
�����		������
����������������������� ���
������		���

	���������������
�������
���������������

Exploring---
Apple GS/OS
andProDOS 8

GARY B. LITTLE

...
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts • Menlo Park, California • New York •
Don Mills, Ontario • Wokingham, Englan d • Amsterdam • Bonn •
Sydney • Singapore • Tokyo • Madrid • San Juan

Many of the designa tions used by manufacturers and se llers to distinguish the ir products are
cla imed as trademarks. Where those designa tions appear in this book and Addison-Wesley
was aware of a trademark cla im, the designa tions have been printed in initia l capita l le tters.

Apple , the Apple logo, AppleTa lk, D isk II, DuoD isk, and ProD O S are registered trademarks
of Apple Computer, Inc. Apple Iles, Apple DeskTop Bus, Macintosh, SAN E , and Unidisk are
trademarks of Apple Computer, Inc.

Library of Congress C a ta loging-in-Publication Da ta
Little , G ary B ., 1954-

Exploring Apple G S/O S and ProD O S 8 / G ary B . Little .
p. cm.

B ibliography: p.
Includes index.
ISBN 0-201-15008-5 : $21.95
1. ProD O S (Computer opera ting system) I. T itle .

Q A76.76.063L563 1989
005.4'469—dcl9 88-17470

CIP

Copyright © 1988 by G ary B . Little

A ll rights reserved. No part of this publica tion may be reproduced, stored in a re trieva l
system, or transmitted, in any form or by any means, e lectronic, mechanica l, photocopying,
recording, or otherwise , without the prior written permission of the publisher. Printed in the
United S ta tes of America . Published simultaneously in C anada .

Cover design by Doliber Ske fflngton
Text design by Kenne th S . W ilson
Se t in 10-point C a ledonia by Publica tion Services

AB C D E F G HIJ-AL-89
F irst printing, January, 1989

This book is dedicated to my father

James Douglas Little

About the Author

Gary Little resides in Belmont , California . Originally
from Vancouver, British Columbia , he is a founding
member of Apple's British Columbia Computer Society
and the famous SAGE organization . Gary is the author of
several books for programmers of Apple computers: In-
side the Apple Ile, Inside the Apple Ile , Exploring the
Apple Iles , and Mac Assembly Language: A Guide for
Programmers. He also wrote Point-to-Point, the award-
winning Apple II telecommunications program , and de-
veloped the international Binary II file format standard.

V

P R E F A C E

I’ve been a fan of ProD O S since Apple first re leased the 8-bit version in early 1984.
(This version is now ca lled ProD O S 8, and it works on a ll Apple II mode ls; the 16-bit
version, G S/O S , works on the Apple IIg s only.) Now, a lmost five years la ter, having
written two ma jor ProD O S 8 applica tions and severa l G S/O S and ProD O S 8 disk
utilities, I’m sa tisfied tha t I fully understand how these opera ting systems work, so it’s
time to share my knowledge with you.

Some of the more interesting topics I cover in this book are

• How the ProD O S file system organizes files on disks

• How to use G S/O S and ProD O S 8 commands to perform disk opera tions

• How the BASIC .SYST EM (Applesoft) interpre ter works in a ProD O S 8
environment

• How to write and insta ll your own BASIC .SYST EM disk commands

• How to write G S/O S and ProD O S 8 system programs

• How to communica te with a SmartPort disk controller

• How G S/O S and ProD O S 8 manage interrupts from I/O devices

• How to write and insta ll ProD O S 8 disk and clock drivers

• How to communica te with character devices like the keyboard and the video
screen using the G S/O S Console Driver

This book is intended as a re ference for intermedia te to advanced programmers since
I presume you are reasonably familiar with Applesoft BASIC and 6502/65816 assem�
bly language . Even if you’re not, you should find the descriptions of how G S/O S and
ProD O S 8 handle files and manage periphera l devices use ful and revea ling.

I’ve included severa l programming examples throughout the book to highlight
important concepts and to he lp make the concepts easier to understand. One of these
programs is for reading or writing any da ta block on a disk so tha t you can easily
explore the interna l structures of directories and files; another crea tes a high-speed
ProD O S 8 RAMdisk using an area of the Apple H ’s ma in memory for block storage;
and there are many more . The ProD O S 8 6502 assembly language programs were
deve loped using the Merlin 8/16 assembler (from Roger Wagner Publishing); for the
G S/O S 65816 assembly-language programs, I used the assembler in the Apple IlG S

vii

Programmer’s Workshop (from the Apple Programmer’s and Deve loper’s Associa tion).
I review some of the unique fea tures of these assemblers in Appendix I; read this
appendix if you are using a different assembler and want to convert the source listings.

Severa l specia lized topics I re fer to in this book are not expla ined in grea t de ta il
because they rea lly have little to do with ProD O S 8 or G S/O S itse lf. For more
informa tion on these topics, re fer to my earlier books, Exploring the Apple IIg s (which
expla ins how to use lies tool se ts), Inside the Apple lie , and Inside the Apple lie . The
first book is published by Addison-Wesley and the last two by Brady/Prentice Ha ll
Press. See Appendix III for a bibliography of other use ful re ference ma teria l.

Be aware tha t this book is not a tutoria l on how to use the standard Applesoft disk
commands tha t the ProD O S 8 BASIC .SYST EM interpre ter provides. Nor does it
describe ProD O S 16 (an early version of G S/O S) in any de ta il. If you require books on
these topics, I suggest you read Apple’s own BASIC Programming W ith ProD O S
(Addison-Wesley, 1985) and Apple IIg s ProD O S 16 Re ference (Addison-Wesley, 1987).
Instead, I concentra te on the G S/O S and ProD O S 8 commands tha t are accessible
from assembly-language programs only.

F ina lly, there is no need to manua lly enter the programs listed in the book. Instead,
you can order a disk directly from me tha t conta ins these programs (in both source and
object code forma ts) as we ll as some additiona l bonus utility programs (described in
Appendix IV). For ordering informa tion, see the last page of the book.

* * *

My thanks to Ma tt Dea therage of the Apple II Deve loper Technica l Support group a t
Apple Computer, Inc. for his inva luable comments on the technica l content of this
book prior to publica tion. Ma tt he lped keep me honest and accura te , two tra its one
needs to write a use ful re ference book for software deve lopers.

Thanks in advance to C arole A lden, S teve S tanse l, Linda O ’Brien, and Abby
G enu th of Addison-Wesley who did a superb job in deve loping, marke ting, and se lling
my last book, Exploring the Apple IIg s . I know you’ll do just as good a job aga in.

G ary B . Little
Be lmont, C a lifornia , U .S .A .
September 1988

viii

C O N T E N T S

Pre face

C HAPT E R 1 An Introduction to G S/O S and ProD O S 8 1

Apple II Opera ting Systems—A H istory 2

Comparing ProD O S 8 with D O S 3.3 4
Important F ea tures of ProD O S 8 and BASIC .SYST EM 5

Comparing G S/O S with ProD O S 8 10

C HAPT E R 2 D isk Volumes and F ile Management 13

Naming F iles 13

D irectories and Subdirectories 14
Pre fixes 16

Fundamenta l F ile-Handling Concepts 17
Opening a F ile 18 • Reading and Writing a F ile 19 • C losing a F ile 19

G S/O S D isk C aching 19

ProD O S F ile Management 21

Forma tting the D isk Medium 21

D isk Volumes and D isk Drives 22

D isk Volume B lock Usage 22

The Volume B it Map 23

Volume D irectories and Subdirectories 25
The D irectory Header 26 • S tandard D irectory Entries 26 • F ile Type
Codes 26 • F ile Access Codes 35 • T ime and Da te Forma ts 37

Organiz ing F ile Da ta 37
Indexing Schemes 38 • Extended F iles 39 • Sparse F iles 41

The R E AD .BLO C K Program 43

C HAPT E R 3 Loading and Insta lling G S/O S and ProD O S 8 49

The Boot Record 49

The ProD O S 8 Boot 50

ProD O S 8 Memory Usage 51
Bank-Switched RAM 51 • Auxiliary Memory 53 • Page Zero Usage 54

• Page Two Usage 54 • Page Three Usage 54

ix

The ProD O S 8 System G loba l Page: $B F00-$B F F F 55
The System B it Map 55 • The Machine Identifica tion Byte 56 • Source
Listing of the ProD O S 8 G loba l Page 57

G S/O S System D isks 57

The G S/O S Boot 65

G S/O S Memory Usage 67

C HAPT E R 4 G S/O S and ProD O S 8 Commands 71

Using ProD O S 8 MLI Commands 72

Using G S/O S Commands 76
S tack-Based C a lling Me thod 80

G S/O S and ProD O S 8 Error Handling 80

Command Descriptions 82
C lass 0 and C lass 1 Input S trings 82 • C lass 0 and C lass 1 Output Buffers 87
• Pre fixes 88 • Access Code 88 • T ime and Da te 88 • F ile Type Code 89
• ProD O S 16 Considera tions 89 • ALLO C INT E RRUPT 90 •
BeginSession 92 • B indlnt 93 • ChangePa th 95 • C learBackup 97 •
C lose , CLO S E 99 • Crea te , C R E AT E 101 • D Control 105 •
D E ALLO C_ INT E RRUPT 107 • Destroy, D E STR O Y 109 • DInfo 112 •
DRead 116 • DS ta tus 118 • DWrite 120 • EndSession 122 •
EraseD isk 123 • ExpandPa th 125 • F lush, FLUSH 126 • Forma t 128 •
F STSpecific 130 • G e tBootVol 132 • G E T_BU F 134 •
G e tDevNumber 136 • G e tD irEntry 138 • G e tE O F , G E T E O F 143 •
G e tF ile lnfo, G E T FILE IN F O 145 • G e tF STInfo 149 •
G e tLeve l 151 • G e tMark, G E T MARK 152 • G e tName 154 •
G e tPre fix, G E T_PR E FIX 156 • G e tSysPre fs 158 • G E T_TIME 159 •
G e tVersion 160 • NewLine , N E WLIN E 162 • Null 164 •
O N LIN E 165 • Open, O P E N 168 • O SShutdown 172 • Quit,
Q UIT 173 • Read, R E AD 182 • R E AD BLO C K 185 • R E NAME 188

• Rese tC ache 190 • SessionS ta tus 191 • S E T_BU F 192 • Se tE O F ,
S E T_E O F 194 • Se tF ile lnfo, S E T_FILE_IN F O 197 • Se tLeve l 202

• Se tMark, S E T MARK 203 • Se tPre fix, S E T PR E FIX 205 •
Se tSysPre fs 208 • Unbindlnt 209 • Volume 210 • Write , WRIT E 213 •
WRIT E BLO C K 216

C HAPT E R 5 System Programs 219

The S tructure of a G S/O S System Program 220
Entry Conditions 220

The S tructure of a ProD O S 8 System Program 222

The BASIC .SYST EM Interpre ter 225
The BASIC .SYST EM Commands 226 • F ile Management Commands 228
• F ile Loading and Execution Commands 232 • F ile Input/Output
Commands 233 • Misce llaneous Commands 235

BASIC .SYST EM and the Input and Output Links 236

Reserving Space Above the F ile Buffers 237

BASIC .SYST EM Page Three Usage 238

The BASIC .SYST EM G loba l Page: $B E00-$B E F F 240
The G O SYST EM Subroutine 240

BASIC .SYST EM Error Handling 248

Executing D isk Command S trings from Assembly Language 248

Adding Commands to BASIC .SYST EM 250
The O NLIN E Command 255

C HAPT E R 6 Interrupts 265

Common Interrupt Sources 266

Reacting to Interrupts 266

Interrupts and ProD O S 8 268
Interrupts During MLI Commands 274

Interrupts and G S/O S 276
G S/O S Interrupt Handling 281 • Handling Interrupts When the System
Is Busy 282

C HAPT E R 7 D isk Devices 287

How G S/O S and ProD O S 8 Keep Track of D isk Devices 288
G S/O S Device Scan 288 • ProD O S 8 Device Scan 288

How G S/O S and ProD O S 8 Identify D isk Devices 291

Extended Protocol for D isk Controller C ards 292
Specia l C ases 294

Communica ting with a ProD O S 8 D isk Driver 294

The SmartPort Controller 295
Using SmartPort Commands 297 • S ta tus Command 298 • Control
Command 300

The ProD O S 8 RAMdisk: The /RAM Volume 301
Characteristics of the /RAM Volume 301 • Removing and Re insta lling
/RAM 303

Writing a ProD O S 8 D isk Driver 305

C HAPT E R 8 C locks 317

How G S/O S and ProD O S 8 Read the T ime and Da te 318

How ProD O S 8 Identifies a C lock C ard 320

Writing and Insta lling a ProD O S 8 C lock Driver 321

T ime/Da te U tility Programs 322
An Applesoft T ime and Da te Variable 322 • Se tting the T ime and Da te
on a C locldess Apple 327

C HAPT E R 9 G S/O S Character Devices 329

G S/O S Commands for Character Devices 329

Keyboard Input 330
The Input Port 332 • UIR Editing 334 • Termina tor Characters 335

V ideo Output 336
Control Commands 337 • Multiple W indows 337

Device Commands 338
D Control Subcommands 338 • DS ta tus Subcommands 342

Console Driver Programming Example 343

APP E NDIX I Using Assemblers 353

Merlin 8/16 353

APW Assembler 354

APP E NDIX II ProD O S blocks and D O S 3.3 Sectors 357

APP E NDIX III B ibliography 359

G S/O S and ProD O S 8 Re ference Books 359

Apple II Technica l Re ference Books 359

65816 Assembly-Language Books 360

APP E NDIX IV The Program D isk 361

The DISK .MAP Program 362

The PR O TIME Program 362

The PR O TYP E Program 363

The SMARTP O RT Program 364

xii

Exploring-----
Apple GS/OS
andProDOS 8

C HAPT E R 1

An Introduction
to G S/O S and
ProD O S 8

In this book, we take a close look a t the two standard disk opera ting systems for the
Apple II family of computers: G S/O S (Apple IlG S/Opera ting System) and ProD O S 8
(Professiona l D isk Opera ting System, S-bit version).

G S/O S is the primary disk opera ting system for the Apple IlG S with R OM version
01 or higher. It does not run on any other mode l in the Apple II family. G S/O S takes
advantage of the advanced fea tures of the 16-bit 65816 microprocessor in the IlG S ,
such as the powerful instruction se t and the ability to directly address 16Mb of
memory. It is the successor to ProD O S 16, an interim IlG S opera ting system which
Apple provided from the introduction of the IlG S in September 1986 to September
1988. For the sake of compa tibility, G S/O S supports a ll ProD O S 16 commands, so
older applica tions written to run under ProD O S 16 will a lso run properly under G S/O S .

ProD O S 8 works with the Apple II P lus, He , and lie . It a lso works on a IlG S
running in Ile/IIc emula tion mode , and you can switch be tween it and G S/O S if
G S/O S was the opera ting system you booted from. ProD O S 8 is a fa irly simple 8-bit
opera ting system tha t works in the 6502 (or 65C02) microprocessor’s 64K memory
space only. Nearly every ProD O S 8 command has a G S/O S equiva lent, but the me thod
used to invoke the command is different, a t least for assembly-language programs.

G S/O S and ProD O S 8, like a ll opera ting systems, manage the flow of da ta to and
from a storage medium, such as a 5.25- or 3.5-inch floppy disk or a hard disk. (G S/O S
a lso manages character devices like the keyboard and the video hardware .) They do
this by transla ting the high-leve l disk commands an applica tion program uses into the
low-leve l instructions needed to communica te directly with the disk drive controller.

The opera ting system a lso de fines the da ta structures used to store groups of
re la ted da ta , ca lled files, on the disk; the directories where it stores the names of files
(and other file a ttributes); the me thod it uses to keep track of wha t parts of the
medium are in use; the me thod it uses to load itse lf from disk; and re la ted ma tters.

1

G S/O S and ProD O S 8 work we ll with a ll disk devices Apple se lls for the Apple II
family: the Apple 5.25 Drive (and its predecessors), the HD20S C hard disk, the
UniD isk 3.5 and the Apple 3.5 Drive , the Apple II Memory Expansion card (a
RAMdisk device), and the Apple C D S C C D-R OM drive . ProD O S 8 expects the media
used in these devices to be forma tted for the ProD O S file system, but G S/O S
understands fore ign file systems as we ll (if you provide it with the file system
transla tor files described be low).

The two standard drives for Apple II computers are the 5.25-inch drive (140K
capacity) and the 3.5-inch drive (800K capacity). They interface to the system through
a cable connected to a disk controller card plugged into one of the slots a t the back of
the Apple lies. He , or II P lus (slot 6 is recommended for 5.25-inch drives; slot 5 for
3.5-inch drives). On a ll but the first mode l of the slotless Apple lie , the disk control �
lers for both types of drives are built in. The lies a lso has a built-in disk drive port for
both types of drives; you can use it instead of two separa te plug-in controller cards.

Apple’s 20Mb hard disk, the HD20S C , works with a ll members of the Apple II
family except the Apple lie . Unlike a floppy drive , its magne tic medium cannot be
removed from the drive unit. This device can access informa tion much more quickly
and hold much more of it than a 5.25- or 3.5-inch drive . It interfaces to the Apple II
through a S C SI (Sma ll Computer System Interface) controller card, one quite dif �
ferent from the one used with floppy drives.

APPLE II O P E RATIN G SYST EMS-A HIST O RY

When the Apple II debuted in 1977, the casse tte recorder was the only mass-storage
device ava ilable to its users. The reason was simple: The origina l Apple II had a
built-in casse tte port tha t made it convenient and simple to hook up a recorder, but an
Apple-compa tible disk drive and controller had ye t to be invented.

Working with norma l casse tte tape as a storage medium is no trea t. The program
storage and loading ra te is very slow, and you’re never sure if glitches on the tape
have rendered the program unreadable until it’s too la te to recover. Furthermore , files
on casse tte tape cannot be named or automa tica lly accessed by the Apple II, so you
must keep me ticulous written records of wha t programs are stored where so tha t you
can properly position the tape by hand.

S teve Wozniak, the inventor of the Apple II, was apparently as frustra ted with
casse tte tape as everyone e lse . In the winter of 1977-1978, he designed a disk
controller periphera l card for a standard disk drive unit tha t was la ter to be ca lled the
D isk II. A t the same time , Bob Shepardson, and la ter Randy W igginton, D ick Huston,
and R ick Auricchio, were busy writing a disk opera ting system tha t would make it easy
for programmers to crea te , organize , and access files on the 5.25-inch disk medium
tha t the disk drive uses.

Apple eventua lly shipped the D isk II, its controller card, and the first re leased
version of the disk opera ting system (D O S 3.1) in the early summer of 1978. (The D isk
II was la ter renamed the UniD isk, then the Apple 5.25 Drive .) This was probably the

2 An Introduction to G S/O S and ProD O S 8

most important event in the early history of Apple because it meant, for the first time ,
use ful business software could be written for the Apple II. Such software needs to
crea te and manipula te large da tabase files quickly and easily, a fea t tha t would be next
to impossible if casse tte tapes were used instead of disks.

Severa l changes were made to D O S 3.1 in the months following its initia l re lease to
fix the inevitable bugs tha t wriggled to the surface . D O S fina lly stabilized a t version
3.2.1 by mid-1979. This early version of D O S forma tted disks with 35 da ta tracks and
with 13 256-byte da ta sectors per track (for a tota l of 113.75K of storage , where IK =
1024 bytes). In fact, the program in R OM on the disk controller card could start up (or
boot) only disks using this specific 13-sector forma t.

Apple a lso re leased its Pasca l opera ting system in 1979. This system manages files
quite differently from e ither D O S 3.x or ProD O S . To transfer a Pasca l textfile to a
D O S disk (and vice versa), you can use utility programs ava ilable from commercia l
sources and user groups.

Apple upgraded D O S 3.2.1 substantia lly in 1980 to support the new 16-sector-
per-track forma tting scheme used by Apple Pasca l. The result was D O S 3.3, a version
still current when Apple re leased ProD O S 8 in early 1984. The forma tting change a lso
forced a change in the R OM boot program on the disk controller card. The ma in
advantage of switching to the new forma tting scheme was tha t disks could hold an
additiona l 16.25K of informa tion (for a tota l of 140K). The ma in disadvantage was tha t
D O S 3.3 could not read files directly from a D O S 3.2.1-forma tted disk (and D O S 3.2.1
disks could not be directly booted). Fortuna te ly, Apple supplied a program ca lled
MU F FIN for transferring files from the old disk forma t to the new one and another
program ca lled B O O T13 for booting D O S 3.2.1 disks with a 16-sector drive controller.

Apple first re leased ProD O S 8, then ca lled simply ProD O S , in January 1984. It
runs on any Apple lie , Apple lie , or Apple IlG S or on an Apple II P lus with a 16K
memory card insta lled in periphera l slot zero. It a lso runs on the origina l Apple II
with a 16K memory card if the Applesoft language , not the Integer BASIC language ,
is insta lled in R OM. W ith the re lease of ProD O S 8, Apple served notice tha t it would
no longer re lease new software products tha t use D O S 3.3 and urged independent
software deve lopers to do the same . Neverthe less, D O S 3.3 rema ins a popular oper�
a ting system, particularly among deve lopers of educa tiona l software , and new pro �
grams tha t use it are still quite common.

A ProD O S 8-compa tibIe controller card for the 5Mb ProF ile hard disk tha t Apple
had re leased a couple of years earlier for use with its Apple III system a lso came out
in January 1984. On bootup, ProD O S 8 automa tica lly recognizes the presence of the
ProF ile and interacts with it just as if it were another 5.25-inch disk device (except
tha t ProD O S 8 knows the ProF ile has a much grea ter storage capacity). The interna l
structure of the ProD O S file system is such tha t it can easily dea l with even higher-
capacity devices; it supports a volume size of up to 32Mb.

Apple la ter replaced the ProF ile with the 20Mb HD20S C hard disk, a Sma ll
Computer Systems Interface (S C SI) device . It connects to the system through the
Apple II S C SI interface card.

Apple II Opera ting Systems—A H istory 3

In September 1985, the UniD isk 3.5 drive made its first appearance . Its medium is
a 3.5-inch, removable , hard-she ll disk with a storage capacity of 800K . ProD O S 8
automa tica lly recognizes its controller card on bootup, so there is no need to insta ll a
specia l driver. (Apple la ter began shipping a version of the lie with a built-in
controller for the UniD isk 3.5.) Apple a lso re leased an expansion slot Apple II
Memory Expansion card, which ProD O S 8 recognizes as a RAMdisk on bootup.

Apple announced the Apple IlG S in September 1986. A t this time , Apple renamed the
origina l ProD O S as ProD O S 8 and re leased ProD O S 16, an opera ting system specifica lly
for the IlG S . A lthough ProD O S 16 forma ts disks and stores files on disk in the same way
as ProD O S 8 (meaning the two can co-exist on one disk), they are incompa tible a t the
programming leve l. Apple re leased ProD O S 16 to take advantage of the full 16Mb
memory space the 65816 uses; ProD O S 8 works in a minima l 64K memory space only.

W ith the lies, came the Apple 3.5 Drive , another drive tha t uses 800K , 3.5-inch,
hard-she ll disks. The difference be tween it and the UniD isk 3.5 is tha t it doesn’t have
the inte lligent processor built in to the UniD isk 3.5, and it works on the IlG S only.

Another version of the lie debuted in September 1986. This one has a connector
you can a ttach a memory expansion card to. Like the Apple II Memory Expansion
card, ProD O S 8 recognizes this card as a RAMdisk.

In September 1988, Apple began providing G S/O S , a new Apple IlG S opera ting
system intended to replace ProD O S 16. S ince G S/O S understands a ll ProD O S 16
commands, a ll ProD O S 16-based programs will work just fine under G S/O S . But
G S/O S a lso supports a new se t of opera ting system commands tha t is much more
powerful than the ProD O S 16 se t. One important new fea ture of G S/O S is tha t it is
can access disks forma tted for the standard ProD O S file system and disks forma tted
for fore ign file systems like H igh S ierra (for C D-R OMs), H F S (used by the Macin�
tosh), and MS-D O S . Access to fore ign opera ting systems is enabled by putting file
system transla tor (F ST) modules on the G S/O S system disk. In the initia l re lease of
G S/O S , Apple provided F STs for the ProD O S and H igh S ierra file systems.

Another mode l of the lie , the Apple lie P lus, a lso came out in September 1988. It
fea tures a built-in 3.5-inch drive tha t works with ProD O S 8.

E arly versions of ProD O S 8 suffered from severa l minor but annoying bugs tha t
were removed in la ter versions. As of this writing, the current version is 1.7. G S/O S , a
much more complex opera ting system, is not now nearly as stable as ProD O S 8. Apple
re leases new versions about twice a year.

C OMPARIN G PR O D O S 8 WITH D O S 3.3

D O S 3.3 is made up of two ma in modules: the I/O (input/output) driver, which commu�
nica tes directly with a 5.25-inch disk controller, and the Applesoft command interpre ter,
which parses and executes the Applesoft disk commands tha t D O S 3.3 provides (O P E N ,
R E AD , C ATALO G , and so on). The equiva lent modules in ProD O S 8 are split into two
program files ca lled PR O D O S (the I/O driver) and BASIC .SYST EM (the Applesoft
command interpre ter). On many applica tion disks, PR O D O S automa tica lly loads

4 An Introduction to G S/O S and ProD O S 8

BASIC .SYST EM when the disk starts up. Thus it is necessary to compare D O S 3.3 with
the PR O D O S-BASIC .SYST EM combina tion and not simply with PR O D O S proper.

Table 1-1 gives short descriptions of the Applesoft disk commands tha t BASIC . �
SYST EM and D O S 3.3 provide . Most of these commands are ava ilable in both
environments, but some are unique to one or the other. In genera l, the BASIC . �
SYST EM versions of the duplica ted commands are more powerful than the ir D O S 3.3
counterparts because they support more command parame ters. (We review these
parame ters in Chapter 5.) Moreover, some commands behave slightly differently in
one system from how they behave in the other.

Not surprisingly, the more powerful PR O D O S-BASIC .SYST EM environment oc �
cupies a lot more memory space than D O S 3.3 does; in fact, it uses a lmost twice as
much space . Fortuna te ly, most of ProD O S 8 resides in a 16K bank-switched RAM
space tha t does not conflict with the space the Applesoft interpre ter uses. This space is
built in to an Apple lie , lie , and IlG S and can be added to an Apple II or Apple II
P lus by insta lling a 16K memory card in slot zero. Two side e ffects of the use of this
space by ProD O S 8 are tha t ProD O S 8 cannot function with a program tha t uses the
memory card for da ta storage or with Integer BASIC , the origina l version of Apple
BASIC . In a D O S 3.3 environment, Integer BASIC loads into the same bank-switched
RAM area ProD O S 8 uses and then is se lected by throwing a specia l software-
controlled switch.

The other ma jor difference be tween D O S 3.3 and BASIC .SYST EM is in the
handling of file buffers. A file buffer is a memory area an open file uses; it holds the
da ta conta ined in the active part of the file as we ll as informa tion de fining the loca tion
of the file on the disk. When D O S 3.3 first starts up, it automa tica lly se ts up three
such buffers; a different number (from 1 to 16) can be reserved using a command
ca lled MAX FILE S . The D O S 3.3 file buffers are each 595 bytes long and are stored
be tween the top of the Applesoft program space (this address is stored a t $73/$74 and
is ca lled HIMEM) and the start of the D O S 3.3 code (a t $9D00).

ProD O S 8, on the other hand, initia lly se ts up no file buffers; it dynamica lly
a lloca tes and de-a lloca tes file buffers as files are opened and closed. When a file is
opened, ProD O S 8 lowers HIMEM by 1024 bytes and assigns the buffer to the
1024-byte space beginning a t HIMEM +1024. When a file is closed, the file buffers
be low its own are repositioned, and then HIMEM is ra ised by 1024 bytes. (A tota l of
e ight files can be open simultaneously.) Because ProD O S 8 uses this dynamic space
a lloca tion me thod, it is not possible to use the D O S 3.3 technique of reserving a sa fe
space for an assembly-language program by lowering HIMEM and storing the pro �
gram be tween the current and previous HIMEMs. But there is an a lterna tive me thod
for free ing up space above HIMEM, and we examine it in Chapter 5.

Important F ea tures of ProD O S 8 and BASIC .SYST EM

A PR O D O S-BASIC .SYST EM environment supports severa l use ful fea tures tha t im�
prove program execution speed and permit easy integra tion of non-Apple devices into
the system. Here are some of the more important fea tures.

Comparing ProD O S 8 with D O S 3.3 5

Table 1-1 Comparing the BASIC .SYST EM and D O S 3.3 Applesoft disk commands

Command Description
Ava ilability

ProD O S 8 D O S 3.3

APP E ND Opens a file and prepares to add da ta to it Yes Yes

BLO AD Loads a file (usua lly binary) Yes Yes

BRUN Loads and executes an assembly-language
program tha t is in a binary file

Yes Yes

BSAV E Saves a file (usua lly binary) Yes Yes

C ATALO G Lists a ll the files on the medium (long form) Yes Yes

CLO S E C loses a file Yes Yes

D ELE T E De le tes a file Yes Yes

E X E C Executes commands from a textfile Yes Yes

IN# Redirects character input Yes Yes

LO AD Loads an Applesoft program Yes Yes

LO C K Locks a file Yes Yes

N OMO N [Permitted but ignored under ProD O S 8] Yes Yes

O P E N Opens a file Yes Yes

P O SITIO N Prepares to read from or write to a specific
position in the file

Yes Yes

PR# Redirects character output Yes Yes

R E AD Reads from a file Yes Yes

R E NAME Renames a file Yes Yes

RUN Loads and executes an Applesoft program
(or, if no filename is specified, executes the
program in memory)

Yes Yes

SAV E Saves an Applesoft program Yes Yes

UNLO C K Unlocks a file Yes Yes

V E RIF Y Checks for the existence of a file; if no
filename is specified, displays a copyright
notice

Yes Yes

WRIT E Writes to a file Yes Yes

6 An Introduction to G S/O S and ProD O S 8

z

Table 1.1 Continued

Ava ilability
Command Description ProD O S 8 D O S 3.3

N O T E S:

“You can cha in Applesoft programs under D O S 3.3 by loading and ca lling a subroutine ca lled C HAIN tha t
is stored on the D O S 3.3 master disk.

bYou can use the Applesoft F R E command to garbage-collect under D O S 3.3 (and ProD O S 8). It executes
much more slowly than the corresponding ProD O S 8 command, however.

cUnder ProD O S 8, you forma t a disk using a separa te program on the ProD O S 8 master disk (e ither F iler or
System U tilities).

