC command:

1. The interpreter opens an EXEC program file when the level is $00.

2. The interpreter then sets the level to, say, $07.

3. The EXEC program opens whatever fIles it needs.

APDADraft 22 11113/86

ProDOS 16: Chapter2

4. The EXEC program executes a BASIC CLOSE command, to close all the files it has
opened. All files at or above level $07 are closed, but the EXEC file itself remains
open.

You assign a value to the system file level with a SET_LEVEL call; you obtain the current
value by making a GET_LEVEL call.

File format and organization
This portion of the chapter describes in general terms the organization of files on a disk.
For more detailed information, see Appendix A.

In general, structure refers in this manual to the hierarchical relationships among
files-directories, subdirectories, and files. Format refers to the arrangement of
information (such as headers, pointers and data) within a file. Organization refers to the
manner in which a single file is stored on disk, in terms of individual 512-byte blocks.
The three concepts are separate but interrelated. For example, because of ProDOS 16's
hierarchical file structure, part of the format of a directory file includes pointers to the files
within that directory. Also, because files are organized as noncontiguous blocks on disk,
part of the fonnat of every file larger than one block includes pointers to other blocks.

Directory files and standard files

Every ProDOS 16 file is a named, ordered sequence of bytes that can be read from, and to
which the rules of Mark and EOF apply. However, there are two types of files:
directory files and standard files. Directory files are special ftles that describe and
point to other files on the disk. They may be read from, but not written to (except by
ProD OS 16). All nondirectory files are standard files. They may be read from and written
to.

A directory file contains a number of similar elements, called entries. The first entry in a
directory file is the header entry: it holds the name and other properties (such as the number
of files stored in that directory) of the directory file. Each subsequent entry in the file
describes and points to some other file on the disk. Figure 2-3 shows the format of a
directory ftle.

The files described and pointed to by the entries in a directory file can be standard files or
other directory files.

An application does not need to know the details of directory format to access ftles with
known names. Only operations on unknown files (such as listing the files in a directory)
require the application to examine a directory's entries. For such tasks, refer to Appendix
A.

Standard files have no such predefined internal format: the arrangement of the data
depends on the specific file type.

APDADraft 23 11113/86

Apple IIGS ProDOS 16 Reference

Director(FII ..

Header Entry

FHe Entry
(File A:)

FUe Enlly
(file 8)

More Entries

File Entry
(File W)

--

Standard Flies or
Directory Flies

,......» EJ
EJ ~

More Flies

RIeW

Figure 2-3. Directory file fonnat

File organization

Because directory files are generally smaller than standard files, and because they are
sequentially accessed, ProDOS 16 uses a simpler fonn of storage for directory files than it
does for standard files. Both types of files are stored as a set of 512-byte blocks, but the
way in which the blocks are arranged on the disk differs.

A directory file is a linked list of blocks: each block in a directory file contains a pointer to
the next block in the directory file as well as a pointer to the previous block in the directory.
Figure 2-4 illustrates this organization.

Key~ock :: =

Figure 2-4. Block organization of a directory file

Data files, on the other hand, are often quite large, and their contents may be randomly
accessed. It would be very slow to access such large files if they were organized
sequentially. Instead, ProDOS 16 stores standard files using a tree organization. The
largest possible standard file has a master index block that points to 128 index
blocks. Each index block points to 256 data blocks and each data block can hold 512
bytes of data. The block organization of the largest possible standard fIle is shown in
Figure 2-5.

APDADraft 24 11113186

Moster f
Index fi
Block %

5:'

ProDOS 16: Chapter 2

Index ':t
Blaock i,.· ota

, Block.'
}i1.' ----., 255 .

'----"

•
•
•

Index
Block
127

Figure 2-5. Block organization of a standard file

Most standard files do not have this exact organization. ProD OS 16 only writes a subset of
this form to the file, depending on the amount of data written. This technique produces
three distinct forms of standard file: seedling, sapling, and tree files. All three are
explained in Appendix A.

Sparse files

In most instances a program writes data sequentially into a file. But by writing data,
moving the EOF and Mark, and then writing more data, a program can also write
nonsequential data to a file. For example, a program can open a file, write a few characters
of data, and then move the EOF and Mark (thereby making the file bigger) by an arbitrary
amount before writing a few more bytes of data. Only those blocks that contain nonzero
infom1ation are actually allocated for the file, so it may take up as few as three blocks on
the disk (a total of 1536 bytes). However, as many bytes as are specified by the value of
EOF (up to 16 megabytes) can potentially be read from it. Such files are known as sparse
files. Sparse files are explained in more detail in Appendix A.

Important: In transferring sparse files, the fact that more data can be read from
the file than actually resides on the disk can cause a problem. Suppose that you
were trying to copy a sparse file from one disk to another. If you were to read data
from one file and write it to another, the new file would be much larger than the
original because data that is not actually on the disk can be read from the file. Thus
if your application is going to transfer sparse files, you must use the information in
Appendix A to determine which blocks should be copied, and which should not.

APDADraft 25 111l31i!6

Apple lIGS ProDOS 16 Reference

The file utility prognuns supplied with the Apple IIGS automatically preserve the structure -~
of sparse files on a copy.

APDA Draft 26 11/13186

Chapter 3

ProDOS 16 and Apple IIGS Memory

Strictly speaking, memory management is separate from the operating system in the Apple
lIGs. This chapter shows how ProDOS 16 uses memory and how it interacts with the
Memory Manager.

Apple IIGS memory configurations
The Apple IIGS microprocessor is capable of dlrectly addressing 16 megabytes (16Mb) of
memory. As shipped, the basic memory configuration for Apple IIGS is 256 kilobytes
(256K) of RAM and 128K of ROM, arranged within the 16Mb memory space as shown in
Figure 3-1.

SFFFF

SEOOJ
SDCOO
sam

scan

(

,

Bank Numbers
......

\
500 SO 1 $02-$3F ••• SEO SEl • • • $F().$FD SFE SFF

~ .. "'''' • :
• • :::; • • •

eli • • •
.~

• • • • • •
~ : •

w.i • • • • • • • • • • • • ... _- ... , --_!

I
r-·_·"""
• • • • • •
~ • :

• • • ~ • • • • c: •
~ • • : w.i

• • : • • • • • • ,_ _
I \, v

J ",----,===::=j
RAM ROM

C=JI Basic: Configuration r::_-':::J Expansion Memory

bSS SSj Bank-Switched Memory IlSiBIiI I/O Memory

Figure 3-1. Apple IIGS memory map

The total memory space is divided into 256 banks of 64K bytes each (see Table 3-1).
Banks $00 and $0 I are used for system software, ProDOS 16 applications, and are the
only memory space occupied by standard-Apple II programs running under ProDOS 8.
Banks $EO and $El are used principally for high-resolution video display. additional
system software, and RAM-based tools. Specialized areas of RAM in these banks include

APDADraft 27 lJI13/86

Apple IIGS ProD OS 16 Reference

I/O space, bank-switched memory, and display buffers in locations consistent with
standard Apple II memory configurations (see "Special Memory and Shadowing," below).
Banks $FF and $FE are ROM; they contain firmware and ROM-based tools. For more
detailed pictures of Apple IIGS Memory, see Technical Introduction to the Apple IIGS,
Apple IIes Hardware Reference and Apple IIes Firmware Reference.

Unit
nibble
byte
word
long word
page
block
bank

Table 3·1. Apple IIGS memory units

Size
4 bits (one-half byte)
8 bits
2 bytes
4 bytes
256 bytes
512 bytes (for disk storage)
65,536 bytes (256 pages)

With a I-megabyte Apple IIGS Memory Expansion Card, 16 additional banks of memory
are made available; they are numbered sequentially, from $02 to $11. Expansion banks
have none of the specialized memory areas shown for banks $00-$01 and $EO-$El-all
64K bytes in each bank are available for applications.

Special memory and shadowing

For running standard Apple II software, the Apple IIGS memory configuration is set so lhal
banks $00 and $01 are identical to the Main and Auxiliary RAM and ROM on an Apple lie
or an Apple lIe with extended 80-column card. See Apple lIe Technical Reference Manual
or Apple lIe Technical Reference Manual for details. Because they are used for standard
Apple II emulation, both banks $00 and $01, as well as the display pages in banks $EO and
$El, are called special memory; there are restrictions on the placement of certain types of
code in special memory. For example, any system software that must remain active in the
standard Apple II configuration cannot be put in special memory. See "Memory Manager"
in Apple IIGS Toolbox Reference for more details.

Shadowing is the term used to describe a process whereby any changes made to one patt
of the Apple IIGS memory are automatically and simultaneously made in another part.
Shadowing is necesssary because standard Apple II programs can directly access banks
$00 and $01 only, but all the fixed locations and data structures needed by those programs
are maintained in banks $EO and $E 1 (see Apple IIGS Hardware Reference). When the
proper shadowing is on, an application may, for example, update a display location in bank
$00; that information is automatically shadowed to bank $EO, from where the video display
is actually controlled.

ProDOS 16 and System Loader memory map

ProDOS 16 and the System Loader together occupy nearly all addresses from $DOOO
through $FFFF in both banks $00 and $0 I. This is the same memory space that ProDOS 8
occupies in a standard Apple II: all of the language card area (addresses above $DOOO),
including most of bank-switched memory.

APDADraft 28 llI13i86

ProDOS 16: Chapter 3

In addition, ProDOS 16 reserves (through the Memory Manager) approximately 1O.7K
bytes just below $COOO in bank $00 (in the region normally occupied by BASIC. SYSTEM
in a standard Apple II), for I/O buffers, ProDOS g interface tables, and other code.

The part of ProDOS 16 that controls loading of both ProDOS 16 and ProDOS 8 progranlS
is located in parts of bank-switched memory in banks $EO and $El. Other system software
occupies most of the rest of the J<mguage card areas of banks $ED and $E 1.

None of these reserved memory areas is available for use by applications.

Bonk Numbers
rr-----------~~----------~,

SOO SOl S02-S3F SED SEl

_-";'SEIlOO

SCXlA8 Cf'roOOS 16)

(System loader)

LmlDi!il ProOOS 16 Vdzrm System Loader

Figure 3-2. ProD OS 16 and System Loader memory map

Entry points and fixed locations

Because most Apple IIGS memory blocks are movable and under the control of the Memory
Manager (see next section), there are very few ftxed entry points available to applications
programmers. References to ftxed entry points in RAM are strongly discouraged, since
they are inconsistent with flexible memory management and are sure to cause compatibility
problems in future versions of the Apple IIGs. Informational system calls and referencing
by handles (see "Pointers and Handles" in this chapter) should take the place of access to
fixed en try points.

The single supported System Loader entry point is $EI 00 00. That location is the entry
point for all Apple IIGS tool calls.

The single supported ProD OS 16 entry point is $EI 00 A8. That location is the entry point
for all ProDOS 16 calls. In addition, ProDOS 16 supports a few other ftxed locations in i [5

bank $El vector space. Table 3-2 lists them.

APDADraft 29 11113186

Apple JIGS ProDOS 16 Reference

Table 3-2. ProDOS 16 fixed locations

Address range

$El 00 A8 - $E1 00 AB

$E1 00 AC - $E1 00 B9

$E1 OOBA-$E1 OOBB

$E100BC

$E100BD

$E1 00 BE - $E1 00 BF

Explanation

Entry vector for all ProDOS 16 system calls

(reserved)

Two null bytes (guaranteed to be zeros)

OS KIND byte---indicates the currently running
operating system:

$00 : ProDOS 8
$01 : ProDOS 16

OS BOOT byte-indicates the operating system that was
inioall y booted:

$00 : ProDOS 8
$01 : ProDOS 16

Flag word. The bits are defined as follows:
bit 15 (ProDOS busy flag):

0= ProDOS 16 is not busy
1 : ProDOS 16 is busy

Bits 14 -0:
(reserved)

The ProDOS busy flag is explained under "Making operating system calls during
interrupts," in Chapter 7.

Note: ProDOS 16 does not support the ProDOS 8 global page or any other fixed
locations used by ProDOS 8.

Memory management
ProDOS 16 itself does no memory management. All allocation and deallocation of memory
in the Apple IIos is performed by the Memory Manager. The Memory Manager is an
Apple IIos tool set; for a complete description of its functions, see Apple JIGS Toolbox
Reference.

The Memory Manager

The Memory Manager is a ROM-resident Apple IIos tool set that controls the allocation,
deallocation, and repositioning of memory blocks in the Apple IIos. It works closely with
ProDOS 16 and the System Loader to provide the needed memory spaces for loading
programs and data and for providing buffers for input/output. All Apple IIoS software,
including the System Loader and ProDOS 16, must obtain needed memory space by
making requests (calls) to the Memory Manager.

The Memory Manager keeps track of how much memory is free and what parts are
allocated to whom. Memory is allocated in blocks of arbitrary length; each block

APDADraft 30 11113186

ProDOS 16: Chapter 3

possesses several attributes that describe how the Memory Manager may modify it (such as
moving it or deleting it), and how it must be aligned in memory (for example, on a page
boundary). Table 3-3 lists the Memory Manager attributes that a memory block has.

Table 3-3. Memory block attributes

Attribute

fixed (yes/no)

fixed address (yes/no)

fixed bank (yes/no)

bank-boundary limited (yes/no)

special memory not usable (yes/no)

page-aligned (yes/no)

purge level (0 to 3)

locked (yes/no)

Explanation

must the block remain at the same location in
memory?

Must it be at a specific adress?

Must it be in a particular memory bank?

It is prohibited from extending across a bank
boundary?

Is it prohibited from residing in special memory
(banks $00, $0 I, and parts of banks $EO, $E I)?

Must it be aligned to a page boundary?

Can it be purged? If so, with what priority?

Is the block locked (temporarily fixed and
unpurgeable)?

Each block is also defined by it's User ID, a code number that shows what program owns
it.

Besides creating and deleting memory blocks, the Memory Manager moves blocks when
- necessary to consolidate free memory. When it compacts memory in this way, it of

course can move only those blocks that needn't be fixed in location. Therefore as many
memory blocks as possible should be movable (not fixed), if the Memory Manager is to be
efficient in compaction.

When a memory block is no longer needed, the memory Manager either purges it (deletes
its contents but maintains its existence) or disposes it (completely removes it from
memory).

Pointers and handles

To access an entry point in a movable block, an application cannot use a simple pointer,
since the Memory Manager may move the block and change the entry point's address.
Instead, each time the Memory Manager allocates a memory block, it returns to the
requesting application a handle referencing that block.

A handle is a pointer to a pointer; it is the address of a fixed (nonmovable) location, calleD
the master pointer, that contains the address of the block. If the Memory Manager
changes the location of the block, it updates the address in the master pointer; the value of
the handle itself is not changed. Thus the application can continue to access the block using
the handle, no matter how often the block is moved in memory. Figure 3-3 illustrates the
difference between a pointer and a handle.

APDADraft 31 11113/86

Apple lIGS ProDOS 16 Referrnce

If a block will always be fixed in memory (locked or unmovable), it can be referenced
by a pointer instead of by its handle. To obtain a pointer to a particular block or location.
an application can dereference the block's handle. The application reads the address
stored in the location pointed to by the handl~that address is the pointer to the block. Of
course, if the block is ever moved that pointer is no longer valid.

ProDOS 16 and the System Loader use both pointers and handles to reference memory
locations. Pointers and handles must be at least three bytes long to access the full range of
Apple IIGS memory. However, all pointers and handles used as parameters by ProD OS 16
are four bytes long, for ease of manipulation in the 16-bit r~gisters of the 65C816
microprocessor.

a. Pointer:

SXXX ~""''''''''''''''''l
Value of pointer - 1

starting address at melTlOlY block 111 •• SXXX .

b. Handle:

sm ~· .. · -··· .. ··· .. 1
Value of handle - i

address of master pointer i ""'U'" sxxx .
: ~

Master Pointer Il ___ _
L.····· .. ···11I •• Sllll---"':";";'---1

Value of master pointer =
current starting address of

memory block

Figure 3-3. Pointers and handles

How an application obtains memory

Normal memory allocation and deallocation is completely automatic, as far as applications
are concerned. When an application makes a ProDOS 16 call that requires allocation of
memory (such as opening a file or writing from a fIle to a memory location), ProDOS 16
first obtains any needed memory blocks from the Memory Manager and then performs its
tasks. Likewise, the System Loader requests any needed memory either directly or
indirectly (through ProDOS 16 calls) from the Memory Manager. Conversely, when an
application informs the operating system that it no longer needs memory, that information
is passed on to the Memory Manager which in turn frees that application's allocated
memory.

APDADraft 32 11113/86

ProDOS 16: Chapter 3

Any other memory that an application needs for its own purposes must be requested
directly from the Memory Manager. Figure 3-3 shows which pans of the Apple liGS
memory can be allocated through requests to the Memory Manager. Applications for Apple
IIGS should avoid requesting absolute (fixed-address) blocks. Chapters 6 and 16 of this
manual discuss program memory management further; see also Programmer s Inrroduction
to the Apple lIGS and Apple lIGS Toolbox Reference.

Bonk Numbets
rr--------------~~~------------~,

SOO SOl $02-S3F $EO SEI

@l_UAliocatable iC=:Ji Not AlloCatable

Figure 3-4. Memory allocatable through the Memory Manager

APDADraft 33 11113186

Apple IIGS ProDOS 16 Reference

APDADraft 34 IlIJ3186

Chapter 4

ProDOS 16 and External Devices

An external device is a piece of equipment that transfers information to or from the
Apple IIGS. Disk drives, printers, mice, and joysticks are external devices. The keyboard
and screen are also considered external devices. An input device transfers infonnation to
the computer, an output device transfers information/rom the computer, and an
input/output device transfers infonnation both ways.

This chapter discusses how ProDOS 16 provides an interface between applications and
certain external devices.

Block devices
A block device reads and writes information in multiples of one block of characters (512
bytes) at a time. Furthermore, it is a random-access device-it can access any block 011

demand, without having to scan through the preceding or succeeding blocks. Block
devices are usually used for storage and retrieval of information, and are usually
input/output devices. Disk drives are block devices.

ProDOS 16 supports access to block devices. That is, you may read from or write to a
block device by making ProD OS 16 calls. In addition to READ, WRITE, and the other file
calls described in Chapter 2, ProDOS 16 also provides five "lower-level" device-access
calls. These calls allow you to access information on a block device without considering
what files the information is in. The calls are

GET DEV NUM

GET LAST DEV

READ BLOCK

WRITE BLOCK

FORMAT

returns the device number associated with a particular nan1ed
device or online volume

returns the device number of the last device accessed through
ProDOS 16

reads one block (512 bytes) of data from a specified device

writes one block (512 bytes) of data to a specified device

formats (initializes) a volume in a device

A block device generally requires a device driver to translate ProDOS 16's logical block
device model into the tracks and sectors by which information is actually stored on the
physical device. The device driver may be circuitry within the disk drive itself
(UnidiskThl 3.5), it may be included as part of ProDOS 16 (Disk II®), or it may be on a
separate card in an expansion slot. This manual does not discuss device drivers.

Note on RAM disks: RAM disks are internal software constructs that the
operating system treats like external devices. Although ProDOS 16 provides no

APDADraft 35 11113/86

Apple II es ProDOS 16 Reference

particular support for RAM disks, any RAM disk that behaves like a block device in
all respects will be supported just as if it were an external device.

Character devices
A character device reads or writes a stream of characters in order, one at a time. It is a
sequential-access device-it cannot access any position in a stream without flIst
accessing all previous positions. It can neither skip ahead nor go back to a previous
character. Character devices are usually used to pass infonnation to and from a user or
another computer; some are input devices, some are output devices, and some are
input/output devices. The keyboard, screen, printer and communications port are character
devices.

Current versions of ProD OS 16 do not support character devices; that is, you cannot access
character devices through ProDOS 16 calls. Consult the appropriate frrmware or tools
documentation, such as Apple lles Firmware Reference or Apple lIes Toolbox Reference,
for instructions on how to make calls to the particular device you wish to use.

Accessing devices

Under ProDOS 16, you can access block devices through their device numbers, device
names, or the volume names of the volumes mounted on them.

Named devices

ProD OS 16 permits block devices to have assigned names. This ability is a convenience
for users, because they will no longer have to know the volume name to access a disk.

However, ProDOS l6's support for named devices is limited. Device names may be used
only in the VOLUME, GET DEV NUM, and FORMAT calls. Other calls that access devices
require either a volume name orlhe device number returned by the GET DEV NUM or
GELLASLDEV call. - -

Devices are named according to a built-in convention; assigned names may not be changed.
The naming convention is as follows:

Device Name
Any block device Dn

where n= a I-digit or 2-digit number (assigned consecutively)

Last device accessed

An application may ask ProDOS 16 for the identity of the last block device accessed. The
last device accessed is defIned here as the device to which the most recent call involving a
disk read or write (including a block read or write) was directed.

APDADraft 36 11/13/86

ProDOS 16: Chapter4

When an application makes the GET_LAST DEV call, ProDOS 16 returns the device
number of the last block device accessed. The application can then use that information as
input to subsequent device calls.

Block read and block write

ProDOS 16 provides two device-access calls analogous to the file-access calls READ and
WRITE. These calls, READ BLOCK and WRITE BLOCK, allow you to transfer
information to and from a vOlume on a block device regardless of what files the volume
contains.

The device number of a device (returned by GET DEV NUM) is a required input for the
block read and write calls. The block read and \\Tite ciills are powerful, but are not needed
by most applications-the filing calls described in Chapter 2 are sufficient for normal disk
I/O.

Formatting a disk

Your application can format (initialize) a disk in a device through the ProDOS 16 FORMA':'
calL The call requires both a device name and a volume name as input. The disk in the
specified device is formatted and given the specified volume name.

The other required input to the FORMAT call is the file system ID. It specifies the class of
operating system for which the disk is to be formatted (such as DOS, ProDOS, or Pascal).
Under current versions of ProDOS 16, however, the FORMAT call can format disks for the
ProDOS/SOS fIle system only (file system ID = 1).

Number of online devices

ProDOS 16 supports up to 14 active devices at a time. The Apple llGS normally accepts up
to 4 devices connected to its disk port (Smartport) and two devices per expansion slot (slots
1 through 7). It is possible, however, to have up to 4 devices on (a Smartport card in) slot
5. Nevertheless, the total number of devices on line still cannot exceed 14.

Device search at startup

When ProDOS 16 boots, it performs a device search to identify all built-in pseudo-slot
ROMs (internal ROMs) and all real physical slot ROMs (card ROMs). Every block device
found is incorporated into ProDOS 16's list of devices, and assigned a device number
(dev _ nllm) and device name (dev _name).

Note: Control Panel settings determine whether internal ROM or card ROM is
active for each slot. ProDOS 16 cannot simultaneously support both internal and
external devices with the same slot number.

APDADraft 37 11!13186

Apple lIGS ProDOS 16 Reference

In general, the device search proceeds from highest-numbered slots downward. For
example, a disk drive in slot 7 drive 1 will be device number 1; another drive in slot 7 drive
2 will then be device 2, and on downward through all the slots.

Smartpon (slot 5's internal ROM and diskpon) is a special case. Up to 4 devices may be
connected to Smartpon. However, because ProDOS 16 suppons only 2 devices per slot,
the third and founh devices are treated as if they were in slot 2. Despite the mapping of
devices 3 and 4 into slot 2, however, all devices connected to Smartpon are given
consecutive numbers. Table 4-1 shown the relationships.

Table 4-1. Smartpon number, slot number, and device number assignments

Smartport no. t
1
2
3
4

slot and drive device number
slot 5 drive 1 n
slot 5 drive 2 n+l
slot 2 drive 1 n+2
slot 2 drive 2 n+3

t Smartport device number 1 is connected directly to Smart port.
Subsequent devices are conected in daisy-chain fashion to the preceding

ones. so that device number 4 is the farthest from Smartpon.

Apple Disk II and other related 5.25-inch disk drives are another special case. Because of
the relatively long time required to access a Disk II drive and to determine whether a disk is
present in it, Disk II drives are given the highest device numbers on the system. That way
they will be searched last in any scan of online devices.

Volume control blocks

For each device with nonremovable media (such as a hard disk) found at boot time, a
volume control block (VCB) is created in memory. The VCB keeps track of the
characteristics of that online volume. For other devices (such as floppy disk drives) found
at boot time, VCB' s are created as files are opened on the volumes in those devices. A
maximum of eight VCB's may exist at anyone time; if you try to open a file on a device
whose volume presently has no open files, and if there are already eight VCB entries, error
$55 (VCB table full) is returned. Thus, even though there may be up to 14 devices
connected to your system, only eight (at most) can be active (have open files) at anyone
moment.

Interrupt handling
On the Apple lIOS, interrupts may be handled at either the firmware or the software level.
The built-in interrupt handers are in firmware (see Apple IIGS Firmware Reference); user
installed interrupt handlers are software and may be installed through ProDOS 16.

When the Apple IIGS detects an interrupt that is to be handled through ProDOS 16, it
dispatches execution through the interrupt vector at $00 03 FE (page 3 in bank zero). At
this point the microprocessor is running in emulation mode, using the standard clock speed
and 8-bit registers. The vector at $00 03 FE has only two address bytes; in order to allow

APDADraft 38 11113186

ProDOS 16: Chapler4

access to all of Apple fios memory, it points to another bank zero location. The vector in
that location then passes control to the ProDOS 16 interrupt dispatcher. The interrupt
dispatcher switches the processor to full native mode (including higher clock speed) and
then polls the user-installed interrupt handlers.

Figure 4-1 is a simplified picture of what happens when a device generates an interrupt that
is handled through a ProDOS 16 interrupt handler.

IRQ signal causes r---~-...,
control to tra nsfer to Interrupf Vector

($fFff • $fffF In
Bank $00)

then to
Bult-ln

Interrupt ha1dIer

Is the interrupt to be 5eIViced
by"", /xJilt.., handel?

Intefrupt Is handled by firmwore: .-__ ""'=_.L.';;""=-,
see Cor1fond Firmware ReferMC8

RTL back to ProDOS 16
interrupt Dispatcher

(then RTI bock to bui~.jn
interrupt handler)

,JSR to

User's Intenupt Vector JMP to
at $00 03 fE

(used by ProDOS 16)

ProDOS 16
Interrupt

Dispatcher

Pen each handler
In sequence:
WJU one creep'
"",~t?

Unclaimed Interrupt: l-_..:.f"O=-...L-:.Y"..:..;...,
tata error +JSl to

User-Installed
Handler

Handler
Processes Interrupt

Figure 4-1. Interrupt handling through ProDOS 16

ProDOS 16 supports up to 16 user-installed interrupt handlers. When an interrupt occurs
that is not handled by firmware, ProDOS 16 transfers control to each handler successively
until one of them claims it. There is no grouping of interrupts into classes; their priority
rankings are reflected only by the order in which they are polled.

If you write an interrupt-handling routine, to make it active you must install it with the
ALLOe INTERRUPT call; to remove it, you must use the DEALLOe INTERRUPT call.
Be sureto enable the hardware generating the interrupt only qfter the routine to handle it is
allocated; likewise, disable the hardware before the routine is deallocated. See Chapter 7
for further details on writing and installing interrupt handlers.

APDADraft 39 11113186

Apple IIGS ProDOS 16 Reference

Unclaimed interrupts

An unclaimed interrupt is defined as the condition in which the hardware Interrupt
Request Line (IRQ) is active (being pulled low), indicating that an interrupt-producing
device needs attention, but none of the installed interrupt handlers claims responsibility for
the interrupt. When an interrupt occurs and ProDOS 16 can fmd no handler to claim it, it
assumes that a serious hardware error has occurred. It issues a fatal error message to the
System Failure Manager (see Apple IIGS Toolbox Reference), and stops processing the
current application. Processing cannot resume until the user reboots the system.

APDADraft 40 1lI13/86

Chapter 5

ProDOS 16 and the Operating
Environment

ProDOS 16 is one of the many components that make up the Apple JIGS operating
environment, the overall hardware and software setting within which Apple IIGS
application programs run. This chapter describes how ProDOS 16 functions in that
environment and how it relates to the other components.

Apple IIGS system disks
An Apple IIGS system disk is a disk containing the system software needed to run any
application you wish to execute. Most system disks contain one or more operating systems
(ProDOS 16 and ProDOS 8), the System Loader, RAM-based tool sets, RAM patches to
ROM-based tool sets, fonts, desk accessories, boot-time initialization programs, and
possibly one or more applications.

There are two basic types of system disks: complete system disks and application system
disks. A complete system disk has a full set of Apple IIGS system software, as listed in
table 5-1. It is a resource pool from which application system disks can be constructed.
An application system disk has one or more application programs and only the specific
system software it needs to run the application(s). For example, a word processor system
disk may include a large selection of fonts, whereas a spreadsheet system disk may have
only a few fonts.

Software developers may create application system disks for their programs. Users may
also create application system disks, perhaps by combining several individual application
disks into a multi-application system disk. Apart from the essential files listed in table 5-2,
there is no single set of required contents for application system disks.

Complete system disk

Every Apple IIGS user (and developer) needs at least one complete system disk. It is a pool
of system software resources, and may contain fIles missing from any of the available
application system disks. Table 5-1 lists the contents of a complete system disk.

APDADra[t 41 11 113/86

Apple IlGS ProDOS 16 Reference

Table 5-1. Contents of a complete Apple IIas system disk

Directory!File

PRODOS

SYSTEM!
P8
P16
START
LIBS !
TOOLS !
FONTS !
DESK.ACCS /
SYSTEM. SETUP!

TOOL.SETUP

BASIC.SYSTEM

Description

a routine that loads the proper operating system and selects
an application, both at boot time and whenever an application
quits

a subdirectory containing the following files:
ProDOS 8 operating system
ProDOS 16 operating system and Apple IIas System Loader
typically a program selector
a subdirectory containing the standard system libraries
a subdirectory containing all RAM-based tools
a subdirectory containing all fonts
a subdirectory containing all desk accessories
a subdirectory containing system initialization programs
a load file containing patches to ROM and a program to
install them. This is the only required file in the
SYSTEM. SETUP / subdirectory; it is executed before any
others that may be in the subdirectory.

The Applesoft BASIC system interface program

The complete system disk is an 800K byte, double-sided 3.5-inch diskette; the required
files will not fit on a 140K, single-sided 5.25-inch diskette.

When you boot a complete system disk, it executes the fJ.!e SYSTEM/START. From the
START fJ.!e, you may choose to call Applesoft BASIC, the only application program
available on the disk.

The SYSTEM.SETUP! subdirectory

The SYSTEM. SETUP / subdirectory may contain several different types offiles, all of
which need to be loaded and initialized at boot time. They include the following:

o the file TOOL.SETUP: This file must always be present; it is executed before
any others in SYSTEM. SETUP / . TOOL. SETUP installs and initializes any RAM
patches to ROM-based tool sets. After TOOL. SETUP is finished, ProD OS 16 loads
and executes the remaining files in the SYSTEM. SETUP / subdirectory, which may
belong to any of the categories listed below.

o permanent initialization files (fiJetype $B6): These files are loaded and
executed just like standard applications (type $B3), but they are not shut down when
finished. They also must have certain characteristics:

1. They must be loaded in non-special memory.
2. They cannot pennanendy allocate any stack/direct-page space.
3. They must terminate with an RTL (Return from subroutine Long) rather than a
QU IT.

o temporary initialization files (type $B7): These files are loaded and executed
just like standard applications (type $B3), and they are shut down when finished.
They must terminate with an RTL rather than a QUIT.

APDA Draft 42 11/13/86

ProDOS 16: Chapter 5

• new desk accessories (type $B8): These files are loaded but not executed.
They must be in non-special memory.

• cl~sic desk accessories (type $B9): These files are loaded but not executed.
They must be in non-special memory.

Application system disks

Each application program or group of related programs comes on its own application
system disk. The disk has all of the system flies needed to run that application, but it may
not have all the flies present on a complete system disk. Different applications may have
different system files on their application system disks.

For example, the ProDOS 16 Exerciser disk, included with this manual, is an application
system disk. It contains all the system files listed above, plus the file EXERCISER (the
exerciser itself).

Table 5-2 shows which files must be present on all application system disks, and which
files are needed only for particular applications. In some very restricted instances, it may
be possible to fit an application and its required system flies onto a S.2S-inch (140K)
diskette; most applications, however, require an 800K diskette.

Table 5-2.

Directory/File

PRODOS

Required contents of an Apple IlGS application system disk

Required/(Required If ...)

required

SYSTEM/ required
P 8 (required if the application is ProD OS 8-based)
P 16 required
STAR T (required if the program selector is to be used)
LIES / (required if system library routines are needed)
TOOLS / (required if the application needs RAM-based tools)
FONT S / (required if the application needs fonts)
DESK. ACCS / (required if desk accessories are to be provided)
SYSTEM. SETUP / required

TOOL. SETUP required

BASIC. S YSTEM (required if the application is written in Applesoft BASIC)

Important: the files PRODOS, P8 and P16 all have version numbers. Whenever
it loads an operating system (at startup or when launching an application),
PRODOS checks the P8 or P16 version number against its own. If they do not
match, it is a fatal error. Be careful not to construct an application system disk
using incompatible versions of PRODOS, P 8 and P 16 .

APDADrqft 43 J1/13/86

AppLe llGS ProDOS 16 Reference

System startup
Disk blocks 0 and 1 on an Apple IIOS system disk contain the startup (boot) code. They
are identical to the boot blocks on standard Apple II system disks (ProD OS 8 system
disks). This allows ProDOS 8 system disks to boot on an Apple IIOS, and it also means
that the initial part of the ProDOS 16 bootstrap procedure is identical to that for ProD OS 8.

Boot initialization

Figure 5-1 shows the boot initialization procedure. First, the boot fmnware in ROM reads
the boot code (blocks 0 and 1) into memory and executes it. For a system disk with a
volume name /v,

1. The boot code searches the disk's volume directory for the first file named
IV /PRODOS with the file type $FF.

2. If the fIle is found, it is loaded and executed at location $2000 of bank $00.

From this point on, an Apple IIOS system disk behaves differently from a standard Apple II
system disk. On a standard Apple II system disk, the me named PRODOS is the ProDOS 8
operating system On an Apple IIOS system disk, however, this PRODOS file is not the
operating system itself; it is an operating system loader and application selector. When it
receives control from the boot code, / v /PRODOS performs the following tasks (see also
Figure 5-1):

3. It relocates the part of itself named PQUIT 10 an area in memory where PQUIT will
reside permanently. PQUIT contains the code required 10 terminate one program
and start another (either ProDOS 8 or ProDOS 16 application).

4. /V / PRODOS loads the ProDOS 16 operating system and Apple IIOS System Loader
(file IV/SYSTEM/P16).

5. /v /PRODOS performs any necessary boot initialization of the system, by executing
the files in the subdirectory /v / SYSTEM/ SYSTEM. SETUP /. If there is a ftle
named TOOL. SETUP in that subdirectory, it is executed first-it loads RAM-based
tools and RAM patches to ROM-based tools.

Every file in the subdirectory / v /SYSTEM/SYSTEM. SETUP / must be an Apple
IIOS load file of type $B6, $B7, $B8, or $B9. These file types are described under
"The SYSTEM. SETUP / Subdirectory," in this chapter. After executing
TOOL. SETUP, /V / PRODOS loads and executes, in turn, every other file that it
finds in the subdirectory.

APDADrajt 44 11113/81'>

ProDOS 16: Chapter 5

Power On

Frrmwor~/Tools iflitioJizanon

':;;;;-;:::;;::~==::;"'~ boot failure:
r~ ·check startup device"

,:;;;;-;=====~~,boot failure: I , 'UNABLE TO LOAD PROOOS'

(if tNs is a Cortland
System Disk)

(If this is a Pre-cortland
ProDOS 8 System Disk)

bod ProOOS 16/
System Loader

load Desk Accessories

to "startup Program Selectlon"
(Figure 5-2)

The fie PflOOOS Is ProOOS 8;
n performs tts own hltializaHon

and brings up a ProDOS 8
system program-see
ProDOS 8 Reference

Figure 5-1. Boot initialization sequence

Startup program selection

6. Now IV IPRODOS selects (= determines the pathname of) the system program or
application to run. Figure 5-2 shows this procedure.

a. It frrst searches for a type $B3 file named IV/SYSTEM/START. Typically,
that file is a program selector, but it could be any Apple IIOS application. If
START is found, it is selected.

APDADraft 45 J1/13/86

Apple lIes ProDOS 16 Reference

b. If there is no START fIle, /v /PRODOS searches the boot volume directory for a
file that is either one of the following:

• a ProDOS 8 system program (type $FF) with the filename extension
. SYSTEM

• a ProDOS 16 application (type $B3) with the fIlename extension. SYS1 6

Whichever is found first is selected.

Note: If a ProD OS 8 system program is found first, but the ProD OS 8 operating
system (file /v /SYSTEM/PB) is riot on the system disk, /v /PRODOS will then
search for and select the first ProDOS 16 application (ProDOS 16 is always on the
system disk).

c. If / V/ PRODQS cannot find a flle to execute (for example, if there is no START
file and there are no ProDOS 8 or ProDOS 16 applications), it will bring up an
interactive routine that prompts the user for the fllename of an application to load.

7. Finally, /v /PRODOS passes control to an entry point in PQUIT. It is PQUIT, not
/v /PRODOS, that actually loads the selected program. The next section describes
that procedure.

Note: PRODOS will write an error messsage to the screen if you try to boot it on
an Apple II computer other than an Apple IIGS. This is because ProDOS 8 on an
Apple IIGS disk is in the file v /SYSTEM/P8, not in the file PRODOS.

from 'Boot Initialization'
(flgU'e 5-1)

(the file named PROOOS Is In control)

Is ''''''9 a nfe named N !SYOifM!ST !WI?
yes ,

,."

.S'>Slo tfJa Ibund tbt

Is !here a .SYSTEM

yes 00

IWlich four>d 1m?
, .S'>STEM nfe found tbt

Fatal error:
'no x.S't'STEM or
x.SYSI6 file found'

Execute a ProDOS 16 Execu fa an enhanced
58 QUIT call.

load &
execute tHe

IV /SVSTEM/START

START • typically
a ptogram selector,

allowing the user to choose
a program to load

APDADraft

QUIT coHo using !he
filename of the
,SYS16 program

to "Run·tlme
Program Selection'
(Figure 5-3)

Figure 5-2. Startup program selection

46

ProOO
using the filename

.SYSTEM program of the

to ·Ru n-time
JProgr om Selection'

e 5-3) (Figur

11113186

ProDOS 16: Choprer 5

Starting and quitting applications
The Apple fiGS startup sequence ends when control is passed to the program selection
routine (PQUIT). This routine is entered both at boot time and whenever an application
terminates with a ProDOS 16 or ProDOS 8 QUIT call ..

PQUIT

PQUIT is the ProDOS program dispatcher. It determines which ProDOS 8 or ProDOS 16
program is to be run next, and runs it. Mter startup, PQUIT is pennanently resident in
memory; PQUIT loads ProDOS 16 programs through calls to the System Loader.

PQUIT has two entry points: P8PQUIT and P16PQUIT. Whenever a ProDOS 8
application executes a QUIT call, control passes through the P8PQUIT entry point.
Whenever a ProDOS 16 application executes a QUIT call, control passes through the
P 16PQUIT entry point. To launch the first program at system startup, Iv IPRODOS
passes control to PQUIT as if executing a QUIT call.

PQUIT suppons three types of quit call: the standard ProDOS 8 QUIT call, an enhanced
ProDOS 8 QUIT call, and the ProDOS 16 QUIT call.

Standard ProDOS 8 QUIT call

The standard ProDOS 8 QUIT call's parameter block consists of a one-byte parameter
COWlt field (which must have the value $04), followed by four null fields in this order:
byte, word, byte, word. As ProDOS 8 is currently defined, all fields must be present and
all must be set to zero. There is thus no way for a program to use the standard QUIT call to
specify the pathname of the next program to run ..

Enhanced ProDOS 8 QUIT call

The enhanced ProDOS 8 QUIT call differs from the standard call only in the permissible
values of the first two parameters (its parameter count field must still have the value $04).
In the enhanced QUIT call, the first (byte) parameter is defined as the quir type. If it is
zero, the call is identical to a standard QUIT call; if it is $EE, PQUIT interprets the
following (word) parameter as a pointer to a string which is the pathname of the next
program to run.

The enhanced ProDOS 8 QUIT call is meaningful only on the Apple fiGS, and only when
PQUIT is present to interpret it. It behaves like the standard QUIT call in any other
situation.

Note: Because of the way ProDOS uses memory, a ProDOS 8 application must
not make an enhanced QUIT call (with a quit type of $EE) from any location in
page 2 of bank $00 (addresses $00 0200 - $00 02 FF).

APDADraji 47 11/13/86

Apple lIGS ProDOS 16 Reference

ProDOS 16 QUIT call

The ProDOS 16 QUIT call has two parameters: a pointer to the pathname of the next
program to execute, and a pair of boolean flags: one (thererurnflag)notifies PQUIT
whether or not control should eventually return to the program making the QUIT call; the
other one (the resran-from-memory flag) lets the System Loader know whether the
quitting program can be restarted from memory when it returns.

If the value of the return flag is true, PQUIT pushes the User ID of the calling (=quining)
program onto an internal stack. As subsequent programs run and quit, several User ID' s
may be pushed onto the stack. With this mechanism, multiple levels of shells may execute
subprograms and subshells, while ensuring that they eventually regain control when their
subprograms quit.

