

For Apple lies and
1 ME Apple l/GS

. ®
Apple IIGs® Toolbox Reference
Volume 3
The Official Publication from Apple Computer, Inc.

The Apple JIGS Toolbox Reference is a comprehensive guide to the Apple
liGS Toolbox, which contains more than 1000 ready-to-use tool set
routines. These routines enable programmers and developers to access
the powerful capabilities of the Apple IIGS personal computer and write
programs that comply with the Apple desktop interface standards. Using
the Toolbox also frees programmers from much of the tedious
background "bookkeeping" that would otherwise be required to
maintain that interface.

The Apple JIGS Toolbox Reference consists of three volumes that together
provide a complete description of the Toolbox. This volume, Volume 3,
contains descriptions of hundreds of changes and additions to the
original set of programming tools, including:
• Complete documentation for the new Resource Manager and

TextEdit Tool Set
• Descriptions of the new sound-related tool sets (the Audio

Compression and Expansion Tool Set, the MIDI Tool Set, the Note
Sequencer, and the Note Synthesizer)

• Details on how to use the newly expanded support for controls

Volume 1 begins with a brief overview of the tool sets contained in the
Toolbox at the time of publication. Following this introduction, each of
the remaining chapters describes one of the tool sets. Arranged
alphabetically by tool set name, the chapters include the following
information:
• An overview of what routines are in the tool set and how they can

be used
• A complete description of each routine, with the parameters for

the programming languages, and possible errors. Examples, figures,
and tables give additional information about the routines.

• A summary of the constants, data structures, and error codes for
the tool set

Volume 2 follows the same format, describing the tool sets not covered
in the first volume. It also provides appendixes and a glossary , along
with an index covering the first two volumes.

The Apple JIGS Toolbox Reference is an indispensable resource for the
programmer writing programs that access the full range of capabilities of
the Apple IIGS.

Contents
Figures and tables I xxiii

Preface What's in This Volume I xxix
Organization I xxx
Typographical conventions I xxxi
Call format I xxxii
ToolCallName $call number I xxxii

26 Apple Desktop Bus Tool Set Update I 26-1
Error corrections I 26-2
Clarification I 26-3

27 Audio Compression and Expansion Tool Set I 27-1
Error correction I 27-2
About Audio Compression and Expansion I 27-2

Uses of the ACE Tool Set I 27-4
How ADPCM works I 27-5

ACE housekeeping routines I 27-6
ACEBootinit $011D I 27-6
ACEStartUp $021D I 27-7
ACEShutDown $031D I 27-8
ACEVersion $041D I 27-9
ACEReset $051D I 27-10
ACEStatus $061D I 27-11
ACEinfo $071D I 27-12

Audio Compression and Expansion tool calls I 27-13
ACECompBegin $0B1D I 27-13
ACECompress $091D I 27-14
ACEExpand $0A1D I 27-16
ACEExpBegin $0C1D I 27-18

ACE Tool Set error codes I 27-19

28 Control Manager Update I 28-1
Error corrections I 28-2
Clarifications I 28-3
New features of the Control Manager I 28-4

Keystroke processing in controls I 28-4
The Control Manager and resources I 28-5
New and changed controls I 28-6

Simple button control I 28-7
Check box control I 28-7
Icon button control I 28-8
LineEdit control I 28-8
List control I 28-9
Picture control I 28-9
Pop-up control I 28-10
Radio button control I 28-11
Scroll bar control I 28-11
Size box control I 28-11
Static text control I 28-11
TextEdit control I 28-12

New control definition procedure messages I 28-13
Initialize routine I 28-14
Drag routine I 28-14
Record size routine I 28-14
Event routine I 28-14
Target routine I 28-16
Bounds routine I 28-17
Window size routine I 28-18
Tab routine I 28-19
Notify multipart routine I 28-20
Window change routine I 28-21

New Control Manager calls I 28-22
CallCtlDefProc $2C10 I 28-22
CMLoadResource $3210 I 28-24
CMRe l easeResou rce $3310 I 28-25
FindTargetCtl $2610 I 28-26
GetCtlHandleFromiD $3010 I 28-27
GetCtliD $2A10 I 28-28
GetCt lMoreFlags $2E10 I 28-29
GetCt l ParamPtr $3510 I 28-30

InvalCtls $3710 I 28-31
MakeNextCtlTarget $2710 I 28-32
MakeThisCtlTarget $2810 I 28-33
NewControl2 $3110 I 28-34
NotifyCtls $2D10 I 28-36
SendEventToCtl $2910 I 28-37
SetCtliD $2B10 I 28-39
SetCtlMoreFlags $2F10 I 28-40
SetCtlParamPtr $3410 I 28-41

Control Manager error codes I 28-42
New Control Manager templates and records I 28-43

NewControl2 input templates I 28-43
Control template standard header I 28-44
Keystroke equivalent information I 28-47
Simple button control template I 28-48
Check box control template I 28-50
Icon button control template I 28-52
LineEdit control template I 28-55
List control template I 28-57
Picture control template I 28-60
Pop-up control template I 28-62
Radio button control template I 28-67
Scroll bar control template I 28-69
Size box control template I 28-71
Static text control template I 28-73
TextEdit control template I 28-75

Control Manager code example I 28-81
New control records I 28-87

Generic extended control record I 28-87
Extended simple button control record I 28-93
Extended check box control record I 28-95
Icon button control record I 28-97
LineEdit control record I 28-100
List control record I 28-102
Picture control record I 28-104
Pop-up control record I 28-106
Extended radio button control record I 28-110

Extended scroll bar control record I 28-112
Extended size box control record I 28-114
Static text control record I 28-116
TextEdit control record I 28-119

29 Desk Manager Update I 29-1
New features of the Desk Manager I 29-2

Scrollable CDA menu I 29-2
Run queue I 29-3

Run queue example I 29-5
New Desk Manager calls I 29-6

AddToRunQ $1F05 I 29-6
RemoveCDA $2105 I 29-7
RemoveFromRunQ $2005 I 29-8
RemoveNDA $2205 I 29-9

30 Dialog Manager Update I 30-1
Error corrections I 30-2

31 Event Manager Update I 31-1
Error correction I 31-2
New features of the Event Manager I 31-2

Joumaling changes I 31-2
Keyboard input changes I 31-3

New Event Manager calls I 31-5
GetKey Translatio n $1B06 I 31-5
Set AutoKeyLimit $1A06 I 31-6
SetKeyTranslation $1C06 I 31-7

32 Font Manager Update I 32-1
Error corrections I 32-2
New features of the Font Manager I 32-2
New Font Manager call I 32-4

InstallWithStats $1C1B I 32-4

33 Integer Math Tool Set Update I 33-1
Clarification I 33-2

34 LineEdit Tool Set Update I 34-1
New features of the LineEdit Tool Set I 34-2
New LineEdit call I 34-4

GetLEDefProc $2414 I 34-4

35 List Manager Update I 35-1
Clarifications I 35-2

List Manager definitions I 35-3
New features of the List Manager I 35-4
New List Manager calls I 35-5

DrawMember2 $111C I 35-5
NewList2 $161C I 35-6
NextMember2 $121C I 35-8
ResetMember2 $131C I 35-9
SelectMember2 $141C I 35-10
SortList2 $151C I 35-11

36 Memory Manager Update I 36-1
Error correction I 36-2
Clarification I 36-2
New features of the Memory Manager I 36-2

Out-of-memory queue I 36-2
Out-of-memory routine example I 36-6

New Memory Manager calls I 36-9
AddToOOMQueue $0C02 I 36-9
RealFreeMem $2F02 I 36-10
RemoveFromOOMQue ue $0D02 I 36-11

37 Menu Manager Update I 37-1
Error corrections I 37-2
Clarifications I 37-2
New features of the Menu Manager I 37-4

Menu caching I 37-6

Caching with custom menus I 37-7
Pop-up menus I 37-8

Pop-up menu scrolling options I 37-10
How to use pop-up menus I 37-12

New Menu Manager data structures I 37-15
Menu item template I 37-15
Menu template I 37-18
Menu bar template I 37-20

New Menu Manager calls I 37-21
GetpopUpDefProc $3BOF I 37-21
HideMenuBar $450F I 37-22
InsertMitem2 $3FOF I 37-23
NewMenu2 $3EOF I 37-24
NewMenuBar2 $430F I 37-25
PopUpMenuSelect $3COF I 37-27
SetMenuTitle2 $400F I 37-29
SetMitem2 $410F I 37-30
SetMitemName2 $420F I 37-31
ShowMenuBar $460F I 37-32

38 MIDI Tool Set I 38-1
About the MIDI Tool Set I 38-2
Using the MIDI Tool Set I 38-5

Tool dependencies I 38-7
MIDI packet format I 38-7
MIDI Tool Set service routines I 38-9

Real-time command routine I 38-10
Real-time error routine I 38-11
Input data routine I 38-12
Output data routine I 38-13

Starting up the MIDI Tool Set I 38-14
Reading time-stamped MIDI data I 38-16
Fast access to MIDI Tool Set routines I 38-20
MIDI application considerations I 38-22

MIDI and AppleTalk I 38-22
Disabling interrupts I 38-22
MIDI and other sound-related tool sets I 38-23
The MIDI clock I 38-23
Input and output buffer sizing I 38-24

Loss of MIDI data I 38-25
Number of MIDI interfaces I 38-25

MIDI housekeeping calls I 38-26
MidiBootinit $0120 I 38-26
MidiStartUp $0220 I 38-27
MidiShutDown $0320 I 38-28
Midi Version $0420 I 38-29
MidiReset $0520 I 38-30
MidiStatus $0620 I 38-31

MIDI tool calls I 38-32
MidiClock $0B20 I 38-33
MidiControl $0920 I 38-36
MidiDevice $0A20 I 38-43
Midiinfo $0C20 I 38-46
MidiReadPacket $0D20 I 38-49
MidiWritePacket $0E20 I 38-51

MIDI Tool Set error codes I 38-53

39 Miscellaneous Tool Set Update I 39-1
Error corrections I 39-2
Clarification I 39-2
New features of the Miscellaneous Tool Set I 39-3

Queue handling I 39-3
Interrupt state information I 39-4

New Miscellaneous Tool Set calls I 39-6
AddToQueue $2E03 I 39-6
De lete FromQu e u e $2F03 I 39-7
Ge tCode ResConverte r $3403 I 39-8
GetinterruptState $3103 I 39-9
GetintStateRecSize $3203 I 39-10
GetROMResource $3503 I 39-10
Rea dMo u se2 $3303 I 39-11
Re l e aseROMRe sou rce $3603 I 39-12
SetinterruptSt a t e $3003 I 39-12

40 Note Sequencer I 40-1
About the Note Sequencer I 40-2
Using the Note Sequencer I 40-4

Sequence timing I 40-4
Using MIDI with the Note Sequencer I 40-5
The Note Sequencer as a command interpreter I 40-6
Error handlers and completion routines I 40-7

Note commands I 40-8
noteOff command I 40-9
noteOn command I 40-9
Filler notes I 40-10
fillerNote command I 40-10

Control commands I 40-11
callRoutine command I 40-12
jump command I 40-13
pitchBend command I 40-14
programChange command I 40-15
tempo command I 40-15
turnNotesOff command I 40-16
setVibratoDepth command I 40-16

Register commands I 40-17
decRegister command I 40-18
ifGo command I 40-18
incRegister command I 40-19
setRegister command I 40-19

MIDI commands I 40-20
midiChnlPress command I 40-21
midiCtlChange command I 40-21
midiNoteOff command I 40-21
midiNoteOn command I 40-22
midiPitchBend command I 40-22
midiPolyKey command I 40-22
midiP rogChange command I 40-23
midiSelChnlMode command I 40-23
midiSetSysExl command I 40-23
midiSysExclusive command I 40-24
midiSysCommon command I 40-24
midiSysRealTime command I 40-25

Patterns and phrases I 40-26

A sample Note Sequencer program I 40-28
Note Sequencer housekeeping calls I 40-37

SeqBootinit $011A I 40-37
SeqStartUp $021A I 40-38
SeqShutDown $031A I 40-41
SeqVersion $041A I 40-42
SeqReset $051A I 40-43
SeqStatus $061A I 40-44

Note Sequencer calls I 40-45
Clearincr $0AlA I 40-45
GetLoc $0ClA I 40-46
Get.Timer $0BlA I 40-47
SeqAllNotesOff $0D1A I 40-48
Set I ncr $091A I 40-49
SetinstTable $121A I 40-50
SetTrkinfo $0E1A I 40-51
Startints $131A I 40-52
StartSeq $0FlA I 40-53
StartSeqRel $151A I 40-55

Sample sequence with relative addressing I 40-58
StepSeq $lOlA I 40-60
Stopints $141A I 40-61
StopSeq $111A I 40-62

Note Sequencer error codes I 40-63

41 Note Synthesizer I 41-1
About the Note Synthesizer I 41-2
Using the Note Synthesizer I 41-3

The sound envelope I 41-3
Note Synthesizer envelopes I 41-5

Instruments I 41-7
DOC memory I 41-10
Generators I 41-10

Note Synthesizer housekeeping calls I 41-13
NSBootinit $0119 I 41-13
NSStartUp $0219 I 41-14
NSShutDo wn $0319 I 41-15
NSVersion $0419 I 41-16
NSReset $0519 I 41-17

NSStatus $0619 I 41-18
Note Synthesizer calls I 41-19

AllNotesOff $0D19 I 41-19
AllocGen $0919 I 41-20
DeallocGen $0A19 I 41-21
NoteOff $0C19 I 41-22
NoteOn $0B19 I 41-23
NSSetUpdateRate $0E19 I 41-25
NSSetUserUpdateRtn $0F19 I 41-26

Note Synthesizer error codes I 41-27

42 Print Manager Update I 42-1
Error corrections I 42-2
Clarifications I 42-2
New features of the Print Manager I 42-3
New Print Manager calls I 42-4

PMLoadDriver $3513 I 42-4
PMUnloadDriver $3413 I 42-5
PrGetDocName $3613 I 42-6
PrGetPgOrientation $3813 I 42-7
PrGetprinterSpecs $1813 I 42-8
PrSetDocName $3713 I 42-9

Previously undocumented Print Manager calls I 42-10
PrGetNetworkName $2B13 I 42-10
PrGetportDvrName $2913 I 42-11
PrGetprinterDvrName $2813 I 42-12
PrGetUserName $2A13 I 42-13
PrGetZoneName $2513 I 42-14

Print Manager error codes I 42-15

43 QuickDraw II Update I 43-1
Error corrections I 43-2
Clarification I 43-3
New features of QuickDraw II I 43-4

QuickDraw II speed enhancement I 43-4
New font header layout I 43-5

44 QuickDraw IT Auxiliary Update I 44-1
New feature of QuickDraw II Auxiliary I 44-2
New QuickDraw II Auxiliary calls I 44-3

CalcMask $0E12 I 44-3
SeedFill $0D12 I 44-8
SpecialRect $0C12 I 44-15

45 Resource Manager I 45-1
About the Resource Manager I 45-2
About resources I 45-5

Identifying resources I 45-5
Resource types I 45-6
Resource IDs I 45-6
Resource names I 45-7

Using resources I 45-8
Resource attributes I 45-9

Resource file format I 45-12
Resource file IDs I 45-12
Resource file search sequence I 45-13
Resource file layout and data structures I 45-14

Resource file header I 45-16
Resource map I 45-17
Resource free block I 45-19
Resource reference record I 45-20

Resource converter routines I 45-21
ReadResource I 45-22
WriteResource I 45-24
ReturnDiskSize I 45-26

Application switchers and desk accessories I 45-27
Resource Manager housekeeping routines I 45-29

ResourceBootinit $011E I 45-29
ResourceStartUp $021E I 45-30
ResourceShutDown $031E I 45-31
ResourceVersion $041E I 45-32
ResourceReset $051E I 45-33
ResourceStatus $061E I 45-34

Resource Manager tool calls I 45-35
AddResource $0C1E I 45-35
CloseResourceFile $0B1E I 45-37

CountResources $221E I 45-38
CountTypes $201E I 45-39
CreateResourceFile $091E I 45-40
DetachResource $181E I 45-41
GetCurResourceApp $141E I 45-42
GetCurResourceFile $121E I 45-43
GetindResource $231E I 45-44
GetindType $211E I 45-46
GetMapHandle $261E I 45-47
GetOpenFileRefNum $1F1E I 45-49
GetResourceAttr $1B1E I 45-51
GetResourceSi ze $1D1E I 45-52
HomeRes ourceFile $151E I 45-53
LoadAbsResource $271E I 45-54
LoadResource $0E1E I 45-56
MarkResourq =Change $101E I 45-58
Mat c hResourceHandle $1E1E I 45-59
OpenResourceFile $0A1E I 45-61
ReleaseResource $171E I 45-63
RemoveResource $0F1E I 45-64
ResourceConverter $281E I 45-65
SetCurResourceApp $131E I 45-67
SetCurResourceFile $111E I 45-68
SetResourceAttr $1C1E I 45-69
SetResourceFileDepth $251E I 45-70
SetResourceiD $1A1E I 45-71
SetResourceLoad $241E I 45-72
UniqueResourceiD $191E I 45-73
UpdateResourceFile $0D1E I 45-75
WriteResource $161E I 45-76

Resource Manager summary I 45-77

46 Scheduler I 46-1

47 Sound Tool Set Update I 47-1
Error corrections I 47-2
Clarification I 47-3

FFStartSound I 47-3
Moving a sound from the Macintosh computer to the Apple IIGS
computer I 47-4
Sample code I 47-5

New information I 47-6
Introduction to sound on the Apple IIGS computer I 47-7
Note Sequencer I 47-7
Note Synthesizer I 47-8
Sound general logic unit (GLU) I 47-8
Vocabulary I 47-8

Oscillator I 47-8
Generator I 47-9
Voice I 47-9
Sample rate I 47-9
Drop sample tuning I 47-10
Frequency I 47-10
SoundRAM I 47-10
Waveform I 47-10
DOC registers I 47-10

Frequency registers I 47-11
Volume register I 47-12
Waveform Data Sample register I 47-12
Waveform Table Pointer register I 47-12
Control register I 47-12
Bank-Select/Table-Size/Resolution register I 47-13
Oscillator Interrupt register I 47-15
Oscillator Enable register I 47-15
AID Converter register I 47-15

MIDI and interrupts I 47-16
NewSoundToolSetcalls I 47-17

FFSetUpSound $1508 I 47-17
FFStartplaying $1608 I 47-18
ReadDOCReg $1808 I 47-19
SetDOCReg $1708 I 47-21

48 Standard File Operations Tool Set Update I 48-1
New features of the Standard File Operations Tool Set I 48-2

New filter procedure entry interface I 48-4
Custom item-drawing routines I 48-5

Standard File data structures I 48-6
Reply record I 48-6
Multifile reply record I 48-8
File type list record I 48-9

Standard File dialog box templates I 48-11
Open File dialog box templates I 48-12
Save File dialog box templates I 48-18

New or changed Standard File calls I 48-27
SFAllCaps $0D17 I 48-27
SFGetFile2 $0E17 I 48-28
SFMultiGet2 $1417 I 48-30
SFPGetFile2 $1017 I 48-32
SFPMultiGet2 $1517 I 48-34
SFPPutFile2 $1117 I 48-36
SFPutFile2 $0F17 I 48-38
SFReScan $1317 I 48-40
SFShowinvisible $1217 I 48-41

Standard File error codes I 48-42

49 TextEdit Tool Set I 49-1
About the TextEdit Tool Set I 49-2

TextEdit call summary I 49-4
How to use TextEdit I 49-6

Standard TextEdit key sequences I 49-11
Internal structure of the TextEdit Tool Set I 49-14

TextEdit controls and the Control Manager I 49-14
TextEdit filter procedures and hook routines I 49-15
Generic filter procedure I 49-16

doEraseRect $0001 I 49-17
doEraseBuffer $0002 I 49-18
doRectChanged $0003 I 49-18

Keystroke filter procedure I 49-19
Word wrap hook I 49-22
Word break hook I 49-24
Custom scroll bars I 49-26

TextEdit data structures I 49-27
High-level TextEdit structures I 49-28

TEColorTable I 49-28
TEFormat I 49-31

TEParamBiock I 49-33
TERuler I 49-39
TEStyle I 49-41

Low-level TextEdit structures I 49-42
TERecord I 49-42
KeyRecord I 49-53
Styleitem I 49-55
SuperBlock I 49-56
SuperHandle I 49-57
Superitem I 49-58
Tabitem I 49-59
TextBlock I 49-60
TextList I 49-61

TextEdit housekeeping routines I 49-62
TEBootinit $0122 I 49-62
TEStartUp $0222 I 49-63
TEShutDown $0322 I 49-64
TEVersion $0422 I 49-65
TEReset $0522 I 49-66
TEStatus $0622 I 49-67

TextEdit tool calls I 49-68
TEAct ivate $0F22 I 49-68
TEClear $1922 I 49-69
TEClick $1122 I 49-70
TECompactRecord $2822 I 49-72
TECopy $1722 I 49-73
TECut $1622 I 49-74
TEDeactivate $1022 I 49-75
TEGetDefProc $2222 I 49-76
TEGetinternalProc $2622 I 49-77
TEGetLastError $2722 I 49-78
TEGetRuler $2322 I 49-79
TEGetSel ect i on $1C22 I 49-81
TEGetSel ectionStyl e $1E22 I 49-82
TEGetText $0C22 I 49-85
TEGet Tex t Info $0D22 I 49-89
TEidle $0E22 I 49-92
TEinsert $1A22 I 49-93
TEKey $1422 I 49-96
TEKill $0A22 I 49-98

TENew $0922 I 49-99
TEOffsetToPoint $2022 I 49-101
TEP aint Text $1322 I 49-103
TEPaste $1822 I 49-106
TEPointToOffset $2122 I 49-107
TEReplace $1B22 I 49-109
TEScroll $2522 I 49-112
TESetRuler $2422 I 49-114
TESetSelection $1D22 I 49-116
TESetText $0B22 I 49-117
TEStyleChange $1F22 I 49-120
TEUpdate $1222 I 49-123

TextEdit summary I 49-124

50 Text Tool Set Update I 50-1
New features of the Text Tool Set I 50-2

51 Tool Locator Update I 51-1
Error correction I 51-2
Clarification I 51-2
New features of the Tool Locator I 51-2

Tool set startup and shutdown I 51-3
Tool set numbers I 51-6
Tool set dependencies I 51-8

New Tool Locator calls I 51-13
MessageByName $1701 I 51-13
SetDefaultTPT $1601 I 51-16
ShutDo wnTool s $1901 I 51-17
StartUpTools $1801 I 51-18

52 Window Manager Update I 52-1
Error corrections I 52-2
Clarifications I 52-3
New features of the Window Manager I 52-3

Alert windows I 52-6
Special characters I 52-10
Alert window example I 52-11

TaskMaster result codes I 52-13
Window Manager data structures I 52-15

Window record I 52-15
Task record I 52-17

New Window Manager calls I 52-21
AlertWindow $590E I 52-21
CompileText $600E I 52-23
DrawinfoBar $550E I 52-26
EndFrameDrawing $5BOE I 52-27
ErrorWindow $620E I 52-28
GetWindowMgrGlobals $580E I 52-30
NewWindow2 $610E I 52-31
Resizewindow $5COE I 52-34
StartFrameDrawing $5AOE I 52-35
TaskMaster $1DOE I 52-36
TaskMasterContent $5DOE I 52-46
TaskMasterDA $5FOE I 52-48
TaskMasterKey $5EOE I 52-49
GDRPrivate $540E I 52-52

Error messages I 52-53

E Resource Types I E-1
Resource type numbers I E-2
rAlertString $8015 I E-3
rClinputString $8005 I E-4
rClOutputString $8023 I E-5
rControlList $8003 I E-6
rControlTemplate $8004 I E-7

Control template standard header I E-7
Keystroke equivalent information I E-12
Simple button control template I E-13
Check box control template I E-15
Icon button control template I E-17
LineEdit control template I E-21
List control template I E-23
Picture control template I E-26
Pop-up control template I E-28
Radio button control template I E-32
Scroll bar control template I E-34

Size box control template I E-36
Static text control template I E-38
TextEdit control template I E-40

restring $801D I E-46
rCtlColorTbl $800D I E-46
rErrorString $8020 I E-47
ricon $8001 I E-48
rKTransTable $8021 I E-49
rListRef $801C I E-51
rMenu $8009 I E-52
rMenuBar $8008 I E-55
rMenuitem $800A I E-56
rPicture $8002 I E-58
rPString $8006 I E-59
rResName $8014 I E-60
rStringList $8007 I E-61
rStyleBlock $8012 I E-62
rTERuler $8025 I E-64
rText $8016 I E-66
rTextBlock $8011 I E-67
rTextForLETextBox2 $800B I E-68
rToolStartup $8013 I E-69
rTwoRects $801A I E-71
rWindColor $8010 I E-72
rWindParaml $800E I E-74
rWindParam2 $800F I E-78

F Delta Guide I F-1
Apple Desktop Bus I F-2

Error corrections I F-2
Clarification I F-3

Audio Compression and Expansion Tool Set I F-4
Error correction I F-4

Control Manager I F-5
Error corrections I F-5
Clarifications I F-6

Dialog Manager I F-7
Error corrections I F-7

Event Manager I F-8
Error correction I F-8

Font Manager I F-9
Error corrections I F-9

Integer Math Tool Set I F-10
.. clarification" I F-10

List Manager I F-11
.. clarifications" I F-11
List Manager definitions I F-12

Mem01y Manager I F-13
Error correction I F-13
.. clarification" I F-13

Menu Manager I F-14
Error corrections I F-14
.. clarifications" I F-15

Miscellaneous Tool Set I F-16
Error corrections I F-16
Clarification I F-17

Print Manager I F-18
Error corrections I F-18
.. clarifications" I F-18

QuickDraw II I F-19
Error corrections I F-19
Clarification I F-20

Sound Tool Set I F-21
Error corrections I F-21
Clarification I F-22
FFStartSound I F-22

Moving a sound from the Macintosh computer
to the Apple IIGS computer I F-24
Sample code I F-24

Tool Locator I F-25
Error correction I F-25
Clarification I F-25

Window Manager I F-26
Error corrections I F-26
Clarifications I F-27

G Toolbox Code Example I G-1
The Busy. p module I G-2
The busybox . r module I G-4
The uEvent .p module I G-78
The uGlobals .p module I G-83
The uMenu. p module I G-86
The uUtils .p module I G-89
The uWindow. p module I G-92

Glossary I GL-1

Index I X-1

Figures and tables
Z7 Audio Compression and Expansion Tool Set I 27-1

Table 27-1 ACE Tool Set error codes I 27-19

28 Control Manager Update I 28-1
Figure 28-1
Figure 28-2
Figure 28-3
Figure 28-4
Figure 28-5
Figure 28-6
Figure 28-7
Figure 28-8
Figure 28-9
Figure 28-10
Figure 28-11
Figure 28-12
Figure 28-13
Figure 28-14
Figure 28-15
Figure 28-16
Figure 28-17
Figure 28-18
Figure 28-19
Figure 28-20
Figure 28-21
Figure 28-22
Figure 28-23
Figure 28-24
Figure 28-25
Figure 28-26
Figure 28-27
Figure 28-28
Figure 28-29
Figure 28-30

Table 28-1

Control template standard header I 28-44
Keystroke equivalent record layout I 28-47
Item template for simple button controls I 28-48
Control template for check box controls I 28-50
Control template for icon button controls I 28-52
Control template for LineEdit controls I 28-55
Control template for list controls I 28-57
Control template for picture controls I 28-60
Control template for pop-up controls I 28-62
Unselected pop-up menu I 28-66
Selected pop-up menu with left-justified title I 28-66
Selected pop-up menu with right-justified title I 28-66
Control template for radio button controls I 28-67
Control template for scroll bar controls I 28-69
Control template for size box controls I 28-71
Control template for static text controls I 28-73
Control template for TextEdit controls I 28-75
Generic extended control record I 28-88
Extended simple button control record I 28-93
Extended check box control record I 28-95
Icon button control record I 28-97
LineEdit control record I 28-100
List control record I 28-102
Picture control record I 28-104
Pop-up control record I 28-106
Extended radio button control record I 28-110
Extended scroll bar control record I 28-112
Extended size box control record I 28-114
Static text control record I 28-116
TextEdit control record I 28-119

Control Manager error codes I 28-42

18 Desk Manager Update I 29-1
Figure 29-1 Run item header I 29-4

31 Event Manager Update I 31-1
Figure 31-1 Journal record for mouse event I 31-2
Figure 31-2 Keystroke translation table I 31-3

34 LineEdit Tool Set Update I 34-1
Figure 34-1 LineEdit edit record (new layout) I 34-3

36 Memory Manager Update I 36-1
Figure 36-1 Out-of-memory routine header I 36-4

37 Menu Manager Update I 37-1
Figure 37-1 Scrolling menus with indicator at bottom I 37-5
Figure 37-2 Menu record layout for cached menu I 37-7
Figure 37-3 Window with pop-up menus I 37-9
Figure 37-4 Dragging through a pop-up menu I 37-10
Figure 37-5 Type 1 pop-up menu I 37-11
Figure 37-6 Type 2 pop-up menu I 37-12
Figure 37-7 MenuitemTemplate layout I 37-15
Figure 37-8 MenuTemplate layout I 37-18
Figure 37-9 MenuBarTemplate layout I 37-20

Table 37-1 Menu Manager calls that work with pop-up menus I 37-13

38 MIDI Tool Set I 38-1
Figure 38-1 MIDI application environment I 38-5

Table 38-1 MIDI Tool Set error codes I 38-53

39 Miscellaneous Tool Set Update I 39-1
Figure 39-1 Queue header layout I 39-4
Figure 39-2 Interrupt state record layout I 39-5

40 Note Sequencer I 40-1
Figure 40-1 Format of a seqltem I 40-6
Figure 40-2 Note command format I 40-8
Figure 40-3 Control command format I 40-11
Figure 40-4 Register command format I 40-17
Figure 40-5 MIDI command format I 40-20

Table 40-1 Note Sequencer error codes I 40-63

41 Note Synthesizer I 41-1
Figure 41-1 Sound envelope, showing attack, decay, sustain, and

release I 41-4
Figure 41-2 Typical Note Synthesizer envelope I 41-5
Figure 41-3 Instrument data structure I 41-7
Figure 41-4 Generator control block layout (GCBRecord) I 41-12

Table 41-1 Note Synthesizer error codes I 41-27

42 Print Manager Update I 42-1
Table 42-1 Print Manager error codes I 42-15

43 QuickDraw II Update I 43-1
Figure 43-1 Pen state record I 43-2
Figure 43-2 QuickDraw picture header I 43-3
Figure 43-3 New font header layout I 43-5

44 QuickDraw D Auxiliary Update I 44-1
Figure 44-1 Mask generation with Ca1 cMask I 44-3
Figure 44-2 Implementing a lasso tool with Ca1cMask I 44-4
Figure 44-3 Mask generation with seedFill I 44-8
Figure 44-4 Implementing a paint bucket tool with see dF i 11 I 44-9
Figure 44-5 Paint bucket tool with undo I 44-10
Figure 44-6 Implementing a "from-the-inside" lasso tool with

SeedFill I 44-11

45 Resource Manager I 45-1
Figure 45-1 A resource file search chain I 45-13
Figure 45-2 Resource file internal layout I 45-15
Figure 45-3 Resource file header (ResHeaderRec) I 45-16
Figure 45-4 Resource map (MapRec) I 45-17
Figure 45-5 Resource free block (FreeBlockRec) I 45-19
Figure 45-6 Resource reference record (ResRefRec) I 45-20

Table 45-1 Resource Manager constants I 45-77
Table 45-2 Resource Manager data structures I 45-78
Table 45-3 Resource Manager error codes I 45-80

47 Sound Tool Set Update I 47-1
Figure 47-1 DOC registers I 47-14

48 Standard File Operations Tool Set Update I 48-1
Figure 48-1 New-style reply record I 48-6
Figure 48-2 Multifile reply record I 48-8
Figure 48-3 File type list record I 48-9

Table 48-1 Standard File error codes I 48-42

49 TextEdit Tool Set I 49-1

Figure 49-1 TEColorTable layout I 49-28
Figure 49-2 TEFormat layout I 49-31
Figure 49-3 TEParamBlock layout I 49-33
Figure 49-4 TERuler layout I 49-39
Figure 49-5 TEStyle layout I 49-41
Figure 49-6 TERecord layout I 49-42
Figure 49-7 KeyRecord layout I 49-53
Figure 49-8 Stylertem layout I 49-55
Figure 49-9 SuperBlock layout I 49-56
Figure 49-10 SuperHandle layout I 49-57
Figure 49-11 Superitem layout I 49-58
Figure 49-12 Tab Item layout I 49-59
Figure 49-13 TextBlock layout I 49-60
Figure 49-14 TextList layout I 49-61

Table 49-1 TextEdit constants I 49-124
Table 49-2 TextEdit data structures I 49-126
Table 49-3 TextEdit error codes I 49-134

51 Tool Locator Update I 51-1
Figure 51-1 Tool set Start Stop record I 51-4

Table 51-1 Tool set numbers I 51-6
Table 51-2 Tool set dependencies I 51-8

52 Window Manager Update I 52-l
Figure 52-1 Alert window input string layout I 52-6
Figure 52-2 An alert string I 52-11
Figure 52-3 An alert string defining a custom rectangle I 52-12
Figure 52-4 Window record definition I 52-15
Figure 52-5 Task record definition I 52-17

Table 52-1 Standard alert window sizes I 52-8
Table 52-2 Substitution string array I 52-11
Table 52-3 TaskMaster result codes I 52-13
Table 52-4 Error messages I 52-53

E Resource Types I E-1
Figure E-1 Alert string, type rAlertString ($8015) I E-3
Figure E-2 GSIOS class 1 input string, type rc 1 Input String

($8005) I E-4
Figure E-3 GSIOS class 1 output string, type rClOutputString

($8023) I E-5
Figure E-4 Control list, type rControlList ($8003) I E-6
Figure E-5 Control template standard header I E-7
Figure E-6 Keystroke equivalent record layout I E-12
Figure E-7 Item template for simple button controls I E-13
Figure E-8 Control template for check box controls I E-15
Figure E-9 Control template for icon button controls I E-17
Figure E-10 Control template for LineEdit controls I E-21
Figure E-ll Control template for list controls I E-23
Figure E-12 Control template for picture controls I E-26
Figure E-13 Control template for pop-up controls I E-28
Figure E-14 Control template for radio button controls I E-32
Figure E-15 Control template for scroll bar controls I E-34
Figure E-16 Control template for size box controls I E-36
Figure E-17 Control template for static text controls I E-38
Figure E-18 Control template for TextEdit controls I E-40
Figure E-19 C string, type restring ($801D) I E-46

Figure E-20 Icon, type ricon ($8001) I E-48
Figure E-21 Keystroke translation table, type rKTransTable

($8021) I E-49
Figure E-22 List member reference array element, type rListRef

($801C) I E-51
Figure E-23 Menu template, type rMenu ($8009) I E-52
Figure E-24 Menu bar record, type rMenuBar ($8008) I E-55
Figure E-25 Menu item template, type rMenuitem ($800A) I E-56
Figure E-26 QuickDraw picture, type rP ict ure ($8002) I E-58
Figure E-27 Pascal string, type rPString ($8006) I E-59
Figure E-28 Resource name array, type rResName ($8014) I E-60
Figure E-29 Pascal string array, type rstringList ($8007) I E-61
Figure E-30 TextEdit style information, type rStyleBlock

($8012) I E-62
Figure E-31 TextEdit ruler information, type rTERuler ($8025) I E-64
Figure E-32 Text block, type rTex t ($8016) I E-66
Figure E-33 Text block, type rTextBlock ($8011) I E-67
Figure E-34 LETextBox2 input text, type rTextForLETextBox2

($800B) I E-68
Figure E-35 Tool set start-stop record, type rToolStartup

($8013) I E-69
Figure E-36 Two rectangles, type rTwoRects ($801A) I E-71
Figure E-37 Window color table, type rWindColor ($8010) I E-72
Figure E-38 Window template, type rWind P a raml ($800E) I E-75
Figure E-39 Window template, type rWindParam2 ($800F) I E-78

Table E-1 Resources listed by resource type number I E-2

F Delta Guide I F-1
Figure F-1
Figure F-2

Pen state record I F-20
QuickDraw picture header I F-20

Preface What's in This Volume

This third volume of the Apple JIGS Toolbox Reference contains new
material describing numerous changes to the Apple IIGs® Toolbox. It
contains six previously undocumented tool sets, many new tool calls, and
numerous corrections and additions. This document comprises both new
material and information issued in a previous update that was available
only from the Apple Programmers and Developers Association (APDA™).

Organization

Like the first two volumes of the Apple JIGS Toolbox Reference, this book contains chapters
that are devoted to individual tool sets or managers. The chapters are arranged
alphabetically by tool set name. Chapters documenting the six new tool sets appear in
alphabetical order among the other chapters. Chapters that discuss previously existing
tool sets or managers carry the same titles as before, with the addition of the word
Update. Note that chapters in this book have been numbered sequentially following the
last chapter in Volume 2 of the Apple JIGS Toolbox Reference.

Each chapter contains a brief introductory note, which indicates whether the chapter
updates existing material or describes a new tool set or manager. Update chapters contain
one or more of these sections:

Error corrections
Clarifications

New features
New tool calls

Corrects errors in the previous toolbox documentation
Provides additional information about previously documented
toolbox features, including bug fixes
Describes new tool set features
Defines new tool calls

New chapters follow the organizational style of the first two volumes.

In addition to the chapters that discuss the various tool sets and managers, this book
contains several appendixes.

Appendix E, "Resource Types" Contains format and content information for all
defined Apple IIGS resource types

Appendix F, "Delta Guide" Collects all corrections to and clarifications of
the previous volumes of the Toolbox Reference
in a single location

Appendix G, "Toolbox Code Example" Presents a sample program, BusyBox, which
illustrates the use of many of the new features
of the Apple IIGS Toolbox

Typographical conventions

This update largely follows the typographical conventions of the first two volumes of the
Apple I!GS Toolbox Reference. New terms appear in boldface when they are introduced.
Tool call parameter names appear in italics. Record field names, routine names, and code
listings appear in the Courier font.

Call format

This book documents tool calls for all the new tool sets and several of the existing tool
sets in the following format.

Certain elements of this format may not appear in all calls. For example, stack diagrams
are omitted from those calls that do not affect the stack.

ToolCallName $callnumber

A description of the call's function.

Parameters

Stack before call

Previous contents

- longParmName -

wordParmName

Stack after call

Previous contents

Result

Errors $xxxx

Long-Description of longParmName parameter

Word-Description of wordParmName parameter
<-SP

Long-Description of call result value (if any)

<-SP

Error name Description of the error code.

C c code . The C language function declaration for the call.

stackParameter Detailed description of stack input or output parameter, where
appropriate.

Chapter 26 Apple Desktop Bus Tool Set Update

This chapter contains new information about the Apple Desktop Bus™
Tool Set. The complete reference to this tool set is in Volume 1,
Chapter 3 of the Apple JIGS Toolbox Reference.

Error corrections

The parameter table for the ReadKeyMicroData tool call ($0A09) in Volume 1 of the
Toolbox Reference incorrectly describes the format for the readCon fig command ($0B).
The description should be as follows:

Command dataLength

$0B 3

Name Action

readConfig Read configuration; dataPtrrefers to a
3-byte data structure.
Byte ADB keyboard and mouse

addresses.
Low nibble = keyboard
High nibble = mouse

Byte Keyboard layout and display
language.
Low nibble = keyboard layout
High nibble = display language

Byte Repeat rate and delay.
Low nibble = repeat rate
High nibble = repeat delay

The description of this configuration record is also wrong in the tool set summary. The
following list correctly describes ReadC o n f igRec, the configuration record for the
ReadKeyMicroData tool call.

Name Offset Type

rcADBAddr $0000 Byte

rcLayoutOrLang $0001 Byte

r c RepeatDelay $0002 Byte

Definition

ADB keyboard and mouse addresses.
Low nibble = keyboard
High nibble = mouse
Keyboard layout and display language.
Low nibble = keyboard layout
High nibble = display language
Repeat rate and delay.
Low nibble = repeat rate
High nibble = repeat delay

Clarification

This section presents new information about the AsyncADBReceive call.

You can call AsyncADBRecei veto poll a device using register 2, and it will return certain
useful information about the status of the keyboard. The call returns the following
information in the specified bits of register 2:
bit 5: 0 =Caps Lock key down

1 = Caps Lock key up
bit 3: 0 = Control key down

1 = Control key up
bit 2: 0 = Shift key down

1 = Shift key up
bit 1: 0 = Option key down

1 = Option key up
bit 0: 0 = Command key down

1 = Command key up

Chapter 27 Audio Compression and
Expansion Tool Set

This chapter documents the features of the new Audio Compression and
Expansion (ACE) Tool Set. This is a new tool set not previously
documented in the Apple JIGS Toolbox Reference.

Error correction

An error exists in the Apple JIGS Toolbox Reference Update (distributed by APDA™). The
description of the ACEExpand tool call contains an incorrect parameter block. This book
contains a corrected description.

About Audio Compression and Expansion

The Audio Compression and Expansion (ACE) tools are a set of utility routines that
compress and expand digital audio data. The tool set is designed to support a variety of
methods of audio signal compression, but at present only one method is implemented.

With the present method of compression supported by the ACE tools, you can choose
either of two compression ratios. You can compress a digital audio signal to half its
original size or to three-eighths its original size. The ratio used is determined by a
parameter of the ACE call that does the compression or expansion.

The obvious advantages of compressing an audio signal are that it takes up less space on
the disk, and less time is needed to transfer the data. A digital sample that is compressed
to half its original size occupies only half the space and takes only half as long to transfer.
Such a sample can load from the disk twice as fast as the uncompressed version and is
much more economical to upload to or download from a commercial computer network.
Note, however, that data compression and expansion require significant processor
resources, and therefore take some time. ·

The following list summarizes the capabilities of the ACE Tool Set. The tool calls are
grouped according to function. Later sections of this chapter discuss audio compression
and expansion in greater detail and define the precise syntax of the tool calls.

Routine

Housekeeping routines

ACEBootinit

ACEStartUp

ACE ShutDown

ACEVersion

Description

Called only by the Tool Locator-must not be called by
an application
Initializes the ACE Tool Set for use by an application
Informs the ACE Tool Set that an application is finished
using its tool calls
Returns the ACE Tool Set version number

ACEReset

ACEStatus

ACE Info

Called only when the system is reset-must not be called
by an application
Returns the operational status of the ACE Tool Set
Returns information about the ACE Tool Set operating
environment

Audio compression and expansion tool calls

ACECompBegin

ACECompress
ACEExpand

ACEExpBegin

Prepares the ACE tools to compress an audio sequence
Compresses an audio sequence
Expands a previously compressed audio sequence
Prepares the ACE tools to expand a previously
compressed audio sequence

Uses of the ACE Tool Set

Software often includes sound effects, music, or speech. The problem with digitized
sound is that it requires considerable storage space. A faithful monophonic digitization
of 30 seconds of an FM radio signal occupies nearly a megabyte (MB) of disk space. A user
might be somewhat reluctant to use a program that occupies so much space only to
achieve sound effects. The ACE Tool Set provides you with the means to compress
digitized sound signals to minimize this problem.

ACE presently supports Adaptive Differential Pulse Code Modulation (ADPCM). This
compression method assumes that audio signals tend to be relatively smooth and
continuous. If the amplitude (loudness) of a typical audio signal is plotted against time,
the graph is relatively smooth compared to a spreadsheet, a text document, or other
typical files that may contain arbitrarily distributed byte values. As a result, it is possible
to compute the probable value of the next sample in the signal. ADPCM uses a static
model of what the change between any given value and the next is likely to be and a
dynamic model of what the next actual change should be, based on the values last
observed. ADPCM examines the next signal to compare its predictions against the
observed value and then encodes the difference between its prediction and the actual
value.

ADPCM relies on the relative predictability of audio signals. If the changes in an audio
signal are too great or sudden, ADPCM records an erroneous value. In general, a certain
statistically predictable amount of error appears in any signal that is compressed by this
method. The errors appear not as distortions of the quality of the sound but as pink
noise, or hiss, much like the hiss on ordinary cassette recordings. Thus, although ADPCM
compression is suitable for many sound-compression tasks, particularly for sound effects
or speech in games or business software, it is not the best choice for very high-fidelity
reproduction. A signal compressed by the ADPCM method is likely to be too noisy for use
in professional audio, such as film soundtrack recording.

How ADPCM works

The ADPCM method assumes that any particular digital sample in a block of audio data
has a value that is relatively close to the values on either side of it. ADPCM predicts what
the next value will be, and compares it with the value that is actually there. The difference
is encoded in a value that is some number of bits in size, which is specified by the
application code. With ADPCM the programmer can specify encoded values either 3 or 4
bits wide. Because the original data is stored in 8-bit samples, the compression rate is
either 8 to 3 or 8 to 4, depending on which size a particular program specifies.

Errors result when the difference between the original signal and the value that ADPCM
predicts is greater than can be encoded in the specified number of bits. The encoded
value then effectively becomes a random value, and so is perceived as audio noise. If the
target code is 3 bits wide, then the difference observed by the compression algorithm is
more likely to be out of range than if the code size is 4 bits. Greater compression,
therefore, results in greater loss of fidelity.

As stated earlier, the fidelity loss sounds like hiss, not like a gross distortion of the audio
signal. Even using inaccurate predictive models, ADPCM tends to produce hiss rather than
more offensive forms of distortion. The technique tracks the gross characteristics of
audio signals well even when the rate of errors is high. At worst, an expanded signal sounds
faithful to the original, though muffled by noise.

6 Important The noisier a sampled signal is, the noisier the sample compressed by
using ADPCM will be. Any noise that is introduced into the signal
produces discontinuities in the audio data and causes errors in the
compression and expansion process. For this reason, any editing,
equalization, or other sound-processing effects should be applied to
the original signal before it is compressed. ADPCM compression
should be the last process applied to an audio signal before it is stored
on the final disk. 6

ACE housekeeping routines

These routines allow you to start and stop the ACE tools and to obtain status information
about the tool set.

ACEBoot Ini t $011D

Performs any initializations of the ACE tools that are necessary at boot time.

A Warning Applications must not make this call. .a.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

c extern pascal void ACEBootinit();

ACEStartUp $0210

Initializes the ACE tools for use by an application. The ACEStartUp routine sets aside a
region of bank $00, specified by dPageAddr, for use as the ACE tools ' direct page. At
present, ACE uses one 256-byte page of bank $00 memory as its direct page. Because
future versions of the ACE tools may use a different amount of memory for the direct
page, applications should determine the correct size for the direct page with a call to
ACE Info . The tool set's direct page should always begin on a page boundaty.

Parameters

Stack before call

Previous contents
dPageAddr

Stack after call

Previous contents

Errors $1D01
$1D02

Word-Beginning of direct-page space

<-SP

<-SP

aceisActive
aceBadDP

ACE Tool Set already started up.
Requested direct-page location
invalid.

c extern pascal void ACEStartUp(dPageAddr) ;

Word dPageAddr;

ACEShutDown $031D

Performs any housekeeping that is required to shut down the ACE Tool Set. Applications
that use the ACE tools should always make this call before quitting. The application, not
the ACE Tool Set, must allocate and deallocate direct-page space in bank zero.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors $1D03 aceNotActive ACE Tool Set not started up.

c e xtern pascal void ACEShutDown();

ACEVersion $041D

Returns the version number of the currently installed ACE Tool Set. This call can be made
before a call to ACE Startup. The versionlnfo result will contain the information in the
standard format defined in Appendix A, "Writing Your Own Tool Set," in Volume 2 of the
Toolbox Reference.

Parameters

Stack before call

Previous contents
Space

Stack after call

Previous contents
versionlnfo

Errors None

Word-Space for result
<-SP

Word-Version number of ACE Tool Set
<-SP

c extern pascal Word ACEVersion();

ACEReset $051D

Resets the ACE Tool Set. This call is made by a system reset.

A Warning

Parameters

Errors

c

Applications should never make this call because it performs tool set
initializations appropriate to a machine reset.

This call has no input or output parameters. The stack is unaffected.

None

extern pascal void ACEReset();

ACEStatus $061D

Returns a Boolean flag, which is TRUE (nonzero) if the tool set has been started up and
FALSE (zero) if it has not. This call can be made before a call to ACEStartup.

+ Note: If your program issues this call in assembly language, initialize the result space on
the stack to NIL. Upon return from ACEStatus, your program need only check the
value of the returned flag. If the ACE Tool Set is not active, the returned value will be
FALSE (NIL).

Parameters

Stack before call

Previous contents
Space

Stack after call

Previous contents
activeFlag

Errors None

Word-Space for result
<-SP

Word-Boolean value indicating whether tool set is active
<-SP

c e xtern pascal Boolean ACEStatus();

ACEinfo $071D

Returns certain information about the currently installed version of the ACE tools. This call
can be made before a call to ACE StartUp. The infoltemCode parameter specifies what
information the call is to return. At present, the only valid value is 0. This value specifies
that the call will return the size in bytes of the direct page that ACE requires.

Parameters

Stack before call

Previous contents

Space

infoJtemCode

Stack after call

Previous contents

- infoltem Value -

Errors $1D04

c extern

Word

Long-Space for result

Word-What type of information to return
<-SP

Long-Requested information

<-SP

aceNoSuchParam Requested information type not
supported.

pascal LongWord ACEinfo (infoite mCode);

infoitemCode;

Audio Compression and Expansion tool calls

The Audio Compression and Expansion tool calls are all new calls, added to the Apple IIGs®
Toolbox since the first two volumes of the Toolbox Reference were published.

ACECompBegin $0B1D

Prepares the ACE tools to compress a new audio sequence. After ACECompress
completes the process of compression and returns, the ACE tools normally save certain
relevant state information so that subsequent calls to ACECompre s s can be used on
succeeding parts of the same audio sequence. It is often desirable to break a long audio
signal into smaller parts for compression. The preservation of appropriate state variables
allows a call to ACECompress to compress part of such a signal and then, for a
subsequent call, to continue the compression process where the previous call left off.

Just before a program calls ACECompress to process a new audio sample, it should call
ACECompBegin to ensure that all saved state information is cleared and that
ACECompress is starting with a "clean slate." When an application is compressing a long
audio sample as a number of smaller pieces, it should call ACECompBeg in only before the
first subsequence. Thereafter, the application should not make this call until all parts of
the sequence have been processed. The state information that ACE preserves between
calls allows ACECompres s to process subsequent blocks, using appropriate information
from previous ones.

Call ACECompBegin only before compressing the first sequence of a series of sub-
sequences, or before compressing a single sequence that is not part of a longer sequence.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors $1D03 aceNotActive ACE Tool Set not started up.

c extern pascal void ACECompBegin ();

ACECompress $091D

Compresses a number of blocks of digital audio data and stores the compressed data at a
specified location. Each input block contains 512 bytes of data to be compressed. Your
program also specifies the compression method, using the method parameter.

Before issuing the ACECompress tool call, your program should call ACECompBegin to
prepare the ACE Tool Set for audio compression.

+ Note: Because ACECompress is guaranteed to reduce the size of evety byte of source
data, the resulting data can be stored in the same place as the source data. That is, the
source and destination locations in RAM can be the same.

Parameters

Stack before call

Previous contents

- src -

- srcO!fset -

- dest -

- destO!fset -

nB!ks
method

Stack after call

Previous contents

Errors $1D05

$1D06
$1D07
$1D08

Long-Handle to the source data

Long-Offset from src to the actual storage location

Long-Handle to storage for the resulting data

Long-Offset from dest to the actual storage location

Word-Number of 512-byte blocks of source data
Word-Method of compression
<-SP

<-SP

aceBadMethod

aceBadSrc
a c e BadDest
aceDataOverlap

Specified compression method
not supported.
Specified source invalid.
Specified destination invalid.
Specified source and destination
areas overlap in memory.

c

src, dest

extern pascal void ACECompress (src, srcOffset , dest,
destOffset, nBlks, method);

Handle
Long
Word

src, dest;
srcOffset, destOffset;
nBlks, me thod;

Contain handles to source and destination data locations,
respectively.

srcO!fset, destO!fset Contain byte offsets from locations specified by src and dest,
respectively. These parameters allow your program to set a starting
location within an input sample or output buffer.

nBlks

method

Specifies the number of 512-byte blocks of audio data to be
compressed.

Specifies the compression method to be used by ACECompress
when processing the data. A value of 1 causes each byte of input data
to be compressed to a 4-bit quantity; a value of 2 yields 3 bits per
byte of input data.

Clearly, the value of the method parameter helps determine the size of
the resulting data that ACECompress stores at destO!fset bytes
beyond the location specified by dest. When using method 1 (4-bit
compression), you can calculate the number of bytes ACECompress
will produce by multiplying the contents of the nB!ks parameter by the
number of bytes in a data block (512), multiplying that result by the
number of result bits per input byte (4), and then dividing by the
number of bits in a byte (8), as in this formula:

((nB/ks * 512) * 4) I 8

For method 2, the same basic calculation applies, except that each
input byte results in 3 output bits.

((nBlks * 512) * 3) I 8

ACEExpand $0A1D

Expands a previously compressed audio sample, using the method specified by the
method parameter, and stores it at the specified location. Unlike ACECompress,
ACEExpand cannot store its results in the same location as its source because the
resulting data is 2 to 2.67 times as large as the source.

Parameters

Stack before call

Previous contents

- src -

- srcO!fset -

- dest -

- destO!fset -
nBlks

method

Stack after call

Previous contents

Errors $1D05

$1D06
$1D07
$1D08

Long-Handle to the source data

Long-Offset from src to the actual storage location

Long-Handle to storage for the resulting data

Long-Offset from dest to the actual storage location

Word-Number of 512-byte blocks to be stored at dest
Word-Method of compression
<-SP

<-SP

aceBadMethod

aceBadSrc
aceBadDest
aceDataOverl ap

Specified compression method
not supported.
Specified source invalid.
Specified destination invalid.
Specified source and destination
areas overlap in memory.

c

src, dest

extern pascal void ACEExpand(src , srcOffset , dest ,
destOffset, nBlks , method);

Handle
Long
Word

src, dest ;
srcOffset, destOffset ;
nBlks, method ;

Contain handles to source and destination data locations,
respectively.

srcO!fset, destO!fset Contain byte offsets from locations specified by src and dest,
respectively. These parameters allow your program to set a starting
location within the input compressed data or output buffer.

nBlks

method

Specifies the number of 512-byte blocks of expanded data to be
returned at the location destO.ffset bytes beyond dest.

Specifies the method used when the sample was compressed. A value
of 1 indicates that ACEExpand is to expand each 4-bit quantity in the
compressed sample into an 8-bit byte. A value of 2 causes
ACEExpand to process 3-bit quantities in the compressed sample.

ACEExpBegin $0ClD

Prepares ACE to expand a new sequence. Like ACECompBegin, ACEExpBegin clears any
stored state information from previous calls before expanding compressed data. You can
expand a large compressed sample by processing it as a series of subsequences with
repeated calls to ACEExpand, because certain appropriate state variables are preserved
from call to call. If you are calling ACEExpand to work on a new sequence that bears no
relation to any other compressed sequence, or to expand a short sequence in just one call
to ACEExpand, you should make this call first to clear these state variables. If, however,
you are making a call to ACEExpand to expand a sequence that is a part of a longer
sequence and is not the first subsequence, you should not make this call first, because it
will throw away all information that ACE has recorded about the previous sequences.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors $1D03 aceNotActive ACE Tool Set not started up.

c e xtern pascal void ACEExpBe gin();

ACE Tool Set error codes
Table 27-llists the error codes that may be returned by Audio Compression and Expansion Tool
Set calls.

• Table 27-1 ACE Tool Set error codes

Value Name Definition

$0000 aceNoError No error
$1D01 aceisActive ACE Tool Set already started up
$1D02 aceBadDP Requested direct-page location invalid
$1D03 aceNotActive ACE Tool Set not started up
$1D04 aceNoSuchPararn Requested information type not supported
$1D05 aceBadMethod Specified compression method not

supported
$1D06 aceBadSrc Specified source invalid
$1D07 aceBadDest Specified destination invalid
$1D08 aceDataOverlap Specified source and destination areas

overlap in memory
$1DFF aceNotirnplernented The requested function has not been

implemented

Chapter 28 Control Manager Update

This chapter documents new features of and information about the
Control Manager. The complete Control Manager documentation is in
Volume 1, Chapter 4 of the Apple JIGS Toolbox Reference.

Error corrections

This section documents errors in Chapter 4, "Control Manager," in Volume 1 of the Toolbox
Reference.
• The color table for the size box control in the Toolbox Reference is incorrect. The

correct table follows, with new information in boldface.
growOutline word Outline color

bits 15-8 = zero
bits 7-4 = outline color
bits 3-0 =zero

growNorBack word Color of interior when not highlighted
bits 15-8 = zero
bits 7-4 = background color
bits 3-0 = icon color

growSelBack word Color of interior when highlighted
bits 15-8 = zero
bits 7-4 = background color
bits 3-0 =icon color

• A statement on page 4-76 of the Toolbox Reference, in the section that covers the
SetCtlParams call, is not strictly accurate. The statement that the call "sets new
parameters to the control 's definition procedure" is misleading; the call does not set
the parameters directly. Rather, it sends the new parameters to the control's definition
procedure, unlike SetCtl Value, which actually sets the appropriate value in the
control record and then passes the value to the definition procedure.

Clarifications

The following items provide additional information about features previously described
in Volume 1 of the Toolbox Reference.
• The barArrowBack entry in the scroll bar color table was never implemented as first

intended and is no longer used.
• The Control Manager preserves the current port across Control Manager calls, including

those that are passed through other tools, such as the Dialog Manager.
• The Control Manager preserves the following fields in the port of a window that

contains controls:
bkPat background pattern
pnLoc pen location
pnSize pen size
pnMode pen mode
pnPat pen pattern
pnMask pen mask
pnVis pen visibility
font Handle handle of current font
fontiD ID of current font
fontF l ags font flags
txSize text size
txFace text face
txMode text mode
spExtra value of space extra
chExtra value of character extra
fgColor foreground color
bgColor background color

• The control definition procedures for simple buttons, check boxes, and radio buttons
can now compute the size of their boundary rectangles automatically. The computed
size is based on the size of the title string of the button.

• To ensure predictable color behavior, you should always align color table-based
controls on an even pixel boundary in 640 mode. If you do not do so, the control will
not appear in the colors you specify, due to the effect of dithering.

New features of the Control Manager

The Control Manager now supports a number of new features. This section discusses these
new features in detail.
• Colors in control tables now use all four color bits in both modes; they formerly used

only 2 bits in 640 mode. This change affects all control color tables defined in the
Toolbox Reference. For any applications that use color controls in 640 mode, the effect
is that controls will be a different color. This change allows dithered colors to be used
with controls.

• The scroll bar control definition procedure now maintains the required relationship
among the ctlValue, viewSize, and dataSize fields of a scroll bar record. Prior
to Apple IlGS system software 5.0, it was the responsibility of the application to
ensure that the ctlValue field never exceeded the difference between dataSize
and viewSize (dataSize- viewSize). The scroll bar control definition procedure
now adjusts the c t 1 va 1 u e or data size field if the other quantities are set to invalid
values.
For example, if viewSize = 30 and dataSize = 100, then the maximum allowable value
of ct 1 va 1 ue is 70. If an application set the ct 1 Value field to 80, the Control Manager
would adjust dataSize to 110. In this same example, if ctlValue = 70 and the
application set dataSize to 90, the Control Manager would adjust ctl Value to 60.
Changes to the viewSize field can also invalidate the three settings. In the example
mentioned before, in which ctlValue = 70, viewSize = 30, and dataSize = 100,
setting viewSize to 40 would cause the Control Manager to set ctl Value to 60.

Keystroke processing in controls

Apart from the normal use of keystrokes to enter data, the Control Manager now supports
two special uses for keyboard data: keystroke equivalents and switching between
certain types of controls.

Many types of controls support keystroke equivalents, which allow the user to select the
control by pressing a keyboard key. You assign a keystroke equivalent for a control in its
control template (see "New Control Manager Templates and Records" later in this chapter
for specifics on control templates). When the user presses that key, TaskMaster will return
an event just as if the user had clicked in the control. Further, the system will automatically
highlight and dim the control. Note that this feature is available only to controls that have
been created with the NewControl2 tool call, and for which the fCtlWantEvents bit
has been set to 1 in the moreF lags word of the control template. See "New and Changed
Controls" later in this chapter for information about which controls support keystroke
equivalents.

Edit field controls (LineEdit controls and TextEdit controls) accept keystrokes as part of
their normal function. Note, however, that more than one edit field control can be used in
a window. Under these circumstances, the user moves among these controls by pressing
the Tab key. In addition, the system must keep track of which control is meant to receive
user keystrokes. To do so, the Control Manager now supports the notion of a target
control. The target control is the edit field control that is the current recipient of user
actions (keystrokes and menu items).

The Control Manager and resources

You can now specify most data for the Control Manager using either pointers, handles, or
resource IDs (see Chapter 45, "Resource Manager," in this book for complete information
on resources). Because the form of the specification may differ, the Control Manager (as
well as many other tool sets) also requires a reference type, which indicates whether a
particular reference is a pointer, handle, or resource ID. You set the reference type and the
reference as appropriate in the control template you pass to the Control Manager
Newcontrol2 tool call. Note further that the type of reference you use when you specify
data for the Control Manager governs how that data is later accessed. For example, if you
originally specify the color table for a control with a handle, then anytime the system
returns a reference to that color table, the reference is a handle; similarly, your application
must always refer to that color table with a handle.

You can use resources to store a wide variety of items for the Control Manager. For
example, the titles associated with simple buttons, radio buttons, and check boxes
created with the Newcontrol2 tool call may be stored as resources. As a result, your
application may free the space devoted to the title string after the control has been
created. Similarly, you can define control definition procedures as resources. The Control
Manager loads the code when it is needed.

The Control Manager handles resources differently according to the relative permanence
of the data. For temporary information, the Control Manager loads the resource, uses the
data, and then frees the resource (using the ReleaseResource tool call). For permanent
information, the Control Manager loads the resource each time the resource is accessed.
Such resources should be unlocked and unpurgeable.

The current version of the Apple IIGS system software keeps the control definition
procedure for icon button controls in the system resource file. In the future, the system
may store other definition procedures in this resource file. Consequently, you should
ensure that the Resource Manager can reach the system resource file in any resource search
path you set up (see Chapter 45, "Resource Manager," for more information on the
resource file search path).

New and changed controls

The Control Manager now supports more standard control types. In addition to the
original standard controls (buttons, check boxes, radio buttons, size boxes, and scroll
bars), the Control Manager now supports the following controls:
• Static text controls display text messages in a rectangle that you define. The

displayed text supports word wrap and character styling. This text cannot be edited
by the user.

• Picture controls draw a picture into a defined rectangle.
• Icon button controls allow you to present an icon as part of a button control. A

defined icon is displayed within the bounds of the rectangle that represents the button
control on the screen. Icon buttons include support for keyboard equivalents.

• LineEdit controls allow the user to enter single-line items.
• TextEdit controls, supported by the new TextEdit tool set (see Chapter 49,

"TextEdit Tool Set," in this book), allow the user to edit text within a defined
rectangle, which can extend beyond a single line.

• Pop-up menu controls support scrolling lists of possible selection options that
appear when the user selects the control.

• List controls display scrollable lists of items.

To create any of these new controls, you must set up the appropriate control template
and call NewControl2. Unlike the NewControl tool call, which accepts its control
definition on the stack, Newcontrol2 defines controls according to the contents of one
or more control templates. These templates contain all the information necessa1y for the
Control Manager to create controls. Your application fills each control template with the
data appropriate to the control you wish to create. The Control Manager uses this input
specification to construct the corresponding control record and create the control. You
can use this technique to create any control, not just the new control types. For complete
information on the format and content of these control templates, see "New Control
Manager Templates and Records" later in this chapter.

All controls created by NewControl2, rather than NewControl, are referred to as
extended controls. Functionally, extended controls do not differ from controls created
by Newcontrol. In fact, extended control records work with all Control Manager tool
calls. However, the control record for an extended control contains more data than the
old-style record. In addition, many new Control Manager calls and features are valid only
for extended controls. Note that all controls created by NewControl2, not just the new
control types, are extended controls. For complete information on the format and
content of extended control records, see "New Control Manager Templates and Records"
later in this chapter.

You may call NewControl2 directly or you may invoke it indirectly by calling
NewWindow2. See Chapter 45, "Resource Manager," and Chapter 52, "Window Manager
Update," for details on new window calls.

The following sections discuss each type of control supported by the Control Manager.
For the original controls, these sections address new features provided by the Control
Manager. For new control types, these sections introduce you to the functionality now
provided.

Simple button control

Simple button controls created with the Newcontrol2 tool call can support keystroke
equivalents, which allow the user to activate the button by pressing an assigned key on the
keyboard. See "Keystroke Processing in Controls" earlier in this chapter for details.

Check box control

Check box controls created with the Newcontrol2 tool call can support keystroke
equivalents, which allow the user to activate the box by pressing an assigned key on the
keyboard. See "Keystroke Processing in Controls" earlier in this chapter for details.

Icon button control

This new type of control can display an icon as well as text in a defined window. You
specify the boundary rectangle for the window and a reference to the icon when you
create the control. See Chapter 17, "QuickDraw II Auxiliary," in Volume 2 of the Toolbox
Reference for information about icons. You can create icon button controls only with the
NewControl2 tool call.

Icon button controls operate much as simple button controls do. Note, however, that
with icon controls, the control rectangle is inset slightly from its specified coordinates
before the button is drawn. As a result, outlined round buttons stay completely within the
specified control rectangle (this is not the case for an outlined round simple button
control). Icon button controls support keyboard equivalents. See "Keystroke Processing
in Controls" earlier in this chapter for details.

The icon is drawn each time the control is drawn. The icon and text are centered in the
specified control rectangle. If the control has no text, the icon is still centered. The icon is
not clipped to the control rectangle. If the icon is larger than the specified control
rectangle, the portion of the icon that lay outside the rectangle is not erased when you
erase the control.

Note that icon controls require the QuickDraw™ II Auxiliary and Resource Manager tool
sets. Note as well that the control definition procedure for icon buttons is kept in the
system resources file, so your application should ensure that the system disk is online
before defining an icon button control. Your application can prompt the user to insert the
system disk if it is not already online.

LineEdit control

This new control type lets your application manage single-line, editable items in a window.
You specify the boundary rectangle for the text, the maximum number of characters allowed,
and an initial value for the displayed text string when you create the control with the
Newcontrol2 tool call. The text is updated each time the control is drawn. LineEdit controls
also support password fields, which do not echo the characters entered by the user. Rather,
the control echoes each typed character as an asterisk (see Chapter 34, "LineEdit Tool Set
Update," for information about the new features in the LineEdit Tool Set).

LineEdit controls respond to both mouse and keyboard events. If your application uses
TaskMaster, the system handles most events automatically. To take full advantage of
TaskMaster, set the tmContentControls, tmControlKey, and tmidleEvents flags
in the taskMask field of the task record to 1 (see Chapter 52, "Window Manager
Update," for information about the new features of TaskMaster).

If your application does not use TaskMaster, your application must call TrackCont ro l
to track the mouse and perform appropriate text selection when the user presses the
mouse button in a LineEdit control. TaskMaster does this automatically if you have set
the tmContentControls flag to 1 in the taskMask field of the task record.

Without TaskMaster, your application sends keyboard events to LineEdit controls using
the SendEvent ToCt 1 tool call (see "New Control Manager Calls" later in this chapter).
First, your code must check for menu key equivalents. If none are found, then issue the
SendEventToCtl call, setting targetOnlyFlag to FALSE (all controls that want
events are searched), windowPtr to NIL (find the top window), and
extendedTaskRecPtr to refer to the task record containing the keystroke
information. Again, TaskMaster does all this for you if you have set the tmCont rolKey
flag to 1 in the taskMask field.

To keep the insertion point blinking, your application must send idle events to the
LineEdit control. To do this, issue a SendEventToCtl call, setting targetOnlyFlag
to TRUE (send event only to target control), w indowPt r to NIL (use top window), and
extendedTaskRecPtr to refer to the task record containing the event information.
TaskMaster does this for you if you have set the tmidleEvent s flag to 1 in the
taskMask field.

The LineEdit tool set performs line editing in LineEdit controls. If you want to issue
LineEdit tool calls directly from your program, retrieve the LineEdit record handle from
the ctlData field of the control record for the LineEdit control.

List control

This new control type allows your program to display lists from which the user may select
one or more items. You have the benefit of full List Manager functionality with respect to
such features as selection window scrolling and item selection (single item, arbitrary
items, or ranges). You specify the parameters for the list as well as the initial conditions
for its display when you define the control. The Control Manager and the List Manager
take care of the rest. You can create list controls only with the Newcont rol2 tool call.

List controls use the List Manager tool set. To understand how to use this control in your
application, see Chapter 35, "List Manager Update," in this book .

•
Picture control

This new control type displays a QuickDraw picture in a specified window. You specify
the boundary rectangle for the control and a reference to the picture when you create the
control. The picture is drawn each time the control is drawn. You can create picture
controls only with the N ewe on t r o 12 tool call.

Note that when the picture is drawn, the boundary rectangle for the control is used as the
picture destination rectangle (see Chapter 17, "QuickDraw II Auxiliary," in Volume 2 of
the Toolbox Reference for details about picture drawing). As a consequence, the picture
may be scaled at draw time if the dimensions of the original picture frame are not the
same as those of the control rectangle. To force the picture to be displayed at its original
size, and thus avoid scaling, set the lower-right corner of the control rectangle to (0,0).
The Control Manager recognizes this value at control initialization time and sets the
control rectangle to be the same size as the picture frame.

In general, a click in a picture control is ignored. However, the Control Manager provides
facilities to inform your application if the user clicks in the control. To make a picture
control inactive, set the ctlHilite field to $FF; otherwise, the control is active and may
receive user events.

Note that picture controls require the QuickDraw II Auxiliary tool set.

Pop-up control

This new control type allows you to define and support pop-up menus inside a window.
You specify the boundary rectangle for the control, along with a reference to the menu
definition when you create the control with the Newcontrol2 tool call. The menu title
becomes the title of the control, and the current selection for the control is defined by the
initial value.

Pop-up controls respond to both mouse and keyboard events. If your application uses
TaskMaster, the system will handle most events automatically. To take full advantage of
TaskMaster, set the tmContentControls and tmControlKey flags in the taskMask
field of the task record to 1 (see Chapter 52, "Window Manager Update," for information
about the new features of TaskMaster).

If your application does not use TaskMaster, your application must call T r ackCon t ro 1
to track the mouse and present the pop-up menu to the user when the user presses the
mouse button inside a pop-up control. TaskMaster does this for you if you have set the
tmContentControls flag to 1 in the taskMask field.

Without TaskMaster, your program sends keyboard events to pop-up menu controls using
the SendEvent ToCt 1 tool call (see "New Control Manager Calls" later in this chapter).
First, check for menu key equivalents. If none are found, then issue the
SendEventToCtl call, setting targetOnlyFlag to FALSE (all controls that want
events are searched), windo wPtr to NIL (find the top window), and
e x tendedTaskRecPtr to refer to the task record containing the keystroke
information. TaskMaster does all this for you if you have set the tmControlKey flag to 1
in the taskMask field.

Note that the Control Manager places the current user selection value into ctl Value. If
you need to retrieve the user selection number, you may do so from this field.

Radio button control

Radio button controls created with the N ewe on t r o 12 tool call can support keystroke
equivalents, which allow the user to select a button by pressing an assigned key on the
keyboard. See "Keystroke Processing in Controls" earlier in this chapter for details.

Scroll bar control

Scroll bar controls provide no new features.

Size box control

You can now set up size box controls that automatically invoke GrowWindow and
SizeWindow if you create the control with the NewControl2 tool call. When the user
drags the size box, the Control Manager calls GrowWindow and SizeWindow to track the
control and resize the window rectangle if the fCallWindowMgr bit in the flag field of
the size box control template is set to 1 (see the description of the size box control
template in "New Control Manager Templates and Records" later in this chapter). If this
flag is set to 0, then the control is merely highlighted.

Static text control

This new control type displays uneditable (hence, "static") text in a specified window.
Static text controls accept initial text in the same format as the LETextBox2 LineEdit
tool call does. Consequently, you can place font, style, size, and color changes into the
displayed text, affording you great freedom to create a distinctive text display {see
"LETextBox2" in Chapter 11, "List Manager," in Volume 1 of the Toolbox Reference for
information on the embedded change codes accepted by LETextBox2). In addition,
static text controls can accommodate text substitution. With this feature, you can
customize the displayed text to fit run-time circumstances. You can create static text
controls only with the Newcontrol2 tool call.

If you are going to use text substitution in your static text, your application must set up
the control template correctly (set fSubstituteText in flag to 1) and tell the system
where the substitution array is kept (issue the setCtlParamPtr Control Manager tool
call). The text substitution array has the same format as that used by the AlertWindow
call (see Chapter 52, "Window Manager Update," for information about Alert window
and for substitution array format and content).

In general, applications ignore clicks in static text controls. However, the Control
Manager provides facilities to inform your application if the user clicks in the control. To
make a static text control inactive, set the ctlHilite field to $FF; otherwise, the
control is active and may receive user events.

Note that static text controls require the LineEdit, QuickDraw II Auxiliary, and Font
Manager tool sets.

TextEdit control

This control lets the user create, edit, or view multiline items in a window. You specify the
boundary rectangle for the edit window, parameters governing the amount of text to be
entered, and, optionally, some initial text to display. The TextEdit control does the rest.
You can create TextEdit controls only with the Newcontrol2 tool call.

The TextEdit control uses the TextEdit tool set. This new tool set is completely described
in Chapter 49, "TextEdit Tool Set." You should familiarize yourself with the material in
that chapter before using this control.

New control definition procedure messages

Previously, control definition procedures had to support 13 message types (see Chapter 4,
"Control Manager," in Volume 1 of the Toolbox Reference for a discussion of the original
message types). When you create custom controls with new control records (see "New
Control Manager Templates and Records" later in this chapter), your control must support
these additional messages.

Value Control Message
13 ctlHandleEvent
14 ct l ChangeTarget

15 ct l ChangeBounds

16 ctlWindChangeSize

17 ctlHandleTab

18 ctlNotifyMultiPart

19 ctlWindStateChange

Description
Handle a keystroke or menu selection
Issued when control's target status has
changed
Issued when control's boundary
rectangle has changed
Window size has changed
By pressing the Tab key, the user has
moved to a control that can be the
target
A multipart control (a control that
owns separate visible items) must be
hidden, drawn, or shown
Window state has changed

In addition, the initCtl, dragCtl, and recSize messages have new control routine
interfaces when used with extended controls. The following sections discuss each new or
changed message in detail.

If you must draw when handling control messages, your control definition procedure
should save the current GratPort and set the port correctly for your control before
drawing. After your control definition procedure is finished drawing, restore the previous
GratPort. Note that saving the current GratPort includes saving the pen state, all pattern
and color information, and all regions in the port to which your program draws.

To maintain compatibility with future versions of the Control Manager, control definition
procedures should always return a ret Value of 0 for unrecognized and unsupported control
message types. In addition, if you use custom control messages, be careful to assign type
values greater than $8000 (decimal 32,768).

Initialize routine

Previously, ct!Param contained paraml and param2 from Newcont rol. If you create
your custom control with Newcontrol, these input parameters are the same. However, if
you create your control with Newcontrol2 (see "New Control Manager Calls" later in this
chapter), then ctlParam contains a pointer to the control template for the control.

Drag routine

The result code for the drag routine now contains additional information that allows
control definition procedures to disable tracking. Previously, retValue indicated whether
or not your defProc wanted the Control Manager to do the dragging. For controls created
with NewControl, this is still the case. For controls created with NewControl2, your
definition procedure uses the low-order word of retValue exactly as before (zero means
that the Control Manager should drag the control; nonzero means your control definition
procedure handled it). Your defProc returns the part code of the control in the high-order
word (see Chapter 4, "Control Manager," in Volume 1 of the Toolbox Reference for
information on control part codes). If this value is 0, then the Control Manager assumes
that the user aborted the drag operation and performs no screen updates.

Record size routine

Previously, ct!Param was undefined for this routine. Now, the Control Manager sets
ct!Param to 0 for controls created with Newcont rol. For controls created with
NewControl2, ct!Param contains a pointer to the control template.

Event routine

To pass information for all events, including keystroke or mouse events, the Control
Manager calls the control definition procedure with the ctlHandleEvent message. Only
controls you create with either the fCtlWantEvents bit or the fCtlCanBeTarget bit
set to 1 in the moreF lags field of the control template will receive this message (see
"New Control Manager Templates and Records" later in this chapter for detailed
information on these flags). The first qualifying control in the control list has the first
opportunity to handle the event. If that control processes the event, then no other
controls see it. If, however, that control does not process the event, the Control Manager
passes the event to the next qualifying event in the list. This process continues until a
control handles the event or the list is exhausted. If no control definition procedure
handles the event, TaskMaster passes the event to the application.

If your custom control can be the target control, your event routine should issue the
MakeNextCtl Target tool call whenever the user presses the Tab key. When your routine
regains control after that call, it should check whether another control became the target
control. If so, your routine should send a ct lHandleTab control message to that control
definition procedure. In either case, your routine must indicate that it handled the Tab
key event by setting ret Value to $FFFFFFFF on return from the Event routine.

Parameters
Stack before call

Previous contents

- Space -

ct!Message

- ct!Param -

-theControlHandle-

Stack after call

Previous contents

retValue

Long-Space for result

Word-ctlHandleEvent message

Long-Pointer to task record containing event information

Long-Handle to control

<-SP

Long-$FFFFFFFF if control took the event; $0 if control did not

<-SP

Target routine

To signal a change in the control's target status (the control is now, or is no longer, the
target), the Control Manager calls the control definition procedure with the
ctlChangeTarget message. Note that this message is sent to both the previous target
control and the new target control. Your control definition procedure can distinguish
which control is the new target by examining the fCt 1 Target bit in the ct lMoreF l ags
field of the control record. This bit is set to 1 in the control record of the new target
control. In the previous target, the bit is set to 0.

In response to the ctlChangeTarget message, some control definition procedures
change the appearance of their control on the screen or perform other actions as
appropriate. For example, LineEdit and TextEdit controls display an insertion point or a
text selection only when they are the target.

Parameters

Stack before call

Previous contents

- Space -

ct!Message

- ct!Param -

-theControlHandle-

Stack after call

Previous contents

retValue

Long-Space for result

Word-ct l ChangeTarget message

Long-Undefined

Long-Handle to control

<-SP

Long-Undefined

<-SP

Bounds routine

To signal to the control that its boundary rectangle has changed, the Control Manager calls
the control definition procedure with the ctlChangeBounds message. In response to
this message, your control definition procedure should adjust its internal control record
variables to account for the new rectangle. For example, any subrectangles defined for a
control may need to change whenever the boundary rectangle changes.

+ Note: This message is not supported by control definition procedures currently
provided by Apple Computer, Inc.; however, you should handle this message in any
custom controls you create.

Parameters

Stack before call

Previous contents

- Space -

ct/Message

- ct!Param -

-theControlHandle-

Stack after call

Previous contents

retValue

Long-Space for result

Word-ctlChangeBounds message

Long-Undefined

Long-Handle to control

<-SP

Long-Undefined

<-SP

Window size routine

The Control Manager calls the control definition procedure with the
ctlWindChangeSize message whenever the user changes the size of the control
window. In response to this message, your control definition procedure should do what is
necessary to maintain a consistent screen presentation. This may entail resizing multipart
controls, moving size boxes, and so on.

Parameters

Stack before call

Previous contents

- Space -

ct!Message

- ct!Param -

-theContro!Handle-

Stack after call

Previous contents

ret Value

Long-Space for result

Word-ctlWindChangeSize message

Long-Undefined

Long-Handle to control

<-SP

Long-Undefined

<-SP

Tab routine

Your control definition procedure receives the ctlHandleTab message when the user
presses the Tab key while another control is the target. That control's definition
procedure issues the MakeNextCtlTarget tool call before sending this control message
(see "Event Routine" earlier in this chapter). Your definition procedure receives the
ctlChangeTarget control message before it receives the ctlHandleTab message.
The control definition procedure should perform the appropriate actions in response to
becoming the target as a result of a Tab keystroke rather than a mouse click. For example,
in response to this message, LineEdit and TextEdit control definition procedures select all
the text in the control in preparation for user input.

Parameters

Stack before call

Previous contents

- Space -

ct!Message

- ctlParam -

Stack after call

Previous contents

retValue

Long-Space for result

Word-ctlHandleTab message

Long-Undefined

Long-Handle to control

<-SP

Long-Undefined

<-SP

Notify multipart routine

The Control Manager calls the control definition procedure with the
ctlNotifyMultiPart message to signal that a multipart control needs to be hidden,
shown, or drawn. This message is relevant only to multipart controls, which include other
displayable entities that do not fit within the boundary rectangle. For example, list
controls consist of the list itself and a scroll control, which is separate, and are therefore
multipart controls. By contrast, the scroll control itself is not a multipart control because
its component parts (arrows, page regions, and thumb) are fully contained in the scroll
control boundary rectangle, and are not separate functional entities. The
fCt 1 I sMult iPart bit in the moreF lags field of the control template must be set to 1
for a control to receive this message. In response to this message, your definition
procedure must do what is needed to hide or show the control completely.

The low-order word of ct/Param tells the definition procedure what to do.

0 Hide the entire control
1 Erase the entire control
2 Show the entire control
3 Show one control

Parameter

Stack before call

Previous contents

- Space -

ctlMessage

- ct!Param -
-theContro/Handle-

Stack after call

Previous contents

retValue

Long-Space for result

Word-ctlNotifyMultiPart message

Long-High word is undefined; low word contains option

Long-Handle to control

<-SP

Long-Undefined

<-SP

Window change routine

The Control Manager calls the control definition procedure with the
ctlWindStateChange message to signal that the state of the window containing the
control has changed. For example, a control definition procedure receives this message
whenever the control's window is activated or deactivated. At this time, the control
definition procedure may draw dimmed controls in windows that have been unbidden.

The low-order word of the ct!Param parameter contains the new state of the window.

$0000 The window has been deactivated
$0001 The window has been activated

The high-order word is undefined.

Parameter

Stack before call

Previous contents

- Space -

ct!Message

- ct!Param -

-theContro!Handle-

Stack after call

Previous contents

retValue

Long-Space for result

Word-ctlWindStateChange message

Long- Low word contains new window state; high word undefined

Long-Handle to control

<-SP

Long-Undefined

<- SP

New Control Manager calls

The following sections describe new Control Manager tool calls, in alphabetical order by
call name.

CallCtlDefProc $2C10

This routine calls the specified control with the specified control message and parameter.
Set the ct/Param parameter to 0 if the control definition procedure does not accept an
input parameter (see "New Control Definition Procedure Messages" earlier in this chapter
for information on input parameters for defFroc messages).

Parameters

Stack before call

Previous contents

- Space -

- ct!Handle -

ct!Message

- ct!Param -

Stack after call

Previous contents

Result

Errors None

Long-Space for result from control definition procedure

Long-Handle of control to be called

Word-Control message to send to control definition procedure

Long-Parameter to pass to control definition procedure

<-SP

Long- Result value from control definition procedure

<-SP

c extern pascal Long CallCtlDefProc(ctlHandle,

ctlMessage, ctlParam);

Handle
Word
Long

ctlHandle ;
ctlMessage ;
ctlParam;

CMLoadResource $3210

This is an entry point to the internal Control Manager routine that loads resources. You
specify the resource type and ID of the resource to be loaded. See Chapter 45, "Resource
Manager," for more information on resources.

Any errors during resource load result in system death .

.A. Warning Applications must never issue this call. ...

Parameters

Stack before call

Previous contents

- Space

resource Type

- resource!D

-

-

Long-Space for result

Word-Type of resource to load

Long-ID of resource to load

<-SP

Stack after call

Previous contents

- resourceHandle - Long-Handle of loaded resource

<-SP

Errors None

c extern pascal Handle CMLoadResource(resourceType,
resourceiD);

Word resourceType;
Long resourceiD;

CMRe1easeResource $3310

This is an entry point to the internal Control Manager routine that releases resources. You
specify the resource type and ID of the resource to be released. The resource is released
by marking it purgeable. See Chapter 45, "Resource Manager," for more information on
resources.

Any errors result in system death.

.A Warning Applications must never issue this call. &

Parameters

Stack before call

Previous contents
resource Type

resource!D

Stack after call

Previous contents

Errors None

Word-Type of resource to release

Long-ID of resource to release

<-SP

<-SP

c ' I extern pascal vold CMReleaseResource(resourceType,
resourceiD);

Word resourceType;
Long resourceiD;

FindTargetCtl $2610

Searches the control list for the active window and returns the handle of the target control
(the control that is currently the target of user keystrokes). FindTargetCtl returns the
handle of the first control that has the fCtlTarge t flag set to 1 in the ctlMoreFlags
field of its control record. If no target control is found or an error occurs, then the call
returns an undefined value.

This call will return a handle only to an extended control.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

Errors

ct!Handle

$1004
$1005
$1006
$100C

Long-Space for result

<-SP

Long-Handle of target control; undefined if none or error

<-SP

noCtlError No controls in window.
n oExt e nde dCtlError No extended controls in window.
n oCtlTargetError No target extended control.
n oF rontWindowError There is no front window.

c extern pascal Handle FindTargetCtl();

GetCtlHandleFromiD $3010

Retrieves the handle to the control record for a control with a specified c t 1 r o field value.
The ctliD field is an application-defined tag for a control. Set the ctliD field with the
SetCtliD orNewControl2 tool call; read the contents of the ctliD field with
GetCtliD.

If an error occurs, the returned handle is undefined.

This call is valid only for extended controls.

Parameters

Stack before call

Previous contents

- Space -

- ct!WindowPtr -

- ctliD -

Stack after call

Previous contents

ctlHandle

Errors $1004
$1005
$1009

$100C

c extern

Pointer
Long

Long-Space for result

Long-Pointer to window for control list search; NIL = top window

Long-ID value for desired control

<-SP

Long-Handle for specified control

<-SP

noCt lError No controls in window.
noExtendedCtlError No extended controls in window.
noSuchiDError The specified ID cannot be

found.
noFrontWindowError There is no front window.

pascal Long GetCtlHandleFromiD(ctlWindowPtr ,
ctliD) ;

ctlWindowPtr ;
ctliD;

GetCtliD $2Al0

Returns the ctliD field from the control record of a specified control. The ctliD field is
an application-defined tag for a control. Your application can use this field in many ways.
For example, since the value of ct 1 ro is known at compile time, you can construct
efficient routing code for handling control messages for many different controls.

Use the SetCtliD or Newcontrol2 Control Manager tool call to set the ctliD field.

If the specified control is not an extended control, the resulting ID is undefined, and an
error is returned.

Parameters

Stack before call

Previous contents

Space

ct!Handle

Stack after call

Previous contents

ctl!D

Errors $1004
$1007

Long-Space for result

Long-Handle to control

<-SP

Long-ctliD for specified control

<-SP

noCtlError No controls in window.
notExtendedCtlError Action valid only for extended

controls.

c extern pascal Long GetCtliD(ctlHandle);

Handle ctlHandle;

GetCtlMoreFlags $2E10

Gets the contents of the ct lMoreF lags field of the control record for a specified
control. The ct lMoreF lags field contains flags governing target status, event
processing, and other aspects of the control.

Use the Setct lMoreF lags or NewCont rol2 Control Manager tool call to set the
ctlMoreFlags field.

If the specified control is not an extended control, the result is undefined, and an error is
returned.

Parameters

Stack before call

Previous contents

Space

ct!Handle

Stack after call

Previous contents

Errors

ct!MoreF!ags

$1004
$1007

Word-Space for result

Long-Handle to control

<-SP

,•

Word-ctlMoreFlags for specified control

<-SP

noCtlError No controls in window.
notExtendedCtlError Action valid only for extended

controls.

c extern pascal Word GetCtlMoreFlags(ctlHandle);

Handle ct lHandle ;

GetCtlParamPtr $3510

Retrieves the pointer to the current text substitution array for the Control Manager. This
array contains the information used for text substitution in static text controls (see
"Static Text Control" earlier in this chapter for details).

Set the contents of this field with the setCt lParamPt r or NewCont rol2 Control
Manager tool call.

+ Note: This pointer is global to the Control Manager; it is not associated with a
specific control. For this reason, when using this feature with desk accessories be sure
to save and restore the previous contents of the field.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

subArrayPtr

Errors None

Long-Space for result

<-SP

Long-Pointer to text substitution array

<-SP

c ext e rn pascal Po inter GetCt lParamPtr ();

InvalCtls $3710

Invalidates all rectangles for all controls in a specified window.

Parameters

Stack before call

Previous contents

- ctlWindowPtr -

Stack after call

Previous contents

Errors None

Long-Pointer to window for operation

<-SP

<-SP

c ext e rn pascal void InvalCtls (c tlWindowPtr);

Pointer ct lWindowPtr;

MakeNextCtlTarget $2710

Makes the next eligible control the target control. This routine searches the control list of
the active window for the first target control (fCtlTarget bit set to 1 in the
ct lMoreF lags field of the control record). It then clears the target flag for this control,
searches the control list for the next control that can be the target (fCtlCanBeTarget
bit set to 1 in ctlMoreFlags), and makes that control the target. The call returns the
handle of the new target control. If no new target control is found, the Control Manager
returns the handle of the current target control.

Both affected controls (the old and new target) receive ctlChangeTarget messages
from the Control Manager.

If an error occurs, the returned handle is undefined.

This call is valid only for extended controls.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

ct!Handle

Errors $1004
$1005
$100B

Long-Space for result (handle)

<-SP

Long-Handle of new target control; undefined if error

<-SP

noCtlError No controls in window.
noExtendedCtlError No extended controls in window.
noCtlToBeTargetError

No control could be made the
target.

c ext e rn pascal Handle Ma ke NextCt lTarget ();

MakeThisCtl Target $2810

Makes the specified control the target. You specify the control that is to become the
target control by passing its handle to this routine. This call will work for both active and
inactive windows.

Both affected controls (the old and new targets) receive ctlChangeTarget messages
from the Control Manager.

This call is valid only for extended controls.

Parameters

Stack before call

Previous contents

- ctlToBeTarget -

Stack after call

Previous contents

Errors $1007

$1008

Long-Handle to control to be made the target

<-SP

<-SP

notExtendedCtlError Action valid only for extended
controls.

canNotBeTargetError Specified control cannot be
made the target.

c extern pascal void MakeThisCtlTarget(ctlToBeTarget);

Handle ct lToBeTarget ;

NewControl2 $3110

Creates one or more new controls. You specify the parameters governing those controls in
control templates that are passed to Newcontrol 2 (see "New Control Manager
Templates and Records" later in this chapter). If Newc ontrol2 creates a single control, it
returns the handle to that control. If Newcontrol2 creates two or more controls, it
returns 0. For sample code showing how to use the Newcontrol2 tool call, see "Control
Manager Code Example" later in this chapter.

All controls created by Newcontrol2 have new style control records and are extended
controls.

Parameters

Stack before call

Previous contents

- Space -

- ownerPtr -

inputDesc

- inputRef -

Stack after call

Previous contents

ctlHandle

Errors None

Long-Space for result

Long-Pointer to window for control(s)

Word-Describes contents of inputRef

Long-Reference of a type defined by inputDesc

<-SP

Long-Control handle (if single control created) or 0

<-SP

c extern pascal Ha ndle NewControl2 (ownerPt r ,
inputDesc , inputRef);

Pointer
Word
Lo ng

ownerPtr ;
inputDesc ;
i nputRef;

inputDesc Defines the contents and type of item referenced by inputRef
Possible values for inputDesc are

singlePtr 0

singleHandle 1

singleResource 2

ptrToPtr 3

ptrToHandle 4

ptrToResource 5

handleToPtr 6

handleToHandle 7

handleToResource 8

resourceToResource 9

inputRefis a pointer to a single-item
template.
inputRefis a handle for a single-item
template.
inputRefis a resource ID of a single-
item template (resource type of
rControlTemplate, $8004).
inputRefis a pointer to a list of
pointers to item templates.
inputRef is a pointer to a list of
handles for item templates.
inputRefis a pointer to a list of
resource IDs of item templates
(resource type of
rControlTemplate,$8004).
inputRefis a handle to a list of
pointers to item templates.
inputRefis a handle to a list of
handles for item templates.
inputRefis a handle to a list of
resource IDs of item templates
(resource type of
rControlTemplate, $8004).
inputRefis a resource ID of a list of
resource IDs of item templates (the
list reference is a resource of type
rControlList, $8003; each entry
in that list is a resource of type
rControlTemplate, $8004).

If inputRef defines a list, that list is a contiguous array of template
references (pointers, handles, or resource IDs), terminated with a
NULL entry.

NotifyCtls $2010

Calls the control definition procedures for extended controls in a specified window,
sending a specified control message and parameter. You determine which controls are to
be called by setting up the mask parameter. This routine compares the value of mask with
that of the ct lMoreF lags field of the control record for each control in the window. If
any of the bits you have specified in mask are set to 1 in ctlMoreF lags, the control is
sent the message you have specified (the system performs a bitwise AND operation with
mask and ctlMoreFlags; a nonzero result yields a call to the control).

Set the param parameter to 0 if the control definition procedure does not accept an input
parameter (see "New Control Definition Procedure Messages" earlier in this chapter for
information on input parameters for definition procedure messages).

Parameters

Stack before call

Previous contents
mask

message

- par am

- window

Stack after call

-
-

Word-Bit mask to be compared with ctlMoreFlags

Word-Control message to send to control definition procedures

Long-Parameter to pass to control definition procedures

Long-Grat'Port of window whose control list is to be searched

<-SP

Previous contents

Errors

c

<-SP

None

extern pascal void NotifyCtls(mask, message, param,
window);

Word mask, message;
Long param, window;

SendEventToCtl $2910

Passes a specified extended task record (which must comply with the new format defined
in Chapter 52, "Window Manager Update," in this book) to the appropriate control or
controls. This call returns a Boolean value indicating whether the event was fielded by a
control and returns the handle of the control that serviced the event. That handle is
returned in taskData2 of the task record for the event.

The targetOnlyF!ag parameter governs how the Control Manager searches for a control to
field the event. If targetOnlyF!ag is set to TRUE, SendEvent ToCt 1 sends the event to
the target control. If there is no target control, the result is FALSE and taskData2 is
undefined.

If targetOnlyFlag is set to FALSE, SendEvent ToCt 1 conducts a two-part search for a
control to field the event. First, the Control Manager looks for non-edit field controls that
want keystrokes (for example, buttons with keystroke equivalents). The Control Manager
tries to send the event to each such control (with the ctlHand1eEvent control
message). If no control accepts the event, the Control Manager looks for an edit field
control (LineEdit or TextEdit) that can become the target. If no control accepts the
event and there is no target, the result is FALSE and taskData2 is undefined. Otherwise,
the result is TRUE and taskData2 contains the handle of the accepting control.

This call is valid only for extended controls.

+ Note: If a control can be made the target (fCt1Ca nBe Targ e t is set to 1 in
ct1MoreF1ags of its control record), then the Control Manager sends events to that
control regardless of the setting of the fCt1WantEvents bit.

Parameters

Stack before call

Previous contents
Space

targetOnlyF!ag

- ct!WindowPtr -

- eTaskRecPtr -

Word-Space for result Boolean
Word-(Boolean) TRUE =send to target only; FALSE= all controls

Long-Pointer to window to search; NIL for top window

Long-Pointer to extended task record for event

<- SP

Stack after call

Previous contents
Result

Errors

c

$1005
$100C

Word-(Boolean) TRUE if event accepted; otherwise FALSE

<-SP

noExtendedCtlError No extended controls in window.
noFrontWindowErro r There is no front window.

e xtern pascal Boolean SendEventToCtl(targetOnlyFlag,
ctlWindowPtr, eTaskRecPtr);

Word
Pointer

targetOnlyFlag;
ctlWindowPtr, eTaskRecPtr;

SetCtliD $2Bl0

Sets the ctliD field in the control record of a specified control. The ctliD field is an
application-defined tag for a control. Your application can use this field in many ways.
For example, since the value of ctliD is known at compile time, you can construct
efficient routing code for handling control messages for many different controls.

Use the Getct liD Control Manager call to retrieve the contents of this field.

If the specified control is not an extended control, an error is returned.

Parameters

Stack before call

Previous contents

newiD

ct!Handle

Stack after call

Previous contents

Errors $1004
$1007

Long-New ctliD value for the control

Long-Handle to control

<-SP

<-SP

noCtlError No controls in window.
notExtendedCtlError Action valid only for extended

controls.

c extern pascal void SetCtliD(newiD, ctlHandle);

Long
Handle

newiD;
ctlHandle;

SetCtlMoreFlags $2F10

Sets the contents of the ct lMoreF lags field of the control record for a specified
control. The ct lMoreF lags field contains flags governing target status, event
processing, and other aspects of the control.

Use the GetCtlMoreFlags Control Manager call to retrieve the contents of this field.

If the specified control is not an extended control, an error is returned.

Parameters

Stack before call

Previous contents
newMoreFlags

ct!Handle

Stack after call

Previous contents

Errors $1004
$1007

Word-New ctlMoreFlags value for the control

Long-Handle to control

<-SP

<-SP

noCtlError No controls in window.
notExtendedCtlError Action valid only for extended

controls.

c extern pascal void Set CtlMoreFlags(newMoreFlags ,
ctlHandle);

Word
Handl e

newMoreFlags;
c tlHandl e ;

SetCtlParamPtr $3410

Sets the pointer to the current text substitution array for the Control Manager. This array
contains the information used for text substitution in static text controls (see "Static
Text Control" earlier in this chapter).

Use the GetCtlParamPtr Control Manager tool call to retrieve the contents of this field.

+ Note: This pointer is global to the Control Manager; it is not associated with a specific
control. For this reason, when using this feature with desk accessories be sure to save
and restore the previous contents of the field.

Parameters

Stack before call

Previous contents

subArrayPtr Long-New pointer to text substitution array

<-SP

Stack after call

Previous contents
<-SP

Errors None

c e xtern pasc al void SetCtlParamPtr(subArrayPtr);

Pointer subArrayPtr;

Control Manager error codes

Table 28-llists the error codes that may be returned by Control Manager calls.

• Table 28-1 Control Manager error codes

Value Name Definition

$1001 wmNotStartedUp Window Manager not initialized
$1002 cmNotinitialized Control Manager not initialized
$1003 noCtlinList Control not in window list
$1004 noCtlError No controls in window
$1005 noExtendedCt lError No extended controls in window
$1006 noCtlTargetError No target extended control
$1007 notExtendedCtlError Action valid only for extended controls
$1008 canNotBeTargetError Specified control cannot be made the

target
$1009 noSuchiDError The specified ID cannot be found
$100A tooFewParmsError Too few parameters specified
$100B noCtlToBeTargetError No control could be made the target
$100C noFrontWindowError There is no front window

New Control Manager templates and records

This section describes the format and content of all Control Manager control templates
and records. In addition, "Control Manager Code Example" shows how to use control
templates with the Newcontrol2 tool call.

NewControl2 input templates

Each type of control has its own control template, corresponding to the control record
definition for the control type. The item template is an extensible mechanism for defining
new controls. Rather than placing all the control parameters on the stack at run time, the
template holds these parameters in a standard format that can be defined at compile
time. Furthermore, the templates can be created as a resource, simplifying program
development and maintenance, reducing code size, and reducing fixed memory usage.
Your program can pass more than one input template to NewControl2 at a time.

All control templates have the same seven-field header. One of the header fields is a
parameter count, allowing extensible support for templates of variable length. The value
of the parameter count field tells the Control Manager how many parameters to use,
making optional template fields possible.

The following sections define the item templates for each control type. Field names
marked with an asterisk (*) represent optional fields.

Control template standard header

Each control template contains the standard header, which consists of seven fields.
Following that header, some templates have additional fields that further define the
control to be created. The format and content of the standard template header are shown
in Figure 28-1.

Custom control definition procedures establish their own item template layout. The only
restriction placed on these templates is that the standard header be present and well
formed. Custom data for the control procedure may follow the standard header.

• Figure 28-1 Control template standard header

$()() 1-

$02 ---
$06.

SOE

$12
$14
$16

-
-

pCount

ID

rect

pCount - Word

-
ID - Long -

rect Rectangle

-
procRef - Long -

flag -
moreFlags -

Word
Word

refCon
-- Long -

Count of parameters in the item template, not including the pcount
field. Minimum value is 6; maximum value varies according to the type
of control template.

Field that sets the c t 1 r o field of the control record for the new
control. The application may use the ctliD field to provide a
straightforward mechanism for keeping track of controls. The control
ID is a value assigned by your application for your convenience. Your
application can use the ID, which has a known value, to identify a
particular control.

Field that sets the ct lRect field of the control record for the new
control. Defines the boundary rectangle for the control.

procRef Sets the ct lP roc field of the control record for the new control. This
field contains a reference to the control definition procedure for the
control. The value of this field is either a pointer to (or a resource ID
for) a control definition procedure or the ID of a standard routine. If
the fCtlProcRefNotPtr flag in the moreFlags field is set to 0,
then procRef must contain a pointer. If the flag is set to 1, then the
Control Manager checks the low-order three bytes of procRef. If
these bytes are all zero, then procRef must contain the ID for a
standard routine; if these bytes are nonzero, procRef contains the
resource ID for a control routine.

The standard values are

simpleButtonControl $80000000 Simple button
checkControl $82000000 Check box
iconButtonControl $07FF0001 Icon button
editLineControl $83000000 LineEdit
listControl $89000000 List
pictureControl $8DOOOOOO Picture
popUpControl $87000000 Pop-up menu
radioControl $84000000 Radio button
scrollBarControl $86000000 Scroll bar
growControl $88000000 Size box
statTextControl $81000000 Static text
editTextControl $85000000 TextEdit

+ Note: The procRef value for iconButtonControl is not truly a standard value.
Rather, it is the resource ID for the standard control definition procedure for icon
buttons.

flag A word used to set both ctlHilite and ctlFlag in the control
record for the new control. Since this is a word, the bytes for
ctlHilite and ctlFlag are reversed. The high-order byte of flag
contains ctlHilite , and the low-order byte contains c tlFlag. The
bits in flag are mapped as follows:

Highlight bits15-8 Indicates highlighting style
0 = Control active, no highlighted parts
1-254 = Part code of highlighted part
255 = Control inactive

more Flags

fCtlTarget

Invisible

Variable

bit 7 Governs visibility of control
0 = Control visible
1 = Control invisible

bits 6--0 Values and meaning depend on control
type

Used to set the ct lMore F lags field of the control record for the
new control.

The high-order byte is used by the Control Manager to store its own
control information. The low-order byte is used by the control
definition procedure to define reference types.

The defined Control Manager flags are

$8000 If this flag is set to 1, this control is currently the
target of any typing or editing commands.

fCtlCanBeTarget $4000 If this flag is set to 1, then this control can be
made the target control.

fCtlWantEve nts

fCtlProcRefNotPtr

f CtlTe llAboutSi ze

f CtlisMultiPart

$2000

$1000

$0800

$0400

If this flag is set to 1, then this control can be
called when events are passed via the
SendEventToCtl Control Manager call. Note
that if the fCtlCanBeTarge t flag is set to 1,
this control receives events sent to it regardless
of setting of this flag.
If this flag is set to 1, then the Control Manager
expects procRef to contain the ID or resource
ID of a control procedure. If it is set to 0, then
procRef contains a pointer to a custom
control procedure.
If this flag is set to 1, then this control needs to
be notified when the size of the owning window
has changed. This flag allows custom control
procedures to resize their associated control
images in response to changes in window size.
If this flag is set to 1, then this is a multipart
control. This flag allows control definition
procedures to manage multipart controls
(necessary since the Control Manager does not
know about all the parts of a multipart control).

The low-order byte uses the following convention to describe
references to color tables and titles (note, though, that some control
templates do not follow this convention):

titleisPtr $00 Title reference is by pointer.
Title reference is by handle. titleisHandle $01

titleisResource $02 Title reference is by resource ID (resource type
corresponds to string type).

colorTableisPtr $00 Color table reference is by pointer.
Color table reference is by handle. colorTableisHandle $04

colorTabl e i sResource $08 Color table reference is by resource ID (resource
type is rCtlColorTbl, $800D).

r e fC o n Used to set the c t lRe f Con field of the control record for the new
control. Reserved for application use.

Keystroke equivalent information

Many of these control templates allow you to specify keystroke equivalent information
for the associated controls. Figure 28-2 shows the standard format for that keystroke
information.

• Figure 28-2 Keystroke equivalent record layout

$00
$01
$02

$04
r-

r-

keyl

key2

keyl
key2

Byte
Byte

keyModifiers - Word

ke yCareBits - Word

This is the ASCII code for the uppercase or lowercase key equivalent.

This is the ASCII code for the lowercase or uppercase key equivalent.
Taken with keyl, this field completely defines the values against
which key equivalents will be tested. If only a single key code is valid,
then set k ey l and k e y2 to the same value.

keyModifiers These modifiers must be set to 1 if the equivalence test is to pass.
The format of this flag word corresponds to that defined for the
event record in Chapter 7, "Event Manager," in Volume 1 of the
Toolbox Reference. Note that only the modifiers in the high-order
byte are used here.

keycareBits These modifiers must match for the equivalence test to pass. The
format for this word corresponds to that for keyModifiers. This
word allows you to discriminate between double-modified
keystrokes. For example, if you want Control-7 to be an equivalent,
but not Option-Control-7, set the following three bits to 1: the
controlKey bit in keyModifiers and both the optionKey and
the controlKey bits in keyCareBits. If you want Return and Enter
to be treated the same, set the keyPad bit to 0.

Simple button control template

Figure 28-3 shows the template that defines a simple button control.

• Figure 28-3 Item template for simple button controls

$00 -
$02 ---
$06.

$0E

$12

$14
$16

$1A

$1E

-
-
-
--

--
-

$22 .

pCount

ID

rect

procRef

flag

moreFlags

refCon

titleRef

*colorTableRef

*keyEquivalent

-

-
-

Word-Parameter count for template: 7, 8, or 9

Long-Application-assigned control ID

Rectangle-Boundary rectangle for control

Long-simpleBut tonCont rol =$80000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defined value

Long-Reference to title of button

Long-Reference to color table for control (optional)

Block, 6 bytes-Keystroke equivalent data (optional)

Defined bits for flag are

Reserved
ctlinvis
Reserved
Button type

bits 15-8
bit 7
bits 6-2
bits 1-0

Defined bits for moreF lags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize
Reserved
Color table reference

Title reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-4
bits 3-2

bits 1-0

Must be set to 0.
0 = Visible, 1 = Invisible.
Must be set to 0.
Describes button type.
00 = Single-outlined, round-cornered button
01 = Bold-outlined, round-cornered button
10 = Single-outlined, square-cornered button
11 = Single-outlined, square-cornered, drop-
shadowed button

Must be set to 0.
Must be set to 0.
Set to 1 if button has keystroke equivalent.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of reference in colorTableRef.
See Chapter 4, "Control Manager," in Volume 1
of the Toolbox Reference for the definition of
the simple button color table.
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 = Color table reference is by resource ID
(resource type of ret lColo rTbl, $800D)
11 = Invalid value
Defines type of title reference in tit 1 e Re f .
00 = Title reference is by pointer
01 = Title reference is by handle
10 =Title reference is by resource ID (resource
type corresponds to string type)
11 = Invalid value

k e yEqui vale nt Keystroke equivalent information stored at k e yEqu i v a l e n t is
formatted as shown in Figure 28-2.

Check box control template

Figure 28-4 shows the template that defines a check box control.

• Figure 28-4 Control template for check box controls

$00 f-

$02

$06

$0E

$12
$14
$16

$1A

$IE
$20

I-
f-
f-

f-
I-
f-

f-

f-

f-
I-
I-

'---
-
-
-
-

$24.

pCount -
-

ID --
rect

-
procRef --

flag -
moreFlags -

-
ref Con --

-
titleRef --

initial Value -
-

•colorTableRef --
*keyEquivalent

Defined bits for flag are

Reserved
ctlinvis
Reserved

Word-Parameter count for template: 8, 9, or 10

Long-Application-assigned control ID

Rectangle-Boundary rectangle for control

Long- checkBoxControl =$82000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defmed value

Long-Reference to title of box

Word-Initial box setting: 0 for clear, 1 for checked

Long-Reference to color table for control (optional)

Block, 6 bytes-Keystroke equivalent data (optional)

bits 15-8
bit 7
bits 6-0

Must be set to 0.
0 = Visible, 1 = Invisible.
Must be set to 0.

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize
Reserved
Color table reference

Title reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-4
bits 3-2

bits 1-0

Must be set to 0.
Must be set to 0.
Set to 1 if check box has keystroke equivalent.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of reference in colorTableRef
(see Chapter 4, "Control Manager," in Volume 1
of the Toolbox Reference for the definition of
the check box color table).
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 = Color table reference is by resource ID
(resource type of ret lColorTbl, $800D)
11 = Invalid value
Defines type of title reference in tit l eRe f.
00 = Title reference is by pointer
01 =Title reference is by handle
10 =Title reference is by resource ID (resource
type corresponds to string type)
11 = Invalid value

keyEquivalent Keystroke equivalent information stored at keyEqui valent is
formatted as shown in Figure 28-2.

Icon button control template

Figure 28-5 shows the template that defines an icon button control. For more information
about icon button controls, see "Icon Button Control" earlier in this chapter.

• Figure 28-5 Control template for icon button controls

$00 r-
$02 1-

r-
r-

$06 .

$0E

$12
$14
$16

$1A

$1E

$22

r-
r-
1-

-
-
--
-

-
-
-
r-r-
r-
r-
1-
1-

r-$26

$28.

pCount

ID

rect

procRef

flag

moreFlags

ref Con

iconRef

*titleRef

•co l o rTableRef

*displayMode

*keyEquivalent

-
-
--

-
-
--
-

--
-
--
-

-
--
-

Word-Parameter count for template: 7, 8, 9, 10, or 11

Long-Application-assigned control 10

Rectangle-Boundary rectangle for control

Long-iconButtonControl =$07FF0001

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defmed value

Long-Reference to icon for control

Long-Reference to title for control (optional)

Long-Reference to color table for control (optional)

Word-Bit flag controlling icon appearance (optional)

Block, 6 bytes-Key equivalent information (optional)

Defined bits for flag are

ctlHilite

ctlinvis
Reserved
showBorder
buttonType

bits 15-8

bit 7
bits 6-3
bit 2
bits 1-0

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRe f NotPt r
fCtlTellAboutSize
Reserved
Icon reference

Color table reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-6
bits 5-4

bits 3-2

Sets the ctlHilite field of the control
record.
0 = Visible, 1 = Invisible.
Must be set to 0.
0 =Show border, 1 =No border.
Defines button type.
00 = Single-outlined, round-cornered button
01 = Bold-outlined, round-cornered button
10 = Single-outlined, square-cornered button
11 = Single-outlined, square-cornered, and drop-
shadowed button

Must be set to 0.
Must be set to 0.
Must be set to 0.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of icon reference in iconRef.
00 = Icon reference is by pointer
01 = Icon reference is by handle
10 = Icon reference is by resource ID (resource
type of ri c on, $8001)
11 = Invalid value
Defines type of reference in co l o rTableRef ;
the color table for an icon button is the same as
that for a simple button (see Chapter 4,
"Control Manager," in Volume 1 of the Toolbox
Reference for the definition of the simple
button color table).
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 = Color table reference is by resource ID
(resource type of r c tlColo rTbl, $800D)
11 = Invalid value

Title reference bits 1-0 Defines type of title reference in tit 1 eRe f.
00 = Title reference is by pointer
01 = Title reference is by handle
10 =Title reference is by resource ID (resource
type of rPString, $8006)
11 = Invalid value

tit leRe f Reference to the title string, which must be a Pascal string. If you are
not using a title but are specifying other optional fields, set bits 0 and
1 of moreFlags to 0, and set this field to 0.

displayMode Passed directly to the Drawicon routine, this field defines the
display mode for the icon. The field is defined as follows (for more
information on icons, see Chapter 17, "QuickDraw II Auxiliaty," in
Volume 2 of the Toolbox Reference):

Background color

Foreground color

Reserved
offLine

open Icon

selectedicon

bits 15-12

bits 11-8

bits 7-3
bit 2

bit 1

bit 0

Defines the background color to apply to the
black part of black-and-white icons.
Defines the foreground color to apply to the
white part of black-and-white icons.
Must be set to 0.
0 = Don't perform the AND operation on the
image.
1 = Perform logical AND operation with light-
gray pattern and image being copied.
0 = Don't copy light-gray pattern.
1 = Copy light-gray pattern instead of image.
0 = Don't invert image.
1 = Invert image before copying.

Color values (both foreground and background) are indexes into the
current color table. See Chapter 16, "QuickDraw II ," in Volume 2 of the
Toolbox Reference for details about the format and content of these
color tables.

keyEqui valent Keystroke equivalent information stored at keyEqui valent is
formatted as shown in Figure 28-2.

LineEdit control template

Figure 28-6 shows the template that defines a LineEdit control. For more information
about LineEdit controls, see "LineEdit Control" earlier in this chapter.

• Figure 28-6 Control template for LineEdit controls

$00 f-

$02 -
-
-

$06 .

$0E

$12
$14
$16

$1A
$1C

-
-
-
-
-
-
-
-

-
-
-
-

pCount

ID

rect

procRef

flag

more Flags

re f Con

maxSize

def a u l t Ref

Defined bits for flag are

Reserved
ctlinvis
Reserved

-

-
--

-
-
-

-

-

-
--
-

-
-
-

Word-Parameter count for template: 8

Long-Application-assigned control ID

Rectangle-Boundary rectangle for control

Long-edi tLineCont rol =$83000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defined value

Word-Maximum length of input line (in bytes)

Long-Reference to default text

bits 15-8
bit 7
bits 6-0

Must be set to 0.
0 = Visible, 1 = Invisible.
Must be set to 0.

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSiz e
Reserved
Text reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-2
bits 1-0

Must be set to 0.
Must be set to 1.
Must be set to 1.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of text reference in
defaultRef.
00 =Text reference is by pointer
01 = Text reference is by handle
10 =Text reference is by resource ID (resource
type of rPString, $8006)
11 = Invalid value

maxSize Specifies the maximum number of characters allowed in the LineEdit
field. Valid values are in the range 1 to 255, inclusive.

The high-order bit indicates whether the LineEdit field is a password
field. Password fields protect user input by echoing asterisks or any
application-defined character, rather than the actual user input. If this
bit is set to 1, then the LineEdit field is a password field.

Note that LineEdit controls do not support color tables.

List control template

Figure 28-7 shows the template that defines a list control. For more information about list
controls, see "List Control" earlier in this chapter.

• Figure 28-7 Control template for list controls

$00 pCount

$02 1-
ID

$06 . rect

$0E
procRef

$12 flag

$14 more Flags

$16
refCon

listSize

$1C list View

$1E list Type

$20 listStart

$22
listDraw

$26 listMemHeight
$28 listMemSize

listRef

$2E
*col orTableRef

Defined bits for flag are

Reserved
ctlinvis
Reserved

-

--
-

Word-Parameter count for template: 14 or 15

Long-Application-assigned control ID

Rectangle-Boundary rectangle for control

Long-listControl =$89000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defmed value

Word-Number of members in list
Word-Number of members visible in window
Word-Type of list entries, selection options, etc.
Word-First visible list member

Long-Pointer to member-drawing routine

Word-Height of each list item (in pixels)
Word- Size of list entry (in bytes)

Long-Reference to list of member records

Long-Reference to color table for control (optional)

bits 15-8
bit 7
bits 6-0

Must be set to 0.
0 = Visible, 1 = Invisible.
Must be set to 0.

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize
fCtlisMultiPart
Reserved
Color table reference

List reference

bit 15
bit 14
bit 13
bit 12
bit 11
bit 10
bits 9-4
bits 3-2

bits 1-0

Must be set to 0.
Must be set to 0.
Must be set to 0.
Must be set to 1.
Must be set to 0.
Must be set to 1.
Must be set to 0.
Defines type of reference in colorTableRef
(the color table for a list control is described in
Chapter 11, "List Manager," in Volume 1 of the
Toolbox Reference).
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 = Color table reference is by resource ID
(resource type of rCtlColorTbl, $800D)
11 = Invalid value
Defines type of reference in listRef (the
format for a list member record is described in
Chapter 11, "List Manager," in Volume 1 of the
Toolbox Reference).
00 = List reference is by pointer
01 = List reference is by handle
10 = List reference is by resource ID (resource
type of rListRef, $801C)
11 = Invalid value

list Type

Reserved
fListScrollBar

fListSelect

fListString

Valid values for list Type are

bits 15-3
bit 2

bit 1

bit 0

Must be set to 0.
Allows you to control where the scroll bar for the
list is drawn.
0 = Scroll bar drawn on outside of bounda1y
rectangle
1 = Scroll bar drawn on inside of bounda1y
rectangle (The List Manager calculates space
needed, adjusts dimensions of boundary
rectangle, and resets this flag .)
Controls type of selection options available to
the user.
0 = Arbitrary and range selection allowed
1 = Only single selection allowed
Defines the type of strings used to define list
items.
0 = Pascal strings
1 = Cstrings ($00-terminated)

For details on the remaining custom fields in this template, see the discussion under "List
Controls and List Records" in Chapter 11, "List Manager," of Volume 1 of the Toolbox
Reference.

Picture control template

Figure 28-8 shows the template that defines a picture control. For more information about
picture controls, see "Picture Control" earlier in this chapter.

• Figure 28-8 Control template for picture controls

soo -
$02 --

-

$06 .

$0E

$12
$14
$16

$1A

-
-
-
-
1-

f-
f-
1-

f-
f-
f-

p Count -

-
ID -

-

rect

-
p r ocRef --

flag -
mo r e Flags -

-
refCon -

-
-

pictureRef --

Defined bits for flag are

ctlHilite

ctlinvis
Reserved

Word-Parameter count !'or template: 7

Long-Application-assigned control ID

Rectangle-Boundary rectangle for control

Long- picturecontrol =SSDOOOOOO

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defined value

Long-Reference to picture for control

bits 15-8

bit 7
bits 6-0

Specifies whether the control wants to receive
mouse selection events. The values for
ct lHilite are
0 = Control is active
255 = Control is inactive
0 = Visible, 1 = Invisible.
Must be set to 0.

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize
Reserved
Picture reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-2
bits 1-0

Must be set to 0.
Must be set to 0.
Must be set to 0.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of picture reference in
pictureRef.
00 = Invalid value
01 = Reference is by handle
10 = Reference is by resource ID (resource type
of r P i cture, $8002)
11 = Invalid value

Pop-up control template

Figure 28-9 shows the template that defines a pop-up control. For more information about
pop-up controls, see "Pop-up Control" earlier in this chapter.

• Figure 28-9 Control template for pop-up controls

$00 1-

$02 r-
r-
1-

$06 .

$0E

$12

$14
$16

$1A
$1C

$20

$22

-
-
-
-
-
-
-
-
-
f-

f-
1-
1-

pCount

ID

rect

procRef

flag

moreFlags

refCon

titleWidth

menuRef

initial Value

*colorTableRef

-

-
-
-

--
-
-
-
--
-

-

-
--
-

Word- Parameter count for template: 9 or 10

Long-Application-assigned control 10

Rectangle-Boundary rectangle for control

Long-popUpControl=$87000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defined value

Word-Width in pixels of title string area

Long-Reference to menu definition

Word- Item ID of initial item

Long-Reference to color table for control (optional)

Defined bits for flag are

ctlHilite

ctlinvis
fType2PopUp

fDontHiliteTitle

fDontDrawTitle

fDontDrawRe s ult

finWindowOnly

bits 15-8

bit 7
bit 6

bit 5

bit 4

bit 3

bit 2

Specifies whether the control wants to receive
mouse selection events. The values for
ctlHilite are
0 = Control is active
255 = Control is inactive
0 = Visible, 1 = Invisible.
Tells the Control Manager whether to create a
pop-up menu with white space for scrolling (see
Chapter 37, "Menu Manager Update," for details
on type 2 pop-up menus).
0 =Draw normal pop-up menu
1 = Draw pop-up menu with white space
(type 2)
Controls highlighting of the menu title.
0 = Highlight title
1 = Do not highlight title
Allows you to prevent the title from being drawn
(note that you must supply a title in the menu
definition, whether or not it will be displayed);
if tit l e Widt h is defined and this bit is set to
1, then the entire menu is offset to the right by
t i t l e Width pixels.
0 = Draw the title
1 = Do not draw the title
Allows you to control whether the selection is
drawn in the pop-up rectangle.
0 = Draw the result
1 = Do not draw the result in the result area after
a selection
Controls how much the pop-up menu can
expand; this is particularly relevant to type 2
pop-up menus (see Chapter 37, "Menu Manager
Update," for details on type 2 pop-up menus).
0 = Allow the pop-up menu to expand to the
size of the screen
1 = Keep the pop-up menu in the current
window

fRightJustifyTitle bit 1

fRightJustifyResult bit 0

Defined bits for moreF lags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents

fCtlP r ocRefNotPtr
fCtlTellAboutSize
Reserved
Color table reference

f Me nuDe fi s Text

bit 15
bit 14
bit 13

bit 12
bit 11
bits 10-5
bits 4-3

bit 2

Controls title justification.
0 = Left-justify the title
1 = Right-justify the title; note that if the title is
right justified, then the control rectangle is
adjusted to eliminate unneeded pixels (see
Figure 28-12) and the value for titleWidth is
also adjusted
Controls result justification.
0 =Left-justify the selection titleWidth
pixels from the left of the pop-up rectangle
1 = Right-justify the selection

Must be set to 0.
Must be set to 0.
Must be set to 1 if the pop-up menu has any
keystroke equivalents defined.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of reference in co l orTabl eRe f
(the color table for a menu is described in
Chapter 13, "Menu Manager," in Volume 1 of the
Toolbox Reference).
00 = Color table reference is' by pointer
01 = Color table reference is by handle
10 = Color table reference is by resource ID
(resource type of rCtlCo lorTbl, $800D)
11 = Invalid value
Defines type of data referred to by me n uRe f .
0 = menu Ref is a reference to a menu template
(See Chapter 13, "Menu Manager," in Volume 1
of the Toolbox Reference for details on format
and content of a menu template.)
1 = me nuRe f is a pointer to a text stream in
Ne wMenu format (Again, see Chapter 13, "Menu
Manager," in Volume 1 of the Toolbox Reference
for details.)

Menu reference

rect

titleWidth

menuRef

bits 1-0 Defines type of menu reference in menuRe f (if
fMenuDefisText is set to 1, then these bits
are ignored).
00 = Menu reference is by pointer
01 =Menu reference is by handle
10 =Menu reference is by resource ID (resource
type of rMenu, $8009)
11 = Invalid value

Defines the boundary rectangle for the pop-up menu and its title,
before the menu has been selected by the user. The Menu Manager
calculates the lower-right coordinates of the rectangle for you if you
specify those coordinates as (0,0).

Provides you with additional control over placement of the menu on
the screen. The tit 1 e width field defines an offset from the left
edge of the control (boundary) rectangle to the left edge of the pop-
up rectangle (see Figure 28-11). If you are creating a series of pop-up
menus, you can align them vertically by giving all menus the same X1
coordinate and titleWidth value. You may use titleWidth for
this even if you are not going to display the title (fDa n tor a wT it 1 e
flag is set to 1 in flag). If you set titleWidth to 0, then the Menu
Manager determines its value according to the length of the menu title,
and the pop-up rectangle immediately follows the title string. If the
actual width of your title exceeds the value of titleWidth, results
are unpredictable.

Reference to menu definition (see Chapter 13, "Menu Manager," in
Volume 1 of the Toolbox Reference and Chapter 37, "Menu Manager
Update," in this book for details on menu templates). The type of
reference contained in me nuRef is defined by the menu reference bits
in moreFlags.

initial Value The initial value to be displayed for the menu. The initial value is the
default value for the menu and is displayed in the pop-up rectangle of
unselected menus. You specify an item by its ID, that is, its relative
position within the array of items for the menu (see Chapter 37, "Menu
Manager Update," for information on the layout and content of the
pop-up menu template). If you pass an invalid item ID, no item is
displayed in the pop-up rectangle.

• Figure 28-10 Unselected pop-up menu

(Pop-up rectangle)
/

Baud rate: ._I _3_o_o __ ___.

• Figure 28-11 Selected pop-up menu with left-justified title r (control recta.-ng-le_) _____ ,.

(xl,Yl) 11 0

• Figure 28-12

600
1200
2400
4800
9600

Selected pop-up menu with right-justified title

rectangle) __

1200
2400
4800
9600

Radio button control template

Figure 28-13 shows the template that defines a radio button control.

• Figure 28-13 Control template for radio button controls

$00-

$02 ---
$06 .

$0E

$12
$14

$16

$1A

$1E
$20

t-
t-
r-

t-

t-
t-
t-
t-

t-
t-
t-
t-

1-
1-
1-

$24 .

pCount -
-

ID --
rect

-
procRef --

flag -
moreFlags -

-
refCon --

-
titleRef --

initial Value -
-

*colorTableRef --
*keyEquivalent

Defined bits for flag are

Reserved
ctlinvis
Family number

Word-Parameter count for template: 8, 9, or 10

Long-Application-assigned control ID

Rectangle-Boundary rectangle for control

Long- radioButtonControl =$84000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defmed value

Long-Reference to title of button

Word-Initial setting: 0 for clear, 1 for set

Long-Reference to color table for control (optional)

Block, 6 bytes-Keystroke equivalent data (optional)

bits 15-8
bit 7
bits 6-0

Must be set to 0.
O=Visible, 1 =Invisible.
Family numbers define associated groups of
radio buttons; radio buttons in the same family
are logically linked-that is, setting one radio
button in a family clears all other buttons in the
same family.

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize
Reserved
Color table reference

Title reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits
bits 3-2

bits 1-0

Must be set to 0.
Must be set to 0.
Set to 1 if button has keystroke equivalent.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of reference in colorTableRef
(see Chapter 4, "Control Manager," in Volume 1
of the Toolbox Reference for the definition of
the radio button color table).
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 =Color table reference is by resource ID
(resource type of rCtlColorTbl, $800D)
11 = Invalid value
Defines type of title reference in tit 1 eRe f.
00 = Title reference is by pointer
01 = Title reference is by handle
10 =Title reference is by resource ID (resource
type corresponds to string type)
11 = Invalid value

keyEquivalent Keystroke equivalent information stored at keyEqui valent is
formatted as shown in Figure 28-2.

Scroll bar control template

Figure 28-14 shows the template that defines a scroll bar control.

• Figure 28-14 Control template for scroll bar controls

$00 1-

$02 1-
1-
1-

$06 .

$0E

$12
$14
$16

$1A
$1C
$1E
$20

-
-
--
-
-
1-

1-

1-
1-
1-

pCount -
-

ID --
rect

-
procRef --

flag -
moreFlags -

-
refCon --

maxSize -
viewSize -

initial Value -
-

*colorTableRef --

Defined bits for flag are

Reserved
ctlinvis
Reserved
horScroll
rightFlag

leftFlag
downFlag

upFlag

Word-Parameter count for template: 9 or 10

Long-Application-assigned control ID

Rectangle-Boundary rectangle for control

Long-scrollControl =$86000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defmed value

Word-Initial size of displayed item
Word-Amount of item initially visible
Word-Initial setting

Long-Reference to color table for control (optional)

bits 15-8
bit 7
bits 6-5
bit 4
bit 3

bit 2
bit 1

bit 0

Must be set to 0.
0 = Visible, 1 = Invisible.
Must be set to 0.
0 = Vertical scroll bar, 1 = Horizontal scroll bar.
0 = Bar has no right arrow, 1 = Bar has right
arrow.
0 = Bar has no left arrow, 1 = Bar has left arrow.
0 = Bar has no down arrow, 1 = Bar has down
arrow.
0 = Bar has no up arrow, 1 = Bar has up arrow.

Note that extraneous flag bits are ignored, depending on the state of horScroll flag.
For example, for vertical scroll bars, rightFlag and leftFlag are ignored.

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize
Reserved
Color table reference

Reserved

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-4
bits 3-2

bits 1-0

Must be set to 0.
Must be set to 0.
Must be set to 0.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of reference in colorTableRef
(see Chapter 4, "Control Manager," in Volume 1
of the Toolbox Reference and "Clarifications"
earlier in this chapter for the definition of the
scroll bar color table).
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 = Color table reference is by resource ID
(resource type of rCtlColorTbl, $800D)
11 = Invalid value
Must be set to 0.

Size box control template

Figure 28-15 shows the template that defines a size box control.

• Figure 28-15

$00 f-

$02 f-
r-
r-

$o6 .

$0E

$12
$14
$16

$1A

r-
f-
f-

r-
r-

f-
f-
f-

1-
1-
1-

pCount

ID

rect

procRef

flag

moreFlags

ref Con

*colorTableRef

Control template for size box controls

-

-
-

Word-Parameter count for template: 6 or 7

Long-Application-assigned control ID

Rectangle-Boundary rectangle for control

Long- growControl =$88000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defmed value

Long-Reference to color table for control (optional)

Defined bits for flag are

Reserved
ctlinvis
Reserved
fCallWindowMgr

bits 15-8
bit 7
bits 6-1
bit 0

Must be set to 0.
0 = Visible, 1 = Invisible.
Must be set to 0.
0 =Just highlight control,
1 =Call GrowWindow and SizeWindow to
track this control.

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize
Reserved
Color table reference

Reserved

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-4
bits 3-2

bits 1-0

Must be set to 0.
Must be set to 0.
Must be set to 0.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of reference in colorTableRef
(see "Error Corrections" at the beginning of this
chapter for the definition of the size box color
table).
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 =Color table reference is by resource ID
(resource type of rCtlColorTbl, $800D)
11 = Invalid value
Must be set to 0.

Static text control template

Figure 28-16 shows the template that defines a static text control. For more information
about static text controls, see "Static Text Control" earlier in this chapter.

• Figure 28-16 Control template for static text controls

$00 - pCount - Word-Parameter count for template: 7, 8, or 9
$02 t----------1

- -- ID - Long-Application-assigned control ID -
$o6 .

$0E

$12
$14
$16

$1A

$1E
$20

-
-

--
-

-
rect

-
procRef --

flag -
moreFlags -

-
ref Con --

-
text Ref --

•textSize -
•just -

Defined bits for flag are

Reserved
ctlinvis
Reserved
fSubstituteText

fSubTextType

Rectangle-Boundary rectangle for control

Long- statTextControl =$81000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defmed value

Long-Reference to text for control

Word-Text size field (optional)
Word-Initial justification for text (optional)

bits 15-8
bit 7
bits 6-2
bit 1

bit 0

Must be set to 0.
0 = Visible, 1 = Invisible.
Must be set to 0.
0 = No text substitution to perform,
1 = There is text substitution to perform.
0 = C strings, 1 = Pascal strings.

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize
Reserved

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-2
bits 1-0

Must be set to 0.
Must be set to 0.
Must be set to 0.
Must be set to 1.
Must be set to 0.
Must be set to 0.

Text reference

text Size

just

Defines type of text reference in textRef.
00 = Text reference is by pointer
01 =Text reference is by handle
10 =Text reference is by resource ID (resource
type of rTextForLETextBox2, $800B)
11 = Invalid value

The size of the referenced text in characters, but only if the text
reference in textRe f is a pointer. If the text reference is either a
handle or a resource ID, then the Control Manager can extract the
length from the handle.

The justification word is passed to LETextBox2 (see Chapter 10,
"LineEdit Tool Set," in Volume 1 of the Toolbox Reference for details
on the LETextBox2 tool call) and is used to set the initial
justification for the text being drawn. Valid values for just are

leftJustify 0
centerJustify 1
rightJustify -1

fullJustify 2

Text is left justified in the display window.
Text is centered in the display window.
Text is right justified in the display
window.
Text is fully justified (both left and right) in
the display window.

Static text controls do not support color tables. To display text of different color, you
must embed the appropriate commands into the text string you are displaying. See the
discussion of LETextBox2 in Chapter 10, "LineEdit Tool Set," in Volume 1 of the Toolbox
Reference for details on command format and syntax.

TextEdit control template

Figure 28-17 shows the template that defines a TextEdit control. For more information
about TextEdit controls, see "TextEdit Control" earlier in this chapter.

• Figure 28-17 Control template for TextEdit controls

$00 - pCount - Word-Parameter count for template: 7 to 23
$02 1-_-------_-l

- ro - Long-Application-assigned control ID
- -

$06 .

$0E

$12
$14
$16

$1A

1-
1-
1-

1-

1-

1-
1-
1-

1-
1-
1-

$1E.

$26 1-

$2A
$2C

$30
$32

$36
$38

$3C

1-
1-
1-

1-
1-
1-

1-

r-
1-
1-

r-
r-
1-
1-

r-
1-
1-

rect

-
procRef --

flag -
moreFlags -

-
refCon --

-
textFlags --

*indentRect

-
*vertBar --

*vertAmount -
-

*horzBar --
*horzAmount -

-
*styleRef --

*textDescriptor -
-

*textRef --
-

*text Length --
continued

Rectangle-Boundary rectangle for control

Long-edit TextCont rol =$85000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defmed value

Long-Specific TextEdit control flags (see below)

Rectangle-Text indentation from control rectangle (optional)

Long-Handle to vertical scroll bar for control (optional)

Word-Vertical scroll amount, in pixels (optional)

Long-Reserved; must be set to NIL (optional)

Word-Reserved; must be set to 0 (optional)

Long-Reference to initial style information for text (optional)

Word-Format of initial text and text Ref (optional)

Long-Reference to initial text for edit window (optional)

Long-Length of initial text (optional)

continued
$40 - -- •maxChars -- -
$44 - -- *maxLines -- -
$48
$4A
$4C

- *maxCharsPerLine -

$50
$52

-

-

*maxHeight -
-

•colorRef --
*drawMode -

-
*filterProcPtr --

Defined bits for flag are

Reserved
ctlinvis
Reserved

Long-Maximum number of characters allowed (optional)

Long-Reserved; must be set to 0 (optional)

Word-Reserved; must be set to 0 (optional)
Word-Reserved; must be set to 0 (optional)

Long-Reference to TextEdit color table (optional)

Word-QuickDraw II text mode for edit window (optional)

Long-Pointer to filter routine for this control (optional)

bits 15-8
bit 7
bits <Hl

Must be set to 0.
0 = Visible, 1 = Invisible.
Must be set to 0.