- (dash) Executes an Applesoft, binary, text, or
system file

Yes No

BY E Transfers control to another system program Yes No

C AT Lists the files on the medium (short form) Yes No

C HAIN Transfers control to another Applesoft
program while ma inta ining the current
variables

Yes Noa

C R E AT E Crea tes a file (usua lly a directory file) Yes No

FLUSH Writes the contents of a file buffer to the
medium

Yes No

F R E Performs Applesoft garbage collection Yes Nob

PR E FIX Se ts up the name of the active directory Yes No

R E ST O R E Restores Applesoft variables from a file Yes No

ST O R E Saves Applesoft variables to a file Yes No

F P Initia lizes Applesoft mode No Yes

INIT Forma ts a disk Noc Yes

INT Initia lizes Integer BASIC mode No Yes

MAX FILE S Crea tes space for file buffers No Yes

MO N Enables the display of D O S opera tions No Yes

Machine Language Interface . Probably the most important fea ture of ProD O S 8 is
the specia l disk command interpre ter, ca lled the machine language interface (MLI),
which a llows easy access to files using assembly-language programming techniques.
D O S 3.3 has no such interface and is very cumbersome to dea l with a t this leve l. The

Comparing ProD O S 8 with D O S 3.3 7

MLI commands perform such standard file-handling chores as opening, reading,
writing, and closing. The ca lling parame ters for each command have been care fully
de fined by Apple . We take a close look a t the MLI in Chapter 4.

Da te-S tamping of F iles. Whenever ProD O S 8 crea tes or writes to files, it reads the
current time and da te from a clock device (if one is insta lled in the system) and stores
the informa tion in the file’s directory entry on disk. When the disk is ca ta loged, the
time and da te of crea tion and of last modifica tion appears next to the filename .
ProD O S 8 works with the built-in IlG S clock and clock cards tha t emula te the
command se t of the Thunderware Thunderclock. As we see in Chapter 8, it is possible
to insta ll clock drivers for other types of clock cards as we ll.

D isk Controller C ard and Device Driver Protocols. One annoying tra it of D O S 3.3
is tha t it is very difficult to integra te fore ign disk devices (non-Apple-brand hard disks,
higher-density floppy disk drives, and so on) into the system. Not so with ProD O S 8.
Apple has published a disk controller protocol recognized by ProD O S 8 tha t permits
such devices to be automa tica lly insta lled a t bootup time . This protocol de fines the
addresses in the disk controller card R OM space a t which informa tion re la ting to the
size of the volume , the characteristics of the volume , and the address of the disk driver
subroutine responsible for performing disk I/O opera tions is stored. Apple has a lso
de fined how to pass parame ters to a ProD O S 8 disk driver subroutine and how the
driver re turns error codes to the ca ller. We see how to write a disk driver subroutine
in Chapter 7.

Improved Interrupt Handling. In Chapter 6, we see tha t ProD O S 8 automa tica lly
insta lls its own interna l interrupt-handling subroutine tha t takes control whenever an I/O
device genera tes an active IR Q (interrupt request) signa l. This subroutine will, in turn,
ca ll subroutines you can insta ll to service such interrupts. This means it is very simple to
integra te an interrupt subroutine even though another one may a lready be active .

H ierarchica l D irectory S tructure . Using ProD O S 8, it is possible to crea te severa l
directories, each of which can conta in severa l files, on one disk. This a llows a common
group of files to be conveniently arranged in one directory for easier access. The
directories are organized so tha t each is conta ined within another (ca lled the parent);
the pa th of directories ultima te ly leads back to the root directory (a lso ca lled the
volume directory). The root directory is the one crea ted and named when the disk is
first forma tted. We ana lyze the hierarchica l structure of directories in Chapter 2.

/RAM D isk Device . The Apple IlG S , Apple lie , and Apple He (with an extended
80-column text card) have 64K of auxiliary memory in addition to the 64K of ma in
memory norma lly used for program storage . ProD O S 8 uses this memory space for file
storage just as if it were storage space on a floppy disk or hard disk. The RAM medium

8 An Introduction to G S/O S and ProD O S 8

is ca lled a RAMdisk. The ma in differences be tween using the RAMdisk and conven �
tiona l disk media are tha t I/O opera tions execute much more quickly (a fter a ll, there
are no mechanica l parts to move about) and tha t the RAMdisk vanishes when you turn
the power off. As we see in Chapter 2, each disk in the system has a name associa ted
with it (the volume name). The volume name for the RAMdisk is /RAM. We examine
the characteristics of /RAM in Chapter 7. We a lso examine the /RAM5 RAMdisk you
can se t up on an Apple IlG S . This RAMdisk uses memory on a card you put in the
IIg s ’s specia l memory expansion slot.

Extensibility of BASIC .SYST EM. The BASIC .SYST EM program de fines a reason �
ably simple me thod you can use to add more commands to the BASIC .SYST EM
command se t. We see how to do this in Chapter 5.

“Separa tion of Powers.” Unlike D O S 3.3, the low-leve l ProD O S 8 command inter�
pre ter tha t performs a ll fundamenta l disk I/O opera tions is not mixed with the
BASIC .SYST EM interpre ter tha t provides the se t of “English” disk commands used in
an Applesoft program. This means if you wish to write another language interpre ter,
or a 100 percent assembly-language program, you can save about 12K of memory
space by loading it instead of BASIC .SYST EM.

the Inte lligent Run Command. The “dash” command is a BASIC .SYST EM com�
mand very popular with people who do not like to type . It executes e ither an
Applesoft program file (just as RUN does), a binary file (BRUN), or a textfile (E X E C)
by automa tica lly de termining wha t type of file has been specified and then performing
the steps needed to execute such a file . Dash can a lso execute system program files
like BASIC .SYST EM. (See Chapter 5 for a description of system programs. Brie fly, a
system program is a standa lone assembly-language program tha t de fines a program�
ming environment or one tha t performs a specific function without re lying on the
presence of another system program.)

Use ful Parame ters. Many BASIC .SYST EM commands support use ful parame ters
tha t a llow grea ter control (than possible with D O S 3.3) over how they are to be
executed. For example , you can use the , @ # suffix (where # represents a line
number) with the BASIC .SYST EM RUN command to load a program and then run it
beginning a t any line number. Moreover, you can use the , E# suffix (where #
represents a memory address) to specify an ending address when using a binary file
command (BLO AD and BSAV E). You can a lso use a ,T type suffix with BLO AD or
BSAV E to work with any type of file other than standard BIN (binary) files, (type is the
three-character mnemonic for the file type: BAS for BASIC , BIN for binary, TXT for
text, and so on.) One other use ful new parame ter is , F#; when reading a textfile , use
it to skip over a specified number of fie lds (a fie ld is a group of characters followed by
a carriage re turn). We discuss parame ters recognized by BASIC .SYST EM in Chapter 5.

Comparing ProD O S 8 with D O S 3.3 9

Speed. ProD O S 8 performs disk I/O opera tions on a 5.25-inch disk a t the ra te of
about 8K bytes per second. This is significantly faster than the D O S 3.3 ra te of about
IK bytes per second. Furthermore , BASIC .SYST EM includes a version of the F R E
command tha t garbage-collects Applesoft string variables much faster than the Apple �
soft command of the same name; BASIC .SYST EM a lso garbage-collects automa tica lly,
be fore the slow Applesoft routine has a chance to do so. W ith BASIC .SYST EM,
garbage collection never takes more than a few seconds, whereas under D O S 3.3, it
can take severa l minutes. (See Chapter 4 of Inside the Apple lie for a description of
the garbage collection process.)

F ile S ize and Volume S ize . ProD O S 8 can dea l with files tha t hold up to 16Mb and
with block-structured (disklike) devices tha t hold up to 32Mb of informa tion. D O S 3.3
volumes cannot exceed 400K .

C OMPARIN G G S/O S WITH PR O D O S 8

The fundamenta l difference be tween G S/O S and ProD O S 8 is, of course , tha t G S/O S
works on the Apple IlG S only. This is because G S/O S is written in 65816 assembly
language , and it uses Ilcs-specific tool se ts like the Memory Manager and the System
Loader. A lthough most G S/O S commands have ProD O S 8 equiva lents, severa l unique
commands make G S/O S a much richer programming environment.

Listed be low are the most important differences be tween the G S/O S and ProD O S
8 programming environments.

1. A G S/O S applica tion can ca ll G S/O S commands from anywhere within the 16Mb
memory space of the 65816. A ProD O S 8 applica tion can ca ll ProD O S 8 com�
mands from the first 64K of memory only.

2. G S/O S applica tions are stored in re loca table load files, meaning they can be
loaded and run a t any memory loca tion. ProD O S 8 applica tions are simple binary
images of program code , so they genera lly run a t only one memory loca tion. (It is
possible to write re loca table ProD O S 8 applica tions, but it makes programming so
difficult tha t most programmers don’t bother trying.)

3. G S/O S applica tions use the Apple IlG S Memory Manager tool se t to ensure they
won’t use memory areas a lready in use by other system resources. ProD O S 8
applica tions are responsible for the ir own memory management, so programmers
must be aware of wha t areas ProD O S 8 occupies.

4. G S/O S has 33 pa thname pre fixes tha t can be re ferred to by specia l shorthand names
like 1/ or 28/. ProD O S 8 has only one pa thname pre fix (ca lled the de fault pre fix').

5. G S/O S identifies disk devices by name , whereas ProD O S 8 identifies them by slot
and drive number.

10 An Introduction to G S/O S and ProD O S 8

6. G S/O S has a built-in disk-forma tting command (Forma t) and a built-in ca ta loging
command (G e tD irEntry). ProD O S 8 does not.

7. G S/O S has a command tha t le ts you move files from one directory to another
(ChangePa th). ProD O S 8 does not.

8. Under G S/O S , an applica tion can de termine its own name with the G e tName
command. ProD O S 8 has no similar command a lthough an applica tion can deduce
its name by inspecting a pa thname buffer.

9. G S/O S has an enhanced Quit command tha t an applica tion can use to pass control
directly to the system program tha t ca lled it, to pass control to any specified
system program, or to ca ll another system program a lmost as if it were a subrou �
tine . The ProD O S 8 Q UIT command can pass control only to a ProD O S 8
program se lector.

10. G S/O S can crea te and dea l with extended files, but ProD O S 8 cannot. Extended
files (some times ca lled resource files) are made up of two logica l parts: a da ta fork
and a resource fork. The da ta fork genera lly conta ins applica tion-specific da ta , and
the resource fork genera lly conta ins a group of da ta structures, ca lled resources,
tha t de fine such things as icons, text strings, and a lert box templa tes.

11. G S/O S uses file system transla tors (F STs) to provide an applica tion with transpar�
ent access to disk volumes tha t use non-ProD O S file systems, such as H igh S ierra
for C D-R OM or Macintosh H F S , as we ll as the ProD O S file system. ProD O S 8
only works with disks forma tted for the ProD O S file system.

12. G S/O S le ts an applica tion access character-oriented devices, like the video screen,
keyboard, modem, and printer, using the same types of commands you would use
to access disk files. Under ProD O S 8, the applica tion must use comple te ly
different techniques to access character-oriented devices, many of which require
an understanding of the low-leve l hardware interface .

13. G S/O S accesses disks faster than ProD O S 8 because it uses disk-caching techniques
and more e fficient 65816 code . It can a lso forma t disks with a lower block interleave
ra tio (2:1 instead of 4:1), thus improving the e ffective da ta transfer speed.

14. G S/O S a llows an unlimited number of open files and active volumes, and it
imposes no limit on the number of devices per slot. ProD O S 8 a llows only 8 open
files, 14 active volumes, and 2 devices per slot.

15. G S/O S , because it uses file system transla tors, can access non-ProD O S volumes
up to 2048Gb (gigabytes) in size and can dea l with files up to 4096Mb long.
ProD O S 8 volumes cannot exceed 32Mb, and files cannot be longer than 16Mb.

16. G S/O S does not come with a BASIC language interpre ter equiva lent to ProD O S
8’s BASIC .SYST EM program.

Comparing G S/O S with ProD O S 8 11

C HAPT E R 2

D isk Volumes
and F ile
Management

In this chapter, we familiarize you with the concept of a file and expla in how the
ProD O S file system organizes files on the disk drive medium. You need to know the
de ta ils of the ProD O S file system if you want to be tter comprehend the interna l
G S/O S and ProD O S 8 file-handling commands described in Chapter 4. (G S/O S works
with non-ProD O S file systems as we ll, but most users will be using it with disks
forma tted for the ProD O S file system.)

The concept of a file is fundamenta l to a ll disk opera ting systems. A file is just a
collection of da ta tha t can de fine an executable program, a le tter to the editor, a
spreadshee t templa te , or any other document a program can dea l with. The genera l
structure of a file is de fined by the opera ting system itse lf; the opera ting system a lso
provides the various commands for accessing the file in different ways: crea te , open,
read, write , close , destroy, rename , and so on.

NAMIN G FILE S

When you first save a file to disk, you must assign it a unique filename tha t a program
can use to identify it therea fter. A ProD O S filename can be up to 15 characters long.
It must begin with an a lphabe tic le tter (A to Z), but the other characters may be any
combina tion of le tters, digits (0 to 9), and periods (.). You can use lowercase le tters,
too, but ProD O S 8 and G S/O S automa tica lly convert them to uppercase when dea ling
with the ProD O S file system. Here are some examples of va lid ProD O S filenames:

F O RM.LE TT E R

C O NTRA C T .3

C HAPT E R . F O UR

13

Here are some examples of inva lid filenames and the reasons they are inva lid:

5. E ASY .PIE C E S starts with a number

E XPLO RIN G MARS conta ins an illega l space

THIS&THAT conta ins an illega l &

THIRD A .ND .TW ELV E too long

A common mistake tha t arises in naming files is the use of the space as a word separa tor
(as in the second example). This is permitted with D O S 3.3 but not ProD O S . Periods, not
spaces, must be used to separa te words in a filename to improve readability. Some pro �
grams, like AppleWorks, a llow users to enter spaces in filenames, but they interna lly con �
vert the spaces to periods be fore using the filenames with opera ting system commands.

G S/O S , of course , can work with disk volumes tha t have been forma tted for fore ign
opera ting systems (such as Macintosh H F S , MS-D O S , and H igh S ierra) if the appro �
pria te file system transla tor files are on the boot disk. The naming rules for these file
systems are different from those for the ProD O S file system. Macintosh H F S , for
example , a llows names up to 31 characters long; these names can conta in any print �
able AS C H character except the colon. Re fer to the appropria te opera ting system
re ference manua ls for the naming rules for other opera ting systems.

DIR E C T O RIE S AND SUBDIR E C T O RIE S

When you save a ProD O S file to disk, you can store it in any one of severa l directories
tha t may have been crea ted on the disk. These directories are ana logous to file folders
in tha t they are often used to hold groups of re la ted files. (In fact, they are often
re ferred to as folders instead of directories.) For example , you may crea te one
directory to hold word processing documents, and another to hold Applesoft programs.
The ability to crea te separa te directories on the same disk makes it much easier to
e fficiently organize large numbers of files.

When you first forma t a disk, only one directory, the volume directory or root
directory, exists; you name it as part of the forma tting procedure . (The rules for
naming directories are the same as for naming standard files.) The volume directory
for a ProD O S-forma tted disk can hold the names of up to 51 files (whereas a D O S 3.3
directory can hold 105 files).

You can crea te additiona l directories (ca lled subdirectories) within the volume
directory using the G S/O S or ProD O S 8 Crea te command. Indeed, you can even
crea te subdirectories within subdirectories. A subdirectory can hold the names of as
many files as you wish to store in it, a lthough a t some point the disk will become full.
This system of nested directories is ca lled a hierarchica l directory structure . Most
modem file systems, including Macintosh H F S , MS-D O S (version 2.x and higher),
and C D-R OM’s H igh S ierra , use similar hierarchica l directory structures.

14 D isk Volumes and F ile Management

To specify the directory a file is to be saved in, you norma lly add a specia l pre fix to
the filename to crea te a unique identifier ca lled a pa thname . A pa thname comprises
the names of a series of directories, beginning with the name of the volume directory
and continuing with the names of a ll the directories you must pass through to reach
the targe t directory, followed by the filename itse lf. E ach directory name is separa ted
from the next by a specia l separa tor character, and a separa tor must precede the name
of the volume directory.

Under G S/O S , the separa tor character can be e ither a slash (/) or a colon (:). Under
ProD O S 8, it must be a slash. We use the slash as the separa tor character in the
following discussion.

The directory names in a pa thname cha in must de fine a continuous pa th —tha t is,
each directory specified must be conta ined within the preceding directory. For exam�
ple , suppose a disk has a volume directory ca lled BAS E BALL and two subdirectories
within BAS E BALL ca lled AME RIC AN and NATIO NAL. (F igure 2-1 shows such a
directory arrangement.) If you want to save a file ca lled NY .YANK E E S in the AME R�
IC AN subdirectory, you would specify the following pa thname:

/BAS E BALL/AME RIC AN/NY .YANK E E S

If you had specified the name NY .YANK E E S itse lf, the file would have been saved in
the current directory, which is usua lly the volume directory (unless it has been
changed using the Se tPre fix command described next).

Under G S/O S , you can specify a device name , instead of a volume directory name ,
when forming a pa thname . Device names begin with a period (.) and can be be tween
2 and 31 characters long. Examples of device names are .S C SI1, .D E V4, and
.APPLE DISK3.5A . If the NY .YANK E E S file in the above example is on the disk in
the drive whose device name is .S C SI1, you could identify it with the following
pa thname instead:

.S C SI1/AME RIC AN/NY.YANK E E S

This technique cannot be used with ProD O S 8 because ProD O S 8 does not use
device names.

As we saw above , the separa tor for a G S/O S pa thname can be a slash or a colon, but
you can’t use both as separa tors in a single pa thname . G S/O S de termines wha t the
separa tor is by scanning the pa thname from le ft to right until it finds a slash or colon;
the character it finds is the separa tor.

If the G S/O S separa tor is a colon, you can use slashes in G S/O S filenames, which is
important if you’re accessing files on a non-ProD O S disk volume through a G S/O S file
system transla tor. (Macintosh files, for example , can include slashes.) The reverse is
not true , however: If the separa tor is a slash, you cannot use a colon in a filename .
Thus it’s best to a lways use the colon as a pa thname separa tor in G S/O S applica tions.

D irectories and Subdirectories 15

Volume directory

F igure 2-1 The ProD O S hierarchica l directory structure

Pre fixes

If most of the files you are using are in the same subdirectory, it becomes annoying to
have to specify the same cha in of directory names every time you want to access a file .

To aba te this annoyance , G S/O S and ProD O S 8 have a Se tPre fix command you can
use to se t the cha in of directory names to which any filename specified in a command
will be automa tica lly appended. The cha in is the de fault pre fix and cannot be more
than 64 characters long under ProD O S 8 or 8K characters long under G S/O S .

For example , if you se t the de fault pre fix to /BAS E BALL/AME RIC AN/, you can re fer
to any file in the directory a t the end of this pa th (such as NY .YANK E E S) by filename only.

A name tha t is a continua tion of the de fault pre fix could a lso be specified to access
files in lower-leve l subdirectories; such a name is ca lled a partia l pa thname . If the
de fault pre fix has the va lue just described, and if AME RIC AN conta ins a subdirectory
ca lled C HAMPS tha t conta ins a file ca lled TWINS .1987, you could access the file by
specifying a partia l pa thname of C HAMPS/TWINS .1987. Here the pa thname is not
preceded by a slash.

16 D isk Volumes and F ile Management

Under G S/O S (but not ProD O S 8), the de fault pre fix a lso goes by the shorthand
name of 0/. This means 0/ is equiva lent to /BAS E BALL/AME RIC AN/ if you’ve used
Se tPre fix to assign /BAS E BALL/AME RIC AN/ to the 0/ pre fix. As Table 2-1 shows,
G S/O S supports 32 different pre fixes you can re fer to by a number followed by a slash
(0/ through 31/) and a boot pre fix ca lled */. G S/O S se ts */ to the name of the disk you
booted from; you cannot change */. 1/ and 9/ identify the directory in which the
current applica tion resides, and 2/ identifies the directory conta ining system library
files. You can change 1/, 2/, and 9/ with the G S/O S Se tPre fix command, but it’s
probably best to leave them a lone . Use the user-de finable pre fixes if your applica tion
needs to identify a particular directory using the convenient G S/O S shorthand nota tion.

ProD O S 8 pre fixes can be up to 64 characters long, including the preceding slash.
Partia l pa thnames can be up to 64 characters long as we ll. G S/O S has both short and
long pre fixes. Short pre fixes (*/ and 0/ through 7/) can be up to 64 characters long and
long pre fixes (8/ through 31/) can be up to about 8192 characters long.

A good fea ture of G S/O S and ProD O S 8 is tha t whenever a command must loca te
a file described by a pa thname , it searches every disk ava ilable to the system. Contrast
this with the D O S 3.3 environment where you must explicitly specify the drive and
slot number for the file be fore you can access it (using the ,S# and ,D# parame ters).
BASIC .SYST EM, for reasons of compa tibility, a lso permits the use of the ,S# and
,D# parame ters. If you specify a filename or partia l pa thname in a command line , and
no de fault pre fix has ye t been de fined, or if e ither the slot or drive parame ter is used,
BASIC .SYST EM automa tica lly uses the name of the volume directory for the disk in
the specified slot and drive (or the ir de faults) to crea te the full pa thname .

The advantages of using subdirectories are often not readily apparent to users of
floppy disks but are obvious to hard disk users. Hard disks have enough room for
hundreds of files. If a ll the files were he ld in one directory, you might have to wa it a
long time to spot your file when the disk was ca ta loged, and even then you could we ll
miss it among the other files. Fortuna te ly, the hierarchica l directory structure ProD O S
uses a llows re la ted files to be grouped within the same subdirectory for easy access.

F UNDAME NTAL FILE-HANDLIN G C O N C E PTS

As we see in Chapter 4, G S/O S and ProD O S 8 both include a command interpre ter
tha t understands a varie ty of file-handling commands. The most common commands
used with existing files are

Open open a file for 1/0 opera tions

Read read da ta from the file

Write write da ta to the file
C lose close the file to I/O opera tions

(Four similar commands are a lso ava ilable from Applesoft when you are using the
BASIC .SYST EM interpre ter in a ProD O S 8 environment.) Le t’s review each of these
fundamenta l file-handling opera tions.

Fundamenta l F ile-Handling Concepts 17

Table 2-1 S tandard pre fix numbers for G S/O S

Pre fix Number Description

*/ The boot pre fix. This is the name of the volume G S/O S was
booted from. This pre fix cannot be changed by the user.

0/ The de fault pre fix. G S/O S automa tica lly a ttaches it to any
filename or partia l (ra ther than full) pa thname you specify.

1/ The applica tion pre fix. The pa thname of the directory conta ining
the current applica tion program.

2/ The system library pre fix. The pa thname of the directory
conta ining library modules used by the current applica tion. For a
standard G S/O S boot disk, this is /MYDISK/SYST EM/LIBS .

3/ to 8/ User-de finable .

9/ Same as for 1/.

10/ to 31/ User-de finable .

Opening a F ile

You must open a file be fore you can access it. Do this by using the Open command
and specifying the name of the file you wish to open. The opera ting system opens a file
by first loca ting it on the disk and then se tting up a specia l buffer area for it in memory.

Part of the file buffer holds informa tion tha t te lls the opera ting system where the
file da ta is loca ted on disk; another part holds the most recently accessed portion of
the file . Whenever you request a file I/O opera tion, the opera ting system de termines
whe ther the portion of the file to be accessed is a lready sitting in the file buffer. If it
is, the opera ting system does not need, nor does it bother, to access tha t portion of the
file from the disk. Instead, it simply stores the da ta in the buffer (a write opera tion) or
reads the da ta from the buffer (a read opera tion). As a result, file opera tions occur
much more quickly than if unbuffered disk I/O techniques were used.

ProD O S 8 can open a file a t one of sixteen different system file leve ls (numbered
from 0 to 15); G S/O S supports 256 different system file leve ls (0 to 255). Under
ProD O S 8, an applica tion can specify the system file leve l by storing the leve l number
a t a particular memory loca tion ($B F94) just be fore opening the file . Under G S/O S , the
applica tion must use the Se tLeve l command instead. The de fault system file leve l is 0.

The ma in advantage of having different file leve ls ava ilable is to make it easier to
write supervisory or executive programs. These types of programs typica lly open the ir
own work files, pass control to user programs, and rega in control when the user
programs end. If a supervisory program bumps the file leve l by one be fore a user
program takes over, its work files can’t be inadvertently closed by the user program,

18 D isk Volumes and F ile Management

even if the program tries to close a ll open files (unless the user program breaks a rule
and decrements the file leve l).

Reading and Writing a F ile

When the opera ting system opens a file , it initia lizes two important interna l pointers it
uses for keeping track of the size of the file and the last position in the file tha t an
applica tion accessed. These are ca lled the E O F and Mark pointers. See F igure 2-2.

E O F is the end-of-file pointer, and it a lways points to the byte a fter the last byte in
the file . If you try to read da ta from the file past this position, an error occurs (the “end
of da ta” error). E O F norma lly changes only if an applica tion writes informa tion to the
end of a file; when this happens, E O F automa tica lly increases by the appropria te
number of bytes, and if necessary, the opera ting system a lloca tes more blocks on the
disk. But as we see in Chapter 4, G S/O S and ProD O S 8 a lso have a Se tE O F command
you can use to se t E O F to any specific va lue .

Mark is the position-in-the-file pointer, and it a lways conta ins the position a t which
the next read or write opera tion will take place . It is se t to 0 (the beginning of the file)
when you first open a file , but it automa tica lly increases as informa tion is read from or
written to the file . For example , if Mark is currently 10 (tha t is, it is pointing to the
11th byte in the file), and you read or write 14 more bytes of informa tion, Mark
advances to 24.

It is a lso possible to explicitly se t Mark to any position in the file so tha t you can
access the file randomly. This means a program can re trieve a record from a file
conta ining fixed-length records very quickly because it is not necessary to read
through a ll preceding records first.

C losing a F ile

You must close a file when you’re finished dea ling with it. This ensures tha t any da ta
written to the file buffer, but not ye t stored on the disk itse lf, is actua lly stored on the
disk. It a lso upda tes file informa tion, such as size , in the directory.

A lthough it is not necessary to close a file immedia te ly a fter you’re finished with it
(you could wa it until the program is about to end), it makes good sense to do so to
reduce the risk of da ta loss in the event of an unexpected power loss or a system rese t.
Moreover, ProD O S 8 a llows only so many files to be open simultaneously; if you have
a lot of inactive , but open, files lingering around, you could be faced with a surprising
error message the next time you open a file . Another compe lling reason to close
unused files is to free up memory space; each open file reserves a buffer area tha t is
made ava ilable to the system when you close the file .

G S/O S DISK C A C HIN G

To speed up disk opera tions like the ones described above , G S/O S supports the
caching of disk blocks. The cache is an area of memory where G S/O S saves copies of

G S/O S D isk C aching 19

F igure 2-2 The ProD O S 8 and G S/O S E O F and Mark pointers

(a) E O F and Mark a fter an 83-byte file has been opened:

00

t
Mark

82 83

t
E O F

(b) E O F and Mark a fter 10 bytes of the file have been read:

00 10 82 83 95

T t
Mark E O F

(c) E O F and Mark a fter 12 bytes have been written past the end of the file (an
append opera tion):

00 --------- � 82 83 95

t
E O F
and
Mark

N O T E: E O F is automa tica lly extended.

disk blocks when it first reads them from disk. G S/O S a lso puts in the cache copies of
blocks it writes to disk. Once a block is in the cache , G S/O S can quickly ge t it from
memory whenever it needs to read the block aga in; G S/O S doesn’t have to access the
re la tive ly slow disk drive to ge t it.

The user usua lly se ts the size of the disk cache with the D isk C ache desk accessory.
Like any desk accessory. D isk C ache appears in the Apple menu of most applica tions
which use the Apple IlG S Menu Manager, including the F inder. An applica tion can
a lso se t the cache size by ca lling the G S/O S Rese tC ache command a fter saving the
new cache size to Ba ttery RAM with the WriteBParam function (see Chapter 4).
G enera lly speaking, the larger the cache , the be tter G S/O S will perform, but less
memory will be ava ilable to applica tions.

In most cases, the block cache is not large enough to hold a ll the blocks which
G S/O S may want to cache . When the cache is full, G S/O S throws out the least
recently used block to make room for the next block.

The G S/O S Read and Write commands (see Chapter 4) le t you specify whe ther
specific disk blocks are to be cached or not. Applica tions should try to cache blocks
they expect to frequently access.

20 D isk Volumes and F ile Management

PR O D O S FILE MANA G EME NT

D isk opera ting systems use different me thods to organize files on disk and keep track of
wha t parts of the disk are be ing used for da ta storage so tha t files can be easily and e ffi �
ciently crea ted, de le ted, and accessed. In this section, we investiga te the following topics:

• The structure of a ProD O S-forma tted disk

• The structure of the ProD O S volume bit map

• The structure of ProD O S directories and subdirectories

• The structure of a ProD O S directory entry

• The indexing schemes ProD O S uses to loca te files

ProD O S uses the same genera l me thod to organize files on every block-structured,
mass-storage device it works with (such as an Apple 5.25 Drive , an Apple 3.5 Drive ,
an HD20S C , and the /RAM volume). Specific differences arise because the storage
capacities of these different devices vary. Furthermore , the sizes of two important da ta
structures stored on the media , the volume directory and the volume bit map, might
be different. We genera lly focus on the Apple 5.25 Drive (and its 5.25-inch floppy
disks) in this section; any specific differences for other devices tha t are not obvious
will be mentioned.

F O RMATTIN G TH E DISK ME DIUM

Be fore you can use a floppy disk (or any other disk medium) with G S/O S or ProD O S
8, it must be forma tted into a sta te tha t G S/O S or ProD O S 8 recognizes. You can
forma t a disk with the F iler or System U tilities program on Apple’s ProD O S 8 master
disk or the Apple lies F inder. G S/O S a lso has a Forma t command tha t applica tions
can use to forma t a disk.

