Programmer’s Reference
for
System 6.0.1

Edited by Mike Westerfield

Copyright 1993
Byte Works, Inc.

Contents

Acknowledgments

Chapter 1 Toolbox Changes

Control Manager

Desk Manager

Integer Math Tool Set
LineEdit Tool Set

New Line Edit Calls
List Manager

Media Control Tool Set
Menu Manager
Miscellaneous Tool Set
QuickDraw II
QuickDraw II Auxiliary
Resource Manager
Standard File Operations Tool Set
TextEdit Tool Set

Tool Locator

Window Manager

Chapter 2 GS/OS Changes

Device Dispatcher

System Loader

GS/OS Drivers

FSTs
AppleShare FST
DOS 3.3 FST
HFS FST

HS.FST (High Sierra & ISO 9660 FST)

MS-DOS FST
ProDOS FST

Chapter 3 Control Panels

Control Panels NDA 2.1
Sound Control Panel

Chapter 4 Finder 6.0.1

Clarifications
New Features of the Finder

Chapter 5 Battery RAM Update

Index

Table of Contents

Acknowledgments

This book was developed from Apple’s Engineering Requirements Specification (ERS) documents
for System 6.0.1. The source material included:

Apple IIGS System Software 6.0.1, Version 1.0d1, November 29 1993, David A. Lyons
GS/OS MS-DOS File System Translator External ERS, Version 0.04, Greg Branche

The source material is quoted heavily. All source material is Copyright 1993, Apple Computer,
Inc. Itis used here with permission.

Technical documentation is notoriously hard to get right. After working for months on a project,
it’s hard to force yourself to really read all of those arcane technical details carefully enough to
make sure they are right. The often thankless job of reviewing draft documentation is very
important, so I want to thank those who took their time to read all of this one last ime. They are
Greg Branche, Matt Deatherage, Dave Lyons, Jim Murphy and Steve Stephenson.

Acknowledgments \%

This manual is copyrighted by
the Byte Works Inc., and is
based heavily on material
copyrighted by Apple
Computer Inc., and used with
their permission. Under the
copyright laws, this manual
may not be copied, in whole
or in part, without the written
consent of the Byte Works,
Inc. Some parts may not be
reproduced without written
permission from Apple
Computer, Inc. This
exception does not allow
copies to be made for others,
whether or not sold, but all of
the material purchased may be
sold, given, or lent to another
person. Under the law,
copying includes translating to
another language.

©Byte Works, Inc., 1993
4700 Irving Blvd N.W. Suite
207

Albuquerque, N.M. 87114
(505) 898-8183

Apple, the Apple logo,
AppleShare, AppleTalk,
Apple IIGS, ImageWriter,
LaserWriter, and Macintosh
are registered trademarks of
Apple Computer, Inc.

Finder, GS/OS, MPW and
QuickDraw are trademarks of
Apple Computer, Inc.

Byte Works is a registered
trademark of Byte Works, Inc.

LIMITED WARRANTY
ON MEDIA AND
REPLACEMENT

ALL IMPLIED
WARRANTIES ON THIS
MATERIAL,
INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY
AND FITNESS FOR A
PARTICULAR
PURPOSE, ARE
LIMITED IN DURATION
TO NINETY (90) DAYS
FROM THE DATE OF
ORIGINAL RETAIL
PURCHASE OF THIS
PRODUCT.

Even though Apple has
reviewed this manual,
NEITHER APPLE OR
THE BYTE WORKS
MAKES ANY
WARRANTY OR
REPRESENTATION,
EITHER EXPRESSED
OR IMPLIED, WITH
RESPECT TO THIS
MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY,
OR FITNESS FOR A
PARTICULAR
PURPOSE. AS A
RESULT, THIS
MANUAL IS SOLD “AS
IS,” AND YOU, THE
PURCHASER, ARE
ASSUMING THE
ENTIRE RISK AS TO
ITS QUALITY AND
ACCURACY.

vi Programmer’s Reference for System 6.0.1

IN NO EVENT WILL
APPLE OR THE BYTE
WORKS BE LIABLE
FOR DIRECT,
INDIRECT, SPECIAL,
INCIDENTAL, OR
CONSEQUENTIAL
DAMAGES RESULTING
FROM ANY DEFECT OR
INACCURACY IN THIS
MANUAL, even if advised
of the possibility of such
damages.

THE WARRANTY AND
REMEDIES SET FORTH
ABOVE ARE
EXCLUSIVE AND IN
LIEU OF ALL OTHERS,
ORAL OR WRITTEN,
EXPRESSED OR
IMPLIED. No Apple or
Byte Works dealer, agent, or
employee is authorized to
make any modification,
extension, or addition to this
warrantee.

Some states do not allow the
exclusion or limitation of
implied warrantees or liability
for incidental or consequential
damages, so the above
limitation or exclusion may not
apply to you. This warranty
gives you specific legal rights,
and you may also have other
rights which vary from state to
state.