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize

fCtlisMultiPart
Reserved
Color table reference

bit 15
bit 14
bit 13
bit 12
bit 11

bit 10
bits 9-4
bits 3-2

Must be set to 0.
Must be set to 1.
Must be set to 1.
Must be set to 1.
If this bit is set to 1, a size box is created in the
lower-right comer of the window. Whenever the
control window is resized, the edit text is
resized and redrawn.
Must be set to 1.
Must be set to 0.
Defines type of reference in colorRef; the
color table for a TextEdit control
(TEColorTable) is described in Chapter 49,
"TextEdit Tool Set," in this book.
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 = Color table reference is by resource ID
(resource type of rCtlColorTbl, $800D)
11 = Invalid value

Style reference bits 1-0 Defines type of style reference in styleRef;
the format for a TextEdit style descriptor is
described in Chapter 49, "TextEdit Tool Set," in
this book.
00 = Style reference is by pointer
01 = Style reference is by handle
10 =Style reference is by resource ID (resource
type of rStyleBlock, $8012)
11 = Invalid value

D Important Do not set fCtlTellAboutSize to 1 unless the text edit record also
has a vertical scroll bar. This flag works only for TextEdit records that
are controls. t::::.

Valid values for textF lags are

fNotControl
fSingleFormat
fSingleStyle

fNoWordWrap

fNoScroll

fReadOnly

fSmartCutPaste

bit 31
bit 30
bit 29

bit 28

bit 27

bit 26

bit 25

Must be set to 0.
Must be set to 1.
Allows you to restrict the style options available
to the user.
0 = Do not restrict the number of styles in the
text
1 = Allow only one style in the text
Allows you to control TextEdit word wrap
behavior.
0 = Perform word wrap to fit the ruler
1 = Do not word wrap the text; break lines only
on CR ($0D) characters
Controls user access to scrolling.
0 = Scrolling permitted
1 = Do not allow either manual or auto-scrolling
Restricts the text in the window to read-only
operations (copying from the window will still
be allowed).
0 = Editing permitted
1 = No editing allowed
Controls TextEdit support for smart cut and
paste (see Chapter 49, "TextEdit Tool Set," for
details on smart cut and paste support).
0 = Do not use smart cut and paste
1 = Use smart cut and paste

fTabSwitch

fDrawBounds

fColorHilight
fGrowRuler

bit 24

bit 23

bit 22
bit 21

Defines behavior of the Tab key (see
Chapter 49, "TextEdit Tool Set," for details).
0 = Tab inserted in TextEdit document
1 = Tab to next control in the window
Tells TextEdit whether to draw a box around the
edit window, just inside rect; the pen for this
box is 2 pixels wide and 1 pixel high.
0 = Do not draw rectangle
1 = Draw rectangle
Must be set to 0.
Tells TextEdit whether to resize the ruler in
response to the user's resizing of the edit
window; if this bit is set to 1, TextEdit
automatically adjusts the right margin value for
the ruler.
0 = Do not resize the ruler
1 = Resize the ruler

fDisableSelection bit 20 Controls whether user can select text.
0 = User can select text
1 = User cannot select text

fDrawinactiveSelection

Reserved

indentRect

vert Bar

vertAmount

bit 19

bits 18-0

Controls how inactive selected text is
displayed.
0 = TextEdit does not display inactive
selections
1 = TextEdit draws a box around inactive
selections
Must be set to 0.

Each coordinate of this rectangle specifies the amount of white space
to leave between the boundary rectangle for the control and the text
itself, in pixels. Default values are (2,6,2,4) in 640 mode and (2,4,2,2)
in 320 mode. Each indentation coordinate may be specified
individually. To assert the default for any coordinate, specify its value
as $FFFF.

Handle of the vertical scroll bar to use for the TextEdit window. If you
do not want a scroll bar at all, then set this field to NIL. If you want
TextEdit to create a scroll bar for you, just inside the right edge of the
boundary rectangle for the control, then set this field to $FFFFFFFF.

Specifies the number of pixels to scroll whenever the user presses the
up or down arrow on the vertical scroll bar. To use the default value (9
pixels), set this field to $0000.

horzBar

horzArnount

styleRef

Must be set to NIL.

Must be set to 0.

Reference to initial style information for the text. See the description
of the TEFormat record in Chapter 49, "TextEdit Tool Set," for
information about the format and content of a style descriptor. Bits 1
and 0 of moreF lags define the type of reference (pointer, handle,
resource ID). To use the default style and ruler information, set this
field to NULL.

tex tDescriptor

text Ref

text Length

Input text descriptor that defines the reference type for the initial
text (which is in te xtRef) and the format of that text. See
Chapter 49, "TextEdit Tool Set," for detailed information on text and
reference formats.

Reference to initial text for the edit window. If you are not supplying
any initial text, then set this field to NULL.

If text Ref is a pointer to the initial text, then this field must contain
the length of the initial text. For other reference types, TextEdit
extracts the length from the reference itself.

+ Note: You must specify or omit the textDescriptor, textRef, and text Length
fields as a group.

maxChars

maxLines

Maximum number of characters allowed in the text. If you do not
want to define any limit to the number of characters, then set this
field to NULL.

Must be set to 0.

maxCharsPerLine

max Height

colorRef

Must be set to NULL.

Must be set to 0.

Reference to the color table for the text. This is a TextEdit color table
(see Chapter 49, "TextEdit Tool Set," for format and content of
TEColorTable). Bits 2 and 3 of moreFlags define the type of
reference stored here.

drawMode This is the text mode used by QuickDraw II for drawing text. See
Chapter 16, "QuickDraw II," in Volume 2 of the Toolbox Reference for
details on valid text modes.

filterProcPtr Pointer to a filter routine for the control. See Chapter 49,
"TextEdit Tool Set," for details on TextEdit generic filter routines.
If you do not want to use a filter routine for the control, set this field
to NIL.

Control Manager code example

This section contains an example of how to create a list of controls for a window with a
single NewControl2 call. If you wish to try this in your own program, you will need to
create a window that is 160 lines high and 600 pixels wide.

Equates for the new control manager features
ctlMoreFlags

fCtlTarget equ $8000
fCtlCanBeTarget equ $4000
fCtlWantEvents equ $2000
fCtlProcRefNotPtr equ $1000
fCtlTellAboutSize equ $0800
fMenuDefisText equ $0004
titleisPtr equ $0000
titleisHandle equ $0001
titleisResource equ $0002
colorTableisPtr equ $0000
colorTableisHandle equ $0004
colorTableisResource equ $0008

; NewControl2 ProcRef values for standard control types

simpleButtonControl equ $80000000
checkControl equ $82000000
radioControl equ $84000000
scrollBarControl equ $86000000
growControl equ $88000000
statTextControl equ $81000000
editLineControl equ $83000000
editTextControl equ $85000000
popUpControl equ $87000000
listControl equ $89000000
iconButtonControl equ $07FF0001
pictureControl equ $80000000

Here is the definition of my control list; note it is simply a list
of pointers. These do not have to be in any special order. This list
should always be terminated with a zero.

MyControls dc.L theButton,theScroll,theCheck
dc.L Radio1,Radio2,StatControl
dc.L LEditControl,PopUp,IconButton,O

Scroll bar color table as defined by the original control manager.
The structure of these tables has not changed for the e x isting
control types.

MyColorTable
dc.W 0 outline color
dc.W $00FO arrow unhilited black on

white
dc.W $0005 arrow hilite blue on black
dc.W $00FO arrow background color
dc.W $00FO thumb unhilited
dc.w $0000 thumb hili ted
dc.W $0030 page region solid

black/white
dc.W $00FO inactive bar color

Definition of a simple vertical scroll bar

the Scroll dc.W 10 number of params
dc.L 1 application ID
dc.W 10,10,110,36 rectangle
dc.L scrollBarControl scrollbar def proc
dc.W 3 vertical scroll bar w/

arrows
dc.W fCtlProcRefNotPtr set procnotptr flag
dc.L 0 ref con
dc.W 100 max size
dc.W 10 size of view
dc.W 5 initial value
dc.L MyColorTable color table to use

Definition of a simple button

SimpTitle
theButton

str 'Button'
dc.W 7
dc.L 2
dC • W 1 0 I 4 o, I 0 I 0

num params
app ID
a 25x30 button

dc.L simpleButtonControl ; simple button
dc.W 0 visible, round corner
dc.W fCtlProcRefNotPtr+fCtlWantEvents
dc.L 0
dc.L simpTitle ; button title

Definition of a check box control

Check Title str
theCheck dc.W

dc.L
dc.W
dc.L
dc.W
dc.W
dc.L
dc.L
dc.W

'CheckBox'
8
3
25,40,0,0
checkControl
0
fCtlProcRefNotPtr
0
CheckTitle
0

num params
app ID
bounding rect
control type
flags
MoreFlags
RefCon
TitlePointer

Definition of a radio button control

Radio1Title str 'Radio1'
Radio1 dc.W 8

dc.L 4
dc.W 45,40,0,0
dc.L radioControl
dc.W 1
dc.W fCtlProcRefNotPtr
dc.L 0
dc.L Radio1Title
dc.W 1

Definition of another radio button control

Radio2Title str 'Radio2'
Radio2 dc.W 8

dc.L 5
dc.W 65,40,0,0
dc.L radioControl
dc.W 1
dc.W fCtlProcRefNotPtr
dc.L 0
dc.L Radio2Title
dc.W 0

Definition of a static text control

Stat Title dc.B 'This is stat text'
StatControl dc.W 8

dc.L 6
dc.W 120,10,135,210
dc.L statTextControl
dc.W 0
dc.W fCtlProcRefNotPtr
dc.L 0
dc.L Stat Title
dc.W 17

Definition of an edit line control

EditDefault str 'DefaultText'
LEditControl

dc.W 8
dc.L 7
dc.W 120,240,135,440
dc.L editLineControl
dc.W 0
dc.W fCtlProcRefNotPtr
dc.L 0
dc.W 30
dc.L EditDefault

Definition of a pop-up menu control (and its menu)

PopUpMenu dc.B '$$PopUpMenu:\N6',$00
dc.B '--Selection 1\N259',$00
dc.B '--Selection 2\N260',$00
dc.B '--Selection 3\N261',$00
dc.B '--Selection 4\N262',$00
dc.b I I

PopUp dc.W 9
dc.L 8
dc.W 25, 140,40,380
dc.L popUpControl
dc.W 0
dc.W fCtlProcRefNotPtr+fMenuDefisText
dc.L 0
dc.W 100
dc.L PopUpMenu
dc.W 259 ; initial value

Definition of an icon button control

IconButtonTitle
str 'Icon Button'

Icon dc.w 0 ;black-and-white icon
dc.w 200
dc.w 10 ;icon he ight in pixels
dc.w 40 ;icon width in pixels

Data for icon goes here (omitted)

IconButton
dc.w 10
dc.l 1
dc.w 40,40,80,100
dc.l iconButtonControl
dc.w 0

dc.w FctlProcRefNot Ptr

dc.l 0
dc.l Icon
dc.l IconButtonTitle

dc.l MyColorTable
dc.w 0

pCount
ID
button rectangle
defproc
single outline,

round-cornered
get de fproc from

r esour ce

pointer to icon
pointer to p-string
title

pointer to color t able
s tandard dra wing of icon

To create the above new controls in a window use the NewCont rol2 call:

ph a
ph a
PushLong WindPointer
PushWord #ptrToPtr
PushLong #MyControls

NewControl2
pla
pla

r oom f o r r esult

pointer to owner window
i nput verb f o r ptr t o table
pointe r t o table o f t e mpla t es

discard these byte s, only verb
for single ctl returns a value

New control records

The Newcontrol2 tool call creates extended control records (as discussed earlier in this
chapter in "New and Changed Controls"). This section describes the format and content
of the control records created by N ewe on t r o 1 2 .

.& Warning All control record layouts and field descriptions are provided so that
programs may read these records for needed information. Your
program should never set values into control records

Generic extended control record

Currently, the Control Manager's standard, or generic, control record is $28 bytes long (see
Chapter 4, "Control Manager," in Volume 1 of the Toolbox Reference for information about
existing control records). To support the new controls (those created with
Newcontrol2), the generic control record has several new fields. Figure 28-18 shows the
layout of the new generic control record.

• Figure 28-18

$00 ---
$04 ---
$08.

$10
$11
$12
$14

$18

$1C

$20

$24

-

--
-

$28 .

ctlNext

ctlOwner

ctlRect

ctlFlag
ctlHilite

c tlValue

ctlProc

ctlAction

ctlData

ctlRefCon

ctlColor

Generic extended control record

-- Long -
-
- Long -

-
-
--

Rectangle
Byte
Byte
Word

Long

Long

Long

Long

Long

ctlReserved Block, $10 bytes
$38 - -- ctliD - Long - -
$3C
$3E

- ctlMoreFlags - Word
Word - ctlVersio n -

ctlNext

ctlOwner

ctlRect

A handle to the next control associated with this control's window. All
the controls belonging to a given window are kept in a linked list,
beginning in the wcontrol field of the window record and chained
together through the ct lNext fields of the individual control
records. The end of the list is marked by a 0 value; as new controls are
created, they're added to the beginning of the list.

A pointer to the window port to which the control belongs.

The rectangle that defines the position and size of the control in the
local coordinates of the control's window.

ctlFlag

ctlHilite

ctlValue

ctlProc

A bit flag that further describes the control. The appropriate values are
shown for each control in the sections that follow.

Specifies whether and how the control is to be highlighted and
indicates whether the control is active or inactive. This field also
specifies whether the control wants to receive selection events. The
values for ctlHilite are

0 Control active; no highlighted parts-this value causes
events to be generated when the mouse button is pressed in
the control

1-254 Part code of a highlighted part of the control
255 Control inactive-this value indicates that no events are to

be generated when the mouse button is pressed in the
control

Only one part of a control can be highlighted at any one time, and no
part can be highlighted on an inactive control. See Chapter 4, "Control
Manager," in Volume 1 of the Toolbox Reference for more information
on highlighting.

The current setting of the control. For check boxes and radio buttons,
a zero value indicates that the control is off, and a nonzero value
indicates that it's on. For scroll bars, the value is between 0 and the
data size minus the view size. The field is also available for use by
custom controls as appropriate.

For standard controls, this field indicates the control type, identified
by its ID or resource ID. For custom controls, this field contains a
pointer to the control definition procedure (det'Proc) for this type of
control.

For controls created with Newcontrol, valid ID values are

simpleProc $00000000 Simple button
checkProc $02000000 Check box
radioProc $04000000 Radio button
scrollProc $06000000 Scroll bar
g r owProc $08000000 Size box

For controls created with NewControl2, the fCtlProcRefNotPtr
flag in ctlMoreFlags allows the Control Manager to discriminate
between pointers and IDs or resource IDs. Valid ID values (used with
fCtlProcRefNotPtr set to 1) are

simpleButtonControl $80000000 Simple button
checkControl $82000000 Check box
iconButtonControl $07FF0001 Icon button
editLineControl $83000000 LineEdit
listControl $89000000 List
pictureControl $8DOOOOOO Picture
popUpControl $87000000 Pop-up menu
radioControl $84000000 Radio button
scrollBarControl $86000000 Scroll bar
growControl $88000000 Size box
statTextControl $81000000 Static text
editTextControl $85000000 TextEdit

+ Note: The ctlProc value for iconButtonControl is not truly a standard value, but
rather the resource ID for the standard control definition procedure for icon buttons.

ctlAction

ctlData

ctlRefCon

Pointer to the custom action procedure for the control, if there is one.
The TrackControl routine may call the custom action procedure in
response to the user's dragging an icon inside the control. See
Chapter 4, "Control Manager," in Volume 1 of the Toolbox Reference for
more information about TrackControl.

Reserved for use by the control definition procedure, typically to hold
additional information for a particular control type. For example, the
standard definition procedure for scroll bars uses the low-order word
as the view size and the high-order word as the data size. The standard
definition procedures for simple buttons, check boxes, and radio
buttons store the address of the control title.

This field is reserved for application use.

ct1Co1or This field contains a reference to the color table to use when the
control is drawn. If the field is set to NIL, the Control Manager uses a
default color table defined by the control's definition procedure.
Otherwise, ct1Co1or references which color table to use by a
pointer, handle, or resource ID. Bits 2 and 3 of ct1MoreF1ags
usually allow the Control Manager to discriminate between these
different data types.

ct1Reserved This space is reserved for use by the control definition procedure. In
some cases, the use is prescribed by the system. For example,
keyboard equivalent information is stored here for controls that
support keyboard equivalents.

ct 1 ID This field may be used by the application to provide a straightforward
mechanism for keeping track of controls. The control ID is a value
assigned by your application with the r o field of the control template
used to create the control. Your application can use the ID, which has
a known value, to identify a particular control.

ct1MoreF1ags This field contains bit flags that provide additional control
information needed for new-style controls (those created with
NewContro12). You can use the GetCt1MoreF1ags Control
Manager call to read the value of this field from a specified control
record. Use the SetCt1MoreF1ags call to change the value.

fCt1Target

The Control Manager uses the high-order byte to store its own control
information. The control definition procedure uses the low-order byte
to define reference types.

The defined Control Manager flags are

$8000 If this flag is set to 1, this control is cuq·ently the
target of any typing or editing commands.

fCtlCanBeTarget $4000 If this flag is set to 1, this control can be made
the target control.

fCt1WantEvents $2000 If this flag is set to 1, then this control can be
called when events are passed via the
SendEvent ToCt 1 Control Manager call. Note
that if the fCt1CanBeTarget flag is set to 1,
this control receives events sent to it regardless
of the setting of this flag.

fCtlProcRefNotPtr $1000

fCtlTellAboutSize $0800

fCtlisMultiPart $0400

If this flag is set to 1, the Control Manager
expects ct lP roc to contain the ID or resource
ID of a control procedure. If this flag is set to 0,
ctlProc contains a pointer to a custom
control procedure.
If this flag is set to 1, this control needs to be
notified when the size of the owning window
has changed. This flag allows custom control
procedures to resize their associated control
images in response to changes in window size.
If this flag is set to 1, this is a multipart control.
This flag allows control definition procedures to
manage multipart controls (necessary since the
Control Manager does not know about all the
parts of a multipart control).

The low-order byte uses the following conventions to describe
references to color tables and titles (note, though, that some control
templates do not follow this convention):

titleisPtr $00
titleisHandle $01
titleisResource $02

colorTableisPtr $00
colorTableisHandle $04
colorTableisResource $08

Title reference is by pointer.
Title reference is by handle.
Title reference is by resource ID (resource type
corresponds to string type).

Color table reference is by pointer.
Color table reference is by handle.
Color table reference is by resource ID (resource
type of rCtlColorTbl, $800D).

ctlVersion This field is reserved for future use by the Control Manager to
distinguish between different versions of control records.

Extended simple button control record

Figure 28-19 shows the format of the extended control record for simple button controls.

• Figure 28-19

$00 --
-

$04 --
-

$08 .

$10
$11
$12
$14

$18

$1C

$20

$24

-

$28 .

$2E.

$38

$3C
$3E

1-
r-
f-

f-

f-

ctlNext

ctlOwner

ctlRect

ctlFlag

ctlHilite

ct l Va l ue

ctlProc

c tlAct ion

ctlData

ctlRefCon

c t lColor

keyEquiv

ctlReserved

c tliD

ctlMoreFlags

c t l Versio n

Extended simple button control record

-
- Long-Handle to next control; NIL for last control -
-
- Long-Pointer to window to which control belongs -

-

-
--
--
-

--
-

-
-

Rectangle-Button boundary rectangle

Byte-Button style
Byte-Current type of highlighting
Word-Not used; set to 0

Long-s i mple But t o nCont rol =$80000000

Long-Pointer to custom procedure; NIL if none

Long-Reference to button title string

Long-Reserved for application use

Long-Optional color table reference; NIL if none

Block, $06 Bytes- Key equivalent record

Block, $0A bytes-Reserved

Long-Application-assigned ID

Word-Additional control flags
Word- Set to 0

Valid values for ct1F1ag are

ctlinvis
Reserved
Button type

bit 7
bits 6-2
bits 1-0

Valid values for ctlMoreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize
Reserved
Color table reference

Title reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-4
bits 3-2

bits 1-0

0 = Visible, 1 = Invisible.
Must be set to 0.
Describes button type.
00 = Single-outlined, round-cornered button
01 = Bold-outlined, round-cornered button
10 = Single-outlined, square-cornered button
11 = Single-outlined, square-cornered, drop-
shadowed button

Must be set to 0.
Must be set to 0.
Set to 1 if button has keystroke equivalent.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of reference in c t 1 co 1 or (if it is
not NIL). See Chapter 4, "Control Manager," in
Volume 1 of the Toolbox Reference for the
definition of the simple button color table.
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 =Color table reference is by resource ID
(resource type of rCtlColorTbl, $800D)
11 = Invalid value
Defines type of title reference in c t 1 oat a.
00 = Title reference is by pointer
01 = Title reference is by handle
10 =Title reference is by resource ID (resource
type corresponds to string type)
11 = Invalid value

keyEquiv Keystroke equivalent information stored at keyEqui v is formatted
as shown in Figure 28-2.

Extended check box control record

Figure 28-20 shows the format of the extended control record for check box controls.

• Figure 28-20

$00 1-
1-
1-

$04 f-
1-
1-

$08 .

$10
$11
$12
$14

$18

$1C

$20

$24

f-

1-
1-
f-

f-
1-
1-

1-
f-
f-

f-
f-
f-

1-
1-
f-

$28.

$2E.

$38

$3C
$3E

f-
f-
f-

f-

1-

ctlNext

ctlOwner

ctlRect

ctlFlag
ctlHilite
c tlValue

c tlProc

ctlAction

c tlData

ct lRefCon

c tlCol o r

keyEquiv

ct lReserved

ctliD

c t l Mo r e Flags

c t lVe r s i on

Extended check box control record

-
- Long-Handle to next control; NIL for last control -
-
- Long-Pointer to window to which control belongs -

-

-
-

Rectangle--Check box boundary rectangle

Byte--Check box visibility
Byte--Current type of highlighting
Word-0 if not checked; 1 if checked

Long- checkCont rol =$82000000

Long-Pointer to custom procedure; NIL if none

Long-Reference to check box title string

Long-Reserved for application use

Long-Optional color table reference; NIL if none

Block, $06 Bytes-Key equivalent record

Block, $0A bytes-Reserved

Long-Application-assigned ID

Word-Additional control flags
Word-Set to 0

Valid values for ct lFlag are

ctlinvis
Reserved

bit 7
bits 6-0

0 = Visible, 1 = Invisible.
Must be set to 0.

Valid values for ctlMoreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize
Reserved
Color table reference

Title reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-4
bits 3-2

bits 1-0

Must be set to 0.
Must be set to 0.
Set to 1 if check box has keystroke equivalent.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of reference in ctlColor (if it is
not NIL). See Chapter 4, "Control Manager," in
Volume 1 of the Toolbox Reference for the
definition of the check box color table.
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 = Color table reference is by resource ID
(resource type of rCtlColorTbl, $800D)
11 = Invalid value
Defines type of title reference in c t 1 Data.
00 = Title reference is by pointer
01 = Title reference is by handle
10 =Title reference is by resource ID (resource
type corresponds to string type)
11 = Invalid value

keyEquiv Keystroke equivalent information stored at keyEqui v is formatted
as shown in Figure 28-2.

Icon button control record

Figure 28-21 shows the format of the control record for icon button controls.

• Figure 28-21

$00 -
-
-

$04 ---
$08 .

$10
$11
$12
$14

$18

$1C

$20

$24

-

-
--

$28 .

$2E.

$38 -
$3C

$3E
$40

$44

--
r
r-
I-
r r
1-

ctlNext

ctlOwner

ctlRect

ctlFlag
ctlHilite
ctlValue

ctlProc

ctlAction

ctlData

ctlRefCon

ctlColor

keyEquiv

ctlReserved

ctliD

ct lMoreFlags

ctlVersion

iconRef

displayMode

Icon button control record

-
- Long-Handle to next control; NIL for last control
-

-
- Long-Pointer to window to which control belongs -

-

-
-

-

Rectangle-Icon boundary rectangle

Byte-Control visibility and button style
Byte-Highlighting
Word-Not used; set to 0

Long- iconBut tonCont rol =$07FF0001

Long-Pointer to custom procedure; NIL if none

Long-Optional reference to title string of button

Long-Reserved for application use

Long-Optional color table reference; NIL if none

Block, $06 bytes-Key equivalent record

Block, $0A bytes-Reserved

Long-Application-assigned ID

Word-Additional control flags
Word-Set to 0

Long-Reference to icon

Word-Bit flag defming appearance of icon

Valid values for ctlFlag are

ctlinvis
Reserved
showBorder
buttonType

bit 7
bits &-3
bit 2
bits 1-0

Valid values for ctlMoreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize
Reserved
Icon reference

Color table reference

Title reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-6
bits 5-4

bits 3-2

bits 1-0

0 = Visible, 1 = Invisible.
Must be set to 0.
1 = No border, 0 = Show border.
Defines button type.
00 = Single-outlined, round-cornered button
01 = Bold-outlined, round-cornered button
10 = Single-outlined, square-cornered button
11 = Single-outlined, square-cornered, and drop-
shadowed button

Must be set to 0.
Must be set to 0.
Must be set to 0.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of icon reference in iconRef.
00 = Icon reference is by pointer
01 = Icon reference is by handle
10 = Icon reference is by resource ID (resource
type of r I con, $8001)
11 = Invalid value
Defines type of reference in ct lColor (if it is
not NIL). The color table for an icon button is
the same as that for a simple button. See
Chapter 4, "Control Manager," in Volume 1 of
the Toolbox Reference for the definition of the
simple button color table.
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 =Color table reference is by resource ID
(resource type of rCt l ColorTb l, $800D)
11 = Invalid value
Defines type of title reference in c t 1 oat a .
00 = Title reference is by pointer
01 = Title reference is by handle
10 =Title reference is by resource ID (resource
type of rPString , $8006)
11 = Invalid value

ctlData

displayMode

keyEquiv

Holds the reference to the title string, which must be a Pascal string.

Passed directly to the Drawicon routine, and defines the display
mode for the icon. The Control Manager sets this field from the
displayMode field in the icon button control template used to
create the control.

Keystroke equivalent information stored at keyEqui v is formatted
as shown in Figure 28-2.

UneEdit control record

Figure 28-22 shows the format of the control record for LineEdit controls.

• Figure 28-22

$00 -
--

$04---
$08.

$10
$11
$12
$14

$18

$1C

$20

$24

$28

$38

$3C
$3E

-

--
1-

1-

f.-

ctlNext

ctlOwner

ctlRect

ctlFlag
ctlHilite
ctlValue

ctlProc

ctlAction

ctlData

ctlRefCon

ctlColor

ctlReserved

ctliD

ctlMoreFlags

ctlVersion

LineEdit control record

-
- Long-Handle to next control; NIL for last control -
-
- Long-Pointer to window to which control belongs
-

-

-
-

Rectangle-Control boundary rectangle

Byte-Control visibility
Byte-Highlighting
Word-Not used; must be set to 0

Long- edi tLineCont rol =$83000000

Long-Pointer to custom procedure; NIL if none

Long-Handle to LineEdit edit record

Long-Reserved for application use

Long-Not used; must be set to 0

Block, $10 bytes-Not used; must be set to 0

Long-Application-assigned ID

Word-Additional control flags
Word-Set to 0

Valid values for ct lF lag are

ctlinvis
Reserved

bit 7
bits 6-0

0 = Visible, 1 = Invisible.
Must be set to 0.

Valid values for ctlMoreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize
Reserved
Text reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-2
bits 1-0

Must be set to 0.
Must be set to 1.
Must be set to 1.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of text reference in c t 1 Data .
00 =Text reference is by pointer
01 = Text reference is by handle
10 =Text reference is by resource ID (resource
type of rPString, $8006)
11 =Invalid value

ctlData The Control Manager stores the handle to the LineEdit edit record in
the ct lDa t a field. If you want to issue LineEdit tool calls directly,
you can retrieve the handle from that field.

Note that LineEdit controls do not support color tables.

Ust control record

Figure 28-23 shows the format of the control record for list controls.

• Figure 28-23 List control record

$00- -- ctlNext - Long-Handle to next control; NIL for last control - -
$04- -

- ctlOwner - Long-Pointer to window to which control belongs
- -

$08 1-----------1

$10
$11
$12
$14

$18

$1C

$20

$24

$28

$2C
$2E
$30

$34

$38

$3C
$3E

-

-
-
-
-
--

-
r-
r-
r-
r-r-
r-
r-
r-
r-
r-
r-
r-
r-
r-
r-
r-
r-
1-

ctlRect

ctlFlag
ctlHilite
c tlValue -

-
ctlProc --

-
ctlAction --

-
ctlData --

-
ctlRefCon --

-
ctlColor --

-
ctlMemDraw --

ctlMemHeight -
ctlMemSize -

-
ctlListRef --

-
ctlListBar --

-
ctliD --

ctlMoreFlags -
ctlVersion -

Rectangle-Control boundal)' rectangle
Byte-Style of scroll bar for list window
Byte-Not used; must be set to 0
Word-Reserved

Long-listControl =$89000000

Long-Pointer to custom procedure; NIL if none

Long-High-word is list Size; low-word is viewSize

Long-Reserved for application use

Long-Reference to the color table for the control

Long-Pointer to list member drawing routine

Word-List member height in pixels
Word-List member record size in bytes

Long-Reference to list member records

Long-Handle of control's scroll bar control

Long-Application-assigned ID

Word-Additional control flags
Word-Set to 0

Valid values for c t1F1ag are

ct1Invis
Reserved

bit 7
bits 6-0

Valid values for ct1MoreF1ags are

fCt1Target
fCt1CanBeTarget
fCt1WantEvents
fCt1ProcRefNotPtr
fCt1Te11AboutSize
fCt1IsMu1tiPart
Reserved
Color table reference

List reference

bit 15
bit 14
bit 13
bit 12
bit 11
bit 10
bits 9-4
bits 3-2

bits 1-0

0 = Visible, 1 = Invisible.
Must be set to 0.

Must be set to 0.
Must be set to 0.
Must be set to 0.
Must be set to 1.
Must be set to 0.
Must be set to 1.
Must be set to 0.
Defines type of reference in c t 1 co 1 or (if it is
not NIL). The color table for a list control is
described in Chapter 11 , "List Manager," in
Volume 1 of the Toolbox Reference.
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 = Color table reference is by resource ID
(resource type of rCt1Co1orTb1 , $800D)
11 = Invalid value
Defines type of reference in listRef. The
format for a list member record is described in
Chapter 11 , "List Manager," in Volume 1 of the
Toolbox Reference.
00 = List reference is by pointer
01 = List reference is by handle
10 = List reference is by resource ID (resource
type of rListRef , $801C)
11 = Invalid value

Picture control record

Figure 28-24 shows the format of the control record for picture controls.

• Figure 28-24

$00 -
--

$04 I-
I-
1-

$08.

$10
$11
$12
$14

$18

$1C

$20

$24

1-

1-
1-.....

-
-
-

$28.

$38

$3C
$3E

1-
f.-
1-

1-

1-

ct lNext

ctlOwner

ctlRect

ctlFlag
ctlHilite
ctlValue

ctlProc

ctlAction

ctlData

ctlRefCon

ctlColor

ctlReserved

ctliD

ctlMoreFlags

ctlVersion

Picture control record

-
- Long-Handle to next control; NIL for last control
-
-
- Long-Pointer to window to which control belongs -

-

-
-

Rectangle-Picture boundary rectangle

Byte-Picture visibility
Byte-Event generation for control
Word-Not used; set to 0

Long-pict ureCont rol =$80000000

Long-Pointer to custom procedure; NIL if none

Long-Reference to picture

Long-Reserved for application use

Long-Not used; must be set to 0

Block, $10 bytes-Not used

Long-Application-assigned ID

Word-Additional control flags
Word-Set to 0

Valid values for ctlFlag are

ctlinvis
Reserved

bit 7
bits 6-0

0 = Visible, 1 = Invisible.
Must be set to 0.

Valid values for ctlMoreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize
Reserved
Picture reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-2
bits 1-0

Must be set to 0.
Must be set to 0.
Must be set to 0.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of picture reference in ctlData.
00 = Invalid value
01 = Reference is by handle
10 = Reference is by resource ID (resource of
type rP ict ure, $8002)
11 = Invalid value

ctlHilite Specifies whether the control wants to receive mouse events. The
values for ctlHilite are

0 Events are generated when the mouse button is pressed in the
control

255 No events are generated when the mouse button is pressed in the
control

Pop-up control record

Figure 28-25 shows the format of the control record for pop-up menu controls.

• Figure 28-25

$00 -
r-
r

$04 I-
I-
1-

$08 .

$10
$11
$12
$14

$18

$1C

$20

$24

$28

$2C

$30

$38

$3C
$3E
$40

-

-
-
-

ctlNext

ctlOwner

ctlRect

ctlFlag

ctlHilite

ctlValue

ctlProc

ctlAction

ctlData

ctlRefCon

ctlColor

menuRef

menuEnd

popUpRect

ctliD

ctlMoreFlags

ctlVersion

titleWidth

Pop-up control record

-
- Long-Handle to next control; NIL for last control -
-
- Long-Pointer to window to which control belongs -

-

-
--
-
--

-
-
-

Rectangle-Control boundary rectangle

Byte-Control visibility and other attributes
Byte-Not used; must be set to 0
Word-Currently selected item

Long-popUpControl =$87000000

Long-Pointer to custom procedure; NIL if none

Long-Not used; must be set to 0

Long-Reserved for application use

Long-Reference to the color table for the control

Long-Reference to menu defmition

Long-Must be set to 0

Rectangle-Calculated by Menu Manager

Long-Application-assigned ID

Word-Additional control flags
Word-Set to 0
Word-Pixel width of title position of menu

Valid values for ctlFlag are

ctlinvis
fType2PopUp

fDontHiliteTitle

fDontDrawTitle

fDontDrawResult

bit 7
bit 6

bit 5

bit 4

bit 3

finWindowOnly bit 2

fRightJustifyTitle bh 1

fRightJustifyResult bit 0

0 = Visible, 1 = Invisible.
Indicates type of pop-up menu.
0 = Draw normal pop-up menu
1 = Draw pop-up menu with white space
(type 2)
Controls highlighting of the control title.
0 = Highlight title
1 = Do not highlight title
Indicates whether the Control Manager is to
draw the menu title.
0 = Draw the title
1 = Do not draw the title
Indicates whether result is shown.
0 = Draw the result
1 = Do not draw the result in the result area after
a selection
Controls how much the pop-up menu can
expand; this is particularly relevant to type 2
pop-up menus (see Chapter 37, "Menu Manager
Update," for details on type 2 pop-up menus).
0 = Allow the pop-up menu to expand to the
size of the screen
1 = Keep the pop-up menu in the current
window
Controls title justification.
0 = Left-justify the title
1 = Right-justify the title; note that if the title is
right justified, then the control rectangle is
adjusted to eliminate unneeded pixels (see
Figure 28-12) and the value for titleWidth is
also adjusted
Controls result justification.
0 = Left-justify the selection t it 1 e width
pixels from the left of the pop-up rectangle
1 = Right-justify the selection

Valid values for ctlMoreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents

fCtlProcRefNotPtr
fCtlTellAboutSize
Reserved
Color table reference

fMenuDefisText

Menu reference

bit 15
bit 14
bit 13

bit 12
bit 11
bits 10-5
bits 4-3

bit 2

bits 1-0

Must be set to 0.
Must be set to 0.
Must be set to 1 if the pop-up menu has any
keystroke equivalents defined.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of reference in colorTableRef
(the color table for a menu is described in
Chapter 13, "Menu Manager," in Volume 1 of the
Toolbox Reference).
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 =Color table reference is by resource ID
(resource type of rCtlColorTbl, $800D)
11 = Invalid value
Defines type of data referred to by menuRef.
0 = menuRef is a reference to a menu template
(See Chapter 13, "Menu Manager," in Volume 1
of the Toolbox Reference for details on format
and content of a menu template.)
1 = menuRef is a pointer to a text stream in
NewMenu format (Again, see Chapter 13, "Menu
Manager," in Volume 1 of the Toolbox Reference
for details.)
Defines type of menu reference in menuRef (if
fMenuDefisText is set to 1, then these bits
are ignored).
00 = Menu reference is by pointer
01 = Menu reference is by handle
10 =Menu reference is by resource ID (resource
type of rMenu, $8009)
11 = Invalid value

ctlRect Defines the boundary rectangle for the pop-up menu and its title,
before the menu has been selected by the user. The Menu Manager
calculates the lower-right coordinates of the rectangle for you if you
specify those coordinates as (0,0).

ctlValue Contains the item number of the currently selected item.

menuRef

titleWidth

Reference to menu definition (see Chapter 13, "Menu Manager," in
Volume 1 of the Toolbox Reference and Chapter 37, "Menu Manager
Update," in this book for details on menu templates). The type of
reference contained in menuRef is defined by the menu reference bits
in ctlMoreFlags. This field is set from the menuRef field of the
pop-up menu control template used to create the control.

Contains the value set in the titleWidth field of the pop-up menu
control template used to create the control.

Extended radio button control record

Figure 28-26 shows the format of the extended control record for radio button controls.

• Figure 28-26

$00

$04

$08

$10
$11
$12
$14

$18

$1C

$20

$24

I-
I-
I-

I-
I-
I-

-
-
--

I-
I-
I-

$28 .

$2E.

$38

$3C
$3E

I-
I-
I-

I-

I-

ctlNext

ctlOwner

ctlRect

ctlFlag
ctlHilite
ctlValue

ctlProc

ctlAction

c tlData

c tlRefCon

c tlColor

keyEquiv

ct lReser ved

c tl!D

ctlMoreFlags

ct lVersion

Extended radio button control record

-
- Long-Handle to next control; NIL for last control -
-
- Long-Pointer to window to which control belongs -

-

-
-

Rectangle-Radio button boundary rectangle
Byte-Button visibility and family affmity

type of highlighting
Word-() if off; 1 if on

Long-radioControl=$84000000

Long-Pointer to custom procedure; NIL if none

Long-Reference to radio button title string

Long-Reserved for application use

Long-Optional color table reference; NIL if none

Block, $06 Bytes-Key equivalent record

Block, $0A bytes-Reserved

Long-Application-assigned ID

Word-Additional control flags
Word-Set to 0

Valid values for ct lF lag are

ctlinvis
Family number

bit 7
bits 6-0

Valid values for ctlMoreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize
Reserved
Color table reference

Title reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-4
bits 3-2

bits 1-0

0 = Visible, 1 = Invisible.
Family numbers define associated groups of
radio buttons. Radio buttons in the same family
are logically linked. That is, setting one radio
button in a family clears all other buttons in the
same family.

Must be set to 0.
Must be set to 0.
Set to 1 if button has keystroke equivalent.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of reference in ctlColor (if it is
not NIL). See Chapter 4, "Control Manager," in
Volume 1 of the Toolbox Reference for the
definition of the radio button color table.
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 = Color table reference is by resource ID
(resource type of rCtlColorTbl, $800D)
11 =Invalid value
Defines type of title reference in c t 1 oat a.
00 = Title reference is by pointer
01 = Title reference is by handle
10 =Title reference is by resource ID (resource
type corresponds to string type)
11 == Invalid value

keyEquiv Keystroke equivalent information stored at keyEqui v is formatted
as shown in Figure 28-2.

Extended scroll bar control record

Figure 28-27 shows the format of the extended control record for scroll bar controls.

• Figure 28-27

$00 f-
f-
1-

$04 I-
f-
f-

$08.

$10
$11
$12
$14

$18

$1C

$20

$24

1-

f-
1-
f-

1-
f-
1-
,_
-·-
-
--

$28.

$30 .

$38

$3C
$3E

-
,_

ctlNext

ctlOwner

ctlRect

ctlFlag
ctlHilite
ctlValue

ctlProc

ctlAction

ctlData

ctlRefCon

ctlColor

thumbRect

pageRegion

ctliD

ctlMoreFlags

ctlVersion

Extended scroll bar control record

-
- Long-Handle to next control; NIL for last control -
-
- Long-Pointer to window to which control belongs -

-

-
-
-

-
-

Rectangle-Scroll bar boundary rectangle

Byte-Style of scroll bar
Byte-Current type of highlighting
Word-Thumb position between 0 and (dataSize- viewSize)

Long-scrollControl=$86000000

Long-Pointer to custom procedure; NIL if none

Long-High-order word= dataSize, low-order word= viewSize

Long-Reserved for application use

Long-Optional color table reference; NIL if none

Rectangle-Defmes thumb rectangle

Rectangle-Defmes page region, thumb bounds

Long-Application-assigned ID

Word-Additional control flags
Word-Set to 0

Valid values for ctlFlag are

ctlinvis bit 7 0 = Visible, 1 = Invisible.
Reserved bits 6-5 Must be set to 0.
horScroll bit 4 0 =Vertical scroll bar, 1 =Horizontal scroll bar.
rightFlag bit 3 0 = Bar has no right arrow, 1 = Bar has right

arrow.
leftFlag bit 2 0 = Bar has no left arrow, 1 = Bar has left arrow.
downFlag bit 1 0 = Bar has no down arrow, 1 = Bar has down

arrow.
upFlag bit 0 0 = Bar has no up arrow, 1 = Bar has up arrow.

Note that extraneous flag bits are ignored, depending on the state of the horscroll
flag. For example, for vertical scroll bars, right Flag and left Flag are ignored.

Valid values for ctlMoreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize
Reserved
Color table reference

Reserved

bit 15
bit 14
bit 13
bit 12
bit 11
bits
bits 3-2

bits 1-0

Must be set to 0.
Must be set to 0.
Must be set to 0.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of reference in ctlColor (if it is
not NIL). See Chapter 4, "Control Manager," in
Volume 1 of the Toolbox Reference and
"Clarifications" earlier in this chapter for the
definition of the scroll bar color table.
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 =Color table reference is by resource ID
(resource type of rCtlColorTbl, $800D)
11 = Invalid value
Must be set to 0.

Extended size box control record

Figure 28-28 shows the format of the extended control record for size box controls.

• Figure 28-28

$00 I-
I-
r

$04 I-
I-
1-

$08 0

$10
$11
$12
$14

$18

$1C

$20

$24

1-

:--
:---

$28 .

$38

$3C
$3E

1-
r r
1-

r

ctlNext

ctlOwner

ctlRect

ctlFlag
c tlHilite

ctlValue

ctlProc

ctlAction

ctlData

ctlRefCon

ctlColor

ct!Reserved

c tliD

ctlMoreFlags

ct!Version

Extended size box control record

-- Long-Handle to next control; NIL for last control -
-
- Long-Pointer to window to which control belongs -

-

-
-

Rectangle-Size box boundary rectangle

Byte-Size box visibility
Byte-Current type of highlighting
Word-Not used; set to 0

Long-growCont rol =$88000000

Long-Pointer to custom procedure; NIL if none

Long-Not used; set to 0

Long-Reserved for application use

Long-Optional color table reference; NIL if none

Block, $10 bytes-Not used; set to 0

Long-Application-assigned ID

Word-Additional control flags
Word-set to 0

Valid values for ct lF lag are

ctlinvis
Reserved
fCallWindowMgr

bit 7
bits 6-1
bit 0

Valid values for ctlMoreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize
Reserved
Color table reference

Reserved

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-4
bits 3-2

bits 1-0

0 = Visible, 1 = Invisible.
Must be set to 0.
0 = Just highlight control,
1 =Call GrowWindow and SizeWindow to
track this control.

Must be set to 0.
Must be set to 0.
Must be set to 0.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of reference in c t 1 co 1 or (if it is
not NIL). See "Error Corrections" at the
beginning of this chapter for the definition of
the size box color table.
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 = Color table reference is by resource ID
(resource type of rCtlColorTbl, $800D)
11 = Invalid value
Must be set to 0.

Static text control record

Figure 28-29 shows the format of the control record for static text controls.

• Figure 28-29

$00
1-

$04 i-
-

$08 .

$10
$11
$12
$14

$18

$1C

$20

$24

-

--

$28
$2A .

$38

$3C
$3E

ctlNext

ctlOwner

ctlRect

ctlFlag
ctlHilite
ctlValue

ctlProc

ctlAction

ctlData

ctlRefCon

ctlColor

ctlJust

ctlReserved

ctliD

ctlMoreFlags

ctlVersion

Static text control record

-
- Long-Handle to next control; NIL for last control -
-- Long-Pointer to window to which control belongs -

-

-

-
-

Rectangle-Text window boundary rectangle

Byte-Text display and storage attributes
Byte-Event generation for control
Word-Text size field, ifctlData contains a pointer

Long-statTextControl=$81000000

Long-Pointer to custom procedure; NIL if none

Long-Reference to text for window

Long-Reserved for application use

Long-Not used; must be set to 0

Word-Initial justification word

Block, $0E bytes-Not used

Long-Application-assigned ID

Word-Additional control flags
Word-Set to 0

Valid values for ctlFlag are

ctlinvis
Reserved
fSubstituteText

fSubTextType

bit 7
bits 6-2
bit 1

bit 0

Valid values for ctlMoreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize
Reserved
Text reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-2
bits 1-0

0 = Visible, 1 = Invisible.
Must be set to 0.
0 = No text substitution to perform,
1 = There is text substitution to perform.
0 = C strings, 1 = Pascal strings.

Must be set to 0.
Must be set to 0.
Must be set to 0.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of text reference in c t 1 oat a .
00 =Text reference is by pointer
01 =Text reference is by handle
10 =Text reference is by resource ID (resource
type of rTextForLETe x tBox2, $800B)
11 = Invalid value

ctlHilite Specifies whether the control wants to receive mouse selection
events. The values for ct lHili te are

ctlValue

0 Events are generated when the mouse button is pressed in the
control

255 No events are generated when the mouse button is pressed in the
control

Contains the size of the referenced text in characters, but only if the
text reference in ctlData is a pointer. If the text reference is either a
handle or a resource ID, then the Control Manager can extract the
length from the handle.

ctlJust The justification word is passed to LETe xtBox2 (see Chapter 10,
"LineEdit Tool Set," in Volume 1 of the Toolbox Reference for details
on the LETextBox2 tool call) and is used to set the initial
justification for the text being drawn. Valid values for ct lJust are

leftJustify
centerJustify
rightJustify

fullJustify

0
1

-1

2

Text is left justified in the display window.
Text is centered in the display window.
Text is right justified in the display
window.
Text is fully justified (both left and right) in
the display window.

Static text controls do not support color tables. To display text of different color, you
must embed the appropriate commands into the text string you are displaying. See the
discussion of LETextBox2 in Chapter 10, "LineEdit Tool Set," in Volume 1 of the Toolbox
Reference for details on command format and syntax.

TextEdit control record

Figure 28-30 shows the format of the control record for TextEdit controls.

• Figure 28-30

$00
I- ctlNext

TextEdit control record

-
- Long-Handle to next control; NIL for last control -

$04 -
r-- ctlowner - Long-Pointer to window to which control belongs

$08 f-r--_______ ---l

$10
$11
$12
$14

$18

$1C

$20

$24

$28

$2C

I-

r--
r--

I-
r--
r--

I-
r--
r--
r--
r--
r--

r--
f--
I-

r--
f--

$30.

$38

$3C
$3E

f--
r--
r--
I-

r--
$40 .

$48 f--
r--

ctlRect

ctlFlag

ctlHilite
ctlValue

ctlProc

ctlAction

ctlData

ctlRefCon

ct l Col or

text Flags

text Length

blackList

ctliD

ctlMoreFlags

ctlVersion

-

-
--

-
-

Rectangle-Boundary rectangle for control

Byte-Control visibility
Byte-Not used; must be set to 0
Word-Last reported TextEdit error code

Long-edit Text Cdnt rol =$85000000

Long-Pointer to custom procedure; NIL if none

Long-Pointer to filter procedure

Long-Reserved for application use

Long-Reference to the color table for the control

Long-TextEdit bit flags

Long- Length of text

Text List-Cached link into Text Block list

Long-Application-assigned ID

Word- Additional control flags
Word-Set to 0

viewRect Rectangle-Boundary rectangle for text

-
totalHeight - Long-Height, in pixels, of text -

continued

$4C!

$58 .

$64

$68

$6C
$6E

$72

$76
$78
$7A

I-
I-

I-
1-
I-

--'---
I-
I-
I-

I-

I-

I---
-$7E

$80 .

$8C

$90
$92

$96

$9A

$9E
$AO

$A4

$A8

-
--
t-

I-
I-
t-

I-
I-
I-

I-
I-
I-
I-

I-
I-
I-

I-
I-
1-

continued

lineSuper

styleSuper

-
styleList --

-
rulerList -

-

lineAtEndFlag -
-

selectionStart -
-
-

selectionEnd --
selectionActive -
selectionState -

-
caret Time --

nullSty leActive -
nullStyle

-
topTextOffset -

-
topTextVPos -

-
vertScrol lBar -

-
-

vertScrollPos -
-
-

vertScr ol lMax -
-

vertScrollAmount -

-
horzScrollBar --

-
horzScrollPos --

-
horzScrollMax --

contmued

Su_perHandle-Cached link into text lines

Su_perHandle-Cached link into style list

Long-Handle to array of TEsty 1 e records

Long-Handle to array of TERuler records

Word-Line break flag

Long-Starting text offset for current selection

Long-Ending text offset for current selection

Word-Flag indicating whether current selection is active
Word-State information about current selection

Long-Blink interval for insertion point, in system ticks

Word-Flag indicating whether null style is active

TEStyle-Null style defmition

Long-Offset to top line of displayed text

Word-Position of display window into text, in pixels

Long-Handle to vertical scroll bar control record

Long-Current position of vertical scroll bar

Long-Maximum allowable vertical scroll

Word-Number of pixels to scroll on each click

Long-Currently not supported

Long-Currently not supported

Long-Currently not supported

continued
SAC
$AE

- horzScrollAmount - Word-Currently not supported

$B2

$B6

$BA
$BC
SBE

$CO

$C4

$C8

-
--
--
-
-
-
-
-
-
-
-
-
-
-
--

sec.
$04-
$06

"$08 .

$E6 f-
f-
f-

f-

f-

$EA

SEC
$EE.

$F6

$FA
$FC

$100
$102

f-
f-
f-

-
--
-
-
-
--

growBoxHandle

maximumChars

maxirnumLines

ma xCharsPerLine

maximumHeight

tex tDrawMode

wordBreakHook

wordWrapHook

keyFilter

--
-

-
-
-

Long-Handle of size box control record

Long-Maximum number of characters allowed in text

Long-Currently not supported

Word-Currently not supported
Word-Currently not supported
Word-QuickOraw II drawing mode for text

Long-Pointer to word break hook routine

Long-Pointer to word wrap hook routine

Long-Pointer to keystroke filter routine

theFilterRect Rectangle-Rectangle for generic ftlter procedure

theBufferVPos - Word-Vertical component of current position
theBufferHPos - Word-Horizontal component of current position

theKeyRecord KeyRecord-Parameters for keystroke filter routine

-
cachedSelcOffset --

cachedSelcVPos -
cachedSelcHPos -

mouseRect

-
mouseTirne --
mouseKind -

-
lastClick -

-
savedHPos -

-
anchorPoint --

Long-Cached selection text offset

Word-Vertical component of cached buffer position
Word-Horizontal component of cached buffer position

Rectangle-Boundary rectangle for multiclick mouse commands

Long-Time of last mouse click

Word-Kind of mouse click last performed

Long-Location of last mouse click

Word-Cached horizontal character position

Long-Starting point of current selection

Valid values for ctlFlag are

ctlinvis
fRecordDirty

Reserved

bit 7
bit 6

bits 5-0

Valid values for textF lags are

fNotControl
fSingleFormat
fSingleStyle

fNoWordWrap

fNoScroll

fReadOnly

fSmartCutPaste

fTabSwitch

bit 31
bit 30
bit 29

bit 28

bit 27

bit 26

bit 25

bit 24

0 = Visible, 1 = Invisible.
Indicates whether text or style information for
the record has changed (TextEdit sets this bit
but never clears it-your application must set
the bit to 0 whenever it saves the record).
0 = No text or style information has changed
1 =Text or style information has changed
Must be set to 0.

Must be set to 0.
Must be set to 1.
Indicates the style options available to the user.
0 = Do not restrict the number of styles in the
text
1 = Allow only one style in the text
Indicates TextEdit word wrap behavior.
0 = Perform word wrap to fit the ruler
1 = Do not word wrap the text; break lines only
on CR ($0D) characters
Controls user access to scrolling.
0 = Scrolling permitted
1 = Do not allow either manual or auto-scrolling
Restricts the text in the window to read-only
operations (copying from the window will still
be allowed).
0 = Editing permitted
1 = No editing allowed
Controls TextEdit support for smart cut and
paste (see Chapter 49, "TextEdit Tool Set," for
details on smart cut and paste support).
0 = Do not use smart cut and paste
1 = Use smart cut and paste
Defines behavior of the Tab key (see
Chapter 49, "TextEdit Tool Set," for details).
0 = Tab inserted in TextEdit document
1 = Tab to next control in the window

fDrawBounds

fColorHilight
fGrowRuler

bit 23

bit 22
bit 21

fDisableSelection bh 20

fDrawinactiveSelection
bit 19

Reserved bits 18-0

Indicates whether TextEdit will draw a box
around the edit window, just inside ct lRect
(the pen for this rectangle is 2 pixels wide and 1
pixel high).
0 = Do not draw rectangle
1 = Draw rectangle
Must be set to 0.
Indicates whether TextEdit will resize the ruler
in response to the user's resizing of the edit
window. If this bit is set to 1, TextEdit
automatically adjusts the right margin value for
the ruler.
0 = Do not resize the ruler
1 = Resize the ruler
Controls whether user can select text.
0 = User can select text
1 = User cannot select text

Controls how inactive selected text is
displayed.
0 = TextEdit does nothing special when
displaying inactive selections
1 = TextEdit draws a box around inactive
selections
Must be set to 0.

text Length Number of bytes of text in the record. Your program must not modify
this field.

blockList Cached link into the linked list of Text Block structures, which
contain the actual text for the record. The actual TextList structure
resides here. Your program must not modify this field.

Valid values for ctlMoreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize

fCtlisMultiPart

bit 15
bit 14
bit 13
bit 12
bit 11

bit 10

Must be set to 0.
Must be set to 1.
Must be set to 1.
Must be set to 1.
If this bit is set to 1, a size box is created in the
lower-right corner of the window. Whenever the
control window is resized, the edit text is
resized and redrawn.
Must be set to 1.

Reserved
Color table reference

Style reference

bits 9-4
bits 3-2

bits 1-0

Must be set to 0.
Defines type of reference in ctlColor (if it is
not NIL). The color table for a TextEdit control
(TEColorTable) is described in Chapter 49,
"TextEdit Tool Set," in this book.
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 = Color table reference is by resource ID
(resource type of rCtlColorTbl, $800D)
11 = Invalid value
Defines type of style reference in styleRef.
The format for a TextEdit style descriptor is
described in Chapter 49, "TextEdit Tool Set,"
later in this book.
00 = Style reference is by pointer
01 = Style reference is by handle
10 =Style reference is by resource ID (resource
type of rStyleBloc k, $8012)
11 = Invalid value

L Important Do not set fCtlTellAboutSize to 1 unless the text edit record also
has a vertical scroll bar. This flag works only for TextEdit records that
are controls. 6.

viewRect Boundary rectangle for the text, within the rectangle defined in
boundsRect, which surrounds the entire record, including its
associated scroll bars and outline.

totalHeight Total height of the text in the TextEdit record, in pixels.

lineSuper Cached link into the linked list of SuperBlock structures that define
the text lines in the record.

styleSuper Cached link into the linked list of SuperBlock structures that define
the styles for the record.

styleList Handle to array of TEStyle structures, containing the unique styles
for the record. The array is terminated with a long set to $FFFFFFFF.

rulerList Handle to array of TERuler structures, defining the format rulers for
the record. Note that only the first ruler is currently used by TextEdit.
The array is terminated with a long set to $FFFFFFFF.

lineAtEndFlag Indicates whether the last character was a line break. If so, this field is
set to $FFFF.

selectionStart
Starting text offset for the current selection. Must always be less than

or equal to selectionEnd.

select ionEnd Ending text offset for the current selection. Must always be greater
than or equal to selectionStart .

selectionActive
Indicates whether the current selection (defined by
selectionStart and select ionEnd) is active.

$0000 Active
$FFFF Inactive

selectionState Contains state information about the current selection range.

$0000 Off screen
$FFFF On screen

caret Time Blink interval for cursor, expressed in system ticks.

nullStyleActiv e

nullStyle

Indicates whether the null style is active for the current selection.

$0000 Do not use null style when inserting text
$FFFF Use null style when inserting text

TEsty le structure defining the null style. This may be the default
style for newly inserted text, depending on the value of
nullStyleActive.

topTextOffset Text offset into the record corresponding to the top line displayed on
the screen.

topTextVPos Difference, in pixels, between the topmost vertical scroll position
(corresponding to the top of the vertical scroll bar) and the top line
currently displayed on the screen.

vertScrollBar Handle to the vertical scroll bar control record.

vertScrollPos Current position of the vertical scroll bar, in units defined by
vertScrollAmount .

+ Note: Although TextEdit defines the vertScrollPos field as a long word, standard
Apple IIGS scroll bars support only the low-order word. This leads to unpredictable
scroll bar behavior during the editing of large documents.

vertScrollMax Maximum allowable vertical scroll, in units defined by
vertScrollAmount.

vertScrollAmount
Number of pixels to scroll on each vertical arrow click.

horzScrollBar Currently not supported.

horzScrollPos Currently not supported.

horzScrollMax Currently not supported.

horzScrollAmount
Currently not supported.

growBoxHandle Handle of size box control record.

maximumChars Maximum number of characters allowed in the text.

maximumLines Currently not supported.

maxCharsPerLine
Currently not supported.

max imumHeight Currently not supported.

textDrawMode QuickDraw II drawing mode for the text. See Chapter 16,
"QuickDraw II," in Volume 2 of the Toolbox Reference for more
information on QuickDraw II drawing modes.

wordBreakHook Pointer to the routine that handles word breaks. See Chapter 49,
"TextEdit Tool Set," for information about word break routines. Your
program may modify this field.

wordWrapHook Pointer to the routine that handles word wrap. See Chapter 49,
"TextEdit Tool Set," for information about word wrap routines. Your
program may modify this field.

keyF ilter Pointer to the keystroke filter routine. See Chapter 49,
"TextEdit Tool Set," for information about keystroke filter routines.
Your program may modify this field.

theF ilterRect Defines a rectangle used by the generic filter procedure for some of its
routines. See Chapter 49, "TextEdit Tool Set," for information about
generic filter procedures and their routines. Your program may modify
this field.

theBufferVPos Vertical component of the current position of the buffer within the
port for the TextEdit record, expressed in the local coordinates
appropriate for that port. This value is used by some generic filter
procedure routines. See Chapter 49, "TextEdit Tool Set," for
information about generic filter procedures and their routines. Your
program may modify this field.

theBufferHPos Horizontal component of the current position of the buffer within the
port for the TextEdit record, expressed in the local coordinates
appropriate for that port. This value is used by some generic filter
procedure routines. See Chapter 49, "TextEdit Tool Set," for
information about generic filter procedures and their routines. Your
program may modify this field.

theKeyRecord Parameter block, in KeyRecord format, for the keystroke filter
routine. Your program may modify this field.

cachedSelcOffset
Cached selection text offset. If this field is set to $FFFFFFFF, then the
cache is invalid and will be recalculated when appropriate.

cachedSelcVPos
Vertical component of the cached buffer position, expressed in local

coordinates for the output port.

cachedSelcHPos

mouseRect

mouseTime

Horizontal component of the cached buffer position, expressed in
local coordinates for the output port.

Boundary rectangle for multiclick mouse commands. If the user clicks
more than once in the region defined by this rectangle during the time
period defined for multiclicks, then TextEdit interprets those clicks
as multiclick sequences (double or triple clicks). The user sets the time
period with the Control Panel.

System tickcount when the user last released the mouse button.

mouseKind

lastClick

savedHPos

anchorPoint

Type of last mouse click.

0 Single click
1 Double click
2 Triple click

Location of last user mouse click.

Cached horizontal character position. TextEdit uses this value to
determine where on a line the cursor should appear when the user
presses the up or down scroll arrow.

Defines the character at which the user began to select the text in the
current selection. When TextEdit expands the current selection (as a
result of user keyboard or mouse commands, or at the direction of a
custom keystroke filter procedure), it always does so from the
anchorPoint,nmselectionStartorselectionEnd

Chapter 29 Desk Manager Update

This chapter documents new features of the Desk Manager. The
complete reference to the Desk Manager is in Volume 1, Chapter 5 of the
Apple JIGS Toolbox Reference.

New features of the Desk Manager

It is now possible for a new desk accessory (NDA) to support a modal dialog box. When
an NDA is selected, it returns a pointer to its window. The Desk Manager saves this pointer
and marks the NDA as selected. The current version of the Desk Manager checks the
returned window pointer. If its value is 0 (if it is a null pointer), the Desk Manager does
not mark the NDA as selected. Subsequent attempts to select the NDA simply select the
open window until the NDA is deselected. A programmer can therefore write an NDA that
opens a modal dialog box when the NDA is selected. When the dialog box is closed, the
NDA can be selected again without having been explicitly deselected.

Scrollable CDA menu

The classic desk accessory (CDA) menu is now scrollable. Previously, the menu held a
maximum of 13 commands in a fixed display. Now, up to 249 desk accessories can be
installed and displayed.

Scrolling takes place only on systems with 14 or more CDAs installed. When the menu is
scrollable, the system displays a more message(+++ more +++)at each scrollable end
of the menu. That is, if there are additional commands above those currently visible, the
more message appears at the top of the menu. Similarly, if there are more commands
below those currently visible, a more message appears at the bottom of the menu.
Messages may be placed at both the top and bottom of the menu, if appropriate.

The new menu behaves somewhat differently from the old one. When the user returns to
the CDA menu from an accessory, the name of that accessory is highlighted (previously,
the Control Panel entry was highlighted). In addition, the user can no longer wrap from the
bottom of the menu to the top, or vice versa.

The valid keystrokes for the CDA menu are

Keystroke

UpArrow

Command-Up Arrow

Down Arrow

Command-Down Arrow

Enter or Return

Esc

Run queue

Effect

Moves the selection box up one entry in the menu; no effect
if the selection box is at the top of the menu

Moves the selection box up one page in the menu; no effect
if tl)e selection box is at the top of the menu

Moves the selection box down one entry in the menu; no
effect if the selection box is at the bottom of the menu

Moves the selection box down one page in the menu; no
effect if the selection box is at the bottom of the menu

Selects the highlighted item

Selects Quit

The run queue allows you to install tasks (run items) that need to be called periodically.
You establish the periodicity of the call by managing a field in the run item header. The
Desk Manager has two new system calls, AddToRunQ and RemoveFromRunQ, that allow
you to install and remove run items from the queue.

The system examines the run queue at system task time, when the system is guaranteed to
be free and all tools are available. For each run item in the queue, the system adjusts the
period header field. If the specified time period has elapsed, the system then calls the
run item.

The run queue is quite similar to the heartbeat queue and should be used in its place.

Each run item must be preceded by a header formatted as in Figure 29-1.

• Figure 29-1 Run item header

$00

$04
$06
$08

-
-

period

-
Reserved - Long-Used by system as link to next run queue item -
period - Word (unsigned)-Period to wait, in ticks

signature - Word-Header signature, to ensure integrity-set to $A55A

Reserved
-- Long-Used by system to determine when item was last executed -

Specifies the minimum number of system ticks that are to elapse
between run item executions. Each system tick represents 1/60th of a
second. A value of 0 indicates that the item is to be called as often as
possible. A value of $FFFF indicates that the item should never be
called. Although the run queue supports call frequencies up to
approximately 60 calls per second, the timing is less accurate for
periods shorter than one second.

6 Important Run item code must reset the period field before returning control to
the system. Failure to do so will result in a period of 0, which will
cause the item to be called constantly. 6.

signature Used by the system to ensure that the header is well formed. The value
of this field must be $ASSA.

The entry point must immediately follow the header. Run items need not check the busy
flag, since the system is guaranteed to be free before any run item is invoked. However,
you must ensure that run items save and restore the operating environment, since they may
be invoked from TaskMaster, as well as from an application. You should also be careful to
either unload your run items at application termination or ensure that remaining items are
not purgeable.

Although the run queue and heartbeat queue (see Chapter 14, "Miscellaneous Tool Set," in
Volume 1 of the Toolbox Reference for information about the heartbeat queue) are quite
similar, there are some significant differences. First, the run item header has an additional
field (the second Reserved field). Second, the system does not remove items from the run
queue when their period reaches 0.

Run queue example

The following sample run item causes the speaker to beep every 15 minutes:

RunQ example task that beeps every 15 minutes.
It is provided in MPW IIgs assembler format. The first portion is the
task header.

BeepHdr

period

Record
ds.L 1
dc.W $D2FO
dc.W $A55A
dc.L 0
EndR

reserve 1 long for link to next runQ entry
number of 60th of a sec (54000=15 minutes)
signature used to test for queue integrity
used by desk mgr t o keep track of the time

Now the actual code of the task goes here.

BeepTask Proc
with BeepHdr

SysBeep

lda #$D2FO
sta >period
rtl
EndP

beep the speaker once

and now r e charge the period f o r next c all
NOTE:Us e long address ing: Data Ba nk unknown
and to e x it use an RTL

The following code installs the preceding item into the run queue:
PushLong #BeepHdr
ldx #$1F05
jsl >$E10000

New Desk Manager calls

The following new Desk Manager calls support the run queue and desk accessory removal.

AddToRunQ $1F05

Adds the specified routine to the head of the run queue.

Parameters

Stack before call

Previous contents

runltemPtr

Stack after call

Previous contents

None

Long-Pointer to run item to add

<-SP

<-SP

Errors

c ext e rn pascal void AddToRunQ(runit e mPtr);

Pointer runitemPtr;

RemoveCDA $2105

Removes the specified CDA from the Desk Manager CDA list. This routine does not
dispose of the memory used by the desk accessory.

This routine is the complement of InstallCDA (which is described in Chapter 5, "Desk
Manager," in Volume 1 of the Toolbox Reference).

Issue this call with caution. Users generally install desk accessories for their own use; you
should not spontaneously remove them from the system. Also, note that many desk
accessories install other custom code (in the run queue, for example); you should not
remove them unless you know that the other code has been removed as well.

Parameters

Stack before call

Previous contents

idHandle

Stack after call

Previous contents

Errors $0510

Long-Handle to CDA header

<-SP

<-SP

daNotFound Specified desk accessory not
found.

c extern pascal void RemoveCDA(idHandle);

Handle idHandle;

RemoveFromRunQ $2005

Removes the specified run item from the run queue.

Parameters

Stack before call

Previous contents

runltemPtr

Stack after call

Previous contents

None

Long-Pointer to run item to remove

<-SP

<-SP

Errors

c extern pascal void RemoveFromRunQ(runitemPtr);

Pointer runitemPtr;

RemoveNDA $2205

Removes the specified NDA from the Desk Manager NDA list. This routine does not
dispose of the memory used by the desk accessory.

This routine is the complement of InstallNDA (which is described in Chapter 5, "Desk
Manager," in Volume 1 of the Toolbox Reference).

This call does not rebuild the Apple menu. Your application must rebuild the menu by
issuing the FixAppleMenu tool call.

Parameters

Stack before call

Previous contents

idHandle

Stack after call

Previous contents

Errors $0510

Long-Handle to NDA header

<-SP

<- SP

daNotFound Specified desk accessory not
found.

c extern pascal void RemoveNDA(idHandle);

Handle idHandle;

Chapter 30 Dialog Manager Update

This chapter documents error corrections to the documentation of the
Dialog Manager. The complete reference to the Dialog Manager is in
Volume 1, Chapter 6 of the Apple JIGS Toolbox Reference.

Error corrections

This section documents errors in Chapter 6, "Dialog Manager," in Volume 1 of the Toolbox
Reference.
• A statement about SetDitemType on page 6-82 of Volume 1 of the Toolbox Reference

is in error. This call is not used to change a dialog item to a different type. In fact,
setDitemType should be used only to change the state of an item from enabled to
disabled or vice versa.

• An entry in Table 6-3 on page 6-12 of Volume 1 of the Toolbox Reference is incorrect.
The Dialog Manager does not support dialog item type values of pic It em or
icon Item.

Chapter 31 Event Manager Update

This chapter documents new features of the Event Manager. The
complete reference to the Event Manager is in Volume 1, Chapter 7 of the
Apple JIGS Toolbox Reference.

Error correction

This section documents an error in Chapter 7, "Event Manager," in Volume 1 of the
Toolbox Reference.
• The description of the EMShutDown tool call incorrectly states that the call returns no

errors. This call can return any valid Event Manager error code.

New features of the Event Manager

The following sections discuss new features of the Event Manager.

Journaling changes

Previously, journaling did not capture operations that involved the ReadMouse
Miscellaneous Tool Set call, because that call did not support journaling. As discussed in
Chapter 39, "Miscellaneous Tool Set Update," in this book, ReadMouse has been changed
to support journaling. As a result, journaling routines must now handle a new journal code.

When an application calls ReadMouse while journaling is enabled, your journaling routine
will be called with a journal code of 6 and resultPtr will point to a 6-byte record containing
ReadMouse data. This record (called EventJournalRec) has the format shown in
Figure 31-1.

• Figure 31-1 Journal record for mouse event

$00
$02
$04

1--

I-

I-

s tatusMode

yLocat i o n

xLocat ion

-
-
-

Word-Mouse status/mode bytes
Word-Absolute y location of pointing device
Word-Absolute x location of pointing device

statusMode Mouse status and mode bytes, as described on pages 14-35 and 14-36
of the Toolbox Reference, Volume 1.

Keyboard input changes

The system now processes keyboard input through a translation routine, allowing
Apple IIGS and Macintosh® keystrokes to match. The translation routine uses a resource-
based keystroke translation table, which is identified by a unique resource ID. You can
assign other tables to suit the needs of a particular language or keyboard. The Event
Manager provides new calls to read or write the current keyboard translation table
resource ID.

Note that the system translates keystrokes before performing dead key replacements. To
modify dead key sequences, you may find it easier to modify the appropriate
transTable entry than the entries in deadKeyTable and replacement Table, since
the first table is more straightforward than the last two.

The keystroke translation table must be formatted as shown in Figure 31-2.

• Figure 31-2 Keystroke translation table

$000 .
transTable : 256 bytes-Keystroke translation array

$100 .
cteadKeyTable : XX bytes-Dead key validation array

$100+xx
replacement Table : Y.Y bytes-Dead key replacement array

transTable This is a packed array of bytes used to map the ASCII codes produced
by the keyboard into the character value to be generated. Each cell in
the array directly corresponds to the ASCII code that is equivalent to
the cell offset. For example, the transTable cell at offset $0D (13
decimal) contains the character replacement value for keyboard code
$0D, which, for a straight ASCII translation table, is a carriage return
character (CR). The transTable cells from 128 to 255 ($80 to $FF)
contain values for Option-key sequences (such as Option-S).

deadKeyTable This table contains entries used to validate dead keys-keystrokes
used to introduce multikey sequences that result in single characters.
For example, pressing Option-U followed by e yields the character e.
There is one entry in cteadKeyTable for each defined dead key. The
last entry must be set to $0000. Each entry must be formatted as
follows:

cteactKey Byte-Character code for dead key
offset Byte-Offset from deadKeyTable into replacement Table

deadKey Contains the character code for the dead key. The system uses
this value to check for user input of a dead key. The system
compares this value with the first user keystroke.

offset Byte offset from beginning of deadKeyTable into relevant
subarray in replacement Table, divided by 2. The system
uses this value to access the valid replacement values for the
dead key in question.

replacement Table
This table contains the valid replacement values for each dead key
combination. This table is made up of a series of variable-length
subarrays, each relevant to a particular dead key. The last entry in each
subarray must be set to $0000. Each entry in the replacement Table
must be formatted as follows:

scanKey Byte-Character code for dead key combination
replace value Byte-Result character code for dead key combination

scanKey Contains a valid character code for a dead key replacement. The
system uses this field to determine whether the user entered a
valid dead key combination. The system compares this value
with the second user keystroke.

replaceValue Contains the replacement value for the character specified in
scanKey for this entry. The system delivers this value as the
replacement for a valid dead key combination.

New Event Manager calls

This section describes several new Event Manager calls, many concerning the new
keyboard translation feature.

GetKeyTranslation $1B06

Returns the identifier for the currently selected keystroke translation table: Before setting
a new translation table, your application should read and save the current identifier. When
your application terminates, it should restore the previous keystroke translation table.
Use the SetKeyTranslation call to modify the current identifier.

Parameters

. Stack before call

Previous contents
Space

Stack after call

Previous contents
kTransiD

Errors None

Word-Space for result
<-SP

Word-Keyboard translation identifier ($0000 to $00FF)
<-SP

c extern pascal Word GetKeyTranslation();

SetAutoKeyLimit $1A06

Controls how repeated keystrokes are inserted into the event queue. The default value for
the limit is 0, which specifies that auto-key events are inserted only if no other events are
already in the queue. The newlimit parameter determines how many auto-key events must
be in the event queue before PostEvent ceases to add them. For example, if newlimitis
0, then the default condition is maintained: PostEvent will not add auto-key events
unless the queue is empty. However, if newlimitis 5, then PostEvent will add five auto-
key events to the queue before it reverts to the rule that no more auto-key events are to
be posted.

Parameters

Stack before call

Previous contents
new limit

Stack after call

Previous contents

Errors None

Word-Limit for inserted auto-key events
<-SP

<-SP

c extern pascal void SetAutoKeyLimit(newLimit);

Word newLimit;

SetKeyTranslation $1C06
Sets a new keystroke translation table. Once set, the selected keystroke translation table
stays in effect until this call is issued again, irrespective of application termination,
system resets, or system power off. Before setting a new value for the keystroke
translation table, your application should read and save the current value, using the
GetKeyTranslation tool call. Your application should then restore that previous value
when it is finished.

The system reads keystroke translation tables from resources of type rkTransTable
($8021) and ID $0FFF06xx, where xx derives from the low-order byte of the kTrans/D
parameter.

This call uses the current resource search path to find the specified resource. If you want
your translation to stay in effect after your application has terminated, you must place
the translation table resource in the system resource file.

If the system cannot find a resource corresponding to the value specified in kTrans!D, the
keyboard defaults to the standard keystroke translation table ($00FF).

Parameters

Stack before call

Previous contents
kTrans!D

Stack after call

Word-Keystroke translation table identifier (low-order byte)
<-SP

Previous contents

Errors

c

kTrans!D

<-SP

None

extern pascal void SetKeyTranslation(kTransiD);

Word kTransiD;

The following are standard values for kTrans/D:

$0000 Use old-style Apple IIGS keyboard mapping
$00FF Use standard keyboard remapping (makes Apple IIGS key

sequences match Macintosh sequences)

Chapter 32 Font Manager Update

This chapter documents new features of the Font Manager. The complete
reference to the Font Manager is in Volume 1, Chapter 8 of the
Apple JIGS Toolbox Reference.

Error corrections

• On page 8-4 of Volume 1 of the Toolbox Reference, the font family number for the
Shaston font is given as 65,524. This is incorrect. The correct decimal value is 65,534
($FFFE).

• Page 8-24, Volume 1 of the Toolbox Reference incorrectly describes the newSpecs
parameter, indicating that it contains a word of FontSpecBits. Actually, this
parameter contains Fonts tat Bits for the new font.

• Contrary to the call description in the Toolbox Reference, the FMSetSysFont tool call
does not load or install the indicated font.

New features of the Font Manager

• The current version of the Font Manager incorporates several changes. In previous
versions, FMS tart Up opened each font file in the FONTS folder and constructed lists
of information for all available fonts. These lists contained font IDs, font names, and
so forth for every font in the FONTS folder. The present version of the Font Manager
does this same work the first time it starts up but caches all the information it
compiles in a file called FONT.LISTS in the FONTS folder.
The next time the Font Manager starts up, it checks all the creation and modification
dates and times in font files against the information in FONT.LISTS. It compiles new
FONT.LISTS information only if it finds new font files or other evidence of change.
Otherwise, it simply starts up with the information stored in the FONT.LISTS file. In
most cases, because it doesn't have to open every font file, the Font Manager can start
up much more quickly.

• A bug has been fixed in the ChooseFont call. Previously, ChooseFont would hang
the system if any update events were pending when the call was made. Now,
ChooseFont will not hang the system under these circumstances; the system leaves
update events in the event queue for processing by the application.

• In addition, the Choose Font dialog box now uses NewWindo w2, with a control
template that can be kept in a resource file. As a result, this dialog box can be
translated to languages other than English more easily.

• Scaled fonts may now contain more than 65,535 bytes of data. See Chapter 43,
"QuickDraw II Update," in this book for the layout of the new font record.

Chapter 32 Font Manager Update

This chapter documents new features of the Font Manager. The complete
reference to the Font Manager is in Volume 1, Chapter 8 of the
Apple JIGS Toolbox Reference.

Error corrections

• On page 8-4 of Volume 1 of the Toolbox Reference, the font family number for the
Shaston font is given as 65,524. This is incorrect. The correct decimal value is 65,534
($FFFE).

• Page 8-24, Volume 1 of the Toolbox Reference incorrectly describes the newSpecs
parameter, indicating that it contains a word of Font SpecBit s . Actually, this
parameter contains Fonts tat Bits for the new font.

• Contrary to the call description in the Toolbox Reference, the FMSetSysFont tool call
does not load or install the indicated font.

New features of the Font Manager

• The current version of the Font Manager incorporates several changes. In previous
versions, FMStart up opened each font file in the FONTS folder and constructed lists
of information for all available fonts. These lists contained font IDs, font names, and
so forth for every font in the FONTS folder. The present version of the Font Manager
does this same work the first time it starts up but caches all the information it
compiles in a file called FONT.LISTS in the FONTS folder.
The next time the Font Manager starts up, it checks all the creation and modification
dates and times in font files against the information in FONT.LISTS. It compiles new
FONT.LISTS information only if it finds new font files or other evidence of change.
Otherwise, it simply starts up with the information stored in the FONT.LISTS file. In
most cases, because it doesn't have to open every font file, the Font Manager can start
up much more quickly.

• A bug has been fixed in the ChooseFont call. Previously, ChooseFont would hang
the system if any update events were pending when the call was made. Now,
ChooseFont will not hang the system under these circumstances; the system leaves
update events in the event queue for processing by the application.

• In addition, the Choose Font dialog box now uses Ne wWindow2, with a control
template that can be kept in a resource file. As a result, this dialog box can be
translated to languages other than English more easily.

• Scaled fonts may now contain more than 65,535 bytes of data. See Chapter 43,
"QuickDraw II Update," in this book for the layout of the new font record.

• A bug that corrupted the font family list has been fixed. This bug had varied
symptoms, including incorrect font name displays in the Choose Font dialog box and
in the Font menu, and Font Manager crashes, among others.

New Font Manager call
The new call InstallWithStats is provided to simplify the process of installing fonts. It allows an
application to preserve certain information that is normally lost during font installation.

InstallWithStats $1C1B

Installs a font and returns information about that font. When an application requests the
installation of a font, the Font Manager attempts to install the requested font, but it may
not be available. In such cases, the Font Manager installs the font that matches the
requested font most closely.

The InstallWithStats call installs a font just as if the application had called
InstallFont, but it returns a FontStatRec record in the buffer pointed to by
resultPtr. This record contains the ID of the installed font, which may be different from
the ID of the font requested. It also contains the purge status of the font before it was
installed. Because purge status can be changed by installation, this information can make
it easier to restore the purge status of a font. If you need to know the purge status of an
installed font, use FindFontStats.

Parameters

Stack before call

Previous contents

- desired/D

scale Word

- resultPtr

Stack after call

Previous contents

-

-

Long-Font ID of desired font

Word-Desired font size

Long-Pointer to buffer to receive FontStatRec

<-SP

<-SP

Errors

c

resultPtr

$00---
$04 -

None

extern pascal void InstallWithStats(desirediD,
scaleWord, resultPtr);

Long
Word
Pointer

desirediD;
scaleWord;
resultPtr;

On return from InstallWithStats, the buffer pointed to by
resultPtrcontains a FontStatRec record formatted as follows:

-
resultiD - Long-Font ID record

-
resultStats - Word-FontStatBits defming font status

Chapter 33 Integer Math Tool Set Update

This chapter documents changes to the Integer Math Tool Set. The
complete reference to Integer Math is in Volume 1, Chapter 9 of the
Apple I/GS Toolbox Reference.

Clarification

This section presents new information about the Long2Dec Integer Math tool call.
• The Long2Dec Integer Math tool call now correctly handles input long values whose

low-order three bytes are set to zero.

Chapter 34 LineEdit Tool Set Update

This chapter documents new features of the LineEdit Tool Set. The
complete reference to LineEdit is in Volume 1, Chapter 10 of the
Apple JIGS Toolbox Reference.

New features of the LineEdit Tool Set

The LineEdit Tool Set supports a number of new features. The following section discusses
these new features in detail.
• The LineEdit Tool Set now works within controls. See Chapter 28, "Control Manager

Update," in this book for details.
• LineEdit now supports password fields. Password fields do not echo user input as

typed. Instead, each input is echoed with a special character. Your
application can set the echo character; the default is the asterisk (*).

The LineEdit edit record has a new field, lePWChar, that supports the password
feature. This field defines the screen echo character for password fields. It is located
at the end of the edit record. Figure 34-1 shows the new format of the LineEdit record.
To indicate that a LineEdit field is a password field, set the high-order bit of the
rnaxsize field in the LineEdit control template to 1 (see "LineEdit Control Template"
in Chapter 28, "Control Manager Update," in this book for more information).

• Figure 34-1 LineEdit edit record (new layout)

$00

$04
$06

-
-

$08.

$10.

$18

$1C
$1E
$20
$22
$24
$26
$28
$2A

$2E

$32

$36

$38

r-
r-
r-
i-

-
-
-
-
-
-
r-
r-
r-
r-
r-
r-
r-
r-
r-
r-
r-

leLineHandle

leLength

leMaxLength

leDestRect

leViewRect

lePort

leLineHite

leBaseHite

leSel Start

leSe lEnd

leActFlg

leCarAct

leCarOn

leCarTime

l e Hilite Hook

leCaretHook

leJust

lePWCha r

-
-

Long-Handle to text

Word-Integer; current text length
Word-Integer; maximum text length

: Rectangle-Destination rectangle

-
-
-
-
-
-
-
-
--

-
-

: Rectangle-View rectangle

Long-Pointer to GrafFort

Word-Integer; used for highlighting
Word-Integer; used for drawing text
Word-Integer; used for start of selection range
Word-Integer; used for end of selection range
Word-Reserved for internal use
Word-Reserved for internal use
Word-Reserved for internal use

Long-Reserved for internal use

Long-Pointer to highlight routine

Long-Pointer to caret routine

Word-Justification control word
Word-Password field screen echo character

leMaxLength Indicates the maximum text length allowed in the LineEdit field. Valid
values range from 1 to 255. The high-order bit governs whether the
field is a password field. If the bit is set to 1, then the field is a
password field, and user input is echoed with character values
specified by the contents of the l e PWChar field.

lePWChar Defines the character to be echoed in password fields. This field
contains the ASCII code for the echo character in its low-order byte.
The default system value is the asterisk (*).

New LineEdit call

This new LineEdit tool call returns the address of the current LineEdit control definition
procedure.

GetLEDefProc $2414

Returns the address of the current LineEdit control definition procedure. When the
Control Manager starts up, the system issues this call to obtain the address of the LineEdit
control definition procedure. This call is not intended for application use.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

dejProcPtr

Errors None

Long-Space for result

<-SP

Long-Pointer to LineEdit control definition procedure

<-SP

c extern pascal Pointer GetLEDefProc();

Chapter 35 List Manager Update

This chapter documents new features of the List Manager. The complete
reference to the List Manager is in Volume 1, Chapter 11 of the
Apple JIGS Toolbox Reference.

Clarifications

The following items provide additional information about features previously described
in Volume 1 of the Toolbox Reference.
• The Toolbox Reference states that a disabled item of a list cannot be selected. In fact, a

disabled item can be selected, but it cannot be highlighted. The List Manager provides
the ability to select disabled (dimmed) items so that a user can, for instance, select a
disabled command as part of a help dialog box. To make an item unselectable, make it
inactive (see "List Manager Definitions" later in this chapter).

• Any List Manager tool call that draws will change fields in the GrafPort record. If you
are using List Manager tool calls, you must set up the GrafPort correctly and save any
valuable GrafPort data before issuing the call.

• Item text is now drawn in 16 colors in both 320 and 640 mode.
• Previous versions of List Manager documentation do not clearly define the relationship

between the listView, listMemHeight, and listRect fields in the list record.
To understand this relationship, note that the following formula must be true for values
in any list record:

(listView * listMemHeight) + 2 = listRect. v2- listRect. vl

If you set listView to 0, the List Manager automatically adjusts the listRect .v 2
field and sets the listView field so that this formula holds. Note that if you pass a 0
value for list View, the bottom boundary of listRect may change slightly.

List Manager definitions

The following terms define the valid states of a list item:

inactive

disabled

enabled

selected

highlighted

Inactive items appear dimmed and cannot be highlighted or selected.
Bit 5 of the list item's memF lag field is set to 1.

Disabled items appear dimmed and cannot be highlighted. Bit 6 of the
list item's memF 1 ag field is set to 1.

Enabled items are not dimmed and can be highlighted. Bit 6 of the list
item's memFlag field is set to 0.

This bit is set when a user clicks the list item or when the item is within a
range of selected items. A selected item appears highlighted only if it is
also enabled. Bit 7 of the list item's memF 1 ag field is set to 1.

An item in a list appears highlighted only when it is both selected and
enabled. A highlighted item is drawn in the highlight colors. Bit 7 of the
memF lag field is set to 1 and bit 6 is set to 0.

New features of the List Manager

The List Manager now supports a number of new features. This section discusses these new
features in detail.
• The latest revision of the List Manager includes new versions of the tool calls that

provide more flexible interfaces for application programmers in two ways. First, these
new List Manager routines allow your application to pass an item number, rather than a
list record pointer, to identify an item to process. This frees you from tracking pointer
values and allows you to focus on the more useful item number. Second, your
application need no longer maintain the list record. All new tool calls allow you to
identify the list by a handle to the list control record. The List Manager returns this
handle when your program issues the CreateList List Manager tool call, or
preferably, the Newcontro12 Control Manager tool call.

• The list Type field now supports a flag that governs where the scroll bar is to be
created. Bit 2 of 1 is t Type determines whether the scroll bar is created inside or
outside of 1 is t Re ct. If the bit is set to 1, the List Manager adjusts the right side of
listRect to accommodate the scroll bar, creates the scroll bar inside the adjusted
listRect, and then sets the flag to 0. If the bit is set to 0, the scroll bar resides
outside listRect. This works the same way with old-style control records.

6 Important When using resources with the List Manager, be careful to define the
memory referenced by listRef (see "NewList2 $161C" later in this
chapter) as unpurgeable if you plan to use the SortList call.
Otherwise, in response to a memory allocation request, the sorted list
may be purged from memory. Then, when your application next issues
a List Manager call, the system will reload the unsorted list. l::.

New List Manager calls

The following new List Manager calls support a new, more flexible programming interface.
In general, these calls provide the same functionality as the old versions.

DrawMember2 $111C

Draws one or all members of a specified list. If your application goes directly to the
member record to change the state of a member, the application should then call
DrawMember or DrawMember2 . Unlike DrawMember, this call accepts an item number
specification for the member to draw. Passing an item number of 0 causes the List
Manager to redraw the entire list.

Parameters

Stack before call

Previous contents
itemNumber

ct/Handle

Stack after call

Previous contents

Errors None

Word-Item number to redraw

Long-Handle of the list control

<-SP

<-SP

c extern pascal void DrawMember2(itemNumber,

ct lHandle) ;

Word
Handle

itemNumber;
ctlHandle;

NewList2 $161C

Resets the list control according to a specified list record. Your application passes the
parameters controlling the creation of the list on the stack, rather than in a list record (as
with NewList). The routine uses the listStart, listSize, and listRefparameters to reset the
list control.

Parameters

Stack before call

Previous contents

- drawProcPtr -

listStart

- listRef -

listRejDesc
listSize

- ct!Handle -

Long-Pointer to member-drawing routine; NIL for default routine

Word-Item number of first displayed list member

Long-Reference to list

Word-Descriptor for listRef
Word-Number of items in the list

Long-Handle of the list control returned by Newcont r ol2

<-SP

Stack after call

Previous contents

Errors

c

<-SP

None

e xtern pascal void NewLis t 2 (drawP rocPt r , listSt art ,
listRef , l i s t Re fDesc , listSize ,
ctlHandle);

Pointer drawProcPtr;
Word listStart, listRe f Desc , lis t Size ;
Long listRef;
Ha ndle ct l Handle ;

drawProcPtr

listStart

listRef

listRe.fDesc

Pointer to custom list member-drawing routine. NIL value causes the
List Manager to use its standard routine.

Item number of the first list item to display. A value of $FFFF tells the
List Manager to use the value currently stored in the list control record.
Never set this parameter to 0.

Reference (pointer, handle, or resource ID) to the list. The value of
listRe.fDesc governs how the List Manager interprets this field. A value
of $FFFFFFFF tells the List Manager to use the value currently stored in
the list control record.

Defines the type of reference stored in listRef

0 listRef reference is a pointer
1 listRef reference is a handle
2 listRef reference is a resource ID
$FFFF no change

+ Note: If you set either listRef or listRe.fDesc to -1, then you must set the other field to
the same value.

listSize Number of entries in the list. A value of $FFFF tells the List Manager to
use the value currently stored in the list control record.

NextMember2 $121C

Searches a specified list record, starting with a specified item, and returns the item
number corresponding to the next selected item. This call accepts an item number and
control handle as input. If you pass an item number of 0, the List Manager starts its search
from the beginning of the list.

Parameters

Stack before call

Previous contents
Space

itemNumber

- ct/Handle

Stack after call

Previous contents
itemNumber

-

Errors None

Word-Space for result

Word-Number of item at which search begins

Long-Handle of the list control

<-SP

Word-Item number of selected member; 0 if no more
<-SP

c extern pascal Word NextMember2(itemNumber,

ctlHandle) ;

Word
Handle

itemNumber;
ctlHandle;

ResetMember2 $131C

Searches a specified list control, starting with the first list member, and returns the item
number of the first selected member in the list. A list member is considered selected if bit
7 of the member's memFlag field is set to 1. If the user has not selected a member, then
the returned item number is 0. This call accepts a control handle as input.

Parameters

Stack before call

Previous contents
Space

ct/Handle

Stack after call

Previous contents
itemNumber

Errors None

Word-Space for result

Long-Handle of the list control

<-SP

Word-Item number of selected member; 0 if no more
<-SP

c e xtern pascal Word ResetMember2 (ctlHandle);

Handle ctlHandle;

SelectMember2 $141C

Selects a specified member, deselects any other selected members of the list, and scrolls
the list display so that the specified member is at the top of the display. This call accepts
a control handle and an item number as input.

Parameters

Stack before call

Previous contents
itemNumber

ct/Handle

Stack after call

Previous contents

Errors None

Word-Item number of member to select

Long-Handle of the list control

<-SP

<-SP

c extern pascal void SelectMember2(itemNumber,
ctlHandle);

Word
Handle

itemNumber;
ctlHandle;

SortList2 $151C

Alphabetizes a specified list by rearranging the array of member records. This call accepts
a control handle and a pointer to a custom comparison routine as input.

Parameters

Stack before call

Previous contents

comparePtr

ct/Handle

Stack after call

Previous contents

Errors None

Long-Pointer to comparison routine; NIL for standard compare

Long-Handle of the list control

<-SP

<-SP

c extern pascal void SortList2(comparePtr, ctlHandle);

Pointer
Handle

comparePtr;
ctlHandle;

Chapter 36 Memory Manager Update

This chapter documents new features of the Memory Manager. The
complete reference to the Memory Manager is in Volume 1, Chapter 12 of
the Apple JIGS Toolbox Reference.

Error correction

Figure 12-7 on page 12-10 of Volume 1 of the Toolbox Reference shows the low-order bit of
the user ID as reserved. This is not correct. The figure should show that the rna in I o field
comprises bits 0-7 and that the rna in I o value of $00 is reserved.

Clarification

The Toolbox Reference documentation of the setHandleSize call ($1902) includes the
statement, "If you need more room to lengthen a block, you may compact memory or
purge blocks." This is misleading. In fact, to satisfy a request the Memory Manager will
compact memory or purge blocks to free sufficient contiguous memory. Therefore, the
sentence should read, "If your request requires more memory than is available, the Memory
Manager may compact memory or purge blocks, as needed."

New features of the Memory Manager

The Memory Manager allocates handles much faster than before. The Memory Manager
remembers the last handle allocated and starts its search for new memory from that
location, shortening allocation time.

Out-of-memory queue

The out-of-memory queue allows application code to recover gracefully from low-
memory conditions in the system. The out-of-memory queue consists of a series of out-
of-memory routines, which are created and installed by application programs. When the
Memory Manager cannot create a handle from memory currently available, it calls each of
the out-of-memory routines. These routines can then either free memory that is not crucial
to the function of an application or notify the application to tell the user to save and exit.

When the Memory Manager encounters a low-memory condition, it performs the following
steps:
1. Invokes each out-of-memory routine until a routine reports that it has freed enough

memory to satisfy the request. If a routine does free enough memory, the Memory
Manager then allocates the handle and returns control to the calling application.

2. Compacts memory and retries the allocation. If the allocation is successful, the
Memory Manager returns control to the calling application.

3. Purges level 3 handles. If this frees enough memory, the Memory Manager compacts
memory, allocates the handle, and returns to the calling application.

4. Purges level 2 handles. If this frees enough memory, the Memory Manager compacts
memory, allocates the handle, and returns to the calling application.

5. Purges level 1 handles. If this frees enough memory, the Memory Manager compacts
memory, allocates the handle, and returns to the calling application.

6. Again invokes each out-of-memory routine. If a routine frees enough memory, the
Memory Manager allocates the handle and returns to the application. Otherwise, the
Memory Manager reports an out-of-memory condition to the application.

Note that the Memory Manager may invoke an out-of-memory routine twice during the
same low-memory condition. In the invocation parameter block for an out-of-memory
routine, the Memory Manager passes a flag indicating whether this is the first or second
time through the out-of-memory queue. By examining this flag, routines can react
differently based upon the urgency of the low-memory condition.

Any application, desk accessory, or initialization resource that installs an out-of-memory
routine must also remove that routine from the out-of-memory queue. Add routines to the
queue with the AddToOOMQueue tool call; remove them with the
RemoveFromOOMQueue tool call.

Out-of-memory routines may use any Memory Manager tool call. However, routines issuing
calls that allocate memory (such as NewHandl e) should reserve the neeped memory at
initialization, so that the space will be available during a low-memory condition. For
example, if you want your out-of-memory routine to save some user data to disk before
purging a memory block, your application should reserve enough memory for the file open
before installing the routine. When the routine gains control, it can then free the reserved
memory, issue the file system calls, and purge the unneeded application memory without
creating a recursive low-memory condition. See the code example (shown in "Out-of-
Memory Routine Example" later in this chapter) for sample application and out-of-
memory routine code.

An out-of-memory routine must be preceded by a header formatted as shown in
Figure 36-1.

• Figure 36-1 Out-of-memory routine header

$00

$04
$06

-
-

Reserved

version

signature

-- Long-Used by system as link to next queue item -
- Word-Must be set to 0
- Word-Header signature, to ensure integrity-set to SA55A

version Allows the system to discriminate between current and future types of
out-of-memory routines. Must be set to 0.

signature Used by the system to ensure that the header is well formed. The value
of this field must be $A55A.

The out-of-memory routine code must immediately follow the signature word. If the
Memory Manager finds an invalid header for any out-of-memory routine, it terminates
with a system death error code of $0209.

When the out-of-memory routine gets control, the Memory Manager will have formatted
the input stack as follows:

Previous contents

- Space

- bytesNeeded

stage

- RTLAddr

-

-

-

Long-Space for result

Long-Number of bytes the Memory Manager needs

Word-Flag word indicating stage of low-memory condition

3 bytes-Return address

<-SP

stage Indicates the stage of the low-memory condition. This flag allows the
routine to determine whether this is the first or second invocation for
this condition. If the field is set to 0, then this is the first invocation,
and the Memory Manager has not done anything else. If the field is set
to 1, then this is the second invocation for this low-memory
condition, and the Memory Manager reports an out-of-memory
condition to the calling application if it cannot find enough memory
to satisfy the request.

The out-of-memory routine must strip off the input parameters and return the number of
bytes freed in the space provided. On exit, therefore, the routine should format the stack
as follows:

Previous contents

- amountFreed -

RTLAddr

Long-Number of bytes of memory freed by routine

3 bytes-Return address

<-SP

Out-of-memory routine example

The following code example has two parts: the first shows how your application can install
a routine in the out-of-memory queue; the second is a sample out-of-memory routine.

first allocate a handle with enough memory for our low-memory exit
this example will use a 16k handle

ph a
ph a
PushLong #$4000
PushWord MyiD
PushWord #0
PushLong #0

NewHandle
PullLong ResvHand

PushLong #MyOOMRtn
_AddToOOMQueue

stz OOMFlag

room for result

size of handle
my applications ID
no bits set, unlocked and movable
address (not used)

and pull off the reserve handle

address of the OOM header

zero our low-memory indicator

Note that this application maintains the OOMF lag field in its global storage area.

The following is the actual out-of-memory queue entry. It has been written for the MPW™
Apple IIGS assembler.

; This is the OOMQueue header for our routine.

MyOOMRtn Record
dc.L 0
dc.W 0
dc.W $A55A
EndR

used by queue manager
OOMEntry version
queue entry signature

Now for my out-of- memory routine.

MyOOM proc

First set up the equates for the stack frame passed to us by the
memory mgr.

RTLAdr equ 1 return address we will go back to
Stage equ RTLAdr+3 indicates when ca l led
BytesNeeded equ Stage+2 number of bytes the mem mgr needs
Result equ BytesNeeded+4 return number of bytes freed

Before we start we should zero out the result.

lda #0
sta Result,s
sta Resu l t+2 , s

zero the result on the stack

Since this routine can be called before and after purging data
we want to wait till the memory manager has purged everything it can
before we panic. So the first th i ng we do is test the stage.

lda Stage,s
beq OOMEnd

get the passed stage
if 0 then don't free anything

Now that we know that the memory manager has tried everything else,
we test to see if we have done this before by testing
the OOMFlag.

lda >OOMFlag
bne OOMEnd

must use long address DB=unknown
if nonzero then memory already free

Since we know that we have not freed the reserve memory yet,
we will do so now and set the flag.

PushLong >ResvHand
_DisposeHandle

lda #$FFFF
sta >OOMFlag

lda #$4000
sta Result,s

handle to our reserve space
and dispose of it

now set our flag to true
so that the event loop knows low mem

and signal the memory manager how
much mem we freed

Now return to the memory manager first adjusting the stack to remove
the

OOMEnd

passed params.

LongA Off
SEP #$20

pla
ply

plx
plx
plx

phy
ph a
Long A On
REP #$20

RTL

turn on 8-bit accumulator

load the return address for safe
keeping f o r a sec

now pull off 6 bytes of parameters

put the r e turn a ddr b ack

turn on 16-bit accumulator

and return

New Memory Manager calls

The new Memory Manager call RealFreeMem is designed to provide accurate
information about available memory. Other new Memory Manager calls support the out-
of-memory queue.

AddToOOMQueue $OC02

Adds the specified out-of-memory routine to the head of the out-of-memory queue. The
input routine pointer should contain the address of the routine header block.

Parameters

Stack before call

Previous contents

headerPtr

Stack after call

Previous contents

Errors $0381

Long-Pointer to out-of-memory routine

<-SP

<-SP

invalidTag Correct signature value not found
in header.

c extern pascal void AddToOOMQueue(headerPtr);

Pointer headerPtr;

RealFreeMem $2F02

Returns the number of bytes in memory that are free, plus the number that could be made
free by purging. The FreeMem routine returns only the number of bytes that are actually
free, ignoring memory that is occupied by unlocked purgeable blocks. Since unlocked
blocks of allocated memory can be freed by purging, FreeMem does not provide an
accurate picture of the memory that is actually available. RealF reeMem provides a more
accurate value.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

freeBytes

Errors None

Long-Space for result

<-SP

Long-Number of available bytes in memory

<-SP

c extern pascal Long RealFreeMem();

RemoveFromOOMQueue $OD02

Removes the specified out-of-memory routine from the queue as described earlier (see
"Out-of-Memory Queue" earlier in this chapter). The headerPtr parameter should contain
the address of the routine header block.

Parameters

Stack before call

Previous contents

headerPtr

Stack after call
Previous contents

Errors $0381

$0380

Long-Pointer to out-of-memory routine

<-SP

<-SP

invalidTag

notinList

Correct signature value not found
in header.
Specified routine not found in
queue.

c extern pascal void RemoveFromOOMQueue(headerPtr);

Pointer headerPtr;

Chapter 37 Menu Manager Update

This chapter documents new features of the Menu Manager. The
complete reference to the Menu Manager is in Volume 1, Chapter 13 of
the Apple JIGS Toolbox Reference.

Error corrections

This section documents errors in Chapter 13, "Menu Manager," in Volume 1 of the Toolbox
Reference.
• Part of the description of the setSysBar tool call (pages 13-3 and 13-86) in Volume 1

of the Toolbox Reference is incorrect. It includes the mistaken statement that, after an
application issues this call, the new system menu bar becomes the current menu bar. In
reality, your application must issue the setMenuBar tool call to make the new menu
bar the current menu bar.

• In the definition of the menu bar record (pages 13-17 and 13-18), Volume 1 of the
Toolbox Reference shows that bits 0-5 of the ct lF lag field are used to indicate the
starting position of the first title in the menu bar. This is incorrect. The c t 1 Hi 1 it e
field defines the starting position of the first title. Note further that the entire
ctlHilite field is used in this manner. The documented purpose of the ctlHilite
field (number of highlighted titles) is not supported by the menu bar record.

• The descriptions for the MenuKey and MenuSelect tool calls are incorrect. The calls
do not return selection status information in the when field of the event record.
Rather, these calls both return selection status information in the TaskData field of
the task record.

Clarifications

The following items provide additional information about features previously described
in Volume 1 of the Toolbox Reference.
• The SetBarCol ors tool call changes the color table for all menu bars in a window. If

you want to use separate color tables for different menu bars, your application must
build a menu bar color table and modify the ct lColor field of the appropriate
control record to point to this custom color table. See "SetBarColor" in Chapter 13,
"Menu Manager," in Volume 1 of the Toolbox Reference for the format and contents of a
menu bar color table.

• The description of the InsertMenu tool call should also note that your application
must call FixMenuBar before calling DrawMenuBar to display the modified menu bar.

• The description of the InitPalette tool call in the Toolbox Reference should also
note that the call changes color tables 1 through 6 to correspond to the colors needed
for drawing the Apple logo in its standard colors.

• The CalcMenuSize call uses the newWidth and newHeight parameters to compute
the size of a menu. These parameters may contain the width and height of the menu or
may contain the values $0000 or $FFFF. A value of $0000 tells Ca lcMenu Size to
calculate the parameter automatically. A value of $FFFF tells it to calculate the
parameter only if the current setting is 0.
These are the effects of all three uses:
o Pass the new value. The value passed determines the size of the resulting menu.

Use this method when you need a menu of a specific size.
o Pass $0000. The size value is automatically computed. This option is useful if

commands are added or deleted, resulting in an incorrect size. The height and
width of the menu can be automatically adjusted by calling c a 1 c Me nus i z e with
new Width and newHeight equal to $0000.

o Pass $FFFF. The width and height of a menu are 0 when it is created.
FixMenuBar calls CalcMenuSize with newWidthand newHeightequal to $FFFF
to calculate the sizes of those menus with heights and widths of 0.

• To provide the user with a consistent visual interface, you should always pad your
menu titles with leading and trailing space characters. The Apple IlGS Finder™ uses two
spaces.

New features of the Menu Manager

This section lists several new features of the Menu Manager and clarifies some information
given previously.
• Menus in windows can now display the Apple character (ASCII $14), although not as a

multicolored image.
• The color of the menu outline is now also used for lines separating commands.
• The NewMenuBar call automatically sets bit 31 of the ctlOwner field in the menu bar

record to 1, if the designated menu bar is a window menu bar (the value passed for the
window is not 0).

• The default position of the first menu title in a menu bar is 10 pixels from the left edge
of the screen in 640 mode; in 320 mode the title is indented 5 pixels.

• The Menu Manager's justification procedures adjust menu bars in windows. Menu titles
are moved to the left if they would otherwise appear to the right of the right edge of
the menu bar.

• The default menu bar has the following coordinates: top = 0; left = 0; height = 13;
width = the width of the screen.

• MenuShutDown does not return an error if the Menu Manager has already been
shut down.

• Your application can now create empty menus. To create an empty menu, set the first
byte in the first menu line item to either NULL ($00) or Return ($0D), signifying the end
of the menu definition. Here's an example:

dc.b '$$Empty Menu \Nl ',$00 menu title and ID
dc.b $00

Or, using a menu template:
Empt yMenu

dc.W 0
dc .W 1
dc .W 0
dc.L Title
dc.L $00000000

Title str 'Empty Menu'

first character in first
item to null (or return)
indicates end of menu def

version
menu id
menu flag
menu t itle
indicates end of item list

• The Menu Manager now correctly supports outline and shadow text styles. As a result,
the existing Toolbox Reference description of the setMitemStyle tool call and the
menu text style word defined in that description are now correct.
In addition, the Menu Manager now supports two new special characters for menu
definition:

0 Outline the text
S Shadow the text

Other special characters are listed on page 13-14 of Volume 1 of the Toolbox Reference.
Note that this feature requires the QuickDraw II Auxiliary Tool Set.

• Menus now scroll up or down if their contents do not fit on the screen. Scrollable menus
have an arrow at the top and/or bottom, indicating in which directions the menu is
scrollable. See Figure 37-1.
The arrow indicator is not highlighted, but the menu contents scroll when the user drags
onto the arrow indicator. When the previously hidden contents are displayed, the
indicator disappears.
Menus scroll at two speeds, depending on what part of the indicator is dragged. If the
user drags within the first five pixels of an indicator, scrolling occurs at slow speed.
Dragging anywhere beyond this point results in fast scrolling.

• Figure 37-1 Scrolling menus with indicator at bottom

2400
4800
9600 ...

2400

4900
9600

19200

+ Note: If your application defines menus within a movable window, dragging that
window close to the bottom of the screen may force some of the menus to be
scrollable. If there is not enough room for three visible items (up and down indicators
and one menu item), then the menu drops below the visible screen area.

• The menu record has been slightly modified. The first Item and numOfit ems byte
fields have been combined into a single word field, numOfitems, at offset $0C into
the record. This field specifies the number of items in the menu.

• Bit 8 of the flag field in the menu record is now defined as the alwaysCallmChoose
flag. When this flag is set to 1, the Menu Manager calls the mChoose routine in the
defProc for a custom menu even when the pointer is not in the menu rectangle. This
feature supports tear-off menus.

• Keyboard equivalents and check marks now appear in plain text regardless of the style
of the associated menu item.

• The Menu Manager can now handle large fonts in menus.
• The Menu Manager GetMenuTitle and GetMitem tool calls can now return pointers,

handles, or resource IDs, depending on how the menu data was originally specified to
the NewMenu tool call. The type of reference you use when you specify data for the
Menu Manager governs how that data is later accessed.

Menu caching

The current version of the Menu Manager introduces new menu caching features. Menu
caching provides faster display of menus under certain circumstances. When a menu is
drawn on the screen, the area of the screen that it covers-is copied into a buffer. When the
menu disappears from the screen, the contents of the saved buffer are copied back to the
screen.

With the menu caching feature, when a saved screen image is copied back to the screen,
the menu that disappears from the screen is copied into the buffer. In other words, the
Menu Manager swaps the menu image with the screen image. Therefore, the next time that
menu is pulled down, the Menu Manager can copy it from the buffer instead of drawing a
new image.

If the menu image changes-for example, if a command is disabled or the items on the
menu change-then the cached image is inaccurate, and the Menu Manager must redraw
the menu. When a menu image does not change, however, the menu bar can respond to the
user more quickly.

Menu caching should not increase memory requirements, because menu images are
purgeable when not displayed on the screen.

This menu caching scheme should work properly with all existing standard menus. You will
have to alter custom menus, however, so that they can take advantage of menu caching.
Custom menus will still function normally as long as they do not change the menu record
directly, but they will not be able to take advantage of the menu caching scheme to speed
display.

Because caching does not work with menus in windows, the InsertMenu call
automatically disables caching for such menus.

Caching with custom menus

Bit 3 of the menuF lag field in a menu record indicates whether the definition procedure
of a menu knows about caching. A value of 1 indicates that the menu in question is
cacheable. A custom menu that uses caching must define a menu record that sets this flag
and allocates an extra field, a handle to the cache in which the menu image will be stored,
as shown in Figure 37-2.

• Figure 37-2 Menu record layout for cached menu

$00
$02
$04
$06

$0A
$0B
$0C
$0E
$10

$14

1-

I-

I-

1-
I-
1-

I-

I-

1-
I-
I-

I-
I-
I-

menuiD

menuWidth

menuHeight

men uP roc

menuFlag
rnenuRes

numOfitems

titleWidth

titleName

menuCache

-
-
-

-
-

--
-

Word- Menu's ID number
Word- Width of menu
Word-Height of menu

Long-Pointer to menu definition procedure

Byte-Flags (bit 3 set to 1 for cached menus)
Byte-Reserved
Word-Number of menu items
Word-Width of title

Long-Pointer to title string of menu

Long-Handle to cache for menu image

Pop-up menus

The Menu Manager now supports pop-up menus. Pop-up menus exist in a window, not in
the menu bar. Figure 37-3 shows a window with pop-up menus. The screen representation
of a pop-up menu is a box with a drop shadow that is one pixel thick. When the user clicks
inside the pop-up box, the menu appears, with the current value highlighted under the
arrow, as shown in Figure 37-4. If the menu has a title, the title is highlighted whenever the
menu is visible.

Pop-up menus work in the same way as other menus: the user can move the pointer in the
menu, select an item by positioning the pointer over it and clicking, or not select any item
by dragging the pointer outside the menu. Pop-up menus support scrolling, if it is needed
to view all the menu items. Pop-up menus are useful for setting values or choosing from
lists of related values.

Pop-up menus support most of the standard features and calls available with standard
menus:
• Pop-up menu items support keystroke equivalents, which are displayed in the menu

(Apple logo with character). Note that if a pop-up keystroke equivalent conflicts with
a standard menu equivalent, the pop-up menu may not receive the keystroke.
TaskMaster passes the keystroke to the system first, unless the tmcont rolKey flag in
the wmTaskMask field of the task record is set to 0 (do not pass keys to controls in
the active window).

• Pop-up menu items can be dimmed to indicate that they are disabled and cannot be
chosen.

• Each item in a pop-up menu can have its own text style.

• Figure 37-3 Window with pop-up menus

Pop-up title Pop-up box

Modem setup ...

Baud rate: ._l_3_o_o ___

Bits per character:._!

Stop bits: I 1 ----
Parity: I Euen

(Cancel) C OK)

• Figure 37-4 Dragging through a pop-up menu

600 CY
1200 C H
2400
4800
9600

Pop-up menu scrolling options

Inverted
pop-up title

110
300
600

1200
2400

There are two types of pop-up menus, which are distinguished by their support for
scrolling: type 1 pop-up menus and type 2 pop-up menus.

The Menu Manager determines the size of the rectangle in which to draw a type 1 pop-up
menu according to the relative position of the current item in the menu and the window
constraints of the pop-up menu (see Figure 37-5). The Menu Manager draws the pop-up
menu with the current item highlighted and positioned adjacent to the menu title. The
menu extends up and down only as far as is necessary to display the remaining items in
each direction, and indicators as appropriate, within the boundary rectangle for the
window. Therefore, with type 1 pop-up menus, it is possible to obtain a display such as
that shown in Figure 37-5, in which the user can display only a single item.

Pop-up item

I

• Figure 37-5 Type 1 pop-up menu

I •
I :fillli HiiCH 9600

Bits per character:! 7

Stop bits: I 1

Parity:! Euen

(Cancel) OK

When the Menu Manager needs to make a type 2 pop-up menu scrollable, it creates a menu
that is long enough to receive all the menu items, within the bounds of the screen. In this
manner, the user never sees a menu with too few item lines to be useful. Figure 37-6 shows
how the Baud Rate pop-up menu from Figure 37-5 would appear if it had been defined as a
type 2 pop-up menu.

• Figure 37-6 Type 2 pop-up menu

.....
9600

.....
4800

9600

By dragging over the scroll indicator, the user can eventually scroll into view all menu items
that will fit on the screen, regardless of the menu's proximity to the top or bottom of
screen.

How to use pop-up menus

Your application can define pop-up menus in two ways, as controls or menus.

If your application defines its pop-up menus as controls, using the Newcont rol2 Control
Manager tool call, then drawing, updating, resizing, and tracking are all handled by
TaskMaster and TrackControl automatically. TaskMaster also deals with any
keystroke equivalents you have defined. See Chapter 28, "Control Manager Update," for
details on how to create a pop-up control template and invoke Newcontrol2 .

By contrast, if your application defines its pop-up menus as menus, it gains flexibility but
has more responsibility. Your application must draw the pop-up box and title, highlight
the title, recognize mouse-down events in the pop-up box or title, and change the current
entry in response to user choices. Your application must also deal with keystroke
equivalents. Once your program detects a mouse-down event inside the pop-up box or
title, it must call PopUpMenuSelect to display the menu and track the mouse. This call
returns the item ID of the selected item (0 if none is selected). Your program can use this
item ID to determine which item was selected. Your program must pass this item ID to
PopUpMenuSelect the next time the user clicks in the pop-up menu.

+ Note: When you create a pop-up control with NewControl2, calling setMitem,
SetMitem2,SetMitemName,SetMitemName2,SetMitemStyle,
SetMenuTitle, or SetMenuTitle2 does not change the appearance of the pop-up
menu until it is redrawn. If your application changes the pop-up title, the system does
not change the control rectangle to account for a length change. To resize the control
rectangle, your program must dispose of the existing control and create a new one
with NewControl2.

Table 37-llists the Menu Manager routines that work with pop-up menus. Refer to the call
descriptions in either the Toolbox Reference or in this chapter for details on each call.

• Table 37-1 Menu Manager calls that work with pop-up menus

CalcMenuSize SetMenuBar

CheckMitem SetMenuFlag

CountMitems SetMenuiD

DeleteMitem SetMenuTitle

DisableMitem SetMenuTitle2

EnableMitem SetMitem

GetMenuFlag SetMitem2
GetMenuTitle SetMitemBlink
GetMHandle SetMitemFlag

GetMitem SetMitemMark

GetMitemF lag SetMitemName

GetMitemMark SetMitemName2

GetMitemSt y le SetMitemStyle

GetMTitleWidth SetMTitleWidth

InsertMitem

Each of the routines listed in Table 37-1 operates on the current menu bar. If your
application defines its pop-up menus using NewControl2 , then it must make the pop-up
menu the current menu by issuing the setMenuBar call and specifying the control handle
for the pop-up menu as input.

If your application uses PopUpMenuSelect rather than NewControl2, then it must
insert the pop-up menu into the current menu bar by calling InsertMenu, issue the
desired Menu Manager tool calls, then remove the pop-up menu from the menu bar by
calling DeleteMenu. Your program passes the handle to the pop-up menu to each of
these routines.

New Menu Manager data structures

The new Menu Manager calls allow you to define menus using templates, analogous to the
templates used by the Newcontrol2 Control Manager tool call. These templates can be
stored in fixed memory, in allocated memory referenced by handle, or in resources. When
using any of these new calls, your program must specify the input data with the
appropriate templates. The type of reference you use when you specify data for the Menu
Manager governs how that data is later accessed. For example, if you originally specify the
title for a menu with a handle, then anytime the system returns a reference to that menu
title, the reference is a handle; similarly, your application must always refer to that title
with a handle.

+ Note: Any strings referenced in these data structure descriptions are Pascal strings.
Note as well that all flag bit definitions are backward compatible. That is, no existing
bits have been redefined. In addition, the menuF lag field is now defined as a word
rather than a byte. The byte following the old menuF lag byte, menuRes, was never
used and has been collapsed into me nuFlag .

Menu item template

Figure 37-7 shows the template that defines the characteristics of a menu item. Use it with
new Menu Manager calls that require menu item templates.

• Figure 37-7 MenuitemTemplate layout

soo
$02
$04
$05
$06
$08

SOA

-
-

1-

1-

1-
1-
1-

version

version

itemiD

itemChar
i temAltCha r

itemCheck

itemFlag

itemTitleRef

-

-

-
-

Word-Version number for template; must be set to 0
Word-Menu item ID
Byte-Primary keystroke equivalent character
Byte-Alternate keystroke equivalent character
Word-Character code for checked items
Word- Menu item flag word

Long- Reference to item title string

Identifies the version of the menu item template. The Menu Manager
uses this field to distinguish between different revisions of the menu
item template. Must be set to 0.

itemiD Unique identifier for the menu item. See Chapter 13, "Menu Manager,"
in Volume 1 of the Toolbox Reference for information on valid values
for itemiD.

itemChar,itemAltChar

itemCheck

it emF lag

titleRefType

Reserved
s h adow

·outline

Reserved
disabled

divider

XOR

Reserved
underline

These fields define the keystroke equivalents for the menu item. The
user can select the menu item by pressing the Command key along with
the key corresponding to one of these fields. Typically, these fields
contain the uppercase and lowercase ASCII codes for a particular
character. If you have only a single key equivalence, set both fields
with that value.

Defines the character to be displayed next to the item when it is
checked.

Bit flags controlling the display attributes of the menu item. Valid
values for itemFlag are

bits 15-14

bit 13
bit 12

bit 11

bits 10-8
bit 7

bit 6

bit 5

bits 4-3
bit 2

Defines the type of reference in itemTitleRef.
00 = Reference is by pointer
01 = Reference is by handle
10 =Reference is by resource ID
11 = Invalid value
Must be set to 0.
Indicates item shadowing.
0 =No shadow
1 =Shadow
Indicates item outlining.
0 = Not outlined
1 =Outlined
Must be set to 0.
Enables or disables the menu item.
0 = Item enabled
1 = Item disabled
Controls drawing divider below item.
0 = No divider bar
1 = Divider bar
Controls how highlighting is performed.
0 = Do not use XOR to highlight item
1 = Use XOR to highlight item
Must be set to 0.
Controls item underlining.
0 = Do not underline item
1 =Underline item

italic bit 1

bold bit 0

Indicates whether item is italicized.
0 = Not italicized
1 = Italicized
Indicates whether item is in boldface.
0 =Not bold
1 =Bold

itemTitleRef Reference to the title string of the menu item. The titleRefType
bits in itemFlag indicate whether itemTitleRef contains a
pointer, a handle, or a resource ID. If itemTitleRef is a pointer,
then the title string must be a Pascal string. Otherwise, the Menu
Manager can retrieve the string length from control information in the
handle.

Menu template

Figure 37-8 shows the menu template, which defines the characteristics of a menu,
including its menu item references. Use it with new Menu Manager calls that require menu
templates.

• Figure 37-8 MenuTemplate layout

- version

- menuiD

-
-

Word- Version number for template; must be set to 0
Word-Menu ID

sao
S02
S04 - menuFlag - Word-Menu flag word
$06 - -- menuTitleRef - Long-Reference to menu title string - -
SOA: itemRefArray n longs-References to menu items

version

menu iD

menuFlag

titleRefType

itemRefType

Reserved

Identifies the version of the menu template. The Menu Manager uses
this field to distinguish between different revisions of the template.
Must be set to 0.

Unique identifier for the menu. See Chapter 13, "Menu Manager," in
Volume 1 of the Toolbox Reference for information on valid values for
menuiD.

Bit flags controlling the display and processing attributes of the menu.
Valid values for me nuF lag are

bits 15-14 Defines the type of reference in menuTitleRef.
00 = Reference is by pointer
01 = Reference is by handle
10 =Reference is by resource ID
11 = Invalid value

bits 13-12 Defines the type of reference in each entry of
itemRefArray (all array entries must be of the same
type).
00 = References are pointers
01 = References are handles
10 = References are resource IDs
11 = Invalid value

bits 11-9 Must be set to 0.

alwaysCallmChoose

disabled

Reserved
XOR

custom

allowCache

Reserved

bit 8

bit 7

bit 6
bit 5

bit 4

bit 3

bits 2-0

Causes the Menu Manager to call a custom menu
det'Proc mChoose routine even when the pointer is
not in the menu rectangle (supports tear-off menus).
0 =Do not always call mChoose routine
1 =Always call mChoose routine
Enables or disables the menu.
0 = Menu enabled
1 = Menu disabled
Must be set to 0.
Controls how selection highlighting is performed.
0 = Do not use XOR to highlight item
1 = Use XOR to highlight item
Indicates whether the menu is custom or standard.
0 = Standard menu
1 = Custom menu
Controls menu caching.
0 = Do not cache menu
1 = Menu caching allowed
Must be set to 0.

menuTitleRef Reference to the title string of the menu. The titleRefType bits in
menuFlag indicate whether menuTitleRef contains a pointer, a
handle, or a resource ID. If me nuT it l eRe f is a pointer, then the title
string must be a Pascal string. Otherwise, the Menu Manager can
retrieve the string length from control information in the handle.

itemRefArray Array of references to the items in the menu. The itemRefType bits
in menuFlag indicate whether the entries in the array are pointers,
handles, or resource IDs. Note that all array entries must contain the
same reference type. The last entry in the array must be set to
$00000000.

Menu bar template

Figure 37-9 shows the menu bar template, which defines the characteristics of a menu bar,
including its menu references. Use it with new Menu Manager calls that require menu bar
templates.

• Figure 37-9 MenuBarTemplate layout

$00 - version - Word-Version number for template; must be set to 0
1----------l $02 - menuBarFlag - Word-Menu bar flag word

$04 .
menuRefArray n longs-References to menus

version Identifies the version of the menu bar template. The Menu Manager
uses this field to distinguish between different revisions of the
template. Must be set to 0.

menuBarFlag Bit flags controlling the display and processing attributes of the menu
bar. Valid values for menuBarFlag are

menuRefType

Reserved

bits 15-14 Defines the type of reference in each entry of
menuRefArray (all array entries must be of the same
type).
00 = References are pointers
01 = References are handles
10 =References are resource IDs
11 = Invalid value

bits 13-0 Must be set to 0.

menuRefArray Array of references to the menus in the menu bar. The menuRefType
bits in menuBarFlag indicate whether the entries in the array are
pointers, handles, or resource IDs. Note that all array entries must
contain the same reference type. The last entry in the array must be set
to $00000000.

New Menu Manager calls

The following sections discuss the various new Menu Manager tool calls in alphabetical
order by call name.

GetPopUpDefProc $3BOF

Returns a pointer to the control definition procedure for pop-up menus. Your application
should not issue this call.

The system issues this call during Control Manager startup processing to obtain the
address of the pop-up menu definition procedure.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

defProcPtr

Errors None

Long-Space for result

<-SP

Long-Pointer to control procedure

<-SP

c extern pascal Pointer GetPopUpDefProc();

HideMenuBar $450F

Hides the system menu bar by adding the menu bar to the desktop region. This call sets
the invisible flag for the menu bar, resets scan lines 2 through 9 (which had been changed
to display the colors of the Apple logo), and refreshes the desktop. The system ignores all
subsequent calls to DrawMenuBar or FlashMenuBar, since the menu bar is invisible.
Use the ShowMenuBar call to make the menu bar visible again.

Parameters

Stack before call

Previous contents
<-SP

Stack after call

Previous contents
<-SP

Errors None

c extern pascal void HideMenuBar();

InsertMitem2 $3FOF

Inserts an item into a menu after a specified menu item or at the top of the menu. This call
accepts a menu item template as its input specification.

Parameters

Stack before call

Previous contents

refDesc

- menultemTRef -

insertAfter

Word-Defines type of reference in menultemTRef

Long-Reference to menu item template

Word-ID of item after which to insert this item
Word-ID of menu into which to insert this item menuNumber
<-SP

Stack after call

Previous contents

Errors

c

refDesc

insertAfter

<-SP

None

extern pascal void InsertMitem2(refDesc,
insertAfter, menuNumber);

Word refDesc, insertAfter, menuNumber;
Long menuitemTRef;

Indicates the type of reference stored in menuTRef Valid values are

0 Reference is by pointer
1 Reference is by handle
2 Reference is by resource ID

Specifies ID of item after which the new item is to be inserted. To
insert the new item at the top of the menu, set this field to 0. To insert
the new item at the end, set this field to $FFFF.

NewMenu2 $3EOF

Allocates space for a menu list and its items. This call accepts a menu template as its input
specification.

Parameters

Stack before call

Previous contents

- Space - Long-Space for result

rejDesc

- menuTRef -

Word-Defines type of reference in menuTRef

Long-Reference to menu template

<-SP

Stack after call

Previous contents

- menuHandle - Long-Handle for new menu

<-SP

Errors None

c e xt ern pascal Long NewMe nu2 (refDesc , me nuTRef);

Word refDesc;
Long menuTRef;

rejDesc Indicates the type of reference stored in menuTRef Valid values are

0 Reference is by pointer
1 Reference is by handle
2 Reference is by resource ID

NewMenuBar2 $430F

Creates a menu bar using a menu bar template as its input specification.

The upper-left comer of the default menu bar matches the port and is as wide as the
screen. The bar is 13 pixels high.

Note that passing a NIL value for the windowPtr parameter creates a menu bar that is not
inside a window but does not automatically replace the current menu bar. To create a new
system menu bar and make it current, you must issue the following tool calls:

NewMenuBar2 ()
SetSysBar
SetMenuBar (NIL)

/* use menuBarHandle from NewMenuBar2 */

Parameters

Stack before call

Previous contents

- Space -

refDesc

- menuBarTRef -

- windowPtr -

Long-Space for result

Word-Defines type of reference in menuBarTRef

Long-Reference to menu bar template

Long-Pointer to port for window; NIL for system menu bar

<-SP

Stack after call

Previous contents

- menuBarHandle- Long-Handle for new menu bar

<-SP

Errors None

c extern pascal Long NewMenuBar2(refDesc, menuBarTRef,
windowPtr);

Word refDesc;
Long menuBarTRef;
Pointer windowPtr;

refDesc Indicates the type of reference stored in menuBarTRef Valid values are

0 Reference is by pointer
1 Reference is by handle
2 Reference is by resource ID

PopUpMenuSelect $3COF

Draws highlighted titles and handles user interaction when the user clicks on a pop-up menu.

You specify the pop-up menu with the handle returned by NewMenu or NewMenu2.

+ Note: The system draws the pop-up menu into the port that is active at the time you
issue the PopUpMenuselect call. The menu is constrained by the intersection of the
port rectangle, the visible region, and the clip region. By altering any of these, you can
change the constraints on the menu.

Parameters

Stack before call

Previous contents

Space
selection

currentLeft
currentTop

flag

- menuHandle

Stack after call

Previous contents

item!D

-

Word-Space for result (item ID)
Word-Item ID of current menu selection
Word-Global coordinate value of left edge of pop-up menu
Word-Global coordinate value of top of current selection
Word-Flag word for call

Long-Menu handle

<-SP

Word-Item ID of new selection (0 if none)
<-SP

Errors

c

selection

None

extern pascal Word PopUpMenuSelect(selection,
currentLeft, currentTop, flag,
menuHandle);

Word selection, currentLeft, currentTop, flag;
Long menuHandle;

Defines the current selection in the menu. Set to 0 if no item is
currently selected. The initial value is the default value for the menu,
and it is displayed in the pop-up rectangle of unselected menus. You
specify an item by its ID, that is, its relative position within the array
of items for the menu. If you pass an invalid item ID, then no item is
displayed in the pop-up rectangle.

currentLeft, currentTop

flag

Reserved
type2

Reserved

menuHandle

Define the left edge of the pop-up menu and the top of the current
selection, in global coordinates.

Flag word for the tool call. Bits are defined as follows:

bits 15-7
bit 6

bits 5-0

Must be set to 0.
Indicates whether pop-up menu is type 1 or type 2.
0 = Type 1 menu (no white space added)
1 = Type 2 menu (white space added)
Must be set to 0.

The handle of the pop-up menu. The Menu Manager returned this value
to your application from NewMenu or NewMenu2.

SetMenuTitle2 $400F

Specifies the title of a menu. The reference to the title string can be by pointer, handle, or
resource ID.

Parameters

Stack before call

Previous contents
rejDesc

- titleRef -

men uNum

Word-Defines type of reference in titleRef

Long-Reference to title string of menu

Word-ID of menu to receive title
<-SP

Stack after call

Previous contents

Errors

c

rejDesc

<-SP

None

extern pascal void SetMenuTitle2(refDesc , titleRef,
menuNum);

Word refDesc, menuNum;
Long menuitemTRef;

Indicates the type of reference stored in titleRef Valid values are

0 Reference is by pointer
1 Reference is by handle
2 Reference is by resource ID

SetMitem2 $410F

Specifies the name of a menu item. This call accepts a menu item template as its input
specification.

Parameters

Stack before call

Previous contents

rejDesc Word-Defines type of reference in menultemTRef

- menultemTRef - Long-Reference to menu item template

Word-ID of item to be changed
<-SP

menultem!D

Stack after call

Previous contents

Errors

c

refDesc

menultem!D

<-SP

None

extern pascal void SetMitem2 (refDesc , menuitemTRef ,
menuitemiD) ;

Word refDesc, menui temiD;
Long menuitemTRef;

Indicates the type of reference stored in menultemTRef Valid
values are

0 Reference is by pointer
1 Reference is by handle
2 Reference is by resource ID

Specifies the menu item to be changed. Note that you can change the
item ID by specifying a different item number in the menu item
template. The Menu Manager applies the item ID from the template to
the item to be changed.

SetMitemName2 $420F

Specifies the name of a menu item. The reference to the title string can be by pointer,
handle, or resource ID.

Parameters

Stack before call

Previous contents
refDesc

- titleRef -

menultem!D

Word-Defines type of reference in titleRef

Long-Reference to menu item title

Word-ID of item to be changed
<-SP

Stack after call

Previous contents

Errors

c

rejDesc

<-SP

None

extern pascal void SetMitemName2(refDesc , titleRef,
menuitemiD);

Word refDesc, menuNum;
Long titleRef;

Indicates the type of reference stored in titleRef Valid values are

0 Reference is by pointer
1 Reference is by handle
2 Reference is by resource ID

ShowMenuBar $460F

Reveals the system menu bar by subtracting the menu bar from the desktop region. This
call also resets the invisible flag for the menu bar, resets scan lines 2 through 9 (to
display the colors of the Apple logo), and draws the menu. Use the HideMenuBar call to
make the menu bar invisible.

Parameters

Stack before call

Previous contents
<-SP

Stack after call

Previous contents

<-SP

Errors None

c extern pascal void ShowMenuBar();

Chapter 38 MIDI Tool Set

This chapter documents the MIDI Tool Set. This is a new tool set; it was
not documented in the Apple JIGS Toolbox Reference.

About the MIDI Tool Set

The Apple IIGS MIDI Tool Set provides a software interface between the Apple IIGS and
external synthesizers and other musical equipment that accepts the Musical Instrument
Digital Interface (MIDI) protocol. The MIDI Tool Set has the following key attributes:
• Hardware independence

The MIDI Tool Set is hardware-independent. It uses a separately loaded device driver
to communicate with the hardware interface that connects the Apple IIGS to an
external MIDI device. This driver-based design frees applications from referencing the
specifics of the MIDI hardware interface. Applications that use the MIDI Tool Set can
therefore run on Apple IIGS systems with different MIDI interfaces.

• Interrupt-driven operation
The MIDI Tool Set is interrupt-driven and can transfer MIDI data in the background
while other tasks take place in the foreground. For example, it is possible to write an
application that enables a user to edit MIDI data while simultaneously playing a
sequence. MIDI applications that use the tool set need not provide interrupt handlers
since they are provided by the MIDI Tool Set.

• Accurate clock
The MIDI Tool Set provides a high-speed, high-resolution clock. If an application
needs precise timing, it can use the MIDI Tool Set clock to provide time-stamps
accurate to within 76 microseconds. The clock uses one of the Digital Oscillator
Chlp (DOC) generators and the first 256 bytes of DOC RAM. When the clock is not in
use, the MIDI Tool Set releases the DOC generator and RAM. See Chapter 47, "Sound
Tool Set Update," for more information about the Digital Oscillator Chip.

• Fast response
The tool set automatically polls for incoming MIDI data and receives the data without
loss at speeds up to one byte per 320 microseconds-as long as interrupts are never
disabled for more than 270 microseconds. If your application must disable interrupts
for longer than this interval, you can use the MidiinputPoll vector to retrieve
incoming data explicitly.

• Multiple formats
The tool set supports two input and output formats. When the application retrieves
MIDI data in raw mode, it receives the data bytes exactly as they appear in the input
stream, but with length and time-stamp data added. In packet mode, the MIDI Tool
Set expects to receive MIDI data packets but performs some additional cleanup to
make those packets complete.