The me thod used to forma t a disk depends on the na ture of the disk device . When
you forma t a 5.25-inch floppy disk, for example , templa tes for 35 tracks on the disk are
crea ted (numbered from 0 to 34), each of which can hold 4096 bytes of informa tion.
These tracks are arranged in concentric rings around the centra l hub of the disk, with
track 0 a t the outside edge and track 34 a t the inside edge . The opera ting system can
access any track by causing a read/write head (loca ted inside the disk drive) to move to
the desired track. This is done using I/O loca tions tha t activa te a stepping motor tha t
controls the motion of a me ta l arm the read/write head is connected to. This arm
moves a long a radia l pa th beginning a t the outside edge of the disk (track 0) and
ending a t the inside edge (track 34).

E ach of the 35 tracks forma tted on a disk is subdivided into 16 sma ller units, or
sectors. A sector is the sma llest unit of da ta tha t can be written to or read from the disk
a t one time . The sectors tha t make up a track are numbered from 0 to 15, and each can

Forma tting the D isk Medium 21

hold 256 bytes of informa tion. If you do the ma thema tics, you will quickly de termine
tha t a disk can hold 560 sectors (MO K) of informa tion.

This is the last you’ll hear about sectors, however, since ProD O S uses the 512-byte
block as the basic unit of file storage; each block is made up of two disk sectors. An
initia lized disk is made up of 280 such blocks (numbered from 0 to 279). Fortuna te ly,
it is rare ly necessary to know where these blocks are actua lly loca ted on the disk since
the opera ting system disk driver subroutine automa tica lly maps block numbers to
actua l physica l loca tions on the disk.

DISK V OLUME S AND DISK DRIV E S

A forma tted floppy disk tha t is on line (placed in a system disk drive and ready to be
accessed) is often ca lled a disk volume . ProD O S-forma tted volumes have names tha t
follow the same naming rules as files, but they are often preceded with a slash (/) to
make them more recognizable as volume names.

D isk drives themse lves a lso have unique identifiers. ProD O S 8 assigns a unit
number to each disk device it finds in the system. The va lue of the unit number is
formed from the slot number of the disk drive controller card and the drive number.
F igure 2-3 shows the forma t of the unit number byte .

In F igure 2-3, SLO T may actua lly be the number of a phantom, or logica l, slot if
the system conta ins nonstandard disk devices like RAMdisks. The unit number for the
/RAM volume on a lie , lie , or lies is $B0, for example; in other words, /RAM is the
logica l slot 3, drive 2 device .

DR indica tes the drive number: It is 0 for drive 1 and 1 for drive 2. More than two
drives may be connected to the port 5 SmartPort. In this case , ProD O S 8 logica lly
assigns the next two drives to slot 2, drive 1 and slot 2, drive 2. ProD O S 8 ignores a ll
SmartPort drives a fter the first four.

G S/O S assigns unique device re ference numbers to the disk devices (and character
devices) it finds —these numbers are consecutive integers beginning with 1. It a lso
assigns device names to each device; examples are .APPLE DISK3.5A , .S C SI1, and
.D E V3. (These names can be from 2 to 31 characters long.) G S/O S does not use the
unit number scheme tha t ProD O S 8 uses.

(See Chapter 7 for more de ta iled informa tion on disk devices and naming conventions.)

DISK V OLUME BLO C K USA G E

We are now ready to examine the me thod ProD O S uses to manage files on a disk. Our
discussion includes an ana lysis of the structures of the directories tha t hold informa �
tion about files, of the volume bit map tha t keeps track of block usage on the disk, and
of the index blocks tha t conta in the loca tions of the da ta blocks each file uses.

But be fore we continue , keep in mind tha t the following descriptions re la te only to
the ProD O S file system and not to its predecessor, D O S 3.3, the Apple Pasca l file
system, or any other fore ign opera ting system.

22 D isk Volumes and F ile Management

F igure 2-3 The forma t of a ProD O S 8 unit number byte

7 6 5 4 3 2 1 0

| DR | SLO T | [Unused]

As we have seen, a tota l of 280 blocks, holding 140K of da ta , are ava ilable on a
ProD O S-forma tted 5.25-inch disk. If a standard disk-forma tting program is used,
however, seven of these blocks (0-6) are not ava ilable for use by files because ProD O S
reserves them for specia l purposes. F igure 2-4 shows the usage of blocks on freshly
forma tted 5.25- and 3.5-inch disks.

B locks 0 and 1 conta in a short assembly-language program tha t the firmware on the
drive controller card loads into memory and executes whenever it boots a disk. This
program is ca lled the boot record, and it loca tes, loads, and executes a specia l system
file ca lled PR O D O S if it finds it on the disk. (A system file has a file type code of $F F
and a C ATALO G mnemonic of SYS . We discuss file type codes la ter in this chapter.)
PR O D O S is the program ultima te ly responsible for insta lling and activa ting the
opera ting system. (See Chapter 3.)

B locks 2 through 5 are the blocks conta ining the volume directory for the disk. We
describe the structure of this directory la ter in this chapter.

B lock 6 is the first volume bit map block for the disk. E ach bit in the map indica tes
whe ther the block it corresponds to is free or in use . ProD O S reserves one bit map
block for each 2Mb (4096 blocks) of storage space .

The blocks past the end of the bit map block (or blocks), a tota l of 273 for a
5.25-inch disk or 1593 for a 3.5-inch disk, are free for use by files stored on the disk.

TH E V OLUME BIT MAP

The opera ting system accesses the volume bit map to de termine the sta tus of each
block on the disk. It reads the bit map whenever it a lloca tes new space to a file so tha t
it can quickly loca te free blocks on the disk. It writes to the bit map to reserve new file
blocks (this occurs when an existing file grows or a new one is saved) or to free up
blocks (this occurs when a file shrinks or is de le ted).

S tandard forma tting routines use block 6 as the first block for a disk’s volume bit map.
But block 6 is only the conventiona l loca tion for the bit map; it is permissible to store the
map in any free block on the disk. For example , the volume bit map for the /RAM volume
is in block 3. As we see in the next section, the block number for the first bit map block
appears in the directory header tha t describes the characteristics of the disk volume .

For a 5.25-inch disk, only the first 35 bytes (280 bits) in the volume bit map block
are used, and each bit in each byte corresponds to a unique block number. A one-block bit
map such as this can handle volumes of up to 4096 blocks. For larger volumes, like a hard
disk, a continua tion of the bit map can be found in the blocks on the disk immedia te ly
following the first one used. For example , the old 9728-block Apple ProF ile hard disk

The Volume B it Map 23

F igure 2-4 Map of block usage on a 5.25-inch disk and a 3.5-inch disk

E ach block holds 512 bytes.
Tota l storage capacity is 280 blocks (MO K) for a 5.25-inch disk.
Tota l storage capacity is 1600 blocks (800K) for a 3.5-inch disk.

requires three blocks for its bit map; the standard forma tting program stores the first part
of the map in block 6 and the continua tion in blocks 7 and 8. (The opera ting system
de termines the size of the volume bit map by examining 2 bytes in the volume directory
header tha t hold the size of the disk; the program used to forma t the disk places them
there . We look a t volume directory headers la ter in this chapter.)

F igure 2-5 shows the structure of the volume bit map for 5.25-inch disks. As you
can see , the bits in each byte in the bit map block re flect the sta tes of e ight contiguous
blocks; bit 0 corresponds to the highest-numbered block in the octe t and bit 7 to the

24 D isk Volumes and F ile Management

F igure 2-5 The ProD O S volume bit map for a 5.25-inch disk

E ach byte in the volume bit map de fines the sta tes of e ight
contiguous blocks. The bit corresponding to a given block
number can be ca lcula ted by first dividing the block number
by 8; the whole part of the result gives you the byte
number involved. To ge t the specific bit number within
tha t byte , subtract the rema inder from 7.

lowest-numbered block. If the bit corresponding to a particular block is 0, tha t block is
free . If it is 1, it is be ing used by a file on the disk.

You can ca lcula te the byte number (from 0 to 34), and the bit number within tha t byte
(from 0 to 7), corresponding to a given block number using the following Applesoft formulas:

BYT E NUM = INT(BL0C KNUM/8)

BITNUM = 1 - (BLO C KNUM - 8 * BYT E NUM)

V OLUME DIR E C T O RIE S AND SUBDIR E C T O RIE S

A directory is an intrica te da ta structure ProD O S uses to hold important informa tion
concerning each file on the disk. This includes the filename , type , size , crea tion da te ,

Volume D irectories and Subdirectories 25

loca tion of the file’s da ta , and so on. W ithout this informa tion, it would be impossible
to e fficiently manage multiple files on a disk.

As we saw earlier, ProD O S permits multiple directories to be crea ted on one disk.
Except for the volume directory (the one a ll the others are accessed through), these
directories can occupy just about any area on the disk since ProD O S trea ts them much
like standard files. The volume directory, however, a lways begins a t block 2; if you use
a standard disk-forma tting program, or the G S/O S Forma t and EraseD isk commands,
it a lso occupies blocks 3, 4, and 5.

A ProD O S directory is an example of a doubly linked-list da ta structure . The links
are actua lly pa irs of 2-byte pointers stored a t the beginning of each directory block.
One of these pointers (bytes $00-$01) conta ins the number of the previous directory
block in the cha in —or zero if there is no previous block —and the other (bytes
$02-$03) conta ins the number of the next directory block—or zero if there is no
ensuing block. This a llows directories of any size to be crea ted.

E ach block used by a directory can hold up to 13 39-byte file entries. (This means
the four-block volume directory used with most ProD O S-forma tted disks can hold a
tota l of 52 entries, one of which is an entry for the volume name itse lf.) Table 2-2
shows the map of a directory block.

The D irectory Header

The first block a directory (or subdirectory) uses is the key block, and it is configured
slightly differently from the others. The difference is tha t the 39-byte entry tha t
norma lly describes the first file in the block is instead used to describe the directory
itse lf. This entry is ca lled the directory header.

Table 2-3 shows the meanings of each of the 39 bytes making up a directory
header. Notice the differences be tween the header for a volume directory and the
header for a subdirectory tha t appear a t absolute positions $27-$2A in the block.

S tandard D irectory Entries

A ll directory entries, other than the directory header entry, represent e ither standard
da ta files (for example , binary files, textfiles, and Applesoft programs) or subdirectory
files. The forma ts of the directory entries for both these types of files are virtua lly
identica l and are shown in Table 2-4.

F ile Type Codes

The only way to de termine the genera l na ture of the file a particular file entry
corresponds to is to examine the file type code a t re la tive position $10 within the
entry. Many of the 256 different codes have now been assigned by Apple , and Table
2-5 summarizes the ir meanings. Table 2-5 a lso shows the three-character mnemonics
often used to represent these file types. A ll file type codes, except $F1 through $F8,
are reserved for opera ting system use; user programs may free ly use the user-de fined
codes for any purpose .

26 D isk Volumes and F ile Management

Table 2-2 Map of a ProD O S file system directory block

Byte Number in
D irectory B lock Meaning of Entry

$000-$001 B lock number of the previous directory block (low byte first).
This will be zero if this is the first directory block.

$002-$003 B lock number of the next directory block (low byte first). This
will be zero if this is the last directory block.

$004—$02A D irectory entry for file 1 or, if this is the key (first) block of the
directory (bytes $00 and $01 are both 0), the directory header.

$02B-$051 D irectory entry for file 2

$052-$078 D irectory entry for file 3

$079-$09F D irectory entry for file 4

$0A0-$0C6 D irectory entry for file 5

$0C7-$0E D D irectory entry for file 6

$0E E-$114 D irectory entry for file 7

$115-$13B D irectory entry for file 8

$13C-$162 D irectory entry for file 9

$163-$189 D irectory entry for file 10

$18A-$1B O D irectory entry for file 11

$1B1-$1D7 D irectory entry for file 12

$1D8-$1F E D irectory entry for file 13

$1F F [Not used]

The meaning of the contents of any specific file type actua lly depends on the
program tha t crea ted the file in the first place . For example , in a BASIC .SYST EM
environment, severa l file type codes identify files conta ining specific informa tion
use ful in an Applesoft environment. Le t’s look a t five of the most common file types
used by BASIC .SYST EM.

AS CII codes, with bit 7 cleared to zero, are used. D O S 3.3 crea tes textfiles with codes
tha t have bit 7 se t to 1.) E ach line of text ends with a carriage re turn code ($0D), and
if it’s a standard sequentia l textfile (one conta ining consecutive lines of text), the last

TXT (code $04). A TXT file (F igure 2-6) conta ins AS CII-encoded text. (S tandard

Volume D irectories and Subdirectories 27

Table 2-3 Map of a ProD O S file system directory header

Byte Number in
Key B lock Description

$04 H igh 4 bits: storage type code
- $F for a volume directory
- $E for a subdirectory

Low 4 bits: length of directory name

$05-$13 D irectory name (in standard AS CII with bit 7 = 0); the
length of the name is conta ined in the low-order ha lf of byte
$04

$14-$1B [Reserved]

$1C-$1D The da te this directory was crea ted (forma t: MMMDDDDD
YYYYYYYM, see F igure 8-1)

$1E-$1F The minute (byte $1E) and hour (byte $1F) this directory
entry was crea ted (forma t: see F igure 8-1)

$20 The version number of ProD O S tha t crea ted this directory

$21 The lowest version of ProD O S tha t is capable of using this
directory

$22 The access code for this directory (see F igure 2-10)

$23 The number of bytes occupied by each directory entry (39)

$24 The number of directory entries tha t can be stored on each
block (13)

$25-$26 The number of active files in this directory (not including the
directory header)

$27-$28 Volume directory: the block in which the volume bit map is
loca ted (6)

Subdirectory: the block in which the entry de fining this
subdirectory is loca ted (this is in the parent directory of the
subdirectory)

$29-$2A Volume directory: the size of the volume in blocks

$29 Subdirectory: the directory entry number within the block
given by $27-$28 tha t de fines this subdirectory (1 to 13)

$2A Subdirectory: the number of bytes in each directory entry of
the parent directory (39)

28 D isk Volumes and F ile Management

Table 2-4 Map of a ProD O S file system directory file entry

Re la tive
Byte Number
W ithin Entry Meaning of Entry

$00 H igh 4 bits: storage type code
- $0 for an inactive (or de le ted) file
- $1 for a seedling file
- $2 for a sapling file
- $3 for a tree file
- $4 for a Pasca l area
- $5 for an extended file
- $D for a subdirectory file

Low 4 bits: length of filename

$01-$0F F ilename (in standard AS CII with bit 7 = 0)

$10 F ile type code (see Table 2-5)

$11—$12 Key pointer; if a subdirectory file , the block number of the key block
of the subdirectory; if a standard file , the block number of the index
block or key index block of the file (or the sole da ta block if this is a
seedling file)

$13-$14 S ize of the file in blocks

$15-$17 End-of-file (E O F) position; this is the size of the file in bytes
(low-order bytes first)

$18-$19 The da te this file was crea ted (forma t: MMMDDDDD YYYYYYYM,
see F igure 8-1)

$1A-$1B The minute (byte $1A) and hour (byte $1B) this file was crea ted
(forma t: see F igure 8-1)

$1C The version number of ProD O S tha t crea ted this file

$1D The lowest version of ProD O S tha t is capable of using this file

$1E The access code for this file (see F igure 2-10)

$1F-$2O The auxiliary type code for the file; this code is used for specia l
purposes; for example , BASIC .SYST EM stores the de fault loading
address here (for a binary file) or the fie ld length (for a textfile); it a lso
stores $801 here for Applesoft program files

$21-$22 The da te this file was last modified (forma t: MMMDDDDD
YYYYYYYM, see F igure 8-1)

Volume D irectories and Subdirectories 29

Table 2-4 Continued

Re la tive
Byte Number
W ithin Entry Meaning of Entry

$23-$24 The minute (byte $23) and hour (byte $24) this file was crea ted
(forma t: see F igure 8-1)

$25-$26 The block number of the key block of the directory tha t holds this
file entry

Table 2-5 ProD O S file type codes

F ile Type Code Mnemonic Description

$00 UNK Unca tegorized file

$01 + BAD Bad disk block file

$02 + P C D Pasca l code file

$03 + PTX Pasca l textfile

$04 + *TXT AS CII textfile

$05 + PDA Pasca l da ta file

$06 *BIN G enera l binary file

$07 + F NT S O S font file

$08 + F O T S O S foto file

$09 + BA3 Business BASIC program file

$0A + DA3 Business BASIC da ta file

$0B + WP F Word processor file

$0C + S O S S O S system file

$0F + *DIR Subdirectory file

$10 + RPD RPS da ta file

$11 + RPI RPS index file

$12 A F D Apple F ile discard file

$13 A FM Apple F ile mode l file

30 D isk Volumes and F ile Management

Table 2-5 Continued

F ile Type Code Mnemonic Description

$14 A F R Apple F ile report forma t file

$15 S CL Screen library file

$19 + *ADB AppleWorks da tabase file

$1A + *AWP AppleWorks word processing file

$1B + *ASP AppleWorks spreadshee t file

$AB G SB G S BASIC program file

$A C TD F G S BASIC toolbox de finition file

$AD BD F G S BASIC da ta file

$B0 + SR C APW source code file

$B1 + O BJ APW object code file

$B2 + LIB APW library file

$B3 + S16 G S/O S system file

$B4 + RTL APW run-time library file

$B5 + E X E APW executable code file

$B6 PIF G S/O S permanent init file

$B7 TIF G S/O S temporary init file

$B8 + NDA New desk accessory file

$B9 + C DA C lassic desk accessory file

$BA + T OL G S/O S tool se t file

$BB DVR G S/O S driver file

$B C GLF G S/O S generic load file

$BD F ST G S/O S file system transla tor

$C0 PNT Compressed super hi-res picture file

$C1 PIC Super hi-res picture file

$C8 F O N G S/O S font file

$C9 F ND F inder da ta file

Volume D irectories and Subdirectories 31

Table 2-5 Continued

F ile Type Code Mnemonic Description

$C A IC N F inder icon file

$C B AIF Audio interchange forma t file

$E E R16 E DASM 816 re loca table object file

$E F *PAS Pasca l area on partitioned disk

$F0 + *CMD BASIC .SYST EM command file

$F1-$F8 User-de finable files

$F9 O .S G S/O S opera ting system

$F A *INT Integer BASIC program file

$F B *IVR Integer BASIC variables file

$F C + *BAS Applesoft BASIC program file

$F D + *VAR Applesoft BASIC variables file

$F E + *R EL E DASM re loca table code file

$F F + *SYS ProD O S 8 system file

N O T E S:
The mnemonics marked with * are used by the BASIC .SYST EM C ATALO G command.
The mnemonics marked with + or * are used by the Apple Programmer’s Workshop (APW) deve lopment
system.
S O S is the opera ting system for the Apple III.

byte in the file is followed by a $00 end-of-file marker. (The exact size of the file is
stored in its directory entry.) The other genera l type of textfile , the random-access
textfile , is made up of many fixed-length records, each of which can conta in severa l
lines of text. E ach line of text in a record is ca lled a fie ld. If the number of characters
in a record is less than the record size , the rest of the record is padded with $00 bytes;
these $00 bytes are not end-of-file markers. The record length of a textfile is the
auxiliary type code in the directory entry (a t re la tive bytes $1F-$2O); if the record
length is zero, the file is a sequentia l textfile .

BAS (code $F C). A BAS file (F igure 2-7) conta ins an Applesoft program in standard
tokenized form. Tokens are 1-byte codes for Applesoft keywords such as PRINT and
INPUT . (For a de ta iled description of this form, see Chapter 4 of Inside the Apple He .)
A BAS file is automa tica lly crea ted when you use the BASIC .SYST EM SAV E command

32 D isk Volumes and F ile Management

F igure 2-6 The structure of a TXT file

This program:

100 PRINT C HR$ (4); " O P E N T E XT FILE1'
200 PRINT C HR$ (4);"WRIT E T E XT FILE "

300 PRINT "THIS IS A T E ST"

400 PRINT "AND S O IS THIS"

500 PRINT C HR$ (4);" CLO S E "

genera tes this (sequentia l) TXT file:

0000: 54 48 49 53 20 49 53 20 THIS IS

0008: 41 20 54 45 53 54 A T E ST

000E: 0D (carriage re turn)

O O O F: 41 4E 44 20 53 4F 20 AND S O

0016: 49 53 20 54 48 49 53 IS THIS

0010: 0D (carriage re turn)

Note tha t the text is stored as standard AS CII codes (tha t is, with bit 7 equa l to 0);
D O S 3.3 stores text as “nega tive” AS CII codes (with bit 7 equa l to 1).

The size of a TXT file is stored a t re la tive bytes $15-$17 in its directory entry.

The auxiliary type code for a TXT file (stored a t re la tive bytes $1F and $20 in the file’s
directory entry) is its record length; it is zero for a sequentia l textfile .

to transfer the image of the Applesoft program from memory to disk. The auxiliary type
code for a BAS file is usua lly $801, the standard loading address for an Applesoft program.

BIN (code $06). A BIN file (F igure 2-8) is a genera l-purpose binary da ta file tha t
can conta in just about anything: programs, da ta , text, and so on. It is the type of file
crea ted by the BASIC .SYST EM BSAV E command. The exact meaning of the contents
of a BIN file cannot be genera lized a lthough many of them conta in executable code .
The auxiliary type code for a BIN file is the address it was BSAV Ed to disk from.

SYS (code $F F). A SYS file is just like a BIN file except tha t it is expected to conta in
an executable program ca lled a system program or interpre ter. We describe the
characteristics of a standard system program in Chapter 5.

VAR (code $F D). A VAR file (F igure 2-9) conta ins a se t of Applesoft program
variables in a specia l packed form. It is automa tica lly crea ted when you use the
BASIC .SYST EM ST O R E command and can be re loaded using the R E ST O R E com�
mand. The first 5 bytes of a VAR file conta in the tota l length of the simple (undimen�
sioned) and array (dimensioned) variable tables crea ted by an Applesoft program (2
bytes), the length of the simple variable space itse lf (2 bytes), and the HIMEM page

Volume D irectories and Subdirectories 33

F igure 2-7 The structure of a BAS file

This Applesoft program:

100 T E XT : H OME

200 VTAB 12: HTAB 10
300 PRINT "THIS IS A 'BAS' FILE "
400 VTAB 22

is stored as this BAS file:

0000: 09 08
0002: 64 00

0004: 89

0005: 3A
0006: 97
0007: 00
0008: 15 08
000A: C8 00

000C: A2
000D: 31 32
000F: 3A

0010: 96
0011: 31 30
0013: 00
0014: 31 08

0016: 2C 01
0018: BA
0019: 22 54 48 49 53 20 49 53
0021: 20 41 20 27 42 41 53 27

0029: 20 46 49 4C 45 22

002F: 00
0030: 39 08
0032: 90 01
0034: A2

0035: 32 32
0037: 00
0038: 00 00

[address of next line]
[line number = 100]
[token for T E XT]

[token for H OME]
[end of line]
[address of next line]
[line number = 200]
[token for VTAB]

12

[token for HTAB]
10
[end of line]
[address of next line]
[line number = 300]
[token for PRINT]

"THIS IS
A 'BAS'

FILE "

[end of line]
[address of next line]
[line number = 400]
[token for VTAB]
22
[end of line]
[end of program]

The size of a BAS file is stored a t re la tive bytes $15-$17 in its directory entry.

The auxiliary type code for a BAS file (stored a t re la tive bytes $1F and $20 in the
file’s directory entry) is simply the address stored in the start-of-program pointer
($67-$68) when the program was saved; this address is usua lly $0801.

number in e ffect when the file was saved (1 byte). Following these bytes are the
images of the two variable tables and, fina lly, the contents of each of the string
variables. The auxiliary type code for a VAR file conta ins the address from which the

34 D isk Volumes and F ile Management

F igure 2-8 The structure of a BIN file

This program:

O R G $300

HALF TIME D F B $00
LE N G TH D F B $00

N O T E1

LDY #255
LDA LE N G TH
STA $32F
LDX HALF TIME
LDA $C030
JMP $31A

is stored as this BIN file:

0000: 00

0001: 00
0002: A O F F
0004: AD 01 03
0007: 8D 2F 03
000A: A E 00 03
000D: AD 30 C O
0010: 4C 1A 03

D F B $00
D F B $00

LO Y #$F F
LDA $0301
STA $032F
LDX $0300
LDA $C030
JMP $031A

The size of a BIN file is stored a t re la tive bytes $15-$17 in its directory entry.

The auxiliary type code for a BIN file (stored a t re la tive bytes $1F and $20 in the file’s
directory entry) is its loading address — $300 in this example .

image of the compressed variables was stored. (For a description of the structure of
the Applesoft variable tables, see Chapter 4 of Inside the Apple lie .)

F ile Access Codes

Re la tive byte $1E within each directory entry is a 1-byte code , 4 bits of which re flect
the read (bit 0), write (bit 1), rename (bit 6), and destroy (bit 7) sta tus of the file . If a
bit is se t to 1, ProD O S a llows the opera tion associa ted with tha t bit.

Another bit (bit 2) indica tes whe ther the file is to be considered invisible or not. If
the invisible bit is se t, ca ta loging subroutines should ignore the file . Ye t another bit
(bit 5) indica tes whe ther the file has been modified since the last time it was backed
up. (It is the backup program’s responsibility to clear this bit to 0 when it makes a
copy of the file .) The two rema ining bits (bits 3 and 4) are not used and are a lways 0.
F igure 2-10 shows a de ta iled description of the access code byte .

Volume D irectories and Subdirectories 35

F igure 2-9 The structure of a VAR file

This program:

100 A = 1:B% = 2:C$ = "T E ST":D$ = "R E P E AT"
200 DIM E(3):E(0) = 0:E(l) = 1:E(2) = 2:E(3) = 3
300 PRINT C HR$ (4);"ST O R E VARS"

genera tes this VAR file:

0000: 37 00 S ize of entire variable table

0002: 1C 00 S ize of simple variable table
0004: 96 HIMEM page number

0005: 41 00 Variable name (A)
0007: 81 00 00 00 00 -- va lue (1)
000C: C2 80 Variable name (B%)
000E: 00 02 00 00 00 -- va lue (2)
0013: 43 80 Variable name (C$)
0015: 04 F C 95 00 00 — length+pointer

001A: 44 80 Variable name (D$)

001C: 06 F6 95 00 00 -- length+pointer

0021: 45 00 Variable name (E)
0023: IB 00 01 00 04 — dimensioning bytes
0028: 00 00 00 00 00 - E(0)=0
002D: 81 00 00 00 00 - E(l)=l
0032: 82 00 00 00 00 - E(2)=2
0037: 82 40 00 00 00 - E(3)=3
003C: 52 45 50 45 41 54 — R E P E AT
0042: 54 45 53 54 - T E ST

The size of a VAR file is stored a t re la tive bytes $15-$17 in its directory entry.

The auxiliary type code for a VAR file (stored a t re la tive bytes $1F and $20 in the
file’s directory entry) is the starting address of the block of variables saved to the file .

The BASIC .SYST EM LO C K and UNLO C K commands a lso a ffect the file’s access
sta tus: LO C K disables write , rename , and destroy accesses; UNLO C K enables them.
A locked file can be easily identified because an asterisk appears to the le ft of its name
in a BASIC .SYST EM C ATALO G listing. The asterisk a lso appears if only one or two
of these three types of access modes is disabled. If the file is just read disabled, the
asterisk does not appear, but a “file locked” error message appears if you a ttempt to
read the file with a BASIC .SYST EM command.

Unfortuna te ly, there is no BASIC .SYST EM command for se tting or clearing indi �
vidua l bits of the file access code so tha t you can easily a ttach a particular security
leve l to a file . But as we see in Chapter 4, however, you can do this with the G S/O S or
ProD O S 8 Se tF ile lnfo command.

36 D isk Volumes and F ile Management

F igure 2-10 Description of the ProD O S access code

7 6 5 4 3 2 1 0

D RN B [Reserved] I W R

D = destroy-enable bit
RN = rename-enable bit
B = backup-needed bit

I = invisibility bit
W = write-enable bit
R = read-enable bit

If a bit is 1, the function a ttributed to tha t bit is enabled; if it is 0, it is disabled. The
reserved bits must a lways be 0 (disabled).

If the D , RN , and W bits are a ll 1, the file is sa id to be unlocked; if a ll three are 0, the file
is locked. Any other combina tion means the file is subject to restricted-access limita tions.

The invisibility bit is for the bene fit of ca ta loging subroutines tha t support the concept
of hidden, or invisible , files. If the bit is se t, the subroutine should exclude the file
from a ca ta log listing.

ProD O S 8 and G S/O S automa tica lly se t the backup-needed bit to 1 whenever they
write anything to a file . This makes it possible to deve lop backup programs tha t
perform incrementa l backups (tha t is, the backing up of only those programs tha t have
been modified since the last backup). It is the responsibility of the backup program to
clear the backup-needed bit to 0 once it has made a copy of the file .

T ime and Da te Forma ts

E ach ProD O S directory entry conta ins 8 bytes holding the crea tion and modifica tion
time and da te for the file it describes. The forma ts for the time and da te bytes are the
same as those shown for TIME and DAT E in F igure 8-1 in Chapter 8.

O R G ANIZIN G FILE DATA

ProD O S uses an e fficient tree-structured indexing scheme to keep track of the blocks
holding the da ta for any particular nondirectory file on the disk. In the most common
implementa tion of this scheme (the one used for files be tween 2 and 256 da ta blocks
in length), the key block pointer in the file’s directory entry (a t re la tive bytes $11 and
$12) points to an index block conta ining an ordered list of the numbers of each block
on the disk tha t the file uses to store its da ta . The ma in advantage of using an indexing
scheme like this is tha t a file can occupy any collection of blocks on the disk, not just
a group of consecutive ones. (The Apple Pasca l opera ting system, for example , forces a
file to use a group of consecutive blocks.) This means no space on the disk is wasted.
The disadvantage is tha t disk I/O opera tions take place more slowly than, for example ,
Apple Pasca l because it takes longer to position the disk read/write head over the
blocks of a fragmented file .

Organiz ing F ile Da ta 37

Indexing Schemes

ProD O S actua lly uses three variants of this genera l indexing scheme; the one used
depends on the size of the file be ing dea lt with. The following “woodsy” classifica tions
describe the three basic file sizes:

Seedling file
Sapling file

Tree file

1 to 512 bytes (1 da ta block only)
513 to 131,072 (128K) bytes (up to 256 da ta blocks)
131,073 (128K + 1) to 16,777,215 (16Mb - 1) bytes (up to 32,768 da ta

blocks)

You can de termine the indexing scheme used by a nondirectory file by examining the
storage type code number stored in the high-order 4 bits of the O th byte in its
directory entry. The number is $1 for a seedling file , $2 for a sapling file , and $3 for a
tree file . If the number is 0, the file has been de le ted. (D irectory files use storage type
codes of $D , $E , or $F; code $D identifies a directory entry for a subdirectory file ,
code $E a subdirectory, and code $F a volume directory. A storage type of $4
identifies a Pasca l area on a disk and $5 identifies an extended file .)

