
Programmer's Reference
for

System 6.0.1

Edited by Mike Westerfield

Copyright 1993
Byte Works, Inc.

Contents
Acknowledgments v

Chapter 1 Toolbox Changes 1
Control Manager 1
Desk Manager 6
Integer Math Tool Set 7
LineEdit Tool Set 8
New Line Edit Calls 9
List Manager 10
Media Control Tool Set 11
Menu Manager 12
Miscellaneous Tool Set 13
QuickDraw II 17
QuickDraw II Auxiliary 18
Resource Manager 24
Standard File Operations Tool Set 30
TextEdit Tool Set 31
Tool Locator 32
Window Manager 33

Chapter 2 GS/OS Changes 37
Device Dispatcher 37
System Loader 37
GS!OS Drivers 37
FSTs 38

AppleShare FST 38
DOS 3.3 FST 38
HFS FST 38
HS.FST (High Sierra & ISO 9660 FSn 38
MS-DOS FST 39
ProDOS FST 41

Chapter 3 Control Panels 43
Control Panels NDA 2.1 43
Sound Control Panel 43

Chapter 4 Finder 6.0.1 45
Clarifications 45
New Features of the Finder 45

Chapter 5 Battery RAM Update 47

Index 49

Table of Contents iii

Acknowledgments

This book was developed from Apple's Engineering Requirements Specification (ERS) documents
for System 6.0.1. The source material included:

Apple JIGS System Software 6.0.1, Version l.Od1, November 29 1993, David A. Lyons
GSIOS MS-DOS File System Translator External ERS, Version 0.04, Greg Branche

The source material is quoted heavily. All source material is Copyright 1993, Apple Computer,
Inc. It is used here with permission.

Technical documentation is notoriously hard to get right After working for months on a project,
it's hard to force yourself to really read all of those arcane technical details carefully enough to
make sure they are right. The often thankless job of reviewing draft documentation is very
important, so I want to thank those who took their time to read all of this one last time. They are
Greg Branche, Matt Deatherage, Dave Lyons, Jim Murphy and Steve Stephenson.

Acknowledgments v

This manual is copyrighted by
the Byte Works Inc., and is
based heavily on material
copyrighted by Apple
Computer Inc., and used with
their permission. Under the
copyright laws, this manual
may not be copied, in whole
or in part, without the written
consent of the Byte Works,
Inc. Some parts may not be
reproduced without written
permission from Apple
Computer, Inc. This
exception does not allow
copies to be made for others,
whether or not sold, but all of
the material purchased may be
sold, given, or lent to another
person. Under the law,
copying includes translating to
another language.

©Byte Works, Inc., 1993
4700 Irving Blvd N.W. Suite
207
Albuquerque, N.M. 87114
(505) 898-8183

Apple, the Apple logo,
AppleShare, AppleTalk,
Apple IIGS, ImageWriter,
LaserWriter, and Macintosh
are registered trademarks of
Apple Computer, Inc.

Finder, GS/OS, MPW and
QuickDraw are trademarks of
Apple Computer, Inc.

Byte Works is a registered
trademark of Byte Works, Inc.

LIMITED WARRANTY
ON MEDIA AND
REPLACEMENT

ALL IMPLIED
WARRANTIES ON THIS
MATERIAL,
INCLUDING IMPLIED
WARRANTIES OF
MERCHANT ABILITY
AND FITNESS FOR A
PARTICULAR
PURPOSE, ARE
LIMITED IN DURATION
TO NINETY (90) DAYS
FROM THE DATE OF
ORIGINAL RET AIL
PURCHASE OF THIS
PRODUCT.

Even though Apple has
reviewed this manual,
NEITHER APPLE OR
THE BYTE WORKS
MAKES ANY
WARRANTY OR
REPRESENTATION,
EITHER EXPRESSED
OR IMPLIED, WITH
RESPECT TO THIS
MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY,
OR FITNESS FOR A
PARTICULAR
PURPOSE. AS A
RESULT, THIS
MANUAL IS SOLD "AS
IS," AND YOU, THE
PURCHASER, ARE
ASSUMING THE
ENTIRE RISK AS TO
ITS QUALITY AND
ACCURACY.

vi Programmer's Reference for System 6.0.1

IN NO EVENT WILL
APPLE OR THE BYTE
WORKS BE LIABLE
FOR DIRECT,
INDIRECT, SPECIAL,
INCIDENTAL, OR
CONSEQUENTIAL
DAMAGES RESULTING
FROM ANY DEFECT OR
INACCURACY IN THIS
MANUAL, even if advised
of the possibility of such
damages.

THE WARRANTY AND
REMEDIES SET FORTH
ABOVE ARE
EXCLUSIVE AND IN
LIEU OF ALL OTHERS,
ORAL OR WRITTEN,
EXPRESSED OR
IMPLIED. No Apple or
Byte Works dealer, agent, or
employee is authorized to
make any modification,
extension, or addition to this
warrantee.

Some states do not allow the
exclusion or limitation of
implied warrantees or liability
for incidental or consequential
damages, so the above
limitation or exclusion may not
apply to you. This warranty
gives you specific legal rights,
and you may also have other
rights which vary from state to
state.

Chapter 1 Toolbox Changes

New Features of the Control Manager

• There are four new Control Manager calls: SetCtl ValueByiD, GetCtl ValueByiD,
InvalOneCtlByiD, and HiliteCtlByiD.

Static Text Controls

• The Static Text control supports a new ctlFlag bit. If bit 4 ($0010), fSquishText, is set
as well as fBlastText, the control will draw the text with DrawStringWidth (in
QuickDraw ll Auxiliary) to compress and truncate on the right as needed to make the text fit
inside the control rectangle. If you set the fSquishText bit, you must also set the
fBlast Text bit.

Thermometer Controls

• Setting a thermometer control's value no longer draws anything if the control is invisible.

Pop-Up Menu Controls

• For enhancements to Pop-Up Menu controls, see the Menu Manager update.

Line Edit Controls

• For enhancements to Line Edit controls, see the Line Edit update.

Icon Button Controls

• The Icon Button control now supports "sticky" icon controls. If bit 4 of the ct lF lag field is
set and the mouse button is released when the cursor is inside the control, the control stays
highlighted to show that it is "selected." The ctl Value field contains $0001 when the icon is
in the selected state, and $0000 when it is not. An extra one-word field, #12, has been added
to the control template to allow for an initial value word for this type of control.

Scroll Bar Controls

• CtlStartUp removes the RefreshDesktop run queue routine, so the desktop doesn't
refresh an extra time when starting an application in a different resolution from the one you
used last (the scroll bars thought they had to redraw in 6.0, even though they really didn't).

Chapter 1 Toolbox Changes 1

New Control Manager Calls

GetCt1Va1ueByiD $3D10

Returns the current value of the control that has the specified control ID in the specified window.
This is just like GetCt 1 Value, except you pass a control ID instead of a control handle.

Parameters

Stack before call

previous contents
Space

- windPtr

- ctl!D

Stack after call

previous contents
the Value

-

-

Word-Space for result

Long-Window containing the control (NIL = front)

Long-Control ID of the control

<-SP

Word~urrentcontrolvalue

<-SP

Errors Returned unchanged from GetCtlHandleFromiD and GetCtlValue.

C extern pascal Word GetCtlValueByiD (windPtr, ctliD);
WindowPtr windPtr;
Long ctliD;

windPtr Pointer to the window containing the control. If the control is in the front window,
you may pass NIL.

ctliD Control ID for the control.

theVal ue Current value of the control.

2 Programmer's Reference for System 6.0.1

Hi~iteCt~ByiD $3F10

Changes the way a specified control is highlighted, just as if you called Hili teControl, except
you specify the control by window pointer and control ID.