• Error checks
The MIDI Tool Set provides error-checking and reports a variety of error conditions,
including reception of MIDI packets with an incorrect number of data bytes.

• Real-time and background commands
The MIDI Tool Set can report real-time commands to an application immediately. This
feature enables the application to process real-time commands as they occur, for
interactive control of musical instruments.

• Intelligent NoteOff commands
The tool set's NoteOff commands can turn off all notes that are playing or only those it
has turned on. They can do this on all channels or only on specified channels.

• Variable clock frequency
You can change the time base for MIDI time-stamps, thereby varying the tempo of
played data (see the description of the miSetFreq function of the MidiClock tool
call later in this chapter for more information).

• User-defmable service routines
You can enhance the functionality provided by the MIDI Tool Set by providing your
own service routines. The MIDI Tool Set calls these routines under a variety of
circumstances. See "MIDI Tool Set Service Routines" later in this chapter for more
information.

+ Note: The Note Synthesizer, the Note Sequencer, and the MIDI Tool Set refer to the
software tools provided with the Apple IIGS, not to any separate instrument or
device. The MIDI tools are software tools for use in controlling external instruments,
which may be connected through a MIDI interface device.

The following list summarizes the capabilities of the MIDI Tool Set. The tool calls are
grouped according to function. Later sections of this chapter discuss the tool set in
greater detail and define the precise syntax of the MIDI tool calls.

Routine

Housekeeping routines

MidiBootinit

MidiStartUp
Midi ShutDown

Midi Version

Description

Called only by the Tool Locator-must not be called by
an application
Initializes the MIDI Tool Set for use by an application
Informs the MIDI Tool Set that an application is
finished using its tool calls
Returns the MIDI Tool Set version number

MidiReset

MidiStatus

MIDI tool calls

MidiClock
MidiControl
MidiDevice
Midi Info

MidiReadPacket

MidiWritePacket

Called only when the system is reset-must not be called
by an application
Returns the operational status of the MIDI Tool Set

Controls operation of the optional time-stamp clock
Performs 18 MIDI control functions
Selects, loads, and unloads MIDI device drivers
Returns current operational information about the MIDI
Tool Set
Reads MIDI data from the tool set's internal buffers
into a specified memory location
Queues MIDI data for output

Using the MIDI Tool Set

This section describes the basic steps involved in using the MIDI Tool Set to interact with
external musical instruments. Following the initial overview discussion are several code
examples demonstrating techniques for performing many key MIDI Tool Set functions.

Figure 38-1 illustrates some of the relationships between a typical MIDI application, the
MIDI Tool Set, MIDI device drivers, and the Apple MIDI Interface card.

• Figure 38-1 MIDI application environment

Application

MidiWritePacket MidiReadPac ket

Internal 1/0 buffers

Output
buffering routine

1

I
I
I

MIDI character
output routine

L _____ _
Device driver

Input
buffering routine

------,
I

MIDI character
input routine

I
I
I

______ _j

External MIDI device

Before using the MIDI Tool Set, you must install the tool set and its associated drivers
using the Installer utility.

To use the MIDI Tool Set, you must first start it up with the MidiStartUp call. Then you
must load a MIDI device driver by using the MidiDevice call. The tool set loads the
driver separately so that its operation is independent of the particular MIDI interface that
connects the Apple IIGS to the external MIDI instrument.

MIDI device drivers are normally found in the */SYSTEWDRIVERS directory, and their
names end with the suffix .MIDI. Apple currently supplies the APPLE.MIDI and
CARD6850.MIDI drivers; the first driver supports the Apple MIDI Interface, and the
second supports plug-in 6850-based Asynchronous Communications Interface
Adapter (ACIA) cards.

After the application loads the MIDI device driver, it must make the MidiCont ro 1 call
to allocate input and output buffers for MidiReadPacket and MidiWritePacket
calls. Note that if the application never calls MidiReadPacket, it need not allocate an
input buffer, and if it never calls MidiWritePacket, it need not allocate an output
buffer.

The MIDI Tool Set is now ready to send or receive MIDI data. However, the application
must explicitly start the MIDI input and output processes, using the appropriate options
of the MidiCont rol tool call.

The application can start or stop MIDI data transfer at any time. Once started, the input
and output processes continue without interruption until stopped by the application.
They run in the background so that other processes, such as interaction with the user, can
run unimpeded in the foreground. The tool set enables the programmer to switch the
processes on or off at any time because MIDI data transfer incurs considerable processor
overhead, and a programmer might want to disable it under some circumstances to
improve the application's performance on other tasks.

The MIDI input process fills the MIDI Tool Set's input buffer with data packets as they
arrive. The application must periodically retrieve the data from the buffer by making calls
to MidiReadPacket. Similarly, the MIDI output process transmits the data placed in
the tool set's output buffer by the application with calls to MidiWritePacket. The
Apple IIGS can simultaneously send and receive MIDI data packets.

When you use the MidiClock call to start the MIDI Tool Set's clock, the tool set begins
stamping each data packet with a time value it retrieves from its clock process. This
clock is actually a DOC generator that the MIDI Tool Set allocates with the Note
Synthesizer AllocGen call. Start the MIDI clock before starting the input process,
because the MidiClock function disables interrupts long enough to interfere with
correct reception of MIDI data.

The clock is very fast; a tick occurs every 76 microseconds at the default settings. The
tool set marks MIDI data packets with a time-stamp consisting of the value of the clock
when they are received. MidiWritePacket receives a packet with a time-stamp
attached and writes it to the output buffer, and the MIDI Tool Set transfers the packet
only when the current value of the clock is greater than the output data 's time-stamp.

If the clock is stopped, MIDI input data receive time-stamps equal to the value of the
stopped clock, and only MIDI data with time-stamps less than the value of the stopped
clock can· be sent.

If you want to read and write MIDI packets in real time, in response to user events, you do
not need the MIDI clock.

You can start or stop the MIDI clock or the input and output processes at any time, so
you can budget processor resources intelligently. The input, output, and clock processes
consume a great deal of processor time and limit the processing power available to tasks
that execute during their operation.

Tool dependencies

The MIDI Tool Set uses Note Synthesizer calls to allocate a DOC generator for its clock. If
your application does not use the MIDI Tool Set clock, you need not start up the Note
Synthesizer to use the MIDI Tool Set. If your application is not using the MIDI Tool Set
clock or Midi Input Poll, then it can start up and shut down the Note Synthesizer as
needed, but the Note Synthesizer must be started up if you use the MIDI clock or the
MidiinputPoll vector.

The Sound Tool Set must be started before your application can use the MIDI Tool Set.

Refer to Chapter 51, "Tool Locator Update," for information about the specific version
requirements the MIDI Tool Set has for other tool sets.

MIDI packet format

MIDI data sent and received using the MIDI Tool Set must always be formatted into valid
MIDI Tool Set packets. The tool set handles this for incoming data; your application must
format outgoing data according to the packet layout described in this section.

The first 2 bytes of a packet contain a byte count of the MIDI data in the packet, plus the
4-byte time-stamp. The next 4 bytes are the time-stamp, and they are equal to the value of
the MIDI clock at the time the packet was received. The remaining bytes are the actual
MIDI data.

$00 Ft-----le_n_9t_h--l-l Word-Packet length (excluding length)

SOZ · timestamp : 4 Bytes-MIDI time-stamp

$06 ° MIDI Data : Array-MIDI data (variable length)

A NoteOn command might look like this (in hexadecimal notation):

07 00 24 63 03 00 90 40 sc
The first 2 bytes are the length in bytes of the MIDI data packet plus the 4-byte
time-stamp. In this case the MIDI packet is 3 bytes, so the length value is 7. The next 4
bytes contain the time-stamp, and the MIDI data follows.

The result of a MidiReadPacket call on this packet is 9-the 7 bytes counted in the
length word plus the 2 bytes of the length word itself.

If the current input mode is MIDI packet mode, the first byte of the MIDI data is always a
MIDI status byte. If a received MIDI packet does not contain a valid status byte, the
MIDI Tool Set inserts the current status at the beginning of the packet. The
MidiReadPac ket call never returns real-time commands in packet mode; they are always
passed to the real-time command routine installed by MidiControl. See "MIDI Tool Set
Service Routines" later in this chapter for more information.

In raw mode the MIDI data is returned to the application just as it is received from the
MIDI interface. The MIDI protocol allows MIDI devices to omit the status byte unless it
has changed from its last value. The status byte may appear anywhere in the stream
because it may be received only when it changes. MIDI devices may also omit the $F7
value at the end of a MIDI system-exclusive command; the $F7 value always appears at the
end of a system-exclusive command in packet mode, but not necessarily in raw mode.

In raw mode, the maximum number of MIDI data bytes that Mi d iReadPac ket passes to
the application is 4. Therefore, the longest packet it can pass is 10 bytes in length-2
length bytes, 4 time-stamp bytes, and 4 MIDI data bytes. In packet mode, system-
exclusive packets may be of any length.

The MidiReadPacket call also returns real-time commands in raw mode unless a real-
time vector is installed. See "MidiCo nt rol $0920" later in this chapter for more
information.

MIDI Tool Set service routines

Your program can contain service routines that the MIDI Tool Set invokes under certain
circumstances. By providing these service routines, you can tailor the functionality of the
MIDI Tool Set to fit your particular needs. The MIDI Tool Set calls these routines under
the following circumstances:

Real-time command routine

Real-time error routine

Input data routine

Output data routine

Called when the MIDI Tool Set receives a MIDI real-time
command. Use the miSetRTVec function of the
Midi con t r o 1 tool call to set the vector to this
routine.

Called when the MIDI Tool Set encounters an error
during real-time processing. Use the miSetErrVec
function of the MidiControl tool call to set the
vector to this routine.

Called by the MIDI Tool Set to handle MIDI data
received during processing of an miSt art Input
function request. You set the vector to this routine
when you issue the miStartinput function of the
MidiControl tool call.

Called by the MIDI Tool Set to obtain data to send
during processing of an miStartOutput function
request. You set the vector to this routine when you
issue the miStartOutput function of the
MidiControl tool call.

The following sections discuss each of these service routines in more detail.

Real-time command routine

When the MIDI Tool Set receives MIDI real-time commands, it calls this service routine.
The service routine must not enable interrupts, and if it runs longer than 300 microseconds,
it must call the MIDI polling vector at least every 270 microseconds. The only MIDI calls
that the service routine should make are MidiReadPacket and MidiWritePacket.

Real-time MIDI data is passed to the service routine in the low-order byte of a word on
the stack above the RTL address. This word must remain on the stack. When the service
routine is called, the data bank register is set to the value it had when MidiStartup was
called, but the direct-page register points to one of the MIDI Tool Set's direct pages and
must be preserved.

You set the vector to this routine with the mise t R TVe c function of the Midi con t r o 1
tool call.

Parameters

Stack before call

Previous contents
MID !Data

- returnAddress -

Stack after call

Previous contents
MID/Data

- returnAddress -

Word-Low-order byte contains MIDI real-time data

3 bytes-RTL address

<-SP

Word-Low-order byte contains MIDI real-time data

3 bytes-RTL address

<-SP

Real-time error routine

The MIDI Tool Set calls this routine in the event of a MIDI real-time error. This service
routine must not enable interrupts. If it runs longer than 300 microseconds, it must call the
MIDI polling vector at least every 270 microseconds. It can call MidiWr i tePacket and
MidiReadPacket, but no other MIDI tool calls.

The error is passed to the service routine in a word on the stack above the RTL address.
This word must remain on the stack. When the service routine is called, the data bank
register is set to the value it had when MidiStartup was called,_ but the direct-page
register points to one of the MIDI Tool Set's direct pages and must be preserved. When
the MIDI Tool Set invokes this routine, there is very little space left on the stack.

Use the miSetErrvec function of the Midi Cont ro l tool call to set the vector to this
routine.

The service routine may receive the following error codes:

Parameters

Stack before call

$200A
$2084

Previous contents
MID/Error

- returnAddress -

Stack after call

Previous contents
MID/Error

- returnAddress -

miClockErr
miDevNoConnect

Word-Error code

3 bytes-RTL address

<-SP

Word-Error code

3 bytes-R T L address

<-SP

MIDI clock wrapped to 0.
No connection to MIDI
interface.

Input data routine

The MIDI Tool Set calls this routine during processing of the miStartinput function of
the MidiControl tool call when the first packet is available in a previously empty input
buffer. The service routine must not enable interrupts, and if it runs longer than 300
microseconds, it must call Midiinputpoll at least every 270 microseconds. The only
MIDI calls that the service routine should make are MidiReadPacket and
MidiWritePacket.

When the service routine is called, the data bank register is set to the value it had when
Midi Start Up was called, but the direct-page register points to one of the MIDI Tool
Set's direct pages and must be preserved. The system calls the service routine immediately
if a complete MIDI packet is available in the input buffer when the mist art Input
function of the MidiCont rol tool call is made.

You set the vector to this routine when you issue the miStart Input function of the
MidiControl tool call.

Parameters

Stack before call

Previous contents

- returnAddress -

Stack after call

Previous contents

- returnAddress -

3 bytes-RTL address

<-SP

3 bytes-RTL address

<-SP

Output data routine

The MIDI Tool Set calls this routine during processing of the mistartoutput function
of the MidiControl tool call when the output buffer becomes completely empty. The
service routine must not enable interrupts, and if it runs longer than 300 microseconds, it
must call the MIDI polling vector at least every 270 microseconds. The only MIDI calls that
the service routine should make are MidiReadPacket and MidiWritePacket .

When the service routine is called, the data bank register is set to the value it had when
Midi Start Up was called, but the direct-page register points to one of the MIDI Tool
Set's direct pages and must be preserved.

You set the vector to this routine when you issue the mista r tout put function of the
Midi Control tool call.

Parameters

Stack before call

Previous contents

- returnAddress -

Stack after call

Previous contents

- returnAddress -

3 bytes-R T L address

<-SP

3 bytes- RTL address

<-SP

Starting up the MIDI Tool Set

The MidiStartup call takes two arguments: a word containing the Memory Manager ID
number of the application that is starting up the tools and a word containing the address
of a three-page memory block in bank zero. The three-page block is used as the MIDI
Tool Set's direct-page area, and it must be aligned on a page boundary.

I*
*
*
*
*
*
*
*I

I*

StartupTools ()

Starts up the MIDI Tool Set and all of the tools it
r equires . For r eadability , this subroutine i s presented
without the error-checking that would normally be performed
after each tool is started (call?).

direct page use *I
#define DPForSound OxOOOO I* needs 1 *I
#define DPForMidi Ox0100 I* needs 3 *I
#define DPForEv entMgr Ox0400 I* needs 1 *I
#define To talDP Ox0500 I* total direct page use

static word AppiD;

void
StartupTools ()
{

static s truct
word Numbe r OfTools ;
word Tabl e [5*2];

I* Apps Memory Manage r ID

*I

*I

ToolTable = {
5, I* numbe.r of t ools in lis t *I

} ;

1, Ox0101,
2 , Ox0101,
8 , miSTVer ,
25 , miNSVer ,
miToolNum, Ox OOOO

MiDriverinfo Driverinfo ;
MiBufinfo InBufinfo,OutBufinfo;
handle ZeroPageHandl e ;
ptr ZeroPagePtr ;

I*
I*
I*
I*
I*

I*
I*

Tool Locator *I
Memory Manager *I
Sound Tools *I
Note Synt hesizer *I
Midi Too l Set *I

device driver info *I
I IO buffer i nformat i on *I

TLStartUp ();
AppiD = MMStartUp();

I* Tool Locator startup *I
I* Memory Manager startup *I

I* allocate direct pages for tools *I
ZeroPageHandle = NewHandle((long) TotalDP,

(word) Appro,
(word) attrBank I attrPage 1 attrFixed

I attrLocked,
(long) 0);

ZeroPagePtr = *ZeroPageHandle;

EMStartUp((word) (ZeroPagePtr + DPForEventMgr), (word) 0,
(word) 0,
(word) 640,
(word) 0,
(word) 200,
(word) Appro) ;

LoadTools(&ToolTable); I* load RAM-based tools *I

SoundStartUp ((word) (ZeroPagePtr + DPForSound));
NSStartUp(O, OL);
MidiStartUp (AppiD, (word) (ZeroPagePtr + DPForMidi));

Driverinfo.slot = 2;
Driverinfo.external = 0;

I* load device driver *I
I* use the modem port *I
I* internal slot *I

strcpy(Driverinfo.file, "\p*lsystemldriverslapple.midi");
MidiDevice(miLoadDrvr, &Driverlnfo);

I* allocate input and output
InBufinfo.bufSize 0;
InBufinfo.address = 0;

buffers *I

MidiControl(miSetinBuf, &InBufinfo);

I* default size *I
I* MIDI Tool Set will

allocate the buffer and
set its actual address *I

OutBufinfo.bufSize 0; I* default size *I
OutBufinfo.address = 0; I* MIDI Tool Set will

MidiControl(miSetOutBuf, &OutBufinfo);
I* end of StartupTools() *I

allocate the buffer and
set its actual address *I

Reading time-stamped MIDI data

This example shows a simple method of recording time-stamped MIDI data as it is
received. The example records incoming data until any key is pressed or until the MIDI
Tool Set's internal data buffer is full, whichever comes first. The routine's data buffer
should not be confused with the MIDI Tool Set's input buffer, which you allocate for MIDI
data by using the MidiControl call.

I*
* RecordMIDI ()

*
*
*
*
*I

Record incoming MIDI data with time-stamps into the
global b u ffe r " AppMID I Buffer" unti l the buffer is
fu l l or the user presses the mouse button .

#define BufSize (20 * 1024)
char SeqBuffer[BufSize] ;
i nt Bu f i ndex = 0 ;

void
RecordMIDI ()
{

int PacketSize; I* size of packet read *I

MidiContro l (miFlushinput, 01); I* discard contents
of input buffer *I

MidiClock(miSetFreq,01); I* set clock to
default frequency *I

MidiC l ock (miSetClock , 01) ; I* clear t he clock *I
MidiCl ock(miStartClock, 01); /* start t he clock *I
MidiControl (miSetinMode,

(long)miPacketMode); I* set MIDI input mode *I
MidiControl (miStartinput , OL); I* start MIDI input *I

Bufindex = 0;

while (Button(O) == 0) I* until presses mouse *I

PacketSize = MidiReadPacket(SeqBuffer+Bufindex,
BufSize-Bufindex);

if (_toolErr)

if (_toolErr miArrayErr)

break; I* our buffer is full *I

else

printf("MIDI error $%4.4X\n",_toolErr);

else

Bufindex += PacketSize;

I* stop recording *I
MidiControl(miStopinput, 01);
MidiClock(miStopClock, 01);

I* show user recording statistics *I

I* stop MIDI input *I
I* stop the clock *I

printf("Bytes recorded: %d\n",Bufindex);
printf("Maximum bytes buffered: %ld\n",

Midiinfo(miMaxinChars));
I* end of RecordMIDI() *I

This example is a simple subroutine that continuously plays previously recorded time-stamped MIDI
data until the user presses any key:

I*
* PlayMIDI()

*
*
*
*
* I

This routine repeatedly plays the MIDI data that was
previously recorded and stored i nto the globa l buffer
"SeqBuffer" until the user presses the mouse button .

void
PlayMIDI ()
{

long FirstTime;
int Playindex ;

if (Bufindex == 0)

printf("You must reco rd or load MIDI data firs t\n") ;
return;

I* fi nd t h e first time-stamp in the sequence a nd subtract
a little */
First Time = * ((long *) (SeqBuffer+2));
if (FirstTime > Ox2 00)

FirstTime - = Ox2 00;
e l se

FirstTime = 0;

MidiControl (miFlushOutput, (long) (O xFFFF << 1 6));
I * empty output buffer *I

MidiClock(miSetClock ,FirstTime) ; I* set c l ock before
first t ime-stamp* /

MidiClock(miStartClock,OL); /* start clock */
MidiControl(miSetOutMode, (long) miPacketMode) ;

/* set output mode * /
MidiControl(miStartOutput,OL); I* start output *I
P l ay index = 0 ;

I* Repeatedly play song *I
while (Button(O) == 0) I* until presses mouse *I

Playindex += MidiWritePacket(SeqBuffer + Playindex);
I* write next packet *I

if (Playindex == Bufindex) I* time to repeat? *I

while Button(O) == 0 && Midiinfo(miOutputChars))
I* wait for the song to end *I

if 1(Button(0) II !LoopPlayback)
break;

MidiClock(miSetClock,FirstTime);

Playindex = 0;

MidiControl(miFlushOutput,OxlOL);

MidiClock(miStopClock,OL);
MidiControl(miStopOutput,OL);
I* end of PlayMIDI() *I

I* restart clock *I

I* flush output buffer
& turn all notes off *I

I* stop t he clock *I
I* stop output *I

Fast access to MIDI Tool Set routines

Because of the tight timing requirements of MIDI processing, there are many time-critical
situations in which the overhead of a tool call can cause problems. When you need to save
as much time as possible, you may want to call MIDI Tool Set routines directly and avoid
the time needed to make a tool call. The following example demonstrates how to do this
in 65816 assembly language. This example can save approximately 85 microseconds per
call. This time saving can be very helpful in an application that makes numerous calls to
MidiReadPacket and MidiWritePacket.

look up the address of MidiWritePacket (as an example)

pushlong #0
pushword #0
pushword #$0E20

GetFuncPtr
pla
sta MidiWriteAddr
pla
sta MidiWriteAddr+2

do this instead of MidiWritePacket

j sl MidiWriteGlue

space for result
system tool
tool and function number

save the address

IMPORTANT NOTE: The variable "MidiDP2 " must contain the
address of the second page of bank zero memory allocated f or
the MIDI Tool Set's direct page. If MidiStartUp is given
a starting address of X, then MidiDP2 = X + $100 .

MidiWriteGlue jsl MidiWriteGluel

rtl
MidiWriteGluel lda MidiWriteAddr+l

ph a

GlueReturn
MidiWriteAddr

phb
lda MidiWriteAddr
sta l,s
lda MidiDP2

rtl
ds 4

push an extra RTL
address

simulate a tool set call
to MidiWritePacket

the A register must
contain the address of
the MIDI Too l
Set's direct page address

MIDI application considerations

This section contains advice on a number of topics and is intended to help you create
more satisfying MIDI applications.

MIDI and AppleTalk

The MIDI Tool Set is not designed to operate with AppleTalk® enabled. The Apple IIGS is
not fast enough to process both AppleTalk interrupts and MIDI interrupts simultaneously.
If an application that uses the MIDI Tool Set runs with AppleTalk enabled, you should
expect occasional MIDI input errors and output delays. For most programs, even one
MIDI error is difficult to handle, so you should probably recommend that applications
that use the MIDI Tool Set not be used with AppleTalk enabled.

Disabling interrupts

Several tool calls that disable interrupts can cause loss of MIDI data. These include calls
that access the disk drives, Event Manager calls, and Dialog Manager calls.

The rate of MIDI data transfer leaves little margin for error in the MIDI Tool Set's
operation. The rate at which the tool set must retrieve MIDI data places great demands on
the system's computational resources. If possible, an application should avoid disabling
interrupts while reading MIDI data. If a program must disable interrupts while reading
MIDI data, it should not do so for longer than 270 microseconds.

In cases where compliance with these restrictions is impossible, you can use the
MidiinputPoll vector. This vector is provided for those applications that must
disable interrupts for dangerously long periods. To call MidiinputPoll, execute a JSL
to $E101B2. If the MIDI Tool Set has not been started up, or if the MIDI input process has
not been started, the vector will return immediately. Any MIDI data that was present on
the call to the vector will appear in the input buffer that you allocated with
MidiControl.

+ Note: If you need the values of the A, X, and Y registers, you must save them yourself
before calling the vector. The direct-page and data bank registers are preserved.
MidiinputPoll must be called only in full native mode.

.& Warning
•

Do not call Midiinputpoll before loading the MIDI Tool Set in a
system with a Sound Tool Set version earlier than 2.3 or system
software earlier than 4.0. Doing so will cause a system failure

If you use the Midi Inputpoll vector, you must ensure that it is called at least every 270
microseconds, or MIDI data may be lost. A call to the vector when no data is present
returns in from 8 to 30 microseconds, and when data is present the vector can take up to
450 microseconds, at 150 microseconds per character read.

You can call MidiReadPacket and MidiWritePacket inside interrupt-service
routines, because they perform polling automatically. Other tool sets do not perform
MIDI polling, so MIDI applications should not make calls to other tool sets in interrupt-
service routines.

A Warning Do not make MIDI Tool Set calls other than MidiReadPacket and
MidiWritePacket from interrupt-service routines. Doing so can
cause unpredictable system failure. ...

Whenever possible, you should use MIDI interface cards that support MIDI data
buffering. By storing some received data, these cards relieve the time constraints on your
application.

MIDI and other sound-related tool sets

If you use the recommended versions of the Note Synthesizer, Note Sequencer, and Sound
Tool Set (see Chapter 51, "Tool Locator Update," for details), these tool sets are fully
compatible with the MIDI Tool Set and do not cause MIDI data losses. It is possible to write
programs that use the Note Sequencer to play notes on the internal voices of the Apple IIGS
and on an external MIDI synthesizer while simultaneously accepting MIDI input from an
external keyboard and translating it to Note Synthesizer commands to play the notes.

The MIDI clock

This section discusses the technique currently used to generate MIDI time-stamps. Note
that this technique may not be used on future Apple IIGS machines. Any application that
employs a similar technique to implement timing may be incompatible with future
systems.

Properly time-stamping MIDI input data requires a clock with resolution better than one
millisecond. When a long stream of MIDI data is received in a short time period (such as
when the user plays a complex chord on a MIDI keyboard), each note must be accurately
time-stamped. However, the Apple IIGS cannot process interrupts quickly enough to
satisfy this requirement.

To provide a reasonable clock resolution, the Apple IIGS MIDI time-stamp is
implemented using one of the system's DOC generators. The MIDI tool set loads the DOC
with a 256-byte waveform consisting of consecutive values from $01 to $FF (followed by
an additional byte of $FF) and sets the DOC to play this waveform at zero volume. When a
MIDI character is received, the time-stamping routine uses the value from this DOC for
the low-order byte of the time-stamp. The system obtains the high-order 3 bytes from a
counter that is incremented each time·the DOC cycles through its waveform (once every
19.45 milliseconds at the default clock rate). This technique reduces the system interrupt
load to a manageable level while also providing sufficiently fine clock resolution to
process MIDI data correctly.

Because the MIDI clock is actually a DOC generator, you cannot use that generator while
the clock is running; under these circumstances, only 13 generators are available for general
use. The clock also uses the first 256 bytes of DOC RAM for its waveform, so running the
clock reduces the memory available for application waveforms. While the clock is running
you must not use the Sound Tool Set's free-form synthesizer (the FFStartSound call).
The frequency and duration of Sound Tool Set interrupts also interfere with the MIDI Tool
Set's ability to perform its services often enough to prevent data loss.

Input and output buffer sizing

You should adjust the MIDI input buffer size for the amount of data you can expect to
receive before the application processes it. Any process that competes with the
application for processor time, such as Note Synthesizer calls to play complex envelopes,
reduces the frequency at which the application can call MidiReadPacket and process
the data in the input buffer. If the input buffer fills before it can be processed, data will
be lost. Complex applications that use time-consuming tool calls therefore require large
input buffers.

You can estimate the size of the needed input buffer from the size of the largest MIDI
system-exclusive command you intend to receive. The default size of the input and
output buffers is 8 KB. This is the size of two very large system-exclusive packets. You
should choose a size that is large enough to accommodate two of the largest system-
exclusive packets you expect to receive so that the MIDI tools can receive one packet
and still have room for another. In packet mode, the MIDI Tool Set does not return a
packet until it has received all of it, and MIDI data may continue to arrive while the tool
set is returning the first packet.

The maximum buffer size is 32 KB, so your application may have to run the MIDI interface
in raw mode (rather than packet mode) to support system-exclusive messages longer than
16 KB.

You might want to keep statistics on the maximum number of data bytes in the input
buffer so that your application can adjust the input buffer size intelligently. Several MIDI
Tool Set calls return information you can use for this purpose; see "MIDI Tool Calls" later in
this chapter for more detailed information on data returned by MIDI tool calls (especially
the miMaxinChars and miMaxOutChars functions of the Midiinfo call).

Loss of MIDI data

The Apple 6850 driver was designed to work with nonbuffered interface cards. When you
use this driver and the desktop interface you may lose MIDI data. To avoid this data loss,
you can
• use a different, buffered 6850-based MIDI card along with a driver that supports

the card
• prevent the user from moving the cursor or making menu selections when your program

is recording MIDI data

Number of MIDI interfaces

Note that the Apple IIGS can support only a single MIDI interface at a time. If you try to
support more than one MIDI interface at the same time, you will lose MIDI data.

MIDI housekeeping calls

The following MIDI calls perform common tool set functions.

MidiBootinit $0120

Initializes the MIDI Tool Set; called only by the Tool Locator.

A. Warning

Parameters

Errors

c

An application must never make this call. .&

This call has no input or output parameters. The stack is unaffected.

None

extern pascal void MidiBootinit();

MidiStartUp $0220

Starts up the MIDI tools for use by an application. Applications should make this call
before any other calls to the MIDI tools. Normally an application must next call
MidiDevice to load a MIDI device driver, and then MIDIControl to allocate any
necessary input or output buffers.

Parameters

Stack before call

Previous contents
user/D

dPageAddr
Word-Application user ID (for the Memory Manager)
Word-Beginning of MIDI direct-page space
<-SP

Stack after call

Previous contents

Errors

c

dPageAddr

<-SP

$0812 noSAppinitErr The Sound Tool Set has not been
started up.

extern pascal void MidiStartUp(useriD , dPageAddr);

Word useriD , dPageAddr;

Must specify three pages of page-aligned direct-page space for the
MIDI tools.

MidiShutDown $0320

Shuts down the MIDI Tool Set. An application that uses the MIDI tools should make this call before
it quits. MidiShutDown deallocates the input and output buffers, stops the MIDI clock and
deallocates its generator, and shuts down the hardware interface. These actions take place
immediately, so the application should take any necessary steps to see that all MIDI output has
been sent before shutting down the tools (see the MidiControl call).

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

c extern pascal void MidiShutDown();

MidiVersion $0420

Returns the version number of the currently loaded MIDI tools. For information on the
format of the returned versionNum, see Appendix A, "Writing Your Own Tool Set," in
Volume 2 of the Toolbox Reference.

Parameters

Stack before call

Previous contents
Space

Stack after call

Previous contents
versionNum

Errors None

Word-Space for result
<-SP

Word-MIDI tools version number
<-SP

c e xtern pascal Word MidiVe rsion() ;

MidiReset $0520

Resets the MIDI tools; called by system reset.

This tool call causes the MIDI device driver reset routine to be invoked, allowing for
reset-specific processing that may differ from shutdown processing.

A Warning An application must never make this call. ...

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

c e xtern pascal void MidiReset();

MidiStatus $0620

Returns a Boolean value of TRUE if the MIDI tools are active and FALSE if they are not.

+ Note: If your program issues this call in assembly language, initialize the result space on
the stack to NIL. Upon return from MidiStat us, your program need only check the
value of the returned flag. If the MIDI Tool Set is not active, the returned value will be
FALSE (NIL).

Parameters

Stack before call

Previous contents
Space

Stack after call

Previous contents
activeF!ag

Errors None

Word-Space for result
<-SP

Word-Boolean; TRUE if the tool set is active
<-SP

c extern pascal Boo lean MidiStatus();

MIDI tool calls

All the MIDI Tool Set calls are new calls, added to the Toolbox since publication of the
first two volumes of the Apple JIGS Toolbox Reference.

The routines used to work with the MIDI Tool Set are MidiClock, Midicontrol,
MidiDevice, Midi Info, MidiReadPacket, and MidiWritePacket. Four of these
calls are multifunction calls, which perform different actions depending on a control
parameter passed to them. The workhorse of the group is MidiControl, which performs
18 different functions, depending on the control function parameter. The other
multipurpose calls are MidiDevice, MidiClock, and Midi Info.

MidiClock $OB20

Controls operation of the optional time-stamp clock. The clock ticks once every 76
microseconds with default settings, allowing MIDI data to be sent and received with
precise timing. The funcNum parameter specifies which clock function to perform, and
the arg parameter provides the argument to the selected function.

Parameters

Stack before call

Previous contents
funcNum Word-Specifies MidiClock function number

Long-Argument passed to MidiClock function arg

<-SP

Stack after call

Previous contents

Errors

c

funcNum

<-SP

See the MidiClock function descriptions below.

extern pascal void MidiClock(funcNum, arg);

Word funcNum;
Long arg;

Specifies the MidiClock function to be performed. Four different
functions are provided for clock control.

0 miSetClock
The value of arg becomes the new value of the time-stamp clock. The
most significant bit of the arg parameter must be set to 0. There is a limit
to the precision with which the clock can be set. The least significant
byte of the time-stamp clock will always be 0 if the clock is stopped. If
the clock is running, the value of the least significant byte will be
undefined for the purposes of this call. The result is that an application
can set the clock only to within 20 milliseconds of a particular value when
the clock frequency is set to its default value.

Errors None

1 miStartClock
Allocates a DOC generator, writes consecutive values from $01 through
$FF into the first page of the DOC RAM, and starts the clock. By default,
the clock starts counting at 0. If the application stops the clock and
restarts it, the clock starts with the same value it had when it stopped,
unless the value is changed with an miSetClock call. Note that only the
high-order 3 bytes are preserved; the low-order byte always starts at $01.
You should call miStartClock before miStartinput if you are using
time-stamps.

Start the MIDI clock before starting to receive or transmit MIDI data.
The process of starting the clock is time-consuming and disables
interrupts, and MIDI data could be lost if the clock is started while the
application is receiving a MIDI transmission. The Sound Tool Set and the
Note Synthesizer must be loaded and started up before this call is issued.

Errors

$0810 noDOCFndErr No DOC or DOC RAM was found.
$1921 nsNotAvail No DOC generator was available.
$1923 nsNot Ini t The Note Synthesizer was not started.

2 miStopClock
Stops the MIDI time-stamp clock and releases the DOC generator and its
associated RAM for use by the Note Synthesizer. The MIDI tools
time-stamp MIDI data received while the clock is stopped with the value
of the stopped clock in the high-order 3 bytes, and the low-order byte
set to $00. The MIDI tools will not send any output packets with
time-stamps greater than the value of the stopped clock until the clock is
restarted or reset.

Errors None

3 miSetFreq Sets the frequency for the MIDI time-stamp clock. The arg parameter
contains the number of clock ticks to be processed per second. Valid
values lie in the range from 1 to 65,535; a 0 value specifies the default
setting (13,160 ticks per second).

The clock frequency affects the rate of playback. Unless you intend to
vary the tempo during playback, be careful to set the clock frequency to
the same value that was used when the sequence was recorded.

See the Midi Info call for information about how to read the current
clock frequency and value.

Errors

$2009 miBadFreqErr Unable to set MIDI clock to the specified
frequency (use the Midi Info tool call to
get the current value).

MidiControl $0920

Performs 18 different control functions required by the MIDI Tool Set.

The funcNum parameter selects which function is to be performed, and the arg parameter
passes any argument required by that function.

Parameters

Stack before call

Previous contents

funcNum Word-Specifies MidiCont rol function number

arg Long-Argument passed to MidiControl function

<-SP

Stack after call

Previous contents

Errors

c

funcNum

0 miSetRTVec

<-SP

See the MidiControl function descriptions.

extern pascal void MidiControl(funcNum, arg);

Word funcNum;
Long arg;

Specifies the MidiControl function to be performed.

Sets the real-time vector. The arg parameter contains the address of a
service routine in the application. When the MIDI Tool Set receives MIDI
real-time commands, it calls this service routine. A value of 0 in this
parameter disables the service routine. See "MIDI Tool Set Service
Routines" earlier in this chapter for more information on the real-time
command routine.

Errors None

1 miSetErrVec

2 miSetinBuf

Sets the real-time error vector. The arg parameter contains the address of
a service routine in the application. The MIDI Tool Set calls this routine
in the event of a MIDI real-time error. A value of 0 in the parameter
disables the service routine. See "MIDI Tool Set Service Routines" earlier
in this chapter for more information on the real-time error routine.

Errors None

Sets the MIDI input buffer. The arg parameter contains a pointer to a
6-byte record. The fields of this record are

$00 t- butsize - Word-Size of input buffer (in bytes)
$02

1-- bufPtr - Long-Pointer to buffer
t- -

If the bu fPt r parameter is set to 0, the MIDI Tool Set will allocate the
input buffer. If the bu f size parameter is set to 0, the MIDI tools will
allocate a buffer 8 KB in size. Note that these parameters are
independent; your program may set either one of them to 0. If the
application allocates the buffer, it must be nonpurgeable, must exist in a
fixed location, and must not cross bank boundaries. The size must be
greater than or equal to 32 bytes and less than or equal to 32 KB.

Errors

$2002 miArrayErr
Memory Manager errors

Array was an invalid size.
Returned unchanged.

3 miSetOutBuf
Sets the MIDI output buffer. The arg parameter contains a pointer to a

6-byte record. The fields of this record are

$00 f- bufsize - Word-Size of output buffer (in bytes)
$02 r--,_------_-1

f- bufPtr - Long-Pointer to buffer
f- -

If the bufPtr parameter is set to 0, the MIDI Tool Set will allocate the
output buffer. If the bufSize parameter is set to 0, the MIDI Tool Set
will allocate a buffer 8 KB in size. Note that these parameters are
independent; your program may set either one of them to 0. If the
application allocates the buffer, it must be nonpurgeable, must be in a
fixed location, and must not cross bank boundaries. The size must be
greater than or equal to 32 bytes and less than or equal to 32 KB.

Errors

$2002 miArrayErr
Memory Manager errors

4 miStartinput

Array was an invalid size.
Returned unchanged.

Starts an interrupt-driven process that reads MIDI data into the MIDI
Tool Set's input buffer. Data being received when this call is made is
discarded until the first MIDI status byte is received. An application can
retrieve this data with a MidiReadPacket call. The arg parameter
contains the address of a service routine to be called when the first
packet is available in a previously empty input buffer. The system will call
the service routine immediately if a complete MIDI packet is available in
the input buffer when this function is called. A value of 0 disables this
service routine.

Errors

$2007 miNo BufErr No buffer allocated.
$200C miNoDev Err No device driver loaded.

5 miStartOutput
Starts an interrupt-driven process that writes application MIDI data to
the MIDI Tool Set's output buffer. Your application uses
MidiWritePacket calls to queue data to this process. The arg
parameter contains the address of a service routine called when the
output buffer becomes completely empty. A value of 0 disables this
service routine.

Errors

$2007 miNoBufErr No buffer allocated.
$200C miNoDevErr No device driver loaded.

6 miStopinput
Causes the MIDI Tool Set to ignore MIDI data until the next
miStartinput call.

Errors None

7 miStopOutput
Halts MIDI output until the next miStartOutput call.

Errors None

8 miFlushinput
Discards the contents of the current input buffer.

Errors

$2007 miNoBufErr No buffer allocated.

9 miFlushOutput
Discards the contents of the current output buffer. The arg parameter
selects the method.

arg value
$0000 ooxx

$0001 ooxx

$FFFFXXXX

Action
Wait for the current packet to finish transmission, then
turn off all notes that have not been turned off in channel
XX. If XX = $10, turn off notes in all channels.
Wait for current packet to finish transmission, then turn
off all possible notes (pitch $00 through $7F) in channel XX.
If XX= $10, turn off notes in all channels. Note that this
option may take several seconds to complete.
Discard the contents of the output buffer immediately
without turning off any notes.

Some synthesizers may require a short delay between the high-speed
NoteOff commands generated by this function. In such cases, use the
miSetDelay function of this tool call to control that delay. The
NoteOff side effect can be useful for shutting off notes.

Errors

$2005 miOutOffErr MIDI output disabled.
$2007 miNoBufErr No buffer allocated.

10 miFlushPacket
If there is a complete packet in the input buffer, this call discards that
packet. If no complete packet is available, this call does nothing. This
call is especially useful for discarding large system-exclusive packets that
are of no interest to your application.

Errors

$2007 miNoBufErr No buffer allocated.

11 miWaitOutput
Ceases execution until the output buffer becomes empty. This function
may never return if output is disabled.

Errors

$2007 miNoBufErr No buffer allocated.

12 miSetinMode
Set input mode. The arg parameter selects the input mode.

arg value
0

1

Input mode
Raw mode. MIDI data is converted to packets, with
length-of-packet and time-stamp bytes added to the front
of each packet.
Packet mode. Packet mode is the default mode. MIDI
data is converted to packets, with length-of-packet and
time-stamp bytes added to the front of each packet.
Running status bytes, which MIDI may discard to
abbreviate transmitted data, are restored.

The input buffer is cleared when this call is made because the input buffer
cannot contain data in more than one format at a time.

Errors None

13 miSetOutMode
The arg parameter selects the output mode.

arg value
0

1

Input mode
Raw mode. This mode is very similar to packet mode, but
no attempt is made to keep track of which notes are on.
Running status optimization is still performed unless
explicitly disabled by miOutputstat. Because no record
is kept of which notes are on, all notes that are turned on
must be explicitly turned off.
Packet mode. Packet mode is the default mode. Your
application must format output data into valid MIDI
packets (see "MIDI Packet Format" earlier in this chapter
for details). The MIDI tools track NoteOn and NoteOff
commands.

Your program should wait for a clear output buffer before switching
modes. If the output buffer contains mixed-mode data, the MIDI tools
may not track NoteOn and NoteOff commands correctly.

Errors None

14 miClrNotePad
Erases the MIDI Tool Set's record of which notes are on and which are
off. This call causes the tool set's record to show that all notes are off.

Errors None

15 miSetDelay
Sets a delay value for use with MIDI synthesizers that cannot process

MIDI data at the full MIDI transfer rate. The low word of arg specifies a
minimum delay between packet sends in units of 76 microseconds. The
delay mechanism is most effective when the MIDI Tool Set clock is
running, because it can use the clock to time the delay. If the clock is not
running, the tool set must use code loops to create the delay. This
process is inherently less accurate and uses more processor time. The
default delay value is 0, or no delay.

Many synthesizers may need a delay value to process the many
high-speed NoteOff commands generated by the miF 1 ushOutput
function correctly.

Errors None

16 miOutputStat
Enables or disables transmission of standard MIDI running status. When
running status is enabled, MIDI status bytes are sent only when they change
or are otherwise absolutely necessary. This optimization speeds
transmission and reduces CPU overhead but can cause malfunctions if the
synthesizer and computer disagree on the current value of the status byte.

The low word of arg contains the enable/disable flag.

$0000 Disable running status
$0001 Enable running status

Whatever the value of the parameter, the next MIDI packet after this call
contains a status byte. For this reason, it can be useful to make this call
periodically to ensure that the Apple IIGS and the external device agree
about the current value of the status byte.

Errors None

17 miignoreSysEx
Specifies whether to ignore MIDI system-exclusive data. System-exclusive
packets begin with the value $FO. If the application configures the MIDI
Tool Set to ignore system-exclusive packets, the system will not buffer
them, and the application will not receive them. The arg parameter
contains a flag indicating how to process system-exclusive data.

$0000
$0001

Errors

Ignore system-exclusive data
Accept system-exclusive data (default)

None

MidiDevice $OA20

Allows an application to select, load, and unload device drivers for use with the tools. The
MidiDevice tool call loads and unloads MIDI device drivers, which allow the MIDI tools
to drive a particular MIDI interface. The present version of the MIDI Tool Set supports
the Apple MIDI Interface and ACIA 6850 MIDI Interface cards.

The call interprets the driverlnfo parameter as the address of the driver to be loaded. The
funcNum parameter specifies whether the driver is to be loaded or unloaded.

Parameters

Stack before call

Previous contents
funcNum Word-Specifies Mid iDevice function number

Long-Pointer to device driver information driverlnfo

<-SP

Stack after call

Previous contents
<-SP

Errors See the MidiDevice function descriptions.

c extern pascal void MidiDevice(funcNum, driverinfo) ;

Word funcNum;
Pointer driver info ;

funcNum Specifies the Midioev i ce function to be performed.

0 Not yet implemented

1 miLoadDrvr
Loads the specified device driver into memory, after shutting down and
unloading any previously loaded device drivers. It then initializes the
newly loaded driver. The driverlnfo parameter points to a device driver
record, which specifies a device driver to be loaded.

Errors

$2008 miDriverErr Specified device driver invalid.
$2080 miDevNotAvail MIDI interface not available.
$2081 miDevSlotBusy Specified slot not selected in Control

Panel.
$2082 miDevBusy MIDI interface already in use.
$2084 miDevNoConnect No connection to MIDI interface.
$2086 miDevVersion ROM version or machine type

incompatible with device driver.
$2087 miDevintHndlr Conflicting interrupt handler installed.

driverlnfo The record pointed to by the driverlnfo parameter contains device
driver information.

$00 1- slotNumber - Word
$02 1- slotFlag - Word
$04 .

driverPath Pascal string

slotNumber Specifies the system slot containing the MIDI interface to be
supported by the driver being loaded. Valid values range from
$0000 through $0007.

slotFlag Indicates the type of slot specified in slotNumber.

driverPath

$0000 Internal slot
$0001 External slot

Pascal string containing the GS/OS™ pathname to the file
containing the device driver to be loaded. Pascal strings consist
of data preceded by a length byte. The pathname cannot exceed
64 characters in length.

Errors None

2 miUnloadDrvr
Shuts down and unloads the currently loaded device driver. Terminates
MIDI transmission and reception if they are currently active. Releases
memory occupied by the device driver.

Mi.di.Info $OC20

Returns certain information about the state of the MIDI tools. The JuncNum parameter
can specify nine different functions, whose results are returned in infoResult.

Parameters

Stack before call

Previous contents

Space Long-Space for result

JuncNum Word-Specifies Midiinfo function number

<-SP

Stack after call

Previous contents

infoResult Long-Result of Midi Info function

<-SP

Errors See the Midi Info function descriptions.

c e xtern pascal Long Midiinfo(func Num);

Word func Num;

funcNum Specifies the Midi Info function to be performed.

0 miNextPktLen
Returns the number of bytes in the next MIDI packet. On return,
infoResult contains the length of the next complete MIDI packet in the
input buffer, including the 4-byte time-stamp at the beginning of the
packet. Note that if there is no complete packet in the input buffer, this
function returns a value of 0.

Errors

$2007 miNoBu fErr No buffer allocated.

1 miinputChars
Returns the number of bytes of MIDI data waiting in the input buffer. On
return, infoResult contains the number of bytes of MIDI data currently
stored in the input buffer, including any time-stamp and length data (6
bytes per packet), error codes, and up to 12 bytes of extra space at the
end of the buffer due to call latency. It is therefore only a rough estimate
of the number of bytes in the buffer. Your application can use this call to
monitor whether the input buffer is large enough.

Errors

$2007 miNoBufErr No buffer allocated.

2 miOutputChars
Returns the number of bytes of MIDI data waiting in the output buffer.
On return, infoResult contains the number of bytes waiting to be
transmitted from the MIDI output buffer, including time-stamp and
length data (6 bytes per packet), error codes, and up to 12 bytes of extra
space at the end of the buffer due to call latency. It is therefore only a
rough estimate of the number of bytes in the buffer. Your application
can use this call to monitor whether the output buffer is large enough.

Errors

$2007 miNoBufErr No buffer allocated.

3 miMaxinChars
Returns the largest number of bytes that were stored in the input buffer
since the last miMaxinChars call or since the buffer was last flushed.
This call is especially useful for deriving statistics on buffer utilization.

Errors None

4 miMaxOutChars

5

6

Returns the largest number of bytes that were stored in the output buffer
since the last mi MaxoutChars call or since the output buffer was last
flushed. This call is especially useful for deriving statistics on buffer
utilization.

Errors None

Not yet implemented

Not yet implemented

7 miClockValue
Returns the current value of the MIDI Tool Set time-stamp clock. If the
clock is stopped, the low-order byte of the result is 0.

Errors None

8 miClockFreq
Returns the current MIDI Tool Set clock frequency in ticks per second.

The default value is 13,160 ticks per second.

Errors None

MidiReadPacket $OD20

Moves MIDI data from the MIDI Tool Set's input buffer to a specified location and
returns the length of the packet in bytes. If no packet is available, the call returns a 0. For
more information on MIDI packets, see "MIDI Packet Format" earlier in this chapter.

Parameters

Stack before call

Previous contents
Space

- a1iayAddr -

atTaySize

Stack after call

Previous contents
Result

Errors $2001
$2002
$2003

$2007
$2083

$2084

$2085

Word-Space for result

Long-Pointer to buffer for received data

Word-Length, in bytes, of the receive buffer

<-SP

Word-Number of bytes actually returned
<-SP

miPacketErr Incorrect packet length received.
miArrayErr Array size invalid.
miFullBufErr MIDI data discarded because of

buffer overflow.
miNoBufErr No buffer allocated.
miDevOverrun MIDI interface overrun by input

data; interface not serviced
quickly enough.

miDevNoConnect No connection to MIDI
interface.

miReadErr Error reading MIDI data.

c extern pascal Word MidiReadPacket(arrayAddr,

arraySize);

Pointer
Word

arrayAddr;
arraySize;

MidiWritePacket $OE20

Queues the specified MIDI packet into the MIDI Tool Set's output buffer. If the packet
is successfully written to the output buffer, this call returns the number of bytes written. If
the buffer is too full to accommodate the packet, MidiWritePac ket returns 0. For
more information on MIDI packets, see "MIDI Packet Format" earlier in this chapter.

The MidiWritePacket call returns within one-fiftieth of a second, but the output
process waits until the MIDI clock value is equal to or greater than the output packet's
time-stamp before sending it. Your program should issue this call before starting the MIDI
output process (with the miStartOutput function of the MidiControl tool call).

In packet mode, MidiWritePacket assumes that only complete MIDI commands are
passed to it and that the first byte of each packet is a MIDI status byte. The MIDI Tool
Set uses these assumptions to track NoteOn and NoteOff commands. In raw mode the
MIDI Tool Set makes no attempt to track NoteOn and NoteOff commands. For this
reason, the intelligent NoteOff function provided in MidiContro l will not work, and
packets may contain complete, partial, or multiple MIDI commands. In either mode the
MIDI Tool Set omits the MIDI status byte unless its value has changed since the last one
was transmitted. You can, however, disable running status transmission entirely by using
the MidiControl call.

If the MIDI clock is stopped, then all packets with a time-stamp less than or equal to the
value of the clock are immediately transmitted, and all packets with a value greater than
the clock remain in the buffer unless the clock is restarted and its value becomes greater
than that of the time-stamps.

Two special time-stamp values override normal output buffer processing, irrespective of
MIDI clock state. Any packet with a time-stamp of 0 is written immediately upon
reaching the head of the output buffer. Any packet with a negative time-stamp value is
considered to be a real-time command, and the packet is inserted at the head of the
output queue for immediate transmission. Note that MIDI real-time messages may be
transmitted in the middle of non-real-time MIDI messages.

The MIDI Tool Set routines do not sort the packets in the output buffer; therefore, a
packet at the head of the output queue can delay transmission of any packets behind it
that have earlier time-stamp values.

Parameters

Stack before call

Previous contents
Space

arrayAddr

Stack after call

Previous contents
bytes Written

Errors None

Word-Space for result

Long-Pointer to buffer containing output data

<-SP

Word-Number of bytes actually written
<-SP

c extern pascal Word MidiWritePacket(arrayAddr);

Pointer arrayAddr;

MIDI Tool Set error codes

Table 38-1 lists the error codes that may be returned by MIDI Tool Set calls.

• Table 38-1 MIDI Tool Set error codes

Value Name Definition

$2000 miStartUpErr MIDI Tool Set not started up.
$2001 miPacketErr Incorrect packet length received.
$2002 miArrayErr Array was an invalid size.
$2003 miFullBufErr MIDI data discarded because of buffer overflow.
$2004 miToolsErr Required tools inactive or incorrect version.
$2005 miOutOffErr MIDI output disabled.
$2007 miNoBufErr No buffer allocated.
$2008 miDriverErr Specified device driver invalid.
$2009 miBadFreqErr Unable to set MIDI clock to the specified

frequency (use the Midi Info tool call to get the
current value).

$200A miClockErr MIDI clock wrapped to 0.
$200B miConflictErr Two processes competing for MIDI input.
$200C miNoDevErr No device driver loaded.
$2080 miDevNotAvail MIDI interface not available.
$2081 miDevSlotBusy Specified slot not selected in Control Panel.
$2082 miDevBusy MIDI interface already in use.
$2083 miDevOverrun MIDI interface overrun by input data; interface

not serviced quickly enough.
$2084 miDevNoConnect No connection to MIDI interface.
$2085 miDevReadErr Error reading MIDI data.
$2086 miDevVersion ROM version or machine type incompatible with

device driver.
$2087 miDevintHndlr Conflicting interrupt handler installed.

Chapter 39 Miscellaneous Tool Set Update

This chapter documents new features of the Miscellaneous Tool Set. The
complete reference to the Miscellaneous Tool Set is in Volume 1, Chapter
14 of the Apple JIGS Toolbox Reference.

Error corrections

This section documents errors in Chapter 14, "Miscellaneous Tool Set," in Volume 1 of the
Toolbox Reference.
• On page 14-58 of Volume 1 of the Toolbox Reference, Figure 14-3 shows the low-order

bit of the user ID as reserved. This is not correct. The figure should show that the
mainiD field comprises bits 0-7 and that the mainiD value of $00 is reserved.

• The sample code on page 14-28 contains two errors. In the code to clear the 1-second
IRQ source, the second instruction reads

TSB $C032
This instruction should read

TRB $C032
In addition, preceding this instruction the following code should be inserted

PEA $0000
PLB
PLB

These three instructions allow the code to reliably access the appropriate location in
bank zero memory. These same three instructions should also be inserted in the code
shown on page 14-29, immediately preceding the STA instruction.

• The descriptions of the PackBytes and UnPackBytes tool calls are unclear with
respect to the startHandle parameter to each call. The stack diagrams correctly
describe the parameter as a pointer to a pointer. However, the C sample code for each
call defines startHandle as a handle. In both cases, startHandle is not a Memory
Manager handle but a pointer to a pointer. Creating startHandle as a handle will cause
unpredictable system behavior.

• Throughout Chapter 14 of the Toolbox Reference the value of the signature word for
Miscellaneous Tool Set data structures is given as $5AA5 and $A55A. Signature words
are always $A55A, never $5AA5.

Clarification

Note that the ClrHeartBeat tool call removes all tasks from the Heartbeat Interrupt
Task queue, including those installed by system software. Consequently, only system
software should issue the ClrHeartBeat tool call.

New features of the Miscellaneous Tool Set

The Miscellaneous Tool Set now supports a number of new features. This section discusses
these new features in detail.
• The ClearHeartBeat and DeleteHeartBeat calls turn off the interrupts that

occur every one-sixtieth of a second if the following conditions are satisfied:
o There are no remaining heartbeat tasks.
o The interrupt handler installed in IRQ.VBL is the standard system interrupt handler;

that is, no other interrupt handlers have been installed.
o The standard mouse is not running in VBL interrupt mode.

• The set vector and Get Vector calls support several new vectors. The new vectors are
$80 Vector to memory mover
$81 Vector to set system speed
$82 Vector to slot arbiter
$86 Hardware-independent interrupt vector
$87 MIDI interrupt vector (IRQ-MIDI)

+ Note: The set Vector call no longer validates the input vector number. Therefore,
you must be extremely careful when using this call to avoid corrupting memory.

Queue handling

The Miscellaneous Tool Set now provides a generalized queue handler that can be used by
other tools and applications. A queue is defined here as an ordered collection of variable-
length data elements. Each data element must be preceded by a standard queue header.
Your application must format the queue elements and format the correct header. The
queue handler provides calls to add elements to or remove elements from a queue
(AddToQueue and DeleteFromQueue).

A queue is identified by its header pointer, a pointer to the first element in the queue.
Your application establishes and maintains the header pointer. Do not use AddToQueue
to add this first element to the queue.

Figure 39-1 shows the format of the queue header.

• Figure 39-1 Queue header layout

$00

$04
$06

f-
f-
f-

I-

-

Reserved

Reserved

signature

-

-

Long-Link to next item in queue-set by queue handler

Word-Reserved for system use
Word-Validates header-must be set to $A55A

Application data immediately follows the header.

See "New Miscellaneous Tool Set Calls" later in this chapter for details on AddToQueue
and DeleteFromQueue.

Interrupt state information

The Miscellaneous Tool Set now provides a set of calls (Get Interrupt State and
Set Interrupt State) that allow you to obtain interrupt-time system state
information. These calls should be particularly useful to developers of debuggers or
interrupt handlers. With these new calls, your program can get or set system interrupt state
information.

All these new calls use a standard interrupt state record. Note that the tool calls have been
designed to support an extensible state record. In the future, the record may grow in size,
but existing program code should still work.

Figure 39-2 shows the format of the interrupt state record. For more information about
any of these registers, see the Apple JIGS Firmware Reference.

• Figure 39-2 Interrupt state record layout

$00
$02
$04
$06
$08
$0A
SOB
soc
SOD
SOE
$10
$11
$13

r-
r-
r-
r-
r-

r-

f-

irq_A

irq_X

irq_Y

irq_S

irq_D

irq_P
irq_DB
irq_e
irq_K
irq_PC

irq_state
irq_shadow

irq mslot

-
-
-
-
-

-

-

Word-A register contents
Word-X index register contents
Word-Y index register contents
Word-S (stack) register contents
Word-D (direct) register contents
Byte-P (program status) register contents
Byte-DB (data bank) register contents
Byte-Bit 0 is the emulation mode bit
Byte-K (program bank) register contents
Word-PC (program counter) register contents
Byte-STATEREG byte value
Word-SHADOW byte (low byte) and CY AREG (high byte) values
Byte-SLTROMSEL byte

New Miscellaneous Tool Set calls

The following sections introduce several new Miscellaneous Tool Set calls.

AddToQueue $2E03

Adds the specified entry to a queue.

Parameters

Stack before call

Previous contents

- newEntryPtr -

headerPtr

Stack after call

Previous contents

Errors $0381

$0382

c extern

Po inter

Long-Pointer to element to add to queue

Long-Pointer to first queue element

<-SP

<-SP

invalid Tag Signature value invalid in element
header.

a lreadyi nQueue Specified element already in
queue.

pascal void AddToQue ue (ne wEnt r yPt r ,
headerPtr) ;

ne wEnt r yPt r , he aderPtr ;

DeleteFromQueue $2F03

Deletes a specified element from a queue.

Parameters

Stack before call

Previous contents

entryPtr Long-Pointer to element to delete from queue

headerPtr Long-Pointer to first queue element

<-SP

Stack after call

Previous contents
<-SP

Errors $0380 not inList Specified element not found in
queue.

$0381 invalid Tag Signature value invalid in element
header.

c extern pascal vo id DeleteFromQueue(entryPtr,
headerPtr);

Pointer entryPtr, headerPtr;

GetCodeResConverter $3403

Returns the address of a routine that loads code resources. This is a Miscellaneous Tool Set
call because the loader is not in directly accessible memory (it is in the bank 1 language
card, which may or may not be addressable at any given time).

Your program would use this call in conjunction with the ResourceConverter tool call
(see Chapter 45, "Resource Manager," in this book). For example, the Control Manager
issues the following call during its startup processing:

ResourceConverter(GetCodeResConvert er (),
rCtlDefProc,
LogConverterin +SysConverterList);

After this call is issued, all future calls to the Resource Manager to load resources of type
rCtlDefProc use GetCodeResConverte r to bring the resource into memory. Note
that this routine does not preserve the memory attributes of the converted resource (for
more information on resource converters, see Chapter 45, "Resource Manager," in this
book).

Parameters

Stack before call

Previous contents

Space Long-Space for result

<-SP

Stack after call

Previous contents

pointer Long-Pointer to code resource converter routine

<-SP

Errors None

c extern pascal Pointer GetCodeResConverter() ;

GetinterruptState $3103

Copies the specified number of bytes into a specified input interrupt state record from
the system interrupt variables. For information about record layouts, see "Interrupt State
Information" earlier in this chapter. The copy always starts from the beginning of the
interrupt state record. Use the SetrnterruptState call to set the contents of the
system interrupt state record.

Parameters

Stack before call

Previous contents

- intStateRcdPtr -

bytesDesired

Stack after call

Previous contents

Errors None

Long-Pointer to interrupt state record

Word-Number of bytes to copy from system to record
<-SP

<-SP

c extern pascal void GetinterruptState(intStateRcdPtr,
bytesDesired) ;

Pointer
Word

intStateRcdPtr;
bytesDesired;

GetintStateRecSize $3203

Returns the size (in bytes) of the interrupt state record. This call allows applications to
work with extended interrupt state records.

Parameters

Stack before call

Previous contents
Space

Stack after call

Previous contents
sizeO.fRecord

Errors None

Word-Space for result
<-SP

Word-Length of interrupt state record, in bytes
<-SP

c extern pascal Wo r d GetintSta teRecS i ze ();

GetROMResource $3503

This call is for use only by system firmware.

ReadMouse2 $3303

Returns the mouse position, status, and mode. This call does not support journaling. Refer
to Chapter 14, "Miscellaneous Tool Set," in Volume 1 of the Toolbox Reference for
information about the ReadMouse tool call.

.6. Warning Applications should never make this call. ...

Parameters

Stack before call

Previous contents
Space
Space
Space

Stack after call

Previous contents
xPosition
yPosition
statusMode

Errors $0309

Word-Space for result
Word-Space for result
Word-Space for result
<-SP

Word-X position of mouse
Word-Y position of mouse
Word-Status and mode bytes
<-SP

unCnctdDevErr Pointing device is not
connected.

c extern pascal MouseRec ReadMouse2();

ReleaseROMResource $3603

This call is for use only by system firmware.

Set Interrupt State $3003

Copies the specified number of bytes from the input interrupt state record into the
system interrupt variables. The copy always starts from the beginning of the interrupt
state record. Use the Get i nterruptState call to read the system interrupt state
record.

Parameters

Stack before call

Previous contents

- intStateRcdPtr -

bytesDesired

Stack after call

Previous contents

Errors None

Long-Pointer to interrupt state record

Word-Number of bytes to copy from record to system
<-SP

<-SP

c extern pascal void Set interruptState(intStateRcdPtr ,
bytesDesired) ;

Pointer
Word

intStateRcdPtr ;
bytesDesired;

Chapter 40 Note Sequencer

This chapter documents the Note Sequencer. This is new documentation
not previously presented in the Apple JIGS Toolbox Reference.

About the Note Sequencer

The Note Sequencer is a collection of routines that implement a sequencer in the
Apple IIGS. The sequencer is an interpreter for a simple music programming language
designed to play music in the background. It can be used to play music from a static file
as long as any other active system tasks do not disable interrupts.

This sequencer plays melodies by using data stored in a specific format. It does not
provide the means to create these data structures, and so an application must provide its
own tools for building new sequences.

The Note Sequencer works with the Note Synthesizer, and it can work with the MIDI Tool
Set if you choose.

+ Note: The Note Synthesizer, the Note Sequencer, and the MIDI Tool Set refer to the
software tools provided with the Apple IIGS, not to any separate instrument or
device. The MIDI tools are software tools for use in controlling external instruments,
which may be connected through a MIDI interface device.

The following list summarizes the capabilities of the Note Sequencer. The tool calls are
grouped according to function. Later sections of this chapter discuss the tool set in
greater detail and define the precise syntax of the Note Sequencer tool calls.

Routine

Housekeeping routines

SeqBootinit

SeqStartUp

SeqShutDown

SeqVersion
SeqReset

SeqStatus

Description

Called only by the Tool Locator-must not be called by
an application
Initializes the Note Sequencer for use by an application
and establishes the values of many important
operational parameters
Informs the Note Sequencer that an application is
finished using its tool calls
Returns the Note Sequencer version number
Called only when the system is reset-must not be called
by an application
Returns the operational status of the Note Sequencer

Note Sequencer tool calls

Clearincr

GetLoc

Get Timer

SeqAllNotesOff

Set I ncr
SetinstTable
SetTrkinfo
Startints

Start Seq

StartSeqRel

StepSeq

Stopints

StopSeq

Sets the increment value to 0, halting the current
sequence
Returns operational information about the current
sequence
Returns the value of the Note Sequencer tick counter
Switches off all notes currently playing, but does not
halt the sequence
Sets the increment value
Sets the current instrument table
Assigns instruments to tracks
Enables Note Synthesizer and Note Sequencer
interrupts
Instructs the Note Sequencer to start playing a
sequence that contains absolute addresses
Instructs the Note Sequencer to start playing a
sequence that contains relative addresses
Increments the Note Sequencer tick counter
Disables Note Synthesizer and Note Sequencer
interrupts
Stops the current sequence

Using the Note Sequencer

To use the Note Sequencer, you must have loaded the following tool sets:
• Tool Locator
• Memory Manager
• Sound Tool Set
• Note Synthesizer
• MIDI Tool Set (if MIDI is to be used)

All the required tool sets must be started up except the Sound Tool Set and the Note
Synthesizer. The Note Sequencer makes the appropriate calls to start up these two tool
sets. Refer to Chapter 51, "Tool Locator Update," for information on the specific version
requirements of the Note Sequencer.

The Note Sequencer is interrupt-driven and can run in the background while other
application tasks take place in the foreground. Therefore, interrupts must not be disabled
while a sequence is being played. Any activity that disables interrupts interferes with
execution of a sequence. Disk access, for example, disables interrupts, so an application
cannot simultaneously access a disk and play a sequence with the Note Sequencer. Note
as well that any custom error and completion routines your application provides to the

Sequencer (see "Error Handlers and Completion Routines" later in this chapter) also
run with interrupts disabled and with a very low stack.

An application can normally rely on the Note Sequencer's built-in functions to synchronize
a sequence correctly. For those applications that must directly control the timing of
sequence execution, the stepseq call has been provided. This call enables an application
to control the execution of a sequence explicitly one step at a time.

Sequence timing

Normally you might think of a musical sequence as several independent tracks playing at
the same time. For example, a musical passage might consist of a melody played by a
violin accompanied by a viola and a flute. The three instruments often play at once,
sounding different notes. The Note Sequencer, however, always plays notes in sequence,
one after another, no matter how many instruments are used to play the notes.

A chord, which is a group of different notes played at the same time, is executed by the
Note Sequencer as a series of discrete notes started very quickly one after the other. For
example, the Note Sequencer would play a chord consisting ofF above middle C, A above
middle C, and C one octave above middle C as a series of note commands:

Note Duration
F4 4 counts
A4 4 counts
CS 4 counts

If the Note Sequencer were to wait for each note to finish before beginning the next one,
the resulting passage would be three distinct notes of equal length-not the intended
result. The Note Sequencer, therefore, provides a way to play the three notes with very
little delay between them; so little, in fact, that they sound as though they were being
played all at once.

Setting the chord bit to 1 in a note command indicates that the next note should sound a
chord with the current one. If, by contrast, the de 1 a y bit is set to 1, the current note is
completed before the next one is played.

Using MIDI with the Note Sequencer

The appropriate calls must be made to the MIDI Tool Set to use MIDI with the Note
Sequencer. Specifically, the MIDI tools must be started up, a device driver must be
selected, and a MIDI output buffer must be allocated (see Chapter 38, "MIDI Tool Set,"
earlier in this book for details). In addition, you must start the MIDI output process by
issuing the miStartOutput function of the MidiControl tool call.

You must specify whether MIDI is to be used when you start up the Note Sequencer. If the
high bit of the mode parameter is set to 1 when the SeqStartUp call is made, then MIDI
is enabled. If a particular track is to use MIDI, you must use the setTrkinfo call to
enable it for that track. Finally, the Note Sequencer checks tool call-specific and
seqltem-specific flags for MIDI information, so that individual tool calls or commands
can enable or disable MIDI.

If all the appropriate flags-the mode flag of SeqSta rt Up, the trackName flag of
SetTrkinfo, and the command or tool call flag-are enabled, then MIDI commands are
sent to external MIDI devices. This arrangement is designed to provide flexibility in
execution. You could, for example, play only the drum parts of a sequence on external
MIDI instruments by enabling MIDI output only on the appropriate tracks, or you could
play all parts on external MIDI instruments. Switching between the two modes of play
would not require any modification of the sequence itself.

The Note Sequencer as a command interpreter

The Note Sequencer is actually a command interpreter. The commands it interprets are
32-bit data structures called sequence items, or seqltems. These 32-bit items contain
information that the Note Sequencer needs to classify commands as note commands,
control commands, MIDI commands, or register commands and to execute them
properly.

The format of a seqltem is detailed in Figure 40-1.

• Figure 40-1 Format of a seqltem

Bits
31

cmd

chord

vall

n

tail

16 15 14 8 7 6 0

tail vall lchordl cmd

For all commands except note commands, this is the command
identifier, a 7-bit number that uniquely identifies the command. For
example, the setVibratoDepth command has a cmd value of 4.

The chord bit is a Boolean value. If set, it specifies that the Note
Sequencer should immediately execute the next seqltem with no
delay.

The meaning of the v a 11 field depends on the command being
issued.

The n bit identifies note commands. If bit n is set to 1, the seqltem is
a note command.

The format of the t a i 1 field depends on the command type. It
contains two or more subfields with command-specific information in
them.

There are four types of seqltems: note commands, control commands, MIDI commands,
and register commands. Each type is organized in the same way, but the values in each
part of the data structure have different meanings in the different commands.

Error handlers and completion routines

The Note Sequencer provides facilities allowing applications to gain control at the end of
a sequence and whenever errors are encountered during sequence processing. The Note
Sequencer invokes completion routines when it has finished a sequence. The completion
routine can then perform any necessary application-specific processing. Similarly, when an
error occurs during sequence processing, the Note Sequencer calls a specified error
handler, which can process the error in a manner appropriate to the current application.

When you start a sequence with the start seq tool call, you may specify a completion
routine, an error handler, or both for the sequence. The compRoutine parameter points to
the completion routine; the errHndlrRoutine parameter specifies the error handler. Zero
values for either' parameter indicate to the Note Sequencer that no custom routine of the
appropriate type is available.

On entry to either type of routine, the Note Sequencer sets up the following conditions:
• Interrupts disabled
• Direct page set for Note Sequencer data area
• Data bank set to its value at the time of the initial SeqStartup tool call for the

application; Note Sequencer restores this value when the routines return
• All registers saved
• Very little stack available

When a sequence started by start Seq reaches its end, control passes to the routine
specified by compRoutine.

Whenever it encounters an error during sequence processing, the Note Sequencer tries to
call the error handler for the sequence. A useful function for an error handler might be to
place an error flag for the completion routine and make a GetLoc call to determine the
location of the error.

The Note Sequencer passes error codes to the error handler in the A register. In step mode,
the Note Sequencer both reports the error condition to the error handler and posts it in
the A register at the completion of the call to stepseq. In interrupt mode, the Note
Sequencer only reports the error to the application error handler.

+ Note: The Note Synthesizer's timer oscillator is not forced on when an error occurs in
the start Seq call; neither the Note Synthesizer nor the Sound Tool Set will have been
started.

Note commands

Note commands switch notes on and off. These commands are not the same as the Note
Synthesizer Noteon and NoteOff tool calls. You can use note commands in two ways.
Y<;m can issue a pair of not eon and noteOff commands, turning a specified note on at a
certain point and then explicitly turning it off, or you can issue a not eon command with a
duration specified. In this case the Note Sequencer plays the note for a number of ticks
equal to the value of the duration parameter and then turns the note off, without the need
for an explicit noteOff command. Each tick occurs at an interval set by the Note
Synthesizer's update rate (see Chapter 41, "Note Synthesizer," in this book for details).
The format of note commands is shown in Figure 40-2.

• Figure 40-2 Note command format

Bits
31 30 27 26

volume

chord

pitch

n

duration

1 6 15 14 8 7 6
duration pitch volume

Specifies note volume. Corresponds to MIDI velocity. A value of 0
indicates a noteOff command.

0

Indicates that the seqitem is to be played simultaneously with the
next seqltem. Do not set both the chord bit and the d bit in the same
item.

Selects the pitch to be played. Values may range from 0 to 127. A value
of 60 selects middle C (261.6 Hz). Adjacent values are one semitone
apart. A value of 0 specifies a filler note (see "Filler Notes" later in this
chapter for details).

Always set to 1 for note commands. If this bit is not set to 1 in a
seqltem, then the seqltem is not a note command.

Specifies the duration of the note to be played by the Note
Sequencer. Values may range from 0 to 2047 and indicate the duration
of the note in number of ticks.

A duration of 0 identifies the seqltem as a n o t eon command. A
not eon seqltem is played continuously until the Note Sequencer
finds a matching n oteOff.

trk

d

Track number. Assigns notes to synthesizer voices and MIDI channels
by specifying their track numbers. Values from $0 to $F are legal. Refer
to the description of the SetTrkinfo call for more information.

If the d (delay) bit is set to 1, the Note Sequencer must finish playing
this seqltem before beginning to play the next one. The Note
Sequencer cannot advance to the next seq Item until the duration is
past. Do not set this bit to 1 if the chord bit is set to 1.

noteOff command

Stops a note that was previously started with a not eon command.

volume
chord
pitch
n
duration
trk
d

Note volume = 0
Set if the note is part of a chord
127-0; must be the same as matching not eon
1
0
15-0; must be the same as matching not eon
0

noteon command

Starts a note playing.

volume
chord
pitch
n
duration
trk
d

Note volume; varies from 1 to 127
Set if the note is part of a chord
Pitch value; varies from 0 to 127
1
0
15-0
0

Filler notes

Filler notes are used to create silences in musical sequences. Intuitively, you might
suppose that an application should use delays to create rests, but during a delay the Note
Sequencer delays all its operations. It not only fails to play any notes until the delay period
has elapsed but also fails to perform other services, such as turning notes off. Using delays
to create rests could thus lead to unpredictable behavior in the creation of sequences.

An alternative approach is to use filler notes. A filler note is simply a note command with a
pitch value of 0. The Note Sequencer plays such a note as though it were an ordinary note
but does not produce a tone. You can therefore use filler notes to fill out rests at points
where you might have supposed a delay would be needed. For example, a passage may
contain a chord consisting of notes of different duration, followed by a run of other
notes. In this case, you need to place a filler note at the end of the chord so that you can
easily vary the delay between the start of the chord and the start of the run.

fillerNote command

Creates silences in musical sequences.

volume
chord
pitch
n
duration
trk
d

0
1
Pitch value = 0
1
Desired delay time
0
Set to 1 if a delay is desired

Control commands

Control commands are used to specify the characteristics of the Note Sequencer as it is
playing the notes. They can control pitch bend, tempo, vibrato, and other note
characteristics. The format of control commands is shown in Figure 40-3.

• Figure 40-3 Control command format

Bits
3130

cmd

chord

vall

n

val2

res

2726 2423 16 15 14 8 7 6

trk I res I val2 vall cmd

Command number.

Should be set to 1 in a control command. Setting the chord bit to 0
can sometimes cause unwanted delays in the playing of a sequence.

Contains data specific to each command.

Always set this bit to 0 for control commands. Setting the n bit to 1
causes the seqltem to be processed as a note command instead of a
control command.

Contains data specific to each command.

Reserved for control. These bits should always be set to 0 unless
otherwise specified.

0

trk Notes are assigned to synthesizer voices and to handlers by specifying
their trk numbers. Legal values are $0 to $F.

d Should always be set to 0 in control commands, since they have no
duration.

callRoutine command

Allows you to invoke program code from within a sequence being played by the Note
Sequencer. This program code is then free to perform custom processing. The command
specifies the low-order word of the routine address; the bank portion of the address
matches the value of the data bank register at the time the Note Sequencer was started by
your application.

cmd
chord
vall
n
bits 16-23
bits 24-31

30
1
0
0
Low-order byte of routine address
High-order byte of routine address

On entry, interrupts are disabled, and very little stack space remains. The Note Sequencer
saves its registers before issuing the call. However, because the direct-page and data bank
registers are set for the Note Sequencer, your routine code must change these to access
application data. The routine should return with an RTL instruction.

If your application uses MIDI, this routine must be careful to poll MIDI every 270
microseconds to avoid losing MIDI data. See Chapter 38, "MIDI Tool Set," in this book
for more information.

jump command

The Note Sequencer's equivalent of a jump or goto command in a conventional
programming language. Execution of seq Items continues with the item specified by v a 11
and val2. The number given is a simple index into the series of seqitems (it is not a byte
index into the seqltem array). The jump command does not check the bounds of the
sequence, and it is therefore possible to jump to an arbitrary area in memory that does
not contain valid seqitems. Such a jump will produce unpredictable results.

cmd
chord
vall
n
val2
res
trk
d

3
1
vall is the high 7 bits of the destination
0
val2 is the low 8 bits of the destination
0
not used
0

Note that this command causes a jump in the sequence being processed. To jump to
executable code from a sequence, use the call Routine command.

pit chBend command

Creates a bend effect in a played note. A control command expresses pitch bend as a
value from 0 to 127. A value of 64 indicates no pitch bend, and the note is played at the
pitch specified in its note command. The note is played at a pitch determined by its
nominal pitch plus the pitch bend sharp or flat. The pitch changes immediately to the new
value. As a result, the sequence must use a series of pitchBend commands to achieve the
smooth portamento usually associated with a pitch bend.

cmd
chord
vall

n
val 2

res

trk
d

0
1
Pitch wheel position. Values greater than 64 specify sharp pitch bend;
values less than 64 specify flat; intervals are expressed in fractions of the
current pitch bend range
0
No significance in the pitchBend command; the val2 field should
always be set to 0 for pitchBend
Selects pitch bend assignment
0 selects both internal and MIDI pitch bend
1 selects internal pitch bend
2 selects MIDI pitch bend
Track number
0

The res field indicates whether the pitch bend is to affect the system's internal voices,
external MIDI devices, or both. Note that your application must have specified MIDI
support at Seqstartup time in order for MIDI commands to be issued. ,

programChange command

Allows a sequence to change the instrument assigned to a track during play. The new
instrument must be in the current instrument table for the new assignment to be possible.

cmd
chord
vall
n
val2
res

trk

d

5
1
Instrument index from instrument table
0
New MIDI program number, if the sequence is using MIDI
Specifies MIDI usage; legal values are
0 The Apple IIGS internal synthesizer and an external MIDI device
1 The Apple IIGS internal synthesizer only
2 External MIDI device only
Track number; specifies which instrument program to change by
specifying the track to which that instrument is assigned
0

If MIDI is enabled and the res field specifies that a MIDI command is to be issued, the
Note Sequencer generates a MIDI Program Change command using va l2 for the program
number.

tempo command

Sets the Note Sequencer's increment value. The increment value determines the number of
ticks between updates in the execution cycle, so larger increments translate to slower
tempos. The increment value is set to its initial value by the SeqStartUp tool call.

cmd
chord
vall
n
val2
res
trk
d

1
1
New increment; the value may vary from 0 to 127
0
0
0
0
0

..

turnNotesOff command

Turns off all notes currently being played, overriding any previous note commands. If
MIDI support has been enabled, the system also turns off any active MIDI notes.

cmd 2
c hord 1
vall 0
n 0
val2 0
res 0
t r k 0
d 0

setVibratoDepth command

Assigns a depth value to the vibrato effect used with the specified track. The vibrato
effect is a modulation in the pitch of the voice assigned to the specified track. The v a 11
value can range from 0 to 127, with larger values resulting in greater vibrato depth. A value
of 0 disables vibrato, which conserves CPU cycles.

cmd
c hord
vall
n
val2
res

trk
d

4
1
The new value for vibrato depth; the value may vary from 0 to 127
0
Control number if a MIDI command is generated
Specifies MIDI usage; legal values are
0 Internal and MIDI vibrato
1 Internal only
Track number
0

If MIDI support has been enabled and the res field indicates that a MIDI command is to
be issued as well, va l 2 specifies the MIDI control number, and v a ll specifies the new
vibrato value for the MIDI Control Change command.

Register commands

Register commands provide the Note Sequencer with program control capabilities. The
Note Sequencer maintains eight 8-bit registers that can be used to implement looping and
conditional branching structures. With register commands, an application can achieve the
effect of control structures such as "if .. . then," "do ... while," or "repeat...until" in
sequences.

Each register occupies 8 bits of memory, but not all the commands use the full register.
The ifGo and setRegister commands treat each register as if it were only 4 bits in
size, using only the least significant 4 bits of the byte.

Bytes 2 through 9 of the Note Sequencer's direct page contain the registers; these registers
are numbered 0 through 7. Note that Note Sequencer direct-page space starts $100 bytes
beyond the location specified at SeqStartup time. The intervening space is used by the
Note Synthesizer and the Sound Tool Set. Figure 40-4 shows the format of register
commands.

• Figure 40-4 Register command format

Bits
31 30 27 26 2423 16 15 14 8 7 6

cmd

chord

vall

n

val2

res

trk

d

val2 vall cmd

Command number.

Should be set to 1 in a register command. Setting the chord bit to 0
can sometimes cause unwanted delays in the playing of a sequence.

Contains data specific to each command. Generally specifies the
register number for the command.

Always set this bit to 0 for register commands. Setting the n bit to 1
causes the seqltem to be processed as a note command instead of a
register command.

Contains data specific to each command.

Reserved for control. These bits should always be set to 0 unless
otherwise specified.

Always set to 0 for register commands.

Should always be set to 0 in register commands, since they have no
duration.

0

decReqister command

Decrements the value of the specified register. If the value is 0 when the command is
executed, the register's value will wrap to $FF.

chord
vall
n
val2
res
trk
d

1
Low 3 bits contain the register number
0
0
0
0
0

ifGo command

Tests the specified register for the specified value. If the register contains the supplied
value, then execution continues with the seqltem at the offset specified in v al2 ,
calculated from the current seqitem. If the values do not match, execution continues with
the next seqltem in the sequence. The i fGo command does not check the bounds of the
offset provided. For this reason, the value must be valid, or the effects will be
unpredictable.

cmd
chord
vall

n
val2
res
trk
d

7
1
Low 3 bits contain the register number
High 4 bits contain the value
0
Offset: -128 to + 127 seq Items
0
0
0

incRegister command

Increments the value of the specified register.

cmd
chord
vall
n
val2
res
trk
d

8
1
Low 3 bits contain the register number
0
0
0
0
0

setRegister command

Sets the specified register to the specified value.

cmd
chord
vall

n
val2
res
trk
d

6
1
Low 3 bits contain the register number
High 4 bits contain the value
0
0
0
0
0

MIDI commands

MIDI commands enable an executing sequence to send data directly to MIDI devices that
are connected to the Apple IIGS. All the standard MIDI commands are provided.

For MIDI commands to be enabled, the high bit of the mode parameter must be set to 1
when the SeqStartUp call is made. To produce MIDI output, your application must also
have loaded and started up the MIDI Tool Set. For further information on the MIDI Tool
Set, see Chapter 38, "MIDI Tool Set," in this book.

These commands are based on version 1.0 of the MIDI specification, which is not
described in this documentation. See Figure 40-5 for the format of MIDI commands.

• Figure 40-5 MIDI command format

Bits
31

cmd

chord

vall

n

low

high

high

24 23 16 15 14 8 7 6
low I n I vall cmd

Command number.

The chord bit should be set to 1 in a MIDI command. Setting the
chord bit to 0 can sometimes cause unwanted delays in playing a
sequence.

Contains data specific to each command.

Always set this bit to 0 for MIDI commands. Setting the n bit to 1
causes the seqltem to be processed as a note command instead of a
MIDI command.

Contains data specific to each command.

Contains data specific to each command.

0

midiChnlPress command

Sends a MIDI Channel Pressure command to the channel specified in vall. The new
pressure value is specified by the low byte.

cmd
chord
vall
n
low
high

15
1
Bits 8 through 11 specify the MIDI channel number ($0-$0F)
0
Channel pressure
0

midiCtlChange command

Sends a MIDI Control Change command to the channel specified in v a 11. The control
number is specified in the low byte, and the new value of the control in the high byte.

chord
vall
n
low
high

1
Bits 8 through 11 specify the MIDI channel number ($0-$0F)
0
Control number
Control value

midiNoteOff command

Sends a MIDI NoteOff command on the channel number specified in vall. The note
turned off is specified in two parts-a note number in the low byte and a velocity in the
high byte.

cmd
chord
vall
n
low
high

10
1
Bits 8 through 11 specify the MIDI channel number ($0-$0F)
0
Note number
Velocity

midiNoteOn command

Sends a MIDI NoteOn command on the channel number specified in vall. The note
turned on is specified in two parts-a note number in the low byte and a velocity in the
high byte.

cmd
chord
vall
n
low
high

11
1
Bits 8 through 11 specify the MIDI channel number ($0-$0F)
0
Note number
Velocity

midiPitchBend command

Sends a MIDI Pitch Bend command to the channel specified by vall. The new pitch
bend value is specified by the high word of the command, with the least significant byte
of the value in the low byte and the most significant byte in the high byte.

cmd
chord
vall
n
low
high

16
1
Bits 8 through 11 specify the MIDI channel number ($0-$0F)
0
Pitch bend least significant byte
Pitch bend most significant byte

midiPolyKey command

Sends a MIDI Polyphonic Key Pressure command on the channel number sp>cified in
v a 11. The note affected is specified as a note number in the 1 ow byte of the high word.
Its new key pressure is in the high byte.

cmd
chord
vall
n
low
high

12
1
Bits 8 through 11 specify the MIDI channel number ($0-$0F)
0
Note number
Key pressure

midiP rogChange command

Sends a MIDI Program Change command to the channel specified in vall. The program
number is specified in the low byte.

cmd
chord
vall
n
low
high

14
1
Bits 8 through 11 specify the MIDI channel number ($0-$0F)
0
Program number
0

midiSelChnlMode command

Sends a MIDI Select Channel mode command to the channel specified in vall. The new
MIDI channel mode is specified by two data bytes, the first of which is passed in the low
byte and the second in the high byte.

cmd
chord
vall
n
low
high

17
1
Bits 8 through 11 specify the MIDI channel number ($0-$0F)
0
First data byte
Second data byte

midiSetSysExl command

The MIDI System-exclusive command passes a two-word address to its target. That
address is a pointer to a MIDI packet. The high word of the address is specified by this
command, whereas the low word is specified by the midiSysExclus ive command. The
midiSetSysExl command must precede the midiSysExclusi ve command. See the
following discussion of that command for more information about the format and
content of the MIDI packet.

cmd 21
chord 1
vall 0
n 0
low Low byte of high word
high High byte of high word

midiSysExclusive command

Passes a two-word address to its target. That address is a pointer to a MIDI packet. The
low word of the address is specified by this command, whereas the high word is specified
by the midiSetsysExl command. The midiSetSysExl command must precede the
midiSysExclusive command.

cmd
chord
vall
n
low
high

18
1
0
0
Least significant byte of low word of MIDI packet address
Most significant byte of low word of MIDI packet address

Here is an example of a 3-byte system-exclusive command:

$06
$07
$08
$09

length l Word-Length of data to follow; must be set to 8 for this example

timestamp : 4 bytes-Time-stamp for send time; 0 for immediate send

sysExclusive Byte-System-exclusive flag byte; must be set to SFO
datal Byte-First MIDI data byte
ctata2 Byte-Second MIDI data byte
cta t a 3 Byte-Third MID I data byte

midiSysCommon command

Sends one or two bytes of MIDI data. The first data byte is passed in the low byte, and
the second data byte, if there is one, is passed in the high byte.

cmd
chord
vall

n
low
high

19
1
Bits 10 through 8--low nibble of status byte

value varies from 1 through 7
Bits 12 and 11-number of data bytes:

00 = 0 data bytes
01 = 1 data byte
10 = 2 data bytes
11 = Invalid value

0
First data byte
Second data byte (if appropriate)

midiSysRealTime command

Sends a MIDI System Real-Time command. The real-time number is specified in the low 3
bits of the low byte.

cmd
chord
vall
n
low
high

20
1
0
0
Real-time number ($01-$07)
0

Patterns and phrases

A pattern is any series of seqltems. The Note Sequencer plays melodies by carrying out the
seqitem commands in specified patterns. A phrase is an ordered set of pointers to
patterns or to other phrases. Because a phrase can contain pointers to other phrases, it is
possible to nest phrases. The Note Sequencer supports up to 12 levels of phrase nesting.

Phrases and patterns have a similar layout. Both phrases and patterns are preceded by a
long word header. For phrases, this header is set to 1; for patterns, the header is set to 0.
The Note Sequencer can distinguish between phrases and patterns by examining this
header value. The last long word in both phrases and patterns must be set to $FFFFFFFF
and is called the phrase done flag.
When a program calls the Note Sequencer to play a sequence, the program passes a
parameter containing a handle to the first byte of the top-level phrase. This phrase
consists of an ordered series of pointers to the patterns or phrases to be played, followed
by a phrase done flag marking the end of the phrase.

Each pattern consists of an ordered series of seqltems. The seqltems describe the
characteristics of each note to be played in the sequence. Control and register commands
allow the characteristics of the notes to be modified and also allow the programmer to
build complex sequences by using conditional looping and branching.

The following paragraphs introduce a sample phrase and a sample pattern, so that you can
see the similarities in their structure.

A phrase is identified by a header value of 1.
topPhrase de

de
i2'0001'
i2'0000'

; low word
; high word

The phrase body consists of a series of pointers. Each pointer can point either to other
phrases or to patterns, which are sequences of executable seqltems. Here is an example:

de i4'phrasel'
de i4'patternl'
de i4'phrase2'

A phrase always ends with a phrase done flag.
de i4'$FFFFFFFF'

A pattern is identified by a header value of 0.
patternl de

de
i2'0000'
i2'0000'

low word
high word

The body of a pattern consists of seqltems, such as
de i4'$880ABC74' play C4, duration=lO, volume=115
de i4'$880ABE74' play 04' duration=lO, volume=ll5
de i4'$880AB074' play E4, duration=lO, volume=ll5

Again, the pattern must end with a phrase done flag.
de i4'$FFFFFFFF'

A sample Note Sequencer program

The following example contains 65816 assembly-language source code for a simple Note
Sequencer program.

DPPointer
DPHandle
HelpingHand

mcopy s.m

gequ
gequ
gequ

$10
$14
$18 ; for dereferencing handles

**
Main

same

Start Tools

Start
Using

clc
xce
long
phk

Common

;set native mode

;set the data bank to the

plb ;as the program bank

jsl StartTools
jsl MakeWaves
jsl Setinstruments
jsl PlaySequence
jmp CleanUp

_TLStartUp
ph a
_MMStartUp
pla
sta MyiD

Tool Locator
space for ID returned

MakeWaves

Trianglel

PushLong #0
PushWord #0
PushWord #$600
PushWord MyiD
PushWord #$COOS
PushLong #0

NewHandle
pla
sta HelpingHand
pla
sta HelpingHand+2
lda [HelpingHand]
sta DPPointer
ph a
PushWord #0
PushWord #0
PushWord MyiD
_QDStartup

PushLong #ToolTable
Load Tools

lda DPPointer
clc
adc
ph a

#$300

Pushword #0
Pushword #$200
Pushword #$10

SeqStartup
rtl

ldx
lda

#0
#1

sta SoundBuffer
inx
sta
inc
cmp

SoundBuffer,x
A
#$ff

bne Triangle1

get direct page for too ls

direct page

eithe r 320 or 640 mode
max size of scan line

QuickDraw used $300 bytes

starts Synth&Sound Tools

index thru SoundBuffer
base of triangle

step thru buffer

slope up in triangle
byte limit for sound data

Triangle2 inx start down slope
dec A
sta SoundBuffer, x
cmp #$01 don't want zeros
bne Triangle2
inx pad 3 bytes with 1
sta SoundBuffer,x
inx
sta SoundBuffer,x
inx
sta SoundBuffer,x

ldy #2 make 2 teeth
MakeTooth lda #$ff start high
Sawtooth1 inx

sta SoundBuffer , x
dec A ramp down
bne Sawtooth1
dey do 2nd tooth
bne Make Tooth
lda #1 pad last 2 bytes
inx
sta SoundBuffer, x
inx
sta SoundBuffer,x

ldy #255 make a square wave
lda #1

Square1 inx
sta SoundBuffer,x
dey
bne Square1

ldy #255
lda #255

Square2 inx
sta SoundBuffer,x
dey
bne Square2

Noisel

Not Zero

ldy
inx
phy
phx
ph a

Random
pla

#256

bne NotZero
inc A
plx
ply
sta SoundBuffer,x
inx
inx
dey
bne Noisel

PushLong #SoundBuffer
PushWord #$100
PushWord #$800

WriteRamBlock

rtl

Setinstruments Pushlong #InstTableHandle
SetinstTable

ldx #3
TrackLoop phx

Pushword #64
phx
phx

SetTrkinfo
plx
dex
bpl TrackLoop
rtl

noise wave

space for random result

;DOC start address
;byte count

do 4 tracks

push the priority

PlaySequence

CleanUp

PushLong #0
PushLong #0
PushLong #Sequence
_Start Seq

PushWord #0
PushWord #0

ReadChar
pla

Pushword #0
StopSeq

rtl

_SeqShutdown
EMShutdown

_QDShutdown
PushWord MyiD
_DisposeAll
_Quit QuitParams

End

no error handler routine
no completion routine

no next phrase

**
Common Data
QuitParams de i4'0,0,0'
MyiD ds 2
tool table de
SoundBuffer ds

i'2,26,0,25,0'
2048

InstTableHandle de i4'InstTable'
InstTable de i2'4'

de i4'Sawtooth'
de i4'Square'
de i4'Triangle'
de i4'Noise'

quit back to calling program

two tools, numbers 26 & 25
4 waves, 512 bytes each

Sawtooth

segment

Square

segment

de
de
de
de
de
de

de
de
de
de
de
de
de
de
de
de
de

de
de
de
de
de
de

de
de
de
de
de
de
de
de
de
de
de

i1'127'
i1'0,127'
i1'120'
i1'20,1'
i1'120'
i1'0,0'

i1'0'
i1'60,12'
i1'0,0,0'
i1'0,0,0'
i1'0,0,0'
i1'0,0,0'
i1'3'
i1'32'
i1'2,80,90,0,1,1'
il'l27,1,2,6,0,12'
i1'127,1,2,1,0,12'

i1'127'
i1'0,127'
i1'120'
i1'20,1'
i1'120 '
i1'0,0'

i1'0'
i1'60,12'
i1'0,0,0'
i1'0,0,0'
i1'0,0,0'
i1'0,0,0'
i1'3'
i1 ' 32 '
i1'2,80,90,0,1,1'
i1 '127,3, 2 , 6,0,12'
i1'127,3,2,1,0,12'

envelope breakpoint 1
increment value 1
breakpoint 2
increment 2
sustain at 120
zero increment is sustain

release to 0 volume
slowly
pad with extra breakpoint
increment pairs till the
total is 8

release segment is 3rd segment
priority increment
pbrange,vibdep,vibf,spare,A,B
topkey,addr,size,ctrl,pitch
halt b, to be swapped in by a

envelope breakpoint 1
increment value 1
breakpoint 2
increment 2
s ustain at 120
zero increment is sustain

release to 0 volume
slowly
pad with extra breakpoint
increment pairs till the
total is 8

release segment is 3rd segment
priority increment
pbrange,vibdep,vibf,spare,A,B
topkey,addr,size,ctrl,pitch
halt b,to be swapped in by a

Triangle

segment

Noise

segment

de
de
de
de
de
de

de
de
de
de
de

il 1 127 1

i1 1 0,127 1

i1 1 120 1

i1 1 20,1 1

i1 1 120 1

i1 1 0,0 1

i1 1 0 1

i1 1 60,12 1

i1 1 0,0,0 1

i1 1 0,0,0 1

i1 1 0,0,0 1

de i1 1 0,0,0 1

de
de
de
de
de

de
de
de
de
de
de

de
de
de
de
de
de
de
de
de
de
de

i1 1 3 1

i1 1 32 1

i1 1 2,80,90,0,1,1 1

i1 I 12715,2, 6, 0,12 I

i1 1 127,5,2,1,0,12 1

i1 1 127 1

i1 1 0,127 1

i1 1 120 1

i1 1 20,1 1

i1 1 120 1

il 1 0,0 1

i1 1 0 1

il 1 60,12 1

i1 1 0,0,0 1

i1 1 0,0,0 1

i1 1 0,0,0 1

i1 1 0,0,0 1

i1 1 3 1

i1 1 32 1

il 1 2,80,90,0,1,1 1

il 1 127,7,2,6,0,12 1

i1 1 127,7,2,1,0,12 1

envelope breakpoint 1
increment value 1
breakpoint 2
increment 2
sustain at 120
zero increment is sustain

release to 0 volume
slowly
pad with extra breakpoint
increment pairs till the
total is 8

release segment is 3rd segment
priority increment
pbrange,vibdep,vibf,spare,A,B
topkey,addr,size,ctrl,pitch
halt b,to be swapped in by a

envelope breakpoint 1
increment value 1
breakpoint 2
increment 2
sustain at 120
zero increment is sustain

release to 0 volume
slowly
pad with extra breakpoint
increment pairs till the
total is 8

release segment is 3rd segment
priority increment
pbrange,vibdep,vibf,spare,A,B
topkey,addr,size,ctrl,pitch
halt b, to be swapped in by a

Delay equ $80000000
T1 equ $08000000
T2 equ $10000000
T3 equ $18000000
TO equ $0
Qtr equ $40000
Half equ $80000
Note equ $8000
C4 equ $3COO
D4 equ $3EOO
E4 equ $4100
F4 equ $4200
G4 equ $4300
Chord equ $80

Sequence de i4'Phrase1'
Phrase1 de i4'1' phrase header

de i4 ' Phrase2'
de i4 ' Pattern1'
de i4 ' Phrase2'
de i4'Pattern1'
de i4'Pattern2 '
de i4 ' $FFFFFFFF ' terminator

Phrase2 de i4'1' phrase header
de i4'Pattern2 '
de i4 ' Pattern1'
de i4' $FFFFFFFF ' terminator

Pattern1 de i4'0' pattern header
de i4'Delay+TO+Qtr+Note+C4+127' full volume
de i4'Tl+Qtr+Note+C4+Chord+127 '
de i4'Delay+T1+Qtr+Note +G4+127'
de i4 ' Delay+TO+Half+Note+F 4+127'
de i4'$FFFFFFFF ' t erminator

Pattern2 de i4'0' pattern header
de i4'T2+Note+G4+Chord+127' note on
de i4'Note+Half' filler note
de i4'Delay+T2+Qtr+Note+F4+127'
de i4'Delay+T3+Qtr+Note+D4+127'
de i4'T3+Note+G4+Chord+127' note off
de i4'2' all notes off
de i4'$FFFFFFFF' terminator

End

Note Sequencer housekeeping calls

The following sections discuss Note Sequencer calls that perform common tool set
functions .

SeqBootinit $011A

Initializes the Note Sequencer.

_. Warning This call must not be made by an application. ...

Parameters This call has no input or output parameters. The stack is unaffected.

c extern pascal void SeqBootinit();

SeqStartUp $021A

Starts up the Note Sequencer and performs all the necessary initializations for the tool set.
This call also makes startup calls to the Sound Tool Set and the Note Synthesizer, so an
appli ation should not start up those tool sets before making this call.

Your application must make sure that the MIDI Tool Set has been started before issuing
this call.

Parameters

Stack before call

Previous contents
dPageAddr

mode
updateRate
increment

Word-Beginning of Note Sequencer direct page
Word-MIDI flag
Word-Rate of interrupt generation
Word-Number of interrupts per system tick
<-SP

Stack after call

Previous contents

Errors

c

<-SP

$1A03 startedErr

$1A07 nsWrongVer

Sound Tool Set errors
Note Synthesizer errors

The Note Sequencer is already
started.
The version of the Note
Synthesizer is incompatible with
the Note Sequencer.
Returned unchanged.
Returned unchanged.

e xtern pasc al void SeqStartUp(dPageAddr, mode,

updateRate, increment);

Wo rd dPageAddr, mode, updateRate, increment;

dPageAddr

mode

updateRate

increment

Specifies the location for the Note Sequencer's direct page. This
direct page must actually be three pages of bank zero memory,
starting at the specified address. The first page is used by the Note
Synthesizer and Sound Tool Set, and the other two by the Note
Sequencer. All three pages must be locked and page-aligned.

Determines whether the Note Sequencer will operate in interrupt
mode, in which updates are performed automatically as interrupts
occur, or in step mode, in which updates occur only when explicit step
commands are issued. If the low bit of mode is set to 0, then
interrupts are used; if it is set to 1, then step mode is used.

The high bit of the mode parameter determines whether MIDI
processing is enabled. If an application uses MIDI commands or wants
to support automatic generation of appropriate MIDI commands,
then the high bit must be set to 1.

Specifies how often the Note Sequencer will update its actions, using
interrupts. For example, an updateRate value of 500 specifies that the
Note Sequencer will receive interrupts at 200 Hz, or every 5
milliseconds. A value of 250 means that interrupts will run at 100Hz, or
every 10 milliseconds (500 is the default value). The same rate is used
by the Note Synthesizer to update its instruments' envelopes.

Specifies how many interrupts constitute one tick of the Note
Sequencer counter. If updateRate is 500 and increment is 20, then one
tick will take 100 milliseconds. The Note Sequencer gets interrupts
every 5 milliseconds, and the counter is incremented every 20
interrupts. If a quarter note equals 5 ticks, then it lasts half a second,
which corresponds to a tempo of 120 beats per minute. In general, you
can compute the number of beats per minute by using the following
formula:
B = (24 * updateRate) I (increment* T)

where B is beats per minute and T is the number of ticks in a beat.

Typical updateRate values might be

60Hz
100Hz
200Hz

60/0.4 = 150; updateRate = 150
100/0.4 = 250; updateRate = 250
200/0.4 = 500; updateRate = 500

Larger values for updateRate result in greater control of the tempo of a
sequence and smoother envelopes. However, a higher updateRate also
requires more processor time.

One general method for choosing appropriate updateRate and
increment values is to decide on the shortest note you will want to
play. Suppose the shortest note that you want to play is a sixteenth
note. Assign sixteenth notes a value of 1. Eighth notes are twice as
long, so assign them a value of 2. Quarter notes then receive a value of
4, half notes 8, and whole notes 16. Now decide how long you want a
whole note to be and compute the updateRate and increment to arrive
at the duration you want.

Once you have set the updateRate value, it remains in effect; you can
change it only by making the Note Synthesizer NSSet UpdateRate
call or by shutting down and restarting the Note Sequencer. You can
change the increment value, and the Note Sequencer provides tempo
calls that vary the tempo for you.

SeqShutDown $031A

Shuts down the Note Sequencer tool set. It frees any buffers that the tools may have
allocated. An application that uses the Note Sequencer should call SeqShutDown before
terminating.

Parameters

Errors

c

This call has no input or output parameters. The stack is unaffected.

$1923 nsNotinit

$1A05 noStartErr

$0812 noSAppinitErr

The Note Synthesizer was not
started.
The Note Sequencer was not
started.
The Sound Tool Set was not
started.

extern pascal void SeqShutDown();

SeqVersion $041A

Returns the version number of the Note Sequencer that is currently in use. Refer to
Appendix A, "Writing Your Own Tool Set," in Volume 2 of the Toolbox Reference for
information on the format and content of the returned versionNum value.

Parameters

Stack before call

Previous contents
Space

Stack after call

Previous contents

versionNum

Errors None

Word-Space for result
<-SP

Word-Note Sequencer version number
<-SP

c extern pascal Word SeqVersion();

SeqReset $051A

Resets the Note Sequencer. SeqReset is called when the Apple IIGS system is reset. All
internal notes presently being played are turned off.

.A. Warning This call must not be made by an application

Parameters This call has no input or output parameters. The stack is unaffected.

c extern pascal void SeqReset ();

SeqStatus $061A

Returns a Boolean flag indicating whether or not the Note Sequencer is active. If the tool
set is active, the flag is TRUE (nonzero); otherwise, it is FALSE (zero).

+ Note: If your program issues this call in assembly language, initialize the result space on
the stack to NIL. Upon return from SeqStatus, your program need only check the
value of the returned flag. If the Note Sequencer is not active, the returned value will
be FALSE (NIL).

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents
activeF/ag

Errors None

Word-Space for result
<-SP

Word-Boolean; TRUE if Note Sequencer is active
<-SP

c extern pascal Boolean SeqStatus();

Note Sequencer calls

The following sections discuss the Note Sequencer tool calls.

Clearincr $OA1A

Sets the Note Sequencer's increment value to 0, halting the current sequence, and returns
the previous increment value. Setting the increment to 0 does not disable the Note
Sequencer's interrupts, so envelopes are still updated. This means that, although the
sequence will not progress, notes being played when the increment was set to 0 may hang.
This call is valid only while a sequence is playing.

You might try using SeqAllNotesOff and Clearrncr when you want to stop a
sequence and be able to start it again easily. A sequence stopped in this way can easily be
restarted with a call to set Inc r.

Parameters

Stack before call

Previous contents
Space

Stack after call

Previous contents
Result

Errors None

Word-Space for result

<-SP

Word-Previous increment value
<-SP

c extern pascal Word Clearincr();

GetLoc $OC1A

Returns certain information about the sequence that is playing. This call provides an index
to the seqltem that is executing, the current pattern, and the nesting level. The nesting
level indicates how deeply control has passed into a structure with phrases nested within
phrases. A nesting level value of 0 indicates that the Note Sequencer is playing the
top-level phrase.

For example, if the Note Sequencer is playing the third seqltem in pattern 1, which occurs
in phrase 1, then GetLoc returns this information:

curPattltem = 3
curPhraseltem = 1
curLevel = 1

Parameters

Stack before call

Previous contents

Space
Space
Space

Stack after call

Previous contents
curPhraseltem
curPattltem

cur Level

Errors None

Word-Space for result
Word-Space for result
Word-Space for result
<-SP

Word- Current pattern in phrase specified by curLevel
Word-Current seqltem in pattern specified by curPhraseltem
Word-Nesting level for current phrase
<-SP

c ext e rn LocRec GetLoc ();

GetTimer $0B1A

Returns the value of the Note Sequencer's tick counter. While the counter is advancing,
the value returned is necessarily somewhat inexact, since the value changes as the call is
executed. The call is valid only while a sequence is playing.

Parameters

Stack before call

Previous contents
Space

Stack after call

Previous contents
Result

Errors None

Word-Space for result
<-SP

timer value
<-SP

c extern pascal Word GetTirner();

SeqAllNotesOff $0DlA

Switches off all notes that are playing but does not stop the sequence. Thus, any notes
that are held are turned off, but the sequence continues. Use this call to silence all
instrument voices temporarily while a sequence is active. If the high bit of the mode
parameter to the seqstartup call was set to 1, then the Note Sequencer also turns off all
external MIDI notes of which it is aware.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

c extern pascal void SeqAllNotesOff();

Set I ncr $091A

Sets the Note Sequencer's increment value. An application can use this facility to control
the tempo of a sequence. If the increment parameter is set to 0, the sequence will halt.

Parameters

Stack before call

Previous contents
increment Word-Desired increment value

<-SP

Stack after call

Previous contents
<-SP

Errors None

c extern pascal Setincr (increme nt);

Word increment;

SetinstTable $121A
•

Sets the current instrument table to the one specified in instTable.

Parameters

Stack before call

Previous contents

instTable Long-Handle to instrument table

<-SP

Stack after call

Previous contents
<-SP

Errors None

c e xtern pascal void SetinstTable(instTable);

Handle instTable;

instTable The instTable parameter is a handle to an instrument table. The
instrument table is a data structure in Apple IIGS memory that
contains pointers to one or more instruments. The format of an
instrument table is as follows:

$()() I= instNurnbe r :J Word-Number of instruments in table
$02

: Array oflongs-instNumber pointers to instruments ins tArray

Note that the first pointer in the array corresponds to instrument 0.
See Chapter 41, "Note Synthesizer," in this book for more information
about instruments.

SetTrkinfo $0E1A

Assigns instruments in the current instrument table to logical tracks and determines the
priorities of the instruments so that the Note Sequencer can correctly allocate generators
to them. Before starting to play a sequence, an application should call setTrkinfo for
each track it uses.

If MIDI was enabled when the Note Sequencer was started up (see "seqStartup $021A"
earlier in this chapter), then SetTrkinfo can be used to enable MIDI output on
particular tracks. If the most significant bit of the trackNum parameter is set to 1, then
everything played on the specified track will produce MIDI output on the channel number
specified by the second-most significant byte of trackNum. For example, a trackNum
value of $8201 specifies that everything played on track 1 produces MIDI output on MIDI
channel2.

The application may disable the internal voices of the Apple IIGS for a specified track by
issuing this call with the highest bit of the instlndex parameter set to 1.

You must make a set instTable call before issuing this call.

Parameters

Stack before call

Previous contents
priority
instlndex
trackNum

Stack after call

Previous contents

Errors $1A06

c ext ern

Word

Word-Priority value
Word-Index number for instrument (first instrument is number 0)
Word-Track number for instrument
<-SP

<-SP

ins tBnds Er r The specified intrument number
is out of the bounds of the
instrument table.

pascal void SetTrkin fo (priorit y , instindex ,

trac kNum);

priori ty , i nst!ndex , trackNum;

Startints $131A

Enables interrupts. Use this call to restore normal functioning after a call to stopints.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors

c
None

extern pascal Startlnts();

StartSeq $OF1A

Starts interpretation of a series of seqitems stored at the address specified by the
sequence parameter.

Parameters

Stack before call

Previous contents

- errHndlrRoutine-

- compRoutine -

- sequence -

Stack after call

Previous contents

Errors $1921

$1AOO

$1A01

$1A02

$1A04

$lAOS

$2004

$2007

Long-Pointer to error handler

Long-Pointer to completion routine

Long-Handle to sequence

<-SP

<-SP

nsNoneAvail Note Synthesizer error: no
generator is available.

noRoornMidiErr The Note Sequencer is tracking
32 notes that are currently
playing; there is no room for a
MIDI NoteOn.

noCommandErr The current seqltem is not valid
in its context.

noRoomErr The sequence is nested more than
twelve levels deep.

noNoteErr Can't find the note for a
noteOff command.

noStartErr The Note Sequencer was not
started.

miToolsErr Required tools not active or
wrong version.

miNoBufErr No MIDI output buffer is
allocated.

c extern pascal void StartSeq(e rrHndlrRoutine,

compRoutine, sequence);

Pointer
Handle

errHndlerRoutine, compRoutine;
sequence;

errHndlrRoutine The errHndlrRoutine parameter is a pointer to an error-handling
routine supplied by the application programmer. If errHndlrRoutine is
set to NIL, then the Note Sequencer will not invoke a routine. For
information about error-handling routines for the Note Sequencer, see
"Error Handlers and Completion Routines" earlier in this chapter.

compRoutine The compRoutine parameter points to a routine to be called when
star t seq reaches the end of a sequence. If compRoutine is set to
NIL, then the Note Sequencer will not invoke a routine. For
information about completion routines for the Note Sequencer, see
"Error Handlers and Completion Routines" earlier in this chapter.

sequence The sequence parameter is a handle to the phrase to be executed by
the Note Sequencer. The handle passed in sequence should be locked.
If the Note Sequencer is running in interrupt mode, as specified by the
mode parameter of the seqStartup call, then the Note Sequencer
simply starts interpreting seqitems. If, however, the mode parameter
specified that the Note Sequencer start up in step mode, then the
start Seq call must be followed by a series of calls to s tepSe q to
play the seqltems individually.

StartSeqRel $151A

Starts interpretation of a series of seqltems stored at the address specified by sequence.
This call differs from starts e q in that it uses relative addressing from the beginning of
the sequence. That is, all phrase and pattern pointers are interpreted as offsets from the
start of the sequence, rather than as absolute addresses. As a result, coding phrases and
patterns is easier. Following the call description you will find a code sample showing how
to specify these relative offsets.

The Note Sequencer uses the dereferenced value of sequence as the base address for all
phrases and patterns. It does not check for overflow and does not support negative
offsets from the specified base address.

Parameters

Stack before call

Previous contents

- errHndlerPtr

- compRoutine

- sequence

Stack after call

Previous contents

-
-

-

Long-Pointer to error handler

Long-Pointer to completion routine

Long-Handle to sequence

<-SP

<-SP

Errors

c

errHndlrPtr

compRoutine

$1921 nsNoneAvail

$1AOO noRoomMidiErr

$1A01 noComrnandErr

$1A02 noRoomErr

$1A04 noNoteErr

$1A05 noStartErr

$2004 miToolsErr

$2007 miNoBufErr

Note Synthesizer error: no
generator is available.
The Note Sequencer is tracking
32 notes that are currently
playing; there is no room for a
MIDI NoteOn.
The current seqltem is not valid
in its context.
The sequence is nested more than
twelve levels deep.
Can't find the note for a
noteOf f command.
The Note Sequencer was not
started.
Required tools not active or
wrong version.
No MIDI output buffer is
allocated.

extern pascal void StartSeqRel(errHndlrPtr,

compRoutine , sequence);

Pointer
Handle

errHndlerPtr, compRoutine;
sequence;

The errHndlrPtr parameter is a pointer to an error-handling routine
supplied by the application programmer. If errHndlrPtr is set to NIL,
then the Note Sequencer will not invoke a routine. For information
about error-handling routines for the Note Sequencer, see "Error
Handlers and Completion Routines" earlier in this chapter.

The compRoutine parameter points to a routine to be called when
Start Seq reaches the end of a sequence. If compRoutine is set to
NIL, then the Note Sequencer will not invoke a routine. For
information about completion routines for the Note Sequencer, see
"Error Handlers and Completion Routines" earlier in this chapter.

sequence The sequence parameter is a handle to phrase to be executed by
the Note Sequencer. The handle passed in sequence should be locked.
If the Note Sequencer is running in interrupt mode, as specified by the
mode parameter of the SeqSt art Up call, then the Note Sequencer
will simply start interpreting seqitems. If, however, the mode
parameter specified that the Note Sequencer start up in step mode,
then the Start Seq call must be followed by a series of calls to
stepSeq to play the seqltems individually.

Sample sequence with relative addressing

The following example, a sequence presented in 65816 assembly language, shows how to
set up relative addressing for StartSeqRe l.

Delay
T1
T2
qtr
hlf
Note
C4
D4
F4
G4
Chord

phr h ndl
phrl

phr2

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

d e
de
de
de
d e
d e
d e
de

de
de
d e

$8 0000000
$08000000
$1 800000 0
$40000
$80000
$8000
$3COO
$3EOO
$4100
$4300
$80

i4 ' phr1 - p h r hndl'
i 4 ' 01' it' s a phr ase
i 4 ' phr2-phrhndl'
i4 ' pat1-p hrh ndl '
i4 ' phr2 - phrhndl'
i 4 ' p at1-p h rhnd l '
i 4'pat2 - p h r hndl '
i 4 ' $FFFFFFFF' e nd of phra se

i4'01 ' it ' s a phr a s e
i4 ' p at 2 - phrhndl '
i4 ' pat1-phrhndl '

1

d e i4 ' $FFFFFFFF ' e nd of phrase 2

pat1 de i4'00' it's a pat tern
de i4 ' De l ay+T1 +qtr+Note+C4 +115 '
d e i 4'T1+qtr+Note+C4 +Ch ord+1 15 '
d e i4 'De l ay+T2+qtr+Note+G4+1 1 5 '
d e i 4 ' De l ay+Tl+hl f+Note+F4 +115 '
de i 4 ' $FFFFFFFF ' ; e nd o f pat1

pat2 de
de
de
de
de
de
de
de

i4'00' it's a pattern
i4'Tl+Note+G4+Chord+115' ; NoteOn
i4'Note+hlf' filler note
i4'Delay+T2+qtr+Note+F4+115'
i4'Delay+T2+qtr+Note+D4+115'
i4'Tl+Note+G4+Chord+O' NoteOff
i4'$00000002'
i4'$FFFFFFFF'

AllNotesOff
end of pat2

StepSeq $lOlA

Increments the Note Sequencer counter, causing the appropriate seqltems in the current
sequence to be processed. A stepSeq call is the equivalent of one tick of the Note
Sequencer counter, which consists of a number of interrupts equal to the value of the
increment parameter of the SeqStartup call.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors $1921 nsNoneAvail Note Synthesizer error: no
generator is available.

$1A01 noCornmandErr The current seqltem is not valid
in its context.

$1A02 noRoomErr The sequence is nested more than
twelve levels deep.

$1A04 noNoteErr Can't find the note for a
noteOff command.

c e xtern pascal void StepSeq();

Stopints $141A

Disables Note Synthesizer and Note Sequencer interrupts.

If the Note Sequencer is started up, and interrupts are enabled, the Note Synthesizer calls
the Note Sequencer interrupt handler whenever an interrupt occurs. When no notes are
being played, the overhead involved in this processing is unnecessary, so stopints
provides a way to cause the Note Synthesizer not to service the interrupts. To restart
interrupt processing, use the Startrnts call.

The start Seq call starts interrupt processing automatically, and the seqShutDown
automatically halts it. No other Note Sequencer calls affect interrupt processing except
Stopints, Startints, and SeqShutDown.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

c e xtern pascal void Stopints();

StopSeq $111A

Halts interpretation of a phrase. The next parameter specifies whether execution should
continue if there are more phrases to be executed in the current sequence. If so, the next
phrase begins. Otherwise, the sequencer simply stops and calls the application's
completion routine. See "Error Handlers and Completion Routines" earlier in this chapter
for more information on completion routines. If next is not equal to 0, then the current
phrase terminates, and execution continues with the next phrase.

If any notes are turned on with not eon commands and a call to stopseq halts the phrase
in which they occur, they could continue to play forever, waiting for noteOff commands
that will never occur. You should thus take care to turn off any such notes before making a
call to StopSeq.

Parameters

Stack before call

Previous contents

next

Stack after call

Previous contents

Errors None

Word-Boolean; TRUE to process remaining phrases
<-SP

<-SP

c e xtern pascal StopSeq(next);

Boo lean next;

Note Sequencer error codes

Table 40-1 lists the error codes that may be returned by Note Sequencer calls.

• Table 40-1 Note Sequencer error codes

Value Name

$1AOO noRoomMidiErr

$1A01 noComrnandErr
$1A02 noRoomErr

$1A03 startedErr
$1A04 noNoteErr
$lAOS noStartErr
$1A06 instBndsErr

$1A07 nsWrongVer

Definition

The Note Sequencer is tracking 32 notes that are
currently playing; there is no room for a MIDI
NoteOn.
The current seqltem is not valid in its context.
The sequence is nested more than twelve levels
deep.
The Note Sequencer is already started.
Can't find the note for a noteOff command.
The Note Sequencer was not started.
The specified instrument number is out of the
bounds of the instrument table.
The version of the Note Synthesizer is
incompatible with the Note Sequencer.

Chapter 41 Note Synthesizer

This chapter documents the Note Synthesizer. This is new
documentation not previously presented in the
Apple lies Toolbox Reference.

About the Note Synthesizer

The Note Synthesizer is a tool set that controls operation of the Apple IIGS Digital
Oscillator Chip (DOC). With it, an application can turn the Apple IIGS into a digital
synthesizer for playing music and generating sound effects. The Note Synthesizer
provides far more control over a sound than the Sound Tool Set does, and it supports
looping within a sound sequence and enveloping a sound.

+ Note: The Note Synthesizer, the Note Sequencer, and the MIDI Tool Set refer to the
software tools provided with the Apple IlGS, not to any separate instrument or
device. The MIDI tools are software tools for use in controlling external instruments,
which may be connected through a MIDI interface device.

The following list summarizes the capabilities of the Note Synthesizer. The tool calls are
grouped according to function. Later sections of this chapter discuss the tool set in
greater detail and define the precise syntax of the Note Synthesizer tool calls.

Routine

Housekeeping routines

NSBootinit

NSStartUp

NSShutDown

NSVersion
NSReset

NSStatus

Description

Called only by the Tool Locator-must not be called by
an application
Initializes the Note Synthesizer for use by an
application and establishes values for many important
operational parameters
Informs the Note Synthesizer that an application is
finished using its tool calls
Returns the Note Synthesizer version number
Called only when the system is reset-must not be called
by an application
Returns the operational status of the Note Synthesizer

Note Synthesizer tool calls

AllNotesOff
AllocGen

DeallocGen

NoteOff

Not eOn

NSSetUpdateRate
NSSetUserUpdateRtn

Turns off all Note Synthesizer generators
Requests a sound generator
Frees a sound generator
Lets a note die out
Starts a note
Sets the update rate for the Note Synthesizer
Sets the user update routine

Using the Note Synthesizer

An application that uses the Note Synthesizer must first start it up and write the wave
information to the DOC RAM by using the Sound Tool Set's WriteRAMBlock call, then
allocate DOC generators for its use with AllocGen. It can play musical notes by making
individual calls to Noteon and NoteOff for each note that it plays. The Noteon call
starts a generator and a process that automatically updates envelopes as it plays its
assigned instrument. When the application calls NoteOff, the Note Synthesizer enters the
release phase of the envelope for that generator, and the note begins to die away.

The Note Synthesizer requires that the Sound Tool Set be loaded and started up. One
page of bank zero memory must be allocated to the Sound Tool Set for use as a direct
page. The Note Synthesizer shares this direct-page space with the Sound Tool Set.

The sound envelope

The envelope describes the graph of a sound's loudness over time. The terms loudness,
amplitude, and volume all refer to the same characteristic of a sound. In addition, the
MIDI quantity velocity is normally mapped to a note's loudness, so that, for instance, the
faster a key on a keyboard is struck, the louder its corresponding note will be. A note's
envelope gives it its dynamic quality. A short, sharp sound has a steep, short envelope,
and a long, smooth sound has a flatter, longer envelope.

A synthesizer's envelope is traditionally described in terms of attack, decay, sustain, and
release, or ADSR. Figure 41-1 shows an example of a simple envelope described in terms
of ADSR.

• Figure 41-1 Sound envelope, showing attack, decay, sustain, and release

,., D
I \

I \ A I \
I \

I \
I \ S I \

I R I ,,
I ,,

I ,, I
I ',,

The attack portion of an envelope is the period during which the sound increases from
silence to its peak loudness. This part of the envelope determines the suddenness of a
sound. A drumbeat or a plucked string has an extremely steep attack, whereas a bowed
string or a softly blown wind instrument has a much flatter attack.

The decay part of the envelope is the period during which the sound falls off from its peak
loudness to the level at which it stays, that is, its sustain portion. Attack and decay
together can be used to control a sound's percussiveness. Sounds with a steep attack and
decay tend to sound plucked or percussive. A steep attack followed by a flat decay, or by
little or no decay, creates a blare like that of a loud trumpet. A very flat attack and decay
produce a sound with a soft, smooth quality.

Sustain determines the note's overall perceived loudness and duration. A drumbeat has
virtually no sustain or release; it consists almost entirely of attack and decay. A long, slow
note on a violin, by contrast, might have a very flat attack and decay, and a long, high
sustain.

The release is the portion of a note as it dies away. A long release can produce a nice
ringing quality but can also be a problem if the note is still sounding when another and
dissonant note begins to sound.

Note Synthesizer envelopes

The envelope definition in the Note Synthesizer's instrument record is somewhat more
complex than this simple four-part scheme. The instrument's envelope field can specify up
to eight segments instead of just four, so more complex sequences of attack, decay,
sustain, and release are possible. For example, the physical properties of pianos cause
them to have a complex envelope with two attack segments. A simple ADSR is therefore
limited in its ability to simulate a piano's envelope. The Note Synthesizer can do better,
because its eight envelope segments allow a closer approximation of the piano's actual
envelope.

Figure 41-2 shows an envelope created with eight envelope segments.

• Figure 41-2 Typical Note Synthesizer envelope

" A 41 \5
I \3 I '----- 6 7 21 \ 1 ----------------,,,

I \ I '
I \1 ', 8
I ' 11 ',

;I ' L '

An instrument's envelope definition is composed of up to eight linear segments. The
segments are defined as a series of breakpoints and increments. During each segment, the
note's loudness slopes from its starting value toward its defined breakpoint value. The
shape of the envelope is arbitrary; it can be any shape that can be specified in eight
segments, so complex envelopes are possible. The last breakpoint, though, should always
be 0, so that the note dies away at the end. If the volume of any individual segment goes
to 0 before the end of the segment, the Note Synthesizer considers the note done.

The breakpoint represents the loudness of the sound as a byte value between 0 and 127 on
a logarithmic loudness scale. A value difference of 16 represents a change of 6 decibels in
loudness.

The increment determines the amount of time to be spent reaching the breakpoint
volume. The value is a 2-byte fixed-point number indicating the amount by which the
current volume is to be adjusted at each update (the default rate is 100 updates per
second; you can use the NSStartUp and NSSetUpdateRate tool calls to set other
values). The low-order byte contains the numerator for a fractional increment. For
example, an increment value of 1 translates to a fractional increment of 1/2s6 . In this case,
the volume is incremented once every 256 interrupts. The Note Synthesizer processes the
segment until its volume reaches the specified breakpoint value. At that time, the Note
Synthesizer moves to the next segment.

The length of time that an envelope segment lasts is given by the following formula:

T= I (L-N) I• 256
(0.4)•(/o R)

where

T =segment's duration
L = last breakpo(nt
N = next breakpoint
I = increment value
R = update rate

As an example, for a segment that changes from 30 to 40 with an increment value of 25 and
an update rate of 100 cycles per second, the formula becomes

T = I (30-40) I• 256
(0.4)•(25•100)

2560
(0.4)2500 = 2.56 seconds

Thus, with the given parameters, the specified segment will last 2.56 seconds.

The increment value of a sustain segment is 0, so the previous formula cannot be used to
calculate the duration of the sustain portion of an envelope. Instead, the sustain portion
simply continues until a release is signaled. If the release portion of the note is sustained,
then the note continues to play until no available generators are left, and the generator
producing the note is reallocated to another note.

Instruments

The Note Synthesizer's basic functional unit is an instrument. This is a data structure
stored somewhere in the memory of the Apple liGS that defines the sound characteristics
of a played note. When a program makes the Not eon call, it passes a pointer to an
instrument, and that instrument is used while the sound is generated. Figure 41-3 shows the
format of the instrument data structure.

• Figure 41-3 Instrument data structure

$00 .

$18
$19
$1A
$1B
$1C
$1D
$1E
$1F
$20 .

$xx .

envelope

releaseSegment
priorityincrement

pitchBendRange
vibratoDepth
vibratoSpeed

in Spare
aWaveCount
bWaveCount

aWaveList

bWaveList

24 bytes

Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte

aWaveCount Wave entries

bWaveCount Wave entries

envelope Specifies the envelope for the sound as a series of eight segments,
each a breakpoint and increment value pair (see "Note Synthesizer
Envelopes" earlier in this chapter for detailed information on these
concepts). Each breakpoint is a 1-byte value specifying a target
volume level in the range from 0 through 127. Each increment is a
2-byte value that determines the amount of time the Note Synthesizer
will spend reaching the breakpoint volume (and, therefore, the slope
of the segment).

$00
$01
$03
$04

$15

f-

f-

$16 r-

The envelope array has the following format:

breakpointO

incrementO

breakpointl

inc reme ntl

-

-

Byte-Breakpoint value for segment 0
Word-Increment value for segment 0
Byte-Breakpoint value for segment 1
Word-Increment value for segment 1

b reakpoint7 Byte-Breakpoint value for segment 7
increment ? - Word-Increment value for segment 7

releaseSegment
Defines the segment at which release begins when a NoteOff call is
made. Its value can be any number from 0 to 7 and identifies which
segment in the sequence is the beginning of the release phase of the
envelope. The release portion may thus occupy several segments, but
the last breakpoint should always be 0. For example, if
rele.aseSegment is set to 5 and breakpoint 7 has a value of 0, the
Note Synthesizer progresses through segments 5, 6, and 7 before
ending the note.

priorityincrement
Subtracted from the generator's priority value when the envelope
reaches its sustain phase. The Note Synthesizer uses the changing
priority values to reallocate generators, giving higher priority to notes
that are just starting. When an envelope reaches the release portion,
the priority value assigned to its generator is again reduced, this time
to half its current value. Thus, the higher priorities go to notes that are
just starting; notes being sustained are accorded lower priority, and
notes in their release phase receive lowest priority. This is just a rule of
thumb; the actual priority values depend on the priority that was
specified when the generator was allocated. For more information on
generator priorities, see "Generators" later in this chapter.

pitchBendRange
Specifies the maximum pitch bend that is possible for the note. The

maximum possible value for a pitch bend is 127; pitchBendRange
specifies how many semitones the pitch is raised when the pitch bend
value is 127. The legal values are 1, 2, and 4 semitones. Note that the
only way to change the pitch bend value of a note that is playing is to
change the pitchBendRange field of the appropriate Generator
Control Block (GCB) (see "Generators" later in this chapter for
information on the format and content of the GCB).

The pitchBendRange field is used mainly by the Note Sequencer. It
is possible to set its value directly, but it is normally used by the Note
Sequencer to pass information to the Note Synthesizer about how to
play notes in a sequence.

vibratoDepth Any number from 0 to 127. A depth of 0 specifies that there is no
vibrato effect on the note. Vibrato is produced by modulating the
pitch of the two oscillators that make up a generator, using a triangle
wave produced by a low-frequency oscillator (LFO). When the
vibratoDepth parameter specifies that there is to be no vibrato
effect, the vibrato software is switched off to save processing time,
because the processing required to create the triangle wave can
consume a large amount of processor time.

vibratoSpeed Controls the rate of vibrato. Higher values produce faster vibrato. The
actual speed of vibrato effect depends on the update rate, which
defaults to 100 updates per second. You can use the NSStartup and
NSSetUpdateRate tool calls to set other rates.

inSpare Must be set to zero.

aWaveCount,bWaveCount
Specify the number of wavelist entries (up to 255) that follow the
wavecounts.

aWaveList,bWaveList

$00
$01
$02
$03
$04 1-

A wavelist is an array of variable length. The elements of the array are
6-byte structures. The corresponding wavecount field indicates the
number of entries in each wavelist.

An entry in a wavelist data structure specifies wave data that is
intelligible to the DOC. The Note Synthesizer places the data into the
DOC registers.

wfTopKey
wfWaveAddress

wfWaveSize
wfDOCMode
wfRelPitch -

Byte
Byte
Byte
Byte
Word

wfTopKey When the Note Synthesizer plays a note, it examines the
wfTopKey field of each waveform in the wavelists until it finds
a value that is greater than or equal to the value of the note it is
attempting to play. The first waveform it finds with an
acceptable wfTopKey value is the one it plays. For this reason,
waveforms should be stored in increasing order of wfTopKe y
value. The last waveform in a wavelist should have a value of 127,
the maximum valid pitch value.

wfWaveAddress The high byte of the waveform's address in sound RAM. Its value
is copied into the Address Pointer register of the DOC.

wfWaveSize

wfDocMode

wfRelPitch

Sets the size of the DOC's wave table and the frequency
resolution of the DOC. This data is copied directly to the DOC's
Bank-Select/TableSize/Resolution register. The resolution and
table size should normally be equal.

Sets the mode of the DOC. This field corresponds to the control
register of the DOC and supplies the stereo position of the
oscillator. Bit 3 of this register (the interrupt enable bit for the
DOC) should always be set to 0.

A word value used to tune the waveform. The high-byte value is
the semitone, and the low-byte value is fractions of semitones. A
value of 1 in the low byte corresponds to V2560f a semitone. A
wavelist can specify a full range of notes for an instrument with
entries for each note that differ only in the wfRe lP itch field.
Such a wavelist specifies an instrument whose timbre is the same
for every note; only the pitch is different.

For more information on DOC registers and waveforms, see Chapter 47, "Sound Tool Set
Update," and the Apple lies Hardware Reference.

DOC memory

An application that uses the Note Synthesizer must use the Sound Tool Set call
WriteRAMBlock to load into DOC memory any waveforms that it can use. You must not
place a 0 in the first 256 bytes of DOC memory because doing so halts the timer oscillator
and causes a system failure. If the application uses the clock function of the MIDI Tool
Set, then it must not write to the first 256 bytes of DOC memory.

Generators

Each generator is a pair of DOC oscillators. There are 32 such oscillators; two of them are
reserved for the use of Apple Computer, Inc. The remaining 30 are paired into 15
generators for the Note Synthesizer. The Note Synthesizer uses one of these generators as
a timer, leaving 14 generators for general use. If the MIDI Tool Set is started up and is
using the MIDI clock function, another generator is allocated to serve as the MIDI clock,
leaving 13 general-purpose generators for application use.

The Note Synthesizer allocates generators to all the different sound tools that may need
them. It therefore requires a priority scheme for allocating generators in the event that a
generator is requested when all generators are in use. When a generator is allocated, it
receives a priority. A generator's priority may range from 0 through 128. A priority of 0
means the generator is not being used and will be allocated to any sound tool that requests
it. A priority of 128 indicates that the generator is locked and cannot be reallocated. The
Note Synthesizer uses remaining values in a generator's range to control allocation of
generators.

The Note Synthesizer automatically lowers the priority of a generator that has reached the
sustain portion of its envelope and lowers it again when it reaches the release portion.
When the note stops, the generator's priority becomes 0. Your application specifies a
priority when requesting a generator. The Note Synthesizer then allocates a generator to
your application if it finds one with a lower priority value (see the description of the
AllocGen tool call later in this chapter for more information).

The Note Synthesizer divides its direct-page area into 15 blocks of 16 bytes, called
Generator Control Blocks (GCB). The GCB contains the values of any "knobs" or "dials"
affecting the parameters of the note that it is currently playing. A programmer normally
should not access the GCB.

Figure 41-4 shows the format and content of the GCB.