For example, the program selector (START file) might pass control to a software
development system shell, using the QUIT call to specify the shell and placing its own ID
on the stack. The shell in turn could hand control to a debugger, likewise puting its own
ID on the stack. If the debugger quits without specifying a pathname, control would pass
automatically back to the shell; when the shell quit, control would pass automatically back
to the STAR T fIle.

This automatic return mechanism is specific to the ProDOS 16 QUIT call, and therefore is
not available to ProDOS 8 programs. When a ProDOS 8 application quits, it cannot put its
ID on the internal stack.

QUIT procedure

This is a brief description of how PQUIT handles all three types of QUIT calL Refer also
to Figure 5-3.

1. If a ProDOS 16 or enhanced ProDOS 8 QUIT call specifies a pathname, PQUIT
anempts to execute the specified file. Under certain conditions this may not be
possible: the file may not be on line, there may be insufficient memory, and so on.
In that case the QUI T call executes the interactive routine described below (step 3).

Note: PQUIT will load programs of file type $B3, $B5, or $FF only.

2. If the QUIT call specifies no pathname, PQUIT pulls a User ID off its internal ID
stack and attempts to execute that program. Typically, programs with User ID's on
the stack are in the System Loader's dormant state (see "User Shutdown" in
Chapter 17), and it may be possible to restart them without reloading them from
disk. Under certain conditions it may not be possible to execute the program: the file
may not be on line, there may be insufficient memory, and so on. In that case the
QUIT call executes the interactive routine described next (step 3).

3. If the QUIT call specifies no pathname and the ID stack is empty, PQUIT executes
an interactive routine that allows the user to do any of these:

• reboot the system

• execute the file Iv I SYSTEM/ START

• enter the pathname of a program to execute

APDADraft 48 11!13186

ProDOS 16: Chapter 5

4. If the quitting program is a ProDOS 16 program, PQUIT calls the loader's User
Shutdown routine to place that program in a donnant state.

5. Once it has detennined which program to load, PQUIT knows which operating
system is required. If it is not the current system,

a. PQU IT shuts down the current operating system and loads the required one.

b. PQUIT then makes Memory Manager calls to free memory used by the fonner
operating system and allocate memory needed by the new system. If the new
operating system is ProDOS 8, PQUIT allocates all special memory for the
program.

6. The new program is loaded. PQUIT calls the System Loader to load ProDOS 16
programs; for ProDOS 8 programs, PQUIT passes control to ProDOS 8, which then
loads and executes its own program directly.

7. Finally (if it is a ProDOS 16 program), PQUIT sets up various aspects of the
program's environment, including the direct-register and stack-pointer values, and
passes control to the program.

APDADraft 49 llI13/8ri

Apple II GS ProDOS 16 Reference

yes

plo::e ITs
Use riD on
return stack

no

ProDOS 16
QunCo!

Pro DOS 8
QUtCdl

~.;;x.:.:c::ut:... _..,execute

PQUIT routine

Does tile QUIT ceil specify ttl ..
pafhnome of 1fle next program?

yes no

Does the qufftinQ program
~t tol9ftmlafer?

0(9 1hefe aly UserlD's
on the tetlin stocle?

no

..

r no

Pull last Use~D
off retum sto::lG
rnc:j(e that the
next program

user selects a filename

next program has been selected:

Must a different operating system b9 lc:xJdBd?
yes

"ad

"<Xl. Operating System
:--. (ProDOS 8 or

ProDOS 16)

purge memory no longer needed
and dlocate new memory

prompt user tor
filename of
next progrom

user selects
reboot'

to
"Soot Initialization'

(Figure 5-1)

Set uf'
program s Selected Program

environmentl....!.Xl!!.~cu~t~L ____ --1

Figure 5-3. Run-time program selection (QUIT call)

Machine state at application launch

PQUIT initializes certain hardware and software components of the Apple IIGS before it
passes control to a program. There are many other factors the machine's state that are not
considered here, such as memory used by other software and the state of the dozens of soft
switches and pseudoregisters available on the Apple IIGS. This section summarizes only
those aspects of machine state explicitly set by ProDOS 16.

• Reserved bank $00 space:

Addresses above approximately $9600 in bank zero are reserved for ProDOS 16, and
therefore unavailable to the application. A direct-page/stack space, of a size
detennined either by ProDOS 16 or by the application itself, is reserved for the
application (see Chapter 6); it is located in bank $00 at an address detennined by the
Memory Manager. ProDOS 16 requires no other space in RAM (other that the
language-card areas in banks $00, $01, $EO, and $El-see Figure 3-2).

APDADraft 50 11113186

ProD OS 16: Chapter 5

• Hardware registers:

The accumulator contains the User ID assigned to the application.
The X- and Y-registers contain zero ($0000).
The e-, m-, and x-flags in the processor status register are all set to zero, meaning that
the processor is infull native mode.
The stack register contains the address of the top of the direct-page/stack space (see
Chapter 6).
The direct register contains the address of the bottom of the direct-page/stack space
(see Chapter 6).

• Standard input/output:

For both $B3 and $B5 fIles, the standard input, output, and error locations are set to
the Pascal 80-column character device vectors. See "Text Tool Set" in Apple lIGS
Toolbox Reference.

• Shadowing:

The value of the Shadow register is $lE, which means:

language card and I/O spaces:
text pages:
graphics pages:

• Vector space values:

shadowing ON
shadowing ON
shadowing OFF

Addresses between $OOA8 and $OOBF in bank $El constitute ProDOS l6's vector
space-so named because it contains the entry point (vector) to all ProDOS 16 call s.
It also contains other information useful to system software such as AppleTalk®.
The specific values an application fmds in the vector space are listed in Table 3-2.
These are the only fixed locations supported by ProDOS 16.

• Pathname prefix values:

The nine available pathname prefixes are set as described in the next section.

Pathname prefixes
A pathname prefix is a part of a pathname that starts with a volume name and ends with
the name of a subdirectory. A preassigned prefix is convenient when many flies in the
same subdirectory are accessed, because it shortens the pathname references. A set of
prefixes is convenient when files in several different subdirectories must be repeatedly
accessed. The System Loader, for example, makes use of multiple prefixes. Once the
pathname prefixes are assigned, an application can refer to the prefixes by code instead of
keeping track of all the different pathnames.

ProDOS 16 supports 9 prefixes, referred to by the prefix numbers 0/, 1/, 2 / , ... ,7;',
and * / . Each prefix number includes a terminating slash to separate it from the rest of the
pathname. A prefix number at the beginning of a partial pathname replaces the actual
prefix. One of the prefix numbers has a fixed value, and the others have default values
assigned by ProDOS 16 (see Table 5-4). The most important predefmed prefixes are

APDADraft 51 11/13/86

Apple llGS ProD OS 16 Reference

* / the boot prefix-it is the name of the volume from which the presently running
ProDOS 16 was booted.

o / the default prefix (automatically attached to any partial pathname that has no prefix
number}--it has a value dependent on how the current program was launched. In
some cases it is equal, to the boot prefix.

1 / the application prefix-it is the pathname of the subdirectory that contains the
currently running application.

2/ the system library prefix-it is the pathname of the subdirectory (on the boot
volume) that contains the library files used by applications.

Your application may assign the rest of the prefixes. In fact, once your application is
running, it may also change the values of prefixes a / , 1/, or 2/ (applications may not
change prefix * I).

Prefix a / is similar to the ProD OS 8 system prefIX, in that ProDOS 16 automatically
attaches prefix a / to any partial pathname for which you specify no pre,fix. However, its
initial value is not always equivalent to the ProDOS 8 system prefix's initial value. See
ProD OS 8 Reference.

The prefix numbers are set (assigned to specific pathnames) and retrieved through the
SET_P REFIX and GET_PREFIX calls. Although a prefix number may be used as an
input to the SET _PREF IX call, prefixes are always stored in memory as full pathnames
(that is, tbey include no prefix numbers themselves).

Table 5-3 shows some examples of prefix use. They assume that prefix a / is set to
/ VOLUME1 / and that prefix 5 / is set to /VOLUME1/TEXT. FILES /. The pathname
provided by the caller is compared with the full pathname constructed by ProDOS 16.

Table 5-3. Examples of prefix use.

• Full pathname provided:

as supplied: / VOLUME1 / TEXT. FILES/ CHAP . 3
as expanded 1Jy ProDOS 16: / VOLUME1 / TEXT. FILES/CHAP. 3

• Partial pathname-implicit use of prefix / a:
as supplied: PRODOS
as expanded by ProDOS 16: !VOLUME1 / PRODOS

• Explicit use of prefix / a:
as supplied: a/SYSTEM/ FINDER
as expanded by ProD OS 16: / VOLUME1/SYSTEM/FINDER

• Use of prefix 5/:

as supplied: 5/CHAP . 1 2
as expanded 1Jy ProD OS 16: / VOLUME1 / TEXT . FILES/CHAP .12

APDADraft 52 1l/13/86

ProDOS 16: Chapter 5

Initial ProDOS 16 prefix values

When an application is launched, all nine prefix numbers are assigned to specific
pathnames (some are meaningful pathnames, whereas others may be null strings).
Remember, an application may change the assignment of any prefix number except the boOt
prefix (* I). Furthermore, in some cases certain initial prefix values may be left over from
the previous application. Therefore, beware of assuming a value for any particular prefix .

Table 5-4 shows the initial values of the prefix numbers that a ProDOS 16 application
receives. under the three different launching conditions possible on the Apple IIGS. At all
times during execution. GET_NAME returns the filename of the current application
(regardless of whether prefix 1 / has been changed). and GET_BOOT _VOL returns the boot
volume name, equal to the value of prefIX * / (regardless of whether prefix 0 / has been
changed).

Table 5-4. Initial ProDOS 16 prefix values.

a. ProDOS 16 application launched at boot time:

Prefix no.

0 /

1 /

2 /

3/

4/

5 /

6 /

7/

* /

Initial value
boot volume name

fuIl pathname of the directory containing the current
application
full pathname of the application library directory
(/boot volume name / SYSTEM/LIBS)

null string

null string
null string
null string

null string
boot volume name

b. ProDOS 16 application launched after a ProDOS 8 application has quit:

Prefix no.

0/

11

2/

3/

4/

5/

6/

7/

*/

APDADraft

Initial value

unchanged from the ProDOS 8 systemprejix under the
previous application
full pathname of the directory containing the current
application
full pathname of the application library directory
(lboot volume name/ SYSTEM/ LIBS)

null string
null string
null string
null string
null string

boot volume name

53 1lI13186

Apple IIGS ProDOS 16 Reference

c . ProDOS 16 application launched after a ProDOS 16 application has quit:

Prefix
0/

1/

2/

3/

4/

5/

6/

7/

* /

no. Initial value
unchanged from the previous application
full pathname of the directory containing the current
application
unchanged from the previous application
unchanged from the previous application

unchanged from the previous application
unchanged from the previous application
unchanged from the previous application

unchanged from the previous application

unchanged from the previous application

ProD OS 8 prefix and pathname convention

ProDOS 8 supports a single prefix, called the system prefIX (or cu"ent prefix). It has no
prefix number-it is attached automatically to any partial pathname (one that does not begin
with a slash and a volume name). Like the ProDOS 16 prefixes, the ProDOS 8 system
prefix may be changed by a SET PREF IX call. On a standard Apple II, the default value
of the system prefix at startup is the boot volume name; however, system programs such as
the Applesoft BASIC interpreter commonly reset the system prefix to other values.

An application that is running under ProDOS 8 can always fmd its own pathname by
looking at location $0280 (in bank $00 on an Apple IIGS); ProDOS 8 stores the
application's full or partial pathname there. For details of this and other ProDOS 8
pathname conventions, see ProDOS 8 Reference.

On the Apple IIGS, the PQUIT routine allows a ProDOS 8 application to be launched at
boot time, or after another ProDOS 8 application has quit, or after a ProDOS 16 applicatiL'1l
has quit. The initial values of the system prefix and the pathname at location $0280 are
dependent on which way the application was launched. Table 5-5 lists the possibilities.

APDADroft 54 11113/86

ProDOS 16: Chapter 5

Table 5-5. Initial ProDOS 8 prefix and pathname values

I . ProDOS 8 application launched at boot time:

system prefix = boot volume name
location $0280 pathname = fIlename of the just-launched application

2. ProDOS 8 application launched through an enhanced ProDOS 8 QU IT call:

system prefix = unchanged from the previous (ProD OS 8) application
location $0280 pathname = the full or partial pathname given in the enhanced

ProDOS 8 QUIT call

3a. ProDOS 8 application launched through a ProDOS 16 QUIT call:
(If the ProDOS 16 QUIT call specified a/ull pathname)

system prefix = the previous (ProDOS 16) application's prefix 0 /
location $0280 pathname = the full pathname given in the ProDOS 16 QU I T c:llI

3b. ProDOS 8 application launched through a ProDOS 16 QUIT call:
(If the ProDOS 16 QUIT call specified aparlialpathname)

system prefix = the prefix specified in the ProDOS 16 QUIT call
location $0280 pathname = the partial pathname (minus the prefix number) given

in the ProDOS 16 QUIT call

Note: Conditions (2) through (3b) in Table 5-4 apply only to ProD OS 8
applications launched from an Apple IIGS booted on an Apple 11GS system disk. If
a ProDOS 8 application on a standard Apple 11 system disk is booted on an Apple
IIos, the Apple lIGS acts like a standard Apple II and condition (I) is the only
possibility.

Tools, firmware, and system software
Although ProDOS 16 is the principal part of the Apple IIGS operating system, several
"operating system-like" functions are actually carried out by other software components.
This section briefly describes some of those components; for detailed information see the
references listed with each one.

The Memory Manager

As explained in Chapter 3, the Memory Manager takes care of all memory allocation,
deallocation, and housekeeping chores. Applications obtain needed memory space either
directly, through requests to the Memory Manager, or indirectly through ProDOS 16 or
System Loader calls (which in tum obtain the memory through requests to the Memory
Manager).

The Memory Manager is a ROM -resident Apple IIGS tool set; for more detailed information
on its functions and how to call them, see Apple llGS Toolbox Reference.

APDA Draft 55 11113186

Apple lles ProDOS /6 Reference

The System Loader

The System Loader is an Apple IIGS tool set that works very closely with ProD OS 16 and
the Memory Manager. It resides on the system disk, along with ProDOS 16 and other
system software (see "Apple IIGS System Disks" in this chapter). All programs and dat a
are loaded into memory by the System Loader.

The System Loader supports both static and dynamic loading of segmented programs and
subroutine libraries. It loads files that confonn to a specific format (object module
format); such files are produced by the APW Linker and other components of the
Apple IIGS Programmer's Workshop (see Apple lles Programmer's Workshop
Reference).

The System Loader is described in Part ill of this manual.

The Scheduler

The Scheduler is a tool set that functions in conjunction with the Apple IIGS Heartbeat
Interrupt signal (see "Scheduler" in Apple IIGS Toolbox Reference). Its purpose is to
coordinate the execution of intemIpt handlers and other interrupt-based routines such as
desk accessories.

The Scheduler is required only when an interrupt routine needs to call a piece of system
software, such as ProDOS 16, that is not reentrant. If ProDOS 16 is in the middle of a
call when an interrupt occurs, the interrupting routine cannot itself call ProDOS 16, because
that would disrupt the first (not yet completed) call. The system needs a way of telling an
interrupt routine to hold off until the system software it needs is no longer busy.

The Scheduler accomplishes this by periodically checking a word-length flag called the
Busy word and maintaining a queue of processes that may be activated when the Busy
word is cleared. Interrupt routines that make operating system calls must go through the
Scheduler (see Chapter 7).

The User ID Manager

The User ID Manager is a Miscellaneous tool set that provides a way for programs to
obtain unique identification numbers. Every memory block allocated by the Memory
Manager is marked with a User ID that shows what system software, application, or desk
accessory it belongs to.

Part of each block's 2-byte User ID is a TypeID field, describing the category of load
segment that occupies it. All ProDOS 8 and ProDOS 16 blocks are type 3; System Loader
blocks are type 7; blocks of controlling programs (such as a shell or switcher) are type 2;
and blocks containing application segments are type 1. Appendix D diagrams the format
for the User ID word. See "Miscellaneous Tool Sets" in Apple IIGS Toolbox Reference for
further details.

ProDOS 16 and the System Loader rely on User ID's to help them restart or reload
applications. See "QUit Procedure" in this chapter, and "Restart" and "User Shutdown" in
Chapter 17.

APDA Draft 56 1lIJ3186

ProDGS 16: Chapter 5

The System Failure Manager

All fatal errors, including fatal ProDOS 16 errors, are routed through the System Failure
Manager, a Miscellaneous Tool Set It displays a default message on the screen, or, if
passed a pointer when it is called. displays an ASCII string with a user-chosen message.
Program execution halts when the System Failure Manager is called.

The System Failure Manager is described under "Miscellaneous Tool Sets" in Apple llGS
Toolbox Reference.

APDADraft 57 11113186

Apple Il GS ProDOS 16 Reference

APDA Draft 58 11113186

Chapter 6

Programming With ProDOS 16

This chapter presents requirements and suggestions for writing Apple IIGS programs that
use ProDOS 16.

Programming suggestions for the System Loader are in Chapter 16 of this manuaL More
general information on how to program for the Apple IIGS is available in Programmer's
Introduction to the Apple lIeS. For language-specific programming instructions, consult
the appropriate language manual in the Apple IIGS Programmer's Workshop (see "Apple
IIGS Programmer's Workshop" in this chapter).

Application requirements
As used in this manual, an application is a complete program, typically called by a user
(rather than another program), that can communicate direct! y with ProDOS 16 and any
other system software or fmnware it needs. For example, word processors, spreadsheet
programs, and programming-language interpreters are examples of applications. Data files
and source-code files, as well as subroutines, libraries, and utilities that must be called
from other programs are not applications.

To be an application, an Apple IIGS program must

consist of executable machine-language code

• be in Apple IIGS object module format (see Appendix D)

• be file type $B3 (specialized applications may have other ftle types-see Appendix A)

• have a ftlename extension of . SYS16 (if you want it to be self-booting at system
startup--see Chapter 5)

• make ProDOS 16 calls as described in this manual (see Chapter 8)

• observe the ProDOS 16 QUIT conventions (see Chapter 5)

• observe all other applicable ProDOS 16 conventions, such as the conventions for
interrrupt handlers (see Chapter 7)

• get all needed memory from the Memory Manager (see Chapter 3)

Most other aspects of the program are up to you. The rest of this chapter presents
conventions and suggestions to help you create an efficient and useful application,
consistent with Apple IIGS programming concepts and practices.

APDADrqft 59 11113/86

Apple lIes ProDOS 16 Reference

Stack and direct page
In the Apple IIGS, the 65C816 microprocessor's stack-pointer register is 16 bits wide; that
means that, in theory, the hardware stack may be located anywhere in bank $00 of

, memory, and the stack may be as much as 64K bytes deep.

The direct page is the Apple IIGS equivalent to the standard Apple II zero page. The
difference is that it need not be page zero in memory. Like the stack, the direct page may
theoretically be placed in any unused area of bank $OO--the microprocessor's direct
register is 16 bits wide, and all zero-page (direct-page) addresses are added as offsets to the
contents of that register.

In practice, however, there are severa!, restrictions on available space. First, only the
lower 48K bytes of bank $00 can be allocated-the rest is reserved for I/O space and
system sofrware. Also, because more than one program can be active at a time, there may
be more than one stack and more than one direct page in bank $00. Furthermore, many
applications may want to have parts of their code as well as their stacks and direct pages in
bank $00.

Your program should therefore be as efficient as possible in its use of stack and direct-page
space. The total size of both should probably not exceed about 4K bytes in most cases.
Still, that gives you the opportunity to write programs that require stacks and direct pages
much larger than the 256 bytes available for each on standard Apple II computers.

Automatic allocation of stack and direct page

Only you can decide how much stack and direct-page space your program will need when it
is running. The best time to make that decision is during program development, when you
create your source fIJe(s). If you specify at that time the total amount of space needed,
ProDOS 16 and the System Loader will automatically allocate it and set the stack and direct.
registers each time your program runs.

Definition during program development

You define your program's stack and direct-page. needs by specifying a "direct-page/stack"
object segment (KIND = $12; see Appendix D) when you assemble or compile your
program (Figure 6-1). The size of the segment is the total amount of stack and direct-page
space your program needs. It is not necessary to create this segment; if you need no such
space or if the ProDOS 16 default (see below) is sufficient, you may leave it out.

When the program is linked, it is important that the direct-page/stack segment not be
combined with any other object segments to make a load segment-the linker must create a
single load segment corresponding to the direct-page/stack object segment. If there is no
direct-page/stack object segment, the linker will not create a corresponding load segment.

AP DA Draft 60 11/13/86

o Object File:
You create a dilect·
page/ stack segment
in the object code

segment
I

@ Load Fila:
I\.1oke sure the dlrect
page/stock segment
Is a single load segment

Segment t::\
1 \!J Syatem Loader.

allocates a block in
Bank SOO equal In size to 1h9

h;egffieinrl direct-page/stack
load sogment

ProDGS 16: Chapccr 6

Memory Bonk $00

@ PIODOS 16:

the stock register
the hiQhest address

""j .. -Iln the segment

.,<t-set.: the direct register
to the lowest add ress
in the segment

Figure 6-1. Automatic direct-page/stack allocation

Allocation at run time

Each time the program is started. the System Loader looks for a direct-page/stack load
segment. If it finds one. the loader calls the Memory Manager to allocate a page-aligned.
locked memory block of that size in bank $00. The loader loads the segment and passes its
base address and size. along with the program' s User ID and starting address. to ProDOS
16. ProDOS 16 sets the A (accumulator). 0 (direct) • and S(stack) registers as shown.
then passes control to the program:

A = User ID assigned to the program
0= address of the flrst (lowest-address) byte in the direct-page/stack space
S = address of the last (highest-address) byte in the direct-page/stack space

By this convention. direct-page addresses are offsets from the base of the allocated space,
and the stack grows downward from the top of the space.

Important: ProDOS 16 provides no mechanism for detecting stack overflow or
underflow. or collision of the stack with the direct page. Your program must be
carefully designed and tested to make sure this cannot occur.

When your program terminates with a QUIT call. the System Loader's Application
Shutdown function makes the direct-page/stack segment purgeable. along with the
program's other static segments. As long as that segment is not subsequently purged, its
contents are preserved until the program restarts. See "Application Shutdown" and
"Restart" in Chapter 17.

Note: There is no provision for extending or moving the direct-page/stack space
after its initial allocation. Because bank $00 is so heavily used. any additional
space you later request may be unavailable-the memory adjoining your stack is
likely to be occupied by a locked memory block. Make sure that the amount of
space you specify at link time mls all your program's needs.

APDADrqfi 61 I1I13186

Apple IIGS ProDOS 16 Reference

ProDOS 16 default stack and direct page

If the loader fmds no direct-page/stack segment in a file at load time, it still returns the
program's User ID and starting address to ProDOS 16, but it does not call the Memory
Manager to allocate a direct-page/stack space and it returns zeros as the base address and
size of the space. ProDOS 16 then calls the Memory Manager itself. and allocates a lK
direct-page/stack segment with the following attributes:

size: 1,024 bytes
owner: program with the User f0 returned by the loader
fixed/movable: fixed
locked/unlocked: locked
purge level: 1
may cross bank boundary? no
may use special memory? yes
alignment: page-aligned
absolute starting address? no
fixed bank? yes-bank $00

See Apple IIGS Toolbox Reference for a general description of memory block attributes
assigned by the Memory Manager.

Once allocated. the default direct-page/stack is treated just as it would be if it had been
specified by the program: ProDOS 16 sets the A, D. and S registers before handing control
to the program. and at shutdown time the System Loader purges the segment.

Manual allocation of stack and direct page

You (your program, that is) may allocate your own stack and direct-page space at run time,
if you prefer. When ProDOS 16 transfers control to you, be sure to save the User ID value
left in the accumulator before doing the following:

1. Using the starting or ending address left in the D or S register by ProD OS 16. make
a FindHandle call to the Memory Manager, to get the memory handle of the
automatically-provided direct-page/stack space. Then. using that handle. get rid of
the space with a DisposeHandle call.

2. You can now allocate your own direct-page/stack space through the Memory
Manager NewHandle call. Make sure that the allocated block is purgeable,fixed,
and locked.

3. Place the appropriate values (beginning and end addresses of the segment) in the D
and S registers.

Managing system resources

VariOllS hardware and software features of the Apple IIGS can provide an application with
useful information, or can otherwise increase its flexibility. This section suggests ways to
use those features.

APDADraft 62 11113186

ProDOS 16: Chapter Ii

Global variables

Under ProDOS 8, a fixed-address global page maintains the values of important
variables and addresses for use by applications. The global page is at the same address in
any machine or machine configuration that supports ProDOS 8, so an application can
always access those variables at the same addresses.

ProD OS 16 does not provide a global page. Such a set of fixed locations is inconsistent
with the flexible and dynamic memory management system of the Apple IIGS. Instead,
calls to ProD OS 16, tools, or firmware give you the information formerly provided by the
global page. Table 6-1 shows the Apple IIGS calls used to obtain infonnation equivalent to
ProDOS 8 global page values.

Table 6-1. Apple IIGS equivalents to ProDOS 8 global page information

Global page Information

Global page entry points
Device driver vectors
List of active devices
Memory Map
Pointers to I/O buffers
Interrupt vectors
Date/Time
System Level
MACHID
Application version
ProD OS 16 Version

Apple IIGS Equivalent

(not supported)
(not supported)
returned by VOLUME call (ProD OS 16)
(responsibility of the Memory Manager)
returned by OPEN call (ProD OS 16)
returned by ALLOC INTERRUPT call (ProDOS 16)
returned by ReadT lme call (Misc. tool set)
returned by GET_LEVEL call (ProDOS 16)
(not supported)
(not supported)
retumed by GET VERS ION call (ProDOS 16)

Of course, the Apple IIGS always supports the ProDOS 8 global page when a ProD OS 8
application is running.

Prefixes

The nine available prefixes described in Chapter 5 offer convenience in coding pathnanles
and flexibility in writing for different system and application disk volumes. For example,
any files on the boot disk can always be accessed through the prefix * / , regardless of the
volume name of that particular boot disk. Any library routine in the system library
subdirectory will have the prefiX 2 / , regardless of which system disk is on line (unless
your program has changed the value of the prefix). If you put routines specific to your
application in the same subdirectory as your application, they can always be called with the
prefix 1/ , regardless of what subdirectory or disk your program inhabits.

Your application can always change the values of any of the prefixes except * /. For
example, it may change prefiX 2 / if it wishes to access libraries (or any other files) on a
volume other than the boot volume. But be careful: once you change prefiX 1/, for

APDADraft 63 11113186

Apple llGS ProDOS 16 Reference

example, you can no longer use it as the application prefix. Be sure to save the value of a
prefix number before you change it, if you may want to recover it later.

Native mode and emulation mode

You can make ProDOS 16 calls when the processor is in either emulation mode or native
mode. So if part of your program requires the processor to be in emulation mode, you
needn't reset it to native mode before calling ProDOS 16. However, emulation-mode calls
to ProDOS 16 must be made from bank $00, and they can reference infonnation (such as
parameter blocks) in bank $()() only. Furthermore, interrrupts must be disabled.

ProDOS 8 programs run entirely in emulation mode. If you wish to modify a ProDOS 8
program to run under ProDOS 16, or if you wish to use Apple IIGS features available only
in native mode, see "Revising a ProDOS 8 Application for ProDOS 16" in this chapter.
See also Programmer's Introduction to the Apple llGS.

Setting initial machine configuration

When an Apple IIGS application (type $B3) is first launched, the Apple IIGS is in full nal ;v<o
mode with graphics shadowing off (see "Machine Configuration at Application Launch" in
Chapter 5). If your program needs a different machine configuration, it must make the
proper settings once it gains control.

ProDOS 16 does not initialize soft switches, fumware registers, or any hardware registers
other than those listed in Chapter 5. Your program is responsible for initializing any
needed switches and registers.

Allocating memory

All memory allocation is done through calls to the Memory Manager, described in Apple
llGS Toolbox Reference. Memory space you request may be either movable or
unnmovable (fixed). If it is movable, you access it through a memory handle; if it is
unnmovable, you may access it through a handle or through a pointer. Since the Memory
Manager does not return a pointer to an allocated block, you obtain the pointer by
dereferencing the handle (see Chapter 3).

ProDOS 16 parameter blocks are referenced by pointers; if you do not code them into your
program segments and reference them with labels, you must put them in unnmovable
memory blocks. See "Setting up a Parameter Block in Memory" in Chapter 8.

Loading another program

If you do not want your program to load another program when it finishes , it should use a
ProDOS 16 QU IT call with all parameters set to O. The QUIT routine performs all
necessary functions to shut down the current application, and normally brings up a

APDADraft 64 11/13/86

ProD OS 16: Chapter 6

program selector which allows the user to choose the next program to load. Most
applications function this way.

However, if you want your application to load and execute another application, there are
several ways to do it. If you wish to pass control permanently to another application, use
the ProDOS 16 QUIT call with only a pathname pointer, as described in Chapter 5. If you
wish control to return to your application once the next application is finished, use also the
return flag parameter in the QUIT call. That way your program can function similarly to a
shell-whenever it quits to another specified program, it knows that it will eventually be re
executed.

If you wish to load but not necessarily pass control to another program, or if you want
your program to remain in memory after it passes control to another program, use the
System Loader's Initial Load function (described in Chapter 17). When your program
actively loads other program files, it is called a controlling program; the APW Shell
(see "Apple IIGS Programmer's Workshop" in this chapter) is a controlling program.
Chapter 16 gives suggestions for writing controlling programs.

You can load a ProDOS 8 application (type $FF) through the ProD OS 16 QUIT call, but
you cannot do so with the System Loader's Initial Load call; the System Loader will load
only ProDOS 16 load files (types $B3-$BE).

Note: Because ProDOS 8 will not load type $B3 files, ProD OS 8-based
applications that load and run other applications cannot run any newer ProDOS 16
applications. This restriction is a natural consequence of the lack of downward
compatibility. If you wish to modify an older application to be able to use it with
ProDOS 16, see "Revising a ProDOS 8 Application for ProDOS 16," later in this
chapter.

Using interrupts

ProD OS 16 provides conventions (see Chapter 7) to ensure that interrupt-handling routines
will function correctly. If you are writing a print spooler, game, communications program
or other routine that uses interrupts, please follow those conventions.

As explained in Chapter 4, an unclaimed interrupt causes a system failure: control is passed
to the System Failure Manager and execution halts. Your program may pass a message to
the System Failure Manager to display on the screen when that happens. In addition,
because the System Failure Manager is a tool, and because all tools may be replaced by
user-written routines, you may substitute your own error handler for unclaimed interrupts.
See Apple llGS Toolbox Reference for information on the System Failure Manager and for
instructions on writing your own tool set.

If ProDOS 16 is called while it is in the midst of another call, it issues a "ProDOS is bus"· '
error. This situation normally arises only when an interrupt handler makes ProDOS 16 .
calls; a typical application will always fmd ProDOS 16 free to accept a call. Chapter 7
provides instructions on how to avoid this error when writing interrupt handlers;
nevertheless, all programs should be able to handle the "ProDOS is busy" error code in
case it occurs.

APDADrajt 65 11113186

Apple lIes ProDOS 16 Reference

Accessing devices

Under ProDOS 8, block devices on Apple II computers are specified by a unit number,
related to slot and drive number (such as slot 5, drive 1). ProDOS 16 does not directly
snppon that numbering system; instead, it identifies devices by device number and device
name. As explained in Chapter 4, device numbers are assigned in order of the device
search at system startup, and device names are assigned according to a simple ProDOS 16
convention. You must use device numbers or names in ProDOS 16 device calls.

For filing calls and for one device call (GET DEV NUM), you may also access a device
through the name of the volume on the device. Inaddition, you may use the
GET LAST DEV call to identify the last device accessed, in case you wish to access it
again. -

File creation/modification date and time
The information in this section is imponant to you if you are writing a ftle or disk utility
program, or any routine that copies files.

All ProDOS 16 files are marked with the date and time of their creation. When a ftle is first
created, ProDOS 16 stamps the ftle's directory entry with the current date and time from the
system clock. If the file is later modified, ProDOS 16 then stamps it with a modification
date and time (its creation date and time remain unchanged).

The creation and modification fields in a ftle entry refer to the contents of the ftle. The
values in these fields should be changed only if the contents of the file change. Since data
in the file's directory entry itself are not part of the file's contents, the modification field
should not be updated when another field in the file entry is changed, unless that change is
due to an alteration in the ftle's contents. For example, a change in the file's name is not a
modification; on the other hand, a change in the ftle's EOF always reflects a change in its
contents and therefore is a modification.

Remember also that a file's entry is a part of the contents of the directory or subdirectory
that contains that enrry. Thus, whenever a file entry is changed in any way (whether or not
its modification field is changed), the modification fields in the entries for all its enclosing
subdirectories-including the volume directory-must be updated.

Finally, when a ftle is copied, a utility program must be sure to give the copy the same
creation and modification date and time as the original ftle, and not the date and time at
which the copy was created.

To implement these concepts, file utility programs should note the following procedures:

1. To create a new file:

a. Set the creation and modification fields of the ftle's entry to the current system
date and time.

b. Set the modification fields in the entries of all subdirectories in the path
containing the ftle to the current system date and time.

APDADrqft 66 11113186

ProDOS 16: Chapler6

2. To rename a file:

a. Do not change the file's modification field.

b. Set the modification fields of all subdirectories in the path containing the flle to
the current system date and time.

3. To alter the contents of a file:

a. ProDOS 16 considers a file's contents to have been modified if any WRITE or
SE T EOF operation has been performed on the fIle while it is open. If that
condItion has been met, set the me's modification field to the current system dale
and time when the file is closed.

b. Also set the modification fields of all subdirectories in the path containing the file
to the current system date and time.

4. To delete a file:

a. Delete the file's entry from the directory or subdirectory that contains it.

b. Set the modification fields of all subdirectories in the path containing the deleted
file to the current system date and time.

S. To copy a file:

a. Make a GET_FILE _INFO calion the source me (the file to be copied), to get its
creation and modification dates and times.

b. Make a CREATE call to create the destination me (the me to be copied to). Oi", it
the creation date and time values obtained in step (a).

c . Open both the source and destination files. Use READS and WRITEs to copy the
source to the destination. Close both files.

Note: The procedure for copying sparse flles is more complicated than this. See
Chapter 2 and Appendix A.

d. Make a SET_FILE _INFO call on the destination file, using all the information
returned from GET_FILE _INFO in step (a). This sets the modification date anel
time values to those of the source file.

ProDOS 16 automatically carries out all steps in procedures (1) through (4) . Procedure (5)
is the responsibility of the flle copying utility.

Revising a ProDOS 8 application for ProD OS 16
If you have ",'fitten a ProDOS 8-based program for a standard Apple II (64K Apple II Plus.
Apple lIe, or Apple lIc), it will run without modification on the Apple llGS. The only
noticeable difference will be its faster execution because of the greater clock speed of the
Apple IIGs. However, the program will not be able to take advantage of any advanced
Apple IIGS features such as large memory, the toolbox, the mouse-based interface, and
new graphics and sound abilities. This section discusses some of the basic alterations
necessary to upgrade a ProDOS 8 application for native mode execution under ProD OS 16
on the Apple IIGs.

APD" Draft 67 1l!13186

Apple 1/ GS ProDOS 16 Reference

Because ProDOS 16 closely parallels ProDOS 8 in function names and calling structure, it
is not difficult to change system calls from one ProDOS to the other. But several other
aspects of your program also must be redesigned if it is to run in native mode under
ProDOS 16. Depending on the program's size and structure and the new features you wish
to install, those changes may range from minor to drastic.

Memory management

Because the Apple llGS supports segmented load files, one of the first decisions to make is
whether and how to segment the program (both the original program and any added parts).
and where in memory to put the segments.

To help decide where in memory to place pieces of your program, consider that execution
speed is related to memory location: banks $EO and $El execute at standard clock speed,
and all the other banks execute at fast clock speed (see Apple IIGS Hardware Reference).
Those parts of your program that are executed most often should probably go into fast
memory, while less-used parts and data segments may be appropriate in standard-speed
memory. In the other hand, because all I/O goes through banks $EO or $El, program
segments that make heavy use of I/O instructions might work best in standard-speed
memory. Performance testing of the completed program is the only way to accurately
detemune where segments should go.

Memory management methods are completely different under ProDOS 16 than under
ProDOS 8. If your ProDOS 8 program manages memory by allocating its own memory
space and marking it off in the global page bit map, the ProDOS 16 version must be altered
so that it requests all needed space from the Memory Manager. Whereas ProD OS 8 does
not check to see if you are using only your marked-off space, the Memory Manager under
ProD OS 16 will not assign to your program any part of memory that has already been
allocated.

Hardware configuration

ProD OS 8 applications run only in 6502 emulation mode on the Apple IIGS. That does not
mean that applications converted to run under ProDOS 16 must necessarily run in native
mode. There are at least three configurations possible:

• The program may run in emulation mode, but make ProDOS 16 calls.

The program may run in native mode with the m- and x-bits set. The accumulator
and index registers will remain 8 bits wide.

• The program may run in, full native mode (m- and x-bits cleared).

Modifying a program for the first configuration probably involves the least effort, but
returns the least benefit.

Modifying a program to run in full native mode is the most difficult, but it makes best use
of all Apple IIGS features.

APDADmjt 68 1lI13/86

' .. ,

ProD OS 16: Chapler ()

Converting system calls

For most ProDOS 8 calls, there is an equivalent ProDOS 16 call with the same name. Each
call block must be modified for ProD OS 16: the JSR (Jump to Subroutine) assembly
language instruction replaced with a JSL (Jump to Subroutine Long), the call number field
made 2 bytes long, and the parameter list pointer made 4 bytes long. The only other
conversion required is the reconstruction of the parameter block to the ProDOS 16 formal.

For other ProDOS 8 calls, the ProDOS 16 equivalent perfonns a slightly different task, and
the original code will have to be changed to account for that For example, in ProDOS 8 an
ON_LINE call can be used directly to detennine the names of all online volumes; in
ProDOS 16 a succession of VOLUME calls is required. Refer to the detailed descriptions in
Chapters 9 through 13 to see which ProDOS 16 calls are different from their ProDOS 8
counterparts.

Still other ProD OS 8 calls have no equivalent in ProDOS 16. They are listed and described
under "Eliminated ProDOS 8 System Calls," in Chapter 1. If your program uses any of
these calls, they will have to be replaced as shown.

Modifying interrupt handlers

If you have written an interrupt handling routine, it needs to be updated to confonn with the
ProD OS 16 interrupt handling conventions (Chapter 7). There are very few changes
necessary: making it return with an RTL (Return from subroutine Long) rather than an
RTS (Return from Subroutine) may be the only modification you need.

Converting stack and zero page

The fixed stack and zero-page locations provided for your program by ProDOS 8 are not
available under ProD OS 16. You may either let ProDOS 16 assign you a default 1,024-
byte space, or you may define a direct-page/stack segment in your object code. In either
case, the loader may place the segment anywhere in bank $OO-you cannot depend on any
specific address being within the space. See "Stack and Direct Page," in this chapter.

Compilation/assembly

Once your source code has been modified and augmented as desired, you need to
recompile/reassemble it. You must use an assembler or compiler that produces object fil es
in Apple IIGS object module fonnat (OMF); otherwise the program cannot be properly
linked and loaded for execution. Using a different compiler or assembler may mean that, in
addition to modifying your program code, you might have to change some assembler
directives to follow the syntax ofthe new assembler.

If you have been using the EDASM assembler, you will not be able to use it to write Apple
IIGS programs. The Apple IIGS Programmer's Workshop is a set of development
programs that allow you to produce and edit source files, assemble!compile object files,
and link them into proper OMF load files. See "Apple IIGS Programmer's Workshop" in
this chapter.

APDADraft 69 11/13/86

Apple llGS ProDOS 16 Reference

After your revised program is linked, assign it the proper Apple llGS application fIle type
(normally $B3) with the APW File Type utility.

Apple IIGS Programmer's Workshop
The Apple llGS Programmer's Workshop (APW) is a powerful set of development
programs designed to facilitate the creation of Apple I1GS applications. If you are planning
to write programs for the Apple I1GS, APW will make your job much easier. The
Workshop includes the folowing components:

• Shell

• Editor

• Linker

• Debugger

• Assembler

C Compiler

All these components work together (under the Shell) to speed the writing, compiling or
assembling, and debugging of programs. The Shell acts as a command interpreter and an
interface to ProDOS 16, providing several operating system functions and file utilities that
can be called by users and by programs running under the ShelL

See the following manuals for more information on the Apple IIGS Programmer's
Workshop:

• Apple llGS Programmer's Workshop Reference (describes the Shell, Editor, Linker,
and Debugger)

• Apple llGS Programmer's Workshop Assembler Reference

• Apple llGS Programmer's Workshop C Reference

Human Interface Guidelines
All people who develop application programs for the Apple IIGS computer are strongly
encouraged to follow the principles presented in Human Interface Guidelines: The Apple
Desktop Interface. That manual describes the Desktop Interrace through which the
computer user communicates with his computer and the applications running on it. This
section briefly outlines a few of the human interface concepts; please refer to the manual for
specific design information.