Parameters

Stack before call

previous contents
hiliteState Word-New highlight value

- wind.Ptr - Long-Window containing the control (NIL =front)

- ctUD - Long-Control ID of the control

<-SP

Stack after call

previous contents
<-SP

Errors

c
Returned unchanged from GetCtlHandleFromiD and HiliteControl.

extern pascal void HiliteCtlByiD (hiliteState, windPtr, ctliD);
Word hiliteState;
WindowPtr windPtr;
Long ctliD;

hili teState New value for the control's highlight flag.

windPtr

ctliD

Pointer to the window containing the control. If the control is in the front window,
you may pass NIL.

Control ID for the control.

Chapter 1 Toolbox Changes 3

InvalOneCtlByiD $3E10

Invalidates a control's rectangle, just as if you called InvalRect on the control's rectangle. This
causes the control to get redrawn later, when your application has a chance to process an update
event for the window. You specify the control by its window pointer and control ID.

Parameters

Stack before call

previous contents

windPtr

ctUD

Stack after call

previous contents

Long-Window containing the control (NIL = front)

Long-Control ID of the control

<-SP

<-SP

Errors Returned unchanged from GetCtlHandleFromiD.

C extern pascal void InvalOneCtlByiD (windPtr, ctliD);
WindowPtr windPtr;
Long ctliD;

windPtr Pointer to the window containing the control. If the control is in the front window,
you may pass NIL.

ctliD Control ID for the control.

4 Programmer's Reference for System 6.0.1

SetCtlValueByiD $3C10

Sets the value of the control that has the specified control ID in the specified window. This is just
like SetCtl Value, except you pass a control ID instead of a control handle.

Parameters

Stack before call

previous contents
new Value

- windPtr

- ctUD

-

-

Word-New value for the control

Long-Window containing the control (NIL = front)

Long-Control ID of the control

<-SP

Stack after call

previous contents
<-SP

Errors

c

newValue

windPtr

ctliD

Returned unchanged from GetCtlHandleFromiD and SetCtlValue.

extern pascal void SetCtlValueByiD (newValue, windPtr, ctliD);
Word newValue;
WindowPtr windPtr;
Long ctliD ;

New control value.

Pointer to the window containing the control. If the control is in the front window,
you may pass Nil....

Control ID for the control.

Chapter 1 Toolbox Changes 5

New Features of the Desk Manager

Classic Desk Accessory changes

• If bit 7 of Battery RAM byte $59 is set, the system installs the Memory Peeker and Visit
Monitor CDAs for ROM 1 systems (just like ROM 3 always has).

New Desk Accessory changes

• OpenNDA sends reOpenAction ($000C) to the action routine of an already-open NDA to
give the NDA a chance to do something other than just have the window come to the front. If
the NDA wants the system to take no further action (that is, skip the normal Select Window
call), it should store a $0001 into the word pointed to by the data parameter (passed in the X
andY registers, or on the stack as shown below).

• On ROM 3 only, DeskShutDown sets $07FC to zero if slot 4 is set to internal. This stops
the mouse from freezing in desktop applications after visiting the CDA menu when you have
previously run an application that left a non-zero value in $07FC. This was a problem on
ROM 3 systems only.

• If you set bit 31 of an action procedure pointer (for an NDA or a system window), the system
does a stack-based dispatch instead of a register-based dispatch. The stack on entry to your
action procedure looks like this:

Stack before call

previous contents
Space

actCode

- data -

RTL I RTL
RTL I <-SP

Word-space for result
Word-Action code

Long-data (depends on actCode)

3 bytes-RTL address

Before returning, you must remove act Code and data and set result so that the stack looks like
this:

previous contents
result

RTL I RTL
RTL I <-SP L...-_ ___;;;;,._____,

Word-result of action procedure
3 bytes-RTL address

You can prototype your action procedure like this:

C pascal Word MyActionProc (actCode, data);
Word actCode;
Long data;

6 Programmer's Reference for System 6.0.1

New Feature of the Integer Math Tool Set

• Int2Dec and Long2Dec now return "zero" if bit 31 of stringPtr is set, the value being
converted is zero, and the buffer length is at least 5.

+ Note The string returned has a total of five characters. The fifth character
is a trailing blank. •

Chapter 1 Toolbox Changes 7

New Features of the LineEdit Tool Set

• There is one new call, LEClassifyKey.

Line Edit Controls

• There is a new field in the Line Edit control template. Parameter number 9 is a word called
keyMask. The control accepts keys only if the LEClassifyKey result has some bits set in
common with the keyMask parameter. The keyMask parameter defaults to $0001, which
causes the control to accept all keypresses, as usual.

• The pwChar field in the Line Edit control template supports a new value. A value of $FFFF
now means the control is not for password entry. (Previously, the legal values were $0000
[default password character] and $0001 through $00FF [specific password character]. The
parameter's presence implied that the control was for password entry, which is not sufficient
now that there is an optional ninth parameter.)

8 Programmer's Reference for System 6.0.1

New Line Edit Calls

LECl.assifyKey $2514

Returns a word with bits indicating what categories a specified event falls into. This is sometimes
useful in deciding what events to pass along to LEKey.

Parameters

Stack before call

previous contents
Space

theE vent

Stack after call

previous contents
resultBits

Errors None.

Word-Space for result

Long-Pointer to event record

<-SP

Word-Value categorizing the event
<-SP

C extern pascal Word LEClassifyKey (theEvent);
EventRecPtr theEvent;

theEvent Pointer to the event record to check.

resul tBi ts Collection of bits, set as follows:

bit 15

bit 14
bit 13
bit 12
bit 11
bits 10-1
bit 0

Special editing key. (LEKey will do something special; it will not
insert this key into the text.)
digit (0-9)
hex digit (a-f, A-F)
letter (A-Z, a-z)
any non-control key
reserved (ignore)
any key

If the event is not a keyDown or autoKey event, all currently-defined bits will be
zero.

Chapter 1 Toolbox Changes 9

New Features of the List Manager

•

•

•

10

Setting flag bit 15 in the CompareStrings flags now makes it compare GS/OS strings
instead of Pascal strings.

Fixed a problem affecting ListKey, CompareStrings, SortList, and SortList2
with a compareP roc of 1. Characters $20 to $3F (including digits), and $60 were being
accidentally "uppercased." For example, in System 6.0 "5" would map into right-arrow,
which made ListKey move down one item.

The standard item-draw procedure uses DrawStringWidth, with flags allowing horizontal
compression and truncation on the right with an ellipsis.

Programmer's Reference for System 6.0.1

Clarifications of Previous Media Control Tool Set Documentation

• MCGetStatus accepts two selector values that are not mentioned in the call description on
page 68 of Programmer's Reference To System 6.0, but are mentioned in the chapter summary
on page 97. These are mcSVolumeL and mcSVolumeR.

• MCStop is documented incorrectly (page 90). Actually, MCStop takes a single input
parameter, mcChannelNo.

Chapter 1 Toolbox Changes 11

New Features of the Menu Manager

• When a Pop-up menu control receives a ctlHandleEvent message, now it only sends
keyDown and autoKey events to MenuKey. It also preserves the menu bar around the
MenuKey call, so the menu bar is not accidentally left set to the Pop-up menu control.

• Pop-up menu controls now draw the current item using DrawStringWidth (in QuickDraw
IT Auxiliary), so that long item names are compressed or center-truncated.

• Page 104 of Programmers Reference For System 6.0 should make a distinction between menu
records and menu templates. The structure identified as "Menu Item Record" is actually a
template. (The system uses it to create a menu item, not to keep track of the item's state once it
has been created.)

12 Programmer's Reference for System 6.0.1

New Features of the Miscellaneous Tool Set

• There are two new calls: DoSysPrefs and AlertMessage.

SysFaiiMgr Enhancement

• If you pass NIL for the message string, SysFailMgr now provides the following default
messages for the specified error codes:

$27: "Could not read or write disk. The disk may be damaged."
$201: "Out of memory (or required memory area was already in use)."
$308, $681, $682: "Detected trashed memory. Software bug or (less likely) bad RAM."