As we have just seen, a file’s key pointer (re la tive bytes $11 and $12 of its directory
entry) points to an index block (a lso ca lled the key block) for the file . Le t’s look a t how
ProD O S uses the index block for each of the three types of files.

Seedling F ile . A seedling file (F igure 2-11) cannot, by de finition, exceed 512 bytes,
so it uses only one block on the disk for da ta storage . This is the block number stored
in the key pointer. This means this block is not rea lly an index block a t a ll; it simply
holds the contents of the file .

Sapling F ile . The key pointer of a sapling file (F igure 2-12) holds the block number
of a standard index block conta ining an ordered list of the block numbers used to
store tha t file’s da ta . Table 2-6 shows wha t an index block for a sapling file looks like .
S ince block numbers can exceed 255, 2 bytes are needed to store each block num�
ber. The low part of the block number is a lways stored in the first ha lf of the block,
and the high part is stored 256 bytes farther into the block. The maximum size of a
sapling file is 128K; it cannot be larger than this since an index block can point to
only 256 blocks.

Tree F ile . For a tree file (F igure 2-13), the key pointer holds the block number of a
master index block, which conta ins an ordered list of the block numbers of up to 128
standard sapling-file-type index blocks. Table 2-7 shows the structure of a master
index block. Just as for sapling files, each of the index blocks the master index block
points to conta ins an ordered list of block numbers on the disk tha t the file uses to
store its da ta . The maximum size of a tree file is 16Mb (less 1 byte , which is reserved
for an end-of-file marker).

38 D isk Volumes and F ile Management

F igure 2-11 The structure of a seedling file

i----------------- 1

$ lx

D irectory entry

$00
T

$11 $12
T n

1
S torage type

1 Re la tive
Pointer to byte number

code da ta block
(high 4 bits)

Da ta
block

Maximum file- size = 512 bytes

ProD O S de termines the storage type of an existing file by examining the 4 highest
bits of re la tive byte $00 in the directory entry for the file; the number stored here is
$1 for a seedling file , $2 for a sapling file , and $3 for a tree file .

The opera ting system takes care of a ll conversions tha t might become necessary if a
file changes its storage type when it changes size . A ll this happens invisibly, and it is
genera lly not necessary for an applica tion to know the storage type unless it is not
using standard opera ting system commands to access files.

ProD O S uses these three different indexing structures to minimize the disk space
needed to manage a file . This permits the opera ting system to access a file as quickly
as possible and frees up disk space for use by other files.

Extended F iles

G S/O S (but not ProD O S 8) can a lso crea te extended files on a ProD O S-forma tted disk.
These files have a storage type code of $5. An extended file conta ins two logica l da ta
segments, the da ta fork and the resource fork. The da ta fork genera lly conta ins
applica tion-specific da ta , and the resource fork genera lly conta ins da ta organized as a
series of we ll-de fined da ta structures; these da ta structures de fine such e lements as
menu de finitions, dia log box templa tes, and cursor de finitions. Apple de fines the da ta
structures for everyone to use .

Organiz ing F ile Da ta 39

F igure 2-12 The structure of a sapling file

n < 255

Maximum file size = 125K

The key block for an extended file is rea lly not a key block a t a ll —it’s just an
extension of the file’s directory entry. The first ha lf of the block conta ins informa tion
re la ted to the da ta fork; the second ha lf conta ins informa tion re la ted to the resource fork.

G S/O S uses only the first 8 bytes in each ha lf block. The meaning of each of these
bytes is as follows:

$00 storage type code for the fork

$01-$02 actua l key block number for the fork

$03-$04 size of the fork (in blocks)
$05-$07 size of the fork (in bytes)

40 D isk Volumes and F ile Management

Table 2-6 Map of the ProD O S index block for a sapling file

Byte Number Meaning

$000 B lock number of O th da ta block (low)

$001 B lock number of 1st da ta block (low)

$002 B lock number of 2nd da ta block (low)

$0F F B lock number of 255th da ta block (low)

$100 B lock number of O th da ta block (high)

$101 B lock number of 1st da ta block (high)

$102 B lock number of 2nd da ta block (high)

$1F F B lock number of 255th da ta block (high)

The storage type code for the fork is e ither $01 (seedling), $02 (sapling), or $03 (tree).
The key block for a fork of an extended file (stored a t offse ts $01-$02) is arranged just
like the key block for a regular file of the same size as the fork.

Sparse F iles

As we saw in the discussion of TXT files, it is possible to crea te and use files tha t are
not sequentia l. Tha t is, you can write informa tion to any position within a file even if
tha t position is far away from any other previously used part of the file . To save disk
space , ProD O S does not actua lly a lloca te space for any tota lly unused blocks of the file
tha t may appear in gaps such as this. Instead, it inserts $0000 placeholders in the
index block to indica te tha t the part of the file to which the index entry corresponds
has not ye t been used. ProD O S stores an actua l block number in this entry a t the time
tha t part of the file is actua lly written to.

Such a file is ca lled a sparse file because it does not take up as much space on disk
as its file size indica tes it should.

Organiz ing F ile Da ta 41

F igure 2-13 The structure of a tree file

256 < n< 32767

Maximum file size = 16Mb minus 1

42 D isk Volumes and F ile Management

Byte Number Meaning

Table 2-7 Map of the ProD O S master index block for a tree file

$000 B lock number of O th index block (low)

$001 B lock number of 1st index block (low)

$002 B lock number of 2nd index block (low)

$07F B lock number of 127th index block (low)

$100 B lock number of O th index block (high)

$101 B lock number of 1st index block (high)

$102 B lock number of 2nd index block (high)

$17F B lock number of 127th da ta block (high)

Le t’s look a t an actua l example of a sparse file . Suppose you have crea ted a random�
access textfile with a record length of 128 bytes, and you have written to record 2 and
record 64 only. F igure 2-14 shows the structure of such a file . Record 2 is stored
beginning a t position $100 (2 X 128) in the file; this corresponds to position $100 of the
first block a lloca ted to the file (index block entry 0). Record 64 begins a t position $2000
(128 X 64) in the file; this corresponds to position $000 of the 16th index block entry. The
15 unused blocks be tween these two records appear as $0000 entries in the index block.
Thus even though the file is logica lly 17 blocks long, ProD O S needs only 3 da ta blocks to
store it on the disk (1 for the index block and 2 for the da ta blocks).

TH E R E AD .BLO C K PR O G RAM

Table 2-8 shows a use ful Applesoft program ca lled R E AD .BLO C K . You can use it to
examine any of the blocks of da ta on a disk forma tted for the ProD O S file system, to
edit the contents of a block, and to write a modified block back to the disk.

W ith R E AD .BLO C K , you can easily look a t rea l examples of the types of blocks we
have been discussing in this chapter: the volume bit map, the directory blocks, the
index blocks, and even a file’s da ta blocks. But you should be care ful when writing a

The R E AD .BLO C K Program 43

F igure 2-14 The structure of a sparse file

The file crea ted by this program:

10 F$ = "RAND OM"

30 PRINT C HR$ (4);" O P E N";F$;" ,L128"

40 PRINT C HR$ (4);"WRIT E ";F$;" ,R2"

50 PRINT "R E C O RD 2"

60 PRINT C HR$ (4);"WRIT E ";F$;" ,R64"

70 PRINT "R E C O RD 64"

80 PRINT C HR$ (4);" CLO S E "

is stored as follows:

Index B lock (stored in the file’s key pointer entry):

0000: 8C 00 00 00 00 00 00 00 (This indica tes tha t da ta

0008: 00 00 00 00 00 00 00 00 blocks 0 and 16 are stored

0010: 8E 00 00 00 00 00 00 00 a t blocks $008C and $008E
on this disk.)

0100: 00 00 00 00 00 00 00 00
0108: 00 00 00 00 00 00 00 00
0110: 00 00 00 00 00 00 00 00

01F8: 00 00 00 00 00 00 00 00

Da ta B lock 0 (disk blloci< S008C)

0000: 00 00 00 00 00 00 00 00

0100: 52 45 43 4F 52 44 20 32 R E C O RD 2
0108: 0D [carriage re turn]
0109: 00 00 00 00 00 00 00 00

01F8: 00 00 00 00 00 00 00 00

Da ta B lock 16 (disk block $008E):

0000: 52 45 43 4F 52 44 20 36 R E C O RD 6
0008: 34 4
0009: 00 [carriage re turn]
000A: 00 00 00 00 00 00 00 00

01F8: 00 00 00 00 00 00 00 00

44 D isk Volumes and F ile Management

Table 2-8 R E AD .BLO C K , a program to read any block on a ProD O S-forma tted disk

1 R EM "R E AD .BLO C K"

2 R EM C O PYRIG HT 1985-1987 G ARY B . LITTLE

3 R EM D E C EMB E R 6, 1987

90 HM = P E E K (115) + 256 * P E E K (116)

100 F O R I = HM T O HM + 124: R E AD X: P O K E I,X: N E XT

105 P O K E HM + 5, P E E K (116)

110 D E F F N MD(X) = X - 16 * INT (X / 16)

120 D E F F N M2(X) = X - 256 * INT (X / 256)

130 D$ = C HR$ (4)

150 T E XT : PRINT C HR$ (21): H OME : PRINT TAB(16);: INV E RS E :

PRINT "R E AD BLO C K": N O RMAL : PRINT TAB(6);

" C O PR . 1985-1987 G ARY B . LITTLE”

155 VTAB 8: C ALL - 958: INPUT " E NT E R SLO T (1-7): ";A$:

SL = VAL (A$): IF SL < 1 O R SL > 7 TH E N 155

156 VTAB 9: C ALL - 958: INPUT " E NT E R DRIV E (1-2): ";A$:

DR = VAL (A$): IF DR < 1 O R DR > 2 TH E N 156

157 P O K E HM + 11,16 * SL + 128 * (DR = 2)

160 VTAB 10: C ALL - 958: INPUT " E NT E R BAS E BLO C K NUMB E R: ";T$:

IF T$ = TH E N 160

170 BL = INT (VAL (T$)): IF BL = 0 AND T$ < > “0" TH E N 160

180 IF BL < 0 TH E N 160

190 RW = 128

200 P O K E HM + 14, F N M2(BL): R EM BLO C K # (LO W)

210 P O K E HM + 15, INT (BL / 256): R EM BLO C K# (HIG H)

220 P O K E HM + 3,RW: R EM R E AD=128 / WRIT E =129

230 C ALL HM

240 IF P E E K (8) < >0 TH E N PRINT : INV E RS E :

PRINT "DISK I/O E RR O R": N O RMAL :

PRINT "PR E SS ANY K E Y T O C O NTINU E: G E T A$:

PRINT A$: G O T O 150

1000 VTAB 4: C ALL - 958: PRINT TAB(11);" C O NT E NTS O F BLO C K ";BL:

PRINT : P O K E 34,5

1010 Q = 1

1020 H OME : G O SUB 2000: C ALL HM + 26:Q = Q + 1: IF Q = 5 TH E N 1050

1030 IF PR = 0 TH E N G E T A$: IF A$ = C HR$ (27) TH E N 1050

1040 G O T O 1020

1050 Q = Q - 1:PR = 0: PRINT D$;"PR#O ":B = 0

1060 HTAB 1: VTAB 23: C ALL - 958:

PRINT " E NT E R C OMMAND (B , C ,D , E ,N ,P , Q ,W ,H ELP): G E T A$:

IF A$ = C HR$ (13) TH E N A$ = " "

1065 IF AS C (A$) > = 96 TH E N A$ = C HR$ (AS C (A$) - 32)

1070 PRINT A$

1080 IF A$ < > "D" TH E N 1110

1090 Q = Q - 1: IF Q = 0 TH E N Q = 4

1100 H OME : G O SUB 2000: C ALL HM + 26: G O T O 1060

1110 IF A$ = "H" TH E N 5000

1120 IF A$ = " Q " TH E N 1260

The R E AD .BLO C K Program 45

Table 2-8 Continued

INV E RS E : PRINT "TURN O N PRINT E R IN SLO T #1": N O RMAL :

1130 IF A$ = " E " TH E N 1270

1140 IF A$ = "P" TH E N 1220

1150 IF A$ = "N" TH E N 1240

1160 IF A$ = "B" TH E N 150

1170 IF A$ = " C " TH E N VTAB 23: C ALL - 958: PRINT TAB(6)

PR = 1: PRINT D$;"PR#1": PRINT : G O T O 1O O O

1180 IF A$ < > "W" TH E N 1210

1190 P O K E HM + 15, INT (BL / 256): P O K E HM + 14, F N M2(BL):

P O K E HM + 3,129: VTAB 23: C ALL - 958:

PRINT "PR E SS ' Y ‘ T O V E RIF Y WRIT E: G E T A$:

IF A$ = C HR$ (13) TH E N A$ = " "

1200 PRINT A$: IF A$ = "Y" TH E N C ALL HM:RW = 128: VTAB 23:

C ALL - 958: PRINT "WRIT E C OMPLE T E D . PR E SS ANY K E Y:

G E T A$: G O T O 1060

1210 G O T O 5000

1220 BL = BL - 1: IF BL < 0 TH E N BL = 0

1230 G O T O 190

1240 BL = BL + 1: G O T O 190

1260 T E XT : H OME : E ND

1270 V = 8:H = 3: VTAB 5: PRINT TAB(6);: INV E RS E :

PRINT "I=UP M=D O WN J=LE F T K=RIG HT": N O RMAL

1280 HTAB 1: VTAB 23: C ALL - 958: PRINT TAB(6);

"PR E SS INV E RS E : PRINT " E S C ";: N O RMAL :

PRINT " T O LE AV E E DIT O R"

1290 R EM

1300 G O SUB 1500: G E T A$: IF AS C (A$) > = 96 TH E N

A$ = C HR$ (AS C (A$) - 32)

1310 LC = 16384 + 128 * (Q - 1) + 8 * V + H:Y = P E E K (LC):

X = AS C (A$)

1320 IF A$ = C HR$ (27) TH E N HTAB 1: VTAB 5:

C ALL - 868: G O T O 1060

1330 IF A$ < > "I" TH E N 1370

1340 B = 0:V = V - 1: IF V > =0 TH E N 1300

1350 V = 15:Q = Q - 1: IF Q < 1 TH E N Q = 4

1360 G O SUB 2000: H OME : C ALL HM + 26: G O T O 1300

1370 IF A$ = "J" TH E N B = 0:H = H - 1: IF H = - 1 TH E N

1380 IF A$ = "K" TH E N B = 0:H = H + 1: IF H = 8 TH E N H

1390 IF A$ < > "M" TH E N 1430

1400 B = 0:V = V + 1: IF V < 16 TH E N 1300

1410 V = 0:Q = Q + 1: IF Q = 5 TH E N Q = 1

1420 G O T O 1360

1430 IF B = 0 TH E N Y = F N MD(Y) + 16 * (X - 48)
�

(X < = 57) + 16 * (X - 55) * (X > = 65)

1440 IF B = 1 TH E N Y = 16 * INT (Y / 16) + (X - 48) *

(X < = 57) + (X - 55) * (X > = 65)

1450 X = AS C (A$): IF (X > = 48 AND X < = 57) O R

(X > = 65 AND X = 70) TH E N PRINT A$; :

46 D isk Volumes and F ile Management

Table 2-8 Continued

P O K E (P E E K (40) + 256 * P E E K (41) + 31 + H),Y:

P O K E LC ,Y: IF B = 0 TH E N C ALL 64500:B = 1

1460 IF X = 8 AND B = 1 TH E N B = 0

1470 IF X = 21 AND B = 0 TH E N B = 1

1480 G O T O 1300

1490 C ALL - 167

1500 VTAB V + 6: HTAB 3 * H + 7 + B: R E TURN

2000 IF Q = 1 TH E N P O K E HM + 27,0: P O K E HM + 31,64

2010 IF Q = 2 TH E N P O K E HM + 27,128: P O K E HM + 31,64

2020 IF Q = 3 TH E N P O K E HM + 27,0: P O K E HM + 31,65

2030 IF Q = 4 TH E N P O K E HM + 27,128: P O K E HM + 31,65

2040 R E TURN

5000 H OME : PRINT TAB(10);"SUMMARY O F C OMMANDS":

PRINT TAB(10);"===================": PRINT

5010 PRINT "B -- R E S E T BAS E BLO C K"

5020 PRINT " C -- C O PY BLO C K C O NT E NTS T O PRINT E R"

5030 PRINT “D -- DISPLAY PR E VIO US 1/4 BLO C K"

5040 PRINT " E — E DIT TH E C URR E NT BLO C K"

5050 PRINT "N - R E AD TH E N E XT BLO C K"

5060 PRINT "P - R E AD TH E PR E VIO US BLO C K"

5070 PRINT " Q - Q UIT TH E PR O G RAM"

5080 PRINT "W -- WRIT E TH E BLO C K T O DISK"

5090 PRINT : PRINT "PR E SS ANY K E Y T O C O NTINU E: G E T A$:

PRINT A$: G O T O 1100

8000 DATA 32,0,191,128,10,3,144,8,176,11.3,96,0,64,0,0,169,

0,133,8,96,169,1,133,8,96,169,0,133,6

8010 DATA 169,64,133,7,162,0,160,0,56,165,7,233,64,32,218,253,

165,6,32,218,253,169,186,32,237,253,169,160,32,237

8020 DATA 253,177,6,32,218,253,169,160,32,237,253,200,192,

8,208,241,169,160,32,237,253,160,0,177,6,9,128,201,160,176

8030 DATA 2,169,174,32,237,253,200,192,8,208,238,169,141,32,

237,253,24,165,6,105,8,133,6,165,7,105,0,133,7,232

8040 DATA 224,16,208,168,96

block to the disk because you may accidenta lly render the disk unreadable; you should
a lways perform writing experiments with a backup copy of the origina l disk.

When you first start up R E AD .BLO C K , you must enter the slot and drive numbers
for the disk drive you want to access (this will be slot 3, drive 2 for the /RAM volume)
and a base block number. The program then reads the base block into memory and
displays it on the screen in a specia l forma t. Because of 40-column screen size
limita tions, only one quarter of the block appears a t once . (You must press the D key
to display the other three quarters.)

The contents of a block appear in 64 rows, each of which conta ins an offse t address
from the beginning of the block followed by the hexadecima l representa tions of the 8

The R E AD . BLO C K Program 47

bytes stored from tha t loca tion onward. A t the far right of each row are the AS CII

representa tions of each of these 8 bytes. The program displays only 16 rows on the

screen a t once .
A fter the program displays the entire block, it asks you to enter one of nine commands:

B rese t the base block number

C copy the contents of the block to the printer (which must be in slot 1)

D display the next quarter of the current block

E edit the current block

N read and display the next block on the disk

P read and display the previous block on the disk

Q quit the program

W write the block back to the disk

The functions tha t most of these commands perform are obvious. The only tricky one

is the E (Edit) command. When you enter the Edit command, the cursor moves to the

center of the 8-by-16 array of hexadecima l digits representing the contents of one

quarter of the block. To change any entry, use the I, J, K , and M keys to move the

cursor up, le ft, right, and down, respective ly, and then type in the new two-digit
hexadecima l entry for tha t position. You can leave editing mode a t any time by

pressing the Esc key. Once you leave editing mode , you can save the changes to disk

using the W (Write) command.

48 D isk Volumes and F ile Management

C HAPT E R 3

Loading and
Insta lling G S/O S
and ProD O S 8

In this chapter, we investiga te exactly wha t happens when G S/O S and ProD O S 8 load
into memory from disk, wha t areas of memory they occupy, and how applica tions can
make use of the areas of memory they don’t occupy. This informa tion is important if you’re
trying to build a bootable distribution disk for your own applica tion or if you want to
understand how to deve lop an applica tion tha t doesn’t interfere with system resources.

For ProD O S 8, we a lso examine the ProD O S 8 system globa l page , a 256-byte area of
memory residing from $B F00 to $B F F F in ma in memory. A good understanding of the
globa l page is absolute ly necessary if you want to write programs tha t communica te
properly with ProD O S 8 or if you want to insta ll custom drivers for disks and clocks.

TH E B O O T R E C O RD

The first two blocks (numbered 0 and 1) of every standard ProD O S-forma tted disk
conta in an assembly-language program, ca lled the boot record, which is placed on the
disk when you forma t the disk. When you boot a disk, the R OM on the disk controller
card loads the boot record program into memory a t loca tion $0800 in ma in memory
and then executes it by ca lling its entry point a t $0801.

The boot record program can load ProD O S 8 on an Apple II or G S/O S (or ProD O S
16) on an Apple IlG S .

When the boot record program starts executing, it loads the volume directory
blocks into the memory area beginning a t address $0C00. (It assumes the first volume
directory block is block 2.) It then scans the directory entries looking for a system file
ca lled PR O D O S . If it isn’t there , it displays the message:

UNABLE T O LO AD PR O D O S

49

and the system ha lts. A bootable disk must conta in the PR O D O S file; use a file �

copying utility to transfer a copy from a ProD O S 8 or G S/O S master disk to the

ProD O S-forma tted disk you wish to boot from.

Note-. Keep in mind tha t there are three distinct versions of the program ca lled

PR O D O S . The ProD O S 8 version conta ins a copy of the ProD O S 8 opera ting system

and the necessary insta lla tion code . The ProD O S 16 version conta ins startup code

and the code de fining the IIg s System Loader. F ina lly, the G S/O S version conta ins

startup code and three file-system specific subroutines tha t the opera ting system

loader and program dispa tcher can use to load a file from disk, de termine the name of
the boot volume , and de termine the name of the file system transla tor associa ted with

the PR O D O S file . The equiva lent of the ProD O S 8 version of PR O D O S is stored in

a file ca lled P8 in the SYST EM/ subdirectory of a G S/O S system disk. You can use P8

to crea te a bootable ProD O S 8 disk by copying it to the volume directory of a freshly

forma tted disk and renaming it as PR O D O S .

If the PR O D O S program file exists, the boot record loads it into memory beginning a t
loca tion $2000 and runs it by executing a JMP $2000 instruction. Wha t happens next
depends on whe ther you’re booting a G S/O S or ProD O S 8 system disk. In the next
section, we ana lyze a ProD O S 8 boot sequence; a t the end of the chapter, we do the

same for G S/O S .

TH E PR O D O S 8 B O O T

The ProD O S 8 version of the PR O D O S file conta ins a copy of the code for the ProD O S

8 opera ting system itse lf as we ll as the code necessary to initia lize various system

parame ters (number of disk drives, amount of system memory, and so on) stored in a

specia l da ta area ca lled the ProD O S 8 system globa l page . When PR O D O S ge ts control,
one of the first things it does is re loca te the ProD O S 8 image to its execution position in

bank-switched RAM. (We describe this RAM area in de ta il in the next section.)
On version 1.3 or higher of ProD O S 8, PR O D O S next looks in the volume

directory for a file ca lled ATINIT with a file type code of $E2. If it finds the file ,
PR O D O S loads and executes it. A t present, the ATINIT file begins with an RTS

instruction, so nothing of interest happens when PR O D O S ca lls it. ATINIT is mere ly

a da ta file for AppleTa lk Ne tworking System utility programs.
If PR O D O S finds the ATINIT file , but its file type code is not $E2, or PR O D O S

can’t load it, PR O D O S displays the message

** UNABLE T O LO AD ATINIT FILE **

and the system hangs. If no ATINIT file is present, PR O D O S simply goes on to the

next step in the boot sequence .

50 Loading and Insta lling G S/O S and ProD O S 8

The last thing PR O D O S does is scan the volume directory for the first system file
entry (file type $F F) having a name of the form xxxxxxxx. SYST EM. (The file could be
a language interpre ter tha t a llows you to write other programs, but it a lso could be any
other executable program.) If it doesn’t find one , it displays the message

** UNABLE T O FIND A " .SYST EM" FILE **

and the booting procedure stops. Every bootable disk must conta in a system file
whose name ends in .SYST EM and it must be in the volume directory.

If PR O D O S does find a system file with the .SYST EM suffix, it loads it into
memory beginning a t $2000 and executes it with a JMP $2000 instruction. This ends
the booting procedure .

To boot into an Applesoft programming environment, the system file must be
BASIC .SYST EM. (It is found on the ProD O S 8 master disk.) As we see in Chapter 5,
BASIC .SYST EM conta ins the subroutines tha t add the disk commands to the standard
Applesoft programming language . It a lso takes care of parsing these commands,
checking syntax, and ca lling ProD O S 8 when required.

It should be clear from this discussion tha t ProD O S 8 is rea lly nothing without a
system program like BASIC .SYST EM to act as a software interface be tween the user
and the low-leve l ProD O S 8 opera ting system. It just won’t opera te without such a
program. For this reason, the ProD O S 8-BASIC .SYST EM environment is commonly
re ferred to as ProD O S 8 even though this is technica lly not so. La ter in this chapter,
we examine ProD O S 8 proper; we de fer a de ta iled discussion of BASIC .SYST EM
(and system programs in genera l) to Chapter 5.

PR O D O S 8 MEMO RY USA G E

Bank-Switched RAM

A fter ProD O S 8 has been loaded into memory, it occupies the following memory
loca tions (as shown in F igure 3-1):

• $E000-$F F F F in ma in bank-switched RAM

• $D000-$D F F F in $Dx bankl of ma in bank-switched RAM

• $D100—$D3F F in $Dx bank2 of ma in bank-switched RAM (This is the dis �
pa tcher code .)

• $B F00-$B F F F in ma in RAM (This is the ProD O S 8 system globa l page .)

The rema ining space in bank-switched RAM ($D400-$D F F F in $Dx bank2) is re �
served for future use by ProD O S 8 and must not be used by applica tion programs.

ProD O S 8 Memory Usage 51

F igure 3-1 ProD O S 8 memory map

Ma in

bank-switched

RAM

Ma in

memory

<— ProD O S 8 globa l page

Free space for

system programs

V ideo RAM

$3D0 ,$3F F reserved

C lock driver uses S200. $2 10

6502 stack

$30..$4F used

You may be wondering wha t the terms bank-switched RAM, $Dx bankl, and $Dx

bank2 mean. An Apple II with a 16K memory card insta lled in slot zero (or an Apple

He , He , or IIg s) has 64K of ma in RAM memory tha t is norma lly used by Applesoft
and ProD O S 8. But this memory is not mapped to one area encompassing the entire

64K space tha t the 6502 microprocessor is capable of addressing. The first 48K of this

memory space corresponds to the block of memory $0000-$B F F F , but the rema ining

16K of memory, the bank-switched RAM, corresponds to one 8K region of memory,
$E000-$F F F F , and two 4K regions of memory, $D000-$D F F F (ca lled $Dx bankl
and $Dx bank2, respective ly). The address space used by bank-switched RAM is the

same as tha t used by the Applesoft and system Monitor R OM, so only one space or the

other can be active for read or write opera tions a t any given time .
As Table 3-1 shows, the Apple II uses e ight I/O memory loca tions (soft switches)

to control whe ther bank-switched RAM or the corresponding R OM space is to be

active and whe ther $Dx bankl or $Dx bank2 is to be used. You can even se t these

switches so tha t the RAM area can be read from but not written to or so tha t it will be

active for write opera tions while the corresponding R OM area is active for read

52 Loading and Insta lling G S/O S and ProD O S 8

Address

Table 3-1 Bank-switched RAM soft switches1

Hex (Dec) Symbolic Name Active $Dx Bank Read From Write to RAM?

$C080 (49280) R E ADBSR2 2 RAM No

$C081 (49281) WRIT E BSR2 2 R OM Yesb

$C082 (49282) O F F BSR2 2 R OM No

$C083 (49283) RDWRBSR2 2 RAM Yesb

$C088 (49288) R E ADBSR1 1 RAM No

$C089 (49289) WRIT E BSR1 1 R OM Yesb

$C08A (49290) O F F BSR1 1 R OM No

$C08B (49291) RDWRBSR1 1 RAM Yesb

N O T E S:
“Read a loca tion to perform the indica ted function.
bRead twice in succession to write-enable bank-switched RAM.

opera tions. This means you can write da ta to the RAM area while running a program tha t
uses subroutines in the R OM area (tha t is, subroutines in Applesoft and the system
Monitor program).

To activa te the desired mode of opera tion, you must se lect the appropria te soft
switch address and then perform any kind of read opera tion a t tha t address: an LDA ,
LDY , LDX , or BIT instruction in assembly language or a P E E K from Applesoft.

ProD O S 8 takes care of managing the bank-switched RAM switches whenever you
ask it to perform some command. In genera l, it saves the sta te of bank-switched RAM
when it ge ts control and then read- and write-enables bankl of bank-switched RAM
be fore passing control to a subroutine residing there . When it re linquishes control, it
restores bank-switched RAM to its origina l sta te . Bankl is active when control passes
to a user-insta lled interrupt handler, disk driver, or clock driver.

Auxiliary Memory

An Apple lie , with an extended 80-column text card insta lled, an Apple IlG S , and an
Apple lie a ll have a 64K auxiliary memory space tha t is mapped to addresses in the
same way tha t the ma in 64K memory space is. S ince most Applesoft programs don’t
use this space , ProD O S 8 uses it for storing files in the same way it uses a rea l disk
drive for storing files. The name of the volume for this so-ca lled RAM disk is /RAM; we
investiga te its characteristics in Chapter 7.

ProD O S 8 Memory Usage 53

Page Zero Usage

ProD O S 8 uses 22 loca tions in page zero (of both ma in and auxiliary memory) for

temporary da ta storage: $3A-$4F . The first 6 loca tions ($3A-$3F) are used only by the

interna l ProD O S 8 disk device drivers for 5.25-inch drives and the /RAM volume . This

means if ProD O S 8 performs a disk I/O opera tion, the existing contents of $3A-$3F are

overwritten. This is not too serious since these loca tions are usua lly used by the Apple H ’s
system Monitor command interpre ter only. But if an applica tion program uses them, an

irreconcilable conflict will occur, and the program could bomb. Don’t use them.
The other 16 loca tions ($40-$4F) are used by the ProD O S 8 machine language

interface (MLI) subroutine . But unlike for the $3A-$3F area , when control passes to

the MLI, the current contents of $40-$4F are saved in a sa fe da ta area within

ProD O S 8 and are restored just be fore control re turns to the ca ller.

Page Two Usage

One of the most use ful fea tures of ProD O S 8 is its ability to da te-stamp its files.
ProD O S 8 can do this because it reserves da te and time fie lds in each directory entry,
and it can ca ll a specia l interna l subroutine , ca lled a clock driver, to read the current
time and da te . (See Chapter 8.)