The Apple Desktop Interface, first introduced with the Macintosh™ computer, is designed
to appeal to a nontechnical audience. Whatever the purpose or structure of your
application, it will comunicate with the user in a consistent, standard, and non-threatening
manner if it adheres to the Desktop Interface standards. These are some of the basic
principles:

APDADraft 70 11113/86

ProD OS 16: Chapler (j

Human control: Users should feel that they are controlling the program, rather th an
the reverse. Give them clear alternatives to select from, and act on their selections
consistently.

Dialog: There should be a clear and friendly dialog between human and computer.
Make messages and requests to the user in plain English.

Direct Manipulation and Feedback: The user's physical actions should prodUCe
physical results. When a key is pressed, place the corresponding letter on the screen.
Use highlighting, animation, and dialog boxes to show users the possible actions and
their consequences.

Exploration: Give the user permission to test out the possibilities of the program
without worrying about negative consequences. Keep error messages infrequent.
Wam the user when risky situations are approached.

G ra phic design: Good graphic design is a key feature of the guidelines. Objects on
the screen should be simple and clear, and they should have visualf'uielity (that is, they
should look like what they represent). Icons and palettes are common graphic elements
that need careful design.

Avoiding modes: a mode is a portion of an application that the user has to fonnally
enter and leave, and that resoicts the operations that can be perfonned while it's in
effect. By resoicting the user's options, modes reinforce the idea that computers are
unnatural and unfriendly. Use modes sparingly.

Device-independence: Make your program as hardware-independent as possible.
Don't bypass the tools and resources in ROM-your program may become
incompatible with future products and features.

Consistency: As much as possible, all applications sould use the same interface.
Don' t confuse the user with a different interface for each program.

Evolution: Consistency does not mean that you are resoicted to using existing
desktop features. New ideas are essential for the evolution of the Human Interface
concept If your application has a feature that is described in Human Interface
Guidelines, you should implement it exactly as described; ifit is something new, make
sure it cannot be confused with an existing feature. It is better to do something
completely different than to half agree with the guidelines.

APDADraft 71 U!l3tS!)

Apple lIes ProDOS 16 Reference

APDADraft 72 II!13/86

Chapter 7

Adding Routines to ProD OS 16

This chapter discusses additional specific routines that may be used with ProDOS 16.
Because these routines are directly connected to ProDOS 16 and interact with it at a low
level, they are essentially ttansparent to applications and can be considered "part of'
ProDOS 16. Interrupt handlers are the only such extensions to ProDOS 16 presently
supported.

Interrupt handlers
The Apple TIGS has extensive fmnware interrupt support (see Apple lIes Firmware
Reference). In addition, ProDOS 16 supports up to 16 user-installed interrupt handlers
(see Chapter 4). If you write an interrupt handler, it should follow the conventions
described here. Note also the precautions you must take if your handler makes operating
system calls.

Interupt handler conventions

Interrupt handling routines written for the Apple IIGS must follow certain conventions.
The interrupt mspatcher will set the following machine state before passing control to an
interrupt handler:

e = 0
m=O
x = 0
1 = 1
c = 1
speed = high

Before returning to ProDOS 16, the interrupt handler must restore the machine to the
following state:

e = 0
ffi= 0
X = 0
1 = 1
speed = high

In addition the c flag must be cleared (= 0) if the handler serviced the interrupt, and set (=
1) if the handler did not service the interrupt. The handler must return with an RTL
instruction.

APDADraft 73 lJ II3/ii()

Apple IIGS ProDOS 16 Reference

When an interrupt is passed to ProDOS 16, ProD OS 16 first sets the processor to full -
native mode, then successively polls the installed interrupt handlers. If one of them service"
the interrupt, ProDOS 16 knows because it checks the value of the c flag when the roUline
returns. If the c flag is cleared, ProDOS 16 switches back to a standard Apple II
configuration in emulation mode, and performs an RT I to the Apple IIGS firmware
interrupt handling system. If no handler services the interrupt, it is an unclaimed interrupt
(see Chapter 4).

Installing interrupt handlers

Interrupt handlers are installed with the ALLOC _INTERRUPT call and removed with the
DEALLOC _INTERRUPT call. The ProDOS 16 interrupt dispatcher maintains an interrupt
vector table, an array of up to 16 vectors to interrupt handlers. As each successive
ALLOC INTERRUPT call is made, the dispatcher adds another entry to the end of the
table. Each time a DEALLOC INTERRRUPT caIl is made to delete a vector from the tab ie.
the remaining vectors are moved toward the beginning of the array, filling in the gap.
Interrupt handling routines are polled by ProDOS 16 in the order in which their vectors
occur in the interrupt vector table.

There is no way to reorder interrupt vectors except by allocating and deallocating interrupt"
Interrupts that occur often or require fast service should be allocated first, so their vectors
will be near the beginning of the interrupt vector table. If you need extremely fast interrupt
service, install your interrupt handler directly in the Apple IIGS funnware interrupt
dispatcher, rather than through ProDOS 16. See Apple IIGS Firmware Reference for
further information.

Be sure to enable the hardware generating the interrupt only after the routine to handle it is
allocated; likewise, disable the hardware before the routine is deallocated. Otherwise, a
fatal unclaimed interrupt error may occur (see "Unclaimed Interrupts" in Chapter 4).

Making operating system cans during interrupts

ProDOS 16 is not reentrant. That is, it does not save its own state when interrupted. It
therefore is illegal to make an operating system call while another operating system call i, in
progress; if a call is attempted, ProDOS 16 will return an error (number $07, "ProDOS is
busy").

For applications this is not a problem; the operating system is always free to accept a call
from them. Only routines that are started through interrupts (such as interrupt handlers and
desk accessories) need be careful not to call ProD OS 16 while it is busy.

One acceptable procedure is for the interrupt handler to consult the ProDOS busy flag at
location $E100BE-$ElOOBF (see Table 3-3), and simply not make the system call unless
ProDOS 16 is not busy.

Tf an interrupt handler really needs to make an operating system call, it must be prepared 10

deal with a returned "ProDOS is busy" error. If that happens the handler should

I. Defer itself temporarily

APDA Draft 74 11113186

ProDOS 16: Chapter 7

2. Return control to the operating system so that the operating system may complete the
current call

3. Regain control when the operating system is no longer busy. and make its own
system call

The Scheduler. part of a ROM-based tool set, allows interrupt handlers to follow these
procedures in a simple, standard way. The Scheduler consults a system Busy word that
keeps track of non-reentrant system software that is in use. ProDOS 16 executes the
Scheduler routine INCBUSYFLAG whenever it is called., and DECBUSYFLAG before it
returns from a call. An interrupt handler may use the Scheduler's SCHADDTASK routine to
place itself in a queue of tasks waiting for ProDOS 16 to complete any calls in progress.
See Apple lIGS Toolbox Reference for detailed infonnation.

APDADrajt 75 11fl3/0I1

Apple II GS ProDOS 16 Reference

APDADrqji 76 11/13/86

Part II

ProDOS 16 System Call Reference

This part of the manual describes the ProDOS 16 system calls in detail. The calls are
grouped into five categories:

• File housekeeping calls
• File access calls
• Device calls
• Environment calls
• Interrupt control calls

(Chapter 9)
(Chapter 10)
(Chapter 11)
(Chapter 12
(Chapter 13)

Chapter 8 shows how to make the calls, and explains the format for the call descriptions ill
Chapters 9 through 13. See Appendix E for a list of all ProDOS 16 errors returned by the
calls.

APDADrqft 77 11113/86

APDADraft 78 11113186

Chapter 8

Making ProDOS 16 Calls

Any independent program in the Apple IIGS that makes system calls is known as a ProDOS
16 calling program or caller. The current application, a desk accessory, and an interrupt
handler are examples of potential callers. A ProDOS 16 caller makes a system call by
executing a call block. The call block contains a pointer to a parameter block. The
parameter block is used for passing information between the caller and the called function;
additional information about the call is reflected in the state of cenain hardware registers.
This chapter discusses these aspects of system calls and compares them with the calling
method used in ProDOS 8.

Note: The phrase system call as used here is synonymous with operating system
call or ProD OS 16 call, and is equivalent to MLI call for ProDOS 8. It includes
all calls to the operating system for accessing system information and manipulating
open or closed fIles. It is not restricted to what are called "system calls" in the
ProD OS Technical Reference Manual.

The call block
A system call block consists of a JSL (Jump to Subroutine Long) to the ProDOS 16 entry
point, followed by a 2-byte system call number and a 4-byte parameter block pointer.
ProDOS 16 performs the requested function, if possible, and returns execution to the
instruction immediately following the call block.

All applications written for the Apple IIGS under ProDOS 16 must use the system call block
format. When making the call, the caller may have the processor in emulation mode or full
native mode or any state in between (see Technical Introduction to the Apple IIGS).

Note: To call ProDOS 16 while running in emulation mode, your program must
be in bank $00 and interrupts must be disabled.

APDADraft 79 11/13/86

Apple II GS ProD OS 16 Reference

The call block looks like this:

PRODOS GEQU $E1 0 OAB fixed entry vector

JSL PRODOS Dispatch call to ProDOS 16 entry
DC 12 'CALLNUM' 2-byte call number
DC 14'PARMBLOCK' 4-byte parameter block p o inter
Bes ERROR If carry set, go t o erro r handler

otherwise, continue ...

ERROR erro r handler

PARMBLOCK ; parameter block

The call block itself consists of only the JSL instruction and the DC (Define Constant)
assembler directives. The BCS (Branch on Carry Set) instruction in this example is a
conditional branch to an error handler called ERROR.

A JSL rather than a JSR (Jump to Subroutine) is required because the JSL uses a 3-byte
address, allowing a caller to make the call from anywhere in memory. The JSR instruction
uses only a 2-byte address, restricting it to jumps and refilmS within the current (64K)
block of memory.

The parameter block
A parameter block is a specifically formatted table that occupies a set of contiguous bytes in
memory. It consists of a number of fields that hold information that the calling program
supplies to the function it calls, as well as information returned by the function to the caller.

Every ProD OS 16 call requires a valid parameter block (PARMBLOCK in the example just
given), referenced by a 4-byte pointer in the call block. The caller is responsible for
constructing the parameter block for each call it makes; the list may be anywhere in
memory. Formats for individual parameter blocks accompany the detailed system call
descriptions in Chapters 9 through 13.

Types of parameters

Each field in a parameter block contains a single parameter. There are three types of
parameters: values, results, and pointers. Each is either an input to ProDOS 16 from the
caller, or an output from ProDOS 16 to the caller.

• A value is a numerical quantity, 1 or more words long, that the caller passes to
ProDOS 16 through the parameter block. It is an input parameter.

APDADraft 80 11113/86

'-'.

. ~ .

ProDOS 16: Chapter S

• A result is a numerical quantity, 1 or more words long, that ProDOS 16 places into
the parameter block for the caller to use. It is an output parameter .

• A pointer is the 4-byte address of a location containing data, code, an address, or
buffer space in which ProDOS 16 can receive or place data. The pointer itself is an
input for all ProD OS 16 calls; the data it points to may be either input or output.

A parameter may be both a value and a result. Also, a pointer may designate a location that
contains a value, a result, or both.

Note: A handle is a special type of pointer; it is a pointer to a pointer. It is the
4-byte address of a location that itself contains the address of a location containing
data, code, or buffer space. ProDOS 16 uses a handle parameter only in the OPEN
call (Chapter 10); in that call the handle is an output (result).

Parameter block format

All parameter fields that contain block numbers, block counts, file offsets, byte counts, ,md
other file or volume dimensions are 4 bytes long. Requiring 4-byte fields ensures that
ProDOS 16 will accommodate future large devices using guest file systems.

All parameter fields contain an even number of bytes, for ease of manipulation by the 16-bit
65C816 processor. Thus pointers, for example, are 4 bytes long even though 3 bytes are
sufficient to address any memory location. Wherever such extra bytes occur they must be
set to zero by the caller; if they are not, compatibility with future versions of ProDOS 16
will be jeopardized.

Pointers in the parameter block must be written with the low-order byte of the low-order
word at the lowest address.

Comparison of ProDOS 16 parameter blocks with their ProD OS 8 counterparts reveals that
in some cases the order of parameters is slightly different. These alterations have been
made to facilitate sharing a single parameter block among a number of calls. For example,
most file access calls can be made with a single parameter block for each open file; under
ProDOS 8 this sharing of parameter blocks is not possible.

Important: A parameter's field width in a ProDOS 16 parameter block is often
very different from the range of permissible values for that parameter. The fact that
all fields are an even number of bytes is one reason. Another reason is that certain
fields are larger than presently needed in anticipation of the requirements of future
guest file systems. For example, the ProDOS 16 CREATE call's parameter block
includes a 4-byte aux_type field, even though, on disk, the aux _type field is
only 2 bytes wide (see "Format and Organization of Directory Files" in Appendix
A). The two high-order bytes in the field must therefore a/ways be zero.

Ranges of permissible values for all parameters are given as part of the system call
descriptions in the following chapters. When coding a parameter block, note
carefully the range of permissible values for each parameter, and make sure that the
value you assign is within that range.

APDA Draft 81 1lI13186

Apple IIes ProDOS 16 Reference

Setting up a parameter block in memory

Each ProDOS 16 call uses a 4-byte pointer to point to its parameter block, which may be
anywhere in memory. All applications must obtain needed memory from the Memory
Manager, and therefore cannot know in advance where the memory block holding such it
parameter block will be.

There are two ways to set up a ProD OS 16 parameter block in memory:

1. Code the block directly into the program, referencing it with a label. This is the
simplest and most typical way to do it. The parameter block will always be correctly
referenced, no matter where in memory the program code is loaded.

2. Use Memory Manager and System Loader calls to place the block in memory:

a. Request a memory block of the proper size from the Memory Manager. Use the
procedures described in Apple IIes Toolbox Reference. The block should be
either fixed or locked.

b. Obtain a pointer to the block, by dereferencing the memory handle returned by
the Memory Manager (that is, read the contents of the location pointed to by the
handle, and use that value as a pointer to the block).

c. Set up your parameter block, starting at the address pointed to by the pointer
obtained in step (b).

Register values
There are no register requirements on entry to a ProD OS 16 call. ProD OS 16 saves and
restores all registers except the accumulator (A) and the processor status register (P); those
two registers store information on the success or failure of the call. On exit, the registers
have these values:

A zero if call successful; if nonzero, number is the error code
X unchanged
Y unchanged
S unchanged
D unchanged
P (see below)
DB unchanged
PB unchanged
PC address of location following the parameter block pointer

"U nchanged" means that ProD OS 16 initially saves, and then restores when finished, the
value the register had just before the JSL PRODOS 8 instruction.

APDADrqft 82 11113186

ProDOS 16: Chapter S

On exit, the processor status register (P) bits are

n undefmed
v undefined
m unchanged
x unchanged
d unchanged
1 unchanged
z undefined
c zero if call successfull, 1 if not
e unchanged

Note: ProDOS 16 treats several flags differently than ProDOS 8. The nand z
flags are undefined here; under ProDOS 8, they are set according to the value in the
accumulator. Here the caller may check the c flag to see if an error has occurred;
under ProDOS 8, both the c and z flags deteIIDine error status.

Comparison with the ProDOS 8 call method
With the exceptions noted in Chapter I, ProDOS 16 provides an identical call for each
ProDOS 8 system call. The ProDOS 16 call performs exactly the same function as its
ProD OS 8 equivalent, but it is in a format that fits the Apple llGS environment:

• As in ProDOS 8, the system call is issued through a subroutine jump to a fixed
system entry point. However, the jump instruction is a JSL rather than a JSR, and it
is to a location in bank $E I, rather than bank $00.

• The parameter block pointer in the system call is 4 bytes long rather than 2, so the
parameter block can be anywhere in memory.

• All memory pointer fields within the parameter block are also 4 bytes long, so they
can reference data anywhere in memory.

• All I-byte parameters are extended to 1 word in length, for efficient manipUlation in
16-bit processor mode.

• All file-position (such as EOF) and block-specification (such as block number or
block count) fields in the parameter block are 4 bytes long, in anticipation of future
"guest file systems" that may support mes larger than 16 Mb or volumes larger than
32Mb.

Note: Although only 3 bytes are needed for memory pointers and block numbers
in the Apple JIGS, 4-byte pointers are used for ease of programming. The high
oilier byte in each case is reserved and must be zero.

The ProDOS 16 Exerciser
To help you learn to make ProDOS 16 calls, there is a small program called the ProDOS 16
Exerciser, on a disk included with this manual. It allows you to execute system calls from
a menu, and examine the results of your calls. It has a hexadecimal memory editor for
reviewing and altering the contents of memory buffers, and it includes a catalog command.

APDA Draft 83 J1IJ3186

Apple JIGS ProDOS 16 Reference

When you use the Exerciser to make a ProD OS 16 call. you fIrst request the call by its call
number and then specify its parameter list, just as if you were coding the call in a program.
The call is executed when you press Return. You may then use the memory editor or
catalog command to examine the results of your call.

Instructions for using the ProDOS 16 Exerciser program are in Appendix C.

Format for system call descriptions
The following fIve chapters list and describe all ProDOS 16 operating system functions that
may be called by an application. They are divided into fIve categories:

• File housekeeping calls
• File access calls
• Device calls
• Environment calls
• Interrupt control calls

Each description includes these elements:

• the function' s name and call number
• a shon explanation of its use
• a diagram of its required parameter block
• a detailed description of all parameters in the parameter block
• a list of all possible operating system error messages.

The parameter block diagram accompanying each call's description is a simplifIed
representation of the parameter block in memory. The width of the diagram represents one
byte; the numbers down the left side represent byte offsets from the base address of the
parameter block. Each parameter field is funher identified as containing a value. result. or
pointer.

The detailed parameter description that follows the diagram has the following headings:

• Offset: The position of the parameter (relative to the block's base address)

• Label: The suggested assembly-language label for the parameter

• Description: Detailed information on the parameter. including:

parameter name: The full name of the parameter.

size and type: The size of the parameter (word or long word). and its
classification (value, result, or pointer). A word is 2 bytes; a
Ion g word is 4 bytes.

range of values: The permissible range of values of the parameter. A
parameter may have a range much smaller than its size in
bytes.

APDADraft

Any additional explanatory infonnation on the parameter
follows.

84 1lII3/86

Chapter 9

File Housekeeping Calls

These calls might also be called "closed-file" calls; they are made to get and set infonnation
about files that need not be open when the calls are made. They do not alter the contents of
the mes they access.

The ProDDS 16 file housekeeping calls are described in this order:

Number Function Purpose

$01 CREATE creates a new file

$02 DESTROY deletes a file

$04 CHANGE PATH changes a file's pathname

$05 SET FILE INFO assigns attributes to a file

$06 GET FILE INFO returns a file's attributes

$08 VOLUME returns the volume on a device

$09 SET PREFIX assigns a pathname prefix

$OA GET PREFIX returns a pathname prefix

$OB CLEAR BACKUP BIT zeroes a file's backup attribu te

APDADraft 85 11113/86

Apple TIGS ProDOS 16 Reference

CREATE ($01)

Every disk file except the volume directory file (and any Apple II Pascal region on a
partitioned disk) must be created with this call. It establishes a new directory entry for an
empty file.

Parameter Block:

o
1
2
3
4
5
6
7
8
9

A
B
C
D
E
F

10
11

f-

pathname

access

file_type

aux_type

storage_type

create_date

create_time

Offset Label

$00-$03 pathname

liPDA Drcift

pointer

vdue

vcJue

vdue

vdue

vdue

vctue

Description

parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO---$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
pathname of the file to create.

86 11113/86

$04-$05 access

$06-$07 file_type

$08-$OB aux_type

APDADraji

parameter name:
size and type:
range of values:

ProDOS 16: Chnpler l)

access
word value (high-order byte zero)
$OOOO-$OOE3 with exceptions

A word whose low-order byte determines how the file may bc
accessed. The access byte's fonnat is

Bit : 7 6 5 4!3! 2 1 0
Value: D ;m B eserved W R

where D = destroy-enable bit
RN = rename-enable bit
B = backup-needed bit
W = write-enable bit
R = read-enable bit

and for each bit, I = enabled, 0 = disabled. Bits 2 through 4
are reserved and must always be set to zero (disabled). The
most typical setting for the access byte is $C3 (11000011).

parameter name:
size and type:
range of values:

ftle type
word value (high-order byte zero)
$OOOO-$OOFF

A number that categorizes the ftle by its contents (such as text
ftle, binary file, ProDOS 16 application). Currently defined
ftle types are listed in Appendix A.

parameter name:
size and type:
range of values:

auxiliary type
long word value (high-order word zero)
$0000 0000-$0000 FFFF

A number that indicates additional attributes for certain file
types. Example uses of the auxiliary type field are given in
Appendix A.

87 11113186

Apple lles ProDOS 16 Reference

SOC-roD storage type parameter name: storage type
- size and type:

range of values:
word valuelresult (high-order byte zero)
$OOOO--$OOOD with exceptions

$OE-$OF c r eate date

$10--$11 create time

APDADraft

A number that describes the logical organization of the file (see
Appendix A):

$00 = inactive entry
$01 = seedling file
$02 = sapling file
$03 = tree file
$04 = Apple n Pascal region on a partitioned disk
SOD = directory file

$01 and $OD are the most typical input values for this field in
the CREATE call; any value in the range $00 through $03 is
automatically converted to an input (and output) of $01.

Note: $OE and $OF are not valid storage types; they are
subdirectory and volume key block identifiers.

parameter name: creation date
size and type: word value
range of values: limited range

The date on which the file was created. Its format is

Byte 1 Byte 0

Bit: 15114113112111 ! 1019 817 ! 61 5 4131 2 11 10
Value: Year Month Day

If the value in this field is zero, ProDOS 16 supplies the date
obtained from the system clock.

parameter name:
size and type:
range of values:

creation time
word value
limited range

The time at which the file was created. Its format is
Byte 1 Byte 0

Bit: 15 14 13 12111 POl9 18 7 6 51 4 131 2 11 10
Value: 0 0 0 Hour 0 0 Minute

If the value in this field is zero, ProD OS 16 supplies the time
obtained from the system clock.

88 11113186

ProD OS 16: Chaprer 9

Possible ProDOS 16 Errors

$07 ProDOS is busy
$10 Device not found
$27 I/O error
$2B Disk write-protected
$40 Invalid pathname syntax
$44 Path not found
$45 Volume not found
$46 File not found
$47 Duplicate pathname
$48 Volume full
$49 Volume directory full
$4B Unsupponed storage type
$52 Unsupponed volume type
$53 Invalid parameter
$58 Not a block device
$5A Block number out of range

APDADraft 89 11113186

Apple II GS ProDOS 16 Reference

DESTROY ($02)

This function deletes the file specified by pathname. It removes the ftle' s entry from the
directory that owns it and returns the file's blocks to the volume bit map.

Volume directory files, files with unrecognized storage types (other than $0 I, $02, $03, or
$OD), and open files cannot be destroyed. Subdirectory files must be empty before they
can be destroyed.

Note: When a file is destroyed, any index blocks it contains are inverted-that is,
the ftrst half of the block and the second half swap positions. That reverses the
order of the bytes in all pointers the block contains. Disk scavenging programs can
use this information to help recover accidentally deleted ftles. See Appendix A for a
description of index block structure.

Parameter Block:

O~I f ~
L..f __ p_at_h_na_m_e_...J~ pointer

Offset Label

$00-$03 pathname parameter name:
size and type:
range of values:

Description

pathname
long word pointer (high-order byte zero)
$0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
pathuame of the ftle to delete.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$10 Device not found
$27 I/O error
$28 Disk write-protected
$40 Invalid pathname syntax
$44 Path not found
$45 Volume not found
$46 File not found
$4A Version error
$4B Unsupported storage type
$4E Access: ftle not destroy-enabled
$50 File is open
$52 Unsupported volume type
$58 Not a block device
$5A Block number out of range

APDA Draft 90 1lI13/86

ProD OS 16: Chapter 9

This function perfonns an intravolume file move. It moves a file's directory entry from
one subdirectory to another within the same volume (the fIle itself is never moved). The
specified pathname and new pathname may be either full or partial pathnames in the SanlC
volume. See Chapter 5 for an explanation of partial pathnames.

To rename a volume, the specified pathname and new pathname must be volume names
only.

If the two pathnames are identical except for the rightmost fIle name (that is, if both the old
and new names are in the same subdirectory), this call produces the same result as the
RENAME call in ProDOS 8.

Note: In initial releases of ProDOS 16, CHANGE PATH is restricted to a filename
change only-that is, it is functionally identical to the RENAME call in ProDOS 8.

Parameter Block:

o
1
2

pathname

31-_____ --1
4
5
6 newJXlthname

7'--____ -'

Offset Label

$00-$03 pathname

pointer

pointer

Description

parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASClI string representing the fil e' s
present pathname.

$04-$07 new yathname parameter name: new pathname

APDADraft

size and type: long word pointer (high-order byte zero)
range of values: 0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCll string representing the file's
new pathname.

91 11113186

Apple lIGS ProDOS 16 Reference

Possible ProDOS 16 Errors

$07 ProDOS is busy
$27 JJO error
$2B Disk write-protected
$40 Invalid pathname syntax
$44 Path not found
$45 Volume not found
$46 File not found
$47 Duplicate pathname
$4A Version error
$4B Unsupported storage type
$4E Access: file not rename-enabled
$50 File is open
$52 Unsupported volume type
$57 Duplicate volume
$58 Not a block device

APDADraft 92 11113/86

.~ _r""

ProDOS 16: Chapter IJ

This function modifies the information in the specified file's directory entry. The call can
be made whether the fIle is open or closed; however, any changed access attributes are not
recognized by an open file until the next lime the fue is opened. In other words, this call
does not modify the accessibility of memory-resident information.

Note: Current versions of ProDOS 16 ignore input values in the create date
and create time fields of this function. -

Parameter Block:

o

2
3
4
5
6
7
8
9
A
B
C
D
E
F

10
11
12
13
14
15

palhname

access

lile_type

aulClype

(null field)

create_date

create_time

mod_date

mod_time

Offset Label

$00-$03 pathname

APDA Draft

pointer

vcJue

vdue

vdue

vdue

vdue

vdue

vdue

vdue

parameter name:
size and type:
range of values:

Description

pathname
long word pointer (high-order byte zero)
$0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contruns a
length byte followed by an ASCII string representing the file 's
pathname.

93 /1113/86

Apple IlGS ProDGS 16 Reference

$04-$05 access

$OS-SOB aux_type

$OC-$OD (null field)

$OE-$OF create date

APDADraft

access parameter name:
size and type:
range of values:

word value (high-order byte zero)
$0000-$00E3 with exceptions

A word whose low-order byte detennines how the file may be
accessed. The access byte's format is

B~: 7 6
Value: D ,N

where

5
B

4J 3 t 2 1 0

eseNec W R

D = destroy-enable bit
RN = rename-enable bit
B = backup-needed bit
W = write-enable bit
R = read-enable bit

and for each bit, 1 = enabled, 0 = disabled. Bits 2 through 4
are reserved and must always be set to zero (disabled). The
most typical setting for the access byte is $C3 (11000011).

file type parameter name:
size and type:
range of values:

word value (high-order byte zero)
$OOO~ooFF

A number that categorizes the fIle by its contents (such as text
file, binary file, ProDOS 16 application). Currently defIned
file types are listed in Appendix A.

parameter name: auxiliary type
size and type: long word value (high-order word zero)
range of values: $0000 000~0000 FFFF

A number that indicates additional attributes for certain fIle
types.. Example uses ofthe auxiliary type fIeld are given in
Appendix A.

parameter name: (none)
si~e and type: word value
range of values: (undefIned)

Values in this fIeld are ignored.

parameter name:
size and type:
range of values:

creation date
word value
limited range

The date on which the file was created. Its format is

Byte 1 Byte 0

Bit: 15114113112111 PO! 9 81 7 !61 5 4131 2111 0
Value: Year Month Day

(Values in this field are ignored.)

94 11/13186

$10-$11 c reate time

$12-$13 mod date

$ 14--$15 mo d time

APDA Draft

parameter name:
size and type:
range of values:

creation time
word value
limited range

ProDOS 16: Chapter 9

The time at which the fIle was created. Its fonnat is

Byte'

BIt: 15 14 13 1211111019 18 7 6
Value: 0 0 0 Hour 0 0

(Values in this field are ignored.)

parameter name:
size and type:
range of values:

modification date
word value
limited range

Byte 0

5!4!3!2!l i O
Minute '

The date on which the fIle was last modified. Its format is
identical to the c reate date format:

Byte' 8yteO

8n: 15114 jl3112 P 1J lOl9 8j7 J 6 15 4J3 J 2L 1 iO
Value: Year Month Day

If the value in this field is zero, ProDOS 16 supplies the date
obtained from the system clock.

parameter name:
size and type:
range of values:

modification time
word value
limited range

The time at which the file was last modified. Its format is
identical to the create time format:

Byte' Byte 0

Bit: 15 14 13 1211111019 18 7 6 514 \312 111 0
Value: 0 0 0 Hour 0 0 Minute

If the value in this field is zero, ProDOS 16 supplies the time
obtained from the system clock.

95 11/13186

Apple IIGS ProDOS 16 Reference

Possible ProDOS 16 Errors

$07 ProDOS is busy
$27 JlO error
$2B Disk write-protected
$40 Invalid pathname syntax
$44 Path not found
$45 Volume not found
$46 File not found
$4A Version error
$4B Unsupported storage type
$4E Access: file not write-enabled
$52 Unsupported volume type
$53 Invalid parameter
$58 Not a block device

APDA Draft 96 1lI13/86

ProDOS 16: Chapter 9

This function rerurns the information that is stored in the specified file's directory entry.
The call can be made whether the file is open or closed. However, if you make the
SET _FILE_INFO call to change the access byte of an open file, the access information
returned by GET_FILE_INFO may not be accurate until the me is closed.

Parameter Block:

o
1
2
3
4
5
6
7
8
9
A
B
C
o
E
F

10
11
12
13
14
15
16
17
18
19

palhname

access

tile_type

aUlLtype

Of

total_blocks

storage_type

create_date

create_time

mod_date

mOd_time

blocks_used

Offset Label

$00-$03 pathname

APDADraft

pointer

result

result

result

result

result

result

result

result

result

parameter name:
size and type:
range of values:

Description

patlmame
long word pointer (high-order byte zero)
$0000 OOOO--$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
patlmame . .

97 11113186

Apple llGS ProDOS 16 Reference

$04-$05 access

$06-$07 file_type

$08-$OB aux_type

IX

parameter name:
size and type:
range of values:

access
word result (high-order byte zero)
$OOOO-$OOE3 with exceptions

A word whose low-order byte determines how the file may be
accessed. The access byte's fo=at is

an: 7 6 5 41312 1 0
Value: D RN B eserved W R

where D ; destroy-enable bit
RN ; rename-enable bit
B ; backup-needed bit
W ; write-enable bit
R ; read-enable bit

and for each bit, 1 = enabled, 0 = disabled. Bits 2 through 4
are reserved and must always be set to zero (disabled). The
most typical setting for the access byte is $C3 (11000011).

parameter name:
size and type:
range of values:

file type
word result (high-order byte zero)
$OOOO-$OOFF

A number that categorizes the file by its contents (such as text
file, binary fIle, ProDOS 16 application). Currently defined
me types are listed in Appendix A.

parameter name:
size and type:
range of values:

auxiliary type
long word result (high-order word zero)
$0000 0000-$0000 FFFF

A number that indicates additional attributes for certain file
types.. Example uses of the auxiliary type fIeld are given in
Appendix A.

t otal blocks parameter name: total blocks

APDADraji

- size and type: long word result (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

If the call is for a volume directory fIle, the total number of
blocks on the volume is returned in this fIeld.

98 1l/13/86

.-----

--

ProDOS 16: CiuJpter 9

$OC-$OO storage type parameter name: storage type
- size and type: word result (high-order byte zero)

range of values: $0000--$0000 with exceptions

$OE-$OF create_date

$10--$11 create time

$12-$13 mod date

APDADraft

A number that describes the logical organization of the file (s,~c
Appendix A):

$00 = inactive entry
$01 = seedling file
$02 = sapling file
$03 = tree file
$04 = UCSD Pascal region on a partitioned disk
$00 = directory file

Note: $OE and $OF are not valid storage types; they are
subdirectory and volume key block identifiers.

parameter name:
size and type:
range of values:

creation date
word result
limited range

The date on which the file was created. Its format is

Byte 1

Bit: 11511411311211 11 1019 617 ! 61 5
Value: I Year Month

parameter name:
size and type:
range of values:

creation time
word result
limited range

Byte 0

4!3!21110
Day

The time at which the file was created. Its fonnat is

Byte 1 Byte 0

Bit: 15 14 13 12l11JlOJ9 L 6 7 6 51 4 131 2 111 0
Value: a a a Hour a a Minute

parameter name: modification date
size and type: word result
range of values: limited range

The date on which the fIle was last modified. Its format is
identical to the create date fonnat:

Byte 1 Byte 0

Bit: 1511411311211 11101 9 61 7 16 15 413121 1 10
Value: Year Month Day

99 II /l3/86

Apple IIes ProD OS 16 Reference

$14- $15 mod time parameter name:
size and type:
range of values:

modification time
word result
limited range

The time at which the file was last modified. Its format is
identical to the create time format:

Byte 1 Byte 0

Bit: 15 14 13 12 11 11101918 7 6 51 4 13121 1 10
Value: 0 0 0 Hour 0 0 Minute

$16--$19 blocks used parameter name: blocks used
size and type: long word result
range of values: $0000 OOOO--$FFFF FFFF

The IOtal number of blocks used by the file. It equals the vallie
of the blocks _used parameter in the file's directory entry.

(T

The total number of blocks used by all mes on the volume (if
the call is for a volume directory).

Possible ProDOS 16 Errors

$07 ProD OS is busy
$27 I/O error
$40 Invalid pathname syntax
$44 Path not found
$45 Volume not found
$46 File not found
$4A Version error
$4B Unsupponed storage type
$52 Unsupported volume type
$53 Invalid parameter
$58 Not a block device

APDA Draft 100 11/13/86

ProDOS 16: Chapter 9

VOLUME ($08)

When given the name of a device, this function returns:

• the name of the volume that occupies that device
• the total number of blocks on the volume
• the current number of free (unallocated) blocks on the volume
• the file system identification number of the volume

The volume name is returned with a leading slash (I) .

To generate a list of all mounted volumes (equivalent to calling ON LINE in ProDOS 8
with a unit number of zero), call VOLUME repeatedly with successive device names (.D 1 ,
. D2 , and so on). When there are no more online volumes to name, ProDOS 16 returns
error $11 (Invalid device request).

Note: In certain cases (for example, when polling Disk II drives) ProDOS 16
cannot detect the difference between an empty device and a nonexistent device. It
may therefore assign a device name where there is no device connected, just to
make sure it hasn't skipped over an empty device. Because of this, in making
VOLUME calls, you may occasionally find that there are more "valid" device names
than there are devices on line.

Parameter Block:

o
I
2
3
4
5
6
7
8
9
A
B
C
D
E
F

10
11

f-

l-

f-

deY_name

vol_name

total_blocks

free_blocks

file_syUd

APDADrajr

pointer

pointer

result

result

result

101 1lI13/86

Apple IIGS ProDOS 16 Reference

Offset Label

$00--$03 dev name

$04-$07 vol name

Description

parameter name: device name
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
device name.

parameter name: volume name
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
volume name (including a leading slash).

$OS-$OB t o tal_blo cks parameter name:
size and type:
range of values:

total blocks
long word result (high-order byte zero)
$0000 OOOO-$OOFF FFFF

The total number of blocks the volume contains.

$OC-$OF fre e blo cks parameter name: free blocks

APDADraft

size and type: long word result (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF
The number of free (unallocated) blocks in the volume.

parameter name:
size and type:
range of values:

fIle system ill
word result (high-order byte zero)
$OOOO--$OOFF

A word whose low-order byte identifies the fIle system to
which the specified file or volume belongs. The currently
defined file system identification numbers include

0= {reserved}
1 = ProDOS/SOS
2=DOS 3.3
3 = DOS 3.2, 3.1
4 = Apple IT Pascal
5 = Macintosh
6 = Macintosh (HFS)
7 = LISA
S = Apple CP/M
9-255 = {reserved}

102 11113/86

Possible ProDOS 16 Errors

$07
$10
$11
$27
$28
$2E
$45
$4A
$52
$55
$57
$58

APDADraji

ProDOS is busy
Device not found
Invalid device request
I/O error
No device connected
Disk switched: files open
Volume not found
Version error
Unsupported volume type
Volume control block full
Duplicate volume
Not a block device

ProDOS 16: Chapler 9

103 11/13186

Apple llGS ProDOS 16 Reference

SET_PREFIX ($09)

This function assigns any of 8 prefIx numbers to the pathname indicated by the pointer
pref i x. A prefIx number consists of a digit followed by a slash: 0/ , 1 /, 2/ , ... , 7/.
When an application starts, the prefIxes have default values that depend on the manner in
which the program was launched. See Chapter 5.

The input pathname to this call may be

• a full pathname.

• a partial pathname with a prefIx number. The trailing slash on the prefIx number is
optional.

• a partial pathname with the special prefIx number * / (asterisk-slash), which means
"boot volume name." The trailing slash is optional.

• a partial pathname without a prefIx number. In this case ProDOS 16 does rwt attach
the default prefIX (number 0/). Instead, it appends the input pathname to the prefix
specifIed in the pre fix _ num field.

Note: This method can be used to append a partial pathname to an existing prefIx
only. If the specified prefIx is presently null, error $40 (invalid pathname syntax)
is returned.

Specifying a pathname whose length byte is zero, or whose syntax is otherwise illegal, sets
the designated prefIX to null (unassigned).

Note: ProDOS 16 does not check to make sure that the designated volume is on
line when you specify a prefIX; it only checks the pathname string for correct
syntax.

The boot volume prefIX (* /) cannot be changed through this call.

Parameter Block:

0 prefu<..num
1
2
3 prefix
4
5

Offset Label

APDADraft

pointer

Description

parameter name: prefIx number
size and type: word value
range of values: $0000-$0007

One of the 8 prefIX numbers, in binary (without a terminating
slash).

104 11113186

" --

$02- $05 prefix

ProDOS 16: Chapter 9

parameter name: preflx
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing a
directory patlmame.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$40 Invalid pathname syntax

APDA Draft 105 11113186

Apple II GS ProDOS 16 Reference

GET]REFIX ($OA)

This function returns any of the current prefIxes (specifIed by number), placing it in the
buffer pointed to by prefix. The returned prefix is bracketed by slashes (such as
/APPLE/ or /APPLE/BYTES/). If the requested prefix has been set to null (see
SET_PREFIX), a count of zero is returned as the length byte in the prefIx buffer.

The boot volume prefIx (* /) cannot be returned by this call. Instead, use
GET BOOT VOL to fInd the boot volume's name.

Parameter Block:

o
1
21--------1
3
4

prefIX

5'--____ --'

Offset Label

$00-$01 prefix_num

$02-$05 prefix

vdue

pointer

parameter name:
size and type:
range of values:

Description

prefix number
word value
$0000-$0007

One of the 8 prefix numbers, in binary (without a terminating
slash).

parameter name: prefIx
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer, in which ProDOS 16
places a length byte followed by an ASCII string representing
a directory pathname.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$53 Parameter out of range

APDADrqft 106 llf13186

ProDOS 16: Chapter 9

CLEAR_BACKUP _BIT ($OB)

This is the only call that will clear the backup bit in a file's access byte. Once cleared, the
bit indicates that the file has not been altered since the last backup. ProDOS 16
automatically resets the backup bit every time a file is altered.

Important: Only disk backup programs should use this function!

Parameter Block:

2

°3

1 t ~
Lt _P_O_lh_n_Om_e_....o1 pointer

Offset Label Description

$00-$03 pathname parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the file's
pathname.

Possible ProD OS 16 Errors

$07 ProDOS is busy
$40 Invalid pathname syntax
$44 Path not found
$45 Volume not found
$46 File not found
$4A Version error
$52 Unsupported volume type
$58 Not a block device

APDADraft 107 1lI13/86

Apple II GS ProDOS 16 Reference

APDADraft 108 11113186

Chapter 10

File Access Calls

These might be called "open-ftle" calls. They are made to access and change the
infonnation within flies. and therefore in most cases the files must be open before the calls
can be made.

The ProDOS 16 file access calls are described in the following order:

Number Function Purpose

$10 OPEN prepares file for access

$11 NEWLINE enables newline read mode

$12 READ transfers data from file

$13 WRITE transfers data to fIle

$14 CLOSE ends access to ftle

$15 FLUSH empties 1/0 buffer to file

$16 SET MARK sets current position in file

$17 GET MARK returns current position in file

$18 SET EOF sets size of file

$19 GET EOF returns size of file

$IA SET LEVEL sets system file level

$IB GET LEVEL returns system file level

APDA Draft 109 11113186

Apple llGS ProDOS 16 Reference

OPEN ($10)

This function prepares a file to be read from or written to. It creates a file concrol block
(FCB) that keeps ttack of the current characteristics of the file specified by pathname. I [
sets the current position in the file (Mark) to zero, and returns a reference number
(reLnwn) for the file; subsequent ftle access calls must refer to the file by its reference
number. It also returns a memory handle to a 1024-byte flO buffer used by ProDOS 16 for
reading from and writing to the file.