Chapter 1 Toolbox Changes

New Features of the Control Manager

» There are four new Control Manager calls: SetCt1lvalueByID, GetCtlValueByID,
InvalOneCt1lByID,and HiliteCt1lByID.

Static Text Controls

» The Static Text control supports a new ct 1Flag bit. If bit 4 ($0010), £SquishText, is set
as well as fBlastText, the control will draw the text with DrawStringWidth (in
QuickDraw II Auxiliary) to compress and truncate on the right as needed to make the text fit
inside the control rectangle. If you set the fSquishText bit, you must also set the
fBlastText bit.

Thermometer Controls

» Setting a thermometer control’s value no longer draws anything if the control is invisible.
Pop-Up Menu Controls

* For enhancements to Pop-Up Menu controls, see the Menu Manager update.

Line Edit Controls

« For enhancements to Line Edit controls, see the Line Edit update.

Icon Button Controls

» The Icon Button control now supports “sticky” icon controls. If bit 4 of the ct 1Flag field is
set and the mouse button is released when the cursor is inside the control, the control stays
highlighted to show that it is “selected.” The ct1Value field contains $0001 when the icon is
in the selected state, and $0000 when it is not. An extra one-word field, #12, has been added
to the control template to allow for an initial value word for this type of control.

Scroll Bar Controls

e CtlStartUp removes the RefreshDesktop run queue routine, so the desktop doesn’t
refresh an extra time when starting an application in a different resolution from the one you
used last (the scroll bars thought they had to redraw in 6.0, even though they really didn’t).

Chapter 1 Toolbox Changes 1

New Control Manager Calls

GetCtlValueByID $3D10

Returns the current value of the control that has the specified control ID in the specified window.
This is just like GetCt 1Value, except you pass a control ID instead of a control handle.

Parameters
Stack before call
previous contents
Space Word—Space for result
— windPtr —| Long—Window containing the control (NIL = front)
— ctliD —| Long—Control ID of the control
<—SP
Stack after call
previous contents
theValue Word—Current control value
<—SP

Errors Returned unchanged from GetCt 1HandleFromID and GetCt1lValue.
C extern pascal Word GetCtlValueByID (windPtr, ctlID);

WindowPtr windPtr;

Long ctlID;
windPtr Pointer to the window containing the control. If the control is in the front window,

you may pass NIL.
ctlID Control ID for the control.
thevalue Current value of the control.
2 Programmer’s Reference for System 6.0.1

HiliteCtlByID $3F10

Changes the way a specified control is highlighted, just as if you called HiliteControl, except
you specify the control by window pointer and control ID.

Parameters
Stack before call
previous contents
hiliteState Word—New highlight value
— windPtr —| Long—Window containing the control (NIL = front)
— ctliD —| Long—Control ID of the control
<—SP
Stack after call
| previous contents |
| <—SP
Errors Returned unchanged from GetCt 1HandleFromID and HiliteControl.
C extern pascal void HiliteCtlByID (hiliteState, windPtr, ctlID);

Word hiliteState;
WindowPtr windPtr;
Long ctlID;

hiliteState New value for the control’s highlight flag.

windPtr Pointer to the window containing the control. If the control is in the front window,
you may pass NIL.
ctlID Control ID for the control.

Chapter 1 Toolbox Changes 3

InvalOneCtlByID $3E10

Invalidates a control’s rectangle, just as if you called InvalRect on the control’s rectangle. This
causes the control to get redrawn later, when your application has a chance to process an update
event for the window. You specify the control by its window pointer and control ID.

Parameters
Stack before call
previous contents
— windPtr —| Long—Window containing the control (NIL = front)
— cliD —| Long—Control ID of the control
<—SP
Stack after call
| previous contents |
| <—SP
Errors Returned unchanged from GetCt 1HandleFromID.
C extern pascal void InvalOneCtlByID (windPtr, ctlID);
WindowPtr windPtr;
Long ctlID;
windPtr Pointer to the window containing the control. If the control is in the front window,
you may pass NIL.
ctlID Control ID for the control.

4 Programmer’s Reference for System 6.0.1

SetCtlValueByID

$3C10

Sets the value of the control that has the specified control ID in the specified window. This is just
like SetCt1value, except you pass a control ID instead of a control handle.

Parameters
Stack before call
previous contents
newValue Word—New value for the control
— windPtr Long—Window containing the control (NIL = front)
— ctliD Long—Control ID of the control
<—SP
Stack after call
| previous contents |
| <—SP

Errors

C

newValue

windPtr

ctlID

Returned unchanged from GetCt 1HandleFromID and SetCt1lValue.
extern pascal void SetCtlvValueByID (newValue, windPtr, ctlID);
Word newValue;

WindowPtr windPtr;

Long ctlID;

New control value.

Pointer to the window containing the control. If the control is in the front window,
you may pass NIL.

Control ID for the control.