The standard interna l ProD O S 8 clock driver works with clock cards tha t use the

command se t first popularized by the Thunderclock. One of the quirks of this com�

mand se t is tha t it requires use of the first part of the Apple H ’s line input buffer

($0200-$0210) to store the time da ta string whenever ProD O S 8 requests the time .
This means an applica tion program must not use this area for any purpose; if it does,
it will probably not work properly a fter ProD O S 8 ca lls the clock driver.

O ther parts of page two may we ll be used by the system program used with

ProD O S 8. BASIC .SYST EM, for example , uses most of page two as a temporary da ta

buffer area when it executes disk commands. This is another good reason to avoid

using page two for program da ta storage .

Page Three Usage

The block of memory a t the end of page three of memory ($3D0-$3F F) is used for specia l
purposes on the Apple II. F irst, ProD O S 8 reserves the $3D0-$3E C area for use by any

system program (like BASIC .SYST EM) tha t may be active . The specific use of this area is

dicta ted by the system program itse lf, but it is norma lly used to store short, fixed-position

subroutines tha t pass control to important subroutines in the ma in body of the system

program. For example , BASIC .SYST EM stores a 3-byte JMP $B E00 instruction begin�

ning a t $3D0; this is the warm entry point to BASIC .SYST EM. (Tha t is, it re insta lls

BASIC .SYST EM without destroying the Applesoft program in memory.) We investiga te

BASIC .SYST EM’S use of page three in more de ta il in Chapter 5.
The rest of page three beyond $3D0 is reserved for storing a se t of user-insta llable

vectors and subroutines tha t service interrupt conditions or provide specia l commands:

54 Loading and Insta lling G S/O S and ProD O S 8

• X F E R vector a t $3E D-$3E E —He , lie , and IlG S only (This vector facilita tes the
transfer of da ta be tween ma in and auxiliary memory.)

• BRK (6502 break instruction) vector a t $3F O-$3F1

• R E S E T (rese t interrupt) vector a t $3F2-$3F3 and its enabling byte a t $3F4
(ca lled the powered-up byte)

• & (Applesoft ampersand command) vector a t $3F5-$3F7

• [Control-Y] (system Monitor US E R command) vector a t $3F8-$3F A

• NMI (nonmaskable interrupt) vector a t $3F B-$3F D

• IR Q (interrupt request) vector a t $3F E-$3F F

(See Appendix IV of Inside the Apple lie for a de ta iled discussion of the meaning of
each of these vectors and subroutines.)

ProD O S 8 initia lizes the IR Q vector a t $3F E—$3F F by storing the address of its
interna l interrupt-handling subroutine there . The vectors for R E S E T , &, [Control-Y], and
NMI are se t equa l to $F F59, the cold start entry point to the system monitor. However,
BASIC .SYST EM stores other va lues in these vectors (except BRK and IR Q) when it first
loads. (See Chapter 5 for a description of how BASIC .SYST EM initia lizes these vectors.)

TH E PR O D O S 8 SYST EM GLO BAL PA G E: $B F00-$B F F F

The page of memory from $B F00 to $B F F F is ca lled the ProD O S 8 system globa l
page , and it acts as the ga teway to ProD O S 8 proper (tha t is, the part tha t resides in
bank-switched RAM). It conta ins severa l fixed-position jump vectors to standard
ProD O S 8 subroutines (the machine language interface , clock driver, error handler,
and so on) and severa l important da ta areas tha t conta in informa tion de fining the sta te
of the system. These da ta areas may be inspected, or changed, to facilita te communi �
ca tion be tween a system program (like BASIC .SYST EM) and ProD O S 8.

The globa l page a lso conta ins the bank-switching subroutines needed to transfer
control to and from the parts of the ProD O S 8 machine language interface and
interrupt handler tha t reside in bank-switched RAM. S ince you should never need to
use these subroutines directly, the ir addresses, and the code itse lf, are not guaranteed
to stay the same from one ProD O S 8 version to another.

The System B it Map

One important area in the ProD O S 8 globa l page is the system bit map; it occupies the
area from $B F58 to $B F6F . This map indica tes which RAM areas have been reserved and
which are free for a file to use . Be fore ProD O S 8 performs any loading or buffer a lloca tion
opera tions, it examines this map to see if there will be a conflict with a reserved area . If
there will be , it does not execute the command, and it reports an error condition.

E ach bit in the map corresponds to one of the 192 pages of memory in the Apple
Il’s ma in RAM area (pages $00 through $B F). If a bit is se t to 1, the corresponding

The ProD O S 8 System G loba l Page: $B F00-$B F F F 55

page has been reserved. The re la tive byte number (counting from zero) within the

system bit map in which the bit for a given page number resides is the whole number

ca lcula ted by dividing the page number by 8; the bit number within this byte is 7

minus the rema inder genera ted by the division. For example , the bit for page 190

($B E) is bit 1 of re la tive byte 23: 190 divided by 8 is 23 (the re la tive byte number),
and the rema inder is 6 (meaning the bit number is 7 — 1 = 6).

ProD O S 8 initia lly marks page zero, the stack page (page 1), the video RAM area

(pages 4-7) and its globa l page (page $B F) as reserved. O ther pages can be protected as

desired by system and applica tion programs. For example , BASIC .SYST EM a lso reserves

pages $9A-$B9 and page $B E; these are the pages where the actua l BASIC .SYST EM

code is stored.
Short utility programs are often stored in the first part of page 3 ($300-$3C F)

because tha t area is not otherwise used by Applesoft, ProD O S 8, or the system

monitor. Such a program can prevent itse lf from be ing overwritten by se tting the

appropria te bit in the system bit map to 1 (bit 4 of $B F58).

The Machine Identifica tion Byte

There is a byte in the ProD O S 8 globa l page ca lled MA C HID ($B F98) you can

examine to de termine the na ture of the hardware environment ProD O S 8 is executing

in. It conta ins informa tion on the type of Apple be ing used (II, II P lus, lie , lie , or

IIg s), the amount of RAM memory (48K , 64K , or 128K), and whe ther an 80-column

card or clock card is in the system.
The bits in MA C HID have the following meanings:

bits 7,6 (if bit 3 = 0) 00 = Apple

01 = Apple

10 = Apple

11 = Apple

II

II P lus

lie or IIg s

III in Apple II

emula tion mode

bits 7,6 (if bit 3 = 1) 00 = [reserved]

01 = [reserved]

10 = Apple lie

11 = [reserved]

bits 5,4 00 = [reserved]

01 = 48K RAM

10 = 64K system

11 = 128K system (lie , lie , IIg s)

bit 3 de termines how bits 7,6 are to

be interpre ted

bit 2 [reserved]

bit 1 1 = 80-column card is insta lled

0 = no 80-column card is insta lled

56 Loading and Insta lling G S/O S and ProD O S 8

bit 0 1 = clock card is insta lled

0 = no clock card is insta lled

It is not possible for an applica tion to de termine the exact type of Apple II it’s running
on by examining the MA C HID byte . For a precise identifica tion, an applica tion
should instead inspect two identifica tion bytes stored in the Monitor R OM a t $F BB3
and $F B C0. An Apple II P lus has $E A stored a t $F BB3, whereas the lie , lie , and
lies have $06 stored there . Examine the second loca tion, $F B C0, for a more precise
identifica tion: It holds $00 for a lie , $E A for a He , and $E0 for a lies or enhanced lie
(the one with the MouseText R OM). To distinguish be tween the IlG S and enhanced
He , se t the carry flag (with S E C) and ca ll the subroutine a t $F E1F in the Monitor. If
the carry flag comes back cleared, the system is a lies, and the X register conta ins the
R OM version number; otherwise , the system is an enhanced lie .

Source Listing of the ProD O S 8 G loba l Page

In la ter chapters, we ana lyze in de ta il a ll the other important areas in the ProD O S 8
globa l page . Table 3-2 shows a commented source listing of the code for the globa l page .

G S/O S SYST EM DISKS

C erta in files must be present on a G S/O S system disk be fore you can boot it or use it
to run both G S/O S and ProD O S 8 applica tions. The structure of the simplest such
system disk is as follows:

PR O D O S

SYST EM/

START . G S . O S

G S . O S

E RR O R .MS G

START

P8

T O OLS/

F O NTS/

D E SK .A C C S/

LIBS/

DRIV E RS/

APPLE DISK3.5

Opera ting system startup code

Subdirectory: opera ting system files

G S/O S loader and dispa tcher

G S/O S opera ting system and System Loader

G S/O S error messages

The startup program

ProD O S 8 opera ting system

Subdirectory: RAM-based tool se ts

Subdirectory: font files

Subdirectory: desk accessories

Subdirectory: system library files

Subdirectory: device drivers

Driver for 3.5-inch disk drive

C O NS OLE .DRIV E R Console Driver

S C SI.DRIV E R

SYST EM.S E TUP/

T O OL.S E TUP

TS2

F STS/

PR O . F ST

C HAR . F ST

Driver for S C SI hard disk

Subdirectory: initia liza tion programs

Tool se t pa tching program

Pa tches to R OM version 01 tool se ts

Subdirectory: file system transla tors

ProD O S file system transla tor

Character I/O file system transla tor

In the next section, we see wha t these files and subdirectories conta in.

G S/O S System D isks 57

Table 3-2 Source listing for ProD O S 8 system globa l page

2 **************************************

3 * ProD O S 8 System G loba l Page *

4 * for ProD O S 8 version 1.7 *

5 * *

6 * Comments copyright 1985-1988 *

7 * G ary B . Little *

8 * *

9 * Last modified: August 28, 1988 *

10 * *
11 **************************************

12

13 * N O T E: The addresses of the following subroutines

14 * may change in future versions of ProD O S 8.

15

16 CLO C KDR E Q U $D742 ;ProD O S 8 clock driver

17 N O D E VIC E E Q U $D E A C ;N0 D E VIC E C O NN E C T E D vector

18 SYS E RR1 E Q U $D F F F ;System error handler

19 SYD E ATH1 E Q U $E009 ;Critica l error handler

20 E NTRYMLI E Q U $D E O O ;ProD O S 8 MLI handler

21 IR Q R E C E V E Q U $D F4E ;ProD O S 8 interrupt handler

22 MLIQ UIT E Q U $F C D5 ,-Q UIT subroutine

23 FIX45 E Q U $F F D8

24

25 O R G $B F00

26

27 * MLI is the primary entry point to the ProD O S 8

28 * machine language interpe ter. This interpre ter

29 * supports a number of commands tha t can be used

30 * to access files. (See Chapter 4.)

31

B F O O: 4C 4B B F 32

33

34

35

36

37

38

39

40

MLI JMP MLIE NT1 ;The ga teway to MLI commands

* Q UIT is ca lled whenever the MLI Q UIT command is

* requested. (This is norma lly done when transferring

* control from one system program to another.)

* The standard subroutine asks the user to

* enter a new pre fix and system filename and

* then executes the program specified. (See Chapter 4.)

B F O3: 4C D5 F C 41 Q UIT

42

JMP MLIQ UIT ;Execute Q UIT command

43 * DAT E TIME is ca lled whenever the MLI G E T_TIME

44 * command is executed. If a clock card is insta lled,

45 * it will read the clock and place the da te and

46 * time in DAT E ($B F90) and TIME ($B F92). See

47 * Chapter 8 for de ta ils on how this is done .

48

B F06: 4C 42 D7 49 DAT E TIME JMP

50

CLO C KDR ;RTS ($60) if no clock

58 Loading and Insta lling G S/O S and ProD O S 8

Table 3-2 Continued

51 * ProD O S 8 ca lls SYS E RR if an error occurs during

52 * an MLI ca ll. SYS E RR takes the error code (tha t

53 * is in the accumula tor) and stores it in S E RR .

54 *

55 * SYSD E ATH is ca lled whenever a critica l error

56 * occurs (for example: when important ProD O S 8 da ta

57 * areas are overwritten). The system will have to be

58 * restarted if a critica l error occurs.

(See Chapter 4 for a discussion of MLI system�

the table
�

*

�

vector

vector

�

*

error)

59

60

66

67

68

69

70

71

98
99

last disk device tha t was accessed. The bit
forma t for this code is as follows:

D isk driver

corresponds

as shown. If an entry is unused, its vector

points to the ProD O S 8 “no device connected"

subroutine . The /RAM device ava ilable on an

vector table . E ach entry in

to a unique drive and slot combina tion

*

61

62

* errors and critica l errors.)

B F09: 4C F F D F 63 SYS E RR JMP SYS E RR1 .•System error handler

B F O C: 4C 09 E0 64 SYSD E ATH JMP SYD E ATH1 ;Critica l error handler

B F O F: 00 65 S E RR D F B $00 ;MLI error code (0 if no

�

72 * Apple lie ,, lie , or IIg s is mapped to the slot 3,

73 * drive ;2 device . The entries in the following

74 * table ,are for an Apple IIg s with an Apple 3.5

75 * Drive in slot 5, a ProF ile hard disk in :slot

76 * 6, and an Apple II Memory Expansion card in

77 * slot 7

78

B F10: A C D E 79 D E VADR01 DA N O D E VIC E ; "No device connected" ’

B F12: A C D E 80 D E VADR11 DA N O D E VIC E ,-S lot 1, drive 1 vector

B F14: A C D E 81 D E VADR21 DA N O D E VIC E ;S lot 2, drive 1 vector

B F16: A C D E 82 D E VADR31 DA N O D E VIC E ;S lot 3, drive 1 vector

B F18: A C D E 83 D E VADR41 DA N O D E VIC E ;S lot 4, drive 1 vector

B F1A: 0A C5 84 D E VADR51 DA $C50A ;S lot 5, drive 1 vector

B F1C: E A C6 85 D E VADR61 DA $C6E A ;S lot 6, drive 1 vector

B F1E: 4E C7 86
Q7

D E VADR71 DA $C74E ;S lot 7, drive 1 vector

B F20: A C D E

O/

88 D E VADR02 DA N O D E VIC E ;"No device connected" '

B F22: A C D E 89 D E VADR12 DA N O D E VIC E ;S lot 1, drive 2 vector

B F24: A C D E 90 D E VADR22 DA N O D E VIC E ,-S lot 2, drive 2 vector

B F26: 00 F F 91 D E VADR32 DA $F F O O ;S lot 3, drive 2 vector

B F28: A C D E 92 D E VADR42 DA N O D E VIC E ;S lot 4, drive 2 vector

B F2A: A C D E 93 D E VADR52 DA N O D E VIC E ;S lot 5, drive 2 vector

B F2C: A C D E 94 D E VADR62 DA N O D E VIC E ,-S lot 6, drive 2 vector

B F2E: A C D E 95 D E VADR72 DA N O D E VIC E ;S lot 7, drive 2 vector

70

97 * D E VNUM conta ins the slot and drive code for the

G S/O S System D isks 59

Table 3-2 Continued

100
*

101
k

D S S S (10 0 0

102
*

103
�

where 0 is the drive number (0 for drive 1

104
�

and 1 for drive 2), and SSS is the slot

105
k

number (from 1 to 7).

106

B F30: 60 107 D E VNUM D F B $60 ;S lot, drive of last access

108

109
�

D E V C NT holds the number of active disk devices

110
� insta l led in the system, less 1.

111

B F3I: 03 112 D E V C NT D F B $03

113

114
�

D E VLST conta ins a list of the drive and slot

115
*

codes for each of the active disk devices

116
*

(14 maximum),

117
*

118
�

The codes are in the same forma t as used

119
� for D E VNUM except tha t the low-order 4

120
�

bits conta in device characteristics

121
� informa tion. (See Chapter 7.)

122

B F32: B F 123 D E VLST D F B $B F ;/RAM in slot 3, drive 2

B F33: 5B 124 D F B $5B ;3.5" drive in slot 5, drive 1

B F34: 64 125 D F B $64 ;ProF ile in slot 6, drive 1

B F35: 74 126 D F B $74 ;RAM card in slot 7, drive 1

B F36: 00 127 D F B $00

B F37: 00 128 D F B $00

B F38: 00 129 D F B $00

B F39: 00 130 D F B $00

B F3A: 00 131 D F B $00

B F3B: 00 132 D F B $00

B F3C: 00 133 D F B $00

B F3D: 00 134 D F B $00

B F3E: 00 135 D F B $00

B F3F: 00 136 D F B $00

137

B F40: 28 43 29 138 AS C +(C)APPLE'83+ ;(+ de limiter only)

B F43: 41 50 50 4C 45 27 38 33

139

140
k

The standard JSR $B F00 MLI ca ll is

141
k

routed to this secondary entry point.

142

B F4B: 08 143 MLIE NT1 PHP

B F4C: 78 144 S EI

B F4D: 4C B7 B F 145 JMP MLIC O NT

146

147
*

This tiny bit of code is used by the ProD O S 8

60 Loading and Insta lling G S/O S and ProD O S 8

Table 3-2 Continued

148 * interrupt-handling subroutine .
149

B F5O: 8D 8B C O 150 STA $C08B ;Turn on RAMcard
B F53: 4C 08 F F 151 JMP FIX45
B F56: 00 152 SAV E45 O F B $00 ,-Contents of $45 upon interrupt
B F57: 00 153 SAV E DX D F B $00 ;ID code for $Dx bank

154
155 * The system bit map. E ach bit in this 24-byte
156 * (192-bit) table corresponds to a unique page
157 * from $00 to $B F . Page $00 corresponds to
158 * bit 7 of the first byte . and page $B F
159 * corresponds to bit 0 of the last byte .
160 * If the page is in use , the corresponding
161 * bit wi11 be se t to 1. The configura tion of
162 * the bit map a fter BASIC .SYST EM has been
163 * loaded is shown.
164

B F58: C F 00 00 165 BITMAP D F B $C F ,$O O ,$O O ,-Pages 0,1,4-7 in use
B F5B: 00 00 00 166 D F B $00,$00,$00
B F5E: 00 00 00 167 D F B $00,$00,$00
B F61: 00 00 00 168 D F B $00,$00,$00
B F64: 00 00 00 169 D F B $00,$00,$00
B F67: 00 00 00 170 D F B $00,$00,$00
B F6A: 00 3F F F 171 D F B $00,$3F ,$F F ;Pages $9A-$A7 in use
B F6D: F F F F C3 172 D F B $F F ,$F F ,$C3 ,-Pages $A8-$B9,$B E ,$B F in use

173
174 * F ile buffer table . The buffer addresses for each
175 * open file (a maximum of 8 are a llowed) are stored
176 * in this tabl e . A buffer address must be changed
177 * by using the MLI S E T_BU F command.
178

B F70: 00 00 179 BU F F E R1 DA $0000 ;Buffer address for file 1
B F72: 00 00 180 BU F F E R2 DA $0000 ;Buffer address for file 2
B F74: 00 00 181 BU F F E R3 DA $0000 ;Buffer address for file 3
B F76: 00 00 182 BU F F E R4 DA $0000 ;Buffer address for file 4
B F78: 00 00 183 BU F F E R5 DA $0000 ;Buffer address for file 5
B F7A: 00 00 184 BU F F E R6 DA $0000 ;Buffer address for file 6
B F7C: 00 00 185 BU F F E R7 DA $0000 ;Buffer address for file 7
B F7E: 00 00 186 BU F F E R8 DA $0000 ;Buffer address for file 8

187
188 * Interrupt vector table . This is where the
189 * addresses of the user-insta lled interrupt-
190 * handling subroutines are stored (4 maximum).
191 * They are insta lled using the MLI ALLO C INT E RRUPT
192 * command and removed using the D E ALLO C_INT E RRUPT
193 * command. Fol lowing the vector table is the
194 * da ta area tha t ProD O S 8 uses to store registers
195 * and bank-switching informa tion when an
196 * interrupt occurs. (See Chapter 6.)

G S/O S System D isks 61

Table 3-2 Continued

197

B F80: 00 00 198 INTRUPT1 DA $0000 ; Interrupt vector 1

B F82: 00 00 199 INTRUPT2 DA $0000 ;Interrupt vector 2

B F84: 00 00 200 INTRUPT3 DA $0000 .•Interrupt vector 3

B F86: 00 00 201 INTRUPT4 DA $0000 .•Interrupt vector 4

B F88: 00 202 INTAR E G DS 1 ;Accumula tor

B F89: 00 203 INTXR E G DS 1 ;X register

B F8A: 00 204 INTYR E G O S 1 ;Y register

B F8B: 00 205 INTSR E G DS 1 [S tack pointer register

B F8C: 00 206 INTPR E G DS 1 [Processor sta tus register

B F8D: 00 207 INTBNKID DS 1 ;ID code for $Dx bank

B F8E: 00 00 208 INTADDR DA $0000 [Address where IR Q occurred

209

210 * The system da te and time are stored in the

211 * following two words in a specia l packed

212 * forma t

213
�

214 * DAT E: year = bits 15-9 (0..99)

215
*

month = bits 8-5 (1..12)

216
*

day = bits 4-0 (1..31)

217
�

218 * TIME: hours = bits 12-8 (0..23)

219
�

minutes = bits 5-0 (0..59)

220
�

221 * (See Chapter 8 for more on DAT E and TIME .)

222

B F90: 00 00 223 DAT E DW $0000

B F92: 00 00 224 TIME DW $0000

225

226 * LE V EL indica tes the leve l of the files to

227 * be acted on by the ProD O S 8 O P E N , FLUSH , and

228 * CLO S E commands.

229

B F94: 00 230 LE V EL D F B $00 [Leve l for O P E N , FLUSH , CLO S E

B F95: 00 231 BUBIT D F B $00 ;S E T_FILE_IN F O backup bit flag

B F96: 00 232 SAV E P DS 1 ,-P register when MLI ca lled

233

B F97: 00 234 SPAR E1 DS 1 ,-Unused/reserved

235

236 * MA C HID identifies th e type of Apple be ing used.

237 * the amount of memory ava ilable , and whe ther

238 * an 80-<column card or ProD O S-compa tible clock

239 * card is insta lled. Here is the meaning of the

240 * bits in MA C HID:

241 *

242 * bits 7,6 (if bit 3 = 0) 00 = Apple II

243 * 01 = Apple II P lus

244 * 10 = Apple lie or IIg s

245 * 11 = Apple III emul.

62 Loading and Insta lling G S/O S and ProD O S 8

Table 3-2 Continued

246 *

247 � bits 7,6 (if bit 3 = 1) 00 = [reserved]
248 � 01 = [reserved]
249 k 10 = Apple lie
250 k 11 = [reserved]
251 k

252 k bits 5,4 00 = [reserved]
253 k 01 = 48K
254 k 10 = 64K
255 * 11 = 128K (lie , lie , Iles only)
256 *

257 � bit 3 de termines how bits 7,6 are to be
258 k i nterpre ted
259 k

260 k bit 2 [reserved]
261 �

262 k bit 1 1 = 80-column card is insta lled
263 k 0 = no 80-column card is insta lled
264 k

265 k bit 0 1 = clock card is insta lled
266 k 0 = no clock card is insta lled
267 k

268 k The example given is for an Apple IIg s , which has
269 k a built-in 80-column card and clock.
270

B F98: B3 271 MA C HID D F B $B3 ;G S , 80-columns, 128K
272
273 k The high 7 bits of SLTBYT are used as
274 k flags to indica te whe ther there is a
275 k periphera l card with R OM on it in
276 k slot (bit #). In the following example .
277 k a byte is used tha t indica tes R OM in
278 k slots 1, 2, 3, 4, 5, 6, and 7.
279

B F99: F E 280 SLTBYT D F B $F E .-B inary 11111110
281
282 k P FIXPTR is a flag tha t indica tes whe ther
283 k a filename pre fix has ye t been de fined.
284 k If it hasn't, P FIXPTR will be 0, and full
285 k (ra ther than partia l) pa thnames must be
286 k specified when a ProD O S 8 command is
287 k requested.
288

B F9A: 00 289 P FIXPTR D F B $00 ;Pre fix flag (0 if no pre fix)
290
291 � The following four parame ters are se t up
292 � whenever an MLI ca ll (JSR $B F O O) is made .
293

B F9B: 00 294 MLIA C TV D F B $00 ;MLI flag (bit 7=1 if active)

G S/O S System D isks 63

Table 3-2 Continued

B F9C: 00 00 295 CMDADR DA $0000 ;Address+6 of last JSR to MLI

B F9E: 00 296 SAV E X D F B $00 ;X register when MLI ca lled

B F9F: 00 297 SAV E Y D F B $00 ;Y register when MLI ca lled

298

299 * A ll ca lls to the MLI eventua lly exit by

300 * ca ll ing this subroutine with A = BNKBYT1

301 * and bankl of bank-switched RAM read-enabled.

302 * E XIT restores the origina l sta te of the RAM

303 * switches and re turns control to the address

304 * stored in CMDADR ($B F9C) via a "simula ted" RTI.

305

B F A O: 4D 00 E0 306 E XIT E O R $E000 ;$E000 same as on entry?

B F A3: F0 05 307 B E Q E XIT1 ;Yes, so RAM must be active

B F A5: 8D 82 C O 308 STA $C082 ;No, so enable R OM

B F A8: D O 0B 309 BN E E XIT2 ;(a lways taken)

B F AA: AD F5 B F 310 E XIT1 LDA BNKBYT2 ;G e t $Dx bank code

B F AD: 4D 00 D O 311 E O R $D000 ;Same as on entry?

B F B O: F O 03 312 B E Q E XIT2 ;Yes, so bankl RAM active

B F B2: AD 83 C O 313 LDA $C083 ;Read-enable bank2 RAM

B F B5: 68 314 E XIT2 PLA

B F B6: 40 315 RTI .•(re turns to CMDADR)

316

317 * This is a continua tion of the standard

318 * JSR MLI MU ca ll. It se ts MLIA C TV ,

319 * saves the sta tus of bank-switched RAM,

320 * and then enables bankl of bank-

321 * switched RAM be fore passing control

322 * to E NTRYMLI.

323

B F B7: 38 324 MLIC O NT S E C

B F B8: 6E 9B B F 325 R O R MLIA C TV ;Se t "MLI active " flag (bit 7)

B F BB: AD 00 E O 326 LDA $E000

B F B E: 8D F4 B F 327 STA BNKBYT1 ;Save RAM/R OM code

B F C1: AD 00 D O 328 LDA $D000

B F C4: 8D F5 B F 329 STA BNKBYT2 ;Save $Dx bank code

B F C7: AD 8B C O 330 LDA $C08B

B F C A: AD 8B C O 331 LDA $C08B ;Read/Write bankl RAM

B F C D: 4C 00 D E 332 JMP E NTRYMLI ;Go to RAM to do the rest

333

334 * This is the ta il end of the specia l ProD O S 8

335 * interrupt-handling subroutine .

336

B F D O: AD 8D B F 337 IR Q XIT LDA INTBNKID ;G e t RAMcard sta tus

B F D3: F O O D 338 IR Q XIT O B E Q IR Q XIT2 ;Branch if bankl $Dx enabled

B F D5: 30 08 339 BMI IR Q XIT1 ;Branch if bank2 $Dx enabled

B F D7: 4A 340 LSR ;Is there a RAM card?

B F D8: 90 O D 341 B C C R OMXIT ;No, so branch

B F DA: AD 81 C O 342 LDA $C081 ;Yes, so enable R OM

B F DD: B O 08 343 B C S R OMXIT ;(a lways taken)

64 Loading and Insta lling G S/O S and ProD O S 8

Table 3-2 Continued

B F D F: AD 83 C O 344 IR Q XIT1 LDA $C083 ;Read-enable bank2 $Dx
B F E2: A9 01 345 IR Q XIT2 LDA #1
B F E4: 8D 8D B F 346 STA INTBNKID ;Se t flag for R OM
B F E7: AD 88 B F 347 R OMXIT LDA INTAR E G .•Restore accumula tor
B F E A: 40 348 RTI ;and finish up

349
350 * The IR Q vector a t $3F E/$3F F points here .
351 * This code s imply read- and write-enables bankl
352 * of bank-swi tched RAM be fore passing control
353 * to the ProD O S 8 interrupt handler tha t resides
354 * there .
355

B F E B: 2C 8B C O 356 IR Q E NT BIT $C08B ;Read- and ...
B F E E: 2C 8B C O 357 BIT $C08B ;... write-enable bankl RAM
B F F1: 4C 4E D F 358 JMP IR Q R E C E V ;Go to IR Q handler

359
B F F4: 00 360 BNKBYT1 D F B $00 ;RAM/R0M sta tus stored here
B F F5: 00 361 BNKBYT2 D F B $00 ;$Dx RAM bank sta tus stored here

362
B F F6: 00 00 00 363 DS 6
B F F9: 00 00 00

364
365 * IBAKV E R is the earliest version number of the
366 * ProD O S 8 kerne l (MLI) tha t can be used by the
367 * currently active system program (interpre ter).
368 * IV E RSIO N is the version number of the system
369 * program. When a system >rogram is first
370 * executed, i t must se t up these two parame ters.
371

B F F C: 01 372 IBAKV E R D F B $01 .•E arliest compa tible kerne l
B F F D: 01 373 IV E RSIO N D F B $01 .•Current interpre ter version

374
375 * KBAKV E R is the earliest version number of the
376 * ProD O S 8 kerne l (MLI) tha t is compa tible with
377 * the current version number stored in KV E RSIO N .
378

B F F E: 00 379 KBAKV E R D F B $00 ;E arliest compa tible version
B F F F: 07 380 KV E RSIO N D F B $07 .•Current ProD O S 8 version

TH E G S/O S B O O T

A G S/O S system disk goes through a ra ther convoluted startup procedure when you
boot it. It begins by loading the PR O D O S program into memory and executing it.
(This is the G S/O S version of PR O D O S , of course .)

The G S/O S Boot 65

The first thing PR O D O S does is check whe ther it’s running on an Apple IIg s . If it’s
not, it displays the message

G S/O S R E Q UIR E S APPLE IIG S HARDWAR E

and the system hangs.
It then checks to see whe ther the IIg s has the correct version of the R OM

insta lled. If it doesn’t, it displays the following two lines:

G S/O S needs R OM version 01 or grea ter.

See your dea ler for a R OM upgrade .

and the system hangs.
If PR O D O S is running on an Apple IIg s with R OM version 01 or higher, it loads

the file ca lled START . G S . O S in the SYST EM/ subdirectory and runs it. START .-
G S . O S first initia lizes the sta te of the system by performing the following steps:

1. It initia lizes the Apple IIg s tool se ts.

2. It insta lls the G S/O S program dispa tcher (the code tha t handles the Q UIT command).

3. It assigns the */ pre fix to the name of the boot volume .

4. It saves the name of the startup file system transla tor.

5. It loads and insta lls the file ca lled G S . O S from the SYST EM/ subdirectory; this

file conta ins the Apple IIg s System Loader tool se t and the core of G S/O S .