• Figure 41-4 Generator control block layout (GCBRecord)

$00
$01
$02
$03
$04
$05
$06 .

synthiD

synthiD
genNum

semi tone
volume

Byte-Identifies user of generator
Byte-Identifies the generator itself
Byte-Note currently being played by the generator
Byte-Output volume for current note

pitchbend Byte-Pitch bend value for current note
Byte-Vibrato for current note vibratoDepth

Reserved ; 10 bytes-Reserved for Note Synthesizer and Sound Tool Set

Identifies who is currently using the generator. Valid values are

0 Not used
1 Sound Tool Set free-form synthesizer
2 Note Synthesizer
3 Reserved for use by Apple Computer, Inc.
4 MIDI Tool Set
5-7 Reserved for use by Apple Computer, Inc.
8-15 User defined

genNum Uniquely identifies the generator. Valid values lie in the range from 0
through 13 ($00 through $OD). Your application uses this value to
identify a specific generator to the Note Synthesizer. The tool set
returns the identifier on the AllocGen call.

semi tone Identifies the note currently being played. Contains a standard MIDI
value in the range from 0 to 127, where middle C has a value of 60.

volume Identifies the output volume for the current note specified by
semitone. Valid values lie in the range from 0 through 127 and
correspond to MIDI velocity. A 16-step change in vo 1 ume
corresponds to a 6-decibel change in amplitude.

pitchbend Identifies pitch bend to be applied to the note specified by
semitone. Valid values lie in the range from 0 through 127; a value of
64 specifies no pitch bend. The pit c hbendRange field of the
instrument record specifies the maximum allowable pitch bend in
semitones (see "Instruments" earlier in this chapter).

vibratoDepth Specifies the depth of vibrato for the note. Valid values lie in the
range from 0 through 127. A value of 0 indicates no vibrato (this is the
recommended value). A value of 127 yields maximum vibrato depth.

Reserved Area reserved for internal use by the Note Synthesizer and the Sound
Tool Set.

Note Synthesizer housekeeping calls

All the call descriptions for the Note Synthesizer are new. The tool calls were not previously
documented in the Apple IlGS Toolbox Reference.

NSBootinit $0119

Initializes the Note Synthesizer.

.A. Warning An application must not make this call. .a.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

c e xtern pascal void NSBootinit();

NSStartUp $0219

Starts up the Note Synthesizer for use by an application. An application must make this
call before it makes any other Note Synthesizer calls except NSStatus or NSVersion.
The updateRate parameter specifies the rate at which interrupts are generated to update
envelopes and low-frequency oscillations. The value is in units of 0.4 Hz. Reasonable
values for this parameter include 150, 250, and 500. The default value is 500. Low rates
require less overhead, but higher rates generate smoother-sounding envelopes.

The userUpdateRtnPtr parameter is a pointer to a routine that is called during every timer
interrupt. Sequencer programs are an example of software that might use routines that run
during Note Synthesizer interrupts, and, in fact, this is how the Note Sequencer works. A
value of 0 indicates that there is no user update routine.

Parameters

Stack before call

Previous contents

updateRate

- userUpdateRtnPtr-

Stack after call

Previous contents

Errors $1901

$1902
$1925

Word-Rate of envelope generation

Long-Pointer to custom interrupt routine

<- SP

<-SP

nsAlreadyinit

nsSndNot i ni t
soundWrongVe r

Note Synthesizer already started
up.
Sound Tool Set not started up.
Incompatible version of Sound
Tool Set.

c exter n pascal void NSStartUp (updateRat e ,
userUpdateRtnPtr);

Word updateRate ;
Poi nte r use r UpdateRtnPtr ;

NSShutDown $0319

Shuts down the Note Synthesizer and turns off all generators. An application should make
this call before quitting.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors $1923 nsNotinit Note Synthesizer not started up.

c extern pascal void NSShutDown();

NSVersion $0419

Returns the version number of the Note Synthesizer. Refer to Appendix A, "Writing Your
Own Tool Set," in Volume 2 of the Toolbox Reference for information about the format and
content of the versionNum return value.

Parameters

Stack before call

Previous contents
Space

Stack after call

Previous contents
versionNum

Errors None

Word-Space for result
<-SP

Word-Note Synthesizer version number
<-SP

c extern pascal Word NSVersion();

NSReset $0519

Resets the Note Synthesizer.

.6. Warning

Parameters

Errors

c

An application must not make this call. •

This call has no input or output parameters. The stack is unaffected.

None

extern pascal void NSReset();

NSStatus $0619

Returns a Boolean value indicating whether the Note Synthesizer is active. If the Note
Synthesizer is active, NSStatus returns TRUE. Otherwise, the call returns FALSE.

+ Note: If your program issues this call in assembly language, initialize the result space on
the stack to NIL. Upon return from NSStatus, your program need only check the
value of the returned flag. If the Note Synthesizer is not active, the returned value will
be FALSE (NIL).

Parameters

Stack before call

Previous contents
Space

Stack after call

Previous contents
startStatus

Errors None

Word-Space for result
<-SP

Word-Boolean; TRUE if the Note Synthesizer is started
<-SP

c extern pascal Boolean NSStatus();

Note Synthesizer calls

The following sections discuss the Note Synthesizer tool calls.

AllNotesOff $0019

Turns off all Note Synthesizer generators and sets their priorities to 0. It does not affect
generators not used by the Note Synthesizer, such as those allocated to the Sound Tool
Set free-form synthesizer.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

c extern pascal void AllNotesOff();

AllocGen $0919

Requests a sound generator. Returns a generator number from 0 to 13. The call reallocates a
generator if all generators are allocated and the specified requestPriority exceeds that of
one of the previously allocated generators.

Parameters

Stack before call

Previous contents
Space

requestPriority

Stack after call

Previous contents
genNum

Errors $1921

$1923

Word-Space for result
Word-Desired generator priority

<-SP

Word-Number of allocated generator
<-SP

nsNotAvail

nsNotinit

No generators available to
allocate.
Note Synthesizer not started up.

c extern pascal Word AllocGen(requestPriority);

Word requestPriority;

DeallocGen $OA19

Sets the named generator's allocation priority to 0 and halts its oscillators. Any subsequent
allocation request with a valid requestPriority will then succeed.

Parameters

Stack before call

Previous contents
genNumber

Stack after call

Previous contents

Errors $1922

Word-Number of generator to deallocate
<-SP

<-SP

nsBadGenNum Invalid generator number.

c extern pascal void DeallocGen(genNumber);

Word genNumber;

NoteOff $OC19

Switches the specified generator to release mode, causing the note being generated to die
out. When the note's volume is 0, the generator's priority is set to 0, and it is considered to
be off. The genNumberand semitone parameters should be set to the same values
specified in the corresponding Noteon call.

Parameters

Stack before call

Previous contents
genNumber

semitone

Stack after call

Previous contents

Errors None

Word-Generator number
Word-Note being played
<-SP

<-SP

c extern pascal void NoteOff(genNumber, semitone) ;

Word genNumber , semitone ;

NoteOn $0B19

Initiates the generation of a note on a specified generator. The genNumber parameter
should be a value returned by the AllocGen call. The semitone parameter is a standard
MIDI value from 0 to 127, where middle Cis designated by the value 60. The volume
parameter is a value from 0 to 127 that can be treated as synonymous with MIDI velocity.
The value is copied into the generator control block and is used to scale the note's
amplitude. A change of 16 steps in this parameter specifies a change of 6 decibels in
amplitude. The instrumentPtr parameter is a pointer to an instrument. See "Instruments"
earlier in this chapter for more information on the instrument data structure.

+ Note: Experiment with the volume parameter and envelope amplitudes; if the sum of
these two values is too small, the note being played is inaudible even if everything else
is working correctly. The dynamic range of the DOC is 48 decibels.

Parameters

Stack before call

Previous contents
genNumber

semitone
volume

- instrumentPtr -

Stack after call

Previous contents

Errors $1924

Word-Generator number
Word-Desired pitch for note
Word-Desired volume for note

Long-Pointer to instrument to play note

<-SP

<-SP

nsGenAlreadyOn The specified note is already
being played.

c

Example

extern pascal void NoteOn(genNumber, semitone,

volume, instrumentPtr);

Word
Pointer

genNumber, semitone, volume;
instrumentPtr;

The following example shows assembly-language code that allocates a generator, passes
the correct parameters to Not eon, plays a note, and turns off the note.

definition

pushword #0
pushword #64

AllocGen
pla
sta GenNum

pushword GenNum
pushword Semi tone
push word #127
pushlong #Instrument

Not eon

•
•
•

pushword GenNum
pushword Semi tone

NoteOff

;space for GenNum
;priority of this note
;retrieve an allocated generator
;get the generator number
;store it

;push parameters:generator
;note
;maximum volume
;LONG pointer to instrument

;push parameters: generator
;note
;turn off the note

NSSetOpdateRate $0E19

Sets the Note Synthesizer's updateRate parameter, as described under NSStartup in
"Note Synthesizer Housekeeping Calls" earlier in this chapter. The specified updateRate
value becomes the new updateRate, and the old value is returned.

Parameters

Stack before call

Previous contents
Space

updateRate

Stack after call

Previous contents
oldRate

Errors $1923

Word-Space for result
Word-New update rate
<-SP

Word-Update rate before call
<-SP

nsNotinit Note Synthesizer not started up.

c extern pascal Word NSSetUpdateRate(updateRate);

Word updateRate;

NSSetOserUpdateRtn $0F19

Sets the user update routine described under NSStartUp in "Note Synthesizer
Housekeeping Calls" earlier in this chapter. The update routine pointer is set to the value
passed in the updateRtn parameter, and the address of the old update routine is returned.
If there is no user update routine when this call is made, it returns a NIL pointer. A NIL
updateRtn value disables the current update routine.

Parameters

Stack before call

Previous contents

Space Long-Space for result

updateRtn Long-Pointer to new update routine

<-SP

Stack after call

Previous contents

oldRtn

Errors

c
$1923

Long-Pointer to old update routine

<-SP

nsNotinit Note Synthesizer not started up.

extern pascal VoidProcPtr
NSSetUserUpdateRtn(updateRtn);

Pointer updateRtn;

Note Synthesizer error codes

Table 41-1 lists the error codes that may be returned by Note Synthesizer calls.

• Table 41-1 Note Synthesizer error codes

Value Name Definition

$1901 nsAlreadylnit Note Synthesizer already started up.
$1902 nsSndNotlnit Sound Tool Set not started up.
$1921 nsNotAvail No generators available to allocate.
$1922 nsBadGenNum Invalid generator number.
$1923 nsNotinit Note Synthesizer not started up.
$1924 nsGenAlreadyOn The specified note is already being played.
$1925 soundWrongVer Incompatible version of Sound Tool Set.

Chapter 42 Print Manager Update

This chapter documents new features of the Print Manager. The complete
reference to the Print Manager is in Volume 1, Chapter 15 of the
Apple JIGS Toolbox Reference.

Error corrections

This section documents errors in Volume 1 of the Toolbox Reference.
• The diagram for the job subrecord, Figure 15-10 on page 15-14 of Volume 1 of the

Toolbox Reference, shows that the fFromusr field is a word. This is incorrect. The
fF romu s r field is actually a byte. Note that as a result the offsets for all fields
following this one are incorrect. This error is also reflected in the tool set summary at
the end of the chapter.

• The description of the PrJobDialog tool call includes this incorrect statement: "The
initial settings displayed in the dialog box are taken from the printer driver." The
sentence should begin "The initial settings displayed in the dialog box are taken from
the print record."

Clarifications
The following items provide additional information about features previously described in Volume 1
of the Toolbox Reference.
• The existing Toolbox Reference documentation for the P rP icF ile tool call does not

mention that your program may pass a NIL value for statusRecPtr. Passing a NIL pointer
causes the system to allocate and manage the status record internally.

• The PrPixelMap call (documented in Volume 1 of the Toolbox Reference) provides an
easy way to print a bitmap. It does much of the required processing, and an
application need not make the calls normally required to start and end the print loop.
The srcLocPtrparameter must be a pointer to a locinfo record (see Figure 16-3 in
Chapter 16, "QuickDraw 11," in Volume 2 of the Toolbox Reference for the layout of the
locinfo record).

• The port driver auxiliary file type of an AppleTalk driver is $0003. Its file type remains $BB.

New features of the Print Manager

The following functions have been added to the Print Manager:
• The PRINTER.SETUP file now saves separate settings for direct and network

connections to printers. Old versions of the PRINTER.SETUP file are incompatible
with these changes, so the Print Manager deletes such files and creates new ones in the
correct format. Old settings are discarded, and the default settings are used to create
the new setup file.

• If the Print Manager attempts to load a driver and finds that it is missing, it passes
control to a routine that (1) determines what call was being made to the driver, (2)
pops the parameters off the stack, and (3) returns a missingDriver error ($1301).
The Print Manager also displays an alert asking the user to make sure a printer and port
driver are selected, if your application calls P rJobDialog and P rSt lDialog.

• The PMStart up call does not load any drivers into memory. Drivers are loaded only
when they are needed. The Print Manager does not require that the DRIVERS folder be
present, and if it is present, does not require that there be any drivers in it.

• The PrChoosePrinter call is no longer supported. Users should now use the Control
Panel desk accessory to choose new printers. When an application issues the
PrChoosePrinter call, the Print Manager displays an alert directing the user to use
the Control Panel. New applications should never issue this call and should not include
the Choose Printer command in the file menu. Note that PMStartup still loads the List
Manager if it has not already been loaded.

• The Print Manager now allows you to assign a name to a document. This feature is
primarily applicable to documents destined for AppleTalk printers and is used by
AppleShare® print servers for the print log.

• If a user wants to print multiple copies of a document in draft mode to an
ImageWriter®, ImageWriter LQ, or Epson printer, your application must run through
its print loop once for each copy. The draft mode flag (bjDocLoop) and copy count
field (icopie s) are located in the job subrecord of the print record.

• The LaserWriter® driver will now use some PostScript® fonts that have been
downioaded into the printer by another computer (such as a Macintosh computer).

New Print Manager calls

The following sections discuss new Print Manager tool calls.

PMLoadDriver $3513

Loads the current printer driver, port driver, or both, depending on the input parameter.
The current driver is determined by the settings saved in the PRINTER.SETUP file.

Parameters

Stack before call

Previous contents
whichDriver Word-Printer driver to load

<-SP

Stack after call

Previous contents

Errors

c

whichDriver

<-SP

$1309 badLoadParam

Loader errors

The specified parameter is
invalid.
Returned unchanged

extern pascal void PMLoadDriver(whichDriver);

Word whichDriver;

Specifies which printer driver to load. Legal values for the driver
parameter include
0 Load both drivers.
1 Load printer driver.
2 Load port driver.

PMUnloadDriver $3413

Unloads the current port driver, printer driver, or both, depending on the input parameter.

Parameters

Stack before call

Previous contents
whichDriver Word-Printer driver to unload

<-SP

Stack after call

Previous contents

Errors

c

whichDriver

<-SP

$1309 badLoadParam

Loader errors

The specified parameter is
invalid.
Returned unchanged

extern pascal void PMUnloadDriver(whichDriver);

Word whichDrive r ;

Specifies which printer driver to unload. Legal values for the driver
parameter include
0 Unload both drivers.
1 Unload printer driver.
2 Unload port driver.

PrGetDocName $3613

Returns a pointer to the current document name string for your document. Use the
PrSetDocName tool call to set or change the document name.

Note that there is only one active document name for the system at any given time. Your
application must correctly manage this name in the context of the document being
printed.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

- docNamePtr -

Errors None

Long-Space for result

<-SP

Long-Pointer to document name string (Pascal string)

<-SP

c extern pascal Pointer PrGetDocName();

PrGetPgOrientation $3813

Returns a value indicating the current page orientation for the specified document.

Parameters

Stack before call

Previous contents
Space

- prRecordHandle -

Stack after call

Previous contents
orientation

Errors None

Word-Space for result

Long-Handle to print record for document

<-SP

Word-Page orientation: 0 = portrait, 1 = landscape
<-SP

c extern pascal Word
PrGe tPgOrientat i on(prRecordHandle);

Ha ndle prRecordHandle ;

PrGetPrinterSpecs $1813

Returns information about the currently selected printer.

Parameters

Stack before call

Previous contents
Space
Space

Stack after call

Word-Space for result
Word-Space for result
<-SP

Previous contents
characteristics Word-Word defining printer characteristics

Word-Word indicating the type of printer connected
<-SP

printer Type

Errors

c
. characteristics

Reserved
color

printerType

None

extern pascal PrinterSpecs PrGetPrinterSpecs();

Defines the features of the particular printer.

bits 15-2
bits 1-0

Must be set to 0.
Indicates color capability.
00 = Can't determine
01 = Black and white only
10 =Color capable
11 = Reserved

Indicates the type of printer selected.

0 Undefined
1 ImageWriter I or II
2 ImageWriter LQ
3 LaserWriter family printer that supports PostScript (LaserWriter,

LaserWriter Plus, and LaserWriter liNT and IINTX)
4 Epson

PrSetDocName $3713

Sets the document name for use with AppleTalk printers. The Print Manager passes this
name when connecting to printers and spoolers, allowing the destination printer to report
the name properly.

Note that there is only one active document name for the system at any given time. Your
application must correctly manage this name in the context of the document being
printed.

In some status windows, the document name may be truncated. To avoid name
truncation, you should use names containing fewer than 32 characters.

Parameters

Stack before call

Previous contents

- docNamePtr -

Stack after call

Previous contents

Errors None

Long-Pointer to document name string (Pascal string)

<-SP

<-SP

c extern pascal void PrSetDocName(docNamePtr);

Pointer docNamePtr;

Previously undocumented Print Manager calls

The following calls, not previously documented, may be useful to application programmers.

PrGetNetworkName $2B13

Returns the AppleTalk network name for the currently selected printer. If the user has
selected a nonnetworked printer, the call returns a NIL pointer.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

- netNamePtr -

Errors None

Long-Space for result

<-SP

Long-Pointer to printer network name string (Pascal string)

<-SP

c extern pascal Pointer PrGetNetworkName();

PrGetPortDvrName $2913

Returns the name string for the currently selected port driver.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

- prtDvrNamePtr-

None

Long-Space for result

<-SP

Long-Pointer to port driver name string (Pascal string)

<-SP

Errors

c extern pascal Pointer PrGetPortDvrName();

PrGetPrinterDvrName $2813

Returns the name string for the currently selected printer driver.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

- prtDvrNamePtr -

None

Long-Space for result

<-SP

Long-Pointer to printer driver name string (Pascal string)

<-SP

Errors

c extern pascal Pointer PrGetPrinterDvrName();

PrGetOserName $2A13

Returns the user name as entered in the Control Panel.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

- userNamePtr -

None

Long-Space for result

<-SP

Long-Pointer to user name string (Pascal string)

<-SP

Errors

c extern pascal Pointer PrGetUserName();

PrGetZoneName $2513

Returns the name string for the currently selected AppleTalk print zone. If the user has
selected a nonnetworked printer, the call returns a NIL pointer.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

- zoneNamePtr -

Errors None

Long-Space for result

<-SP

Long-Pointer to zone name string (Pascal string)

<-SP

c extern pascal Pointer PrGetZoneName();

Print Manager error codes

Table 42-1 lists all valid Print Manager error codes.

• Table 42-1 Print Manager error codes

Value Name Definition

$1301 missingDriver Specified driver not in the DRIVERS
subdirectory of the SYSTEM subdirectory.

$1302 portNotOn Specified port not selected in the Control
Panel.

$1303 noPrintRecord No print record specified.
$1306 papConnNotOpen Connection with the LaserWriter cannot be

established.
$1307 papReadWriteErr Read-write error on the LaserWriter.
$1308 ptrConnFailed Connection with the lmageWriter cannot be

established.
$1309 badLoadParam The specified parameter is invalid.
$130A callNotSupported Tool call is not supported by current version

of the driver.
$1321 startUpAlreadyMade LLDStartUp call already made.

Chapter 43 QuickDraw II Update

This chapter documents new features of QuickDraw II. The complete
reference to QuickDraw II is in Volume 2, Chapter 16 of the
Apple lies Toolbox Reference.

Error corrections

The following items provide corrections to the documentation for QuickDraw II in
Volume 2 of the Toolbox Reference:
• The documentation in the Toolbox Reference that explains pen modes is somewhat

misleading. There are, in fact, 8 drawing modes, and you may set the pen to draw lines
and other elements of graphics in any of these modes. There are also 16 modes used for
drawing text, and they are completely independent of the graphic pen modes. The 8
drawing modes listed in Table 16-9 on page 16-235 are valid modes for either the text
pen or the graphics pen. You can set either pen to any of these modes by using the
appropriate calls. You can also set the text pen to 8 other modes. These modes are
listed in the table on page 16-260 of the Toolbox Reference. The SetPenMode call sets
the mode used by the graphics pen; the set TextMode call sets the mode used by the
text pen. Setting either one does not affect the other.

• There are two versions of the Apple IIGS standard 640-mode color tables, one on page
16-36 and one on page 16-159. The two tables are different; Table 16-7 on page 16-159
is correct.

• Chapter 16 states that the coordinates passed to the Line To and MoveTo calls should
be expressed as global coordinates. In fact, the coordinates must be local and must
refer to the Grafl>ort in which the drawing or moving takes place.

• The pen state record shown in Figure 16-38 on page 16-238 of Volume 2 of the Toolbox
Reference is incorrect. The correct record layout is shown in Figure 43-1.

• Figure 43-1 Pen state record

$00 f-
f-
f-

$04 r-
r-
r-

f-$08

$0A.

$2A .

psPenLoc

psPenSize

psPenMode

p s PenPat

psPenMask

-- Long-Point specifying pen location -
-- Long-Point specifying pen size -
- Word-Pen mode

: 32 bytes-Pen pattern

: 8 bytes-Pen mask

Clarification

QuickDraw pictures are described by a series of QuickDraw operation codes that record
the commands by which the picture was created. When these pictures are stored as data
structures, the actual picture data (the operation codes) is preceded by control
information, some of which may be of interest to Apple liGS developers. Figure 43-2
shows some of this control information. Note that the layout of this control information
is subject to change.

• Figure 43-2 QuickDraw picture header

$00 c_sc_s __ Word-Picture's scan line control byte (high byte is 0)

$OZ · picFrame : Rectangle-Picture's boundary rectangle

$0A t picversion j Word-Version number for picture

New features of QuickDraw II

The following information describes new features in this version of QuickDraw II.
• QuickDraw II now supports 16-by-8 pixel patterns in 640 mode. To use these larger

patterns, set the high-order bit (bit 15) of the arcRot word in the Grafport record to
1. QuickDraw II will then use all 32 bytes of the passed pattern. Because the
OpenPort and Ini tPort tool calls clear this bit, existing applications will work fine.

• The Point InRect call now works as previously documented.
• In the FONT folder on your system disk you will find a file named FASTFONT. This file

contains a special version of the Shaston 8 font that will provide markedly improved
performance for text drawing under many circumstances. Specifically, this font can be
used whenever you are drawing plain, black text on a white background into a
rectangularly clipped region. Although this may sound overly restrictive, most
applications draw text in precisely this way. This font reduces text drawing time by
more than half.
To use this font, QuickDraw II must find it in your FONT folder when the tool is
started. If your application draws text to an off-screen bitmap, use OpenPort and
InitPort to set up the off-screen buffers. This ensures that FASTFONT is properly
installed.

QuickDraw II speed enhancement

In addition to F ASTFONT, several other changes that improve drawing performance have
been made to QuickDraw II. First, pattern filling in mode Copy and modeXOR now
operates between two and four times faster. The remaining changes require that you
modify your application to take advantage of the performance improvements they offer.

QuickDraw II now supports hardware shadowing of screen images. This feature uses 32 KB
of bank 1 memory to store the screen image. By storing the image in memory,
QuickDraw II can offer an 8 to 20 percent speed improvement in all operations. You
control whether QuickDraw II uses the shadow memory by setting a flag in the masterSCB
parameter passed to the QD start Up tool call. If QuickDraw II cannot allocate the
needed memory, it will reset the flag and operate without shadowing in effect. Use the
GetMasterSCB tool call to read back the masterSCB parameter and check shadowing
status.

In addition, your application can further improve QuickDraw II performance by following
some simple rules. First, your application must change GratPort fields only via
QuickDraw II tool calls, not by directly accessing the record fields. Next, for best results
perform similar operations in groups. For example, if your application needs to erase and
redraw four rectangles, it should do all the erasing at the same time, then all the redrawing.
In this manner, QuickDraw II has to change its drawing pattern only twice, rather than
eight times. Your application tells QuickDraw II that it will follow these fast port rules by
setting a bit in the masterSCB passed to QDStartup.

The masterSCB now has the following format:

fUseShadowing

fFastPortAware

Reserved
SCB

bit 15

bit 14

bits 13-8
bits 7-0

Controls use of hardware shadowing by
QuickDraw II.
0 =No shadowing
1 = Shadowing
Indicates whether application follows fast port rules.
0 = Does not use fast port rules
1 = Does use fast port rules
Must be set to 0.
Use standard SCB values.

New font header layout

The font header has been expanded to include a new field containing additional
addressing information. Figure 43-3 shows the new layout for the font header. For
information about the old fields, see Chapter 16, "QuickDraw II," in Volume 2 of the
Toolbox Reference.

• Figure 43-3 New font header layout

$00
$02

f-

f-

$04
$06
$08
$0A
$0C
$0E.

r-
r-
r-
r-
r-

offsetToMF

family

style

size

version

fbrExten t

highowTLoc

-
-
-
-
-
-
-

Word-Offset in words to Macintosh font part
Word- Font family number
Word- Style for font
Word-Point size
Word-Version number of the font definition
Word-Font boundary rectangle extent
Word-High-order word of address to offset/width table

: Bytes-Additional fields, if any

highowTLoc Defines the high-order word of the address of the offset/width table
for the font. The owTLoc field defined in the old font header contains
the low-order word of the address. Together, these two fields form a
full 32-bit address.

Chapter 44 QuickDraw II Auxiliary Update

This chapter documents new features in QuickDraw II Auxiliary. The
complete reference to QuickDraw II Auxiliary is in Volume 2, Chapter 17
of the Apple /IGS Toolbox Reference.

New feature of QuickDraw II Auxiliary

QuickDraw II now supports text justification within pictures. Note that QuickDraw II
justifies the text only in the drawn picture, not in the stored picture image. You control
text justification in pictures by setting a bit flag in the font F 1 a g s word of the GrafPort
record. Use the set Font F 1 a g s tool call to change the state of this bit.
The fontF1ags word is defined as follows:

Reserved
fTextJust

bits 15-4
bit 3

bits 2-0

Must be set to 0.
Controls text justification in pictures.
0 = Don't justify text
1 =] ustify text
Use standard fontF1ags values (see
page 16-56 in Volume 2 of the Toolbox Reference
for a description of these bits).

New QuickDraw II Auxiliary calls

Two new QuickDraw II tool calls, CalcMask and seedF ill, provide enhanced
functionality to the application programmer who wants to create graphics-entry or
editing software. A third new call, SpecialRect, provides a high-performance rectangle
frame and fill operation.

CalcMask $0E12

Generates a mask from a specified source image and pattern, by filling inward from the
boundary rectangle. The shape of the resulting mask consists of all areas in the source
image where leaking does not occur (all enclosed areas within the rectangle). Figure 44-1
shows an example of mask generation.

• Figure 44-1 Mask generation with CalcMask

Source rect

Source image Computed
CalcMask shape

This call differs from seedFill only in that it works from the "outside in"; SeedFill
goes "inside out," filling all enclosed areas starting from a specified interior point (see the
description of the SeedF i 11 tool call later in this chapter for details).

CalcMask is most commonly used to implement a lasso tool. CalcMask determines the
selected shape by filling inward from the lasso rectangle. Figure 44-2 shows an example.

• Figure 44-2 Implementing a lasso tool with CalcMask

Source image Computed Write pattern
CalcMask shape was -1; this

indicates alll's

For this use, set the call parameters as follows:

Destination image
containing anything
(it will be preinitialized)

destMode portion of resMode
patternPtr

%0010 (clear destination to O's before drawing)
$FFFFFFFF (use alll's pattern when drawing to
destination)

Destination is
now a l's active mask

This call does not perform automatic scaling; therefore, the source and destination
rectangles must be of equal size. In addition, note that the fill is not clipped to the current
port and that the resulting image cannot be stored into a QuickDraw II picture.

6 Important Your application must word-align both the source and destination
rectangles to ensure an accurate fill. t:::.

Parameters

Stack before call

Previous contents

- srcLoclnfoPtr -
- srcRect -

- destLoclnfoPtr -

- destRect -

resMode

- patternPtr -
- leakTb/Ptr -

Stack after call

Previous contents

Errors $0201
$1211

$1212

Long-Pointer to source locinfo data record

Long-Pointer to source rectangle data record

Long-Pointer to destination locinfo data record

Long-Pointer to destination rectangle data record

Word-Resolution mode

Long-Pointer to fill pattern

Long-Pointer to leak-through color table

<-SP

<-SP

memErr
badRectSize

destModeError

NewHandle error occurred.
Height or width is negative,
destRect is not the same size as
srcRect, or the source or
destination rectangle is not
within its boundary rectangle.
ctestMode portion of resMode is
invalid.

c extern pascal void CalcMask(srcLocinfoPtr, srcRect,
destLocinfoPtr, destRect, resMode,
patternPtr, leakTblPtr);

Pointer

Word

srcLocinfoPtr, srcRect, destLocinfoPtr,
destRect, patte rnPtr, l eakTblPtr;
resMode;

srcLoclnfoPtr

srcRect

Points to a 1 ocr n f o data record containing the definition of the
source rectangle for the fill operation.

Points to a rectangle, in local coordinates, that contains the source
pixel image.

destloclnfoPtr, destRect

resMode

destMode

Reserved

res

patternPtr

NIL
$FFFFFFFF
Other

Refer to output locinfo record and rectangle, respectively. These
fields allow you to copy the output to a different location in a
different rectangle. If you want the output of the operation to overlay
the input image, set the source and destination pointers to the same
values.

Indicates the resolution mode for the fill as well as initialization and
drawing options.

bits 15-12 Indicates initialization and drawing options.
0000 = Copy source to destination (obliterating
destination)
0001 = Leave destination alone (overlay source onto
destination)
0010 = Initialize destination to O's before drawing
0011 = Initialize destination to l's before drawing
Other values are invalid.

bits 11-2 Must be set to 0.

bits 1-0 Indicates the resolution for the operation.
00 = 640 pure
01 = 640 dithered
10 = 320 mode
11 =Invalid

Pointer to the fill pattern for the operation, or flag specifying special
fill pattern.

Use an all O's pattern when writing to destination
Use an all 1 's pattern when writing to destination
Assumed to be valid pointer to fill pattern

leak1b/Ptr Pointer to a structure that defines the colors to be covered. The
structure contains a count word, indicating the number of color
entries in the table, and a color entry for each color to be leaked. Each
color entry contains the offset into the color table for that color. Valid
values in 640 pure mode range from 0 through 3, inclusive; for 320
mode and 640 dithered mode valid values range from 0 through 15,
inclusive.

$00F 1----c_o_un_t __ ----ll Word-Count of color entries to follow

$OZ · colorEntries count words-Offset into color table for each color

SeedFill $OD12

Generates a mask from a specified source image and pattern, by filling outward from a
starting point within the source image. The shape of the resulting mask consists of the
enclosed area in the source image surrounding the starting (or seed) point. Figure 44-3
shows an example.

• Figure 44-3 Mask generation with seedFill

Source rectangle

Source image Computed
SeedFill shape

This call differs from CalcMask only in that it works from the "inside out"; CalcMask
goes "outside in" (see the description of the calcMask tool call earlier in this chapter for
details).

seedF ill is a versatile tool. Most simply, you can use it to implement a paint bucket
tool, as in Figure 44-4.

• Figure 44-4 Implementing a paint bucket tool with seedFill

Source image Computed Write pattern
SeedFill shape

Original source
image (passed
again as destination)

For this operation, use the following call parameter values:

destMode portion of resMode o/oOOOl (do not change destination image before
drawing)

patternPtr Pointer to fill color or pattern

Source image
with pattern added

To add an undo capability to the paint bucket, specify a different destination, as in
Figure 44-5.

• Figure 44-5 Paint bucket tool with undo

..I-I

Source image Computed Write pattern
SeedFill shape

Destination image
containing anything
(it will be completely
overwritten)

For this operation, use the following call parameter values:

destMode portion of resMode
patternPtr

%0000 (copy source to destination)
Pointer to fill color or pattern

Destination now
contains filled
copy of source

Figure 44-6 shows a more complex example, illustrating the "from-the-inside" lasso tool.

• Figure 44-6 Implementing a "from-the-inside" lasso tool with seedF i 11

Source image Computed
seedFill shape

Write pattern
was -1 ; this
indicates alll 's

Destination image
containing anything
(it will be preinitialized)

Destination is now
a l's active mask

For this operation, use the following call parameter values:

destMode portion of resMode
patternPtr

%0010 (clear destination to O's before drawing)
$FFFFFFFF (use alll's pattern when drawing to
destination)

This call does not perform automatic scaling; therefore, the source and destination
rectangles must be of equal size. In addition, note that the fill is not clipped to the current
port and that the resulting image cannot be stored into a QuickDraw II picture.

D. Important Your application must word-align both the source and destination
rectangles to ensure an accurate fill. !::,.

Parameters

Stack before call

Previous contents

- srcLoclnfoPtr -
- srcRect -

- destLoclnjoPtr -

- destRect -

seedH
seedV

resMode

- patternPtr -

- /eakTb/Ptr -

Stack after call

Previous contents

Errors $0201
$1211

$1212

Long-Pointer to source 1 o c Info data record

Long-Pointer to source rectangle data record

Long-Pointer to destination 1 o c In fo data record

Long-Pointer to destination rectangle data record

Word-Horizontal offset (pixel) to starting fill point
Word-Vertical offset (pixel) to starting fill point
Word-Resolution mode

Long-Pointer to fill pattern

Long-Pointer to leak-through color table

<-SP

<-SP

memErr
badRectSize

destModeError

NewHand1e error occurred.
Height or width is negative,
destRect is not the same size as
srcRect, or the source or
destination rectangle is not
within its boundary rectangle.
destMode portion of resMode is
invalid.

c

srcLoclnfoPtr

srcRect

extern pascal void SeedFill(srcLocinfoPtr, srcRect,

destLocinfoPtr, destRect, seedH, seedV,
resMode, patternPtr, leakTblPtr);

Pointer

Word

srcLocinfoPtr, srcRect, destLocinfoPtr,
destRect, patternPtr, leakTblPtr;
seedH, seedV, resMode;

Points to a 1 ocr n f o data record containing the definition of the
source rectangle for the fill operation.

Points to a rectangle, in local coordinates, that contains the source
pixel image.

destLoclnfoPtr, destRect

seedH, seedV

resMode

destMode

Reserved

res

Refer to output locinfo record and rectangle, respectively. These
fields allow you to copy the output to a different location in a
different rectangle. If you want the output of the operation to overlay
the input image, set the source and destination pointers to the same
values.

Specify the horizontal and vertical offsets into the source pixel image
of the point at which to start the fill operation.

Indicates the resolution mode for the fill as well as initialization and
drawing options.

bits 15-12 Indicates initialization and drawing options.
0000 = Copy source to destination (obliterating
destination)
0001 = Leave destination alone (overlay source onto
destination)
0010 = Initialize destination to O's before drawing
0011 = Initialize destination to 1's before drawing
Other values are invalid.

bits 11-2 Must be set to 0.

bits 1-0 Indicates the resolution for the operation.
00 = 640 pure
01 = 640 dithered
10 = 320 mode
11 =Invalid

patternPtr

NIL
$FFFFFFFF
Other

leakTb/Ptr

Pointer to the fill pattern for the operation, or flag specifying special
fill pattern.

Use an all O's pattern when writing to destination
Use an alll's pattern when writing to destination
Assumed to be valid pointer to fill pattern

Pointer to a structure that defines the colors to be covered. The
structure contains a count word, indicating the number of color
entries in the table, and a color entry for each color to be leaked. Each
color entry contains the offset into the color table for that color.

$00 count =1 Word-Count of color entries to follow
soz 1-r-------l-J

colorEnt r ies coun t words-Offset into color table for each color

Speci.alRect $OC12

Frames and fills a rectangle in a single call, making separate calls to FrameRect and
FillRect unnecessary.

The pen used to draw the rectangle frame in 640 mode is 2 pixels wide and 1 pixel high; in
320 mode, the pen is 1 pixel wide and 1 pixel high.

Parameters

Stack before call

Previous contents

- rectPtr -
frameColor

Long-Pointer to rectangle to draw

Word-Color of rectangle frame
Word-Color of rectangle interior fillColor
<-SP

Stack after call

Previous contents

Errors

c

<-SP

None

extern pascal void SpecialRect(rectPtr, frameColor,
fillColor);

Pointer rectPtr;
Word frameColor, fillColor;

frameColor, fill Color
The low-order 4 bits of each of these parameters specify the color.

Chapter 45 Resource Manager

This chapter documents the features of the Resource Manager.
This is a new tool set not previously documented in the
Apple JIGS Toolbox Reference.

About the Resource Manager

The Resource Manager provides applications access to resources, which can contain such
items as menus, fonts, and icons. Most . basically, a resource is a formatted collection of
data. The Resource Manager does not know the format or content of any given resource.
Your application can define the content of its resources or may use standard resources
defined by the system. Resource Manager facilities allow applications to create, use, and
manipulate these resources.

Generally, your program will access the Resource Manager indirectly, as a result of using
other tool sets, such as the Window Manager or Control Manager, that use resources.
However, if your program manages its own resources, it will have to issue some Resource
Manager calls directly. Further, you may want to write a program that creates and edits
resources. Such a program would make thorough use of Resource Manager tool calls.

The following list summarizes the capabilities of the Resource Manager. The tool calls are
grouped according to function. Later sections of this chapter discuss resources in greater
detail and define the precise syntax of the Resource Manager tool calls.

Routine

Housekeeping routines

ResourceBootinit

ResourceStartUp

Resource ShutDown

ResourceVersion
ResourceReset

ResourceStatus

Description

Called only by the Tool Locator-must not be called by
an application
Informs the Resource Manager that an application
wants to use its facilities
Informs the Resource Manager that an application is
finished using resource tool calls
Returns the Resource Manager version number
Called only when the system is reset-must not be called
by an application
Returns the operational status of the Resource Manager

Resource access routines

AddResource

RemoveResource
LoadRe source
LoadAbsResource
GetindResource

ReleaseResource
DetachResource

WriteResource

Resource maintenance routines

GetResourceAttr
SetResourceAttr

GetResourceSize
MarkResourceChange
SetResourceiD
UniqueResourceiD

Count Types

GetindType

CountResources
MatchResourceHandle
ResourceConverter
SetResourceLoad

Creates a new resource and adds it to a specified
resource file
Deletes a resource from a resource file
Loads a resource into memoty
Loads a resource into a specified memoty location
Loads a resource given an index into a specified
resource type
Removes a loaded resource from memoty
Removes a loaded resource from the control of the
Resource Manager but leaves the resource in memoty
Writes a changed resource to its resource file

Returns the attributes of a resource
Sets the attributes of a resource
Returns the size in bytes of a resource
Sets the value of the changed attribute of a resource
Changes the ID of a resource
Obtains a unique resource ID for a resource of a
specified type
Returns the number of different resource types in all
open resource files for an application
Returns a resource type value associated with an index
into the array of all active resource types
Returns the number of resources of a specified type
Finds the ID and type of a resource, given its handle
Installs resource converter routines
Controls whether the Resource Manager loads resources
from disk

Resource file routines

CreateResourceFile
OpenResourceFile

CloseResourceFile
UpdateResourceFile

GetCurResourceFile
SetCurResourceFile
SetResourceFileDepth

GetOpenFileRefNum

HomeResourceFile

GetMapHandle

Application-switching routines

GetCurResourceApp

SetCurResourceApp

Creates and initializes a resource file
Opens a resource file for access by the Resource
Manager
Closes an open resource file
Writes all in-memory resource changes to the
appropriate resource file , making those changes
permanent
Returns the file ID of the current resource file
Sets the current resource file
Sets the number of resource files that the Resource
Manager will search when locating a specific resource
Returns the GS/OS file reference number for an open
resource file
Returns the file ID of the resource file that contains a
specified resource
Returns the handle of a resource map for an open
resource file

Returns the user ID of the application currently using the
Resource Manager
Sets the user ID of the application now using the
Resource Manager

About resources

A resource is a formatted collection of data, such as a menu, a font, or a program itself.
The format of the data in a resource is determined by the program that uses the resource,
or by the system in the case of standard resources. A program maintains its resources
separate from the program code itself. This very separation is the primary benefit of using
resources-program code is immune to data content changes, and program data is
immune to program code changes, even to changes in programming language.

Resources, in turn, are grouped into resource files, which correspond to the resource
forks of GS/OS files. A given resource file may contain one or more resources of various
format. An application that uses resources may store those resources in its own resource
file or may access resources in a resource file that is not directly associated with the
program. The Resource Manager provides routines to access and manipulate resources in a
resource file.

You can create the resource fork for your program in a variety of ways. Resource compilers
convert text-based resource definitions into resources in a valid resource file. You can use
an existing resource compiler, or you can create your own. Alternatively, you can write a
program that creates a resource file and its resources, using Resource Manager tool calls.
Finally, resource editors allow you to create resources interactively.

Identifying resources

Programs identify resources with a resource specification consisting of a resource type
and a resource ID number. The resource type (or just type) defines a class or group of
resources that share a common format. The resource ID (or just ID) uniquely identifies a
specific resource of a given type. Taken together, the resource type and ID completely
identify the resource and define its format. The ID of a resource must be unique within
the context of its type; however, the same ID number may be used for resources of
different type.

Resource types

The resource type defines a class of resources that share a common format. The system
defines several standard types for resources used to interact with system or Toolbox
functions. These standard types and the formats of their associated resources are
documented in Appendix E, "Resource Types," in this book. In addition, your program
may define unique resource types for its custom resources. Because the Resource Manager
knows nothing about the format or content of the resources it manages, you have
complete freedom to define the resources you need.

The resource type is a word value. The following list summarizes valid resource type values:

Type value range

$0000
$0001 through $7FFF
$8000 through $FFFF

Resource IDs

Use

Invalid resource type; do not use
Available for application use
Reserved for system use

The resource ID uniquely identifies a particular resource of a given type in a resource file.
Every resource in a resource file must have an ID value that is unique within the context of
its reso1,1rce type. Resources of different type may, however, have the same ID value.

The resource ID is a long value. Even though the resource ID is meaningful only in the
context of a given resource type, the system does place restrictions on the ID values you
can assign. The following list summarizes the allowable ranges for ID values:

ID value range

$00000000
$00000001 through $07FEFFFF
$07FFOOOO through $07FFFFFF
$08000000 through $FFFFFFFF

Use

Invalid resource ID; do not use
Available for application use
Reserved for system use
Invalid values; do not use

When creating a new resource, use the UniqueResourceiD tool call to obtain a resource
ID. The Resource Manager will allocate a new, unique resource ID for you. You can force
the ID to fall within a desired range to group resources by resource ID within resource
type. Each ID range contains 65,535 possible values. The ID range value provides the high-
order word of the long-word resource ID. The following list summarizes the allowable
ranges:

ID range Lowest possible ID returned Highest possible ID returned

$0000 $00000001 (zero is invalid) $0000FFFF
$0001 $00010000 $0001FFFF
$0002 $00020000 $0002FFFF

(and so on)

$07FE $07FEOOOO $07FEFFFF
$07FF Reserved for system use
$0800-$FFFE Invalid range values
$FFFF $00000001 $07FEFFFF

(directs Resource Manager to allocate from any application range)

Resource names

As an alternative to identifying a resource of a given type by an ID, you may choose to
assign it a resource name. Your application may then use the resource type and name to
identify the resource uniquely. In some cases, this may be more convenient than using the
numeric ID. The resource name must be unique within the context of a given resource
type. You should note that the Resource Manager does not provide call-level support for
resource names. However, the rResName resource ($8014) defines the standard layout
for resource names. If you choose to use resource names, or you use developer tools that
support named resources, be careful to use the standard data structures for defining those
names.

Using resources

In most cases, applications use the Resource Manager only indirectly, that is, by using
other tool sets that, in turn, use resources to store their data structures. Even if your
program defines resources, either for its own data or for data to be used by the system, it
will have to issue only a few Resource Manager calls to use those resources. However,
programs that create and manipulate resources and resource files must make far greater
use of the Resource Manager. The next several paragraphs describe the steps your program
must follow to use its predefined resources.
1. Unlike most other tool sets, the Resource Manager need not be started up by your

program. At startup time, the system automatically loads and initializes the Resource
Manager from the RESOURCE.MGR file in the SYSTEM.SETUP directory of the boot
disk. The Resource Manager then opens the system resources file, SYS.RESOURCES in
the SYSTEM.SETUP directory, if it is present.

2. To use the Resource Manager, your program must log in, using the ResourceStartUp
tool call. This call informs the Resource Manager that your program is going to be using
its services. As an alternative, your program may issue the Tool Locator
StartUpTools call.

3. Issue the OpenResourceF ile tool call to open each resource file for your
application. If your program issued the Tool Locator startUpTools call, then it
need not explicitly open its resource fork before trying to use resources located there.
If, however, your program used the Resourcestartup tool call, then it must issue an
OpenResourceFile call for its resource fork before accessing any resources stored
there.

4. As part of termination processing, call ResourceShutDown to log out from the
Resource Manager. The Resource Manager automatically closes any open resource files.
Once your program issues a ResourceShutDown call, it should not make any other
Resource Manager calls, except for ResourceStartUp.

Resource attributes

Every resource is associated with a set of attributes that define the current state of the
resource and place limits on how the resource can be used. The Resource Manager stores
these attributes in an attributes flag word (or attributes word) for the resource
(specifically, the re sAt t r field in the resource reference record). Your program can read
and write this attributes word by means of the GetResourceAttr and
SetResourceAttr tool calls. In the MarkResourceChange tool call
provides a convenient mechanism for changing the setting of the changed flag, which
indicates whether the resource has been changed since it was read from disk.

Many of the attributes govern the type of memory used to store the resource when the
Resource Manager reads it in from disk. These attributes directly correspond to flags in
the Memory Manager NewHandle tool call memory attributes word. When it allocates
memory for a resource to be loaded from disk, the Resource Manager masks out the other
bits and passes the attributes word to the NewHandle call. See the NewHandle tool call
description in Chapter 12, "Memory Manager," in Volume 1 of the Toolbox Reference for the
format and content of the memory attributes word.

Here are the contents of the attributes word for a resource:

attrLocked

attrFixed

Reserved
resConverter

bit 15

bit 14

bits 13-12
bit 11

Passed to Memory Manager NewHandle tool call
when memory is allocated for the resource.
0 = Memory for resource not locked
1 = Memory for resource locked; cannot be moved or
purged
Passed to Memory Manager NewHandle tool call
when memory is allocated for the resource.
0 = Memory for resource need not be fixed
1 = Memory for resource is fixed and cannot be
moved
Must be set to 0.
Indicates whether the resource requires a resource
converter routine (see "Resource Converter Routines"
later in this chapter for more information).
0 = Resource does not require a converter routine
1 = Resource requires a converter routine

resAbsLoad bit 10 Governs whether the resource must be loaded at a
specific memory location. Resources that must be
loaded at an absolute location must be created by a
resource editor or compiler.
0 = Resource need not be loaded at a specific
location
1 = Resource to be loaded at specific location

attrPurge bits 9-8 Passed to Memory Manager NewHandle tool call
when memory is allocated for the resource.
00 = Purge level 0
01 = Purge Ievell
10 =Purge level 2
11 = Purge level 3

resProtected bit 7 Indicates whether the resource is write-protected. If
this bit is set to 1, then applications may not update
the resource on disk.
0 = Resource is not write-protected
1 = Resource is write-protected

resPreLoad bit 6 Specifies whether the Resource Manager should load
the resource into memory at OpenResourceFile
time. If this bit is set to 1, then this resource is
loaded into memory when the resource file is opened,
rather than when the resource itself is accessed.
0 = Do not preload the resource
1 = Preload the resource

resChanged bit 5 Indicates whether the resource has been changed. If
this bit is set to 1 for a non-write-protected resource,
the Resource Manager updates the resource on disk at
CloseResourceFile time.
0 = Resource has not been changed in memory
1 = Resource has been changed in memory and
therefore differs from the version stored on disk

attrNoCross bit 4 Passed to Memory Manager NewHandle tool call
when memory is allocated for the resource.
0 = Memory may cross bank boundary
1 = Memory may not cross bank boundary

a t trNoSpec bit 3 Passed to Memory Manager NewHandle tool call
when memory is allocated for the resource.
0 = May use special memory
1 = May not use special memory

attrPage bit 2

Reserved bits 1-0

Passed to Memory Manager NewHandle tool call
when memory is-allocated for the resource.
0 = Memory need not be page-aligned
1 = Memory must be page-aligned
Must be set to 0.

Resource ftle format

A resource file is not a file in the strictest sense; actually, it is one of two parts, or forks, of
a GS/OS file. Every file has a resource fork and a data fork, either of which may be empty.
The data fork contains information for the application as well as the application code
itself, and is formatted according to the needs of the application. Programs manipulate
data in the data fork with GS/OS file system calls.

The Resource Manager defines the format of the resource fork. Programs read and
manipulate resources with Resource Manager tool calls. As a result, applications do not
need to know the format of the resource fork to use the resources stored there. You can
create resources and load them into a resource file with the aid of a resource editor, or
with whatever tools are available in your development environment.

A resource file consists primarily of resource data and a resource map. The resources
themselves constitute the resource data. The resource map is a directory to those
resources, containing information on both location and size. Each entry in the map on
disk contains the offset of the resource into the file; in memory, the entry contains a
handle to the resource if it is loaded. The Resource Manager reads the resource map into
memory at resource file open time and maintains it in memory until the file is closed.

Resource ftle IDs

When an application opens a resource file, the Resource Manager assigns that open file a
file ID, which identifies the file to the Resource Manager. Every open resource file has a
file ID that is unique in the entire system. Many Resource Manager tool calls require the file
ID to identify the resource file to be accessed. The file ID for the system resource file is
always $0001 (sysFileiD).

The OpenResourceFile tool call returns the file ID for a resource file. Note that the file
ID does not correspond to the GS/OS file reference number. Use the
GetOpenFileRefNum Resource Manager tool call to obtain the GS/OS file number of a
resource file.

Resource ftle search sequence

As your program opens resource files, the Resource Manager adds those files to the head
of the resource file search chain for your application. The Resource Manager uses this
search chain for many of its operations, such as locating a resource. The system resource
file is always the last file in the search sequence. When it runs the search chain, the
Resource Manager first checks all files in the application chain, then checks in the system
resource file, if one is defined.

You control the application file search sequence by the order in which your program opens
its resource files. For example, if your program issues the tool calls

OpenResourceFile
OpenResourceFile
OpenResourceFile

File A
File B
File C

the Resource Manager builds the search chain shown in Figure 45-1 for your application.

• Figure 45-1 A resource file search chain

Search

The most recently opened file (in this example, File C) is referred to as the current resource
file (or simply the current file). It is also called the first resource file (or first file), because
it is the first file accessed during a search. The least recently opened application resource
file (File A) is called the last resource file (or last file), because it is the last application file
to be searched.

During a search, which happens on nearly every Resource Manager tool call that accepts
resource type and ID arguments, the Resource Manager starts with the current file and
searches through the chain until it either finds the desired resource or exhausts the file list.
Note that the search stops with the first occurrence of a matching resource; a second
instance of a resource with the same ID and type will not be found unless your application
asserts further control over the resource search sequence.

The Resource Manager provides tool calls that allow your program to control the search
sequence for the resource file chain. The setcurResourceFile tool call changes the
current resource file, so that any resource file, including the System file, can be the first file
searched, though the search still terminates when the Resource Manager either finds the
desired resource or encounters the end of the file chain. The setResourceFileDepth
tool call controls the number of files the Resource Manager searches before giving up. By
using these calls, your program can fine-tune resource searches for performance or can
inhibit access to some resource files during some searches.

Resource fie layout and data structures

This section describes the format of a resource file on disk. This information is intended
only for application programmers who are writing tools to create, delete, or edit resources
in the resource fork.

Figure 45-2 shows the internal layout of the resource fork of a file. The resource file header
is the only data block that resides at a fixed location in the fork; it is always the first data
item in the fork. Along with other control information, the resource file header contains
the file offset to the resource map. The map, in tum, contains location and size
information for each resource contained in the file.

• Figure 45-2 Resource file internal layout

Always first -
in resource fork

Any place in --
file after header

rFileToMap

Any place in --
file after header

The Resource Manager controls the relative positions of all elements of the resource fork.
It moves or resizes the map or resources as required. Therefore, your program should never
rely on the location of any element in the fork, except for the resource file header.

The following sections present the format of the resource file header, resource map, and
their associated data structures in greater detail. These descriptions present version 0
layout infomation. Future system releases may support other versions with different
layouts. Your program should check the value in the rFileVersion field in the resource
file header before manipulating a resource file.

Resource file header

The resource file header, shown in Figure 45-3, is the first data block in every resource fork.

• Figure 45-3 Resource file header (ResHeaderRec)

$00 1- -
r- rF ileVersion - Long
1- -

$04 1- -
r- r FileToMap -
r- - Long

$08 1- -
1- rF ileMapSi ze - Long
r- -

$0C .
rFileMerno 128 Bytes

rFileVersion Version number defining layout of resource file. Currently, only version
0 is supported. This field allows Apple I!GS resource files to be
distinguished from Macintosh resource files; the first long in
Macintosh resource files must have a value greater than 127.

rF ileToMap Offset, in bytes, to beginning of the resource map. This offset starts
from the beginning of the resource file.

rFileMapSize Size, in bytes, of the resource map.

rF ileMemo Reserved for application use. The Resource Manager does not provide
any facility for reading or writing this field. Your program must use
GS!OS file system calls to access the rFileMemo field.

Resource map

The resource map provides indexes to the resources stored in the resource file; Figure 45-4
shows the layout of the resource map.

• Figure 45-4 Resource map (MapRec)

$00

$04
$06

$0A

$0E
$10
$12
$14

$18

-
-r-
r-
r-
r-
r-
r-
r-
r-
r-
r-
r-
r-
r-.....

-
$1C
$1E
$20 .

$xx .

mapNext

mapFlag

mapOffset

mapSize

mapTo i nde x

mapFileNum

mapiD

mapindexSize

mapindexUsed

mapFreeListSi ze

mapFreeListUsed

mapFreeList

map Index

-
--
-

-
-
-

-
-

Long

Word

Long

Long

Word
Word
Word

Long

Long

Word
Word

Array of resource free blocks

Array of resource reference records

mapNext Handle to resource map of next resource file in the search chain. Set to
NIL if last file in chain. This field is valid only when the map is in
memory.

mapFlag

Reserved
mapChanged

Reserved

Contains control flags defining the state of the resource file.

bits 15-2
bit 1

bit 0

Set to 0.
Indicates whether the resource map has been
modified and must therefore be written to disk when
the file is closed.
0 = Map not changed
1 = Map changed
Set to 0.

mapOffset Offset, in bytes, to the resource map from the beginning of the
resource file.

mapSize Size, in bytes, of the resource map on disk. Note that the memory
image of the map may have a different size due to changes in the
resource or resource file made during program execution.

mapToindex Offset, in bytes, from the beginning of the map to the beginning of
the map Index array of resource reference records.

mapFileNum GS/OS file reference number. This field is valid only in memory.

mapiD Resource Manager file ID for the open resource file. This field is valid
only in memory.

mapindexsize Total number of resource reference records in map Index.

mapindexused Number of used resource reference records in map Index.

mapFreeListSize
Total number of resource free blocks in mapFreeList.

mapFreeListUsed

mapFreeList

map Index

Number of used resource free blocks in mapFreeList.

Array of resource free blocks, which describe free space in the
resource file.

Array of resource reference records, which contain control information
about the resources in the resource file.

Resource free block

The resource free block describes a contiguous area of free space in the resource file. The
resource map contains a variable-sized array of these blocks at mapFreeList. Note that
each resource file has at least one resource free block, defining free space from the end of
the resource file to $FFFFFFFF. Figure 45-5 shows the format of the resource free block.

• Figure 45-5 Resource free block (FreeBlockRec)

$00 - -- blkOffset - Long -
$04 -- blkSize

-

blkOffset

blkSize

-
-- Long -

Offset, in bytes, to the free block from the start of the resource fork.
A NIL value indicates the end of the used blocks in the array.

Size, in bytes, of the free block of space.

Resource reference record

The resource reference record contains control information about a resource. The resource
map contains a variable-sized array of these blocks, starting at the location specified in
the mapToindex field of the resource map (MapRec). Figure 45-6 shows the format of
the resource reference record.

• Figure 45-6 Resource reference record (ResRefRec)

$00
$02

$06

-
-
--
-

res Type

resiD

- Word

-- Long
-
-- resOffset - Long

$0A
$0C

$10

-
-
-
-
-
r--

-
resAttr - Word

-
resSize - Long -

-r-- resHandle - Long
r--

res Type

resiD

resOffset

resAttr

resSize

res Handle

-

Resource type. A NIL value indicates the last used entry in the array.

Resource ID.

Offset, in bytes, to the resource from the start of the resource file.

Resource attributes. See "Resource Attributes" earlier in this chapter
for bit flag definitions.

Size, in bytes, of the resource in the resource file. Note that the size of
the resource in memory may differ, due to changes made to the
resource by application programs or by resource converter routines.

Handle of resource in memory. A NIL value indicates that the resource
has not been loaded into memory. Your program can determine the in-
memory size of the resource by examining the size of this handle.

Resource converter routines

The Resource Manager supports the concept of resource converter routines. Converter
routines format resources for access by your program, allowing the memory format of a
resource to differ from its disk representation. These routines can be used, for example,
to store resources in a compressed form on disk, to reformat common resources for
different programs or operating environments, or to perform code relocation.

When loading or unloading a resource, the Resource Manager determines whether to
invoke a converter routine by examining the resConverter flag in the attributes word
for the resource. If that flag is set to 1, indicating that the resource must be converted
before being read or written, the Resource Manager invokes the appropriate converter
routine for the resource type. The converter routine may then reformat the resource in any
way it chooses.

Your program uses the ResourceConverter tool call to register a converter routine. At
that time, your program must specify the resource type to be handled by the converter
routine. One converter routine may handle more than one resource type; your program
must issue separate ResourceConverter tool calls for each type to be converted.

The Resource Manager tracks resource converters in two types of lists. Each application
has a private application routine list, which can contain up to 10,922 entries. In addition,
the Resource Manager maintains a system routine list, which is available to all
applications. When searching for a converter routine for a specific resource type, the
Resource Manager first checks the application list, then the system list. As a result, your
program can override a standard converter routine by registering a routine for the same
resource type in its application converter routine list. Applications should never log
routines into or out of the system list.

When the Resource Manager invokes a converter routine, it loads the stack with values
specifying the operation to be performed and any needed parameters. Before returning
control to the Resource Manager, the converter routine should set a condition code in the
A register (any nonzero value indicates an error) and return the appropriate result value on
the stack. The following sections provide detailed descriptions of the entry and exit
conditions for each converter routine operation.

+ Note: Not all resource converters support conversion when resources are written back
to disk. The supplied code resource converter functions only on resource read
operations, for example. Consequently, if you are unsure about the behavior of a given
resource converter, you should not mark converted resources as changed, since the
converter may write them back to disk in an unexpected format.

ReadResource

Reads a resource from disk into memory. The converter routine must load the file from
disk and perform any necessary reformatting.

On entry, convertParam contains a pointer to a GS/OS read file parameter block (see the
GS!OS Reference for more information on GS/OS file manipulation and data structures).
The file mark is set to the beginning of the file, and the block is set to read the entire
resource from disk. To read the file, your program can do the following:

pushlong
pushword
jsl

convertParam
$2012
$El00BO
check for errors

Pointer to read parameter block
GS/OS read command code
Call GS/OS

The resPointer parameter contains a pointer to the resource reference record, which
contains location and size information about the resource in memory (see "Resource File
Format" earlier in this chapter for information on the format and content of the resource
reference record). Your program should verify that the number of bytes loaded
corresponds to the size of the resource on disk (compare res size value to the size of
the handle that received the resource). Your program should also check whether the
resource must be loaded at an absolute location (resAbsLoad flag set to 1 in resAttr
word of the resource reference record). If so, be careful to convert the resource into the
appropriate location.

If, during resource conversion, the converter routine must copy the resource into a
different handle, the routine must load that new handle into the res Handle field of the
resource reference record and dispose of the original handle. Upon return, the handle to
the converted resource should retain its original Memory Manager attributes (locked, and
so on).

Upon successful completion, the converter routine should return a NIL result. In case of
error, the routine should return a non-NIL result. It must also free the memory referenced
by the res Handle field in the resource reference record and set that field to NIL.

Parameters

Stack before call

Previous contents

- Space -

convertCommand

- convertParam

- resPointer

Stack after call

Previous contents

Result

-
-

Long-Space for result

Word-Command to be performed (will be 0: ReadResource)

Long-Pointer to GS/OS read file parameter block

Long-Pointer to resource reference record

<-SP

Long-NIL if successful; error code if error (low-order word)

<-SP

WriteResource

Writes a resource from memory to disk. The converter routine must perform any necessary
reformatting and write the file to disk.

On entry, convertParam contains a pointer to a GS/OS write file parameter block (see the
GS!OS Reference for more information on GS/OS file manipulation and data structures).
The file mark is set to the beginning of the file on disk, and the block is set to write the
entire resource. Before issuing a writeResource command, the Resource Manager calls
the ReturnDiskSize function in the converter routine to determine how much disk
space the resource requires.

To write the file , your program can do the following:
pushlong
pushword
jsl

convertParam
$2013
$El00BO
check f or errors

Pointer to read parameter block
GS / OS write command code
Call GS / OS

The resPointer parameter contains a pointer to the resource reference record, which
contains location and size information about the resource in memory (see "Resource File
Format" earlier in this chapter for information on the format and content of the resource
reference record). The Resource Manager disposes of the handle to the resource after
calling Wr i teResource.

This function must return a NIL result.

Parameters

Stack before call

Previous contents

- Space -

convertCommand

- convertParam -

- resPointer -

Long-Space for result

Word-Command to be performed (will be 2: WriteResource)

Long-Pointer to GS/OS write file parameter block

Long-Pointer to resource reference record

<-SP

Stack after call

Previous contents

Result Long-Must be set to NIL

<-SP

ReturnDiskSize

Determines the amount of disk space a resource will require and returns that value to the
caller. Note that this call is not valid for resources that are loaded into absolute memory,
because the size of these resources cannot change.

The convertParam parameter is undefined.

The resPointer parameter contains a pointer to the resource reference record, which
contains location and size information about the resource in memory (see "Resource File
Format" earlier in this chapter for information on the format and content of the resource
reference record).

On exit, Result contains the amount of disk space required to store the resource, in bytes.
If this new size differs from the original file size, the Resource Manager frees the old space
and allocates a new file.

Parameters

Stack before call

Previous contents

- Space -

convertCommand

- convertParam -

- resPointer -

Stack after call

Previous contents

Result

Long-Space for result

Word-Command to be performed (will be 4: Retur nDiskSi z e)

Long-Undefined

Long-Pointer to resource reference record

<-SP

Long-Bytes of disk space required to store resource

<-SP

Application switchers and desk accessories

Desk accessories and application-switching programs must be careful to preserve the
state of the Resource Manager before using its facilities. The Resource Manager provides
tool calls that allow such programs to switch the currently active Resource Manager
application. The GetCurResourceApp tool call returns the user ID of the application
that is currently using the Resource Manager. This call returns a special value if the Resource
Manager is not in use. The setcurResourceApp tool call changes the current
application, by loading a new user ID value. It is the responsibility of the application-
switching program to use these calls.

In the following example, the Resource Manager is already active, and the application switcher has
previously used the ResourcestartUp tool call to register itself with the Resource Manager. The
switching program must save the user ID of the program that is currently using the Resource Manager
before it issues any other Resource Manager tool calls.

ph a
GetCurResourceApp

pushword myUseriD
SetCurResourceApp

SetCurResourceApp

(return to caller)

Space for result from GetCurResourceApp

Get current app user ID, save on stack
Pass my user ID to Resource Manager

Switch to my resources and files

Restore original application user ID
(saved on s tack after GetCurResourc eApp
tool c all)

In the case where your program must first log into the Resource Manager, it must issue the
ResourceStartUp tool call before calling any other Resource Manager functions.

NoResMgr

(on entry to desk accessory task handler)

pushword #0

ResourceStatus
pla
beq NoResMgr

ph a
GetCurResourceApp

pushword myUseriD
SetCurResourceApp

SetCurResourceApp

(return to caller)

Prime for FALSE if Resource Manager
is not active

Check for active Resource Manager

Exit if Resource Manager not active

Space for result

Get current app user ID, save on stack
Pass my user ID to Resource Manager

Switch to my resources and files

Restore original application user ID
(saved on stack after GetCurResourceApp
tool call)

Resource Manager housekeeping routines

This section discusses the standard housekeeping routines, in order by call number.

ResourceBootinit $011E

Initializes the Resource Manager.

A Warning

Parameters

Errors

c

An application must never make this call. •

The stack is not affected by this call. There are no input or output
parameters.

None

This call must not be made by an application.

ResourceStartOp $021E

Notifies the Resource Manager that an application wishes to open and use its own
resource files. Unlike other tool set startup calls, this call is not required in all
circumstances. If your application uses only system resources (located in the system
resource file), then it does not have to issue a ResourceStartup tool call. By contrast,
if your application uses nonsystem resources, then it must issue this tool call prior to
opening those resource files.

If your application issues this call, then it must issue the ResourceShutDown tool call
before quitting.

Note that the Tool Locator startUpTools tool call automatically starts the Resource
Manager.

Parameters

Stack before call

Previous contents
user/D

Stack after call

Word-Application user ID (obtained at program startup)
<-SP

Previous contents
<-SP

Errors Memory Manager errors Returned unchanged.

c extern pascal void ResourceStartUp(useriD);

Word useriD;

ResourceShutDown $031E

Notifies the Resource Manager that an application is finished using its own resource files.
The Resource Manager updates, closes, and frees memory for any open resource files.
Unlike after other tool set shutdown calls, after this call the Resource Manager is still
active. However, after calling ResourceShutDown, your application can access only the
system resource file.

If your application called ResourceStartUp, then it must issue a ResourceShutDown
call before quitting.

Parameters

Errors

c

The stack is not affected by this call. There are no input or output
parameters.

None

extern pascal void ResourceShutDown();

ResourceVersion $041E

Retrieves the Resource Manager version number. The versionlnfo result contains the
information in the standard format defined in Appendix A, "Writing Your Own Tool Set,"
in Volume 2 of the Toolbox Reference.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents
versionlnfo

Errors None

Word-Space for result
<-SP

Word-Resource Manager version number
<-SP

c e xtern pascal Word ResourceVersion();

ResourceReset $051E

Resets the Resource Manager; issued only when the system is reset.

A Warning

Parameters

Errors

c

An application must never make this call. a

The stack is not affected by this call. There are no input or output
parameters.

None

This call must not be made by an application.

ResourceStatus $061E

Returns a flag indicating whether the Resource Manager is active. If the Resource Manager
was loaded and initialized successfully at system startup, then this function returns a value
of TRUE. If the Resource Manager was not successfully loaded or initialized, then the Tool
Locator returns a funcNotFoundErr error code ($0002).

+ Note: If your program issues this call in assembly language, initialize the result space on
the stack to NIL. Upon return from ResourceStatus, your program need only check
the value of the returned flag. If the Resource Manager is not active, the returned value
will be FALSE (NIL).

Parameters

Stack before call

Previous contents
Space

Stack after call

Previous contents
activeFlag

Errors $0002

Word-Space for result

<-SP

Word-Boolean; TRUE if Resource Manager is active
<-SP

funcNotFoundErr Resource Manager not active.

c extern pascal Boolean ResourceSt a tus();

Resource Manager tool calls

This section discusses the Resource Manager tool calls, in order by call name.

AddResource $OC1E

Adds a resource to the current resource file. The Resource Manager marks the new resource
as changed and writes the new resource to disk when the file is updated. Your program
specifies the attributes of the new resource in a flag word passed to AddResource .
Some of these attributes control how memory is allocated for the new resource when it is
loaded by an application; others govern Resource Manager processing. For more
information about the various attributes, see "Resource Attributes" earlier in this chapter.

Parameters

Stack before call

Previous contents

- resourceHandle -

resourceAttr
resource Type

- resourceiD -

Stack after call

Previous contents

Errors $1E04
$1E05

$1EOE

Long-Handle of resource in memory

Word-Attributes of the resource

Word-Type for resource

Long-ID for resource

<-SP

<-SP

resNoCurFile
resDupiD

r e sDi s kFull

No current resource file.
Specified resource ID is already
in use.
Volume full.

WriteResource errors
Memory Manager errors
GS/OS errors

Returned unchanged.
Returned unchanged.
Returned unchanged.

c extern pascal void AddResource(resourceHandle,
resourceAttr, resourceType, resourceiD);

Long resourceHandle, resourceiD;
Word resourceAttr, resourceType;

resourceHandle Specifies the memory location and size of the resource to be added
to the current resource file. If the handle is empty, AddRe s au rce
creates a resource with zero length. Never pass a handle that was
created by the Resource Manager, unless the resource in that handle
has been detached (see "oetachResource $181E" later in this
chapter).

resourceAttr

resource Type

resource/D

If resAbsLoad in resourceAttris set to 1, then the Resource Manager
obtains the size of the resource from the rna psi z e field in the
resource map.

Bit flags defining the attributes of the resource to be added. For
information about the specific flags, see "Resource Attributes" earlier
in this chapter.

Type of resource to be added. See "Identifying Resources" earlier in
this chapter for details.

ID of new resource. Must be unique among resources of the same type.
See "Identifying Resources" earlier in this chapter for more
information. Use the UniqueResourceiD tool call to obtain a
unique ID.

CloseResourceFile $OB1E

Updates a specified resource file, frees any memory used by the resource map for the file and any
resources currently loaded, and closes the file. Your program passes the file ID of the resource file to be
closed. This file ID is obtained from the OpenResourceF ile tool call.

If the file being closed is the current resource file, the next file in the resource file list
becomes the current resource file. Your program can close the system resource file by
passing the system file ID ($0001). Note, however, that some tool calls require system
resources (for example, the system stores the control definition procedure for icon
button controls in the system resource file). These calls will not work if you close the
system resource file or if you set the search depth so shallow that the system resource file
is inaccessible (see the description of the s et Re sou reeF i leDepth tool call later in this
chapter).

+ Note: When quitting, your program need not issue CloseResourceFile calls for all
open resource files. The Resource ShutDown call automatically updates and closes
any open resource files.

Parameters

Stack before call

Previous contents
fi/e!D

Stack after call

Word-ID of open resource file; NIL to close all open files
<-SP

Previous contents

Errors

c

<-SP

GS/OS errors
WriteResource errors

Returned unchanged.
Returned unchanged.

extern pascal void CloseResourceFile (fi leiD);

Word fileiD;

CountResources $221E

Counts the number of resources of a specified type in all resource files available to the
calling program in its search sequence. Your program specifies the resource type to be
counted. The Resource Manager counts all resources of that type in open resource files
available to your program, including the system resource file, if it is in the search
sequence.

+ Note: This call can be very slow when you have many resources or resource files. Do not
issue this call in time-critical procedures.

Parameters

Stack before call

Previous contents

Space

resource Type

Stack after call

Previous contents

- tota/Resources -

Errors None

Long-Space for result

Word-Resource type to be counted
<-SP

Long-Number of resources of specified type

<-SP

c e xtern pascal Long CountResources(resourceType);

Word resourceType;

Count Types $201E

Counts the number of different resource types in all resource files available to the calling
program in its search including the system resource file, if it is in the search
sequence.

+ Note: This call can be very slow when you have many resources or resource files. Do not
issue this call in time-critical procedures.

Parameters

Stack before call

Previous contents
Space

Stack after call

Word-Space for result
<-SP

Previous contents
tota/Types

Errors

c

Word-Number of different resource types
<-SP

Memory Manager errors Returned unchanged.

extern pascal Word CountTypes();

CreateResourceFile $091E

Initializes a resource fork with no resources. If necessary, createResourceFile
creates the file to contain the resource fork. The specific actions performed by this call
depend on the state of the specified input file.

No file of specified name

File with no resource fork
File with empty resource fork
File with nonempty resource fork

Parameters

Stack before call

Previous contents

- auxType -

file Type
fileAccess

- fileName -

Stack after call

Previous contents

Create file with specified auxType, file Type,
fileAccess, and fileName. Create and initialize
resource fork.
Create and initialize resource fork.
Initialize resource fork.
Return resForkUsed error.

Long-GS/OS auxiliary file type (used only if file does not exist)

Word-GS/OS file type (used only if file does not exist)
Word-GS/OS file access (used only if file does not exist)

Long-Pointer to GS/OS class 1 input pathname for resource file

<-SP

<-SP

Errors $1E01 resForkUse d Resource fork not empty.
Returned unchanged.

c
GS/OS errors

extern pascal void CreateResourceFile(auxType,
file Type , fil eAccess , fileName);

Long auxType , f ile Name;
Word fil eType , fileAccess ;

DetachResource $181E

Instructs the Resource Manager to dispose of its control blocks for a specified resource.
The resource itself remains in memory; the calling program is responsible for freeing its
handle. The resource to be detached must be marked as unchanged.

This call can be used to copy resources between different resource files. After you issue
DetachResource, add the resource to the new resource file by calling AddResource .
After you issue the AddResource call, the Resource Manager is again responsible for the
resource handle.

Parameters

Stack before call

Previous contents
resource Type Word-Type of resource to be detached

Long-ID of resource to be detached

<-SP

resource!D

Stack after call

Previous contents

Errors

c

$1E06
$1EOC

<-SP

resNotFound
resHasChanged

Specified resource not found.
Resource has been changed and
has not been 'updated.

extern pascal void DetachResource(resourceType,
resourceiD);

Word resourceType;
Long resourceiD;

GetCurResourceApp $141E

Returns the user ID for the application that is currently using the Resource Manager. If the
Resource Manager is not in use, this call returns the Resource Manager's user ID ($401E).
This call is used by desk accessories and application switchers (see "Application Switchers
and Desk Accessories" earlier in this chapter for more information).

Parameters

Stack before call

Previous contents
Space

Stack after call

Previous contents

Word-Space for result
<-SP

user/D Word-User ID of current application; $401E if none
<-SP

Errors None

C extern pascal Word GetCurResourceApp();

GetCurResourceFile $121E

Returns the file ID of the current resource file. This call returns a NIL value if there is no
current file.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents
fileiD

Errors $1E04

Word-Space for result
<-SP

Word-File ID of current resource file; NIL if none
<-SP

resNoCu rFile No current resource file.

c e xtern pascal Word Get CurResourceFile();

GetindResource $231E

Finds a resource of a specified type by means of its index and returns the resource ID for
that resource. The index value corresponds to the position of the desired resource among
all resources of the specified type in all resource files available to the calling program in its
search sequence; the first resource is number 1.

Use this call to find every resource of a given type by repeatedly issuing the call,
incrementing the index value until the call returns res I ndexRange.

+ Note: This call can be very slow when you have many resources or resource files. Do not
issue this call in time-critical procedures.

Parameters

Stack before call

Previous contents

- Space -

resource Type

- resource!ndex -

Stack after call

Previous contents

resource/D

Errors $1EOA

Long-Space for result

Word-Type of resource to find

Long-Index of resource to find

<-SP

Long-ID of resource matching type and index

<-SP

resindexRange Index is out of range (no resource
found) .

Memory Manager errors Returned unchanged.

c extern pascal Long GetindResource(resourceType,
resourceindex);

Word
Long

resourceType ;
resource Index

GetindType $211E

Finds a resource type value by means of its index. The index value corresponds to the
!-relative position of the desired resource type among all types in all resource files
available to the calling program in its search sequence.

Use this call to find every resource type in all files available to an application by repeatedly
issuing the call, incrementing the index value until the call returns resindexRange.

• Note: This call can be very slow when you have many resources or resource files. Do not
issue this call in time-critical procedures.

Parameters

Stack before call

Previous contents
Space

typelndex

Stack after call

Previous contents
resource Type

Errors $1EOA

Word-Space for result
Word-Index of type to find
<-SP

Word-Type matching index
<-SP

resindexRange Index is out of range (no resource
found).

Memory Manager errors Returned unchanged.

c extern pascal Word GetindType(typeindex);

Word typeindex;

GetMapBandle $261E

Returns a handle to the resource map for a specified resource file. Your program specifies
the desired resource file by passing its file ID to GetMapHandle. This call searches all
open resource files, irrespective of the search sequence in effect.

For information on the format and content of resource file maps, see "Resource File
Format" earlier in this chapter.

+ Note: This call provides greater application flexibility; however, most applications will
not need to issue this call.

Parameters

Stack before call

Previous contents

Space

fileiD

Stack after call

Previous contents

mapHandle

Errors $1E07

Long-Space for result

Word-ID of resource file to find
<-SP

Long-Handle of resource file map; NIL if none found

<-SP

resFileNotFound Specified file ID does not match
an open file.

c extern pascal Long GetMapHandle(fileiD);

Word fileiD;

ftle!D Specifies the resource file whose map is to be returned. This value is
obtained from the OpenResourceFile tool call. Typically, your
program sets this parameter with the file ID of a particular resource
file. However, this field also supports the following special values:

NIL
$FFFF

Returns handle to map of current resource file
Returns handle to map of system resource file

GetOpenFileRefNum $1F1E

Returns the GS/OS file reference number (re fNum) associated with the resource fork of
an open resource file. Your program specifies the resource file by means of its file ID. The
Resource Manager searches all open resource files for a file with a matching ID.

Your program may use this reference number to read data from the resource file. However,
your program should be very careful to maintain the structure of the fork during write
operations; careless writing could destroy the resource fork. Further, your program should
never directly close the file using the reference number. Only the Resource Manager should
close files it has opened.

For information on the format and content of resource file maps, see "Resource File
Format" earlier in this chapter.

+ Note: This call provides greater application flexibility; however, most applications will
not need to issue this call.

Parameters

Stack before· call

Previous contents
Space
file!D

Stack after call

Previous contents
openRejNum

Errors $1E07

Word-Space for result
Word-ID of resource file to find
<-SP

Word-GS/OS file reference number
<-SP

resFileNotFound Specified file ID does not match
an open file.

c extern pascal Word GetOpenF ileRefNum (fileiD);

Word fileiD;

file!D Specifies the resource file whose reference number is to be returned.
This value is obtained from the OpenResourceFile tool call.
Typically, your program sets this parameter with the file ID of a
particular resource file. However, this field also supports the following
special values:

NIL
$FFFF

Returns reference number of current resource file
Returns reference number of system resource file

GetResourceAttr $1B1E

Returns the attributes word for a specified resource. Your program specifies the type and
ID of the desired resource. For more information about the format and content of the
attributes word, see "Resource Attributes" earlier in this chapter.

Parameters

Stack before call

Previous contents
Space

resource Type

- resource/D -

Stack after call

Previous contents
resourceAttr

Errors $1E06

Word-Space for result
Word-Type of resource to find

Long-ID of resource to find

<-SP

Word-Attributes word for specified resource
<-SP

resNotFound Specified resource not found.

c e xtern pascal Word GetRes ourceAttr (re s ou r c e Type,
resourceiD);

Word resourceType;
Long re s ourceiD;

GetResourceSize $1D1E

Returns the size of the specified resource. Your program specifies the type and ID of the
desired resource. Resource size is defined as the number of bytes the resource occupies in
the resource fork on disk.

Parameters

Stack before call

Previous contents

- Space -

resource Type

- resource/D -

Stack after call

Previous contents

resourceSize -

Errors $1E06

Long-Space for result

Word-Type of resource to find

Long-ID of resource to find

<-SP

Long-Size of specified resource

<-SP

resNotFound Specified resource not found.

c extern pascal Long GetResourceSize(resourceType,
resourceiD);

Word resourceType;
Long resourceiD;

HomeResourceFile $151E

Returns the file ID of the resource file that contains a specified resource. Your program
specifies the type and ID of the resource in question.

+ Note: If multiple resources share the specified type and ID values, and your program
has changed the resource search sequence (with the setcurResourceFile or
SetResourceFileDepth tool calls), the result of this call may be different from
those of previous calls.

Parameters

Stack before call

Previous contents
Space

resource Type

- resource/D -

Word-Space for result
Word-Type of resource to find

Long-ID of resource to find

<-SP

Stack after call

Previous contents
file/D

Errors

c

Word-File ID of home resource file for resource; NIL if not found
<-SP

$1E06 resNotFound Specified resource not found.

extern pascal Wo rd HomeResource File(re sourceType,
resourceiD);

Word resourceType;
Long resourceiD;

LoadAbsResource $271E

Loads a resource into a specified absolute memory location. Your program specifies the
type and ID of the resource to load, the memory location into which the Resource
Manager is to load the resource, and the maximum number of bytes to load. Note that the
resAbsLoad flag in the attributes word for the desired resource must be set to 1.

+ Note: This call does not respect the disk load setting maintained by the
SetResourceLoad tool call .

.A. Warning Most applications will not have to issue this call. To use this call you
must have a thorough understanding of absolute memory. Issuing this
call with an incorrectly set /oadAddress parameter will corrupt system
memory . .a.

Parameters

Stack before call

Previous contents

- Space -
- loadAddress -

- max Size -
resource Type

- resource/D -

Stack after call

Previous contents

resourceSize -

Long-Space for result

Long-Address at which to load resource

Long-Maximum number of bytes to load

Word-Type of resource to find

Long-ID of resource to find

<-SP

Long-Size of resource on disk

<-SP

Errors

c

loadAddress

$1E03 resNoConverter

$1E06 resNotFound
GS!OS errors

No converter routine found for
resource type.
Specified resource not found.
Returned unchanged.

extern pascal Long LoadAbsResource(loadAddress,

maxSize, resourceType, resourceiD);

Word resourceType;
Long loadAddress, maxSize, resourceiD;

Specifies the memory location at which the Resource Manager is to
load the resource. If your program passes a NIL value, the Resource
Manager uses the address stored in the res Handle field of the
appropriate entry in the resource index.

LoadResource $OE1E

Loads a resource into memory and returns a handle to that location. Your program
specifies the type and ID of the resource to load. The returned handle provides
addressability to the resource.

The LoadResource call searches both memory and disk for the specified resource. If the
resource is already in memory, LoadResource returns a handle to that memory location.
If the resource has been purged from memory, LoadResource reloads the resource and
returns its handle. If the resource has not been loaded, LoadResource allocates a handle,
loads the resource, and returns the handle to your program.

Your program may manipulate the resource while it is in memory and may even change the
size of the resource (to any size other than 0 bytes). If you want the changes to be
reflected in the resource file, use the MarkResourceChange tool call to set the changed
attribute for the file. The Resource Manager will then write the changed resource to disk
the next time the resource file is updated. Your program can force the Resource Manager
to write the resource to disk immediately by issuing either the WriteResource or the
UpdateResourceFile tool call.

Note that your program should not dispose of the handle; only the Resource Manager
should free the memory that it allocates.

Parameters

Stack before call

Previous contents

- Space -
resource Type

- resourceiD -

Stack after call

Previous contents

- resourceHandle -

Long-Space for result

Word-Type of resource to find

Long-ID of resource to find

<-SP

Long-Handle of resource in memory

<-SP

Errors

c

$1E03 resNoConverter

$1E06 resNotFound
GS/OS errors
Memory Manager errors

No converter routine found for
resource type.
Specified resource not found.
Returned unchanged.
Returned unchanged.

extern pascal Long LoadResource(resourceType,

resourceiD);

Word
Long

resourceType;
resourceiD;

MarkResourceChange $101E

Instructs the Resource Manager to write the specified resource to disk the next time its
resource file is updated. Your program specifies the type and ID of the resource to be
marked as changed.

Use this call when you want to make permanent the in-memory changes you have made to
a resource.

Parameters

Stack before call

Previous contents
changeFlag
resource Type

- resource/D -

Stack after call

Previous contents

Errors $1E06

Word-Boolean; TRUE for changed, FALSE for not changed
Word-Type of resource to find

Long-ID of resource to find

<-SP

<-SP

resNotFound Specified resource not found.

c e xtern pascal void MarkResourceChange(changeFlag,
resourceType, resourceiD);

Word changeFlag, resourceType;
Long resourceiD;

$1E1E

Returns the type and ID of a resource, given a handle to that resource. The Resource
Manager searches all open resource files for a match, without regard for the search
sequence in effect. As a consequence of the search algorithm used by the Resource
Manager, the type and ID values returned by this call are unreliable if your program
subsequently alters the resource search path (with the SetCurResourceFile or
SetResourceFileDepth tool calls).

+ Note: The Resource Manager has been optimized to access resources by type and ID,
irrespective of the number of resources in the system. Although
MatchResourceHandle works well with relatively small numbers of resources (less
than 100), this call can be very slow when applied to files with large numbers of
resources. To avoid this overhead, consider storing the resource type and ID in the
resource structure, so that your program can access this information directly.

Parameters

Stack before call

Previous contents

foundRec Long-Pointer to location in which to return type and ID

- resourceHandle - Long-Handle of resource

<-SP

Stack after call

Previous contents

<-SP

Errors $1E06 resNotFound Specified resource not found.

c extern pascal void Mat c hResourceHandle(foundRec,
r esourceHa ndl e);

Po i nt er
Long

foundRec ;
resourceHandle;

foundRec Must point to a location in memory that can accept 6 bytes of data: the
type and ID of the resource in question. On successful return from
MatchResourceHandle, that location will contain the following data:

re s ourceType - Word-Type of resource
-

re sourcem - Long-ID of resource -

OpenResourceFile $OA1E

Opens a specified reso1..1rce file, making it the current file, and returns a unique file ID to
the calling program. Your program specifies the class 1 GS/OS pathname to the desired
resource file. The Resource Manager loads the resource map into memory, along with any
resources marked to be preloaded (resPreLoad flag is set to 1 in the attributes word for
the resource).

Parameters

Stack before call

Previous contents
Space

openAccess

- resourceMapPtr -

- fileName -

Word-Space for result
Word-File access

Long-Pointer to resource map in memory

Long-Pointer to GS/OS class 1 pathname of resource file

<-SP

Stack after call

Previous contents
file/D

Errors

c

Word-ID of open resource file
<-SP

$1E06
$1E09
$1EOB

resNotFound
resNoUniqueiD
resSysisOpen

GS/OS errors

Memory Manager errors

Specified resource not found.
No more resource IDs available.
System resource file is already
open.
Returned unchanged (EOF if
empty fork).
Returned unchanged.

extern pascal Word OpenResourceFile(openAccess,
resourceMapPtr, fileName);

Word openAccess ;
Pointer resourceMapPtr, fileName;

openAccess Contains GS/OS file access privileges for the resource file. See the
GS!OS Reference for more information.

resourceMapPtr To open a resource file on disk, set this field to NIL. If the map is in
memory, load this field with a pointer to that map. In this case, the
Resource Manager opens the file that is already in memory.

ReleaseResource $171E

Sets the purge level of the memory used by a resource. Your program specifies the type
and ID of the resource whose memory is to be freed and the purge level to be assigned to
the memory. See Chapter 12, "Memory Manager," in Volume 1 of the Toolbox Reference for
more information about purge levels and memory management. Note that this call does
not unlock the handle.

Parameters

Stack before call

Previous contents
purgeLevel
resource Type

- resource!D -

Word-Purge level of memory
Word-Type of resource to find

Long-ID of resource to find

<-SP

Stack after call

Previous contents

Errors

c

purgeLevel

$1E06
$1EOC

<-SP

resNotFound
resHasChanged

Specified resource not found.
Resource has been changed and
has not been updated.

e xtern pascal void ReleaseResource(purgeLevel,
resourceType, resourceiD);

Word purge Level, resource Type;
Long resourceiD;

Specifies the Memory Manager purge level to be assigned to the freed
memory. Valid Memory Manager purge levels lie in the range of 0 to 3.
To direct the Resource Manager to dispose of the handle immediately,
set this field to a negative value.

RemoveResource $OF1E

Deletes a resource from its resource file and releases any memory used by the resource.
Your program specifies the type and ID of the resource to be deleted. After successful
return from this call, the specified resource is no longer available for access or loading.

Parameters

Stack before call

Previous contents
resource Type

resource/D

Word-Type of resource to find

Long-ID of resource to find

<-SP

Stack after call

Previous contents

Errors

c

<-SP

$1E06 resNotFound
$1EOE resDiskFull
Memory Manager errors

Specified resource not found.
Volume full.
Returned unchanged.

extern pascal void RemoveResource(resourceType,
resourceiD);

Word resourceType;
Long resourceiD;

ResourceConverter $281E

Installs or removes a converter routine from either the application or system converter list.
Your program specifies the address of the converter routine, the type of resource the
routine acts on, and flags indicating the type of operation to perform and the list to
modify. For background information on resource converter routines, see "Resource
Converter Routines" earlier in this chapter.

The Resource Manager maintains two classes of converter routine lists: one for your
application and one for the system. Each application has its own converter routine list. All
programs share access to the system list. When searching for a routine to convert a resource
of a given type, the Resource Manager first searches the application list of the calling
program, then the system list. As a result, your program can override converter routines in the
system list by installing a routine for the same resource type in its application list.
Applications must never log routines into or out of the system converter list.

An application can log in up to 10,922 converter routines. Note, however, that the
Resource Manager does not check for this limit. The same converter routine can be logged
in for more than one resource type.

The system contains a standard routine to convert code resources. Use the
GetCodeResConverter Miscellaneous Tool Set tool call to obtain the address of that
routine (see Chapter 39, "Miscellaneous Tool Set Update," in this book for details on the
GetCodeResConverter call).

Parameters

Stack before call

Previous contents

- converterProc -

resource Type
logFlags

Stack after call

Previous contents

Long-Pointer to converter routine

Word-Type of resource acted on by the routine
Word-Flag governing action and list to access
<- SP

<- SP

Errors

c

logF/ags

Reserved
list

action

$1EOD resDiffConverter Another converter already logged
in for this resource type.
Returned unchanged. Memory Manager errors

e xtern pascal void ResourceConverter(converterProc,
resourceType, logFlags);

Pointer
Word

converterProc;
resourceType, logFlags;

Specifies whether to log the converter routine into or out of its list,
and specifies which list (application or system) to access.

bits 15-2
bit 1

bit 0

Must be set to 0.
Indicates which routine list to access.
0 = Application converter list
1 = System converter list
Specifies action to take.
0 = Log routine out of list
1 = Log routine into list

SetCurResourceApp $131E

Tells the Resource Manager that another application will now be issuing Resource Manager
calls. This call is used by desk accessories and application switchers (see "Application
Switchers and Desk Accessories" earlier in this chapter for more information). Before
issuing this call, your program must call Resourcestart Up to register itself with the
Resource Manager.

Parameters

Stack before call

Previous contents
user/D

Stack after call

Previous contents

Errors $1E08

c extern

Word

Word-User ID of application that will be using Resource Manager
<-SP

<-SP

resBadAppiD User ID not found; calling
program has not issued
ResourceStartUp tool call.

pascal vo id SetCurResourceApp(useriD);

useriD;

SetCurResourceFile $111E

Makes a specified resource file the current file. Because Resource Manager searches
typically start with the current resource file, your program can control the file search
sequence by specifying a particular file as the current file. For more information about
Resource Manager search processing, see "Using Resources" earlier in this chapter.

Parameters

Stack before call

Previous contents
file/D

Stack after call

Word-File ID of resource file to be made current file
<-SP

Previous contents

Errors

c

<-SP

$1E07 resFileNotFound Specified file ID does not match
an open file.

extern pascal void SetCurResourceFile(fileiD);

Word fileiD;

SetResourceAttr $1C1E

Sets the attributes of a resource. Your program specifies the type and ID of the desired
resource and a new attributes word for the resource. The Resource Manager replaces the
existing attributes word with the one provided to this call. For more information about
the format and content of the attributes word, see "Resource Attributes" earlier in this
chapter.

If your program changes the attributes of a resource, it should not also mark the resource
as changed. The Resource Manager automatically tracks these changes.

Note that these changes affect only future use of the resource. For example, if your
program changes the attributes of a resource to indicate that it should be locked into
memory (sets the attrLocked flag to 1), that action does not change the status of any
current instances of that resource in memory. However, the next time the Resource
Manager allocates a handle for the resource, the memory for that new handle will be
locked.

Parameters

Stack before call

Previous contents
resourceAttr
resource Type

- resource/D -

Stack after call

Previous contents

Errors $1E06

Word-New attributes flag word for resource
Word-Type of resource to find

Long-ID of resource to find

<-SP

<-SP

resNotFound Specified resource not found.

c extern pascal void SetResourceAttr(resourceAttr,
resourceType, r esourceiD);

Word resourceAttr, resourceType;
Long resourceiD;

SetResourceFileDepth $251E

Sets the number of files the Resource Manager is to search during a search operation and
returns the previous search depth setting. For more information about the Resource
Manager's search sequence, see "Resource File Search Sequence" earlier in this chapter.

Parameters

Stack before call

Previous contents
Space

searchDepth
Word-Space for result
Word-Number of files to search
<-SP

Stack after call

Previous contents
origina/Depth Word-Search file depth before call

<-SP

Errors

c

searchDepth

None

extern pascal Word
SetResourceFileDepth(searchDepth);

Word searchDepth;

Specifies the number of files to search. SetResourceF ileDepth
accepts the following special values:

NIL Return current search depth without changing it
$FFFF Search all files

SetResourceiD $1A1E

Changes the ID of a resource to a new value. Your program specifies the type and current
ID of the resource to be changed.

If your program changes the ID value of a resource, it should not mark the resource as
changed. The Resource Manager automatically tracks these changes.

Parameters

Stack before call

Previous contents

- new!D -

resource Type

Long-New ID of resource

Word-Type of resource to find

Long-Current ID of resource to find - current!D -

<-SP

Stack after call

Previous contents

Errors

c

<-SP

$1E05 resDupiD

$1E06 resNotFound

Specified resource ID is already
in use.
Specified resource not found.

extern pascal void SetResourceiD(newiD,
resourceType, c urrentiD);

Long newiD, current ID;
Word resourceType;

SetResourceLoad $241E

Controls Resource Manager access to the disk when resources are loaded. If you disable
disk loading, the Resource Manager does not load resources from disk but instead
allocates empty handles for requested resources. However, if a resource had been loaded
into memory prior to the disabling of disk loading, the Resource Manager returns a valid
handle. For example, a LoadResource tool call returns an empty handle if loading is set
to FALSE and the resource has not been loaded into memory previously.

+ Note: Most applications will not issue this call.

Parameters

Stack before call

Previous contents
Space

readF/ag

Stack after call

Word-Space for result
Word-Flag controlling Resource Manager disk access

<-SP

Previous contents
origina/Flag Word-Flag setting prior to call

<-SP

Errors

c

readF/ag

origina/Flag

None

e xtern pascal Word SetResourceLoad(readFlag);
Word readFlag;

Specifies the new setting for the read flag. This call also supports a
special value that just returns the current flag setting.

0
1
Negative

Do not read resources from disk
Read resources from disk, if necessary
Return current setting only-no change to current
setting

Contains the previous flag setting.

0
1

Do not read resources from disk
Read resources from disk, if necessary

UniqueResourceiD $191E

Returns a unique resource ID for a specified resource type. Your program specifies the
resource type of the ID and may optionally constrain the new ID to a defined range. The
Resource Manager allocates the new ID, guaranteeing that it is not used by any of your
program's currently available resources.

Parameters

Stack before call

Previous contents

- Space - Long-Space for result

IDRange
resource Type

Word-Range of ID; $FFFF for any valid ID value
Word-Type of resource
<-SP

Stack after call

Previous contents

Errors

c

IDRange

resource!D Long-Unique resource ID

$1E04
$1E09

<-SP

resNoCurFile
resNoUniqueiD

No current resource file.
No more resource IDs available.

extern pascal Long UniqueResourceiD(IDRange,
resourceType);

Word IDRange, resourceType;

Specifies a 65,535-element range within which the Resource Manager is
to allocate the new resource ID. The value of IDRange becomes the
high-order word of the new ID. The Resource Manager then allocates a
unique ID from the 65,535 possible values. This facility is provided so
that applications can manage logical groups of resources
differentiated by ID number ranges.

Resource IDs in the $07FF range are reserved for system use. Ranges
from $0800 through $FFFE are invalid. The following list summarizes
the valid values for IDRange:

IDRange Lowest possible ID returned Highest possible ID returned

$0000 $00000001 (zero is invalid) $0000FFFF
$0001 $00010000 $0001FFFF
$0002 $00020000 $0002FFFF

(and so on)

$07FE $07FEOOOO $07FEFFFF
$07FF Reserved for system use
$0800-$FFFE Invalid range values
$FFFF $00000001 $07FEFFFF

(directs Resource Manager to allocate from any
application range)

UpdateResourceFile $OD1E

Transfers modifications made to resources in memory to the appropriate resource file,
thus making those changes permanent. Your program specifies the file ID of the resource
file to be updated. The Resource Manager then locates and updates all resources for that
file. If necessary, UpdateResourceFile writes the resource map to disk.

+ Note: Most applications will not issue this call because the Resource ShutDown tool
call automatically updates all resources opened by a program.

Parameters

Stack before call

Previous contents
file!D

Stack after call

Word-ID of open resource file
<-SP

Previous contents

Errors

c

<-SP

$1E03 resNoConverter

$1E07 resFileNotFound

$1EOE resDiskFull
GS!OS errors

No converter routine found for
resource type.
Specified file ID does not match
an open file.
Volume full.
Returned unchanged.

extern pascal void UpdateResourceFile(fileiD);

Word fileiD;

WriteResource $161E

Directs the Resource Manager to write a modified resource to its resource file. Your
program specifies the type and ID of the resource. If that resource has been modified
(resChanged flag set to 1 in the attributes word), the Resource Manager writes the
resource to its resource file on disk. The AddResource, MarkResourceChange, or
SetResourceAttr (with resChanged set to 1) tool calls cause a resource to be
marked as changed.

+ Note: Most applications will not issue this call because the Resource ShutDown,
CloseResourceFile, and UpdateResourceFile tool calls automatically write
all changed resources to the appropriate resource file (unless the resource is
write-protected).

Parameters

Stack before call

Previous contents
resource Type

resource/D
Word-Type of resource to write

Long-ID of resource to write

<-SP

Stack after call

Previous contents

Errors

c

<-SP

$1E03 resNoConverte r

$1E06 resNotFound
$1EOE r esDiskFull
GS/OS errors

No converter routine found for
resource type.
Specified resource not found.
Volume full.
Returned unchanged.

extern pascal voi d Wr i teResource (r esour ceType ,
r esour ce iD);

Word resour ceType ;
Long resource i D;

Resource Manager summary

Tables 45-1, 45-2, and 45-3 summarize the constants, data structures, and error codes
(respectively) used by the Resource Manager.

• Table 45-1 Resource Manager constants

Name Value Description

mapFlaq values

mapChanged $0002 Set to 1 if the map has changed and must be written
to disk.

resAttr flag values

resChanged $0020 Set to 1 if the resource has changed and must be
written to disk.

resPreLoad $0040 Set to 1 if OpenResourceFile should be used to
load the resource into memory.

resProtected $0080 Set to 1 if the resource should never be written to
disk.

resAbsLoad $0400 Set to 1 if the resource should be loaded at an
absolute memory location.

resConverter $0800 Set to 1 if a converter routine is required as the
resource is loaded into memory or written to disk.

resMemAttr $C31C Flags passed to the NewHandle Memory Manager
tool call when memory is allocated for the resource.

System file ID

sysFileiD $0001 File ID of the system resource file.

• Table 45-2 Resource Manager data structures

Name Offset/Value Type Description

ResBeaderRec (resource file header record)
rFileversion $0000 Long Format version of resource fork
rF ileToMap $0004 Long Offset from start of fork to resource

rFileMapSize
rFileMemo
rFileRecSize

$0008
$000C
$008C

Long
128 bytes

MapRec (resource map record)
mapNext $0000 Handle

mapFlag $0004
mapOffset $0006

mapSize $000A
mapToindex $000E

mapFileNum $0010

mapiD $0012

mapindexSize $0014

mapindexUsed $0018

mapFreeListSize
$001C

mapFreeListUsed
$001E

mapFreeList $0020

map Index $0020+n

Word
Long

Long
Word

Word

Word

Long

Long

Word

Word
n bytes

m bytes

map record
Size, in bytes, of resource map
Space reserved for application use
Size of ResHeaderRec

Handle of next resource map in
memory
Bit flags
Offset from start of fork to resource
map record
Size, in bytes, of resource map
Offset from start of map to the
mapindex array
GS/OS file reference number for open
resource file
Resource Manager file ID assigned to
this resource file
Total number of resource reference
records in map Index
Number of used resource reference
records

Total number of free block records in
the mapFreeList array

Number of used free block records
Array of free block records
(FreeBlockRec)
Array of resource reference records
(ResRefRec)

[continued]

• Table 45-2 Resource Manager data structures [continued]

Name Offset/Value Type

FreeBlockRec (free block record)
blkOffset $0000 Long

blkSize $0004 Long

blkRecSize $0008
ResRefRec (resource reference record)
resType $0000 Word
resiD $0002 Long
resOffset $0006 Long

resAttr $000A Word
res Size $000C Long

resHandle $0010 Handle
resRecSize $0014

Description

Offset, in bytes, to start of this block
of free space
Size, in bytes, of this block of free
space
Size of FreeBlockRec

Resource type
Resource ID
Offset, in bytes, from start of resource
fork to this resource
Attribute bit flags for the resource
Size, in bytes, of the resource in the
resource fork
Handle of resource in memory
Size of ResRefRec

• Table45-3 Resource Manager error codes

Code Name Description

$1E01 resForkUsed Resource fork not empty.
$1E02 resBadFormat Resource fork not correctly formatted.
$1E03 resNoConverter No converter routine found for

resource type.
$1E04 resNoCurFile No current resource file.
$1E05 resDupiD Specified resource ID is already in use.
$1E06 resNotFound Specified resource not found.
$1E07 resFileNotFound Specified ID does not match an open file.
$1E08 resBadAppiD User ID not found; calling program has not

issued ResourceStartUp tool call.
$1E09 resNoUniqueiD No more resource IDs available.
$1EOA resindexRange Index is out of range (no resource found).
$1EOB resSysisOpen System resource file is already open.
$1EOC resHasChanged Resource has been changed and has not

been updated.
$1EOD resDiffConverter Another converter already logged in for

this resource type.
$1EOE resDiskFull Volume full.

Chapter 46 Scheduler

There are no changes in the Scheduler. The complete reference for the
Scheduler is in Volume 2, Chapter 19 of the Apple JIGS Toolbox Reference.

Chapter 47 Sound Tool Set Update

This chapter documents new features of the Sound Tool Set. The
complete reference to the Sound Tool Set is in Volume 2, Chapter 21 of
the Apple JIGS Toolbox Reference.

+ Note: You must read the Apple JIGS Hardware Reference to understand
some of the concepts presented in this chapter.

Error corrections

This section contains corrections to the documentation of the Sound Tool Set in
Volume 2 of the Toolbox Reference.
• The documentation of the FFSoundDoneStatus call contains an error. You will note

that the paragraph that describes the call does not agree with the diagram describing
the stack after the call. The text states that the call returns TRUE if the specified sound
is still playing, whereas the diagram states that it returns FALSE if still playing. The
diagram, not the text, is correct.

• There is an undocumented distinction between a generator that is playing a sound and
one that is active. A generator that is playing a sound returns FALSE in response to an
FFSoundDonestatus call. One that is active may or may not be playing a sound; the
value of the flag returned by FFSoundStatus is TRUE. Active generators are those
that are allocated to a voice. At any given moment the generator may be playing a
sound, and so the FFSoundDoneStatus returns FALSE-or it may be silent between
notes, in which case FFSoundDoneStatus returns TRUE.

• The description of the Get soundVol ume tool call is misleading with respect to the
number of significant bits in the returned volume setting. The text accompanying the
stack diagram is correct-only the high nibble of the low-order byte contains valid
volume data.

• The FFGeneratorStatus tool call can return error code $0813, indicating that the
genNumber parameter contains an invalid generator number.

Clarification

This section presents more complete information about the FFStartSound tool call,
including further explanation of its parameters, a new error code, an example procedure
for moving a sound from the Macintosh computer to the Apple IIGS computer, and some
sample code demonstrating the use of the call. The original documentation for this call is
in Chapter 21, "Sound Tool Set," in Volume 2 of the Toolbox Reference.

FFStartSound

The free-form synthesizer is designed to play back long waveforms. To handle longer
waveforms, the synthesizer uses two buffers (which must be the same size), alternating its
input from one to the other. When the synthesizer exhausts a buffer, it generates an
interrupt and then starts reading data from the other buffer. The Sound Tool Set services
the interrupt and begins refilling the empty buffer. This process continues until the
waveform has been completely played.

Note that all synthesizer input buffers must be buffer-size aligned. That is, if you have
allocated 4 KB buffers, then those buffers must be aligned on 4 KB memory boundaries.

Parameter block

$00

$04
$06
$08
$0A
$0C

$10

-
1-

1-

f-

1-
f-
t-
1-

waveStart

waveSize

freqOffset

docBuffer

bufferSize

nextWavePtr

volSetting

-
-
-
-

-

Long

Word
Word
Word
Word

Long

Word

waveStart The starting address of the wave to be played, not in Digital Oscillator
Chip (DOC) RAM but in Apple IIGS system RAM. The Sound Tool Set
loads the waveform data into DOC RAM as it is played.

waveSize

freqOffset

docBuffer

The size in pages of the wave to be played. A value of 1 indicates that
the wave is one page (256 bytes) in size, a value of 2 indicates that it
is two pages (512 bytes) in size, and so on, as you might expect. The
only anomaly is that a value of 0 specifies that the wave is 65,536
pages in size.

This parameter is copied directly into the Frequency High and
Frequency Low registers of the DOC. See the discussion of those
registers in "New Information" later in this chapter for more complete
information.

Contains the address in Sound RAM where buffers are to be allocated.
This value is written to the DOC Waveform Table Pointer register. The
low-order byte is not used and should always be set to 0.

bufferSize The lowest 3 bits set the values for the table-size and resolution
portions of the DOC Bank-Select/Table-Size/Resolution register.

nextWavePtr This is the address of the next waveform to be played. If the field's
value is 0, then the current waveform is the last waveform to be
played.

volSetting The low byte of the volSetting field is copied directly into the
Volume register of the DOC. All possible byte values are valid.

New error code $0817 IRQNotAssignedErr No master IRQ was assigned.

Moving a sound from the Macintosh computer to the Apple llGs computer

To move a digitized sound from the Macintosh computer to the Apple IIGS computer and
play the sound, you perform the following steps:
1. Save the sound as a pure data file on the Macintosh computer.
2. Transfer the file to the Apple IIGS computer (using Apple File Exchange, for example).
3. Filter all the 0 sample bytes out of the file by replacing them with bytes set to $01. This

is very important, because the Apple IIGS computer interprets 0 bytes as the end of a
sample.

4. Load the sound into memory with GS/OS calls.
5. Issue the FFStartsound tool call to play the sound. Set the freqOffset parameter

to $01B7 to match the tempo at which the sound is played on the Macintosh
computer, assuming that you recorded the original sound at the standard Macintosh
sampling rate of 22 kHz.

Sample code

This assembly-language code sample demonstrates the use of the FFStartSound tool call.

PushWord
PushLong

chanGenType
#STParamBlk

FFStartSound

ChanGenType DC.W $0201

STParamBlk DS.L 1

Entry Wave Size
WaveSize DS.W 1

Freq DC . W $200
Start DC.W $8000
Size DC.W $6
Nxtwave DC.L $0
Vol DC.W $FF

Set generator for FFSynth
Address of param block
Start free-form synth

Generator 2, FFSynth

Store the address of the
sound in system memory here

Store the number of pages to
play here

A9 set for each sample once
Start at beginning
16k buffers
No new para m bloc k
Maximum volume

New information

This section provides new information about the Sound Tool Set.
• The four sound and music tools-that is, the Note Sequencer, Note Synthesizer, MIDI

Tool Set, and Sound Tool Set-work together, and their versions must be compatible.
The currently required versions are

Note Synthesizer version 1.3
Note Sequencer version 1.3
MIDI Tool Set version 1.2
Sound Tool Set version 2.4

• The Sound Tool Set soundBootinit call has been changed to initialize the
MidiinitPoll vector ($E101B2) to an RTL.

• The SetUserSoundiRQV tool call allows you to establish a custom synthesizer
interrupt handler. See the description in Volume 2 of the Toolbox Reference. Note also
that your interrupt handler should check the synthesizer mode value to verify that it
should handle the interrupt. This mode value is passed as an input parameter to the
interrupt handler in the accumulator register.
If your routine does not process the interrupt, it should jump to the next routine in the
interrupt chain, taking care to preserve the state of the accumulator. If your routine
does process the interrupt, it should set the carry flag to 0 and return via an RTL
instruction.

Introduction to sound on the Apple IIGS computer

This section provides some general background on the various sound-related tool sets
available on the Apple IIGS. There are five sound tool sets: the Note Sequencer, the Note
Synthesizer, the MIDI Tool Set, the Sound Tool Set, and the Audio Compression and
Expansion (ACE) Tool Set. Although each provides distinct functionality, they can
complement one another and generate fairly sophisticated sound applications.
• The Sound Tool Set plays back a digitized sample of any length and at any frequency.

Note that the sample must fit into system memory.
• The Note Synthesizer also plays digitized samples, but with much greater control over

the sound sample, including the ability to loop within the sample and control the sound
envelope. The Note Synthesizer, however, is limited to sound samples smaller than
65,536 bytes.

• The MIDI Tool Set allows ypu to send and receive MIDI data.
• The Note Sequencer combines the functionality of the Note Synthesizer and MIDI

Tool Set, allowing you to send MIDI data and drive the Note Synthesizer
simultaneously.

• The Audio Compression and Expansion Tool Set provides dramatic reduction in
soun:d disk-storage requirements, with only slight degradation in sound quality.

By combining the facilities offered by these tools, you can easily build impressive sound
applications. For example, you could develop a program that reads MIDI data into the
Note Synthesizer while also saving that data to disk for later input to the Note Sequencer.
This program would turn the Apple IIGS computer into a MIDI sound source with the
capability to save its songs for later playback.

Note Sequencer

The DOC interrupts that drive the Note Synthesizer also drive the Note Sequencer. Before
the Note Synthesizer handles an interrupt, the tool set passes it to the Note Sequencer and
allows other interrupt handlers access to it before taking control. The Note Sequencer
checks its increment value against its clock value to determine whether to take any
action. If enough time has passed, it checks for delay; if a delay is specified, it checks to
determine whether it has waited long enough to satisfy the delay requirement. If it hasn't,
it simply returns. If it has waited long enough, then it checks all playing notes of specified
durations to determine whether it is time to turn them off. If so, it turns those notes off.
It then parses the next seqltem in the current sequence and makes Note Synthesizer and
MIDI Tool Set calls to execute it. If the c h o rd bit is set in the current seqltem, the Note
Sequencer immediately fetches the next seqitem for execution. If the d (delay) bit is set,
then it calculates the required delay and sets the delay flag. It then returns.

Note Synthesizer

One DOC oscillator drives the Note Synthesizer and the Note Sequencer, using the
interrupts that it generates at the end of waveforms, or at 0 values in the waveform. The
Sound Tool Set services such interrupts, then passes them to the Note Synthesizer for
further handling if it is needed. Because the Sound Tool Set and the Note Synthesizer use
the same direct-page space, it is appropriate to use the Note Synthesizer to assign
oscillators for your own purposes even if you don't use the Note Synthesizer any further
with the assigned oscillators.

The Note Synthesizer's operation requires considerable processing. If processor time is in
short supply and you want to use the Note Synthesizer to produce sounds, do not use
vibrato, and use low updateRate values. See Chapter 41, "Note Synthesizer," in this
book for further information.

The Note Synthesizer and Note Sequencer run at interrupt time, and current versions are
fully compatible with the MIDI Tool Set.

Sound general logic unit (GLU)

One quirk of the sound general logic unit (GLU) is that the value for volume in the control
register is a write-only value. It is possible, however, to maintain the system volume
specified by the Control Panel setting and still write to the GLU. To find the system
volume setting, use the Miscellaneous Tool Set GetAddr call to find the address of
IRQ. Volume and use the value stored at that address.

Vocabulary

This section describes a number of terms that have special meanings in the Context of the
Apple IIGS DOC.

Oscillator

There are 32 oscillators on the DOC. They are not true oscillators in the ordinary sense of
a circuit that generates a waveform. Rather, they are circuits that accept as input a
waveform stored as digital data, and generate an audio signal based on that data.

Generator

Each generator used by the Sound Tool Set is actually a pair of DOC oscillators, usually
operating in swap mode when used by the Sound Tool Set. In swap mode the two
oscillators alternate playing and halting, with one oscillator playing while the other is
halted. When one oscillator reaches the end of its current waveform, it stops playing and
the other oscillator takes over, until it reaches the end of its waveform and the first
oscillator takes over again.

Voice

A voice is a single audio signal that can be independently controlled. A synthesizer that
can play eight notes at one time is normally said to have eight voices.

Sample rate

A waveform is stored in the Apple IIGS computer's memory as some number of digital
samples of a sound. The number of samples that the Apple IIGS computer plays each
second is referred to as the sample rate. The sample rate of the DOC is fixed by the
number of oscillators that are enabled, that is, by the value of register $E1 on the DOC.
The sample rate depends only upon this value; changing other parameters does not affect
sample rate. The sample rate is determined by the formula

S=--
(0+2)

where
S is the sample rate
C is the input clock rate, which is always 7.159 MHz
0 is the number of oscillators enabled (32 is standard)

The default sample rate, with all 32 oscillators enabled, is about 26.31985 kHz; that is, the
Apple IIGS computer, operating at its default sample rate, plays about 26,320 samples per
second. It is possible to generate higher sampling rates by reducing the number of enabled
oscillators. However, the low-pass filter on the Apple IIGS computer is a 5-pole Chebyshev
active filter with a roll-off at 10kHz. Consequently, higher sampling rates may not result in
higher perceived sound quality.

Drop sample tuning

The DOC plays waveforms by looking up wave data in a table in memory and sweeping
through a stored waveform. This strategy allows very faithful reproductions of digitally
sampled sound. If, however, you want the DOC to play a waveform at a pitch different
from that at which it was recorded, it cannot simply generate it at a different frequency,
as a true voltage-controlled oscillator can. Instead, the DOC changes the pitch by using a
method called drop sample tuning. To raise the pitch of a sample one octave, the DOC
doubles its frequency by skipping every other sample in the sequence. Similarly, to lower
the pitch one octave, it cuts the frequency in half by playing each sample in the
sequence twice.

The disadvantage of drop sample tuning is that at higher frequencies, some of the samples
are dropped, or lost, and changing the pitch also changes the duration of each waveform.

Frequency

Frequency refers both to the output frequency of the audio signal generated by the DOC
and to the value of the DOC frequency register. Normally frequency refers to the value of
the frequency register, which determines, but is not equal to, the output frequency.
Frequency directly determines the perceived pitch of a sound; higher frequencies result in
higher pitches.

Sound RAM

The DOC has 64 KB of RAM dedicated to the storage of sound samples. This RAM, which
contains the sampled waveforms the DOC plays, is referred to as Sound RAM.

Waveform

A waveform consists of data representing the stored form of a digitally sampled
audio signal.

DOC registers

There are ten different registers in the DOC. There is a set of registers for each of the DOC
oscillators. That is, each of the first seven registers has 32 different values, one for each
DOC oscillator. The registers are Frequency Low, Frequency High, Volume, Waveform
Data Sample, Waveform Table Pointer, Control, Bank-Select/Table-Size/Resolution,
Oscillator Interrupt, Oscillator Enable, and AID Converter.

Frequency registers

Two 8-bit frequency registers, Frequency Low and Frequency High, are paired to produce
a single 16-bit frequency value. The output frequency of a sample can be represented by

0 = (c 17+R0 • FHL

where
0 is the output frequency in hertz, assuming that one cycle of the sound

exactly fills the table size
S is the sample rate (26.32 kHz) with all 32 oscillators enabled
R is the resolution value in the Bank-Select/Table-Size/Resolution register;

valid values lie in the range from 0 through 7
FHL is the combined values of the Frequency Low and Frequency High

registers; valid values lie in the range from 0 through 65,535

This calculation assumes that the wave table contains exactly one cycle of the waveform.
The resolution and the table size are 3-bit values, and this calculation assumes they are
equal.

If one cycle of the sound does not exactly fill the table size, then you can use the following
formula to calculate the output frequency:

O (S \ (Fi • FHL \
= SRi) • 2c9+R-rAB>)

where
0 is the output frequency in hertz
Fi is the frequency of the sampled waveform in hertz
SRi is the rate at which you sampled the original sound (in samples per

second)
S is the Apple IIGS sample rate (26.32 kHz) with all 32 oscillators enabled
FHL is the combined values of the Frequency Low and Frequency High

registers; valid values lie in the range from 0 through 65,535
R is the resolution value in the Bank-Select/Table-Size/Resolution register;

valid values lie in the range from 0 through 7
TAB is the table size value in the Bank-Select/Table-Size/Resolution register;

valid values lie in the range from 0 through 7

Volume register

The value in the Volume register directly controls the volume of the sound output for that
oscillator.

Waveform Data Sample register

This is a read-only register that always contains the value of the sample that an oscillator is
currently playing.

Waveform Table Pointer register

This register is also referred to as the Address Pointer register. It identifies which page of
Sound RAM contains the start of the current sample. The FFStartSound parameter
docBuffer is written directly to this register.

Control register

The Control register establishes several attributes of its associated oscillator. These
attributes include what oscillator mode is in effect, whether the oscillator is halted,
whether it will generate an interrupt at the end of its cycle, and what channel has been
assigned to the oscillator.
• Interrupt-enable bit Bit 3 of the Control register is the interrupt-enable bit. When

this bit is set to 1, the oscillator generates an interrupt when it reaches the end of a
waveform or plays a sample with a value of 0.
Unless you have issued the setSoundMIRQV tool call to set a custom interrupt vector
(see Chapter 21, "Sound Tool Set," in Volume 2 of the Toolbox Reference for more
information), the Sound Tool Set fields these interrupts first. Upon entry to the
interrupt routine, the accumulator register contains the low-order nibble of the
genNumFFSynth parameter of the FFStartSound tool call that assigned the
oscillator. If the value of this nibble indicates that the interrupt is for the Sound Tool
Set, the interrupt handler processes the interrupt. Otherwise, it passes the interrupt to
other interrupt routines (see the discussion of the Set Use rSoundiRQV tool call in
Chapter 21, "Sound Tool Set," in Volume 2 of the Toolbox Reference for information on
setting vectors to user interrupt routines).

• Mode The mode value consists of two bits, MO and Ml. There are thus four possible
modes, which are designated as free-run or loop mode (00), one-shot mode (01),
sync/AM mode (10), and swap mode (11).
In free-run or loop mode, the oscillator sweeps through a waveform to the end, playing
the values it encounters, then starts again at the beginning of the waveform and
generates an interrupt if the interrupt-enable bit is set to 1.

In one-shot mode, the oscillator sweeps through its waveform to the first 0 value or to
the end, generates an interrupt if the interrupt-enable bit is set to 1, and halts.
In swap mode, an oscillator sweeps through its waveform to the first 0 value or to the end
of the waveform, generates an interrupt, and halts, turning control over to a partner
oscillator. Only one halt bit can be set to 1 at any given time for a pair of oscillators in
swap mode; setting the halt bit of one oscillator to 1 forces the other's to 0.
Generators always consist of an even/odd pair of oscillators-for example, oscillators
0 and 1 form a generator, as do oscillators 2 and 3, and so on. The Note Synthesizer
normally uses each pair with the even-numbered oscillator in swap mode and the odd-
numbered oscillator in loop mode. The Sound Tool Set normally uses both oscillators
of a pair in swap mode.

• Channel The Channel value specifies a sound's stereo position. Currently, only the low-
order bit is significant. A value of 0 in this bit sets the oscillator's stereo position to
the right channel; a value of 1 sets it to the left channel.

Bank-Select/fable-Size/Resolution register

This register sets the table size for stored waveforms, the resolution of the waveform, and
the bank selection for the oscillator. When it plays a sound, the DOC adds the value of the
frequency register to its accumulator. It multiplexes the resulting value with the address
pointer to determine the address in DOC RAM of the sample to play. The table size
determines how many bits of the Waveform Table Pointer register are accessible to the
DOC for this operation; a larger table size reduces the number of Waveform Table Pointer
register bits used in the address calculation and reduces the precision with which a
particular sample can be located. If 8 bits of the Waveform Table Pointer register are used
to locate the next sample, the DOC can distinguish twice as many starting points as it can
if only 7 bits are used.

Each time the DOC cycles it adds the contents of the frequency registers to its 24-bit
accumulator. It then appends a subrange of the accumulator's 24 bits to the value of the
Waveform Table Pointer register and uses the resulting value as an absolute address in
DOC RAM. It then plays the sample stored at that location.

The resolution value, which is the lowest 3 bits of the Bank-Select/Table-Size/Resolution
register, determines the lowest bit of the accumulator value that will be appended to the
Waveform Table Pointer register.

The table size value, which is the next 3 bits above the resolution, determines both the
width of the address pointer value and the width of the accumulator value. The width of
each value is the number of bits the DOC uses from that register. For example, the DOC
accumulator is a 24-bit register, but the DOC uses only 8 of those bits when the table size
is 256 bytes.

The DOC uses only part of each register, the accumulator and the address pointer, to
determine where in memory to find the sounds that it will play next. For any table size
greater than 256 bytes (1 page), it overwrites the lowest bits of the address pointer with
bits from the accumulator. Figure 47-1 shows the correspondence between table size,
resolution, and the portions of the Waveform Table Pointer register and accumulator used
to determine the location of the next sample to be played.

• Figure 47-1 DOC registers

Table Final Address Resolution
Text 15 14 13 12 11 10 9 8 7[61 51 4 1 31 2l 1 I o R2 R1

256 Address Pointer Register 23 Accumulator Bits 16 1 1

7 0 16 9 0 0

512 23 15 1 1

7 1 16 8 0 0

1024 23 14 1 1

7 2 16 7 0 0

2048 23 13 1 1
7 3 16 6 0 0

4096 23 12 1 1
7 4 16 5 0 0

8192 23 11 1 1

7 5 16 4 0 0
16,384 23 10 1 1

7 6 16 3 0 0

32,768 23 9 1 1

7 16 2 0 0

The resolution acts as an offset value, determining which bit is the lowest accumulator bit
to be appended to the Waveform Table Pointer register. The effect of these
computations is that if you increase the resolution by 1, the pitch of the waveform will be
one octave lower. If you increase the resolution value by 2, the pitch will be four octaves
lower-and so on in powers of two.

RO
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0

The table size value is a 3-bit value that is equal to the resolution value in calls to
FFStartSound. It specifies the size of the DOC RAM partitions used to contain
waveforms that are to be played. The following list shows the correspondence between
table size values and the table sizes.

Table size 3-bit value RAM buffer size
0 000 1 page (256 bytes)
1 001 2 page (512 bytes)
2 010 4 pages (1024 bytes)
3 011 8 pages (2048 bytes)
4 100 16 pages (4096 bytes)
5 101 32 pages (8192 bytes)
6 110 64 pages (16,384 bytes)
7 111 128 pages (32,768 bytes)

Both the table size value and resolution value are copied into their respective bits in the
Bank-Select/Table-Size/Resolution register from the lowest 3 bits of the buffersize
parameter to the FFStartSound call.

The bank-select bit is bit 6. It is reserved for the use of Apple Computer, Inc. , and should
always be 0.

Oscillator Interrupt register

This register contains a bit that specifies whether an interrupt has occurred and, if so,
contains the number of the oscillator that generated the interrupt. The oscillator number
(0-31) is stored in bits 1 through 5 of this register.

Oscillator Enable register

The Oscillator Enable register specifies the number of enabled oscillators (0-31).

AID Converter register

This register always contains the current sample from the analog-to-digital converter built
into the Digital Oscillator Chip.

MIDI and interrupts

The MIDI Tool Set automatically recovers incoming MIDI data, but to do so it requires
that interrupts never be disabled for longer than 290 microseconds. If an application
disables interrupts for longer than this, it should call the Midi InputPoll vector at least
every 270 microseconds to ensure that the data is properly received and the input buffer is
cleared. When MIDI input is not enabled, the vector is still serviced, but at minimal cost in
CPU cycles. Under these circumstances, the call to the vector sacrifices only two
instructions, a JSL and an RTL.

New Sound Tool Set calls
Four new tool calls provide greater flexibility for applications playing free-form sounds.
The FFSetUpSound and FFStartP laying calls allow you to schedule a sound for
playback at a later time. The ReadDOCReg and setDOCReg calls provide easy access to
the DOC registers.

FFSetUpSound $1508

Identical to the FFStartSound tool call but does not actually start playing the specified
sound. Use the FFStartPlaying tool call to start playing. This call gives you the option
of setting up a sound and playing it later.

Parameters

Stack before call

Previous contents
channe/Gen Word-Channel, generator type word

- paramB/ockPtr - Long-Pointer to FFStartSound parameter block

<-SP

Stack after call

Previous contents

Errors

c

<-SP

None
extern pascal void FFSetUpSound(channelGen,

paramBlockPtr);

Word c hanne lGen;
Pointer paramBlockPtr;

channe/Gen For complete information on the channe!Gen parameter, refer to the
description of the FF Start sound tool call in Chapter 21, "Sound
Tool Set," in Volume 2 of the Toolbox Reference.

paramB/ockPtr For complete information on the parameter block pointed to by the
paramBlockPtrparameter, see "FFStartsound" earlier in this
chapter.

FFStartPlaying $1608

Starts playing the sound specified by the FF set UpSound tool call on a specified set of
generators. Your program passes a parameter to this call indicating which generators are to
play the sound.

Parameters

Stack before call

Previous contents
genWord Word-Flag word indicating which generators to start

<-SP

Stack after call

Previous contents

Errors

c

genWord

.& Warning

<-SP

None

extern pascal void FFStartPlaying(genWord);

Word genWord;

Specifies which generators to start. Each bit in the word corresponds
to a generator. Setting a bit to 1 indicates that the matching generator
is to play the sound. For example, a gen Word value of $4071
(o/o0100 0000 0111 0001) would start generators 0, 4, 5, 6, and 14.

A value of $0000 for this parameter is illegal and will cause the system
to hang. •

ReadDOCReg $1808

Reads the DOC registers for a generator's oscillator and stores the register contents in a
special format in the target memory location. Your program specifies the generator and
the oscillator, as well as the destination for the register information. The format of the
resultant data structure corresponds to the input to the setDOCReg tool call.

.A. Warning

Parameters

Stack before call

This is a very low-level call. Do not use it unless you have a thorough
understanding of the DOC. This call may not be supported in future
versions of the system hardware

Previous contents

pB/ockPtr Long-Pointer to DOC register parameter block

<-SP

Stack after call

Previous contents
<-SP

Errors None

c e xtern pasc al void ReadDOCReg(pBlockPtr);

Po int e r pBlockPtr ;

pBlockPtr Refers to a location in memory to be loaded with the contents of the
DOC registers for the specified generator.

f- oscGenType -$00 Word-(see below)
$02 Byte-Frequency Low register for first oscillator freqLowl
$03 Byte-Frequency High register for first oscillator freqH ighl
$04 Byte-Volume register for first oscillator voll
$05 Byte-Waveform Table Pointer register for frrst oscillator tablePtrl
$06 Byte-<":ontrol register for frrst oscillator controll
$07 Byte-Table-size register for frrst oscillator tableSizel
$08 Byte-Frequency Low register for second oscillator freqLow2
$09 Byte-Frequency High register for second oscillator freqHigh2
$0A Byte-Volume register for second oscillator vol 2
$0B Byte-Waveform Table Pointer register for second oscillator tablePtr2
$0C Byte-Control register for second oscillator control2
$00 Byte-Table-size register for second oscillator tableSize2

oscGenType Bits 8 through 11 specify the generator number ($0 through $F)
whose registers are to be retrieved.

bit 15

bit 14

bits 13-12
bits 11-8

bits 7-4
bits 3-0

Determines whether to get DOC registers for the first
oscillator.
0 = Do not get the registers
1 = Get the registers
Determines whether to get DOC registers for the second
oscillator.
0 = Do not get the registers
1 = Get the registers
Reserved; must be set to 0.
Specify the generator number for the operation. Valid
values lie in the range from $0 through $F.
Reserved; must be set to 0.
Specify who is using the generator (this value is
returned).

SetDOCReg $1708

Sets the DOC registers for a generator's oscillator from register contents stored in a special
format. Your program specifies the generator, the oscillator(s), and the register
information. The format of the input data structure corresponds to that of the output
from the ReadDOCReg tool call.

_.Warning

Parameters

Stack before call

This is a very low-level call. Do not use it unless you have a thorough
understanding of the DOC. This call may not be supported in future
versions of the system hardware . .a.

Previous contents

pBlockPtr Long-Pointer to DOC register parameter block

<-SP

Stack after call

Previous contents
<-SP

Errors None

c extern pascal void SetDOCReg(pBlockPtr);

Pointer pBlockPtr;

pBlockPtr

$00
$02
$03
$04
$05
$06
$07
$08
$09
$0A
$0B
$0C
$00

-

Refers to a location in memory containing the new contents of the
DOC registers for the specified generator.

ascGenType

freqLawl
freqHighl

vall
tablePtrl
cantrall

tableSizel
freqLaw2
freqHigh2

val2
tablePtr2
cantral2

tableSize2

- Word-{see below)
Byte-Frequency Low register for frrst oscillator
Byte-Frequency High register for frrst oscillator
Byte-Volume register for frrst oscillator
Byte-Waveform Table Pointer register for ftrst oscillator
Byte-Control register for frrst oscillator
Byte-Table-size register for frrst oscillator
Byte-Frequency Low register for second oscillator
Byte-Frequency High register for second oscillator
Byte-Volume register for second oscillator
Byte-Waveform Table Pointer register for second oscillator
Byte-Control register for second oscillator
Byte-Table-size register for second oscillator

oscGenType Specifies the generator whose oscillators are to be written, along with
other generator control block (GCB) information (see Chapter 41,
"Note Synthesizer," in this book for detailed information on the
format and content of the GCB).

bit 15

bit 14

bits 13-12
bits 11-8

bits 7-4
bits 3-0

Determines whether to set DOC registers for the first
oscillator.
0 = Do not set the registers
1 = Set the registers
Determines whether to set DOC registers for the second
oscillator.
0 = Do not set the registers
1 = Set the registers
Reserved; must be set to 0.
Specify the generator number for the operation. Valid
values lie in the range from $0 through $F.
Reserved; must be set to 0.
Specify who is using the generator.
$0 = Invalid value
$1 = Free-form synthesizer
$2 = Note Synthesizer
$3 = Reserved
$4 =MIDI
$5-$7 =Reserved
$8-$F = User-defined

Chapter 48 Standard File Operations Tool Set
Update

This chapter documents new features of the Standard File Operations
Tool Set. The complete reference to this tool set is in Volume 2,
Chapter 22 of the Apple /IGS Toolbox Reference.

New features of the Standard File Operations Tool Set

This section explains new features of the Standard File Operations Tool Set.
• The Standard File Operations Tool Set now uses class 1 calls to fully support GS/OS. As

a result, new tool set calls accept full GS/OS filenames and pathnames:

o A total of 13,107 files, with a total of up to 64 KB of name strings, can reside in a
single folder.

o A filename can now contain up to 253 characters.
o A pathname can now contain up to 508 characters.
New applications should use the new tool set calls to gain access to this functionality.

+ Note: Since old Standard File Operations Tool Set calls use the new, longer filenames
and pathnames internally, it is possible for an old-style Get or Put call to access an
AppleShare file with a name that is more than 15 characters long. In this case, the
system truncates the filename in the reply record. If necessary, the pathname is also
truncated. Note, however, that if the pathname will fit in the reply record, then it is
returned intact, regardless of the length of the filename portion of the path. As a
result, this representation of the filename may exceed 15 characters. Although this
allows the application to open the file, programs that cannot accept a filename with
more than 15 characters may not function predictably.

• The Standard File Operations Tool Set now uses the List Manager for some internal
functions, freeing up memory for application use.

• The Standard File Operations Tool Set now requires that there be at least four pages of
RAM available on the application stack (three for the List Manager and one for the
Standard File Operations Tool Set itselO.

• The new tool calls use preftxes differently. These calls ftrst check prefix 8 for a valid
path. If preftx 8 is valid, the routines use that path. If not, they check prefix 0. If
preftx 0 is valid, the routines copy it to prefiX 8, then use it. If preftx 0 is also invalid,
the search continues to the next volume.
Whenever the user changes the pathname, even in a Standard File dialog box that is
subsequently canceled, the new path is placed in prefix 8. In addition, this current path
is placed into preftx 0, if it fits . If the path will not fit, prefix 0 is left unchanged and
contains the last legitimate pathname entered.
Internally, both old and new Standard File calls use prefix 8, allowing up to 508
characters in the pathname. However, the Standard File Operations Tool Set displays a
warning if, as a result of an old call, a pathname longer than 64 characters will be
created.

• The Standard File Operations Tool Set now scans AppleShare volumes every eight
seconds for changes. The system automatically updates the displayed file list.

• The Standard File Operations Tool Set now returns error codes. For many internal
errors, the Standard File Operations Tool Set displays a detailed information dialog
box and allows the user to cancel the operation.

• When displaying a complete path, the system now uses the separator character found
in either prefix 8 or 0. Previously, the separator was always a slash(/), but now it is
typically a colon (:).

• The system now disables the Save and New Folder buttons in Put dialog boxes
referencing write-protected volumes. In addition, the system now displays a lock icon
for such volumes.

• The Standard File Operations Tool Set now supports multiple file Get calls, which are
collectively referred to as multifile calls. See "New or Changed Standard File Calls" later
in this chapter for call syntax details.
Multifile dialog boxes include a new Accept button in addition to the Open button.
These buttons operate as follows:
o When the user has selected a single file, both the Open and Accept buttons are

enabled. If the selected file is not a folder, clicking either button returns the
filename. If the file is a folder, clicking Open lists the folder contents, and clicking
Accept returns the folder name to the calling program. Double-clicking a file has the
same effect as clicking Accept; double-clicking a folder has the same effect as
clicking Open.

o When the user has selected multiple files, the Open button is disabled. The user
must click Accept to return the filenames to the calling application. In this case,
the returned file list may contain both folder and file names. Double-clicking is not
allowed when multiple files have been selected.