Chapter 1 Toolbox Changes 5

New Features of the Desk Manager

Classic Desk Accessory changes

If bit 7 of Battery RAM byte $59 is set, the system installs the Memory Peeker and Visit
Monitor CDAs for ROM 1 systems (just like ROM 3 always has).

New Desk Accessory changes

OpenNDA sends reOpenAct ion ($000C) to the action routine of an already-open NDA to
give the NDA a chance to do something other than just have the window come to the front. If
the NDA wants the system to take no further action (that is, skip the normal SelectWindow
call), it should store a $0001 into the word pointed to by the data parameter (passed in the X
and Y registers, or on the stack as shown below).

On ROM 3 only, DeskShutDown sets $07FC to zero if slot 4 is set to internal. This stops
the mouse from freezing in desktop applications after visiting the CDA menu when you have
previously run an application that left a non-zero value in $07FC. This was a problem on
ROM 3 systems only.

If you set bit 31 of an action procedure pointer (for an NDA or a system window), the system
does a stack-based dispatch instead of a register-based dispatch. The stack on entry to your
action procedure looks like this:

this:

Stack before call
previous contents
Space Word—space for result
actCode Word—Action code
— data —| Long—data (depends on actCode)
RTL RTL 3 bytes—RTL address
RTL <—SP
Before returning, you must remove actCode and data and set result so that the stack looks like
previous contents
result Word—result of action procedure
RTL RTL 3 bytes—RTL address
RTL <—SP

You can prototype your action procedure like this:

C

pascal Word MyActionProc (actCode, data);
Word actCode;
Long data;

Programmer’s Reference for System 6.0.1

New Feature of the Integer Math Tool Set

* Int2Dec and Long2Dec now return “zero ” if bit 31 of st ringPtr is set, the value being
converted is zero, and the buffer length is at least 5.

¢ Note The string returned has a total of five characters. The fifth character
is a trailing blank.

Chapter 1 Toolbox Changes 7

New Features of the LineEdit Tool Set

There is one new call, LEClassifyKey.

Line Edit Controls

There is a new field in the Line Edit control template. Parameter number 9 is a word called
keyMask. The control accepts keys only if the LEClassifyKey result has some bits set in
common with the keyMask parameter. The keyMask parameter defaults to $0001, which
causes the control to accept all keypresses, as usual.

The pwChar field in the Line Edit control template supports a new value. A value of $FFFF
now means the control is not for password entry. (Previously, the legal values were $0000
[default password character] and $0001 through $00FF [specific password character]. The
parameter’s presence implied that the control was for password entry, which is not sufficient
now that there is an optional ninth parameter.)

Programmer’s Reference for System 6.0.1

New Line Edit Calls

LEClassifyKey $2514

Returns a word with bits indicating what categories a specified event falls into. This is sometimes
useful in deciding what events to pass along to LEKey.

Parameters
Stack before call
_previous contents
Space Word—Space for result
— theEvent —| Long—Pointer to event record
<—SP
Stack after call
previous contents
resultBits Word—Value categorizing the event
<—SP
Errors None.
C extern pascal Word LEClassifyKey (theEvent);

EventRecPtr theEvent;
theEvent Pointer to the event record to check.

resultBits Collection of bits, set as follows:

bit 15 Special editing key. (LEKey will do something special; it will not
insert this key into the text.)

bit 14 digit (0-9)

bit 13 hex digit (a-f, A-F)

bit 12 letter (A-Z, a-z)

bit 11 any non-control key

bits 10-1 reserved (ignore)

bit 0 any key

If the event is not a keyDown or autoKey event, all currently-defined bits will be
zero.

Chapter 1 Toolbox Changes 9

New Features of the List Manager

L]

10

Setting flag bit 15 in the CompareSt rings flags now makes it compare GS/OS strings
instead of Pascal strings.

Fixed a problem affecting ListKey, CompareStrings, SortList, and SortList2
with a compareProc of 1. Characters $20 to $3F (including digits), and $60 were being
accidentally “uppercased.” For example, in System 6.0 “5”” would map into right-arrow,
which made ListKey move down one item.

The standard item-draw procedure uses DrawSt ringWidth, with flags allowing horizontal
compression and truncation on the right with an ellipsis.

Programmer’s Reference for System 6.0.1

Clarifications of Previous Media Control Tool Set Documentation

* MCGetStatus accepts two selector values that are not mentioned in the call description on
page 68 of Programmer’s Reference To System 6.0, but are mentioned in the chapter summary
on page 97. These are mcSVolumeL and mcSVolumeR.

e MCStop is documented incorrectly (page 90). Actually, MCStop takes a single input
parameter, mcChannelNo.

Chapter 1 Toolbox Changes 11

New Features of the Menu Manager

12

When a Pop-up menu control receives a ct LHandleEvent message, now it only sends
keyDown and autoKey events to MenuKey. It also preserves the menu bar around the
MenuKey call, so the menu bar is not accidentally left set to the Pop-up menu control.