Note-. The IIg s System Loader tool se t is the one responsible for bringing G S/O S load

files into memory. (Load files are executable applica tions crea ted by the APW linker.)

START . G S . O S then loads the file ca lled E RR O R .MS G in the SYST EM/ subdirectory;

this file conta ins the text of a ll G S/O S error messages. By keeping the text in a single

file like this, Apple can make fore ign-language versions of G S/O S simply by transla t �
ing the messages conta ined in this one file .

Next, it loads and insta lls the startup file system transla tor from the SYST EM/
F STS/ subdirectory, usua lly the ProD O S file system transla tor, PR O . F ST . (This file ,
like any file system transla tor file , must have a file type code of $BD .) Any other file

system transla tors in this subdirectory are loaded and insta lled next. C HAR . F ST , the

character F ST , is the other F ST file tha t should be on the boot disk.
START . G S . O S then scans the system looking for character and disk devices. When

it finds one , it tries to find a driver for it in the SYST EM/DRIV E RS/ subdirectory and

load it if it is there . If there is no driver, START . G S . O S genera tes a generic driver in

memory. The boot disk should include drivers for the keyboard/video device (C O N �

S OLE .DRIV E R), 3.5-inch disk drives (APPLE DISK3.5), and Apple S C SI hard disks

66 Loading and Insta lling G S/O S and ProD O S 8

(S C SI.DRIV E R); to enable access to 5.25-inch disk drives as we ll, include the
APPLE DISK5.25 file . (SYST EM/DRIV E RS/ should a lso conta in any printer drivers
the Print Manager may need.)

START . G S . O S then executes the T O OL.S E TUP program in the SYST EM/
SYST EM.S E TUP/ directory. T O OL.S E TUP pa tches and enhances the IIg s ’ s R OM�
based tool se ts; the pa tches are conta ined in the file ca lled TS2.

START . G S . O S continues by loading and executing a ll the other files in the SYST EM/
SYST EM.S E TUP/ subdirectory tha t have file type codes of $B6 or $B7. $B6 files are
permanent initia liza tion (startup) files, and $B7 files are temporary initia liza tion files. The
difference be tween them is tha t temporary initia liza tion files remove themse lves from
memory when they finish executing and permanent initia liza tion files do not.

START . G S . O S then moves to the SYST EM/D E SK .A C C S/ directory and loads into
memory any C lassic Desk Accessory files (file type $B9) and New Desk Accessory files
(file type $B8) it finds. This causes the names of the C lassic Desk Accessories to be
placed in the menu tha t appears when you press Control-Open-Apple-Esc. The names
of the New Desk Accessories appear when you pull down the Apple menu in a
standard desktop applica tion like the F inder.

Next, START . G S . O S searches the SYST EM/ directory for a file ca lled START tha t
has a file type of $B3 (S16). If it finds this file , it loads and executes it, and the boot
process ends. START is usua lly the F inder, Apple’s standard program-launching and
disk/file-ma intenance program.

If START . G S . O S does not find START , it scans the volume directory until it finds
a ProD O S 8 system program (file type $F F) whose name ends with .SYST EM or a
G S/O S system program (file type $B3) whose name ends with .SYS16. It then ends the
boot procedure by running the program. But it will not run a ProD O S 8 program
unless SYST EM/P8 is on the disk. P8 conta ins the code for the ProD O S 8 opera ting
system, and if it’s not there , START . G S . O S brings up a window asking the user to
enter the pa thname of the applica tion to run.

The subdirectories we did not discuss, name ly, T O OLS/, F O NTS/, and LIBS/, do not
participa te in the boot procedure . The files they conta in are there for the bene fit of
applica tions only. T O OLS/ conta ins IIg s tool se t files for RAM-based tool se ts; F O NTS/
conta ins files conta ining font de finitions tha t QuickDraw uses to draw characters in
windows on the super hi-res graphics screen; and LIBS/ conta ins system library files.

G S/O S MEMO RY USA G E

It is important for an applica tion to know which areas of memory ProD O S 8 uses because
Apple II computers preda ting the IIg s do not have a memory manager for a lloca ting
unused areas of memory and keeping track of used areas. ProD O S 8 applica tions running
on a IIG S could use the IIg s ’s Memory Manager tool se t, but few do because most
deve lopers don’t want to crea te a specia l ProD O S 8 version just for the IIg s .

If an applica tion didn’t know wha t memory areas ProD O S 8 was using, it wouldn’t
know wha t areas it could use sa fe ly. But since the Apple IIg s does have a memory

G S/O S Memory Usage 67

manager, knowledge of the memory areas G S/O S uses is much less important because

the applica tion can ca ll the Memory Manager when it needs a sa fe block of memory to

work with. In fact, a ll the applica tion rea lly needs to know about G S/O S memory

usage is where it keeps important entry points and flags. Re fer to Exploring the Apple

IlG S or Apple IIg s Toolbox Re ference , Volume 1 for instructions on how to use the

Memory Manager.
The code for G S/O S , the System Loader, and re la ted IlG S system software occupies

most of the language card areas in banks $00, $01, $E0, and $E1 of the 65816 memory

space . The language card areas are not managed by the Memory Manager, so an

applica tion tha t uses the Memory Manager will never rece ive permission to use these

areas. An applica tion must not chea t and write to these unmanaged memory areas

because they are strictly reserved.
(O ther unmanaged memory areas are $0000-$0800 in banks $00 and $01 and

$0000-$lF F F in banks $E0 and $E1. They are a lso reserved and must not be used by

the applica tion except for the text-page video RAM area $400—$7F F in banks $00 and

$01. An applica tion may store screen da ta directly to these areas if it needs to bypass

the Text Tool Se t or Console Driver to improve screen-output speed.)
G S/O S a lso uses the Memory Manager to a lloca te a work area in the upper end of

bank $00, just be low loca tion $C000.
Table 3-3 summarizes the only loca tions most applica tions will ever need to know

about. This includes the two standard command interpre ter entry points we discuss in

the next chapter and flags indica ting wha t opera ting system is currently running, wha t
opera ting system was origina lly booted, and whe ther G S/O S is busy.

Unlike ProD O S 8, G S/O S does not have a system globa l page tha t an applica tion

can examine to de termine how many disk devices are connected to the system, wha t
the system configura tion is, wha t areas of memory have been reserved, and so on.
Instead, an applica tion can use G S/O S commands to keep track of disk devices, IlG S

tool se t functions to de termine system configura tion, and the Memory Manager to

avoid memory conflicts.

68 Loading and Insta lling G S/O S and ProD O S 8

Table 3-3 Important G S/O S memory loca tions

Address Meaning

$E100A8-$E100AB This is the inline command interpre ter entry point.
Applica tions can JSL to this address to perform the G S/O S
command whose number and parame ter table pointer follow
the JSL instruction. (See Chapter 4.)

$E100B0-$E100B3 This is the stack-based machine command interpre ter entry
point. Applica tions can JSL to this address to perform the
G S/O S command whose number and parame ter table pointer
have previously been pushed on the stack. (See Chapter 4.)

$E100B C The O S _ KIND byte . The va lue stored here indica tes which
opera ting system is currently running:

$00 = ProD O S 8
$01 = G S/O S or ProD O S 16

Any other va lue indica tes tha t no opera ting system is current.
(This will be the case if the system is in the middle of a
switch be tween ProD O S 8 and G S/O S , for example .)

Technica lly, a $00 va lue a t O S _ KIND does not guarantee
tha t ProD O S 8 is running since the user could have
subsequently booted another opera ting system, like D O S 3.3,
tha t does not change the O S _ KIND byte . A favorite
technique for de termining whe ther ProD O S 8 is actua lly
active is to check for a JMP opcode ($4C) a t loca tion $B F00
in bank $00.

$E100BD The O S _ B O O T byte . The va lue stored here indica tes which
opera ting system was initia lly booted:

$00 = ProD O S 8
$01 = G S/O S or ProD O S 16

$E100B E-$E100B F The G S/O S sta tus flag word. Only bit 15 currently has
meaning; if it is 1, G S/O S is busy, and no commands should
be requested. This flag is for the bene fit of desk accessories
and interrupt handlers tha t may interrupt G S/O S in the
middle of executing a command tha t is not reentrant.

G S/O S Memory Usage 69

C HAPT E R 4

G S/O S and
ProD O S 8
Commands

G S/O S and ProD O S 8 both have a low-leve l command interpre ter tha t serves as an
applica tion’s ga teway to the opera ting system’s commands. (The ProD O S 8 command
interpre ter is ca lled the machine language interface or MLI.) Applica tions ca ll the
interpre ter to perform various file-re la ted opera tions, such as crea ting, de le ting, open �
ing, closing, reading, and writing files.

The command interpre ter for G S/O S supports 47 commands, and the one for
ProD O S 8 supports 26. (These tota ls will undoubtedly increase as Apple re leases new
versions of the opera ting systems.) You invoke these commands from an assembly �
language program in the same genera l way, using standard ca lling protocols de fined
by Apple . The protocols for G S/O S and ProD O S 8 are structura lly similar but not
identica l.

In this chapter, we take a close look a t the G S/O S and ProD O S 8 MLI commands
and see how to use them in assembly-language programs. In particular, we see how to

• C a ll specific commands

• Se t up command parame ter tables

• Identify error conditions

• Interpre t error codes

A long the way we look a t severa l brie f programming examples which should clarify
how to use opera ting system commands in your own programs.

71

USIN G PR O D O S 8 MLI C OMMANDS

It is very easy to execute a ProD O S 8 MLI command. A typica l ca lling sequence looks

some thing like this:

[place va lues in the parame ter table

be fore ca lling the MLI]

JSR $B F O O

D F B CMDNUM

DA PARMTBL

B C S E RR O R

;$B F O O is the ProD O S 8 MLI entry point

;The MLI command number

;Address of command parame ter table

;C arry is se t if error occurred

[continue your

program here]

RTS

E RR O R .

[put an error

handler here]

RTS

PARMTBL D F B NPARMS ;NPARMS = # of parame ters in table

[place the rest of the parame ters

here in the order the MLI command

expects]

The key instruction here is JSR $B F00. $B F00 is the address of the entry point to the

ProD O S 8 MLI interpre ter in ma in memory. This interpre ter de termines wha t MLI

command the applica tion is requesting and passes control to the appropria te ProD O S

8 subroutine to handle the request.
The flowchart in F igure 4-1 shows wha t happens when an applica tion executes a

JSR $B F00 instruction. As soon as the MLI takes control, it modifies four important
variables in the ProD O S 8 globa l page area: MLIA C TV ($B F9B), CMDADR ($B F9C/
$B F9D), SAV E X ($B F9E), and SAV E Y ($B F9F). F irst, it changes bit 7 of MLIA C TV

from 0 to 1 so tha t an interrupt-handling subroutine can de termine if the interrupt
condition occurred in the middle of an MLI opera tion. (We see why it’s important to

know this informa tion in Chapter 6.) Next, it saves the current va lues in the X and Y

registers in SAV E X and SAV E Y . F ina lly, it stores the address of the instruction

immedia te ly following the three da ta bytes a fter the JSR $B F O O instruction a t CMDADR .

72 G S/O S and ProD O S 8 Commands

F igure 4-1 F lowchart of ProD O S 8 MLI opera tions

Using ProD O S 8 MLI Commands 73

Control passes to this address a fter ProD O S 8 executes the MLI command. (The MLI

modifies the re turn address tha t the JSR places on the stack to ensure tha t control passes

to this address ra ther than to the address following the JSR $B F00 instruction.)
The MLI de termines which command the applica tion is requesting by examining

the va lue stored in the byte immedia te ly following the JSR $B F00 instruction. This

byte conta ins the unique identifier code (or command number) associa ted with the

MLI command. If the MLI encounters an unknown command number, a system error

occurs. (We see how to identify and handle such errors la ter in this chapter.) Table 4-1

lists a ll 26 ProD O S 8 commands and command numbers.
The 2 bytes following the command number conta in the address (low-order byte

first) of a parame ter table the MLI command uses. This table begins with a byte

holding the number of parame ters in the table; the rest of the table holds da ta tha t the

MLI command requires to process your request. A fter the MLI executes the com�

mand, the table a lso holds any results tha t are re turned. We describe the contents of
the parame ter table for each MLI command la ter in this chapter.

The parame ters an applica tion passes to a ProD O S 8 MLI subroutine are of two

types: pointers and va lues. A pointer is a 2-byte quantity tha t holds the address

(low-order byte first) of a da ta structure it is sa id to be pointing to. (Typica l da ta

structures are an I/O buffer or an AS CII pa thname preceded by a length byte .) A

va lue is a 1-, 2-, or 3-byte quantity tha t holds a binary number. Multibyte va lues are

a lways stored with the low-order bytes first.
The parame ters re turned by an MLI subroutine are ca lled results. A result is

usua lly a 1-, 2-, or 3-byte numeric quantity (with the low-order bytes first), but it can

a lso be a 2-byte pointer, depending on the command involved.
If the number a t the start of the parame ter table does not correspond to the

parame ter count expected by the command, a system error occurs. O therwise , the

MLI proceeds to execute the command.
While a command is be ing executed, a critica l error condition may occur. Critica l

errors are very rare and occur only if ProD O S 8 da ta areas have been overwritten by

a runaway program or if an interrupt occurs and no interrupt handler is ava ilable to

dea l with it. You cannot recover from such errors without rebooting the system. When

a critica l error occurs, the MLI executes a JSR $B F O C instruction. The subroutine a t
$B F O C (SYSD E ATH) causes the following message to appear:

INS E RT SYST EM DISK AND R E START -E RR xx

where xx is a two-digit hexadecima l error code . Four error conditions are possible:

01 uncla imed interrupt error

0A volume control block damaged

O B file control block damaged

0C a lloca tion block damaged

74 G S/O S and ProD O S 8 Commands

Table 4-1 The ProD O S 8 MLI commands (in numerica l order)

Command Name (number) Function

ALLO C . INT E RRUPT ($40) Insta lls an interrupt-handling subroutine

D E ALLO C_ INT E RRUPT ($41) Removes an interrupt-handling subroutine

Q UIT ($65) Transfers control to another system program,
usua lly through a dispa tcher program

R E AD-BLO C K ($80)

WRIT E-BLO C K ($81)

G E T_TIME ($82)

C R E AT E ($C0)

D E STR O Y ($C1)

Reads a da ta block from disk

Writes a da ta block to disk

Reads the current da te and time

Crea tes a directory entry for a new file

Removes the directory entry for an existing file
or subdirectory and frees up the space it uses
on disk

R E NAME ($C2)

S E T . FILE-IN F O ($C3)

Renames a file

Changes the a ttributes for a file

G E T_ FILE-IN F O ($C4)

O N-LIN E ($C5)

Re turns the a ttributes for a file

De termines the name of the volume directory
for a disk

S E T_ PR E FIX ($C6)

G E T_ PR E FIX ($C7)

Se ts the de fault pa thname pre fix

Re turns the de fault pa thname pre fix

O P E N ($08) Opens a file for I/O opera tions

N E WLIN E ($09) Se ts the character tha t termina tes a file read
opera tion

R E AD ($C A)

WRIT E ($C B)

CLO S E ($C C)

Reads da ta from a file

Writes da ta to a file

C loses a file

FLUSH ($C D)

S E T-MARK ($C E)

G E T-MARK ($C F)

F lushes a file buffer

Se ts the va lue of the Mark (position-in-file) pointer

Re turns the va lue of the Mark (position-in-file)
pointer

Using ProD O S 8 MLI Commands 75

Table 4-1 Continued

Command Name (number) Function

S E T_ E O F ($D0)

G E T —E O F ($D1)

Se ts the va lue of the E O F (end-of-file) pointer

Re turns the va lue of the E O F (end-of-file)

pointer

S E T — BU F ($D2)

G E T — BU F ($D3)

Changes the position of a file buffer

Re turns the position of a file buffer

The volume control, file control, and a lloca tion blocks are interna l da ta structures

ProD O S 8 uses to handle disk volumes and to open files.
Norma lly, the MLI command starts finishing up by restoring the va lues of the X

and Y registers (from SAV E X and SAV E Y) and then, if a system error has occurred

(see the next section), by executing a JSR $B F09 instruction. The subroutine a t $B F09

(SYS E RR) stores an error code in S E RR ($B F0F).
S ince the MLI preserves the contents of the X and Y registers, there is no need for

the applica tion to do so.
F ina lly, control passes to the instruction immedia te ly following the pointer to the

parame ter table (B C S E RR O R in the above example). Reca ll tha t the MLI interpre ter

stored this address a t CMDADR ($B F9C/$B F9D) when it first took over.

USIN G G S/O S C OMMANDS

The genera l procedure for ca lling a G S/O S command is similar to the one for ca lling a

ProD O S 8 MLI command. It goes some thing like this:

JSL $E100A8 ;C a l1 G S/O S entry point

D C 12'CommandNum1 ;G S/O S command number

D C 14'ParmTable' ;Address of parame ter table

B C S Error ;(Control resumes here a fter ca ll)

$E100A8 is the address of the G S/O S command interpre ter entry point. You can ca ll this

entry point while the IIg s ’s 65816 microprocessor is in e ither na tive or emula tion mode .
Immedia te ly following the JSL $E100A8 instruction is a word conta ining the

identifica tion number of the G S/O S command you wish to use . Table 4-2 lists a ll the

G S/O S commands and command numbers.
Following the command number is the long address (4 bytes, low-order bytes first) of a

parame ter table conta ining parame ters required by the command and spaces for results

re turned by the command. The parame ters can be one- or two-word numeric va lues (a
word is 2 bytes) or long pointers (4 bytes) and are stored with the low-order bytes first.

76 G S/O S and ProD O S 8 Commands

Table 4-2 The G S/O S commands (in numerica l order)

Command 'Name (number) Function

Crea te ($2001) Crea tes a directory entry for a new file

Destroy ($2002) Removes the directory entry for an existing file or
subdirectory and frees up the space it uses on disk

O SShutdown ($2003) Shuts down G S/O S in prepara tion for a cold reboot or a
power down

ChangePa th ($2004) Renames a file or moves a file’s directory entry to
another subdirectory

Se tF ile lnfo ($2005) Changes the a ttributes for a file

G e tF ile lnfo ($2006)

Volume ($2008)

Re turns the a ttributes for a file

Re turns the volume name , tota l number of blocks on the
volume , number of free blocks on the volume , and the file
system identifica tion number for a given disk device

Se tPre fix ($2009) Se ts the pa thname pre fix for any of the standard G S/O S
pre fixes (except */)

G e tPre fix ($200A) Re turns the pa thname pre fix for any of the standard
G S/O S pre fixes (except */)

C learBackup ($200B)

Se tSysPre fs ($200C)

Null ($200D)

C lears the backup bit in the file’s access code byte

Se ts system pre ferences

Executes a ll queued signa ls

ExpandPa th ($200E)

G e tSysPre fs ($200F)

Open ($2010)

Newline ($2011)

Crea tes a full pa thname string

Re turns system pre ferences

Opens a file for I/O opera tions

Se ts the character tha t termina tes a file read opera tion

Read ($2012) Reads da ta from a file

Write ($2013) Writes da ta to a file

C lose ($2014)

F lush ($2015)

Se tMark ($2016)

G e tMark ($2017)

C loses a file

F lushes a file buffer

Se ts the va lue of the Mark (position-in-file) pointer

Re turns the va lue of the Mark (position-in-file) pointer

Using G S/O S Commands 77

Table 4-2 Continued

Command Name (number) Function

Se tE O F ($2018)

G e tE O F ($2019)

Se tLeve l ($201A)

G e tLeve l ($201B)

G e tD irEntry ($201C)

BeginSession ($201D)

EndSession ($201E)

SessionS ta tus ($201F)

G e tDevNumber ($2020)

Forma t ($2024)

Se ts the va lue of the E O F (end-of-file) pointer

Re turns the va lue of the E O F (end-of-file) pointer

Se ts the va lue of the system file leve l

Re turns the current va lue of the system file leve l

Re turns informa tion about the file entries in a directory

Begins a write-de ferra l session

Ends a write-de ferra l session

Re turns write-de ferra l session sta tus

Re turns the device number for a given device name

Forma ts a disk and writes out the boot blocks, volume
bit map, and an empty root directory

EraseD isk ($2025) Writes out the boot blocks, volume bit map, and an
empty root directory to a disk

Rese tC ache ($2026)

G e tName ($2027)

Resizes the disk cache to the size stored in Ba ttery RAM

Re turns the name of the applica tion tha t is currently
running

G e tBootVol ($2028) Re turns the name of the disk G S/O S was booted from;
(this is the name assigned to the boot pre fix, */)

Quit ($2029) Transfers control to another system program, usua lly
through a dispa tcher program

G e tVersion ($202A) Re turns the G S/O S version number

G e tF STInfo ($202B)

DInfo ($2020)

Re turns informa tion about a file system transla tor

Re turns the device name corresponding to a given device
number

DS ta tus ($202D)

D Control ($202E)

DRead ($202F)

DWrite ($2030)

Re turns the sta tus of a device

Sends control commands to a device

Reads da ta from a device

Writes da ta to a device

78 G S/O S and ProD O S 8 Commands

Table 4-2 Continued

Command Name (number) Function

B indlnt ($2031)

Unbindlnt ($2032)

F STSpecific ($2033)

Insta lls an interrupt-handling subroutine

Removes an interrupt-handling subroutine

Sends F ST-specific commands to a file system
transla tor

The exact structure of the parame ter table varies from command to command, but it
a lways begins with a parame ter count word ca lled pcount. G enera lly, each G S/O S com�
mand a llows a range of va lues for pcount, giving the applica tion the choice of just how
much informa tion it wants to provide to the command and just how much it wants
re turned. The minimum and maximum pcount va lues for each G S/O S command are in
the descriptions of the command table parame ters, which we present la ter in this chapter.

When a command finishes, G S/O S adds 6 to the re turn address pushed on the stack
by the JSL instruction and then ends with an RTL instruction. This causes control to
pass to the code beginning just a fter the pointer to the parame ter table . On re turn, a ll
registers rema in unchanged except the accumula tor (which conta ins an error code),
the program counter (of course), and the sta tus register. (The m, x, D , I, and e flags are
unchanged; N and V are unde fined; the carry flag and zero flag re flect the error sta tus.)

A t this stage , you can check the sta te of the carry flag to de termine whe ther an error
occurred: If the carry flag is clear, there was no error; if it is not clear, an error did occur.
A lterna tive ly, you can check the zero flag; if an error occurred, it will be clear.

An error code indica ting the na ture of the error comes back in the accumula tor; the
accumula tor will conta in 0 if no error occurred. We describe G S/O S and ProD O S 8
error codes in de ta il in the next section.

The Apple Programmer’s Workshop (APW) comes with a se t of macros you can use
to make it easier to ca ll G S/O S commands. The macros are stored in a file ca lled
M16. G S O S on the APW disk. To use a G S/O S command with a macro, use an
instruction of the form:

_CmdName ParmTbl

where CmdName represents the name of the command and ParmTbl represents the
address of the parame ter table associa ted with the command. A t assembly time , this
macro expands into the standard G S/O S ca lling sequence .

Note-. A ll the macros for G S/O S commands in the M16. G S O S file have names tha t
include a G S suffix. The macro for the Open command, for example , is ca lled
OpenG S . The reason for using the suffix is to ensure tha t the G S/O S macro names

Using G S/O S Commands 79

are different from the ir ProD O S 16 counterparts, making it possible to deve lop
programs tha t use both G S/O S and ProD O S 16 commands. S ince it’s unlike ly
you’d ever want to mix commands, consider editing the M16. G S O S file to remove
the suffixes. Tha t way you won’t have to worry about forge tting to include the
suffix. The G S/O S command names used in this book do not include the G S suffix.

The ma in advantage of using the macros is you do not have to memorize command
numbers, only command names. It a lso makes assembly-language programs tha t use
G S/O S much easier to read.

S tack-Based C a lling Me thod

You can a lso ca ll a G S/O S command using a stack-based command interpre ter entry
point a t $E100B0. Here is wha t such a ca ll looks like:

PushP tr ParmTbl

PushWord #CommandNum

JSL S E1O O B O

;Push addr of parame ter table

;Push G S/O S command number
.-C a ll stack-based entry point

To use this me thod, first push the 4-byte address of the command’s parame ter table
and a 2-byte command number, and then perform a JSL $E100B0 instruction. PushP tr
and PushWord are standard APW macros for doing this.

G S/O S AND PR O D O S 8 E RR O R HANDLIN G

Any error tha t is not a critica l error is ca lled a system error. These errors can result for
many reasons: specifying an illega l pa thname , writing to a write-protected disk,
opening a nonexistent file , and so on.

If no system error occurred during execution of a command, the accumula tor is 0,
the carry flag is clear (0), and the zero flag is se t (1).

If an error did occur, the accumula tor holds the error code number, the carry flag is
se t (1), and the zero flag is clear (0). This means you can use a B C S or a BN E
instruction to branch to the error-handling portion of your code .

You should a lways check for error conditions when a ProD O S 8 or G S/O S com�
mand ends. If you don’t, you will undoubtedly have a program tha t won’t a lways work
properly. (For example , think of the consequences of writing to a file tha t could not be
opened because it did not exist.)

For debugging, it is often handy to have a specia l subroutine ava ilable tha t the
applica tion can ca ll to print out he lpful sta tus informa tion when an error occurs. Table
4-3 shows such a subroutine for ProD O S 8. When an applica tion ca lls it, the message

MLI E RR O R $xx O C C URR E D AT LO C ATIO N $yyyy

80 G S/O S and ProD O S 8 Commands

Table 4-3 A standard ProD O S 8 MLI error-handling subroutine

2 *************************************

3 * G enera l-Purpose MLI Error Handler *
4 * *

5 * Copyright 1985-1988 G ary Little *

6 * *

7 * Last modified: August 26, 1988 *

8 * *
q *************************************

10 CMDADR E Q U $B F9C .•Re turn address for MLI ca ll

11

12 C R O UT E Q U $F D8E ;Print a C R

13 PRH E X E Q U $F DDA ;Print byte as two hex digits

14 C O UT E Q U $F D E D ;S tandard output subroutine

15

16 O R G $300

17

0300: 48 18 E RR O R PHA ;Save error code on stack

19

0301: A0 00 20 LDY #0

0303: B9 2E 03 21 :1 LDA E RRMS G ,Y

0306: F0 06 22 B E Q :2

0308: 20 E D F D 23 JSR C O UT ;Print first part of message

030B: C8 24 INY

030C: D O F5 25 BN E :1 ;(a lways taken)

26

030E: 68 27 :2 PLA ;G e t error code back

030F: 20 DA F D 28 JSR PRH E X ; and print it

29

0312: A0 00 30 LDY #0

0314: B9 3B 03 31 :3 LDA E RRMS G l.Y

0317: F0 06 32 B E Q :4

0319: 20 E D F D 33 JSR C O UT ;Print second part of message

031C: C8 34 INY

031D: D O F5 35 BN E :3 . � (a lways taken)

36

031F: AD 90 B F 37 :4 LDA CMDADR+1

0322: 20 DA F D 38 JSR PRH E X ;Print high part of address

0325: AD 9C B F 39 LDA CMDADR

0328: 20 DA F D 40 JSR PRH E X ;Print low part of address

032B: 4C 8E F D 41 JMP C R O UT

42

032E: 8D 43 E RRMS G D F B $8D

032F: C D C C C9 44 AS C "MLI E RR O R $"

0332: A O C5 D2 D2 C F D2 A O A4

033A: 00 45 D F B 0

033B: A O C F C3 46 E RRMS G1 AS C " O C C URR E D AT LO C ATIO N $"

033E: C3 D5 D2 D2 C5 C4 A O C l

0346: D4 A O C C C F C3 C l D4 C9

034E: C F C E A O A4

0352: 00 47 D F B 0

G S/O S and ProD O S 8 Error Handling 81

appears on the screen, where xx is the two-digit hexadecima l error code , and yyyy is
the address the ProD O S 8 MLI interpre ter stored in CMDADR be fore trying to
execute the command. This address is 6 bytes past the JSR $R F00 instruction tha t
caused the error. You can easily adapt this program for use in a G S/O S environment.

Table 4-4 summarizes the system error codes which the G S/O S and ProD O S 8
command interpre ters use . It a lso indica tes the Applesoft error messages tha t BASIC .
SYST EM displays when it encounters an MLI error in a ProD O S 8 environment.

C OMMAND D E S C RIPTIO NS

In the following sections, we examine , in a lphabe tica l order, a ll the commands tha t
make up G S/O S and ProD O S 8. The G S/O S command name and number appear in a
box in the top le ft-hand corner of the first page of the command description; the
ProD O S 8 name and number appear in a box in the top right-hand comer. By
convention, ProD O S 8 names are a ll uppercase and may conta in underscore charac �
ters; the corresponding G S/O S names conta in both uppercase and lowercase charac �
ters and do not conta in underscores.

A lthough many of the commands are ava ilable in both opera ting systems, some are
unique . If a box conta ins the word none , the command is not ava ilable for the
opera ting system to which the box corresponds.

Keep in mind tha t even where G S/O S and ProD O S 8 have commands tha t share
the same name , the entries in the parame ter tables are of different sizes and may be
arranged in a different order. For example , G S/O S pointers are a lways 4 bytes long so
tha t any address in the 65816 memory space may be accessed; ProD O S 8 pointers are
only 2 bytes long, long enough to access any byte in the 6502 memory space .
Moreover, parame ters tha t are 1 or 2 bytes long in a ProD O S 8 parame ter table are
usua lly twice as long in the corresponding G S/O S parame ter table .

The description of each command includes a summary of the command’s G S/O S
and ProD O S 8 parame ter tables. These tables indica te the correct order of the
parame ters, the sizes of the parame ters, and whe ther a parame ter is an Input (I) or a
Result (R). An Input is a parame ter tha t must be provided be fore using the command.
A Result (R) is a parame ter tha t the command re turns.

C lass 0 and C lass 1 Input S trings

Many commands require a pointer to a character string as an input parame ter.
ProD O S 8 uses class 0 character strings, where the first byte in the string space
represents the length of the string (not including the length byte) and is followed by
the AS CII-encoded bytes representing the characters. G S/O S uses class 1 character
strings, where the first word in the string represents the length of the string. As with
class 0 input strings, the character string is represented by a sequence of AS CII-
encoded bytes.