SysBeep2 Enhancements

• SysBeep2 now sends a new SendRequest code, systemSaysForceUndim, as part of
handling all SysBeep2 codes except $006x (screen blanking, screen unblanking).

• The following new SysBeep2 codes have been defined. The system does not do anything
special to support them.

$0070 sbBeginningLongOperation

$0F80 sbFileTransferred
$0F81 sbRealtimeMessage

$1000 sbConnectedToService
$1001 sbDisconnectedFromService
$1002 sbEnteredRealtimeChat
$1003 sbLeftRealtimeChat

$1010 sbFeatureEnabled
$1011 sbFeatureDisabled

ShowBootlnfo

A lengthy modal operation is starting.

Upload/download finished.
A real-time message needs the user's attention.

Connected to an interactive service.
Disconnected from an interactive service.
Started a real time chat in an interactive service.
Left a real time chat in an interactive service.

The user enabled a feature in a preferences dialog.
The user disabled a feature in a preferences dialog.

• ShowBoot Info now "wraps up" to .a new row if you have more than one row of icons. If
you wrap off the top of the screen, it starts over at the bottom left, without erasing the screen.
(It used to keep recycling the bottom row, wiping it to periwinkle blue every time it filled up.)

Chapter 1 Toolbox Changes 13

New Miscellaneous Tool Set Calls

AlertMessage $3E03

AlertMessage displays a message on either the text screen or the Super Hi-Res screen and
makes the user choose one of up to three buttons. AlertMessage works in the GS/OS
environment only, not while ProDOS 8 is active.

Parameters

Stack before call

previous contents
Space

- tablePtr

msRNumber

- substitutions

-

-

Word-Space for result

Long-Pointer to the message table

Word-Message index number (0, 1, 2 ...)

Long-Pointer to the string substitution table

<-SP

Stack after call

vrevious contents

Errors

c

tablePtr

buttonNum

$0377

Word-Button chosen by the user
<-SP

onlyFromGSOS You called AlertMessage from ProDOS 8.

extern pascal Word AlertMessage (tablePtr, msgNumber,
substitutions);

Pointer tablePtr, substitutions;
Word msgNumber;

Points to a table formatted as follows:

de i'messageZeroText-*, messageZeroGraphics-*-2'
de i'messageOneText-*, messageOneGraphics-*-2'

There is a pair of offsets for each message. Each offset counts the number of bytes
from its own location to the message string. The first offset of each pair is used on
the text screen, and the second is used on the Super Hi-Res screen (using
Alert Window).

Each message is an Alert Window string plus three characters to map the buttons
into return values. The three characters should be '0' to '9', indicating what values
to return when the first, second, and third buttons are chosen, respectively.

Both string offsets can point to the same string if you want, but the text version
does not do word wrapping for you.

14 Programmer's Reference for System 6.0.1

The text messages support *0 .. *9 substitutions and """ to mark the default button,
but they do not support the"#" substitutions that you automatically get (courtesy of
CompileText) for Alert Window.

msgNumber Selects the message to display.

substitutions An array of pointers to Pascal strings. See Alert Window for details.

Chapter 1 Toolbox Changes 15

DoSysPrefs $3F03

DoSysPrefs clears and then sets specified bits in the GS/OS system preferences word, and then
returns the original preference word so that you can restore it later.

A typical sequence is:

I* Clear the $2000 bit to avoid suppressing dialog *I
I* Set the force-volume-mount and no-cancel bits *I
oldPrefs = DoSysPrefs($2000,$C000);

I* Do some preference-bit-dependent stuff here *I

I* Now restore the preferences *I
I* Clear all bits, then set the ones that were originally set *I
ignore= DoSysPrefs($FFFF, oldPrefs);

Parameters

Stack before call

previous contents
Space

bitsToClear
bitsToSet

Word-Space for result
Word-System preference bits to clear
Word-System preference bits to set
<-SP

Stack after call

Errors

c

previous contents
oldSysPrefs

$0301

Word-Previous system preference word
<-SP

badinputError Requires GS/OS

extern pascal Word DoSysPrefs (bitsToClear, bitsToSet);
Word bitsToClear, bitsToSet;

bitsToClear Any bit that is set in this word will force the corresponding bit in the system
preference word to zero.

bitsToSet Any bit that is set in this word will set the corresponding bit in the system
preference word.

oldSysPrefs The original system preference word is returned.

16 Programmer's Reference for System 6.0.1

New Features of QuickDraw II

• QDVersion is now $0308. QDVersion is a standard reference for distinguishing system
versions, so it had to change.

Clarifications of Previous QuickDraw II Documentation

• Starting in System 6.0, QDShutDown examines bit 8 of the masterSCB word. If the bit is
set, QuickDraw leaves the Super Hi-Res screen turned on even after QuickDraw has shut
down. (ShutDownTools took advantage of this in System 6.0 to help implement smooth
transitions between applications, but the mechanism was not spelled out.)

• GetP ixel does not work past the first 64K of a pixel map (it never has).

Chapter 1 Toolbox Changes 1 7

New Features of QuickDraw II Auxiliary

• There are three new calls: DrawStringWidth, UseColorTable, and
RestoreColorTable.

GetSyslcon Enhancements

• GetSysicon now calls SendRequest with a new request code,
systemSaysGetSys Icon ($1201), to allow utilities and applications to override or extend
the built-in set of icons. The data In parameter points to a structure formatted as follows:

$()()

$04
$06

- auxType

value
flaRS

- Long-auxiliary type parameter as passed to GetSysicon

Word-value parameter as passed to GetSysicon
Word-flags parameter as passed to GetSysicon

Your request procedure (installed using AcceptReque st s in the Tool Locator) should
decide whether it will provide an icon for the given input parameters. If not, simply reject the
request. If you will handle it, put an icon pointer at offset +002 in the dataOut buffer and
accept the request.

• GetSys Icon has built-in icons for five additional file types: text ($04), source file ($BO),
AppleSoft BASIC program ($FC), archive ($EO), and binary file ($06). The complete set is
now:

Kind
Folder, open or closed
Application
Stack
Text
Source file
AppleSoft BASIC program
Archive file
Binary file
Document

File Txpe
$OOOF
$00B3 or $00FF
$0055
$0004
$00BO
$00FC
$00EO
$0006
any other file type

Clarifications of Previous QuickDraw II Auxiliary Documentation

• Toolbox Reference 3, page 44-15, for SpecialRect, says that the low-order 4 bits of
frameColor and fillColor specify the colors. Actually, a1116 bits are significant. To
get solid patterns, use $0000, $1111, ... , $EEEE, $FFFF.

18 Programmer's Reference for System 6.0.1

•

New QuickDraw II Auxiliary Calls

DrawStringWidth $1512

DrawStringWidth draws a string in a specified horizontal width on a single line. The string is
compressed and truncated as necessary, if allowed.

The string can be in Pascal, C, or GS/OS format, and you can reference it by pointer, handle, or
resource ID.

Parameters

Stack before call

previous contents
flags

- ref

width

-

Word-Flags (see below)

Long-String reference

Word-Width in pixels
<-SP

Stack after call

Errors

c

flags

previous contents
<-SP

$1231 badQDAuxValue lllegal input values.
LoadResource errors are returned unchanged.

extern pascal void DrawStringWidth (flags, ref, width);
Word flags, width;
Long ref;

Selects various options, as follows:
bit 15 prevent compression

0 = Allow string to be drawn with the characters scrunched together
if the full width doesn't fit (uses SetCharExtra(-1.0)).

1 =Don't allow compression.
bits 14-13 type of truncation

00 = none (Truncates on the right, but does not indicate the
truncation with an ellipsis character.)