Pop-up menu controls now draw the current item using DrawSt ringWidth (in QuickDraw
IT Auxiliary), so that long item names are compressed or center-truncated.

Page 104 of Programmers Reference For System 6.0 should make a distinction between menu
records and menu templates. The structure identified as "Menu Item Record" is actually a
template. (The system uses it to create a menu item, not to keep track of the item’s state once it
has been created.)

Programmer’s Reference for System 6.0.1

New Features of the Miscellaneous Tool Set
e There are two new calls: DoSysPrefs and AlertMessage.
SysFailMgr Enhancement

» If you pass NIL for the message string, SysFailMgr now provides the following default
messages for the specified error codes:

$27: “Could not read or write disk. The disk may be damaged.”
$201: “Out of memory (or required memory area was already in use).”
$308, $681, $682: “Detected trashed memory. Software bug or (less likely) bad RAM.”

SysBeep2 Enhancements

* SysBeep2 now sends a new SendRequest code, systemSaysForceUndim, as part of
handling all SysBeep2 codes except $006x (screen blanking, screen unblanking).

* The following new SysBeep2 codes have been defined. The system does not do anything
special to support them.

$0070 sbBeginningLongOperation A lengthy modal operation is starting.

$0F80 sbFileTransferred Upload/download finished.

$0F81 sbRealtimeMessage A real-time message needs the user’s attention.

$1000 sbConnectedToService Connected to an interactive service.

$1001 sbDisconnectedFromService Disconnected from an interactive service.

$1002 sbEnteredRealtimeChat Started a real time chat in an interactive service.

$1003 sbLeftRealtimeChat Left a real time chat in an interactive service.

$1010 sbFeatureEnabled The user enabled a feature in a preferences dialog.

$1011 sbFeatureDisabled The user disabled a feature in a preferences dialog.
ShowBootInfo

* ShowBootInfo now “wraps up” to a new row if you have more than one row of icons. If
you wrap off the top of the screen, it starts over at the bottom left, without erasing the screen.
(It used to keep recycling the bottom row, wiping it to periwinkle blue every time it filled up.)

Chapter 1 Toolbox Changes 13

New Miscellaneous Tool Set Calls

AlertMessage $3E03

AlertMessage displays a message on either the text screen or the Super Hi-Res screen and

makes the user choose one of up to three buttons. AlertMessage works in the GS/OS
environment only, not while ProDOS 8 is active.

Parameters
Stack before call
previous contents
Space Word—Space for result
— tablePtr —| Long—Pointer to the message table
msgNumber Word—Message index number (0, 1, 2...)
— substitutions —| Long—Pointer to the string substitution table
<—SP
Stack after call
previous contents
buttonNum Word—Button chosen by the user
<—SP
Errors $0377 onlyFromGSOS You called AlertMessage from ProDOS 8.
C extern pascal Word AlertMessage (tablePtr, msgNumber,
substitutions) ;

Pointer tablePtr, substitutions;
Word msgNumber;

tablePtr Points to a table formatted as follows:

dc i'messageZeroText-*, messageZeroGraphics-*-2"
dc i'messageOneText-*, messageOneGraphics-*-2"'

There is a pair of offsets for each message. Each offset counts the number of bytes
from its own location to the message string. The first offset of each pair is used on
the text screen, and the second is used on the Super Hi-Res screen (using
AlertWindow).

Each message is an AlertWindow string plus three characters to map the buttons
into return values. The three characters should be ‘0’ to ‘9”, indicating what values
to return when the first, second, and third buttons are chosen, respectively.

Both string offsets can point to the same string if you want, but the text version
does not do word wrapping for you.

14 Programmer’s Reference for System 6.0.1

The text messages support *0..*9 substitutions and “A” to mark the default button,
but they do not support the “#” substitutions that you automatically get (courtesy of
CompileText) for AlertWindow.

msgNumber Selects the message to display.

substitutions An array of pointers to Pascal strings. See AlertWindow for details.

Chapter 1 Toolbox Changes 15

DoSysPrefs $3F03

DoSysPrefs clears and then sets specified bits in the GS/OS system preferences word, and then
returns the original preference word so that you can restore it later.

A typical sequence is:
/* Clear the $2000 bit to avoid suppressing dialog */
/* Set the force-volume-mount and no-cancel bits */
oldPrefs = DoSysPrefs($2000,$C000);
/* Do some preference-bit-dependent stuff here */
/* Now restore the preferences */

/* Clear all bits, then set the ones that were originally set */
ignore = DoSysPrefs (SFFFF, oldPrefs);

Parameters
Stack before call
previous contents
Space Word—Space for result
bitsToClear Word—System preference bits to clear
bitsToSet Word—System preference bits to set
<—SP
Stack after call
previous contents
oldSysPrefs Word—Previous system preference word
<—SP
Errors $0301 badInputError Requires GS/OS
C extern pascal Word DoSysPrefs (bitsToClear, bitsToSet):;

Word bitsToClear, bitsToSet;

bitsToClear Any bit thatis set in this word will force the corresponding bit in the system
preference word to zero.

bitsToSet Any bit that s set in this word will set the corresponding bit in the system
preference word.

oldsysprefs The original system preference word is returned.