• The Standard File Operations Tool Set now uses static text items in its dialog box
templates. The system automatically changes custom dialog box templates to use
static text rather than user items. In addition, the system now uses a custom item-
drawing routine for the path entry item. The system automatically changes input dialog
box templates to call the Standard File Operations Tool Set's custom item-drawing
routine, unless the input template already references a custom routine, in which case
that reference is not changed.

• Your application can now provide custom draw routines for items in displayed file lists.
The Standard File Operations Tool Set takes care of dimming and selecting the item.

• Standard File dialog boxes support the following keystroke equivalents:

Key Button equivalent

Esc Close
Command-Up Arrow Close
Tab Volume
Command-period Cancel
Command-o Open
Command-O Open
Command-Down Arrow Open
Command-o New Folder
Command-N New Folder

New ftlter procedure entry interface

Many Standard File calls allow you to specify a custom filter procedure. These custom
routines can perform specific checking of items for file list inclusion, beyond that
performed by the system. To learn more about Standard File filter procedures, see
Chapter 22, "Standard File Operations Tool Set," in Volume 2 of the Toolbox Reference.

The new Standard File calls support a different filter procedure entry interface. Previously,
Standard File filter procedures received a pointer to a file directory entry (defined in the
Toolbox Reference). New Standard File calls pass a pointer to a GetDirEntry record,
which corresponds to the formatted output of the GS/OS GetDirEnt ry call. For the
format and content of the Get o irE n t r y record, refer to the GS!OS Reference.

The exit interface from these filter procedures has not changed. Your program must
remove the input pointer from the stack and return a response word indicating how the
current file is to be displayed in the file list.

Value Name Description

0 noDi splay Do not display file
1 noSel ect Display the file, but do not allow the user to

select it
2 displaySelect Display the file and allow the user to select it

Custom item-drawing routines

Some new Standard File calls allow you to specify custom item-drawing routines. These
routines give you the opportunity to create highly customized displays of items in file
lists. The Standard File Operations Tool Set handles item dimming and selecting.

On entry to the custom item-drawing routine, the Standard File Operations Tool Set
formats the stack as follows:

Previous contents

- memRectPtr

- memberPtr

- contro!Hndl

Reseroed

- itemDrawPtr

- returnAddr

-
-

-

-

-

Long-Pointer to the member rectangle

Long-Pointer to the member record

Long-Handle to the list control

Block-Reserved data for Standard File-24 bytes

Long-Pointer to item draw record

Block-RTL address-3 bytes

<-SP

itemDrawPtr Pointer to a record formatted as follows:

$oo 1

$01 .

count+ 1 I-

count+ 3 ---

count I Byte-Length of name String, in bytes

name String : Array-count bytes of ftle name

f ile Type - Word-File type

-
auxType - Long-Auxiliary file type -

The routine must remove this pointer from the stack before returning
to the Standard File Operations Tool Set. The custom item-drawing
routine should not change any of the other information on the stack.

The custom item-drawing routine must draw both the filename string
and any associated icon. The Standard File Operations Tool Set
assumes that the standard system font and character size are used for
all list items; changing either the font or the character size is not
recommended. Note that any icons must also comply with these
restrictions (currently icons are eight lines high).

Standard File data structures

The new Standard File tool calls accept and return new-style reply records and type lists.
The formats for these records follow.

Reply record

Figure 48-1 defines the layout for the new-style Standard File reply record. You pass this
record to many of the new tool calls. Those calls, in turn, update the record and return it to
your program.

• Figure 48-1 New-style reply record

$00
$02
$04

$08
$0A

$0E
$10

good

good

file Type

auxType

nameRefDe sc

nameRef

pathRefDesc

pa thRef

-
-

-

-

Word
Word

Long

Word

Long

Word

Long

Boolean indicating the status of the request. TRUE indicates that the
user opened the file; FALSE indicates that the user canceled the
request.

fileType The GS!OS file type information.

auxType The GS!OS auxiliary type information.

nameRefDesc Type of reference stored in nameRef (your program must set this
field).

$0000 Reference in nameRef is a pointer to a GS/OS class 1 output
string

$0001 Reference in nameRe f is a handle to a GS/OS class 1 output
string

$0003 Reference in nameRe f is undefined (The system will
allocate a new handle, correctly sized for the resulting GS/OS
class 1 output string, and return that handle in nameRef.
This is the recommended option.)

nameRe f On input, may contain a reference to the output buffer for the
filename string, depending on the contents of nameRefDesc: On
output, contains a reference to the filename string. The reference type
is defined by the contents of nameRefDesc. If your program set
nameRefDesc to $0003, then your program must release the resulting
handle when it is done with the returned data.

pathRefDesc Type of reference stored in pathRef (your program must set this
field) .

pathRef

$0000 Reference in pathRef is a pointer to a GS/OS class 1 output
string

$0001 Reference in pathRef is a handle to a GS/OS class 1 output
string

$0003 Reference in pathRef is undefined (The system will allocate
a new handle, correctly sized for the resulting GS/OS class 1
output string, and return that handle in pathRef. This is the
recommended option.)

On input, may contain a reference to the output buffer for the file
pathname string, depending on the contents of pathRe fDesc. On
output, contains a reference to the pathname string. The
type is defined by the contents of pathRe f Des c. If your program
set pathRefDesc to $0003, then your program must release the
resulting handle when it is done with the returned data.

Multifile reply record

Figure 48-2 defines the fonnat of the Standard File multifile reply record. The system
returns this record format in response to multifile Get requests.

• Figure 48-2 Multifile reply record

$00 1- good - Word
$02 t- -

1- namesHandle - Long
1- -

good Either the number of files selected, or FALSE if the user canceled the
request.

namesHandle Handle to the returned data record. Your program must dispose of
this handle when it is done with the returned data. The returned data
record is formatted as follows:

bufferLength l Word

fileEntryArray : AJray

bufferLength The total length, in bytes, of the returned data record, including
the length of bufferLength.

fileEntryArray

$00
$02

-

$06
$07
$08
$09.

fileType

auxType

name Length
prefixl
prefix2

name

fileType

auxType

An array of file entries, each formatted as follows:

-

Word

Long

Byte
Byte
Byte

: Array

The GS/OS file type.

The GS/OS auxiliary type.

name Length The length of the following filename, including the
volume prefix bytes (prefixl and prefix2).

prefixl

prefix2

name

File type list record

Volume prefix for the pathname, first byte. Always set to 8.

Volume prefix for the pathname, second byte. Always set
to a colon(:).

Filename string, containing (nameLength = 2) bytes of
data, not to exceed 253 characters.

Figure 48-3 shows the layout of the Standard File type list record. You use this record with
new Standard File calls that require a file type list as input (such as SFGetF ile2).

• Figure 48-3 File type list record

$()() 1-r::: __ Word
$02 !- -i

: Array entryArray

entryCount The number of items in entryArray.

entryArray Array of file type entries, each formatted as follows:

$00
$02
$04

I-

I-

I-
I-
I-

flags

fl ags

fil e Type

auxType

-
-

Word
Word

Long

Defines how the system is to use fileType and auxType when
selecting files to be displayed.

bit 15

bit 14

bit 13

bits 12-0

Controls whether Standard File cares about
auxiliary types.
0 =Match only the specified aux Type value
1 =Match any auxType value

Controls whether Standard File cares about file
types.
0 =Match only the specified fileType value
1 =Match any fileType value

Disable selection.
0 = Make all displayed files selectable
1 = Display as dimmed, and thus unselectable,
any files matching criteria specified in bits 14
and 15 (Note that the files will not be passed to
the filter procedure for the tool call.)

Reserved; must be set to 0.

+ Note: The settings of bits 14 and 15 are independent. If you set both bits to 1, the
Standard File Operations Tool Set will match all files.

file Type

auxType

The GS/OS file type value to match, according to the settings of
the flags bits.

The GS/OS auxiliary type value to match, according to the
settings of the flags bits.

I,.. 1 TT ,... - - 11_ - -- T\ - c- .. - -- -- 't T 1..-- ?

Standard File dialog box templates

The Standard File Operations Tool Set allows you to define custom dialog boxes for the
Open File and Save File dialog boxes. To use a custom dialog box, your program must
provide a pointer to a dialog box template to the appropriate Standard File routine
(SFPPutFile2, SFPGetFile2, or SFPMultiFile2). The Standard File Operations
Tool Set passes the dialog box template to the Dialog Manager (GetNewModalDialog
call) when it establishes the user dialog box.

Although the latest version of the Standard File Operations Tool Set uses some of the
template fields differently, old templates should still work. The system internally modifies
old-style input templates to make them compatible with current usage. New usage differs
in the following ways:
• The boundary rectangle for a file list is taken from the Files item in each dialog box

template and copied to the List Manager record. The number of files to be displayed is
derived from the rectangle coordinates by subtracting 2 from the height of the
rectangle in pixels and dividing the result by 10. To avoid displaying partial filenames,
you should set the rectangle height using the same formula; that is,
height = ((numJiles • 10) + 2).

• The Scroll item is no longer used for single-file requests. However, it has been retained
in the record for compatibility with old templates. For multifile Get requests, the new
tool calls define the Accept button in the space previously used by the Scroll item.

• Standard File calls copy the input dialog box template header to memory and then
update it. Note that, for single-file Get calls, items 5 and 7 are not copied (for multifile
Get calls, item 5 is copied). Similarly, items 6 and 8 are not copied for Put calls.

The following code examples contain the templates for the standard Open File and Save
File dialog boxes. All these templates depend upon the following string definitions:
SaveStr str 'Save'
OpenStr str 'Open'
CloseStr str 'Close'
DriveStr str 'Disk'
CancelStr str 'Cancel'
FolderStr str 'New Folder'
AcceptStr str 'Accept'
KbFreeStr str '"0 free of " 1 k.' ;Dialog Manager routine

replaces " 0 & " 1 with real
; values from the disk.

PPromptStr dc.b 'Save which file:'
PEndBuf dc.b 0 ;end-of-string byte

GPromptStr dc.b 'Load which file:'
GEndBuf dc.b 0 ;end-of-s tring byte

Open File dialog box templates

The Open File dialog box must contain the following items in· this exact order:

Item Item type Item ID

Open button button Item 1
Close button button Item 2
Next button button Item 3
Cancel button button Item 4
Scroll bar useritem+itemDisable 5
Path user Item 6
Files useritem+itemDisable 7
Prompt user Item 8

+ Note: The scroll bar item (item 5) is not used for single-file calls. For multifile calls, this
item contains the Accept button definition.

The files item (item 7) contains the boundary rectangle for the List Manager and serves
no other purpose.

First, here are the templates for 640 mode:
GetDialog640

dc.w 0,0,114,400

dc.w -1
dc.w 0,0
dc.l OpenBut640
dc.l CloseBut640
dc.l NextBut640
dc.l Cance1But640
dc.l Scroll640
dc.l Path640
dc.l Files640
dc.l Prompt640
dc.l 0

recommended drect of dialog
(640 mode)

reserved words
item 1
item 2
item 3
item 4
dummy item or ACCEPT button
item 6
item 7
item 8

OpenBut640
dc.w 1 ;item #
dc.w 61,265,73,375 ;drect
dc.w Buttonitem ;type of item
dc.l OpenStr ;item descriptor
dc.w 0,0 ;item value & bit flags
dc.l 0 ;color table ptr (nil is default)

CloseBut640
dc.w 2 ; item #
dc.w 79,265,91,375 ; drect
dc.w Button Item ;type of item
dc.l CloseStr ;item descriptor
dc.w 0,0 ;item value & bit flags
dc.l 0 ;color table ptr (nil is default)

NextBut640
dc.w 3 ;item #
dc.w 25,265,37,375 ; drect
dc.w Buttonitem ;type of item
dc.l DriveStr ;item descriptor
dc.w 0,0 ;item value & bit flags
dc.l 0 ;color table ptr (nil is default)

Cance1But640
dc.w 4 ; item #
dc.w 97,265,109,375 ;drect
dc.w Buttonitem ;type of item
dc.l CancelStr ;item descriptor
dc.w 0,0 ;item value & bit flags
dc.l 0 ;color table ptr (nil is default)

Scroll640

SPECIAL NOTE: Scroll items are no longer used by the new calls, since
the List Manager takes care of all scroll "stuff." In single-file
Get calls (also any OLD call), this item is simply ignored and its
pointer is left out of the header when copied to RAM. However, in
Multi-Get calls, this item IS used for the Accept button. The
following is the recommended content for the Accept button:

;
dc.w
dc.w
dc.w
dc.l
dc.w
dc.l

Path640
dc.w
dc.w
dc.w
dc.l

specific)
dc.w
dc.l

Files640
dc.w
dc.w
dc.w
dc.l
dc.w
dc.l

Prompt640
dc.w
dc.w
dc.w
dc.l
dc.w
dc.w
dc.l

5
43,265,55,375
Button Item
AcceptStr

;item # (DUMMY or ACCEPT button)
;drect
;type
;item descriptor

0,0
0

;item value and bit flags
; color table

6 ;item #
12,15,24,395 ;drect
User Item ;type
PathDraw ;item descriptor (user app.)

0,0 ;item value and bit flags
0 ;color table

7 ;item #
25,18,107,215 ;boundary rect for List Manager
Useritem+ItemDisable ;type
0
0,0
0

;item descriptor
;item value and bit flags
;color table

8 ;item #
03,15,12,395 ;drect
StatText+ItemDisable ;type
0 ;item descriptor (text passed)
0 ;size of text
0 ;bit flags
0 ;color table

Now, here are the templates for 320 mode:
GetDialog320

dc.w 0, 0, 114,260 drect of dialog (320 mode)
dc.w -1
dc.w 0,0 reserved word
dc.l OpenBut320 item 1
dc.l CloseBut320 item 2
dc.l NextBut320 item 3
dc.l Cance1But320 item 4
dc.l Scroll320 dummy item or ACCEPT button
dc.l Path320 item 6
dc.l Files320 item 7
dc.l Prompt320 ; item 8
dc.l 0

OpenBut320
dc.w 1 ;item #
dc.w 53,160,65,255 ; drect
dc.w Button Item ;type of item
dc.l OpenStr ;item descriptor
dc.w 0,0 ;item value & bit flags
dc.l 0 ;color table ptr (nil is default)

CloseBut320
dc.w 2 ;item #
dc.w 71,160,83,255 ;drect
dc.w Buttonltem ;type of item
dc.l CloseStr ;item descriptor
dc.w 0,0 ;item value & bit flags
dc.l 0 ;color table ptr (nil is default)

NextBut320
dc.w 3 ;item #
dc.w 27,160,39,255 ;drect
dc.w Button Item ;type o f ite m
dc.l DriveStr ;item descriptor
dc.w 0,0 ;item value & bit flags
dc.l 0 ;co lor table pt r (nil is default)

Cance1But320
dc.w
dc.w
dc.w
dc.l
dc.w
dc.l

Scroll320

4
97,160,109,255
Buttonitem
CancelStr
0,0
0

;item #
;drect
;type of item
;item descriptor
;item value & bit flags
;color table ptr (nil is default)

SPECIAL NOTE: Scroll items are no longer used by the new calls, since
the List Manager takes care of all scroll "stuff." In single-file
Get calls (also any OLD call), this item is simply ignored and its
pointer is lert out of the header when copied to RAM. However, in
Multi-Get calls, this item IS used for the Accept button. The
following is the recommended content for the Accept button:

dc.w
dc.w
dc.w
dc.l
dc.w
dc.l

Path320
dc.w
dc.w
dc.w
dc.l
dc.w
dc.l

Files320
dc.w
dc.w
dc.w
dc.l
dc.w
dc.l

5
118,160,130,255
Buttonitem
AcceptStr
0,0
0

6
14,06,26,256
Useritem
PathDraw
0,0
0

;item # (see SPECIAL NOTE)
;drect
;type
;item descriptor
;item value and bit flags
;color table

;item #
;drect
;type
;item descriptor
;item value and bit flags
;color table

7 ;item #
27,05,109,140 ;boundary rect for list manager
Useritem+ItemDisable ;type
0
0,0
0

;item descriptor
;item value and bit flags
;color table

Prompt320
dc.w 8 ;item #
dc.w 03,05, 12 , 255 ; drect
dc . w StatText+ItemDisable ; type
dc.l 0 ;item descriptor (text passed)
dc.w 0 ;size of string
dc.w 0 ;bit flags
dc.l 0 ;color table (0 default)

Save File dialog box templates

The Save File dialog box must contain the following items in this exact order:

Item Item type Item ID

Save button button Item 1
Open button button Item 2
Close button button Item 3
Next button buttonitem 4
Cancel button button Item 5
Scroll bar useritem+itemDisable 6
Path user Item 7
Files useritem+itemDisable 8
Prompt user Item 9
Filename edit Item 10
Free space stat Text 11
Create button buttonitem 12

+ Note: The scroll bar item (item 6) is not used for single-file calls.

The files item (item 8) contains the boundary rectangle for the List Manager and serves
no other purpose.

First, here are the templates for 640 mode:
PutDialog640

dc.w 0,0,120,320

dc.w -1
dc.w
dc.l
dc.l
dc.1
dc.l
dc.l
dc.l
dc.l
dc.l
dc.l
dc.l
dc.l
dc.l
dc.l

SaveButP640
dc.w
dc.w
dc.w
dc.l
dc.w
dc.l

OpenButP640
dc.w
dc.w
dc.w
dc.l
dc.w
dc.l

0,0
SaveButP640
OpenButP640
CloseButP640
NextButP640
CancelButP640
ScrollP640
PathP640
FilesP640
PromptP640
EditP640
StatTextP640
CreateButP640
0

1
87,204,99,310
Button Item
SaveStr
0,0
0

2
49,204,61,310
Button Item
OpenStr
0,0
0

recommended drect of dialog
(640 mode)

reserved word
item 1
item 2
item 3
item 4
item 5
DUMMY item
item 7
contains boundary rect only
item 9
item 10
item 11
item 12

;item #
;drect
;type of item
;item descriptor
;item value & bit flags
;color table ptr (nil is default)

;item #
;drect
;type of item
;item descriptor
;item value & bit flags
;color table ptr (nil is default)

CloseButP640
dc.w
dc.w
dc.w
dc.l
dc.w
dc.l

NextButP640
dc.w
dc.w
dc.w
dc.l
dc.w
dc.l

CancelButP640
dc.w
dc.w
dc.w
dc.l
dc.w
dc.l

ScrollP640

3
64,204,76,310
Buttonitem
CloseStr
0,0
0

4
15, 2 04,27,310
Button Item
DriveStr
0,0
0

5
104,204,116,310
Button Item
CancelStr
0,0
0

;item #
; drect
;type of item
;item descriptor
;item value & bit flags
;color table ptr (nil is default)

;item #
;drect
;type of item
;item descriptor
;item value & bit flags
;color table ptr (nil is default)

;item #
;drect
;type of item
;item descriptor
;item value & bit flags
;color table ptr (nil is default)

Special Note: Unlike Scroll item in Get, Scroll is never used
in Put, since there is not a multifile Put call .

dc.w 6 ; item # (dummy item)
dc.w 0,0,0,0 ;dummy drect (must be 0)
dc.w User Item ;type
dc.l 0 ;item descriptor
dc.w 0,0 ;item v a lue and bit flags
d c .l 0 ;color table

PathP640
dc.w
dc.w
dc.w
dc.l
dc.w
dc.l

FilesP640
dc.w
dc.w
dc.w
dc.l
dc.w
dc.l

PromptP640
dc.w
dc.w
dc.w
dc.l
dc.w
dc.w
dc.l

EditP640
dc.w
dc.w
dc.w
dc.l
dc.w
dc.w
dc.l

7
0,10,12,315
User Item
PathDraw
0,0
0

;item #
;drect
;type
;item descriptor (user app.specific)
;item value and bit flags
;color table

8 ;item #
26,10,88,170 ;boundary rect for list manager
Useritem+ItemDisable ;type
0 ; item descriptor
0,0 ;item value and bit flags
0 ; color table

9 ;item#
.88,10,100,200 ;drect
StatText+ItemDisable ;type
0 ;item descriptor
0 ; size of text (text passed)
0 ;bit flags
0 ; color table

10 ; item #
100,10,118,194 ;drect
EditLine+ItemDisable ;type
0 ;item descriptor
63 ; size of text
0 ;bit flags
0 ; color table

StatTextP640
dc.w 11 ; item #
dc.w 12,10,22,200 ;drect
dc.w StatText+ItemDisable ;type
dc.l KbFreeStr ;item descriptor
dc.w 0 ;size of text
dc.w 0 ;bit flags
dc.l 0 ;color table

CreateButP640
dc.w 12 ;item #
dc.w 29,204,41,310 ; drect
dc.w Button Item ;type
dc.l FolderStr ;item descriptor
dc.w 0 ;size of text
dc.w 0 ;bit flags
dc.l 0 ;color table

Now, here are the templates for 320 mode:
PutDialog320

dc.w 0,0,128,270
dc.w -1
dc.w 0,0
dc.l SaveButP320
dc.l OpenButP320
dc.l CloseButP320
dc.l NextButP320
dc.l CancelButP320
dc.l ScrollP320
dc.l PathP320
dc.l FilesP320
dc.l PromptP320
dc.l EditP320
dc.l StatTextP320
dc.l CreateButP320
dc.l 0

SaveButP320
dc.w 1
dc.w 93,165,105,265
dc.w Button Item
dc.l SaveStr
dc.w 0,0
dc.l 0

OpenButP320
dc.w 2
dc.w 54,165,66,265
dc.w Button Item
dc.l OpenStr
dc.w 0,0
dc.l 0

drect of dialog (320 mode)

reserved word
item 1
item 2
item 3
item 4
item 5
DUMMY item
item 7
contains boundary rect
item 9
item 10
item 11
item 12

;item #
;drect
;type of item
;item descriptor
;item value & bit flags
;color table ptr (nil is default)

;item #
;drect
;type of item
;item descriptor
;item value & bit flags
;color table ptr (nil is default)

CloseButP320
dc.w
dc.w
dc.w
dc.l
dc.w
dc.l

NextButP320
dc.w
dc.w
dc.w
dc.l
dc.w
dc.l

CancelButP320
dc.w
dc.w
dc.w
dc.l
dc.w
dc.l

ScrollP320

3
72,165,84,265
Button Item
CloseStr
0,0
0

4
15,165,27,265
Button Item
DriveStr
0,0
0

5
111,165,123,265
Button Item
CancelStr
0,0
0

; item #
;drect
;type of item
;item descriptor
;item value & bit flags
;color table ptr (nil is default)

;item #
;drect
;type of item
;item descriptor
;item value & bit flags
;color table ptr (nil is default)

; item #
;drect
;type of item
;item descriptor
;item value & bit flags
;color table ptr (nil is default)

Special Note: Unlike Scroll item in Get, Scroll is never used
in Put, since there is not a multifile Put call.

dc.w 6 ; item # (dummy item)
dc.w 00,00,00,00 ;drect
dc.w User Item ;type
dc.l 0 ;item descriptor
dc.w 0,0 ;item value and bit flags
dc.l 0 ;color table

PathP320
dc.w
dc.w
dc.w
dc.l
dc.w
dc.l

FilesP320
dc.w
dc.w
dc.w
dc . l
dc.w
dc.l

PromptP320
dc.w
dc.w
dc.w
dc.l
dc.w
dc.w
dc.l

EditP320
dc.w
dc.w
dc.w
dc.l
dc.w
dc.w
dc.l

7
00,10,12,265
Useritem
PathDraw
0,0
0

;item #
; drect
;type
;item descriptor
;item value and bit flags
;color table

8 ;item #
26,10,88,145 ;boundary rect for list manager
Useritem+ItemDisable ; type
0 ;item descriptor
0,0 ;item value and bit flags
0 ;color table

9 ;ite m #
88,10,100,170 ;drect
StatText+ItemDisable ;type
0
0
0
0

;item descriptor (text passed)

;bit flags
;color table

10 ;item #
100,10,118,157 ;drect
EditLine+ItemDisable ;type
0 ; item des criptor
32 ;size of text
0 ;bit flags
0 ; color tabl e

StatTextP320
dc.w 11 ;item #
dc.w 12,10,22,160 ;drect
dc.w StatText+ItemDisable ;type
dc.l KbFreeStr ;item descriptor
dc.w 0 ;size of text
dc.w 0 ;bit flags
dc.l 0 ;color table

CreateButP320
dc.w 12 ;item #
dc.w 33,165,45,265 ;drect
dc.w Button Item ;type
dc.l FolderStr ;item descriptor
dc.w 0 ;size of text
dc.w 0 ;bit flags
dc.l 0 ;color table

New or changed Standard File calls

The following sections discuss several new or changed Standard File tool calls.

SFAl.l.Caps $0Dl7

This call has been disabled so that filenames will appear exactly as entered. Existing
programs may still issue the call, but it will have no effect.

Parameters

Stack before call

Previous contents
a//CapsFlag

Stack after call

Previous contents

Errors None

Word-Not used
<-SP

<-SP

c extern pascal void SFAllCaps(allCapsFlag);

Boolean allCapsFlag;

........ 1 ,., 1 ' /.n. --

SFGetFile2 $0El7

Displays the standard Open File dialog box and returns information about the file selected
by the user. This call differs from SFGetF ile in that it uses class 1 GS!OS calls, thereby
allowing selection of a file with a full name length of up to 763 characters.

Parameters

Stack before call

Previous contents
whereX
whereY

promptRefDesc

- promptRef

- filterProcPtr

- typeListPtr

- replyPtr

Stack after call

Previous contents

-

-

-

-

Word-x coordinate of upper-left corner of dialog box
Word-y coordinate of upper-left corner of dialog box
Word-Type of reference in promptRef

Long-Reference to Pascal string for file prompt

Long-Pointer to filter procedure; NIL for none

Long-Pointer to type list record; NIL for none

Long-Pointer to new-style reply record

<-SP

<-SP

Errors $1701 badPromptDesc Invalid promptRefDesc value.
Invalid nameRe fDes c value in
the reply record.

$1704 badReplyName De sc

$1705 badReplyPathDesc

GS!OS errors

Invalid pathRefDesc value in
the reply record.
Returned unchanged.

+ Note: The GS/OS buffe rTooSmall error can occur if the output strings you supply
in the reply record are too small to receive the resulting filename string. In this case,
the buffer will contain as many name characters as would fit, and the length word will
contain the name length the Standard File Operations Tool Set tried to return.

c

promptRefDes

filterProcPtr

extern pascal void SFGetFile2(whereX, whereY,
promptRefDesc, promptRef, filterProcPtr,
typeListPtr, replyPtr);

Pointer
Word
Long

filterProcPtr, typeListPtr, replyPtr;
whereX, whereY, promptRefDesc;
promptRef;

The type of reference in promptRef

$0000 Reference in promptRefis a pointer to a Pascal string
$0001 Reference in promptRefis a handle of a Pascal string
$0002 Reference in promptRefis the resource ID of a Pascal string

Pointer to a new-style filter procedure, as described in "New Filter
Procedure Entry Interface" earlier in this chapter.

SFMultiGet2 $1417

Displays the standard Open Multifile dialog box and returns information about the file or
files selected by the user. The call returns file selection information in a multifile reply
record. Note that folders may be included in the list of returned files; your program should
check the file type field before using any returned filenames.

Parameters

Stack before call

Previous contents

where X
whereY

promptRejDesc

- promptRef -

- filterProcPtr -

- typeListPtr -

- replyPtr -

Word-x coordinate of upper-left corner of dialog box
Word-y coordinate of upper-left corner of dialog box
Word-Type of reference in promptRef

Long-Reference to Pascal string for file prompt

Long-Pointer to filter procedure; NIL for none

Long-Pointer to type list record; NIL for none

Long-Pointer to multifile reply record

<-SP

Stack after call

Previous contents

Errors

c

<-SP

$1701 b a dPromptDesc Invalid promptRejDesc value.

e xtern pascal void SFMultiGet 2 (whe reX, whereY,
promptRefDesc , promptRef, filterProcPtr,
t ypeListPtr, replyPt r);

Po i nter fil t erProcPt r , typeListPtr , replyPtr ;
Word whereX, whereY, promptRefDesc ;
Long p r omptRef;

promptRe.fDesc

filterProcPtr

The type of reference in promptRef

$0000 Reference in promptRefis a pointer to a Pascal string
$0001 Reference in promptRefis a handle of a Pascal string
$0002 Reference in promptRefis the resource ID of a Pascal string

Pointer to a new-style filter procedure, as described in "New Filter
Procedure Entry Interface" earlier in this chapter.

SFPGetFile2 $1017

Displays a custom Open File dialog box and returns information about the file selected by
the user. This call differs from SFGetFile in that it uses class 1 GS/OS calls, thereby
allowing selection of a file with a full name length of up to 763 characters.

Parameters

Stack before call

Previous contents
where X
whereY

- itemDrawPtr -

promptRejDesc

- promptRef -
- filterProcPtr -

- typeListPtr -

- dialogTempPtr -

- dialogHookPtr -

- replyPtr -

Stack after call

Previous contents

Word-x coordinate of upper-left corner of dialog box
Word-y coordinate of upper-left corner of dialog box

Long-Pointer to item-drawing routine; NIL for none

Word-Type of reference in promptRef

Long-Reference to Pascal string for file prompt

Long-Pointer to filter procedure; NIL for none

Long-Pointer to type list record; NIL for none

Long-Pointer to dialog box template

Long-Pointer to routine to handle item hits

Long-Pointer to new-style reply record

<-SP

<-SP

Errors $1701 badPromptDesc Invalid promptRejDesc value.
Invalid na meRefDes c value in
the reply record.

$1704 badReplyNameDesc

$1705 badReplyPathDesc

GS/OS errors

Invalid pathRefDesc value in
the reply record.
Returned unchanged.

+ Note: The GS/OS bufferTooSmall error can occur if the output strings you supply
in the reply record are too small to receive the resulting filename string. In this case,
the buffer will contain as many name characters as would fit, and the length word will
contain the name length that the Standard File Operations Tool Set tried to return.

c

itemDrawPtr

promptRejDesc

filterProcPtr

extern pascal void SFPGetFile2(whereX, whereY,
itemDrawPtr, promptRefDesc, promptRef,
filterProcPtr, typeListPtr, dialogTempPtr,
dialogHookPtr, replyPtr);

Pointer itemDrawPtr, filterProcPtr, typeListPtr,
dialogTempPtr, dialogHookPtr, replyPtr;

Word whereX, whereY, promptRefDesc;
Long promptRef;

Pointer to a custom item-drawing routine, as described in "Custom
Item-Drawing Routines" earlier in this chapter.

The type of reference in promptRef

$0000 Reference in promptRef is a pointer to a Pascal string
$0001 Reference in promptRefis a handle to a Pascal string
$0002 Reference in promptRefis the resource ID to a Pascal string

Pointer to a new-style filter procedure, as described in "New Filter
Procedure Entry Interface" earlier in this chapter.

dialogTempPtr, dialogHookPtr
For more information about these fields, see the discussion of the
SFPPutFile call in Chapter 22, "Standard File Operations Tool Set,"
in Volume 2 of the Toolbox Reference.

SFPMultiGet2 $1517

Displays a custom Open Multifile dialog box and returns information about the file or files
selected by the user. The call returns file selection information in a multifile reply record.
Note that folders may be included in the list of returned files; your program should check
the file type field before using any returned filenames.

Parameters

Stack before call

Previous contents
where X
whereY

- itemDrawPtr -

promptRejDesc

- promptRef -

- filterProcPtr -

- typeListPtr -

- dialogTempPtr -

- dialogHookPtr -

- replyPtr -

Stack after call

Previous contents

Errors $1701

Word-x coordinate of upper-left comer of dialog box
Word-y coordinate of upper-left corner of dialog box

Long-Pointer to item-drawing routine; NIL for none

Word-Type of reference in promptRef

Long-Reference to Pascal string for file prompt

Long-Pointer to filter procedure; NIL for none

Long-Pointer to type list record; NIL for none

Long-Pointer to dialog box template

Long-Pointer to routine to handle item hits

Long-Pointer to multifile reply record

<-SP

<-SP

badPromptDesc Invalid promptRejDesc value.

c

itemDrawPtr

promptRefDesc

filterProcPtr

extern pascal void SFPMultiGet2(whereX, whereY,
itemDrawPtr, promptRefDesc, promptRef,
filterProcPtr, typeListPtr, dialogTempPtr,
dialogHookPtr, replyPtr);

Pointer itemDrawPtr, filterProcPtr, typeListPtr,
dialogTempPtr, dialogHookPtr, replyPtr;

Word whereX, whereY, promptRefDesc;
Long promptRef;

Pointer to a custom item-drawing routine, as described in "Custom
Item-Drawing Routines" earlier in this chapter.

The type of reference in promptRef

$0000 Reference in promptRef is a pointer to a Pascal string
$0001 Reference in promptRefis a handle of a Pascal string
$0002 Reference in promptRefis the resource ID of a Pascal string

Pointer to a new-style filter procedure, as described in "New Filter
Procedure Entry Interface" earlier in this chapter.

dialogTempPtr, dialogHookPtr
For more information about these fields, see the discussion of the
SFPPutF ile call in Chapter 22, "Standard File Operations Tool Set,"
in Volume 2 of the Toolbox Reference.

SFPPutFile2 $1117

Displays a custom Save File dialog box and returns information about the file
specification entered by the user. This call performs the same function as SFPPutFile,
but uses class 1 GS/OS calls, allowing the user to specify a full filename. In addition, this
call does not support the maxLen parameter provided in SFPPutFile. This parameter
allowed the calling program to limit the filename length.

Parameters

Stack before call

Previous contents
whereX
whereY

- itemDrawPtr -

promptRefDesc

- promptRef -

origNameRefDesc

- origNameRef -

- dialogTempPtr -

- dialogHookPtr -

- replyPtr -

Stack after call

Previous contents

Word-x coordinate of upper-left corner of dialog box
Word-y coordinate of upper-left corner of dialog box

Long-Pointer to item-drawing routine; NIL for none

Word-Type of reference in promptRef

Long-Reference to Pascal string for file prompt

Word-Type of reference in origNameRef

Long-Reference to GS/OS class 1 input string with default name

Long-Pointer to dialog box template

Long-Pointer to routine to handle item hits

Long-Pointer to new-style reply record

<-SP

<- SP

Errors $1701 badP r omptDesc Invalid promptRefDesc value.
Invalid origNameRefDesc value.
Invalid na meRefDes c value in
the reply record.

$1702 badOrigNa me Desc
$170j badReplyNameDesc

$1705 badReplyPathDesc

GS!OS errors

Invalid pathRefDesc value in
the reply record.
Returned unchanged.

+ Note: The GS/OS bufferTooSmall error can occur if the output strings you supply
in the reply record are too small to receive the resulting filename string. In this case,
the buffer will contain as many name characters as would fit, and the length word will
contain the name length that the Standard File Operations Tool Set tried to return.

c

itemDrawPtr

promptRejDesc

extern pascal void SFPPutFile2(whereX, whereY,
itemDrawPtr, promptRefDesc, promptRef,
origNameRefDesc, origNameRef,
dialogTempPtr, dialogHookPtr, replyPtr);

Pointer itemDrawPtr, dialogTempPtr, dialogHookPtr,
replyPtr;

Word whereX, whereY, promptRefDesc,
origNameRefDesc;

Long promptRef, origNameRef;

Pointer to a custom item-drawing routine, as described in "Custom
Item-Drawing Routines" earlier in this chapter

The type of reference in promptRef

$0000 Reference in promptRef is a pointer to a Pascal string
$0001 Reference in promptRefis a handle of a Pascal string
$0002 Reference in promptRefis the resource ID of a Pascal string

origNameRefDesc The type of reference in origNameRef

origNameRef

$0000 Reference in origNameRefis a pointer to a GS/OS class 1
input string

$0001 Reference in origNameRefis a handle to a GS/OS class 1
input string

$0002 Reference in origNameRefis the resource ID to a GS/OS
class 1 input string

Reference to a GS/OS class 1 input string. On input to SFPPutFile2,
this string contains the default filename for the Put operation. On
output, this string contains the string confirmed by the user, which
may not be the same as the default value.

dialogTempPtr, dialogHookPtr
For more information about these fields, see the discussion of the
SFPPutF ile call in Chapter 22, "Standard File Operations Tool Set,"
in Volume 2 of the Toolbox Reference.

SFPutFile2 $0Fl7

Displays the standard Save File dialog box and returns the file specification entered by the
user. This call perfonns the same function as SFPPutFile but uses class 1 GS/OS calls,
allowing the user to specify a full filename. In addition, this call does not support the
maxlen parameter provided in SFPPutFile. This parameter allowed the calling program
to limit the filename length.

Parameters

Stack before call

Previous contents
where X
whereY

promptRefDesc

- promptRef -

origNameRefDesc

- origNameRef -
- replyPtr -

Stack after call

Previous contents

Word-x coordinate of upper-left comer of dialog box
Word-y coordinate of upper-left comer of dialog box
Word-Type of reference in promptRef

Long-Reference to Pascal . string for file prompt

Word-Type of reference in origNameRef

Long-Reference to GS/OS class 1 input string with default name

Long-Pointer to a new-style reply record

<-SP

<-SP

Errors $1701 badPromptDesc Invalid promptRefDesc value.
Invalid origNameRefDesc value.
Invalid nameRefDesc value in
the reply record.

$1702 badOrigNameDesc
$1704 badReplyNameDesc

$1705 badReplyPathDesc

GS/OS errors

Invalid pathRefDesc value in
the reply record.
Returned unchanged.

+ Note: The GS/OS bufferTooSmall error can occur if the output strings you supply
in the reply record are too small to receive the resulting filename string. In this case,
the buffer will contain as many name characters as would fit, and the length word will
contain the name length that the Standard File Operations Tool Set tried to return.

c

promptRefDesc

extern pascal void SFPutFile2(whereX, whereY,
promptRefDesc, promptRef, origNameRefDesc,
origNameRef, replyPtr);

Pointer replyPtr;
Word whereX, whereY, promptRefDesc,
origNameRefDesc;
Long promptRef, origNameRef;

The type of reference in promptRef

$0000 Reference in promptRefis a pointer to a Pascal string
$0001 Reference in promptRefis a handle of a Pascal string
$0002 Reference in promptRefis the resource ID of a Pascal string

origNameRefDesc The type of reference in origNameRef

origNameRef

$0000 Reference in origNameRefis a pointer to a GS/OS class 1
input string

$0001 Reference in origNameRefis a handle of a GS/OS class 1
input string

$0002 Reference in origNameRefis the resource ID of a GS/OS
class 1 input string

Reference to a GS/OS class 1 input string. On input to SFPutFile2,
this string contains the default filename for the Put operation. On
output, this string contains the string confirmed by the user, which
may not be the same as the default value.

SFReScan $1317

Forces the system to rebuild and redisplay the current list of files. Your program may
specify a new file type list or filter procedure.

Make this call only while SFPGetFile, SFPGetFile2, or SFPMultiGet2 is running,
and only from within a dialog hook routine (for information on dialog hook routines, see
the description of SFPGetFile in Chapter 22, "Standard File Operations Tool Set," in
Volume 2 of the Toolbox Reference).

Parameters

Stack before call

Previous contents

- filterProcPtr -

typeListPtr

Stack after call

Previous contents

Errors $1706

Long-Pointer to filter procedure; NIL for no change

Long-Pointer to type list record; NIL for no change

<-SP

<-SP

badCall SFPGetFile,SFPGetFile2 ,
and SFPMultiGet2 are not
active.

c e xtern pascal void SFReScan(filterProcPtr,
typeListPtr);

Pointer filterProcPtr, typeListPtr;

SFShowinvisible $1217

Controls the display of invisible files. When the Standard File Operations Tool Set
initializes itself, invisible files are not displayed and are not passed to filter procedures.

Parameters

Stack before call

Previous contents
Space

invisibleState

Stack after call

Previous contents
oldState

Errors None

Word-Space for result
Word-Flag: 1 = display invisible files; 0 = no display (default)
<-SP

Word-Previous setting of invisible flag
<-SP

c extern pascal word SFShowinvisible(invisibleState);

Word invisibleState;

Standard File error codes

Table 48-1 lists all valid Standard File error codes.

• Table 48-1 Standard File error codes

Value Name Definition

$1701 badPromptDesc Invalid promptRefDesc value.
$1702 badOrigNameDesc Invalid origNameRejDesc value.
$1704 badReplyNameDesc Invalid nameRefDesc value in the

reply record.
$1705 badReplyPathDesc Invalid pathRefDesc value in the

reply record.
$1706 badCall SFPGetFile,SFPGetFile2,and

SFPMult iGet2 are not active.

Chapter 49 TextEdit Tool Set

This chapter documents the features of the TextEdit tool set.
This is a new tool set not previously documented in the Apple JIGS
Toolbox Reference.

About the TextEdit Tool Set

The TextEdit Tool Set provides basic text-editing capabilities for any application. You
can use TextEdit to support anything from a simple text-based dialog box to a complete
text editor. Although it has been loosely based on the Macintosh tool set of the same
name, TextEdit for the Apple IIGS includes many enhancements that expand both the
flexibility and functionality of the tool set.

TextEdit for the Apple IIGS supports a number of capabilities and features, including
• text insertion, deletion, selection, copying, and cutting and pasting, all with standard

keyboard and mouse interfaces
• editing very large documents, up to the limit of system memory
• word wrap, which avoids splitting words at the right text edge
• optional support for intelligent cut and paste, which eliminates the need for the user to

add or remove extra spaces after pasting word-based selections
• style variations in the text, affecting text font, style, size, or color
• formatting for margins, indentation, justification, and tabs
• left-justified tabs, either evenly spaced or at specified locations
• vertical scrolling of text that extends beyond the current display window
• vertical scroll bar, automatic scrolling

TextEdit provides your program with the facilities to create, display, and manage one or
more blocks of editable text. These blocks can be controls (such as the text in a dialog
box or the text window for an editor) or they can be independently managed by your
application. The Control Manager and the Window Manager help your program manage
TextEdit controls; your program is solely responsible for TextEdit blocks that are not
controls. All TextEdit blocks, whether or not they are controls, are called records or
TextEdit records.

Because many TextEdit records can be displayed at the same time, TextEdit provides a
mechanism for distinguishing between them. This works much like the facility the Control
Manager uses to move among controls in a window. The current or active TextEdit record
is referred to as the target record. That record receives all user keystrokes and mouse
clicks. The user can switch between TextEdit records by pressing the Tab key (if your
program has enabled that option) or by clicking in the appropriate record.

TextEdit maintains a number of data structures for each record. The TERecord is the
main structure of a TextEdit record. All control information needed for the record is either
stored in or accessible through the TERecord. In general, your program need not access
or modify the TERecord unless you want to use some of TextEdit's internal features.
Your program creates a TextEdit record, and its TERecord, by formatting a
TEParamBlock and passing that structure to the TENew TextEdit tool call or the
NewCont rol2 Control Manager tool call. The TERecord is an extension of the generic
control record defined by the Control Manager.

For each TextEdit record, your program can instruct TextEdit to use intelligent (or smart)
cut and paste. The goal of intelligent cut and paste is to eliminate the need for the user to
insert spaces to fix a paste. With intelligent cut and paste enabled, TextEdit can make the
following adjustments to the current selection:
• When text is cut, TextEdit removes all leading spaces; if there are no leading spaces, it

removes all trailing spaces.
• When text is pasted, if the current selection is adjacent to a nonspace character,

TextEdit first inserts a space, then the text.

By making these adjustments, intelligent cut and paste allows the user to select a word (by
double-clicking, for instance), and cut and paste that selected text without adding or
removing any space characters. Your program specifies intelligent cut and paste by setting
a bit flag in the textFlags field of the TEParamBlo ck used to create the record.

TextEdit supports four types of text justification: left, center, right, and full. Left-justified
text lies flush with the left margin, with ragged right edges. Right-justified text is flush
with the right margin, with ragged left edges. Each line of centered text is centered
between the left and right margins. Fully justified text is blocked flush with both left and
right margins; TextEdit pads spaces (but not characters) with extra pixels to fully justify
the text. Your program specifies the type of justification for a TextEdit record as part of
the initial style information in the TEPara mB l o c k for the record. Your program can
change the text justification for a record with the TESetRuler tool call.

TextEdit supports tabs in two ways. Regular tabs are spaced evenly in the text, at
consistent pixel intervals. Absolute tabs reside at specified pixel locations and can be
spaced irregularly in the text. All TextEdit tabs are left justified. Your program specifies
whether a TextEdit record supports tabs and, if so, the type and spacing for those tabs in
the TEParamBlock for the record. Your program can change the tabs for a record with
the TESetRuler tool call.

TextEdit call summary

The following list of tool calls, grouped according to function, summarizes the
capabilities of the TextEdit Tool Set. Later sections of this chapter discuss TextEdit and
its capabilities and data structures in greater detail and define the precise syntax of the
TextEdit tool calls.

Routine

Housekeeping routines
TEBootinit
TESt art Up

TEShutDown

TEVersion
TEReset
TEStatus
Record and text management
TENew
TEKill
TESetText

TEGetText

TEGetTextinfo

Description

Initializes TextEdit; called only by the Tool Locator
Initializes TextEdit facilities for an application-must
precede any other TextEdit tool calls
Frees TextEdit facilities used by an application-
TextEdit applications must issue this call before
quitting
Returns TextEdit version number
Resets TextEdit; called only when the system is reset
Returns status information about TextEdit

Allocates a new TextEdit record
Disposes of an old TextEdit record
Sets the text for an existing TextEdit record
Returns the text from an existing TextEdit record
Returns information about the text in a TextEdit record

Insertion point and selection range
TEidle Provides processor time to TextEdit so that it can

disBlay the blinking cursor and perform background
tasks

TEActivate
TEDeactivate

TEClick

TEUpdate

Activates a specified TextEdit record
Deactivates a specified TextEdit record
Activates a specified TextEdit record and selects text
within that record
Redraws a TextEdit record

Editing
TEKey
TECut
TECopy
TEPaste

TEClear
TEinsert
TEReplace
TEGetSelection

TESetSelection

Text display and scrolling
TEGetSelectionStyle

TEStyleChange
TEGetRuler
TESetRuler
TEScroll
TEOffsetToPoint

TEPointToOffset

TEPaintText

Miscellaneous routines
TEGetDefProc

TEGetinternalProc

TEGetLastError

TECompactRecord

Inserts a character into the target TextEdit record
Cuts the current selection and places it in the Clipboard
Copies the current selection into the Clipboard
Pastes the contents of the Clipboard into the text,
replacing the current selection
Clears the current selection
Inserts the specified text before the current selection
Replaces the current selection with the specified text
Returns the starting and ending character offsets for the
current selection
Sets the current selection to the specified starting and
ending character offsets

Returns style information for the current selection
Changes the style of the current selection
Returns format information for a TextEdit record
Sets format information for a TextEdit record
Scrolls to a specified line, text offset, or pixel position
Converts a text offset into a point (in local
coordinates)
Converts a point (in local coordinates) into a text
offset
Paints TextEdit text into an off-screen port-used for
printing

Returns a pointer to the TextEdit custom control
definition procedure
Returns a pointer to the TextEdit low-level routine
dispatcher
Returns the last error code generated for a TextEdit
record
Compresses the data structures associated with a
TextEdit record

How to use TextEdit

You may choose between several techniques for creating and controlling TextEdit
records .
• Create a TextEdit control with the Newcontrol2 Control Manager tool call, or use

TENew and allow TaskMaster to manage the control for you.
• Create a TextEdit control with the NewControl2 or TENew tool call and manage the

control yourself.
• Create a TextEdit record that is not a control with the TENew TextEdit tool call and

manage it yourself.

The remainder of this section discusses each of these techniques in more detail. Note that
the pseudocode presented in this discussion addresses only those issues of program logic
that relate directly to TextEdit; much more logic is required to interact correctly with
other tool sets or perform meaningful application-related work.

The simplest technique is to create a TextEdit control, using either the TENew TextEdit
tool call or the Newcont rol2 Control Manager call, and use TaskMaster to manage the
record (see Chapter 25, "Window Manager," in the Toolbox Reference for more information
on TaskMaster). TaskMaster handles all TextEdit events and user interaction for single-
style records. The following pseudocode describes the basic program logic for this
technique.

Initialize all the tools including Te xtEdit.
Create a new window.
Call NewControl2 or TENew to allocate a new TextEdit control.
while(quitFlag != TRUS)

Call TaskMaster. This handles all the events; it inserts all the
keys that the user types, handles all the mouse activity,
and causes the cursor to blink. It even calls TECut,
TECopy, TEPaste, and TEClear for the TextEdit record.

if(the user selects the save item)
{

Call TEGetTe xt. This e xtracts the text and style information
that the user has t yped.

Dispose of the window. This deallocates the TextEdit record and all
other controls in the window.

Shut down all the tools and e xit.

Your application does not need to do anything if the user presses a key, presses the mouse
button, or chooses a command from a menu. TaskMaster and the TextEdit control
definition procedure handle all these standard events. The Window Manager disposes of
the TextEdit control when your application closes its window.

However, your program does give up some flexibility in exchange for the simplicity of this
approach. To exert more control over the TextEdit record, you may choose to create a
TextEdit control and manage that control in your program, rather than with TaskMaster.
Your program would then issue the GetNextEvent Window Manager call to trap user
actions and then process those actions accordingly. The following pseudocode shows
sample logic for this approach:

Initialize all the tools including TextEdit.
Create a new window.
Call NewControl2 or TENew to allocate a new TextEdit control.
while(quitFlag !=TRUE)

{

Call TEidle. This causes the cursor to blink and performs
background tasks.

Call GetNextEvent.
switch theEvent.what

case updateEvent:
Call DrawControls. This draws the TextEdit control

(and a ll others in the window) .
case mouseDownEvent:

Call FindWindow. This determines where in the
desktop the mouse was c licked.

if(FindWindow returned inMenu)
{

call MenuSe l ect . This tracks the me nu a nd
returns which item the user clicked in.

switch theMenuitem

case Cutitem:
Call TECut . Thi s te lls TextEdit to cut

the c urre nt selection into the
Clipboard.

case Copyitem:
Call TECopy . This tells TextEdit to copy

t he c urre nt selection into the
Clipboard .

case Pasteitem:
Call TEPaste. This tells TextEdit to
replace the current selection with the
Clipboard.

case Clearitem:
Call TEClear. This tells TextEdit to

clear the current selection.
case Saveitem:

Call TEGetText. This extracts the text
and style information that the user
has typed.

case Quititem:
Set the quitFlag to TRUE.

else if(FindWindow returned inContent)

else

Call FindControl. This returns which control
was clicked in.

if(FindControl returned the TextEdit control)
{

call TEClick. This tracks the mouse
within the TextEdit record; it does
all the selecting and all the
scrolling.

case keyDownEvent,autoKeyEvent:
Call TEKey. This inserts the key that the user typed

into the TextEdit record. It also performs
editing operations if the key is a "control key"
(such as Delete, Control-Y, arrow keys, and so
on).

Dispose of the window. This deallocates t he TextEdit record a nd all
other controls in the window.
Shut down all the tools and exit.

Finally, you may choose to create TextEdit records that are not controls. In this case, your
program must not only provide complete functional support for the record, as shown in
the non-TaskMaster pseudocode, but must also manage the TextEdit window itself. You
must use the TENew call to create TextEdit records that are not controls. Because these
TextEdit records are not inserted into the control list, your program may not issue Control
Manager calls to manipulate or control them. Similarly, your program may not use Window
Manager calls on them. The following pseudocode presents sample logic for this approach:
Initialize all the tools including TextEdit.
Create a new window.
Call TENew to allocate a new TextEdit record that is not a control.
while(quitFlag !=TRUE

Call TEidle. This causes the cursor to blink and performs
background tasks.

Call GetNextEvent.
switch theEvent.what

case updateEvent:
Call TEUpdate. This draws the TextEdit record.

case mouseDownEvent:
Call FindWindow. This determines where in the desktop the

mouse was clicked.
if(FindWindow returned inMenu)
{

call MenuSelect. This tracks the menu and returns
which item the user clicked in.

switch theMenuitem

case Cutitem:
Call TECut. This t e lls Te xtEdit to c ut t h e

current selection into the Clipboard.
case Copyitem:

Call TECopy. This tells TextEdit to c opy the
current selection into the Clipboard.

case Pasteitem:
Call TEPaste. This tells TextEdit t o replace

the current selection with the Clipboard.
case Clearitem :

Call TEClear. This tells TextEdit to c l ear the
current selectio n .

case Saveitem:
Call TEGetText. This extracts the text and

style information that the user has typed.
case Quititem:

Set the quitFlag to TRUE.

else if(FindWindow returned inContent)

else

Figure out whether the click occurred in the TextEdit
record.

if(the click occurred in the TextEdit record
{

call TEClick. This tracks the mouse within the
TextEdit record; it does all the selecting
and all the scrolling.

case keyDownEvent,autoKeyEvent:
Call TEKey. This inserts the key that the user typed into

the TextEdit record. It also performs editing
operations if the key is a "control key" (such as
Delete, Control-Y, arrow keys, and so on).

Dispose of the window. This deallocates the TextEdit record and all
other controls in the window.
Shut down all the tools and exit.

When you use this technique, your program has much more responsibility. First, your
program must issue the TEUpdate call for each record that must be redrawn, rather than
relying on the Control Manager Drawcontrols tool call. In addition, your program must
use the TEActivate and TEDeacti vate tool calls whenever the user switches between
TextEdit records. Finally, for each mouse-down event, your program must determine in
which TextEdit record the user clicked-F indCont rol will not work with TextEdit
records that are not controls.

A Warning If you have defined TextEdit records that are controls in a window,
you must not also try to define noncontrol TextEdit records in the
same window. "'

All TextEdit tool calls require that you specify a handle to the appropriate TERecord, so
that TextEdit knows which record to address. For TextEdit records that are controls, your
program may specify a NIL value for the TERecord handle. TextEdit will then access the
currently active TextEdit control (the target TextEdit record).

A Warning Never pass a NIL TERecord handle to access TextEdit records that
are not controls. "'

Note that TextEdit routines always use the same TERecord layout, whether or not the
TextEdit record is a control. However, recall that if the TextEdit record is not a control,
your program cannot issue Control Manager tool calls for it.

Standard TextEdit key sequences

TextEdit provides a keyboard and mouse interface that supports a number of editing
keys. The following list summarizes the effect of control keystrokes and mouse clicks.

Key Alias

Left Arrow Control-H

Description

Moves the insertion point to the previous character in
the text
Command key causes movement by word rather than by
character
Option key moves the insertion point to the beginning
of the previous line in the text
Shift key extends the selection from the current
insertion point back by a character, word (if the
Command key is also held down), or line (if the Option
key is also held down)

Right Arrow Control-U Moves the insertion point to the next character in
the text
Command key causes movement by word rather than by
character
Option key moves the insertion point to the end of the
current line in the text
Shift key extends the selection from the current
insertion point forward by a character, word (if the
Command key is also held down), or line (if the Option
key is also held down)

UpArrow Control-K Moves the insertion point up one line
Command key moves the insertion point to the
beginning of the current page
Option key moves the insertion point to the beginning
of the document
Shift key extends the selection from the current
insertion point up by a line or page (if the Command
key is also held down), or to the beginning of the
document (if the Option key is also held down)

Down Arrow Control-] Moves the insertion point down one line
Command key moves the insertion point to the current
column position on the last line of the page
Option key moves the insertion point to the end of the
document
Shift key extends the selection from the current
insertion point down by a line or page (if the Command
key is also held down), or to the end of the document
(if the Option key is also held down)

Delete Controi-D If there is no current selection, removes the character to
the left of the insertion point; if there is a selection,
removes the selected text

Clear Clears the current selection (does nothing if there is no
selection)

Control-F If there is no current selection, removes the character to
the right of the insertion point; if there is a selection,
removes the selected text

Controi-Y Removes all characters from the insertion point to the
end of the line, not including any terminating ASCII
return characters ($0D)

Control-X

Control-C

Control-V

Click

Double click

Triple click

Cuts the current selection and places it in the Clipboard
(same as the TECut tool call)
Copies the current selection into the Clipboard (same as
the TECopy tool call)
Pastes the contents of the Clipboard at the current
insertion point, or in place of any selected text (same
as the TEPaste tool call)
Moves the insertion point-dragging selects by
character
Selects a word-dragging extends the selection by
words
Selects a line-dragging extends the selection by lines

Internal structure of the TextEdit Tool Set

This section discusses several topics relating to the internal structure and function of the
TextEdit Tool Set. This information is not relevant to most application programmers but
does provide insight into how TextEdit operates and how to tailor TextEdit for special
applications.

TextEdit controls and the Control Manager

TextEdit records may or may not be controls. Your program creates TextEdit controls by
issuing the NewControl2 Control Manager tool call. The Control Manager handles nearly
all the support calls needed to maintain the TextEdit record. However, you may choose to
use certain Control Manager tool calls with the TextEdit control. The following tables list
which Control Manager calls may or may not be used with TextEdit controls. In this
context, the TextEdit control is taken to include the actual TextEdit record and its
associated scroll bars and size box.

The following Control Manager calls may be used with TextEdit controls:

Call

DisposeControl

KillControls

Hi deControl

EraseControl

ShowControl

DrawControls
DrawOneCtl

Description

Disposes of the TextEdit control-analogous to
TEKill TextEdit tool call
Disposes of all controls, including the TextEdit
controls-analogous to TEKill tool calls for each
control
Hides the TextEdit control-note that this call does
not affect the status of the control with respect to user
keystokes; if you hide the target control, it is still the
target control, although no user keystrokes are
displayed
Erases the TextEdit control-similar to HideControl,
except that EraseControl does not invalidate the
boundary rectangle for the control
Reshows the TextEdit control, reversing the effect of
HideControlorEraseControl
Draws all controls in the window
Draws the specified TextEdit control

HilightControl

FindControl

TestControl

TrackControl

MoveControl
DragControl

SetCtlRefCon
GetCtlRefCon

Activates or deactivates the TextEdit control-note
that only hiliteState values of 0 and 255 are valid
Returns point -location control-identification
information-returns partCode of 130 if point is in text,
131 if point is in vertical scroll bar, and 132 if point is in
size box
Returns the same point-location information as
F indCont rol but without any control identification
Selects text-actionProcPtr must be set to a negative
value (forces the Control Manager to use TextEdit's
built-in action procedure)
Moves the TextEdit control
Allows the user to reposition the TextEdit control
Sets the refCon field
Returns the contents of the refCon field

Your program must not issue the following Control Manager tool calls with a TextEdit
control:

GetCtlTitle
GetCtlValue
GetCtlAction
GetCt lParams
SetCtlTitle
SetCtlValue
SetCtlAction
SetCtlParams

TextEdit ftlter procedures and hook routines

TextEdit provides you with several mechanisms to tailor the operation of the tool set to
the particular needs of your application. Filter procedures give you a chance to affect the
behavior of the tool set by modifying screen display activity or user keystrokes. Hook
routines allow you to replace standard TextEdit code for such functions as word wrap or
word break. The following sections discuss each of the various filter procedures and hook
routines in more detail.

Generic filter procedure

TextEdit provides a facility whereby your application can supply special logic to replace
some of the standard TextEdit routines. The program code that uses this facility is called
a generic filter procedure. The generic filter procedure is, in turn, made up of several
routines that address particular TextEdit processing requirements. At present, generic
filter routines can provide three functions:
• erasing rectangles in the display port
• erasing rectangles in the off-screen TextEdit buffer
• updating the TextEdit record screen display

The filterProc field of the TERecord contains a pointer to the generic filter
procedure. If this field has a non-NIL value, TextEdit calls the filter procedure to perform
the activities just mentioned. You set this pointer by specifying the appropriate value in
the filterProcPtr field of the TEParamBlock passed to TENew (or NewControl2)
when you create the TextEdit record. TextEdit then loads the filterProc field of the
TERecord from this value.

The routines in the filter procedure must adhere to the following rules:
• The routine must preserve the direct-page and data bank registers and must return in

full native mode.
• All entry and exit parameter and status fields must be passed through the appropriate

TERecord.

• Filter routines must not issue TextEdit tool calls, move memory, or cause memory to
be moved.

• Any application-specific routine messages must have message numbers greater than
$8000-TextEdit reserves all message number values in the range from $0000 through
$7FFF.

TextEdit invokes the generic filter procedure in full native mode by executing a JSL. On
entry to the filter procedure, the stack is formatted as follows:

Previous contents
Space

- teH

message

- RTL

-

-

Word-Space for result

Long-Handle to the appropriate TERecord

Word-Message number indicating action to take

Three bytes-Return address

<-SP

On exit, the filter procedure must format the stack as follows:

Result

Previous contents
Result Word-Result code

<-SP

Indicates whether the filter procedure handled the message. If the
field is set to $0000, then TextEdit performs its standard processing.
If the field is nonzero, then the filter procedure handled the message,
and TextEdit does not perform its standard processing.

The following sections discuss each defined filter procedure message, defining the
actions the filter procedure is to take and the affected TERecord fields.

doEraseRect $0001

The filter procedure is to erase a rectangle in the display port for the current TextEdit
record. TextEdit has already set up the port for the filter routine.

TextEdit provides this routine to support applications that maintain overlaying objects
on the display. Under such circumstances, the application must decide what object to
make visible after the user has caused a currently visible object to be deleted.

Input TERecord field
theFilterRect

Output TERecord field

The rectangle to erase, expressed in local
coordinates for the port

None

doEraseBuffer $0002

The filter procedure is to move a rectangle from TextEdit's offscreen buffer to the display
port. The TERecord contains information defining the source and destination data
locations. TextEdit has already set up the port for the filter routine.

This routine is used in much the same way as doEraseRect, except that it operates off
screen rather than on screen.

Input TERecord field
theFilterRect

theBufferVPos

theBufferHPos

Output TERecord field

doRectChanged $0003

The rectangle to erase, expressed in local
coordinates for the off-screen buffer port
Vertical position corresponding to the top of the
destination buffer in the display port, expressed
in local coordinates for the port
Horizontal position corresponding to the left
edge of the destination buffer in the display
port, expressed in local coordinates for the port

None

The filter procedure is to handle a change to the display window for the TextEdit record.
Note that TextEdit has not set up the port; the filter procedure must obtain the port from
the inPort field of the TERecord and set up the display port.

With this routine your application can maintain an off-screen copy of its TextEdit
display. Whenever TextEdit updates the screen, it issues this message to the generic filter
procedure, which can update the saved screen copy.

Input TERecord field
theFilterRect

Output TERecord field

The rectangle that changed, expressed in local
coordinates for the port

None

Keystroke filter procedure

TextEdit also provides a mechanism for applications to supply custom keystroke
processing for a TextEdit record. TextEdit's internal keystroke routine supports the
standard keyboard interface described in "Standard TextEdit Key Sequences" in this
chapter. Custom keystroke filter procedures may support different keyboard mappings or
macro facilities.

The keyF ilter field of the TERecord can contain a pointer to a keystroke filter
procedure. If keyFilter is NIL, TextEdit uses its standard keystroke routine. If
keyFilter is non-NIL, TextEdit calls the routine pointed to by keyFilter to process
all user keyboard input.

Keystroke filter procedures must follow many of the same rules established for generic
filter procedures.
• The procedure must preserve the direct-page and data bank registers, and must return

in full native mode.
• Keystroke filter procedures must not issue TextEdit tool calls.
• Keystroke filter procedures may move memory.

TextEdit invokes the keystroke filter procedure in full native mode by executing a JSL.
Fields in the KeyRecord substructure in the TERecord contain information defining the
data to be processed.

TextEdit loads additional control information onto the stack. On entry to the filter
procedure, the stack is formatted as follows:

-

-

type

Previous contents

teH

type

RTL

-

-

Long-Handle to the appropriate TERecord

Word-Type of data to be processed

Three bytes-Return address

<-SP
The type of data to be processed.

$0001 The character to be processed is stored in the theChar
field of the KeyRecord

$0002 Reserved

The keystroke filter procedure is now free to perform whatever processing is appropriate.
For example, it may change the input keystroke value to support a different mapping of
the standard TextEdit keyboard functions. Or the routine may expand the keystroke in
theChar into a block of text to be inserted at the current location. The routine then
formats the appropriate return data into the KeyRecord fields and returns control to
TextEdit by issuing an RTL instruction (after removing all input parameters from the
stack).

One of the returned KeyRecord fields (theOpCode) specifies what action TextEdit is
to take upon return from the filter procedure. This code in tum governs how TextEdit
interprets the remainder of the returned KeyRecord. Here are the valid theOpCode
values:
opNormal

opNothing
opReplaceText

opMoveCursor

opExtendCursor

opCut

opCopy
opPaste

opClear

$0000

$0002
$0004

$0006

$0008

$000A

$000C
$000E

$0010

TextEdit performs its standard processing on the
character stored in the location referred to by
theinputHandle
TextEdit ignores the keystroke
TextEdit inserts the text referred to by
theinputHandle in place of the current selection in
the record; if there is no current selection, TextEdit
inserts the text at the current insertion point; if the size
of theinputHandle is 0, TextEdit deletes the current
selection and inserts nothing
TextEdit moves the cursor to the location specified
by cursorOffset
TextEdit extends the current selection from its anchor
point to the location specified by cursorOffset
TextEdit cuts the current selection and places it in the
Clipboard
TextEdit copies the current selection to the Clipboard
TextEdit replaces the current selection with the
contents of the Clipboard
TextEdit clears the current selection

On exit, the filter procedure must format the stack as follows:

Previous contents

<-SP
Input KeyRecord fields
theChar The keystroke to process
theModifiers Flags indicating the state of the modifier keys at the

time the key was pressed; the keystroke is contained
in theChar and in the location referred to by
theinputHandle

theinputHandle Handle to a copy of theChar

Output KeyRecord fields
theChar Unchanged
theModifiers
theinputHandle

cursorOffset

theOpCode

Changed modifiers (only for opNormal)

Handle to replacement text (only for opNormal and
opRepla c eTe x t), length of text indicated by size
of handle
If TextEdit is to move the cursor (t heOpCode is set
to either opMoveCursor or opE xtendCursor),
this field contains the new cursor location; otherwise,
TextEdit ignores this field
Next action for TextEdit

Word wrap hook

Your program may supply its own routine to handle word wrap. This word wrap hook
routine determines whether a character string typed by the user fits on the current line
(does not wrap) or needs to begin a new line (does wrap). TextEdit then displays the
character string on the appropriate line.

TextEdit determines whether to call a custom word wrap routine by examining the
wordWrapHook field of the TERecord. If that field is NIL, TextEdit uses its standard
word wrap routine. If that field is non-NIL, TextEdit calls the routine pointed to by that
field whenever a word wrap decision is required. Your program sets this pointer by directly
modifying the wordWrapHook field of the appropriate TERecord.

Word wrap hook routines must follow many of the rules established for generic filter
procedures.
• The routine must preserve the direct-page and data bank registers, and must return in

full native mode.
• Word wrap routines must not issue TextEdit tool calls, move memory, or cause

memory to be moved.

TextEdit invokes the word wrap hook procedure in full native mode by executing a JSL.
Entry parameters refer the procedure to the correct TERecord and character. On exit, the
word wrap procedure returns a flag indicating whether the character caused a word wrap.

On entry to the procedure, the stack is formatted as follows:

Previous contents
Space

- teH

theChar

- RTL

-

-

Word-Space for result

Long- Handle to the appropriate TERe c o rd

Word-Character to check

Three bytes-Return address

<-SP
On exit, the filter procedure must format the stack as follows:

Previous contents
wrapFlag Word-Flag indicating wrap status

<- SP

wrapFlag Wrap status of the current character.

$0000 Not a word wrap (TextEdit leaves the word on the
current line)

$FFFF Word wrap (TextEdit moves the word to the next line)

VVord break hook

Your program may supply its own routine to determine word breaks when the user is
selecting text by words (the user has double-clicked on a word and is now extending that
selection). This word break hook routine decides whether the cursor resides at a break
between words. If so, TextEdit includes the next word in the current selection.

TextEdit determines whether to call a custom word wrap routine by examining the
wordBreakHook field of the TERecord. If that field is NIL, TextEdit uses its standard
word break routine. If that field is non-NIL, TextEdit calls the routine pointed to by that
field whenever a word break decision is required. Your program sets this pointer by
directly modifying the wordBreakHook field of the appropriate TERecord.

Word break hook routines must follow many of the rules established for generic filter
procedures.
• The routine must preserve the direct-page and data bank registers, and must return in

full native mode.
• Word break routines must not issue TextEdit tool calls, move memory, or cause

memory to be moved.

TextEdit invokes the word break hook procedure in full native mode by executing a JSL.
Entry parameters refer the procedure to the correct TERecord and character. On exit, the
word break procedure returns a flag indicating whether the character constitutes a word
break.

On entry to the procedure, the stack is formatted as follows:

Previous contents

Space

- teH

theChar

- RTL

-

-

Word-Space for result

Long-Handle to the appropriate TERecord

Word-Character to check

Three bytes-Return address

<-SP

On exit, the filter procedure must format the stack as follows:

Previous contents
break.Flag Word-Flag indicating break status

<-SP

breakFlag Break status of the current character.

$0000 Not a word break (TextEdit does not extend the
selection)

$FFFF Word break (TextEdit extends the selection to include
the next word)

Custom scroll bars

Your program may specify a custom scroll bar for vertical scrolling of a TextEdit record.
Use the vertBar field of the TEParamBlock record to specify a handle to the control
record for the custom scroll bar. This scroll bar need not reside in the TextEdit record
display port, but it must follow certain rules with respect to the format and content of its
control record (see Chapter 28, "Control Manager Update," in this book and Chapter 4,
"Control Manager," in Volume 1 of the Toolbox Reference for details on scroll bar controls
and control records).
• Fields corresponding to the dataSize, viewSize, and ctlValue fields of a

standard scroll bar control record must be located at the same relative locations within
the custom control record.

• TextEdit stores a handle to the appropriate TERecord in the ctlRefCon field of the
scroll bar control record. Do not change the contents of this field. If you need to store
additional information in the scroll bar control record, extend the record handle and
format that data after the standard control record fields (be sure to extract the size of
the returned handle, rather than relying on current record definitions for the size of the
control record).

• TextEdit stores a pointer to its internal text scroll routine in the ct lAct ion field of
the scroll bar control record when the TextEdit record is created (during execution of
the TENew or NewControl2 tool call). Your program may change the contents of this
field, but should save the pointer, so that you can call the TextEdit text scroll routine
when appropriate. For information on the interface to action routines, see "Track
Control" in Chapter 4, "Control Manager," in Volume 1 of the Toolbox Reference.

Refer to Chapter 4, "Control Manager," in Volume 1 of the Toolbox Reference for
background information on writing and invoking control definition procedures.

TextEdit data structures

This section defines and discusses the various data structures used by the TextEdit Tool
Set. The TextEdit data structures are divided into high-level and low-level data structures.
High-level TextEdit data structures are of interest to all application programmers who use
TextEdit facilities. Low-level TextEdit data structures, by contrast, are not relevant to
most application programmers. However, if your program uses the low-level features of
TextEdit or must for some other reason access TextEdit data structures directly, you
should familiarize yourself with the information in that section.

In most cases, it is not necessary for your program to modify fields in these structures
directly. However, if your program manipulates TextEdit structures, note that many of
these data structures refer to or depend on one another. Whenever your application
changes one of these structures, you must be careful to update other affected or
dependent structures.

ffigh-level TextEdit structures

TextEdit uses a number of structures to store information about a TextEdit record and to
pass that information to TextEdit tool calls. The following sections define the format and
content of each of these structures and describe how your program would use them.

TEColorTable

Defines color attributes for a TextEdit record.

The TEParamBlock and TERecord structures contain references to color tables stored
in TEColorTable format.

Note that all bits in TextEdit color words (such as contentColor) are significant.
TextEdit generates QuickDraw II color patterns by replicating a color word the
appropriate number of times for the current resolution (8 times for 640 mode, 16 times for
320 mode). See Chapter 16, "QuickDraw II," in Volume 2 of the Toolbox Reference for more
information on QuickDraw II patterns and dithered colors. Figure 49-1 depicts the layout
of the TEColorTable structure.

• Figure 49-1 TEColorTable layout

$00
$02
$04
$06
$08
$0A

$0E
$10

$14

$16

- contentColor -
i- outlineColor -
i- Reserved -
i- Reserved -
i-VertColorDescriptor-

- -
r- vert ColorRef -- -
r-horzColorDescriptor-- -- horzColorRe f -- -

- -
r- growColorRef -
r- -

Word
Word
Word
Word
Word

Long

Word

Long

Word

Long

contentColor The color of the entire boundary rectangle (in essence, defining the
background color of the text window).

outlineColor The color of the box that surrounds the text in the display window.

vertColorDescriptor
The type of reference stored in vertColorRef.

refisPointer $0000 The vertColorRef field contains a pointer to the
color table for the vertical scroll bar

refisHandle $0004 The vertColorRef field contains a handle to the
color table for the vertical scroll bar

reflsResource $0008 The vertColorRef field contains the resource ID
of the color table for the vertical scroll bar (resource
type of rCtlColorTbl, $800D)

vertColorRef
Reference to the color table for the vertical scroll bar. The
vertColorDescriptor field indicates the type of reference stored
here. This field must refer to a scroll bar color table, as defined in
Chapter 4, "Control Manager," in Volume 1 of the Toolbox Reference.

horzColorDescriptor
The type of reference stored in horzColorRef.

reflsPointer $0000

re fi sHandle $0004

reflsResource $0008

The horzColorRef field contains a pointer to the
color table for the horizontal scroll bar

The horzColorRef field contains a handle to the
color table for the horizontal scroll bar

The horzColorRe f field contains the resource ID
of the color table for the horizontal scroll bar
(resource type of rCtlColorTbl, $800D)

horzColorRef Reference to the color table for the horizontal scroll bar. The
horzColorDescriptor parameter indicates the type of reference stored
here. This field must refer to a scroll bar color table, as defined in
Chapter 4, "Control Manager," in Volume 1 of the Toolbox Reference.

growColorDescriptor
The type of reference stored in growColorRef.

refisPointer $0000

refisHandle $0004

refisResource $0008

The growColorRef field contains a pointer to the
color table for the size box

The growColorRef field contains a handle to the
color table for the size box

The growColorRef field contains the resource ID
of the color table for the size box (resource type of
rCtlColorTbl, $800D)

growColorRef Reference to the color table for the size box. The
growColorDescriptor field indicates the type of reference stored
here. This field must refer to a size box color table, as defined in
Chapter 4, "Control Manager," in Volume 1 of the Toolbox Reference.

TEFormat

This structure stores text-formatting control information. From this structure, you can
access the rulers and styles defined for the text.

Many TextEdit tool calls use this structure to accept or return format data for a text
record. Figure 49-2 shows the layout of the TEFormat structure.

• Figure 49-2 TEFormat layout

$00 - version - Word
$02 - -- rulerListLength - Long

- -
$06 .

theRulerList Array of TERuler structures

$xx - -- styl eListLength - Long - -
$xx. Array of TESty le structures theStyleList

$xx - -- nurnberOfStyl es - Long
- -

$xx . Array of Styl eitem structures theStyl e s

version Version number corresponding to the layout of this TEFormat
structure. The number of this version of the structure is $0000.

rulerListLength
The length of theRulerList in bytes.

theRulerList Ruler data for the text record. The TERuler structure is embedded in
the TEFormat structure at this location.

styleListLength
The length of theStyleList in bytes.

theStyleList List of all unique styles for the text record. The TEStyle structures
are embedded in the TEFormat structure at this location. Each
TEStyle structure must define a unique style-there must be no
duplicate style entries. To apply the same style to multiple blocks of
text, you should create additional Style Items for each block of
text and make each item refer to the same style in this array.

numberOfStyles

theStyles

The number of Style Items contained in theStyles.

Array of style Items specifying which styles (stored in
theStyleList) apply to which text in the TextEdit record.

TEParamBlock

This structure contains the parameters necessary to create a new TextEdit record. In it
your program defines many of the attributes of the record. The format of this structure
corresponds directly to the format of the TextEdit control template accepted by the
NewControl2 Control Manager call when creating TextEdit controls.
The TENew tool call requires that its input parameters be specified in a TEParamBlock
structure. Many of the fields of the TEParamBlock directly establish the values of
TERecord fields.

In Figure 49-3, showing the layout of TEParamBlock, optional fields are marked with an
asterisk(•).

• Figure 49-3 TEParamBlock layout

$00 I-
$02 I-

I-
I-

$06 .

$0E

$12
$14
$16

$1A

I-
I-
f-

f-

1-

I-
f-
I-

r-
f-
I-

$1E .

$26

$2A
$2C

$30
$32

$36

I-
I-
f-

f-

f-
I-
I-

I-

f-
f-
f-

1-

pCount

ID

boundsRect

procRef

flags

rno r eFlags

ref Con

textFlags

*indentRect

*vertBar

*vertArnount

*horzBar

*horzArnount

*styleRef

*textDescriptor

continued

-

-
-

-

-

-

Word

Long

Rectangle

Long

Word
Word

Long

Long

Rectangle

Long

Word

Long

Word

Long

Word

continued
$38 - -- *textRef - Long - -
$3C - -- *text Length - Long - -
$40 - -- *maxChars - Long

- -
$44 - -

- *maxLines - Long - -
$48
$4A

- *maxCharsPerLine - Word
Word - *maxHeight -

$4C - -- *color Ref - Long - -
$50
$52

- *drawMode - Word
- -- *filterProcPtr - Long -

pCount

ID

boundsRect

procRef

flags

Reserved
fCtlinvis
Reserved

-

Number of parameter fields to follow. Valid values lie in the range from
7 to 23. The value of this field does not include pCount itself.

Unique ID for TextEdit controls. Your application sets this field and
can use it to identify a particular TextEdit record uniquely.

Boundary rectangle for the TextEdit record. This rectangle contains
the entire record, including its scroll bars and outline. If you set the
lower-right corner of this rectangle to (0,0), TextEdit uses the lower-
right corner of the window that contains the record as a default. Note
that this rectangle must be large enough to display completely a single
character in the largest allowed font.

Type of control. Must be set to $85000000.

Control flags for the TextEdit record. Defined bits for flags are as
follows:

bits 15-8
bit 7
bits 6-0

Must be set to 0.
0 = Visible, 1 = Invisible.
Must be set to 0.

moreFlags More control flags for TextEdit record. Defined bits for moreF lags
are as follows:

fCtlTarget

fCtlCanBeTarget

fCtlWantEvents

fCtlProcRefNotPtr
fCtlTellAboutSize

fCtlisMultiPart
Reserved
Color table reference

Style reference

bit 15

bit 14

bit 13

bit 12
bit 11

bit 10
bits 9-4
bits 3-2

bits 1-0

Indicates whether this TextEdit record is the
current target of user actions; must be set to 0
when a TextEdit record is created.
Must be set to 1; TextEdit sets this bit to 0 if
the fDisableSelection flag in textFlags
is set to 1.
Must be set to 1; TextEdit sets this bit to 0 if
the fDisableSelection flag in textFlags
is set to 1.
Must be set to 1.
If set to 1, TextEdit creates a size box in the
lower-right comer of the window; whenever the
window is resized, the edit text is resized and
redrawn.
Must be set to 1.
Must be set to 0.
Defines type of reference in colorRef.
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 =Color table reference is by resource ID
(resource type of rCtlColorTbl, $800D)
11 = Invalid value
Defines type of style reference in styleRef.
00 = Style reference is by pointer
01 = Style reference is by handle
10 =Style reference is by resource ID (resource
type of rStyleBlock, $8012)
11 = Invalid value

6 Important Do not set fCtlTellAboutSize to 1 unless the TextEdit record
also has a vertical scroll bar. This flag works only for TextEdit records
that are controls. t:::.

textFlags Specific TextEdit control flags. Valid values for textF lags are as
follows:

fNotControl bit 31 Indicates whether the TextEdit record to be
created is a control.
0 = TextEdit record is a control
1 = TextEdit record is not a control

fSingleFormat bit 30 Must be set to 1.
fSingleStyle bit 29 Allows you to restrict the style options available

to the user.
0 = Do not restrict the number of styles in the text
1 = Allow only one style in the text

fNoWordWrap bit 28 Allows you to control TextEdit word wrap
behavior.
0 = Perform word wrap to fit the ruler
1 = Do not use word wrap; break lines only on
CR ($0D) characters

fNoScroll bit 27 Controls user access to scrolling.
0 = Allow scrolling
1 = Do not allow either manual or automatic
scrolling

fReadOnly bit 26 Restricts the text in the window to read-only
operations (copying from the window is still
allowed).
0 = Editing permitted
1 = No editing allowed

fSmartCutPaste bit 25 Controls TextEdit support for smart cut and
paste.
0 = Do not use smart cut and paste
1 = Use smart cut and paste

fTabSwitch bit 24 Defines behavior of the Tab key.
0 = Tab inserted in TextEdit document
1 = Tab to next control in the window

fDrawBounds bit 23 Tells TextEdit whether to draw a box around
the edit window, just inside bounds Rect-
the pen for this box is two pixels wide and one
pixel high.
0 = Do not draw rectangle
1 = Draw rectangle

fColorHilight bit 22 Must be set to 0.

fGrowRuler bit 21 Tells TextEdit whether to resize the ruler in
response to the user resizing the edit window; if
this bit is set to 1, TextEdit automatically
adjusts the right margin value for the ruler.
0 = Do not resize the ruler
1 = Resize the ruler

fDisableSelection bit 20 Controls whether user can select text.
0 = User can select text
1 = User cannot select text

fDrawinactiveSelection

Reserved

indentRect

vert Bar

vertAmount

horzBar

horzAmount

styleRef

bit 19 Controls how inactive selected text is
displayed.
0 = TextEdit does nothing special when
displaying inactive selections
1 = TextEdit draws a box around inactive
selections

bits 18-0 Must be set to 0.

Each coordinate of this rectangle specifies the amount of white space
to leave between the boundary rectangle for the control and the text
itself, in pixels. Default values are (2,6,2,4) in 640 mode and (2,4,2,2)
in 320 mode. Each indentation coordinate may be specified
individually. To assert the default for any coordinate, specify its value
as $FFFF.

Handle of the vertical scroll bar to use for the TextEdit window. If you
do not want a scroll bar at all, then set this field to NIL. If you want
TextEdit to create a scroll bar for you just inside the right edge of the
boundary rectangle for the control, set this field to $FFFFFFFF.

The number of pixels to scroll whenever the user presses the up or
down arrow on the vertical scroll bar. To use the default value (9
pixels), set this field to $0000.

Must be set to NIL.

Must be set to 0.

Reference to initial style information for the text, specified in a
TEFormat structure. Bits 1 and 0 of moreFlags define the type of
reference (pointer, handle, resource ID) to the structure. To use the
default style and ruler information, set this field to NIL.

textDescriptor

text Ref

text Length

Input text descriptor that defines the reference type for the initial
text (which is in text Ref) and the format of that text.

Reference to initial text for the edit window. If you are not supplying
any initial text, set this field to NIL.

If textRef is a pointer to the initial text, this field must contain the
length of the initial text. For other reference types, this field is
ignored-TextEdit can extract the length from the reference itself.

+ Note: You must specify or omit the textDescr iptor, textRef, and text Length
fields as a group.

rnaxChars

rnaxLines

Maximum number of characters allowed in the text. If you do not want
to limit the number of characters, then set this field to NIL.

Must be set to NIL.

rnaxCharsPerLine

rnaxHeight

colorRef

drawMode

Must be set to NIL.

Must be set to NIL.

Reference to the color table for the text, stored in a TEColorTa ble
structure. Bits 2 and 3 of rnoreF lags define the type of reference
stored here.

Text mode QuickDraw II uses to draw text. See Chapter 16,
"QuickDraw II," in Volume 2 of the Toolbox Reference for details on
valid text modes.

filterProcPtr Pointer to a filter routine for the control. For more information about
TextEdit filter procedures, see "Generic Filter Procedure" earlier in this
chapter. If you do not want to use a filter routine for the control, set
this field to NIL.

TERul.er

Defines the characteristics of a TextEdit ruler.

The TEGetRuler and TESetRuler tool calls allow you to obtain and set the ruler
information for a TextEdit record. Figure 49-4 shows the layout of the TERuler structure.

• Figure 49-4 TERuler layout

$00
$02
$04
$06
$08
$0A
$0C

-
-
-
-
-
r-
r-
r-
r-
r-$10

$12 .

leftMargin

left Indent

rightMargin

just

extraLS

flags

userData

tabType

-
-
-
-
-
-

-

Word
Word
Word
Word
Word
Word

Long

Word

theTabs Array of Tab Item structures

tabTerminator d Word

leftMargin The number of pixels to indent from the left edge of the text rectangle
(viewRect in TERecord) for all text lines except those that start
paragraphs.

left Indent

rightMargin

The number of pixels to indent from the left edge of the text rectangle
for text lines that start paragraphs.

Maximum line length, expressed as the number of pixels from the left
edge of the text rectangle.

just

extraLS

flags

userData

tab Type

theTabs

Text justification.

0 Left justification-all text lines start flush with left margin
-1 Right justification-all text lines start flush with right margin
1 Center justification-all text lines are centered between left

and right margins
2 Full justification-text is blocked flush with both left and

right margins; TextEdit pads spaces with extra pixels to
justify the text

Line spacing, expressed as the number of pixels to add between lines
of text. Negative values result in text overlap.

Reserved

Application-specific data.

The type of tab data, as follows:

0 No tabs are set-tabType is the last field in the structure
1 Regular tabs-tabs are set at regular pixel intervals,

specified by the value of the tabTerminator field;
theTabs is omitted from the structure

2 Absolute tabs-tabs are set at absolute, irregular pixel
locations; the Tabs defines those locations;
t abTerminator marks the end of t heTabs

If tabType is set to 2, this is an array of Tab Item structures defining
the absolute pixel positions for the various tab stops. The
tabTerminator field, with a value of $FFFF, marks the end of this
array. For other values of tabType, this field is omitted from the
structure.

tabTerminator If tabType is set to 0, this field is omitted from the structure. If
tabType is set to 1, then theTabs is omitted, and this field contains
the number of pixels corresponding to the tab interval for the regular
tabs. If t abType is set to 2, t abTerminator is set to $FFFF and
marks the end of theTabs array.

TEStyle

This structure defines the font and color characteristics of a style of text in the TextEdit
record.

The TEFormat structure contains one or more TEStyle structures, each of which defines
a unique text style used somewhere in the record text. Figure 49-5 shows the layout of the
TEStyle structure.

• Figure 49-5 TEStyle layout

$00 r- -
1- f ontiD -
1- - Long

$04
$o6
$08

1- f oreColor - Word
Word 1- backColor -

--

fontiD

foreColor

backColor

userData

-
userData - Long -

Font Manager font ID record identifying the font of the text. See
Chapter 8, "Font Manager," in Volume 1 of the Toolbox Reference for
more information about font IDs.

Foreground color for the text. Note that all bits in TextEdit color
words are significant. TextEdit generates QuickDraw II color patterns
by replicating a color word the appropriate number of times for the
current resolution (8 times for 640 mode, 16 times for 320 mode). See
Chapter 16, "QuickDraw II," in Volume 2 of the Toolbox Reference for
more information on QuickDraw II patterns and dithered colors.

Background color for the text.

Application-specific data.

Low-level TextEdit structures

TextEdit uses several other structures for its internal processing. Typically, your
application should not manipulate these structures. In addition, if your program does
modify data in these structures, you should be careful to maintain the correct
relationships between fields that affect other TextEdit structures.

TERecord

Figure 49-6 shows the main structure for a TextEdit record. The TENew tool call creates
this structure partially based on the information specified in the TEParamBlock you
supply to that call. In most cases, your program does not need to access fields in this
structure directly. However, to use such advanced features as custom word wrap routines,
your application will have to modify the TERecord.

Note that this section describes only those TERecord fields that are currently defined
and available to application programs. Your program should assume that there are more
fields beyond those described here, and it should not try to move or copy a TERecord
directly.

Most TextEdit tool calls require a handle to a TERecord as an entry parameter.

• Figure 49-6 TERecord layout

$00 I-
f-
f-

$04 I-
I-
f-

$08 :
$10
$11
$12
$14

$18

$1C

f-

f-
I-
f-

I-
I-
I-

f-
f-
f-

ctrlNext

inPort

boundsRect

ctrlFlag
ctrlHilite

lastErrorCode

ctrlProc

ctrlAction

filterProc

continued

-
- Long -
-
- Long -

-

Rectangle
Byte
Byte
Word

Long

Long

Long

$20 1-
!--
1-

$24 ---
$28 ---
$2C ---
$30.

$38

$3C
$3E
$40

-
-

$48 -
-
-

$4C .

$58

$64

$68

$6C
$6E

$72

$76
$78
$7A

$7E
$80

-

-
r-,....

!--

r-
!--
r-
r-
!--

continued

ctrlRefCon

c olorRef

textFlags

text Length

blockList

c trliD

ctrlMoreFlags

ctrlVersion

-
-

Long

Long

Long

Long

Text List

Long

Word
Word

viewRect Rectangle

-
totalHe i ght - Long -

lineSuper SuperHandle

s tyleSupe r SuperHandle

style Lis t

r ulerList

l i neAt EndFlag

selectionStart

sel ectionEnd

sel ectio nActive

sele c tionSt a t e

caret Time

nullSt yleActive

nullStyle

continued

-

-
-

-

Long

Long

Word

Long

Long

Word
Word

Long

Word

TEStyle

$8C

$90
$92

$96

$9A

$9E
$AO

$A4

$AS

$AC
$AE

$B2

$B6

$BA

$BC
$BE
$CO

$C4

$C8

f-
f-
f-

r
f-
r
r
f-
f-
f-

--
r
f-

f-
f-
r
f-
f-
f-

f-
r
f-
1-

1-
1-
r
1-
1-
1-

r
r
r
1-

f-

f-

r
r
f-

r
f-
r
-
--

$CC.

$D4 F

continue d
-

topTextOffset --
topTextVPos -

-
vertScrollBar --

-
vertScrollPos --

-
vertScrollMax --

vertScrollAmount -

-
horzScrollBar -

-
-

horzScrollPos -
-
-

horzScrollMax --
horzScrollAmount -

-
growBoxHandle --

-
max imumChars --

-
maximumLines --

maxCharsPerLine -
maximumHeight -
textDrawMode -

-
wordBreakHook --

-
wordWrapHook --

-
keyFilter --

theFilterRect

theBufferVPos 1 continued

Long

Word

Long

Long

Long

Word

Long

Long

Long

Word

Long

Long

Long

Word

Word
Word

Long

Long

Long

Rectangle

Word

continued
$D6 r-

1---------1
$08 .

theBufferHPos -

theKeyRecord KeyRecord

$E6 r- -
!- cachedSelcOffset - Long r- -
r-$EA

$EC
$EE .

cachedSelcVPos -
1- cachedSelcHPos -

$F6

$FA
$FC

$100
$102

:--
r-
1-

1-

!-
1-
'--

-
r-
!-
'--

ctrlNext

inPort

mouseRect Rectangle

-
rnouseTirne - Long -
mouse Kind -

-
lastClick - Long -
savedHPos -

-
anchorPoint - Long -

Handle of next control in the system-maintained control list.

Pointer to the GrafPort for this TextEdit record.

boundsRect Boundary rectangle for the record, which surrounds the text window as
well as its scroll bars and outline.

ctrlFlag

fCtlinvis
fRecordDirty

Reserved

ctrlHilite

Control flags for the TextEdit record. TextEdit obtains this field from
the low-order byte of the flags field in the TEParamBloc k passed
to TENew. The following flags are defined:

bit 7
bit 6

bits 5-0

Reserved

0 = Visible, 1 = Invisible.
Indicates whether text or style information for the
record has changed (TextEdit sets this bit but never
clears it-your application must set the bit to 0
whenever it saves the record).
0 = No text or style information has changed
1 = Text or style information has changed
Must be set to 0.

lastErrorCode The last error code generated by TextEdit. Note that this code may
have been returned either from the TextEdit control definition
procedure or from a TextEdit tool call.

ctrlProc

ctrlAction

filterProc

ctrlRefCon

colorRef

textFlags

fNotControl

fSingleFormat
fSingleStyle

fNoWordWrap

fNoScroll

fReadOnly

Must be set to $85000000. Identifies this as a TextEdit control to the
system.

Reserved.

Pointer to the generic filter procedure for the record. If there is no
filter procedure, this field is set to NIL. See "Generic Filter Procedure"
earlier in this chapter for information about generic filter procedures.

Application-defined value.

Reference to the TEColorTable for the record. Bits 2 and 3 in
ctrlMoreFlags define the type of reference stored here.

Control flags specific to TextEdit. The system derives this field from
the textFlags field in the TEParamTa ble structure passed to
TENew when a new TextEdit record is created. The following flags are
defined:

bit 31

bit 30
bit 29

bit 28

bit 27

bit 26

Indicates whether the the TextEdit record to be
created is for a control.
0 = TextEdit record is a control
1 = TextEdit record is not a control
Must be set to 1.
Allows you to restrict the style options available to
the user.
0 = Do not restrict the number of styles in the text
1 = Allow only one style in the text
Allows you to control TextEdit word wrap behavior.
0 = Perform word wrap to fit the ruler
1 = Do not use word wrap; break lines only on CR
($0D) characters
Controls user access to scrolling.
0 = Allow scrolling
1 = Do not allow either manual or automatic scrolling
Restricts the text in the window to read-only
operations (copying from the window is still
allowed).
0 = Editing permitted
1 = No editing allowed

fSmartCutPaste bit 25 Controls TextEdit support for smart cut and paste.
0 = Do not use smart cut and paste

fTabSwitch

fDrawBounds

fColorHilight
fGrowRuler

bit 24

bit 23

bit 22
bit 21

1 = Use smart cut and paste
Defines behavior of the Tab key.
0 =Tab inserted in TextEdit document
1 = Tab to next control in the window
Tells TextEdit whether to draw a box around the edit
window, just inside boundsRect; the pen for this
rectangle is two pixels wide and one pixel high.
0 = Do not draw rectangle
1 = Draw rectangle
Must be set to 0.
Tells TextEdit whether to resize the ruler in response
to the user resizing the edit window; if this bit is set
to 1, TextEdit automatically adjusts the right margin
value for the ruler.
0 = Do not resize the ruler
1 = Resize the ruler

fDisableSelection bit 20 Controls whether user can select text.
0 = User can select text
1 = User cannot select text

fDrawinactiveSelection
bit 19 Controls how inactive selected text is displayed.

0 = TextEdit does nothing special when displaying
inactive selections
1 = TextEdit draws a box around inactive selections

Reserved bits 18-0 Must be set to 0.

text Length

blackList

ctrliD

Number of bytes of text in the record. Your program must not modify
this field.

Cached link to the linked list of Te xt Block structures, which contain
the actual text for the record. The actual Text List structure resides
here. Your program must not modify this field.

Application-assigned ID for the TextEdit control.

ctrlMoreFlags More control flags. TextEdit obtains the data for this field from the
moreFlags field of the TEParamBlock structure passed to TENew
when a new TextEdit record is created. The following flags are
defined:

fCtlTarget

fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize

fCtlisMultiPart
Reserved
Color table reference

Reserved

bit 15 Indicates whether this TextEdit record is the current
target of user actions; this bit must be set to 0 when
a TextEdit record is created.

bit 14 Must be set to 1.
bit 13 Must be set to 1.
bit 12 Must be set to 1.
bit 11 If this bit is set to 1, TextEdit creates a size box in

the lower-right corner of the window; whenever the
window is resized, the edit text is resized and
redrawn.

bit 10 Must be set to 1.
bits 9-4 Must be set to 0.
bits 3-2 Defines type of reference in colorRef.

00 = Color table reference is by pointer
01 = Color table reference is by handle
10 = Color table reference is by resource ID (resource
type of rCtlColorTbl, $800D)
11 = Invalid value

bits 1-0 Must be set to 0.

ctrl Version Reserved.

viewRect Boundary rectangle for the text, within the rectangle defined in
boundsRect, which surrounds the entire record, including its
associated scroll bars and outline.

totalHeight Total height, in pixels, of the text in the TextEdit record.

linesuper Cached link to the linked list of SuperBlock structures that define
the text lines in the record.

styleSuper Cached link to the linked list of superBlock structures that define
the styles for the record.

styleList Handle to array of TEStyle structures, containing the unique styles
for the record. The array is terminated with a long word set to
$FFFFFFFF.

rulerList Handle to array of TERuler structures, defining the format rulers for
the record. Note that only the first ruler is currently used by TextEdit.
The array is terminated with a long word set to $FFFFFFFF.

lineAtEndF lag Indicates whether the last character was a line break. If so, this field is
set to $FFFF.

selectionStart
Starting text offset for the current selection. Must always be less than

or equal to selectionEnd.

selectionEnd Ending text offset for the current selection. Must always be greater
than or equal to selectionStart.

selectionActive
State information (active or inactive) about the current selection
(defined by selectionStart and selectionEnd).

$0000
$FFFF

Active
Inactive

selectionState

caret Time

State information about the current selection range.

$0000
$FFFF

Off screen
On screen

Blink interval for caret, expressed in system ticks.

nullStyleActive

nullStyle

State information about the null style for the current selection.

$0000
$FFFF

Do not use null style when inserting text
Use null style when inserting text

TEStyle structure defining the null style. This may be the default
style for newly inserted text, depending upon the value of
nullStyleActive.

topTextOffset Text offset into the record corresponding to the top line displayed on
the screen.

topTextVPos Difference, in pixels, between the topmost vertical scroll position
(corresponding to the top of the vertical scroll bar) and the top line
currently displayed on the screen.

vertScrollBar Handle to the vertical scroll bar control record.

vertScrollPos Current position of the vertical scroll bar, in units defined by
vertScrollAmount.

+ Note: Although TextEdit supports vertScrollPos as a long word, standard Apple
IIGS scroll bars support only the low-order word. This leads to unpredictable scroll bar
behavior in the editing of large documents.

vertscrollMax Maximum allowable vertical scroll, in units defined by
vertScrollAmount.

vertScrollAmount
Number of pixels to scroll on each vertical arrow click.

horzScrollBar Currently not supported.

horzScrollPos Currently not supported.

horzScrollMax Currently not supported.

horzScrollAmount
Currently not supported.

growBoxHandle Handle of size box control record.

maximumChars Maximum number of characters allowed in the text.

maximumLines Currently not supported.

maxCharsPerLine
Currently not supported.

maximumHeight Currently not supported.

textDrawMode QuickDraw II drawing mode for the text. See Chapter 16,
"QuickDraw II," in Volume 2 of the Toolbox Reference for more
information on QuickDraw II drawing modes.

wordBreakHook Pointer to the routine that handles word breaks. See "Word Break
Hook" earlier in this chapter for information about word break
routines. Your program may modify this field.

wordWrapHook Pointer to the routine that handles word wrap. See "Word Wrap
Hook" earlier in this chapter for information about word wrap
routines. Your program may modify this field.

keyFilter Pointer to the keystroke filter routine. See "Keystroke Filter
Procedure" earlier in this chapter for information about keystroke
filter routines. Your program may modify this field.

theFilterRect A rectangle used by the generic filter procedure for some of its
routines. See "Generic Filter Procedure" earlier in this chapter for
information about generic filter procedures and their routines. Your
program may modify this field.

theBufferVPos Vertical component of the current position of the buffer within the
port for the TextEdit record, expressed in the local coordinates
appropriate for that port. This value is used by some generic filter
procedure routines. See "Generic Filter Procedure" earlier in this
chapter for information about generic filter procedures and their
routines. Your program may modify this field.

theBufferHPos Horizontal component of the current position of the buffer within the
port for the TextEdit record, expressed in the local coordinates
appropriate for that port. This value is used by some generic filter
procedure routines. See "Generic Filter Procedure" earlier in this
chapter for information about generic filter procedures and their
routines. Your program may modify this field.

theKeyRecord Parameter block, in KeyRe cord format, for the keystroke filter
routine. Your program may modify this field.

cachedSelcOffset
Cached selection text offset. If this field is set to $FFFFFFFF, then the
cache is invalid and will be recalculated when appropriate.

cachedSelcVPos
Vertical component of the cached buffer position, expressed in local

coordinates for the output port.

cachedSelcHPos

mouseRect

mouseTime

Horizontal component of the cached buffer position, expressed in
local coordinates for the output port.

Boundary rectangle for multiclick commands. If the user clicks more
than once in the region defined by this rectangle within the time
period defined for multiclicks, then TextEdit interprets those clicks
as multiclick sequences (double clicks or triple clicks). The user sets
the time period with the Control Panel.

System tick count when the user last released the mouse button.

mouseKind

lastClick

savedHPos

anchorPoint

Type of last click.

0 Single click
1 Double click
2 Triple click

Location of last user click.

Cached horizontal character position. TextEdit uses this value to
manage where it should display the caret on a line when the user
presses the up or down scroll arrow.

The character from which the user began to select text for the current
selection. When TextEdit expands the current selection (as a result of
user keyboard or mouse commands, or at the direction of a custom
keystroke filter procedure), it always does so from the
anchorPoint, not from selectionStart or selectionEnd.

KeyRecord

Defines the entry and exit parameter blocks for the keystroke filter procedure for a
TextEdit record. On entry to the filter procedure, TextEdit sets up this structure with the
information necessary to process the keystroke. On exit, the filter procedure returns the
processed keystroke and any other status information in this same structure. For
complete information about the TextEdit keystroke filter procedure and the use of these
fields, see "Keystroke Filter Procedure" earlier in this chapter.

The KeyRecord for a TextEdit record resides in the appropriate TERecord. Figure 49-7
shows the layout of the KeyRecord structure.

• Figure 49-7 KeyRecord layout

$00
$02
$04

$08

-
-

t heChar

t heModifie r s

theinputHandle

cursorOffset

-
-

Word
Word

Long

Long

- t heOpCode -$0C Word

theChar Character code of the character to translate. The low-order byte of
theChar contains the key code for the character; the high-order byte
is ignored.

theModifiers On input, contains the state of the modifier keys when the character
in theChar was generated. This is an Event Manager modifier word,
as described in Chapter 7, "Event Manager," in Volume 1 of the Toolbox
Reference. On output, the keystroke filter procedure may change the
setting of these flags.

the Input Handle
On input, contains a handle to a copy of the keystroke in theChar.
On output, the keystroke filter procedure may modify the size and
content of the daia referred to by this handle.

cursorOffset For some operations, the keystroke filter routine sets this field with a
new cursor text offset.

theOpCode

opNormal

opNothing

opReplaceText

opMoveCursor

opExtendCursor

opCut

opCopy

opPaste

opClear

On return from the filter routine, this field contains an operation code
indicating what TextEdit is to do next and how it is to interpret
the KeyRecord.

$0000

$0001

$0002

$0003

$0004

$0005

$0006

$0007

$0008

TextEdit performs its standard processing on the
character stored in the location referred to by
theinputHandle , according to the value
of theModifiers
TextEdit ignores the keystroke

TextEdit inserts the text referred to by
the Input Handle in place of the current selection in
the record; if there is no current selection, TextEdit
inserts the text at the current insertion point; if the
size of the Input Handle is 0, TextEdit deletes the
current selection and inserts nothing
TextEdit moves the cursor to the location specified
by cursorOffset
TextEdit extends the current selection from its anchor
point to the location specified by cursorOffset
TextEdit copies the current selection to the
Clipboard and then clears the selection
TextEdit copies the current selection to the
Clipboard
TextEdit inserts the contents of the Clipboard in
place of the current selection
TextEdit clears the current selection

Styl.eitem

The TEFormat structure contains an array of Style Item substructures, which define the
text characters that use a particular style. Each element of this array refers to the style
information for a series of characters. Taken consecutively, the array of style It em
structures completely defines the styles for the entire record. Figure 49-8 shows the layout
of the sty 1 e It em structure.

• Figure 49-8 Style Item layout

$00 f-
f-
f-

$04
r-
f-

length

offset

length

offset

-- Long -
-- Long -

The total number of text characters that use this style. These
characters begin where the previous Style Item left off. A value of
$FFFFFFFF indicates an unused entry.

Offset, in bytes, into theStyl eList array to the TEStyle record
defining the characteristics of the style in question. The sty 1 e 1 is t
array is stored in the TEFormat record.

SuperBlock

superBlock structures define linked lists of TextEdit control information items. These
control information items may relate to styles or to line-start locations, and they are
defined by the Super Item substructure. A Super Handle substructure provides address
information into a chain of superBlock structures. The TERecord contains a number
of SuperHandles. Figure 49-9 shows the layout of the SuperBlock structure.

• Figure 49-9 SuperBlock layout

$00 f- -
f- nextHandle - Long
f- -

$04 f- -
f- prevHandle - Long
f- -

$08 f- -
f- t extLength -
f- - Long

soc - -- Reserved - Long - -
$10 .

the Items : Array of Super Items structures

next Handle Handle to the next superBlock in this chain of blocks. A value of
NIL indicates the end of the chain.

prevHandle

text Length

the Items

Handle to the previous SuperBlock in this chain of blocks. A value
of NIL indicates the beginning of the chain.

The number of characters of text referred to by the It ems .

Array of Super Items for this SuperBlock. The text Length field
contains the total length of the characters defined by these items.

SuperHandle

Identifies the current position within a chain of SuperBlocks. This substructure
contains both byte offset and index information. The cachedOffset field contains the
offset to the text identified by the cached Superitem. The cachedindex field
contains the byte offset to the Super Item within its SuperBlock. The TERecord
contains several SuperHandles. Figure 49-10 shows the layout of the SuperHandle
structure.

• Figure 49-10 SuperHandle layout

$()() r- -r- cachedHandle -
r- - Long

r- -
r- cachedOffset -

$04
Long

r- -
r- cached Index -$08 Word
r- itemsPerBlock -$0A Word

cachedHandle Handle to the SuperBlock containing the current Super Item.

cachedOffset Byte offset to the current character within the text identified by the
cached Superitem.

cachedindex Byte offset to the start of the current Super Item within the array of
Super Items stored in the SuperBlock referred to by
cachedHandle.

itemsPerBlock The number of Super Items stored in each SuperBlock.

Super Item

Defines an individual item within a SuperBlock. Figure 49-11 shows the layout of the
Superrtem structure.

• Figure 49-11 Superitem layout

$00 - -
- length - Long - -

$04 - -- data - Long - -

length The number of text characters in the TextEdit record that are affected
by this Superitem. A value of $FFFFFFFF indicates that this item is
not currently used.

data The actual data for the item.

Tab Item

Contains information defining an absolute tab position, expressed as a pixel offset from
the left margin of the text rectangle (viewRect of the TERecord). The TERuler
structure contains an array of Tab Items whenever the user has defined absolute tabs.
Figure 49-12 shows the layout of the Tab Item structure.

• Figure 49-12 Tab It em layout

$00 -- tabKind - VVord
$021-__ ---ta_b_Da_t_a __ _,_ VVord

tabKind

tabData

Must be set to $0000.

Location of the absolute tab, expressed as the number of pixels to
indent from the left edge of the text rectangle (viewRect of
TERecord).

TextBlock

Contains the actual text for the record. The Text Block substructure defines a linked list
that stores the text. A Text List substructure within the TERecord contains access
information into the chain of TextBlocks for the TextEdit record. The Text Block
chain stores the text for the TextEdit record in sequential order. That is, the first
Text Block contains the first block of text, the second Text Block contains the next
block of text, and so on. The size of each of these TextBlock handles must be a multiple
of 256 ($100), plus 16 ($10) (for example, 272 [$110), 528 [$210), and so on). Figure 49-13
shows the layout of the Text Block structure.

• Figure 49-13 TextBlock layout

$()() f- -
f- next Handle - Long
f- -

$04 I- -
I- prevHandle - Long
f- -

$08 I- -
r- textLength - Long
f- -
f- flags -$0C

$0E
$10.

I- Reserved -
Word
Word

theText

next Handle

prevHandle

text Length

flags

theText

: Array of bytes

Handle to the next Text Block in the chain of blocks for this text
record. A value of NIL indicates the end of the chain.

Handle to the previous Text Block in the chain of blocks for this
text record. A value of NIL indicates the beginning of the chain.

The number of text bytes stored at theText.

Reserved.

Text for the record. The textLength field specifies the length of
this array.

TextList

Identifies the current position within the text for the record, which is stored in
TextBlocks. The TERecord contains a Text List substructure. Figure 49-14 shows the
TextList structure.

• Figure 49-14 Text List layout

$00 - -- cachedHandle - Long - -
$04 - -- cachedOffset - Long - -

cachedHandle Handle to the TextBlock containing the text corresponding to the
current location.

cachedOffset Byte offset from the start of the file to the start of the Text Block
described by this Text List entry.

TextEdit housekeeping routines

The following sections describe the standard housekeeping calls in the TextEdit Tool Set.

TEBootinit $0122

Initializes TextEdit; called only by the Tool Locator.

A Warning

Parameters

Errors

c

An application must never make this call. •

None

None

Call must not be made by an application.

TEStartUp $0222

Starts up the TextEdit Tool Set and prepares TextEdit for application use by allocating
memory and formatting direct-page space. Applications must issue this call before any
other TextEdit tool calls. Before exiting, applications that issue the TESt art Up call must
call TEShutDown to shut down TextEdit.

Parameters

Stack before call

Previous contents
user/D

directPage

Stack after call

Previous contents

Errors $2201

$220D

Word-Application's user ID (obtained at program start time)
Word-Address of one page of direct-page memory
<-SP

<-SP

teAlreadyStarted

teNeedsTools

TextEdit has already been
started.
The Font Manager was not
started.

Memory Manager errors Returned unchanged.

c e xtern pascal void TEStartUp(useriD, directPage);

Word useriD, directPage;

TEShutDown $0322

Frees memory used by TextEdit, not including memory used by individual TextEdit
records. It is the programmer's responsibility to issue the TEKill tool call at the end of
processing for each TextEdit record. Every application that uses TextEdit must issue this
call before exiting. During application initialization, applications that use TextEdit must
issue the TESt art up tool call before any other TextEdit calls.

Parameters

Stack before call

Previous contents
<-SP

Stack after call

Previous contents
<-SP

Errors $2202 teNotStarted TextEdit has not been started.

c extern pascal void TEShutDown();

TEVersion $0422

Retrieves the TextEdit version number. This call returns valid information if TextEdit has
been loaded; the tool set need not be active. The versionlnfo result contains the
information in the standard format defined in Appendix A, "Writing Your Own Tool Set,"
in Volume 2 of the Toolbox Reference.

Parameters

Stack before call

Previous contents
Space

Stack after call

Previous contents
versionlnfo

Errors None

Word-Space for result
<-SP

Word-TextEdit version number
<-SP

c extern pascal Word TEVersion();

TEReset $0522

Resets TextEdit; called only when the system is reset.

A Warning

Parameters

Errors

c

An application must never make this call. ...

None

None

Call must not be made by an application.

TEStatus $0622

Returns a flag indicating whether TextEdit is active. If TextEdit has not been loaded, your
program receives a Tool Locator error (toolNotFoundErr).

• Note: If your program issues this call in assembly language, initialize the result space on
the stack to NIL. Upon return from TEStatus, your program need only check the value
of the returned flag. If TextEdit is not active, the returned value will be FALSE (NIL).

Parameters

Stack before call

Previous contents
Space

Stack after call

Previous contents
activeFlag

Errors $0001

Word-Space for result
<-SP

Word-Boolean; TRUE if TextEdit is active
<-SP

toolNotFoundErr TextEdit not loaded.

c extern pascal Word TEStatus();

TextEdit tool calls

The following sections describe the TextEdit tool calls in order by call name.

TEActivate $OF22

Makes the specified TextEdit record active-that is, makes that record the target of user
keystrokes. TextEdit highlights the current selection or displays the caret, as appropriate.
User editing activity now applies to this TextEdit record.

Your application need issue this call only if it is managing its own TextEdit records. If your
program uses TextEdit controls with J;askMaster, it should not issue this call; TaskMaster
manages the control automatically.

Parameters

Stack before call

Previous contents

teH

Stack after call

Long-Handle of TERecord in memory

<-SP

Previous contents

Errors

c

teH

$2202
$2203

<-SP

teNotStarted
teinvalidHandle

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.

extern pascal void TEActivate(teH);

Long teH;

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, then TextEdit does nothing and returns immediately
to your program.

TEClear $1922

Clears the current selection in the active TextEdit record and redraws the screen. If there is
no current selection, then this call does nothing and returns immediately. This call does not
affect the Clipboard.

Note that this call does not generate any update events; it directly redraws the active
record.

Your application need issue this call only if it is managing its own TextEdit records. If your
program uses TextEdit controls and TaskMaster, it should not issue this call; TaskMaster
manages the control automatically.

Parameters

Stack before call

Previous contents

teH

Stack after call

Errors

c

teH

Long-Handle of TERecord in memory; NIL for active record

$2202
$2203

<-SP

<-SP

teNotStar ted
teinvalidHandle

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.

extern pascal void TEClear(teH);

Long teH;

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, then TextEdit does nothing and returns immediately
to your program.

TEClick $1122

Tracks the pointer within a TextEdit record, selecting all text that it passes over until the
user releases the mouse button. If the user holds down the Shift key, this call extends the
current selection to include the new text. TextEdit automatically causes the text to scroll
in the proper direction if the user drags outside the view rectangle.

This call handles double and triple clicks as follows: double clicks select a word, and
dragging thereafter lengthens or shortens the selection in word increments; triple clicks
select a line, and dragging thereafter lengthens or shortens the selection in line increments.

If your program issues this call for a TextEdit record that is not currently active, TextEdit
first makes that record active, and then proceeds to track the pointer.

Your application need issue this call only if it is managing its own TextEdit records. If your
program uses TextEdit controls with TaskMaster, it should not issue this call; TaskMaster
manages the control automatically.

Parameters

Stack before call

Previous contents

- eventRecordPtr - Long-Pointer to event record for the mouse click

teH Long-Handle of TERecord in memory

<-SP

Stack after call

Previous contents

Errors

c

<-SP

$2202 teNotStarted
$2203 teinvalidHandle

Memory Manager errors

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.
Returned unchanged.

extern pascal void TEClick(eventRecordPtr, teH);

Pointer eventRecordPtr;
Long teH;

eventRecordPtr Pointer to the event record describing the mouse dick. The what,
when, where, and modifiers fields of the event record must be set.
TextEdit ignores the message field. For information on the format
and content of event records, see Chapter 7, "Event Manager," in
Volume 1 of the Toolbox Reference.

teH The TextEdit record for the operation.

TECompactRecord $2822

Compresses all the TextEdit data structures in a specified TextEdit record.
TECompactRecord reclaims space used for deleted lines and style items and for styles
that are no longer referenced from the text. Although this call may be issued by any
application that uses TextEdit, it is intended to be used from within an out-of-memory
routine (see Chapter 36, "Memory Manager Update," in this book for information about
out-of-memory routines and the out-of-memory queue).

Note that your program may not pass a NIL TextEdit record handle to this tool call.

Parameters

Stack before call

Previous contents

teH

Stack after call

Long-Handle of TERecord to compact

<-SP

Previous contents

Errors

c

teH

<-SP

$2202 teNotStarted
$2203 teinvalidHandle

Memory Manager errors

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.
Returned unchanged.

extern pascal void TECompactRecord(teH);

Long teH;

The TextEdit record for the operation.

TECopy $1722

Copies the current selection from the active TextEdit record to the Clipboard, destroying
the previous Clipboard contents. This call copies both the text and style information to
the Clipboard. Note, however, that if there is no current selection, this call does nothing
and does not affect the Clipboard.

This call does not automatically cause scrolling to the current selection.

Your application needs to issue this call only if it is managing its own TextEdit records. If
your program uses TextEdit controls, it should not issue this call; TaskMaster manages the
control automatically.

Parameters

Stack before call

Previous contents

teH Long-Handle of TERecord in memory; NIL for active record

<-SP

Stack after call

Previous contents

Errors

c

teH

<-SP

$2202 teNotStarted
$2203 teinvalidHandle

Memory Manager errors

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.
Returned unchanged.

e xtern pascal void TECopy(teH);

Long teH;

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, then TextEdit does nothing and returns immediately
to your program.

TECut $1622

Copies the current selection from the active TextEdit record to the Clipboard, destroying
the previous Clipboard contents. TECut then scrolls to the beginning of the selection,
deletes it, and redraws the screen. This call copies both the text and style information to
the Clipboard. Note, however, that if there is no current selection, this call does nothing
and does not affect the Clipboard.

Your application need issue this call only if it is managing its own TextEdit records. If your
program uses TextEdit controls, it should not issue this call; TaskMaster manages the
control automatically.

Parameters

Stack before call

Previous contents

teH Long-Handle of TERecord in memory; NIL for active record

<-SP

Stack after call

Previous contents

Errors

c

teH

<-SP

$2202 teNotStarted
$2203 teinvalidHandle

Memory Manager errors

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.
Returned unchanged.

extern pascal void TECut(teH);

Long teH;

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, then TextEdit does nothing and returns immediately
to your program.

TEDeactivate $1022

Deactivates a TextEdit record. Your program specifies the TERecord for the record in
question. TEDeactivate changes the highlighting of the current selection in that record
to show that it is inactive. Any user editing actions (keystrokes, cut and paste) have no
effect on the deactivated record.

Your application need issue this call only if it is managing its own TextEdit records. If your
program uses TextEdit controls, it should not issue this call; TaskMaster manages the
control automatically.

Parameters

Stack before call

Previous contents

teH Long-Handle of TERecord in memory

<-SP

Stack after call

Previous contents

Errors

c

teH

$2202
$2203

<-SP

teNotStarted
teinvalidHandle

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.

extern pascal void TEDeactivate(teH);

Long teH;

Specifies the TextEdit record for the operation.

TEGetDefProc $2222

Returns the address of the TextEdit control definition procedure. When the Control
Manager starts up, the system issues this call to obtain the address of the TextEdit control
definition procedure. This call is not intended for application use.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

defProcPtr

Errors None

Long-Space for result

<-SP

Long-Pointer to control definition procedure

<-SP

c extern pascal Pointer TEGetDefProc();

TEGetinternalProc $2622

Returns a pointer to the low-level procedure routine for TextEdit.

This call is reserved for future use by applications needing to access certain low-level
TextEdit routines.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

- internalProcPtr -

Errors None

Long-Space for result

<-SP

Long-Pointer to internal low-level procedure routine

<-SP

c e xtern pascal Pointer TEGetinternalProc();

TEGetLastError $2722

Returns the last error code generated for a TextEdit record. Your program specifies the
TERecord for the appropriate record and a flag indicating whether to clear the last error
code after the call. TextEdit then returns the last error code for that record and, if
requested, clears the last error field.

Parameters

Stack before call

Previous contents
Space Word-Space for result

clearFlag Word-Flag controlling disposition of last error field for record

- teH - Long-Handle of TERecord in memory; NIL for active record

<-SP

Stack after call

Previous contents
lastError Word-Last error code generated for the record

<-SP

Errors

c

clearFiag

teH

$2202
$2203

teNotStarted
teinvalidHandle

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.

extern pascal Word TEGetLastError(clearFlag, teH);

Word clearFlag;
Long teH;

Flag controlling what TextEdit does with the last error field after
servicing the call.

$0000 Leave the last error code intact
$FFFF Clear the last error code to $0000

Specifies the TextEdit record for the operation.

TEGetRuler $2322

Returns the ruler definition for a TextEdit record. Your program specifies the destination
for the ruler information and the TERecord corresponding to the appropriate record. The
TEGetRuler call returns the TERuler record defining the ruler for the record in
question.

Parameters

Stack before call

Previous contents

rulerDescriptor Word-Type of reference in rulerRef

- rulerRef - Long-Reference to buffer to receive TERuler record

- teH - Long-Handle of TERecord in memory; NIL for active record

<-SP

Stack after call

Previous contents

Errors

c

<-SP

$2202 teNotStarted
$2203 teinvalidHandle

Resource Manager errors

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.
Returned unchanged.

extern pascal void TEGetRuler(rulerDescriptor,
rulerRef, teH);

Word rulerDescriptor;
Long rulerRef, teH;

ru/erDescriptor The type of reference stored in rulerRef

reflsPointer $0000

reflsHandle $0001

rulerRef contains a pointer to a buffer to receive the
TERuler structure

rulerRef contains a handle to a buffer to receive the
TERuler structure

reflsResource $0002 rulerRef contains a resource ID that can be used to
access a buffer to receive the TERuler structure
(resource type of rTERuler, $8025)

reflsNewHandle $0003 rulerRef contains a pointer to a 4-byte buffer to
receive a handle to the TERuler structure;
TEGetRuler allocates the new handle and returns it
in the specified buffer

teH The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, TextEdit does nothing and returns immediately to
your program.

TEGetSelection $1C22

Returns information defining the current selection for a TextEdit record. Your program
specifies the TERecord for the record in question. TEGetSelection then determines
the starting and ending byte offsets for the current selection and returns those values into
locations specified by your program.

Both offset values are stored as 4-byte long values. If there is no current selection for the
specified record, both the starting and ending offsets contain the current caret position.

Parameters

Stack before call

Previous contents

- selectionStart - Long-Pointer to buffer to receive starting offset value

- selectionEnd - Long-Pointer to buffer to receive ending offset value

- teH - Long-Handle of TERecord in memory; NIL for active record

<-SP

Stack after call

Previous contents

Errors

c

teH

$2202
$2203

<-SP

teNet Started
teinvalidHandle

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.

extern pascal void TEGetSelection(selectionStart,
selectionEnd, teH);

Pointer selectionStart , selectionEnd;
Long teH;

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, then TextEdit does nothing and returns immediately
to your program.

TEGetSelectionSty1e $1E22

Returns all style information for the text in the current selection in a TextEdit record. Your
program specifies the TERecord for the record in question and the addresses of buffers
to receive the style data. TEGetSelectionStyle then loads the main output buffer
with TEStyle structures describing all styles affecting text in the current selection. The
first word in the buffer contains a counter indicating the number of TEStyle structures
returned.

TEGetSelectionStyle also builds a common style record containing all style elements
that are common to all text in the selection. A flag word directs your program to the
relevant portions of the common style record, which is also in TEStyle format.

If there is no current selection, TEGet select ionst y le returns the null style record,
which defines the style in which any text inserted at the current caret position will appear.

Parameters

Stack before call

Previous contents
Space

- commonStylePtr -

- styleHandle -

- teH -

Stack after call

Previous contents

Errors

commonF/ag

$2202
$2203

Word-Space for result

Long-Pointer to TEStyle buffer for common style record

Long-Handle to buffer for style information

Long-Handle of TERecord in memory; NIL for active record

<-SP

Word-Bit flag describing common style record contents
<-SP

teNotStarted
teinvalidHandle

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.

c extern pascal Word

TEGetSelectionStyle(commonStylePtr,
styleHandle, teH);

Pointer
Long

commonStylePtr;
styleHandle, teH;

commonStylePtr Pointer to a buffer to receive a formatted TEStyle structure
containing the style elements that are common to all text in the current
selection. The commonFlag parameter indicates which portions of
this TEStyle structure contain valid data.

styleHandle Handle to a buffer to receive the style information for the current
selection. TEGetSelectionStyle returns as many TEStyle
structures as are required to specify all the styles in the selection. If
the buffer referenced by styleHandle cannot accommodate enough
TESty le structures, TEGet Select ionSt y le automatically resizes
the handle memory.

On return from TEGetSelectionStyle , the buffer referenced by
styleHandle is formatted as follows:

$00F 1----c-ou_n_t ----ll Word
$OZ . style : ArrayofTEStyle structures

count

style

teH

The number of TEStyle structures in the styles array.

Array of count TEStyle structures.

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, then TextEdit does nothing and returns immediately
to your program.

commonFlag

Reserved
fUseFont

fUseSize

fUseForeColor

fUseBackColor

fUseUserData

fUseAttributes

Flag indicating which portions of the common style record pointed to
by commonStylePtr are relevant.

bits 15-6
bit 5

bit 4

bit 3

bit 2

bit 1

bit 0

Will be set to 0.
Indicates whether the font family defined by the
font ro field of the common style record is valid.
0 = Font family not valid
1 = Font family valid
Indicates whether the font size defined by the
fontiD field of the common style record is valid.
0 = Font size not valid
1 = Font size valid
Indicates whether the foreColor field of the
common style record is valid.
0 = Foreground color not valid
1 = Foreground color valid
Indicates whether the backColor field of the
common style record is valid.
0 = Background color not valid
1 = Background color valid
Indicates whether the userData field of the
common style record is valid.
0 = User data not valid
1 = User data valid
Indicates whether the attributes defined by the
font ID field of the common style record are valid.
0 = Font attributes not valid
1 = Font attributes valid

TEGet Text $OC22

Returns the text from a TextEdit record, including the style information associated with
that text. Your program specifies the TERecord for the record in question, the format of
the returned text, and buffers to receive the text and style data. TEGet Tex t places the
text in the return buffer in the format requested by your program; style information is
returned in a TEFormat structure.

In addition, TEGet Tex t returns a value indicating the total length of the text in the
TextEdit record. This value represents the number of bytes of text in the record, not the
number of bytes loaded into the return buffer. If the return buffer is too small to receive
all the record text, TEGetText returns a teBufferOverflow error. This error is also
returned if the text is too large to be returned in the specified format (for example, the
record contains 300 text characters and your program requested an output Pascal string).

Parameters

Stack before call

Previous contents

- Space

bufferDescriptor

- buffer Ref

- bufferlength

styleDescriptor

- styleRef

- teH

Stack after call

Previous contents

textLength

-

-
-

-

-

Long-Space for result

Word-Format of text returned at bufferRef

Long-Reference to the output text buffer

Long-Length of the buffer referred to by bufferRef

Word-Type of reference stored in styleRef

Long-Reference to buffer for TEForma t structure defining style

Long-Handle of TERecord in memory; NIL for active record

<-SP

Long-Total length of all text in record

<-SP

Errors

c

$2202 teNotStarted
$2203 teinvalidHandle

$2204 teinvalidDescriptor

$2208 teBufferOverflow

Memory Manager errors
Resource Manager errors

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.
Invalid descriptor value
specified.
The output buffer was too small
to accept all data.
Returned unchanged.
Returned unchanged.

extern pascal Long TEGetText(bufferDescriptor,
bufferRef, bufferLength, styleDescriptor,
styleRef, teH) ;

Long bufferRef, bufferLength, styleRef,
teH;

Word bufferDescriptor, styleDescriptor;

bufferDescriptor Defines the format in which TEGet Text should return the record text
and the type of reference stored in bufferRef

Reserved
refFormat

bits 15-5
bits 4-3

Must be set to 0.
Defines the type of reference stored in bufferRef
00 = bufferRef is a pointer to the output buffer;
buf!erLength contains the length of the buffer (in
bytes)
01 = buf!erRefis a handle to the output buffer;
buf!erLength is ignored
10 = buf!erRefis a resource ID for the output buffer
(TextEdit will create the resource if it does not
already exist); buf!erLength is ignored
11 = buffer Ref is a pointer to a 4-byte buffer to
receive a handle to the output text; TEGet Text
allocates the handle; buf!erLength is ignored

dataFormat

bufferlength

styleDescriptor

bits 2-0 Defines the format of the output text.
000 =Pascal string (resource type of rPString,
$8006)
001 = C string (resource type of restring, $801D)
010 = Class 1 GS/OS input string (resource type of
rClinputString, $8005)
011 = Class 1 GS/OS output string (resource type of
rClOutputString, $8023); application need not
set the buffer size field
100 =Formatted for input to LineEdit LETextBox2
tool call (resource type of rTextForLETextBox2,
$800B)-see Chapter 10, "LineEdit Tool Set," in
Volume 1 of the Toolbox Reference for details
101 = Unformatted text block (resource type
of rText, $8016)
110 =Invalid value
111 =Invalid value

The length of the output buffer referenced by bufferRej, if
re fF o rma t indicates that buffer Ref contains a pointer. For other
types of references, this field is ignored.

The type of reference stored in styleRef

refisPointer $0000 styleRef contains a pointer to a buffer to receive the
TEFormat structure

refisHandle $0001 styleRef contains a handle to a buffer to receive the
TEFormat structure

refisResource $0002 styleRef contains a resource ID that can be used to
access a buffer to receive the TEFormat structure
(resource type of rStyleBlock, $8012)

refisNewHandle $0003 styleRef contains a pointer to a 4-byte buffer to
receive a handle to the TEFormat structure;

styleRef

teH

TEGet Text allocates the new handle and returns it in
the specified buffer

Reference to buffer to receive style information, in TEFormat
structure form. If this field is set to NIL, TEGet Text returns no style
information and ignores styleDescriptor.

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, then TextEdit does nothing and returns immediately
to your program.

textLength The number of bytes of text in the record. Note that this value may
exceed the number of bytes returned at bufferRej, if the referenced
buffer is too small to receive all the text. In this case, TEGet Text also
returns a teBufferOverflow error code.

TEGetTextinfo $0D22

Returns an information record, of variable size, describing a TextEdit record. Your
program specifies the TERecord for the TextEdit record in question, the address of a
buffer to receive the information record, and a value indicating how much data
TEGetTextinfo should return. The system returns the appropriate data at the specified
location.

Parameters

Stack before call

Previous contents

- infoRecPtr

parameterCount

- teH

-

-

Long-Pointer to buffer for information record

Word-Number of fields to return

Long-Handle of TERecord in memory; NIL for active record

<-SP

Stack after call

Previous contents

Errors

c

$2202
$2203

$2206

<-SP

teNotStarted
teinvalidHandle

teinvalidPCount

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.
Invalid parameter count value
specified.

e xtern pascal void TEGetTextinfo(infoRecPtr,
parameterCount, teH);

Pointer infoRecPtr;
Long teH;
Word parameterCount;

infoRecPtr Pointer to a buffer to receive a partial or complete information
record, depending on the value of parameterCount. The information
record is formatted as follows (future versions of TextEdit may add
fields to the end of this record):

${)()

$04

$08

soc

$10

$14

- -
- charCount - Long - -
- -- lineCount - Long - -
- -- formatMemory - Long - -
- -
- totalMemory - Long - -
- -
- styleCount - Long - -
- -- rulerCount - Long - -

charcount The number of text characters in the record.

linecount The number of lines in the record. A line is defined as all the text
displayed on a single line of the screen, based on the current
display options.

formatMemory The amount of memory (in bytes) required to store the style
information for the record.

totalMemory The amount of memory (in bytes) required for the record,
including both text and style data.

styleCount The number of unique styles defined for the record.

r ulerCount The number of rulers defined for the record.

parameterCount The number of information record fields to be returned by
TEGet Tex t Info. Valid values lie in the range from 1 to 6. Values
outside this range yield a teinvalidPCount error code. The
returned data always begins with the charcount field and continues
until the specified number of fields have been formatted.

teH The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, TextEdit does nothing and returns immediately to
your program.

TEidle $0E22

Provides processor time so that TextEdit can cause the cursor to blink and can perform
other background tasks. Your program specifies the TERecord for the record. TextEdit
then determines whether enough time has elapsed to require a cursor blink and, if so,
causes the cursor to blink. In addition, TextEdit performs any necessary background
processing for the record.

Your application need issue this call only if it is managing its own TextEdit records. If your
program uses TextEdit controls, it should not issue this call; TaskMaster manages the
control automatically.

Your program should call TEidle often-usually every time through the main event loop,
and periodically during time-consuming operations. If your program does not call TEidle
often enough, the cursor will blink irregularly. TextEdit ensures that the cursor blink rate
does not exceed that specified by the user's Control Panel setting.

Parameters

Stack before call

Previous contents

teH

Stack after call

Long-Handle of TERecord in memory

<-SP

Previous contents

Errors

c

teH

$2202
$2203

<-SP

teNotStarted
teinvalidHandle

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.

extern pascal void TEidle(teH);

Long teH;

The TextEdit record for the operation.

TEinsert $1A22

Inserts a block of text before the current selection in a TextEdit record and redraws the
text screen. Your program specifies the text and style data to be inserted and the
TERecord for the record. TEinsert then inserts the text and style data at the current
selection.

This call does not affect the Clipboard.

Parameters

Stack before call

Previous contents
textDescriptor

- textRef -

- textLength -

styleDescriptor

- styleRef -

- teH -

Stack after call

Previous contents

Errors $2202
$2203

Word-The format for text stored at textRef

Long-Reference to the input text buffer

Long-Length of the buffer referred to by textRef

Word-The type of reference stored in styleRef
Long-Reference to TEFormat structure defining style for text

Long-Handle of TERecor d in memory; NIL for active record

<-SP

<-SP

teNotStar ted
teinvalidHandle

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.

$220C teinvalidTextBox2 The LETextBox2 format codes

Memory Manager errors
were inconsistent.
Returned unchanged.

c

textDescriptor

Reserved
refFormat

dataFormat

textLength

extern pascal void TEinsert(textDescriptor, textRef,
textLength, styleDescriptor, styleRef,
teH);

Long textRef, textLength, styleRef, teH;
Word textDescriptor, styleDescriptor;

The format of the text to be inserted, and the type of reference
stored in textRef

bits 15-5
bits 4-3

bits 2-0

Must be set to 0.
Defines the type of reference stored in textRef
00 = textRef is a pointer to the text buffer; textLength
contains the length of the buffer (in bytes)
01 = textRefis a handle to the text buffer; textLength is
ignored
10 = textRefis a resource ID for the text buffer;
textLength is ignored
11 = Invalid value
Defines the format of the text.
000 =Pascal string (resource type of rPString,
$8006)
001 = C string (resource type of restring, $801D)
010 = Class 1 GS/OS input string (resource type of
rClinputString, $8005)
011 = Class 1 GS/OS output string (resource type of
rClOutputString, $8023)
100 = Text formatted for input to LineEdit
LETextBox2 tool call (resource type of
rTextForLETextBox2, $800B)-see Chapter 10,
"LineEdit Tool Set," in Volume 1 of the Toolbox
Reference for details; style data in the text overrides
that specified by styleRef
101 = Unformatted text block (resource type of
rText, $8016)
110 =Invalid value
111 = Invalid value

Length of the buffer referenced by textRef This field is valid only for
reference types that do not contain length data (see textDescriptor).
For other types of references, this field is ignored.

styleDescriptor

refisPointer
refisHandle
refisResource

styleRef

teH

The type of reference stored in styleRef

$0000
$0001
$0002

styleRefcontains a pointer to a TEFormat structure
styleRefcontains a handle to a TEFormat structure
styleRef contains a resource ID that can be used to
access a buffer containing the TEFormat structure
(resource type of rStyle Block, $8012)

Reference to buffer containing style information, in TEFormat
structure form. If this field is set to NIL, TEinsert uses the style of
the first character in the current selection and ignores styleDescriptor.