01 =left (Replace beginning of string with ellipsis, if necessary.)
10 = center (Replace middle of string with ellipsis, if necessary.)
11 =right (Replace end of string with ellipsis, if necessary.)

bits 12-4 reserved (use 0)
bits 3-2 type of string

00 = Pascal (leading length byte)
01 = C (terminating null character)
10 = GS!OS (leading length word)
11 =reserved (don't use)

Chapter 1 Toolbox Changes 19

ref

width

20

bits 1-0 type of reference to string
00 =pointer
01 =handle
10 = resource ID
11 =reserved (don't use)

String reference. What you pass here depends on bits 0-3 of flags.

Width of the destination area, in pixels. The string is forced to this width using the
method specified by bits 13-15 of flags .

Programmer's Reference for System 6.0.1

RestoreColorTable $1712

RestoreColorTable undoes the effects of UseColorTable. See UseColorTable for
more information.

Parameters

Stack before call

previous contents

colorlnfo

.flaf?S

Long-Color information from UseColorTable

Word-Flags (See below)
<-SP

Stack after call

previous contents
<-SP

Errors DisposeHandle errors are returned unchanged.

C extern pascal void RestoreColorTable (colorinfo, flags);
Long colorinfo;
Word flags;

flags Defined as follows:
bit 15 reserved (use zero)
bit 14 1 =skip the normal call to CtlNewRes
bit 13 1 =change the SCBs for the menu bar, too
bits 12 .. 0 reserved (use zero)

colorinfo Value returned by UseColorTable.

Chapter 1 Toolbox Changes 2 1

UseColorTable $1612

UseColorTable preserves Scanline Control Bytes (SCBs) and sets them to use a color table
you specify. It also preserves the old contents of that color table and sets the color table to the data
you specify, or to a standard color table.

UseColorTable returns a value that you later pass to RestoreColorTable to restore the
color table and SCBs. Typically, you might call UseColorTable when handling a window's
activate event, and call RestoreColorTable when handling the window's deactivate event.

The colorinfo value returned should be used once in a RestoreColorTable call. If you
make a UseColorTable call and for some reason wind up not making a corresponding
RestoreColorTable call, you should call DisposeHandle on the color Info value.

UseColorTable normally calls CtlNewRes for you to cause controls (scroll bars, for
example) to redraw as needed for the new colors. There is a flag bit to override this behavior.
Normally, all SCBs except those for the menu bar are affected. There is a flag bit you can set to
include all the SCBs.

Parameters

Stack before call

previous contents

- Space

tableNum

- tablePtr

flags

Stack after call

previous contents

colorlnfo

-

-

Long-Space for result

Word-Color table number (0 .. 15)

Long-Pointer to color table (NIL = standard)

Word-Flags (See below)
<-SP

Long- Value to pass to RestoreColorTable

<-SP

Errors NewHandle errors are returned unchanged.

C extern pascal Long UseColorTable (tableNum, tablePtr, flags);
Word tableNum, f lags;
ColorTablePtr tablePtr;

tableNum Number of the color table to change.

tablePtr Pointer to the new color table. Pass Nll..- for the default color table.

2 2 Programmer's Reference for System 6.0.1

flags Defined as follows:
bit 15 use the standard 640-mode color set, even in 320 mode (ignores

tablePtr)
bit 14 1 =skip the normal call to CtlNewRes
bit 13 1 =change the SCBs for the menu bar, too
bits 12 .. 0 reserved (use zero)

colorinfo Handle of the information RestoreColorTable will use to restore the original
color table and SCB. If RestoreColorTable is not called, call
DisposeHandle to dispose of this buffer.

Chapter 1 Toolbox Changes 2 3

New Features of the Resource Manager

• There are two new calls: OpenResourceFileByiD and CompactResourceFile.

• Fixed a string-comparison problem in RMF indNamedResource and
RMLoadNamedResource. Sometimes in System 6.0 you could wind up loading a resource
whose name began with the name you asked for, but contained additional characters after the
characters you asked for.

• OpenResourceFile now makes sure the resource map was entirely read. If it runs off the
end of the file while trying to read the map, it returns a GS/OS eofEncountered error.

• Added a new bit to mapF lag in the in-memory copy of the resource map. Bit 0 is now
defined as fileReadWrite. When a file is opened, it gets set to 1 if the file is opened
read/write. If it's opened with read-only access, the bit is set to 0. This bit is for examination
only.

• AddResource,RemoveResource,WriteResource,andMarkResourceChange
now verify that the target file can be written to before actually doing anything. They all return a
GS/OS invalidAccess error if the file cannot be written to. The exception to this is
MarkResourceChange when the resource in question is being marked unchanged; it is
allowed because it won't eventually cause a write.

• Fixed WriteResource to write the size of the resource as it appears on disk, rather than the
size of the resource's handle in memory. This properly allows for converters to write
resources that are smaller than their in-memory size without destroying the file.

• CloseResourceFile returns error resF ileNotFound ($1E07), instead of no error, on
a non-zero argument that doesn't match an open file ID.

Clarifications of Previous Resource Manager Documentation

• On page 215 of Programmer's Reference For System 6.0, the rType and riD parameter
descriptions for RMSetResourceName should read " ... for the resource to name" (not " ... for
the resource to load").

• For RMSetResourceName, note that the resource to be named must already exist, or you
will get error $1E06, resourceNotFound.

• The system does not log in a resource converter for the rCodeResource type (it never has,
and it never will). If your application needs to use resources of type rCodeResource, you
must explicitly use ResourceConverter to log in an application resource converter
(usually the one returned by GetCodeResConverter).

2 4 Programmer's Reference for System 6.0.1

New Resource Manager Calls

CompactResourceFile $2F1E

CompactResourceFile consolidates all free blocks in an open resource file into a single free
block at the end.

Parameters

Stack before call

previous contents
flags
filelD

Word-Flags word (Reserved; use $0000)
Word-ID of resource file to compact
<-SP

Stack after call

Errors

c

flags

fileiD

previous contents
<-SP

$1E07 resF ileNotFound The specified resource file was not found.
$004E invalidAccess The file is not opened with write access.
GS/OS errors are returned unchanged.
Memory Manager errors are returned unchanged.

extern pascal void CornpactResourceFile (flags, fileiD);
Word flags, fileiD;

This parameter is reserved for future expansion. For now, always pass $0000.

File ID for the resource file to compact.

Chapter 1 Toolbox Changes 2 5

OpenResourceFileByiD $2E1E

OpenResourceFileByiD starts the Resource Manager for you if it isn't already started under
the specified user ID (and it makes that user ID the current resource application in any case). Then
it uses LGetPathname2 to find pathname for the specified user ID and calls
OpenResourceFile for you on that file. Note that the oldResApp result is valid even if you
get an error.

Parameters

Stack before call

previous contents
Space

openAccess
user/D

Stack after call

previous contents
oldResApp

Word-Space for result
Word-Request access
Word-Application user ID
<-SP

Word-Previous CurResourceApp value
<-SP

Errors LGetPathname2 and OpenResourceFile errors are returned unchanged.

c extern pascal Word OpenResourceFileByiD (openAccess, useriD);
Word openAccess, useriD;

openAccess Open access flags. See Open in Apple IIGS GS!OS Reference.

useriD User ID for the application.

oldResApp CurResourceApp value before this call.

2 6 Programmer's Reference for System 6.0.1

New Features of Scrap Manager

• There is one new call, ShowClipboard.

• Put Scrap now changes the scrap count, as returned by GetScrapCount (for polling to see
if the clipboard contents changed).

Chapter 1 Toolbox Changes 2 7

New Scrap Manager Calls

ShowC1ipboard $1516

ShowClipboard creates a System window that takes care of the clipboard display for you. (It's
used in Finder and Teach, for example.) It displays Text, Picture, and Sound scraps.

To open the Clipboard window, use a flags value of $8000. To close the window, use a flags
value of$4000. To find the WindowPtr of the Clipboard window without opening or closing it,
use a flags value of$0000. In all cases, the windowPtr result is either a valid WindowPtr or
NIL (for no window).