16 Programmer’s Reference for System 6.0.1

New Features of QuickDraw II

* QDVersion is now $0308. QDVersion is a standard reference for distinguishing system
versions, so it had to change.

Clarifications of Previous QuickDraw II Documentation

» Starting in System 6.0, QDShutDown examines bit 8 of the masterSCB word. If the bit is
set, QuickDraw leaves the Super Hi-Res screen turned on even after QuickDraw has shut
down. (ShutDownTools took advantage of this in System 6.0 to help implement smooth
transitions between applications, but the mechanism was not spelled out.)

* GetPixel does not work past the first 64K of a pixel map (it never has).

Chapter 1 Toolbox Changes 17

New Features of QuickDraw II Auxiliary

There are three new calls: DrawStringWidth, UseColorTable, and

RestoreColorTable.

GetSyslcon Enhancements

GetSysIcon now calls SendRequest with a new request code,
systemSaysGetSysIcon ($1201), to allow utilities and applications to override or extend
the built-in set of icons. The dataIn parameter points to a structure formatted as follows:

$00

— auxType —
$04 value
$06 flags

Long—auxiliary type parameter as passed to Get SysIcon

Word—value parameter as passed to Get SysIcon
Word—flags parameter as passed to Get SysIcon

Your request procedure (installed using Accept Requests in the Tool Locator) should
decide whether it will provide an icon for the given input parameters. If not, simply reject the
request. If you will handle it, put an icon pointer at offset +002 in the dataoOut buffer and
accept the request.

GetSysIcon has built-in icons for five additional file types: text ($04), source file ($B0),
AppleSoft BASIC program ($FC), archive ($E0), and binary file ($06). The complete set is

now:
Kind File Type
Folder, open or closed $000F
Application $00B3 or $00FF
Stack $0055
Text $0004
Source file $00B0O
AppleSoft BASIC program $00FC
Archive file $00EO
Binary file $0006
Document any other file type

Clarifications of Previous QuickDraw II Auxiliary Documentation

18

Toolbox Reference 3, page 44-15, for SpecialRect, says that the low-order 4 bits of

frameColor and fillColor specify the colors. Actually, all 16 bits are significant. To
get solid patterns, use $0000, $1111, ..., $SEEEE, $FFFF.

Programmer’s Reference for System 6.0.1

New QuickDraw II Auxiliary Calls

DrawStringWidth $1512

DrawStringWidth draws a string in a specified horizontal width on a single line. The string is
compressed and truncated as necessary, if allowed.

The string can be in Pascal, C, or GS/OS format, and you can reference it by pointer, handle, or
resource ID.

Parameters
Stack before call
previous contents
flags Word—Flags (see below)
— ref —| Long—String reference
width Word—Width in pixels
<—SP
Stack after call
| previous contents |
| <—SP
Errors $1231 badQDAuxValue Illegal input values.
LoadResource errors are returned unchanged.
C extern pascal void DrawStringWidth (flags, ref, width):;
Word flags, width;
Long ref;
flags Selects various options, as follows:
bit 15 prevent compression

0 = Allow string to be drawn with the characters scrunched together
if the full width doesn’t fit (uses Set CharExtra(-1.0)).
1 = Don’t allow compression.
bits 14-13 type of truncation
00 = none (Truncates on the right, but does not indicate the
truncation with an ellipsis character.)
01 = left (Replace beginning of string with ellipsis, if necessary.)
10 = center (Replace middle of string with ellipsis, if necessary.)
11 =right (Replace end of string with ellipsis, if necessary.)
bits 12-4 reserved (use 0)
bits 3-2 type of string
00 = Pascal (leading length byte)
01 = C (terminating null character)
10 = GS/OS (leading length word)
11 =reserved (don’t use)

Chapter 1 Toolbox Changes 19

bits 1-0 type of reference to string
00 = pointer
01 = handle
10 =resource ID
11 =reserved (don’t use)

ref String reference. What you pass here depends on bits 0-3 of f1lags.
width Width of the destination area, in pixels. The string is forced to this width using the
method specified by bits 13-15 of f1lags.
20

Programmer’s Reference for System 6.0.1

RestoreColorTable $1712

RestoreColorTable undoes the effects of UseColorTable. See UseColorTable for

more information.