In this book, an assembler macro ca lled G S S tring is used to store a string preceded
by a length word. The STR macro stores a string preceded by a length byte .

82 G S/O S and ProD O S 8 Commands

Table 4-4 G S/O S and ProD O S 8 command error codes

conta ining an open file has been removed
from its drive .

Error Code
BASIC .SYST EM
Error Message Meaning

$00 [none] No error occurred.

$01 I/O E RR O R The MLI command number is inva lid.

$04 I/O E RR O R An incorrect number of parame ters va lue
was specified in the parame ter table .

$07 [not applicable] G S/O S is busy. This error can occur if
you try to use G S/O S commands from
inside an interrupt handler.

$10 [not applicable] The specified device cannot be found.
G S/O S reports this error a fter a
G e tDevNum command if it cannot loca te
the device .

$11 [not applicable] The device re ference number is inva lid.
G S/O S reports this error if the device
number is not in its list of active devices.

$22 [not applicable] Bad G S/O S driver parame ter.

$23 [not applicable] G S/O S Console Driver is not open.

$25 I/O E RR O R The ProD O S 8 interna l interrupt vector
table is full.

$27 I/O E RR O R A disk I/O error occurred tha t prevented
the proper transfer of da ta . If you ge t this
error, the disk is probably irreparably
damaged. You will a lso ge t this error if
there is no disk in a 5.25-inch disk drive .

$28 N O D E VIC E
C O NN E C T E D

The specified disk drive device is not
present. This error occurs if you try to
access a second 5.25-inch drive when only
one drive is present, for example .

$2B WRIT E PR O T E C T E D A write opera tion fa iled because the disk
is write-protected.

$2E I/O E RR O R An opera tion fa iled because a disk

Command Descriptions 83

Table 4-4 Continued

a write opera tion when there are no free
blocks on the disk to hold the da ta .

Error Code
BASIC .SYST EM
Error Message Meaning

$2F I/O E RR O R The specified device is off-line . This error
occurs if there is no disk in a 3.5-inch drive .

$40 SYNTAX E RR O R The pa thname syntax is inva lid because one
of the filenames or directory names speci �
fied does not follow the opera ting system
naming rules or because a partia l pa thname
was specified and a pre fix is not active .

$42 N O BU F F E RS
AVAILABLE

An a ttempt was made to open a ninth file .
ProD O S 8 a llows only e ight files to be open
a t once .

$43 FILE N O T O P E N The file re ference number is inva lid. This
error occurs if the wrong re ference number
is specified for an open file or if the
re ference number for a closed file is used.

$44 PATH N O T F O UND The specified pa th was not found. This
means one of the subdirectory names, in an
otherwise va lid pa thname , does not exist.

$45 PATH N O T F O UND The specified volume directory was not
found. This means the volume directory
name , in an otherwise va lid pa thname , does
not exist. A common reason for this error is
changing a disk without changing the active
pre fix.

$46 I/O E RR O R The specified file was not found. This
means the last filename , in an otherwise
va lid pa thname , does not exist.

$47 DUPLIC AT E FILE
NAME

The specified filename a lready exists. This
error occurs when a file is be ing renamed
or crea ted, and the new name specified is
a lready in use .

$48 DISK F ULL The disk is full. This error can occur during

84 G S/O S and ProD O S 8 Commands

Table 4-4 Continued

Error Code
BASIC . SYST EM
Error Message Meaning

$49 DIR E C T O RY F ULL The volume directory is full. Only 51 files
can be stored in the volume directory.

$4A I/O E RR O R The forma t of the file specified is unknown
or is not compa tible with the version of the
opera ting system be ing used.

$4B FILE TYP E MISMAT C H The storage type code for the file is inva lid
or not supported.

$4C E ND O F DATA An end-of-file condition was encountered
during a read opera tion.

$4D RAN G E E RR O R The specified va lue for Mark is out of
range . When Mark (the position-in-file)
pointer is be ing changed, it cannot be se t
higher than E O F .

$4E FILE LO C K E D The file cannot be accessed. This error
occurs when the action prohibited by the
access code byte is requested. This byte
controls rename , destroy, read, and write
opera tions. The error a lso occurs if you try
to destroy a directory file tha t is not empty.

$4F [not applicable] The size of the G S/O S class 1 output buffer
is too sma ll.

$50 FILE BUSY The command is inva lid because the file is
open. The O P E N , R E NAME , and
D E STR O Y commands opera te only on
closed files.

$51 I/O E RR O R The directory count is wrong. This error
occurs if the file counter stored in the
directory header is different from the actua l
number of files.

$52 I/O E RR O R This is not a ProD O S disk. This error
occurs if the MLI senses a directory
structure inconsistent with ProD O S .

$53 INVALID PARAME T E R A parame ter is inva lid because it is out of
the a llowable range .

Command Descriptions 85

Table 4-4 Continued

Error Code
BASIC . SYST EM
Error Message Meaning

$54 [not applicable] Out of memory.

$55 I/O E RR O R The volume control block table is full. This
error occurs if e ight files on e ight separa te
disk drives are open and the O N _ LIN E
command is ca lled for a drive having no
open files.

$56 N O BU F F E RS
AVAILABLE

The buffer address is inva lid because it
conflicts with memory areas marked as in
use by the ProD O S 8 system bit map or
because it does not start on a page
boundary.

$57 I/O E RR O R D isks are on line tha t have the same
volume directory name .

$58 [not applicable] The specified device is not a block device .
C erta in commands work with block-
structured devices only.

$59 [not applicable] The leve l parame ter (passed to the G S/O S
Se tLeve l command) is out of range .

$5A I/O E RR O R The volume bit map indica tes tha t a block
beyond the number ava ilable on the disk
device is free for use . This error occurs if
the volume bit map has been damaged.

$5B [not applicable] Illega l pa thname change . This error occurs
if the pa thnames specified in the G S/O S
ChangePa th command re fer to two different
volumes. You can move files only be tween
directories on the same volume .

$5C [not applicable] The specified file is not an executable
system file . G S/O S reports this error if you
a ttempt to use Quit to pass control to a file
tha t is not a G S/O S system file (S16, code
$B3) (E X E , code $B5) or a ProD O S 8
system file (SYS , code $F F).

86 G S/O S and ProD O S 8 Commands

Table 4-4 Continued

N O T E: If the G S/O S Quit command results in an error, the error code is not re turned to the applica tion.
Instead, the code appears in an interactive dia log box on the screen.

Error Code
BASIC . SYST EM
Error Message Meaning

$5D [not applicable] The opera ting system specified is not
ava ilable or not supported. G S/O S re turns
this error if you try to run a ProD O S 8
system program when the SYST EM/P8
file is not on the system disk.

$5E [not applicable] /RAM cannot be removed.

$5F [not applicable] Quit Re turn S tack overflow. G S/O S re turns
this error if you try to push another
program ID on the Quit Re turn S tack
(using the Quit command) when the stack is
a lready full.

$61 [not applicable] End of directory. This error can be
re turned only by the G S/O S G e tD irEntry
command.

$62 [not applicable] Inva lid class number.

$64 [not applicable] Inva lid file system ID code .

$65 [not applicable] Inva lid F ST opera tion.

C lass 0 and C lass 1 Output Buffers

Even though a pointer to a string or a buffer area may be marked as a result in a
parame ter table , ProD O S 8 or G S/O S does not actua lly re turn the pointer. Instead, it
re turns da ta in the buffer pointed to by the pointer.

For ProD O S 8, it is the responsibility of the applica tion to prea lloca te a buffer of
the proper size and provide a pointer to it be fore ca lling a command. If you don’t
a lloca te a large enough buffer, da ta immedia te ly following the buffer will be overwrit �
ten. Such a buffer is ca lled a class 0 output buffer.

G S/O S uses class 1 output buffers to avoid the possibility of the opera ting system
unexpectedly overwriting da ta areas if the prea lloca ted output buffer is not big
enough. A class 1 output buffer begins with a length word tha t holds the number of
bytes in the buffer you’ve a lloca ted (including the length word). When you ca ll a
command tha t uses a class 1 output buffer, G S/O S inspects the length word to see if

Command Descriptions 87

the buffer is large enough; if it isn’t, the command re turns error code $4F (“buffer too
sma ll ”) and re turns the size of the buffer it does need in the word following the buffer
length word. If the buffer is large enough, the command re turns da ta beginning a t the
byte following the length word.

(There is an exception. The output buffer you provide to G e tD irEntry for re turning
a filename can be too sma ll to hold the filename , but G e tD irEntry does not re turn an
error. Instead, it re turns the actua l length of the filename but puts only tha t portion of
the filename tha t will fit in the output buffer.)

Pre fixes

Be aware tha t no de fault pre fix is in e ffect when ProD O S 8 first boots up. (There is for
G S/O S .) This means any pa thname specified in a ProD O S 8 MLI command parame ter list
must be a full pa thname and not a partia l pa thname or a simple filename . To simplify your
code , it is a good idea to use the S E T_PR E FIX command to se t the pre fix string to a
convenient name be fore ca lling other ProD O S 8 commands. If you simply want to se t the
de fault pre fix to the name of the volume directory on a given disk, use the O N LIN E
command to ge t its name be fore using S E T PR E FIX . An example of how to do this is
included in the discussion of the S E T PR E FIX command.

Access Code

Three of the commands. Crea te , G e tF ile lnfo, and Se tF ile lnfo, use a parame ter ca lled
access code tha t describes the types of I/O opera tions an applica tion may perform on
a file as we ll as some other file a ttributes. F igure 2-10 in Chapter 2 shows the meaning
of each bit in the access code .

T ime and Da te

Many ProD O S 8 commands accept or re turn da te and time va lues in the ir parame ter
tables. These va lues are stored in the same specia l packed form used to store va lues in
the ProD O S 8 system globa l page TIME and DAT E loca tions. (See F igure 8-1 in
Chapter 8 for a description of this forma t.)

G S/O S uses a different time and da te forma t; it consists of e ight bytes in the
following order:

seconds
minutes
hour in 24-hour military forma t
year year minus 1900
day day of month minus 1
month 0 = January, 1 = F ebruary, and so on
[not used]
weekday 1 = Sunday, 2 = Monday, and so on

88 G S/O S and ProD O S 8 Commands

This forma t is the same as the one used by the ReadT imeHex function in the Iles’s
Misce llaneous Tool Se t.

F ile Type Code

Another common command parame ter is the file type code . For the ProD O S file
system, this is a number from $00 to $F F tha t identifies the genera l file type . Table
2-5 in Chapter 2 gives the standard meanings of the ProD O S file type codes.

ProD O S 16 Considera tions

The G S/O S commands described in this book are some times ca lled class 1 commands.
G S/O S a lso has a se t of class 0 commands tha t are the same as the ProD O S 16
commands documented in the Apple IIg s ProD O S 16 Re ference . The class 0 com�
mands are not described here since they have been rendered a lmost obsole te by the
class 1 commands. The only good reason for continuing to use class 0 commands is if
you’re writing a classic desk accessory —the C DA should be flexible enough to use
ProD O S 8, G S/O S , or ProD O S 16 commands, depending on wha t opera ting system is
active when it is ca lled up.

Command Descriptions 89

none ALLO C INT E RRUPT
$40

G S/O S ProD O S 8

Purpose:
To place the address of an interrupt-handling subroutine into the interna l ProD O S 8
interrupt vector table . The interrupt vector table can hold up to four such subroutines.

Under G S/O S , use the B indlnt command instead.

Parame ter table:

ProD O S 8

O ffse t Symbolic Name

Input
or
Result Description

+ 0 num_ parms I Number of parame ters (2)

+ 1 int _ num R Interrupt handler re ference number

+ 2 to +3 int _ code I Pointer to interrupt handler

Descriptions of parame ters:

num_parms The number of parame ters in the ProD O S 8 parame ter table (a lways 2).

int_num The re ference number ProD O S 8 assigns to the interrupt-handling
subroutine . Use this number when you remove the subroutine with
the D E ALLO C_ INT E RRUPT command.

int_code A pointer to the beginning of the interrupt-handling subroutine .
ProD O S 8 passes control to this subroutine when an interrupt oc �
curs. The subroutine must begin with a CLD instruction. See Chap �
ter 8 for a discussion of other rules and conventions ProD O S 8
interrupt-handling subroutines must follow.

Important: Insta ll an interrupt-handling subroutine be fore enabling interrupts on the
hardware device . If you don’t, the system will crash if an interrupt occurs be fore
you’ve had a chance to insta ll the handler.

Common error codes:

$25 The interrupt vector table is full. Solution: Remove one of the active
interrupt-handling subroutines (using D E ALLO C_ INT E RRUPT)
and try aga in.

O ther possible error codes are $04, $53.

90 G S/O S and ProD O S 8 Commands

Programming example:

In Chapter 6, we take a closer look a t how ProD O S 8 dea ls with interrupts and how to
write interrupt-handling subroutines. Meanwhile , here’s how to insta ll a ProD O S 8
interrupt-handling subroutine tha t has been loaded into memory a t loca tion $300:

JSR MLI

D F B $40 ;ALLO C_INT E RRUPT

;Address of parame ter table

;Branch if error occurred

DA

B C S

RTS

PARMTBL

E RR O R

PARMTBL D F B 2 ;The # of parame ters

DS 1 ;int num is re turned here

DA $300 ;Address of interrupt subroutine

Your applica tion should store the re turned int_num in a sa fe place so tha t it will be
ava ilable when the interrupt-handling subroutine is removed with the D E ALLO C
INT E RRUPT command.

Command Descriptions 91

G S/O S ProD O S 8

BeginSession none
$201D

Purpose:

To te ll G S/O S to begin de ferring a ll disk write opera tions tha t involve upda ting
volume bit map and directory blocks.

There is no equiva lent ProD O S 8 command.

Parame ter table:

G S/O S

O ffse t Symbolic Name

Input
or
Result Description

+ 0 to +1 pcount I Number of parame ters (0)

Descriptions of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 0; the maximum is 0.

Common error codes:

[none]

Comments:

Write-de ferra l sessions are use ful where your applica tion wants to transfer a group of
files from one disk to another as quickly as possible . If you don’t use a write-de ferra l
session, copying opera tions slow down because the disk read/write head must sweep
across the disk medium to access volume bit map and directory blocks be fore and a fter
each file transfer. (These blocks are usua lly physica lly loca ted far from the file’s da ta
blocks.) By preventing these time-consuming head movements, you will maximize
performance .

A t the end of the copying opera tion, use the EndSession command to write to disk the
blocks tha t were cached during the session. You must a lways ba lance every BeginSes-
sion ca ll with an EndSession ca ll.

92 G S/O S and ProD O S 8 Commands

B indlnt
$2031

none

G S/O S ProD O S 8

Purpose:

To assign a G S/O S interrupt-handling subroutine to a particular interrupt source .

Under ProD O S 8, use the ALLO C-INT E RRUPT command instead.

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (3)

+ 2 to +3 int _ num R Interrupt re ference number

+ 4 to +5 vrn I Vector re ference number

+ 6 to +9 int _ code I Pointer to interrupt handler

Descriptions of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 3; the maximum is 3.

int_num The re ference number G S/O S assigns to the interrupt-handling sub �
routine . Use this number when you remove the subroutine with the
Unbindlnt command.

vrn A re ference number tha t identifies the type of system interrupt the
interrupt handler is to be assigned to:

$0008 AppleTa lk (S C O)
$0009 Seria l ports (S C C)
$000A Scan-line re trace
$000B Ensoniq wave form comple tion
$000C Vertica l blanking signa l (VBL)
$000D Mouse (movement or button)
$000E 1/4-second timer
$000F Keyboard
$0010 ADB response byte ready
$0011 ADB service request (SR Q)
$0012 Desk accessory request keystroke
$0013 F lush keyboard buffer request keystroke
$0014 Keyboard micro abort
$0015 1-second timer

Command Descriptions 93

$0016 V ideo Graphics Controller (externa l)
$0017 O ther interrupt source

(S C C is the Seria l Communica tions Controller; ADB is the Apple
Desktop Bus.)

If the interrupt emana tes from a source tha t does not have a specific
vm, se t vrn = $0017.

int _ code A pointer to the beginning of the interrupt-handling subroutine . See
Chapter 8 for a discussion of rules and conventions G S/O S interrupt �
handling subroutines must follow.

Important: Insta ll an interrupt-handling subroutine be fore enabling interrupts on the
hardware device . If you don’t, the system will crash if an interrupt occurs be fore
you’ve had a chance to insta ll the handler.

Common error codes:

$25 The interrupt vector table is full. Solution: Remove one of the active
interrupt-handling subroutines (using Unbindlnt) and try aga in.

O ther possible error codes are $04, $07, $53.

Comments:

See chapter 6 for a discussion of how to handle interrupts in a G S/O S environment.

94 G S/O S and ProD O S 8 Commands

noneChangePa th
$2004

G S/O S ProD O S 8

Purpose:

To rename a file or a disk volume or to move a file from one directory to another on
the same disk volume . You can change the pa th of any closed file whose rename-
enabled access code bit is se t to 1.

Under ProD O S 8, use the R E NAME command to rename a file or disk volume . There
is no command for moving a file be tween two directories.

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (2)

+ 2 to +5 pa thname I Pointer to the pa thname string

+ 6 to +9 new _ pa thname I Pointer to the new pa thname string

Descriptions of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 2; the maximum is 2.

pa thname A pointer to a class 1 G S/O S string describing the current pa thname
of the file whose pa th is to be changed. If the pa thname specified is
not preceded by a separa tor (/ or the opera ting system appends the
name to the de fault pre fix (the 0/ pre fix) to crea te a full pa thname .

new_pa thname A pointer to a class 1 G S/O S string describing the new pa thname of
the file whose pa th is to be changed. If the pa thname specified is not
preceded by a separa tor (/ or :), the opera ting system appends the
name to the de fault pre fix (the 0/ pre fix) to crea te a full pa thname .

Common error codes:

$2B The disk is write-protected.

$40 The pa thname conta ins inva lid characters, or a full pa thname was not
specified (and no de fault pre fix has been se t up). Verify tha t the
filenames and directory names specified in the pa thname adhere to
the naming rules described in Chapter 2 and, if a partia l pa thname
was specified, tha t a de fault pre fix has been se t up.

Command Descriptions 95

$44 A directory in the pa thname was not found. Solution: Double-check
the spe lling of the pa thname , insert the disk conta ining the correct
directory, or change the de fault pre fix.

$45 The volume directory was not found.

$46 The file was not found.

$47 The new pa thname specified a lready exists. Solution: G ive the file a
new pa thname not used by any other file on the disk volume .

$4E The file cannot be accessed. Solution: Se t the rename-enabled bit of
the file’s access code to 1 using Se tF ile lnfo.

$50 The file is open. ChangePa th works with closed files only.

$5B The two pa thnames indica te different volumes. You can use Change �
Pa th only for moving files within a single volume .

O ther possible error codes are $07, $27, $4A , $4B , $52, $57, $58.

Programming example:

Suppose you want to move a file ca lled MY .A C C E SS O RY from a subdirectory ca lled
ASM: on the boot disk to the desk accessory directory on the boot disk. Here is the
code you would use:

_ChangePa th C P_Parms

RTS

C P_Parms AN O P
D C 12'2' ;The number of parame ters
D C I4'Curr_Name '
D C I4'New_Name '

Curr_Name G SS tring '*:ASM:MY .A C C E SS O RY1

New_Name G SS tring SYST EM:D E SK .A C C S:MY .A C C E SS O RY'

Note tha t when ChangePa th moves a file from one subdirectory to another on the
same disk, it moves only the file’s subdirectory entry. The file’s da ta stays put since
the new subdirectory entry for the file still points to it. When the two pa ths specified
describe files in the same subdirectory, ChangePa th is equiva lent to the ProD O S 8
R E NAME command.

Note a lso tha t there are restrictions to keep in mind when moving a subdirectory into
another subdirectory. The subdirectory you’re moving cannot be part of the pa thname
for the targe t subdirectory.

96 G S/O S and ProD O S 8 Commands

noneC learBackup
S200B

G S/O S ProD O S 8

Purpose:

To clear the backup-needed bit in the access code for the file .

Under ProD O S 8, use the S E T_FILE IN F O command instead.

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (1)

+ 2 to +5 pa thname I Pointer to the pa thname string

Descriptions of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 1; the maximum is 1.

pa thname A pointer to a class 1 G S/O S string describing the current pa thname
of the file to be used. If the pa thname specified is not preceded by a
separa tor (/ or :), the opera ting system appends the name to the
de fault pre fix (the 0/ pre fix) to crea te a full pa thname .

Common error codes:

$40 The pa thname conta ins inva lid characters or a full pa thname was not
specified (and no de fault pre fix has been se t up). Verify tha t the
filenames and directory names specified in the pa thname adhere to
the naming rules described in Chapter 2 and, if a partia l pa thname
was specified, tha t a de fault pre fix has been se t up.

$44 A directory in the pa thname was not found. Solution: Double-check
the spe lling of the pa thname , insert the disk conta ining the correct
directory, or change the de fault pre fix.

$45 The volume directory was not found.

$46 The file was not found.

O ther possible error codes are $07, $4A , $52, $58.

Command Descriptions 97

Programming example:

A file-backup program capable of doing incrementa l backups acts on only those files
tha t have been modified since the last backup opera tion. The program checks the sta te
of a file’s backup bit to de termine whe ther it needs to be backed up; it does if the bit
is se t to 1. (G S/O S and ProD O S 8 automa tica lly se t the bit a fter any write opera tion or
any opera tion tha t changes the directory entry.) Once the backup copy has been made ,
the program should clear the backup bit by ca lling C learBackup.

Here is the trivia l piece of code for doing this:

_C learBackup C BB_Parms

RTS

C BB_Parms AN O P
D C 12111 ;The number of parame ters
D C 14'Pa thname' ;Pointer to pa thname

Pa thname G SS tring '/DISK/N E W . FILE' ;The file to act on

98 G S/O S and ProD O S 8 Commands

C lose
$2014

CLO S E
$C C

G S/O S ProD O S 8

Purpose:

To close an open file . This causes the opera ting system to write the contents of the
da ta portion of the file’s I/O buffer to disk (if necessary) and to upda te the file’s
directory entry. Once it does this, the opera ting system re leases the memory used for
the file’s I/O buffer to the system and prevents further access to the file (until it is
reopened).

Parame ter table:

ProD O S 8 Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 num_parms I Number of parame ters (1)

+ 1 re f _ num I Re ference number for the file

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (1)

+ 2 to +3 re f _ num I Re ference number for the file

Descriptions of parame ters:

num _ panns The number of parame ters in the ProD O S 8 parame ter table (a lways 1).

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 1; the maximum is 1.

re f _ num The re ference number the opera ting system assigned to the file
when it was first opened.

If you se t re f_ num to 0, a ll open files a t or above the system file
leve l are closed. To se t the va lue of the file leve l under ProD O S 8,
store the va lue a t LE V EL ($B F94). Under G S/O S , use the Se tLeve l
command.

Command Descriptions 99

Common error codes:

$2B The disk is write-protected.

$43 The file re ference number is inva lid. You might be using a re ference
number for a file tha t you’ve a lready closed.

O ther possible error codes are $04, $07, $27, $5A .

Programming example:

To close a ll open files a t or above leve l 1, use Se tLeve l to se t the leve l and use the
C lose command with re f num se t to 0. Here’s how to do it if G S/O S is active:

Se tLeve l SL_Parms ;Se t system file leve l to 1

_C lose C l_Parms
B C S Error

RTS

SL Parms D C 12'1

D C I2'l

C l. Parms D C 12'1

D C I2'0

;Branch if error occurred

;New file leve l

;Parame ter count

.•re ference number = 0 (close a ll files)

If ProD O S 8 is active , se t the system file leve l by storing the new va lue a t LE V EL
($B F94).

100 G S/O S and ProD O S 8 Commands

G S/O S ProD O S 8

Crea te C R E AT E
$2001 $C0

Purpose:

To crea te a new disk file . The opera ting system does this by placing an entry for the
file in the specified directory. You must crea te every new file , except the volume
directory file , with this command. (G S/O S automa tica lly crea tes the volume directory
when you use the Forma t or EraseD isk command. ProD O S 8 forma tting programs
crea te the volume directory by using the WRIT E BLO C K command to write an
image of the four volume directory blocks to disk.)

Parame ter table:

ProD O S 8 Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 num_parms I Number of parame ters (7)

+ 1 to + 2 pa thname I Pointer to the pa thname string

+ 3 access I Access code

+ 4 file _ type I F ile type code

+ 5 to +6 aux _ type I Auxiliary type code

+ 7 storage _ type I S torage type code

+ 8 to +9 crea te _ da te I Crea tion da te

+ 10 to + 11 crea te _ time I Crea tion time

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (7)

+ 2 to +5 pa thname I Pointer to the pa thname string

+ 6 to +7 access I Access code

+ 8 to +9 file _ type I F ile type code

Command Descriptions 101

+ 10 to + 13 aux _ type I Auxiliary type code

+14 to + 15 storage _ type I S torage type code

+16 to + 19 eof I Anticipa ted size of da ta fork

+ 20 to + 23 resource _ eof I Anticipa ted size of resource fork

Descriptions of parame ters:
num _ panns The number of parame ters in the ProD O S 8 parame ter table (a lways 7).

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 1; the maximum is 7.

pa thname A pointer to a class 0 (ProD O S 8) or class 1 (G S/O S) string describ�
ing the pa thname of the file to be crea ted. If the pa thname specified
is not preceded by a separa tor (/ for ProD O S 8; / or : for G S/O S), the
opera ting system appends the name to the de fault pre fix (in G S/O S ,
this is the 0/ pre fix) to crea te a full pa thname .

access This fie ld conta ins severa l 1-bit codes de fining the access a ttributes
of the file to be crea ted. (The other bits must se t to zero.) See F igure
2-10 for a description of these bits. The backup-needed bit of the
access code is forced to 1 by this command.

file _ type A code indica ting the type of da ta the file holds. See Table 2-5 for a
description of the file type codes for the ProD O S file system.

aux _ type This is the auxiliary type code . The meaning of the code depends on
the file type code and on the program tha t crea ted the file in the first
place . For SYS , BIN , BAS , and VAR files, it is a de fault loading
address; for TXT files, it is a record length; for SR C files, it is an
APW language type code .

storage _ type This fie ld indica tes how the opera ting system is to store the file on
the disk:

$00—$03 standard tree-structured da ta file
$05 extended file
$0D linked-list directory file

If you specify a code of $00, $02, or $03, ProD O S 8 or G S/O S
converts it to a code of $01 and re turns tha t va lue in this fie ld.

Note tha t you cannot change the storage _ type of a file once it has
been crea ted.

crea te _ da te This fie ld conta ins the da te (year, month, day) tha t ProD O S 8 will
save as the file’s crea tion da te . F igure 8-1 in Chapter 8 shows the

102 G S/O S and ProD O S 8 Commands

forma t of these bytes. If these bytes are both zero, the current da te
will be used.

crea te _ time This fie ld conta ins the time (hour, minute) tha t ProD O S 8 will save
as the file’s crea tion time . F igure 8-1 in Chapter 8 shows the forma t of
these bytes. If these bytes are both zero, the current time will be used.

eof If the file be ing crea ted is a standard file (storage _ type = $01), this
fie ld indica tes the anticipa ted size of the file in bytes. G S/O S prea l-
loca tes enough blocks on disk to hold a file of this size .

If the file is an extended file (storage _ type = $05), this fie ld
indica tes the anticipa ted size of the da ta fork, in bytes. G S/O S
prea lloca tes enough blocks on disk to hold a da ta fork of this size .

If the file is a subdirectory file (storage _ type = $0D), this fie ld indi �
ca tes the anticipa ted number of entries in the subdirectory. G S/O S
prea lloca tes enough blocks on disk to hold a subdirectory of this size .

resource _ eof If the file be ing crea ted is an extended file (storage _ type = $05), this
fie ld indica tes the anticipa ted size of the resource fork in bytes. G S/O S
prea lloca tes enough blocks on disk to hold a resource fork of this size .

Common error codes:

$2B The disk is write-protected.

$40 The pa thname conta ins inva lid characters or a full pa thname was not
specified (and no de fault pre fix has been se t up). Verify tha t the
filenames and directory names specified in the pa thname adhere to
the naming rules described in Chapter 2 and, if a partia l pa thname
was specified, tha t a de fault pre fix has been se t up.

$44 A directory in the pa thname was not found. Solution: Double-check
the spe lling of the pa thname , insert the disk conta ining the correct
directory, or change the de fault pre fix.

$45 The volume directory was not found.

$47 The filename specified a lready exists. You can’t have two files with
the same name in the same subdirectory.

$48 The disk is full.

$49 The volume directory is full. Only 51 files can be stored in the
volume directory.

$4B Inva lid storage type code . Solution: Se t the storage type code to $0D
for directory files, to $01 for standard da ta files, or (for G S/O S only)
to $05 for extended files.

Command Descriptions 103

O ther possible error codes are $04, $07, $10, $27, $52, $53, $58.

Programming example:

Here is a short G S/O S subroutine you can use to crea te a standard textfile; the
filename for the textfile is JUPIT E R , and the full pa thname is :PLAN E TS:JUPIT E R .

Pa thName G SS tring PLAN E TS:JUPIT E R' ;Pa thname (in AS CII)

Crea te Cr Parms
B C S

RTS

Error ;Branch if error occurred

Cr Parms D C 12'5 ‘ ;0nly using 5 parame ters

D C 14'Pa thName1
D C I2'$E3' ;standard access code (unlocked)
D C I2'$04' ;file type = 4 (textfile)
D C I4'0' ;auxiliary type (0 = sequentia l)

D C I2'$01' ;storage type = 1 (standard file)

Note tha t when you crea te a file under G S/O S , the da te and time of crea tion is a lways
se t to the current da te and time . (Under ProD O S 8 you can specify any time you want
in the parame ter table for C R E AT E .) To se t a different da te and time of crea tion, use
the Se tF ile lnfo command.

104 G S/O S and ProD O S 8 Commands

G S/O S ProD O S 8

D Control none
$202E

Purpose:

To send control commands to a G S/O S device .

There is no equiva lent ProD O S 8 command.