Parameters

Stack before call

previous contents

- Space

flags

- reserved

-

-

Long-Space for result

Word-Flags (See below)

Long-Reserved; use zero

<-SP

Stack after call

Errors

c

previous contents

windowPtr Long-Pointer to the clipboard window or NIL

<-SP

Errors from Select Window and NewWindow2 are returned unchanged.

extern pascal WindowPtr ShowClipboard (flags, reserved);
Word flags;
Long reserved;

flags Defined as follows:
bit 15 1 =open the Clipboard window (or bring to front if already open)
bit 14 1 =close the Clipboard window if it's open
bits 13 .. 0 reserved, use 0

reserved This parameter is reserved for future expansion. For now, always pass 0.

windowPtr Pointer to the clipboard window. If the clipboard windows is closed, windowPtr
will be NIL.

Side Effects

The clipboard window calls SendRequest with request code $000C,
systemSaysDoClipboard, to allow utilities and applications to display additional types of

2 8 Programmer's Reference for System 6.0.1

data in the system's clipboard window. (You can use AcceptRequests, in the Tool Locator, to
register a request procedure to receive systemSaysDoClipboard requests.)

data In points to a buffer with the following format:

$00
$02

$06
$08
$0A
$0C

-

-

action

windowPtr

clipVertOffset
c/ipHorOffset

width

controUD

-

-

Word-Action code (O=draw contents, l=hit a control, 2=killing controls)

Long-Clipboard window pointer

Word-Top of the area to draw in
Word-Left edge of the area to draw in
Word-Suggested maximwn width to draw in

Long---control ID of control hit (when actionCode = 1)

dataOut is only used on draw actions. In that case, it points to a buffer with the following
format:

$00
$02
$04
$06

-

recvCount
dataHeiRht
data Width

clipKindPtr -

Word-set by SendRequest
Word-height of content
Word-width of content

Long-C string defining the kind of data drawn

On receiving a draw-contents action, your request procedure should examine the clipboard (using
Scrap Manager calls such as Get IndScrap). If there is no data that you want to draw, simply
reject the request. If there is data you want to draw, retrieve the data, draw it, and accept the
request.

You may also use the Control Manager to create controls in the Clipboard window to help draw
your content. In that case, create the controls on the first draw contents action you accept, then use
those same controls until you receive a kill controls action. If you create any controls, you should
always call DrawControls when you accept a draw contents action.

You must fill in the dataHeight and dataWidth fields of dataOut to indicate the size of
content you drew, so the system can adjust the Clipboard window's scroll bars as needed.
Finally, you must set the clipKindPtr field to a pointer to a C-style string that describes the
type of data you drew. This string will appear after "Clipboard contents:" in the Clipboard
window's information bar.

On receiving a hit-a-control action, your request procedure should do anything appropriate, given
the control ID in the data In record, and then accept the request.

On receiving a kill controls action, your request procedure should do anything appropriate, given
that the system is about to do a KillControls on the Clipboard window. For example, if you
allocated any extra memory as a result of a draw-contents action, you should dispose of that
memory here. The procedure should always accept this request.

Chapter 1 Toolbox Changes 2 9

New Features of Standard File Operations Tool Set

• SFReScan now makes a Dinfo and Volume call on the volume in prefix 8 and updates all
of the controls accordingly. Also, SFReScan now works in the volumes list as well as the
files list.

• Fixed a problem where SFGetF ile (but not SFGetF ile2) would loop forever when prefix
zero was empty.

• Changed the way Standard File handles multiple edit line items in "put file" dialogs, so that
there can be more than just the single edit line item.

Clarification of Previous Standard File Operations Tool Set
Documentation

•

30

Apple IIGS Toolbox Reference Volume 3, page 48-9 describes name as "Filename string,
containing (nameLength = 2) bytes of data, not to exceed 253 characters." It should read
"nameLength - 2".

Programmer's Reference for System 6.0.1

New Features of TextEdit Tool Set

• TEPaintText now properly fully-justifies text.

• Fixed a problem with non-targetable TextEdit controls. They could start out active (with a
usable scroll bar for example), and then become inactive when the window became inactive,
but the control would not get reactivated when the window came back to the front.

• When TEStartUp calls FMStatus, it now pushes pre-zeroed result space, in case the Font
Manager is not loaded. The result is that you get a TEStartUp error reliably now, instead of
just sometimes, if the Font Manager isn't available.

Chapter 1 Toolbox Changes 31

New Features of the Tool Locator

StartUpTools/ShutDownTools enhancements

• StartUpTools now returns any error from ResourceStartUp (and returns a NIL
result).

• ShutDown Tools tolerates errors from SF ShutDown (for compatibility with errant NDAs
that shut down Standard File during DeskShutdown even if they did not own it).

• ShutDownTools no longer calls HideCursor if QuickDraw is not active. (In 6.0, it can
crash if an application calls ShutDownTools with QuickDraw inactive.) If the new-for-6.0
"no Resource Manager" flag bit is set, there is no problem, since it was already skipping the
HideCursorcall.

• ShutDownTools checks for a NIL input and behaves sanely. It also shuts down the
Resource Manager even if you get some other error.

New Request Codes

• See the Scrap Manager chapter for a description of the systemSaysDoClipboard request.

• See the QuickDraw II Auxiliary chapter for a description of the systemSaysGetSysicon
request.

systemSaysForceUndim

• Request $0000, systemSaysForceUndim, requests that screen savers return the screen to
a normal state. The system sends this request in some circumstances. If you send the request
yourself, you should pass data In and dataOut values of NIL, and you should broadcast
the request to all available request procedures. If you receive the request, you should ignore
the data In and dataOut parameters and simply un-dim the screen.

GS/OS sends systemSaysForceUndim before deciding whether to put a message on the
text screen or the Super Hi-Res screen.

srqQuit

• Request $0011, srqQui t, asks an application to quit at its next opportunity. Typically, an
application will set a global flag that tells it to quit when it eventually gets back to its main event
loop. The application may not actually quit even after accepting this request, since the user
may elect to cancel because there are documents open that have not been saved.

srqOpenOrPrint

• Request $0010, srqOpenOrPrint, requests that an application re-check the Message Center
for messages of type $0011, GS/OS pathnames of files to open or print, and handle the
message as if the application had just been launched by the Finder.

+ Note Teach 1.1 accepts srqOpenOrPrint but does not respond to it
reliably. •

3 2 Programmer's Reference for System 6.0.1

New Features of the Window Manager

• There is one new call, UpdateWindow.

• Fixed TaskMaster to handle the tmNoGetNextEvent bit correctly (bit 21, $0020/()()()(),
in wrnTaskMask). This bit tells TaskMaster to skip its GetNextEvent call and simply
assume that the task record you pass in already contains an event that it should process. (The
tmNoGetNextEvent bit has been defined since System 5.0.3, but before System 6.0.1 it
only worked correctly with ROM version 1. Now it works with both ROM 1 and ROM 3.)

• There are two flag bits in the high-order byte of wContDraw pointers for application
windows. By using these bits, you allow the system to redraw your window at certain times
when it could not do so before (like behind modal Standard File dialogs and Alert Window
messages).

bit 31 If your content-draw routine is self-contained, so that it can be called from any
environment (unknown Bank and Direct Page register, unknown ResourceApp
setting, unknown CtlParamPtrvalues), then you may set bit 31 of your
wContDraw pointer.

bit 30 If your content-draw routine does not depend on making GS/OS calls (even
indirectly, by going to disk to get resources), then you may set bit 30 of your
wContDraw pointer.

DoModaiWindow

• DoModalWindow now uses UpdateWindow. If the mwUpdateAll bit is clear, it passes
flags of $0000 for the dialog window, but $8000 (background update) for other windows-so
the other windows update only if it's safe for them to update in the background. If the
mwUpdateAll bit is set, it always passes flags of $0000.