Parameters
Stack before call
previous contents
— colorInfo —| Long—Color information from UseColorTable
flags Word—Flags (See below)
<—SP
Stack after call
| previous contents
<—SP
Errors DisposeHandle errors are returned unchanged.
C extern pascal void RestoreColorTable (colorInfo, flags):;
Long colorInfo;
Word flags;
flags Defined as follows:
bit 15 reserved (use zero)
bit 14 1 = skip the normal call to Ct 1NewRes
bit 13 1 = change the SCBs for the menu bar, too

bits 12..0 reserved (use zero)

colorInfo Value returned by UseColorTable.

Chapter 1 Toolbox Changes

21

UseColorTable $1612

UseColorTable preserves Scanline Control Bytes (SCBs) and sets them to use a color table
you specify. It also preserves the old contents of that color table and sets the color table to the data
you specify, or to a standard color table.

UseColorTable returns a value that you later pass to RestoreColorTable to restore the
color table and SCBs. Typically, you might call UseColorTable when handling a window’s
activate event, and call RestoreColorTable when handling the window’s deactivate event.

The colorInfo value returned should be used once in a RestoreColorTable call. If you
make a UseColorTable call and for some reason wind up not making a corresponding
RestoreColorTable call, you should call DisposeHandle on the colorInfo value.

UseColorTable normally calls Ct 1NewRes for you to cause controls (scroll bars, for
example) to redraw as needed for the new colors. There is a flag bit to override this behavior.
Normally, all SCBs except those for the menu bar are affected. There is a flag bit you can set to
include all the SCBs.

Parameters
Stack before call
previous contents
— Space —| Long—Space for result
tableNum Word—Color table number (0..15)
— tablePtr —| Long—Pointer to color table (NIL = standard)
flags Word—Flags (See below)
<—SP
Stack after call
previous contents
— colorlnfo —| Long—Value to pass to RestoreColorTable
<—SP
Errors NewHandle errors are returned unchanged.
C extern pascal Long UseColorTable (tableNum, tablePtr, flags):

Word tableNum, flags;
ColorTablePtr tablePtr;

tableNum Number of the color table to change.

tablePtr Pointer to the new color table. Pass NIL for the default color table.

22 Programmer’s Reference for System 6.0.1

flags Defined as follows:
bit 15 use the standard 640-mode color set, even in 320 mode (ignores

tablePtr)
bit 14 1 = skip the normal call to Ct INewRes
bit 13 1 = change the SCBs for the menu bar, too

bits 12..0 reserved (use zero)

colorInfo Handle of the information RestoreColorTable will use to restore the original
color table and SCB. If RestoreColorTable is not called, call
DisposeHandle to dispose of this buffer.

Chapter 1 Toolbox Changes 23

New Features of the Resource Manager

There are two new calls: OpenResourceFileByID and CompactResourceFile.

Fixed a string-comparison problem in RMF indNamedResource and
RMLoadNamedResource. Sometimes in System 6.0 you could wind up loading a resource
whose name began with the name you asked for, but contained additional characters after the
characters you asked for.

OpenResourceFile now makes sure the resource map was entirely read. If it runs off the
end of the file while trying to read the map, it returns a GS/OS eofEncountered error.

Added a new bit to mapF lag in the in-memory copy of the resource map. Bit 0 is now
defined as fileReadWrite. When a file is opened, it gets set to 1 if the file is opened
read/write. If it’s opened with read-only access, the bit is set to 0. This bit is for examination
only.

AddResource, RemoveResource, WriteResource, and MarkResourceChange
now verify that the target file can be written to before actually doing anything. They all return a
GS/OS invalidAccess error if the file cannot be written to. The exception to this is
MarkResourceChange when the resource in question is being marked unchanged; it is
allowed because it won’t eventually cause a write.

Fixed WriteResource to write the size of the resource as it appears on disk, rather than the
size of the resource’s handle in memory. This properly allows for converters to write
resources that are smaller than their in-memory size without destroying the file.

CloseResourceFile returns error resFileNotFound ($1E07), instead of no error, on
a non-zero argument that doesn’t match an open file ID.

Clarifications of Previous Resource Manager Documentation

24

On page 215 of Programmer’s Reference For System 6.0, the rType and r ID parameter
descriptions for RMSetResourceName should read “...for the resource to name” (not “...for
the resource to load”).

For RMSetResourceName, note that the resource to be named must already exist, or you
will get error $1E06, resourceNotFound.

The system does not log in a resource converter for the rCodeResource type (it never has,
and it never will). If your application needs to use resources of type rCodeResource, you
must explicitly use ResourceConverter to log in an application resource converter
(usually the one returned by Get CodeResConverter).

Programmer’s Reference for System 6.0.1

New Resource Manager Calls

CompactResourceFile $2F1E
CompactResourceFile consolidates all free blocks in an open resource file into a single free
block at the end.
Parameters
Stack before call
previous contents
flags Word—Flags word (Reserved; use $0000)
filelD Word—ID of resource file to compact
<—SP

Stack after call

previous contents |

Errors

C

flags

fileID

| <—SP

$1E07 resFileNotFound The specified resource file was not found.