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, TextEdit does nothing and returns immediately to
your program.

TEKey $1422

Processes a keystroke for a TextEdit record. Your program specifies the TERecord for
the record and the event record for the keystroke; TEKey then processes the key. If the
keystroke is a control key (one that requires special processing, as outlined in "Standard
TextEdit Key Sequences" earlier in this chapter), TEKey performs the appropriate
TextEdit action. If the keystroke is not a control key, TEKey inserts the corresponding
character into the text of the target TextEdit record at the current selection.

Your application need issue this call only if it is managing its own TextEdit records. If your
program uses TextEdit controls, it should not issue this call; TaskMaster manages the
control automatically.

Your program should issue this call in response to KeyDown or AutoKey events.

Parameters

Stack before call

Previous contents

- eventRecordPtr - Long-Pointer to event record for the key

teH Long-Handle of TERecord in memory

<-SP

Stack after call

Previous contents

Errors

c

<-SP

$2202 teNotStarted
$2203 teinvalidHandle

Memory Manager errors

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.
Returned unchanged.

extern pascal void TEKey(eventRecordPtr, teH);

Pointer
Long

eventRecordPtr;
teH;

eventRecordPtr Pointer to the event record describing the keystroke. For information
on the format and content of event records, see Chapter 7, "Event
Manager," in Volume 1 of the Toolbox Reference. Note that TextEdit
uses only the message and modifiers fields in the event record.

teH The TextEdit record for the operation.

TEKill $0A22

Deallocates a TERecord and all associated memory. Your program specifies the
TERecord to be freed. TEKill then releases the record and any memory supporting it.
TEKill does not erase or invalidate the screen, nor does it make another record the
target if the target record is killed. Your program must take care of these duties.

Your program should issue this call only when it is completely through with the TERecord
and its TextEdit record-all text associated with the record is lost after this call.

If your program uses TextEdit controls it may issue the KillControls or
DisposeControl Control Manager tool calls instead of TEKill.

Parameters

Stack before call

Previous contents

teH Long-Handle of TERecord in memory

<-SP

Stack after call

Previous contents

Errors

c

teH

$2202
$2203

<-SP

teNotStarted
teinvalidHandle

TextEdit has not been started.
teH does not refer to a valid
TERecord.

extern pascal void TEKill(teH);

Long teH;

The TextEdit record for the operation.

TENew $0922

Allocates a new TextEdit record in the current port and returns the TERecord defining
that record. Your program specifies the parameters for that record in a TEParamBlock
structure (see "TextEdit Data Structures" earlier in this chapter for information on the
format and content of the TEParamBlock). TextEdit then allocates and formats the
TERecord for the record.

The boundary rectangle specified in the TEParamBlock must be large enough to
completely enclose a single character in the largest allowable font for the record.

Your program should issue this call only if it is not using TextEdit controls. To create a
TextEdit control, use the Newcontrol2 Control Manager tool call (see Chapter 28,
"Control Manager Update," in this book). Note that NewControl2 may be used to create
several controls at once.

Parameters

Stack before call

Previous contents

Space Long-Space for result

- parameterBlock - Long-Pointer to formatted TEParamBlock

<-SP

Stack after call

Previous contents

teH

Errors

Long-Handle to new TERecord

<-SP

$2202 teNotStarted
$2204 teinvalidDescriptor

$2205 teinvalidFlag
$2206 teinvalidPCount

Memory Manager errors

TextEdit has not been started.
Invalid descriptor value
specified.
Specified flag word is invalid.
Invalid parameter count value
specified.
Returned unchanged.

c extern pascal Long TENew(parameterBlock);

Pointer parameterBlock;

TEOffsetToPoint $2022

Converts a text byte offset into a pixel position expressed in the local coordinates of the
Graf'Port containing the TextEdit record. Your program specifies the byte offset to the
character in question, the addresses of buffers to receive the pixel position information,
and the TERecord for the record. TEOffsetToPoint then determines the pixel
position of the character.

The returned pixel position is expressed as two signed long integers. If the specified
offset is beyond the end of the text for the record, TEOffsetToPoint returns the
position of the last character. Note that if the specified character lies above the display
rectangle, the vertical position component will be a negative value. The pixel position is
not expressed as a QuickDraw II point, because the TextEdit drawing space is larger than
the QuickDraw II drawing space.

The TEPointToOffset call performs the inverse operation, converting a pixel position
into a text offset.

Parameters

Stack before call

Previous contents

- textO!fset -

- vertPosPtr -
- horzPosPtr -
- teH -

Stack after call

Previous contents

Errors $2202
$2203

Long-Byte offset to text

Long-Pointer to 4-byte buffer to receive vertical position

Long-Pointer to 4-byte buffer to receive horizontal position

Long-Handle of TERecord in memory; NIL for active record

<-SP

<-SP

teNotStarted
teinvalidHandle

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.

c

teH

extern pascal void TEOffsetToPoint(textOffset,
vertPosPtr, horzPosPtr, teH);

Long
Pointer

textOffset, teH;
vertPosPtr, horzPosPtr;

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, TextEdit does nothing and returns immediately to
your program.

TEPaintText $1322

Prints the text from a TextEdit record. Your program specifies the destination rectangle
and GrafFort, print control information, and the TextEdit record from which
TEPaintText is to print. TextEdit then draws the appropriate record text into the
specified rectangle and GrafFort. TEPaintText begins printing at a line number you
specify and continues until the destination rectangle has been filled. The routine then
returns the next line number to be printed so that your program can issue the next call
correctly.

Your program issues this tool call within a Print Manager job, which you start by calling
PrOpenDoc. The Print Manager returns the GrafPort pointer when you initiate the job.
Refer to Chapter 15, "Print Manager," in Volume 1 of the Toolbox Reference for complete
information on starting, managing, and ending a print job.

Note that this call is not limited to printing; your application can use this tool call to paint
into any GrafFort.

Parameters

Stack before call

Previous contents

- Space

- grafPort

- startingLine

- rectPtr

flags

- teH

Stack after call

Previous contents

nextLine

-

-
-
-

-

Long-Space for result

Long-Pointer to destination GrafPort

Long-Starting line number for print operation (0 relative)

Long-Pointer to the destination rectangle in GrafPort

Word-Control flags for the print operation

Long-Handle of TERecord in memory; NIL for active record

<-SP

Long-Next line number to print ($FFFFFFF at end of file)

<-SP

Errors

c

grafPort

startingline

rectPtr

$2202
$2203

$2209

teNotStarted
teinvalidHandle

teinvalidLine

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.
Starting line value is greater than
the number of lines in the text
(end-of-file).

extern pascal Long TE?aintText(grafPort,
startingLine, rectPtr, flags, teH);

Pointer grafPort, rectPtr;
Long startingLine, teH;
Word flags;

Pointer to a QuickDraw II Grafl>ort definition that describes the
destination for the print operation. For more information on the
format, content, and use of the Grafl>ort structure, see Chapter 16,
"QuickDraw II," in Volume 2 of the Toolbox Reference.

The first line to be printed. A line is defined as the text that is
displayed on a single line of the screen, based on the current display
options. TextEdit numbers lines starting from 0.

Pointer to a structure defining the destination rectangle for the print
operation. This rectangle essentially defines the output page size and
must lie in the output Grafl>ort specified by grafPort. Each print
operation initiated by TEPaint Text ends when the rectangle
described by the structure pointed to by rectPtr is filled. Refer to the
description of the P rOpenP age tool call in Chapter 15, "Print
Manager," in Volume 1 of the Toolbox Reference for more information
on this frame rectangle.

flags

fPartialLines
fDontDraw

Reserved

teH

Flags controlling the print operation.

bit 15
bit 14

Reserved; must be set to 0.
Controls printing.
0 = Print data
1 = Calculate the number of lines that will fit in
rectPtr, but do not print-nextLine still contains next
line to print just as if text had been printed (supports
page skip)

bits 13-0 Must be set to 0.

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, TextEdit does nothing and returns immediately to
your program.

TEPaste $1822

Replaces the current selection with the contents of the Clipboard, including both text and
style information. Your program specifies the TERecord for the TextEdit record in which
the operation is to take place. TEPaste then pastes the data from the Clipboard into the
record text. If the Clipboard is empty, the current selection is untouched.

Your application need issue this call only if it is managing its own TextEdit records. If your
program uses TextEdit controls, it should not issue this call; TaskMaster manages the
control automatically.

Parameters

Stack before call

Previous contents

teH Long-Handle of TERecord in memory; NIL for active record

<-SP

Stack after call

Previous contents

Errors

c

teH

<-SP

$2202 teNotStarted
$2203 teinvalidHandle

Memory Manager errors

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.
Returned unchanged.

extern pascal void TEPaste(teH);

Long teH;

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, TextEdit does nothing and returns immediately to
your program.

TEPointToOffset $2122

Converts a pixel position, expressed in the local coordinates of the GratPort containing
the TextEdit record, into a text byte offset to the text for the record. Your program
specifies the pixel position in terms of its relative horizontal and vertical location in the
GratPort, but not as a QuickDraw II point. TEPoint ToOffset then generates the

· appropriate text offset within the record.

The vertical and horizontal components of the pixel position are represented as signed
long integers. If the specified position lies before the first text character in the record,
then the returned offset will be $00000000. If the position is after the last text character,
the call returns the offset of the last character in the record. If your program specifies a
horizontal position beyond the last character in a line, TEPointToOffset returns the
offset of the last character in the line.

The TEOffsetToPoint call performs the inverse operation, converting a text offset
into a pixel position.

Parameters

Stack before call

Previous contents

- Space -

- vertPos -
- horzPos -
- teH -

Stack after call

Previous contents

textO!fset

Errors $2202
$2203

Long-Space for result

Long-Vertical position component

Long-Horizontal position component

Long-Handle of TERecord in memory; NIL for active record

<-SP

Long-Byte offset to text corresponding to pixel position

<-SP

teNotStarted
teinvalidHandle

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.

c

teH

e xtern pascal Long TEPointToOffset(vertPos, horzPos,
teH);

Long vertPos, horzPos, teH;

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, TextEdit does nothing and returns immediately to
your program.

TEReplace $1B22

Replaces the current selection in a TextEdit record with a specified block of text and
redraws the text screen. Your program specifies the text and style data to be replaced and
the TERecord for the record. TEReplace then replaces the current selection with the
new text and style data.

This call does not affect the Clipboard.

Parameters

Stack before call

Previous contents
textDescriptor

- textRef -

- textlength -

styleDescriptor

- styleRef -
- teH -

Stack after call

Previous contents

Errors $2202
$2203

$220C

Word-Format of text stored at textRef

Long-Reference to the input text buffer

Long-Length of the buffer referred to by textRef

Word-Type of reference stored in styleRef

Long-Reference to TEFormat structure defining style for text

Long-Handle of TERecord in memory; NIL for active record

<-SP

<-SP

teNotSta rt e d TextEdit has not been started.
teinval i dHandle The teH parameter does not refer

to a valid TERecord.
teinvalidTextBox2 The LETextBox2 format codes

were inconsistent.
Memory Manager errors Returned unchanged.

c

textDescriptor

Reserved
refFormat

dataFormat

textLength

extern pascal void TEReplace(textDescriptor,
textRef, textLength, styleDescriptor,
styleRef, teH);

Long textRef, textLength, styleRef, teH;
Word textDescriptor, styleDescriptor;

The format of the text to be inserted and the type of reference stored
in textRef

bits 15-5
bits 4-3

bits 2-0

Must be set to 0.
Defines the type of reference stored in textRef
00 = textRef is a pointer to the text buffer; textLength
contains the length of the buffer (in bytes)
01 = textRefis a handle to the text buffer; textLength is
ignored
10 = textRefis a resource ID for the text buffer;
textLength is ignored
11 = Invalid value
Defines the format of the text.
000 =Pascal string (resource type of rPString,
$8006)
001 = C string (resource type of restring, $801D)
010 =Class 1 GS/OS input string (resource type of
rC linput String, $8005)
011 = Class 1 GS/OS output string (resource type of
rClOutputString, $8023)
100 = Text formatted for input to LineEdit
LETextBox2 tool call (resource type of
rTextForLETextBox2, $800B)-see Chapter 10,
"LineEdit Tool Set," in Volume 1 of the Toolbox
Reference for details; style data in the text overrides
that specified by styleRef
101 = Unformatted text block (resource type of
rText, $8016)
110 =Invalid value
111 = Invalid value

The length of the buffer referenced by textRef This field is valid only
for reference types that do not contain length data (see
textDescriptor). For other types of references, this field is ignored.

styleDescriptor

refisPointer
refisHandle
refisResource

styleRef

teH

The type of reference stored in styleRef

$0000
$0001
$0002

styleRef contains a pointer to a TEFo rma t structure
styleRefcontains a handle to a TEFormat structure
styleRef contains a resource ID that can be used to
access a buffer containing the TEFormat structure
(resource type of rStyleBlock, $8012)

Reference to buffer containing style information, in TEFormat
structure form. If this field is set to NIL, TEReplace uses the first
defined style in the current selection for the record and ignores
styleDescriptor.

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, TextEdit does nothing and returns immediately to
your program.

TEScroll $2522

Causes the text in a TextEdit record to scroll. Your program specifies control information
for the scroll operation and the TERecord for the record. TEScroll then updates the
current position for the record accordingly.

Parameters

Stack before call

Previous contents
scrol/Descriptor

- vertAmount -
- horzAmount -

- teH -

Stack after call

Previous contents

Errors $2202
$2203

Word-Control information for the scroll operation

Long-Vertical amount to scroll (this is a signed value)

Long-Horizontal amount to scroll (must be set to 0)

Long-Handle of TERecord in memory; NIL for active record

<-SP

<-SP

teNotStarted
teinvalidHandle

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.

c extern pascal void TEScroll(scrollDescriptor,
vertAmount, hor zAmount, teH);

Word scrollDescriptor;
Long vertAmount, horzAmount, teH;

scrol/Descriptor The nature of the scroll operation, and the use of and units for
vertAmount and horzAmount.

$0000 Scroll to absolute text position, place at top of window. The
vertAmount parameter contains the byte offset value for the
text character to place at the top of the TextEdit display
window. The horzAmount parameter is ignored.

$0001 Scroll to absolute text position, center in window. The
vertAmount parameter contains the byte offset value for the
text character to place in the center of the TextEdit display
window. The horzAmount parameter is ignored.

$0002 Scroll to line, place at top of window. The vertAmount parameter
contains a line number specifying which text line to place at the
top of the TextEdit display window. The horzAmount
parameter is ignored.

$0003 Scroll to line, center in window. The vertAmount parameter
contains a line number specifying which text line to center in the
TextEdit display window. The horzAmount parameter is
ignored.

$0004 Scroll to absolute unit position, place at top of window. The
vertAmount parameter contains a value defining how far the top
of the TextEdit window should scroll, in units defined by the
value of the vertScrollAmount field of the TERecord for the
record. The horzAmount parameter must be set to 0.

$0005 Scroll to relative unit position, place at top of window. The
vertAmount parameter contains a value to add to contents of
the vertScrollPos field of the TEReco rd for the record, in units
defined by the value of the vertScrol/Amount field of that
TERecord. The horzAmount parameter must be set to 0.

teH The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, TextEdit does nothing and returns immediately to
your program.

TESetRuler $2422

Sets the ruler for a TextEdit record. Your program specifies the new ruler definition in
TERuler format and the TERecord for the record. TESetRuler then sets the ruler as
specified and reformats all text in the record. For TextEdit controls, TESetRuler
invalidates the entire display rectangle (the screen will be redrawn on the next update
event). For TextEdit records that are not controls, TESetRuler redraws the screen.

Parameters

Stack before call

Previous contents
rulerDescriptor Word-Type of reference in rulerRef

- ruler Ref - Long-Reference to buffer containing new TERuler structure

- teH - Long-Handle of TERecord in memory; NIL for active record

<-SP

Stack after call

Previous contents

E1TOrs

c

$2202
$2203

<-SP

teNotStarted
teinvalidHandle

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.

extern pascal void TESetRuler(rulerDescriptor,
rulerRef, teH) ;

Word rulerDescriptor;
Long rulerRef, teH;

rulerDescriptor The type of reference stored in rulerRef

refisPointer

refisHandle

refisResource

teH

$0000

$0001

$0002

ruler Ref contains a pointer to a buffer containing the
TERuler structure
rulerRef contains a handle to a buffer containing the
TERuler structure
ruler Ref contains a resource ID that can be used to
access a buffer containing the TERuler structure
(resource type of rTERuler, $8025)

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, TextEdit does nothing and returns immediately to
your program.

TESetSelection $1D22

Sets the current selection for a TextEdit record. Your program specifies the starting and
ending text byte offsets for the selection and the TERecord for the record.
TESetSelection then updates the record accordingly.

If the ending offset value is less than the starting value, TESetSelection automatically
swaps them. If either offset is beyond the end of the text for the record, it is reset to the
offset for the last character.

Parameters

Stack before call

Previous contents

- selectionStart - Long-Starting offset value

- selectionEnd - Long-Ending offset value

- teH - Long-Handle of TERecord in memory; NIL for active record

<-SP

Stack after call

Previous contents

Errors

c

teH

$2202
$2203

<-SP

teNotStarted
teinvalidHandle

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.

extern pascal void TESetSelection(selectionStart,
selectionEnd, teH);

Pointer selectionStart, selectionEnd;
Long teH;

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, TextEdit does nothing and returns immediately to
your program.

TESet Text $0B22

Replaces the text in a TextEdit record, including style information, with supplied text and
style data. Your program supplies the text and style information, along with the
TERecord for the TextEdit record. TESet Text then replaces any existing text and style
information in the record with the supplied data. For TextEdit controls, TE set Tex t then
invalidates the entire display rectangle (the screen will be redrawn on the next update
event). For TextEdit records that are not controls, TESet Text redraws the screen
immediately.

Supplied style information must be formatted in a TEFormat structure.

Parameters

Stack before call

Previous contents
textDescriptor

- textRef

- textLength

styleDescriptor

styleRef

- teH

-
-

-

-

Word-Format of text stored at textRef

Long-Reference to the input text

Long-Length of the buffer referred to by textRef

Word-Type of reference stored in styleRef

Long-Reference to TEFormat structure defining style

Long-Handle of TERecord in memory; NIL for active record

<- SP

Stack after call

Previous contents

Errors

<-SP

$2202 teNotStarted
$2203 t e invalidHandle

$2204 t einva l idDescri ptor
Memory Manager errors

TextEdit has not been started.
The teH parameter does not refer
to a valid TERecord.
Invalid descriptor value specified.
Returned unchanged.

c

textDescriptor

Reserved
refFormat

dataFormat

textLength

e xtern pascal void TESetText(textDescriptor,
textRef, textLength, styleDescriptor,
styleRef, teH) ;

Long textRef, textLength, styleRef, teH;
Word textDescriptor, styleDescriptor;

The format of the new text for the record, and the type of reference
stored in textRef

bits 15-5
bits 4-3

bits 2-0

Must be set to 0.
Defines the type of reference stored in textRef
00 = textRef is a pointer to the text; textLength
contains the length of the buffer (in bytes)
01 = textRefis a handle to the text; textLength is
ignored
10 = textRefis a resource ID for the text; textLength is
ignored
11 = Invalid value
Defines the format of the text.
000 =Pascal string (resource type of rPString,
$8006)
001 = C string (resource type of restring, $801D)
010 = Class 1 GS/OS input string (resource type of
rClinputString, $8005)
011 = Class 1 GS/OS output string (resource type of
rClOutputString, $8023)
100 = Text formatted for input to LineEdit
LETextBox 2 tool call (resource type of
rTextForLETextBox2 , $800B)-see Chapter 10,
"LineEdit Tool Set," in Volume 1 of the Toolbox
Reference for details; style data in the text overrides
that specified by sty/eRef
101 = Unformatted text block (resource type of
rText, $8016)
110 =Invalid value
111 = Invalid value

Length of the text referenced by textRef This field is valid only for
reference types that do not contain length data (see textDescriptor).
For other types of references, this field is ignored.

styleDescriptor

refisPointer
refisHandle
refisResource

styleRef

teH

The type of reference stored in styleRef

$0000
$0001
$0002

styleRefcontains a pointer to the TEFormat structure
styleRefcontains a handle to the TEFormat structure
styleRef contains a resource ID that can be used to
access the TEFormat structure (resource type of
rStyleBlock, $8012)

Reference to style information for the new text, in TEFormat
structure form. If this field is set to NIL, TESet Text uses the first
style encountered in the existing text for the record.

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, TextEdit does nothing and returns immediately to
your program.

TEStyleChange $1F22

Changes the style information for the current selection in a TextEdit record. Your program
specifies the style information and the TERecord for the record. TEStyleChange then
applies that new information to all the styles in the current selection. If there is no current
selection, then the new style applies to the null style record, which defines style
information for newly inserted text.

Parameters

Stack before call

Previous contents
flags

- stylePtr -
- teH -

Stack after call

Previous contents

Errors $2202
$2203

$2205

c extern

Word
Pointer
Long

Word-Control flag for applying style data from TEStyle

Long-Pointer to TEStyle structure

Long-Handle of TERecord in memory; NIL for active record

<-SP

<-SP

teNotStarted TextEdit has not been started.
teinvalidHandle The teH parameter does not refer

to a valid TERecord.
teinvalidFlag Specified flag word is invalid.

pascal void TEStyleChange(flags, stylePtr,

teH);

flags;
stylePtr;
teH;

flags Flags indicating which portions of the TEsty 1 e structure pointed to
by stylePtr are relevant.

Reserved
fReplaceFont

fReplaceSize

bits 15-7
bit 6

bit 5

fReplaceForeColor
bit 4

fReplaceBackColor
bit 3

fReplaceUserData bit 2

fReplaceAttributes
bit 1

Must be set to 0.
Controls use offont family defined by fontro field
of TEStyl e structure.
0 = Do not change font family
1 = Replace the font family for all styles in the current
selection
Controls use of font size defined by font I o field of
TEStyle structure.
0 = Do not change font size
1 = Replace the font size for all styles in the current
selection

Controls use of foreColor field of TEStyle
structure.
0 = Do not change the foreground color
1 = Replace the foreground color for all styles in the
current selection

Controls use ofbackColor field of TEStyle
structure.
0 = Do not change the background color
1 = Replace the background color for all styles in the
current selection
Controls the use of the userData field of the
TESty le structure.
0 =Do not change userData field
1 =Replace the userData field for all styles in the
current selection with that in the supplied TEStyle
structure

Controls use of font attributes defined by the
fontiD field of TEStyle structure.
0 = Do not change font attributes
1 = Replace the font attributes for all styles in the
current selection

fSwitchAttributes
bit 0 Controls attribute switching.

0 = Perform no attribute switching
1 = If the entire selection contains the font attributes
specified by the TEStyle structure fontiD field,
these attributes are removed from the selection;
otherwise, the specified attributes are added to
those already defined for the selection (note that the
attributes are considered together, not individually)

+ Note: The fReplaceAttributes and fSwitchAttributes flags are mutually
exclusive. If both flags are set to 1, TEStyleChange returns a teinvalidFlag
error code.

stylePtr

teH

Pointer to a formatted TESt y le structure containing the style
elements that are to be applied to the current selection. The flags
parameter indicates which portions of this TEStyle structure
contain valid data.

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, TextEdit does nothing and returns immediately to
your program.

TEUpdate $1222

Redraws the screen for a TextEdit record. Your program specifies the TEReco rd for the
record. TEUpdate then redraws the textfor the record. Only that portion of the screen
that must be redrawn is affected.

Your program should issue this call after the Window Manager Begin Update call and
before an EndUpdate call. Issue this call separately for each TextEdit record in the
window. TextEdit returns very quickly if no redraw is required.

If your program uses TextEdit controls, use the ControlManager Drawc ontrols tool call
rather than TEUpdate.

Parameters

Stack before call

Previous contents

teH Long-Handle of TERecord in memory

<-SP

Stack after call

Previous contents

Errors

c

teH

$2202
$2203

<-SP

teNot St arted
teinvalidHandle

TextEdit has not been started.
The teH arameter does not refer
to a valid TERecord.

e x t ern pascal v o i d TEUpdate(teH);

Lo n g teH;

The TextEdit record for the operation.

TextEdit summary

Tables 49-1, 49-2, and 49-3 summarize the constants, data structures, and error codes
(respectively) used by TextEdit.

• Table 49-1 TextEdit constants

Name

Justification values

left Just
right Just
centerJust
fullJust

Value

$0000
$FFFF
$0001
$0002

TERuler tabType field values

noTabs $0000

stdTabs $0001

absTabs $0002

TEParamBlock flags field values

fCtl!nvis
fRecordDirty

$0080
$0040

Description

Left-justify all text
Right-justify all text
Center all text
Fully justify all text (both left and right
margins)

No tabs defined-tabType is last
field in TERuler structure
Tabs every tabTerminator pixels-
tabTerminator is last field in the
TERuler structure; theTabs is
omitted
Tabs at absolute locations specified
by theTabs array

Controls visibility of the record
Indicates whether text or style data
have changed since the last save

[continued]

• Table 49-1 TextEdit constants [continued)

Name Value

TEParamBlock moreFlaqs field values

fCtlTarget $8000
fCtlCanBeTarget $4000

fCtlWantEvents $2000
fCtlProcRefNotPtr $1000
fCtlTellAboutSize $0800
fCtlisMultiPart $0400
Color table reference $000C

Style reference $0003

TEParamBl.ock textFl.aqs field values

fNotControl $80000000
fSingleFormat $40000000

fSingleStyle $20000000
fNoWordWrap $10000000
fNoScroll $08000000
fReadOnly $04000000
fSmartCutPaste $02000000

fTabSwitch $01000000

fDrawBounds $00800000

fColorHilight $00400000
fGrowRuler $00200000

fDisableSelection $00100000
fDrawinactiveSelection $00080000

Description

Record is target of user keystrokes
Record can be target of user
keystrokes-must be set to 1
Must be set to 1
Must be set to 1
Record should have a size box
Must be set to 1
Indicates type of reference
in colorRef
Indicates type of reference
in styleRef

TextEdit record is not a control
Only one ruler is allowed for record-
must be set to 1
Only one style is allowed for record
No word wrap is performed
The text cannot scroll
Text cannot be edited
Record supports intelligent cut and
paste
Tab key switches user to next TextEdit
record on the screen
TextEdit draws a box around text,
inside the boundary rectangle
Use color table for highlighting
Adjust right margin whenever the user
changes the window size
User cannot select or edit text
TextEdit displays a box around an
inactive selection

• Table49-2 TextEdit data structures

Name Offset/Value Type Description

TEColorTable

content Color $0000 Word Color used for inside of boundary
rectangle

outlineColor $0002 Word Color used for outline drawn around
text

vertColorDescriptor
$0008 Word Type of reference in vertColorRef

vertColorRef $OOOA Long Reference to color table for vertical
scroll bar

horzColorDescriptor
$000E Word Type of reference in horzColorRef

horzColorRef $0010 Long Reference to color table for horizontal
scroll bar

growColorDescriptor
$0014 Word Type of reference in growColorRef

growColorRef $0016 Long Reference to color table for size box

+ Note: All of the bits in each TEColorTable color word are significant. TextEdit
forms color patterns by replicating the appropriate color word the appropriate
number of times to form a QuickDraw II pattern.

TEFormat (format structure)

version $0000 Word Version number of format
value must be $0000

rulerListLength
$0002 Long Size in bytes of theRulerList array

theRulerList $0006 TERuler Array of TERuler structures
styleListLength Long Size in bytes of theStyleList array
theStyleList TEStyle Array of TEStyle structures
numberOfStyles Long Number of entries in theStyles array
theStyles Style Item Array of Style Item structures

[continued)

• Table 49-2 TextEdit data structures [continued]

Name Offset/Value Type Description

TEParamBlock (parameter block for creating TextEdit structures)

pCount $0000 Word Number of parameters to follow-
values range from 7 through 23

ID $0002 Long Application-assigned ID for record
boundsRect $0006 Rect Boundary rectangle for entire TextEdit

record, including scroll bars and
outlines

procRef $000E Long Must be set to $85000000
flags $0012 Word Control flags
moreFlags $0014 Word More control flags
refCon $0016 Long Reserved for application use
textFlags $001A Long TextEdit control flags
indentRect $001E Rect Number of pixels to indent the text

from each edge of the boundary
rectangle

vert Bar $0026 Handle Handle to vertical scroll bar
vertAmount $002A Word Number of pixels to scroll per click on

vertical scroll arrows
horzBar $002C Handle Reserved-must be set to NIL
horzAmount $0030 Word Reserved-must be set to $0000
styleRef $0032 Long Reference to initial style information

for record
textDescriptor $0036 Word Defines format of textRef
textRef $0038 Long Reference to initial text for record
text Length $003C Long Length of text referred to by text Ref
maxChars $0040 Long Maximum number of characters

allowed in record
maxLines $0044 Long Must be set to NIL
maxCharsPerLine

$0048 Word Must be set to NIL
maxHeight $004A Word Must be set to NIL
colorRef $004C Long Reference to the TEColorTable for

the record
drawMode $0050 Word QuickDraw II text mode
filterProcPtr $0052 Pointer Pointer to filter routine for the record

[continued]

• Table 49-2 TextEdit data structures [continued]

Name Offset/Value Type Description

TERecord (control structure for TextEdit records)

ctrlNext $0000 Handle Handle to next control in control list
inPort $0004 Pointer Pointer to GrafPort for TextEdit

record
boundsRect $0008 Rect Boundary rectangle for record
ctrlFlag $0010 Byte Low-order byte from TEPararnBlock

flags field
ctrlHilite $0011 Byte Reserved
lastErrorCode $0012 Word Last error generated by TextEdit
ctrlProc $0014 Long Always set to $85000000
ctrlAction $0018 Long Reserved
filterProc $001C Pointer Pointer to filter procedure for the

record
ctrlRefCon $0020 Long Reserved for application
colorRef $0024 Long Reference to TEColorTable for

record
text Flags $0028 Long The textFlags field from the

TEPararnBloc k used to create the
record

text Length $002C Long Length in bytes of text in record
blackList $0030 Text List Text List structure describing text

for the record
ctrliD $0038 Long Application-assigned ID for the record
ctrlMoreFlags $003C Word TEPararnBlock rnore Flags field
ctrlVersion $003E Word Reserved
vie wRect $0040 Rect Boundary rectangle for text on screen
totalHeight $0048 Long Total height of the text for the record,

in pixels
line Super $004C SuperHandle Root reference for text in record
styleSuper $0058 SuperHa ndle Root reference for styles in record
styleList $0064 Handle Handle to list of unique styles
rulerLis t $0068 Handle Handle to list of rulers
lineAtEndFlag $006C Word Indicates whether last character was a

line break
selectionStart $006E Long Starting text offset for current

selection
se l ectionEnd $0072 Long Ending text offset for current selection

[continued]

• Table 49-2 TextEdit data structures [continued!

Name Offset/Value Type Description

selectionActive
$0076 Word Indicates whether selection is active

select ionState $0078 Word Indicates whether selection is on
screen

caret Time $007A Long Tick count for insertion point blink
nullStyleActive

$007E Word Indicates whether null style is to be used
nullStyle $0080 TEStyle Style definition for null style
topTextOffset $008C Long Offset into record text corresponding

to top of screen
topTextVPos $0090 Word Difference between top of text and

topmost scroll position
vertScrollBar $0092 Handle Handle of vertical scroll bar
vertScrollPos $0096 Long Current vertical scroll position
vertScrollMax $009A Long Maximum allowable vertical scroll from

top of text
vertScrollAmount

$009E Word Number of pixels to scroll on each
vertical arrow click

horzScrollBar $00AO Handle Not supported
horzScrollPos $00A4 Long Not supported
horzScrollMax $00A8 Long Not supported
horzScrollAmount

$00AC Word Not supported
growBox Handle $00AE Handle Handle to the size box control
maximumChars $00B2 Long Maximum number of characters

allowed in the text
maximumLines $00B6 Long Not supported
maxCharsPerLine

$00BA Word Not supported
maximumHeight $00BC Word Not supported
textDrawMode $00BE Word QuickDraw II drawing mode for the text
wordBreakHook $00CO Pointer Pointer to routine to handle word breaks
wordWrapHook $00C4 Pointer Pointer to routine to handle word wrap
keyFilter $00C8 Pointer Pointer to keystroke filter routine
theFilterRect $00CC Rect Rectangle for generic filter procedure

[continued)

• Table 49-2 TextEdit data structures [continued]

Name Offset/Value Type Description

theBufferVPos $00D4 Word Vertical component of current position
for generic filter procedure

theBufferHPos $00D6 Word Horizontal component of current
position for generic filter procedure

theKeyRecord $00D8 KeyRecord Parameters for keystroke filter routine
cachedSelcOffset

$00E6 Long Text offset for cached insertion point
position

cachedSelcVPos $00EA Word Vertical component of cached
insertion point position

cachedSelcHPos $00EC Word Horizontal component of cached
insertion point position

mouseRect $00EE Rect Boundary rectangle for mouse events
mouseTime $OOF6 Long Tick count value when mouse button

was last released
mouseKind $OOFA Word Type of last click
lastClick $00FC Point Location of last click
savedHPos $0100 Word Saved horizontal position for up and

down scroll arrows
anchorPoint $0102 Long Anchor point for current selection

+ Note: TextEdit maintains fields beyond anchorPoint. Applications should never
access these fields or attempt to save the state of a TextEdit record by writing and
reading the public fields documented here.

[continued]

• Table49-2 TextEdit data structures [continued]

Name Offset/Value Type Description

TERuler (ruler structure)

leftMargin $0000 Word Left indent pixel count for all lines
except those that start paragraphs

left Indent $0002 Word Left indent pixel count for lines that
start paragraphs

rightMargin $0004 Word Right text boundary, measured from
left edge of text rectangle

just $0006 Word Text justification flag
extraLS $0008 Word Spacing between lines (in pixels)
flags $000A Word Control flags for the ruler
userData $000C Long Reserved for application use
tabType $0010 Word Type of tabs used
theTabs $0012 Tab Item Array of Tab Items, one for each

absolute tab stop
tabTerminator $xxxx Word Either the spacing for standard tabs or

a flag terminating theTabs array

TEStyle (style description structure)

fontiD $0000 Long Font ID for text using this style
foreColor $0004 Word Foreground color for the style
backColor $0006 Word Background color for the style
userData $0008 Long Reserved for application use

KeyRecord

theChar $0000 Word Character value to translate
theModifiers $0002 Word Modifier key state bit flag (see

Chapter 7, "Event Manager," in
Volume 1 of the Toolbox Reference for
information on key modifiers)

theinputHandle $0004 Handle Handle to character to insert
cursorOffset $0008 Long New cursor location
theOpCode $000C Word Operation code for key filter routine

[continued]

• Table 49-2 TextEdit data structures [continued]

Name Offset/Value Type

styleitem (style reference stmcture)

length $0000 Long

offset $0004 Long

SuperBlock

next Handle $0000 Handle
prevHandle $0004 Handle
text Length $0008 Long

$000C Long
the Items $0010 Super Item

SuperHandle

cachedHandle $0000 Handle
cachedOffset $0004 Long

cached Index $0008 Word
itemsPerBlock $000A Word

Superitem

length $0000 Long

data $0004 Long

Tabitem (tab stop descriptor)

tabKind $0000 Word
tabData $0002 Word

Description

Number of text characters using the
style
Byte offset into theStyleList to
entry that defines the style for this text

Handle to next SuperBlock in list
Handle to previous superBlock in list
Number of bytes of text for
this SuperBlock
Reserved
Array of Superrtems for this block

Handle to the current SuperBlock
Text offset of the start of the
current SuperBlock
Index value for current SuperBlock
Numberofsuperitems
per superBlock

Number of bytes of text for
this Superitem
Data for the Super Item

Must be set to $0000
Pixel offset to the tab stop from left
boundary of text rectangle

[continued]

• Table 49-2 TextEdit data structures !continued]

Name Offset/Value Type

TextBJ.ock

next Handle
prevHandle
text Length
flags

the Text

TextList

$0000
$0004
$0008
$000C
$000E
$0010

cachedHandle $0000
cachedOffset $0004

Handle
Handle
Long
Word
Word
Byte

Handle
Long

Description

Handle to next TextBlock in list
Handle to previous Text Block in list
Number of bytes of text in theText
Reserved
Reserved
text Length bytes of text

Handle to the current TextBlock
Text offset of the start of the
current TextBlock

• Table49-3 TextEdit error codes

Code Name Description

$2201 teAlreadyStarted TextEdit has already been started.
$2202 teNotStarted TextEdit has not been started.
$2203 teinvalidHandle The teH parameter does not refer to a

valid TERecord.
$2204 teinvalidDescriptor Invalid descriptor value specified.
$2205 teinvalidFlag Specified flag word is invalid.
$2206 teinvalidPCount Invalid parameter count value

specified.
$2207 Reserved Reserved.
$2208 teBufferOverflow The output buffer was too small to

accept all data.
$2209 teinvalidLine Starting line value is greater than the

number of lines in the text (can be
interpreted as end-of-file in some
circumstances).

$220A Reserved Reserved.
$2208 teinvalidParameter A passed parameter was invalid.
$220C teinvalidTextBox2 The LETextBox2 format codes were

inconsistent.
$220D teNeedsTools The Font Manager was not started.

Chapter 50 Text Tool Set Update

This chapter documents new features of the Text Tool Set. The complete
reference to the Text Tool Set is in Volume 2, Chapter 23 of the
Apple JIGS Toolbox Reference.

New features of the Text Tool Set

The Text Tool Set now supports the Slot Arbiter. All set device calls (such as
SetOut put Device, Set InputDevice, and so forth) accept slot numbers 1 through 7
or 9 through 15. Previously, the external slots, slots 9 through 15, were not valid for these
calls. If your application specifies an external slot, the Text Tool Set routes the calls as
appropriate. If your application specifies a slot from 1 through 7, the Text Tool Set
determines whether the slot is internal or external and routes the calls to the appropriate
firmware.

Note that, to maintain compatibility with existing code, all get device calls still return slot
numbers in the range from 1 through 7.

Chapter 51 Tool Locator Update

This chapter documents new features of the Tool Locator. The complete
reference to the Tool Locator is in Volume 2, Chapter 24 of the
Apple JIGS Toolbox Reference.

Error correction

Contrary to the call descriptions in Chapter 24 of the Toolbox Reference, both the
MessageCenter and SaveTextState tool calls can return Memory Manager errors.

Clarification

Applications that explicitly start up Apple IIGS tool sets should start the Desk Manager last.

New features of the Tool Locator

This section explains new features of the Tool Locator.
• The Tool Locator uses a new algorithm to load tools from disk. It loads tools from disk

only if it cannot find a tool in ROM with a version number as high as that of the
requested version. The Tool Locator makes no assumptions about which tools are in
ROM and which are on the system disk.
For every tool that is to be loaded, the Tool Locator makes a version call. If the version
call returns an error because the tool is not present or because the resulting version
number is too low, then the tool is loaded from the system disk.

• The Tool Locator no longer unloads all RAM-based tools every time TLShutDown is
called. Instead, it returns the system to a default state, set by a new call in the Tool
Locator, SetDefault TPT. This call can make any collection of RAM and ROM tools
the default state. The system returns to the default state when TLShutdown is called.

Tool set startup and shutdown

The Tool Locator now provides calls that automatically start and stop specified tool sets
in the correct order. These calls, StartUpTools and ShutDownTools, are documented
in "New Tool Locator Calls" later in this chapter.

The StartUpTools call performs the following steps during startup processing:
1. It starts the Resource Manager.
2. It opens the resource fork for the current application in read-only mode.
3. It obtains memory for the application's direct page.
4. It starts the tools specified in the input starts top record; then it updates the

start stop record as appropriate.
5. It returns the start stop record reference to the calling program.

Your application must pass this returned Start Stop record reference to
ShutDown Tools at tool shutdown time.

The startUpTools call sets some tool set default values for you. If these values are not
appropriate for your application, you should change them by issuing the appropriate tool
calls after StartUpTools has returned:

QuickDraw II

QuickDraw II Auxiliary

Event Manager

Note Sequencer

Started with the video mode from the input
StartStop record-the QDStar t Up maxWidth
parameter is set to 160 bytes.

System calls WaitCursor; your application must
change the cursor to an arrow before accepting user
input.

Queue size set to 20, maximum mouse clamp set to
either 320 or 640, depending on the video mode
specified in the start Stop record.

Update rate set to 0 (use default Note Synthesizer rate),
increment set to 20, and interrupts have been disabled
(the system calls Stopint s). Your program must use
Startints to enable interrupts. The Note Sequencer
automatically starts the Sound Tool Set and the Note
Synthesizer if you have not included them in your
StartStop record.

The ShutDownTools call performs the following steps during tool set shutdown:
1. It shuts down tools specified in input start stop record.
2. It disposes of the handle to the direct page.
3. It disposes of the handle to start Stop record (unless pointer was passed).
4. It shuts down the Resource Manager.

Both these calls require that your application format a tool start stop record. That
record is defined as shown in Figure 51-1.

• Figure 51-1 Tool set Start Stop record

$00
$02
$04
$06

$0A
soc.

-
-
-

-

flags

videoMode

resFileiD

dPageHandle

numTools

toolArray

-
-
-

-

Word-Flag word-must be set to 0
Word-Video mode for QuickDraw II
Word-Setby StartUpTools

Long-Set by StartUpTools

Word-Number of entries in toolArray

Array-numTools ToolSpec records

videoMode The video mode for QuickDraw II. See Chapter 16, "QuickDraw II," in
Volume 2 of the Toolbox Reference for valid values.

resFileiD

dPageHandle

The StartUpTools call sets this field, which ShutDownTools
requires as input.

The StartUpTools call sets this field, which ShutDownTools
requires as input.

toolArray Each entry defines a tool set to be started. The numTools field
specifies the number of entries in this array. Each entry is formatted as
follows:

$00 r- toolNurnber - Word-Tool set identifier
$02 r- minversion - Word-Minimum acceptable tool set version

toolNumber

minVersion

The tool set to be loaded. Valid tools set numbers are listed in
Table 51-1.

The minimum acceptable version for the tool set. See
Chapter 24, "Tool Locator," in Volume 2 of the Toolbox Reference
for the format of this field.

1Jf

Tool set numbers

Table 51-1lists the tool set numbers for all tool sets supported by the StartUpTools
and ShutDownTools calls.

• Table 51-1 Tool set numbers

Tool set number Tool set name

$01 (#01) Tool Locator
$02 (#02) Memory Manager
$03 (#03) Miscellaneous Tool Set
$04 (#04) QuickDraw II
$05 (#OS) Desk Manager
$06 (#06) Event Manager
$07 (#07) Scheduler
$08 (#08) Sound Tool Set
$09 (#09) Apple Desktop Bus Tool Set
$0A (#10) SANE Tool Set
$0B (#11) Integer Math Tool Set
$0C (#12) Text Tool Set
$0D (#13) Reserved for internal use
$0E (#14) 10 Window Manager
$OF (#15) I o Menu Manager
$10 (#16) I o Control Manager
$11 (#17) I System Loader
$12 (#18) /c QuickDraw II Auxiliary
$13 (#19) I t Print Manager
$14 (#20) / 0 LineEdit Tool Set
$15 (#21) I o Dialog Manager

-JF $16 (#22) l o Scrap Manager
$17 (#23) io Standard File Operations Tool Set
$18 (#24) - Not available { 0,'.5: ic

$19 (#25) i } Note Synthesizer
$1A (#26) I o Note Sequencer
$1B (#27) I C> Font Manager
$1C (#28) I :; List Manager
$1D (#29) / (, Audio Compression and Expansion (ACE)

[continued) -

• Table 51-1 Tool set numbers [continued]

Tool set number Tool set name

$1E (#30) /C' Resource Manager
$20 (#32) I MIDI Tool Set
$22 (#34) jcJ TextEdit Tool Set
$2 -1 (# 3J) /r_l VJorVLc I] •.,{Alt..7 v
$23 (JJ3f) /l n,c.t: s·7 "'ih To ,i .kr

\j F j U (-#)t) 1 0 Gnt-d I Ta."i J((z zy- (.:i13s) ------ fln,y,,t-- /}b1, 7o d{r

Tool set dependencies

Although start UpTools handles the order of tool startup for you, it does not manage
tool set dependencies. It is your responsibility to specify all tool sets required to ensure
correct system operation. Table 51-2 documents current tool set dependencies.

• Table 51-2 Tool set dependencies

Tool set and number

Tool Locator (#01)
Memory Manager (#02)
Miscellaneous Tool Set (#03)

QuickDraw II (#04)

Desk Manager (#05)

Event Manager (#06)

Scheduler (#07)

Dependencies

No dependencies; always started first
Tool Locator (#01)
Tool Locator (#01)
Memory Manager (#02)

Tool Locator (#01)
Memory Manager (#02)
Miscellaneous Tool Set (#03)
Tool Locator (#Ol)
Memory Manager (#02)
Miscellaneous Tool Set (#03)
QuickDraw II (#04)
Event Manager (#06)
Window Manager (#14)
Menu Manager (#15)
Control Manager (#16)
LineEdit Tool Set (#20)
Dialog Manager (#21)
Scrap Manager (#22)
Tool Locator (#01)
Memory Manager (#02)
Miscellaneous Tool Set (#03)

Tool Locator (#01)
Memory Manager (#02)
Miscellaneous Tool Set (#03)

Sound Tool Set (#08) Tool Locator (#Ol)
Memory Manager (#02)
Miscellaneous Tool Set (#03)

Apple Desktop Bus Tool Set (#09)

SANE Tool Set (#10)

Integer Math Tool Set (#ll)

Tool Locator (#01)
Tool Locator (#01)
Memory Manager (#02)
Tool Locator (#01)

[continued]

• Table 51-2 Tool set dependencies [continued]

Tool set and number

Text Tool Set (#12)
Window Manager (#14)

Menu Manager (#15)

Control Manager (#16)

Dependencies

Tool Locator (#01)
Tool Locator (#01)
Memory Manager (#02)
Miscellaneous Tool Set (#03)
QuickDraw II (#04)
Event Manager (#06)
Menu Manager (#15)
Control Manager (#16)
LineEdit Tool Set (#20)
Font Manager (#27)
Resource Manager (#30)
Tool Locator (#01)
Memory Manager (#02)
Miscellaneous Tool Set (#03)
QuickDraw II (#04)
Event Manager (#06)
Window Manager (#14)
Control Manager (#16)
Resource Manager (#30)
Tool Locator (#01)
Memory Manager (#02)
Miscellaneous Tool Set (#03)
QuickDraw II (#04)
Event Manager (#06)
Window Manager (#14)
Menu Manager (#15)
Resource Manager (#30)

(for Alert Window call)
(for Alert Window call)
(only if you use resources)

(only if you use resources)

(only if you use resources
or icon buttons)

+ Note: You should consider the Window, Control, and Menu managers as one unit, and
always start them together and in that order.

System Loader (#17)

QuickDraw II Auxiliary (#18)

Tool Locator (#01)
Memory Manager (#02)
Miscellaneous Tool Set (#03)
Tool Locator (#01)
Memory Manager (#02)
Miscellaneous Tool Set (#03)
QuickDraw II (#04)
Font Manager (#27)

frnntinnPrll

• Table 51-2 Tool set dependencies [continued]

Tool set and number Dependencies

+ Note: QuickDraw II Auxiliary uses the Font Manager in its picture-drawing routines.
For proper operation, you should start the Font Manager before using the
QuickDraw II Auxiliary picture routines; however, the picture routines will not fail if
the Font Manager is not present.

Print Manager (#19)

LineEdit Tool Set (#20)

Dialog Manager (#21)

Tool Locator (#01)
Memory Manager (#02)
Miscellaneous Tool Set (#03)
QuickDraw II (#04)
Event Manager (#06)
Window Manager (#14)
Menu Manager (#15)
Control Manager (#16)
QuickDraw II Auxiliary (#18)
LineEdit Tool Set (#20)
Dialog Manager (#21)
Font Manager (#27)
List Manager (#28)
Tool Locator (#01)
Memory Manager (#02)
Miscellaneous Tool Set (#03)
QuickDraw II (#04)
Event Manager (#06)
QuickDraw II Auxiliary (#18) (for Text2 items only)
Scrap Manager (#22)
Font Manager (#27) (for Text2 items only)
Tool Locator (#01)
Memory Manager (#02)
Miscellaneous Tool Set (#03)
QuickDraw II (#04)
Event Manager (#06)
Window Manager (#14)
Menu Manager (#15)
Control Manager (#16)
QuickDraw II Auxiliary (#18) (for Text 2 items only)
LineEdit Tool Set (#20)
Font Manager (#27) (for Text2 items only)

[continued]

• Table 51-2 Tool set dependencies [continued]

Tool set and number Dependencies

• Note: The LineEdit Tool Set and the Dialog Manager require the Font Manager and
QuickDraw II Auxiliary if you use LETex tBox2 or Long Stat Text2, which
sometimes require font styling (for example, outline, boldface, and so on).

Scrap Manager (#22) Tool Locator (#01)
Memory Manager (#02)

Standard File Operations Tool Set (#23)
Tool Locator (#01)
Memory Manager (#02)
Miscellaneous Tool Set (#03)
QuickDraw II (#04)
Event Manager (#06)
Window Manager (#14)
Menu Manager (#15)
Control Manager (#16)
LineEdit Tool Set (#20)
Dialog Manager (#21)

Note Synthesizer (#25) Tool Locator (#01)
Memory Manager (#02)
Sound Tool Set (#08)

Note Sequencer (#26) Tool Locator (#01)
Memory Manager (#02)
Sound Tool Set (#08)
Note Synthesizer (#25)

• Note: The Note Sequencer automatically handles the startup and shutdown of the
Sound Tool Set (#08) and the Note Synthesizer (#25).

Font Manager (#27) Tool Locator (#01)
Memory Manager (#02)
Miscellaneous Tool Set (#03)
QuickDraw II (#04)
Integer Math Tool Set (#11)
Window Manager (#14)
Menu Manager (#15)
Control Manager (#16)
List Manager (#28)

LineEdit Tool Set (#20)
Dialog Manager (#21)

(for ChooseF o n t only)

(for ChooseFont only)
(for Ch o oseFont only)
(for Fix FontMe nu only)
(for Ch ooseFont only)
(for FixFon tMenu and
Ch ooseF o n t only)
(for Ch ooseFont only)
(for Ch ooseFont only)

[continued]

• Table 51-2 Tool set dependencies [continued]

Tool set and number

List Manager (#28)

Dependencies

Tool Locator (#01)
Memory Manager (#02)
Miscellaneous Tool Set (#03)
QuickDraw II (#04)
Event Manager (#06)
Window Manager (#14)
Menu Manager (#15)
Control Manager (#16)

Audio Compression and Expansion (ACE) (#29)
Tool Locator (#01)
Memory Manager (#02)

Resource Manager (#30) Tool Locator (#01)
MIDI Tool Set (#32) Tool Locator (#01)

Memory Manager (#02)
Miscellaneous Tool Set (#03)
Sound Tool Set (#08)
Note Synthesizer (#25) (For time-stamping only)

+ Note: The MIDI Tool Set requires the Note Synthesizer to support the MIDI clock
feature. If you are not using the MIDI clock, the Note Synthesizer is not required.

TextEdit Tool Set (#34) Tool Locator (#01) Version $0300
Miscellaneous Tool Set (#03) Version $0300
QuickDraw II (#04) Version $0300
Event Manager (#06) Version $0300
Window Manager (#14) Version $0300
Menu Manager (#15) Version $0300
Control Manager (#16) Version $0300
QuickDraw II Auxiliary (#18) Version $0206
Scrap Manager (#22) Version $0104
Font Manager (#27) Version $0204
Resource Manager (#30) Version $0100

New Tool Locator calls

The setDefaultTPT call has been added to the Tool Locator to facilitate permanent
tool patches. The StartUpTools and ShutDownTools calls provide automatic
services for bringing up or removing tool sets. The MessageByName tool call provides
facilities allowing your application to use the message center.

MessageByName $1701

Creates and associates a name with a new message, providing a convenient and extensible
mechanism for creating, tracking, and passing messages between programs. Your
application can then use the other message center Tool Locator calls to manipulate or
delete the message.

Parameters

Stack before call

Previous contents

- Space -

createltF/ag

- recordJJointer -

Stack after call

JJrevious contents

- responseRecord -

Long-Space for result

Word-Boolean; indicates whether or not to create message

Long-Pointer to input record

<-SP

Long-Response record from call

<-SP

Errors

c

createltFlag

recordPointer

$0111 messageNotFound

$0112 messageOvfl
$0113 nameTooLong
Memory Manager errors

No message found with specified
name.
No message numbers available.
Message name too long.
Errors from NewHandle returned
unchanged.

extern pascal responseRecord
MessageByName(createitFlag,
recordPointer);

Boolean createitFlag;
Pointer recordPointer;

Parameter determining whether to create a message containing the
information from the input record. If there is no existing message with
the specified name, then the setting of createltFlag governs whether to
create a message. If there is already a message with the specified
name, then the setting of createltFlag determines whether to replace
that existing message with a new one based on the input record.

Pointer to an input record defining the content and characteristics of
the new message:

$00 fl----b-lo_c_kL_en __ l--1 Word-Length of record (including blockLen)

$02 · name string nBytes-Identifier string for the message

$02+ n
dataBlock

blockLen

nameString

m Bytes-Optional data for message

The length, in bytes, of the input record. Note that the value for
this field includes the length of blockLen.

The identifier for the new message. This is a standard Pascal
string (length byte followed by ASCII data) with a maximum
length of 64 bytes (not including the length byte). To prevent
message name conflict, this name string should contain the
manufacturer's name, followed by the product name or code,
followed by a unique identifying string. You may set the high-
order bits of each byte; note, however, that the system does not
include these bits in name comparisons.

dataBlock Application-defined data copied into a created message. Use of
this field is optional.

responseRecord The response information from the call.

$00 messageiD Word-ID number for created message
$02 1---------l

c reateFlag Word-Boolean; indicates whether message was created_ ______ _.

messageiD

createFlag

Message ID for new message, if MessageByName created one.

Flag indicating whether MessageByName created a message.
Note that if you set createltF!ag to TRUE on input to
MessageByName and a message with the specified
nameString already exists in the message center, then this flag
is FALSE. In this case, messageiD identifies the message into
which your dataBlock was copied.

SetPefaultTPT $1601

Sets the default Tool Pointer Table CTPn to the current TPT. Used to install a tool patch
permanently.

.A Warning An application should not make this call. •

Parameters This call has no input or output parameters. The stack is unaffected.

c extern pascal void SetDefaultTPT();

ShutDownTools $1901

Shuts down the tools specified in the input starts t o p record.

Your program must pass the start stop record reference that was returned by
StartUpTools.

Parameters

Stack before call

Previous contents
startStopRefDesc

startStopRef -

Word-Type of reference stored in startStopRef

Long-Reference to the startstop record

<-SP

Stack after call

Previous contents

Errors

c

<-SP

None

e xtern pascal void ShutDownTools(startStopRefDesc,
startStopRe f) ;

Wo r d star tStop RefDe s c;
Long startStopRe f;

startStopRejDesc Type of reference stored in startStopRef

startStopRef

0 Reference is by pointer
1 Reference is by handle

Reference to the updated s t art stop record returned by
StartUpTools.

StartUpTools $1801

Starts and loads the tools specified in the input start stop record. Upon successful
return from startUpTools, the specified tools are started, and the cursor is represented
by the watch image (if QuickDraw II Auxiliary was loaded). Your program should change
the cursor image before accepting user input.

Your program must pass the Start stop record reference that was returned by
StartUpTools to the ShutDownTools call at tool shutdown time.

Parameters

Stack before call

Previous contents

- Space -

user!D
startStopRejDesc

- startStopRef -

Stack after call

Previous contents

- startStopRefRet -

Errors $0103
$0104

Long-Space for result

Word-Application user ID for system calls
Word-Type of reference stored in startStopRef

Long-Reference to the Start Stop record

<-SP

Long-Reference to resulting startstop record

<-SP

TLBadRecFlag
TLCantLoad

start stop record invalid.

System Loader errors
Memory Manager errors
GS!OS errors

A tool cannot be loaded-check
input Start Stop record for
valid tool numbers and versions,
and for correct numTools value.
Returned unchanged.
Returned unchanged.
Returned unchanged.

c extern pascal long StartUpTools(useriD,
startStopRefDesc, startStopRef);

Word useriD, startStopRefDesc;
Long startStopRef;

startStopRejDesc Defines the type of reference stored in startStopRef

startStopRef

startStopRejRet

0 Reference is by pointer
1 Reference is by handle
2 Reference is by resource ID

Reference to the input start stop record.

Reference to the updated Start Stop record. Your application must
pass this record to the ShutDown Tools tool call. If the input record
reference to StartUpTools was a pointer, then this reference is also
a pointer. If the input reference was either a handle or a resource ID,
StartUpTools returns a handle.

Chapter 52 Window Manager Update

This chapter documents new features of the Window Manager. The
complete reference to the Window Manager is in Volume 2, Chapter 25 of
the Apple JIGS Toolbox Reference.

Error corrections

This section corrects some errors in the documentation of the Window Manager in
Volume 2 of the Toolbox Reference.
• The description of set zoomRect is incorrect. The correct description is as follows:

Sets the fZoomed bit of the window's wFrame record to 0. The rectangle passed to
SetZoomRect then becomes the window's zoom rectangle. The window's size and
position when setzoomRect is called become the window's unzoomed size and
position, regardless of what the unzoomed characteristics were before Set zoomRect
was called.

• "If wmTaskMask bit tminfo (bit 15) = 1," on page 25-126, should read, "If
wmTaskMask bit tminfo (bit 15) = 0."

• When used with a window that does not have scroll bars, the WindNewRes call invokes
the window's defProc to recompute window regions. A call to SizeWindow is not
necessary under these circumstances.

• The input region for the InvalRgn tool call is defined in local coordinates; however,
the call returns the region expressed in global coordinates.

• There are two errors in the series of equations given with the P inRect tool call. In the
last two equations the greater-than sign (>) should be replaced with a greater-than-or-
equal sign (>=).

• Note that the CloseWindow tool call does not change the GrafPort setting. Your
application should ensure that a valid Grafl>ort is set before performing any other
actions.

Clarifications

This section elaborates on topics addressed in Volume 2 of the Toolbox Reference.
• Window title strings should always contain leading and trailing space characters. This

spacing is especially important for windows with a lined window bar because, without
the spaces, the line pattern runs into the title text. Also, because window editor desk
accessories may allow the user to change the title bar pattern without making the
change known to your application, you should pad your window titles with spaces
even if you use black title bars.

• Table 25-6 on page 25-43 of the Toolbox Reference contains misleading labels. Note that
in this table byte 1 refers to the high-order byte of the long that defines the desktop
pattern, and byte 4 refers to the low-order byte.

New features of the Window Manager

This section explains new features of the Window Manager and clarifies points that were
not made explicit before.
• TaskMaster now brings application windows to the front after dragging is complete.

TaskMaster previously brought windows to the front before dragging.
• Using the setOriginMask call, a programmer can control the horizontal scrolling

characteristics of windows whose scrolling is handled by TaskMaster. A common use of
setOriginMask is to ensure that the window origin is aligned on an even pixel so
that colors do not change if the display mode is changed from 320 to 640 or vice versa.
When using the call, be sure that the horizontal scroll value is a whole multiple of the
mask value. Otherwise, strange behavior can occur. As an extreme example, consider
an origin value of 32 and a scroll amount of 1. In this case, using the right scroll arrow
causes no scrolling at all, and using the left one causes scrolling by a value of 32. The
new control value for the scrolling is calculated by adding or subtracting the scroll value
and the current value and applying the mask. In this case adding 1 and masking results
in the original value. Subtracting 1 and masking results in a new value that is 32 less than
the old value.

• The titles of standard windows can now be drawn in 16 colors regardless of mode.
• The grid parameter of the DragWindow call has been renamed dragFlag. Bits 0

through 7 specify the grid value. Bits 8 through 14 are reserved bits; they must be set to
0. Bit 15 is a selection flag; if its value is 1, then the window is brought to the top after
dragging.
It is no longer possible to specify grid values of 256 or 512.

• The Window Manager now uses the same default desktop drawing scheme as the
Finder. When the Window Manager starts up, it looks for a DeskMessage call in the
message center. This DeskMessage is formatted as follows:

$()() r-
r-
r-
r-
r-

$04
$06
$08 .

Reserved

me ssa g e Type

drawType

dra wData

drawType

drawData

-
-

Long-Used by message center

Word-Message type; must be set to $0002
Word-Indicates content of drawData

Array-Data for desktop; type specified in drawType

The type of data stored in drawData.

0 Pattern information
1 Picture information

The pattern or picture data for the desktop image. If
drawType is set to 0, then drawData contains 32 bytes of
pattern data. The pattern defines 64 pixels arranged in an 8-by-8
array. In 320 mode, 4 bits are needed for each pixel; in 640
mode, the system requires 2 bits per pixel. The system uses this
pattern to seed the desktop image.

If drawType is set to 1, then drawData contains 32,000 bytes
of picture data; the system copies this data directly to screen
memory. See Chapter 16, "QuickDraw II," in Volume 2 of the
Toolbox Reference for details on pattern or picture images.

By loading a correctly formatted DeskMessage into the message center, your
program can set a custom desktop image.

• The Window Manager now supports a new entry point, TaskMasterDA, that allows
desk accessories to use TaskMaster. Previously, desk accessories could not rely on
TaskMaster, because they had to work with applications that do not use TaskMaster.
Desk accessories obtain the data for their task record from the Desk Manager.
TaskMaster processes task records for desk accessories in the same way that it
processes application task records.

• The SizeWindow and ResizeWindow tool calls now invoke the NotifyCtls
Control Manager tool call whenever the user changes the window size. This allows
applications to show a control in a constant position with respect to the lower or right
border of a window. For example, now the growcontrol control definition
procedure can automatically move controls in response to the dragging of the size box
by the user.

• The Set WT it le and Get WT it le tool calls now allow you to store window titles in
handles. Set bit 31 (the high-order bit) of the titlePtr parameter to the Set WT it le call
to 1 to indicate that the parameter contains a handle to the title string. Similarly, the
high-order bit in the value returned from Get WT it 1 e is set to 1 if it contains a handle
rather than a pointer. You must set that bit to 0 before using the handle.
Note that once you have called setWTitle, the Window Manager owns the handle
and disposes of it when you close or retitle the window. Your program must not
dispose of the handle or modify the data it contains.

Alert windows

The new Alert Window call (described in "New Window Manager Calls" later in this
chapter) can be used to create alert windows that display important messages for the
user. An alert window is similar to a modal dialog box. It requires the user to click a button
in the window before doing anything else, and so provides a useful way to communicate
vital messages such as warnings or error reports. The call does all the work of creating and
displaying the window and contents of the alert window, and it returns the ID of the
button that the user clicks.

The Alert Window call accepts a reference to an ASCII string that contains its message,
and it also accepts a reference to an array of substitution strings. The substitution strings
can be any of seven standard strings (such as "OK," "Continue," and so on) or can be
specified by the application and stored in the buffer to which the substitution-string
pointer refers. The format of the AlertWindow input string is shown in Figure 52-1.

• Figure 52-1 Alert Window input string layout

$00 .
size Block

$xx.
icon Spec Block

$xx I separator Byte
$xx . : Character array messageText

$xx I sep I Byte
$xx .

buttonstri ngs : Character array
$xx I terminator I Byte

size

- vl

- hl

- v2

- h2

A variable-length block that specifies the size of the alert window to
be displayed. Valid ASCII values for the first byte lie in the range from
o through 9 ($30 through $39) and have the following meanings:

0 ($30)

1 ($31)
2 ($32)
3 ($33)
4 ($34)
5 ($35)
6 ($36)
7 ($37)
8 ($38)
9 ($39)

Custom size and position, specified by rectangle
definition (as shown below)
30-character display window
60-character display window
11 0-character display window
175-character display window
11 0-character display window
150-character display window
ZOO-character display window
250-character display window
300-character display window

If the value of the first byte of size is not o ($30), then the block
consists only of that byte. If size is set to o ($30), then you must
specify the custom rectangle immediately after the s i z e field.

-
-
-
-

Word-y coordinate of upper -left comer
Word-x coordinate of upper-left comer
Word-y coordinate of lower-right comer
Word-x coordinate of lower-right comer

Because Alert Window provides a limited number of standard sizes,
it is possible to create alert windows that are displayed properly
whether the Apple IIGS computer is in 320 or 640 mode. It is necessary,
however, to design the text and buttons carefully so that the display is
correct regardless of the mode.

Table 52-1 shows the dimensions of the standard alert windows. This
table gives only an approximate idea of the size of each window.
Application code should not rely on the exact widths, heights, or
position of standard windows.

• Table 52-1 Standard alert window sizes

value

1 ($31)
2 ($32)
3 ($33)
4 ($34)
5 ($35)
6 ($36)
7 ($37)
8 ($38)
9 ($39)

icon Spec

-
- imagePtr -
- imageWidth

- imageHe i ght

Height 320 Width320 Height 640 Width640

46 152 46 200
62 176 54 228
62 252 62 300
90 252 72 352
54 252 46 400
62 300 54 452
80 300 62 500
108 300 72 552
134 300 80 600

A variable-length block that specifies the type of icon to be displayed
in the alert window. Valid values for the first byte lie in the range from
o through 9 ($30 through $39) and have the following meanings:

0 ($30)
1 ($31)

2 ($32)
3 ($33)
4 ($34)
5 ($35)
6 ($36)
7- 9 ($37-$39)

No icon
Custom icon; followed by an icon specification, as
shown below
Stop icon
Note icon
Caution icon
Disk icon
Disk swap icon
Reserved

If the first byte of icon Spec has a value other than 1 ($31), then the
field consists only of that byte. If the first byte is set to 1 ($31), then
it must be followed by an icon specification.

-
-

Long-Pointer to image data

Word-Width in bytes of the image data
Word-Height in scan lines of the image data

separator A character that divides substrings in the remainder of the
Alert Window input string. The separator field can contain any
character, but the character cannot appear in the message text or
button strings. The separator character differentiates the text of
the message from the title of the first button, and the button titles
from each other. For purposes of standardization, the slash (;)
character is recommended, unless you will be substituting pathnames.

Do not include a separator character in any substitution strings. The
Window Manager performs substitutions before scanning the alert
string for separators. For example, if the separator character is a slash
and a pathname containing several slashes is substituted for the string,
the resulting alert window will contain several more buttons than you
intended.

messageText The message to be displayed in the alert window. Any characters
allowed by LETextBox2 are allowed in the message text. See "Special
Characters" later in this chapter for additional characteristics of
Alert window message text. The total size of message text, after
substitution of strings, is limited to 1000 characters.

sep A separator character.

buttonstrings Titles for up to three buttons to be displayed in the alert window. If
there is more than one title, then the titles must be demarcated by a
separator character. These buttons will be evenly spaced and
centered at the bottom of the alert window. The width of all buttons
is the same and is determined by the longest button title. The
maximum length of button text after substitution of strings is 80
characters.

terminator The end of the alert string. Must be set to 0 ($00).

Speclal characters

The following special characters can be embedded in the message text and button strings
of an Alert Window input string. If a special character is to appear in the text of a
button or message, you must enter it twice in the string. For example, if you want A to
appear in an alert message, you must enter it in the message string as A A.

*

Designates the default button. The default button is the button selected
if the user presses the Return key on the keyboard. This button appears
outlined in bold on the screen. Only one button can be the default
button. Like all buttons, the default button must have a title, which in
this case follows the caret. Other special characters may also appear after
the caret. A single caret in the body of message text has no effect and is
deleted from the message.

Substitute standard string. The number sign (#) must be followed by an
ASCII number character from o through 6. Numbers 7 through 9 are
reserved and should not be used. The standard substitution strings are
#O OK
#1 Cancel
#2 Yes
#3 No
#4 Try again
#5 Quit
#6 Continue

Substitute given string. The asterisk (*) character followed by an ASCII
number character from o through 9 denotes a substitution string to be
inserted at that point. The asterisk and the number following it are
replaced by the corresponding string in the specified substitution array.
A pointer to the substitution array is passed as a parameter to the
Alert Window call. The substitution array is defined as an array of
pointers. Table 52-2 shows the format of a substitution string array.

• Table 52-2 Substitution string array

LONG[OJ
LONG[I]
LONG[2]
LONG[3]
LONG[4]
LONG[5]
LONG[6]
LONG[7]
LONG[8]
LONG[9]

Pointer to string that will substitute for * o
Pointer to string that will substitute for * 1
Pointer to string that will substitute for * 2
Pointer to string that will substitute for * 3
Pointer to string that will substitute for * 4
Pointer to string that will substitute for * s
Pointer to string that will substitute for * 6
Pointer to string that will substitute for * 7
Pointer to string that will substitute for * 8
Pointer to string that will substitute for * 9

Substitution strings can be C strings or Pascal strings. A parameter to the Alert Wi ndow
tool call allows you to specify the type of strings in the substitution array.

Alert window example

This section includes some examples of alert strings that can be passed to Ale r t Window
in 65816 assembly-language syntax.

Figure 52-2 shows a simple alert string.

• Figure 52-2 An alert string

de c'l3 / Text of Message / Button l',il'O'

Size 50 high
by200wide Message Button title Zero terminates alert

TeHt of Message

(Button 1) .-----tt--'

Figure 52-3 shows a more complex alert string that defines a custom rectangle.

de c'O',i2'35,100,81,500'
de c'l/This is the *0 of *3 alert *2*1 and standard'
de c'text called "#4."/'
de c'A#O,Really/*4/Yo! ',il'O'

• Figure 52-3 An alert string defining a custom rectangle

A This is the message teHt of an alert window and standard U teHt called "Try Again."

ff OK, Really)) (Door #2 J

This is the substitution array in this case:
de i4'subO,subl,sub2,sub3 ,sub4'

subO de e 'rnessage text', il '0'
subl de e'dow',il'O'
sub2 de c'win',il'13'
sub3 de c'an',il'O'
sub4 de c'Door #2'' il '0'

TaskMaster result codes

Table 52-3 lists all the possible TaskMaster result codes.

• Table 52-3 TaskMaster result codes

Name

NULL

mouseDownEvt

mouseUpEvt

keyDownEvt

autoKeyEvt

updateEvt
activateEvt
switchEvt
deskAccEvt

driverEvt

applEvt
app2Evt
app3Evt

app4Evt

wNoHit
inNull

inKey

inButtDwn

in Update

winDesk

winMenuBar

wClickCalled

winContent

winD rag
winG row
winGoAway

Value

$0000

$0001
$0002
$0003
$0005
$0006
$0008
$0009
$000A
$000B
$000C
$000D
$000E
$000F

$0000
$0000
$0003
$0001
$0006

$0010
$0011
$0012
$0013
$0014
$0015
$0016

Description

Successful

Event code
Event code
Event code
Event code
Event code
Event code
Event code
Event code
Event code
Event code
Event code
Event code
Event code

Alias for no event
Alias for no event
Alias for keystroke
Alias for button-down event
Alias for update event

On desktop
On system menu bar
Systemclick called (returned only as action)
In content region
In drag region
In grow region, active window only
In go-away region, active window only

[continued]

• Table 52-3 TaskMaster result codes [continued]

Name Value Description

win Zoom $0017 In zoom region, active window only
wininfo $0018 In information bar
winSpecial $0019 Item ID selected was 250-255
winDeskitem $001A Item ID selected was 1-249
winFrame $001B In frame, but not on anything else
winactMenu $001C Inactive menu item selected
wClosedNDA $001D Desk accessory dosed (returned only as action)
wCalledSysEdit $001E SystemEdit called (returned only as action)
wTrackZoom $001F Zoom box clicked, but not selected (action only)
wHitFrame $0020 Button down on frame, made active (action only)
winControl $0021 Button or keystroke in control (can be returned as

event code and as action)
winControlMenu $0022 Control-handled menu item

winSysWindow $8000 High bit set for system windows

Window Manager data structures

This section discusses the format and content of changed Window Manager data
structures.

Window record

The window record data structure has been redefined. Figure 52-4 illustrates the new
definition.

• Figure 52-4 Window record definition

$OOF Long--PoiDte< to nen window; NIL at end of list

$04 · Array-Window's GrafPort (170 bytes)

SAE

$B2

$86

$BA

$BE

$C2

$C6

$CA

$CE

$D2
$D4

r-
I-
I-

1-
I-
I-

I-
I-
1-

I-
I-
r-
1-
I-
1-

I-
r-
r-
r-
--

-
--
-

wDefProc

wRefCon

wContDraw

wReserved

wStructRgn

wContRgn

wUpdateRgn

wCtls

wFrameCtls

wFrarne

wCus t om

-
- Long-Pointer to control defmition procedure -
-
- Long-Reserved for application use -
-- Long-Pointer to routine to draw window contents
-
-- Long-Reserved for use by Window Manager; do not use -
-- Long-Handle to window's structure region -
-- Long-Handle to window's content region -
-- Long-Handle to window's update region -
-- Long- Handle to frrst control in window's control chain -
-- Long-Handle to first control in window's frame -
- Word- Flags for window

Array- Additional data for window defmition procedure

wReserved

wFrame

A new data field reserved by Apple Computer, Inc., for future
expansion.

A bit flag containing flags specifying the window frame. All of the bits
in this flag are described in Chapter 25, "Window Manager," in
Volume 2 of the Toolbox Reference. Some of these bits may be used by
window definition procedures. The following bits may be used by
window defl>rocs.

fTitle bit 15
fClose bit 14
fAlert bit 13
fRScroll bit 12
fBScroll bit 11
fGrow bit 10
fFle x bit 9
fZoom bit 8
fMove bit 7
finfo bit 4
fZoomed bit 1

Task record

Figure 52-5 defines the new format for the task record. This new record layout includes
several new fields, each of which is set by TaskMaster every time your program calls
TaskMaster. For information on the old fields, see Chapter 25, "Window Manager," in
Volume 2 of the Toolbox Reference.

TaskMaster still accepts task records in the old format; however, if your program uses any
of the new TaskMaster features (see description of wmTaskMask on next page), it must
use the new record layout.

• Figure 52-5 Task record definition

$00
$02

$06

$0A

$0E
$10

$14

$18

$1C
$1E

$22

$26

1-

1-
1-
1-

1-
1-
1-

1-
1-
1-

1-

1-
1-
1-

1-
1-
1-

-
-
-
-
-
-
-

1-
1-
1-

$2A.

wmWhat

wmMessage

wmWhen

wmWhere

wmModifiers

wmTaskData

wmTaskMask

wmLastClickTick

wmClickCount

wmTaskData2

wmTaskData3

wmTaskData4

wmLastClickPt

- Word-Same as before
-- Long-Same as before -
-- Long-Same as before -
-- Long-Same as before -
- Word-Same as before
-
- Long-Same as before -
-- Long-Flags controlling TaskMaster function -
-- Long-System tick value at last mouse click -
- Word-Type of last click (single, double, triple)
-- Long-Additional TaskMaster return data -
-- Long-Additional TaskMaster return data -
-- Long-Additional TaskMaster return data -

Point-Location of last mouse click

wmtAskMask Flags controlling TaskMaster functions.

Reserved bits 31-21 Must be set to 0.
tmidleEvents bit 20 Controls whether TaskMaster sends idle events to the

target control in the active window.

tmMultiClick bit 19

tmControlMenu bit 18

tmControlKey bit 17

tmContentControls
bit 16

tminfo bit 15

tm!nactive bit 14

tmCRedraw bit 13

tmSpecial bit 12

0 = Do not send idle events
1 = Send idle events
Controls whether TaskMaster returns multiclick
information in the task record.
0 = Do not return multiclick information
1 = Return multiclick information
Controls whether TaskMaster passes menu events to
controls in the active window.
0 = Do not pass menu events
1 = Pass menu events
Controls whether TaskMaster passes key events to
controls in the active window.
0 = Do not pass key events
1 = Pass key events

Controls whether TaskMaster calls FindControl
and TrackControl when FindWindow returns
winContent and the window is already selected.
0 = Do not track the control
1 = Track the control
Controls whether TaskMaster activates the window
when the user clicks in the information bar.
0 = Activate the window
1 = Do not activate the window
Controls whether TaskMaster returns winactMenu
when the user selects an inactive menu item.
0 =Never return winactMenu
1 =Return winactMenu
Controls whether TaskMaster redraws controls
whenever an activate event occurs.
0 = Do not redraw controls
1 = Redraw controls
Controls whether TaskMaster handles special menu
items (those with IDs < 256).
0 = Do not handle special menu items
1 = Handle special menu items

tmScroll bit 11 Controls whether TaskMaster enables scrolling and
activates inactive windows when the user clicks on
the scroll bar.
0 = Do not enable scrolling
1 = Enable scrolling

tmGrow bit 10 Controls whether TaskMaster calls Growwindow
when the user drags the size box.
0 =Do not call GrowWindow
1 =Call GrowWindow

tmZoom bit 9 Controls whether TaskMaster calls Track zoom when
the user clicks in the zoom box.
0 =Do not call TrackZoom
1 =Call Track Zoom

tmClose bit 8 Controls whether TaskMaster calls TrackGoAway
when the user clicks in the close box.
0 =Do not call TrackGoAway
1 =Call TrackGoAway

tmContent bit 7 Controls whether TaskMaster activates the window
when the user clicks in the content region.
0 = Do not activate window
1 = Activate window

tmDragW bit 6 Controls whether TaskMaster calls DragWindow
when the user drags in the drag region.
0 =Do not call DragWi ndow
1 =Call DragWindow

tmSysClick bit 5 Controls whether TaskMaster calls SystemClick
when the user clicks in the system window.
0 =Do not call SystemClick
1 =Call SystemClick

tmOpenNDA bit 4 Controls whether TaskMaster calls OpenNDA when the
user selects a desk accessory.
0 = Do not call OpenNDA
1 = Call OpenNDA

tmMenuSel bit 3 Controls whether TaskMaster calls MenuS elect
when the user clicks in the menu bar.
0 =Do not call MenuSelect
1 =Call MenuSelect

tmFindW bit 2 Controls whether TaskMaster calls FindWindow for
mouse-down events.
0 =Do not call FindWindow
1 =Call FindWindow

tmUpdate bit 1

tmMenuKey bit 0

Controls whether TaskMaster handles update events.
0 = Do not handle update events
1 = Handle update events
Controls whether TaskMaster calls MenuKey to
handle key equivalents for menu commands.
0 =Do not call Menukey
1 = Call MenuKey

New Window Manager calls

The following tool calls have been added to the Window Manager since the publication of
the first two volumes of the Toolbox Reference.

AlertWindow $590E

Creates an alert window that displays a message referred to by alertStrRef The subStrPtr
parameter points to an array of substitution strings for use with substitution characters.
The substitution strings can be either C or Pascal strings, as specified by alertFlags. For
more detailed information, see "Alert Windows" earlier in this chapter.

Parameters

Stack before call

Previous contents
Space

alertFlags

- subStrPtr -

- alertStrRef -

Stack after call

Previous contents
Result

Errors None

Word-Space for result
Word-Flag word for call

Long-Pointer to substitution array

Long-Reference to alert string; alertFlags indicates type

<-SP

Word-Button number selected (0 relative, in order created)
<-SP

c

alertFlags

Reserved
referenceType

stringType

extern pascal Word AlertWindow(alertFlags,

subStrPtr, alertStrRef);

Word alertFlags;
Pointer subStrPtr;
Long alertStrRef;

Flags that indicate the type of strings referenced by subStrRef, as well
as the type of reference contained alertStrRef

bits 15-3
bits 2-1

bit 0

Must be set to 0.
Indicate the type of reference stored in alertStrRef
00 = alertStrRef is a pointer
01 = alertStrRefis a handle
10 = alertStrRefis a resource ID
11 = Invalid value
Indicates type of string referred to by subStrPtr.
0 = C string (null-terminated)
1 = Pascal string

CompileText $600E

Combines source text provided by your program with either custom or standard strings to
compile a result text string. For successful calls, this call allocates and correctly sizes a
handle to the result text string. That result string is a simple character array. Your program
must extract length information for the string from the handle. Note that your program
must dispose of this handle.

Control sequences in the source text direct the system to embed either custom or
standard strings into the result text string. These control sequences consist of two ASCII
characters: a flag character followed by a digit. The flag character indicates whether the
desired substitution string is custom or standard.

For standard strings, the flag character is #. The digit following the flag character
designates one of the following strings:

#0 OK
#1 Cancel
#2 Yes
#3 No
#4 Try again
#5 Quit
#6 Continue

For custom strings, the flag character is *.The compi leText call obtains custom strings
from a substitution array built by your program and provided to the system in the
parameters for this call. The ASCII character following the flag character specifies which
string to extract. Valid values for this ASCII character lie in the range o through 9. Thus, a
control sequence of * o would cause the first string in your custom substitution array to be
accessed.

To include either of the flag characters as text in your compiled text, follow the flag
character with a second flag character (for example, * * causes * to be displayed in the
compiled text string).

Parameters

Stack before call

Previous contents

- Space

subType

- subStri ngsPtr

- srcStringPtr

srcSize

-

-

-

Long-Space for result

Word-Type of custom substitution strings

Long-Pointer to substitution array

Long-Pointer to source string

Word-Length of source string pointed to by srcStringPtr
<-SP

Stack after call

Previous contents

- stringHand/e - Long-Handle to result string

<-SP

Errors

c

subType

$0E04 compileTooLarge Compiled text is larger than 64 KB.

e xtern pascal Handle CompileText(subType,
subStringsPtr, srcStringPtr, srcSize);

Word
Pointer

subType, srcSize;
subStringsPtr, srcStringPtr;

Indicates the type of strings stored in the substitution array pointed
to by subStringsPtr.

0
1

C strings
Pascal strings

Note that this field is ignored if your program uses no custom
substitution strings.

subStringsPtr A pointer to your custom text substitution array. This array contains
from 1 to 10 long pointers to either Cor Pascal strings (use subType to
indicate which type of string you have used). Embedded control
sequences in your source text direct the system to extract a specific
string from this array. Note that the system does not verify string
specifications against the size of this array; be careful to define the
correct number of string pointers in this array.

Note that this field is ignored if your program uses no custom
substitution strings.

DrawinfoBar $550E

Redraws the information bar of the window specified by grafPortPtr. The routine that
redraws the interior of the information bar is specified by the wlnfoDefProc field of the
paramList passed to NewWindow when the window is created. The Window Manager
automatically clips the drawing in the information bar to the dimensions of the
information bar and to the visible region of the window.

Parameters

Stack before call

Previous contents

grafPortPtr

Stack after call

Previous contents

Errors None

Long-Pointer to GrafPort for window

<-SP

<-SP

c e xtern pascal void DrawinfoBar(grafPortPtr);

Pointer grafPortPtr;

EndFrameDrawing $5BOE

Restores Window Manager variables after a call to StartFrameDrawing.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors

c
None

extern pascal void EndFrameDrawing();

ErrorWindow $620E

Creates a dialog box displaying an error message for a specified error code. GS!OS error
codes are listed along with standard message text in "Error Messages" later in this chapter.

Each error message is in alert string format and may require a substitution string (see "Alert
Windows" earlier in this chapter for message format and text substitution information).
The system retrieves the error messages from a resource file containing resources of type
rErrorString ($8020). The resource ID for each message is formed as follows:

high-order word
low-order word

$07FF
error number

The default error messages are stored in the system resource file. You may assert custom
error message text by defining and opening another resource file containing
rErrorSt ring resources with appropriate resource IDs assigned to each error message.
Make sure that your resource file precedes the system resource file in the Resource
Manager's search sequence. A custom error message resource file need not define
substitute messages for all possible GS!OS errors; if the Resource Manager does not find a
message in your file, it continues through the standard resource search sequence.

IfErrorWindow receives an undefined error code, it displays a dialog box with the
Unknown error message ($72).

Parameters

Stack before call

Previous contents
Space

subType

- subStringPtr

errNum

Stack after call

Previous contents
buttonNumber

-

Word- Space for result
Word-Type of custom substitution string

Long-Pointer to substitution string

Word-GS/OS error number
<-SP

Word-Number of the button clicked by the user
<-SP

Errors

c

subType

subStringPtr

Resource Manager errors Returned unchanged.

extern pascal Word ErrorWindow(subType,
subStringPtr, errNum);

Word
Pointer

subType, errNum;
subStringPtr;

The type of string pointed to by subStringPtr.

0
1

C string
Pascal string

Note that this field is ignored if the specified error message contains
no substitution strings.

A pointer to your custom text substitution string. Note that this field
is ignored if the specified error message contains no substitution
strings.

GetWindowMgrGlobals $580E

Returns a pointer to the Window Manager global data area.

.& Warning An application should never make this call. ...

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

- globa/DataPtr -

None

Long-Space for result

<-SP

Long-Pointer to the global data area

<-SP

Errors

c extern pascal Pointer GetWindowMgrGlobals();

NewWindow2 $610E

Performs the same function as NewWindow but allows you to specify the input window
template as a resource (type rWindParaml , $800E, or rWindParam2, $800F). See
Appendix E, "Resource Types," later in this book for complete descriptions of all resource
types.

• Note: If you have specified the window template as a resource, then the references
within that template to title, color table, and control list must also be resources (or NIL).

If you use Newwindow2 specifying the window template as a resource, to create an
information bar you must specify a NIL infoDraw procedure in the input template and
create an invisible window. After issuing the NewWindow2 call, set the infoDraw routine
by calling Set InfoDraw, then use the ShowWindow tool call to make the window
visible.

Parameters

Stack before call

Previous contents

- Space -

- titlePtr -

- refCon -

- contentDrawPtr -

- defProcPtr -
paramTableDesc

- paramTableRef -

resource Type

Long-Space for result

Long-Pointer to replacement title

Long-RefCon to replace value in template

Long-Pointer to replacement content-draw routine

Long-Pointer to replacement window definition procedure

Word-Type of reference in paramTableRef

Long-Reference to window template

Word- Resource type of template referred to by paramTableRef
<-SP

Stack after call

Previous contents

gra.fPortPtr Long-Pointer to window GrafFort; NIL if unsuccessful

<-SP

Errors

c

Resource Manager errors
Memory Manager errors
Window Manager errors

Control Manager errors

Returned unchanged.
Returned unchanged.
Returned unchanged from
NewWindow.
Returned unchanged from
NewControl2.

e xtern pascal Pointer NewWindow2(titlePtr, refCon,
contentDrawPtr, defProcPtr,
paramTableDesc, paramTableRef,
resourceType);

Word
Pointer
Long

paramTableDesc, resourceType;
titlePtr, contentDrawPtr, defProcPtr;
refCon, paramTableRef;

titlePtr, refCon, contentDrawPtr, de.fProcPtr
The Newwindow2 call replaces the values supplied in the template
referred to by paramTableRefwith the contents from these fields,
allowing you to use a standard template and tailor it to create
different windows. To prevent NewWindow2 from replacing the
template values, supply NIL pointers in titlePtr, contentDrawPtr, and
de.fProcPtr.

paramTableDesc The type of reference stored in paramTableRef

$0000 paramTableRef contains a pointer to a window template
$0001 paramTableRef contains a handle to a window template
$0002 paramTableRef contains the resource ID of a window

template

paramTableRef Reference to a window template. The paramTableDesc field defines
the type of reference stored here. The resourceType field defines the
resource type for the template. The template must comply with the
format specification of resource type rWindParaml or
rWindParam2 (even if the template is not stored as a resource). See
Appendix E, "Resource Types," in this book for information on the
format and content of these resources.

resourceType The type of window template referred to by paramTableRef This value
should be set correctly even if paramTableRef does not contain a
resource ID. Valid values are

$800E rWindParaml
$800F rWindParam2

ResizeWindow $5COE

Moves, resizes, and draws the window specified by grafPortPtr. The rectPtr parameter is a
pointer to the window's content region. The hiddenFlag parameter is a Boolean value. A
TRUE value specifies that those portions of the window that are covered should not be
drawn. If the value is FALSE, all parts of the window, covered or not, are drawn.

Parameters

Stack before call

Previous contents
hiddenFlag

- rectPtr -
- grafPortPtr -

Stack after call

Previous contents

Errors None

Word-Boolean; whether to hide covered area

Long-Pointer to new content rectangle

Long-Pointer to window's GratPort

<-SP

<-SP

c extern pascal void ResizeWindow(hiddenFlag, rectPtr,
grafPortPtr) ;

Word
Pointer

hiddenFlag;
rectPtr, grafPortPtr;

StartFrameDrawing $5AOE

Sets up Window Manager data to draw a window frame. This should be called only by
window definition procedures and must be balanced by a call to EndFrameDrawing
when drawing is completed.

Parameters

Stack before call

Previous contents

windowPtr

Stack after call

Previous contents

Errors None

Long-Pointer to the window to be drawn

<-SP

<-SP

c extern pascal void StartFrameDrawing(windowPtr);

Pointer windowPtr;

TaskMaster $1DOE

This section presents revised pseudocode for TaskMaster.

Pseudocode
Call SystemTask.

Call GetNextEvent using TaskMask user passed.

The wmMessage field of TaskRec is duplicated into the wmTaskData field
of TaskRec.

If any of the reserved bits in the TaskMask field are not 0:

Low word of wmTaskData = 0.
Returns nullEvt ($0000) .
Error returned: wmTaskMaskErr ($0E03).

If wmWhat of TaskRec = nullEvt ($0000) :

If TaskMask bit tmidleEvents (bit 20) 1:

If there i s a front window:

Calls the BeginUpdate routine.
Send idle event by calling SendEventToCtl with

targetOnlyFlag = True.
If result from SendEventToCtl = True

(i. e ., a control accepted t he idle event) :

wmTaskData2 contains handle to control that took
event.

wmTaskData3 contains t he result returned from
defproc.

wmTaskData4 contains the control' s ID .

Calls the EndUpdate routine.

Low word of wmTaskData = 0 .
Returns nullEvt ($0000) .

If wmWhat field of TaskRec = mouseDownEvt ($0001):

If TaskMask bit tmMultiClick (bit 19) = 1:

If wmClickCount field of TaskRec <> 0
(then not single click) :

Calculate time between mouse clicks.
Call GetDblTime.
If time between clicks is less than

double-click speed:

!f mouse position of new click is
near last click:

Increment wmClickCount field of
TaskRec by one .

Set wmLastClickTick field of
TaskRec = wmWhen.

Set wmLastC1ickPt field of
TaskRec = wmWhere.

Set wmClickCount field of TaskRec = 1.
Set wmLastClickTick field of TaskRec wmWhen.
Set wmLastClickPt field of TaskRec = wmWhere.

If TaskMask bit tmFindW (bit 2) = 0:

wmTaskData = message field from GetNextEvent .
Returns mouseDownEvt ($0001).

Calls FindWindow.

If FindWindow r e turns winMe nuBar ($0011):

If TaskMask tmMe nuSel (bit 3) = 0:

Low word of wmTaskData = 0.
Returns winMenuBar ($0011).

MenuSelect is called with TaskRec passed to TaskMaster.

Menu Selection:
If low word of wmTaskData = 0, then no selection made:

If TaskMask bit tminactive (bit 14) = 0:
{

Low word of wmTaskData = winMenuBar ($0011).
Returns nullEvt ($0000).

If high word of wmTaskData = nonzero:
{

Low word of wmTaskData = 0.
High word of wmTaskData = ID of selected

inactive menu item.
Returns winActMenu ($001C) .

If low word of wmTaskData (menu item ID) > 255:
{

If wmTaskMask bit tmControlMenu (bit 18) =1:

Call SendEventToCtl with TargetOnlyFlag
If result from SendEventToCtl = nonzero:

True.

wmTaskData2 = handle of control that took
keystroke.

wmTaskData3 = result passed back from
defproc.

wmTaskData4 = ID of control that took
keystroke.

Unhilite menu title for menu item that was
just selected.

Low word wmTaskData = winControlMenu
($0022).

Returns nullEvt ($0000).

Low word of wmTaskData = ID of selected menu item.
High word of wrnTaskData = ID of menu from which

selection was made.
Returns winMenuBar ($0011).

If low word of wrnTaskData (menu item ID) < 250:

If TaskMask bit tmOpenNDA (bit 4) = 0:

Low word of wmTaskData = ID of selected menu
item.

High word of wrnTaskData = ID of menu from which
selection was made.

Returns winDeskitem ($001A).

Calls OpenNDA with item ID in low word of wmTaskData.
Unhilite menu title for menu item that was just

selected.
Low word of wrnTaskData = winDeskitem ($001A) .
Returns nullEvt ($0000) .

If TaskMask bit tmSpecial (bit 12) = 0:

Low word of wmTaskData = ID of selected menu item.
High word of wrnTaskData = ID of menu from which

selection was made.
Returns winSpecial ($0019).

If top window is an application (nonsystem) window:
{

If TaskMask bit tmControlMenu (bit 18) = 1:

Calls SendEventToCtl with TargetOnlyFlag = True.
If result from SendEventToCtl = nonzero:

wrnTaskData2 = handle of control that took
keystroke.

wrnTaskData3 = result passed back from
defproc.

wmTaskData4 = ID of control that took
keystroke.

Unhilite menu title for menu item that was
just selected.

Low word of wmTaskData = winControlMenu
($0022).

Returns nullEvt ($0000) .

Low word of wmTaskData = ID of selected menu item.
High word of wmTaskData = ID of menu from which

selection was made.
Returns winSpecial ($0019) .

If low word of wmTaskData
(edit items) :

250, 251, 252, 253, 254

Calls SystemEdit with ID of special menu item.
If SystemEdit returns False:
(

Low word of wmTaskData
selected.

ID of menu item

High word of wmTaskData = ID of menu from which
selection was made.

Returns winSpecial ($0019) .

(Top system window handled the special menu item
selection.)

Unhilite menu title for menu item that was just
selected.

Low word of wmTaskData = wCalledSysEdit ($001E).
Returns nullEvt ($0000) .

If low word of wmTaskData = 255 (c lose item) :
{

Calls CloseNDAbyWinPtr for top window (system window).
Unhilite menu title for me nu item that was se l ected .
Low word of wmTaskData = wCloseNDA ($0 010).
Returns nullEvt ($0000).

(end menu select ion)

} (end FindWindow winMenuBar)

If FindWindow returns a negative value:
(

If TaskMask bit tmSysClick (bit 5) = 0:
{

wmTaskData = window pointer returned from FindWindow.
Returns result from FindWindow.

Calls Desk Manager routine SystemClick with result from
FindWindow.

wmTaskData low word = wClickCalled ($0012).
Returns nullEvt ($0000).

If FindWindow returns winDrag ($0014):

If TaskMask bit tmDragW (bit 6) = 0:

wmTaskData = window pointer returned from FindWindow.
Returns winDrag ($0014).

If bit 8 in the modifier field of TaskRec (Apple key up) and
the window is not active:

Calls SelectWindow to make window active.

Calls DragWindow.
wmTaskData = winDrag ($0014).
Returns nullEvt ($0000).

If FindWindow returns winContent ($0013):

Calls TaskMasterContent.

If FindWindow returns winGoAway ($0016):
{

If TaskMask bit tmClose (bit 8) = 0:
{

wmTaskData = window pointer returned from FindWindow.
Returns winGoAway ($0016) .

Calls TrackGoAway.
If TrackGoAway returns True:

wmTaskData = window pointer returned from FindWindow.
Returns winGoAway ($0016) .

Low word of wmTaskData = winGoAway ($0016).
Returns nullEvt ($0000) .

If FindWindow returns winZoom ($0017):
{

If TaskMask bit tmZoom (bit 9) = 0:

wmTaskData = window pointe r returned from FindWindow.
Returns winZoom ($0017).

Calls TrackZoom.
If TrackZoom returns True:

Calls ZoomWindow.
Low word of wmTaskData
Returns nullEvt ($0000).

winZoom ($0017) .

Low word of wmTaskData = wTrackZoom ($001F).
Returns nullEvt ($0000).

If FindWindow returns winGrow ($0015):
{

If TaskMask bit tmGrow (bit 10) = 0:

wmTaskData = window pointer returned from FindWindow.
Returns winGrow ($0015).

Calls GrowWindow.
Calls SizeWindow with results from GrowWindow.
Low word of wmTaskData = winGrow ($0015).
Returns nullEvt ($0 000).

If FindWindow returns wininfo ($0018):

If TaskMask bit tminfo (bit 15) = 0:

If window not active:

Calls Se1ectWindow.
Low word of wmTaskData
Returns nullEvt ($0000) .

wininfo ($0018) .

wmTaskData = window pointer returned from FindWindow.
Returns wininfo ($0018).

If FindWindow returns winFrame ($001B):
{

If TaskMask bit tmScroll (bit 11) = 0:

wmTaskData = window pointer returned from FindWindow.
Returns winFrame ($001B) .

If window is not active:

Calls SelectWindow to make active.
Low word of wmTaskData = wHitFrame ($0020) .
Returns nullEvt ($0000) .

If button was on a window frame control (not scroll bar
control) :

Low word of wmTaskData = wHitFrame ($0020).
Returns nullEvt ($0000).

Calls TrackControl with an action procedure within
TaskMaster.

The action procedure in TaskMaster performs scrolling and
updates.

Low word of wmTaskData = winFrame ($001B).
Returns nullEvt ($0000).

Else (something returned from FindWindow other than those handled
above) :

wmTaskData = returned value from FindWindow.
Returns result from FindWindow.

(end wmWhat field of TaskRec = mouseDownEvt)

If wmWhat field of TaskRec
{

Calls TaskMasterKey.

keyDownEvt ($0003) OR autoKeyEvt ($0005) :

If wmWhat field of TaskRec = activateEvt ($0008):
{

If TaskMask bit tmCRedraw (bit 13) 1:

If wframe bit fCtlTie (bit 3) = 0:
{

Invalidate the bounds rect of a l l normal controls in
the window.

For all extended controls in the window send the
defproc message ctlWinStateChange.

wmTaskData = pointer to window that was activated or deactivated
(check modifier field) .

Returns activateEvt ($0008).

If wmWhat field of TaskRec = update Evt ($000 6) :
{

If TaskMask bit tmUpdate (bit 1) = 0:

wmTaskData = pointer to window to be updated.
Returns updateEvt ($0006) .

If window's wContDefProc field= 0:

wmTaskData = pointer to window to be updated.
Returns updateEvt ($0006) .

Calls BeginUpdate routine.

The window's draw routine in window's wContDefProc field is called
(routine in application) .

Calls EndUpdate routine.

wmTaskData low word = updateEvt ($0006).
Returns nullEvt ($0000).

TaskMasterContent $5DOE

Internal routine that handles events inside the content region of a window. TaskMaster
invokes this routine if the trnContentCont rols bit of the taskMask field of the task
record is set to 1. Your program should never issue this call.

Pseudocode
If trnContentControls in wrnTaskMask = 1:

Endif.

If rnousedown in content region of frontrnost window:

Else:

Endif.

Set wrnTaskData2, wrnTaskData3, and wrnTaskData4 to $00000000.
Call FindControl.
Put resulting partCode into low-order word of wrnTaskData3.
Put controlHandle into wrnTaskData2.
If partCode <> 0:

Endif.

Call GetCtliD.
Put resulting control ID into wrnTaskData4.
Call TrackControl with actionProcPtr set to $FFFFFFFF.
If result <> 0 or part code corresponds to scroll bar:

Endif.

Put resulting partCode into high-order word of
wrnTaskData3.

If the control is a check box or radio button:
Set or clear the value, as appropriate.

Endif.
Return(winControl).

Set low word of wrnTaskData winControl.
Return (nullEvt) .

Set wrnTaskData = pointer to window.
Return(winContent).

TaskMasterContent calls FindControl. If the user did not press the button in a
control, then the routine returns a result code of winContent, indicating that the mouse
is in the content region of the window.

If the user did press the mouse button in a control, TaskMasterContent calls
TrackControl, directing the Control Manager to use the appropriate action procedure
for the control.

When TrackControl returns, TaskMasterContent examines the part code. If the
part code is set to 0, then the user decided not to use the control (released the mouse
button outside the control). TaskMasterControl returns a result code of nullEvt
($0000).

If the part code is nonzero, then the user released the mouse button within a control.
TaskMasterContent returns a result code of winControl, wmTaskData2 contains
the control handle, wmTaskData3 (low-order word) contains the part code identifying
the control in which the user pressed the mouse button, wmTaskData3 (high-order word)
contains the part code identifying the control in which the user released the mouse
button, and wmTaskData4 contains the control ID (if there is one defined).

TaskMasterDA $5FOE

This call is the TaskMaster entry point for desk accessories. Your program passes event
information obtained from the Desk Manager.

Parameters

Stack before call

Previous contents
Space

eventMask

- taskRecPtr

Stack after call

Previous contents
taskCode

-

Errors None

Word-Space for result
Word-Not used

Long-Pointer to extended task record

<-SP

Word-TaskMaster result code
<- SP

c ext ern p asc al Word TaskMa s t erDA(e ventMas k,
t a skRecPtr);
Pointer taskRecPtr;

Word e ventMa sk;

TaskMasterKey $5EOE

Internal routine that handles keystroke events inside the content region of a window.
Your program should never issue this call.

Pseudocode
If tmMenuKey in wmTaskMask = 1:

If wmTaskData = 0: (menu did not take keystroke):
If tminactive in wmTaskMask = 1:

Endif.

If high word of wmTaskData <> 0:

Endif.

Set low word of wmTaskData = 0.
Set high word of wmTaskData = ID of selected

inactive menu item.
Return (winActMenu) .

Goto CheckControls.

Else: (menu did take keystroke):
If low word of wmTaskData > 255:

If tmControlMenu in wmTaskMask = 1:

Endif.

Call SendEventToCtl with targetOnlyFlag
If result <> 0:

TRUE.

Endif.

Set wmTaskData2 = handle of control that
took keystroke.

Set wmTaskData3
defProc.

result code from

Set wmTaskData4 = ID of control that took
keystroke.

Dim the menu title for selected menu item.
Set low word of wmTaskData

winControlMenu.
Return (nullEvt).

Set low word of wmTaskData
item.

ID of selected menu

Set high word of wmTaskData = ID of menu from
which selection was made.

Return (winMenuBar) .

Elseif low word of wmTaskData < 250:
If tmOpenNDA in wmTaskMask = 0:

Set low word of wmTaskData
item.

ID of selected menu

Set high word of wmTaskData = ID of menu from
which selection was made.

Return (winDeskitem) .
Endif.
Call OpenNDA.
Dim menu title for selected menu item.
Set low word of wmTaskData = winDeskitem.
Return (nullEvt).

Elseif tmSpecial of wmTaskMask 0:
Set low word of wmTaskData = ID of selected menu item.
Set high word of wmTaskData = ID of menu from which

selection was made.
Return (winSpecial) .

Elseif top window is an application window:
If tmControlMenu of wmTaskMask = 1:

Call SendEventToCtl with targetOnlyFlag TRUE.
If result <> 0:

Set wmTaskData2 = handle of control that
took keystroke.

Endif.
Endif.

Set wmTaskData3
defProc.

Set wmTaskData4
keystroke.

result code from

ID of control that took

Dim the menu title for selected menu item.
Set low word of wmTaskData

winControlMenu.
Return (nullEvt) .

Set low word of wmTaskData = ID of selected menu item.
Set high word of wmTaskData = ID of menu from which

item was selected.
Return (winSpecial) .

Endif.
Endif.

Elseif low word of wmTaskData = 250, 251, 252, 253, or 254:
Call SystemEdit.
If SystemEdit returns FALSE:

Set low word of wmTaskData ID of selected menu
item.

Set high word of wmTaskData = ID of menu from
which item was selected.

Return (winSpecial) .
Endif.
Dim menu title for menu item that was selected.
Set low word of wmTaskData = wCalledSysEdit.
Return (nullEvt) .

Elseif low word of wmTaskData = 255:

Endif.

Call CloseNDAbyWinPtr for top window.
Dim menu title for menu item that was just selected.
Set low word of wmTaskData = wClosedNDA.
Return (nullEvt) .

CheckControls:

If tmControlKey in wmTaskMask = 1:

Endif.

Set wmTaskData2, wmTaskData3, and wmTaskData4 0.
If there is a front window:

Endif.

Call SendEventToCtl with targetOnlyFlag = FALSE.
If result <> 0:

Endif.

Set wmTaskData2 handle of control that took the
keystroke.

Set wmTaskData3 result from defProc.
Set wmTaskData4 = ID of control that took the

keystroke.
Set wmTaskData = window containing control.
If control is a check box or radio button:

Set the ctlValue for the control.
Endif.
Return (winControl) .

Return (keyDownEvt or autoKeyEvt) .

TaskMasterKey first checks to see if menu keys are to be passed to the Menu Manager.
If so, TaskMasterKey calls MenuKey. If the user entered a menu keystroke, MenuKey
handles it, and TaskMasterKey returns control to the calling application.

If the user did not enter a menu key equivalent or if keystrokes are not to be passed to
the Menu Manager, TaskMasterKey looks for a control in the active window that can
receive the keystroke. If a control takes the event, TaskMasterKey returns nullEvt to
the calling application. Otherwise, TaskMasterKey returns keyDownEvt, indicating
that the keystroke is for the application.

GDRPrivate $540E

This is an internal Window Manager call; your program should never issue this call.

Error messages

Table 52-4 documents the error numbers and accompanying messages produced by the
ErrorWindow tool call. For each error number, the following table specifies the message
text displayed in the dialog box, the icon shown, and the buttons available for the user to
press. Any required substitution strings are shown in the message text.

• Table 52-4 Error messages

Error (hex)

$00
$01
$04
$07
$10
$11
$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$2B
$2C
$2D
$2E
$2F
$40
$43
$44
$45
$46

Message

No error occurred.
Bad system call number.
Invalid parameter count.

GS/OS already active.
Device not found.
Invalid device number.
Bad request or demand.

Bad control or status code .

Bad call parameter.
Character device not open.
Character device a lready open.
Interrupt table full.

Resources not available.
I /0 error .
Device not connected.
Driver is busy and not available.

Device is write protected.
Invalid byte count.
Invalid block number .

Disk has been switched.
Device o ff-line / no media present.

Invalid pathname syntax.
Invalid reference number.

Subdirectory does not exist.
Volume not found .
File not found.

Icon

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

Button

OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK

[cont inued]

• Table 52-4 Error messages [continued]

Error (hex)

$47
$48
$49
$4A
$4B
$4C
$4D
$4E
$4F
$50
$51
$52
$53
$54
$57
$58
$59

$5A
$5B
$5C
$5D
$5F
$60
$61
$62
$63

$64

$65

$66

Message

Duplicate pathname.
Volume full.
Volume directory full.
Version error.
Bad storage type.
End of file encountered.
Position out of range.
Access not allowed.
Buffer too small.
File is already open.
Directory error.
Unknown volume type.
Parameter out of range.
Out of memory.
Duplicate volume name.

Not a block device.

Icon

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

None
Specified level is outside legal range.

None
Block number too large. None
Invalid pathnames for change_path. None
Not an executable file. None
Operating system not supported. None
Stack overflow. None
Data unavailable. None
End of directory has been reached. None
Invalid FST call class. None
File does not contain requested resource.

None
Specified FST is not present in system.

None

FST does not handle this type of call.

None
FST handled call, but result is weird.

None

Button

OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK

OK
OK
OK
OK
OK
OK
OK
OK
OK

OK

OK

OK

OK
[continued]

• Table 52-4 Error messages [continued]

Error (hex)

$67
$68
$69
$70

$71

$72

$80

$81
$82

$83

$84

$85

$86

$87

$88
$89
$8A
$8B
$8C

$8D

Message

Internal error.
Device list is full.

Supervisor list is full.

Icon

None
None
None

Cannot expand file, resource already e x ists.

None
Cannot add resource fork to this type of file.

Button

OK
OK
OK

OK

None OK
Unknown error: [en-or string]. None

Error creating the new directory: [reason string].
Stop

Error saving the file: [reason string]. Stop

Cancel

Cancel
Cancel

Insufficient access privileges to open that folder.

Stop OK
The selected folder cannot be opened: [reason string].

Stop Cancel
You cannot replace a folder with a file.

That file already e x ists.
Stop
Stop

Insufficient memory to perform that operation.
About [number string]K additional needed.

Cancel
Cancel
Replace

Stop Cancel
Initializatio n failed: Disk write protected.

The pathname is too long.
The disk is write protected.
The disk is full.
The disk directory is full.

The file is copy- protec ted and

Memory is full.

can't

Stop
Stop
Caution
Stop
Stop

Cancel
OK
Cancel
Cancel
Cancel

be c opied.

Stop
Stop

Cancel
OK

[continued]

• Table 52-4 Error messages [continued]

Error (hex)

$8E

$8F

$90

$91
$92
$93
$94

Message Icon Button

There isn't enough memory remaining to complete this
operation. Please close some windowsand try again.

Stop
The item is locked and can't be renamed.

Stop
An I/0 error has occurred while using the disk.

This disk seems to be damaged.
Not a ProDOS disk.
No on-line volumes can be found.
Insert the disk: [namestring].

Stop
Stop
Stop
Stop
Swap

OK

Cancel

Cancel
Cancel
OK
OK
Cancel

Appendix E Resource Types

This appendix documents the format and content of standard resources
used by the Apple IIGS Toolbox. The resources are discussed in
alphabetical order by resource type name. A table that lists all resources
in ascending order by resource type number precedes these resource
descriptions.

Resource type numbers
This appendix presents resource descriptions in order by resource type name. Often,
however, you may need to determine a resource given only its resource type number. Table
E-1 lists all currently defined resources in ascending order by resource type number.

• Table E-1 Resources listed by resource type number
Resource type
number (hex) Resource type name Description

$8001 ricon Icon specification
$8002 rPicture QuickDraw II picture definition
$8003 rControlList Control Manager control list
$8004 rControlTemplate Control Manager input templates
$8005 rClinputString GS/OS class 1 input string
$8006 rPString Pascal string
$8007 rStringList Array of Pascal strings
$8008 rMenuBar Menu bar record
$8009 rMenu Menu template
$800A rMenuitem Menu item definition
$8008 rTe xtForLETextBox2 Data for LineEdit LETe x tBox2 tool call
$800D rCtlColorTbl Color table for control
$800E rWindParaml Parameters for NewWindow2
$800F rWindParam2 Parameters for NewWindow2
$8010 rWindColor Window Manager color table
$8011 rTextBlock Text block
$8012 rStyleBlock TextEdit style information
$8013 rToolStartup Tool set startup record
$8014 rResName Resource name
$8015 rAlertString Alert Window input data
$8016 rText Unformatted text
$801A rTwoRects Two rectangles
$801C rListRef List member
$801D restring C string
$8020 rErrorString ErrorWindow input data
$8021 rKTransTable Keystroke translation table
$8023 rClOutputString GS!OS class 1 output string
$8025 rTERuler TextEdit ruler information

rAlertString $8015

Figure E-1 defines the layout of resource type rAlert string ($8015). Resources of this
type define the data for alert windows to be displayed by the Alert Window Window
Manager tool call. For more complete information on alert window definitions, see
Chapter 52, "Window Manager Update," earlier in this book.

AlertWindow accepts a reference to a string that contains its message and a reference
to an array of substitution strings. The substitution strings can be any of seven standard
strings (such as "OK," "Continue," and so on) or can be specified by the application and
stored in the buffer to which the substitution-string pointer refers.

• Figure E-1 Alert string, type rAlertString ($8015)

$00 .
alert String : Array

alert String The alert message to be displayed. Contents of this string must
comply with the rules for alert window definitions documented in
Chapter 52, "Window Manager Update," earlier in this book.

rClinputString $8005

Figure E-2 defines the layout of resource type rClinputstring ($8005). Resources of
this type contain GS/OS class 1 input strings (length word followed by data).

• Figure E-2 GS/OS class 1 input string, type rClinputString ($8005)

$00 length Word
I-. --------i-l

length

stringCharacters : length bytes

The number of bytes stored at stringCharacters . This is an
unsigned integer; valid values lie in the range from 1 to 65,535.

stringCharacters
Array of length characters.

rClOutputString $8023

Figure E-3 defines the layout of resource type rClOutputstring ($8023). Resources of
this type contain GS/OS class 1 output strings (buffer size word and string length word
followed by data).

• Figure E-3 GS/OS class 1 output string, type rC lOutputString ($8023)

$00 - bufferSi ze - Word
$02 - stringLength - Word

$04 .
stringCharacters stringLength bytes

bufferSize The number of bytes in the entire structure, including bufferSize.

stringLength The number of bytes stored at stringCharacters. This is an
unsigned integer; valid values lie in the range from 1 to 65,535. If the
returned string does not fit in the buffer, this field indicates the length
of the string the system wants to return. Your program should add 4 to
that value (to account for bufferSize and st ringLength), resize
the buffer, and reissue the call.

stringCharacters
Array of stringLength characters.

rControlList $8003

Figure E-4 defines the layout of resource type rControlList ($8003). The Control
Manager stores lists of resource IDs in resources of this type.

• Figure E-4 Control list, type rContro lList ($8003)

$00 .

ctlList

ct lLi s t : Array of longs

List of resource IDs for control template definitions. The last entry
must be set to NIL.

rContro1Temp1ate $8004

Resources of type rControlTemplate ($8004) define control templates, used with the
Control Manager NewControl2 tool call to create controls. You fill a type
rcontrolTemplate resource according to the needs of the particular control you want
to create. The system distinguishes between different control templates by examining the
procRef field in the standard header portion that precedes each template.

Control template standard header

Each control template contains the standard header, which consists of seven fields.
Following that header, some templates have additional fields, which further define the
control to be created. Figure E-5 shows the format and content of the standard template
header.

Custom control definition procedures establish their own item template layout. The only
restriction placed on these templates is that the standard header be present and well
formed. Custom data for the control procedure may follow the standard header.

• Figure E-5 Control template standard header

$00 r-
$02 r-

r-
r-

$06.

$0E

$12
$14
$16

-
-
-
-
-

pCount

pCount - Word
-

ID - Long -
rect Rectangle

-
procRef - Long -

flag -

moreFlags -
Word
Word

refCon
-- Long -

Count of parameters in the item template, not including the pCount
field. Minimum value is 6; maximum value varies depending on the
type of control template.

ID

rect

procRef

Parameter that sets the ct 1 ID field of the control record for the new
control. The ct 1 ID field may be used by the application to provide a
straightforward mechanism for keeping track of controls. The control
ID is a value assigned by your application, which the control "carries
around" for your convenience. Your application can use the ID, which
has a known value, to identify a particular control.

Parameter that sets the c t 1 Re c t field of the control record for the
new control. Defines the boundary rectangle for the control.

Parameter that sets the ct 1P roc field of the control record for the
new control. This field contains a reference to the control definition
procedure for the control. The value of this field is either a pointer to
(or a resource ID for) a control definition procedure or the ID of a
standard routine. If the fCt1ProcRefNotptr flag in the
moreF1ags field is set to 0, then procRef must contain a pointer. If
the flag is set to 1, then the Control Manager checks the low-order
three bytes of procRef. If these bytes are all zero, then procRef
must contain the ID for a standard routine; if these bytes are nonzero,
pro eRe f contains the resource ID for a control routine.

The standard values are

simp1eButtonContro1 $80000000 Simple button
checkContro1 $82000000 Check box
iconButtonContro1 $07FF0001 Icon button
editLineContro1 $83000000 LineEdit
1istContro1 $89000000 List
pictureContro1 $8DOOOOOO Picture
popUpContro1 $87000000 Pop-up menu
radioContro1 $84000000 Radio button
scro11BarContro1 $86000000 Scroll bar
growControl $88000000 Size box
statTextContro1 $81000000 Static text
editTextContro1 $85000000 TextEdit

+ Note: The procRef value for iconButtonContro1 is not truly a standard value but
rather the resource ID of the standard control definition procedure for icon buttons.

flag A word used to set both ctlHilite and ctlFlag in the control
record for the new control. Since this is a word, the bytes for
ctlHilite and ctlFlag are reversed. The high-order byte of flag
contains ctlHilite, and the low-order byte contains ctlFlag. The
bits in flag are mapped as follows:

Highlight

Invisible

Variable

bits 15-8 Indicates highlighting style.
0 = Control active, no highlighted parts
1-254 = Part code of highlighted part
255 = Control inactive

bit 7 Governs visibility of control.
0 = Control visible
1 = Control invisible

bits 6-0 Values and meaning depend upon
control type.

moreFlags Used to set the ct lMoreF lags field of the control record for the
new control.

The high-order byte is used by the Control Manager to store its own
control information. The low-order byte is used by the control
definition procedure to define reference types.

The defined Control Manager flags are

fCtlTarget $8000

fCtlCanBeTarget $4000

fCtlWantEvents $2000

fCtlProcRefNotPtr
$1000

fCtlTellAboutSize
$0800

fCtlisMultiPart $0400

If this flag is set to 1, this control is currently the
target of any typing or editing commands.
If this flag is set to 1, this control can be made the
target control.
If this flag is set to 1, this control can be called when
events are passed via the SendEvent ToCt 1 Control
Manager call. (Note that, if the fCtlCanBeTarget
flag is set to 1, this control will receive events sent to
it regardless of the setting of this flag.)

If this flag is set to 1, then the Control Manager
expects procRef to contain the ID or resource ID of
a control procedure; if it is set to 0, then procRef
contains a pointer to a custom control procedure.

If this flag is set to 1, this control needs to be
notified when the size of the owning window has
changed. This flag allows custom control procedures
to resize their associated control images in response
to changes in window size.
If set to 1, then this is a multipart control. This flag
allows control definition procedures to manage
multipart controls (necessary since the Control
Manager does not know about all the parts of a
multipart control).

The low-order byte uses the following convention to describe
references to color tables and titles (note, though, that some control
templates do not follow this convention):

titleisPtr
titleisHandle
titleisResource

colorTableisPtr

$00 Title reference is by pointer
$01 Title reference is by handle
$02 Title reference is by resource ID (resource type

corresponds to string type)

$00 Color table reference is by pointer

colorTableisHandle $04 Color table reference is by handle
colorTableisResource $08 Color table reference is by resource ID (resource type

of ret lColorTbl, $800D)

ref Con Used to set the ctlRefCon field of the control record for the new
control. Reserved for application use.

Keystroke equivalent information

Many of these control templates allow you to specify keystroke equivalent information
for the associated controls. Figure E-6 shows the standard format for that keystroke
information.

• Figure E-6 Keystroke equivalent record layout

keyl $00
key2 $01

- keyModifiers -$02
r- keyCareBits -$04

keyl This is the ASCII code for the uppercase or lowercase of the key
equivalent.

key2 This is the ASCII code for the uppercase or lowercase of the key
equivalent. Taken with keyl, this field completely defines the values
against which key equivalents will be tested. If only a single key code
is valid, then set keyl and key2 to the same value.

keyModifiers These are the modifiers that must be set to 1 for the equivalence test
to pass. The format of this flag word corresponds to that defined for
the event record in Chapter 7, "Event Manager," in Volume 1 of the
Toolbox Reference. Note that only the modifiers in the high-order byte
are used here.

keycareBi t s These are the modifiers that must match for the equivalence test to
pass. The format of this word corresponds to that of
keyModifiers . This word allows you to discriminate between
double-modified keystrokes. For example, if you want Control-7 to
be an equivalent, but not Option-Control-7, you set the contra/Key bit
in keyModifiers and both the optionKey and the contra/Key bits in
keyCareBits to 1. If you want Return and Enter to have the same
effect, you should set the keyPad bit to 0.

Simple button control template

Figure E-7 shows the template that defines a simple button control.

• Figure E-7 Item template for simple button controls

$00
$02 1-

$06

$0E

$12

$14
$16

$1A

$IE

1-
1-

1-
1-
1-

t-

1-
1-
1-

1-
1-
t-

t-
t-

$22 .

pCount

ID

rect

procRef

flag

moreFlags

refCon

titleRef

*colorTableRef

*keyEquivalent

-

--
-

-
-
-
-
-
--
-

Word-Parameter count for template: 7, 8, or 9

Long-Application-assigned control ID

Rectangle-Boundary rectangle for control

Long- simpleButtonControl =$80000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defined value

Long-Reference to title of button

Long-Reference to color table for control (optional)

Block, 6 bytes-Keystroke equivalent data (optional)

Defined bits for flag are

Reserved
ctlinvis
Reserved
Button type

bits 15-8
bit 7
bits 6-2
bits 1-0

Must be set to 0.
0 = Visible, 1 = Invisible.
Must be set to 0.
Describes button type.
0 = Single-outlined, round-cornered button
1 = Bold-outlined, round-cornered button
2 = Single-outlined, square-cornered button
3 = Single-outlined, square-cornered, drop-
shadowed button

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize
Reserved
Color table reference

Title reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-4
bits 3-2

Must be set to 0.
Must be set to 0.
Set to 1 if button has keystroke equivalent.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of reference in colorTableRef.
(See Chapter 4, "Control Manager," in Volume 1 of
the Toolbox Reference for the definition of the
simple button color table.)
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 = Color table reference is by resource ID
(resource type of rCtlColorTbl, $800D)
11 = Invalid value

bits 1-0 Defines type of title reference in titleRef.
00 = Title reference is by pointer
01 = Title reference is by handle
10 = Title reference is by resource ID (resource type
corresponds to string type)
11 = Invalid value

keyEqui valent Keystroke equivalent information stored at keyEqui v alent is
formatted as shown in Figure E-6.

Check box control template

Figure E-8 shows the template that defines a check box control.

• Figure E-8 Control template for check box controls

$00
$02

$06.

$0E

$12
$14
$16

$1A

$1E
$20

$24.

-
--
-

-
-
-
-
-
-
--
-
-
-
-
-
--

pCount

ID

rect

procRef

flag

moreFlags

ref Con

titleRef

initial Value

*colo rTableRef

*keyEquivalent

-

--
-
-
-

--
-

-
--
-

Word-Parameter count for template: 8, 9, or 10

Long-Application-assigned control ID

Rectangle-Boundal)' rectangle for control

Long-checkBoxContro l =S82000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defined value

Long-Reference to title of box

Word-Initial box setting: 0 for clear, 1 for checked

Long-Reference to color table for control (optional)

Block, 6 bytes-Keystroke equivalent data (optional)

Defined bits for flag are

Reserved
ctlinvis
Reserved

bits 15-8
bit 7
bits 6-0

Must be set to 0.
0 = Visible, 1 = Invisible.
Must be set to 0.

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
f CtlTellAboutSize
Reserved
Color table reference

Title reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-4
bits 3-2

Must be set to 0.
Must be set to 0.
Set to 1 if check box has keystroke equivalent.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Defines type of reference in colorTableRef.
(See Chapter 4, "Control Manager," in Volume 1 of
the Toolbox Reference for the definition of the
check box color table.)
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 =Color table reference is by resource ID
(resource type of rCtlColorTbl, $800D)
11 = Invalid value

bits 1-0 Defines type of title reference in titleRe f.
00 = Title reference is by pointer
01 = Title reference is by handle
10 =Title reference is by resource ID (resource type
corresponds to string type)
11 = Invalid value

keyEqui valent Keystroke equivalent information stored at keyEqu i v alent is
formatted as shown in Figure E-6.

Icon button control template

Figure E-9 shows the template that defines an icon button control. For more information
about icon button controls, see "Icon Button Control" in Chapter 28, "Control Manager
Update," in this book.

• Figure E-9 Control template for icon button controls

$()() f-

$02 f-
f-
f-

$06:

$0E

$12
$14
$16

$1A

$1E

$22

f-
t-
r-

t-

f-

f-
r-
f-

r-
f-
f-

f-
t-
t-

t---
-$26

$28 :

pCount

ID

rect

procRef

flag

moreFlags

ref Con

iconRef

*titleRef

*colorTableRef

*displayMode

*keyEquivalent

-

-
-

-

Word-Parameter count for template: 7, 8, 9, 10, or 11

Long-Application-assigned control ID

Rectangle-Boundal)' rectangle for control

Long-iconButtonControl =S07FF0001

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defmed value

Long-Reference to icon for control

Long-Reference to title for control (optional)

Long-Reference to color table for control (optional)

Word-Bit flag controlling icon appearance (optional)

Block, 6 bytes-Key equivalent information (optional)

Defined bits for flag are

ctlHilite
ctlinvis
Reserved
showBorder
button Type

bits 15-8
bit 7
bits 6-3
bit 2
bits 1-0

Sets the ctlHilite field of the control record.
0 = Visible, 1 = Invisible.
Must be set to 0.
0 = Show border, 1 = No border.
Defines button type.
00 = Single-outlined, round-cornered button
01 = Bold-outlined, round-cornered button
10 = Single-outlined, square-cornered button
11 = Single-outlined, square-cornered, and drop-
shadowed button

Defined bits for moreFlags are

fCtlTarget bit 15 Must be set to 0.
Must be set to 0.
Must be set to 0.
Must be set to 1.

fCtlCanBeTarget bit 14
fCtlWantEvents bit 13
fCtlProcRefNotPtr bit 12
fCtlTellAboutSize

Reserved
Icon reference

bit 11 Must be set to 0.
bits 10-6 Must be set to 0.
bits 5-4 Defines type of icon reference in iconRef.

00 = Icon reference is by pointer
01 = Icon reference is by handle
10 = Icon reference is by resource ID (resource
type of ricon, $8001)
11 = Invalid value

Color table reference bits 3-2 Defines type of reference in co l orTableRef; the
color table for an icon button is the same as that
for a simple button. (See Chapter 4, "Control
Manager," in Volume 1 of the Toolbox Reference for
the definition of the simple button color table.)

Title reference

titleRef

00 = Color table reference is by pointer
01 = Color table reference is by handle
10 = Color table reference is by resource ID
(resource type of rCtlCo l orTbl, $800D)
11 = Invalid value

bits 1-0 Defines type of title reference in tit 1 eRe f.
00 = Title reference is by pointer
01 = Title reference is by handle
10 = Title reference is hy resource ID (resource
type of rPString, $8006)
11 = Invalid value

Reference to the title string, which must be a Pascal string. If you are
not using a title but are specifying other optional fields, set
moreFlags bits 0 and 1 to 0, and set this field to 0.

displayMode Passed directly to the Drawicon routine, a field defining the display
mode for the icon. The field is defined as follows (for more
information on icons, see Chapter 17, "QuickDraw II Auxiliary," in
Volume 2 of the Toolbox Reference).

Background color

Foreground color

Reserved
offLine

open Icon

selectedicon

bits 15-12

bits 11-8

bits 7-3
bit 2

bit 1

bit 0

Defines the background color to apply to black part
of black-and-white icons.
Defines the foreground color to apply to white part
of black-and-white icons.
Must be set to 0.
0 = Don't perform the AND operation on the image
1 = Perform the logical AND operation with light-gray
pattern and image being copied
0 = Don't copy light-gray pattern
1 = Copy light-gray pattern instead of image
0 = Don't invert image
1 = Invert image before copying

Color values (both foreground and background) are indexes into the
current color table. See Chapter 16, "QuickDraw II," in Volume 2 of the
Toolbox Reference for details about the format and content of these
color tables.

keyEqui valent Keystroke equivalent information stored at keyEqui v alent is
formatted as shown in Figure E-6.

lineEdit control template

Figure E-10 shows the template that defines a LineEdit control. For more information
about LineEdit controls, see "LineEdit Control" in Chapter 28, "Control Manager Update,"
in this book.

• Figure E-10 Control· template for LineEdit controls

$00 r- pCount - Word-Parameter count for template: 8
$02 f----------l r-

r-
r-

$06 .

$0E

$12
$14
$16

$1A
$1C

r-
r-
r-
1-

r-
r-
r-
1-

1-

r-r-
r-

ID

rect

procRef

flag

rnore Flags

ref Con

max Size

defaultRef

Defined bits for flag are

Reserved
ctlinvis
Reserved

-
- Long-Application-assigned control ID -

-
--
-
-

-

Rectangle-Boundary rectangle for control

Long-edi tLineCont rol =$83000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defmed value

Word-Maximum length of input line (in bytes)

Long-Reference to default text

bits 15-8
bit 7

Must be set to 0.
0 = Visible, 1 = Invisible.
Must be set to 0. bits 6-0

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSize

Reserved
Text reference

bit 15
bit 14
bit 13
bit 12

bit 11
bits 10-2
bits 1-0

Must be set to 0.
Must be set to 1.
Must be set to 1.
Must be set to 1.

Must be set to 0.
Must be set to 0.
Defines type of text reference in default Ref .
00 = Text reference is by pointer
01 =Text reference is by handle
10 =Text reference is by resource ID (resource
type of rPString, $8006)
11 = Invalid value

maxSize The maximum number of characters allowed in the LineEdit field.
Valid values lie in the range from 1 to 255.

The high-order bit indicates whether the LineEdit field is a password
field. Password fields protect user input by echoing asterisks rather
than the actual user input. If this bit is set to 1, then the LineEdit field
is a password field.

Note that LineEdit controls do not support color tables.

List control template

Figure E-l l shows the template that defines a list control. For more information about list
controls, see "List Control" in Chapter 28, "Control Manager Update," in this book.

• Figure E-ll Control template for list controls

$00 - pcount - Word-Parameter count fortemplate: 14 or 15
1-----------{ $02 -
--

$06.

$0E

$12
$14
$16

$1A
$1C
$1E
$20
$22

$26
$28
$2A

$2E

-
-

-
r-

!-

!-

!-
!-
!-

!-

!-

!-
f--
f--

f--
t-
!-

ID

rect

procRef

flag

moreFlags

ref Con

listSize

listView

list Type

list Start

l istDraw

listMemHeight

listMemSize

listRef

*colorTableRef

-
- Long-Application-assigned control ID -

-
-

-
-
-
-

-
-

Rectangle-Boundary rectangle for control

Long-listControl=$890000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defined value

Word-Number of members in list
Word-Number of members in window
Word-Type of list entries, selection options
Word-First visible list member

Long-Pointer to member-drawing routine

Word-Height of each list item in pixels
Word-Size of list entry in bytes

Long- Reference to list of member records

Long-Reference to color table (optional)

Defined bits for flag are

Reserved
ctlinvis
Reserved

bits 15-8
bit 7
bits 6-0

Must be set to 0.
0 = Visible, 1 = Invisible.
Must be set to 0.

Defined bits for moreF lags are

fCtlTarget bit 15
fCtlCanBeTarget bit 14
fCtlWantEvents bit 13
fCtlPr o cRefNotPtr

bit 12
fCtlTellAboutSize

fCtlisMultiPart
Reserved
Color table reference

List reference

bit 11
bit 10
bits 9-4
bits 3-2

bits 1-0

Must be set to 0.
Must be set to 0.
Must be set to 0.

Must be set to 1.

Must be set to 0.
Must be set to 1.
Must be set to 0.
Defines type of reference in colorTableRef. (The
color table for a list control is described in
Chapter 11, "List Manager," in Volume 1 of the
Toolbox Reference.)
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 =Color table reference is by resource ID (resource
type of rCtlColorTbl, $800D)
11 = Invalid value
Defines type of reference in listRef. (The format
of a list member record is described in Chapter 11,
"List Manager," in Volume 1 of the Toolbox Reference.)
00 = List reference is by pointer
01 = List reference is by handle
10 = List reference is by resource ID (resource type of
rListRef , $801C)
11 = Invalid value

list Type

Reserved
fListScrollBar

fListSelect

fListString

Valid values for list Type are as follows:

bits 15-3
bit 2

bit 1

bit 0

Must be set to 0.
Allows you to control where the scroll bar for the list is
drawn.
0 = Scroll bar drawn on outside of boundary rectangle
1 = Scroll bar drawn on inside of boundary rectangle;
the List Manager calculates space needed, adjusts
dimensions of boundary rectangle, and resets this flag
Controls type of selection options available to the user.
0 = Arbitrary and range selection allowed
1 = Only single selection allowed
Defines the type of strings used to define list items.
0 = Pascal strings
1 = C strings ($00-terminated)

For details on the remaining custom fields in this template, see the discussion of "List
Controls and List Records" in Chapter 11, "List Manager," of Volume 1 of the Toolbox
Reference.

Picture control template

Figure E-12 shows the template that defines a picture control. For more information about picture
controls, see "Picture Control" in Chapter 28, "Control Manager Update," in this book.

• Figure E-12 Control template for picture controls

$00 - pCount - Word-Parameter count for template: 7
$02 1---------l ---
$06.

$0E

$12
$14
$16

$1A

-
-

-
-
-

ID

rect

procRef

flag

moreFlags

ref Con

pictureRef

-
- Long-Application-assigned control ID -

-
-

Rectangle-Boundary rectangle for control

Long-pictureControl =$8DOOOOOO

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defmed value

Long-Reference to picture for control

Defined bits for f 1 a g are

ctlHilite

ctlinvis
Reserved

bits 15-8

bit 7
bits 6-0

Specifies whether the control wants to receive mouse
selection events; the values for ctlHilite are
0 = Control is active
255 = Control is inactive
0 = Visible, 1 = Invisible.
Must be set to 0.

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCtlTellAboutSiz e
Reserved
Picture reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-2
bits 1-0

Must be set to 0.
Must be set to 0.
Must be set to 0.
Must be set to 1.
Must be set to 0.
Must be set to 0.
Define type of picture reference in pictureRef.
00 = Invalid value
01 =Reference is by handle
10 = Reference is by resource ID (resource type of
rP ict u r e, $8002)
11 = Invalid value

Pop-up control template

Figure E-13 shows the template that defines a pop-up control. For more information about pop-up
controls, see "Pop-up Control" in Chapter 28, "Control Manager Update," in this book.