• DoModalWindow in System 6.0 did not set a background window's origin to correspond
with its scroll bars before redrawing it (if the mwUpdateAll was set). Background windows
update correctly in System 6.0.1, even if they are scrolled.

• DoModalWindow no longer invalidates controls on an activate event if the window's
fCt 1 Tie bit is set, saying that the control states are independent of the window state.

• After DoModalWindow does an LECut, LEPaste, TECut, or TEPaste, it now returns
the control ID of the control that was just edited.

AlertWindow enhancements

• ErrorWindow and Alert Window now use UpdateWindow, so that windows behind the
alerts can redraw when the environment allows it.

Clarifications of Previous Window Manager Documentation

• On page 291 of Programmer's Reference for System 6 .0, the use of the fFlex bit is
documented backwards. In fact, you should set fFlex when you don't want the system to
provide an alert frame for you.

Chapter 1 Toolbox Changes 3 3

• On page 300 of Programmer's Reference for System 6.0, the return value for
F indCursorCt 1 is incorrectly identified as a part code. It is actually just a word: zero if no
control was found, or non-zero if a control was found.

• The description of the windPtr parameterto FindCursorCtl says you can pass Nll.... to
find a control in the frontmost window. This is incorrect. NIL is invalid here.

3 4 Programmer's Reference for System 6.0.1

New Window Manager Calls

UpdateWindow $6COE

Updates the specified window, if it has a content draw routine and the environment permits.
Update Window is roughly equivalent to calling BeginUpdate, StartDrawing, the content­
draw routine, SetOrigin (0, 0), EndUpdate.

Bits 31 and 30 in application window wContDraw pointers are significant. See the description
under "New Features of the Window Manager."

Update Window never operates on a system window (one that has been flagged by
SetSysWindow). System windows update during GetNextEvent calls (when
GetNextEvent calls SystemEvent).

Parameters

Stack before call

previous contents
flags

windPtr

Word-Flags (See below)

Long-Window to update

<-SP

Stack after call

Errors

c

flags

previous contents
<-SP

$0E05 cantUpdateErr Cannot update the specified window in the
current environment.

extern pascal void UpdateWindow (flags, windPtr);
WindowPtr windPtr;
Word flags;

Defined as follows:
bit 15 1 =Background update (window's expected environment may not

already be set up). Requires the window's wContDraw bit 31 to
be set for anything to happen, saying that the wContDraw routine
can take care of itself.

bit 14 Normally, applications do not need to worry about this bit, and
should set it to zero.

0 =Allow UpdateWindow to try calling window update routines
which need to make GS/OS calls. (UpdateWindow automatically
checks whether GS/OS is busy; there is no need to set this bit just
because GS/OS is busy.)

Chapter 1 Toolbox Changes 3 5

•

windPtr

1 =Do not allow Update Window to call window update routines
that may need to make GS/OS calls, even if GS/OS is not busy.

bits 13-0 Reserved, use 0.

Window to update.

3 6 Programmer's Reference for System 6.0.1

Chapter 2 GS/OS Changes

Device Dispatcher

• There is a new driver characteristics bit to allow Apple to safely add new $0000 .. $7FFF-range
subcalls to DStatus and DControl.

• Drivers have always been required to validate all call requests that are sent to them, and return
an error if they do not support the call. This includes the main driver commands as well as all
subcalls. Unfortunately, some driver authors didn't feel that the guidelines needed to be
followed, and they do random things if given a call they don't know about (some also crash).

• If bit 4 ($0010) is set in a device's characteristics word, the driver indicates that it properly
follows the driver guidelines in the GS!OS Reference and GSIOS Device Driver Reference. If
this bit is not set, drivers will never receive a call that is not documented in the GS/OS
reference (except for device-specific calls, $8000 .. $FFFF, which are always passed on to
drivers).

System Loader

• File types $0030 to $003F (all auxiliary types) are now allowed for load files. File
type/auxiliary type combinations must be assigned by Developer Technical Support, as usual.

GS/OS Drivers

SCSI HD Driver
SCSI Tape Driver
SCSI Scanner Driver

. --=•: I

• Added support for the new Apple-defined DStatus subcall. Call $4000,
GetSCSITargetPriori ty, returns a word indicating the SCSI ID (0 .. 7) of a given
GS/OS SCSI device. Use a request_count of$0002.

SCSI CD Driver

• Added support for the new Apple-defined DStatus subcall. Call $4000,
GetSCSITargetPriority, returns a word indicating the SCSI ID (0 .. 7) of a given
GS/OS SCSI device. Use a request_count of$0002.

• Changed default command bitmap to match the AppleCD 300, which does not return a
command bitmap in the Inquiry call.

Compatibility with the AppleCD 300 Drive

• With the 6.0.1 SCSI CD Driver, you can read data, but you can't play audio tracks, and you
can't take advantage of the drive's ability to read audio tracks as data With the 6.0 SCSI CD
Driver, you can read data if and only if a CD was online when you booted. You can't play
audio tracks.

Under ProOOS 8 with the Apple High-Speed SCSI card, the AppleCD 300 works just as ·;well
as the previous models. You can't play audio tracks.

Chapter 2 GS/OS Changes 3 7

Console Driver

• Fixed the driver to store the correct addresses in the fast-I/O vectors (as returned by the
DStatus subcall Get Vectors); they don't work in System 6.0. The lowest Console Driver
version number where the fast-I/O vectors work is $3040.

AppleDisk 3.5 Driver

• Fixed the DStatus subcall get format options to work correctly on an Apple
SuperDrive connected to an Apple ll SuperDrive Controller Card. Now it returns as much data
as it can and returns a real transfer count. It used to return a transfer count of zero (and return
no data) if the user's buffer was not big enough.

FSTs

AppleShare FST

• . Fixed volume-changed notification to pass a valid device number.

• AppleS hare volume-changed notifications now occur even if there are no directories open on
the volume.

DO$ 3 .. 3 FST

• The FST now ignores zero-length filename entries on DOS 3.3 disks. That is,
GetDirEntry does not count them and does not return them. Internally, the FST treats a
filename field of all blanks (30 $AO bytes) just like a deleted catalog entry.

• OpenGS on a DOS 3.3 disk now works correctly with 15 parameters. In System 6.0 it did not
work reliably.

• The FST name as returned from GetFSTinfo is "Apple ll DOS 3.3" instead of just "DOS
3.3".

• Changed Qpen, GetFileinfo, and GetDirEntry to return zero for resourceEOF and
resourceBlocks fields for non-extended files (when the fields are present).

HFS FST

• Fixed a problem where Wr i te to any HFS disk would stop prematurely after transferring 512
bytes if the most recent Read call to any HFS disk stopped because it hit a newline character
(not because it transferred the requested number of bytes or hit the end of the file).

HS.FST (High Sierra & ISO 9660 FST)

• -. .The FSTSpecific subcalls map enable and set map table now post volume­
changed notifications for all of onlme High Sierra andiSO 9660 volumes.

• The FST can now use volumes with path tables larger than 8K.
l ~ ':;>VI ;?. ~~ -

3 8 Programmer's Reference for System 6.0.1

MS-DOS FST

The MS-DOS FST, new for System 6.0.1, is read only. (It does not modify MS-DOS disks, it
just reads them.)

Resource forks are supported as defined and implemented by Macintosh PC Exchange. This is
done by placing the resource fork of a given file into a normal MS-OOS file of the same name as
the original file in a subdirectory named "RESOURCE.FRK" at the same directory level as the
original file. The "RESOURCE.FRK" subdirectory does not appear to an application during a
directory search on the Apple IIGS, though it does appear normally on an MS-OOS platform.

GS/OS Calls Supported

The following lists all the GS/OS system calls supported by the MS-DOS FST. Those in bold type
perform the indicated function, those in plain type will always return an error.