$004E invalidAccess The file is not opened with write access.
GS/OS errors are returned unchanged.
Memory Manager errors are returned unchanged.

extern pascal void CompactResourceFile (flags, filelD);
Word flags, fileID;

This parameter is reserved for future expansion. For now, always pass $0000.

File ID for the resource file to compact.

Chapter 1 Toolbox Changes

25

OpenResourceFileByID $2EI1E

OpenResourceFileByID starts the Resource Manager for you if it isn’t already started under
the specified user ID (and it makes that user ID the current resource application in any case). Then
it uses LGetPathname?2 to find pathname for the specified user ID and calls

OpenResourceFile for you on that file. Note that the o1dResApp result is valid even if you
get an error.

Parameters
Stack before call
previous contents
Space Word—Space for result
openAccess Word—Request access
userlD Word—Application user ID
<—SP
Stack after call
previous contents
oldResApp Word—Previous CurResourceApp value
<—SP
Errors LGetPathname2 and OpenResourceFile errors are returned unchanged.
C extern pascal Word OpenResourceFileByID (openAccess, userlD);

Word openAccess, userID;
openAccess Open access flags. See Open in Apple IIGS GS/OS Reference.

userID User ID for the application.

oldResApp CurResourceApp value before this call.

26 Programmer’s Reference for System 6.0.1

New Features of Scrap Manager
¢ There is one new call, ShowClipboard.

e PutScrap now changes the scrap count, as returned by Get ScrapCount (for polling to see
if the clipboard contents changed).

Chapter 1 Toolbox Changes 27

New Scrap Manager Calls

ShowClipboard $1516

ShowClipboard creates a System window that takes care of the clipboard display for you. (It’s
used in Finder and Teach, for example.) It displays Text, Picture, and Sound scraps.

To open the Clipboard window, use a flags value of $8000. To close the window, use a flags
value of $4000. To find the WindowPt r of the Clipboard window without opening or closing it,
use a flags value of $0000. In all cases, the windowPt r result is either a valid WindowPtr or
NIL (for no window).

Parameters
Stack before call
previous contents
— Space —| Long—Space for result
flags Word—Flags (See below)
— reserved —| Long—Reserved; use zero
<—SP
Stack after call
previous contents
— windowPtr —| Long—Pointer to the clipboard window or NIL
<—SP
Errors Errors from SelectWindow and NewWindow?2 are returned unchanged.
C extern pascal WindowPtr ShowClipboard (flags, reserved):
Word flags;

Long reserved;

flags Defined as follows:
bit 15 1 = open the Clipboard window (or bring to front if already open)
bit 14 1 = close the Clipboard window if it’s open
bits 13..0 reserved, use 0

reserved This parameter is reserved for future expansion. For now, always pass 0.

windowPtr Pointer to the clipboard window. If the clipboard windows is closed, windowPtr
will be NIL.

Side Effects

The clipboard window calls SendRequest with request code $000C,
systemSaysDoClipboard, to allow utilities and applications to display additional types of

28 Programmer’s Reference for System 6.0.1

data in the system’s clipboard window. (You can use AcceptRequests, in the Tool Locator, to
register a request procedure to receive systemSaysDoClipboard requests.)

dataln points to a buffer with the following format:

$00 action Word—Action code (O=draw contents, 1=hit a control, 2=killing controls)
w2 — windowPtr —| Long—<Clipboard window pointer

$06 clipVertOffset Word—Top of the area to draw in

$08 clipHorOffset Word—Left edge of the area to draw in

$0A width Word—Suggested maximum width to draw in

$oC — controlD — Long—control ID of control hit (when actionCode = 1)

dataOut is only used on draw actions. In that case, it points to a buffer with the following
format:

$00 recvCount Word—set by SendRequest

$02 dataHeight Word—height of content

$04 dataWidth Word—width of content

$06 1_ clipKindPtr —| Long—C string defining the kind of data drawn

On receiving a draw-contents action, your request procedure should examine the clipboard (using
Scrap Manager calls such as Get IndScrap). If there is no data that you want to draw, simply
reject the request. If there is data you want to draw, retrieve the data, draw it, and accept the
request.

You may also use the Control Manager to create controls in the Clipboard window to help draw
your content. In that case, create the controls on the first draw contents action you accept, then use
those same controls until you receive a kill controls action. If you create any controls, you should
always call DrawControls when you accept a draw contents action.

You must fill in the dataHeight and datawidth fields of dataOut to indicate the size of
content you drew, so the system can adjust the Clipboard window’s scroll bars as needed.
Finally, you must set the c1ipKindPtr field to a pointer to a C-style string that describes the
type of data you drew. This string will appear after “Clipboard contents:” in the Clipboard
window’s information bar.

On receiving a hit-a-control action, your request procedure should do anything appropriate, given
the control ID in the dataIn record, and then accept the request.