• Figure E-13 Control template for pop-up controls

$00 r- pCo unt - Word-Parameter count for template: 9 or 10
$02- -

- ro - Long-Application-assigned control ID - -
$06.

$0E

$12

$14
$16

$1A
$1C

$20

$22

-
-
-
-
-
-
-
f-
r-
f-

f-
f-
t-

rect

-
pro cRef --

flag -
moreFlags -

-
r e f Con -

-
title Width -

-
menuRef --

i ni t i al Va l u e -
-

*colorTableRef -
-

Rectangle-Boundary rectangle for control

Long-popUpControl=S87000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defmed value

Word-Width in pixels of title string area

Long-Reference to menu definition

Word-Item ID of initial item

Long-Reference to color table for control (optional)

Defined bits for flag are

ct1Hi1ite

ct1Invis
fType2PopUp

bits 15-8

bit 7
bit 6

fDontHiliteTit1e bit 5

fDontDrawTit1e bit 4

fDontDrawResult bit 3

finWindowOn1y bit 2

fRightJustifyTit1e
bit 1

Specifies whether the control wants to receive mouse
selection events; the values for ct1Hi1ite are
0 = Control is active
255 = Control is inactive
0 = Visible, 1 = Invisible.
Tells the Control Manager whether to create a pop-up
menu with white space for scrolling (see Chapter 37,
"Menu Manager Update," for details on type 2 pop-up
menus).
0 = Draw normal pop-up
1 = Draw pop-up with white space (type 2)
Controls highlighting of the control title.
0 = Highlight title
1 = Do not highlight title
Allows you to prevent the title from being drawn
(note that you must supply a title in the menu
definition, whether or not it will be displayed); if
tit 1 e width is defined and this bit is set to 1, then
the entire menu is offset to the right by tit 1 e width
pixels.
0 = Draw the title
1 = Do not draw the title
Allows you to control whether the selection is drawn
in the pop-up rectangle.
0 = Draw the result
1 = Do not draw the result in the result area after a
selection
Controls the extent to which the pop-up menu can be
enlarged; this is particularly relevant to type 2 pop-up
menus (see Chapter 37, "Menu Manager Update," for
details on type 2 pop-up menus).
0 = Allow the pop-up menu to enlarge to screen size
1 = Keep the pop-up menu in the current window

Controls title justification.
0 = Left-justify the title
1 = Right-justify the title; note that if the title is right
justified, then the control rectangle is adjusted to
eliminate unneeded pixels; the value for
t it 1 e Widt h is also adjusted

fRightJustifyResult
bit 0

Defined bits for moreFlags are

fCtlTarget bit 15
fCtlCanBeTarget bit 14
fCtlWantEvents bit 13

fCtlProcRefNotPtr
bit 12

fCtlTellAboutSize
bit 11

Reserved bits 10-5
Color table reference bits 4-3

fMenuDefisTe x t bit 2

Menu reference bits 1-0

Controls result justification.
0 =Left-justify the selection titleWidth pixels
from the left of the pop-up rectangle
1 = Right-justify the selection

Must be set to 0.
Must be set to 0.
Must be set to 1 if the pop-up menu has any
keystroke equivalents defined.

Must be set to 1.

Must be set to 0.
Must be set to 0.
Defines type of reference in colorTableRef. (The
color table for a menu is described in Chapter 13,
"Menu Manager," in Volume 1 of the Toolbox
Reference.)
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 =Color table reference is by resource ID (resource
type of rCtlCo lorTbl, $800D)
11 = Invalid value
Defines type of data referred to by menuRef.
0 = menuRef is a reference to a menu template (See
Chapter 13, "Menu Manager," in Volume 1 of the
Toolbox Reference for details on format and content
of a menu template.)
1 = menuRef is a pointer to a text stream in
NewMenu format (Again, see Chapter 13, "Menu
Manager," in Volume 1 of the Toolbox Reference for
details.)
Defines type of menu reference in menuRef (if
fMenuDefisTe x t is set to 1, then these bits are
ignored).
00 = Menu reference is by pointer
01 = Menu reference is by handle
10 =Menu reference is by resource ID (resource type
of rMenu, $8009)
11 = Invalid value

rect

titleWidth

menuRef

The boundary rectangle for the pop-up menu and its title, before the
menu is selected by the user. The Menu Manager calculates the lower-
right coordinates of the rectangle for you if you specify them as (0,0).

A parameter providing additional control over placement of the menu
on the screen. The titleWidth field defines an offset from the left
edge of the control (boundary) rectangle to the left edge of the pop-
up rectangle. If you are creating a series of pop-up menus and you
want to align them vertically, give all menus the same Xl coordinate
and titleWidth value. You may use titleWidth for this even if
you are not going to display the title (fDontDrawTitle flag is set to
1 in flag). If you set titleWidth to 0, then the Menu Manager
determines its value according to the length of the menu title, and the
pop-up rectangle immediately follows the title string. If the width of
your title exceeds the value of titleWidth, results are
unpredictable.

Reference to menu definition (see Chapter 13, "Menu Manager," in
Volume 1 of the Toolbox Reference and Chapter 37, "Menu Manager
Update," in this book for details on menu templates). The type of
reference contained in men uRe f is defined by the menu reference bits
in moreFlags .

initial Value The initial value to be displayed for the menu. The initial value is the
default value for the menu and is displayed in the pop-up rectangle of
unselected menus. You specify an item by its ID, that is, its relative
position within the array of items for the menu (see Chapter 37, "Menu
Manager Update," for information on the layout and content of the
pop-up menu template). If you pass an invalid item ID, then no item is
displayed in the pop-up rectangle.

Radio button control template

Figure E-14 shows the template that defines a radio button control.

• Figure E-14 Control template for radio button controls

$00 - pCount - Word-Parameter count for template: 8, 9, or 10
$02

1---------i ---
$06 .

$0E

$12
$14
$16

$1A

$1E
$20

-
-
-
-
-

-

$24.

ID

rect

procRef

flag

moreFlags

refCon

titleRef

initial Value

*colorTableRef

*keyEquivalent

-- Long-Application-assigned control ID -

-
-

-

Rectangle-Boundal)' rectangle for control

Long-radioBut tonCont rol =$84000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defmed value

Long-Reference to title of button

Word-Initial setting: 0 for clear, 1 for set

Long-Reference to color table for control (optional)

Block, 6 bytes-Keystroke equivalent data (optional)

Defined bits for flag are

Reserved
ctlinvis
Family number

bits 15-8
bit 7
bits 6-0

Must be set to 0.
0 = Visible, 1 = Invisible.
Family numbers define associated groups of radio
buttons; radio buttons in the same family are logically
linked, that is, setting one radio button in a family
clears all other buttons in the same family.

Defined bits for moreFlags are

fCtlTarget bit 15
fCtlCanBeTarget bit 14
fCtlWantEvents bit 13
fCtlProcRefNotPtr

bit 12
fCtlTellAboutSize

Reserved
Color table reference

Title reference

bit 11
bits 10-4
bits 3-2

bits 1-0

Must be set to 0.
Must be set to 0.
Set to 1 if button has keystroke equivalent.

Must be set to 1.

Must be set to 0.
Must be set to 0.
Defines type of reference in c o l o rTableRef. (See
Chapter 4, "Control Manager," in Volume 1 of the
Toolbox Reference for the definition of the radio
button color table.)
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 = Color table reference is by resource ID (resource
type of rCtlCo l o rTb l , $800D)
11 = Invalid value
Defines type of title reference in tit leRe f.
00 = Title reference is by pointer
01 = Title reference is by handle
10 =Title reference is by resource ID (resource type
corresponds to string type)
11 = Invalid value

keyEquivalent Keystroke equivalent information stored at keyEqui v alent is
formatted as shown in Figure E-6.

Scroll bar control template

Figure E-15 shows the template that defines a scroll bar control.

• Figure E-15

$00 r-
$02 r-

f-
f-

$06.

$0E

$12
$14
$16

$1A
$1C
$1E
$20

f-
r-
f-

f-

r-
r-
f--
-
-
-
-
f-
f-

pCount

ID

rect

procRef

flag

moreFlags

re f Con

maxSize

viewSize

initial Value

*colorTable Re f

Control template for scroll bar controls

- Word-Parameter count for template: 9 or 10
-
- Long-Application-assigned control ID -

-
-

-
-
-

Rectangle-Boundary rectangle for control

Long-scrollControl=$86000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defmed value

Word-Initial size of displayed item
Word-Amount of item initially visible
Word-Initial setting

Long-Reference to color table for control (optional)

Defined bits for flag are

Reserved
ctlinvis
Reserved
horScroll
rightFlag
leftFlag
d ownFlag
upFlag

bits15-8
bit 7
bits 6-5
bit 4
bit 3
bit 2
bit 1
bit 0

Must be set to 0.
0 = Visible, 1 = Invisible.
Must be set to 0.
0 = Vertical scroll bar, 1 = Horizontal scroll bar.
0 = Bar has no right arrow, 1 = Bar has right arrow.
0 = Bar has no left arrow, 1 = Bar has left arrow.
0 =Bar has no down arrow, 1 =Bar has down arrow.
0 = Bar has no up arrow, 1 = Bar has up arrow.

Note that extraneous flag bits are ignored, depending on the state of the horscroll
flag. For example, for vertical scroll bars, rightFlag and leftFlag are ignored.

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents

bit 15
bit 14
bit 13

fCtlProcRefNotPtr
bit 12

fCtlTellAboutSize
bit 11

Reserved bits 10-4
Color table reference bits 3-2

Reserved bits 1-0

Must be set to 0.
Must be set to 0.
Must be set to 0.

Must be set to 1.

Must be set to 0.
Must be set to 0.
Defines type of reference in colorTableRef. (See
Chapter 4, "Control Manager," in Volume 1 of the
Toolbox Reference and "Clarifications" in Chapter 28,
"Control Manager Update," in this book for the
definition of the scroll bar color table.)
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 = Color table reference is by resource ID (resource
type of rCtlColorTbl, $800D)
11 = Invalid value
Must be set to 0.

Size box control template

Figure E-16 shows the template that defines a size box control.

• Figure E-16 Control template for size box controls

$00 - p Count - Word-Parameter count for template: 6 or 7
$02 1----------., -

1-
1-

$06 .

$0E

$12
$14
$16

$1A

1-
f-
f-

f-

f-

1-
f-
f-

f-
f-
1-

ID

rect

procRef

flag

moreFlags

refCon

*colorTableRef

-
- Long-Application-assigned control ID -

-
-
--
-
-
-
-

Rectangle-Boundary rectangle for control

Long-growCont rol =$88000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defined value

Long-Reference to color table for control (optional)

Defined bits for flag are

Reserved
ctlinvis
Reserved
fCallWindowMgr

bits 15-8
bit 7
bits 6-1
bit 0

Must be set to 0.
0 = Visible, 1 = Invisible.
Must be set to 0.
0 =Just highlight control,
1 =Call GrowWindow and SizeWindow to track this
control.

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents

bit 15
bit 14
bit 13

fCtlProcRefNotPtr
bit 12

fCtlTellAboutSize
bit 11

Reserved bits 10-4
Color table reference bits 3-2

Reserved bits 1-0

Must be set to 0.
Must be set to 0.
Must be set to 0.

Must be set to 1.

Must be set to 0.
Must be set to 0.
Defines type of reference in colorTableRef. (See
"Error Corrections" in Chapter 28, "Control Manager
Update," in this book for the definition of the size
box color table.)
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 =Color table reference is by resource ID (resource
type of r Ct lColorTbl , $800D)
11 = Invalid value
Must be set to 0.

Static text control template

Figure E-17 shows the template that defines a static text control. For more information
about static text controls, see "Static Text Control" in Chapter 28, "Control Manager
Update," in this book.

• Figure E-17 Control template for static text controls

$00 f- pCount - Word-Parameter count for template: 7, 8, or 9
$02 1----------l

r-
r--

$06.

$0E

$12
$14
$16

$1A

$IE
$20

-
-
-
f-
1-

f-
f-
f-

1-

f-

ID

rect

procRef

flag

moreFlags

refCon

textRef

*textSize

*just

-
- Long-Application-assigned control ID -

-
-

-
-

Rectangle-Boundary rectangle for control

Long-stat TextCont rol =$81000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defmed value

Long-Reference to text for control

Word-Text size field (optional)
Word-Initial justification for text (optional)

Defined bits for flag are

Reserved
ctlinvis
Reserved
fSubstituteText

fSubTextType

bits 15-8
bit 7
bits 6-2
bit 1

bit 0

Must be set to 0.
0 = Visible, 1 = Invisible.
Must be set to 0.
0 = No text substitution to perform,
1 = There is text substitution to perform.
0 = C strings, 1 = Pascal strings.

Defined bits for moreF lags are

fCtlTarget bit 15
fCtlCanBeTarget bit 14
fCtlWantEvents bit 13

Must be set to 0.
Must be set to 0.
Must be set to 0.

fCtlProcRefNotPtr
bit 12 Must be set to 1.

fCtlTellAboutSize
bit 11 Must be set to 0.

Reserved bits 10-2 Must be set to 0.
Text reference

text Size

just

bits 1-0 Defines type of text reference in text Ref .
00 = Text reference is by pointer
01 =Text reference is by handle
10 =Text reference is by resource ID (resource type
ofrTextForLETe xtBox2, $800B)
11 = Invalid value

The size of the referenced text in characters, but only if the text
reference in text Ref is a pointer. If the text reference is either a
handle or a resource ID, then the Control Manager can extract the
length from the handle.

The justification word passed to LETextBo x2 (see Chapter 10,
"LineEdit Tool Set," in Volume 1 of the Toolbox Reference for details
on the LETe xtBox2 tool call) and used to set the initial justification
for the text being drawn. Valid values for just are

leftJustify 0
centerJustify 1
rightJustify -1
fullJustify 2

Text is left justified in the display window
Text is centered in the display window
Text is right justified in the display window
Text is fully justified (both left and right) in
the display window

Static text controls do not support color tables. To display text of different color, you
must embed the appropriate commands into the text string you are displaying. See the
discussion of LETextBox2 in Chapter 10, "LineEdit Tool Set," in Volume 1 of the Toolbox
Reference for details on command format and syntax.

TextEdit control template

Figure E-18 shows the template that defines a TextEdit control. For more information
about TextEdit controls, see "TextEdit Control" in Chapter 28, "Control Manager Update,"
in this book.

• Figure E-18 Control template for TextEdit controls

$00 - pCount - Word-Parameter count for template: 7 to 23
$02 1-_-------_--l

- ro - Long-Application-assigned control ID - -
$06.

$0E

$12
$14
$16

$1A

-
-
-
-
-
r-
t-r-

$1E.

$26

$2A
$2C

$30
$32

$36
$38

$3C

r-r-
t-

r-

r-r-r-
r-

r-r-
t-

-

rect

-
procRef --

flag -
moreFlags -

-
refCon --

-
textFlags --

*indentRect

-
*vertBar --

*vertAmount -
-

*horzBar --
*horzAmount -

-
*styleRef --

*textDescriptor -

-
*textRef --

-
*text Length --

continued

Rectangle-Boundary rectangle for control

Long-edit TextCont rol =$85000000

Word-Highlight and control flags for control
Word-Additional control flags

Long-Application-defmed value

Long-specific TextEdit control flags (see below)

Rectangle-Text indentation from control rect (optional)

Long-Handle to vertical scroll bar for control (optional)

Word-Vertical scroll amount, in pixels (optional)

Long-Reserved; must be set to NIL (optional)

Word-Reserved; must be set to 0 (optional)

Long-Reference to initial style information for text (optional)

Word-Format of initial text and textRef (optional)

Long-Reference to initial text for edit window (optional)

Long-Length of initial text (optional)

continued
$40 r- -

f- *rnaxChars -
f- - Long-Maximum number of characters allowed (optional)

$44 f- -
f- *maxLines - Long-Reserved; must be set to 0 (optional)
,__ -

$48
$4A
$4C

- *rnaxCharsPerLine - Word-Reserved; must be set to 0 (optional)
Word-Reserved; must be set to 0 (optional) - *rnaxHeight -

- -- *colorRef - Long-Reference to TextEdit color table (optional) - -
$50
$52

- *drawMode - Word-QuickDraw II text mode for edit window (optional)
- -- *filterProcPtr - Long-Pointer to mter routine for this control (optional) - -

Defined bits for flag are

Reserved
ctlinvis
Reserved

bits 15-8
bit 7
bits (rO

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents

bit 15
bit 14
bit 13

fCtlProcRefNotPtr
bit 12

fCtlTellAboutSize

fCtlisMultiPart
Reserved

bit 11

bit 10
bits 9-4

Must be set to 0.
0 = Visible, 1 = Invisible.
Must be set to 0.

Must be set to 0.
Must be set to 1.
Must be set to 1.

Must be set to 1.

If this bit is set to 1, a size box is created in the
lower-right comer of the window. Whenever the
control window is resized, the edit text is resized and
redrawn.
Must be set to 1.
Must be set to 0.

Color table reference bits 3-2

Style reference bits 1-0

Defines type of reference in colorRef. (The color
table for a TextEdit control [TEColorTable] is
described in Chapter 49, "TextEdit Tool Set," in this
book.)
00 = Color table reference is by pointer
01 = Color table reference is by handle
10 =Color table reference is by resource ID (resource
type of rCtlColorTbl, $800D)
11 = Invalid value
Defines type of style reference in styleRef; the
format for a TextEdit style descriptor is described in
Chapter 49, "TextEdit Tool Set," in this book.
00 = Style reference is by pointer
01 = Style reference is by handle
10 =Style reference is by resource ID
11 = Invalid value

6 Important Do not set fCtlTellAboutsize to 1 unless the TextEdit record
also has a vertical scroll bar. This flag works only for TextEdit records
that are controls. ,0,

Valid values for textFlags are

fNotControl
fSingleFormat
fSingleStyle

fNoWordWrap

fNoScroll

fReadOnly

bit 31
bit 30
bit 29

bit 28

bit 27

bit 26

Must be set to 0.
Must be set to 1.
Allows you to restrict the style options available to
the user.
0 = Do not restrict the number of styles in the text
1 = Allow only one style in the text
Allows you to control TextEdit word wrap behavior.
0 = Perform word wrap to fit the ruler
1 = Do not word wrap the text; break lines only on
return ($0D) characters
Controls user access to scrolling.
0 = Allow scrolling
1 = Do not allow either manual or automatic scrolling
Restricts the text in the window to read-only
operations (copying from the window is still
allowed).
0 = Allow editing
1 = Do not allow editing

fSmartCutPaste bit 25 Controls TextEdit support for smart cut and paste.
(See Chapter 49, "TextEdit Tool Set," for details on
smart cut and paste support.)
0 = Do not use smart cut and paste
1 = Use smart cut and paste

fTabSwitch bit 24 Defines behavior of the Tab key. (See Chapter 49,
"TextEdit Tool Set," for details.)
0 = Tab inserted in TextEdit document
1 = Tab to next control in the window

fDrawBounds bit 23 Tells TextEdit whether to draw a box around the edit
window, just inside rect; the pen for this box is 2
pixels wide and 1 pixel high.
0 = Do not draw rectangle
1 = Draw rectangle

fColorHilight bit 22 Must be set to 0.
fGrowRuler bit 21 Tells TextEdit whether to resize the ruler in response

to the resizing of the edit window by the user. If this
bit is set to 1, TextEdit automatically adjusts the
right margin value for the ruler.
0 = Do not resize the ruler
1 = Resize the ruler

fDisableSelection
bit 20 Controls whether user can select text.

0 = User can select text
1 = User cannot select text

fDrawinactiveSelection

Reserved

indentRect

vert Bar

bit 19

bits 18-0

Controls how inactive selected text is displayed.
0 = TextEdit does not display inactive selections
1 = TextEdit draws a box around inactive selections
Must be set to 0.

A rectangle whose coordinates specify the amount, in pixels, of white
space to leave between the boundary rectangle for the control and the
text itself. Default values are (2,6,2,4) in 640 mode and (2,4,2,2) in 320
mode. Each indentation coordinate may be specified individually. To
assert the default for any coordinate, specify its value as $FFFF.

Handle of the vertical scroll bar to use for the TextEdit window. If you
do not want a scroll bar at all, then set this field to NIL. If you want
TextEdit to create a scroll bar, just inside the right edge of the
boundary rectangle for the control, then set this field to $FFFFFFFF.

vert Amount

horzBar

horzAmount

styleRef

The number of pixels to scroll whenever the user presses the up or
down arrow on the vertical scroll bar. To use the default value (9
pixels), set this field to $0000.

Must be set to NIL.

Must be set to 0.

Reference to initial style information for the text. See the description
of the TEFormat record in Chapter 49, "TextEdit Tool Set," for
information about the format and content of a style descriptor. Bits 1
and 0 of moreF lags define the type of reference (pointer, handle,
resource ID). To use the default style and ruler information, set this
field to NIL.

textDescriptor

text Ref

text Length

Input text descriptor that defines the reference type for the initial
text (which is defined in the textRef field) and the format of that
text. See Chapter 49, "TextEdit Tool Set," for detailed information on
text and reference formats.

Reference to initial text for the edit window. If you are not supplying
any initial text, then set this field to NIL.

The length of the initial text. If textRef is a pointer to the initial
text, then this field must contain the length of the initial text. For
other reference types, TextEdit extracts the length from the reference
itself.

+ Note: You must specify or omit the textDescriptor, textRef, and text Length
fields as a group.

maxChars Maximum number of characters allowed in the text. If you do not want
to define any limit to the number of characters, then set this field to NIL.

maxLines Must be set to 0.

maxCharsPerLine

maxHeight

colorRef

Must be set to NIL.

Must be set to 0.

Reference to the color table for the text. This is a TextEdit color table
(see Chapter 49, "TextEdit Tool Set," for the format and content of
TEColorTable). Bits 2 and 3 of moreFlags define the type of
reference stored here.

drawMode The text mode used by QuickDraw II for drawing text. See
Chapter 16, "QuickDraw II," in Volume 2 of the Toolbox Reference for
details on valid text modes.

filterProcPtr Pointer to a filter routine for the control. See Chapter 49,
"TextEdit Tool Set," for details on TextEdit generic filter routines. If you
do not want to use a filter routine for the control, set this field to NIL.

restring $SOlD

Figure E-19 defines the layout of resource type restring ($801D). Resources of this
type contain C strings (null-terminated character arrays).

• Figure E-19 C string, type restring ($801D)

$00 0

stringCharacters Bytes

stringCharacters
Array of characters; last character must be a null terminator ($00). The
string may contain up to 65,535 characters, including the null
terminator.

rCtlColorTbl $800D

Resources of this type store color tables for various tool sets. These resources do not have
a consistent internal layout; you must construct these resources according to the needs of
the tool set that is to use the color table.

rErrorString $8020

Resources of this type define the data that appears in error windows displayed by the
ErrorWindow Window Manager tool call. The layout of rErrorString resources is the
same as that of rAlertString resources, which in turn correspond to the strings that
define alert windows. For more complete information on alert string definitions, see
Chapter 52, "Window Manager Update," in this book.

ricon $8001

Figure E-20 defines the layout of resource type ricon ($8001).

• Figure E-20 Icon, type ricon ($8001)

$00
$02
$04
$06
$08.

1-

I-

1-

1-

$xx.

icon Type

icon Type

iconSize

iconHeight

iconWidth

icon Image

iconMask

-
-
-
-

Word
Word
Word
Word

: Array

: Array

Flags defining the type of icon stored in the icon record.

Color indicator bit 15 Indicates whether the icon contains a color or
black-and-white image.

iconSize

iconHeight

icon Width

icon Image

iconMask

0 = Icon is black and white
1 = Icon is color

The size, in bytes, of the icon image stored at i con Image.

The height, in pixels, of the icon.

The width, in pixels, of the icon.

iconSize bytes of icon image data.

iconSize bytes of mask data to be applied to the image located at
icon Image.

rKTransTabl.e $8021

Figure E-21 defines the layout of resource type rKTransTable ($8021). Resources of
this type define keystroke translation tables for use by the Event Manager (see
Chapter 31, "Event Manager Update," in this book for complete information on the
format and content of resources of this type).

• Figure E-21 Keystroke translation table, type rKTransTable ($8021)

$000 .
transTable : 256 bytes-Keystroke translation array

$100 .
cteactKeyTable : XX bytes-Dead key validation array

$100+xx
replacement Table : Y.Y bytes-Dead key replacement array

trans Table A packed array of bytes used to map the ASCII codes produced by
the keyboard into the character value to be generated. Each cell in the
array corresponds directly to the ASCII code that is equivalent to the
cell offset. For example, the transTable cell at offset $0D (13
decimal) contains the character replacement value for keyboard code
$0D, which, for a straight ASCII translation table, is a carriage return
(CR). Cells 128 to 255 ($80 to $FF) of the transTable contain values
for Option-key sequences (such as Option-S).

deadKeyTable Table containing entries used to validate dead keys. Dead keys are
keystrokes used to introduce multikey sequences that produce single
characters. For example, pressing Option-U followed by e yields e.
There is one entry in deadKeyTable for each defined dead key. The
last entry must be set to $0000. Each entry must be formatted as
follows:

cteadKey Byte-Character code for dead key
offs et Byte-Offset from deadKeyTable into replacement Table

deadKey The character code for the dead key. The system uses this value
to check for user input of a dead key. The system compares this
value with the first user keystroke.

offset Byte offset from beginning of deadKe yTable into the relevant
subarray in r eplacement Table, divided by 2. The system
uses this value to access the valid replacement values for the
dead key in question.

replacement Table
Table containing the valid replacement values for each dead key
combination. This table is made up of a series of variable-length
subarrays, each relevant to a particular dead key. The last entry in each
subarray must be set to $0000. Each entry in the replacement Table
must be formatted as follows:

scanKe y Byte-Character code for dead key combination
r epl ace value Byte-Result character code for dead key combination

scanKey A valid character code for dead key replacement. The system
uses this field to determine whether the user entered a valid dead
key combination. The system compares this value with the
second user keystroke.

replaceValue The replacement value for the character specified in scanKey
for this entry. The system delivers this value as the replacement
for a valid dead key combination.

rListRef $801C

Figure E-22 defines the layout of the array element that composes resource type
rListRef ($801C). Resources of this type define members of list controls (see
Chapter 28, "Control Manager Update," in this book for more information on list
controls). A single rListRef resource may contain more than one of these elements; you
concatenate the elements to form the resource.

• Figure E-22

$00 I-
I-
1-

ID

List member reference array element, type rListRef ($801C)

-
- Long-Resource ID of list member(rPString type) -

$04 1----i-te_m_n_a_g ----i Byte-Control flags for list member
$05 · item : Array-List member data; (listMemSize - 5) bytes of data

ID

itemFlag

memSelect

Reserved

item

Resource ID of the list member (resource type of rP string, $8006).

Control flags for the member.

bits 7-6

bits 5- 0

Indicates whether the item is selected.
00 = Item is enabled but not selected
01 = Item is disabled (cannot be selected)
10 = Item is selected
11 = Invalid value
Must be set to 0.

Application-specific data for the list member. The 1 i stMems i ze
field of the list control template specifies the size of this field, plus 5.
For example, to assign a 2-byte tag to each list member, you would set
listMemSize to 7 (2+5) and place the tag value at item in each list
member.

rMenu $8009

Figure E-23 defines the layout of resource type rMenu ($8009). Resources of this type
define parameters to some new Menu Manager tool calls. See Chapter 37, "Menu Manager
Update," in this book for more information.

• Figure E-23 Menu template, type rMenu ($8009)

$00
$02
$04

$06

-
-
-
-
-
f-

$0A.

version

menuiD

version

menuiD

-
-

Word-Version number for template; must be set to 0
Word-Menu 10

menuFlag - Word-Menu flag word
-

menuTitleRef - Long-Reference to menu title string -
itemRefArray n longs--References to menu items

The version of the menu template. The Menu Manager uses this field to
distinguish between different revisions of the template. Must be set to 0.

Unique identifier for the menu. See Chapter 13, "Menu Manager," in
Volume 1 of the Toolbox Reference for information on valid values for
menuiD.

menuFlag

titleRefType

itemRefType

Reserved

Bit flags controlling the display and processing attributes of the menu.
Valid values for menuF lag are

bits 15-14 Defines the type of reference in menu Tit 1 eRe f.
00 = Reference is by pointer
01 = Reference is by handle
10 =Reference is by resource ID
11 = Invalid value

bits 13-12 Defines the type of reference in each entry of
it emRe fAr ray (all array entries must be of the same
type).
00 = Reference is by pointer
01 = Reference is by handle
10 =Reference is by resource ID
11 = Invalid value

bits 11-9 Must be set to 0.
alwaysCallmChoose

disabled

Reserved
XOR

custom

allowCache

Reserved

bit 8

bit 7

bit 6
bit 5

bit 4

bit 3

bits 2-0

Causes the Menu Manager to call a custom menu
defl>roc mChoose routine even when the pointer is
not in the menu rectangle (supports tear-off menus).
0 =Do not always call mChoose routine
1 =Always call mChoose routine
Enables or disables the menu.
0 = Menu enabled
1 = Menu disabled
Must be set to 0.
Controls how selection highlighting is performed.
0 = Do not use XOR to highlight item
1 = Use XOR to highlight item
Indicates whether menu is custom or standard.
0 = Standard menu
1 = Custom menu
Controls menu caching.
0 = No menu caching allowed
1 = Menu caching allowed
Must be set to 0.

menuTitleRef Reference to title string of menu. The titleRefType bits in
menuF lag indicate whether menuTitleRef contains a pointer, a
handle, or a resource ID. If menuTitleRef is a pointer, then the title
string must be a Pascal string. Otherwise, the Menu Manager can
retrieve the string length from control information in the handle.

'

itemRefArray Array of references to the items in the menu. The i temRefType bits
in menuFlag indicate whether the entries in the array are pointers,
handles, or resource IDs. Note that all array entries must be of the
same reference type. The last entry in the array must be set to
$00000000.

rMenuBar $8008

Figure E-24 defines the layout of resource type rMenuBar ($8008). Resources of this type
define the characteristics of a menu bar for new Menu Manager tool calls. For more
information, see Chapter 37, "Menu Manager Update," in this book.

• Figure E-24 Menu bar record, type rMenuBar ($8008)

$00 1-- version - Word-Version number for template; must be set to 0
$02 1-- menuBarFlag - Word-Menu bar flag word
$04

menuRefArray n longs--References to menus

v ersio n The version of the menu bar template. The Menu Manager uses this
field to distinguish between different revisions of the template. Must
be set to 0.

menuBarF lag Bit flags controlling the display and processing attributes of the menu
bar. Valid values for menuBarF lag are

menuRefType

Reserved

bits 15-14 Defines the type of reference in each entry of
menuRefArray (all array entries must be of the same
type).
00 = Reference is by pointer
01 = Reference is by handle
10 =Reference is by resource ID
11 = Invalid value

bits 13-0 Must be set to 0.

menuRefArray Array of references to the menus in the menu bar. The menuRefType
bits in menuBarFlag indicate whether the entries in the array are
pointers, handles, or resource IDs. Note that all array entries must be
of the same reference type. The last entry in the array must be set to
$00000000.

rMenuitem $800A

Figure E-25 defines the layout of resource type rMenuitem ($800A). Resources of this
type define menu items to some new Menu Manager tool calls. See Chapter 37, "Menu
Manager Update," in this book for more information.

• Figure E-25 Menu item template, type rMenuitem ($800A)

$00
$02
$04
$05
$06
$08
$0A

r-
r-

r-
r-
r-..... -

version

itemiD

version

itemiD

itemChar
itemAltChar

itemCheck

itemFlag

itemTitleRef

-
-

-
-

Word-Version number for template; must be set to 0
Word-Menu item ID
Byte-Primary keystroke equivalent character
Byte-Alternate keystroke equivalent character
Word-Character code for checked items
Word-Menu item flag word

Long-Reference to item title string

The version of the menu item template. The Menu Manager uses this
field to distinguish between different revisions of the menu item
template. Must be set to 0.

Unique identifier for the menu item. See Chapter 13, "Menu Manager,"
in Volume 1 of the Toolbox Reference for information on valid values
for itemiD.

itemChar,itemAltChar

itemCheck

Fields defining the keystroke equivalents for the menu item. The user
can select the menu item by pressing the Command key along with the
key corresponding to one of these fields. Typically, these fields
contain the uppercase and lowercase ASCII codes for a particular
character. If you have only a single key equivalence, set both fields to
that value.

The character to be displayed next to the item when it is checked.

itemFlag

titleRefType

Reserved
shadow

outline

Reserved
disabled

divider

XOR

Reserved
underline

italic

bold

Bit flags controlling the display attributes of the menu item. Valid
values for it emF lag are

bits 15-14

bit 13
bit 12

bit 11

bits 10-8
bit 7

bit 6

bit 5

bits 4-3
bit 2

bit 1

bit 0

Defines the type of. reference in it em Tit 1 eRe f.
00 = Reference is by pointer
01 = Reference is by handle
10 =Reference is by resource ID
11 = Invalid value
Must be set to 0.
Indicates item shadowing.
0 =No shadow
1 =Shadow
Indicates item outlining.
0 = Not outlined
1 =Outlined
Must be set to 0.
Enables or disables the menu item.
0 = Item enabled
1 = Item disabled
Controls drawing of a divider bar below item.
0 = No divider bar
1 = Divider bar
Controls how highlighting is performed.
0 = Do not use XOR to highlight item
1 = Use XOR to highlight item
Must be set to 0.
Controls item underlining.
0 = Do not underline item
1 = Underline item
Indicates whether item is italicized.
0 = Not italicized
1 = Italicized
Indicates whether item is in boldface.
0 =Not bold
1 =Bold

itemTitleRef Reference to title string of menu item. The t itle Re fType bits in
itemFlag indicate whether itemTitleRef contains a pointer, a
handle, or a resource ID. If it emT it leRe f is a pointer, then the title
string must be a Pascal string. Otherwise, the Menu Manager can
retrieve the string length from control information in the handle.

rPicture $8002

Resources of this type store QuickDraw picture definitions. QuickDraw pictures are
described by a series of QuickDraw operation codes specifying the commands that
created the picture. When these pictures are stored as data structures, the actual picture
data (the operation codes) is preceded by control information, some of which may be of
interest to Apple IIGS developers. Figure E-26 shows some of this control information.
Note that the layout of this control information is subject to change.

• Figure E-26 QuickDraw picture, type rP icture ($8002)

$00 pic sea Word-Picture's scan line control byte (high byte is 0)
$02

picFr ame : Rectangle-Picture's boundary rectangle

$OA b pi eVersion d Word-Version number for picture

rPString $8006

Figure E-27 defines the layout of resource type rP string ($8006). Resources of this type
contain Pascal strings.

• Figure E-27 Pascal string, type rP string ($8006)

$()() I lengthByte
$011-: ----=---=----t

Byte

nbytes stringCharacters

lengthByte Number of bytes of data stored in st ringCharacters array.

stringCharacters
Array of lengthByte characters.

rResName $8014

Figure E-28 defines the layout of resource type rResName ($8014). Resources of this type
define name strings for resources of a given type and ID. The resource ID value assigned to
an rResName resource must be of the form

$0001xxxx

where xxxx corresponds to the resource type of resources whose names are defined in this
resource. Within the rResName resource you define name strings corresponding to
resources with specified resource IDs. Names are stored in Pascal strings, are not case-
sensitive, and must be unique within the appropriate resource type. Resource names are
not required, so you may specify names for only a few resources within a given type.

• Figure E-28 Resource name array, type rResName ($8014)

- Word
t----------1 -

- Long
-

Array of nameCount name blocks

versNum The resource template version. Must be set to 1.

nameCount Count of entries in the resNames name-definition array.

resNames Array of name strings. Each entry must be formatted as follows:

$00- -- namedResiD - Long - -
$04

resName Pascal string

namedResiD ID of the resource for this name.

res Name Name string of the resource.

rStringList $8007

Figure E-29 defines the layout of resource type rstringList ($8007). Resources of this
type contain an array of Pascal strings.

• Figure E-29 Pascal string array, type rStringList ($8007)

$00 count --J Word
$02 1--!-------j-i

strings

count

strings

: Array of Pascal strings (resources of type r P string)

The number of Pascal strings stored at strings.

An array of count Pascal strings.

rStyleBlock $8012

Figure E-30 defines the layout of resource type rStyleBlock ($8012). Resources of this
type contain TextEdit TEFormat structures, which store TextEdit style information.

• Figure E-30 TextEdit style information, type rSt yleBloc k ($8012)

$00 1- ver sion - Word
$02 f- -

f- r ulerListLength - Long
f- -

$06 . Array of TERuler structures theRule rList

$xx f- -
1- s t y l e Li s t Length - Long
f- -

$xx . Array of TESty le structures t heStyle List

$xx f- -
f- nurnbe r Of Styles - Long
1- -

$xx.
: Array of Style Item structures theStyles

version Version number corresponding to the layout of this TEFormat
structure. The number of this version of the structure is $0000.

rulerListLength
The length, in bytes, of theRulerList .

theRulerList Ruler data for the text record. The TERuler structure is embedded in
the TEFormat structure at this location.

styleListLength
The length, in bytes, of theStyleList.

theStyleList List of all unique styles for the text record. The TEStyle structures
are embedded in the TEFormat structure at this location. Each
TEStyle structure must define a unique style-there must be no
duplicate style entries. To apply the same style to multiple blocks of
text, you should create additional sty 1 e It ems for each block of
text and make each item refer to the same style in this array.

numberOfStyles

the Styles

The number of style Items contained in theStyles.

Array of sty 1 e It ems specifying which actual styles (stored in
theStyleList) apply to which text within the TextEdit record.

rTERul.er $8025

Figure E-31 defines the layout of resource type rTERuler ($8025). Resources of this type
contain TextEdit TERuler structures, which store TextEdit ruler information.

• Figure E-31 TextEdit ruler information, type rTERuler ($8025)

$()()

$02
$04
$06
$08
$0A
$0C

1-

I-

1-

1-

1-

1-

1-
I-
1-

1-$10
$12 0

l eftMargin

left Indent

rightMargin

just

extraLS

flags

userData

tab Type

-
-
-
-
-
-
-
-
-
-

Word
Word
Word
Word
Word
Word

Long

Word

theTabs : Array of Tab Item structures

tabTerminator j Word

leftMargin The number of pixels to indent from the left edge of the text rectangle
(viewRect in TERecord) for all text lines except those that start
paragraphs.

left Indent

rightMargin

The number of pixels to indent from the left edge of the text rectangle
for text lines that start paragraphs.

Maximum line length, expressed as the number of pixels from the left
edge of the text rectangle.

just

extraLS

flags

userData

tab Type

theTabs

Text justification.

0 Left justification-all text lines start flush with left margin
-1 Right justification-all text lines start flush with right margin
1 Center justification-all text lines are centered between left

and right margins
2 Full justification-text is blocked flush with both left and

right margins; TextEdit pads spaces with extra pixels to
justify the text fully

Line spacing, expressed as the number of pixels to add between lines
of text. Negative values result in text overlap.

Reserved.

Application-specific data.

The type of tab data, specified as follows:

0 No tabs are set-tabType is the last field in the structure
1 Regular tabs-tabs are set at regular pixel intervals,

specified by the value of the tabTerminator field;
theTabs is omitted from the structure

2 Absolute tabs-tabs are set at absolute, irregular pixel
locations; theTabs defines those locations;
tabTerminator marks the end of theTabs

If tabType is set to 2, this is an array of Tab Item structures defining
the absolute pixel positions for the various tab stops. The
tabTerminator field, with a value of $FFFF, marks the end of this
array. For other values of tabType , this field is omitted from the
structure.

tabTerminator If tabType is set to 0, this field is omitted from the structure. If
tabType is set to 1, then theTabs is omitted, and this field contains
the number of pixels corresponding to the tab interval for the regular
tabs. If tabType is set to 2, tabTerminator is set to $FFFF and
marks the end of theTabs array.

rText $8016

Figure E-32 defines the layout of resource type rText ($8016). Resources of this type
contain text blocks (data arrays with no embedded length information; block length must
be indicated in other fields).

• Figure E-32 Text block, type rText ($8016)

$()() .
stringCharacters : Bytes

stringCharacters
Array of up to 65,535 characters. Any length information is contained
in a separately maintained field.

rTextBlock $8011

Figure E-33 defines the layout of resource type rTextBlock ($8011). Resources of this
type contain text blocks (data arrays with no embedded length information; block length
must be indicated in other fields).

• Figure E-33 Text block, type rTextBlock ($8011)

$()()
stringCharacters ; Bytes

stringCharacters
Array of up to 65,535 characters. Any length information is contained
in a separately maintained field.

rTextForLETextBox2 $SOOB

Figure E-34 defines the layout of resource type rTextForLETex tBox2 ($800B).
Resources of this type contain data formatted as input to the LETextBox2 LineEdit tool
call (see Chapter 10, "LineEdit Tool Set," in Volume 1 of the Toolbox Reference for details).

• Figure E-34 LETex tBox2 input text, type rTextForLETex tBox2 ($800B)

$00 1- -J Word
$02 t--!--------1-j

l ength

stringCharacters : Bytes

The number of bytes stored at stringCharacters . Valid values lie
in the range from 1 to 32,767.

stringCharacters
Array of up to 32,767 characters. Formatting information is embedded
in the character array and is included in the value of l e ngth. See
Chapter 10, "LineEdit Tool Set," in Volume 1 of the Toolbox Reference
for complete information on the syntax of this embedded
information.

rToolStartup $8013

Figure E-35 defines the layout of resource type rToolStart up ($8013). Resources of
this type define tool set startup records for use with the Tool Locator StartUpTools
and ShutDown Tools tool calls (see Chapter 51, "Tool Locator Update," in this book for
more information).

• Figure E-35 Tool set start-stop record, type rToolStartup ($8013)

$00
$02
$04
$06

r-

r-
r-

r-
r-
r-
r-$0A

$0C 0

flags

videoMode

resFileiD

dPageHandle

numTools

toolArray

-
-
-

-

Word-Flag word-must be set to 0
Word-Video mode for QuickDraw II
Word-Set by StartUpTools

Long-5et by StartUpTools

Word-Number of entries in toolArray

numTools Tool Spec records

videoMode Defines the masterSCB for QuickDraw II. See Chapter 43,
"QuickDraw II Update," in this book for valid values.

resFileiD The StartUpTools call sets this field, which ShutDownTools
requires as input.

dPageHandle The StartUpTools call sets this field, which ShutDownTools
requires as input.

toolArray Each entry defines a tool set to be started. The numTools field
specifies the number of entries in this array. Each entry is formatted as
follows:

$()() t-- too lNumbe r - Word-Tool set identifier
$02 1- minVersion - Word-Minimum acceptable tool set version

toolNumber

minVersion

The tool set to be loaded. Valid tool set numbers are discussed
in Chapter 51, "Tool Locator Update," in this book.

The minimum acceptable version for the tool set. See
Chapter 24, "Tool Locator," in Volume 2 of the Toolbox Reference
for the format of this field.

rTwoRects $SOlA

Figure E-36 defines the layout of resource type rTwoRect s ($801A).

• Figure E-36

$00 .

$08 .

rectl

rect2

rectl

rect2

Two rectangles, type rTwoRects ($801A)

Rectangle

Rectangle

First rectangle.

Second rectangle.

rWindColor $8010

Figure E-37 defines the layout of resource type rWindColor ($8010). Resources of this
type define window color tables for the Window Manager.

• Figure E-37 Window color table, type rWindColor ($8010)

I- frameColor -$()() Word

I- t itleColor -$02 Word

I- tBarColor -$04 Word
I- growColor -$06 Word
I- infoColor -$08 Word

frameColor Color of the window frame and the alert frame.

Reserved
windowFrame

Reserved

titleColor

bits 15-8 Must be set to 0.
bits 7-4 Color of window frame-value is an index into the

active color table.
bits 3-0 Must be set to 0.

Colors of inactive title bar, inactive title, and active title.

Reserved bits 15-12 Must be set to 0.
inactiveTitleBar bits 11-8 Color of inactive title bars-value is an index into the

active color table.
inactiveTitle

activeTitle

tBarColor

pattern

patternColor

backColor

bits 7-4

bits 3-0

Color of inactive titles-value is an index into the
active color table.
Color of active titles, close box, and zoom box-
value is an index into the active color table.

Color and pattern information for active title bar.

bits 15-8 Defines pattern of title bar.
00 =Solid

bits 7-4

bits 3-0

01 = Dithered
02 =Lined
Color of pattern-value is an index into the active
color table.
Background color-value is an index into the active
color table.

growColor Color of size box and middle outline of alert frame.

alertMidFrame bits 15-12 Color of middle outline of alert frame-value is an
index into the active color table.

Reserved bits 11-8 Must be set to 0.
sizeUnselected bits 7-4 Color of unselected size box-value is an index into

the active color table.
sizeSelected bits 3-0 Color of selected size box-value is an index into the

active color table.

infoColor Color of information bar and inside outline of alert frame.

alertMidFrame bits 15-12 Color of inside outline of alert frame-value is an

Reserved

infoBar

Reserved

index into the active color table.

bits 11-8 Must be set to 0.

bits 7-4 Color of information bar-value is an index into the
active color table.

bits 3-0 Must be set to 0.

rWindParaml $800E

Figure E-38 defines the layout of resource type rWindParaml ($800E). This resource
defines a template used to create windows with the NewWindow2 Window Manager tool
call (see Chapter 52, "Window Manager Update," in this book). Most of these fields
correspond to fields in the NewWindow parameter list (defined in Chapter 25, "Window
Manager," in Volume 2 of the Toolbox Reference).

• Figure E-38
$00
$02
$04

$08

1-

1-

1-
1-
1-

1-
1-
'--

$0C.

$14

$18
$1A
$1C
$1E
$20
$22
$24
$26
$28
$2A
$2C

$30
$32

$36

$3A

-
-
-
-
-
-
-
-
-
-
-
-
-
-

$3E .

$46 1-
1-
1-

$4A 1-
1-
1-

$4E 1-

plLength

plFrame

plTitle

plRefCon

plZoomRect

plColorTable

plYOrigin

plXOrigin

plDataHeight

plDataWidth

plMaxHeight

plMaxWidth

plVerScroll

plHorScroll

plVerPage

plHorPage

plinfoText

plinfoHeight

plDefProc

plinfoDraw

plContentDraw

plPosition

plPlane

plControlList

plinDesc

Window template, type rWindParaml ($800E)
Word -

-

-
-
-
-
-
-
-
-
-
-

-

-..:. -

-

Word-See NewWindow wFrameBits parameter

Long

Long-See NewWindow wRefCon parameter

Rectangle-SeeNewWindow wZoom parameter

Long

Word-SeeNewWindow wYOrigin parameter
Word-SeeNewWindow wXOrigin parameter
Word-SeeNewWindow wDataH parameter
Word-SeeNewWindow wDataWparameter
Word-SeeNewWindow wMaxH parameter
Word-See NewWindow wMaxW parameter
Word-See NewWindow wScrollVer parameter
Word-See NewWindow wScrollHor parameter
Word-See NewWindow wPageVer parameter
Word-See NewWindow wPageHorparameter

Long-See NewWindow wlnfoRefCon parameter

Word-See NewWindow wlnfoHeight parameter

Long-See NewWindow wFrameDejProc parameter

Long-See NewWindow wlnfoDejProc parameter

Long-See NewWindow wContDe.fProc parameter

Rectangle-See NewWindow wPosition parameter

Long-See NewWindow wPlane parameter

Long

Word

plLength

plTitle

The number of bytes in the template, including the length of
plLength. Must be set to $50.

Reference to title string for the window. The contents of pl InDesc
specify the type of reference stored here. The title must be stored in a
Pascal string containing both a leading and a trailing space.

If p 1 Tit 1 e is set to NIL, the Window Manager creates a window
without a title bar. If your program is creating a window with a title
bar, you must specify a title of some sort. To create a window without
a title, make pl Title (or titlePtron the Newwindow2 call) refer to a
null string.

Note that the Window Manager creates a copy of the title string,
allowing your program to free the memory occupied by this string
after the NewWindow2 call is issued.

If you specify a non-NIL value for titlePtron the NewWindow2 call,
this field is ignored.

plColorTable Reference to the color table for the window. The contents of
plinDesc specify the type of reference stored here. If
plColorTable is set to NIL, the Window Manager assumes that
there is no color table for the window.

The format of the color table is defined in Chapter 25, "Window
Manager," in Volume 2 of the Toolbox Reference. If plColorTable
refers to a resource, then the color table must be defined in a resource
of type rWindColor.

plControlList Reference to the template or templates defining controls for the
window. The Window Manager passes this value to the Newcontrol 2
Control Manager tool call as the reference parameter. Note that
plinDesc contains the data for the Newcontrol2 referenceDesc
parameter. Refer to Chapter 28, "Control Manager Update," in this
book for more information about NewControl2.

If this field is set to NIL, then the Window Manager assumes that there
is no control list for the window and does not call Newcontrol2 .

plinDesc The type of reference stored in plColorTable and pl Title. This
field also contains the referenceDesc value for Newcont rol2 that
defines the contents of plControlList .

Reserved bits 15-12 Must be set to 0.
colorTableRef bits 11-10 Defines the type of reference stored in

titleRef bits 9-8

controlRef bits 7-0

plC<;JlorTable.
00 = Reference is by pointer to color table
01 = Reference is by handle to color table
10 =Reference is by resource ID of rWindColor
resource
11 = Invalid value
Defines the type of reference stored in p 1 Tit 1 e.
00 = Reference is by pointer to Pascal string
01 = Reference is by handle to Pascal string
10 =Reference is by resource ID of rPString
resource
11 = Invalid value
Defines the type of reference stored in
plControlList; passed directly to the
NewControl2 Control Manager tool call as the
referenceDesc parameter. (For valid values, see the
description of the Newcontrol2 tool call in
Chapter 28, "Control Manager Update," earlier in this
book.)

rWindParam2 $800F

Figure E-39 defines the layout of resource type rWindParam2 ($800F). This resource
defines a template used to create windows with the NewWindow2 Window Manager tool
call (see Chapter 52, "Window Manager Update," in this book). Use this template for
custom windows.

• Figure E-39 Window template, type rWindParam2 ($800F)

${)() I- p2ListiD - Word
$02 I- -

I- p2DefProc - Long
I-

$06 ° p2Data

p2ListiD

p2DefProc

p2Data

-
Byte array

The resource template version. Must be set to NIL.

Pointer to the definition procedure for the window. When using the
rWindParam2 window template, you must pass a pointer to a valid
definition procedure, either in the template or with the defProcPtr
parameter to the NewWindow2 Window Manager tool call. On disk,
this field does not contain a valid value.

Window definition data required by the routine pointed to by
p2DefProc. The format and content of this field are determined by
the window definition procedure.

Appendix F Delta Guide

This appendix collects all information that corrects errors or clarifies
ambiguities in Volumes 1 and 2 of the Apple JIGS Toolbox Reference. This
information was derived from the "Error Corrections" and
"Clarifications" sections in the chapters of this book. This appendix
contains a separate major section for each tool set to be addressed; the
sections are presented alphabetically, by tool set name.

Apple Desktop Bus

The following sections correct errors or omissions in Chapter 3, "Apple Desktop Bus
Tool Set," in Volume 1 of the Toolbox Reference.

Error corrections

The parameter table for the ReadKeyMicroData tool call ($0A09) in Volume 1 of the
Toolbox Reference incorrectly describes the format of the readConfig command ($0B).
The description should be as follows:

Command datalength Name Action

$0B 3 readConf ig Read configuration; dataPtr refers to a
3-byte data structure.
Byte ADB keyboard and mouse

addresses.
Low nibble = keyboard
High nibble = mouse

Byte Keyboard layout and display
language.
Low nibble = keyboard layout
High nibble = display language

Byte Repeat rate and delay.
Low nibble = repeat rate
High nibble = repeat delay

The description of this configuration record is also wrong in the tool set summary. The
following list correctly describes ReadCon f igRec, the configuration record for the
ReadKeyMicroData tool call.

Name Offset Type

rcADBAddr $0000 Byte

rcLayoutOrLang $0001 Byte

Definition

ADB keyboard and mouse addresses.
Low nibble = keyboard
High nibble = mouse
Keyboard layout and display language.
Low nibble = keyboard layout
High nibble = display language

rcRepeatDelay $0002

Clarification

Byte Repeat rate and delay.
Low nibble = repeat rate
High nibble = repeat delay

This section presents new information about the AsyncADBReceive call.

If you call AsyncADBRecei veto poll a device using register 2, it returns certain useful
information about the status of the keyboard. The call returns the following information
in the specified bits of register 2:
Bit 5: 0 = Caps Lock key down

1 = Caps Lock key up
Bit 3: 0 = Control key down

1 = Control key up
Bit 2: 0 = Shift key down

1 = Shift key up
Bit 1: 0 =Option key down

1 = Option key up
Bit 0: 0 = Command key down

1 = Command key up

Audio Compression and Expansion Tool Set

The following section discusses an error in a previous version of this book.

Error correction

An error existed in the Apple IlGS Toolbox Reference Update (distributed by APDA). The
description of the ACEExpand tool call included an incorrect parameter block. This book
contains a corrected description.

Control Manager

The following sections correct errors or omissions in Chapter 4, "Control Manager," in
Volume 1 of the Toolbox Reference.

Error corrections

This section documents errors in Chapter 4, "Control Manager," in Volume 1 of the Toolbox
Reference.
• The color table for the size box control in the Toolbox Reference is incorrect. The

correct table follows, with new information in boldface.
growOutline word Outline color

growNorBack word

growSelBack word

Bits 15-8
Bits 7-4
Bits 3-0

=zero
= outline color
= zero

Color of interior when not highlighted
Bits 15-8 = zero
Bits 7-4 = background color
Bits 3-0 = icon color
Color of interior when highlighted
Bits 15-8 =zero
Bits 7-4 = background color
Bits 3-0 =icon color

• This description on page 4-76 of the Toolbox Reference, in the section about the
SetCtlParams call, is misleading: "Sets new parameters to the control's definition
procedure." In fact, the call does not set the parameters directly. Rather, it sends the
new parameters to the control's definition procedure. In this way, SetCtlParams is
unlike setct 1 value, which actually sets the appropriate value in the control record
and then passes the value to the definition procedure.

Clarlflcations

The following items provide additional information about features previously described
in Volume 1 of the Toolbox Reference.
• The barArrowBack entry in the scroll bar color table was never implemented as first

intended and is no longer used.
• The Control Manager preserves the current port across Control Manager calls, including

those that are passed through other tools, such as the Dialog Manager.
• The Control Manager preserves the following fields in the port of a window that

contains controls:
bkPat background pattern
pnLoc pen location
pnSize pen size
pnMode pen mode
pnPat pen pattern
pnMask pen mask
pnVis pen visibility
fontHandle handle of current font
fontiD ID of current font
fontFlags font flags
txSize text size
txFace text face
txMode text mode
spExtra value of space extra
chExtra value of character extra
fgColor foreground color
bgColor background color

• The control definition procedures for simple buttons, check boxes, and radio buttons
can now compute the size of boundary rectangles automatically. The computed size is
based on the size of the title string of the button or box.

• To ensure predictable color behavior, you should always align controls based on color
tables on an even pixel boundary in 640 mode. If you do not do so, the control will not
appear in the colors you specify, due to the effect of dithering.

Dialog Manager

The following section corrects errors or omissions in Chapter 6, "Dialog Manager," in
Volume 1 of the Toolbox Reference.

Error corrections

This section documents errors in Chapter 6, "Dialog Manager," in Volume 1 of the Toolbox
Reference.
• A statement about setDitemType on page 6-82 of Volume 1 of the Toolbox Reference

is in error. This call is not used to change a dialog item to a different type. In fact,
SetDitemType should be used only to change the state of an item from enabled to
disabled or vice versa.

• An entry in Table 6-3 on page 6-12 of Volume 1 of the Toolbox Reference is incorrect.
The Dialog Manager does not support dialog item type values of pic It em or
icon Item.

Event Manager

The following section corrects an error in Chapter 7, "Event Manager," in Volume 1 of the
Toolbox Reference.

Error correction

• The description of the EMShutDown tool call incorrectly states that the call returns no
errors. This call can return any valid Event Manager error code.

Font Manager

The following section corrects an error in Chapter 8, "Font Manager," in Volume 1 of the
Toolbox Reference.

Error corrections

• On page 8-4 of Volume 1 of the Toolbox Reference, the font family number for the
Shaston font is given as 65,524. This is incorrect. The correct decimal value is 65,534
($FFFE).

• Page 8-24, Volume 1 of the Toolbox Reference incorrectly describes the newSpecs
parameter, indicating that it contains a word of FontSpecBits . Actually, this
parameter contains FontStatBits for the new font.

• Contrary to the call description in the Toolbox Reference, the FMSetSysFont tool call
does not load or install the indicated font.

Integer Math Tool Set

The following section describes a bug that has been fixed in the Integer Math Tool Set.

Clarification

This section presents new information about the Long2Dec Integer Math tool call.
• The Long2Dec Integer Math tool call now correctly handles input long values whose

low-order three bytes are set to zero.

List Manager

The following sections correct errors or omissions in Chapter 11 , "List Manager," in Volume
1 of the Toolbox Reference.

Clarifications

The following items provide additional information about features previously described
in Volume 1 of the Toolbox Reference.
• The Toolbox Reference states that a disabled item of a list cannot be selected. In fact , a

disabled item can be selected, but it cannot be highlighted. The List Manager provides
the ability to select disabled (dimmed) items so that a user can, for instance, select a
disabled command as part of a help dialog box. To make an item unselectable, make it
inactive (see "List Manager Definitions" later in this appendix).

• Any List Manager tool call that draws will change fields in the GratPort record. If you
are using List Manager tool calls, you must set up the GratPort correctly and save any
valuable GratPort data before issuing the call.

• Item text is now drawn in 16 colors in both 320 and 640 mode.
• Previous versions of List Manager documentation do not clearly define the relationship

between the listView, listMemHeight , and listRect fields in the list record.
To understand this relationship, note that the following formula must be true for values
in any list record:

(listView * listMemHeight) + 2 = listRect . v2 = listRect.vl

If you set listView to 0, the List Manager automatically adjusts the listRect.v2
field and sets the list View field so that this formula holds. Note that if you pass a 0
value for listView, the bottom boundary of listRect may change slightly.

Ust Manager definitions

The following terms define the valid states of a list item:

inactive

disabled

enabled

selected

highlighted

Inactive items appear dimmed and cannot be highlighted or selected.
Bit 5 of the list item's memF lag field is set to 1.

Disabled items appear dimmed and cannot be highlighted. Bit 6 of the
list item's memF lag field is set to 1.

Enabled items are not dimmed and can be highlighted. Bit 6 of the list
item's memFlag field is set to 0.

This bit is set when a user clicks the list item or when the item is in a range
of selected items. A selected item appears highlighted only if it is also
enabled. Bit 7 of the list item's memF lag field is set to 1.

An item in a list appears highlighted only when it is both selected and
enabled. A highlighted item is drawn in the highlight colors. Bit 7 of the
memF lag field is set to 1 and bit 6 is set to 0.

Memory Manager

The following sections correct errors or omissions in Chapter 12, "Memory Manager," in
Volume 1 of the Toolbox Reference.

Error correction

Figure 12-7 on page 12-10 of Volume 1 of the Toolbox Reference shows the low-order bit of
the user ID as reserved. This is not correct. The figure should show that the rna in I o field
comprises bits 0-7 and that the mainiD value of $00 is reserved.

Clarification

The Toolbox Reference documentation of the setHandleSize call ($1902) includes the
statement, "If you need more room to lengthen a block, you may compact memory or
purge blocks." This is misleading. In fact, to satisfy a request the Memory Manager
compacts memory or purges blocks to free sufficient contiguous memory. Therefore, the
sentence should read, "If your request requires more memory than is available, the Memory
Manager may compact memory or purge blocks, as needed."

Menu Manager

The following sections correct errors or omissions in Chapter 13, "Menu Manager," in
Volume 1 of the Toolbox Reference.

Error corrections

This section documents errors in Chapter 13, "Menu Manager," in Volume 1 of the Toolbox
Reference.
• Part of the description of the SetSysBar tool call (pages 13-86 and 13-3) in Volume 1

of the Toolbox Reference is incorrect. It includes the mistaken statement that, after an
application issues this call, the new system menu bar becomes the current menu bar. In
reality, your application must issue the SetMenuBar tool call to make the new menu
bar the current menu bar.

• In the definition of the menu bar record (pages 13-17 and 13-18), Volume 1 of the
Toolbox Reference shows that bits 0-5 of the ct lF lag field are used to indicate the
starting position of the first title in the menu bar. This is incorrect. The c t 1 Hi 1 it e
field defines the starting position of the first title. Note further that the entire
ct1Hi1ite field is used in this manner. The documented purpose of the ct1Hi1ite
field (number of highlighted titles) is not supported by the menu bar record.

• The call descriptions for the MenuKey and MenuSe1ect tool calls are incorrect. The
calls do not return selection status information in the when field of the event record.
Rather, these calls both return selection status information in the TaskData field of
the task record.

Clarifications

The following items provide additional information about features previously described
in Volume 1 of the Toolbox Reference.
• The setBarColors tool call changes the color table for all menu bars in a window. If

you want to use separate color tables for different menu bars, your application must
build a menu bar color table and modify the ct lColor field of the appropriate
control record so that it points to this custom color table. See "SetBarColor" in
Chapter 13, "Menu Manager," in Volume 1 of the Toolbox Reference for the format and
contents of a menu bar color table.

• The description of the InsertMenu tool call should also note that to display the modified
menu bar, your application must call F ixMenuBar before calling DrawMenuBar.

• The description of the InitPalette tool call in the Toolbox Reference should also
note that this call changes color tables 1 through 6 to correspond to the colors needed
for drawing the Apple logo in its standard colors.

• The CalcMenuSize call uses the newWidth and newHeight parameters to compute
the size of a menu. These parameters may contain the width and height of the menu or
may contain the value $0000 or $FFFF. A value of $0000 tells CalcMenuSize to
calculate the parameter automatically. A value of $FFFF tells it to calculate the
parameter only if the current setting is 0.
These are the effects of all three uses:
o Pass the new value. The value passed determines the size of the resulting menu.

Use this method when you need a menu of a specific size.
o Pass $0000. The size value is automatically computed. This option is useful if

commands are added or deleted, resulting in an incorrect size. The height and
width of the menu can be automatically adjusted by calling CalcMenuSize with
new Width and newHeight equal to $0000.

o Pass $FFFF. The width and height of a menu are 0 when it is created.
FixMenuBar calls CalcMenuSize with newWidthand newHeightequal to $FFFF
to calculate the sizes of those menus with heights and widths of 0.

• To provide the user a consistent visual interface, you should always pad your menu
titles with leading and trailing space characters. The Apple IIGS Finder uses two spaces.

Miscellaneous Tool Set

The following section corrects errors or omissions in Chapter 14, "Miscellaneous Tool Set,"
in Volume 1 of the Toolbox Reference.

Error corrections

This section documents errors in Chapter 14, "Miscellaneous Tool Set," in Volume 1 of the
Toolbox Reference.
• On page 14-58 of Volume 1 of the Toolbox Reference, Figure 14-3 shows the low-order

bit of the user ID as reserved. This is not correct. The figure should show that the
mainiD field comprises bits 0-7 and that the mainiD value of $00 is reserved.

• The sample code on page 14-28 contains two errors. In the code to clear the 1-second
IRQ source, the second instruction reads

TSB $C032
This instruction should read

TRB $C032
In addition, preceding this instruction the following code should be inserted

PEA $0000
PLB
PLB

These three instructions allow the code to reliably access the appropriate location in
bank zero memory. These same three instructions should also be inserted in the code
shown on page 14-29, immediately preceding the STA instruction.

• The descriptions of the PackBytes and UnPackBytes tool calls are unclear with
respect to the startHandle parameter to each call. The stack diagrams correctly
describe the parameter as a pointer to a pointer. However, the C sample code for each
call defines startHandle as a handle. In both cases, startHandle is not a Memory
Manager handle but a pointer to a pointer. Creating startHandle as a handle will cause
unpredictable system behavior.

• Throughout Chapter 14 of the Toolbox Reference the value of the signature word for
Miscellaneous Tool Set data structures is given as $5AA5 and $A55A. Signature words
are always $A55A, never $5AA5.

Clarification

Note that the ClrHeartBeat tool call removes all tasks from the heartbeat interrupt
task queue, including those installed by system software. Consequently, only system
software should issue the ClrHeartBeat tool call.

Print Manager

The following sections correct errors or omissions in Chapter 15, "Print Manager," in
Volume 1 of the Toolbox Reference.

Error corrections

This section documents errors in Volume 1 of the Toolbox Reference.
• The diagram of the job subrecord, Figure 15-10 on page 15-14 of Volume 1 of the

Toolbox Reference, shows that the fFromusr field is a word. This is incorrect. The
fFromusr field is actually a byte. Note that as a result the offsets for all fields
following this one are incorrect. This error is also reflected in the tool set summary at
the end of the chapter.

• The description of the PrJobDialog tool call includes this incorrect statement: "The
initial settings displayed in the dialog box are taken from the printer driver." The
sentence should be "The initial settings displayed in the dialog box are taken from the
print record."

Clarifications
The following items provide additional information about features previously described in Volume 1
of the Toolbox Reference.
• The existing Toolbox Reference documentation for the PrP icF ile tool call does not

mention that your program may pass a NIL value for statusRecPtr. Passing a NIL pointer
causes the system to allocate and manage the status record internally.

• The PrPixelMap call (documented in Volume 1 of the Toolbox Reference) provides an
easy way to print a bitmap. It does much of the required processing, and an
application need not make the calls normally required to start and end the print loop.
The srcLocPtrparameter must be a pointer to a locinfo record (see Figure 16-3 in
Chapter 16, "QuickDraw II," in Volume 2 of the Toolbox Reference for the layout of the
locinfo record).

• The port driver auxiliary file type of an AppleTalk driver is $0003. Its file type remains $BB.

QuickDraw II

The following section corrects errors or omissions in Chapter 16, "QuickDraw II," in
Volume 2 of the Toolbox Reference.

Error corrections

The following items provide corrections to the documentation for QuickDraw II in
Volume 2 of the Toolbox Reference:
• The explanation of pen modes is somewhat misleading. There are, in fact, 8 drawing

modes, and you may set the pen to draw lines and other elements of graphics in any of
these modes. There are also 16 modes used for drawing text, and they are completely
independent of the graphic pen modes. The 8 drawing modes listed in Table 16-9 on
page 16-235 are valid modes for either the text pen or the graphics pen. You can set
either pen to any of these modes by using the appropriate calls. You can also set the
text pen to 8 other modes. These modes are listed in the table on page 16-260 of the
Toolbox Reference. The setPenMode call sets the mode used by the graphics pen; the
Set TextMode call sets the mode used by the text pen. Setting either one does not
affect the other.

• There are two versions of the Apple IIGS standard 640-mode color tables, one on page
16-36 and one on page 16-159. The two tables are different; Table 16-7 on page 16-159
is correct.

• Chapter 16 states that the coordinates passed to the LineTo and Move To calls should
be expressed as global coordinates. In fact, the coordinates must be local and must
refer to the GrafPort in which the drawing or moving takes place.

• The pen state record shown in Figure 16-38 on page 16-238 is incorrect. The correct
record layout is shown in Figure F-1.

• Figure F-1 Pen state record

$00 r-
1-
1-

$04 1-
1-
1-

1-$08

$0A .

$2A .

psPenLoc

psPenSize

psPenMode

psPenPat

psPenMask

Clarification

-- Long-Point specifying pen location -
-- Long-Point specifying pen size -
- Word-Pen mode

; 32 bytes-Pen pattern

; 8 bytes-Pen mask

QuickDraw pictures are described by a series of QuickDraw operation codes specifying
the commands by which the picture was created. When these pictures are stored as data
structures, the actual picture data (the operation codes) is preceded by control
information, some of which may be of interest to Apple liGS developers. Figure F-2 shows
some of this control information. Note that the layout of this control information is
subject to change.

• Figure F-2 QuickDraw picture header

$OO ___ Word-Picture's scan line control byte (high byte is 0)
$02 !- -l ; Rectangle-Picture's boundary rectangle picFrame

$OA b picVersion d Word-Version number for picture

Sound Tool Set

The following sections correct errors or omissions in Chapter 21, "Sound Tool Set," in
Volume 2 of the Toolbox Reference.

Error corrections

This section contains corrections to the documentation of the Sound Tool Set in
Volume 2 of the Toolbox Reference.
• The documentation of the FFSoundDoneStatus call contains an error. You will note

that the paragraph that describes the call does not agree with the diagram describing
the stack after the call. The text states that the call returns TRUE if the specified sound
is still playing, whereas the diagram states that it returns FALSE if still playing. The
diagram, not the text, is correct.

• There is an undocumented distinction between a generator that is playing a sound and
one that is active. A generator that is playing a sound returns FALSE in response to an
FFSoundDoneStatus call. One that is active may or may not be playing a sound; the
value of the flag returned by FFSoundStatus is TRUE. Active generators are those
that are allocated to a voice. At any given moment the generator may be playing a
sound, and so the FFSoundDoneStatus returns FALSE-or it may be silent between
notes, in which case FFSoundDoneStatus returns TRUE.

• The description of the GetSoundVolume tool call is misleading with respect to the
number of significant bits in the returned volume setting. The text accompanying the
stack diagram is correct-only the high nibble of the low-order byte contains valid
volume data.

• The FFGeneratorStatus tool call can return error code $0813, indicating that the
genNumber parameter contains an invalid generator number.

Clarification

This section presents more complete information about the FFStartSound tool call,
including further explanation of its parameters, a new error code, an example procedure
for moving a sound from the Macintosh computer to the Apple IIGS computer, and some
sample code demonstrating the use of the call. The original documentation for this call is
in Chapter 21, "Sound Tool Set," in Volume 2 of the Toolbox Reference.

FFStartSound

The free-form synthesizer is designed to play back long waveforms. To handle longer
waveforms, the synthesizer uses two buffers (which must be the same size), alternating its
input from one to the other. When the synthesizer exhausts a buffer, it generates an
interrupt and then starts reading data from the other buffer. The Sound Tool Set services
the interrupt and begins refilling the empty buffer. This process continues until the
waveform has been completely played.

Note that all synthesizer input buffers must be buffer-size aligned. That is, if you have
allocated 4 KB buffers, then those buffers must be aligned on 4 KB memory boundaries.

Parameter block

$00

$04
$06
$08
$0A
$0C

$10

t-
r-
r-

t-
f-

f-

t-

r-
r-
i-

'-

waveStart

wa veSize

fre qOffset

docBuffer

bu f f erS i ze

nextWavePtr

volSett i ng

-
-
-
-

-

Long

Word
Word
Word
Word

Long

Word

waveStart The starting address of the wave to be played, not in Digital Oscillator
Chip (DOC) RAM but in Apple IIGS system RAM. The Sound Tool Set
loads the waveform data into DOC RAM as it is played.

waveSize

freqOffset

docBuffer

The size in pages of the wave to be played. A value of 1 indicates that
the wave is one page (256 bytes) in size, a value of 2 indicates that it
is two pages (512 bytes) in size, and so on, as you might expect. The
only anomaly is that a value of 0 specifies that the wave is 65,536
pages in size.

This parameter is copied directly into the Frequency High and
Frequency registers of the DOC.

Contains the address in Sound RAM where buffers are to be allocated.
This value is written to the DOC Waveform Table Pointer register. The
low-order byte is not used and should always be set to 0.

bufferSize The lowest 3 bits set the values for the table-size and resolution
portions of the DOC Bank-Select/Table-Size/Resolution register.

nextWavePtr This is the address of the next waveform to be played. If the field's
value is 0, then the current waveform is the last waveform to be
played.

volSetting The low byte of the volSetting field is copied directly into the
Volume register of the DOC. All possible byte values are valid.

New error code $0817 IRQNotAssignedErr No master IRQ was assigned.

Moving a sound from the Macintosh computer to the Apple IIGS computer

To move a digitized sound from the Macintosh computer to the Apple IIGS computer and
play the sound, you perform the following steps:
1. Save the sound as a pure data file on the Macintosh computer.
2. Transfer the file to the Apple IIGS computer (using Apple File Exchange, for example).
3. Filter all the 0 sample bytes out of the file by replacing them with bytes set to $01. This

is very important, because the Apple IIGS computer interprets 0 bytes as the end of a
sample.

4. Load the sound into memory with GS/OS calls.
5. Issue the FFStartSound tool call to play the sound. Set the freqOffset parameter

to $01B7 to match the tempo at which the sound is played on the Macintosh
computer, assuming that you recorded the original sound at the standard Macintosh
sampling rate of 22 kHz.

Sample code

This assembly-language code sample demonstrates the use of the FFStartsound tool call.

PushWord chanGenType
PushLong #STParamBlk
FFStartSound

ChanGenType DC.W $0201

STParamBlk DS .L 1

Entry WaveSize
WaveSize DS.W 1

Freq DC.W $200
Start DC.W $8000
Size DC .W $6
Nxtwave DC.L $0
Vol DC.W $FF

Set generator for FFSynth
Address of param block
Start free-form synth

Generator 2, FFSynth

Store the address of the
sound in system memory here

Store the number of pages to
play here

A9 set for each sample once
Start at beginning
16k buffers
No new param block
Maximum volume

Tool Locator
The following sections correct errors or omissions in Chapter 24, "Tool Locator," in
Volume 2 of the Toolbox Reference.

Error correction

Contrary to the call descriptions in Chapter 24 of the Toolbox Reference, both the
MessageCenter and SaveTextState tool calls can return Memory Manager errors.

Clarification

Applications that explicitly start up Apple IIGS tool sets should start the Desk Manager last.

Window Manager
The following section corrects errors or omissions in Chapter 25, "Window Manager," in
Volume 2 of the Toolbox Reference.

Error corrections

This section corrects some errors in the documentation of the Window Manager in
Volume 2 of the Toolbox Reference.
• The description of setZoomRect is incorrect. The correct description is as follows:

Sets the fZoomed bit of the window's wFrame record to 0. The rectangle passed to
SetZoomRect then becomes the window's zoom rectangle. The window's size and
position when setzoomRect is called become the window's unzoomed size and
position, regardless of what the unzoomed characteristics were before Set zoomRect
was called.

• "If wmTaskMask bit tminfo (bit 15) = 1," on page 25-126, should read, "If
wmTaskMask bit tminfo (bit 15) = 0."

• When used with a window that does not have scroll bars, the WindNewRes call invokes
the window's detProc to recompute window regions. A call to Sizewindow is not
necessary under these circumstances.

• The input region for the InvalRgn tool call is defined in local coordinates; however,
the call returns the region expressed in global coordinates.

• There are two errors in the series of equations given with the P inRect tool call. In the
last two equations the greater-than sign(>) should be replaced with a greater-than-or-
equal sign (>=).

• Note that the Closewindow tool call does not change the GratPort setting. Your
application should ensure that a valid GratPort is set before performing any other
actions.

Clarifications

This section elaborates on topics addressed in Volume 2 of the Toolbox Reference.
• Window title strings should always contain leading and trailing space characters. This

spacing is especially important for windows with a lined window bar because, without
the spaces, the line pattern runs into the title text. Also, because window editor desk
accessories may allow the user to change the title bar pattern without making the
change known to your application, you should pad your window titles with spaces
even if you use black title bars.

• Table 25-6 on page 25-43 of the Toolbox Reference contains misleading labels. Note that
in this table byte 1 refers to the high-order byte of the long that defines the desktop
pattern, and byte 4 refers to the low-order byte.

Appendix G Toolbox Code Example

This appendix contains a sample program, BusyBox, that demonstrates
the use of many of the new features of the Apple IIGS Toolbox.

The Busy .p module

This section contains the source listing for the main module of the BusyBox program.

{**
{*
{* BusyBox (Main Program)
{*
{* Copyright (c)
{* Apple Computer, Inc. 1986-1990
{* All Rights Reserved.
{*
{* This file contains the BusyBox program.
{*
{**}
{$R-}

program BusyBox;

USES
types,
gsos,
Quickdraw,
fonts,
memory,
IntMath,
events,
prodos,
locator,
controls,
windows,
lists,
scrap,
lineedit,
dialogs,
menus,
desk,
STDFile,
QDAUX,
print,
miscTool,
resources,

var

BEGIN

uGlobals,
uUtils,
uWindow,
uMenu,
uEvent;

{ HodgePodge Code Units }

InitRef ref; { This holds the reference to the startstop
record }

of MAIN program BusyBox

Init our globals }
InitGlobals;

MyMemoryiD := MMStartup;
Start up & get ID from the Memory Manager }

TLStartUp; Start up the tool locator }
Startup the tools using the new toolbox call }

InitRef := StartupTools(MyMemoryiD,RefisResource,ref(l));
if toolErr = 0 then { note: usage of toolErr may vary between

compilers }

begin

end;

SetUpMenus; { Set up menus }
SetupWindows;
InitCursor;
MainEvent;

Make cursor show ready
Use application }

{ Let the toolbox shut down the tools }
ShutDownTools(RefisHandle,InitRef);
TLShutDown; { Shut down the tool locator

END. { of MAIN program BusyBox }

The busybox. r module

This section contains the MPW source statements for the Apple IIGS resource editor that
create the resource file for the BusyBox program.

/*--*/

I* For APW, the following should read '#include "types.rez"'. *I
#include "typesiigs.r"

/*-------------------- Values used throughout --------------------*/

#define Main Window $2000
#define ButtonWindow $2001
#define Stat Text Window $2002
#define LineEditWindow $2003
#define PictureWindow $2004
#define PopUpWindow $2005
#define TextEditWindow $2006
#define List Window $2007
#define Prog1Window $2008
#define Prog2Window $2009
#define Prog3Window $200A
#define Prog4Window $200B
#define Prog5Window $200C
#define Prog6Window $200D

#define ButButtons $0001
#define But Stat Text $0002
#define ButLineEdit $0003
#define ButPictures $0004
#define ButPopUps $0005
#define ButTextEdit $0006
#define But Lists $0007
#define ButProg1 $0008
#define ButProg2 $0009
#define ButProg3 $000A
#define ButProg4 $000B
#define ButProg5 $000C
#define ButProg6 $0000
#define Main Text $000E

#define AboutBusyAlert
#define BusyBoxStartup

1
1

/*----------------------- About Box ------------------------------*/
resource rAlertString (AboutBusyAlert) {

"0\$19\$00\$A0\$00\$AA\$00 \ $E0\$01"

} ;

"0/"
TBCenterJust
TBStyleOutline
"BusyBox"
TBEndOfLine
TBStylePlain
"A sample program to demonstrate the new features of the "
"Apple IIGS toolbox."
TBEndOfLine
TBEndOfLine
"by"
TBEndOfLine
"Steven E. Glass"
TBEndOfLine
TBEndOfLine
"Copyright Apple Computer, Inc."
TBEndOfLine
"All Rights Reserved"
TBEndOfLine
"Version 1.1/A#6\$00"

1*---------------------------Startup Record --------------------------*1
resource rToolStartup (BusyBoxStartup) {

I*
I*
I*
I*

I*
I*
I*
I*

} ;

mode640,

3,$0100,
4,$0100,
5,$0100,
6,$0100,
7,$0100,
8,$0100,
9,$0100,
10,$0100,
11,$0100,
14,$0300,
15,$0300,
16,$0300,
18,$0200,
19,$0100,
20,$0100,
21,$0100,
22,$0100,
23,$0100,
27,$0100,
28,$0100,
34,$0100,
29,$0100,
32,$0100,
25,$0100,
26,$0100

I*

I*
I*
I*
/*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
/*
I*
I*
I*
I*

master SCB *I

Mise Tool *I
QuickDraw *I
Desk Manager *I
Event Manager */
Scheduler *I
sound tools *I
ADB tools *I
SANE *I
Int Math *I
Window Manager *I
Menu Manager *I
Control Manager *I
QD AUX *I
Print Manager *I
LineEdit Tool Set *I
Dialog Manager *I
Scrap Manager *I
Standard File *I
Font Manager *I
List Manager *I
TextEdit *I
ACE *I
MIDI Tools *I
Note Synth *I
Note Seq *I

l*--*1
I*
I* Main Window
I*
I* This is the template for the main window with all the buttons that
I* lead to other buttons.
I*
1*--*l
resource rWindParaml (MainWindow) {

fTitle+fVis,
MainWindow,

0,
{0,0,0,0},
0,
{0,0},
{0,0},
{0,0},
{0,0},
{0,0},
0,
0,
{40,90,180,550},
infront,
MainWindow,

I* frame bits
I* title id
I* ref con
I* zoom rect
I* color table id
I* origin
I* data size
I* max height-width
I* scroll amount, hor,ver
I* page amount
I* winfo ref con
I* winfo height
I* window position
I* wPlane
I* control ref

refisResource*OxOlOO+resourceToResource
I* descriptor

} ;

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

*I

1*--* l
I* This is the title of the main window.
l*--*1
resource rPString (MainWindow)

"BusyBox"
} ;

/*--*1
/* The following define the controls for the main window.
/* First I start with some constants.
l*--*1
#define ButWidth 140
#define ButHeight 12
#define ButSep 8
#define ButVSep 5

#define TopOfRow1 50
#define BottomOfRow1 TopOfRow1+ButHeight
#define TopOfRow2 BottomOfRow1+ButVSep
#define BottomOfRow2 TopOfRow2+ButHeight
#define TopOfRow3 BottomOfRow2+ButVSep
#define BottomOfRow3 TopOfRow3+ButHeight
#define TopOfRow4 BottomOfRow3+ButVSep+ButVSep
#define BottomOfRow4 TopOfRow4+ButHeight
#define TopOfRow5 BottomOfRow4+ButVSep
#define BottomOfRow5 TopOfRowS+ButHeight

#define LeftEdge1 ButSep
#define RightEdge1 LeftEdge1+ButWidth
#define LeftEdge2 RightEdge1+ButSep
#define RightEdge2 LeftEdge2+ButWidth
#define LeftEdge3 RightEdge2+ButSep
#define RightEdge3 LeftEdge3+ButWidth

/* List of all controls in main window * /

resource rControlList (MainWindow)

} ;
} ;

But But tons,
ButStatText,
ButLineEdit,
ButPictures,
ButPopUps,
ButTextEdit,
But Lists,
ButProgl,
ButProg2,
ButProg3,
ButProg4,
ButProgS,
ButProg6,
Main Text

resource rControlTemplate (MainText)

} ;

MainText, I* control id *I
{2,4,42,456}, I* control rectangle *I
EditTextControl{{ I* control type *I

} } ;

OxOOOO, I* flag *I
fCtlCanBeTarget+fCtlWantEvents+fctlProcRefNotPtr+

fCtlisMultiPart,
I* more flags *I

0, I* ref con *I
fReadOnly+fDrawBounds,

I* text flags *I
{OxFFFF,OxFFFF,OxFFFF,OxFFFF},

OxFFFFFFFF,
0,
0,

I* indent rect *I
I* vert bar *I
I* vert amount *I
I* hor bar *I

0, I* hor amount *I
0, I* style ref *I
dataisTextBlock+RefisResource*8,

I* text descriptor *I
MainText, I* text ref *I
0 I* text size (not used) *I

/* The static text for main window */
resource rText (MainText)

} ;

"The new toolbox makes it much easier to write programs for the "
"Apple IIGS."
TBEndOfLine
TBEndOfLine
"This program is incredibly simple. "
TBEndOfLine
TBEndOfLine
"Press one of the round buttons to find out about the new kinds "
"of controls that are supported. "
TBEndOfLine
TBEndOfLine
"Press one of the square "
"buttons to see the code for this program."

/* The definit ion of t h e Buttons button */
resource rControlTemplate (ButButtons)

} ;

ButButtons, /* control id * /
{TopOfRowl,LeftEdgel,BottomOfRowl,RightEdgel},

/* contro l rec t * /
SimpleButtonControl{{ /*control type*/

} } ;

NormalButton, /* f l ag */
fCtlProcRefNotPtr+Refi sResour c e,

/* mo re flags * /
0,
ButButtons

/* ref con */
/* title ref */

resource rpString (ButButtons)
"Buttons ... "

} ;

I* The Static Text button *I
resource rControlTemplate (ButStatText)

} ;

ButStatText, I* control id *I
{TopOfRowl,LeftEdge2,BottomOfRowl,RightEdge2},

I* control rect *I
SimpleButtonControl{{ I* control type *I

} } ;

NormalButton, I* flag *I
fCtlProcRefNotPtr+RefisResource,

/ * more flags * /
0, I* ref con *I
ButStatText I* title ref *I

resource rpString (ButStatText) {
"Static Text ... "

} ;

I* The Line Edit button *I
resource rControlTemplate (ButLineEdit)

} ;

ButLineEdit, I* control id *I
{TopOfRowl,LeftEdge3,BottomOfRowl,RightEdge3 },

I* c ontrol rec t *I
Simple ButtonControl{{ I* cont r o l type *I

} } ;

NormalButton, I* flag *I
fCtlProcRefNotPtr+RefisResource,

/ * more flags * /
0,
ButLineEdit

I* ref con *I
I* title r e f *I

resource rpString (ButLineEdit) {
"Line Edit ... "

} ;

I* The Pictures button *I
resource rControlTemplate (ButPictures)

} ;

ButPictures, I* control id *I
{TopOfRow2,LeftEdgel,BottomOfRow2,RightEdgel},

I* control rect *I
SimpleButtonControl{{ I* button type *I

} } ;

NormalButton, I* flag *I
fCtlProcRefNotPtr+RefisResource,

I* more flags *I
0,
ButPictures

/* ref con */
/* title ref * /

resource rpString (ButPictures) {
"Pictures ... "

} ;

I* The Pop-ups button *I
resource rControlTemplate (ButPopUps) {

} ;

ButPopUps, I* control id *I
{TopOfRow2,LeftEdge2,BottomOfRow2,RightEdge2},

I* control rect *I
SimpleButtonControl{{ I* control type *I

} } ;

NormalButton, I* flag *I
fCtlProcRefNotPtr+RefisResource,

I* more flags *I
0,
ButPopUps

I* ref con *I
/* title ref *I

resource rpString (ButPopUps)
"Pop-up Menus ... "

} ;

I* The TextEdit button *I
resource rControlTemplate (ButTextEdit)

} ;

ButTextEdit, I* control id *I
{TopOfRow2,LeftEdge3,BottomOfRow2,RightEdge3},

I* control rect *I
SimpleButtonControl{{ I* control type *I

} } ;

NormalButton, I* flag *I
fCtlProcRefNotPtr+RefisResource,

I* more flags *I
0,
But Text Edit

I* ref con *I
I* title ref *I

resource rpString (ButTextEdit)
"Text Edit ... "

} ;

I* The Lists button *I
resource rControlTemplate (ButLists)

} ;

ButLists, I* control id *I
{TopOfRow3,LeftEdge2,BottomOfRow3,RightEdge2},

I* control rect *I
SimpleButtonControl{{ I* control type *I

} } ;

NormalButton, I* flag *I
fCtlProcRefNotPtr+RefisResource,

I* more flags *I
0,
But Lists

I* ref con *I
I* title ref *I

resource rpString (ButLists)
"Lists ... "

} ;

I* The Main Program button *I
resource rControlTemplate (ButProgl)

} ;

ButProgl, I* control id *I
{TopOfRow4,LeftEdgel,BottomOfRow4,RightEdgel } ,

I* control rect *I
SimpleButtonControl{{ I* control type *I

} } ;

SquareButton, I* flag *I
fCtlProcRefNotPtr+RefisResource,

I* more flags *I
0,
ButProgl

I* ref con *I
I* title ref *I

resource rpString (ButProgl)
"Main Program ... "

} ;

I* The Main Program button *I
resource rControlTemplate (ButProg2)

} ;

ButProg2, I* control id *I
{TopOfRow4,LeftEdge2,BottomOfRow4,RightEdge2 },

I* control rect *I
SimpleButtonControl{{ I* control type *I

} } ;

SquareButton, I* flag *I
fCtlProcRefNotPtr+RefisResource,

I* more flags *I
0,
ButProg2

I* ref con *I
I* tit le ref *I

resource rpString (ButProg2)
"Events ... "

} ;

I* The Main Program button *I
resource rControlTemplate (ButProg3)

} ;

ButProg3, I* control id *I
{TopOfRow4,LeftEdge3,BottomOfRow4,RightEdge3},

I* control rect *I
SimpleButtonControl{{ I* control type *I

} } ;

SquareButton, I* flag *I
fCtlProcRefNotPtr+RefisResource,

I* more flags *I
0, I* ref con *I
ButProg3 I* title ref *I

resource rpString (ButProg3) {
"Menus ... "

} ;

I* The Main Program button *I
resource rControlTemplate (ButProg4)

} ;

ButProg4, I* control id *I
{TopOfRowS,LeftEdgel,BottomOfRowS,RightEdgel},

I* control rect *I
SimpleButtonControl{{

SquareButton,
I* control type *I
/* flag *I

fCtlProcRefNotPtr+RefisResource,
I* more flags *I

} } ;

0,
ButProg4

I* ref con *I
I* title ref *I

resource rpString (ButProg4) {
"Windows ... "

} ;

I* The Main Program button *I
resource rControlTemplate (ButProgS)

} ;

ButProgS, I* control id *I
{TopOfRow5,LeftEdge2,BottomOf Row5,RightEdge 2} ,

I* control rect *I
SimpleButtonControl{{ I* c ontrol t ype * /

} } ;

SquareButton, / * flag * /
fCtlProcRefNotPtr+RefisResource,

I* more flags *I
0, /* r ef c on * /
ButProgS / * tit l e r ef * /

resource rpString (ButProgS)
"Utilities ... "

} ;

I* The Main Program button *I
resource rControlTemplate (ButProg6)

} ;

ButProg6, /* c ont rol id */
{TopOfRow5,LeftEdge3,BottomOfRow5,RightEdge3 },

/* cont rol rect *I
SimpleButtonCont ro l{{ /*control type * /

} } ;

SquareButton, /* f l a g * /
fCtlProcRefNotPtr+RefisResource,

I* more flags * /
0,
But Prog6

I* ref con *I
I* t i tle ref *I

resource rpString (But Pr og6) {
"Globals . .. "

} ;

/*--*/
/*
/*Buttons ...
/*
I* The List window uses IDs in the $3000 range.
/*
l*--*1
#define ButtonTextiD $3001
#define Butl $3101
#define But2 $3102
#define But3 $3103
#define But4 $3104
#define Checkl $3105
#define Check2 $3106
#define Check3 $3107
#define Check4 $3108
#define Radial $3109
#define Radio2 $310A
#define Radio3 $310B
#define Radio4 $310C
#define Iconl $3100
#define Icon2 $310E

#define BLinel 50
#define BLine2 BLine1+18
#define BLine3 BLine2+18
#define BLine4 BLine3+18

resource rWindParam1 (ButtonWindow)
fTitle+fMove+fZoom+fGrow+fBScroll+fRScroll+fClose,

I* frame bits *I
ButtonWindow, I* title id *I
0, I* ref con *I
{0,0,0,0}, I* zoom rect *I
0, I* color table id *I
{0,0}, I* origin *I
{400,640}, I* data size *I
{200,640}, I* max height-width *I
{1,1}, I* scroll amount, hor,ver
{0,0}, I* page amount *I
0, I* winfo ref con *I
0, I* winfo height *I
{50,50,120,260}, /* window position *I
infront, I* wPlane *I
ButtonWindow, I* control ref *I
refisResource*OxOlOO+resourceToResource

I*
} ;

resource rpString (ButtonWindow)
"Buttons Window"

} ;

descriptor *I

*I

resource rControlList (ButtonWindow)

} ;
} ;

ButtonTextiD,
Butl,
But2,
But3,
But4,
Checkl,
Check2,
Check3,
Check4,
Radial,
Radio2,
Radio3,
Radio4,
Iconl,
Icon2

I* Template for static text in main window *I
resource rControlTemplate (ButtonTextiD)

} ;

ButtonTextiD, /* control id */
{2,4,48,460},
StatTextControl{{

I* control rectangle *I
I* control type *I

} } ;

ctlinactive, I* flag *I
fCtlProcRefNotPtr+RefisResource,

I* more flags *I
0,
ButtonTextiD

I* ref con *I
I* title ref *I

I* The static text for List window *I
resource rTextForLETextBox2 (ButtonTextiD)

} ;

"There are four types of buttons: simple buttons, check boxes, "
"radio buttons, and Icon Buttons. Each button can have its own "
"keyboard equivalent. All tracking and hiliting is handled by "
"TaskMaster."

resource rControlTemplate (Butl)

} ;

Butl, I* control id *I
{BLinel,LeftEdgel,O,O}, I* control rect *I
SimpleButtonControl{{ I* control type *I

} } ;

NormalButton, I* flag *I
fctlProcRefNotPtr+fCtlWantEvents+RefisResource,

I* more flags *I
0,
Butl,
0,
{"A","a",O,O}

I* ref con *I
I* title ref *I
I* color table not used *I
I* key equiv *I

resource rpString (Butl)
"Normal Button (A)"

} ;

resource rControlTemplate (But2)

} ;

But2, I* control id *I
{BLine2,LeftEdge1,0,0}, I* control rect *I
SimpleButtonControl{{ I* control type *I

} } ;

DefaultButton, I* flag *I
fctlProcRefNotPtr+fCtlWantEvents+RefisResource,

I* more flags *I
0,
But2,
0,
{"B","b",O,O}

I* ref con *I
I* title ref *I
I* color table not used *I
I* key equiv *I

resource rpString (But2)
"Default Button (B)"

} ;

resource rControlTemplate (But3)

} ;

But3, I* control id *I
{BLine3,LeftEdgel,O,O}, I* control rect *I
SimpleButtonControl{{ I* control type *I

} } ;

SquareButton, I* flag *I
fctlProcRefNotPtr+fCtlWantEvents+RefisResource,

I* more flags */
0,
But3,
0,
{"C","c",O,O}

I* ref con *I
I* title ref */
I* color table not used *I
I* key equiv *I

resource rpString (But3)
"Square Button (C)"

} ;

resource rControlTemplate (But4)

} ;

But4, I* control id *I
{BLine4,LeftEdge1,0,0}, I* control rect *I
SimpleButtonControl{{ I* control type *I

SquareShadowButton,
/* flag *I

fctlProcRefNotPtr+fCtlWantEvents+RefisResource,
I* more flags *I

0, I* ref con *I
But4, I* title ref *I
0, I* color table not used *I
{"D","d",O,O} I* key equiv *I

} } ;

resource rpString (But4)
"Square Shadow Button (D)"

} ;

resource rControlTemplate (Check1)
Check1, I* control id *I
(BLine1,LeftEdge3,0,0}, I* control rect *I
CheckControl((I* control type *I

0, I* flag *I
fctlProcRefNotPtr+fCtlWantEvent s +RefisResource ,

I* more flags *I

} } ;
} ;

0,
Check1,
1,
0,
{"e","E",O,O}

resource rpString (Check1)
"Check One (E)"

} ;

I*
I*
I*
I*
/ *

ref con *I
title ref *I
initial value *I
color table not
key equiv *I

resource rControlTemplate (Check2)
Check2, I* cont rol id *I
(BLine1+10,LeftEdge3,0,0},

I* control rect *I
CheckControl((I* cont rol type *I

0, I* flag *I

u sed *I

fctlProcRefNotPtr+fCt lWantEvents+RefisResourc e,
I* more flags *I

} } ;
} ;

0,
Check2,
1,
0,
("f","F",O,O}

resource rpString (Check2)
"Check Two (F)"

} ;

I*
I*
/ *
I*
I*

ref con *I
title ref *I
init i a l value *I
color table not used *I
key equiv *I

resource rControlTemplate (Check3) {
Check3, I* control id *I
{BLinel+20,LeftEdge3,0,0},

I* control rect *I
CheckControl{{ /*control type*/

0, I* flag *I
fctlProcRefNotPtr+fCtlWantEvents+RefisResource,

I* more flags *I

} } ;
} ;

0,
Check3,
0,
0,
{"G","g",O,O}

resource rpString (Check3)
"Check Three (G)"

} ;

I*
I*
I*
I*
I*

ref con *I
title ref *I
initial value *I
color table not
key equiv *I

resource rControlTemplate (Check4) {
Check4, I* control id *I
{BLine1+30,LeftEdge3,0,0},

CheckControl{{
0,

I* control rect *I
I* control type *I
I* flag *I

used *I

fctlProcRefNotPtr+fCtlWantEvents+RefisResource,
I* more flags *I

} } ;
} ;

0,
Check4,
1,
0,
{"H","h",O,O}

resource rpString (Check4)
"Check Four (H)"

} ;

I*
I*
I*
I*
I*

ref con *I
title ref *I
initial value *I
color table not used *I
key equiv *I

resource rControlTemplate (Radial)
Radial, I* control id *I
{BLine4,LeftEdge3,0,0}, I* control rect *I
RadioControl{{

0,
I* control type *I
I* flag *I

fctlProcRefNotPtr+fCtlWantEvents+RefisResource,
I* more flags *I

0, I* ref con *I
Radial, I* title ref *I
0, I* initial value *I
0,
{"i","I",O,O}

I* color table not

} } ;
} ;

resource rpString (Radial)
"Radio One (I)"

} ;

I* key equiv *I

resource rControlTemplate (Radio2)
Radio2, I* control id *I

used

{BLine4+10,LeftEdge3,0,0}, I* control rect *I
RadioControl{{ I* cont rol type *I

0, I* flag *I

*I

fctlProcRefNotPtr+fCtlWantEvents+RefisResource,
I* more flags *I

} } ;
} ;

0,
Radio2,
1,
0,
{"J","j",O,O}

resource rpString (Radio2)
"Radio Two (J)"

} ;

I*
I*
I*
I*
I*

ref con *I
title ref *I
initial value *I
color table not used *I
key equiv *I

resource rControlTemplate (Radio3)

} ;

Radio3 1 /* control id */
{BLine4+20 1 LeftEdge3 1 0 1 0} 1

I* control rect *I
RadioControl{{ I* control type *I

} } ;

0 1 /* flag *I
fctlProcRefNotPtr+fCtlWantEvents+RefisResourcel

I* more flags *I
01
Radio3 1

01
01
{"K" 1 "k" 1 0 1 0)

I* ref con *I
I* title ref *I
I* initial value *I
I* color table not used *I
I* key equiv *I

resource rpString {Radio3)
"Radio Three (K)"

} ;

resource rControlTemplate (Radio4)
Radio4 1 I* control id *I
{BLine4+30 1 LeftEdge3 1 0 1 0} 1

RadioControl { {
01

I* control rect *I
I* control type *I
I* flag *I

fctlProcRefNotPtr+fCtlWantEvents+RefisResource 1

I* more flags *I

} } ;
} ;

01
Radio4 1

01
01
{"L" 1 "1" 1 0 1 0)

resource rpString (Radio4)
"Radio Four (L)"

} ;

I*
I*
I*
I*
I*

ref con *I
title ref *I
initial value *I
color table not used *I
key equiv *I

resource rControlTemplate (Iconl)

} ;

Iconl, I* control id *I
{BLine4+20,LeftEdgel,BLine4+20+40,LeftEdge1+100},

I* control rect *I
IconButtonControl{{

SquareButton,
I* control type *I
I* flag *I

fctlProcRefNotPtr+fCtlWantEvents+RefisResource+RefisResource*$0010,
I* more flags *I

} } ;

0,
Iconl,
Iconl,
0,
0,
{"M","m",O,O}

I* ref con *I
/* icon ref */
I* title ref *I
I* color table not used *I
I* display mode *I
I* key equiv *I

resource rpString (Iconl)
"Icon One (M) "

} ;

resource ricon (Iconl)
Ox8000, I* kind *I
20, I* height *I
28, I* width *I

} ;

$"FFFFFFFFFFFOOOOOFFFFFFFFFFFF"
$"FFFFFFFF000ddddd000FFFFFFFFF"
$"FFFFFF0088888ddddddOOFFFFFFF"
$"FFFFFOd888888d888dd8dOFFFFFF"
$"FFFF08888888dd888dd8880FFFFF"
$"FFFF08888888dd88dd88880FFFFF"
$"FFF08888888dddddddd88880FFFF"
$"FFF08888888dddddddddd8d0FFFF"
$"FF0d8d88dd8ddddddd8888880FFF"
$"FF0d8d88dd8dddddd88888880FFF"
$"FF0dddd8ddddddddd88888880FFF"
$"FF0dd88888ddddddd88888880FFF"
$"FFF08888888dddddd8888880FFFF"
$"FFF08888888ddddddd888880FFFF"
$"FFFF0888888dddddddd8880FFFFF"
$"FFFF088888ddddddddd8880FFFFF"
$"FFFFF08888ddddddddd880FFFFFF"
$"FFFFFF008dddddddddd00FFFFFFF"
$"FFFFFFFFOOOdddddOOOFFFFFFFFF"
$"FFFFFFFFFFF00000FFFFFFFFFFFF",

$"00000000000FFFFF000000000000"
$"00000000FFFFFFFFFFF000000000"
$"000000FFFFFFFFFFFFFFF0000000"
$"00000FFFFFFFFFFFFFFFFF000000"
$"0000FFFFFFFFFFFFFFFFFFF00000"
$"0000FFFFFFFFFFFFFFFFFFF00000"
$"000FFFFFFFFFFFFFFFFFFFFF0000"
$"000FFFFFFFFFFFFFFFFFFFFF0000"
$"00FFFFFFFFFFFFFFFFFFFFFFF000"
$"00FFFFFFFFFFFFFFFFFFFFFFF000"
$"00FFFFFFFFFFFFFFFFFFFFFFF000"
$"00FFFFFFFFFFFFFFFFFFFFFFF000"
$"000FFFFFFFFFFFFFFFFFFFFF0000"
$"000FFFFFFFFFFFFFFFFFFFFF0000"
$"0000FFFFFFFFFFFFFFFFFFFOOOOO"
$"0000FFFFFFFFFFFFFFFFFFF00000"
$"00000FFFFFFFFFFFFFFFFF000000"
$"000000FFFFFFFFFFFFFFF0000000"
$"00000000FFFFFFFFFFFOOOOOOOOO"
$"00000000000FFFFF000000000000";

resource rControlTemplate (Icon2)
Icon2, I* control id *I
{BLine4+20,LeftEdge2,BLine4+20+40,LeftEdge2+100},

I* control rect *I
IconButtonControl{{ I* control type *I

SquareButton, I* flag *I
fctlProcRefNotPtr+fCtlWantEvents+RefisResource+RefisResource*$0010,

/* more flags */

} } ;
} ;

0,
Icon2,
Icon2,
0,
0,
{"N","n",O,O}

resource rpString (Icon2)
"Icon Two (N)"

} ;

I*
I*
/*
I*
I*
I*

ref con *I
icon ref *I
title ref *I
color table
display mode
key equiv *I

resource ricon (Icon2)
Ox8000,
20,
28,

I* kind *I
I* height *I
I* width *I

not used *I
*I

$"FFFFFFFFFFFFFFFFFFFFFFFFFFFF"
$"FFFFFFFFFFFFFFFFFFFFFFFFFFFF"
$"FFFFFFFFFFFFFFFFFFFFFFFFFFFF"
$"FFFFFFFFFFFFFFFFFFFFFFFFFFFF"
$"FFFFFFFFFFOFFFFFFFFFDFFFFFFF"
$"FFFFFFFFFOOFFFFFFFEFFDFFFFFF"
$"FFFFFFFFOFOFFFFFAFFEFFDFFFFF"
$"FFFFFFFOFFOFF7FFAFFEFFDFFFFF"
$"FF00000FFFOFFF7FFAFFEFFDFFFF"
$"F0FFFFOFFFOFFF7FFAFFEFFDFFFF"
$"FOFFFFOFFFOFFF7FFAFFEFFDFFFF"
$"FOFFFFOFFFOFFF7FFAFFEFFDFFFF"
$"FFOOOOOFFFOFFF7FFAFFEFFDFFFF"
$"FFFFFFFOFFOFF7FFAFFEFFDFFFFF"
$"FFFFFFFFOFOFFFFFAFFEFFDFFFFF"
$"FFFFFFFFF00FFFFFFFEFFDFFFFFF"
$"FFFFFFFFFFOFFFFFFFFFDFFFFFFF"
$"FFFFFFFFFFFFFFFFFFFFFFFFFFFF"
$"FFFFFFFFFFFFFFFFFFFFFFFFFFFF"
$"FFFFFFFFFFFFFFFFFFFFFFFFFFFF",

} ;

$"0000000000000000000000000000"
$"0000000000000000000000000000"
$"0000000000000000000000000000"
$"0000000000000000000000000000"
$"0000000000FOOOOOOOOOF0000000"
$"000000000FFOOOOOOOFOOF000000"
$"00000000FFFOOOOOFOOFOOF00000"
$"0000000FFFFOOFOOFOOFOOF00000"
$"00FFFFFFFFFOOOFOOFOOFOOF0000"
$"0FFFFFFFFFFOOOFOOFOOFOOF0000"
$"0FFFFFFFFFFOOOFOOFOOFOOF0000"
$"0FFFFFFFFFFOOOFOOFOOFOOF0000"
$"00FFFFFFFFFOOOFOOFOOFOOF0000"
$"0000000FFFFOOFOOFOOFOOF00000"
$"00000000FFFOOOOOFOOFOOF00000"
$"000000000FFOOOOOOOFOOF000000"
$"0000000000FOOOOOOOOOF0000000"
$"0000000000000000000000000000"
$"0000000000000000000000000000"
$"0000000000000000000000000000";

l*--*1
I*
I* Stat Text ...
I*
I* The StatText window uses IDs in the $4000 range.
I*
1*--*l

#define StatTextTextiD $4001

resource rWindParam1 (StatTextWindow)
fTitle+fMove+fZoom+fGrow+fBScroll+fRScroll+fClose,

I* frame bits *I
StatTextWindow, I* title id *I
0, /* ref con *I
{0,0,0,0}, I* zoom rect *I
0, I* color table id *I
{0,0}, I* origin *I
{400,640}, I* data size *I
{200,640}, I* max height-width *I
{1,1}, I* scroll amount, hor,ver
{0,0}, I* page amount *I
0, I* winfo ref con *I
0, I* winfo height *I
{50,50,120,260}, I* window position
infront, I* wPlane *I
Stat Text Window, I* control ref *I
refisResource*Ox0100+resourceToResource

I* descriptor *I
} ;

resource rpString (StatTextWindow)
"Static Text Window"

} ;

*I

*I

resource rControlList (StatTextWindow)

} ;

} ;

StatTextTextiD,
0

I* Template for static text in main window *I
resource rControlTemplate (StatTextTextiD)

} ;

StatTextTextiD, I* control id *I
{2,4,200,560}, I* control rectangle *I
StatTextCont ro l{{ I* control type *I

} } ;

ctlinactive+fSubstituteText,
I* flag *I

fctlProcRefNotPtr+RefisResource,

o,
StatTextTextiD

I* more flags *I
I* ref con *I
I* title ref *I

/* The static text for List window */
resource rTextForLETextBox2 (StatTextTextiD)

"Static text is a simple but powerful control that lets you put "
"predefined text in a window. The text is drawn with LETextBox2 "
"so you can format the text any way you want: using special "

TBStyleOutline
"styles"
TBStylePlain
" " I

TBFont
TBVenice
"\$00\$0E"
"fonts"
TBFont
TBShaston
"\$00\$08"

TBForeColor
TBColorS
"colors"
TBForeColor
TBColorO
" " I

TBEndOfLine
TBRightJust
"indenting or justification."
TBEndOfLine
TBLeftJust
TBEndOfLine

"An additional feature of static text is substitutions. You may "
"substitute up to ten strings into your ""static"" text, making "
"it not so static. The ## and ** symbols are used to indicate "
"substitutions."
"You use ##n to indicate a built-in string. You use **n to "
"indicate a particular string of your own. The SetCtlParamPtr "
"call lets you set up the substitution array that should be "
"used."

TBEndOfLine
TBEndOfLine
"The built-in strings are "
TBEndOfLine
TBEndOfLine
TBLeftMargin
"\$20\$00"
"##0 is #0"
TBEndOfLine
"##1 is ""#1"""
TBEndOfLine
"##2 is ""#2"""
TBEndOfLine
"##3 is ""#3'""'
TBEndOfLine
"##4 is ""#4"""
TBEndOfLine
"##5 is ""#5"""
TBEndOfLine
"##6 is ""#6"""
TBEndOfLine

} ;

1*--*l
I*
I* LineEdi t ...
I*
I * The List window uses IDs in the $5000 range.
I*
l*--*1

#define LineEdit Text ID $5001
#define LineEdit1 $5002
#define LineEdit2 $5 003
#define LineEdit3 $5004
#defi ne LineEdit 4 $5005
#define LineEdit5 $5006
#define LineEdit6 $5007

#define LELine1 80
#define LELine2 100
#define LELine3 120
#define LELe.ft1 10
#define LEWidth 200
#define LEHeight 13
#define LELeft2 220

resource rWindParam1 (LineEditWindow) {

fTitle+fMove+fZoom+fGrow+fBScroll+fRScroll+fClose,
I* frame bits *I

LineEditWindow, I* title id *I
0, I* ref con *I
{0,0,0,0}, I* zoom rect *I
0, I* color table id *I
{0,0}, I* origin *I
{400,640}, I* data size *I
{200,640}, I* max height-width *I
{1,1}, I* scroll amount, hor,ver
{0,0}, I* page amount *I
0, I* winfo ref con *I
0, I* winfo height *I
{50,50,120,260}, I* window position
infront, I* wPlane *I
LineEditWindow, I* control ref *I
refisResource*Ox0100+resourceToResource

I* descriptor *I
} ;

resource rpString (LineEditWindow)
"Line Edit Window"

} ;

*I

*I

resource rControlList (LineEditWindow)

} ;
} ;

LineEdit Text ID,
LineEdit6,
LineEditS,
LineEdit4,
LineEdit3,
LineEdit2,
LineEditl

resource rControlTemplate
LineEdi t Text ID,
{2,4,52,460},
EditTextControl{{

(LineEdi t Text ID)
I* control id *I
I* control rectangle *I
I* control type *I

} } ;
} ;

OxOOOO, I* flag *I
fCtlCanBeTarget+fCtlWantEvents+fctlProcRefNotPtr,

I* more flags */
0, I* ref con *I
fReadOnly+fDrawBounds+fTabSwitch,

I* text flags */
{OxFFFF,OxFFFF,OxFFFF,OxFFFF},

I* indent rect *I
OxFFFFFFFF, I* vert bar *I
0, I* vert amount *I
0, I* hor bar *I
0, I* hor amount *I
0, I* style ref *I
dataisTextBlock+RefisResource*8,

I* text descriptor *I
LineEditTextiD, I* text ref *I
0 /* text length */

/* The static text for List window */
resource rText (LineEditTextiD)

} ;

"The following six line edit fields are all defined in "
"resources. "
"All the typing, mouse tracking, and tabbing are handled by the "
"Toolbox. The application does not have to do anything until it "
"wants to read what is in the fields. Note that the fifth item "
"is set up to work as a password item. The characters you type "
"are not echoed, but they are collected correctly. "

resource rControlTemplate (LineEditl) {

} ;

0, /* control id */
{LELinel,LELeftl,LELinel+LEHeight,LELeftl+LEWidth},

/* control rectangle */
EditLineControl{{ /*control type*/

} } ;

0, /* flag * /
fctlProcRefNotPtr+RefisResource,

/* more flags * /
0,
401
LineEditl

/ * ref con * /
/ * max length */
/* initial value ref * /

resource rPString (LineEditl)
"First Line Edit Item"

} ;

resource rControlTemplate (LineEdit2)

} ;

0, /* control id */
{LELinel,LELeft2,LELinel+LEHeight,LELeft2+LEWidth},

I* control rectangle *I
EditLineControl{{ I* control type *I

} } ;

0, I* flag */
fctlProcRefNotPtr+RefisResource,

I* more flags *I
0,
40'
LineEdit2

I* ref con *I
I* max length *I
I* initial value ref *I

resource rPString (LineEdit2)
"Second Line Edit Item"

} ;

resource rControlTemplate (LineEdit3)

} ;

0, I* control id *I
{LELine2,LELeftl,LELine2+LEHeight,LELeftl+LEWidth },

I* c ontrol r e ctangle *I
EditLineControl{{ I* control type *I

} } ;

0, I* flag */
fctlProcRefNotPtr+RefisResource,

I* more flags *I
0,
40'
LineEdit3

I* r e f con *I
I* max l ength *I
I* initial value ref *I

resource rPString (LineEdit3)
"Third Line Edit Item"

} ;

resource rControlTemplate (LineEdit4) {

} ;

0, I* control id *I
{LELine2,LELeft2,LELine2+LEHeight,LELeft2+LEWidth},

I* control rectangle *I
EditLineControl{{ I* control type *I

} } ;

0, I* flag *I
fctlProcRefNotPtr+RefisResource,

I* more flags *I
0,

40'
LineEdit4

I* ref con *I
I* max length *I
I* initial value ref *I

resource rPString (LineEdit4)
"Fourth Line Edit Item"

} ;

resource rControlTemplate (LineEdit5) {

} ;

0, I* control id *I
{LELine3,LELeftl,LELine3+LEHeight,LELeftl+LEWidth},

I* control rectangle *I
EditLineControl{{ I* control type *I

} } ;

0, I* flag *I
fctlProcRefNotPtr+RefisResource,

I* more flags *I
0,
40+$8000,
LineEdit5

I* ref con *I
I* max length (password field) *I
/* initial value ref */

resource rPString (LineEdit5)
"Fifth Line Edit Item"

} ;

resource rControlTemplate (LineEdit6)
0, I* control id *I

{LELine3,LELeft2,LELine3+LEHeight,LELeft2+LEWidth},
I* control rectangle *I

EditLineControl{{ I* control type *I
0, I* flag *I
fctlProcRefNotPtr+RefisResource,

I* more flags *I

} } ;
} ;

0,
4 0'
LineEdit6

resource rPString (LineEdit6)
"Sixth Line Edit Item"

} ;

I* ref con *I
I* max length *I
I* initial value ref *I

l*--*1
I*
I* Pictures ...
I*
/* The List window uses IDs in the $6000 range.
I*
l*--*1

#define PictureTextiD
#define Picl

$6001
$6002

resource rWindParam1 (PictureWindow)
fTitle+fMove+fZoom+fGrow+fBScroll+fRScroll+fClose,

I* frame bits *I
PictureWindow, I* title id *I
0, I* ref con *I
{0,0,0,0}, I* zoom rect *I
0, I* color table id *I
{0,0}, I* origin *I
{400,640}, I* data size *I
{200,640}, I* max height-width *I
{1,1}, I* scroll amount, hor,ver
{0,0}, I* page amount *I
0, I* winfo ref con *I
0, I* winfo height *I
{50,50,120,260}, I* window position
infront, I* wPlane *I
PictureWindow, I* control ref *I
refisResource*Ox0100+resourceToResource

I* descriptor
} ;

resource rpString (PictureWindow)
"Pictures Window"

} ;

resource rControlList (PictureWindow)

} ;
} ;

PictureTextiD,
Pic1

*I

*I

*I

I* Template for static text in main window *I
resource rControlTemplate (PictureTextiD)

} ;

PictureTextiD, I* control id *I
{2,4,48,460}, I* control rectangle *I
StatTextControl{{ I* control type *I

} } ;

ctlinactive, I* flag *I
fCtlProcRefNotPtr+RefisResource,

I* more flags *I
0,
PictureTextiD

I* ref con *I
I* title ref *I

I* The static text for List window *I
resource rTextForLETextBox2 (PictureTextiD)

} ;

"You can also make picture controls. Pictures are collections of "
"QuickDraw commands that are all drawn at once. They can contain "
"most any drawing command including text, color, and special "
"fonts."

resource rControlTemplate (Picl)

} ;

Picl, I* control id *I
{50,2,150,202}, I* control rectangle
PictureControl{{ I* control type

} } ;

ctlinactive, I* flag *I
fCtlProcRefNotPtr+RefisResource,

I* more flags *I
0,
Picl

I* ref con *I
I* title ref *I

*I
*I

data rPicture (Picl) {

$"SO 00 00 00 00 00 SF 00 3S 01 11 S2 01 00 OA 00" I* A e.S .. C *I
$"01 co 01 co FF 3F FF 3F 51 00 OS 00 OA 00 SA 00" I* • ? • ? • ? • ?Q ••••• a. *I
$"2E 01 53 00 OA 00 14 00 ss 00 24 01 53 00 OF 00" I* .. s 0. $. s ... *I
$"1E 00 so 00 lA 01 53 00 14 00 2S 00 7B 00 10 01" I* .. A ... S . . . (. { ... *I
$"53 00 19 00 32 00 76 00 06 01 53 00 lE 00 3C 00" I* S ... 2.v ... S ... <. *I
$"71 00 FC 00 53 00 23 00 46 00 6C 00 F2 00 53 00" I* q ... S.#.F.l. .. S. *I
$"2S 00 50 00 67 00 ES 00 53 00 2D 00 SA 00 62 00" I* (.P.g ... S.-.Z.b. *I
$"DE 00" I* .. *I
} ;

l*--*1
I*
I* PopUps ...
I*
I* The List window uses IDs in the $7000 range .
I*
l*--*1

#define PopUpTextiD $7001
#define PopUpl $7100
#define PopUp2 $7200
#define PopUpliteml $7101
#define PopUp1Item2 $7102
#define PopUp1Item3 $7103
#define PopUp2Iteml $7201
#define PopUp2Item2 $7202
#define PopUp2Item3 $7203
#define PopUp2Item4 $7204
#define PopUp2 ItemS $7205
#define PopUp2Item6 $7206
#define PopUp2Item7 $7207
#define PopUp2 ItemS $720S
#define PopUp2Item9 $7209

resource rWindParaml (PopUpWindow)
fTitle+fMove+fZoom+fGrow+fBScroll+fRScroll+fClose,

I* frame bits *I
PopUpWindow, I* title id *I
0, I* ref con *I
{0,0,0,0}, I* zoom rect *I
0, I* color table id *I
{0,0}, I* origin *I
{400,640}, I* data size *I
{200,640}, I* max height-width *I
{1,1}, I* scroll amount, hor,ver
{0,0}, I* page amount *I
0, I* winfo ref con *I
0, I* winfo height *I
{50,50,120,260}, I* window position
infront, I* wPlane *I
PopUpWindow, I* control ref *I
refisResource*OxOlOO+resourceToResource

I* descriptor
} ;

resource rpString (PopUpWindow)
"PopUps Window"

} ;

resource rControlList (PopUpWindow)

} ;
} ;

PopUpTextiD,
PopUpl,
PopUp2

*I

*I

*I

I* Template for static text in main window *I
resource rControlTemplate (PopUpTextiD)

} ;

PopUpTextiD, I* control id *I
{2,4,48,460}, I* control rectangle *I
StatTextControl{{ I* control type *I

} } ;

ctlinactive, I* flag *I
fCtlProcRefNotPtr+RefisResource,

I* more flags *I
0,
PopUpTextiD

I* ref con *I
I* title ref *I

I* The static text for List window *I
resource rTextForLETextBox2 (PopUpTextiD)

} ;

"This window contains two pop-up menus. The first menu has three "
"items and is constrained to pop up inside the window. The "
"second has nine items and can pop up outside the window. The "
"first pop-up is a type 1 pop-up, and the second is a type 2. "

resource rControlTemplate (PopUpl)

} ;

PopUpTextiD, I* control id *I
{50,50,0,0}, I* control rectangle
PopUpControl{{ I* control type *I

} }

finWindowOnly, I* flags *I
fctlProcRefNotPtr+RefisResource,

/* more flags */
0, /* ref con */
0, I* title width *I
PopUpl,
PopUpliteml

I* menu ref *I
I* initial value *I

*I

resource rMenu (PopUpl)
PopUpl, /*id of menu */

RefisResource*MenuTitleRefShift+RefisResource*ItemRefShift+fAllowCache,
/* menu flags * /

PopUpl, /* id of title string */
PopUpliteml,PopUplitem2,PopUplitem3 };

/* id's of items * /
} ;

resource rPString (PopUpl,noCrossBank)
"Pop-up One "

} ;

resource rMenuitem (PopUpliteml)
PopUpliteml,

} ;

"" "" ' '
0,
RefisResource*ItemTitleRefShift+fXOR,
PopUpliteml

resource rPString (PopUpliteml,noCrossBank)
"Pop-up One: Item 1"

} ;

resource rMenuitem (PopUplitem2)
PopUplitem2,

} ;

"" "" ' '
0,
RefisResource*ItemTitleRefShift+fXOR,
PopUp1Item2

resource rPString (PopUplitem2,noCrossBank)
"Pop-up One: Item 2"

} ;

resource rMenuitem (PopUplitem3) {
PopUplitem3,

} ;

"" "" ' '
0,
RefisResource*ItemTitleRefShift+fXOR,
PopUplitem3

resource rPString (PopUplitem3,noCrossBank)
"Pop-up One: Item 3"

} ;

resource rControlTemplate (PopUp2) {

} ;

PopUp2, I* control id *I
{80,50,0,0}, I* control rectangle
PopUpControl { { I* control type *I

fType2PopUp, I* flags *I
fctlProcRefNotPtr+RefisResource,

I* more flags *I

} }

0,
0,
PopUp2,
PopUp2 Iteml

I* ref con *I
I* title width *I
I* menu ref *I
I* initial value *I

*I

resource rMenu (PopUp2)
PopUp2, /* id of menu */

RefisResource*MenuTitleRefShift+RefisResource*ItemRefShift+fAllowCache,
/* menu flags */

} ;

PopUp2,
PopUp2Iteml,

} ;

PopUp2 Item2,
PopUp2 Item3,
PopUp2 Item4,
Popup2Item5,
Popup2Item6,
Popup2Item7,
Popup2 ItemS,
Popup2 Item9

/* id of title string */

/* id's of items * /

resource rPString (PopUp2,noCrossBank)
"Pop-up Two "

} ;

resource rMenuitem (PopUp2Iteml)
PopUp2 Iteml,

} ;

"" "" ' '
0,
RefisResource*ItemTitleRefShift+fXOR,
PopUp2Iteml

resource rPString (PopUp2Iteml,noCrossBa nk)
"Pop-up Two: Item 1"

} ;

resource rMenuitem (PopUp2Item2)
PopUp2Item2,

} ;

"" "" ' '
0,
RefisResource*ItemTitleRefShift+fXOR,
PopUp2Item2

resource rPString (PopUp2Item2,noCrossBank)
"Pop-up Two: Item 2"

} ;

resource rMenuitem (PopUp2Item3)
PopUp2Item3,

} ;

"" "" '
0,
RefisResource*ItemTitleRefShift+fXOR,
PopUp2 Item3

resource rPString (PopUp2Item3,noCrossBank)
"Pop-up Two: Item 3"

} ;

resource rMenuitem (PopUp2Item4)
PopUp2 Item4,

} ;

"" "" ' '
0,
RefisResource*ItemTitleRefShift+fXOR,
PopUp2Item4

resource rPString (PopUp2Item4,noCrossBank)
"Pop-up Two: Item 4"

} ;

resource rMenuitem (PopUp2Item5)
PopUp2Item5 1

} ;

"" "" I

01
RefisResource*ItemTitleRefShift+fXOR 1

PopUp2 ItemS

resource rPString (PopUp2Item5 1 noCrossBank)
"Pop-up Two: Item 5"

} ;

resource rMenuitem (PopUp2Item6)
PopUp2Item6,

} ;

"" "" ' '
01
RefisResource*ItemTitleRefShift+fXOR 1

PopUp2Item6

resource rPString (PopUp2Item6 1 noCrossBank)
"Pop-up Two: Item 6"

} ;

resource rMenuite m (PopUp2Item7)
PopUp2Item7 1

} ;

"" "" I I

01
RefisResource*ItemTitleRefShift+fXOR 1

PopUp2Item7

resource rPString (PopUp2Item7 1 noCrossBank)
"Pop-up Two: Item 7"

} ;

resource rMenuitem (PopUp2Item8)
PopUp2 ItemS,
"" "" ,
0,
RefisResource*ItemTitleRefShift+fXOR,
PopUp2Item8

} ;
resource rPString (PopUp2Item8,noCrossBank)

"Pop-up Two: Item 8"
} ;

resource rMenuitem (PopUp2Item9) {
PopUp2Item9,
"" "" f I

0,
RefisResource*ItemTitleRefShift+fXOR,
PopUp2 Item9

} ;

resource rPString (PopUp2Item9,noCrossBank)
"Pop-up Two: Item 9"

} ;

1*--*l
I*
I* TextEdits ...
I*
I* The TextEdit window uses IDs in the $8000 range.
I*
l*--*1

#define TextEditTextiD
#define TextEditl
#define TextEdit2

$8001
$8002
$8003

resource rWindParam1 (TextEditWindow)
fTitle+fMove+fZoom+fGrow+fBScroll+fRScroll+fClose,

I* frame bits *I
TextEditWindow, I* title id *I
0, I* ref con *I
{0,0,0,0} I* zoom rect *I
0, I* color table id *I
{0,0}, I* origin *I
{400,640}, I* data size *I
{200,640}, I* max height-width *I
{1,1}, I* scroll amount, hor,ver
{0,0}, I* page amount *I
0, /* winfo ref con *I
o, /* winfo height *I
{50,50,120,260}, I* window position
infront, I* wPlane *I
TextEditWindow, I* control ref *I
refisResource*Ox0100+resourceToResource

I* descriptor *I
} ;

resource rpString (TextEditWindow)
"TextEdits Window"

} ;

resource rControlList (TextEditWindow)

} ;
} ;

TextEditTextiD,
TextEdit2,
TextEdit1,
0

*I

*I

I* Template for static text in main window *I
resource rControlTemplate (TextEditTextiD) {

} ;

TextEditTextiD, I* control id *I
{2,4,48,460}, /*control rectangle */
StatTextControl{{ I* control type *I

} } ;

ctlinactive, /* flag */
fCtlProcRefNotPtr+RefisResource,

I* more flags *I
0,
TextEditTextiD

/* ref con */
I* title ref *I

I* The static text for List window *I
resource rTextForLETextBox2 (TextEditTextiD)

"Two text edit fields."
} ;

resource rControlTemplate (TextEditl)
TextEditl, I* control id *I
{50,4,100,460}, I* control rectangle *I
EditTextControl{{ I* control type *I

OxOOOO, I* flag *I
fCtlCanBeTarget+fCtlWantEvents+fctlProcRefNotPtr,

I* more flags *I

} } ;
} ;

0, I* ref con *I
fSmartCutPaste+fTabSwitch+fDrawBounds,

I* text flags *I
{OxFFFF,OxFFFF,OxFFFF,OxFFFF},

OxFFFFFFFF,
0,

/* indent rect */
I* vert bar *I
I* vert amount *I

0, I* hor bar *I
0, I* hor amount *I
0, I* style ref *I
dataisPString+RefisResource*8,

I* text descriptor *I
TextEditl, I* text ref *I
0 I* text length *I

resource rPString (TextEditl)
"This is a PString that you can edit."

} ;

resource reString (TextEditl)
"This is a CString that you can edit."

} ;

resource rText (TextEditl)
"This is a text block t hat you can edit ."