Call# Name Call# Name
$01 Create $14 Close
$02 Destroy $15 Flush
$04 ChangePath $16 SetMark
$05 SetFilelnfo $17 GetMark
$06 GetFilelnfo $18 SetEOF
$08 Volume $19 GetEOF
$0B ClearBack~pBit $1C GetDirEntry
$10 $20 Open GetDevNum fi.

$12 Read $24 Format
$13 Write $25 Erase Disk :>ki .

$33 FSTSpecific f!··N·ott :j

File Attributes

The MS-OOS file system stores a file attribute byte in the directory entry for each ftle. This is
similar to the GS/OS access attributes. The FST translates the file attributes as follows:

File Attribute
Archive bit set
Subdirectory bit set
Volume Label bit set
System File bit set
Hidden File bit set
Read-Only File bit set

File Types

GS/OS Interpretation
Bit 5 (the "backup" bit) of the access attributes will be set.
File type will be returned as $000F.
Used internally by the FST to apply a volume name to the disk. ·· ·
No special action.
Bit 2 (the "Invisible" bit) of the access attributes will be set. . !,

Bits 7, 1, and 0 (the Delete, Write-enable, and Rename) of the
access attributes will be cleared (i.e., the file is "locked").

'. >•'

MS-DOS does not provide a file typing mechanism. This is potentially very limiting since most
applications select a particular file type as a filter when calling the standard file tools. Therefore,
files from an MS-DOS disk would never be selectable.

The MS-DOS FST provides a partial solution to the problem. The FST searches a translation table
for a matching file name extension. If it finds a match , it returns the associated file type and
auxiliary type to the caller. For instance, the file "ABC. TXT' will normally be assigned a file type
$04 (text) because of the suffix ".TXT'. The MS-DOS FST maintains a table of suffixes and their

Chapter 2 GS/OS Changes 3 9

associated file types and auxiliary types. The FSTSpecific calls allow for modification of this
table. The default table contains the following entries:

· , ,.< ' ..

Extension File Type Auxtype DescriEtion
.TXT $04 $0000 text file
.BAT $04 $0000 batch file
.BIN $06 $0000 binary file
.ASC $04 $0000 ASCII text file
.C $04 $0000 C language source code
.H $04 $0000 C header file
.PAS $04 $0000 Pascal language source code
.ASM $04 $0000 assembly language source code
.LST $04 $0000 listing file
.COB $04 $0000 COBOL language source code
.FOR $04 $0000 FORTRAN language source code
.DOC $04 $0000 documentation file
.SRC $04 $0000 source code file
.GIF $CO $8006 Graphics Interchange Format file

FSTSpecific ($33)

This call controls file type mapping by the MS-DOS FST. It is unique in that it uses a command
number as one of its parameters and is actually four different calls.

Map_Enable

Enables or disables file type mapping. By default, mapping is enabled. The parameter block is as
follows:

$00
$02
$04
$06

vCount
file SYS id

command num
enable

Get.:_Map_Size

Word-Input value; must be $0003
Word-Input value; $000A (MS-DOS file system ID)
Word-Input value; $0000 (Map_Enable)
Word-Input value; $0000 to disable, $0001 to enable

ReturQs the size of the current map in bytes. The parameter block is as follows:

$00
$02
$04
$06

:;1'!-f!:.! 5J L £
\ fi~, ~-~~! b;~ ~ -·

pCount
file svs id

command num
map size

Word-Input value; must be $0003
Word-Input value; $000A (MS-DOS file system ID)
Word-Input value; $0001 (Get_Map_Size)
Word--Output value; size of the current map table in bytes.

4 0 Programmer's Reference for System 6.0.1

Get_Map_Table

Returns the current map. The parameter block is as follows:

vCount
file. sys id

command num

Word-Input value; must be $0003
Word-Input value; $000A (MS-DOS flle system ID)
Word-Input value; $0002 (Get_Map_Table)

$00
$02
$04
$06

- buffer _ptr - Long-Input value; Points to a memory area large enough to hold the map.

.A. Warning

Set_Map_ Table

Get_Map_Table assumes the memory area pointed to by
buffer_ptr is large enough to hold the map. If it isn't, bad
things can happen. •

',,
'

' . · ...

Changes the map. As long as there is space in memory for the new table, it will replace the old
one. If there is not enough space, an out_ of_ memory error will be returned and the original : ~~­
table will remain in effect. No validity checking is done on the table.

The parameter block is as follows:

$00
$02
$04
$06

Errors

-

pCount
file svs id

command num

map_ptr

$04
$53
$54

-

Word-Input value; must be $0003
Word-Input value; $000A (MS-DOS file system ID)
Word-Input value; $0003 (Set_Map_Table)

Long-Input value; Points to the new map.

invalidPcount
paramRangeError
outOfMem

parameter count out of range
invalid parameter
out of memory

The format of a map table is as follows:

$00
$02

$yy

map size

Record

terminator

Word-Length of the table, including the tenninator

xx bytes-Map records (use as many as needed)

Word-Use zero

r ·.J

Map records consist of a text string followed by a zero byte followed by a file type byte -and an
auxiliary file type word. The text string can be any length and can include any legal characters for
an MS-DOS file name (text must be upper case, for example).

ProDOS FST

• Fixed a problem where Read did not work correctly when multiple newline characters were in
effect. Each time it read into a new block of data it was forgetting about one more ch'»'lcter
from the end of the newline list, for the remainder of the Read call.

Chapter 2 GS/OS Changes 4 1

Chapter 3 Control Panels

Control Panels NDA 2.1

• Fixed the cpOpenCDev request to work reliably. In 6.0, it did not always work. (The
handling of finderSaysBeforeOpen has always worked fine.)

• Note When you send finderSaysBeforeOpen (or cpOpenCDev),
you should always pass a fully-expanded pathname (as the Finder
does). •

Sound Control Panel

The Sound control panel accepts a new request code, srqConvertRelPitch ($8200), which
converts a relPitch value into a freqOffset (suitable for use in a FFStartSound
parameter block).

The request~hould be directed to thd target string "Apple-SoundCP-".

Put the relPitch value into the low word of datain (the high word is reserved and should be
zero). After the SendRequest, the resulting freqOffset word is in your four-byte dataOut
buffer at offset +002.

; I

.- :/, _····-·· ·~.~ -

Chapter 3 Control Panels 43

Chapter 4 Finder 6.0.1

Clarifications

• The description of askFinderAreYouThere (on page 388 of Programmer's Reference To
System 6.0) is incorrect. If the Finder is present, SendRequest will return lllO error, and
finderResult f.i~ld of dataOut will always be $0000. If the Finder. is notpresent,
SendRequest returns error $0120, reqNotAccepted, and finderResult is undefmed
(because the Finder was not around to return a value). 1 . . · •. :; ·, ;.c; :r;·: :. .

.) 'I. I I t ' ·- . ; •.

• ·The Finder now loads Finder Extensions from the @ :FinderE~hs folder. Th~ @: prefix is not
necessarily the same folder that the Finder is in: When a user boots from an.AppleShare

· server, the Finder· Extensions come from the user's User. folder on the .server-. ·:. . . , ··
• • • - . • J. .. '; ; • - •• '

New Features of the Finder · ..; .. ' -·---~ • r .. ~· __ ., :s·· .

•

•

.• . ·-· , , . ·-
. i ! . • , .. ,/

Finder accepts the srqQuit request, handling it just like a tellFinderShutDown with a
selector of kQui t. -~ ',) .:; l · • .

Implemented the gee kP refs option for Shut Down default. Setthe low·tWo:oits of the X 2
word to 0, 1, or 2. (This word was semi-documented with 6.0~ but it didn' t.do:anyihihg.)