On receiving a kill controls action, your request procedure should do anything appropriate, given
that the system is about to do a KillControls on the Clipboard window. For example, if you
allocated any extra memory as a result of a draw-contents action, you should dispose of that
memory here. The procedure should always accept this request.

Chapter 1 Toolbox Changes 29

New Features of Standard File Operations Tool Set

* SFReScan now makes a DInfo and Volume call on the volume in prefix 8 and updates all
of the controls accordingly. Also, SFReScan now works in the volumes list as well as the
files list.

» Fixed a problem where SFGetFile (but not SFGetFile2) would loop forever when prefix
zero was empty.

* Changed the way Standard File handles multiple edit line items in “put file” dialogs, so that
there can be more than just the single edit line item.

Clarification of Previous Standard File Operations Tool Set
Documentation

» Apple IIGS Toolbox Reference Volume 3, page 48-9 describes name as “Filename string,
containing (nameLength = 2) bytes of data, not to exceed 253 characters.” It should read
“namelLength - 2”.

30 Programmer’s Reference for System 6.0.1

New Features of TextEdit Tool Set

* TEPaintText now properly fully-justifies text.

» Fixed a problem with non-targetable TextEdit controls. They could start out active (with a
usable scroll bar for example), and then become inactive when the window became inactive,
but the control would not get reactivated when the window came back to the front.

* When TEStartUp calls FMStatus, it now pushes pre-zeroed result space, in case the Font

Manager is not loaded. The result is that you get a TEStartUp error reliably now, instead of
just sometimes, if the Font Manager isn’t available.

Chapter 1 Toolbox Changes 31

New Features of the Tool Locator

StartUpTools/ShutDownTools enhancements

e StartUpTools now returns any error from ResourceStartUp (and returns a NIL
result).

¢ ShutDownTools tolerates errors from SFShutDown (for compatibility with errant NDAs
that shut down Standard File during DeskShutdown even if they did not own it).

* ShutDownTools no longer calls HideCursor if QuickDraw is not active. (In 6.0, it can
crash if an application calls ShutDownTools with QuickDraw inactive.) If the new-for-6.0
“no Resource Manager” flag bit is set, there is no problem, since it was already skipping the
HideCursor call.

e ShutDownTools checks for a NIL input and behaves sanely. It also shuts down the
Resource Manager even if you get some other error.

New Request Codes
» See the Scrap Manager chapter for a description of the systemSaysDoClipboard request.

* See the QuickDraw II Auxiliary chapter for a description of the systemSaysGetSysIcon
request.

systemSaysForceUndim

* Request $000D, systemSaysForceUndim, requests that screen savers return the screen to
a normal state. The system sends this request in some circumstances. If you send the request
yourself, you should pass dataIn and dataOut values of NIL, and you should broadcast
the request to all available request procedures. If you receive the request, you should ignore
the dataIn and dataOut parameters and simply un-dim the screen.

GS/OS sends systemSaysForceUndim before deciding whether to put a message on the
text screen or the Super Hi-Res screen.

srqQuit

* Request $0011, srqQuit, asks an application to quit at its next opportunity. Typically, an
application will set a global flag that tells it to quit when it eventually gets back to its main event
loop. The application may not actually quit even after accepting this request, since the user
may elect to cancel because there are documents open that have not been saved.

srqOpenOrPrint

* Request $0010, srqOpenOrPrint, requests that an application re-check the Message Center
for messages of type $0011, GS/OS pathnames of files to open or print, and handle the
message as if the application had just been launched by the Finder.

¢ Note Teach 1.1 accepts srqgOpenOrPrint but does not respond to it
reliably.

32 Programmer’s Reference for System 6.0.1

New Features of the Window Manager

There is one new call, UpdateWindow.

Fixed TaskMaster to handle the tmNoGetNextEvent bit correctly (bit 21, $0020/0000,
in wmTaskMask). This bit tells TaskMaster to skip its GetNextEvent call and simply
assume that the task record you pass in already contains an event that it should process. (The
tmNoGetNextEvent bit has been defined since System 5.0.3, but before System 6.0.1 it
only worked correctly with ROM version 1. Now it works with both ROM 1 and ROM 3.)

There are two flag bits in the high-order byte of wCont Draw pointers for application
windows. By using these bits, you allow the system to redraw your window at certain times

when it could not do so before (like behind modal Standard File dialogs and AlertWindow
messages).

bit 31 If your content-draw routine is self-contained, so that it can be called from any
environment (unknown Bank and Direct Page register, unknown ResourceApp
setting, unknown CtlParamPtr values), then you may set bit 31 of your
wContDraw pointer.

bit 30 If your content-draw routine does not depend on making GS/OS calls (even
indirectly, by going to disk to get resources), then you may set bit 30 of your
wContDraw pointer.

DoModalWindow

DoModalWindow now uses UpdateWindow. If the mwUpdateAll bit is clear, it passes
flags of $0000 for the dialog window, but $8000 (background update) for other windows—so
the other windows update only if it’s safe for them to update in <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>