} ;

resource rControlTemplate (TextEdit2)
TextEditl, /* control id */
{110,4,150,460}, I* control rectangle *I
EditTextControl{{ /* control type */

OxOOOO, I* flag * /
fCtlCanBeTarget+fCtlWantEvents+fctlProcRefNotPt r,

I* more flags *I

} } ;
} ;

0, I* ref con *I
fSmartCutPaste+fTabSwitch+fDrawBounds,

I* text flags */
{O xFFFF,Ox FFFF,OxFFFF,O xFFFF},

I* indent rect *I
OxFFFFFFFF, /* vert bar */
0, I* vert amount *I
0, I* hor bar *I
0, I* hor amount *I
0, I* style ref * /
dataisTextBlock+RefisResource*8 ,

I* text descriptor *I
TextEdit2, I* text ref *I
0 I* text length *I

I* The static tex t for List window *I
resource rText (TextEdit2) {

"More t ext. Wi ll it tab? "
} ;

l*--*1
I*
I* Lists ...
I*
I* The List window uses IDs in the $9000 range.
I*
1*--* l

resource rWindParam1 (ListWindow)
fTitle+fMove+fZoom+fGrow+fBScroll+fRScroll+fClose,

I* frame bits *I
ListWindow, I* title id *I
0, I* ref con *I
{0,0,0,0}, I* zoom rect *I
0, I* color table id *I
{0,0}, I* origin *I
{400,640}, I* data size *I
{200,640}, I* max h e ight-width *I
{1,1}, I* scroll amount, hor,ver
{0,0}, I* page amount *I
0, I* winfo ref con *I
0, I* winfo height *I
{50,50,120,260}, I* window position *I
infront, I* wPlane *I
List Window, I* control ref *I
refisResource*Ox0 100+resourceToResource

} ;

resource rpString (ListWindow)
"Lists Window"

} ;

#define ListiD
#define ListTextiD

I* des c riptor

$9000
$9001

*I

*I

/* List of all controls in main window */

resource rControlList (ListWindow)

} ;
} ;

ListiD,
ListTextiD,
0

/* Template for static text in main window */
resource rControlTemplate (ListTextiD)

} ;

ListTextiD, /* control id */
{2,4,48,460}, /* control rectangle */
StatTextControl{{ /*control type*/

} } ;

ctlinactive, /* flag */
fCtlProcRefNotPtr+RefisResource,

/* more flags */
0,
ListTextiD,
0,

/* ref con */
/* title ref */
/* text size (not used) */

/* The static text for List window */
resource rTextForLETextBox2 (ListTextiD)

} ;

"This list is defined and contained entirely in resources. "
"The strings in the list are also resources."

resource rControlTemplate (ListiD)
I* control id *I ListiD,

{50,50,152,350},
ListControl{{

I* list rectangle *I
I* list type *I

0, I* flag *I
fCtlProcRefNotPtr+RefisResource,

I* more flags *I
0, I* ref con *I
16, I* num members in
0, I* list view (let
0, I* list type *I

list
list

*I
mgr calc)

1, /* list start (start at top) *I

} } ;
} ;

10,
5,
ListiD

resource rListRef (ListiD)
Ox9001,memNormal,
Ox9002,memSelected,
Ox900 3 ,memDisabled,
Ox9004,memNo rmal,
Ox9005,memNormal,
Ox9006,memNormal,
Ox 9007,memNormal,
Ox 9008,memNormal,
Ox 9009,memNorma l,
Ox 900A,memNo rmal,
Ox 900B,me mNormal,
Ox900C,memNormal,
Ox900D,memNormal,
Ox 900E,memNormal,
Ox900F,memNormal,
Ox 9010,me mNor mal

} ;
} ;

resource rpString (Ox9001)
"Item One "

} ;

I*
I*
I*

ListMemHeight *I
ListMemSize *I
ListRef (id of list record) *I

*I

resource rpString (0x9002) {
"Item Two"

} ;
resource rpString (Ox9003)

"Item Three"
} ;
resource rpString (0x9004)

"Item Four"
} ;
resource rpString (0x9005) {

"Item Five"
} ;
resource rpString (0x9006) {

"Item Six"
} ;
resource rpString (0x9007)

"Item Seven"
} ;
resource rpString (0x9008)

"Item Eight"
} ;
resource rpString (0x9009)

"Item Nine"
} ;
resource rpString (0x900A) {

"Item Ten"
} ;
resource rpString (0x900B)

"Item Eleven"
} ;
resource rpString (Ox900C)

"Item Twelve"
} ;
resource rpString (0x900D)

"Item Thirteen"
} ;

resource rpString (0x900E)
"Item Fourteen"

} ;
resource rpString (Ox900F)

"Item Fifteen"
} ;

resource rpString (0x 9010)
"Item Sixteen"

} ;

/****** *********** **** ****** ******** ** ************ **** ** ********* ***** /
I*
/* Menus
/*
I***************************** ******* *** ************ *** ********** ** *** I

#define AppleMenuiD
#define FileMenuiD
#define EditMenuiD

#define AboutiD

#define CloseiD
#define QuitiD

#define UndoiD
#define CutiD
#defi ne CopyiD
#define PasteiD
#define CleariD

resource rMenuBar ($1000)

} ;
} ;

AppleMenuiD,
FileMenuiD,
EditMenu i D,

$ ll 00
$ 1200
$13 00

$ll 01

2 55
$1202

2 5 0
251
252
253
2 54

resource rMenu (AppleMenuiD1 {

} ;

AppleMenuiD,
RefisResource*MenuTitleRefShift+RefisResource*ItemRefShift+

fAllowCache,
AppleMenuiD,
{ AboutiD } ;

resource rMenu (FileMenuiD) {

} ;

FileMenuiD,
RefisResource*MenuTitleRefShift+RefisResource*ItemRefShift+

fAllowCache,
FileMenuiD,
{ CloseiD,
Qui tiD } ;

resource rMenu (EditMenuiD) {

} ;

EditMenuiD,
RefisResource*MenuTitleRefShift+RefisResource*ItemRefShift+

fAllowCache,
EditMenuiD,

} ;

UndoiD,
CutiD,
CopyiD,
PasteiD,
CleariD

resource rMenuitem (AboutiD) {
AboutiD,

} ;

"" "" ' '
0,
RefisResource*ItemTitleRefShift+fDivider,
AboutiD

resource rMenuitem (UndoiD)
UndoiD,

} ;

"" "" ' '
0,
RefisResource*ItemTitleRefShift,
UndoiD

resource rMenuitem (CutiD)
CutiD,

} ;

"X","x",
0,
RefisResource*ItemTitleRefShift,
CutiD

resource rMenuitem (CopyiD)
CopyiD,

} ;

"C","c",
0,
RefisResource*ItemTitleRefShift,
CopyiD

resource rMenuitem (PasteiD)
PasteiD,

} ;

"V","v",
0,
RefisResource * ItemTitleRefShift ,
PasteiD

resource rMenuitem (CleariD)
CleariD,

} ;

"" "" ' '
0,
RefisResource*ItemTitleRefShift,
CleariD

resource rMenuitem (CloseiD)
CloseiD,

} ;

"W","w",
0,
RefisResource*ItemTitleRefShift,
CloseiD

resource rMenuitem (QuitiD)
Qui tiD,

} ;

"Q","q",
0,
RefisResource*ItemTitleRefShift,
QuitiD

resource rPString (AppleMenuiD,noCrossBank)
"@"
} ;

resource rPString (FileMenuiD,noCrossBank)
"File"
} ;

resource rPString (EditMenuiD,noCrossBank)
"Edit"
} ;

resource rPString (AboutiD,noCrossBank)
"About BusyBox ... "
} ;

resource rPString (CloseiD,noCrossBank)
"Close"
} ;

resource rPString (UndoiD,noCrossBank)
"Undo"
} ;

resource rPString (CutiD,noCrossBank)
"Cut"
} ;

resource rPString (CopyiD,noCrossBank)
"Copy"
} ;

resource rPString (PasteiD,noCrossBank) {
"Paste"
} ;

resource rPString (CleariD,noCrossBank) {
"Clear"
} ;

resource rPString (QuitiD,noCrossBank) {
"Quit"
} ;

l*--*1
I*
I* Program ...
I*
I* The Program windows use IDs in the $AOOO range.
I*
l*--*1

#define Programl $A001
#define Program2 $A002
#define Program3 $A003
#define Program4 $A004
#define ProgramS $ADOS
#define Program6 $A006

resource rWindParaml (ProglWindow)
fTitle+fMove+fZoom+fClose,

I* frame bits *I
Prog1Window, I*
0, I*
{0,0,0,0}, I*
0, I*
{0,0}, I*
{400,640}, I*
{200,640}, I*
{1,1}, I*
{0,0}, I*
0, I*
0, I*
{ 30, 4, 180,500}, I*
infront, I*
Program1, I*

title id *I
ref con *I
zoom rect *I
color table id *I
origin *I
data size *I
max height-width *I
scroll amount, hor,ver *I
page amount *I
winfo ref con *I
winfo height *I
window position *I
wPlane *I
control ref *I

refisResource*Ox0100+refisResource
I* descriptor *I

} ;

resource rpString (Prog1Window)
"Main Program"

} ;

resource rControlList (Program1)

Program1,
} ;

} ;

resource rControlTemplate (Programl)

} ;

TextEditl, I* control id *I
{0,0,0,0}, I* control rectangle *I
EditTextControl{{ I* control type *I

OxOOOO, I* flag *I
fCtlCanBeTarget+fCtlWantEvents+fctlProcRefNotPtr+fctlTellAboutSize,

I* more flags */

} } ;

0, I* ref con */
fReadOnly+fNoWordWrap,

I* text flags *I
{OxFFFF,OxFFFF,OxFFFF,OxFFFF},

I* indent rect *I
OxFFFFFFFF, I* vert bar *I
0,
0,

I* vert amount *I
I* hor bar *I

0, I* hor amount *I
0, I* style ref *I
dataisTextBlock+RefisResource*B,

I* text descriptor *I
Programl, I* text ref *I
0 I* text length *I

read rTex t (Programl) "busy.p";

resource rWindParaml (Prog2Window)
fTitle+fMove+fZoom+fClose,

I* frame bits *I
Prog2Window, I* title id *I
0, I* ref con *I
{0,0,0,0}, I* zoom rect *I
0, I* color table id *I
{0,0}, I* origin *I
{400,640}, I* data size *I
{200,640}, I* max height-width *I
{1,1}, I* scroll amount, hor,ver
{0,0}, I* page amount *I
0, I* winfo ref con *I
0, I* winfo height *I
{30,4,180,500}, I* window position
infront, I* wPlane *I
Program2, I* control ref *I
refisResource*OxOlOO+refisResource

I* descriptor *I
} ;

resource rpString (Prog2Window)
"Event Unit"

} ;

resource rControlList (Program2)

} ;

Program2,
} ;

*I

*I

resource rControlTemplate (Program2)

} ;

Program2, I* control id *I
{0,0,0,0}, I* control rectangle *I
EditTextControl{{ I* control type *I

OxOOOO, I* flag *I
fCtlCanBeTarget+fCtlWantEvents+fctlProcRefNotPtr+fctlTellAboutSize,

I* more flags *I

} } ;

0, I* ref con *I
fReadOnly+fNoWordWrap,

I* text flags *I
{OxFFFF,OxFFFF,OxFFFF,OxFFFF},

I* indent rect *I
OxFFFFFFFF, I* vert bar *I
0, I* vert amount *I
0, I* hor bar *I
0, I* hor amount *I
0, I* style ref *I
dataisTextBlock+RefisResource*8,

I* text descriptor *I
Program2, I* text ref *I
0 I* text length *I

read rText (Program2) "uevent.p";

resource rWindParam1 (Prog3Window) {
fTit1e+fMove+fZoom+fC1ose,

I* frame bits *I
P rog3Window, I* title id *I
0, I* ref con *I
{0,0,0,0}, I* zoom rect *I
0, I* color table id *I
{0,0}, I* origin *I
{400,640}, I* data size *I
{200,640}, I* max height-width *I
{1,1}, I* scroll amount, hor,ver
{0,0}, I* page amount *I
0, I* winfo ref con *I
0, I* winfo height *I
{30,4,180,500}, I* window position
infront, I* wPlane *I
Program3, I* control ref *I
refisResource*Ox0100+refisResource

I* descriptor *I
} ;

resource rpString (Prog3Wi ndow) {
"Menu Unit"

} ;

resource rControlList (Program3) {

} ;

Program3,
} ;

*I

*I

resource rControlTemplate (Program3)

} ;

Program3, I* control id *I
{0,0,0,0}, I* control rectangle *I
EditTextControl{{ /* control type *I

OxOOOO, I* flag *I
fCtlCanBeTarget+fCtlWantEvents+fctlProcRefNotPtr+fctlTel l AboutSize,

/ * more flags */

} } ;

0, I* ref con *I
fReadOnly+fNoWordWrap,

I* text flags *I
{OxFFFF,OxFFFF,OxFFFF,OxFFFF},

I*
OxFFFFFFFF, I*
0, I*
0, I*
0, I*

indent rect *I
vert bar *I
vert amount *I
hor bar *I
hor amount *I

0, I* style ref *I
dataisTextBlock+RefisResource*8,

I* text descriptor *I
Program3, I* text ref *I
0 I* text length *I

read rText (Program3) "umenu.p";

resource rWindParam1 (Prog4Window)
fTitle+fMove+fZoom+fClose,

I* frame bits *I
Prog4Window, I* title id *I
0, I* ref con *I
{0,0,0,0}, I* zoom rect *I
0, I* color table id *I
{0,0}, I* origin *I
{400,640}, I* data size *I
{200,640}, I* max height-width *I
{1,1}, I* scroll amount, hor,ver
{0,0}, I* page amount *I
0, I* winfo ref con *I
0, I* winfo height *I
{30,4,180,500}, I* window position
infront, I* wPlane *I
Program4, I* control ref *I
refisResource*Ox0100+refisResource

I* descriptor *I
} ;

resource rpString (Prog4Window)
"Window Unit"

} ;

resource rControlList (Program4)

} ;

Program4,
} ;

*I

*I

resource rControlTemplate (Program4) {

} ;

Program4, I* control id *I
{0,0,0,0}, I* control rectangle */
EditTextControl{{ I* control type *I

OxOOOO, I* flag *I
fCtlCanBeTarget+fCtlWantEvents+fctlProcRefNotPtr+fctlTellAboutSize,

/* more flags *I

} } ;

0, /* ref con *I
fReadOnly+fNoWordWrap,

/* text flags *I
{OxFFFF,OxFFFF,OxFFFF,OxFFFF},

OxFFFFFFFF,
0,
o,

/* indent rect */
I* vert bar *I
I* vert amount *I
/* hor bar *I

0, I* hor amount *I
0, /* style ref *I
dataisTextBlock+RefisResource*S,

I* text descriptor *I
Program4, /* text ref */
0 /* text length */

read rText (Program4) "uwindow.p";

resource rWindParam1 (ProgSWindow) {
fTit1e+fMove+fZoom+fClose,

} ;

ProgSWindow,
0,
{0,0,0,0},
0,
{0,0},
{400,640},
{200,640},
{1,1},
{0,0},
0,
0,
{30, 4, 180, SOO},

I* frame bits *I
I*
I*
I*
I*
I*
I*
I*
I*
I*
I*
/*
I*

title id *I
ref con *I
zoom rect *I
color table id *I
origin *I
data size *I
max height-width *I
scroll amount, hor,ver *I
page amount *I
winfo ref c on *I
winfo height */
window position *I

infront, I* wPlane *I
ProgramS, I* control ref *I
refisResource*Ox0100+refisResource

I* descriptor *I

resource rpString (ProgSWindow)
"Utility Unit"

} ;

resource rCont r olList (ProgramS) {

} ;

ProgramS,
} ;

resource rControlTemplate (ProgramS)

} ;

ProgramS, I* control id *I
{0,0,0,0}, I* control rectangle *I
EditTextControl{{ I* control type *I

OxOOOO, I* flag *I
fCtlCanBeTarget+fCtlWantEvents+fctlProcRefNotPtr+fctlTellAboutSize,

I* more flags *I

} } ;

0, I* ref con *I
fReadOnly+fNoWordWrap,

I* text flags *I
{OxFFFF,OxFFFF,OxFFFF,OxFFFF},

OxFFFFFFFF,
0,
0,

I* indent rect *I
I* vert bar *I
I* vert amount *I
I* hor bar *I

0, I* hor amount *I
0, I* style ref *I
dataisTextBlock+RefisResource*S,

I* text descriptor *I
ProgramS, I* text ref *I
0 I* text length *I

read rText (ProgramS) "uutils.p";

resource rWindParam1 (Prog6Window)
fTitle+fMove+fZoom+fClose,

} ;

/* frame bits */
Prog6Window, /* title id */
0,
{0,0,0,0},
0,
{0,0},
{400,640},
{200,640},

/* ref con */
/* zoom rect */
/* color table id */
/* origin */
/* data size */
I* max height-width */

{1,1}, /* scroll amount, hor,ver */
{0,0}, /*page amount */
0, /* winfo ref con */
0, /* winfo height */
{30,4,180,500}, /*window position */
infront, /* wPlane */
Program6, /* control ref */
refisResource*Ox0100+refisResource

/* descriptor */

resource rpString (Prog6Window)
"Globals Unit"

} ;

resource rControlList (Program6) {

} ;

Program6,
} ;

resource rControlTemplate (Program6)
Program6, I* control ID *I

} ;

{0,0,0,0}, I* control rectangle *I
EditTextControl{{ I* control type *I

OxOOOO, I* flag *I
fCtlCanBeTarget+fCtlWantEvents+fctlProcRefNotPtr+fctlTellAboutSize,

I* more flags *I

} } ;

0, I* ref con *I
fReadOnly+fNoWordWrap,

I* text flags *I
{OxFFFF,OxFFFF,OxFFFF,OxFFFF},

I* indent rect *I
OxFFFFFFFF, I* vert bar *I
0, I* vert amount *I
0, I* hor bar *I
0, I* hor amount *I
0, I* style ref *I
dataisTextBlock+RefisResource*8,

Program6,
0

I* text descriptor *I
I* text ref *I
I* text length *I

read rText (Program6) "uglobals.p";

The uEvent .p module

This section contains the source code for the uEvent. p module, which implements the
main event loop for the BusyBox program. This code was written in Pascal.

{**}
{ *
{* BusyBox uEvent (interface)
{ *
{* Copyright (c)
{* Apple Computer, Inc. 1986-1990
{* All Rights Reserved.
{*
{* This file contains the interface to the code which implements the
{* main event loop used by the BusyBox program.
{ *
{*** ***** ****** ****************}

UNIT uEvent;

INTERFACE

USES
types,
GSOS,
memory,
locator,
quickdraw,
events,
resources,
controls,
windows,
lineedit,
dialogs,
menus,
stdfile,
IntMath,
Fonts,
Desk,

uGlobals,
uUtils,
uWindow,
uMenu;

procedure MainEvent;

IMPLEMENTATION

{$R-}

var
Last Window

{Main event handling loop, which repeats }
{ until Quit.}

GrafPortPtr;
This private global is used in }
CheckFrontW to prevent extra work when
the windows have not changed. It is
initialized at the beginning of }
MainEvent. }

{*** *** *********** ************ }

DoControls

This procedure is called when an inControl message is returned
by TaskMaster.

When this routine gets control, the ID of the control that was
selected is in TaskData4. The control handle is in TaskData2,

{ and the part code is in TaskData3 .
. {
{****************** *********************** ************************** }
procedure DeControls;
var

begin

end;

TheiD integer;

TheiD := Event.wmTaskData4;

if (ButButtonsiD <= TheiD) and (TheiD <= Prog6ID) then
OpenThisWindow(TheiD);

{** *****}

CheckFrontW

This routine checks the front window to see if any c h a nges need
to b e made to the me nu items .

We do this so that the edit items are active only when a desk
accessory is active.

{****** ******************** *************** ** *********************** * }
proce dure CheckFrontW;

var

begin

theWindow : GrafPortPtr;

{of CheckFrontW}
{ Get the front window into local storage.}
theWindow := FrontWindow;

{ If the LastWindow is this window, we are all set.
if theWindow lastWindow then Ex it(CheckFrontW);

{ If there are no windows, everything should be disabled. }
if theWindow = nil then

else

begin

end

begin

end;

SetMenuFlag ($0080,EditMenuiD);
DrawMenuBar;

{ Otherwise we look at the window and see what to do. }

if GetSysWFlag (theWindow) <> false then

else

begin {Set up for DA windows . }

end

SetMenuFlag ($FF7F,EditMenuiD);
DrawMenuBar;

begin {Set up for our windows.}

end;

SetMenuFlag ($0080,EditMenuiD);
DrawMenuBar;

{ Remember this for next time. }
lastWindow := theWindow;

end; {of CheckFrontW}

{**}

MainEvent

This is the main part of the program.
loop until the user chooses Select.

The program cycles in this

{**}
procedure MainEvent;

var
code integer;

begin {of MainEvent}
Event.wmTaskMask := $001FFFFF; Allow TaskMaster to do }

everything. }
Done := false;

LastWindow := NIL;

repeat
CheckFrontW;
code := TaskMaster
case code of

winGoAway
winSpecial,
winMenuBar
winControl

end;
until Done;

end; {of MainEvent}

END.

Done flag will be set by }
Quit item. }
Init this for CheckFrontW.

($FFFF, Event) ;

DoCloseTop;

DoMenu;
DeControls;

The uG1oba1 s . p module

This section contains the source code for uGlobals. p. This Pascal module defines the
global variables for the BusyBox program.

{******************************* ***************************************}
{*
{*
{* BusyBox Globals (interface)
{*
{* Copyright (c)
{* Apple Computer, Inc. 1986-1990
{* All Rights Reserved.
{*
{* This file contains the global variables used by the BusyBox
{* program.
{*
{** ****}

UNIT uGlobals;

INTERFACE

USES
types,
locator,
memory,
quickdraw,
intMath,
events,
controls,
windows,
lineedit,
dialogs,
STDFile;

canst

var

AppleMenuiD = $1100;
Aboutltem = $1101;

FileMenuiD = $1200;
Closeitem = 255;
Quititem = $1202;

EditMenuiD = $1300;
Undo Item
Cut Item
Copy Item
Paste Item
Clear Item

NumWindows = 14;
NumWindowsMin1 = 13;

ButButtonsiD = 1;
ButStatTextiD 2;
ButLineEditiD = 3;
ButPicturesiD = 4;
ButPopUpsiD = 5;
ButTextEditiD 6;
ButListsiD = 7;

ProgliD 8;
Prog2ID 9;
Prog3ID 10;
Prog4ID 11;
ProgSID 12;
Prog6ID 13;

250;
251;
252;
253;
254;

{For DA's}

{For DA's}
{For DA's}
{For DA' s}
{For DA' s}
{For DA's}

MyMemoryiD : integer;
Done : boolean;
StaggerCount : integer;

{Application ID assigned by Memory Mgr}
{True when quitting}
{Used to stagger windows as they open }

Event WmTaskRec;
{All events are returned here}

WindowList array [O .. NumWindowsMin1] of WindowPtr;

procedure InitGlobals; {Setup variables}

IMPLEMENTATION

procedure InitGlobals;

END.

begin {of InitGlobals}

end;

MyMemoryiD := MMStartup;
StaggerCount := 0;

{of InitGlobals}

The uMenu. p module

This section contains the source code for uMenu. p . This Pascal module implements
menus for the BusyBox program.

{**}
{*
{* BusyBox uMenu (interface)
{*
{* Copyright (c)
{* Apple Computer, Inc. 1986-1990
{* All Rights Reserved.
{*
{* This file contains the interface to the code that implements
{* menus in the BusyBox program.
{*
{**}

UNIT uMenu;

INTERFACE

USES
types,
locator,
quickdraw,
fonts,
INTMATH,
events,
memory,
controls,
gsos,
windows,
lineedit,
dialogs,
menus,
desk,
STDFILE,
resources,

uGlobals,
uUtils,
uWindow;

procedure DoMenu;
procedure SetUpMenus;

{Execute a menu item}
{Install menus and redraw menu bar}

IMPLEMENTATION

{$R-}

procedure DoQuititem;

{Private routine to set Done flag if the "Quit" item was selected}

begin {of DoQuititem}
Done := true;

end; {of DoQuititem}

procedure DoAboutitem;
var

begin

end;

ignore : integer;
{of DoAboutitem}

ignore := AlertWindow(4,NIL,Ptr(l));
{of DoAboutitem}

procedure DoMenu;

{Procedure to handle all menu selections. Examines the
{Event.TaskData menu item ID word from TaskMaster (from Event
{Manager) a nd calls the appropriate routine . While the routine
{is running the menu title is still highlighted. After the }
{routine returns, we remove the highlighting.}

var me n uNum
itemNum

integer;
integer;

begin {of DoMenu}

menuNum := HiWord (Event.wmTaskData);
itemNum := LoWord (Event.wmTaskData);

case itemNum of
About Item
Close Item
Quit Item
Undo Item
Cut Item
Copy Item
Paste Item
Clear Item

otherwise

end;

DoAboutitem;
DoCloseTop;
DoQuititem;

HiliteMenu (false,menuNum);
{Remove highlighting}
{ *** MAX *** }

end; {of DoMenu}

procedure SetUpMenus;

END.

{Procedure to install our menu titles and their items in the }
{system menu bar and to redraw it so we can see them}

var height : integer;

begin {of SetUpMenus}
SetSysBar(NewMenubar2(Ref!sResource,ref($1000),NIL));
SetMenuBar(NIL);

FixAppleMenu (AppleMenuiD);
height := FixMenuBar;
DrawMenuBar;

end; {of SetUpMenus}

{Add DAs to Apple menu
{Set sizes of menus}
{ ... and draw the menu bar!}

The uUtil.s. p module

This section contains the source code for u ut il s . p. This Pascal module contains various
utility routines for the BusyBox program.

{**}
{*
{* BusyBox uUtils (interface)
{*
{* Copyright (c)
{* Apple Computer, Inc. 1986-1990
{* All Rights Reserved.
{*
{* This file contains the interface to the code that implements
{* various utility routines used by the BusyBox program.
{*
{*** ************* **}

Unit uUti1s;

INTERFACE

USES

CONST

types,
locator,
intMath;

srcCopy $0000;

FUNCTION IntToString (i : Integer): STR255;
FUNCTION LongToString (1 : Longint): STR255; { test }
FUNCTION IsToolError: BOOLEAN;
PROCEDURE INC(VAR anindex : Integer);
PROCEDURE Dec(VAR anindex: Integer);

IMPLEMENTATION

{$R-}

FUNCTION IntToString (i
var

Integer): STR255;

BEGIN

END;

size,
count : Integer;
num longint;
str string[20];

num := i;
size := 0;
Long2Dec(num, @str, 19, true);
FOR count := 1 to 19 DO

BEGIN
IF (str[count] = '-') OR

END;

((str[count] >= '0') AND (str[count] <= '9')) THEN
BEGIN

size := size + 1;
IntToString [size] : = str [count];

END;

IntToString [0] := char (size);

FUNCTION LongToString (1
var

Longint): STR255; { test }

size,
count : Integer;
num longint;
str : string[20];

BEGIN

END;

num := 1;
size := 0;
Long2Dec(num, @str, 19, true);
FOR count := 1 to 19 DO

BEGIN
IF (str[count] = '-') OR

END;

((str[count] >= '0') AND (str[count] <= '9')) THEN
BEGIN

END;

size := size + 1;
LongToString[size] .- str[count];

LongToString[O] := char(size);

FUNCTION IsToolError: BOOLEAN;
BEGIN

END;

IsToolError := FALSE;
if ToolErrorNum <> 0 then
IsToolError := TRUE;

PROCEDURE INC(VAR anindex : Integer); {increase integer param by 1}
BEGIN

anindex := anindex + 1;
END;

PROCEDURE Dec(VAR anindex: Integer); {decrease integer param by 1}
BEGIN

anindex := anindex - 1;
END;

END.

The uWindow. p module

This section contains the source code for uwindow. p. This Pascal module implements
windows for the BusyBox program.

{**}
{*
{* BusyBox uWindow (interface)
{ *
{* Copyright (c)
{* Apple Computer, Inc. 1986-1990
{* All Rights Reserved.
{*
{* This file contains the interface to the code that implements
{* windows in the BusyBox program.
{*
{******************** ********************* ** ***************************}

UNIT uWindow;

INTERFACE

USES
types,
GSOS,
locator,
quickdraw,
fonts,
MEMORY,
intMath,
events,
controls,
windows,
lineedit,
dialogs,
menus,
DESK,
STDFILE,
resources,
TextEdit,

var

uGlobals,
uUtils;

TheMainWindow,
ButtonsWindow,
StatTextWindow,
LineEditWindow,
PicturesWindow,
PopUpsWindow,
TextEditWindow,
ListsWindow

procedure SetUpWindows;

GrafPortPtr;

{Initialize variables for stacking windows}
procedure DrawThisWindow;
procedure DoCloseTop;
procedure OpenThisWindow (CtliD integer) ;

IMPLEMENTATION

{$R-}

const

MainWindowiD $2000;

{**}

DrawThisWindow

This routine draws the contents of all the windows.

{*
{* Warning: Do not make any calls that use the libraries or use
{* short addressing without setting the dbr to -globals.
{*
{**}

procedure DrawThisWindow;
begin

DrawControls(GetPort);
END;

{**}

DoCloseTop

This routine closes the topmost window. We do a little work to
prevent the main window from being closed.

{**}
procedure DoCloseTop;

var

begin

end;

k : integer;
TempWin : GrafPortPtr;

{Get the front window into a local variable }
TempWin := FrontWindow;

{Start the count at 1 since we never close the main window }
k := 1;

{Find the window entry, close the window, and zero the }
{entry repeat}

if TempWin = WindowList[k] then
begin

end
else

CloseWindow(TempWin);
WindowList[k] :=NIL;
k := NumWindows;

k : = k+1;
until k >= NumWindows;

{**}

OpenThisWindow

This routine either opens the specified window or makes it active
if it is already open.

If it is not open, we open it with NewWindow2 invisibly, adjust the
window's location, and then show and select the window.

ID values for controls in the main window are assumed here to be from
l ... n

{**}
procedure OpenThisWindow

begin
(CtliD : integer);

end;

if WindowList[CtliD] =NIL then
begin

end

WindowList[CtliD]
NewWindow2(NIL,
0,
@DrawThisWindow,
NIL,
2,
Ref(POINTER(MainWindowiD+CtliD)),
rWindParaml);

if CtliD < ProgliD then
begin

MoveWindow (50+8*StaggerCount,
50+8*StaggerCount,
WindowList[CtliD]);

StaggerCount := StaggerCount+l;
end;

ShowWindow(WindowList[CtliD]);
SelectWindow(WindowList[CtliD]);

else SelectWindow(WindowList[CtliD]);

{**}

SetUpWindows

Sets up WindowList record for use throughout the program.

{**}
procedure SetUpWindows;

var

begin

end;

END.

k : integer;

{of SetUpWindows}
Zero out the entries in the window list }

fork := 0 to NumWindows-1 do WindowList[k] :=NIL;

{ Open the main window }
WindowList[O] := NewWindow2(NIL,

0,
@DrawThisWindow,
NIL,
2,
ref(MainWindowiD),
rWindParaml);

{of SetUpWindows}

Glossary

absolute: Characteristic of a load
segment or other program code that
must be loaded at a specific address in
memory and never moved. Compare
relocatable.

accelerator card: An expansion card
that contains another processor that
shares the work normally performed
only by the computer's main
microprocessor. An accelerator card
speeds up processing time.

accessory: See desk accessory.

accumulator: The register in a
computer's central processor or
microprocessor where most
computations are performed.

ACIA: Abbreviation for Asynchronous
Communications Interface Adapter; a
type of communications IC used in
some Apple computers. An ACIA
converts data from parallel to serial
form and vice versa. It handles serial
transmission and reception and RS-232-
C signals under the control of its
internal registers, which can be set and
changed by firmware or software.

acronym: A word formed from the
initial letter or letters of the main parts
of a compound term, such as ROM
(from read-only memory) or Fortran
(from Formula Translator).

activate: To make a nonactive window
active by clicking anywhere inside it.

activate event: An event generated by
the Window Manager when an inactive
window becomes the active window.

active window: The frontmost
window on the desktop; the window
where the next action will take place.
An active window's title bar is
highlighted.

Adaptive Differential Pulse Code
Modulation (ADPCM): An algorithm
for digitizing audio samples. Used in
the Apple IIGS Audio Compression and
Expansion Tool Set for compressing
audio samples.

ADB: See Apple Desktop Bus.

ADB device table: A structure in the
system heap that lists all devices
connected to the Apple Desktop Bus.

address: (1) A number that specifies
the location of a single byte of
memory. Addresses can be given as
decimal or hexadecimal integers. The
Apple !IGS has addresses ranging from 0
to 16,777,215 (in decimal), or from $00
0000 to $FF FFFF (in hexadecimal). A
complete address consists of a 4-bit
bank number ($00 to $FF) followed by
a 16-bit address within that bank
($0000 to $FFFF). (2) In data
transmission, a code for a specific
terminal. Multiple terminals on one
communication line, for example, must
have unique addresses.

ADPCM: See Adaptive Differential
Pulse Code Modulation.

ADSR: Acronym for attack, decay,
sustain, and release. These terms
describe the paradigm for representing
sounds in terms of a sound envelope.

alert: A warning or report of an error in
the form of an alert box, a sound from
the computer's speaker, or both.

alert window: Similar to a modal
dialog box; used to present urgent or
important information to the user. You
create alert windows with the
Alert Window Window Manager
tool call.

algorithm: A step-by-step procedure
for solving a problem or accomplishing
a task.

allocate: To reserve an area of memory
for use.

American Standard Code for
Information Interchange: See ASCD.

amplitude: The maximum vertical
distance of a periodic wave from the
horizontal line about which the wave
oscillates.

AND: A logical operator that produces
a TRUE result if both of its operands
are true, and a FALSE result if either or
both of its operands are false.
Compare exclusive OR, NOT, OR.
ANSI: Acronym for American National
Standards Institute, which sets
standards for many technical fields and
provides the most common standard
for computer terminals.

Apple Desktop Bus (ADB): A low-
speed, input-only serial bus with
connectors on the back panel of the
computer that you use to attach the
keyboard, mouse, and other Apple
Desktop Bus devices, such as graphics
tablets, hand controls, and specialized
keyboards.

Apple key: See Command key.

Apple menu: The menu farthest to the
left in the menu bar, indicated by an
Apple symbol, from which you choose
desk accessories.

Apple 1: The first Apple computer. It
was built in a garage in California by
Steve Jobs and Steve Wozniak.

AppleTalk network system: The
system of network software and
hardware used in various
implementations of Apple's
communications network.

Apple II: A family of computers,
including the original Apple II, the
Apple II Plus, the Apple III, the Apple
lie, the Apple He, and the Apple IIGS.
Compare standard Apple II.

Apple lie: A transportable personal
computer in the Apple II family, with a
disk drive and SO-column display
capability built in.

Apple lie: A personal computer in the
Apple II family with seven expansion
slots and an auxiliary memory slot that
allow the user to enhance the
computer's capabilities with peripheral
and auxiliary cards.

Apple IIGS: A personal computer in the
Apple II family; GS stands for graphics
and sound. The Apple IIGS features
super high-resolution graphics, 15-
voice sound capabilities, and 256K of
RAM with a memory expansion slot for
adding from 1 to 8 megabytes of RAM.

Apple IIGS Interface Libraries: A set
of interfaces that enable you to access
Toolbox routines from C.

Apple IIGS Programmer's Workshop
(APW): The development environment
for the Apple IIGS computer. It
consists of a set of programs that
facilitate the writing, compiling, and
debugging of Apple IIGS applications.

Apple IIGS tools: See toolbox.

Apple II Pascal: A software system for
the Apple II family that lets you create
and execute programs written in the
Pascal programming language. Apple II
Pascal was adapted by
Apple Computer from the University of
California, San Diego, Pascal Operating
System (UCSD Pascal).

Apple II Plus: A personal computer in
the Apple II family with eight
expansion slots and 48K of RAM,
expandable to 64K with a language card
in slot 0.

Apple ill: An Apple computer; part of
the Apple II family. The Apple III
offered a built-in disk drive and built-
in RS-232-C (serial) port. Its memory
was expandable to 256K.

application: On the Apple IIGS, a
program (such as the APW Shell) that
accesses ProDOS 16 and the Toolbox
directly, and that can be called or
exited via the QUIT call. ProDOS 16
applications are file type $B3.

application software: A collective
term for application programs.

APW: see Apple IIGS Programmer's
Workshop.

APW Debugger: A 65816 assembly-
language code debugger provided with
the Apple IIGS Programmer's
Workshop.

APW Editor: The program within the
Apple IIGS Programmer's Workshop
that allows you to enter, modify, and
save source files for all APW languages.

APW Linker: The linker supplied with
the Apple IIGS Programmer's
Workshop.

APW Shell: The shell program of the
Apple IIGS Programmer's Workshop.
The APW Shell provides the interface
between APW programs and ProDOS
and between the user and APW.

argument: (1) A value on which a
function or statement operates; it can
be a number or a variable. For example,
in the BASIC statement VTAB 10, the
number 10 is the argument. (2) A piece
of information included on the
command line in addition to the
command; the shell passes this
information to the command, which
then modifies its execution in some
particular way. Filenames, for example,
are often supplied as arguments to
commands, so that a command will
operate on the named file.

argument list: All the arguments
passed to a program.

arithmetic expression: A
combination of numbers and
arithmetic operators (such as 3 + 5)
that indicates some operation to be
carried out.

arithmetic operation: One of the five
actions computers can perform with
numbers: addition, subtraction,
multiplication, division, and
exponentiation.

arithmetic operator: An operator,
such as +, that combines numeric
values to produce a numeric result.
Compare Boolean operator.

array: An ordered collection of
information of a given, defined type.
Each element of the array can be
referred to by a numerical subscript.

arrow keys: The four directional keys
in the lower-right corner of the
keyboard. You can use the arrow keys
to move around in an application.

ASCII: Acronym for American
Standard Code for Information
Interchange (pronounced "ASK-ee"). A
standard that assigns a unique binary
number to each text character and
control character. ASCII code is used
for representing text inside a computer
and for transmitting text between
computers or between a computer and
a peripheral device.

aspect ratio: The ratio of an image's
width to its height. For example, a
standard video display has an aspect
ratio of 4:3.

assembly code: A source file written
in a low-level programming language
that corresponds to a specific
computer's binary machine language.

assembly language: A low-level
programming language in which
individual machine-language
instructions are written in a symbolic
form that's easier to understand than
machine language itself. Each
assembly-language instruction
produces one machine-language
instruction. Because assembly-
language programs require very little
translation, they can be very fast.

Asynchronous Communications
Interface Adapter: See ACIA.

attack: That portion of a sound
envelope during which the sound
increases from silence to its peak
loudness. See also ADSR.

auto-key event: An event generated
repeatedly when the user presses and
holds down a character key on the
keyboard or keypad.

auto-repeat feature: A feature of keys
on computer keyboards; when a key is
pressed down and held, the computer
will automatically repeat that key's
character until the key is released.

background activity: A program or
process that runs while the user is
engaged with another application.

back panel: The rear surface of the
computer, which includes the power
switch, the power connector, and
connectors for peripheral devices.

backspace: To move to the left in a
line of text, erasing the character or
selection; thus synonymous with delete.

bank: A 64K (65,536-byte) portion of
the Apple IIGS internal memory. An
individual bank is specified by the
value of one of the 65C816
microprocessor's bank registers.

bank-switched memory: On Apple II
computers, the part of language card
memory in which two 4K portions of
memory have the same address range
($DOOO to $DFFF).

BASIC: Acronym for Beginners All-
purpose Symbolic Instrnction Code; a
high-level programming language
designed to be easy to learn. Two
versions of BASIC are available from
Apple Computer for use with all Apple
11-family systems: Applesoft BASIC
(built into the firmware) and
Integer BASIC.

battery RAM: RAM on the Macintosh
and Apple IIGS clock chips. A battery
preserves the clock settings and the
RAM contents when the power is off.
Control Panel settings are kept in
battery RAM.

binary: (adj.) Characterized by having
two different components or by having
only two alternatives or values
available; sometimes used
synonymously with binary system.

binary digit: The smallest unit of
information in the binary number
system; a 0 or a 1. Also called a bit.

binary ftle format: The ProDOS 8
loadable file format, consisting of one
absolute memory image along with its
destination address. A file in binary file
format has ProDOS file type $06 and is
referred to as a BIN file. The System
Loader cannot load BIN files.

binary system: (1) A number system
that uses only 0 and 1 as digits.
Because computers can keep track of
only two states (on and off), engineers
code data in terms of O's and l's. (2)
The representation of numbers in the
base-2 system, using only the two
digits 0 and 1. For example, the
numbers 0, 1, 2, 3, and 4 become 0, 1,
10, 11, and 100 in binary notation. The
binary system is commonly used in
computers because the values 0 and 1
can easily be represented in a variety of
ways, such as the presence or absence
of current, positive or negative
voltage, or a white or black dot on the
display screen. A single binary digit-a
0 or a l-is called a bit. Compare
hexadecimal system.

bit: A contraction of binary digit. The
smallest unit of information that a
computer can hold. The value of a bit
(1 or 0) represents a simple two-way
choice, such as yes or no, on or off,
positive or negative, something or
nothing. See also binary system.

bit image: A collection of bits in
memory that represents a two-
dimensional surface. For example, the
screen is a visible bit image.

bitmap: (1) A set of bits that
represents the graphic image of an
original document in memory. (2) A set
of bits that represents the positions
and states of a corresponding set of
items, such as pixels. In QuickDraw, a
pointer to a bit image, the row width
of that image, and its boundary
rectangle.

bitmapped character: A character
that exists in a computer file or in
memory as a bitmap, is drawn as a pixel
pattern on the graphics screen, and is
sent to the printer as graphics data.

bitmapped display: A display whose
image is a representation of bits in an
area of RAM called the screen buffer.
With such a display, each dot, or pixel,
on the screen corresponds, or is
"mapped," to a bit in the screen buffer.

board: See printed-circuit board.

Boolean operator: An operator, such
as AND, that combines logical values to
produce a logical result, such as true or
false. Named for mathematician and
logician George Boole. Also known as a
logical operator. Compare arithmetic
operator.

boot: Another way to say start up. A
computer boots by loading a program
into memory from an external storage
medium such as a disk. Starting up is
often accomplished by first loading a
small program, which then reads a larger
program into memory. The program is
said to "pull itself up by its own
bootstraps"-hence the term
bootstrapping or booting.

boot device: The peripheral device
that reads an operating system's initial
startup instructions.

boot disk: See startup disk.

bootstrap: See boot.

branch: (v.) To pass program control
to a line or statement other than the
next in sequence. (n.) A statement that
performs the act of branching.

buffer: (1) An area of memory set aside
for the specific purpose of holding
data until it is needed. (2) A "holding
area" of the computer's memory where
information can be stored by one
program or device and then read at a
different rate by another; for example,
a print buffer. In editing functions, an
area in memory where deleted (cut) or
copied data is held. In some
applications, this area is called the
Clipboard. See also type-ahead buffer.

bug: An error in a program that causes
it not to work as intended. The
expression reportedly comes from the
early days of computing when an
itinerant moth shorted a connection
and caused a breakdown in a room-
sized computer.

button: (1) A pushbutton-like image in
dialog boxes where you click to
designate, confirm, or cancel an
action. Compare mouse button.

byte: A unit of information consisting
of a fixed number of bits. On Apple II
systems, one byte consists of a series
of eight bits and can take any value
between 0 and 255 ($0 and $FF
hexadecimal). The value can represent
an instruction, number, character, or
logical state. See also kilobyte,
megabyte.

C: A portable, high-level language that
also offers very low-level operations,
making it a flexible and efficient
language for both application and
system programming.
call: (n.) (1) A request from the
keyboard or from a procedure to
execute a named procedure. (2) A
request issued by the CPU or a program
to the SCSI card firmware. (v.) To
request the execution of a subroutine,
function, or procedure.

Cancel button: A button that appears
in a dialog box. Clicking it cancels
the command.

Caps Lock key: A key that, when
engaged, causes subsequently typed
letters to appear in uppercase; its
effect is like that of the Shift key
except that it doesn't affect numbers
and other nonletter symbols.

card: (1) A printed-circuit board that
plugs into one of the computer's
expansion slots, allowing the computer
to use one or more peripheral devices
such as disk drives. (2) A printed-
circuit board or card connected to the
bus in parallel with other cards. Also
called a peripheral card, a device,
or a module.

caret: A generic term meaning a symbol
that indicates where something should
be inserted in text. The specific
symbol used onscreen is a vertical
bar (I).

carriage return (CR): A nonprinting
ASCII character (decimal 13,
hexadecimal $0D) that ordinarily
causes a printer or display device to
place the next character on the left
margin; that is, to end a line of text and
start a new one. It's used to end
paragraphs. A carriage return, however,
does not move the print head or cursor
down to the next line; the line feed (LF)
character does that. Even though you
can't see carriage returns, you can
delete them the same way you delete
other characters. In APW C, carriage
return (\r) is equal to newline (\n).

carry flag: A status bit in the
microprocessor, used as an additional
high-order bit with the accumulator
bits in addition, subtraction, rotation,
and shift operations.

case sensitive: Able to distinguish
between uppercase characters and
lowercase characters. Programming
languages are case sensitive if they
require all uppercase letters, all
lowercase letters, or proper use of
uppercase and lowercase. Instant
Pascal, however, is not case sensitive;
you can use any combination of
uppercase and lowercase letters
you like.

cathode-ray tube (CRT): An
electronic device, such as a television
picture tube, that produces images on
a phosphor-coated screen. The
phosphor coating emits light when
struck by a focused beam of electrons.
A CRT is a common display device used
with personal computers.

CCITT: Abbreviation for Consultative
Committee on International Telegraphy
and Telephony; an international
committee that sets standards and
makes recommendations for
international communication. The
CCI1T interface standard is considered
mandatory in Europe; it is very similar
to the RS-232 standard used in the
United States.

central processing unit (CPU): The
"brain" of the computer; the
microprocessor that performs the
actual computations in machine
language.

channel: A queue that's used by an
application to send commands to the
Sound Manager.

character: Any symbol that has a
widely understood meaning and thus
can convey information. Some
characters-such as letters, numbers,
and punctuation-can be displayed on
the monitor screen and printed on
a printer.

character code: An integer
representing the character that a key or
key combination stands for.

character key: (1) Any of the keys on
a computer keyboard-such as letters,
numbers, symbols, and punctuation
marks-used to generate text or to
format text; any key except Caps
Lock, Command, Control, Esc, Option,
and Shift. Character keys repeat when
you press and hold them down. (2) A
key that generates a keyboard event
when pressed; that is, any key other
than a modifier key.

check box: A small box associated
with an option in a dialog box. When
you click the check box, you may
change the option or affect
related options.

chip: See integrated circuit.

circuit board: A board containing
embedded circuits and an attached
collection of integrated circuits
(chips). Sometimes called a printed-
circuit board or card.

circuitry: A network of wires, chips,
resistors, and other electronic devices
and connections.

clamp: A memory location that
contains the minimum and maximum
excursion positions of the mouse
cursor when the desktop is in use.

clear: (1) To erase information or
commands from memory. (2) To erase
data from memory or reset a control
register. Clearing is usually done by
loading the memory location or register
to be cleared with zeros.

click: (v.) To position the pointer on
something, and then press and quickly
release the mouse button. (n.) The act
of clicking.

Clipboard: The holding place for what
you last cut or copied; a buffer area in
memory. Information on the Clipboard
can be inserted (pasted) into
documents.

clipping region: The region to which
an application limits drawing within a
graphics port.

clock chip: A special chip in which
parameter RAM and the current setting
for the date and time are stored. This
chip is powered by a battery when the
system is off, thus preserving the
information.

close: (1) To turn a window back into
the icon that represents it by choosing
the Close command or by clicking the
close box on the left side of the
window's title bar. (2) To terminate
access to an open file. When a file is
closed, its updated version is written
to disk and all resources it needed
when open (such as its I/0 buffer) are
released. The file must be opened
before it can be accessed again.

close box: The small white box on the
left side of the title bar of an active
window. Clicking it closes the window.

code: (1) A number or symbol used to
represent some piece of information.
(2) The statements or instructions that
make up a program.

command: (1) An instruction that
causes a device such as a computer or
printer to perform some action. A
command can be typed from a
keyboard, selected from a menu with a
hand-held device (such as a mouse), or
embedded in a program. (2) In the
Standard C Library, a parameter that
tells a function which of several actions
to perform. (3) In the APW Shell, a
word tnat tells APW which utility to
execute. (4) An instruction that causes
the target device to perform a specific
operation. Commands are passed to
the firmware in calls.

command code: One or more
characters whose function is to change
the way a program or device acts (as
opposed to text, which is simply
printed).

Command key: A key that, when held
down while another key is pressed,
causes a command to take effect.
When held down in combination with
dragging the mouse, the Command key
lets you drag a window to a new
location without activating it. The
Command key is marked with a
propeller-shaped symbol. On some
machines, the Command key has both
the propeller symbol and the Apple
symbol on it.

compact: To rearrange allocated
memory blocks in order to increase the
amount of contiguous unallocated
(free) memory. The Memory Manager
compacts memory when needed.

compaction: The process of moving
allocated blocks within a heap zone to
collect the free space into a
single block.

compatibility: The condition under
which devices can work with
each other.

compatible: Capable of running
without problems on the computer
system. Applications are normally
written to run on specific types of
computers; applications that run on a
computer system are said to be
"compatible" with the computer.

compile: To convert a program written
in a high-level programming language
(source code) into a file of commands
in a lower-level language (object code)
for later execution.

component: A part; in particular, a
part of a computer system.

computer: An electronic device that
performs predefined (programmed)
computations at high speed and with
great accuracy; a machine that is used
to store, transfer, and transform
information.

concatenate: Literally, "to chain
together." (1) To combine two or more
strings into a single, longer string by
joining the beginning of one to the end
of the other. (2) To combine two or
more files.

configuration: (1) A general-purpose
computer term that can refer to the
way you have your computer set up. (2)
The total combination of hardware
components-central processing unit,
video display device, keyboard, and
peripheral devices-that make up a
computer system. (3) The software
settings that allow various hardware
components of a computer system to
communicate with one another.

configure: To change software or
hardware actions by changing settings.
For example, you give software the
necessary settings for communicating
with a printer. You can configure
hardware (a printer or interface card)
by resetting physical elements like DIP
switches or jumper blocks.
Configurations can also be set or reset
in software.

content region: The area of a window
that the application draws in.

context sensitive: Able to perceive
the situation in which an event occurs.
For example, an application program
might present help information
specific to the particular task you're
performing, rather than a general list of
commands; such help would be context
sensitive.

control: (1) The order in which the
statements of a program are executed.
(2} An object in a window on the
screen with which the user, by using the
mouse, can cause instant action with
visible results or change settings to
modify a future action. The control is
internally represented in a control
record.

control character: A nonprinting
character that controls or modifies the
way information is printed or
displayed. In the Apple II computer
family, control characters have ASCII
values between 0 and 31, and can be
typed from a keyboard by holding
down the Control key while pressing
some other key.

control key: See modifier key.

Control key: A specific key on Apple
II-family keyboards that produces
control characters when used in
combination with other keys.

Control Manager: The part of the
toolbox that provides routines for
creating and manipulating controls
(such as buttons, check boxes, and
scroll bars).

Control Panel: A desk accessory that
lets you change the speaker volume,
the keyboard repeat speed and delay,
mouse tracking, color display, and
other features.

control register: A special register
that programs can read from and write
to; similar to soft switches. The
control registers are specific locations
in the 1/0 space ($Cxxx) in bank $EO.
They are accessible from bank $00 if
1/0 shadowing is on.

control template: Structure
containing the information necessary
for the NewContro l2 Control
Manager tool call to create a new
control.

coordinate: One of a pair of numbers
that designates a position on a grid.
The numbers correspond to the
columns (vertical placement) and rows
(horizontal placement) in a
display grid.

CR: See carriage return.

crash: To cease to operate
unexpectedly, possibly destroying
information in the process.
Compare hang.

CRT: See cathode-ray tube.

cursor: (1) A symbol displayed on the
screen marking where the user's next
action will take effect or where the
next character typed from the
keyboard will appear. (2) A mark on
the screen that indicates your position
on the command line or inside a file.
The cursor is usually a small box or an
underscore, and it usually blinks. (3)
The term used in technical manuals for
the pointer on the screen.

cut: To remove something by selecting
it and choosing Cut from a menu. What
you cut is placed on the Clipboard. In
other editing applications, "Delete"
serves the same function. See
also buffer.

cut and paste: To move something
from one place in a document to
another in the same document or a
different one. It's the computer
equivalent of using scissors to clip
something and glue to paste the
clipping somewhere else.

debug: A colloquial term that means to
locate and correct an error or the cause
of a problem or malfunction in a
computer program. Often synonymous
with troubleshoot. See also bug.

debugger: A utility that allows you to
analyze a program for errors that cause
it to malfunction. For example, a
debugger may allow you to step
through execution of the program one
instruction at a time.

decay: That portion of a sound
envelope during which the sound falls
off from its peak loudness to a
sustained level. See also ADSR.

default: A value, action, or setting that
a computer system assumes, unless the
user gives an explicit instruction to the
contrary. For example, unless told
otherwise, the ImageWriter LQ begins
printing with a left margin set to the
default value of 0. Default values
prevent a program from stalling or
crashing if no value is supplied by
the user.

default preftx: The pathname prefix
attached by ProDOS 16 to a partial
pathname when no prefix number is
supplied by the application. The
default prefix is equivalent to prefix
number 0/.

delete: To remove something, such as a
character or word from a Hie, or a file
from a disk. Keys such as the
Backspace key and the Delete key can
remove one character at a time by
moving to the left. The Cut command
removes selected text and places it on
the Clipboard; the Clear command
removes selected text without placing
it on the Clipboard. (The Undo
command can reverse the action of
Clear and of the Backspace or Delete
key if it is used immediately.)

delta: The difference from something
the program already knows. For
example, mouse moves are represented
as deltas compared to previous mouse
locations. The name comes from the
way mathematicians use the Greek
letter delta (8) to represent a
difference.

delta guide: A description of
something new in terms of its
differences from something the reader
already knows about. The name comes
from the way mathematicians use the
Greek letter delta (8) to represent a
difference.

deselect: A command to a device such
as a printer to place it into a condition
in which it will not receive data. A
deselect command has an effect
opposite to that of a select command.

desk accessory: A "mini-application"
that is available from the Apple menu
regardless of which application
you're using.

Desk Manager: The part of the
Toolbox that supports the use of desk
accessories from an application.

desk scrap: See Clipboard.

desktop: Your working environment
on the computer-the menu bar and
the gray area on the screen. You can
have a number of documents on the
desktop at the same time. At the
Finder level, the desktop displays the
Trash and the icons (and windows) of
disks that have been accessed.

desktop environment: A set of
program features that make user
interactions with an application
resemble the way people work on a
desktop. Commands appear as
options in pull-down menus, and
material being worked on appears in
areas of the screen called windows.
The user selects commands or other
material by using the mouse to move a
pointer around on the screen or by
using keyboard equivalents.

device address: A value in the range
$00 through $OF assigned to each
device connected to the Apple
Desktop Bus.

device driver: A program that
manages the transfer of information
between the computer and a peripheral
device. See also resource.

dialog: See dialog box.

dialog box: (1) A box that contains a
message requesting more information
from you. Sometimes the message
warns you that you're asking your
computer to do something it can't do
or that you're about to destroy some
of your information. In these cases, the
message is often accompanied by a
beep. (2) A box that a Macintosh
application displays to request
information or to report that it is
waiting for a process to complete. A
dialog box is internally represented in a
dialog record.

digit: (1) One of the characters 0
through 9, used to express numbers in
decimal form. (2) One of the
characters used to express numbers in
some other form, such as 0 and 1 in
binary or 0 through 9 and A through F in
hexadecimal.

Digital Oscillator Chip (DOC): An
integrated circuit in the Apple IIGS that
contains 32 digital oscillators, each of
which can generate a sound from
stored digital waveform data.

dimmed: Used to describe words or
icons that appear in gray. For example,
menu commands appear dimmed when
they are unavailable; folder icons are
dimmed when they are open.

dimmed icon: An icon that represents
an opened disk or folder or a disk that
has been ejected. Double-clicking a
dimmed disk or folder icon causes the
window for the disk or folder to
become the frontmost, active window.
You can select and open a dimmed
icon representing an ejected disk, but
you cannot open the folders or
documents on it unless you insert
the disk.

direct page: A page (256 bytes) of
bank $00 of Apple IIGS memory, any
part of which can be addressed with a
short (one-byte) address because its
high-order address byte is always $00
and its middle address byte is the value
of the 65C816 direct register. Co-
resident programs or routines can have
their own direct pages at different
locations. The direct page corresponds
to the 6502 processor's zero page. The
term direct page is often used
informally to refer to any part of the
lower portion of the direct-
page/stack space. See also direct
register, zero page.

direct-page/stack space: A portion
of bank $00 of Apple IIGS memory
reserved for a program's direct page
and stack. Initially, the 65C816
processor's direct register contains the
base address of the space, and its
stack register contains the highest
address. In use, the stack grows
downward from the top of the direct-
page/stack space, and the lower part
of the space contains direct-page
data. See also direct page, direct
register, stack, stack register.
direct register: A hardware register in
the 65C816 processor that specifies the
start of the direct page.

disabled: Describes a menu item or
menu that cannot be chosen; the menu
item or menu title appears dimmed. A
disabled item in a dialog or alert box
has no effect when clicked.

display: (1) A general term to describe
what you see on the screen of your
display device when you're using a
computer; from the verb form, which
means "to place into view." (2) Short
for display device.

display color: The color currently
being used to draw high-resolution or
low-resolution graphics on the
display screen.

display device: A device that displays
information, such as a television set or
video monitor.

display rectangle: A rectangle that
determines where an item is displayed
within a dialog or alert box.

display screen: The screen of the
monitor; the area where you view text
and pictures when using the computer.
Also called simply the screen.

dispose: To permanently deallocate a
memory block. The Memory Manager
disposes of a memory block by
removing its master pointer. Any
handle to that pointer will then be
invalid. Compare purge.

disposition: An attribute of the data
set where the host components reside.

dithering: A technique for alternating
the values of adjacent dots or pixels to
create the effect of intermediate
values. In printing color or displaying
color on a computer screen, the
technique of making adjacent dots or
pixels different colors to give the
illusion of a third color. For example, a
printed field of alternating cyan and
yellow dots appears to be green.
Dithering can give the effect of shades
of gray on a black-and-white display,
or more colors on a color display.

dither pattern: The matrix of
threshold values used to represent gray
shades in a black-and-white
electronic image.

DOC: See Digital Oscillator Chip.
double click: (n.) Two clicks in quick
succession, interpreted as a single
command. The action of a double click
is different from that of a single click.
For example, clicking an icon selects the
icon; double-clicking an icon opens it.

double-click: (v.) To position the
pointer where you want an action to
take place, and then press and release
the mouse button twice in quick
succession without moving the mouse.

double-click time: The greatest
interval between a mouse-up event and
a mouse-down event that would qualify
two mouse clicks as a double click.

drag: To position the pointer on
something, press and hold the mouse
button, move the mouse, and release
the mouse button. When you release
the mouse button, you either confirm a
selection or move an object to a new
location.

drag region: A region in a window
frame; usually the title bar. Dragging
inside this region moves the window to
a new location and makes it the active
window unless the Command key
was down.

drop sample tuning: A technique for
changing the pitch of a played sound
that relies on skipping (or dropping)
sound samples on playback. When
samples are dropped at a fixed rate,
the pitch of a sound can be raised in
octave increments.

echo: To send an input character back
to the originating device for display or
verification; for example, to send each
character of your message back to your
monitor so you know it's been sent to
another computer or to a printer.

edit: To change or modify. For
example, to insert, remove, replace, or
move text in a document.

editor: A program that helps you create
and edit information of a particular
form; for example, a text editor or a
graphics editor.

edit record: A complete editing
environment in TextEdit, which
includes the text to be edited, the
GratPort and rectangle in which to
display the text, the arrangement of
the text within the rectangle, and other
editing and display information.

e flag: One of three flag bits in the
65C816 processor that programs use to
control the processor's operating
modes. The setting of the e flag
determines whether the processor is in
native mode or emulation mode. See
also m flag, x flag.

eject: (1) To remove a disk from a disk
drive. (2) To move paper out of the
printer. You can eject paper by
pressing the Form Feed button or by
turning the platen knob clockwise.

embedded: Contained within. For
example, the string 1 HUMPTY
DUMPTY I is said to contain an
embedded space.

end-of-ftle (EOF): (1) In A/UX, the
position of one byte past the last byte
in a file (also known as the logical end-
ofjile); this is equal to the actual
number of bytes in the file. If a
program calls a routine that uses the
physical end-of-file convention, the
logical end-of-file is used instead. (2)
The logical size of a ProDOS 16 file; it
is the number of bytes that may be
read from or written to the file. See
also logical end-of-ftle, physical end-
of-ftle.

Enter key: A key that confirms an
entry or sometimes a command.

envelope: A graphic representation of
a sound's loudness over time. The
envelope typically consists of
segments identified as attack, decay,
sustain, and release, or ADSR.

error code: A number or other symbol
representing a type of error.

event: A notification to an
application of some occurrence, such
as an interrupt created by a keypress,
that the application may want to
respond to.

exclusive OR: A logical operator that
produces a true result if one of its
operands is true and the other false,
and a false result if its operands are
both true or both false. Sometimes
written as XOR. Compare AND,
NOT, OR.

extended controls: Controls created
with the NewControl2 Control
Manager tool call, rather than the
NewControl call. Extended controls
have new-style control records that
contain more information than those
created by NewControl.

fatal error: An error serious enough
that the computer must halt execution.

field: (1) A data item separated from
other data by blanks, tabs, or other
specific delimiters. A particular type or
category of information in a database
management program. (2) A specific
set of data that is related. A field is
always defined by its size, given in bits
or bytes, and usually has a name. (3) A
string of ASCII characters or a value
that has a specific meaning to some
program. Fields may be of fixed length,
or may be separated from other fields
by field delimiters. For example, each
parameter in a segment header
constitutes a field. (4) In a BASIC file ,
a string of characters preceded by a
return character and terminated by a
return character. A field is written to a
file by each PRINT statement not
terminated by a semicolon. The INPUT
command reads an entire field from
a file.

ftlename: The name that identifies a
file. The maximum character length of a
filename and the rules for naming a file
vary under different operating systems.

ftlter: A program or "mask" that alters
data in accordance with specific
criteria, a formula, or an algorithm.

ftrmware: Programs stored
permanently in read-only memory
(ROM). Such programs (for example,
the Applesoft Interpreter and the
Monitor program) are built into the
computer at the factory. They can be
executed at any time but cannot be
modified or erased from main memory.

ftxed: Describes blocks that are not
movable in memory once allocated;
also called unmovable. Program
segments that must not be moved are
placed in fixed memory blocks.
Opposite of movable.

flag: A variable whose value indicates
whether some condition holds or
whether some event has occurred. A
flag is used to control the program's
actions at a later time. The value of a
flag is usually 0 or 1.

flush: To update an open file (write all
information in the I/0 buffer to a
disk) without closing it.

font: A complete set of characters in
one design, size, and style. In
traditional typography usage, font may
be restricted to a particular size and
style or may comprise multiple sizes, or
multiple sizes and styles, of a
ypeface design.

font class: A group of fonts that all use
the same method of implementing
different font styles, such as italic or
bold.

font family: A complete set of
characters for one typeface design,
including all styles and sizes of the
characters in that font. For example,
the Geneva font family includes 9-
point to 36-point characters in italic,
bold, outlined, and other styles.

font number: The number by which
you identify a font to QuickDraw or
the Font Manager.

format: (n.) (1) The form in which
information is organized or presented.
(2) The general shape and appearance
of a printer's output, including page
size, character width and spacing, line
spacing, and so on. (v.) To divide a
disk into tracks and sectors where
information can be stored. Blank disks
must be formatted before you can save
information on them for the first time;
synonymous with initialize.

free block: A memory block
containing space available for
allocation.

free-form synthesizer: The part of the
Sound Tool Set used to make complex
music and speech.

garbage: A string of meaningless
characters that bears no resemblance
to your document. It's an indication
that your computer and peripheral
device are using different transmission
rates or data formats.

GB: See gigabyte.

gigabyte (GB): A unit of measurement
equal to 1024 (210) megabytes.
Compare byte, kilobyte, megabyte.

GratPort record: A data record used
by QuickDraw to establish a
graphics port.

graphics port: A complete drawing
environment in QuickDraw (data type
Grat'Port), including such elements as a
bitmap, a character font, patterns for
drawing and erasing, and other graphics
characteristics. Sometimes called
a GrafPort.

handle: A pointer to a master pointer,
which designates a relocatable block in
the heap by double indirection. See
also memory handle.

hang: To cease operation because
either an expected condition is not
satisfied or an infinite loop is
occurring. A computer that's hanging is
called a hung system. Compare crash.

heap: The area of memory in which
space is dynamically allocated and
released on demand, using the Memory
Manager.

hertz (Hz): The unit of frequency of
vibration or oscillation, defined as
the number of cycles per second.
Named for the physicist Heinrich
Hertz. The 6502 microprocessor used
in the Apple II systems operates at a
clock frequency of about 1 million
hertz, or 1 megahertz (MHz). The
68000 microprocessor used in the
Macintosh operates at 7.8336 MHz.

hexadecimal system: The
representation of numbers in the base-
16 system, using the ten digits 0
through 9 and the six letters A through
F. For example, the decimal numbers 0,
1, 2, 3, 4, . . . 8, 9, 10, 11, ... 15, 16, 17
would be shown in hexadecimal
notation as 00, 01, 02, 03, 04, ... 08,
09, OA, OB, . .. OF, 10, 11. Hexadecimal
numbers are easier for people to read
and understand than are binary
numbers, and they can be converted
easily and directly to binary form. Each
hexadecimal digit corresponds to a
sequence of four binary digits, or bits.
Hexadecimal numbers are usually
preceded by a dollar sign($).

highlight: To make something visually
distinct. For example, when you select
a block of text using a word processor,
the selected text is highlighted-it
appears as light letters on a dark
background, rather than dark on light.
Highlighting is accomplished by
inverting the display.

high-order: (adj.) Describes the most
significant part of a numerical
quantity. In normal representation, the
high-order bit of a binary value is in the
leftmost position; likewise, the high-
order byte of a binary word or longword
quantity consists of the leftmost eight
bits. Compare low-order.

high-order byte: The more significant
half of a memory address or other two-
byte quantity. In the 6502
microprocessor used in the Apple II
family of computers, the low-order
byte of an address is usually stored
first, and the high-order byte second.
In the 68000 microprocessors used in
the Macintosh family, the high-order
byte is stored first. Compare low-
order byte.

horizontal blanking interval: The
time between the display of the
rightmost pixel on one line and the
leftmost pixel on the next line.

Hz: See hertz.

IC: See integrated circuit.

icon: An image that graphically
represents an object, a concept, or a
message. Icons on the outside of the
computer can be used to show you
where to plug cables, such as the disk
drive icon on the back panel that
marks the disk drive connector. Screen
icons in mouse-based applications
represent disks, documents,
application programs, or other things
you can select and open. A screen icon
is a 32-by-32-bit image.

index register: A register in a
computer processor that holds an
index for use in indexed addressing.
The 6502 and 65C816 microprocessors
used in the Apple II family of
computers have two index registers,
called the X register and the Y register.
The 68000 microprocessor used in
Macintosh-family computers has 16
registers that can be used as index
registers.

information window: The window
that appears when you select an icon
and choose Get Info from the File
menu. It supplies information such as
size, type, and date, and it includes a
comment box for adding information.

insertion point: (1) The place in a
document where something will be
added, represented by a blinking
vertical bar. You select the insertion
point by clicking where you want to
make the change in the document. (2)
An empty selection range.

Installer: A utility program that lets
you choose an Installation script for
updating your system software or
adding resources.

integrated circuit (IC): An electronic
circuit-including components and
interconnections-entirely contained
in a single piece of semiconducting
material, usually silicon. Often referred
to as a chip.

interface: (n.) (1) The point at which
independent systems or diverse groups
interact. The devices, rules, or
conventions by which one component
of a system communicates with
another. Also, the point of
communication between a person and
a computer. (2) The part of a program
that defines constants, variables, and
data structures, rather than procedures.
In C, the compile-time and run-time
linkage between your program and
Toolbox routines . (3) The equipment
that accepts electrical signals from one
part of a computer system and renders
them into a form that can be used by
another part. (4) Hardware or software
that links the computer to a device.
(v.) To convert signals from one form
to another and pass them between two
pieces of equipment.

interrupt: (1) An electronic attention-
getter; a signal sent to the
microprocessor that is intended to
force the microprocessor to stop its
current activity and accept input from
the device that sent the interrupt.
(2) A temporary suspension in the
execution of a program that allows the
computer to perform some other task,
typically in response to a signal from a
peripheral device or other source
external to the computer.
(3) An exception that's signaled to the
processor by a device, to notify the
processor of a change in condition of
the device, such as the completion of
an I/0 request.

IRQ: A 65C816 signal line that, when
activated, causes an interrupt request
to be generated.

item: In dialog and alert boxes, a
control, icon, picture, or piece of text,
each displayed inside its own display
rectangle. See also menu item.

item list: A list of information about
all the items in a dialog or alert box.

IWM: "Integrated Woz Machine"; the
custom chip that controls the Apple
3.5-inch disk drives.

job: A process that can be stopped,
restarted, and moved between
foreground and background processing
from the C shell.

job dialog: A dialog box that sets
information about one printing job;
associated with the Print command.

joumaling mechanism: A mechanism
that allows a program to feed events to
the Toolbox Event Manager from some
source other than the user.

justification: The horizontal
placement of lines of text relative to
the edges of the rectangle in which the
text is drawn.

K: See kilobyte.

Kbit: See kilobit.

Kbyte: See kilobyte.

kem: To draw part of a character so
that it overlaps an adjacent character.

kernel: (1) The central part of an
operating system. ProDOS 16 is the
kernel of the Apple IIGS operating
system. (2) A program that manages
the system hardware. For example, the
kernel manages files, communicates
with peripherals, and handles other low-
level resource management tasks.

keyboard event: An event generated
when the user presses a character key
on the keyboard. A key-down event is
generated when the user presses a
character key; a key-up event is
generated when the user releases a
character key. Auto-key events are
repeatedly generated when the user
holds down a character key.

key-down event: An event generated
when the user presses a character key
on the keyboard or keypad. Compare
key-up event.

keystroke equivalent: A keystroke
that activates a control just as if the
user had clicked in the control.

\

key-up event: An event generated
when the user releases a character key
on the keyboard or keypad. Compare
key-down event.

kHz: See kilohertz.

kilobit (Kbit): A unit of measurement,
1024 bits, commonly used in specifying
the capacity of memory integrated
circuits. Not to be confused with
kilobyte.

kilobyte (K): A unit of measurement
consisting of 1024 (210) bytes. Thus,
64K memory equals 65,536 bytes. The
abbreviation K can also stand for the
number 1024, in which case Kbyte is
used for kilobyte. See also megabyte.
kilohertz (kHz): A unit of
measurement of frequency, equal to
1000 hertz. See also megahertz.

language card: Memory with
addresses between $DOOO and $FFFF on
any Apple II-family computer. It
includes two RAM banks in the $Dxxx
space, called bank-switched
memory. The language card was
originally a peripheral card for slot 0 of
the 48K Apple II or Apple II Plus that
expanded memory capacity to 64K and
provided space for an additional
dialect of BASIC. The language card
was also necessary for these machines
to use ProDOS.

least significant bit: The binary digit
in a number or data byte that
contributes the smallest quantity to
the value of the number; usually written
at the right end of the number.
Compare most significant bit.

list record: The internal
representation of a list, where the List
Manager stores all the information it
requires for its operations on that list.

load: To transfer information from a
peripheral storage medium (such as a
disk) into main memory for use; for
example, to transfer a program into
memory for execution.

local coordinate system: The
coordinate system local to a GrafPort,
imposed by the boundary rectangle
defined in its bitmap.

lock: (1) To prevent a memory block
from being moved or temporarily
purged. A block may be locked or
unlocked by the Memory Manager. (2)
To temporarily prevent a relocatable
block from being moved during heap
compaction.

logical end-of-ftle: The position of
one byte past the last byte in a file;
equal to the actual number of bytes in
the file . Compare physical end-of-ftle.

logical operator: An operator, such as
AND, that combines logical values to
produce a logical result, such as true or
false; sometimes called a Boolean
operator.
low-order: (adj.) Describes the least
significant part of a numerical
quantity. In normal representation, the
low-order bit of a binary number is in
the rightmost position; likewise, the
low-order byte of a binary word or
longword quantity consists of the
rightmost eight bits. Compare
high-order.

low-order byte: The less significant
half of a memory address or other two-
byte quantity. In the 6502
microprocessor used in the Apple II
family of computers, the low-order
byte of an address is usually stored
first, and the high-order byte second.
The opposite is true for Macintosh
computers. Compare high-order byte.

Macintosh: A family of Apple
computers, including the Macintosh
128K, Macintosh 512K, Macintosh 512K
enhanced, Macintosh Plus, Macintosh
SE, and Macintosh II. Macintosh
computers have high-resolution screens
and use mouse devices for choosing
commands and for drawing pictures.

Macintosh Programmer's
Workshop (MPW): Apple's software
development environment for the
Macintosh family.

macro: (1) A user-defined command
that tells an application to carry out a
series of commands when you type the
macro. (2) A recorded sequence of
characters and commands, identified
by a name and possibly triggered by a
keystroke. (3) A single keystroke or
command that a program replaces with
several keystrokes or commands. For
example, the APW Editor allows you to
define macros that execute several
editor keystroke commands; the APW
Assembler allows you to define macros
that execute instructions and
directives. Macros are almost like
higher-level instructions, making
assembly-language programs easier to
write and complex keystrokes easier
to execute.

MB: See megabyte.
Mbit: See megabit.

megabit (Mbit): A unit of
measurement equal to 1,048,576 (216)
bits, or 1024 kilobits, commonly used
in specifying the capacity of memory
ICs. Not to be confused with
megabyte.

megabyte (MB): A unit of
measurement equal to 1024 kilobytes,
or 1,048,576 bytes. See also kilobyte.

megahertz (MHz): One million hertz.
See also kilohertz.

memory handle: The identifying
number of a particular block of
memory. It is a pointer to the master
pointer to the memory block. A handle
rather than a simple pointer is needed
to reference a movable memory block.

menu: A list of choices presented by a
program, from which you can select an
action. In the desktop interface,
menus appear when you point to and
press menu titles in the menu bar.
Dragging through the menu and
releasing the mouse button while a
command is highlighted chooses that
command.

menu bar: The horizontal strip at the
top of the screen that contains
menu titles.

menu defmition procedure: A
procedure called by the Menu Manager
when it needs to perform type-
dependent operations on a particular
menu (for example, when it needs to
draw the menu).

menu item: A choice in a menu, usually
a command to the current application.
See also item.

Menu Manager: The part of the
toolbox that deals with setting up
menus and letting the user choose
from them.

menu record: The internal
representation of a menu, where the
Menu Manager stores all the
information it needs for its operations
on that menu.

menu template: Data structure used
to define menus, menu commands, and
menu bars to the Menu Manager.

menu title: A word, phrase, or icon in
the menu bar that designates one
menu. Pressing on the menu title causes
the title to be highlighted and its menu
to appear below it.

m flag: One of three flag bits in the
65C816 processor that programs use to
control the processor's operating
modes. In native mode, the setting of
the m flag determines whether the
accumulator is 8 bits wide or 16 bits
wide. See also e flag, x flag.

microprocessor: An integrated circuit
on the computer's main circuit board.
The microprocessor carries out
software instructions by directing the
flow of electrical impulses through the
computer. The microprocessor is the
central processing unit (CPU) of the
microcomputer. Examples are the 6502
or 65C02 microprocessor used in the
Apple lie, the 65C816 microprocessor
used in the Apple IIGS, and the 68000
microprocessor used in the
Macintosh Plus.

MIDI: Acronym for Musical Instrument
Data Interface; a standard interface for
electronically created music.

millisecond (ms): One-thousandth of
a second.

mnemonic: A type of abbreviation
consisting of a series of letters and/or
numbers that represent a longer or more
complicated name or title. A
mnemonic is characterized by being
relatively easy to remember.

modifier key: A general term for a key
that generates no keyboard events of
its own but changes the meaning of
other keys or mouse actions; for
example, Caps Lock, Command,
Control, Apple, Option, and Shift.
When you hold down or engage a
modifier key while pressing another
key, the combination makes that other
key behave differently. Sometimes
called a control key. Compare
character key.

most significant bit: The binary digit
in a number or data byte that
contributes the largest quantity to the
value of the number; usually written at
the left end of the number. For
example, in the binary number 10110
(decimal value 22), the leftmost bit has
the decimal value 16 (24). Compare
least significant bit.

mouse: A small device you move
around on a flat surface next to your
computer. The mouse controls a
pointer on the screen whose
movements correspond to those of the
mouse. You use the pointer to select
operations, to move data, and to draw
with in graphics programs.

mouse button: The button on the top
of the mouse. In general, pressing the
mouse button initiates some action on
whatever is under the pointer, and
releasing the button confirms the
action. Compare button.

mouse-down event: An event
generated when the user presses the
mouse button.

mouse event: An event generated
when the user presses and releases the
mouse button. A mouse-down event is
generated when the user presses the
mouse button. A mouse-up event is
generated when the user releases the
mouse button.

mouse-up event: An event generated
when the user releases the mouse
button.

movable: A memory block attribute,
indicating that the Memory Manager is
free to move the block. Opposite of
fixed. Only position-independent
program segments may be in movable
memory blocks. A block is made
movable or fixed through Memory
Manager calls.

move: To change the location of a
memory block. The Memory Manager
may move blocks to consolidate
memory space.

MPW: See Macintosh Programmer's
Workshop.

nanosecond (ns): One-billionth of
a second.

native mode: The 16-bit operating
configuration of the 65C816
microprocessor.

nibble: A unit of data equal to half a
byte, or four bits. A nibble can hold any
value from 0 to 15.

NOT: A unary logical operator that
produces a TRUE result if its operand is
false, and a FALSE result if its operand
is true. Compare AND, exclusive OR,
OR.

null: (1) An undefined value. Null is
different from 0; 0 is a value just like
other numbers, whereas null means no
value at all (of the expected type). A
null string does not contain anything.
For example, 1 1 is not a null string
because it contains a space character;
1 1 represents a null string. (2) Any
character or character code that has no
meaning to the operating system or
program interpreting it. (3) A type of
attention cycle.

null event: An event reported when
there are no other events to report.

open: To make available. You open
files or documents in order to work
with them. A file may not be read from
or written to until it is open. In the
desktop interface, opening an icon
causes a window with the contents of
that icon to come into view. You may
then perform further actions in the
window when it's active.

option: (1) Something chosen or
available as a choice; for instance, one
of several check box or radio button
options. (2) An argument whose
provision is optional.

Option key: A modifier key that gives
a different meaning or action to
another key you press or to mouse
actions you perform. For example, you
can use it to type foreign characters or
special symbols contained in the
optional character set. On the Apple
IIGS and some models of the Apple lie,
the Option key replaces the Solid
Apple key.

OR: A logical operator that produces a
TRUE result if either or both of its
operands are true, and a FALSE result if
both of its operands are false .
Compare AND, exclusive OR, NOT.

out-of-memory queue: A queue
maintained by the Memory Manager.
Queue elements (out-of-memory
routines) refer to code to be executed
when the Memory Manager detects an
out-of-memory condition.

out-of-memory routines: Code
executed by the Memory Manager when
it detects an out-of-memory
condition. The out-of-memory queue
consists of a list of these routines.

override: To modify or cancel an
instruction by issuing another one. For
example, you might override a DIP
switch setting on a printer with an
escape sequence.

page: (1) The text and/ or graphics that
fits on a sheet of paper when printed,
depending on the page format. (2) A
screenful of information on a video
display. In the Apple II family of
computers, a page consists of 24 lines
of 40 or 80 characters each. (3) (usually
Page) An area of main memory
containing text or graphic information
being displayed on the screen. (4) A
segment of main memory 256 bytes
long and beginning at an address that is
an even multiple of 256. Memory
blocks whose starting addresses are an
even multiple of 256 are said to be
page-aligned.

page zero: See zero page.

parameter: (1) A value passed to or
from a function or other routine. (2) An
argument that determines the outcome
of a command. For example, in the
command write (n, msg), nand msg
are parameters.

parameter block: (1) A data structure
used to transfer information between
applications and certain Operating
System routines. (2) A set of
contiguous memory locations, set up
by a calling program to pass parameters
to and receive results from an
operating-system function that it calls.
Every call to ProDOS 16, to the APW
Shell, or to SmartPort must include a
pointer to a properly constructed
parameter block.

parameter list: The list of
characteristics whose value or
condition determines the precise
execution of a SCSI command.

Pascal: A high-level programming
language with statements that resemble
English phrases. Pascal was designed to
teach programming as a systematic
approach to problem solving. Named
for the philosopher and mathematician
Blaise Pascal.

Pascal-compatible function: A
function written in Pascal that can be
declared inC using the pascal
specifier.

password: (1) A secret word that gives
you, but no one else, access to your
data or to messages sent to you
through an information service.
(2) A unique word or set of characters
that must be entered before a
registered user at a workstation can
access a volume on a server.

password field: A field that does not
echo user input, allowing protected
data entry. Your program can specify
the echo character; the default echo
character is the asterisk (*).

paste: To place the contents of the
Clipboard-whatever was last cut or
copied-at the insertion point.

pattern: An 8-by-8-bit image used to
define a repeating design (such as
stripes) or tone (such as gray).

physical end-of-file: The position of
one byte past the last allocation block
of a file; equal to one more than the
maximum number of bytes the file can
contain. Compare logical end-of-file.
picture: (1) In HyperCard, any graphic
or part of a graphic created with a
Paint tool. Also, an imported MacPaint
document or part of a MacPaint®
document. (2) A saved sequence of
QuickDraw drawing commands (and,
optionally, picture comments) that
you can play back later with a single
procedure call. Also, the image resulting
from these commands.

pixel: Short for picture element; the
smallest dot you can draw on the
screen. Also a location in video
memory that corresponds to a point on
the graphics screen when the viewing
window includes that location. In the
Macintosh monochrome display, each
pixel can be either black or white, so it
can be represented by a bit; thus, the
display is said to be a bitmap. For
color or gray-scale video, several bits in
RAM may represent the image; in the
Super Hi-Res display on the Apple IIGS,
each pixel is represented by either two
or four bits. Thus, the display is not a
bitmap but rather a pixel map.

pointer: (1) A small shape on the screen
that follows the movement of the
mouse or shows where your next action
will take place. The pointer can be an
arrow, an !-beam, a crossbar, or a
wristwatch. (2) An item of information
consisting of the memory address of
some other item. For example,
Applesoft BASIC maintains internal
pointers to the most recently stored
variable, the most recently typed
program line, and the most recently
read data item, among other things.
The 6502 uses one of its internal
registers as a pointer to the top of the
stack.

pop-up menu: A menu that "pops" out
of its display rectangle when selected
by the user. The two types of pop-up
menus, type 1 and type 2 pop-up
menus, have different maximum sizes.

preftx: (1) The first part of a
pathname-the name of the disk and,
if you like, the name of a subdirectory.
Applications that ask you to type a
pathname usually let you set a prefix so
you don't have to type the complete
pathname every time you want to work
with a document on a particular disk or
in a particular subdirectory. Once the
prefix is set, all you do is type the rest
of the pathname. (2) A designation for
a place that an application can store
files. Many applications require the
prefix to be the same as the pathname.
Some applications allow you to set the
prefix from within the application.

preftx number: A code used to
represent a particular prefix. Under
ProDOS 16, there are nine prefix
symbols, consisting of the numerals 0
through 7 and the asterisk followed by
a slash: o 1, 1 1, ... 7 1, and * 1.

press: (1) To position the pointer on
something on the screen and then hold
down the mouse button without
moving the mouse. (2) To push a key
down and then release it; you hold a
key down only if you want to repeat a
character or if you are using a modifier
key with another key.

printed-circuit board: A hardware
component of a computer or other
electronic device, consisting of a flat,
rectangular piece of rigid material,
commonly fiberglass, to which
integrated circuits and other electronic
components are connected.

purge: To temporarily deallocate a
memory block. The Memory Manager
purges a block by setting its master
pointer to NIL(O). All handles to the
pointer are still valid, so the block can
be reconstructed quickly. Compare
dispose.

purgeable: A memory block attribute,
indicating that the Memory Manager
may purge the block if it needs
additional memory space. Purgeable
blocks have different purge levels, or
priorities for purging; these levels are
set by Memory Manager calls.

purgeable block: A relocatable block
that can be purged from the heap.

purge level: An attribute of a memory
block that sets its priority for purging.
A purge level of 0 means that the block
cannot be purged.

Quagmire register: On the Apple IIGS,
the name given to the eight bits
consisting of the speed control bit and
the shadowing bits. Although Quagmire
is not a real register, the Monitor
program allows you to access those
bits as if they were in a single register.

queue: A list in which entries are
added at one end and removed at the
other, causing entries to be removed
in first-in, first-out (FIFO) order.
Compare stack.

QuickDraw: The part of the toolbox
that performs all graphic operations on
the Macintosh screen.

quoting mechanism: Special syntax
in the command line that tells the shell
to interpret metacharacters literally, or
to control the type of substitution
allowed in the command.

RAM: See random-access memory.

random-access memory (RAM): The
part of the computer's memory that
stores information temporarily while
you're working on it. A computer with
512K RAM has 512 kilobytes of memory
available to the user. Information in
RAM can be referred to in an arbitrary
or random order, hence the term
random-access. (As an analogy, a book
is a random-access storage device in
that it can be opened and read at any
point.) RAM can contain both
application programs and your own
information. Information in RAM is
temporary, gone forever if you switch
the power off without saving it on a
disk or other storage medium. An
exception is the battery RAM, which
stores settings such as the time and
which is powered by a battery.
(Technically, the read-only memory
[ROM] is also random access, and what's
called RAM should correctly be termed
read-write memory.) Compare read-
only memory.

read-only memory (ROM): Memory
whose contents can be read but not
changed; used for storing firmware.
Information is placed into read-only
memory once, during manufacture. It
remains there permanently, even when
the computer's power is turned off.
Compare random-access memory.

read-write memory: Memory whose
contents can be both read and changed
(or written to). The information
contained in read-write memory is
erased when the computer's power is
turned off and is permanently lost
unless it has been saved on a disk or
other storage device. Used
synonymously with random-access
memory. Compare read-only
memory.

reference type: Indicates whether a
storage location contains a pointer, a
handle, or a resource ID for an object.

release: That portion of a sound
envelope during which the note dies
away to silence. See also ADSR.

relocatable: Characteristic of a load
segment or other OMF program code
that includes no references to specific
address and so can be relocated at load
time. A relocatable segment can be
static, dynamic, or position
independent. It consists of a code
image followed by a relocation
dictionary. Compare absolute.

relocatable block: A block that can be
moved within the heap during
compaction.

resource: Collection of data managed
by the Resource Manager for other
applications.

resource compiler: A program that
creates resources from a textual
description. The MPW Resource
Compiler is named Rez.

resource rue: A collection of one or
more resources. The Resource
Manager provides routines for
accessing and updating resources in a
resource file.

resource fork: The part of a file that
contains data used by an application,
such as menus, fonts, and icons.
Sometimes called a resource file.
resource ID: A number that uniquely
identifies a resource within the
context of its resource type. The
Resource Manager provides facilities
to assign unique resource IDs. Compare
resource name.

resource map: In a resource file , data
that is read into memory when the file
is opened and that, given a resource
specification, leads to the
corresponding resource data.

resource name: A series of characters
that uniquely identify a resource
within the context of its resource
type. Note that resource names are not
maintained by the system; it is your
program's responsibility to assign and
manage them. Compare resource ID.

resource type: A class of resources
that share a common data layout.
Individual instances of resources
of a given type are identified by
their unique resource ID or
resource name.

ROM: See read-only memory.

run item: An element in the run
queue. Run items specify program
code to be executed by the Desk
Manager at regular intervals.

run queue: A queue maintained by the
Desk Manager that contains elements
(run items) that specify code to be
executed at regular intervals.

sample rate: The number of sound
samples the Apple IIGS Digital
Oscillator Chip plays per second.

scroll: (1) To move a document or
directory in its window so that a
different part of it is visible. (2) To
move all the text on the screen upward
or downward, and in some cases
sideways.

scroll arrow: An arrow at either end of
a scroll bar. Clicking a scroll arrow
moves a document or directory one
line. Pressing a scroll arrow moves a
document continuously.

scroll bar: A rectangular bar that may
be along the right or bottom of a
window. Clicking or dragging in the
scroll bar causes your view of the
document to change.

scroll box: The white box in a scroll
bar. The position of the scroll box in
the scroll bar indicates the position of
what's in the window relative to the
entire document.

select: (v.) To designate where the
next action will take place. To select
using a mouse, you click an icon or drag
across information. In some
applications, you can select items in
menus by typing a letter or number at a
prompt, by using a combination
keypress, or by using arrow keys. (n.) A
command to a device such as a printer
to place it into a condition to
receive data.

selection: (1) The information or
items that will be affected by the next
command. The selection is usually
highlighted. (2) A series of characters,
or a character position, at which the
next editing operation will occur.
Selected characters in the active
window are inversely highlighted. Also
called selection range.

shadowing: (1) The process by which
any changes made to one part of the
Apple IIGS memory are automatically
and simultaneously copied into
another part. When shadowing is on,
information written to bank $00 or $01
is automatically copied into equivalent
locations in bank $EO or $El. Likewise,
any changes to bank $EO or $El are
immediately reflected in bank $00 or
$01. (2) A process through which the
SCSI card takes over an additional slot
to work with ProDOS in supporting
four external device ports.

6502: The microprocessor used in the
Apple II, the Apple II Plus, and early
models of the Apple lie. The 6502 is a
MOS device with 8-bit data registers
and 16-bit address registers.

65C02: A CMOS version of the 6502;
the microprocessor used in the Apple
lie and Apple lie.

65C816: The microprocessor used in
the Apple IIGS. The 65C816 is a CMOS
device with 16-bit data registers and
24-bit address registers.

64K Apple ll: Any standard Apple II
that has at least 64K of RAM. That
includes the Apple lie, the Apple lie,
and an Apple II or Apple II Plus with
48K of RAM and the language
card installed.

size box: A box in the lower-right
corner of some active windows.
Dragging the size box resizes
the window.

slot: A narrow socket inside some
models of Apple computers for
connecting circuit boards known as
inteiface cards; each card handles
communication between the computer
and a peripheral device, sending and
receiving data through a port or
connector on the outside of
the computer.

slot number: A way an application
might ask you to describe the location
of a peripheral device. In some models
of the Apple II, there are seven general-
purpose slots on the main circuit board
for connecting peripheral devices to
the computer. They are numbered from
1 to 7 with 1 on the left as you face the
front of the computer. If your device is
connected to a port instead of a slot,
you can still use the application by
typing the slot number that
corresponds to the port.

soft switch: A means of changing
some feature of the computer from
within a program. For example, DIP
switch settings on ImageWriter printers
can be overridden with soft switches.
Specifically, a soft switch is a location
in memory that produces some special
effect whenever its contents are read
or written. Also called a software switch.

software pirate: A person who copies
applications without the permission of
the author. To copy software without
permission is illegal.

sound buffer: A block of memory
from which the sound generator reads
the information to create an audio
waveform.

stack: In a computer, a portion of
memory that is used for temporary
storage of operating data during
operation of a program. The data on
the stack are added (pushed) and
removed (pulled or popped) in last-in,
first-out (LIFO) order. The stack usually
refers to the particular stack pointed
to by the 65C816's stack register.
Compare queue.

stack register: A hardware register in
the 6SC816 processor that contains the
address of the top of the
processor's stack.

standard Apple II: Any computer in
the Apple II family except the Apple
IIGS. That includes the Apple II, the
Apple II Plus, the Apple lie, and the
Apple lie.

start up: To get the system running.
Starting up is the process of first
reading an operating-system program
from the disk and then running an
application program. Synonymous
with boot.

startup disk: A disk with all the
necessary program files-such as the
Finder and System files contained in
the System Folder for the Macintosh-
to set the computer into operation.
Sometimes called a boot disk.

startup drive: The disk drive from
which you started your application.

sustain: That portion of a sound
envelope during which the note
maintains a fairly constant loudness,
before it dies away. See also ADSR.

synthesizer: (1) A hardware device
capable of creating sound digitally and
converting it into an analog waveform
that you can hear. (2) A program that
interprets Sound Tool Set commands
and produces sound.

system software: The component of
a computer system that supports
application programs by managing
system resources such as memory and
I/0 devices.

tab: (1) Short for tabulator; on
typewriter keyboards, a key that
allows you set automatic stops (tab
stops) or margins for columns, as in a
table of figures. (2) An ASCII character
that commands a device such as a
printer to start printing at a preset
location (a tab stop). There are two such
characters: horizontal tab (hex 09) and
vertical tab (hex OB). The horizontal
tab character gives the same action as
pressing the tab key on a typewriter.

Tab key: A key that, when pressed,
generates the horizontal tab character.
The key's action is to move the
insertion point or cursor to the next
tab marker, or, in a dialog box with
more than one place to enter
information, to the next rectangle. The
Tab key thus works essentially like a
typewriter tab key.

target control: That control that is
currently the recipient of user actions
(keystrokes and menu items).

tear-off menu: Any menu that you can
detach from the menu bar by pressing
the menu title and dragging beyond the
menu's edge. The torn-off menu
appears in a window or a mini-window
on the desktop.

TextEdit record: Describes a
TextEdit user session, whether or not
that session is managed as a control.

toolbox: A collection of built-in
routines that programs can call to
perform many commonly needed
functions. Functions within the Apple
IIGS Toolbox are grouped into
tool sets.

tool set: A group of related routines
(usually in firmware) that perform
necessary functions or provide
programming convenience. They are
available to applications and system
software. The Memory Manager, the
System Loader, and QuickDraw II are
Apple IIGS tool sets.

type 1 pop-up menu: A pop-up
menu that does not become larger
than its window. Compare type 2 pop-
up menu.

type 2 pop-up menu: A pop-up
menu that becomes larger than its
window if necessary to display its
menu items. Compare type 1
pop-up menu.

type-ahead buffer: A buffer that
accepts and holds characters that are
typed faster than the computer can
process them.

unload: To remove a load segment
from memory. To unload a segment,
the System Loader does not actually
"unload" anything; it calls the Memory
Manager to either purge or dispose of
the memory block in which the code
segment resides. The loader then
modifies the Memory Segment Table
to reflect the fact that the segment is
no longer in memory.

unlock: To allow a relocatable block
to be moved during heap compaction.
Compare lock.

unmovable: See fixed.

unpurgeable: Having a purge level of
0. The Memory Manager is not
permitted to purge memory blocks
whose purge level is 0.

unpurgeable block: A relocatable
block that can't be purged from
the heap.

update event: An event generated by
the Window Manager when a window's
contents need to be redrawn.

User ID: An identification number
that specifies the owner of every
memory block allocated by the
Memory Manager.

version: A number indicating the
release edition of a particular piece of
software. Version numbers for most
system software (such as ProDOS 16
and the System Loader) are available
through function calls.

void: In C, a data type used to declare
a function that does not return a value.

waveform: The shape of a wave (a
graph of a wave's amplitude
over time).

waveform description: A sequence of
bytes describing a waveform.

wildcard character: A character that
may be used as shorthand to represent
a sequence of characters in a
pathname. A common wildcard
character is the asterisk (*). As an
example, if you were to request a
listing of*. TEXT files in a particular
application, you would see a list of all
files ending with the suffix TEXT • In
APW, the equal sign (=) and the
question mark (?) can be used as
wildcard characters.

window: (1) The area that displays
information on a desktop; you view a
document through a window. You can
open or close a window, move it
around on the desktop, and sometimes
change size, scroll through it, and
edit its c6ntents. (2) The portion of a
collection of information (such as a
document, picture, or worksheet) that
is visible in a viewport on the display
screen. Each window is internally
represented in a window record.

window deftnition function: A
function called by the Window
Manager when it needs to perform
certain type-dependent operations on
a window (for example, drawing the
window frame).

Window Manager: The part of the
toolbox that provides routines for
creating and manipulating windows.

Window Manager port: A Grafl>ort
that has the entire screen as its
PortRect and is used by the Window
Manager to draw window frames.

word: (1) The computer's native unit
of data. The Macintosh II uses a 32-bit
word. A NuBus™ word is 32 bits long; a
half-word is 16 bits. An SE Bus or 68000
word is 16 bits long; a half-word is 8
bits. For the Apple IIGS, a word is 16
bits (2 bytes) long. (2) For the shell and
other programs, a string of nonblank
characters bounded by the space
character, the tab character, or the
beginning or the end of the input line.

word wrap: The automatic
continuation of text from the end of
one line to the beginning of the next.
Word wrap lets you avoid pressing the
Return key at the end of each line as
you type.

x flag: One of three flag bits in the
65C816 processor that programs use to
control the processor's operating
modes. In native mode, the setting of
the x flag determines whether the index
registers are 8 bits wide or 16 bits wide.
See also e flag, m flag.

zero page: The first page (256 bytes)
of memory in a standard Apple II
computer (or in the Apple IIGS when
running a standard Apple II program);
also called page zero. Because the high-
order byte of any address in this page
is zero, only the low-order byte is
needed to specify a zero-page address.
This makes zero-page locations more
efficient to address, in both time and
space, than locations in any other page
of memory. Compare direct page.

zoom box: A small box with a smaller
box enclosed in it found on the right
side of the title bar of some windows.
Clicking the zoom box expands the
window to its maximum size; clicking
it again returns the window to its
original size.

Index

A
absolute tabs 49-3
accelerator card GL-1
Accept button, multifile dialog boxes

48-3
accumulator GL-1
ACE (Audio Compression and

Expansion) Tool Set 27-1 to
27-19

direct page memory 27-7
error codes 27-19
error correction 27-2, F-4
housekeeping routines 27-2, 27-6

to 27-12
tool calls 27-3, 27-13 to 27-18

ACEBoot Ini t call 27-U
ACECompBegin call 27-13
ACECompress call 27-14 to 27-15
ACEExpand call 27-2, 27-16 to 27-17,

F-4
ACEExpBegin call 27-18
ACEinfo call 27-12
ACEReset call 27-10
ACEShutDown call 27-8
ACEStartUp call 27-7
ACEStatus call 27-11
ACEVersion call 27-9
ACIA (Asynchronous

Communications Interface
Adapter) 38-6, GL-1

ND Converter register 47-15
Adaptive Differential Pulse Code

Modulation (ADPCM) 27-4,
GL-1

how it works 27-5
AddResource call 45-35 to 45-36
AddToOOMQueue call 36-9
AddToQueue call 39-6
AddToRunQ call 29-U
ADSR (attack, decay, sustain, and

release) 41-3 to 41-U, GL-1

alert GL-2
alert strings 52-11 to 52-12

rAlertString resource type
E-3

AlertWindow call 52-6 to 52-12,
52-21 to 52-22

input string layout 52-6 to 52-9
alert windows 52-6 to 52-12, GL-2

example of 52-11 to 52-12
special characters in 52-10
standard sizes of 52-8
substitution strings 52-11 to 52-12

AllNotesOff call 41-19
AllocGen call 41-20
ANSI GL-2
Apple character, displaying 37-4
Apple Desktop Bus Tool Set 26-1 to

26-3, GL-2
device table GL-1
error corrections 26-2, F-2 to F-3

Apple menu GL-2
Apple Talk

and MIDI 38-22
network system GL-2
port driver auxiliary file type 42-2,

F-18
Apple III GL-3
Apple IIGS Interface Ubraries GL-2
Apple IIGS Programmer's Workshop

(APW) GL-2
Debugger GL-3
Editor GL-3
Linker GL-3
Shell GL-3

Apple II Pascal GL-2
Apple II Plus GL-2
application-switching routines 45-4,

45-27 to 45-28
AsyncADBReceive call 26-3, F-3

Asynchronous Communications
Interface Adapter (ACIA) 38-6,
GL-1

attributes word, resource 45-9 to
45-11

audio compression. See also ACE
expanding a compressed sample

27-16 to 27-17
of long samples 27-13
sizing resulting data 27-15
and sound quality 27-4 to 27-5
storing resulting data 27-14

Audio Compression and Expansion.
See ACE

auto-key events 31-6, GL-4
auto-repeat feature GL-4

B
background activity GL-4
Bank-Select/Table-Size/Resolution

register (DOC) 47-13 to 47-15
bank-switched memory GL-4
battery RAM GL-4
bit image GL-5
bitmap GL-5
bitmapped display GL-5
Boolean operator GL-5
bounds control definition procedure

routine 28-17
box, check. See check box; check box

control
box, dialog. See dialog box; dialog

box templates
box, size. See size box; size box

control
buffer sizing for MIDI l/0 38-24 to

38-25
Busy Box program G-1 to G-96

busy box. r module G-4 to G-77
Bus y . p module G-2 to G-3
uEvent. p module G-78 to G-82

uGlobals .p module G-83 to
G-85

uMenu. p module G-86 to G-88
uUtils .p module G-89 to G-91
uwindow. p module G-92 to

G-96
button control, icon. See icon button

control
button control, simple. See simple

button control

c
caching, menu 37-6 to 37-7
CalcMask call 44-3 to 44-7
CalcMenuSize call 37-3, F-15
CallCtlDefProc call 28-22 to

28-23
call format used in this book xxxii
callRoutine command 40-12
Cancel button GL-6
Caps Lock key GL-6
carry flag G L-6
case sensitive GL-6
CCITT GL-6
character code GL-6
check box GL-7
check box control 28-7

record (for extended) 28-95 to
28-96

template 28-50 to 28-51, E-15 to
E-16

ChooseFont call 32-2
Choose Font dialog box 32-2
classic desk accessory (CDA) 29-2 to

29-3
class 1 calls, Standard File Tool Set

48-2
Clear! ncr call 40-45
clipboard GL-7
clipping region GL-7
clock, MIDI 38-6 to 38-7, 38-23 to

38-24
clock chip GL-7
close box GL-7
CloseResourceFile call

45-37
CloseWindow call 52-2, F-26
ClrHeartBeat call 39-2 to 39-3,

F-17

CMLoadResource call 28-24
CMReleaseResource call

28-25
colon (:), as path separator character

48-3
colors, item text 35-2, F-11
color tables

Apple IIGS standard 43-2, F-19
menu bar 37-2, F-15
scroll bar 28-3, F-6
size box control 28-2, F-5
rWindColor resource type

E-72 to E-73
use of four bits in 28-4

command interpreter, Note
Sequencer as 40-6

Command key GL-7
CompileText call 52-23 to 52-25
completion routines, Note Sequencer

40-7
concatenate GL-8
content region GL-8
context sensitive GL-8
control command format, Note

Sequencer 40-11
control commands, Note Sequencer

40-11 to 40-16
control definition procedure

messages 28-13 to 28-21
control definition procedures

bounds routine 28-17
drag routine 28-14
event routine 28-14 to 28-15
for icon buttons 28-6
initialize routine 28-14
notify multipart routine 28-20
record size routine 28-14
tab routine 28-19
target routine 28-16
window change routine 28-1
window size routine 28-18

Control key GL-8
control list, rControlList resource

type E-6
Control Manager 28-1 to 28-128, GL-8

code example 28-81 to 28-86
control types supported 28-6
error codes 28-42
error corrections 28-2, F-5

new and changed controls 28-6 to
28-12

new features of 28-4 to 28-21
reference types for data 28-5
and resources 28-5 to 28-6
templates and records 28-43 to

28-128
and TextEdit controls 49-14 to

49-15
tool calls 28-22 to 28-41

Control Panel GL-9
control records

created by NewControl2 28-87
to 28-128

extended check box 28-95 to
28-96

extended radio button 28-110 to
28-111

extended scroll bar 28-112 to
28-113

extended simple button 28-93 to
28-94

extended size box 28-114 to
28-115

generic extended 28-87 to 28-92
icon button 28-97 to 28-99
LineEdit 28-100 to 28-101
list 28-102 to 28-103
picture 28-104 to 28-105
pop-up 28-106 to 28-109
static text 28-116 to 28-118
TextEdit 28-119 to 28-128

Control register (DOC) 47-12 to 47-13,
GL-9

control templates 28-7, GL-9
check box 28-50 to 28-51, E-15 to

E-16
icon button 28-52 to 28-54, E-17 to

E-20
keystroke equivalents 28-47 to

28-48
LineEdit 28-55 to 28-56, E-21 to

E-22
list 28-57 to 28-59, E-23 to E-25
picture 28-60 to 28-61 , E-26 to

E-27
pop-up 28-62 to 28-66, E-28 to

E-31
radio button 28-67 to 28-68, E-32

to E-33

scroll bar 28-69 to 28-70, E-34 to
E-35

simple button 28-48 to 28-49, E-13
to E-14

size box 28-71 to 28-72, E-36 to
E-37

standard header 28-43 to 28-47,
E-7 to E-11

static text 28-73 to 28-74, E-38 to
E-39

TextEdit 28-75 to 28-80, E-40 to
E-45

CountResources call 45-38
Count Types call 45-39
CreateResourceFile call 45-40
C string, restring resource type

E-46
ctlChangeBounds message 28-17
ctlChangeTarget message 28-16,

28-19
ctlFlag field, menu bar record

37-2, F-14
ctlHandleEvent message

28-14
ctlHandleTab message 28-19
ctlHilite field, menu bar record

37-2, F-14
ctlNotifyMul tiP art message

28-20
ctlWindChangeSize message

28-18
ctlWindStateChange message

28-21
custom item-drawing routines 48-5 to

48-6
custom menus, caching with 37-7
custom scroll bars 49-26
cut and paste 49-3

D
data structures

ftle type list record 48-9 to 48-10
Menu Manager 37-15 to 37-20
multifile reply record 48-8 to 48-9
new-style reply record 48-6 to 48-7
Resource Manager 45-78 to 45-79
Standard File 48-6 to 48-10
Window Manager 52-15 to 52-20

dead key sequences 31-3 to 31-4

DeallocGen call 41-21
decRegister command 40-18
default prefix GL-9
DeleteFromQueue call 39-7
DeleteHeartBeat call 39-3
dependencies, tool set 51-8 to 51-12
desk accessories 45-27 to 45-28, 52-4,

GL-10
Desk Manager GL-10
DeskMessage call 52-4
desk scrap GL-10
desktop environment GL-10
DetachResource call 45-41
device drivers, MIDI 38-6
dialog box GL-10
dialog box templates

Standard File 48-11 to 48-26
static text in 48-3

dialog item type values 30-2, F-7
Dialog Manager, error corrections

30-2, F-7
Digital Oscillator Chip (DOC) 38-2,

41-2, GL-10
registers 47-10 to 47-15
sample rate 47-9

dimmed icon GL-10
direct page GL-11
direct page memory, ACE tools use of

27-7
direct-page/stack space GL-11
direct register G L-11
disabled list items 35-2
disabling interrupts

and MIDI 38-22
and the Note Sequencer 40-4

dithering GL-11
dither pattern GL-11
DOC. See Digital Oscillator Chip (DOC)
documents, printing multiple copies

42-3
doEraseBuffer routine 49-18
doEras e Rect routine 49-17
doRectChanged routine 49-18
double click GL-11
double-click time GL-12
drag GL-12

control definition procedure
routine 28-14

drag region GL-12
DragWindow call 52-3

DrawinfoBar call 52-26
drawing modes 43-2, F-19
DrawMember2 call 35-5
drop sample tuning 47-10, GL-12

E
echo GL-12
edit record GL-12
editing calls 49-5
editing keys, TextEdit 49-11 to 49-13
editor GL-12
empty menus 37-4
EMShutDown call 31-2, F-8
EndFrameDrawing call 52-27
Enter key GL-12
envelope, sound 41-3 to 41-6, GL-12
error codes GL-12

ACE 27-19
Control Manager 28-42
MIDI 38-53
Note Sequencer 40-63
Note Synthesizer 41-27
Print Manager 42-15
Resource Manager 45-80
Standard File 48-42
TextEdit 49-134

error corrections for Volumes 1 and 2
F-1 to F-27

error handling, Note Sequencer 40-7
error messages 52-53 to 52-56
ErrorWindow call 52-28 to 52-29,

52-53 to 52-56
event control definition procedure

routine 28-14 to 28-15
Event Manager 31-1 to 31-7

error correction 31-2, F-8
startup 51-3

extended check box control record
28-95 to 28-96

extended controls 28-7, GL-12
extended radio button control record

28-110 to 28-111
extended scroll bar control record

28-112 to 28-113
extended simple button control

record 28-93 to 28-94
extended size box control record

28-114 to 28-115

F

FASTFONT flle 43-4
FFGeneratorStatus call 47-2,

F-21
FFSetUpSoundcall 47-17
FFSoundDoneStatus call 47-2,

F-21
FFStartplaying call 47-18
FFStartSound call 47-3 to 47-5,

F-22 to F-24
field GL-13
flle fonnat, resource 45-12
flle IDs, resource 45-12
filenames 48-2, GL-13
flle type list record data structure 48-9

to 48-10
fillerNote command 40-10
flller notes 40-10
fllter GL-13
filter procedures

generic 49-16 to 49-18
Standard File 48-4
TextEdit 49-15 to 49-21

FindTargetCtl call 28-26
flag GL-13
flag field, control template standard

header 28-45
flush GL-13
FMSetSysFont call 32-2, F-9
FMStartUp call 32-2
font class GL-13
font family GL-13
font header layout 43-5 to 43-6
FONT.LISTS file 32-2
Font Manager 32-1 to 32-5

and QuickDraw II Auxiliary 51-10
error corrections 32-2, F-9

font name display 32-3
font number GL-13
fonts GL-13

PostScript 42-3
scaled 32-2
Shaston 32-2, 43-4, F-9

free block GL-13
free-fonn synthesizer GL-13
FreeMem call, compared with

RealFreeMem 36-10
frequency 47-10

frequency registers (DOC) 47-11

G
GCB (Generator Control Blocks)

41-11 to 41-12
GCBRecord 41-12
GDRPri vate call 52-52
general logic unit (GLU) 47-8
Generator Control Blocks (GCB)

41-11 to 41-12
generators, sound 41-10 to 41-12, 47-9

active 47-2, F-21
generic fllter procedure 49-16 to 49-18
GetCodeResConverter call 39-8
GetCtlHandleFromiD call 28-27
GetCtliD call 28-28
GetCtlMoreFlags call 28-29
GetCtlParamPtr call 28-30
GetCurResourceApp call 45-42
GetCurResourceFile call 45-43
GetindResource call 45-44 to

45-45
GetindType call 45-46
GetinterruptState call 39-9
GetintStateRecSize call 39-10
GetKeyTranslation call 31-5,

31-7
GetLEDefProc call 34-4
GetLoc call 40-46
GetMapHandle call 45-47 to 45-48
GetMasterSCB call 43-4
GetMenuTitle call 37-6
GetMitem call 37-6
GetOpenFileRefNum call 45-12,

45-49 to 45-50
GetPopUpDefProc call 37-21
GetResourceAttr call 45-51
GetResourceSize call 45-52
GetROMResource call 39-10
GetSoundVolume call 47-2,

F-21
Get Timer call 40-47
GetVector call 39-3
GetWindowMgrGlobals call 52-30
GetWTitle call 52-5
glossary of terms GL-1 to GL-26
GLU (general logic unit) 47-8
GrafPort record 35-2, F-11, GL-14

fontFlags 44-2

graphics port GL-14
GS/OS

H

Standard File support for 48-2
class 1 input string E-4
class 1 output string E-5

handle GL-14
heap GL-14
HideMenuBar call 37-22
high-order byte GL-14
HomeResourceFile call 45-53
hook routines, TextEdit 49-15, 49-22

to 49-25
horizontal blanking interval G L-14

I
icon button control 28-8

record 28-97 to 28-99
and the system resource flle 28-6

template 28-52 to 28-54, E-17 to
E-20

icons GL-14
ricon resource type E-48

ifGo command 40-18
images, shadowing 43-4
incRegister command 40-19
index register GL-15
information window GL-15
initialize control definition procedure

routine 28-14
InitPalette call 37-2, F-15
input data routine, MIDI Tool Set

38-12
input templates, and Newcontrol2

28-43 to 28-80
insertion point GL-15

and selection range calls 49-4
Inser t Menu call 37-2, F-15
InsertMitem2 call 37-23
Installer GL-15
InstallWi thState call 32-4 to

32-5
Instrument data structure 41-7 to

41-10
instruments, Note Synthesizer 41-7 to

41-10
Integer Math Tool Set 33-1 to 33-2
intelligent cut and paste 49-3

interrupt state information 39-4 to
39-5

interrupts, disabling
and MIDI 47-16
and the Note Sequencer 40-4

interrupt state record layout 39-5
InvalCtls call 28-31
InvalRgn call 52-2, F-26
I/0 buffer sizing, MIDI 38-24 to 38-25
IRQ GL-15
item, list 35-2 to 35-3, F-11 to F-12
item-drawing routines, custom 48-5

to 48-6
item list GL-15
item numbers, passing list 35-4
item template, simple button controls

E-13 to E-14
IWM GL-15

J
job dialog GL-15
job subrecord fFromUsr field

42-2, F-18
journaling 31-2
journaling mechanism GL-15
journal record for mouse event 31-2
jump command 40-13
justification, text 49-3, GL-16

K
kern GL-16
kernel GL-16
keyboard event GL-16
keyboard input translation 31-3 to

31-4, 31-7
keyboard status information 26-3, F-3
KeyRecord structure 49-53 to

49-54
keystroke equivalents 28-4 to 28-5,

GL-16
record layout 28-47 to 28-48, E-12
in Standard File dialog boxes 48-4

keystroke filter procedure 49-19 to
49-21

keystroke translation table 31-3 to
31-4, 31-7

rKTransTable resource type
E-49 toE-50

L

language card GL-16
lasso tool

implementing with CalcMask
44-4

implementing with seedFill
44-11

LineEdit control record 28-100 to
28-101

LineEdit controls 28-8 to 28-9
LineEdit control template 28-55 to

28-56, E-21 to E-22
LineEdit edit record

layout 34-3
lePWCbar field 34-2

LineEdit Tool Set 34-1 to 34-4
LineTo call 43-2, F-19
list control record 28-102 to 28-103
list controls 28-9
list control template 28-57 to 28-59,

E-23 to E-25
list item

text colors 35-2, F-11
valid states 35-3, F-12

list item numbers, passing 35-4
List Manager 35-1 to 35-11
list member reference array element,

rListRef resource type E-51
list record GL-16
list record fields 35-2, F-11
list Type field scroll bar flag 35-4
LoadAbsResource call 45-54 to

45-55
LoadResource call 45-56 to 45-57
local coordinate system GL-16
Long2De c call 33-2, F-10

M
Macintosh Programmer's Workshop

(MPW) GL-17
macro GL-17
mainiD field 36-2, F-13
MakeNextCtlTarget call 28-15,

28-19, 28-32
MakeThisCtlTarget call 28-33
MarkResourceChange call 45-58
mask generation

with CalcMask 44-3

with SeedFill 44-8
MatchResourceHandle call 45-59

to 45-60
memory handle GL-17
Memory Manager 36-1 to 36-11

error correction 36-2, F-13
menu bar GL-17

default coordinates of 37-4
menu bar record

ctlFlag field 37-2, F-14
ctlHilite field 37-2, F-14
rMenuBar resource type E-55

MenuBarTemplate layout 37-20
menu caching 37-6 to 37-7
menu definition procedure G L-17
menu item GL-17
menu item template, rMenultem

resource type E-56 to E-57
MenuitemTemplate layout 37-15 to

37-17
MenuKey call 37-2, F-14
Menu Manager 37-1 to 37-32, GL-17

calls for pop-up menus 37-13
data structures 37-15 to 37-20
error corrections 37-2, F-14
tool calls 37-21 to 37-32

menu record GL-17
fields and flags 37-6
layout for cached menu 37-7

menus, empty 37-4
menu scrolling 37-5
MenuSelect call 37-2, F-14
MenuShutDown call 37-4
menu template GL-18

rMenu resource type E-52 toE-54
Menu Template layout 37-18 to

37-19
menu titles GL-18

positioning of 37-4
space characters in 37-3, F-15

MessageByName call 51-13 to 51-15
MessageCenter call 51-2, F-25
message control definition procedure

28-13 to 28-21
m flag GL-18
MidiBootini t call 38-26
midiChnlPress command 40-21
MIDI clock 38-6 to 38-7, 38-23 to

38-24
MidiClock call 38-33 to 38-35

MidiControl call 38-9, 38-16, 38-36
to 38-42, 40-5

MidiDevice call 38-43 to 38-45
Midiinfo call 38-46 to 38-48
MidiinputPoll call 38-22 to 38-23
MIDI (Musical Instrument Digital

Interface) 38-2, GL-18. See also
MIDI Tool Set and AppleTalk
38-22

application considerations 38-22
to 38-25

application environment 38-5
device drivers 38-6
housekeeping routines 38-3 to

38-4
I/0 buffer sizing 38-24 to 38-25
interfaces 38-25
and interrupts 47-16
loss of data 38-25
Note Sequencer command format

40-20
Note Sequencer commands 40-20

to 40-25
packet format 38-7 to 38-8
reading time-stamped data 38-16

to 38-19
starting up 38-14 to 38-19
using with the Note Sequencer

40-5
mictiNoteOff command 40-21
midiNoteOn command 40-22
midiP i tchBend command

40-14, 40-22
mi diPo lyKey command 40-22
midiProgChange command 40-23
MidiReadPacket call 38-23,

38-49 to 38-50
MidiReset call 38-30
midiSelChnlMode command

40-23
midiSetSysExl command

40-23
MidiShutDown call 38-28
MidiStartUp call 38-14, 38-27
MidiStatus call 38-31
midiSy sCommon command

40-24
midiSysExclusive command

40-24

midiSysRealTime command
40-25

MIDI Tool Set 38-1 to 38-53. See also
MIDI (Musical Instrument
Digital Interface)

calls 38-3 to 38-4, 38-32 to 38-52
dependencies 38-7
error codes 38-53
fast access to routines 38-20 to

38-21
housekeeping calls 38-26 to 38-31
input data routine 38-12
and other sound tool sets 38-23
output data routine 38-13
real-time command routine 38-10
real-time error routine 38-11
service routines 38-9 to 38-13
using 38-5 to 38-25

Midi Version call 38-29
MidiWri tePacket call 38-20 to

38-21, 38-23, 38-51 to 38-52
Miscellaneous Tool Set 39-1 to 39-12

calls 39-6 to 39-12
error corrections 39-2, F-16

Modifier key GL-18
moreFlags field, control template

standard header 28-46
mouse event GL-18
MoveTo call 43-2, F-19
MPW (Macintosh Programmer's

Workshop) GL-17
multifile calls 48-3
multifile dialog boxes 48-3
multifile reply record data structure

48-8 to 48-9
Musical Instrument Digital Interface

See MIDI
music tools, required versions 47-6

N
names

assigning to documents 42-3
resource 45-7

NewControl2 call 28-34 to 28-35
control records created by 28-87

to 28-128
creating a pop-up control with

37-13
check box control 28-7

code example 28-81 to 28-86
control templates 28-7
and data reference types 28-5
icon button control 28-8
input templates 28-43 to 28-80
and keystroke equivalents 28-5
LineEdit control 28-8 to 28-9
list control 28-9
picture control 28-9 to 28-10
pop-up menu control 28-10 to

28-11
radio button control 28-11
scroll bar control 28-11
simple button control 28-7
size box control 28-11
static text control 28-11 to 28-12
TextEdit control 28-12

new desk accessory (NDA), dialog box
support 29-2

NewList2 call 35-6 to 35-7
NewMenuBar call 37-4
NewMenuBar2 call 37-25 to 37-26
NewMenu2 call 37-24
new-style reply record 48-6 to 48-7
NewWindow2 call 52-31 tO 52-33
NextMember2 call 35-8
note commands 40-8 to 40-10

format 40-8 to 40-9
NoteOff call 41-3, 41-22
noteOff command 40-9
NoteOn call 41-3,41-23 to 41-24
noteOn command 40-9
Note Sequencer 40-1 to 40-63

callRoutine command
40-12

as a command interpreter 40-6
completion routines 40-7
control commands 40-11 to 40-16
decRegister command

40-18
error codes 40-63
error handling 40-7
housekeeping calls 40-37 to 40-44
housekeeping routines 40-2
ifGo command 40-18
incRegister command

40-19
introduction to 47-7
jump command 40-13
MIDI commands 40-20 to 40-25

midiChnlPress command
40-21

midiCtlChange command
40-21

midiNoteOff command
40-21

midiNoteOn command
40-22

midiPitchBend command
40-14, 40-22

midiPolyKey command
40-22

midiProgChange command
40-23

midiSelChnlMode command
40-23

midiSetSysExl command
40-23

midiSysCommon command
40-24

midiSysExclusive command
40-24

midiSysRealTime command
40-25

patterns and phrases 40-26 to
40-27

programChange command
40-15

register commands 40-17 to 40-19
sample program 40-28 to 40-36
setRegister command

40-19
setVibratoDepth command

40-16
startup 51-3
tempo command 40-15
tool calls 40-3, 40-45 to 40-62
turnNotesOff command 40-16
using 40-4 to 40-7
using with MIDI 40-5

Note Synthesizer 38-7, 41-1 to 41-27
error codes 41-27
generators 41-10 to 41-12
housekeeping calls 41-13 to 41-18
housekeeping routines 41-2
instruments 41-7 to 41-10
introduction to 47-8
sound envelope 41-5 to 41-6
timer oscillator 40-7
tool calls 41-3, 41-19 to 41-26

notify multipart control definition
procedure routine 28-20

NotifyCtls call 28-36, 52-5
NSBootinit call 41-13
NSReset call 41-17
NSSetUpdateRate call 41-25
NSSetUserUpdateRtn call 41-26
NSShutDown call 41-15
NSStartUp call 41-14
NSStatus call 41-18
NSVersion call 41-16
null event GL-19

0
Open Apple key GL-19
Open button, multifile dialog boxes

48-3
Open File dialog box templates 48-12

to 48-17
320 mode 48-15 to 48-17
640 mode 48-12 to 48-14

OpenResourceFile call 45-12,
45-61 to 45-62

Option key GL-19
organization of this book xxx
oscillator 47-8
Oscillator Enable register 47-15
Oscillator Interrupt register 47-15
outline text style 37-5
out-of-memory queue 36-2 to 36-8,

GL-19
out-of-memory routines 36-2 to 36-8,

GL-19
code example 36-6 to 36-8
header 36-4

output data routine, MIDI Tool Set
38-13

override GL-19

p

PackBytes call 39-2, F-16
packet format, MIDI 38-7 to 38-8
page GL-19
paint bucket tool

implementing with SeedFill
44-9

implementing with Undo 44-10
parameter GL-20
parameter block GL-20

parameter list GL-20
Pascal, Apple II GL-2
Pascal string, rPString resource

type E-59
Pascal string array, rStringList

resource type E-61
password fields 34-2
pathnames, Standard File 48-2
path separator character (:) 48-3
pattern filling 43-4
patterns GL-20

Note Sequencer 40-26 to 40-27
pen modes 43-2, F-19
pen state record 43-2, F-20
phrase done flag 40-26
phrases, Note Sequencer 40-26 to

40-27
picture GL-20
picture control record 28-104 to

28-105
picture controls 28-9 to 28-10
picture control template 28-60 to

28-61, E-26 to E-27
picture data 43-3
picture header, QuickDraw 43-3, F-20
PinRect call 52-2, F-26
pixel GL-20
PMLoadDriver call 42-4
PMStartup call 42-3
PMUnloadDriver call 42-5
pointer GL-20
PointinRect call 43-4
pop-up control record 28-106 to

28-109
pop-up control template 28-62 to

28-66, E-28 to E-31
pop-up menu controls 28-10 to 28-11
pop-up menus 37-8 to 37-14, GL-21

how to use 37-12 to 37-14
Menu Manager calls for 37-13
scrolling options 37-10 to 37-12

PopUpMenuSelect call 37-12,
37-14, 37-27 to 37-28

port driver auxiliary file type,
AppleTalk 42-2, F-18

PostScript fonts, LaserWriter support
for 42-3

PrChoosePrinter call 42-3
prefix number GL-21
PrGetDocName call 42-6

PrGetNetworkName call 42-10
PrGetPgOrientation call 42-7
PrGetPortDvrName call 42-11
PrGetPrinterDvrName call 42-12
PrGetPrinterSpecs call 42-8
PrGetUserName call 42-13
PrGetZoneName call 42-14
PRINTER.SETUP file 42-3
printing multiple document copies

42-3
Print Manager 42-1 to 42-15

error codes 42-15
error corrections 42-2, F-18
tool calls 42-4 to 42-14

PrJobDialog call 42-2, F-18
procRef field, control template

standard header 28-45
programChange command

40-15
PrPicFile call 42-2, F-18
PrPixelMap call 42-2, F-18
PrSetDocName call 42-9
purgeable block GL-21
purge status of installed fonts 32-4 to

32-5

Q
QDStartUp call 43-4 to 43-5
Quagmire register GL-21
queue GL-21
queue handling 39-3 to 39-4
queue header layout 39-4
QuickDraw GL-21
QuickDraw picture, rP ict ure

resource type E-58
QuickDraw picture header 43-3, F-20
QuickDraw II 43-1 to 43-6

error corrections 43-2, F-19
speed enhancement 43-4 to 43-5
startup 51-3

QuickDraw II Auxiliary 44-1 to 44-15
and the Font Manager 51-10
startup 51-3

quoting mechanism GL-21

R
radio button control 28-11

record (extended) 28-110 to
28-111

template 28-67 to 28-68, E-32 to
E-33

rAlertString resource type
E-3

RAM, battery GL-4
rClinputString resource type E-4
rClOutputString resource type

E-5
rControlList resource type

E-6
rControl Template resource type

E-7 to E-45
restring resource type E-46
rCtlColorTbl resource type

E-46
ReadDOCReg call 47-19 to 47-20
ReadKeyMicroData call

ReadConfigRec 26-2, F-2
readConfig command 26-2,

F-2
ReadMouse Miscellaneous call

31-2
ReadMouse2 call 39-11
ReadResource call 45-22 to

45-23
RealFreeMem call 36-10
real-time command routine, MIDI

Tool Set 38-10
real-time error routine, MIDI Tool Set

38-11
record size control definition

procedure routine 28-14
records. See control records
record and text -management calls

49-4
reference types GL-22

for Control Manager data 28-5
register commands 40-17 to 40-19

format 40-17
registers, DOC 47-10 to 47-15
regular tabs 49-3
ReleaseResource call 28-6, 45-63
ReleaseROMResource call 39-12
relocatable block GL-22
RemoveCDA call 29-7
RemoveFromOOMQueue call 36-11
RemoveFromRunQ call 29-8
RemoveNDA call 29-9
RemoveResource call 45-64

reply record data structure 48-6 to
48-7

rErrorString resource type
E-47

ResetMernber2 call 35-9
ResizeWindow call 52-5, 52-34
resource access routines 45-3
resource attributes 45-9 to 45-11
ResourceBootinit call 45-29
resource compiler GL-22
ResourceConvertercall

45-21, 45-65 to 45-66
resource converter routines 45-21 to

45-26
resource data structures 45-14 to

45-20
resource file routines 45-4
resource ftles 45-5, GL-22

ftle IDs 45-5 to 45-7, 45-12, GL-22
format 45-12
header 45-16
layout 45-14 to 45-20
search chain 45-13 to 45-14
search sequence 45-13 to 45-14

resource fork GL-22
resource free block 45-19
resource maintenance routines 45-3
Resource Manager 45-1 to 45-80

access routines 45-3
application-switching routines

45-4
constants 45-77
data structures 45-78 to 45-79
error codes 45-80
me routines 45-4
housekeeping routines 45-2, 45-29

to 45-34
maintenance routines 45-3
tool calls 45-35 to 45-76

resource map 45-17 to 45-18, GL-22
resource name array, rResName

resource type E-60
resource names 45-7, GL-22
resource reference record 45-20
ResourceReset call 45-33
resources 45-2, 45-5, GL-22

attributes word 45-9 to 45-11
and the Control Manager 28-5 to

28-6
identifying 45-5

I

using 45-8
ResourceShutDown call 45-31
ResourceStartUp call 45-30
ResourceStatus call 45-34
resource type numbers, table of E-2
resource types 45-5 to 45-6, E-1 to

E-78, GL-22
ResourceVersion call 45-32
ReturnDiskSize call 45-26
ricon resource type E-48
rKTransTable resource type

E-49 to E-50
rListRef resource type E-51
rMenuBar resource type E-55
rMenuitem resource type E-56 to

E-57
rMenu resource type E-52 to E-54
rPicture resource type E-58
rPString resource type E-59
rResName resource type E-60
rStringList resource type E-61
rStyleBlock resource type E-62 to

E-63
rTERuler resource type E-64 to

E-65
rTextBlock resource type E-67
rTextForLETextBox2 resource

type E-68
rText resource type E-66
rToolStartup resource type

E-69 to E-70
rTwoRects resource type E-71
run item header 29-4
run items 29-3 to 29-4, GL-22
run queue 29-3, GL-22
example 29-5
rWindColor resource type E-72 to

E-73
rWindParaml resource type E-74 to

E-77
rWindParam2 resource type E-78

s
sample rate (DOC) 47-9
Save File dialog box templates 48-18

to 48-26
320 mode 48-23 to 48-26
640 mode 48-19 to 48-22

SaveTextState call 51-2, F-25

scaling pictures 28-10
Scheduler 46-1
scroll arrow GL-23
scroll bars GL-23

control definition procedure 28-4
color table 28-3, F-6
control record (extended) 28-112

to 28-113
control template 28-69 to 28-70,

E-34 to E-35
controls 28-11
custom 49-26

scroll box GL-23
scrolling menus 37-5
search chain resource file 45-13 to

45-14
search sequence resource file 45-13 to

45-14
seedFill call 44-8 to 44-14
SelectMember2 call 35-10
SendEvent ToCt 1 call 28-37 to

28-38
and LineEdit controls 28-9
and pop-up menu controls 28-10

SeqAllNotesOff call 40-48
SeqBootini t call 40-37
seqltem format 40-6
seqltems, patterns of 40-26
SeqReset call 40-43
SeqShutDown call 40-41
SeqStartUp call 40-38 to 40-40
SeqStatus call 40-44
sequence timing, Note Sequencer

40-4
SeqVersion call 40-42
SetAutoKeyLimit call 31-6
SetBarColors call 37-2, F-15
SetCtliD call 28-39
SetCtlMoreFlags call 28-40
SetCtlParamPtr call 28-41
SetCtlParams call 28-2, F-5
SetCurResourceAppcall

45-67
SetCurResourceFile call 45-68
SetDefaultTPT call 51-2, 51-16
SetDitemType call 30-2, F-7
SetDOCReg call 47-21 to 47-22
SetHandleSize call 36-2, F-13
Setincr call 40-49
SetinstTable call 40-50

SetinterruptState call
39-12

SetKeyTranslation call 31-7
SetMenuBar call 37-2, F-14
SetMenuTitle2 call 37-29
SetMitemName2 call 37-31
SetMitem2 call 37-30
SetOriginMask call 52-3
SetPenMode call 43-2, F-19
setRegister command 40-19
SetResourceAttr call 45-69
SetResourceFileDepthcall

45-70
SetResourceiDcall
SetResourceLoad call 45-72
SetSysBar call 37-2, F-14
Set TextMode call 43-2, F-19
SetTrkinfo call 40-51
SetUserSoundiRQV call 47-6
Set Vector call 39-3
setVibratoDepth command

40-16
SetWTi tle call 52-5
SetZoomRect call 52-2, F-26
SFAllCaps call 48-27
SFGetFile2 call 48-28 to 48-29
SFMultiGet2 call48-30 to 48-31
SFPGetFile2 call 48-32 to 48-33
SFPMultiGet2 call 48-34 to

48-35
SFPPutFile2 call 48-36 to 48-37
SFPutFile2 call 48-38 to 48-39
SFReScan call 48-40
SFShowinvisible call 48-41
shadowing of screen images 43-4,

GL-23
shadow text style 37-5
Shaston font 32-2, 43-4, F-9
ShowMenuBar call 37-32
ShutDown Tools call 51-3 to

51-7, 51-17
signature words, Miscellaneous data

structures 39-2, F-16
simple button control

record (extended) 28-93 to 28-94
template 28-48 to 28-49, E-13 to

E-14
size box GL-23
size box control 28-11

color table 28-2, F-5

record (extended) 28-114 to
28-115

template 28-71 to 28-72, E-36 to
E-37

Si zeWindow call 52-5
Slot Arbiter 50-2
slot number GL-23
smart cut and paste 49-3
soft switch GL-24
SortList2 call 35-11
sound

introduction to 47-7
moving from Macintosh to Apple

IIGS 47-4, F-24
SoundBootinit call 47-6
sound buffer GL-24
sound compression. See audio

compression
sound envelope 41-3 to 41-6, GL-12
sound general logic unit (GLU) 47-8
sound generators, active 47-2, F-21
sound and music tools, required

versions 47-6
sound RAM 47-10
Sound Tool Set 47-1 to 47-22

error corrections 47-2, F-21
tool calls 47-17 to 47-22

SpecialRect call 44-15
stack GL-24
stack register GL-24
Standard File Operations Tool Set

48-1 to 48-42
data structures 48-6 to 48-10
dialog box templates 48-11 to

48-26
error codes 48-42
filenames and pathnames 48-2
filter procedures 48-4
keystroke equivalents in dialog

boxes 48-4
support for GS/OS 48-2
tool calls 48-27 to 48-42
use of prefJXes 48-2

StartFrameDrawing call
52-35

Startints call 40-52
Start Seq call 40-7, 40-53 to 40-54
StartSeqRel call 40-55 to 40-59

sample with relative addressing
40-58 to 40-59

StartStop record 51-3 to 51-5
StartUpTools call 51-3, 51-6 to

51-7, 51-18 to 51-19
static text

control record 28-116 to 28-118
controls 28-11 to 28-12
control template 28-73 to 28-74,

E-38 to E-39
in dialog box templates 48-3

StepSeq call 40-4, 40-60
Stopints call 40-61
stopSeq call 40-62
Style Item structure 49-55
SuperBlock structure 49-56
SuperHandle structure 49-57
Super Item structure 49-58

T
tab control definition procedure

routine 28-19
Tabitem structure 49-59
tabs, TextEdit 49-3
target control 28-5, GL-24
target control definition procedure

routine 28-16
target record 49-2
TaskMaster call, pseudocode for

52-36 to 52-45
TaskMasterContent call

52-46 to 52-47
TaskMasterDA call 52-48
TaskMasterKey call 52-49 tO 52-52
TaskMaster result codes 52-13 to 52-14
task record structure 52-17 to 52-20
TEActi vate call 49-68
tear-off menu GL-25
TEBootinit call 49-62
TEClear call 49-69
TEClick call 49-70 to 49-71
TEColorTable structure 49-28 to

49-30
TECompactRecord call 49-72
TECopy call 49-73
TECut call 49-74
TEDeact i vate call 49-75
TEFormat structure 49-31 to 49-32
TEGetDefProc call 49-76
TEGetinternalProc call

49-77

TEGetLastError call 49-78
TEGetRuler call 49-79 to 49-80
TEGetSelection call 49-81
TEGetSelectionStyle call 49-82

to 49-84
TEGet Text call 49-85 to 49-88
TEGetTextinfo call 49-89 to 49-91
TEidle call 49-92
TEinsert call 49-93 to 49-95
TEKey call 49-96 to 49-97
TEKill call 49-98
templates. See control templates
tempo command 40-15
TENew call 49-99 to 49-100
TEOffsetToPoint call 49-101 to

49-102
TEPaintText call 49-103 to

49-105
TEParamBlock structure 49-33 to

49-38
TEPaste call 49-106
TEPointToOffset call 49-107 to

49-108
TERecord call 49-3
TERecord structure 49-42 to 49-52
TEReplace call 49-109 to 49-111
TEReset call 49-66
TERuler structure 49-39 to 49-40
TEScroll call 49-112 to 49-113
TESetRuler call 49-114 to 49-115
TESetSelection call 49-116
TESetText call 49-117 to 49-119
TEShutDown call 49-64
TEStartUp call 49-63
TEStatus call 49-67
TEStyleChange call 49-120 to

49-122
TEStyle structure 49-41
TEUpdate call 49-123
TEVersion call 49-65
text blocks

rText resource type E-66
rTextBlock resource type

E-67
TextBlock structure 49-60
text controls, static 28-11 to 28-12
text display and scrolling calls 49-5
TextEdit constants 49-124 to 49-125
TextEdit control record 28-119 to

28-128

TextEdit controls 28-12
pseudocode for 49-6 to 49-8
and the Control Manager 49-14 to

49-15
TextEdit control template 28-75 to

28-80, E-40 to E-45
TextEdit data structures 49-27 to 49-61

high-level 49-28 to 49-41
low-level 49-42 to 49-61
table of 49-126 to 49-133

TextEdit records 49-2, GL-25
creating and controlling 49-6 to

49-11
pseudocode for creating 49-9 to

49-10
TextEdit ruler information,

rTERuler resource type
E-64 to E-65

TextEdit style information,
rStyleBlock resource type
E-62 to E-63

TextEdit Tool Set 49-1 to 49-134
calls 49-68 to 49-123
editing calls 49-5
error codes 49-134
filter procedures and hook

routines 49-15 to 49-25
housekeeping routines 49-4, 49-62

to 49-67
insertion point and selection range

calls 49-4
internal structure of 49-14 to 49-26
miscellaneous routines 49-5
record and text-management calls

49-4
ruler information E-64 to E-65
standard key sequences 49-11 to

49-13
style information E-62 to E-63
text display and scrolling calls 49-5

text justification 49-3
QuickDraw II Auxiliary 44-2

TextList structure 49-61
text substitution in static text display

28-11
Text Tool Set 50-1 to 50-2
timer oscillator, Note Synthesizer 40-7
time-stamped data, reading MIDI

38-16 to 38-19
timing, Note Sequencer 40-4 to 40-5

titles, window 52-3, F-27
TLShutDown call 51-2
toolbox GL-25
toolbox code example G-1 to G-96
tool call format used in this book

x:xxii
Tool Locator 51-1 to 51-19

calls 51-13 to 51-19
error correction 51-2, F-25

tool sets GL-25
loading from disk 51-2
table of dependencies 51-8 to

51-12
table of numbers 51-6 to 51-7
StartStop record 51-3 to

51-5
startup and shutdown 51-3 to 51-5

tool start -stop record,
rToolStartup resource type
E-69 to E-70

turnNotesOff command 40-16
type-ahead buffer GL-25
typographical conventions used in

this book xxxi
type 1 pop-up menu 37-10, GL-25
type 2 pop-up menu 37-10, GL-25

u
UniqueResourceiD call 45-73 to

45-74
UnPackBytes call 39-2, F-16
update event GL-25
UpdateResourceFile call 45-75
user 10 GL-25

v
voice 47-9
Volume register (DOC) 47-12

W,X,Y
waveform 47-10
Waveform Data Sample register

(DOC) 47-12
Waveform Table Pointer register

(DOC) 47-12
WindNewRes call 52-2, F-26
window change control definition

procedure routine 28-16

window color table, rWindColor
resource type E-72 to E-73

window definition function GL-26
Window Manager 52-1 to 52-56,

GL-26
data structures 52-15 to 52-20
error corrections 52-2, F-26
tool calls 52-21 to 52-52

window port control fields 28-3, F-6
window record structure 52-15 to

52-16
window size control definition

procedure routine 28-18
window template

rWindParaml resource type
E-75 to E-77

rWindParam2 resource type
E-78

window titles 52-3, F-27
word break hook routine 49-24 to

49-25
word wrap hook routine 49-22 to

49-23
WriteRAMBlock call 41-3
Wri teResource call 45-24 to 45-25,

45-76

z
zero page GL-26
zoom box GL-26

THE APPLE PUBLISHING SYSTEM
This Apple manual was written,
edited, and composed on a
desktop publishing system
using Apple Macintosh®
computers and
Microsoft® Word software.
Proof and final pages were
created on the Apple
LaserWriter® printers. Line art
was created using Adobe
Illustrator™. POSTSCRIPT®, the
page-description language for
the LaserWriter, was developed
by Adobe Systems
Incorporated.
Text type and display type are
Apple's corporate font, a
condensed version of
Garamond. Bullets are lTC Zapf
Dingbats®. Some elements,
sudi as program listings, are set
in Apple Courier.