Up to 8 files may be open simultaneously.

Parameter Block:

o reCnum result
11-------1
2
3
4

pathname

~I--------i
7
8
9'--____ ---'

Offset Label

$00-$01 ref num

$02-$05 pathname

$06-$09 i o buffer

APDADraft

pointer

result

Description

parameter name: reference number
size and type: word result (high-order byte zero)
range of values: $OOOO-$OOFF

An identifying number assigned to the file by ProD OS 16. It
is used in place of the pathname in all subsequent file access
calls.

parameter name: pathname
size and type: long word pointer (high-order byte zero)
range of values: $0000 oooO-$OOFF FFFF

The long word addtess of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
pathname of the file to open.

parameter name:
size and type:
range of values:

flO buffer
long word result (high-order byte zero)
$0000 OOOO-$OOFF FFFF

A memory handle. It points to a location where the addtess of
the flO buffer allocated by ProD OS 16 is stored.

110 II 113186

Possible ProDOS 16 Errors

$07 ProDOS is busy
$27 I/O error
$40 Invalid path name syntax
$42 File control block table full
$44 Path not found
$45 Volume not found
$46 File not found
$4A Version error
$4B Unsupported storage type
$4E Access: file not read-enabled
$50 File is open
$52 Unsupported volume type
$57 Duplicate volume

APDADraft

ProDOS 16: Chapter 10

III 11113/86

Apple lies ProD OS 16 Reference

NEWLINE ($11)

This function enables or disables the newline read mode for an open file. When newli ne
is disabled, a READ call (described next) terminates only when the requested number of
characters has been read (unless the end of the file is encountered frrst). When newline j,
enabled, the READ will also terminate when a newline character (as defined in the parameter
block) is read.

When a READ call is made and newline mode is enabled,

I. Each character read in is first transferred to the user 's data buffer.

2. The character is ANDed with the low-order byte of the newline enable mask
(specified in the NEWLINE call's parameter block).

3. The result is compared with the low-order byte of the newline character.

4. If there is a match, the read is tenninated.

The enable mask is typically used to mask off unwanted bits in the character that is read in.
For example, if the mask value is $7F (binary 0111 1111), a newline character will be
correctly matched whether or not its high bit is set. If the mask value is $FF (1111 1111),
the character will pass through the AND operation unchanged.

Newline read mode is disabled by setting the enable mask to $0000.

Parameter Block:

o

2
3
4
5

r

r

reCnum

enable_mask

new1ine_char

Offset Label

$00-$01 ref num

$02-$03 enable mask

APDADraji

result

vdue

vdue

Descri ption

parameter name: reference number
size and type: word result (high-order byte zero)
range of values: $OOOO-$OOFF

The identifying number assigned to the me by the OPEN
function.

parameter name:
size and type:
range of values:

enable mask
word value (high-order byte zero
$OOOO-$OOFF

The CWTent character is ANDed with the low order byte of this
word.

112 111l3i86

ProDOS 16: Chapter 10

$04- $05 ne wline c har parameter name: newline character
- size and type: word value (high-order byte zero)

range of values: $OOOO-$OOFF

Whatever character occupies the low-order byte of this field is
defmed as the newline character.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$43 Invalid reference number

APDA Drcift 113 ll/13/I:!{J

Apple IIGS ProDOS 16 Reference

READ ($12)

When called, this function attempts to transfer the requested number of bytes (starting at the
current position of the fIle specified by ref num) into the buffer pointed to by dara buffer.
When finished, the function returns the number of bytes actually transferred. -

If, during a read, the end-of-fIle is reached before request count bytes have been read,
transfer_count is set to the number of bytes transferred. If newline mode is enabled
and a newline character is encountered before request_coWlt bytes have been read,
transfer_count is set to the number of bytes transferred (including the newline byte).

No more than 16,777,215 ($FF FF FF) bytes may be read in a single calL

Parameter Block:

o
1
2
3
4
5
6
7
8
9
A

~

~
~

r

~

reCnum

data_buffer

requesLcount

-

B
C
D

~ transfer_count _

Offset Label

$00-$01 ref num

vdue

pointer

vdue

result

Description

parameter name: reference number
size and type: word value (high-order byte zero)
range of values: $OOOO-$OOFF

The identifying number assigned to the fIle by the OPEN
function.

$02-$05 data buffer parameter name: data buffer
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer should be large
enough to hold the requested data.

$06---$09 request count parameter name: request count
size and type: long word value (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The number of bytes to be transferred.

APDADraft 114 11/13/86

ProDOS 16: Chapter 10

$OA-$OD transfer count parameter name: transfer count
- size and type: long word result (high-order byte zero)

range of values: $0000 OOOO-$OOFF FFFF

The actual number of bytes transferred.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$27 I/O error
$43 Invalid reference number
$4C EOF encountered (Out of data)
$4E Access: fIle not read-enabled

APDADraft 115 11113186

Apple IIGS ProDDS 16 Reference

WRITE ($13)

When called, this function attempts to transfer the specified number of bytes from the
buffer pointed to by dilta _buffer to the file specified by reL nwn (starting at the current
position in the file). When finished, the function returns the number of bytes actually
transferred.

After a write, the current file position (Mark) is increased by the transfer count. If
necessary, the end-of-me (EOF) is extended to accomodate the new data

No more than 16,777,216 ($FF FF FF) bytes may be written in a single call.

Parameter Block:

0 reCnum
1
2
3 dataj)uffer
4
5
6
7 requesCcaunt
8
9
A
B transfer_count
C
0

Offset Label

$00-$01 ref num

value

pointer

value

result

Description

parameter name: reference number
size and type: word value (high-order byte zero)
range of values: $OOOO-$OOFF

The identifying number assigned to the file by the OPEN
function.

$02-$05 data buffer parameter name: data buffer
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer should be large
enough to hold the requested data.

$06-$09 request c ount parameter name: request count

APDADraft

- size an d type: long word value (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The number of bytes to be transferred.

116 1JI13/86

ProDOS 16: Chapler 10

$OA-$OD t ran s fer_cou nt parameter name: transfer count
size and type: long word result (high-order byte zero)
range of values: $0000 oooo-$OOFF FFFF

The actual number of bytes transferred-

Possible ProDOS 16 Errors

$07 ProD OS is busy
$27 JlO error
$2B Disk write-protected
$43 Invalid reference number
$48 Volume full
$4E Access: fIle not write-enabled
$5A Block number out of range

APDA Draft 117 11113186

Apple llGS ProD OS 16 Reference

CLOSE ($14)

This function is called to release all resources used by an open file and terminate further
access to it. The fIle control block (FCB) is released; if necessary, the fIle's I/O buffer is
emptied (written to disk) and the directory entry for the fIle is updated. Once a fIle is
closed, any subsequent calls using its ref _ num will fail (until that number is assigned to
another open fIle).

If the specified ref num is 0, all open fIles at or above the current fIle level (see
SET LEVEL and GET LEVEL calls) are closed. For example, if fIles are open at levels 0,
I, and 2 and you have set the current level to 1, a CLOSE call with ref num set to 0 will
close all files at levels I and 2, but leave fIles at level 0 open. -

Parameter Block:

~t reCnum 1 value

Offset Label Description

$00-$01 ref num parameter name: reference number
size and type: word value (high-order byte zero)
range of values: $OOOO--$OOFF

The identifying number assigned to the fIle by the OPEN
function.

Possible ProDOS 16 Errors

$07 ProD OS is busy
$27 I/O error
$2B Disk write-protected
$43 Invalid reference number
$5A Block number out of range

APDADrajt 118 11113186

ProDOS 16: Chapler 10

FLUSH ($15)

This function is called to empty an open rue's buffer and update its directory. If ref_ num is
zero, all open files are flushed.

Note: Current versions of ProDOS 16 ignore reLnum in this call. The FLUSH
call flushes all open files.

Parameter Block:

n reCnum 1 vdue

Offset Label Description

$OO~-$Ol ref num parameter name: reference number
size and type: word value (high-order byte zero)
range of values: $OOOO-$OOFF

The identifying number assigned to the file by the OPEN
function.

Possible ProDOS 16 Errors

$07 ProD OS is busy
$27 I/O error
$2B Disk write-protected
$43 Invalid reference number
$48 Volume full
$5A B lock number OUI of range

APDADraft 119 1JI13/86

Apple IIeS ProDGS [6 Reference

SET_MARK ($16)

For the specified open me, this function sets the current position (Mark, the position at
which subsequent reading and writing will occur) to the point specified by the position
parameter. The value of the current position may not exceed EOF (end-of-fIle; the size of
the me in bytes).

Parameter Block:

0 reCnum
1
2
3

position
4
5

Offset Label

$00-$01 ref num

$02-S05 position

. vdue

parameter name:
size and type:
range of values:

Description

reference number
word value (high-order byte zero)
$OOOO-$OOFF

The identifying number assigned to the file by the OPEN
function.

parameter name:
size and type:
range of values:

position
long word value (high-order byte zero)
$0000 OOQO-$OOFF FFFF

The value assigned to Mark. It is the position, in bytes relative
to the beginning of the file, at which the next read or write will
occur.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$27 I/O error
$43 Invalid reference number
$4D Position out of range
$5A Block number out of range

APDADrajt 120 11113186

ProDOS 16: Chapter 10

GET_MARK ($17)

This function returns the current position (Mark, the position at which subsequent reading
and writing will occur) for the specified open file.

Parameter Block:

0,------,
1 reCnum vdue

2
3
~

position

5L-____ ...J

Offset Label

$00- $01 r e f num

$02-$05 p os ition

result

Description

parameter name: reference number
size and type: word value (high-order byte zero)
range of values: $OOOO-$OOFF

The identifying number assigned to the flie by the OPEN
function.

parameter name:
size and type:
range of values:

position
long word result (high-order byte zero)
$0000 OOOO-$OOFF FFFF

The current value of Mark. It is the position, in bytes relative
to the beginning of the file, at which the next read or write wi II
occur.

Possible ProD OS 16 Errors

$07 ProDOS is busy
$43 Invalid reference number

APDADraji 121 11113186

Apple llGS ProDOS 16 Reference

For the specified file, this function sets its logical size (in bytes) to the value specified by
EOF (end-of-file). If the specified EOF is less than the current EOF, then disk blocks pas t
the new EOF are released to the system and index-block pointers to those blocks are
zeroed. However, if the specified EOF is equal to or greater than the current EOF, no new
blocks are allocated until data are actually written to them.

The value of EOF cannot be changed unless the file is write-enabled.

Parameter Block:

0,..--------,
I reCnum
21------1
3
4

eot
5'--____ --'

Offset Label

$OO- SOl re f num

$04- $07 eaf

vdue

parameter name:
size and type:
range of values:

Description

reference number
word value (high-order byte zero)
$OOOO-$OOFF

The identifying number assigned to the file by the OPEN
function.

parameter name: end-of-file
size and type: long word value (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The specified logical size of the fIle. It represents the total
number of bytes that may be read from the file.

Possible ProD OS 16 Errors

$07 ProOOS is busy
$27 JjO error
$43 Invalid reference number
$40 Position out of range
$4E Access: fIle not write-enabled
$5A Block number out of range

APDA Drqfi 122 1lI131ti6

---,

ProDOS 16: Chapter 10

For the specified open file, this function returns its logical size, or EOF (end-of-file; the
number of bytes that can be read from it).

Parameter Block:

2
3
4

reCnum

eol

5 '--_____ ...

Offset Label

$00-$01 ref num

$04-$07 e af

vdl.19

result

Description

parameter name: reference number
size and type: word value (high-order byte zero)
range of values: $OOOO-$OOFF

The identifying numbet assigned to the fIle by the OPEN
function.

parameter name: end-of-fIIe
size and type: long word result (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The current logical size of the fIle. It represents the total
number of bytes that may be read from the fIle.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$43 Invalid reference number

APDA Draft 123 11113186

Apple IIeS ProDOS 16 Reference

SET_LEVEL ($lA)

This function sets the current value of the system file level (see Chapter 2). All subsequent
OPEN calls will assign this level to the files opened. All subsequent CLOSE calls for
multiple files (that is, those calls using a specified ref _ num of 0) will be effective only on
those files that were opened when the system level was greater than or equal to the new
level.

The range of legal system level values is $OOOO-$OOFF. The file level initially defaults to
zero.

Parameter Block:

~ L.f ___ 'e_v_e' __ -,~ vdue

Offset Label Description

$00-$01 level parameter name: system ftle level
size and type: word value (high-order byte zero)
range of values: $OOOO-$OOFF

The specified value of the system file level.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$59 Invalid file level

APDADraft 124 1l!13f86

.---.

'-'"

ProDOS 16: (:hapter 10

GET_LEVEL ($lB)

This function returns the current value of the system fIle level (see Chapter 2). All
subsequent OPEN calls will assign this level to the files opened. All subsequent CLOSE
calls for multiple files (that is, those calls using a specified ref num of 0) will be effective
only on those files that were opened when the system level was greater than or equal to its
current level.

Parameter Block:

~t level

Offset Label

$00-$01 level

1 result

parameter name:
size and type:
range of values:

Description

system file level
word result (high-order byte zero)
$OOOO-$OOFF

The current value of the system file level.

Possible ProDOS 16 Errors

$07 ProD OS is busy

APDADraft 125 11113186

Apple IIGS ProDOS 16 Reference

APDADraft 126 11113/86

Chapter 11

Device Calls

Device calls access storage devices directly, rather than through the logical structure of the
volumes or files on them.

The ProD OS 16 device calls are described in the following order:

Number Function Purpose

$20 GET DEV NUM returns a device's number

$21 GET LAST DEV returns the last device accessed

$22 READ BLOCK transfers 512 bytes from a device

$23 WRITE BLOCK transfers 512 bytes to a device

$24 FORMAT formats a volume in a device

APDADraji 127 11/13/86

Apple II OS ProDOS 16 Reference

For the device specified by name or by the name of the volume mounted on it, this function
returns its device number. All other device calls (except for FORMAT) must refer to the
device by its number.

Device numbers are assigned by ProDOS 16 at system startup (boot) time. They are
consecutive integers, assigned in the order in which ProDOS 16 polls external devices (see
Chapter 4).

Note: Because a device may hold different volumes and because volumes may be
switched among devices, the device number returned for a particular volume name
may change. Likewise, the volume name associated with a particular device
number may change.

Parameter Block:

o
1

2 ~
pointer

31-_~ ___ --l

4 ~ dev_num result 5'--____ ---'

Offset Label

$00-$03 dey name

$04-$05 dey num

Description

parameter name: device namelvolume name
size and type: long word pointer (high-order byte zero)
range of values: $OOOO.OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
device name or the volume name.

parameter name:
size and type:
range of values:

device number
word result (high-order byte zero)
$OOOO-$OOFF

The device's reference number, to be used in other device
calls.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$10 Device not found
$11 Invalid device request
$40 Invalid device name syntax
$45 Volume not found

APDADraft 128 11113/86

ProDOS 16: Chapter 11

This function returns the device number of the last device accessed. The last device
accessed is the last device to which a command was directed that caused a read or write to
occur.

Parameter Block:

Offset Label

$00-$01 dey num parameter name:
size and type:
range of values:

Description

device number
word result (high-order byte zero)
$OOOO-$OOFF

The device' s reference number. to be used in other device
calls.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$60 Data unavailable

APDADraji 129 11113186

Apple IIGS ProDOS 16 Reference

READ_BLOCK ($22)

This function reads one block of information from a disk device (specified by dev num)
into memory starting at the address pointed to by dilta _buffer. The buffer must beat least
512 bytes in length, because existing devices defme a block as 512 bytes.

Parameter Block:

or-------,
1 dey _num vcJue

2
3
4

~ i--------j
7
8
9'--____ --'

Offset Label

$00--$01 dev num

$02-$05 data buffer

$06-$09 blo ck num

pJinter

vdue

parameter name:
size and type:
range of values:

Description

device number
word value (high-order byte zero)
$OOOO-$OOFF

The device's reference number, as returned by
GET DEV NUM.

parameter name: data buffer
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer that will hold the data to be
read in.

parameter name: block number
size and type: long word value (high-order word zero)
range of values: $0000 0000-$0000 FFFF

The number of the block to be read in.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$11 Invalid device request
$27 I/O error
$28 No device connected
$53 Parameter out of range

APDADraft 130 11113/86

ProDOS 16: Chapter 11

WRITE_BLOCK ($23)

This function transfers one block of data from the memory buffer pointed to by data_buffer
to the disk device specified by dev name. The block is placed in the specified logical block
of the volume occupying that device. For currently defined devices. the data buffer must
be at least 512 bytes long.

Parameter Block:

o dev _num vciue
ll------l
2
3
4
51-____ -l
6
7
8
9'--____ -'

Offset Label

$00-$01 dev num

poinTer

vdue

Description

device number parameter name:
size and type:
range of values:

word value (high-order byte zero)
$OOO~$OOFF

The device's reference number. as retumed by
GET DEV NUM.

$02--$05 data buffer parameter name: data buffer
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer that holds the data to be
written.

$06-$09 blo ck num parameter name: block number
size and type: long word value (high-order word zero)
range of values: $0000 0000-$0000 FFFF

The number of the block to be written to.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$11 lnvalid device request
$27 I/O error
$28 No device connected
$2B Disk write-protected
$53 Parameter out of range

APDADraft 131 11113/86

Apple IlGS ProDOS 16 Reference

FORMAT ($24)

This function formats the volume (disk) in the specified (by name) device, giving it the
specified volume name. The volume is formatted according to the specified fIle system ID.

Note: Current versions of ProD OS 16 support formatting for the ProDOSISOS
fIle system only (file system ID = 1). Specifying any other fIle system will generate
error $5D.

Parameter Block:

a
1
2

deY_name

31--------1
4
5
6

yoLname

pointer

pointer

7 1-----:::_----,-:----1
8 flle_sysJd \/due
91..-____ ---l

Offset Label

$00-$03 dev name

$04-$07 vol name

.4PDADraji

Description

parameter name: device name
size and type: long ward pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
device name.

parameter name: volume name
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
volume name (including a leading slash).

132 11/13186

ProDOS 16: Chapter Jl

parameter name: file system ID
size and type: word result Chigh-order byte zero)
range of values: $OOOO-$OOFF

A word whose low-oroer byte identifies the file system to
which the formatted volume belongs. The currently defined
file system identification numbers include

o ~ (reserved}
1 ~ ProDOS/SOS
2 = DOS 3.3
3 = DOS 3.2, 3.1
4 = Apple IT Pascal
5 = Macintosh
6 = Macintosh CHFS)
7 = LISA
8 = Apple CP/M
9-255 = (reserved}

Possible ProDOS 16 Errors

$07 ProDOS is busy
$10 Device not found
$11 Invalid device request
$27 TlO error
$5D File system not available

APDADraj't 133 11/13/86

Apple IIGS ProDOS 16 Reference

...•.

APDADraft 134 1II13186

Chapter 12

Environment Calls

These calls deal with the Apple ITGS operating environment, the software and hardware
configuration within which applications run. They include calls to start and end
ProDOS 16 applications, and to determine pathnames and versions of system software.

The ProDOS 16 environment calls are described in the following order:

Number Function Purpose

$27 GET NAME returns application filename

$28 GET BOOT VOL returns ProDOS 16 volume name

$29 QUIT terminates present application

$2A GET VERSION returns ProDOS 16 version

APDADraft 135 11113186

Apple lIes ProD OS 16 Reference

GET_NAME ($27)

This function returns the fIlename of the currently running application.

To get the compete pathname of the current application, use GET_PREFIX for pref"lx
number 1/, and affix that preHx to the fIle name returned by this call.

Note: If yoW" program uses SET_PREFIX to reset prefix 1/ to anything other
than its initial value, be sure it first uses GET PREF IX on 1/ and saves the results.
Otherwise there may be no way to recover thefull pathname of the current
application.

Parameter Block:

o
1
2
3'-_____ -'

Offset Label

pointer

Description

$00--$03 data buffer parameter name: data buffer
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO-$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
current application's file name.

Possible ProD OS l6 Errors

$07 ProDOS is busy

APDADraft 136 11113186

ProDOS 16: Chapter 12

This function returns the name of the volume from which the file named PRODOS was last
executed. PRODOS is the operating system loader; it loads both ProDOS 16 and ProDOS 8
into memory. Execution of P RODOS may occurr

• at system startup

• from a reboot

• by execution from an Applesoft BASIC dash (-) command

• by loading PRODOS into memory at $002000 and executing a JMP to that address

The volume name returned by this call is identical to the prefix specified by * /. See
Chapter 5.

Parameter Block:

o
1
2
3L-____ -I

Offset Label

$~03 data buffer

pointer

Description

parameter name: data buffer
size and type: long word pointer (high-order byte zero)
range of values: $0000 OOOO--$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the boot
volume's name.

Possible ProD OS 16 Errors

$07 ProD OS is busy

APDA Draft 137 Ili13186

Apple lIes ProDOS 16 Reference

QUIT ($29)

Calling this function terminates the present application. It also closes all open fIles, sets the
current system file level to zero, and deallocates any installed interrupt handlers.
ProDOS 16 can then do one of three things:

• launch a file specified by the quitting program

• launch a file specified by the user

• automatically launch a program specified in the quit return stack

The quit return stack is a table maintained in memory by ProDOS 16. It provides a
convenient means for a shell program to pass execution to subsidiary programs (even other
shells), while ensuring that control eventually returns to the shell.

For example, a program selector may push its User ill onto the quit return stack whenever
it launches an application (by making a QUIT call). That program mayor may not specify
yet another program when it quits, and it mayor may not push its own User ill onto the
quit return stack. Eventually, however, when no more programs have been specified and
no others are waiting for control to return to them, the program selector's User ill will be
pulled from the stack and it will be executed once again.

Two QUI T call parameters control these options, as follows:

1. Pathname pointer:

a. If the pathname pointer in the parameter block points to a pathname of nonzero
length, the indicated program is loaded and executed.

b. If pathname is null (zero) or ifit points to a null pathname (one with a zero
length byte), ProDOS 16 pulls a User ill from the quit return stack and executes
the program with that ill.

c. Ifpathname is null and the quit return stack is empty, ProDOS 16 executes a
built-in interactive dispatcher that allows the user to

• reboot the computer

• execute the file SYSTEM/ START on the boot disk

• enter the name of the next application to launch

2. Flag word:

The flag word contains two boolean values: a return flag and a restart-from
memory flag .

a. If the return flag value is TRUE (bit 15=1), the User ill of the program making
the QUIT call is pushed onto the quit return stack. Ifthe return flag is FALSE,
no ID is pushed onto the stack.

b. If the value of the restart-from-memory flag is 1RUE (bit 14=1), the program is
capable of being restarted from a dormant state in the computer's memory. If
the restart-from-memory flag is FALSE, the program must always be reloaded
from disk when it is run. Every time a program's User ill is pushed onto the
quit return stack, the information from this flag is saved along with it. The
System Loader uses this information when it reloads or restarts the program
later (see Chapter 17).

APDADraft 138 11113186

ProDOS 16: Chapter 12

Note: The pathname designated in this call may be a partial pathname with an
implied or explicit prefix number. However, the total length of the expanded prefix
(the full pathname except for the me name) must not exceed 64 characters. Other
ProDOS 16 calls do not restrict pathname length as severely.

Further details of the operation of the QUIT function are explained in Chapter 5.

Parameter Block:

0.-------,
1
2

pathname pointer

3/-_____ -i

4 flags vdue 5'-____ --1

Offset Label

$00-$03 pathname

$04-$05 flags

parameter name:
size and type:
range of values:

Description

pathname
long word pointer (high-order byte zero)
$0000 ()()()()....$OOFF FFFF

The long word address of a buffer. The buffer contains a
length byte followed by an ASCII string representing the
pathname of the next me to execute.

parameter name: flag word
size and type: word value
range of values: $()()()()....$COOO

Two boolean flags in a 160bit field. The bits are defined as
follows: .

bit
15

14

significance
if = I, place calling program's
User ID on return stack

if = I, calling program may be
restarted from memory

(reserved)

Possible ProDOS 16 Errors

QU I T never returns to the caller. Therefore, it cannot return an error. However, other
parts of ProD OS 16 may. For example, if an intenupting program (such as a desk
accessory) ignores established conventions and uses a QUIT call, error $07 (ProDOS is

APDADraft 139 11113/86

Apple II GS ProDOS 16 Reference

busy) may occur. For programming rules covering such specialized applications, see
Programmer's Introduction to the Apple IIGS.

If a nonfatal error occurs, execution passes to an interactive routine that allows the user to
select another program to launch. Errors that may cause this include:

$07
$40
$46
$5C
$5D
$5E
$5F

ProDOS is busy
In valid syntax
File not found
Not an executable file
Operating system not available
Cannot deallocate /RAM
Return stack overflow

Fatal errors cause execution to halt For example, If the QU IT call results in the loading of
a ProDOS 8-based application, and if the system disk has been altered with a different
version of ProDOS 8 (me P 8), it is a fatal error ($11). Execution halts and the following
message is displayed on the screen:

wrong as version $0011

If the QUIT call results in the loading of a ProDOS 16-based application that is too large to
fit in the available memory or that for some other reason cannot be loaded, execution halts
and the following message is displayed on the screen:

Ca n' t run next application. Error=$XXXX

where $xxxx is an error code-typically a Tool Locator, Memory Manager, or System
Loader error code.

APDADraft 140 11113186

ProDOS 16: Chapter 12

GET_VERSION ($2A)

This function returns the version number of the currently running ProD OS 16 operating
system.

The returned version number is placed in the version parameter field. Both byte and bit
values are significant. It has this format:

Byte 1

Bit: 15 14 13 12 11 10 9 8
Value;

where

• Byte 0 is the minor release number ('" 0 for ProD OS 16 version 1.0)
• Byte 1 is the major release number('" 1 for ProDOS 16 version 1.0)
• B (the most significant bit of byte 1) = 0 for final releases

= 1 for all prototype releases

Parameter Block:

n vEHskm

Offset Label Description

$00-$01 version version parameter name:
size and type:
range of values:

word result (high-order byte zero)
$OOOO-$FFFF

The version number of ProDOS 16.

Possible ProDOS 16 Errors

$07 ProDOS is busy

APDADraft 141 lJI13186

Apple fIGS ProDOS 16 Reference

APDA Draft 142 11113186

Chapter 13

Interrupt Control Calls

These calls allocate and deallocate interrupt handling routines.

The ProDOS 16 interrupt control calls are described in the following order:

Number

$31

$32

APDADraft

Function

ALLOC INTERRUPT

DEALLOC INTERRUPT

143

Purpose

installs an interrupt handler

removes an interrupt handler

11113186

Apple lIes ProDOS 16 Reference

ALLOC_INTERRUPT ($31)

This function places the address of an interrupt-handling routine into the interrupt vector
table. You should make this call before enabling the hardware that can cause the in terrupt.
It is your responsibility to make sure that the routine is installed at the proper location and
that it follows interrupt conventions (see Chapter 7).

The returned int _ num is a reference number for the handler. Its only use is to identify the
handler when deallocating it; you must refer to a routine by its interrupt handler number to
remove it from the system (with DEALLOC INTERRUPT).

When ProDOS 16 receives an interrupt, it polls the installed handlers in sequence,
according to their order in the interrupt vector table. The ftrst handler installed has the
highest priority. Each new handler installed is added to the end of the table; each one
deallocated is removed from the list and the table is compacted.

Note: Under ProDOS 8, the interrupt handler number is equal to the handler's
position in the polling sequence. By contrast, the value of int _ num under
ProD OS 16 is unrelated to the order in which handlers are polled.

Parameter Block:

0,-------,
1 in,-num result

2

~ r int_code

5'--_____ -'

Offset Label

$00-$01 int num

$02-$05 int code

pointer

Description

parameter name: interrupt handler number
size and type: word result (high-order byte zero)
range of values: $OQOO.-$OOFF

The identifying number assigned to the interrupt handler by
ProDOS 16.

parameter name:
size and type:
range of values:

interrupt code
long word pointer (high-order byte zero)
$0000 OOOO-$OOFF FFFF

The long word address of the interrupt handler routine.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$25 Interrupt vector table full
$53 Invalid parameter

APDADraft 144 11113/86

ProDOS 16: Chapter 13

DEALLOC _ INTERR UPT ($32)

This function clears the entry (specified by int _ num) for an interrupt handler from the
interrupt vector table.

Important: You must disable the associated interrupt hardware before making this
call. A fatal error will result if a hardware interrupt occurs after its entry has been
cleared from the vector table.

DEAL LOC_INTERRUPT has no effect on the order of the polling sequence for the
remaining handlers. Any subsequently allocated handlers will be added to the end of the
polling sequence.

Parameter Block:

Offset Label

$00--$01 int num

Description

parameter name: interrupt handler number
size and type: word value (high-order byte zero)
range of values: $OOOO-$OOFF

The identifying number assigned to the interrupt handler by
ProDOS 16.

Possible ProDOS 16 Errors

$07 ProDOS is busy
$53 Invalid parameter

APDA Draft 145 1II13186

Apple lleS ProDOS 16 Reference

APDA Draft 146 llf13f86

Part III

The System Loader

The System Loader is an Apple IIGS tool set that works closely with ProDOS 16. It is
responsible for loading all program code and data into the Apple IIGS memory. It is
capable of static and dynamic loading and relocating of code and data segments,
subroutines, and libraries.

Chapter 14 explains in general terms how the System Loader works. Chapter 15 details
some of its functions and data structures. Chapter 16 gives programming suggestions for
using the System Loader. Chapter 17 shows how to make loader calls and describes each
call in detail. See Appendix E for a complete list of System Loader error codes.

APDADraft 147 11113/86

APDA Draft 148 11113/86

" . .

Chapter 14

Introduction to the System Loader

This chapter gives a basic picture of the System Loader, defmes some of the important
tenus needed to describe what the loader does, describes its interactions with the Memory
Manager, and presents an outline of the procedures it follows when loading a program into
memory. Additional related tenus are defmed in the Glossary.

What is the System Loader?
The System Loader is a set of software routines that manages the loading of program
segments into the Apple nOS. It is an Apple IIGS tool set; as such, it is independent of
ProDOS 16. However, it works very closely with ProDOS 16 and with the Memory
Manager, another tool set. The System Loader has several improvements over the loading
method under ProDOS 8 on other Apple II computers:

• It makes loading easier and more convenient. Under ProDOS 8, the only automatic
loading is performed by the boot code, which searches the boot disk for the first
. SYSTEM file (type $FF) and loads it into location $2000. If a system program
needs to call another application it must do all the work itself, either by making
ProDOS 8 calls or by providing its own loader. On the Apple IIGS, calls to the
System Loader perfonu the task more simply.

• It is a relocating loader: it loads relocatable programs at any available location in
memory. Under ProDOS 8, a program must be loaded at a fixed memory address, or
at an address specified by the system program that does the loading. The relocating
loader relieves the programmer of the burden (and restriction) of deciding where to
load programs.

• It is a segment loader: it can load different segments of a program independently,
to use memory efficiently.

• It is a dynamic loader: it can load certain program segments as they are needed
during execution, rather than at boot time only.

The System Loader handles files generated by the APW Linker; the linker handles files
produced by an Apple IIoS assembler or compiler •. The linker, assembler, and
compilers are part of the Apple IIGS Programmer's Workshop (APW), a powerful
and flexible set of development programs designed to help programmers produce Apple
lIGS applications efficiently and conveniently. See Chapter 6 of this manual for more
infonuation and references on Apple nGS Programmer's Workshop.

APDA Draft 149 IlI13186

Apple 11 GS ProDOS J6 Reference

Loader terminology
The System Loader is a program that processes load files. Load files are ProDOS 16
applications or other types of program files. They contain machine-language code or data
and must follow object module format (OMF) specifications, as defined in the Apple JIGs
Programmer's Workshop Reference. Each 1.0ad file consists of load segments that can
be loaded into memory independently.

Load segments can be either static or dynamic. A program's static segments are loaded
into memory at initial load time (when the program is first started up); they must stay in
memory until the program is complete. Dynamic load segments, on the other hand, are not
placed in memory at initial load time; they are loaded as needed during program execution.
Dynamic loading can be automatic (through the Jump Table) or manual (at the specific
request of the application through System Loader function calls). When a dynamic
segment is no longer needed by the program that called it, it can be purged, or deleted, by
the Memory Manager.

Segments can be absolute, relocatable, or position-independent. An absolute
segment must be loaded into a specific location in memory, or it will not function properly.
A relocatable segment can execute correctly wherever the System Loader places it. Least
restricted of all is a position-independent segment; its functioning is totally unaffected by
its location in memory. It can even be moved from one location to another between
executions. Most Apple IIGS code is relocatable, but not position-independent.

Load files can contain segments of various kinds. Some segments consist of program code
or data; others provide location information to the loader. The Jump Table segment,
when loaded into memory, provides a mechanism by which segments in memory can
trigger the loading of other needed segments. Each load file can have only one Jump Table
segment. A load file can also have one segment called the Pathname segment, which
provides a cross-reference between file numbers (in the Jump Table segment) and
pathnames (on disk) of dynamic segments. A third special type of segment is the
initialization segment. It contains any code that has to be executed first, before the rest
of the segments are loaded.

When the System Loader is called to load a program, it loads all static load segments
including the Jump Table segment and the Pathname segment. The Jump Table and the
Pathname Table are constructed from these two segments, respectively. During this
process, a Memory Segment Table is also constructed in memory. These three tables
are discussed in more detail in the next chapter.

A controlling program is a program that requests the System Loader to perform an
initial load on another major program, usually an application. The User ID Manager
assigns a unique identification number (User ID) to that application, so the loader may
quickly locate all of the application's segments if necessary. A switcher is an example of a
controlling program; ProD OS 16 and the APW Shell are also controlling programs. A
word processor is an example of an application.

APDADraft 150 11113186

SystemLoader: Chapter 14

Interface with the Memory Manager
The System Loader and the Memory Manager work closely together. The Memory
Manager is an Apple IIOS tool set (fmnware program) that is responsible for allocating
memory in the Apple IIOS. It provides space for load segments, tells the System Loader
where to place them, and moves segments around within memory when additional space is
needed.

When the System Loader loads a program segment, it calls the Memory Manager to allocate
a corresponding memory block. Memory blocks have attributes that are closely related
to the load segments in them. If the program segment is static, its memory block is marked
as unpurgeable (meaning that its contents cannot be erased) and fixed (meaning that its
position cannot be changed), as long as the program is running. If the program segment is
dynamic, its memory block is initially marked as purgeable but locked (temporarily
unpurgeable and fIxed; subject to change during execution of the program). If the dynamic
segment is position' independent, its memory block is marked as movable; otherwise, it is
fixed.

To unload a segment, the System Loader calls the Memory Manager to make the
coresponding memory block purgeable. If the controlling program wishes to unload all
segments associated with a particular application (for example, at shutdown), it calls the
System Loader's User Shutdown function, which in turn calls the Memory Manager to
purge the application's memory blocks.

To speed up execution of a fInder or switcher that may need to rapidly reload shut-down
applications, the User Shutdown function can optionally put an application into a dormant
state. The loader calls the Memory Manager to purge the application's dynamic segments,
and make all static segments purgeable. This process frees space but keeps the unloaded
application's essential segments in memory. However, if for any reason memory runs out
and the Memory Manager is forced to purge one of those static segments, that application
can no longer be used-the next time it is needed, it must be loaded from its disk file. See
"User Shutdown" and "Restart" in Chapter 17.

Note: Strictly speaking, load segments are never purged or locked; those are
actions taken on the memory blocks that hold the segments. For simplicity,
however, this manual may in certain cases apply terms such as purged or locked to
segments.

A typical load segment will be placed in a memory block that is

Locked
Fixed
Purge Level = 0 (if the segment is static)
Purge Level = 3 (if the segment is dynamic)

Depending on other requirements the segment may have, such as alignment in memory, the
load segment-memory block relationship may be more complex. Table 14-1 shows all

APDADraji 151 lJI13186

Apple lIes ProDOS 16 Reference

possible relationships between the two that may hold at load time. The direct-page/stack
segment has special characteristics described in Chapter 6.

Table 14-1. Load-segmentlmemory-block relationships (at load time)

Load Segment Attribute
static
dynamic
absolute (ORG > 0)
relocatable
position-independent
not postion-independent
KIND = $11
BANKSIZE =0
BANKSIZE = $10 000
ALIGN = 0

ALIGN = $100

Memory Block Attribute
unpurgeable, fixed (unmovable)
purgeable, locked
fixed address
(no specific relation)
not fIxed (movable)
fIxed (unmovable)
fixed-bank
may cross bank boundary
may not cross bank boundary
not bank- or page-alignedt
page-alignedt
bank-alignedt ALIGN = $10 000

direct-page/stack (KIND = $12) purgeable, fIxed-bank ($00), page-aligned

t Alignment may also be controlled by the value in
the BANKSIZE fiel<J-....ree Appendix D.

Note: ORG, KIND, BANKSIZE and ALIGN are segment header fIelds, described
in Appendix D of this manual and under "Object Module Format" in Apple lIes
Programmer's Workshop Reference.

A memory block can be purged through a call to the System Loader, but other attributes can
be changed only through Memory Manager calls. Memory block properties useful to an
application may include

• S tart location
• Size of block
• User ill
• Purge level

(identifIes the application the block is part of)
(0 to 3: 0 = unpurgeable, 3 = most purgeable)

These properties may be accessed either through the Memory Segment Table (see
Chapter 15), or through the block's memory handle, which is part of the Memory Segment
Table. If the memory handle is NIL (points to a null pointer), the memory block has been
purged.

Loading a relocatable segment
The following brief description of pans of the operation of the System Loader shows how
the linker, loader, and Memory Manager work together to produce and load a relocatable
program segment. Figure 14-1 shows the process in a simplifIed form.

APDADraft 152 11/13/86

System Loader: Chapter 14

Load-file structure

Load files conform to a subset of object module format (OMF). In OMF, each module
(file) consists of one or more segments; each segment is further made up of one or more
records. In a load fIle specifically, each segment (apart from specialized segments such
as the load fIle tables described in Chapter 15) consists of a header followed by program
code or data, in turn followed (if the segment is relocatable) by a relocation dictionary.
The relocation dictionary is created by the linker as it converts an object segment into a load
segment. The program code or data consists of two types records: LCONST records,
which hold all code and data, and DS records, used for filling space with zeros. The
relocation dictionary consists of two general types of records: RELOC records, which give
the loader the infonnation it needs to resolve local (intrasegment) references, and
INTERSEG records, which give the loader the infonnation it needs to resolve external
(intersegment) references. cRELOC, cINTERSEG, and SUPER records are also found in
relocation ructionaries--they are compressed versions of RELOC and INTERSEG records.
The detailed fonnats of all OMF records are presented in Apple lIGS Programmer's
Workshop Reference.

When a relocatable segment is loaded into memory, it is placed at a location determined by
the Memory Manager. Furthermore, only the fIrst part of the segment (the program code
itself) is loaded into the part of memory reserved by the Memory Manager; the relocation
dictionary, if present, is loaded into a buffer or work area used by the loader. After loading
the segment, the loader relocates it, using the information in the relocation dictionary.

Objec;1 fie: Load ~1.:

The lilker produ:e! 1000 scgnenl n
frern ct'te Cf more ct;ect segments.
The load seg1lent con1cins a headBf,
code, Clld relocatlcn dictionary.

The S)'$tem loader
loads Ihe code pal of SelJll<l'11 n

nlD merT10lY at address hi
(a~igned by the MemO<y Manager)

Momor(Bat $XX

Segmentn
code

· ;
• • •

Mem<rf Balk tVY i
• :

Sagmentp i
code ?

)\>-1----;

Figure 14-1. Loading a relocatable segment

APDADraft 153

o
The loader patche.
local refEf9l'lC9S
by uling RElOC
recCfds to coIa.rIme
offseh fiam hi

The loadS' patches
htersegnoot ref«ences to

- $og<Mnt p by LShg
t-ITB?SEG recOfds
to cdoJate cttsets "an
)\> (!he loader gel> Ih,
vdue for ~ fran 1tIe
MomO<y Segnonl Table)

11113186

Apple IIGS ProDOS 16 Reference

Relocation

After the System Loader has placed a load segment in memory, it must (unless the segment
consists of absolute code) relocate its address references. Relocation describes the
processing of a load segment so that it will execute properly at the memory location at
which it has been loaded. It consists of patching (substituting the proper values for)
address operands that refer to locations both within and external to the segment. The
relocation dictionary part of the segment contains all the information needed by the loader to
do this patching. Relocation is performed as follows:

1. Local references in the load segment (coded in the original object ftle as offsets from
the beginning of the segment) are patched from RELOC records in the relocation
dictionary. Using the starting address of the segment (available from the Memory
Manager through the Memory Segment Table), the loader adds that address to each
offset, so that the correct memory address is referenced.