. . , r•
,. ·. ~ J~J :U _,~ ··; :: ~ ... -:h~:·. :; ·: ·f: :.,.f".! ·s

Icon Matching changes
. -~ .s ~_~ ._:-.; t_ ~. ·. ·-~- .:.· --~--~ '-.. . .:. ;. ~ ., ·;

• Fixed the oneDoc match types matchC:r·eateDa teTime and matchMb<im~::tteTiime·: -"
They did not work in 6.0.

• When matching an icon by filename, the case of the string in the Icon file or in the rBundle
resource no longer matters. Previously, a string with a leading wildcard (like "*PAINT')
would only work if all letters were uppercase, regardless of the case of any actual files being
matched against.

• When matching an icon by filename and using a leading"*", the "*'' can now match zero
characters (it works like 5.0.4 again). In 6.0, a leading wildcard accidentally required at least
one character to match.

Finder Extension Changes

• When Finder sends out multiple finderSaysBe f oreOpen requests (when several icons are
opened at once), the modifiers are now correct for all of the. requests, not just the first one. In
6.0, the modifiers were accidentally zero for all requests other than the ftrst

• tellFinderGetSelectedicons (extended) now returns icon heights and widths. This
was broken in 6.0 (the work around in Programmer~s. Reference For System 6.0 sees that;the
Finder version is not 6.0 and automatically does nothing).

• Finder no longer forgets what menu title to unhighlight if an Extras menu handler calls
tellFinderMitemSelected (even with no-highlight).

• Finder now sends a finderSaysBeforeOpen any time it launches an application.T his
means that you can now properly trap the Finder any time it was about to quit to another

Chapter 4 Fi n<le:r. 6;0:1

application. (Finder 6.0 neglected to send a finderSaysBeforeOpen when the user chose
the application using Standard File.)

• Added a tick count parameter (long) to finderSaysKeyHit. The parameter count is now ··
three. The third parameter tells you the system tick count .at the time the key was pressed.

• t el.1F.i n:der0pert·Window had a bad exit path if ExpandPat~ retlJ,Illed an error. Now it
wor:ks>even·if the pathname you pass in causes an error from _ExpandPath.

• The parameter count for finderSaysBeforeOpen and finderSaysOpenFailed is
~ow 7. (It was accidentally c;mly 6in 6.0. Oops. But all the parameters were there anyway.)

·- .• 'l::lQ ~-- ~· · . . .!. ~ ... • . •• • ' •. • _,

• For jyout convenience, f i nd e';r.Says :tctle now passes the idle ticks (as wouldbe returned
from askFinde r idleHowLong) as data In. · .

•

•

•

•

You can now set bit 31 of datain on a tellFinderSetSelectedicons call. This tells
the Finder to deselect all selected icons before selecting the ones specified.

· ": _~ - \{ ~-~-~-~· .. :_· :· _._j '-~~ ·-~· . :. :. _.:.:~f. ::·. i-
tellFinde rSpecialPreferences now returns a valid finderResult ($0000);

t.eA;lili,').n~e r<Re.mpveFromE;xtras ·validates the menu item number and returns error
fE :r;l;;F,ai).:M if it is invalid. · (Ifyoumake the mistake of passing itemiD 0 to Finder 6.0, it
happily removes the first (remaining) item from the Apple menu!)

Fixed t ellFinderAddBundle so that passing a zero to grab the first available rBundle
ac~~~Uy9VQ.d~~-~ Ethis-case always failed with an error in 6.0). .

~ ~·~r·:·/._ ·~· : ... c~~,. - - ~-. i f J

~ 2~-.d ' Jn: - ~: L ·d.i):."Hi i·~

.:·;· :. · !llD'$\i.EJ~i.ic · ·
·:'~r\:lief" 01 1! <..: : , •

: . .~ ~·

· · 46 ~, , , Ptogt:aroroer: ~·Reference for System 6.0.1

L.::

.,,

Chapter 5 Battery RAM Update
t., ,(' -

· .. · _.,__. \ .,..... .,,
t·" ... -.<

Two Battery RAM locations are defined for use with hierarchical menus. (The..$Ys.tP.D~4qes n01 · -
provide support for hierarchical menus, but it defines these Battery RAM locations-for consistency
among applications that do.) · '. :::

$65 Drag delay for hierarchical menus (number of ticks you can be out of the me~~~while_-&o~ing·
diagonally before ~~:"gives up" on you). , ... :·1; _

$66 Delay in ticks un~l a hierarchical menu pops up.

ii' (

. ~~
···· I . r

' . '
" .,

J ..< '•'

'l

:;: ·." r~ .-
···'
' -

: . • t ' ':. ~·
":.'l !... .:-"\ i.- •

- -/l~t_(~ .. :i'. _,.;'
·:_ .tJrn~.l ~ ~

.-.
(, ' l,i --~-

:·; ;. c: t4.:: .
-~- ..!

.. : ~

; .. ; ~ ., '
• ·'· I-·

Chapter 5 Battery RAM Update 4 7

~

I !

A

AddRes.ource 24
Ale rtM~~:~I@~t!'1'4.;
Alert W .:ii,rt<i?J~ 3~; : ' -'
AppleCD 300Drive 37
AppleDis~ 3.5 Driver 38
AppleShate1PS:£'38; ')t :r , ,)

B

Batter}' .RAM 47
c
CDA6 .
Classi[Desk Accessories 6
CloseR~sobrceFile24
CompactResourceFile 25
CompareStrings 10
Console Driver 38
ControlManager 1
Control Panels 43

D

DControl 37
DeskShu..tDown 6
Device Dispatcher· 37
DoModalWindow 33
DOS 3.3 FST38
DoSysPrefs 16 ·
DrawString~idth19
DStatus 37

E

ErrorWindow 33
ERSv

F

FindCurs orCtl 34
Finder 45 ·

G

GetCtlValueByi D 2
GetP i xe l 17
GetSCSIXargetPrio r i t y

37
GetSys i c on 18

'·. , ... · ·

GS/OS 37

H

HFS FST 38
HiliteCtlByiD 3

. HS.FST 38

I

Icon Button Controls 1
Int2Dec 7
Integer Math Tool Set 1

.. InvalOneCtlByiD4

L

LEClassifyKey 9
LEKey 9
Line Edit Controls 1, 8
LineEdit Tool Set 8
List Manager 10
ListKey 10
Long2Dec 7

M

MarkResourceChange 24
MCGetStatus 11
MCStop 11
Media Control Tool Set .11
Menu Manager 12
Miscellaneous Tool Set 13
MS-DOS FST 39

N

NDA6, 32
New Desk Accessories 6, 32

0

Ope nNDA 6
Ope nResource File 24
OpenResourceFileByiD

26

p

password 8
Pop-up menu control12
Pop-Up Menu Controls 1
ProDOS FST 41

Q
..

QDSh'utbown 17
·QDVersion: 17
.QuickDraw II 17 · ·­
Quic~w.JIAuxiliary 18

R
-1·· . . '

rCoctEiResource 24
RemoveResource 24
Rerource Manager 24
RestoreColorTable 21
RMFinctNamedResource 24
RMLoadNamedResource24
RMSetResourceName 24

s
Scroll Bar Controls 1
SCSI CD Driver 37
SCSI HD Driver 37
SCSI Scanner Driver 37

. SCSI Tape Driver 37
SetCtlValueByiD 5
SFGetFile 30
SFReScan 30

. ShowBootinfo 13
ShowCl ipboard 28
ShutDownTools 32
SortList 10
SortList2 10
Sound Control Panel 43 ·
Standard File Operations Tool

Set30
StartUpTools 32
Static Text Controls 1
SysBeep2 13
SysFailMgr 13
System Loader 37

T

TaskMaster 33
TEPaintText 31
TEStartUp 31
TextEditToolSet31
Thermometer Controls 1
Tool Locator 32

Index 49

u
UpdateWindow 35
UseColorTable 22

w

·· Window Manager 33
Wri teResource24

' ,.· .. .

i .. :

50 Programmer's Reference for System 6.0.1