2. External references (references to other segments) are coded in the original object
module as global variables (subroutine names or entry points). The linker and loader
handle them as follows:

a. 1f the reference is to a static segment, the linker will have calculated the proper
ftle number, segment number, and offset of the referenced (external) segment,
and placed that information in an INTERSEG record in the relocation dictionary.
When the load segment is loaded, the loader uses the INTERSEG record and the
memory location of the external segment (available from the Memory Manager
through the Memory Segment Table), and then patches the external reference
with the proper memory address of the external segment.

b. 1f the reference is to a dynamic segment, the linker will have created a slightly
different INTERSEG record: instead of referencing the ftle number, segment,
and offset of the referenced external segment itself, the INTERSEG record
references the ftle number, segment number, and offset of an entry in the Jump
Table. Therefore, when the load segment is loaded, the loader patches the
reference to point to the Jump Table entry. That entry, in turn, is what transfers
control to the external segment at its proper memory address (if and when the
referenced segment is loaded).

The Jump Table and the reasons for this indirect referencing are described further in
Chapter 15. The main point of interest here is that, when it performs relocation, the
loader doesn't care whether an intersegment reference is to a static or to a dynamic
segment-it treats both in exactly the same way.

The System Loader perfonns several other functions when it loads dynamic segments,
including searching for the name of the segment in the Pathname Table before loading, and
patching the appropriate Jump !fable entry afterward. These and other functions are
described in more detail in the next two chapters.

APDADraft 154 1l!13/86

Chapter 15

Systenl Loader Data Tables

This chapter describes the data tables set up in memory during a load, to provide cross
reference information to the loader. The Memory Segment Table allows the loader to
keep track of which segments have been loaded and where they are in memory. The Jump
Table allows programs to reference routines in dynamic segments that may not currently
be in memory. The Pathname Table provides a.cross-reference between file numbers
and file pathnames of dynamic segments. The Mark List speeds relocation by keeping
track of relocation dictionaries.

Memory Segment Table
The Memory Segment Table is a linked list, each entry of which describes a memory block
known to the System Loader. Memory blocks are allocated by the Memory Manager
during loading of segments from a load file, and each block corresponds to a single load
segment. Figure 15-1 shows the format of each entry in the Memory Segment Table.

handle to
next entry 4 bytes

handle to
previous entry 4 bytes

~ UserlD 2 bytes

~
~ memory handle 4 bytes

load-tile no. 2 bytes

load-segment no. 2 bytes

load-segment kind 2 bytes

Figure 15-1. Memory Segment Table entry

APDADraft 155 1l!13/86

Apple lIes ProDOS 16 Reference

The fields have the following meanings:

Handle to next entry: The memory handle of the next entry in the Memory
Segment Table. This number is 0 for the last entry.

Handle to previous entry: The memory handle of the previous entry in the
Memory Segment Table. This number is 0 for the first entry.

User ID: The identification number assigned to the memory block this segment
inhabits. Normally, the User ID is available directly from the Memory Manager
through the memory handle. However, if the block has been purged its handle is NIL
and the User ID must be read from this field.

Memory handle: The identifying number of the memory block, obtained from the
Memory Manager. Additional memory block information is available through this
handle. This handle is NIL if the block has been purged.

Load-file number: The number of the load file from which the segment was
obtained. If the segment is in the initial load file, the number is 1.

Load-segment number: The segment number of the segment in the load file.

Load-segment kind: The value of the KIND field in the load segment's header.
Segment kinds are described in Appendix D.

Jump Table
When a program (load flle) is initially loaded, only the static load segments are placed in
memory; at that point the System Loader has all the information it needs to resolve all
symbolic references among them. Until a dynamic segment is loaded, however, the loader
cannot resolve references to it because it does not know where in memory it will be. Thus
static segments may be directly referenced (by each other and by dynamic segments), but
dynamic segments can be referenced only through JSL (Jump to Subroutine Long) calls to
the Jump Table. This section describes how that mechanism works.

The Jump Table is a structure that allows a program to reference dynamic segments. It
consists of the Jump Table Directory and one or more Jump Table segments.

On disk, Jump Table segments are load segments (of kind $02), created by the linker to
resolve references to dynamic segments. Any load file or run-time library file may contain
a Jump Table segment.

In memory, the Jump Table Directory is created by the loader as it loads Jump Table
segments. The Jump Table Directory is a linked list, each entry of which.points to a single
Jump Table segment encountered by the loader. Figure 15-2 shows the format of an entry
in the Jump Table Directory.

APDADraft 156 11/13/86

System Loader: Chapter 15

handle to
next entry

~

4 bytes

~
handle to

previous entry 4 bytes

UserlD 2 bytes

memory handle 4 bytes

Figure 15·2. Jump Table Directory entry

The fields have the following meanings:

Handle to next entry: The memory handle of the next entry in the Jump Table
Directory. This number is 0 for the last entry.

Handle to previous entry: The memory handle of the previous entry in the Jump
Table Directory. This number is 0 for the first entry.

User ID: The identification number assigned to the Jump Table segment that this
Directory entry refers to.

Memory handle: The handle of the memory block containing the Jump Table
segment that this Directory entry refers to.

Like the Directory, the individual Jump Table segments consist of a series of entries. The
next three subsections describe the creation,loading, and use of a single Jump Table
segment entry. The entry is used to resolve a single JSL instruction in a program segment

Note: Throughout this manual, the term Jump Table entry refers to a Jump Table
segment entry, not a Jump Table directory entry.

Creation of a Jump Table entry

The Jump Table load segment is created by the linker, as jt processes an object flle. Each
time the linker encounters a JSL to a routine in an external dynamic segment, it creates an
INTERSEG record in the relocation dictionary of the load segment, and (jf it has not done
so already) an entry for that routine in the Jump Table segment The INTERSEG record
links the JSL to the Jump Table entry that was just created. Figure 15·3 shows the format
of the Jump Table entry that the linker creates. See also Figure IS-Sa.

APDADraft 157 11113/86

Apple JIGS ProDOS 16 Reference

UserlD 2 bytes

load-file no. 2 bytes

Ioad-segmer.t no. 2 bytes

load-segment
offset

4 bytes

JSL to
Jump Table Load 4 bytes

~ function

Figure 15-3. Jump Table entry (unloaded state)

The fields have the following meanings:

User ID: The User ID of the referenced dynamic segment.

Load-file number: The load-fIle number of the referenced dynamic segment.

Load-segment number: The load-segment number of the referenced dynamic
segment.

Load-segment offset: The location of the referenced address within the referenced
dynamic segment.

JSL to Jump Table Load function: A long subroutine jump to the Jump Table
Load function. The Jump Table Load function is described in Chapter 17.

The final entry in a Jump Table segment has a load-file number of zero, to indicate that
there are no more entries in the segment.

Modification at load time

At load time, the loader places the program segment and the Jump Table segment into
memory (it does not yet load the referenced dynamic segment). To link the Jump Table
segment with any other Jump Table segments it may have loaded, it creates the Jump Table
Directory. The Jump Table is now complete.

Using the information in the INTERSEG record, the loader patches the JSL instruction in
the program segment so that it references the proper part of the Jump Table in memory. It
also patches the actual address of the Jump Table Load function into the Jump Table entry.
The Jump Table segment is now in its unloaded Slale. See Figure 15-5b.

APDA Draft 158 11113186

'-.

System Loader: Chapter 15

Use during execution

During program execution, when the JSL instruction in the original load segment is
encountered, the following sequence of events takes place:

1. Control transfers to the proper Jump Table entry.

2 . The JSL in the entry transfers control to the System Loader's Jump Table Load
function.

3. The Jump Table Load function gets the load-file number, load-segment number, and
load-segment offset of the dynamic segment from the Jump Table entry. Then it gets
the me pathname of the dynamic segment from the Pathname Table.

4. The System Loader loads the dynamic segment into memory;

5. The loader changes the dynamic segment's entry in the Jump Table to its loaded
state. The loaded state is identical to the unloaded state, except that the JSL to the
Jump Table Load function is replaced by a JML (unconditional Jump Long)to the
external reference itself. Figure 15-4 shows the format for the loaded state.

UserlD 2 bytes

load-file no. 2 bytes

load-segment no. 2 bytes

load-segment
offset

~

4 bytes

JML to
~ the exterr>al 4 bytes

reference

Figure 15-4. Jump Table entry (loaded state)

6. The loader transfers control to the dynamic segment. When the new segment has
finished its task (typically it is a subroutine and exits with an RTL), control returns to
the statement following the original JSL instruction. See Figure 15-5c.

Jump Table diagram

Figure 15-5 is a simplified diagram of how the Jump Table works. It follows the creation,
loading, and use of a single Jump Table entry, needed to resolve a single instruction in load
segment n. The instruction is a JSL to a subroutine named routine in dynamic segment a.

APDADraft 159 11113186

Apple II GS ProDOS 16 Reference

3. Creation by the linker:

ObJeet Segment n

(header)
When It encounte/S a JSL,

the Unker creates an

Load Segment n

ea

lNTERSEG record In relocation
JSL to routne
in dynamic
segment a

(code)

JSl

'--..L--l

the load segment and 0'\ dictionary)

~n the Jump Table segme~nt:"~::::1~5r--~;~~~~~~~:

LINKER

Dynamic
Segment

a

Jump Tobie entry "'p, .!li'!!.&iIi,!li·.,!!,.,t--referenclng rou1he
In dynamic segmenta

"'u

b. Modification at Load Time:

load Segment n

eaoer) MomO<)' Bank $XX

1. '"'Q_menr
(code) (c~e)

JSl= =1---I'LOade:~-+l loader ~JSl---""---"''''~'''''''''Using the lNTERSEG record,
~ the Loader patche5 the

(relocation
dictionary) The loader loads the load file •

Into memory. Incloolng
segment n end the
Jump Tobie segment

I I
Momory Bank $YV

Jump Table s.gment

: correct address of the
: Jump Table entry onto the JSl

• • • •

1:':1 i F~eol9lem:r I--LJ-...... l 0,--~ '" ., ,.., _-'4-- the loader patches the
: correct addre6S of the
: Jump Table load function
~ onto the Jump Table entry ,

Figure 15·5. How the Jump Table works

APDADraft 160 11113/86

c. Use During Execution:

egwenf

(c ode) ®
S JSL toJllnp Tat>Ie

entry enco..ntered
dung execut\on

, , 6
M emory Bank $VY Execution pcaes to

. .

JmlpTabIe JIInp T obi<> enf<y

.... 0 , Ex_

· ,JllnpT_l

·
paGeS to

ood fu"dlon

• IJunp Tobie load J
Of"(lank $ZZ

Dyrank:
Segment

a I+-
®

Jump Tobie L DOd
dI

gmenta
f"lCiion loa
d'fnomicse

to@

I : . .

. .

(!)
loader changes
JIInp Table enf<y to
I~ loaded ~at.

System Loader: Chapter 15

I ; . .
• • . . .

Memory Bank $ZZ !
~,!"c •
s&gment ~

a : •

@
ro<iIne ItYI'os
will on RTl bock
to segmentn

Figure 15·5. How the Jump Table works (continued)

Pathname Table
The Pathname Table provides a cross-reference between file numbers and file pathnames,
to help the System Loader ftnd the load segments that must be loaded dynamically. The
Pathname Table is a linked list of individual pathname ennies; it statts with an entry for the
pathname of the initial load file, and includes any ennies from segments of kind $04
(Pathname segments) that the loader encounters during the load. Also, if run-time library
files are referenced during program execution, their own pathname segments are linked to
the original one.

A load file's Pathname segment (K IND = $04) is constructed by the linker and contains
one entry for each run-time library file referenced by the file. Each entry consists of a load
file number, me date and time, and a pathname. The exact fonnat for Path name-segment
ennies is given in Apple IIGS Programmer's Workshop Reference.

APDA Draft 161 11113186

Apple IIGS ProDOS 16 Reference

The Pathname Table is constructed in memory by the loader; its entries are identical to
Pathname segment entries. except that each also contains two link handles. a User ID field.
and direct-page/stack infonnation. Figure 15-6 shows the fonnat of a Pathname Table
entry.

handle to
next entry

handle to
previous entry

UserlD

load-file no.

nle date

fiJe time

addles. of
direct page/stack

size of
direct page/slack

........ i~9.~ .. !?Y!~? __ . __ .

I'... pathname

~

4byte5

4byte5

4 bytes

2byte5

2 bytes

2 bytes

2 bytes

2 bytes

Figure 15·6. Path name Table entry

The fields have the following meanings:

Handle to next entry: the memory handle of the next entry in the Pathname Table.
For the last entry. the value of the handle is O.

Hand[e to previous entry: the memory handle of the previous entry in the
Pathname Tab[e. For the first entry. the value of the handle is O.

User ID: the ID associated with this entry. Generally. each load file has a unique
User ID. and a single entry in the Pathname Table. Each new run-time library
encountered during execution is assigned the application' s User ID.

File number: the nwnber assigned to a specific load file by the linker. File number 1
is reserved for the initial load file.

APDADraft 162 11!13/86

File date: the date on which the file was last modified.

File time: the time at which the file was last modified.

System Loader: Chapter 15

Thefile date andfile time are ProDOS 16 directory items retrieved by the linker during
linking. They are included in the Pathname Table as an identity check on run-time
library files (they are ignored for other fIle types). To ensure that the run-time library
file used at program execution is the same one originally linked by the linker, the
System Loader compares these values to the directory entries of the run-time library fIle
to be loaded. If they do not match, the System Loader will not load the me.

Direct-page/stack address: the starting address of the buffer allocated (at initial
load) for the file's direct page (zero page) and staCk.

Direct-page/stack size: the size (in bytes) of the buffer allocated for the fIle's direct
page and stack.

The direct-page/stack address and size fields are in the Pathname Table to allow the
Restart function to more quickly resurrect a donnant application (see "Restart" and
"User Shutdown" in Chapter 17). These two fields are ignored for run-time library
fIles.

File pathname: the full or partial pathname of this entry. Partial pathnames with the
following two prefix numbers are stored in the table unchanged (unexpanded):

11 = the current application's subdirectory

21 = system library subdirectory (initially I v ISYSTEM/LIBS, where Iv I is the
boot volume name)

The System Loader expands all other partial pathnames before storing them in the
Pathname Table.

The pathname is a Pascal string, meaning that it consists of a length byte (of value n)
followed by an ASClI string (n bytes long) that is the pathname itself.

Mark List
The Mark List is a table constructed by the System Loader to keep track of where, within a
load file, each segment's relocation dictionary is located. The Mark List speeds relocation
because, once a code segment is loaded, the loader needn't search through it again to find
the relocation dictionary-the Mark List allows it to go directly to the location of the
segment's relocation dictionary.

Figure 15-7 shows the format of the Mark List.

APDADraft 163 11113186

Apple llGS ProDOS 16 Reference

r
~

r

next available
space

end of
table

load-segment no.

RIe Mark

• •
•

4 bytes

4 bytes

2 bytes

4 bytes

load-segment no. 2 bytes

File Mark 4 bytes

Figure IS·7. Mark List format

The fields have the following meanings:

Next available space: The relative offset (in bytes from the beginning of the Mark List)
to the next empty space in the Mark List.

end of table: The relative offset to the end of the Mark List-in other words, its size in
bytes.

load-segment number: The number of the load segment whose relocation dictionary is
specified in the following field.

File Mark: the relative offset (in bytes from the beginning of the load file) to the
relocation dictionary of the segment specified in the preceding field. File Mark in this table
has the same meaning as Mark, or current file position, in ProDOS 16 (see Chapter 2).

APDADraft 164 1lI13/86

Chapter 16

Programming With
the System Loader

This chapter discusses how you can use the capabilities of the System Loader at several
different levels, depending on the complexity of the programs you wish to write. It also
gives reqirements for designing controlling programs (shells)--programs that control the
loading and execution of other programs.

Programming suggestions for ProDOS 16 are in Chapter 6 of this manual. More general
information on how to program for the Apple nGS is available in Programmer's
Introduction to the Apple IIGS. For language-specific programming instructions, consult
the appropriate language manual in the Apple nGS Programmer's Workshop (see "Apple
IIGS Programmer's Workshop" in Chapter 6).

Static programs
The functioning of the System Loader is completely transparent to simple applications.
Any program that is loaded into memory in its entirety at the beginning of execution, and
which does not call any other programs or routines that must be loaded during run time,
need not know anything about the System Loader. If such a static program is in proper
object module fonnat, it will be automatically loaded, relocated, and executed whenever it
is called.

Programming with dynamic segments
You may write Apple nGS programs that use memory more efficiently than the simple
application described above. If your program is divided into static and dynamic segments,
only the static segments are loaded when the program is started up. Dynamic segments are
loaded only as needed during execution, and the memory they occupy is available again
when they are no longer needed.

Dynamic loading also is transparent to the typical application; no System Loader commands
are necessary to invoke it. If you segment your program as you write the source code, and
if you define the proper segments as dynamic and static when the object code is linked, the
loading and execution of dynamic segments will be completely automatic.

Because segments are specified as static or dynamic at link time, you may experiment with
several configurations of a single program after it has been assembled. For example, you
might first run the program as a single static segment, then run several different static
dynamic combinations to see which gives the best performance for the amount of memory

APDADraft 165 lJI13/86

Apple lIGS ProDOS 16 Reference

required. In this way the same program could be tailored to different machines with
different memory configurations.

In general, the least-used parts of a program are the best candidates for dynamic segments,
since loading and executing a dynamic segment takes longer than executing a static
segment. Furthennore, making a large, seldom-used segment dynamic might make the
initial load of a program faster, since the stati;; part of the load file will be smaller.

Dynamic segments can be used as overlays (segments with the same fIxed starting address
that successively occcupy the same memory area), but this structure is not recommended
for the Apple llGs. If all segments are instead relocatable, the Memory Manager has more
flexibility in fInding the best place for each allocated segment, whether or not it happens to
be a space formerly occupied by another segment of the same program.

Programming with run-time libraries
Note: Although the System Loader supports run-time libraries, initial releases of
other Apple llGS system software may not. TIris section discusses how to program
for run-time libraries when full support for them becomes available.

A run-time library is a load file. Like other libraries or subroutine fIles, it contains general
routines that may be referenced by a program. As with other libraries, references to it are
resolved by the linker.

Unlike other libraries, however, its segments are not physically appelUled to the program
that references it; instead, the linker creates a reference to it in the program's load file. The
run-time library remains on disk (or in memory) as an independent load file; when one of
its segments is referenced during program execution, the segment is then loaded and
executed dynamically.

As with dynamic segments, loading of run-time library segments is transparent to the
typical application. No System Loader commands are necessary to invoke it; as far as the
loader is concerned, the run-time library is just another load fIle with dynamic segments.

The most useful difference between run-time library segments and other dynamic segments
is that they may be shared among programs. Routines for drawing or calculating, dialog
boxes or graphic images, or any other segments that might be of use to more than one
program can be put into run-time libraries. And, being dynamic, they help keep the initial
load fIle small.

Important: In using both run-time libraries and other dynamic segments, make
sure that the volumes containing all needed segments and libraries are on line at run
time. A fatal error occurs if the System Loader cannot fInd a dynamic segment it
needs to load.

APDADraft 166 1lIi3186

System Loader: Chapter 16

User control of segment loading
To make the greatest use of the System Loader, programs may make loader calls directly.
For most applications this is not necessary, but for programs with specialized needs the
System Loader offers this capability.

Your application can manually load other segments using the Load Segment By Number
and Load Segment By Name calls. Load Segment By Number requires the application to
know the load file number and segment number of the segment to load; Load Segment By
Name uses the load file pathname and segment name of the desired segment. Both require
User ID as an input; the User ID for each segment and each pathname are available from the
Memory Segment Table and Pathname Table, respectively. Other segment information
available through the Get Load Segment Info call.

One advantage of manually loading a dynamic segment is that it can be referenced in a more
direct manner. Automatically-loaded dynamic segments can be referenced only through a
JSL to the Jump Table; however, if the segment is data such as a table of values, you may
wish to simply access those values rather than pass execution to the segment By manually
loading the segment, locking it, and dereferencing its memory handle (obtaining a pointer
to the start of the segment), you may then directly reference any location in the table. Of
course, since the loader does not resolve any symbolic references in the manually loaded
segment, the application must know its exact structure.

Note: Manually-loaded dynamic segments on the Apple IIGS can be used for the
same purposes as resource files on the Macintosh.

A program is responsible for managing the segments it loads. That is, it must unload them
(using Unload Segment By Number) or make them purgeable and unlocked (through
Memory Manager calls) when they are no longer needed.

Designing a controlling program
A program may cause the loading of another program in one of two ways:

• The program can make a ProDOS 16 QUIT call. ProDOS 16 and the System Loader
remove the quitting program from memory, then load and execute the specified new
program.

• The program can call the System Loader directly. The loader loads the specified new
program without unloading the original program, then hands control back to the
original program.

A controlling program is an application that loads and executes other programs using
the second method. It uses powerful System Loader calls that are normally reserved for
use by ProDOS 16. Certain types offmders, switchers and shells may be controlling
programs; if you are writing such a program you should follow the conventions given here.

An application needs to be a controlling program only if it must remain in memory after it
calls another program. If it is necessary only that control return to the original program
after the called program quits, the ProDOS 16 QUIT call is sufficient for that. For
example, a fmder, which always returns after an application that it calls quits, does not

APDADraft 167 11113186

Apple IlGS ProDOS 16 Reference

have to be a controlling program; it is not in memory while the application is running. On
the other hand, the Apple fiGS Programmer's Workshop Shell, which has functions needed
by the subprograms that it calls, is a controlling program; it remains active in memory while
its subprograms execute.

Note: Subprograms are flle type $B5, called shell applications. They too must
follow certain conventions. See "Object Module Format" in Apple IlGS
Programmer's Workshop Reference, and Programmer s Introduction to the
Apple IIGS.

If you write a controlling program, please follow these guid~lines:

1. The controlling program should request a User ID for the subprogram, either directly
from the User ID Manager or indirectly, by calling the System Loader's initial Load
function with an input User ID (Ma in ID) of zero. The controlling program should
then pass the returned User ID to the subprogram in the accumulator.

2. Use the System Loader's Initial Load function to first load any subprogram. The
function returns the subprogram's starting address and User ID to your controlling
program; the controlling program can then decide when and where to pass control to
the subprogram.

3. When your controlling program passes execution to the subprogram, it may also
pass parameters and an identifIer string. The pointer to the buffer containing that
information should be placed in the X (high-order word) and Y (low-order word)
registers. The buffer should contain an 8-character shell identifier string, followed
by a null-terminated string consisting of the complete input line or command line
through which the subprogram was called.

Note: ProD OS 16 does not pass an identifier string or command line when it
launches a shell application. It places zeros in the X and Y registers.

4. Your controlling program is responsible for establishing the appropriate input and
output vectors for its subprograms. For example, when ProDOS 16 launches a $B5
fIle, it sets the global I/O hooks to point to the fIrmware Pascal drivers for 80-
column screen and keyboard. The identifier string your controlling program passes
to the subprogram allows it to check to make sure it is running in the proper I/O
environment (that is, under your controlling program and not another).

5. The controlling program should observe the ProDOS 16 conventions for register
initialization and direct-page/stack allocation. See Chapter 6.

6. If you want your controlling program to suppon shell applications that terminate
with a ProDOS 16 QUIT call, the controlling program must intercept all ProDOS 16
calls. That way when a subprogram quits, the controlling program, rather than
ProDOS 16, regains control.

7. When the shell application exits back to the controlling program, it leaves an error
code in the accumulator. Two values are reserved: $0000 means no error, and
$FFFF means a non-specifIc shell-application error. Your controlling program and
subprograms may define any other errors as needed.

8. Your controlling program is totally responsible for the subprogram's disposition.
When the subprogram is fmished, the controlling ~rogram must remove it from
memory and release all resources associated with Its User ID. The best way to do
this is to call the System Loader's User Shutdown function.

9. If the subprogram itself manually loads other programs, then it is also a controlling
program and must observe all the conventions listed here. in panicular, it must be

APDADrqfi 168 IlI13186

SystemLoader: Chapter 16

certain to dispose of all memory resources associated with the subprogram that it
loaded, before itself quitting and passing control back to the original controlling
program.

The practice of using shell applications as controlling programs is discouraged.

Shutting down and restarting applications

Through alternate use of the User Shutdown and Restart functions, a controlling program
can rapidly switch execution among several applications. If none of an application's static
segments have been removed from memoxy since shutdown, Restart brings the application
back rapidly because disk access is not required.

However, only software that is restartable can be restarted in this way. Restartable
software reinitializes its variables every time it gains control; it makes no assumptions about
the state of the machine when it starts up. If a subprogram exits with a QU I T call, it
specifies whether it is restartable or not; otherwise, the controlling program is responsible
for deciding whether a program qualifies as restartable.

Summary: loader calls categorized
The following table categorizes System Loader calls by the types of programs that make
them. Most applications, whether their segments are static or dynamic, and whether or not
they use run-time libraries, need make none of these calls. Applications that load dynamic
segments manually may call any of the user-callable functions. Controlling programs and
ProD OS 16 call the system-wide functions. Only the System Loader itself may call the
internal functions. Functions not listed in Table 16-1 either do nothing or are executed only
at system startup.

Table 16-1. System Loader functions categorized by caller

User-Callable
Loader Version
Loader Status
Load Segment By Number
Unload Segment By Number
Load Segment By Name
Unload Segment
Get Load Segment Info

APDADraft

System-Wide Internal
Initial Load Jump Table Load
Restart Cleanup
Get UserID
Get Pathname
User Shutdown

169 11113186

Apple JIGS ProDOS 16 Reference

APDADraft 170 1II13186

Chapter 17

System Loader Calls

Introduction
This chapter explains how System Loader functions are called, and describes the following
calls:

Number Function Purpose
$01 Loaderhlltialization (executed at system startup)

$02 Loader Startup (no function)

$03 Loader Shutdown (no function)

$04 Loader Version returns System Loader version

$05 Loader Reset (no function)

$06 Loader Status returns initialization status

$09 Initial Load loads an application

$OA Restart restarts a dormant application

SOB Load Segment By Number loads a single segment

SOC Unload Segment By Number unloads a single segment

SOD Load Segment By Name loads a single segment

$OE Unload Segment unloads a single segment

$OF Get Load Segment Info returns a segment's handle

$10 Get UserID returns User ID for a pathname

$11 Get Patlmame returns pathname for a User ID

$12 User Shutdown makes an application dormant

Jump Table Load loads a dynamic segment

Cleanup frees memory space

How calls are made

The System Loader is an Apple fiGS tool set (tool number 17, or hexadecimal $11). You
call its functions using either macro calls (not described here) or the standard Apple fiGS
tool calling sequence, as follows:

1. Push any required space for returned results onto the stack.

2. Push each input value onto the stack, in the proper order.

APDADraft 171 11/13/86

Apple JIGS ProDOS 16 Reference

3. Execute the following call block:

where

LDX 4$11+FuncNumI8
JSL Dispatcher

It $11 is the System Loader tool set number
FuncNum is the number of the function being called

(18 means "shift left by 8 bits".)
Dispatcher is the address of the Tool Dispatcher ($E1 00 00).

It is the responsibility of the caller (usually a controlling program) to prepare the stack for
each function it calls, and to pull any results off the stack. Error status is returned in the
accumulator (A register); funhennore, the carry bit is set (l) if the call is unsuccessful, and
cleared (0) if the call is sucessful.

The Jump Table Load function does not use the above calling sequence, and cannot be
called directly by an application. It is called indirectly, through a call to a Jump Table
entry. The absolute address of the function is patched into the Jump Table by the System
Loader at load time.

Parameter types

There are four types of parameters passed in the stack: values, results, pointers, and
handles. Each is either an input to or an output from the loader function being called.

• A value is a numerical quantity, either 2 bytes (word) or 4 bytes (long word) in
length, that the caller passes to the System Loader. It is an input parameter.

• A result is a numerical quantity, either 2 bytes (word) or 4 bytes (long word) in
length, that the System Loader passes back to the caller. It is an output parameter.

• A pointer is the address of a location containing data, code, or buffer space in which
the System Loader can receive or place data. A pointer may be 2 bytes (word) or 4
bytes (long word) in length. The pointer itself, and the data it points to, may be
either input or output.

• A handle is a special type of pointer: it is a pointer to a pointer. It is the 4-byte
address of a location that itself contains the address of a location containing data,
code, or buffer space. In System Loader calls, a handle is always an output

Format for System Loader call descriptions

The following sections describe the System Loader calls in detail. Each description
contains these elements:

• the full name of the call

• a brief description of what function it performs

• the call's function number

• the call's assembly-language macro name (use it if you make macro calls)

APDADraji 172 11113186

System Loader: Chapter 17

• the call's parameter list (input and output)

• the stack configuration both before and after making the call

• a list of possible error codes

• the sequence of events the call invokes (if the brief description is not complete
enough).

Parameter list note: In the parameter lists, input parameters are listed in the
order in which they are pushed onJo the stack; output parameters are listed in the
order in which they are pulled from the stack. Check the stack diagrams if you are
uncertain of the proper order in which to push any of the parameters.

Stack diagram note: Unlike other memory tables in this manual, the stack
diagrams are organized in units of words-that is, each tick mark represents two
bytes of stack space.

APDADraft 173 11113186

Apple lIes ProDOS 16 Reference

Loader Initialization ($01)
This routine initializes the System Loader; it is called by the system software at boot time.
Loader Initialization clears all loader tables and sets the initial state of the system, making
no assumptions about the current or previous state of the machine. The System Loader's
global variables (see Appendix D) are defined at this time.

The Initialization routine is required for all Apple llGS tool sets.

Function Number: $01

Macro Name: Loaderlnit

Parameters:

(none)

Possible Errors:

(none)

APDADraft 174 11113186

System Loader: Chapter 17

Loader Startup ($02)
The Startup routine is required for all Apple IIGS tool sets. For the System Loader, this
function does nothing and need never be called

Function Number: $02

Macro Name: LoaderStartup

Parameters:

(none)

Possible Errors:

(none)

APDADraft 175 11113/86

Apple Ilcs ProDOS 16 Reference

Loader Shutdown ($03)
The Shutdown routine is required for all Apple nGS tool sets. For the System Loader, this
function does nothing and need never be called.

Function Number: $03

Macro Name: Loade rShutdo wn

Parameters:

(none)

Possible Errors:

(none)

APDADraft 176 11113/86

, ..

System Loader: Chapter 17

Loader Version ($04)

The Loader Version function returns the version number of the System Loader currently in
use. The version number has this format:

Byte 1 Byte 0

Bit: 15 141131121111101918 716!51413!2111°
Value: 8 Major Release No. Minor Release No.

where

• Byte 0 is the minor release number (= 0 for System Loader version 1.0)
• Byte 1 is the major release number (= 1 for System Loader version 1.0)
• B (the most significant bit of byte 1) = 0 for final releases

= I for all prototype releases

The Version routine is required for all Apple llGS tool sets.

Function Number: $04

Macro Name: LoaderVersion

Parameters:

Name
(none)

Size and Type
Input:

Output: Loader version word result (2 bytes)

Stack Before Call:

previous contents
(result space)

~SP

Stack After Call:

previous contents
Version

~SP

APDADraft 177 llf13186

Apple JIGS ProDOS 16 Reference

Possible Errors:

(none)

APDADraft 178 11/13/86

System Loader: Chapter 17

Loader Reset ($05)
The Reset routine is required for all Apple IIGS tool sets. For the System Loader, this
function does nothing and need never be called.

Function Number: $05

Macro Name: LoaderReset

Parameters:

(none)

Possible Errors:

(none)

APDADraft 179 Il/13/86

Apple lIGS ProDOS 16 Reference

Loader Status ($06)
This routine returns the current status (initialized or uninitialized) of the System Loader. A
nonzero result means TRUE (initialized); a zero result means FALSE (uninitialized). A
result of TRUE is always returned by this call because the System Loader is always in the
initialized state.

The Status routine is required for all Apple IIGS tool sets.

Function Number: $06

Macro Name: L oaderStatus

Parameters:

Input:

Output:

Name
(none)

status

Stack Before Call:

previous contents
(result space)

Stack After Call:

previous contents
Status

Possible Errors:

(none)

APDADraft

4-SP

4-sp

180

Size and Type

word result (2 bytes)

11113/86

System Loader: Chapter 17

Initial Load ($09)
This function is called by a controlling program (such as a shell or a switcher) to ask the
System Loader to perform an initial load of a program.

Function Number: $09

Macro Name:

Parameters:

Input:

InitialLoad

Name
UserID
address ofload-file pathname
special-memory flag

Output: UserID
starting address
address of direct-pagel
stack buffer
size of direct-pagel
stack buffer

Stack Before Call:

t t prevIous con en s

(result space)
(result space)

(result space)

(result space)

UseriD

~
address of

load-file name

special-memory flag

+-SP

APDADraft 181

Size and Type
word value (2 bytes)

long word pointer (4 bytes)
word value (2 bytes)

word result (2 bytes)
long word pointer (4 bytes)

word pointer (2 bytes)

word result (2 bytes)

11113186

Apple lIGS ProDOS 16 Reference

Stack After Call:

previous contents

dir. page/stack size
dir. page/stack addr.

t- starting address

UseriD
14-SP

Possible Errors:

$1104
$1105
$1109
$110A
$110B
$OOxx
$02xx

File is not a load fIle
System Loader is busy
SegNum out of sequence
lllegalload record found
Load segment is foreign
ProDOS 16 error
Memory Manager error

Sequence of Events:

When the Initial Load function is called, the following sequence of events occurs.

1. The function checks the TypeID and MainID fields of the specified User ID.

a. If both fields are nonzero, the System Loader uses it to allocate space for the
segments to be loaded.

b. If the Type ID field is zero, the System Loader obtains a new User ID from the
User ID Manager, to assign to all segments of that fIle. The new Type ID is
given the value 1, meaning that the new fIle is classified as an application.

c. If only the MainlD field is zero, the System Loader obtains a new User ID from
the User ID Manager, using the supplied TypelD and AuxlD.

The User ID Manager (described in Apple lIGS Toolbox Reference) gnarantees
that User ID's are unique to each application, tool, desk accessory, and so forth.
See Appendix D of this manual for a brief description of the User ID format and
the TypeID field.

2. The function checks the value of the special-memory flag. If it is TRUE (nonzero),
the System Loader will not load any static segments into special memory (banks $00
and $Ol-see Chapter 3). The special-memory flag does not affect the load
addresses of dynamic segments.

3. The function calls ProDOS 16 to open the specified (by pathname) load file. If any
ProD OS 16 error occurs, or if the file is not a load ftle (type $B3-$BE), the System
Loader returns the appropriate error code.

Note: If the load file is a ProDOS 8 system file (type $FF) or a ProDOS 8 binary
file (type $06), the loader will not load it

APDADraft 182 11113186

System Loader: Chapter 17

4. Once the load file is opened, the System Loader adds the load-file infonnation to the
Pathname Table, and calls the Load Segment By Number function for each static
segment in the load file.

• If any static segment loaded is an Initialization Segment (segment kind=$lO), the
System Loader immediately transfers control to it. When the System Loader
regains control, it loads the rest of the static segments without passing control to
them

• If a direct-page/stack segment (KIND=$92) is loaded, the System Loader returns
the segment's starting address and size.

Note: The System Loader treats a direct-page/stack segment as a locked, dynamic
segment. The segment cannot be moved or purged as long is the application is
active, but it is purged at shutdown.

• If any of the static segments cannot be loaded, the System Loader aborts the load
and returns the error from the Load Segment By Number function.

5. Once it has loaded all the static segments, the System Loader returns the starting
address of the fIrSt segment (other than an initialization segment) of load file 1 to the
controlling program. It then transfers execution to the controlling program. The
controlling program itself is responsible for setting the stack and direct registers and
for transferring control to the just-loaded program.

APDADraft 183 llf13f86

Apple IIGS ProDOS 16 Reference

Restart ($OA)

This function is called by a controlling program (such as a shell or a switcher) to ask the
System Loader to resurrect a dormant application---one that has been shut down (by the
User Shutdown function), but is still in memory.

Only programs that are restartable can be successfully resurrected through this call. A
restartable program always reinitializes its variables and makes no assumptions about
machine state each time it executes.

Function Number: $OA

Macro Name: Restart

Parameters:

Name Size and Type
Input: UserID word value (2 bytes)

Output: UserID word result (2 bytes)
starting address long word pointer (4 bytes)
address of direct-pagel
stack buffer word pointer (2 bytes)
size of direct-pagel
stack buffer word result (2 bytes)

Stack Before Call:

previous contents
(result space)
(result space)

I- (result space)

(result space)

UserfD

14-SP

APDADraft 184 11113186

-.

" .

Stack After Call:

t t prevIous con en S

dir. page/stack size
dir. page/stack addr.

f- starting address

UserlD

I+-SP

Possible Errors:

$1101
$1105
$1108
$O<kx
$02xx

Application not found
System Loader is busy
User ID error
ProDOS 16 error
Memory Manager error

Sequence of Events:

System Loader: Chapter 17

When the Restart function is called, the following sequence of events occurs.

1. An existing, nonzero User ID must be specified (the Aux ID part is ignored). If the
User ID is zero, error $1108 is returned. If the User ID is unknown to the System
Loader, error $110 1 is returned.

2. The Restart function can work only if all of the specified program's static segments
are still in memory. What that means is that no segments in the Memory Segment
Table with the specified User ID can have been purged.

a. The System Loader checks the memory handle of each Memory Segment Table
entry with that User ID. If none are set to NIL the segments are all in memory.

b. The System Loader then resurrects the application by calling the Memory
Manager to make each of the application's segments unpurgeable and locked.

c. The application's complete User ID, the first segment's starting address, and the
direct page and stack information (from the Pathname Table) are returned to the
caller.

3. If any of the application's static segments are no longer in memory, the function
does the following:

a. It calls the Cleanup routine to purge all references to that User ID from the
System Loader's tables and delete the User ID itself.

b. It calls the Initial Load function to load the application. The application receives a
new User ID, which is returned to the caller.

APDADraft 185 11113/86

Apple JIGS ProDOS 16 Reference

Load Segment By Number ($OB)

The Load Segment By Number routine is the workhorse function of the System Loader.
Other System Loader functions that load segments do so by calling this function. It loads a
specific load segment into memory; the segment is specified by its load-file number. load
segment number. and User ID.

Note: Applications use this function to manually load dynamic segments. An
application may also use Load Segment By Number to manually load a static
segment However. in that case the System Loader does not patch the correct
address of the newly loaded segment onto any existing references to it. Therefore
the segment can be accessed only through its starting address.

Function Number: SOB

Macro Name: LoadSe gNurn

Parameters:

Name
Input: UserID

load-file number
load-segment number

Output: address of segment

Stack Before Call:

previous contents

(result space)

UserlD
load-file number

load-segment no.

Stack After Call :

previous contents

-

APDADraft

address of
segment

+-SP

I+-sp

186

Size and Type
word value (2 bytes)
word value (2 bytes)
word value (2 bytes)

long word pointer (4 bytes)

Ilf13186

-~

-~-

Possible Errors:

$1101
$1102
$1104
$1105
$1107
$1109
$110A
$110B
$00xx
$Olxx

Segment not found
Incompatible OMF version
File is not a load file
System Loader is busy
File version error
SegNum out of sequence
llJegalload record found
Load segment is foreign
ProDOS 16 error
Memory Manager error

Sequence of Events:

System Loader: Chapter 17

When the Load Segment By Number function is called, the following sequence of events
occurs.

1. First the loader checks to find out if the requested load segment is already in
memory: it searches the Memory Segment Table to determine if there is an entry for
the segment If the entry exists, the loader checks the value of the memory handle to
find out whether the corresponding memory block is still in memory. If so, the
function terminates without returning an error. If an entry exists but the memory
block has been purged, the entry is deleted.

2. If the segment is not already in memory, the System Loader looks in the Pathname
Table to get the load-file pathname from the load-file number.

3. The System Loader checks the file type of the referenced me. If it is not a load file
(type $B3-$BE), then error $1104 is returned.

4. If the me is type $B4 (run-time library file), the System Loader compares the me's
modification date and time values to the me date and file time in the Pathname Table.
If they do not match, error $1107 is returned and the load is not performed.

5. ProDOS 16 is called to open the file. If ProDOS 16 cannot open the file, it returns
an appropriate error code.

6. After ProDOS 16 successfully opens the load me, the System Loader searches the
file for a load segment corresponding to the specified load-segment number. If none
is found, error $1l0 1 is returned.

If the load segment is found, its header is checked (segment headers are described
under "Object Module Format" in Apple JIGS Programmer's Workshop Reference).
If the segment's OMF version number is incompatible with the current System
Loader version, error $1102 is returned. If the value in the header's SEGNUM field
does not match the specified load-segment number, error $1109 is returned. If the
values in the NUMSEX and NUMLEN fields are not 0 and 4, respectively, error $l1OB
is returned.

7. If the load segment is found and the header is correct, a memory block of the size
specified in the LENGTH field of the segment header is requested from the Memory
Manager. If the ORG field in the segment header is not zero, then a memory block

APDADraft 187 11113/86

Apple IIGS ProDOS 16 Reference

starting at the address specified by ORG is requested (ORG is nonnally zero for Apple
IIGS programming; that is, most segments are relocatable). Other segment attributes
are set according to values in other segment header fields---see Chapter 14.

8. If a nonzero User ID is specified. the memory block is given that User ID. If the
specified User ID is zero, the memory block is given the current User ID (value of
USERID global variable).

9 . If the requested memory is not available, the Memory Manager and System Loader
use these techniques to free space:

a. The Memory Manager unloads unneeded segments by purging their
corresponding memory blocks. Blocks are purged according to their purge
levels. For example, alllevel-3 blocks are purged before the first level-2 block is
purged. Any dynamic segment whose memory block's purge level is zero cannot
be unloaded.

b . If all purgeable segments have been unloaded and the Memory Manager still
cannot allocate enough memory, it moves any movable blocks to enlarge
contiguous memory areas.

c. If all eligible memory blocks have been purged or moved, and the Memory
Manager still cannot allocate enough memory, the System Loader Cleanup
routine is called to free any unused parts of the System Loader' s memory. The
Memory Manager then tries once more to allocate the requested memory.

d. If the Memory Manager is still unsuccessful, the System Loader returns the last
Memory Manager error that occurred.

10. Once the Memory Manager has allocated the requested memory, the System Loader
puts the load segment into memory, and processes the relocation dictionary (if any).

Note: If any records within the segment are not of a proper type ($E2, $E3, $Fl,
$F2, or $00), error $1 lOA is returned. See Appendix D for an explanation of
record types.

11. An entry for the segment is added to the Memory Segment Table.

12. The System Loader returns the starting address of the segment to the controlling
program.

APDADraft 188 11113186

'-,

System Loader: Chapter 17

Unload Segment By Number ($OC)
This function unloads a specific load segment from memory. The segment is specified by
its load-file number and load-segment number, and its User ID.

Function Number: $OC

Macro Name: UnLoadSegNum

Parameters:

Name
Input: UserID

load-file number
load-segment number

Output: (none)

Stack Before Call:

previous contents
UserlD

load-file no.
load-segment no.

+-SP

Stack After Call: I previous contents I
\4-sp

Possible Errors:

$1101
$1105
$OOxx
$02xx

Segment not found
System Loader is busy
ProDOS 16 error
Memory Manager error

APDADraji 189

Size and Type
word value (2 bytes)
word value (2 bytes)
word value (2 bytes)

11113/86

Apple lIes ProDOS 16 Reference

Sequence of Events:

When the Unload Segment By Number function is called, the following sequence of events
occurs.

1. The System Loader searches the Memory Segment Table for the specified load-file
number and load-segment number. If there is no such entry, error $1101 is
returned.

2. If the Memory Segment Table entry is found, the loader calls the Memory Manager
to make purgeable (purge level = 3) the memory block in which the dynamic
segment resides.

3. The loader changes all entries in the Jump Table that reference the unloaded segment
to their unloaded states.

Special conditions:

• If the specified User ID is zero, the current User ID (value of USE RID) is assumed.

• If both the load-file number and load-segment number are nonzero, the specified
segment is unloaded regardless of whether it is static or dynamic. If either input is
zero, only dynamic segments are unloaded, as noted next.

• If the specified load-file number is zero, all dynamic segments for that User ID are
unloaded.

• If the specified load-segment number is zero, all dynamic segments for the specified
load fIle are unloaded.

Note: If a static segment is unloaded, the application that it is part of cannot be
restarted from a dormant state. See "Restart" and "User Shutdown," in this
chapter.

APDADraft 190 11113/86

System Loader: Chapter 17

Load Segment By Name ($OD)
This function loads a named segment into memory. The segment is named by its load file 's
pathname, and its segment name (from the SEGNAME field in the segment header). A
nonzero User ID may be specified if the loaded segment is to have a User ID different from
the current User ID.

Function Number: $OD

Macro Name:

Parameters:

Input:

LoadSegName

Name
UserID
address ofload-fIle name
address of load-segment name

Output: address of segment
load-file number
load-segment number

Stack Before Call:

previous contents

(result space)
(result space)

i- (result space)

UserlD

address of
c..

load-file name

address of
i- load-segment name

~ SP

APDADrqft 191

Size and Type
word value (2 bytes)

long word pointer (4 bytes)
long word pointer (4 bytes)

long word pointer (4 bytes)
word result (2 bytes)
word result (2 bytes)

11113186

Apple IIGS ProDOS 16 Reference

Stack After Call:

previous contents
load-segment no.

load-file no.

address of
segment

i I+-SP

Possible Errors:

$1101
$1104
$1105
$1107
$1109
$llOA
$110B
$OOxx
$02xx

Segment not found
File is not a load file
System Loader is busy
File version error
SegNum out of sequence
lllegalload record found
Load segment is foreign
ProDOS 16 error
Memory Manager error

Sequence of Events:

When the Load Segment By Name function is called, the following sequence of events
occurs.

1. The System Loader gets the load-file pathname from the pointer given in the function
call.

2. The System Loader checks the fIle type of the referenced file, from the file's disk
directory entry. If it is not a load file (type $B3-$BE), error $1104 is returned.

3. If it is a load fIle, the loader calls ProDOS 16 to open the file. If ProDOS 16 cannot
open the file, it returns the appropriate error code.

4. After the load file has been successfully opened by ProDOS 16, the System Loader
searches the file for a segment with the specified name. If it fmds none, error $1101
is returned. .

5. If the load segment is found, the System Loader notes the segment number. It also
checks the Patlmame Table to see if the load file is listed. If the file is listed, the
loader gets the load file number from the table; if not, it adds a new entry to the
Pathname Table, assigning an unused file number to the load file.

6. Now that it has both the load-file number and the segment number of the requested
segment, the System Loader calls the Load Segment By Number function to load the
segment. If the Load Segment By Number function returns an error, the Load
Segment By Name function returns the same error. If the Load Segment By Nurnber
function is successful, the Load Segment By Name function returns the load file
number, the load segment number, and the starting address of the memory block in
which the load segment was placed.

APDADraft 192 11113/86

System Loader: Chapter 17

Unload Segment ($OE)
This function unloads the load segment containing the specified address. By using Unload
Segment, an application can unload a segment without having to know its load-segment
number, load-file number, name or User ID.

Function Number: $OE

Macro Name: UnloadSeg

Parameters:

Name
Input: address in segment

Output: UserID
load-file number
load-segment number

Stack Before Call:

'0 s co t ts previ u n en

(result space)
(result space)
(result space)

address In segment

14-SP

Stack After Call:

previous contents
load-segment no.

load-file no.
UserlD

4-. SP

APDADraft 193

Size and Type
long word pointer (4 bytes)

word result (2 bytes)
word result (2 bytes)
word result (2 bytes)

11113/86

Apple JIGS ProDOS 16 Reference

Possible Errors:

$ 1101
$1105
$OOxx
$Oill

Segment not found
System Loader is busy
ProDOS 16 error
Memory Manager error

Sequence of Events:

When the Unload Segment function is called, the following sequence of events occurs.

1. The function calls the Memory Manager to identify the memory block containing the
specified address. If the address is not within an allocated memory block, error
$110 I is returned.

2. If the memory block is found, the function uses the memory handle returned by the
Memory Manager to find the block's User ID. It then scans the Memory Segment
Table for an entry with that User ID and handle. If no such entry is found. error
$11 0 I is returned.

3. If the Memory Segment Table entry is found, the function does one of two things:

a . If the Memory Segment Table entry refers to any segment other than a Jump
Table segment, the function extracts the load-file number and load-segment
number from the entry.

b . If the Memory Segment Table entry refers to a Jump Table segment, the function
extracts the load-file number and load-segment number in the Jump Table entry
at the address specified in the function call.

4 . The function then calls the Unload Segment By Number function to unload the
segment.

The outputs of this function (load-me number, load-segment number. and User ID) can be
used as inputs to other System Loader functions such as Load Segment By Number.

APDADraft 194 11113186

System Loader: Chapter 17

Get Load Segment Info ($OF)
This function returns the Memory Segment Table entry corresponding to the specified (by
number) load segment.

Function Number: $OF

Macro Name: GetLoadseglnfo

Parameters:

Name
Input: UserID

load-me number
load-segment number
address of user buffer

Output: (filled user buffer)

Stack Before Call:

previous contents
UserlO

load-file no.
lood-segment no.

address of - user buffer

~ Sp

Stack After Call: I previous contents I
i+-sp

Possible Errors:

$1101
$1105
$OOxx
$02xx

Entry not found
System Loader is busy
ProDOS 16 error
Memory Manager error

APDADraft 195

Size and Type
word value (2 bytes)
word value (2 bytes)
word value (2 bytes)

long word pointer (4 bytes)

11113186

App/elJGS ProDOS 16 Reference

Sequence of Events:

When the Get Load Segment Info function is caIled, the following sequence of events
occurs.

I . The Memory Segment Table is searched for the specified entry. If the entry is not
found, error $110 1 is returned.

2. If the entry is found, the contents of the entry (except for the link pointers) are
copied into the user buffer.

APDA Draft 196 1II13186

System Loader: Chilpter 17

Get User ID ($10)
This function returns the User ID associated with the specified pathname. A controlling
program can use this function to determine whether it can restart an application or must
perform an initial load.

Function Number: $10

Macro Name: GetUserID

Parameters:

Name
Input: address of pathname

Output: UserID

Stack Before Call:

-

previous contents
(result space)

address of
pathname

Stack After Call:

previous contents
UserlD

Possible Errors:

~SP

~SP

$1101
$1105
$OOxx
$02u

Entry not found
System Loader is busy
ProDOS 16 error
Memory Manager error

APDADraji 197

Size and Type
long word pointer (4 bytes)

word result.(2 bytes)

llII3186

Apple JIGS ProDOS 16 Reference

Sequence of Events:

When the Get User ID function is called, the following sequence of events occurs.

1. The System Loader searches the I;>athname Table for the specified pathname. If the
input pathname is a partial pathname and starts with a prefix number other than 1 / or
2 / , it is expanded to a full pathname before the search.

2. If it finds a match, the loader returns the User ID from that entry in the Pathname
Table.

APDADraft 198 llfJ3186

SystemLoader: Chapter 17

Get Path name ($11)
This function returns the pathname associated with the specified User ID. ProDOS 16 uses
this call to set the application prefix (11) for a program that is restarted from memory.

Function Number: $11

Macro Name:

Parameters:

Input:

GetPathname

Name
UserID
File number

Output: Address of pathname

Stack Before Call:

previous contents

I- (result space)

UserlD
load-file number

Stack After Call:

previous contents

address of
pathname

Possible Errors:

:.--SP

I+-sp

$1101
$1105
$00xx
$Oill

Entry not found
System Loader is busy
ProDOS 16 elTOr
Memory Manager error

APDADraft 199

Size and Type
word value (2 bytes) .
word value (2 bytes)

long word result (4 bytes)

11113/86

Apple Ifes ProDGS 16 Reference

Sequence of Events:

When the Get Pathname function is called, the following sequence of events occurs.

1. The System Loader searches the Pathname Table for the specified User ID and file
number.

2. If it finds a match, the loader returns the address of the pathname from that entry in
the Pathname Table.

APDADraji 200 11113186

. .. -,

System Loader: Chapter 17

User Shutdown ($12)

This function is called by the controlling program to close down an application that has just
terminated.

Function Number: $12

Macro Name: UserShutdown

Parameters:

Input:

Output:

Name
UserID
quit flag

UserID

Stack Before Call:

previous contents
(result space)

UseriD

quit flag

Stack After Call:

previous contents
UseriD

Possible Errors:

14- SP

14- SP

$1105
$OOxx
$02xx

System Loader is busy
ProDOS 16 error
Memory Manager error

APDADraft 201

Size and Type
word value (2 bytes)
word value (2 bytes)

word result (2 bytes)

11/13186

Apple IIGS ProDOS 16 Reference

Sequence of Events:

Note: This function is designed to support the options provided in the ProDOS 16
QUIT function. The quit flag in this call corresponds to the flag word parameter in
the ProDOS 16 QUIT call. Only bits 14 and 15 of the flag are significant: If bit 15
is set, the quitting program wishes control to return to it eventually; if bit 14 is set,
the program is restartable. See the description of the Restart function in this
chapter.

When the User Shutdown function is called, the following sequence of events occurs.

I. The System Loader checks the specified User ID. If it is zero, the loader assumes it
is the current User ID (= value of USERID global variable). In any case,loader
ignores (by setting to zero) all values in the AuxID field of the User ID.

2. The loader checks the value of the quit flag.

a. If the quit flag is zero, the Memory Manager disposes (permanently deallocates)
all memory blocks with the specified User ID. The System Loader then calls its
Cleanup routine to purge the loader's internal tables of all references to that User
ID. The User ID itself is deleted so that the system no longer recognizes it.

In this case the application is completely gone. It cannot be restarted from
memory or quickly reloaded.

b. If the quit flag is $800 (bit 15 set to I), the Memory manager purges (temporarily
deallocates) aU memory blocks with the specified User ID. The System Loader's
internal tables for that User ID, including the Pathname Table entry, remain
intact.

In this case the application can be reloaded quickly but it cannot be restarted from
memory.

c. If the quit flag has any other value, the Memory Manager first disposes aU blocks
corresponding to dynamic segments with the specified User ID, and the System
Loader removes their entries from the memory Segment Table. The loader also
removes all entries for that UserlD from the Jump Table directory. The Memory
Manager then makes all static segments with the specified User ID purgeable.

The application is now in a dormant state-disconnected but not gone. It may
be resurrected very quickly by the System Loader because all its static segments
are still in memory. Once any of its static segments is purged by the Memory
Manager, however, the program is truly lost and must be reloaded from disk if it
is needed again.

APDA Draft 202 1I!l3186

System Loader: Chapter 17

Jump Table Load
This function is called by an unloaded Jump Table entry in order to load a dynamic load
segment. Besides the function call, the unloaded Jump Table entry includes the load-ftle
number and load-segment number of the dynamic segment to be loaded. The Jump Table
is described in Chapter 15.

Function Number: none

Macro Name: none

Parameters:

Name
Input: UserID

load-ftle number
load-segment number
load-segment offset

Output: (none)

Stack Before Call:

previous contents

UserlD
load-file no.

load-segment no.

~ load-segment offset

14-SP

Stack After Call: I previous contents I
\4-sp

APDADraft 203

Size and Type
word value (2 bytes)
word value (2 bytes)
word value (2 bytes)

long word value (4 bytes)

11113186

Apple IIGS ProDOS 16 Reference

Possible Errors:

$1101
$1104
$1105
$OOxx
$02xx

Segnaentnotfound
File is not a load file
System Loader is busy
ProDOS 16 error
Memory Manager error

Note: Because this function is never called directly by a controlling program, the
program need not know what parameters it requires.

Sequence of Events:

When the Jump Table Load function is called, the following sequence of events occurs.

1. The function calls the Load Segnaent By Number function, using the load-file
number and 10ad-segnaent number in the Jump Table entry. If the Load Segment By
Number function returns any error, the System Loader considers it a fatal error and
calls the System Failure Manager.

2. If the Load Segnaent By Number function successfully loads the segment, the Jump
Table Load function changes the Jump Table entry to its loaded state: it replaces the
JSL to the Jump Table Load function with a JML to the absolute address of the
reference in the just-loaded segment.

3. The function transfers control to the address of the reference.

APDADraft 204 11113186

, --'

System Loader: Chapter 17

Cleanup
This routine is used to free additional memory when needed. It scans the System Loader's
internal table and removes all entries that reference purged or disposed segments.

Note: Because this function is never called directly by a controlling program, the
program need not know what parameters it requires.

Function Number: none

Macro Name: none

Parameters:

Input:

Output:

Name
UserID

(none)

Stack Before Call:

previous contents
UserlD

Stack After Call:

I4-sp

previous contents I
r----:.-----I\4-sp

Possible Errors:

(none)

Sequence of Events:

Size and Type
word value (2 bytes)

When the Cleanup routine is called, the following sequence of events occurs.

1. If the specified User ID is 0:

a. The System Loader scans all entries in the Memory Segment Table.

b. All dynamic segments for all User ID's are purged.

APDADraji 205 11113/86

Apple lIGS ProDOS 16 Reference

2. If the specified User ID is nonzero:

a. The System Loader scans all entries in the Memory Segment Table with that
User1D.

b. All load segments (both dynamic and static) for that User 1D are purged.

c. All entries in the Memory Segment Table, Jump Table directory. and Pathname
Table for that User ID are deleted.

APDADraft 206 11113186

Appendixes

APDADraji 207 11113/86

-~.

APDADraft 208 11113/86

Appendix A

ProDOS 16 File Organization

This appendix describes in detail how ProDOS 16 stores files on disks. For most
applications, the operating system insulates you from this level of detail. However, you
must use this information if, for example, you want to

• List the files in a directory

Copy a sparse f:tle without increasing the file's size

• Compare two sparse files

This appendix fITst explains the organization of information on volumes. Next, it shows the
format and organization of volume directories, subdirectories, and the various stages of
standard files. Finally it presents a set of diagrams showing the formats of individual
header and entry fields.

Note: In this appendix,format refers to the arrangement of information (such as
headers, pointers and data) within a file. Organization refers to the manner in
which a single file is stored on disk, in terms of individual 512-byte blocks.

Organization of information on a volume
When a volume is formatted for use with ProD OS 16, its surface is partitioned into an array
of tracks and sectors. In accessing a volume, ProDOS 16 requests not a track and sector,
but a logical block from the device corresponding to that volume. That device's driver
translates the requested block number into the proper track and sector number; the physical
location of information on a volume is unimportant to ProDOS 16 and to an application that
uses ProDOS 16. This appendix discusses the organization of information on a volume in
terms of logical blocks, not tracks and sectors.

When the volume is formatted, information needed by ProDOS 16 is placed in specific
logical blocks, starting with the fust block (block 0). A loader program is placed in blocks
o and 1 of the volume. This program enables ProDOS 16 (or ProD OS 8) to be booted
from the volume. Block 2 of the volume is the key block (the fust block) of the volume
directory file; it contains descriptions of (and pointers to) all the files in the volume
directory. The volume directory occupies a number of consecutive blocks, typically four,
and is immediately followed by the volume bit map, which records whether each block
on the volume is used or unused. The volume bit map occupies consecutive blocks, one
for every 4,096 blocks, or fraction thereof, on the volume. The rest of the blocks on the
disk contain subdirectory file information, standardfile information, or are empty. The
fITst blocks of a volume look something like Figure A-I.

APDADrqft 209 11113/86

Apple IIGS ProDOS 16 Reference

Figure A-I. Block organization of a volume

The precise format of the volume directory, volume bit map, subdirectory files and
standard files are explained in the following sections.

Format and organization of -directory files

. . .

The format and organization of the information contained in volume directory and
subdirectory files is quite similar. Each consists of a key block followed by zero or more
blocks of additional directory information. The fields in a directory's key block are:

• a pointer to the next block in the directory
• a header that describes the directory
• a number of file entties describing, and pointing to, the files in that directory
• zero or more unused bytes.

The fields in subsequent (nonkey) blocks in a directory are:

• pointers to the preceding and succeeding blocks in the directory
• a number of entties describing, and pointing to, the files in that directory
• zero or more unused bytes.

The format of a directory file is represented in Figure A-2.

APDADraft

Key Block

a .-
pointer ,-
header

file entry

mr ae •
: file ••
• entries •

file entry

unused
space

Any Block

Infer ,
Infer ,-

file enfry ;i

file entry i
more •

: file ::
• entries •

file enfry i
~

1-:-::OC""usect=e:rl!

Lasl Block

••• _ poinfer ?
••• --41 0 {

file entry
J

1----1
file enfry "

more
file

• entries

file enfry

unused
space

Figure A-2. Directory file format and organization

210

• .

1l!J3!86

.........

Appendix A

The header is the same length as all other entries in a directory fIle. The only difference
between a volume directory fIle and a subdirectory fIle is in the header format.

Pointer fields

The first four bytes of each block used by a directory file contain pointers to the preceding
and succeeding blocks in the directory fIle, respectively. Each pointer is a two-byte logical
block numbe~-low-order byte first, high-order byte second. The key block of a directory
file has no preceding block; its first pointer is zero. Likewise, the last block in a di~tol)'
file has no successor; its second pointer is zero.

Note: The block pointers described in this appendix, which hold disk addresses,
are two bytes long. All other ProDOS 16 pointers, which hold memory addresses,
are four bytes long. In either case, ProDOS 16 pointers are always stored with the
low-order byte first and the high-order byte last. See Chapter 3, "ProD OS 16 and
Apple llGS Memory."

Volume directory headers

Block 2 of a volume is the key block of that volume's ~tory me. The volume directOlY
header is at byte position $0004 of the key block, immediately following the block's two
pointers. Thirteen fields are currently defmed to be in a volume directory header: they
contain all the vital information about that volume. Figure A-3 illustrates the format of a
volume directory header. Following Figure A-3 is a description of each of its fields.

APDADraft 211 11113186

Apple lIes ProDOS 16 Reference

APDADraft

Byte of

Block

o
(pointer)

2 --------------------~
(pointer)

Field
Length

3~ ____ ~-, ____ ~ __ ~
4 storage_type I nameJength 1 byte
5

r. flle.name ~ 15 bytes

~!~~------------------~1 -2: (reserved) -2 8 bytes
1B
1C

lD
1E
1F

20
21

22
23
24
25
26
27
28
';9

'LA

.

.

'"
I-

t-

create.date

create.time

version
mln.verslon

access
entry Jength

entries.per.block

file.count

blt.mop.pointer

total. blocks

2 bytes

2 bytes

1 byte
1 byte
1 byte
1 byte
1 byte

2 bytes

2 bytes

1 byte
1 byte

Figure A-3. The volume directory header

212

. '--'.

1lIJ3186

Appendix A

storage type and name length (I byte): Two four-bit (nibble) fields are packed into
this byte-:- A value of $F iii the high-order nibble (storage_type) identifies the current
block as the key block of a volume directory fIle. The low-ofder nibble contains the length
of the volume's name (see the file_name field, below). The value of name_length
can be changed by a CHANGE_PATH call.

file_name (15 bytes): The fITSt n bytes of this field, where n is the value of
name length, contain the volume's name. This name must conform to the file name
(volume name) syntax explained in Chapter 2. The name does not begin with the slash that
usually precedes volume names. This field can be changed by the CHANGE_PATH call.

reserved (8 bytes): Reserved for future expansion of the me system.

create_date (2 bytes): The date on which this volume was initialized. The format of
these bytes is described under "Header and Entry Fields," later in this appendix.

create_time (2 bytes): The time at which this volume was initialized. The format of these
bytes is described under "Header and Entry Fields," later in this appendix.

version (1 byte): The file system version number of ProDOS 8 or ProDOS 16 under
which the fIle pointed to by this entry was created. This byte allows newer versions of
ProDOS 16 to determine the fonnat of the fIle, and adjust their interpretation processes
accordingly. For ProDOS 16,version=0.

Note: Version in this sense refers to the file system version only. At present, all
ProD OS operating systems use the same file system and therefore have the same
file system version number (0). In particular, the file system version number is
unrelated to the program version number returned by the GET VERSION call.

min_version: Reserved for future use. For ProDOS 16, it is O.

access (1 byte): Determines whether this volume directory can be read, written,
destroyed, or renamed. The format of this field is described under "Header and Entry
Fields," in this appendix.

entry-length (1 byte): The length in bytes of each entry in this directory. The volume
directory header itself is of this length. For ProDOS 16, entry length = $27.

entries_per_block (1 byte): The number of entries that are stored in each block of the
directory file. For ProDOS 16, entriesyer_block = $OD.

file count (2 bytes): The number of active ftle entries in this directory fIle. An active file
is one whose storage_type is not O. Figure A-5 shows the format offtle entries.

bit map pointer (2 bytes): The block address of the first block of the volume's bit map.
Thebit map occupies consecutive blocks, one for every 4,096 blocks (or fraction thereof)
on the volume. You can calculate the number of blocks in the bit map using the
total_blocks field, described below.

The bit map has one bit for each block on the volume: a value of 1 means the block is free;
o means it is in use. If the number of blocks used by all files on the volume is not the same
as the number recorded in the bit map, the directory structure of the volume has been
damaged.

APDADraft 213 11113186

Apple IIGS ProDOS 16 Reference

total_blocks (2 bytes): The total number of blocks on the volume.

Subdirectory headers

The key block of every subdirectory file is pointed to by an entry in a parent directory; for
example, by an entry in a volume directory (Figure A-2). A subdirectory's header begins
at byte position $0004 of the key block of that subdirectory file, immediately following the
two pointers.

In fonnat, a subdirectory header is quite similar to a volume directory header (only its last
three fields are different). A subdirectory header has fourteen fields; those fields contain all
the vital information about that subdirectory. Figure A-4 illustrates the format of a
subdirectory header. A description of all the fields in the header follows the figure.

APDADraft 214 llfl3f86

APDADraji

Byte of

Block

0

1
(pointer)

2 (pointer)
3
4 storage_type I name_length
5

Field

Length

1 byte

7. file_name 115 bytes

~!t 1-----------11
~ (reserved) '* 8 bytes

1B
1C
lD
1E
1F
20
21
22
23
24

25
26
27
28
'B
2A

-

I-

r-

create_date

create_time

version
min_version

access
entry Jength

entnes-per _block

file_count

parent-pointer

parent_entry_number
paren'-entry Jength

2 bytes

2 bytes

1 byte
1 byte

1 byte
1 byte
1 byte

2 bytes

2 bytes

1 byte
1 byte

Figure A-4. The subdirectory header

215

Appendix A

11113186

Apple IIGS ProD OS 16 Reference

storage_type and name_length (1 byte): Two four-bit (nibble) fields are packed into
this byte. A value of $E in the high-order nibble (storage_type) identifies the current
block as the key block of a subdirectory fIle. The low-order nibble contains the length of
the subdirectory's name (see the file name field, below). The value of name length
can be changed by a CHANGE PATH caIl. -

file_name (15 bytes): The first name_length bytes of this field contain the subdirectory' s
name. This name must conform to the fIle name syntax explained in Chapter 2. This field
can be changed by the CHANGE_PATH call.

reserved (8 bytes): Reserved for future expansion of the file system.

create date (2 bytes): The date on which this subdirectory was created. The format of
these bytes is described under "Header and Entry Fields," later in this appendix.

create time (2 bytes): The time at which this subdirectory was created. The format of
these bytes is described under "Header and Entry Fields," later in this appendix.

version (1 byte): The file system version number of ProDOS 8 or ProDOS 16 under
which the fIle pointed to by this entry was created. This byte allows newer versions of
ProDOS 16 to determine the format of the file, and adjust their interpretation processes
accordingly. For ProDOS 16, version = O.

Note: Version in this sense refers to thefile system version only. At present, all
ProDOS operating systems use the same file system and therefore have the same
fIle system version number (0). In particular, the fIle system version number is
unrelated to the program version number returned by the GET _ VERS ION call.

min_version (1 byte): The minimum version number of ProDOS 8 or ProDOS 16 that
can access the information in this fIle. This byte allows older versions of ProDOS 8 and
ProDOS 16 to determine whether they can access newer files. For ProDOS 16,
min version = O.

access (1 byte): Determines whether this subdirectory can be read, written, destroyed, or
renamed, and whether the file needs to be backed up. The format of this field is described
under "Header and Entry Fields," in this appendix. A subdirectory's access byte can be
changed by the SET_FILE_INFO and CLEAR_BACKUP_BIT calls.

entry_length (1 byte): The length in bytes of each entry in this subdirectory. The
subdirectory header itself is of this length. For ProDOS 16, entry_length = $27.

entries per block (l byte): The number of entries that are stored in each block of the
directory file. For ProD OS 16, entriesyer_block = $OD.

file_count (2 bytes): The number of active file entries in this subdirectory fIle. An active
file is one whose storage type is not O. See "File Entries" for more information about
file entries. -

parent_pointer (2 bytes): The block address of the directory file block that contains the
entry for this subdirectory. This and all other two-byte pointers are stored low-order byte
first, high-order byte second.

APDADraft 216 11113186

Appendix A

parent_entry _number (I byte): The entry number for this subdirectory within the block
indicated by parentyointer.

parent_entry_length (1 byte): The entry_lengtn for the directory that owns this
subdirectory file. Note that with these last three fields you can calculate the precise position
on a volume of this subdirectory's file entry. For ProDOS 16, parent entry length
= $27. - -

File entries

Immediately following the pointers in any block of a directory file are a number of entries.
The first entry in the key block of a directory file is a header, all other entries are file
entries. Each entry has the length specified by that directory's entry _lengtn field, and
each file entry contains infonnation that describes, and points to, a single subdirectory file
or standard file.

An entry in a directory file may be active or inactive, that is, it mayor may not describe a
file currently in the directory. If it is inactive, the first byte of the entry (storage type
and name _lengtn) has the value zero. -

The maximum number of entries, including the header, in a block of a directory is recorded
in the entriesyer_block field of that directory's header. The total number of active
file entries, not including the header, is recorded in the file count field of that
directory's header. . -

Figure A-5 describes the format of a file entry.

APDADraft 217 lllJ3186

Apple II GS ProDOS 16 Reference

APDADraft

Entry
Offset

Field

Length

~eOrage_fype name length] 1 byte

~ tile_name ~ 15 bytes

F
10
11
12

13
14
15
16
17

18

19

1A
1B
1C

lD
1E

1F
20
21

22
23

24
25
26

~

~

~

f-

f-

~

file_type

key_pointer

blockLused

EOF

create_date

create_time

version
min_version

access

aux_type

mod_date

mod_time

header_pointer

Figure A·5. The file entry

218

1 byte

2 bytes

2 bytes

3 bytes

2 bytes

2 bytes

1 byte
1 byte
1 byte

2 bytes

2 bytes

2 bytes

2 bytes

11/13/86

Appendix A

storage type and name length (1 byte): Two four-bit (nibble) fields are packed into
this byte-:- The value in the high-order nibble (storage type) specifies the type of file
pointed to by this file entry: -

$1 = Seeding file
$2 = Sapling fIle
$3 = Tree file
$4 = Pascal area
$D = Subdirectory

Seedling, sapling, and tree files are described under "Format and Organization of Standard
Files," in this appendix. The low-order nibble contains the length of the file's name (see
the file name field, below). The value of name length can be changed by a
CHANGE P A TH call. -

file_name (15 bytes): The first name _length bytes of this field contain the file's name.
This name must conform to the file name syntax explained in Chapter 2. This field can be
changed by the CHANGE_PATH call.

file_type (l byte): A descriptor of the internal format of the file. Table A-I (at the end of
this appendix) is a Jist of the currently defined values of this byte.

key pointer (2 bytes): The block address of:

• the master index block
• the index block
• the data block

(if the file is a tree file)
(if the file is a sapling file)
(if the file is a seedling file)

blocks_used (2 bytes): The total number of blocks actually used by the file. For a
subdirectory file, this includes the blocks containing subdirectory information, but not the
blocks in the files pointed to. For a standard file, this includes both informational blocks
(index blocks) and data blocks. See "Format and Organization of Standard Files" in this
appendix.

EOF (3 bytes): A three-byte integer, lowest byte first, that represents the total number of
bytes readable from the file. Note that in the case of sparse fIles, EOF may be greater than
the number of bytes actually allocated on the disk.

create_date (2 bytes): The date on which the file pointed to by this entry was created.
The format of these bytes is described under "Header and Entry Fields," later in this
appendix.

create_time (2 bytes): The time at which the file pointed to by this entry was created.
The format of these bytes is described under "Header and Entry Fields," later in this
appendix.

version (1 byte): The file system version number of ProD OS 8 or ProDOS 16 under
which the file pointed to by this entry was created. This byte allows newer versions of
ProDOS 16 to determine the format of the file, and adjust their interpretation processes
accordingly. For ProDOS 16, version = O.

Note: Version in this sense refers to thefile system version only. At present, all
ProDOS operating systems use the same file system and therefore have the same

APDADraft 219 11113186

Apple II GS ProDOS 16 Reference

fIle system version number. The fIle system version number is unrelated to the
program version number returned by the GET_VERSION call.

min_version (l byte): The minimum version number of ProDOS 8 or ProDOS 16 that
can access the information in this me. This byte allows older versions of ProDOS 8 and
ProDOS 16 to determine whether they can access newer fIles. For ProDOS 16,
min version = O.

access (1 byte): Determines whether this fIle can be read, written, destroyed, or renamed,
and whether the fIle needs to be backed up. The format of this field is described under
"Header and Entry Fields," later in this appendix. The value of this field can be changed
by the SET_FILE_INFO and CLEAR_BACKUP_BIT calls. You cannot delete (destroy) a
subdirectory that contains any meso

aux _type (2 bytes): A general-purpose field in which an application can store additional
information about the internal format of a fIle. For example, the ProDOS 8 BASIC system
program uses this field to record the load address of a BASIC program or binary file, or the
record length of a text file.

mod_date (2 bytes): The date on which the last CLOSE operation after a WRITE was
performed on this file. The format of these bytes is described under "Header and Entry
Fields," later in this appendix. This field can be changed by the SE T _FILE_INFO call.

mod_time (2 bytes): The time at which the last CLOSE operation after a WRITE was
performed on this file. The format of these bytes is described under "Header and Entry
Fields," later in this appendix. This field can be changed by the SET_FILE _ INFO call.

header -"pointer (2 bytes): This field is the block address of the key block of the
directory that owns this file entry. This and all two-byte pointers are stored low-order byte
first, high-order byte second.

Reading a directory file

This section deals with the general techniques of reading from directory files, not with the
specifics. The ProDOS 16 calls with which these techniques can be implemented are
explained in Chapters 9 and 10.

Before you can read from a directory, you must know the directory's pathname. With the
directory's pathname, you can open the directory me, and obtain a reference number
(ref_num) for that open file. Before you can process the ennies in the directory, you must
read three values from the directory header:

• Length of each entry in the directory (entry_length)
• Number of entries in each block of the directory (entries "'per_block)
• Total number of files in the directory (file_count).

Using the reference number to identify the file, read the first 512 bytes from the file, and
into a buffer (ThisBlock in the following example). The buffer contains two two-byte
pointers, followed by the entries; the first entry is the directory header. The three values
are at positions $IF through $22 in the header (positions $23 through $26 in the buffer).

APDADraji 220 11113186

Appendix A

In this example, these values are assigned to the variables EntryLength,
EntriesPerBlock, and FileCount.

Open (DirPathname, RefNum);
ThisBlock .~ Read512Bytes(RefNum);
EntryLength ;~ ThisBlock[$23];

{Get reference number
{Read a block into buffer)
(Get directory info)

EntriesPerBlock ;- ThisBlock[$24];
FileCount ;~ ThisBlock[$25] + (256 * ThisBlock[$26]);

Once these values are known. an application can scan through the enrries in the buffer,
using a pointer (EntryPointer) to the beginning of the current entry. a counter
(BlockEntr ie s) that indicates the number of enrries that have been examined in the
current block, and a second counter (Act i veEntr ies) that indicates the number of
active enrries that have been processed.

An entry is active and is processed only if its first byte. the storage type and
name_length, is nonzero. All enrries have been processed when AcriveEntries is equal
to FileCount. If all the enrries in the buffer have been processed, and ActiveEntries doesn't
equal FileCount, then the next block of the directory is read into the buffer.

EntryPointer
BlockEntries
ActiveEntries

;~ EntryLength +
;= $02;
: $00;

$04; (Skip header entry)
{Prepare to process entry two)
(No active entries found yet)

while ActiveEntries < FileCount do begin
if ThisBlock[EntryPointer] <> $00 then begin {Active entry)

ProcessEntry{ThisBlock[EntryPointer]);
ActiveEntries := ActiveEntries + $01

end;
if ActiveEntries < FileCount then {More entries to process}

if BlockEntries ~ EntriesPerBlock

end;
Close (RefNum) ;

then begin (ThisBlock done . Do next one)
ThisBlock ;~ Read512Bytes{RefNum);
BlockEntries .~ $01;
EntryPointer ;= $04

end
else begin

EntryPointer :=
BlockEntries '=

end

{Do next entry in ThisBlock
EntryPointer + EntryLength;
BlockEntries + $01

This algorithm processes enrries until all expected active enrries have been found. If the
directory structure is damaged, and the end of the directory file is reached before the proper
number of active entries has been found, the algorithm fails.

Format and organization of standard files
Each active entry in a directory me points to the key block (the first block) of another file,
which itself is either a subdirectory me or a standardfile. As shown below, the key block
ofa standard file may have several types ofinfonnation in it The storage_type field
in that me's entry must be used to determine the contents of the key block. This section

APDADraft 221 IlI13186

Apple II GS ProDOS 16 Reference

explains the organization of the three stages of standard fIle: seedling, sapling, and'tree,
These are the fIles in which all programs and data are stored,

Every block in a standard file is either a data block or an index block, Data blocks
have no predefined format-they contain whatever information the fue was created to hold .
Index blocks, on the other hand, have a very specific format-they consist of nothing but
2-byte pointers, giving the (disk) adresses of other blocks that make up the fIle,
Furthermore, the low-order byte of each pointer is in the first half of the block, whereas the
high-order byte of the pointer is in the second half of the block. An index block can have
up to 256 pointers, so if a pointer's low-order byte is at address n in the block, its high
order byte is at address n+ 256.

Note: Deleting a fIle or changing its logical size (EOF) can alter the contents of its
index blocks. See "DESTROY" in Chapter 9 and "SET_EOF' in Chapter 10.

Growing a tree file

The following scenario demonstrates the growth of a tree fIle on a volume. This scenario is
based on the block allocation scheme used by ProDOS 16 on a 280-block flexible disk that
contains four blocks of volume directory, and one block of volume bit map. Larger
capacity volumes might have more blocks in the volume bit map, but the process would be
identical.

A formatted. but otherwise empty, ProDOS 16 volume is used like this:

Blocks 0-1 Loader
Blocks 2-5 Volume directory
Block 6 Volume bit map
Blocks 7-279 Unused

If you open a new fIle of a nondirectory type, one data block is immediately allocated to
that file. An entry is placed in the volume directory, and it points to block 7, the new data
block, as the key block for the file. The key block is indicated below by an arrow.

The volume now looks like this:

Blocks 0-1
Blocks 2-5
Block 6

-> Block 7
Blocks 8-279

Loader
Volume directory
Volume bit map
Data block 0
Unused

This is a seedling file: its key block contains up to 512 bytes of data. If you write more
than 512 bytes of data to the file, the file grows into a sapling file. As soon as a second
block of data becomes necessary, an index block is allocated, and it becomes the file's
key block: this index block can point to up to 256 data blocks (it uses two-byte pointers).
A second data block (for the data that won't fit in the first data block) is also allocated.

APDADraft 222 Il/I3/86

Appendix A

The volume now looks like this:

Blocks 0-1 Loader
Blocks 2-5 Volume directory
Block 6 Volume bit map
Block 7 Data block 0

-> Block 8 Index block 0
Block 9 Data block 1
Blocks 10-279 Unused

This sapling file can hold up to 256 data blocks: 128K of data. If the file becomes any
bigger than this, the file grows again, this time into a tree file. A master index block
is allocated, and it becomes the file's key block: the master index block can point to up to
128 index blocks, and each of these can point to up to 256 data blocks. Index block 0
becomes the first index block pointed to by the master index block. In addition, a new
index block is allocated, and a new data block to which it points.

Here's a new picture of the volume:

Blocks 0-1 Loader
Blocks 2-5 Volume directory
Block 6 Volume bit map
Block 7 Data block 0
Block 8 Index block 0
Blocks 9·263 Data blocks 1·255

-> Block 264 Master index block
Block 265 Index block 1
Block 266 Data block 256
Blocks 267-279 Unused

As data is written to this file, additional data blocks and index blocks are allocated as
needed, up to a maximum of 129 index blocks (one a master index block), and 32,768 data
blocks, for a maximum capacity of 16,777,215 bytes of data in a file. If you did the
multiplication, you probably noticed that a byte was lost somewhere. The last byte of the
last block of the largest possible file cannot be used because EOF cannot exceed
16,777,216. If you are wondering how such a large flle might fit on a small volume such
as a flexible disk, refer to the description of sparse files in this appendix.

This scenario shows the growth of a single flle on an otherwise empty volume. The
process is a bit more confusing when several files are growiog--or being
deleted-simultaneously. However, the block allocation scheme is always the same: when
a new block is needed, ProDOS 16 always allocates the first unused block in the volume bi!
map.

Seedling files

A seedling file is a standard file that contains no more than 512 data bytes ($0 <= EOF
<= $200). This file is stored as one block on the volume, and this data block is the file's
key block.

The organization of such a seedling file appears in Figure A-6.

APDADraft 223 11113186

Apple IIGS ProDOS 16 Reference

512 bytes long ~

Data
Block

S~O~S200

~:

Figure A-6. Fonnat and organization of a seedling file

The file is called a seedling fIle because it is the smallest possible ProDOS 16 standard file;
if more than 512 data bytes are written to it, it grows into a sapling file, and thence into a
tree file.

The storage type field of a directory entry that points to a seedling file has the value
$1. -

Sapling files

A sapling file is a standard file that contains more than 512 and no more than 128K bytes
($200 < EOF <~ $20000). A sapling file comprises an index block and 1 to 256 data
blocks. The index block contains the block addresses of the data blocks. Figure A-7
shows the organization.

APDADraft

Up to 256
2·byte pOinters t

data blocks

Index
Block

S200<EOFs;S20 000

to ~
lock i

$FF

Figure A-7. Format and organization of a sapling file

224 JI!l3/86

Appendix A

The key block of a sapling file is its index block. ProDOS 16 retrieves data blocks in the
file by first retrieving their addresses in the index block.

The storage type field of a directory entry that points to a sapling file has the value $2.

Tree files

A tree file contains more than 128K bytes, and less than 16Mb ($20000 < EOF <
$10000(0). A tree file consists of a masterindex block, 1 to 128 index blocks, and 1 to
32,768 data blocks. The master index block contains the addresses of the index blocks,
and each index block contains the addresses of up to 256 data blocks. The organization of
a tree file is shown in Figure A-8.

key _pointer -i1~"~"'~"'''~''''~''''''~''''''~''''I' "

Up 10128
2-byte poInlers IO!

Index blocks

-
Master
Index
Block

$20 OOO<EOFSSl 000 000

Index
Block '
SOO

•
•
•

1=:=-====," V- Dat~
~ Bloc, '

•
•

,

$FF ~

•
•
•

L- ~:

==-==:p~r..-"" Data '
Bloc
SFF

Figure A·S. Format and organization of a tree file

The key block of a tree file is the master index block. By looking at the master index
block, ProDOS 16 can find the addresses of all the index blocks; by looking at those
blocks, it can find the addresses of all the data blocks.

The s torage type field of a directory entry that points to a tree file has the value $3.

APDADraft 225 1lI13186

Apple II GS ProDOS 16 Reference

Using standard files

An application program operates the same on all three types of standard files , although the
sto r a ge type in the file's entry can be used to distinguish between the three. A
program cirely reads index blocks or allocates blocks on a volume: ProDOS 16 does that.
The program need only be concerned with the data stored in the fIle, not with how they are
stored.

All types of standard fIles are read as a sequence of bytes, numbered from 0 to (EOF-l), as
explained in Chapter 2.

Sparse files

A sparse file is a sapling or tree file in which the number of data bytes that can be read
from the fIle exceeds the number of bytes physically stored in the data blocks allocated to
the fIle. ProDOS 16 implements sparse fIles by allocating only those data blocks that have
had data written to them, as well as the index blocks needed to point to them.

For example, you can define a file whose EOF is 16K, that uses only three blocks on the
volume, and that has only four bytes of data written to it. Refer to figure A-9 during the
following explanation.

1. If you create a file with an EOF of $0, ProDOS 16 allocates only the key block (a
data block) for a seedling file, and fIlls it with null characters (ASCII $00).

2. If you then set the EOF and Mark to position $0565, and write four bytes, ProDOS
16 calculates that position $0565 is byte $0165 ($0564-($0200 * 2)) of the third
block (block $2) of the file. It then allocates an index block, stores the address of
the current data block in position 0 of the index block, allocates another data block,
stores the address of that data block in position 2 of the index block, and stores the
data in bytes $0 165 through $0168 of that data block. The EOF is now $0569.

3. If you now set the EOF to $4000 and close the file, you have a 16K sapling file that
takes up three blocks of space on the volume: two data blocks and an index block
(shaded in figure A-9). You can read 16384 bytes of data from the file, but all the
bytes before $0565 and after $0568 are nulls.

APDADraji 226 llf13f86

r777I Blocks actually
rLL..::I wfitten to disk

Data Blocks

~
~
<

S6fF

LJ
'S;F ···········.~

EOF = $4CXX) __ •• i S:lfff

Figure A-9. An example of sparse file organization

Appendix A

Thus ProDOS 16 allocates volume space only for those blocks in a file that actually contain
data. For tree fIles, the situation is similar: if none of the 256 data blocks assigned to an
index block in a tree file have been allocated, the index block itself is not allocated.

Note: The first data block of a standard file, be it a seedling, sapling, or tree file,
is always allocated. Thus there is always a data block to be read in when the fIle is
opened.

Locating a byte in a file

This is how to find a specific byte within a standard file:

The File Mark is a three-byte value that indicates an absolute byte position within a file. If
the fIle is a tree file, then the high-order seven bits of the Mark determine the number (0 to
127) of the index block that points to the byte. That number is also the location of the low
byte of the index block address within the master index block. The location of the high
byte of the index block address is that number plus 256.

APDADraft 227 J1I13/86

Apple JIGS ProDOS 16 Reference

Byte 2 Byte 1 Byte 0

Bit: 71615 14!31211 017 16!5 141312 11 °17!6!51 4!31211JO
Value : Index Block No. Dota Block Number Byte of Block ,

y y ...
Applies to : Tree File only Tree and Sapling AJ1Three

Figure A·IO. File Mark fonnat

If the fIle is a tree fIle or a sapling fIle, then the next eight bits of the Mark determine the
number (0-255) of the data block pointed to by the indicated index block. That number is
also the location of the low byte of the data block address within the index block. The high
byte of the index block address is found at that value plus 256.

For tree, sapling, and seedling fIles. the value of the low nine bits of the Mark is the
location of the byte within the selected data block.

Header and entry fields

The storage type attribute

The value in the stor age type field, the high-order four bits of the first byte of an
entry, defines the type of header (if the entry is a header) or the type of fIle described by the
entry. Table A-I lists the currently defined storage type values.

Table A·I. Storage type values

$0 indicates an inactive fIle entry
$1 indicates a seedling file entry (EOF <= 256 bytes)
$2 indicates a sapling fIle entry (256 < EOF <= 128K bytes)
$3 indicates a tree file entry (128K < EOF < 16M bytes)
$4 indicates a Pascal operating system area on a partitioned disk
$D indicates a subdirectory fIle entry
$E indicates a subdirectory header
$F indicates a volume directory header

ProDOS 16 automatically changes a seedling file to a sapling fIle and a sapling file to a tree
file when the flie's EOF grows into the range for a larger type. If a file's EOF shrinks into
the range for a smaller type, ProDOS 16 changes a tree fIle to a sapling fIle and a sapling
file to a seedling fIle.

The creation and last· modification fields

The date and time of the creation and last modification of each file and directory is stored as
two four-byte values, as shown in Figure A -II.

APDADraji 228 11!l3/86

Appendix A

Byte I Byte 0

Bit: 15 l 14J13tJ211111019 8171615 413121110
Value: Year Month Day

Byte 1 Byte 0

Bit: 15 14 13 121111101918 7 6 5 14 13121 110
Value: 0 0 0 Hour 0 0 Minute

Figure A-ll. Date and time format

The values for the year, month, day, hour. and minute are stored as binary integers. and
may be unpacked for conversion to normal integer values.

The access attribute

The access attribute field. or access byte (Figure A-12), determines whether the me can be
read from. written to, deleted, or renamed. It also contains a bit that can be used to indicate
whether a backup copy of the file has been made since the file's last modification.

where

Bit: 7 6 5
Value: D RN B

D = destroy-enable bit
RN = rename-enable bit
B = backup-needed bit
W = write-enable bit
R = read-enable bit

41312 1 0
eserved W R

Figure A-12. Access byte format

A bit set to 1 indicates that the operation is enabled; a bit cleared to 0 indicates that the
operation is disabled. The reserved bits are always O. The most typical setting for the
access byte is $C3 (IIOOOOII).

ProDOS 16 sets bit 5, the backup bit, to 1 whenever the me is changed (that is. after a
CREATE. RENAME, CLOSE after WRITE, or SET FILE INFO operation). This bit
should be reset to 0 whenever the me is duplicated by a backup program.

Note: Only ProDOS 16 may change bits 2-4; only backup programs should clear
bit 5 (using CLEAR_BACKUP _BIT).

APDADraft 229 11113186

Apple IIGS ProDOS 16 Reference

The file type attribute

The file type field in a directory entry identifies the type of fIle described by that entry.
This field should be used by applications to guarantee fIle compatibility from one
application to the next The currently defined hexadecimal values of this byte are listed in
TableA-2.

Table A-2 also lists the 3-character mnemonic fIll:-"type codes that should appear on catalog
listings. For any fIle type without a specified mnemonic code, the catalog program should
substitute the hexadecimal fIle type number.

Note: SOS file types are included in Table A-2 because SOS and ProDOS have
identical fIle systems.

Table A-2. ProDOS fIle types

File
type

Mnemonic
Code Description

$00
$01 BAD
$02 t PCD
$03 t PTX
$04 TXT
$05 t PDA
$06 BIN
$07 t FNT
$08 FOT
$09t BA3
$OA t DA3
$OB t WPF
$OCt SOS
$OD-$OEt
$OF DIR
$lOt RPD
$11 t RPI
$12 t
$13 t
$14 t
$15 t
$16-$18 t
$19 ADB
$IA AWP
$IB ASP
$IC-$AF
$BO SRC
$Bl OBI
$B2 Lffi
$B3 Sl6
$B4 RTL
$B5 EXE
$B6
$B7
$B8

APDADraji

Uncategorized fIle (SOS and ProDOS 8)
Bad block fIle
Pascal code fIle
Pascal text fIle
ASCII text file (SOS and ProDOS 8)
Pascal data fIle
General binary file (SOS and ProDOS 8)
Font file
Graphics screen fIle
Business BASIC program fIle
Business BASIC data file
Word Processor fIle
SOS system file
(SOS reserved)
Directory fIle (SOS and ProDOS)
RPS data fIle
RPS index fIle
AppleFile discard fIle
AppleFile model fIle
AppleFile report format fIle
Screen Library fIle
(SOS reserved)
AppleWorks Data Base fIle
AppleWorks Word Proc. fIle
AppleWorks Spreadsheet fIle
(reserved)
APW source fIle
APW object fIle
APW library fIle
ProDOS 16 application program fIle
APW run-time library fIle
ProDOS 16 shell application fIle
ProDOS 16 permanent initialization fIle
ProDOS 16 temporary initialization fIle
New desk accessory

230 11/13/86

$B9
$BA
$BB-$BE
$BF
$CO-$EE
$EF
$FO
$Fl-$F8
$F9
$FA
$FB
$FC
$FD
$FE
$FF

PAS
CMD

INT
IVR
BAS
VAR
REL
SYS

Classic desk accessory
Tool set file
(reserved for ProDOS 16 load flles)
ProDOS 16 document file
(reserved)
Pascal area on a partitioned disk
ProDOS8CI&hledcmrurumdfile
ProDOS 8 user defined files 1-8
(ProDOS 8 reserved)
Integer BASIC program file
Integer BASIC variable file
Applesoft program file
Applesoft variables file
Relocatable code file (EDASM)
ProDOS 8 system program file

t apply to SOS (Apple III) only

The auxiliary type attribute

Appendix A

Some applications use an another field in a file's directory entry, the auxiliary type field
(aux type), to store additional information not specified by the file type. Catalog listings
may dlsplay the contents of this field under the heading "SUbtype."

For example, APW source files (file type $BO) include a language-type designation in the
a ux _type field. The starting address for ProDOS 8 executable binary files (file type $06)
may be in the a ux type field. The record size for random-access text files (file type $04)
may be specified in the auxiliary type field.

ProDOS 16 and ProDOS 8 impose no restrictions (other than size) on the contents or
format of the auxiliary type field. Individual applications may use those 2 bytes to store
any useful information.

APDADraft 231 11/13/86

Apple lIGS ProDOS 16 Reference

APDADraji 232 11113186

Appendix B

Apple II Operating Systems

This appendix explains the relationships between ProDOS 16 and three other operating
systems developed for the Apple II family of computers (DOS, ProDOS 8, and Apple II
Pascal), as well as two developed for the Apple ill (SOS and Apple III Pascal).

If you have written programs for one of the other systems or are planning to write
programs concurrently for ProDOS 16 and another system, this appendix may help you see
what changes will be necessary to transfer your program from one system to another. If
you are converting files from one system to another, this appendix may help you
understand why some conversions may be more successful than others.

The first section gives a brief history. The next two sections give general comparisons of
the other operating systems to ProDOS 16, in terms of file compatibility and operational
similarity.

History

DOS

DOS stands for Disk Operating System. It is Apple's first operating system; before DOS,
the firmware Monitor program controlled program execution and input/output.

DOS was developed for the Apple II computer. It provided the first capability for storage
and retrieval of various types of files on disk (the Disk m; the System Monitor had allowed
input/output (of binary data) to cassette tape only.

The latest version of DOS is DOS 3.3. It uses a 16-sector disk format, like ProDOS 8 and
ProD OS 16. Earlier versions use a 13-sector format that cannot be read by ProDOS 8 or
ProDOS 16.

SOS

SOS is the operating system developed for the Apple ill computer. Its name is an acronym
for Sophisticated Operating System, reflecting its increased capabilities over DOS. On the
other hand, SOS requires far more memory space than either DOS or ProDOS 8 (below),
which makes it impractical on computers with less than 256K of RAM.

APDADraji 233 IlI13186

Apple IIGS ProDOS 16 Reference

ProDOS 8

ProDOS 8 (for Professional Disk Operating System) was developed for the newer
members of the Apple II family of computers. It requires at east 64K of RAM memory,
and can run on the Apple lIe, Apple IIc, and 64K Apple II Plus.

ProDOS 8 brings some of the advanced features of SOS to the Apple II family, without
requiring as much memory as SOS does. Its commands are essentially a subset of the SOS
commands.

The latest version of ProDOS 8 developed specifically for the Apple lIe and IIc is ProDOS
8 (1.1.1). An even more recent version, developed for the Apple IIGS but compatible with
the lIe and IIc, is ProDOS 8 (1.2).

Note: Prior to development of ProDOS 16, ProDOS 8 was called simply
ProDOS.

ProD OS 16

ProDOS 16 is an extensive revision ofProDOS 8, developed specifically for the Apple
HGS (it will not run on other Apple II's). The 16 refers to the 16-bit internal registers in the
Apple IIGS 65C816 microprocessor.

ProDOS 16 permits access to the entire 16 Mb addressable memory space of the Apple HGS
(ProDOS 8 is restricted to addressing 64K) and it has more "SOS-like" features than
ProD OS 8 has. It also has some new features, not present in SOS, that ease program
development.

There are two versions of ProDOS 16. Version 1.0 is a first-release system, consisting of
a ProDOS 8 core surrounded by a "ProD OS 16-like" user interface. Version 2.0 is the
complete implementation of the ProDOS 16 design.

Pascal

The Pascal operating system for the Apple II is modified and extended from UCSD Pascal,
developed at the University of California at San Diego. The latest version. written for the
Apple He/Ilc and 64K Apple II Plus, is Pascal 1.3. It also runs on an Apple lIGS.

Pascal for the Apple ill is a modified version of Apple IT Pascal. It uses SOS for most of
its operating system functions.

File compatibility
ProDOS 16, ProDOS 8, and SOS all use a hierarchical fIle system with the same format
and organization. Every fIle on one system's disk can be read by either of the other
systems. DOS and Pascal use significantly different formats.

APDADraft 234 11113186

, -

AppendixB

The other systems compare to ProDOS 16 as follows:

ProD OS 8: ProDOS 16 and ProDOS 8 have identical file system organizations
-therefore, ProDOS 16 can read all ProDOS 8 files. However, the System
Loader under ProDOS 16 will not execute ProDOS 8 executable binary files
(type $06). Likewise, ProDOS 8 can read but will not execute file types
$B3-$BE; those file types are specific to ProDOS 16.

SOS:

DOS:

Pascal:

ProDOS 16 and SOS have identical file system organizations -therefore,
ProDOS 16 can read (but not execute) all SOS files.

DOS does not have a hierarchical file system. ProDOS 16 cannot directly
read DOS fIles (but see "Reading DOS 3.3 and Apple II Pascal Disks," in
the following section).

Apple II Pascal does not have a hierarchical fIle system. ProDOS 16 cannot
directly read Apple II Pascal files (but see "Reading DOS 3.3 and Apple II
Pascal Disks," below).

Apple ill Pascal uses the SOS fIle system. Therefore ProDOS 16can read
(but not execute) all Apple ill Pascal flles.

Reading DOS 3.3 and Apple II Pascal disks

Both DOS 3.3 and ProDOS 8 140K flexible disks are formaned using the same 16-sector
layout. As a consequence, the ProDOS 16 READ BLOCK and WRITE BLOCK calls are
able to access DOS 3.3 disks too. These calls know nothing about the organization of files
on either type of disk.

When using READ BLOCK and WRITE BLOCK, you specify a 512-byte block on the
disk. When using RWTS (the DOS 3.3 Counterpart to READ BLOCK and
WRITE_BLOCK), you specify the ttack and sector of a 256-byte chunk of data, as
explained in the DOS Programmer's Manual. To use READ BLOCK and WRITE BLCCK
to access DOS 3.3 disks, you must know what 512-byte block corresponds to the-track and
sector you want.

Table B-1 shows how to determine a block number from a given track and sector. First
multiply the track number by 8, then add the sector offset that corresponds to the sector
number. The half of the block in which the sector resides is determined by the half-of
block line (l is the first half; 2 is the second).

Table 8-1. Tracks and sectors to blocks (l40K disks)

Sector:
Sector offset:
Half of block:

Block number = (8*track number) + sector offset

o I 2 345 6 7 8 9 ABC D E F
o 7 665 544 3 322 1 107
11212 1 2 1 2 1 2 1 2 122

Refer to the DOS Programmer's Manual for a description of the flle organization of DOS
3.3 disks.

APDADraft 235 11113186

Apple IIGS ProDOS 16 Reference

Operating system similarity
This section compares the functional similarities among the operating systems. Functional
similarity between two systems implies that they perfonn closely related operations, but it
does not mean that thay have identical procedures or commands.

Input/Output

ProDOS 16 can perform I/O operations on files in disk drives (block devices) only. Under
ProDOS 16, therefore, the current application is responsible for knowing the protocol
necessary to communicate with character devices (such as the console, printers, and
communication ports).

The other systems compare to ProDOS 16 as follows:

ProD OS 8: Like ProDOS 16, ProDOS 8 perfonns I/O on block devices only.

SOS:

DOS:

Pascal:

SOS communicates with all devices, both character devices and block
devices, by making appropriate file access calls (such as open, read write,
close). Under SOS, writing to one device is essentially the same as writing
to another.

DOS allows communication with one type of device only-the Disk II
drive. DOS 3.3 uses a 16-sector disk format; earlier versions of DOS use a
13-sector fonnal l3-sector Disk II disks cannot be read directly by DOS
3.3, SOS, ProDOS 8, or ProDOS 16.

Apple II and Apple m Pascal provide access to both block devices and
character devices, through File liD, Block 1/0, and Device 1/0 calls to the
volumes on the devices.

Filing calls

SOS, ProDOS 8, and ProDOS 16 filing calls are all closely related. Most of the calls are
shared by all three systems; furthennore, their numbers are identical in ProDOS 8 and SOS
(ProDOS 16 calls have a completely different numbering system from either ProDOS 8 or
SOS).

The other systems compare to ProDOS 16 as follows:

ProDOS 8: The ProDOS 8 ON LINE call corresponds to the ProDOS 16 VOLUME call.

APDADraft

When given a deviCe name, VOLUME returns the volume name for that
device. When given a unit number (derived from the slot and drive
numbers), ON _LINE rerurns the volume name.

236 11113/86

"''''.'

SOS:

DOS:

Pascal:

AppendixB

The ProDOS 8 RENAME call corresponds to the ProDOS 16
CHANGE PATH call, except that RENAME can change only the last name in
apathname.

The SOS GET FILE INFO call returns the size of the fIle (the value of
EOF). With ProDOS-16 you must first open the file and then use the
GET EOF call.

The SOS VOLUME call corresponds to the ProDOS 16 VOLUME call. When
given a device name, VOLUME returns the volume name for that device.

The SOS calls SET MARK and SET _ EOF can use a displacement from the
current position in fue file. ProDOS 16 accepts only absolute positions in
the fIle for these calls.

DOS calls distinguish between sequential-access and random-access text
files. ProDOS 16 makes no such distinction, although the ProDOS 16
READ call in NEWLINE mode functions as a sequential-access read.

DOS uses APPEND and POSITION commands, roughly similar to ProD OS
16's SET_MARK, to set the current position in the file and to automatically
extend the size of the file.

The CLOSE conunand in DOS can be given in immediate (from the
keyboard) or deferred (in a program) mode. No ProDOS 16 commands can
be given in immediate mode.

Apple II Pascal distinguishes among textfiles, data files, and code files,
each with different header formats; all ProDOS 16 fIles have identical header
formats. The Pascal procedures REWRITE and RESET correspond to
ProDOS 16's CREATE and OPEN calls. Pascal has more procedures for
reading from and writing to fIles and devices than does ProDOS 16.

Because Apple ill Pascal uses the SOS file system, its fIling calls
correspond directly to SOS calls.

Memory management

Under ProD OS 16, neither the operating system nor the application program perform
memory management; allocation of memory is the responsibility of the Memory Manager,
an Apple IIGS ROM-based tool set. When an application needs space for its own use, it
makes a direct request to the Memory Manager. When it makes a ProDOS 16 call that
requires the allocation of memory space, ProDOS 16 makes the appropriate request to the
Memory Manager. The Apple IIGS Memory Manager is similar to the SOS memory
manager, except that it is more sophisticated and is not considered part of the operating
system.

The other systems compare to ProDOS 16 as follows:

ProDOS 8: A ProDOS 8 application is responsible for its own memory management. It
must fmd free memory, and then allocate it by marking it off in the ProDOS

APDADrajt 237 11/13186

Apple llCS ProD OS 16 Reference

SOS:

DOS:

Pascal:

Interrupts

8 global page's memory bit map. ProDOS 8 protects allocated areas by
refusing to write to any pages that are marked on the bit map. Thus it
prevents the user from destroying protected memory areas (as long as all
allocated memory is properly marked off, and all data is brought into
memory using ProDOS 8 calls).

SOS has a faiI:ly sophisticated Memory Manager that is part of the operating
system itself. An application requests memory from SOS, either by location
or by the amount needed. If the request can be satisfied, SOS grants it.
That portion of memory is then the sole responsibility of the requestor until
it is released.

DOS perfonns no memory management Each application under DOS is
completely responsible for its own memory allocation and use.

Apple II Pascal uses a simple memory management system that controls the
loading and unloading of code and data segments and tracks the size of the
stack and heap.

Apple ill Pascal uses SOS for memory management.

ProDOS 16 does not have any built-in interrupt-generating device drivers. Interrupt
handling routines are therefore installed into ProDOS 16 separately, using the
ALLOC I NTERRUPT call. When an interrupt occurs, ProDOS 16 polls the handling
routinesin succession until one of them claims the interrupt.

The other systems compare to ProDOS 16 as follows:

ProDOS 8: ProDOS 8 handles interrupts identically to ProDOS 16, except that it allows
fewer installed handlers (4 vs. 16).

SOS:

DOS;

Pascal:

APDADraft

In SOS, any device capable of generating an interrupt must have a device
driver capable of handling the interrupt; the device driver and its interrupt
handler are inseparable and are considered to be part of SOS. In addition ,
SOS assigns a distinct interrupt priority to each device in the system.

DOS does not support interrupts.

Apple II Pascal versions 1.2 and 1.3 support interrupts; earlier versions of
Apple II Pascal do not.

Apple ill Pasc3.I uses the SOS interrupt system.

238 1lI13186

Appendix C

The ProDOS 16 Exerciser

The ProD OS 16 Exerciser is a program that lets you practice making operating system calls
without writing an application. All ProDOS 16 functions execute just as they would when
called from a program; therefore you can test how the calls work and, if necessary, correct
any programming errors before coding your routines.

Starting the Exerciser
First, make a copy of the Exerciser disk and put the original away in a safe place. Consult
your owner's manual if you need instructions on how to copy a disk.

The Exerciser may be the startup program on the diskette provided with this manual. If so,
it should execute automatically when you turn on the machine and insert the diskette.
Otherwise, select it from the desktop or program launcher that comes up when you start up
the system. The program's ftlename is EXERCISER.

The fIrst display is the menu screen. It shows all ProDOS 16 calls by number and name,
as well as a few other commands you may enter. The menu screen always returns between
execution of calls or commands.

Making system calls
You make system calls from the exerciser by entering their call numbers. The number you
enter is displayed at the bottom of the menu screen. You may clear the number at any time
by pressing zero twice in succession.

After entering the number, press the Return key. The parameter block for the call you
selected is displayed. Enter a value (or select the default provided by pressing the Return
key) for each parameter; each time you press Return, the cursor moves downward one
position in the parameter block. The cursor does not stop at any parameter that is a result
only (that has no input value).

Note: If, while you are entering parameters, you wish to correct a value, press the
Escape key-it positions the cursor back at the top of the parameter block. At any
other time, however, the Escape key returns you to the main menu.

Pathnames and other text strings are passed to and from ProDOS 16 in buffers referenced
by pointers in the parameter blocks. Therefore, to enter or read a pathname you must
provide a buffer for ProDOS 16 to read from or write to. In most cases, the Exerciser sets
up a default buffer, pointed to by a default pointer parameter (see, for example, the

APDADraft 239 11113186

Apple JIGS ProDOS 16 Reference

CREATE call}. The contents of the location referenced by that pointer are displayed on the
screen, below the parameter block. For convenience, you can directly edit the displayed
string on the screen; you needn't access the memory location itself.

After you have entered all the required parameters, press the Return key once more to
execute the call. If everything has gone right, the parameter list now contains results
returned by ProDOS 16, and the message" $()() call successful" appears at the bottom of
the screen. If a ProDOS 16 error occurrs, the proper error number and message are
displayed instead. In addition, if an error occurrs a small "c" should appear at the lower
right comer of the screen, to indicate that the microprocessor's carry bit has been set.

Other Commands
In addition to practicing system calls, you may issue commands that allow you to list the
contents of a directory, modify any part of the Apple JIGS RAM memory, enter the Monitor
program, or quit the Exerciser.

List Directory (L)

Press L and you are prompted for the pathname of the volume or subdirectory whose
contents you wish to list. For each fIle in the directory, the listing shows fIle name, fIle
type (see table A-2), number of blocks used, date and time of last modification, date and
time of creation, EOF (logical size in bytes), and subtype (value of the auxiliary type field) .
Press the Escape key to return to the main menu.

Modify Memory (M)

You use the Modify Memory command to place data in memory for ProDOS 16 to read, or
to inspect the contents of a buffer that ProDOS 16 has written to.

Press M and you are prompted for a pointer to the part of memory you wish to access.
Enter the proper address and press the Return key. A 256-byte (one-page) portion of
memory is displayed, as 16 rows of 16 bytes each, beginning on a page boundary. Each
row is preceded by the address of the first byte in that row; to the right of each row are the
ASCII representations of the values of the bytes in the row.

Use the arrow keys to move the cursor around on the screen. To change the value of a
byte, type the new value right over the old one. You can enter data in hexadecimal fonnat
only; the results of your entry are displayed on the screen in both hexadecimal and ASCII.
For reference, Table C-llists ASCII characters and their decimal, hexadecimal, and binary
equivalents.

You may undo up to the last 16 changes you made by typing U successively. To display
the preceding or succeeding page in memory, press < or >.

Warning! Modify Memory does not prevent you from changing values in parts of
memory that are already in use. You can conceivably alter the Exerciser itself or
other critical code, causing a system crash. Be careful what you modify!

APDADraft 240 11113/86

Appendix C

Exit to Monitor (X)

The Monitor is a firmware program (see Apple IlGS Finnware Reference) that allows you
to inspect and modify the contents of memory, assemble and disassemble code in a limited
manner, and execute code in memory. You may enter the Monitor from the ProDOS 16
Exerciser.

To call the Monitor, press M. When the Monitor prompt (*) appears, you may issue any
Monitor command. To leave the Monitor and return to the Exerciser, you must reboot the
computer (press Control-G-Reset) and, if necessary, re-execute the Exerciser from the
desktop or program launcher.

Quit (Q)

To quit the ProDOS 16 exerciser, simply press Q. Of course, you may also quit by
selecting the ProDOS 16 QUIT call ($27), filling out the parameter block, and executing the
call.

APDADraft 241 11113186

Apple lIes ProDOS 16 Reference

Table C·l. ASCII character set

Char Dec Hex Binary Char Dec Hex Binary Char Dec Hex Binary

nul 0 0 OOOOOOOO 45 2D 00101101 Z 90 5A 01011010
soh 1 I 00000001 46 2E 00101110 [91 5B 01011011
stx 2 2 00000010 I 47 2F 00101111 \ 92 5C 01011100
etx 3 3 00000011 0 48 30 00110000 1 93 5D 01011101
eot 4 4 00000100 1 49 31 00 11 ()()() I " 94 5E 01011110

enq 5 5 00000101 2 50 32 00110010 95 5F 01011111
ack 6 6 00000110 3 51 33 00110011

~
96 60 01100000

bel 7 7 00000111 4 52 34 00110100 a 97 61 01100001
bs 8 8 0000 I ()()() 5 53 35 00110101 b 98 62 011 ()()() I 0
ht 9 9 00001001 6 54 36 00110110 c 99 63 011 ()()() 11

If 10 A 00001010 7 55 37 00110111 d 100 64 01100100
vt 11 B 00001011 8 56 38 00 III ()()() e 101 65 01100101
If 12 C 00001100 9 57 39 00111001 f 102 66 01100110
cr 13 D 00001101 58 3A 00111010 g 103 67 01100111
so 14 E 00001110 59 3B 00111011 h 104 68 01101000

si 15 F 00001111 < 60 3C 00111100 105 69 01101001
die 16 10 ()()() 1 0000 = 61 3D 00111101 j 106 6A 01101010
ocl 17 11 ()()() I ()()() 1 > 62 3E 00111110 k 107 6B 01101011
0C2 18 12 ()()() I 00 10 ? 63 3F 00111111 I 108 6C 01101100
0C3 19 13 ()()() 10011 @ 64 40 01000000 m 109 6D 01101101

dc4 20 14 ()()() 10 1 00 A 65 41 01000001 n 110 6E 01101110
nak 21 15 00010101 B 66 42 01000010 o III 6F 01101111
syn 22 16 00010110 C 67 43 01000011 P 112 70 01110000
elb 23 17 00010111 D 68 44 01000100 q 113 71 01110001
can 24 18 00011000 E 69 45 01000101 r 114 72 01110010

em 25 19 00011001 F 70 46 01000110 s 115 73 01110011
sub 26 IA 00011010 G 71 47 01000111 t 116 74 01110100
esc 27 IB 00011011 H 72 48 01001000 u 117 75 01110101

fs 28 lC 00011100 I 73 49 01001001 v 118 76 01110110
gs 29 lD 00011101 J 74 4A 01001010 w 119 77 01110111

rs 30 IE 00011110 K 75 4B 01001011 x 120 78 01111000
us 31 IF 00011111 L 76 4C 01001100 Y 121 79 01111001
sp 32 20 00100000 M 77 4D 01001101 z 122 7A 01111010

! 33 21 00100001 N 78 4E · 01001110 (123 7B 01111011
34 22 00100010 0 79 4F 01001111 I 124 7C 01111100

35 23 00100011 P 80 50 01010000 125 7D 01111101
$ 36 24 00100100 Q 81 51 01010001 - 126 7E 01111110
% 37 25 00100101 R 82 52 01010010 del 127 7F 01111111
& 38 26 00100110 S 83 53 01010011

39 27 00100111 T 84 54 01010100

(40 28 00101000 U 85 55 01010101
) 41 29 00101001 V 86 56 01010110
• 42 2A 00101010 W 87 57 01010111
+ 43 2B 00101011 X 88 58 01011000

44 2C 00101100 Y 89 59 01011001

APDADraft 242 11113186

'--

Appendix D

System Loader Technical Data

This appendix assembles some specific technical details on the System Loader. For more
information, see the referenced publications.

Object module format
The System Loader can load only code and data segments that conform to Apple IIGS
object module format. Object module format is described in detail in Apple fIGS
Programmer's Workshop Reference.

File types

File types for load files and other OMP-related files are listed below. For a complete list of
ProDOS file types, see Table A-2 in Appendix A.

File type Description
$BO Source file (aux_type defines language)
$B 1 Object file
$B2 Library file
$B3 Application file
$B4 Run-time library file
$B5 Shell application file

$B6 - $BE
$B6
$B7
$B8
$B9

Segment kinds

Reservedfor system use. Cu"ently defined types include:
Permanent inititialization file
Temporary initialization file
New desk accessory
Classic desk accessory

Whereas files are classified by type, segments are classified by kind. Each segment has a
kind designation in the KIND field of its header. The five high-order bits in the KIND field
describe specific attributes of the segment; the value in the low-order five-bit field describe£
the overall type of segment. Different combinations of attributes and type values yield
different results for the segment kind.

The KIND field is two bytes long. Figure D-l shows its format.

APDADrajt 243 11113186

Apple lIGS ProDOS 16 Reference

Byte 1 Byte 0

BlI:

Value : ~~
Figure D-l. Segment kind fonnat

where the attribute bits (11-15) mean the following:

SD (bit 15) = static/dynamic (0 = static; I = dynamic)
Pr (bit 14) = private (0 = no; 1 = yes)
PI (bit 13) = position-independent (0 = no; 1 = yes)
SM (bit 12) = may be in special memory (0 = yes; 1 = no)
AB (bit 11) = absolute-bank (0 = no; 1 = yes)

and the type field (bits 0-4) describes one of the following classifications of the segment:

Value of Type Description
$00 code segment
$01 data segment
$02 Jump Table segment
$04 Pathname segment
$08 library dictionary segment
$10 initialization segment
$12 direct-page/stack segment

Segment attributes can be combined with particular types to yield different resultant values
for KIND. For example, a dynamic Initialization Segment has KIND = $8010.

Record codes

Load segments. like all OMF segments, are made up of records. Each type of record has
a code number and a name. For a complete list of record types, see Apple lIGS
Programmer' s Workshop Reference. The only record types recognized by the System
Loader are these:

Record Code Name Description

$E2 RELOC intrasegment relocation record (in relocation
dictionary)

$E3 INTERSEG intersegment relocation record (in relocation
dictionary)

$F1 DS zero-fill record

$F2 LCONST long-constant record (the acrual code and data for
each segment)

$F5 cRELOC compressed intrasegment relocation record (in
relocation dictionary)

APDADraft 244 11/13186

$F6

$F7

$00

AppendixD

cINTERSEG compressed intersegment relocation record (in
relocation dictionary)

SUPER

END

super-compressed relocation record (the equivalent
of many cRELOC or cINTERSEG records)

the end of the segment

If the loader encounters any other type of record in a load segment, it returns error $11 OA.

Load-file numbers

Load fIles processed by the Apple IIGS Programmer's Workshop Linker at anyone time
are numbered consecutively from I. Load file 1 is called the initial load file. All other
files are considered to be run-time libraries.

A load-file number of 0 in a Jump Table segment or a Pathname segment indicates the end
of the segment.

Load-segment numbers

In each load file created by the linker, segments are numbered consecutively by their
position in the load file, starting at 1. The loader determines a segment's number by
counting its position from the beginning of the load fIle. As a check, the loader also looks
at the segment number in the segment's header.

The first static segment in a load file, which need not be segment number 1, is called the
main segment-it is loaded first (except for any preceding initialization segments) and
never leaves memory while the program is executing. Because a run-time library need have
no static segments at all, it typically has no main segment.

Segment headers

The first part of every object module format segment is a segment header; it contains 17
fields that give the name, size, and other important information about the segment.

Restrictions on segment header values

Because OMP supports capabilities that are more general than the System Loader's needs,
the System Loader permits load fIles to have only a subset of all possible OMF
characteristics. The loader does this by restricting the values of several segment header
fields:

NUMSEX:
NUMLEN:

BANKSIZE:
ALIGN:

APDADrcift

mustbeO
must be 4
must be less than or equal to $10 ()()()
must be less than or equal to $10 000

245 11113186

Apple llGS ProDOS 16 Reference

If the System Loader finds any other values in any of the above fields, it returns error
$1 lOB ("Segment is Foreign"). The restrictions on BANKS I ZE and AL IGN are enforced
by the APW Linker also.

Page-aligned and bank-aligned segments

In OMF, the values ofBANKSIZE and ALIGN may be any multiple of 2. But because the
Memory Manager and System Loader support only two types of alignment (page- and
bank-alignment) and one bank size (64K), the System Loader uses both BANKSI ZE and
AL I GN values to control segment alignment, as follows.

1. If BANKS I ZE is 0 or $10 000, its value has no effect on segment alignment.

2. If BANKS I ZE is any other value, the greater of BANKS I ZE and AL IGN is called the
alignment factor. Alignment in memory is controlled by the alignment factor in this
way:

a. If the alignment factor is 0, the segment is not aligned to any memory boundary.

b. If the alignment factor is greater than 0 and less than or equal to $100, the
segment is page-aligned.

c. If the alignment factor is greater than $100, the segment is bank-aligned.

Note: The Memory Manager itself does not directly support bank-alignment. The
System Loader forces bank alignment where needed by requesting blocks in
successive banks until it finds one that starts on a bank boundary.

Entry point and global variables
There is only one entry point needed for all System Loader calls (actually, all tool calls). It
is to the Apple llGS tool dispatcher, at the bottom of bank $E1 (address $E1 0000).
Although the System Loader maintains memory space and a table of loader functions in
other parts of memory, locations in those areas are not supported. Please make all System
Loader calls with a JSL to $E1 0000, as explained in Chapter 17 (or with macro calls or
other higher-level interface, if appropriate for your language).

The following variables are of global significance. They are defined at the system level, so
any application that needs to know their values may access them. However, only USERID
is important to most applications, and it should be accessed only through proper calls to the
System Loader. The other variables are needed by controlling programs only, and should
not be used by applications.

SEGTBL Absolute address of the Memory Segment Table
JMPTBL Absolute address ofthe Jump Table Directory
PATHTBL Absolute address ofthe Pathnarne Table
USERID User ID of the current application

APDADraft 246 11113186

AppendixD

User ID format
The User ID Manager is discussed in Chapter 5, and fully explained in Apple IIGS Toolbox
Reference. Only the format of the User ID number, needed as a parameter for System
Loader calls, is shown here.

There is a 2-byte User ID associated with every allocated memory block. It is divided into
three fields: Main ID, AuxID, and Type ID. The Main ID field contains the unique
number assigned to the owner of the block by the User ID Manager; every allocated block
has a nonzero value in its Main ID field. The AuxID field holds a user-assignable
identification; it is ignored by the System Loader, ProDOS 16, and the User ID Manager.
The Type ID field gives the general class of software to which the block belongs.

Byte' Byte 0

Bit: 15114113112 1111019 18 716151413121110
Value: Type ID AuxlD MainlD

Figure D.2. User ID format

Main ID can have any value from $01 to $FF (0 is reserved).

AuxID can have any value from $00 to $OF.

TypeID values are defined as follows:

o Memory Manager
1 application
2 controlling program
3 ProDOS 8 and ProDOS 16
4 tool set
5 desk accessory
6 run-time library
7 System Loader
8 fmnware/system function
9 Tool Locator
A-F (undefmed)

APDADraft 247 11113186

Apple llcs ProDOS 16 Reference

APDADraft 248 11/13/86

Appendix E

Error Codes

This appendix lists and describes all error codes returned by ProDOS 16 and the System
Loader. Each error code is followed by the error's suggested name or screen message, and
a brief description of its significance.

When an error occurs during a call, ProDOS 16 or the System Loader places the error
number in the accumulator (A-register), sets the status register carry bit, and returns control
to the calling rou tine. .

If, after a call, the carry bit is clear and the accumulator contains 0, that signifies a
successful completion (no error).

ProD OS 16 errors

Nonfatal errors

A nonfatal error signifies that a requested call could not be completed properly, but
program execution may continue.

Number

$ 0 0 (no error)

Message and Description

General E"ors,'

$01 Invalid call number: a nonexistent command has been issued.

$07 ProDOS is busy: the call cannot be made because ProDOS 16 is busy
with another call.

Device call e"ors,'

$10 Device not found: there is no device on line with the given name
(GET _DEV _NUM call)

APDADraft 249 11113186

Apple lIes ProDOS 16 Reference

$11 Invalid device request: the given device name or reference number is
not in ProDOS 16's list of active devices (VOLUME, READ BLOCK and
WRITE_BLOCK calls) -

$25 Interrupt vector table full: the maximum number of user-defined
interrupt handlers (16) has already been installed; there is no room for
another (ALLOC _INTERRUPT call).

$27 I/O error: a hardware failure has prevented proper data transfer to or from
a disk device. This is a general code coverirlg many possible error
conditions.

$28 No device connected: There is no device in the slot and drive specified
by the given device number (READ_BLOCK, WRITE_BLOCK, and
VOLUME calls).

$2B Write-protected: The specified volume is write-protected (the "write
protect" tab or notch on the disk jacket has been enabled). No operation that
requires writing to the disk can be performed.

$20 Invalid block address: An attempt was made to read data from a RAM
disk, at an address beyond its limits.

$2E Disk switched: The requested operation cannot be performed because a
disk containing an open file has been removed from its drive.

Warning: Apple II drives have no hardware method for detecting disk
switches. This error is therefore returned only when ProDOS 16 checks a
volume name during the normal course of a call. Since most disk access
caIls do not involve a check of the volume name, a disk-switched error can
easily go undetected.

$2F Device not on line: A device specified in a call is not connected to the
system, or has no volume mounted on it. This error may be returned by
device drivers that can sense whether or not a specific device is on line.

$30 - $3F Device-specific errors: (error codes in this range are to be defined and
used by individual device drivers.)

File call errors:

$40 Invalid pathname or device name syntax: The specified pathname
or device name contains illegal characters (other than A-Z, 0-9, . ,/, *)

$42 FeB table full: The table of file control blocks is full; the maximum
pennitted number of open ftles (8) has already been reached. You may not
open another ftle (OPEN call).

$43 Invalid file reference number: the specified file reference number
does not match that of any currently open file.

APDADraft 250 1l!13f86

Appendix E

$44 Path not found: A subdirectory name in the specified pathname does not
exist (the pathname's syntax is otherwise valid).

$45 Volume not found: The volume name in the specified pathname does
not exist (the pathname's syntax is otherwise valid).

$46 File not found: The last file name in the specified pathname does not
exist (the pathname's syntax is otherwise valid).

$47 Duplicate pathname: An attempt has been made to create or rename a
file, using an already existing pathname (CREATE, CHANGE_PATH calls).

$48 Volume full: an attempt to allocate blocks on a disk device has failed, due
to lack of space on the volume in the device (CREATE, WRITE calls). If
this error occurs during a write, ProDOS 16 writes data is until the disk is
full, and still permits you to close the file.

$49 Volume directory full: No more space for entries is left on the volume
directory (CREATE caU). In ProDOS 16, a volume directory can hold no
more than 51 entries. No more files can be added to this directory until
others are destroyed (deleted).

$4A Version error (incompatible file format): The version number in the
specified file's directory entry does not match the present ProDOS 8-
ProDOS 16 file forotat version number. This error can only occur in future
versions of ProDOS 16, since for all present versions of ProDOS 8 and
ProDOS 16 the file format version number is zero.

Note: The version number referred to by this error code concerns the file format
only, not the version number of the operating system as a whole. In particular, it is
unrelated to the ProDOS 16 version numberretumed by the GET_VERSION call.

$4 B Unsupported (or incorrect) storage type: The organization of the
specified file is unknown to ProDOS 16. See Appendix A for a list of valid
storage types.

This error may also be returned if a directory has been tampered with, or if a
prefix has been set to a nondirectory file.

$4C End-of-file encountered (out of data): A read has been attempted,
but the current me position (Mark) is equal to end-of-me (EOF), and no
further data can be read.

$4D Position out of range: The specified me position parameter (Mark) is
greater than the size of the fIle (EOF).

$4 E Access not allowed: One of the attributes in the specified file's access
byte forbids the attempted operation (renaming, destroying, reading, or
writing).

$50 File is open: An attempt has been made to perform a disallowed
operation on an open file (OPEN, CHANGE_PATH, DESTROY calls).

APDADraji 251 11113186

Apple IIGS ProDOS 16 Reference

$51 Directory structure damaged: The number of entries indicated in the
ditectory header does not match the number of entries the directory actually
contains.

$52 Unsupported volume type: The specified volume is not a ProDGS 16,
ProDOS 8, or SOS disk. Its directory format is incompatible with ProDOS
16.

$53 Parameter out of range: The value of one or more parameters in the
parameter block is out of its range of permissible values.

$54 Out of Memory: A ProDOS 8 program specified by the QUIT call is too
large to fit into the memory space available for ProDOS 8 applications.

$55 VCB table full: The table of volume control blocks is full; the maximum
permitted number of online volumes/devices (8) has already been reached.
You may not add another device to the system. The error occurs when 8
devices are on line and a VOLUME call is made for another device that has no
open files.

$57 Duplicate volume: Two or more online volumes have identical volume
directory names. This message is a warning; it does not prevent access to
either volume. However, .ProDOS 16 has no way of knowing which
volume is intended if the volume name is specified in a call; it will access the
first one it finds.

$58 Not a block device: An attempt has been made to access a device that is
not a block device. Current versions of ProDOS 16 support access to block
devices only.

$59 Invalid level: The value specified for the system file level is out of range
(SET_LEVEL call).

$SA Block number out of range: The volume bit map indicates that the
volume contains blocks beyond the block count for the volume. This error
may indicate a damaged disk structure.

$SB Illegal pathname change: the pathnames on a CHANGE_PATH call
specify two different volumes. CHANGE _PATH can move files among
directories only on the same volume.

$SC Not an executable file: The file specified in a QUIT call is not a
launchable type. All applications launched by the QU IT call must be type
$B3 (ProD OS 16 application), $B5 (shell application), or $FF (ProD OS 8
system file).

$SD Operating system/file system not available: (1) The QU IT call has
specified a ProDOS 8 application to be launched, but the ProDOS 8
operating system is not on the system disk. (2) The FORMAT call is unable
to format a disk for the specified file system.

APDADraji 252 11113186

.--.,

$5E:

Appendix E

Cannot deallocate !RAM: in quitting from a ProDOS 8-based program
and launching a ProD OS 16-based program, PQUIT is not able to remove
the ProDOS 8 RAM disk in bank $01 (QUIT call).

$5F Return stack overflow: An attempt was made to add another User ID to
the return stack maintained by PQUIT, but the stack already has 16 entries,
its maximum permitted number (QUIT call).

$60 Data unavailable: the system has invalid information on which device
was last accessed (GET_LAST _DEV call)

Fatal errors

A fatal error signifies the occurrence of a malfunction so serious that processing must halt.
To resume execution following a fatal error, you must reboot the system.

Number Message and Description

$01 Unclaimed interrupt: An interrupt signal has occurred and none of the
installed handlers claims responsibility for it. This error may occur if
interrupt-producing hardware is installed before its associated interrupt
handler is allocated.

$11 Wrong OS version: The version number of the file P 16 or P 8 is
different from the version number of the file PRODOS. PRODOS, which
loads ProDOS 16 (p 16) and ProDOS 8 (P8), requires compatible versions
of both.

$OA VCB unusable: The volume control block table has been damaged. The
values of certain check bytes are not what they should be, so ProDOS 16
cannot use the VCB table.

$OB FCB unusable: The file control block table has been damaged. The
values of certain check bytes are not what they should be, so ProDOS 16
cannot use the FeB table.

$OC Block zero allocated illegally: Write-access to block zero on a disk
volume has been attempted. Block zero on all volumes is reserved for boot
code.

$OD Interrupt occurred while I/O shadowing off: The Apple IIGS has
soft switches that control shadowing from banks $EO and $El to banks
$00 and $01. If an interrupt occurrs while those switches are off, the
firmware interrupt-handling code will not be enabled. See Apple lIes
Firmware Reference.

APDADrqft 253 11113186

Apple JIGS ProDOS 16 Reference

If a QUIT call results in the loading of a ProDOS 16-based application that is too large to fil
in the available memory or that for some other reason cannot be loaded, execution halts and
the following message is displayed on the screen:

Can't run next application. Error-$XXXX

where $xxxxis an error code-typically a Tool Locator, Memory Manager, or System
Loader error code.

Bootstrap errors

Bootstrap errors can occur when the Apple IIGS attempts to start up a ProDOS 16 system
disk. Errors can occur at several points in this process:

1. If there is no disk in the startup drive, a "sliding apple" symbol L .-)appears on
the screen along with the message:

Check startup device!

Place a system disk in the drive and press Control-O-Reset to restart the boot
procedure.

2. If there is a disk in the drive, but it is not a ProDOS 8 or ProDOS 16 system disk
(that is, there is no type $FF file named PRODOS on it), the following message
appears:

UNABLE TO LOAD PRODOS

Remove the disk and replace it with another containing the proper fIles, then press
Control-O-Reset to restart the boot procedure.

3. If the file named PRODOS is found, but another essential fIle is missing, a message
such as

No SYSTEM/P16 file found

or

No x.SYSTEM or x.SYS16 file found

may appear. Remove the disk and replace it with another containing the proper files.
then press Control:O-Reset to restart the boot procedure.

Another type of ProDOS 16 bootstrap error occurs on other Apple II systems. If you try to
boot a ProDOS 16 system disk on a standard Apple II computer (one that is not an Apple
JIGS), the following error message is displayed:

PRODOS 16 REQUIRES APPLE IIGS HARDWARE

When this occurs the disk will not boot. You can boot an Apple IIGS System Disk only on
an Apple JIGS computer.

APDADrqft 254 11113186

Appendix E

System Loader errors

Nonfatal errors

Number

$0000

$1101

$1102

$1104

$1105

$1107

Message and Description

(no error)

Not found: The specified segment (in the load me) or entry (in the
Pathname Table or Memory Segment Table) does not exist. If the
specified load file itself is not found, a ProDOS 16 error $46 (file not
found) is returned.

Incompatible OMF version: The object module format version of a
load segment (as specified in its header) is incompatible with the current
version of the System Loader. The loader will not load such a segment.

File is not a load file: the specified load file is not type $B3-$BE.
See Appendix A or D for descriptions of these fIle types.

Loader is busy: The call cannot be made because the System Loader
is busy with another call.

File version error: The specified file cannot be loaded because its
creation date and time do not match those on its entry in the Pathname
Table.

Note: This error applies to run-time library files only.

$1108

$1109

$I10A

$110B

User ID error: The specified User ID either doesn't exist
(Application Shutdown), or doesn't match the User ID of the specified
segment (Unload Segment By Number).

SegNum out of sequence: the value of the SEGNUM field in the
segment's header doesn't match the number by which the segment was
specified (Load Segment By Number, Initial Load).

Illegal load record found: A record in the segment is of a type not
accepted by the loader.

Load segment is foreign: The values in the NUMSEX and NUMLEN
fields in the specified segment's header are not 0 and 4, respectively
(Load Segment By Number).

$001·$05F (proD OS 16 I/O errors-see "ProDOS 16 Errors" in this appendix)

APDADrqfi 255 11113/86

Appld/GS ProD OS 16 Reference

$201·$20A (Memory Manager en-ors--see Apple IIGS Toolbox Reference)

Fatal errors

If a ProDOS 16 error or Memory Manager error occurs while the System Loader is making
an internal call, it is a fatal error. The most common case is when a Jump Table Load is
attempted for a dynamic load segment or run-time library segment whose volume is not on
line. Control is transferred to the System Failure Manager, and the following message
appears on the screen:

Erro r l oading Dynamic Segment-XXXX

where xxxx is the error code of the ProDOS 16 or Memory manager error that occurred.

APDADraft 256 11113186

Glossary

absolute: Characteristic of a load segment or other program code that must be loaded at a
specific address in memory, and never moved. Compare relocatable.

access byte: An attribute of a ProDOS 16 file that determines what types of operations,
such as reading or writing, may be performed on the file.

accumulator: The register in the microprocessor where most computations are
performed.

address: A number that specifies the location of a single byte of memory. Addresses
can be given as decimal or hexadecimal integers. The Apple IIGS has addresses ranging
from 0 to 16,777,215 (in decimal) or from $00 00 00 to $FF FF FF (in hexadecimal). A
complete address consists of a 4-bit bank number ($00 to $FF) followed by a 16-bit
address within that bank ($00 00 to $FF FF).

Apple IIGS Programmer's Workshop: The development environment for the
Apple IIGS computer. It consists of a set of programs that facilitate the writing, compiling,
and debugging of Apple IIGS applications.

application program (or application): (1) A program that performs a specific task
useful to the computer user, such as word processing, data base management. or graphics,
Compare controlling program. shell application, system program. (2) On the
Apple IIGS, a program (such as the APW Shell) that accesses ProDOS 16 and the Toolbox
directly, and that can be called or exited via the QUIT call. ProDOS 16 applications are
file type $B3.

APW: see Apple IIGS Programmer's Workshop.

APW Linker: The linker supplied with APW.

ASCII: Acronym for American Standard Code for I njormation Interchange. A code in
which the numbers from 0 to 127 stand for text characters. ASCII code is used for
representing text inside a computer and for transmitting text between computers or between
a computer and a peripheral device.

assembler: A program that produces object files (programs that contain machine
language code) from source files written in assembly language. Compare compiler.

AuxID: One of three fields in the User ID, a number that identifies each application.

backup bit: A bit in a file's access byte that tells backup programs whether the file has
been altered since the last time it was backed up.

bank: A 64K (65,536-byte) portion of the Apple IIGS internal memory. An individual
bank is specified by the value of one of the 65C8l6 microprocessor's bank registers.

APDADrafl 257 1lIJ3186

Apple lies ProDOS J 6 Reference

bank-switched memory: On Apple II computers, that part of the language card
memory in which two 4K-portions of memory share the same address range
($DOOO-$DFFF).

binary file: (1) A file whose data is to be interpreted in binary form. Machine-language
programs and pictures are stored in binary fIles. Compare text file. (2) A file in binary
file format.

binary file format: The ProDOS 8 loadable file format, consisting of one absolute
memory image along with its destination address. A file in binary file fonnat has ProDOS
file type $06 and is referred to as a BIN file_ The System Loader cannot load BIN meso

bit: A contraction of binary digit . The smallest unit of information that a computer can
hold. The value of a bit (lor 0) represents a simple two-way choice, such as yes or no or
on or off.

bit map: A set of bits that represents the positions and states of a corresponding set of
items. See, for example, global page bit map or volume bit map.

block: (1) A unit of data storage or transfer, typically 512 bytes. (2) A contiguous, page
aligned region of computer memory of arbitrary size, allocated by the Memory Manager.
Also called a memory block.

block device: A device that transfers data to or from a computer in multiples of one
block (512 bytes) of characters at a time. Disk drives are block devices.

boot: Another way to say start up. A computer boots by loading a program into memory
from an external storage medium such as a disk. Boot is short for bootstrap load: Starting
up is often accomplished by first loading a small program, which then reads a larger
program into memory. The program is said to "pull itself up by its own bootstraps."

buffer: A region of memory where information can be stored by one program or device
and then read at a different rate by another; for example, a ProDOS 16 I/O buffer.

Busy word: a firmware flag, consulted by the Scheduler, that protects system software
that is not reentrant from being called while processing another call.

byte: A unit of information consisting of a sequence of 8 bits. A byte can take any value
between 0 and 255 ($0 and $FF hexadecimal). The value can represent an instruction,
number, character, or logical state.

call: (v.) To request the execution of a subroutine, function, or procedure. (n.) A request
from the keyboard or from a program to execute a named function.

call block: The sequence of assembly-language instructions used to call ProDOS 16 or
System Loader functions.

carry flag: A status bit in the microprocessor, used as an additional high-order bit with
the accumulator bits in addition, subtraction, rotation, and shift operations.

character: Any symbol that has a widely understood meaning and thus can convey
information. Most characters are represented in the computer as one-byte values.

APDADrajt 258 11113186

Glossary

character device: A device that transfers data to or from a computer as a stream of
individual characters. Keyboards and printers are character devices.

close: To tenninate access to an open file. When a file is closed, its updated version is
wrinen to disk and all resources it needed when open (such as its I/O buffer) are released.
The me must be opened before it can be accessed again.

compact: To rearrange allocated memory blocks in order to increase the amount of
contiguous unallocated (free) memory. The Memory Manager compacts memory when
needed.

compiler: A program that produces object files (containing machine-language code)
from source files written in a high-level language such as C. Compare assembler.

controlling program: A program that loads and runs other programs, without itself
relinquishing control. A controlling program is responsible for shutting down its
subprograms and freeing their memory space when they are flnished. A shell, for
example. is a controlling program.

current application: The application program currently loaded and running. Every
application program is identifled by a User ID number; the current application is defmed as
that application whose User ID is the present value of the USERID global variable.

data block: A 5l2-byte portion of a ProDOS 16 standard file that consists of whatever
kind of information the file may contain.

dereference: To substitute a pointer for a memory handle. When you dereference a
memory block's handle, you access the block directly (through its master pointer) rather
than indirectly (through its handle).

desk accessories: Small. special-purpose programs that are available to the user
regardless of which application is running-such as the Control Panel, Calculator. Note
Pad, and Alarm Clock.

desktop: The visual interface between the computer and the user. In computers that
support the desktop concept, the desktop consists of a menu bar at the top of the screen,
and a gray area in which applications are opened as windows. The desktop interface was
flrst developed for the Macintosh computer.

device: A piece of equipment (hardware) used in conjunction with a computer and under
the computer's control. Also called a peripheral device because such equipment is often
physically separate from, but attached to, the computer.

device driver: A program that manages the transfer of information between a computer
and a peripheral device.

direct page: A page (256 bytes) of bank $()() of Apple llGS memory, any part of which
can be addressed with a short (one byte) address because its high address byte is always
$00 and its middle address byte is the value of the 65C816 direct register. Co-resident
programs or routines can have their own direct pages at different locations. The direct page
corresponds to the 6502 processor's zero page. The term direct page is often used
informally to refer to any part of the lower portion of the direct-page/stack space.

APDADrajt 259 11113186

Apple 11GS ProDOS 16 Reference

direct· page/stack space: A ponion of bank $00 of Apple IIGS memory reserved for a
program's direct page and stack. Initially, the 65C8l6 processor's direct register
contains the base address of the space, and its stack register contains the highest
address. In use, the stack grows downward from the top of the direct-page/stack space,
and the lower part of the space contains direct-page data

direct register: A hardware register in the 65C816 processor that specifies the start of
the direct page.

directory file: One of the two principal categories of ProDOS 16 flies. Directory files
contain specifically formatted entries that contain the names and disk locations of other
files. Compare standard file. Directory files are either volume directories or
subdirectories.

disk device: see block device.

disk operating system: An operating system whose principal function is to manage
files and communication with one or more disk drives. DOS and ProDOS are two
families of Apple II disk operating systems.

dispose: To permanently deallocate a memory block. The Memory Manager disposes of
a memory block by removing its master pointer. Any handle to that pointer will then be
invalid. Compare purge.

dormant: Said of a program that is not being executed, but whose essential parts are all in
the computer's memory. A dormant program may be quickly restarted because it need
not be reloaded from disk.

DOS: An Apple II disk operating system. DOS is an acronym for Disk Operating
System.

dynamic segment: A segment that can be loaded and unloaded during execution as
needed. Compare static segment.

e flag: A flag bit in the 65C816 that determines whether the processor is in native mode
or emulation mode.

8·bit Apple II: see standard Apple II.

emulation mode: The 8-bit configuration of the 65C816 processor, in which it functions
like a 6502 processor in all respects except clock speed.

EOF (end-of·file): The logical size of a ProDOS 16 file; it is the number of bytes that
may be read from or written to the fIle.

error (or error condition): the state of a computer after it has detected a fault in one or
more commands sent to it.

error code: a number or other symbol representing a type of error.

event: A notification to an application of some occurrance (such as an interrupt generated
by a keypress) that the application may want to respond to.

APDADraft 260 11113186

Glossary

event-driven: A kind of program that responds to user inputs in real time by repeatedly
testing for events posted by interrupt routines. An event-driven program does nothing until
it detects an event such as a keypress.

external device: See device.

fatal error: An error serious enough that the computer must halt execution.

file: A named, ordered collection of information stored on a disk.

file control block (FCB): A data structure set up in memory by ProDOS 16 to keep
track of all open files.

file entry or file directory entry: The pan of a ProDOS 16 directory or subdirectory
that describes and points to another file. The me so described is considered to be "in" or
"under" that directory.

file level: See system file level.

filename: The string of characters that identifies a panicular file within its directory.
ProDOS 16 filenames may be up to 15 characters long. Compare pathname.

file system ID: a number describing the general category of operating system to which a
file or volume belongs. The me system ID is an input to the ProDOS 16 FORMAT call, and
a result from the VOLUME call.

file type: An attribute in a ProDOS 16 file's directory entry that characterizes the contents
of the me and indicates how the file may be used. On disk, file types are stored as
numbers; in a directory listing, they are often displayed as three-character mnemonic codes.

filing calls: Operating system calls that manipulate fIles. In ProDOS 16, filing calls are
subdivided intojile housekeeping cal/s andjile access cal/s.

finder: A program that performs fIle and disk utilities (formatting, copying, renaming,
and so on) and also Slans applications at the request of the user.

firmware: Programs stored permanently in the computer' s read-only memory (ROM).
They can be executed at any time but cannot be modified or erased.

fixed: Not movable in memory once allocated. Also called unmovable. Program
segments that must not be moved are placed in fixed memory blocks. Opposite of
movable.

flush: To update an open file (write any updated information to disk) without closing it.

global page: Under ProD OS 8, 256 bytes of data at a fixed location in memory,
containing useful system information (such as a list of active devices) available to any
application.

global page bit map: A portion of the ProDOS 8 global page that keeps track of
memory use in the computer. Applications under ProDOS 8 are responsible for marking
and clearing parts of the bit map that correspond to memory they have allocated or freed.

APDADraji 261 11113186

Apple llGS ProDOS 16 Reference

guest file system: A file system, other than ProDOS 16's, whose files can be read by
ProD OS 16.

handle: See memory handle.

hexadecimal: The base-16 system of numbers, using the ten digits 0 through 9 and the
six letters A through F. Hexadecimal numbers can be converted easily and directly to
binary fonn, because each hexadecimal digit corresponds to a sequence of four bits. In
Apple manuals hexadecimal numbers are usually preceded by a dollar sign ($).

high-order: The most significant part of a numerical quantity. In normal representation,
the high-order bit of a binary value is in the leftmost position; likewise, the high-order byte
of a binary word or long word quantity consists of the leftmost eight bits.

Human Interface Guidelines: A set of software development guidelines developed by
Apple Computer to support the desktop concept and to promote unifonn user interfaces in
Apple IT and Macintosh applications.

image: A representation of the contents of memory. A code image consists of machine
language instructions or data that may be loaded unchanged into memory.

index block: A 5l2-byte part of a ProDOS 16 standard file that consists entirely of
pointers to other parts (data blocks) of the file.

initial load file: The first file of a program to be loaded into memory. It contains the
program's main segment and the load file tables (Jump Table segment and Pathname
segment) needed to load dynamic segments and run-time libraries.

initialization segment: A segment in an initial load file that is loaded and executed
independently of the rest of the program. It is commonly executed first, to perfonn any
initialization thl\t the program may require. '"

:' ",

input/output: the transfer of infonnation between a computer's memory and peripheral
devices.

interrupt: A temporary suspension in the execution of a program that allows the
computer to perfonn some other task, typically in response to a signal from a device or
source external to the computer.

interrupt handler: A program, associated with a particular external device, that executes
whenever that device sends an interrupt signal to the computer. The interrupt handler
perfonns its tasks during the interrupt, then returns control to the computer so it may
resume program execution.

interrupt vector table: A table maintained in memory by ProDOS 16 that contains the
addresses of all currently active (allocated) interrupt handlers.

INTERSEG record: A part of a relocation dictionary. It contains relocation information
for external (intersegrnent) references.

I/O: See input/output.

APDADraft 262 11113186

Glossary

JML: unconditional Long Jump; a 65C816 assembly-language op code. It takes a 3-byte
address operand. A JML can reach any address in the Apple IIGS memory space.

JMP: unconditional Jump; a 6502 and 65C816 assembly-language op code. It takes a 2-
byte address operand. A JMP can reach addresses only within a single 64K bank of the
Apple nGS memory space.

JSL: Long Jump to Subroutine; a 65C816 assembly-language op code. It takes a 3-byte
address operand. A JSL can access any address in the Apple IIGS memory space.

JSR: Jump to Subroutine; a 6502 and 65C816 assembly-language op code. It takes a 2-
byte address operand. A JSR can access addresses only within a single 64K bank of the
Apple nGS memory space.

Jump Table: A table contructed in memory by the System Loader from all Jump Table
segments encountered during a load. The Jump Table contains all references to dynamic
segments that may be called during execution of the program.

Jump Table directory: A master list in memory, containing pointers to all segments
that make up the Jump Table.

Jump Table segment: A segment in a load file that contains all references to dynamic
segments that may be called during execution of that load file. The Jump Table segment is
created by the linker. In memory, the loader combines all Jump Table segments it
encounters into the Jump Table.

K: Kilobyte. 1024 (210) bytes.

kernel: The central part of an operating system. ProDOS 16 is the kernel of the Apple
IIGS operating system.

key block: The first block in any ProDOS 16 file.

kind: See segment kind.

language card: Memory with addresses between $DOOO and $FFFF on any
Apple II-family computer. It includes two RAM banks in the $D.xxx space, called
bank-switched memory. The language card was originally a peripheral card for the
48K Apple II or Apple II Plus that expanded its memory capacity to 64K and provided
space for an additional dialect of BASIC.

level: See system file level.

library file: An object file containing program segments, each of which can be used in
any number of programs. The linker can search through the library file for segments that
have been referenced in the program source file.

linker: A program that combines files generated by compilers and assemblers, resolves
all symbolic references, and generates a file that can be loaded into memory and executed.

load file: The output of the linker. Load files contain memory images that the system
loader can load into memory, together with relocation dictionaries that the loader uses
to relocate references.

APDADroji 263 llf13186

Apple IIGS ProDOS 16 Reference

load segment: A segment in a load file.

lock: To prevent a memory block from being moved or purged. A block may be locked
or unlocked by the Memory Manager, or by an application through a call to the System
Loader.

long word: A double-length word. For the Apple IIGS, a long word is 32 bits (4 bytes)
long.

low-order: The least significant part of a numerical quantity. In normal representation,
the low-order bit of a binary number is in the rightmost position; likewise, the low-order
byte of a binary word or long word quantity consists of the rightmost eight bits.

m flag: A flag in the 65C816 processor that determines whether the accumulator is 8 bits
wide or 16 bits wide.

macro: a single predefined assembly-language pseudo-instruction that an assembler
replaces with several actual instructions. Macros are almost like higher-level instructions
that can be used inside assembly-language programs, making them easier to write.

MainID: One of three fields in the User ID, a number that identifies each application.

main segment: The first static segment (other than initialization segments) in the initial
load me of a program. It is loaded at startup and never removed from memory until the
program terminates.

Mark: The current position in an open me. It is the point in the file at which the next read
or write operation will occur.

Mark List: A table maintained in memory by the System Loader to help it perform
relocation rapidly.

master index block: The key block in a ProDOS 16 tree file, the largest organization
of a standard file that ProD OS 16 can support. The master index block consists solely
of pointers to one or more index blocks.

master pointer: A pointer to a memory block; it is kept by the Memory Manager. Each
allocated memory block has a master pointer, but the block is normally accessed through its
memory handle (which points to the master pointer), rather than through the master pointer
itself.

Mb: Megabyte. 1,048,576 (220) bytes.

memory block: See block (2).

memory handle: The identifying number of a particular block of memory. It is a pointer
to the master pointer to the memory block. A handle rather than a simple pointer is needed
to reference a movable memory block; that way the handle will always be the same though
the value of the pointer may change as the block is moved around.

Memory Manager: A program in the Apple IIGS Toolbox that manages memory use.
The Memory Manager keeps track of how much memory is available, and allocates
memory blocks to hold program segments or data.

APDADraft 264 11/13/86

Glossary

Memory Segment Table: A linked list in memory, created by the loader, that allows
the loader to keep track of the segments that have been loaded into memory.

MLI: Machine Language Interface-the pan of ProDOS 8 that processes operating system
calls.

monitor: See video monitor.

Monitor program: A program built into the firmware of Apple II computers, used for
directly inspecting or changing the contents of main memory and for operating the
computer at the machine-language level.

move: To change the location of a memory block. The Memory Manager may move
blocks to consolidate memory space.

movable: A memory block attribute, indicating that the Memory Manager is free to move
the block. Opposite of fixed. Only position.independent program segments may be
in movable memory blocks. A block is made movable or fixed through Memory Manager
calls.

native mode: The 16-bit operating configuration of the 65C816 processor.

newline mode: A fIle-reading mode in which each character read from the file is
compared to a specified character (called the newline character); if there is a match, the read
is terminated. Newline mode is typically used to read individual lines of text, with the
new line character defined as a carriage return.

nibble: a unit of information consisting of one-half of a byte, or 4 bits. A nibble can
take on any value between 0 and 15 ($0 and $F hexadecimal).

NIL: Pointing to a value of O. A memory handle is N1L if the address it points to is filled
with zeros. Handles to purged memory blocks are NIL.

object file: The output from an assembler or compiler, and the input to a linker. It
contains machine-language intructions. Also called object program or object code.
Compare source file.

object module Cormat: The general format used in Apple IIGS object fIles, library files ,
and load fIles.

OMF file: Any file in object module format.

op code: See operation code.

open: To allow access to a fIle. A fIle may not be read from or written to until it is open.

operand: The part of an assembly 1311guage instruction that follows the operation code.
The operand is used as a value or an address, or to calculate a value or an address.

operating environment: The overall hardware and software setting within which a
program runs. Also called execution environment.

operating system: A program that organizes the actions of the various parts of the
computer and its peripheral devices. See also disk operating system.

APDADraft 265 11113186

Apple lIGS ProDOS 16 Reference

operation code: The pan of a machine-language instruction that specifies the operation
to be performed. Often called op code.

page: (I) A ponion of memory 256 bytes long and beginning at an address that is an
even multiple of 256. Memory blocks whose starting addresses are an even mUltiple of
256 are said to be page-aligned. (2) An area of main memory containing text or graphical
information being displayed on the screen.

parameter: A value passed to or from a function or other routine.

parameter block: A set of contiguous memory locations. set up by a calling program to
pass parameters to and receive results from an operating system function that it calls.
Every call to ProDOS 16 must include a pointer to a properly constructed parameter block.

partial pathname: A ponion of a path name including the filename of the desired file
but excluding the volume directory name (and possibly one or more of the subdirectories in
the pathname). It is the pan of a pathname following a prefix-a prefix and a partial
pathname together constitute a full pathname. A partial pathname does not begin with a
slash because it has no volume directory name.

patch: To replace one or more bytes in memory or in a file with other values. The
address to which the program must jump to execute a subroutine is patched into memory at
load time when a file is relocated.

path name: the complete name by which a file is specified. It is a sequence of filenames
separated by slashes. starting with the filename of the volume directory and following the
path through any subdirectories that a program must follow to locate the file. A complete
pathname always begins with a slash (I). because volume directory names always begin
with a slash.

Pathname segment: A segment in a load file that contains the cross-references between
load files referenced by number (in the Jump Table segment) and their pathnames (listed in
the fIle directory). The Pathname segment is created by the linker.

Pathname Table: A table constructed in memory from all individual Pathname segments
encountered during loads. It contains the cross-references between load fIles referenced by
number (in the Jump Table) and their pathnames (listed in the fIle directory).

pointer: An item of information consisting of the memory address of some other item.
For example, the 65C816 stack register contains a pointer to the top of the stack.

position-independent: Code that is written specifically so that its execution is
unaffected by its position in memory. It can be moved without needing to be relocated.

prefix: A ponion of a path name starting with a volume name and ending with a
subdirectory name. It is the pan of a pathname before the partial pathname-a prefix
and a partial pathname together constitute a full pathname. A prefIX always stans with a
slash (I) because a volume directory name always stans with a slash.

prefix number: A code used to represent a particular prefix. Under ProDOS 16. there
are nine prefix numbers, each consisting of a number (or asterisk) followed by a slash:
0 1.1 / 81. and *1.

APDADrajt 266 1lI13186

Glossary

ProDOS: A family of disk operating systems developed for the Apple II family of
computers. ProDOS stands for Professional Disk Operating System, and includes both
ProDOS 8 and ProDOS 16.

ProDOS 8: A disk operating system developed for standard Apple II computers. It runs
on 6502-series microprocessors. It also runs on the Apple IIGS when the 65C816
processor is in 6502 emulation mode.

ProDOS 16: A disk operating System developed for 65C816 native mode
operation on the Apple IIGs. It is functionally similar to ProDOS 8 but more powerful.

pull: To remove the top entry from a stack, moving the stack pointer to the entry below
it. Synonymous with pop. Compare push.

purge: To temporarily deallocate a memory block. The Memory Manager purges a block
by setting its master pointer to NIL (0). All handles to the pointer are still valid, so the
block can be reconstructed quickly. Compare dispose.

purge level: An attribute of a memory block that sets its priority for purging. A purge
level of 0 means that the block is unpiJrgeable.

purgeable: A memory block attribute, indicating that the Memory Manager may purge the
block if it needs additional memory space. Purgeable blocks have different purge levels,
or priorities for purging; these levels are set by Memory Manager calls.

push: To add an item to the top of a stack, moving the stack pointer to the next entry
above the top. Compare push.

queue: A list in which entries are added at one end and removed at the other, causing
entries to be removed in first-in, first-out (FIFO) order. Compare stack.

quit return stack: A stack maintained in memory by ProDOS 16. It contains a list of
programs that have terminated but are scheduled to return when the presently executing
program is finished.

random-access device: See block device.

record: A component of an load segment. All OMF me segments are composed of
records, some of which are program code and some of which contain cross-reference or
relocation information.

reentrant: Said of a routine that is able to accept a call while one or more previous calls to
it are pending, without invalidating the previous calls. Under certain conditions, the
Scheduler manages execution of programs that are not reentrant.

reference: (n) The name of a segment or entry point to a segment; same as symbolic
reference. (v) To refer to a symbolic reference or to use one in an expression or as an
address.

RELOC record: A part of a relocation dictionary that contains relocation information for
local (within-segment) references.

APDADraft 267 IlIJ3f86

Apple IIGS ProDOS 16 Reference

relocate: To modify a file or segment at load time so that it will execute correctly at its
current memory location. Relocation consists of patching the proper values onto address
operands. The loader relocates load segments when it loads them into memory. See also
relocatable.

relocatable: Characteristic of a load segment or other program code that includes no
absolute addresses, and so can be relocated at load time. A relocatable segment can be
static, dynamic, or position independent. It consists of a code image followed by a
relocation dictionary. Compare absolute.

relocation dictionary: A portion of a load segment that contains relocation information
necessary to modify the memory image portion of the segment. See relocate.

restart: To reactivate a dormant program in the computer's memory. The System
Loader can restart dormant programs if all their static segments are still in memory. If any
critical part of a dormant program has been purged by the Memory Manager, the program
must be reloaded from disk instead of restarted.

restartable: Said of a program that reinitializes its variables and makes no assumptions
about machine state each time it gains control. Only restartable programs can be executed
from a dormant state in memory.

result: an item of information returned to a calling program from a function. Compare
value.

RTL: Return from subroutine Long; a 65C816 assembly-language instruction. It is used
in conjunction with a JSL instruction.

RTS: Return from Subroutine; a 6502 and 65C816 assembly-language instruction. It is
used in conjunction with a JSR instruction.

run-time library file: A load file containing program segments--each of which can be
used in any number of programs-that the System Loader loads dynamically when they are
needed.

sapling file: An organizational form of a ProDOS 16 standard file. A sapling file
consists of a single index block and up to 256 data blocks.

Scheduler: a firmware program that manages requests to execute interrupted software
that is not reentrant. If, for example, an interrupt handler needs to make ProDOS 16
calls, it must do so through the Scheduler because ProDOS 16 is not reentrant.
Applications need not use the Scheduler because ProDOS 16 is not in an interrupted state
when it processes applications' system calls.

sector: A division of a track on a disk. When a disk is formatted, its surface is divided
into tracks and sectors.

seedling file: An organizational form of a ProDOS 16 standard file. A seedling file
consists of a single data block.

segment: A component of an OMF file, consisting of a header and a body. In load files,
each segment incorporates one or more subroutines.--.

APDADraft 268 1lI13186

Glossary

segment kind: A numerical designation used to classify a segment in object module
format It is the value of the KIND field in the segment's header.

sequential-access device: See character device.

shadowing: The process whereby any changes made to one part of the Apple IIGS
memory are automatically and simultaneously copied into another part. When shadowing
is on, information written to bank $00 or $01 is automatically copied into equivalent
locations in bank $EO or $El. Likewise, any changes to bank $EO or $El are immediately
reflected in bank $00 or $01.

shell application: A type of program that is launched from a controlling program
and runs under its control. Shell applications are ProDOS 16 file type $B5.

soft switch: A location in memory that produces some specific effect whenever its
contents are read or written.

source file: An ASCII file consisting of instructions written in a particular language,
such as Pascal or assembly language. An assembler or compiler converts source ftles into
object files.

sparse file: A variation of the organizational forms of ProDOS 16 standard files. A
sparse file may be either a sapling file or a tree file; what makes it sparse is the fact that
its logical size (defmed by its EOF) is greater than its actual size on disk. This occurs
when one or more data blocks contain nothing but zeros. Those data blocks are
considered to be part of the file, but they are not actually allocated on disk until nonzero
data is written to them.

stack: A list in which entries are added (pushed) and removed (pulled) at one end only
(the top of the stack), causing them to be removed in last-in, flIst-out (LIFO) order. The
term lhe stack usually refers to the particular stack pointed to by the 65C8l6' s stack
register. Compare queue.

stack register: A hardware register in the 65C816 processor that contains the address of
the top of the processor's stack.

standard Apple II: Any computer in the Apple II family except the Apple IIGS. That
includes the Apple II, the Apple II Plus, the Apple lIe, and the Apple IIc.

standard file: One of the two principal categories of ProDOS 16 files. Standard fIles
contain whatever data they were created to hold; they have no predefined internal format.
Compare directory file.

start up: To get the system running. It involves loading system software from disk, and
then loading and running an application. Also called boot.

static segment: A segment that is loaded only at program boot time. and is not unloaded
during execution. Compare dynamic segment.

storage type: An attribute of a ProDOS 16 file that describes the file's organizational
form (such as directory file, seedling file, or sapling ftle).

subdirectory: A ProDOS 16 directory file that is not the volume directory.

APDADraft 269 11113186

Apple JIGS ProDOS 16 Reference

switcher: A controlling program that rapidly transfers execution among several
applications.

system: A coordinated collection of interrelated and interacting parts organized to perfonn
some function or achieve some purpose-for example, a computer system comprising a
processor, keyboard, monitor, disk drive, and software.

system disk: A disk that contains the operating system and other system software
needed to run applications.

System Failure Manager: A firmware program that processes fatal errors by
displaying a message on the screen and halting execution.

system file: See system program.

system file level: A number between $00 and $FF associated with each open ProDOS
16 me. Every time a flIe is opened, the current value of the system fIle level is assigned to
it. If the system file level is changed (by a SET_LEVEL call), all subsequently opened files
will have the new level assigned to them. By manipulating the system file level, a
controlling program can easily close or flush files opened by its subprograms.

System Loader: The program that manages the loading and relocation of load segments
(programs) into the Apple IIGS memory. The System Loader works closely with
ProDOS 16 and the Memory Manager.

system program: (1) A software component of a computer system that supports
application programs by managing system resources such as memory and I/O devices.
Also called system software. (2) Under ProDOS 8, a stand-alone and potentially self
booting application. A ProDOS 8 system program is of fIle type $FF; if it is self-booting,
its flIename has the extension . SYSTEM.

system software: The components of a computer system that support application
programs by managing system resources such as memory and I/O devices.

tool: see tool set.

tool set: A group of related routines (usually in fumware), available to applications and
system software, that perform necessary functions or provide programming convenience.
The Memory Manager, the System Loader, and QuickDraw II are tool sets.

toolbox: A collection of built-in routines on the Apple IIGS that programs can call to
perfonn many commonly-needed functions. Functions within the toolbox are grouped into
tool sets.

track: One of a series of concentric circles on a disk. When a disk is formatted, its
surface is divided into tracks and sectors.

tree file: An organizational form of a ProDOS 16 standard file. A tree flIe consists of
a single master index block, up to 127 index blocks, and up to 32,512 data
blocks.

TypeID: One of three fields in the User ID, a number that identifies each application.

APDADraft 270 11113186

"--_.

Glossary

unload: To remove a load segment from memory. To unload a segment, the System
Loader does not actually "unload" anything; it calls the Memory Manager to either purge
or dispose of the memory block in which the code segment resides. The loader then
modifies the Memory Segment Table to reflect the fact that the segment is no longer in
memory.

unmovable: See fixed.

unpurgeable: Having a purge level of zero. the Memory Manager is not permitted to
purge memory blocks whose purge level is zero.

User ID: An identification number that specifies the owner of every memory block
allocated by the Memory Manager. User ID's are assigned by the User ID Manager.

User ID Manager: A tool set that is responsible for assigning User ID's to every block
of memory allocated by the Memory Manager.

value: An item of information passed from a calling routine to a function. Compare
result.

video monitor: a display device that receives video signals by direct connection only.

version: A number indicating the release edition of a particular piece of software.
Version numbers for most system software (such as ProDOS 16 and the System Loader)
are available through function calls.

volume: An object that stores data; the source or destination of information. A volume
has a name and a volume directory with the same name; information on a volume is stored
in files. Volumes typically reside in devices; a device such as a floppy disk drive may
contain one of any number of volumes (disks).

volume bit map: A ponion of every ProDOS 16-formatted disk that keeps track of free
disk space.

volume control block (VCB): A data structure set up in memory by ProDOS 16 to
keep track of all volumes/devices connected to the computer.

volume directory: A ProDOS 16 directory file that is the principal directory of a
volume. It has the same name as the volume. The pathoame of every file on the volume
starts with the volume directory name.

volume name: The name by which a particular volume is identified. It is the same as the
filename of the volume directory file.

word: A group of bits that is treated as a unit. For the Apple IIGS, a word is 16 bits (2
bytes) long.

zero page: The first page (256 bytes) of memory in a standard Apple II computer (or in
the Apple IIOS computer when running a standard Apple II program). Because the high·
order byte of any address in this part of memory is zero, only a single byte is needed to
specify a zero-page address. Compare direct page.

APDA.Drajt 271 11113/86

Apple IIGS ProDOS 16 Reference

APDADraft 272 1l!13/86