Parame ter table:

G S/O S

O ffse t Symbolic Name

Input
or
Result Description

+ 0 to +1 pcount I Number of parame ters (5)

+ 2 to +3 dev _ num I Device re ference number

+ 4 to +5 control _ code I Control request code

+ 6 to +9 control _ list I Pointer to control list

+ 10 to + 13 request _ count I S ize of the control list

+14 to +17 transfer _ count R Number of bytes transferred

Descriptions of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 5; the maximum is 5.

dev _ num The device’s re ference number.

control code A code indica ting wha t control opera tion is to be performed:

$0000 rese t device
$0001 forma t device medium
$0002 e ject device medium
$0003 se t configura tion parame ters
$0004 se t wa it/no-wa it mode
$0005 se t forma t options
$0006 assign partition owner
$0007 arm signa l
$0008 disarm signa l
$0009 se t partition map
$000A-$7F F F [reserved]
$8000-$F F F F device-specific opera tions

Command Descriptions 105

control list This is a pointer to a buffer tha t conta ins any supplementary da ta
tha t G S/O S may need to perform the control opera tion.

request count The size of the control list buffer.

transfer count The number of bytes in the control list buffer tha t were transferred
to the device is re turned here .

Common error codes:

$11 The device re ference number is inva lid.

$53 The parame ter is out of range .

Another possible error code is $07.

Programming example:

The only control command you’re ever like ly to need for a disk device is the e ject
command. Here is a G S/O S subroutine for e jecting the disk medium from a drive:

examining bit 2 of the characteristics word; if the bit is 1, the medium is removable .

You will use severa l device-specific control commands to communica te with the
Console Driver (see chapter 9). For a de ta iled discussion of the standard control
commands, see G S/O S Re ference , Volume 2.

_D Control D C_Parms
RTS

D C Parms AN O P
D C 12151 ;The number of parame ters

D C I2'2' ;Device number

D C I2'2' ;Control code (2 = e ject)
D C 14'C trl List'
D C I4'0'
DS 4

C trl_.List DS 4 ;Nothing in control list

You can de termine if the disk medium is removable by doing a DInfo ca ll and

106 G S/O S and ProD O S 8 Commands

G S/O S ProD O S 8

none D E ALLO C _ INT E RRUPT
$41

Purpose:

To remove the address of an interrupt-handling subroutine from the interna l ProD O S
8 interrupt vector table .

Under G S/O S , use the Unbindlnt command instead.

Parame ter table:

ProD O S 8 Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 num_parms I Number of parame ters (1)

+ 1 int _ num I Interrupt handler re ference number

Descriptions of parame ters:

num _parms The number of parame ters in the ProD O S 8 parame ter table (a lways 1).

int num The identifica tion number for the interrupt handler. ProD O S 8 assigned
this number when the handler was insta lled using the ALLO C
INT E RRUPT command.

Important: Do not remove an interrupt-handling subroutine until your applica tion has
first told the source of the interrupts to stop genera ting interrupts. If you remove the
subroutine first, the system will crash the next time an interrupt occurs.

Common error codes:

$53 The int num parame ter is not va lid. Use the number ALLO C
INT E RRUPT re turned when you insta lled the interrupt handler.

Another possible error code is $04.

Programming example:

Here ’s how to remove the interrupt vector table entry for an interrupt-handling
subroutine assigned the code number 1 when it was insta lled using the ALLO C
INT E RRUPT command:

Command Descriptions 107

;D E ALLO C_INT E RRUPT
;Address of parame ter table
.•Branch if error occurred

JSR MLI
D F B $41
DA PARMTBL

B C S E RR O R
RTS

PARMTBL D F B 1
D F B 1

;The # of parame ters
.•Interrupt code number

108 G S/O S and ProD O S 8 Commands

Destroy
$2002

G S/O S

Purpose:

To remove a file from disk. When you destroy a file , the opera ting system frees up a ll
the disk blocks the file uses and zeros the length byte in the file’s directory entry. You
can destroy any file (except a volume directory file) whose destroy-enabled access
code bit is se t to 1; subdirectory files must be empty be fore you can destroy them,
however.

Parame ter table:

ProD O S 8 Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 num_parms I Number of parame ters (1)

+ 1 to + 2 pa thname I Pointer to the pa thname string

G S/O S Input
or

O ffse t Symbolic Name Result Description

+ 0 to +1 pcount I Number of parame ters (1)

+ 2 to +5 pa thname I Pointer to the pa thname string

Descriptions of parame ters:

num_parms The number of parame ters in the ProD O S 8 parame ter table (a lways 1).

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 1; the maximum is 1.

pa thname A pointer to a class 0 (ProD O S 8) or class 1 (G S/O S) string describ�
ing the pa thname of the file to be destroyed. If the pa thname
specified is not preceded by a separa tor (/ for ProD O S 8; / or : for
G S/O S), the opera ting system appends the name to the de fault pre fix
(in G S/O S , this is the 0/ pre fix) to crea te a full pa thname .

If the pa thname describes an extended file (storage type = $05),
both forks are destroyed.

D E STR O Y
$C1

ProD O S 8

Command Descriptions 109

Common error codes:

$2B The disk is write-protected.

$40 The pa thname conta ins inva lid characters, or a full pa thname was not
specified (and no de fault pre fix has been se t up). Verify tha t the
filenames and directory names specified in the pa thname adhere to
the naming rules described in Chapter 2 and, if a partia l pa thname
was specified, tha t a de fault pre fix has been se t up.

$44 A directory in the pa thname was not found. Solution: Double-check
the spe lling of the pa thname , insert the disk conta ining the correct
directory, or change the de fault pre fix.

$45 The volume directory was not found. Solution: Double-check the
spe lling of the volume directory name , insert the correct disk, or
change the de fault pre fix.

$46 The file was not found.

$4E The file cannot be accessed. Solution: Se t the destroy-enabled bit of
the access code to 1 using S E T_FILE IN F O .

$50 The file is open. You can destroy closed files only.

O ther possible error codes are $04, $07, $10, $27, $4A , $4B , $52, $58.

Programming example:

Consider a situa tion in which the 0/ pre fix is /D EMO S/G AME S . To destroy a file tha t
has a full pa thname of /D EMO S/G AME S/TRIVIA .BLITZ , you could use the follow�
ing G S/O S subroutine .

_Destroy DY_Parms
B C S Error ;Branch if error occurred
RTS

DY_Parms D C 12'l 1 ;1 parame ter
D C 14'Pa thName1

Pa thName G SS tring 'TRIVIA .BLITZ' .-Pa thname (in AS CII)

Notice tha t it was not necessary to specify the full pa thname in this program. G S/O S
automa tica lly appends the name specified to the 0/ pre fix to crea te the full pa thname
tha t it acts on.

The ProD O S file system does severa l things when it destroys a file . F irst, it zeros the
name length byte in the file’s directory entry. (This is the first byte in the entry.)
Then it frees up the disk blocks the file uses by se tting the appropria te bits in the
volume bit map. F ina lly, it reads in the file’s index blocks from disk, reverses the two
256-byte ha lves of each block (meaning the low-order block number appears in the

110 G S/O S and ProD O S 8 Commands

upper ha lf, and the high-order block number appears in the lower ha lf), and then
writes the blocks back to disk. (Versions of ProD O S 8 numbered 1.2 or lower actua lly
zeroed the index blocks, making it impossible for a utility program to recover a
de le ted file .)

Note tha t you cannot destroy an extended file (storage type = $05) with the
ProD O S 8 version of the D E STR O Y command. It can be destroyed only with the
G S/O S Destroy command.

Command Descriptions 111

DInfo
$202C

none

G S/O S ProD O S 8

Purpose:
To de termine informa tion about a device connected to the system.

There is no equiva lent ProD O S 8 command.

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (10)

+ 2 to +3 dev _ num I Device re ference number

+ 4 to + 7 dev _ name R Pointer to the device name string

+ 8 to +9 characteristics R Device characteristics

+10 to +13 tota l _ blocks R C apacity of volume , in blocks

+ 14 to +15 slot _ num R S lot number for device

+ 16 to +17 unit _ num R Unit number for device

4" 18 to +19 version R Device driver version number

+ 20 to +21 device _ ID _ num R Device ID number

+ 22 to +23 head _ link R F irst re la ted device

+ 24 to +25 forward _ link R Next re la ted device

Descriptions of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 2; the maximum is 10.

dev _ num The device ’s re ference number.

dev _ name A pointer to a class 1 output buffer in which G S/O S re turns the
device name . A device name may be up to 31 characters long, so se t
the buffer size word in the class 1 output buffer to 35 bytes.

characteristics The bits in this word re flect the characteristics of the device:

112 G S/O S and ProD O S 8 Commands

tota l blocks

slot num

unit num

version

device ID num

bit 15 1 = device is a RAMdisk or R OMdisk
bit 14 1 = device driver was genera ted
bit 13 [reserved]
bit 12 1 = device is busy
bit 11 [reserved]
bit 10 [reserved]
bit 9 device speed (high)
bit 8 device speed (low)
bit 7 1 = device is a block device
bit 6 1 = write is a llowed
bit 5 1 = read is a llowed
bit 4 [reserved]
bit 3 1 = forma t is a llowed
bit 2 1 = device conta ins removable media
bit 1 [reserved]
bit 0 [reserved]

B its 9 and 8, the device speed bits, indica te the speed a t which the
device can opera te:

00 1 MHz device
01 2.6 MHz device
10 >2.6 MHz device
11 not speed dependent

For a block device , the capacity of the volume in blocks. For a
character device , this fie ld is zero.

The slot number of the firmware driver for the device .

The SmartPort unit number for the device .

The version number of the device driver:

ma jor version numberbits 15-12
bits 11-8 primary minor version number
bits 7-4 secondary minor version number
bits 3-0 version type:

$0 = re leased fina l
$A = a lpha
$B = be ta
$E = experimenta l
$F = unre leased fina l

For example , version 2.12 be ta would be represented by the version
word $212B .

This is a code number tha t identifies the device type:

$0000 5.25-inch disk drive
$0001 ProF ile hard disk (5Mb)
$0002 ProF ile hard disk (10Mb)
$0003 3.5-inch disk drive
$0004 generic S C SI device

Command Descriptions 113

head link

$0005 S C SI hard disk
$0006 S C SI tape drive
$0007 S C SI C D-R OM drive
$0008 S C SI printer
$0009 seria l modem
$000A console
$000B seria l printer
$0000 seria l LaserWriter
$000D AppleTa lk LaserWriter
$000E RAM D isk
$O O O F R OM D isk
$0010 file server
$0011 IBX te lephone
$0012 Apple desktop bus device
$0013 generic hard disk drive
$0014 generic floppy disk drive
$0015 generic tape drive
$0016 generic character device
$0017 MFM-style floppy disk drive
$0018 generic AppleTa lk ne twork device
$0019 S C SI sequentia l access device
$001A S C SI scanner
$0018 non-S C SI scanner
$0010 S C SI LaserWriter
$0010 AppleTa lk ma in driver
$00 IE AppleTa lk file service driver
$00 IF AppleTa lk RPM driver

This is a device number tha t is the first entry in a linked list of
device numbers. The devices in the list are re la ted in tha t they each
have a distinct partition on the same disk medium. If head link is
zero, there is no link.

forward link This is a device number tha t is the next entry in a linked list of
device numbers. The devices in the list are re la ted in tha t they each
have a distinct partition on the same disk medium. If forward link
is zero, there is no link.

Common error codes:

$11 Inva lid device re ference number.

Another possible error code is $07.

Programming example:
You can use DInfo to de termine the names of a ll the devices connected to the system.
To do this, make a series of ca lls to DInfo, incrementing dev num by 1 a fter each
ca ll, until DInfo re turns an error code of $11 (“inva lid device re ference number”). The
first dev num you pass to DInfo should be 1 since this is the device number G S/O S
assigns to the first device it finds when it boots up.

114 G S/O S and ProD O S 8 Commands

Keep in mind, however, tha t the number of active devices in the system may change
during program execution. For example , server volumes may come on line or go off
line a t a lmost any time . As a result, if you’re designing a program which has a “list
volumes” command, you should form the list each time the user requests it. It is not
good enough to form the list once a t the beginning of the program.

Here is a G S/O S code fragment tha t shows how you might do this in an applica tion:

LDA
STA

#1
DevNum

G e t_Name DInfo DI_Parms
B C S Exit

LDA DevName ;G e t length word
XBA ;(Put low-order byte a t
STA DevName . � beginning of string)
PushP tr DevName+1 .•(point to length byte)
DrawS tring .•D isplay name in window

JSR C RLF ;(C RLF moves cursor to next line)
BRA G e t_Name

Exit RTS

DI_Parms AN O P
D C 12'10' ;The number of parame ters

DevNum D C I2'r .•Device number
D C 14'DevSpace1 .•Pointer to device name buffer

DevSpace D C I2'35' ;S ize of buffer
DevName DS 33 .•Name stored here

C a ll this subroutine a fter positioning the cursor with the Move or MoveTo macro.
 DrawS tring is the macro for a QuickDraw II tool se t function tha t displays a

Pasca l-like string (one preceded by a length byte) in the current window.

Command Descriptions 115

DRead
$202F

none

G S/O S ProD O S 8

Purpose:

To perform low-leve l read opera tions on a G S/O S device .

Under ProD O S 8, use the R E AD BLO C K command instead.

Parame ter table:

G S/O S Input
or

O ffse t Symbolic Name Result Description

+ 0 to +1 pcount I Number of parame ters (6)

-1- 2 to +3 dev _ num I Device re ference number

+ 4 to + 7 buffer R Da ta buffer

+ 8 to +11 request _ count I Number of bytes to read

+12 to +15 starting _ block I F irst block to read from

+ 16 to +17 block _ size I Number of bytes per block

+ 18 to + 21 transfer _ count R Number of bytes actua lly read

Descriptions of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 6; the maximum is 6.

dev _ num The device’s re ference number.

buffer A pointer to a class 0 output buffer into which the da ta is to be read.

request _ count The number of bytes to read.

starting _ block If the device is a block device , this is the number of the block to start
reading from. For character devices, this fie ld is not used.

block _ size The size of a block in bytes.

transfer _ count The number of bytes actua lly read from the device .

Common error codes:

$11 The device re ference number is inva lid.

$53 Parame ter out of range .

116 G S/O S and ProD O S 8 Commands

Another possible error code is $07.

Programming example:

For block-structured devices, DRead is most often used to read the contents of da ta
blocks on the disk volume . Here is a G S/O S subroutine you could use to read blocks 6
and 7 on a disk volume conta ining 512-byte blocks:

_DRead DR_Parms
RTS

DR Parms D C 1216 ‘ ;The number of parame ters
D C 12'21 .•Device number
D C 14'Buffer'
D C 14'1024' ;Read 1024 bytes
D C 14'100' ; ... starting with block 100
D C I2'512' ;512 bytes per block
DS 4 ;transfer_count result

Buffer DS 1024

Note tha t a fter DRead reads the 512 bytes in block 100, it proceeds to the next
higher-numbered block, 101, to read the next 512 bytes.

Command Descriptions 117

G S/O S ProD O S 8

DS ta tus none
$202D

Purpose:

To de termine the sta tus of a G S/O S device .

There is no equiva lent ProD O S 8 command.

Parame ter table:

G S/O S Input
or

O ffse t Symbolic Name Result Description

+ 0 to +1 pcount I Number of parame ters (5)

+ 2 to +3 dev _ num I Device re ference number

+ 4 to +5 sta tus _ code I Control request code

+ 6 to +9 sta tus _ list R Pointer to control list

+ 10 to +13 request _ count I S ize of the control list

+14 to +17 transfer _ count R Number of bytes transferred

Descriptions of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 5; the maximum is 5.

dev _ num The device’s re ference number.

sta tus _ code A code indica ting wha t sta tus request is to be made:

$0000 ge t device sta tus
$0001 ge t configura tion parame ters
$0002 ge t wa it/no-wa it sta tus
$0003 ge t forma t options
$0004 ge t partition sta tus
$0005-$7F F F [reserved]
$8000-$F F F F device-specific sta tus ca lls

sta tus _ list This is a pointer to a class 0 buffer tha t holds any sta tus da ta tha t the
sta tus ca ll may re turn.

request _ count The number of sta tus bytes to be re turned in the sta tus list.

transfer _ count The actua l number of bytes re turned in the sta tus list is re turned here .

118 G S/O S and ProD O S 8 Commands

Common error codes:

$11 The device re ference number is inva lid.

$53 Parame ter out of range .

Another possible error code is $07.

Comments:

Your applica tion should rare ly have to use the DS ta tus command unless it is commu�
nica ting with the Console Driver (see Chapter 9). For a discussion of the standard
low-leve l sta tus commands, see G S/O S Re ference , Volume 2.

Command Descriptions 119

D Write
$2030

none

G S/O S ProD O S 8

Purpose:

To perform low-leve l write opera tions on a G S/O S device .

Under ProD O S 8, use the WRIT E BLO C K command instead.

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (6)

+ 2 to +3 dev _ num I Device re ference number

+ 4 to + 7 buffer I Da ta buffer

+ 8 to +11 request _ count I Number of bytes to write

+ 12 to +15 starting _ block I F irst block to write to

+16 to +17 block _ size I Number of bytes per block

+18 to + 21 transfer _ count R Number of bytes actua lly written

Descriptions of parame ters:
pcount The number of parame ters in the G S/O S parame ter table . The min�

imum va lue is 6; the maximum is 6.

dev _ num The device ’s re ference number.

buffer A pointer to a buffer in which the da ta to be written is stored.

request _ count The number of bytes to write .

starting _ block If the device is a block device , this is the number of the block to start
writing to. For character devices, this fie ld is not used.

block _ size The size of a block, in bytes.

transfer _ count The number of bytes actua lly written to the device .

Common error codes:

$11 The device re ference number is inva lid.

$53 Parame ter out of range .

120 G S/O S and ProD O S 8 Commands

Another possible error code is $07.

Comments:

This command is for low-leve l transfer of da ta to a character or block device . The file
system on the block device is not re levant.

Command Descriptions 121

G S/O S ProD O S 8

EndSession none
$201E

Purpose:

To perform a ll disk block write opera tions tha t have not been made because a
write-de ferra l session is in progress. EndSession a lso termina tes the current write �
de ferra l session.

There is no equiva lent ProD O S 8 command.

Parame ter table:

G S/O S

O ffse t Symbolic Name

Input
or
Result Description

+ 0 to +1 pcount I Number of parame ters (0)

Descriptions of parame ters:
pcount The number of parame ters in the G S/O S parame ter table . The min�

imum va lue is 0; the maximum is 0.

Common error codes:

[none]

Comments:

You must ca ll EndSession if your applica tion began a disk-de ferra l session by ca lling
BeginSession and wants to close the session.

122 G S/O S and ProD O S 8 Commands

EraseD isk
$2025

none

G S/O S ProD O S 8

Purpose:

To write to disk the boot record, volume bit map, and empty root directory for the
specified file system. Unlike Forma t, EraseD isk does not initia lize the disk first, so
you can use it only with previously initia lized disks.

There is no equiva lent ProD O S 8 command. Under ProD O S 8, you must use
WRIT E BLO C K to perform the required disk-write opera tions needed to erase a
disk.

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (4)

+ 2 to +5 dev _ name I Pointer to the device name string

+ 6 to +9 vol _ name I Pointer to the volume name string

+ 10 to +11 file _ sys _ id R ID code for se lected file system

+12 to +13 requested _fsys I ID code for requested file system

Descriptions of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 3; the maximum is 4.

dev _ name A pointer to a class 1 device name string.

vol _ name A pointer to a class 1 disk volume name string. The name must be
preceded by a slash.

file _ sys _ id If the requested _fsys fie ld is zero, G S/O S displays a dia log box tha t
le ts the user pick the file system to be used on the disk volume . On
re turn, the file _ sys _ id fie ld indica tes which file system was se lected:

$01 = ProD O S/S O S
$02 = D O S 3.3
$03 = D O S 3.2/3.1
$04 = Apple II Pasca l
$05 = Macintosh MF S

Command Descriptions 123

$06 = Macintosh H F S
$07 = Macintosh XL (LISA)
$08 = Apple C P/M
$09 = [never used]
$0A = MS-D O S
$0B = H igh S ierra (C D-R OM)
$0C = IS O 9660 (C D-R OM)

If G S/O S re turns a zero in this fie ld, the user cance led the opera tion.

requested _fsys This fie ld conta ins the ID code for the file system to be written to
the disk volume . (The codes are the same as those described for
file sys id.) If the fie ld is zero, G S/O S displays a dia log box tha t
le ts the user pick his or her own file system; G S/O S re turns the
se lected ID in the file sys id fie ld.

Common error codes:

$10 The specified device name does not exist.

$40 The volume name specified conta ins inva lid characters or does not
start with a va lid separa tor (/ or :).

$5D The specified file system is not supported.

O ther possible error codes are $07, $11, $27.

Programming example:

Suppose you want to erase a disk whose device name is .APPLE DISK3.5A and give it
the name :BLANK . Here is the G S/O S subroutine to use:

DevName G SS tring 1.APPLE DISK3.5A'
Vol Name G SS tring BLANK'

Erase lt _EraseD isk E D_Parms
RTS

E D Parms AN O P
D C 12'4' ;The number of parame ters
D C 14'DevName' .•Pointer to device name
D C 14'Vol Name1 .•Pointer to volume name
DS 2 ; fi 1 e_sys_i d
D C 12 'O ' ;0 = le t user pick

124 G S/O S and ProD O S 8 Commands

G S/O S ProD O S 8

ExpandPa th none
$200E

Purpose:

To convert a filename , partia l pa thname , or full pa thname into a full pa thname with
colon separa tors.

There is no equiva lent ProD O S 8 command.

Parame ter table:

G S/O S Input
or

O ffse t Symbolic Name Result Description

+ 0 to +1 pcount I Number of parame ters (3)

+ 2 to +5 input _ pa th I Pa thname to be expanded

+ 6 to +9 output_ pa th R Pointer to expanded pa thname

+10 to +11 flags I Uppercase conversion flag

Descriptions of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 2; the maximum is 3.

input pa th Pointer to a class 1 pa thname string tha t is to be expanded.

output pa th Pointer to a class 1 output buffer where G S/O S re turns the expanded
pa thname .

flags B it 15 of this flag indica tes whe ther lowercase characters are to be
converted to uppercase:

bit 15 1 = convert to uppercase characters

0 = don't convert characters

bits 14-0 must be zero

Common error codes:

$40 The pa thname syntax is inva lid.

$4F The class 1 output buffer is too sma ll to hold the result.

Comments:

The input pa th parame ter does not have to represent an existing filename on disk.

Command Descriptions 125

G S/O S ProD O S 8

F lush FLUSH
$2015 $C D

Purpose:

To force the opera ting system to write the contents of the da ta portion of a file’s I/O
buffer to disk and to upda te the file’s directory entry. The opera ting system does this
without closing the file .

Parame ter table:

ProD O S 8

O ffse t Symbolic Name

Input
or
Result Description

+ 0

+ 1

num_parms

re f _ num

I

I

Number of parame ters (1)

Re ference number for the file

G S/O S

O ffse t Symbolic Name

Input
or
Result Description

+ 0 to +1

+ 2 to +3

pcount

re f _ num

I

I

Number of parame ters (1)

Re ference number for the file

Descriptions of parame ters:
num_parms The number of parame ters in the ProD O S 8 parame ter table (a lways 1).

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 1; the maximum is 1.

re f _ num The re ference number ProD O S 8 or G S/O S assigned to the file when
it was first opened.

If re f_num is 0, a ll open files a t or above the system file leve l are
flushed. To se t the va lue of the file leve l under ProD O S 8, store the
va lue a t LE V EL ($B F94). Under G S/O S , use the Se tLeve l command.

Common error codes:

$2B The disk is write-protected.

126 G S/O S and ProD O S 8 Commands

$43 The file re ference number is inva lid. You might be using a re ference
number for a file tha t you’ve a lready closed.

O ther possible error codes are $04, $07, $27, $48.

Programming example:

To flush a ll open ProD O S 8 files a t or above file leve l 2, use the FLUSH command
with re f_num equa l to 0 and LE V EL ($B F94) equa l to 2. Here ’s the code:

LDA #2
STA LE V EL ; Se t LE V EL to 2

JSR ML I
D F B $C D ;FLUSH

DA PARMTBL .•Address of parame ter table

B C S E RR O R .•Branch if error occurred

RTS

PARMTBL D F B 1 ;The # of parame ters
D F B 0 ;re ference number = 0 (close a ll files)

Command Descriptions 127

Forma t
$2024

none

C S/O S ProD O S 8

Purpose:

To forma t a disk and write out the boot record, volume bit map, and empty root
directory for the specified disk opera ting system.

There is no equiva lent ProD O S 8 command. Under ProD O S 8, You must use a utility
program like System U tilities to forma t a disk.

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (4)

+ 2 to +5 dev _ name I Pointer to the device name string

+ 6 to +9 vol _ name I Pointer to the volume name string

+10 to +11 file_sys_ id R ID code for se lected file system

+12 to +13 requested _ fsys I ID code for requested file system

Descriptions of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 3; the maximum is 4.

dev _ name A pointer to a class 1 device name string.

vol _ name A pointer to a class 1 disk volume name string. The name must be
preceded by a slash.

file _ sys _ id If the requested —fsys fie ld is zero, G S/O S displays a dia log box tha t
le ts the user pick the file system to be used on the disk volume . On
re turn, the file _ sys _ id fie ld indica tes which file system was se lected:

$01 = ProD O S/S O S
$02 = D O S 3.3
$03 = D O S 3.2/3.1
$04 = Apple II Pasca l
$05 = Macintosh MF S
$06 = Macintosh H F S
$07 = Macintosh XL (LISA)

128 G S/O S and ProD O S 8 Commands

$08 = Apple C P/M
$09 = [never used]
$0A = MS-D O S
$0B = H igh S ierra (C D-R OM)
$0C = IS O 9660 (C D-R OM)

If G S/O S re turns a zero in this fie ld, the user cance led the opera tion.

requested fsys This fie ld conta ins the ID code for the file system to be written to
the disk volume . (The codes are the same as those described for
file _sys_id.) If the fie ld is zero, G S/O S displays a dia log box tha t
le ts the user pick his or her own file system; G S/O S re turns the
se lected ID in the file_sys_id fie ld.

Common error codes:

$10 The specified device name does not exist.

$40 The volume name specified conta ins inva lid characters or does not
start with a va lid separa tor (/ or :).

$5D The specified file system is not supported.

O ther possible error codes are $07, $11, $27.

Programming example:

See the example given for the EraseD isk command. The only change to make is to
replace the EraseD isk macro with the Forma t macro.

Command Descriptions 129

F STSpecific
$2033

none

G S/O S ProD O S 8

Purpose:
To perform opera tions which are unique to a particular file system transla tor.

There is no equiva lent ProD O S 8 command. ProD O S 8 does not use file system
transla tors.

Parame ter table:

G S/O S

O ffse t Symbolic Name

Input
or
Result Description

+ 0 to +1 pcount I Number of parame ters (3)

+ 2 to +3 file _ sys _ id I F ile system ID code

+ 4 to +5 command _ num I F ST-specific command number

-1- 6 to + 7/9 command _ parm I/R Command parame ter or result

Descriptions of parame ters:
pcount The number of parame ters in the G S/O S parame ter table . The min�

imum va lue is 3; the maximum is 3.

file_sys_id This fie ld indica tes the file system tha t the F ST implements:

$01 = ProD O S/S O S
$02 = D O S 3.3
$03 = D O S 3.2/3.1
$04 = Apple II Pasca l
$05 = Macintosh MF S
$06 = Macintosh H F S
$07 = Macintosh XL (LISA)
$08 = Apple C P/M
$09 = Character F ST
$0A = MS-D O S
$0B = H igh S ierra (C D-R OM)
$0C = IS O 9660 (C D-R OM)

command num This fie ld conta ins an F ST-specific command code .

130 G S/O S and ProD O S 8 Commands

command _parm This can be e ither an Input or a Result fie ld, depending on com�
mand-num. Its meaning depends on which F ST you are communi �
ca ting with.

Common error codes:

$53 Inva lid parame ter.

O ther possible error codes are $04, $54.

Comments:

This command is for performing opera tions unique to a particular file system. The
na ture of these opera tions varies from one F ST to another. Consult the technica l
description of the F ST you want to dea l with for an explana tion of the F STSpecific
ca lls it supports.

Command Descriptions 131

G S/O S ProD O S 8

G e tBootVoI none
$2028

Purpose:

To de termine the name of the disk volume from which the G S/O S opera ting system
was booted.

There is no equiva lent ProD O S 8 command. ProD O S 8 does not keep track of the
name of the disk it was booted from.

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (1)

+ 2 to +5 vol _ name R Pointer to the volume name string

Note: The volume name G e tBootVoI re turns is the same as the name G S/O S assigns to
the */ pre fix when it first boots up.

Descriptions of parame ters:
pcount The number of parame ters in the G S/O S parame ter table . The min�

imum va lue is 1; the maximum is 1.

vol name A pointer to a class 1 output buffer in which G S/O S re turns the disk
volume name (preceded and followed by a pa thname separa tor). The
output buffer should be 35 bytes long.

Common error codes:

[none]

Another possible error code is $07.

Programming example:

An applica tion never rea lly needs to know the actua l name of the G S/O S boot volume .
If it needs to de fine a pa thname on the boot volume , it should use the */ shorthand
nota tion to identify the root directory.

It may be convenient, however, to display the name for informa tion or when debug �
ging. Here is a G S/O S subroutine tha t shows how to use G e tBootVoI:

G e t_Boot _G e tBootVol G BV_Parms
RTS

132 G S/O S and ProD O S 8 Commands

G BV Parms AN O P

D C

D C

12* 1 �
14'BootSpace'

;The number of parame ters
;Pointer to output buffer

BootSpace D C I2'35‘

BootName DS 33 ;Space for name

On exit from the subroutine , the name is stored a t BootName , preceded by a length word.

Command Descriptions 133

none G E T_BU F
$D3

G S/O S ProD O S 8

Purpose:

To de termine the starting address of the 1024-byte I/O buffer an open file uses.

There is no equiva lent G S/O S command. G S/O S takes care of a ll buffer-management
opera tions interna lly.

Parame ter table:

ProD O S 8

O ffse t Symbolic Name

Input
or
Result Description

+ 0 num_ parms I Number of parame ters (2)

+ 1 re f _ num I Re ference number for the file

+ 2 to +3 io _ buffer R Pointer to I/O buffer

Descriptions of parame ters:

num _ parms

re f _ num

The number of parame ters in the ProD O S 8 parame ter table (a lways 2).

The re ference number ProD O S 8 assigned to the file when it was
first opened.

io _ buffer A pointer to the 1024-byte file buffer used by the open file . The
low-order byte of this pointer is a lways $00. (Tha t is, the buffer
begins on a page boundary.)

Common error codes:

$43 The file re ference number is inva lid. You might be using a re ference
number for a file tha t you’ve a lready closed.

Another possible error code is $04.

Programming example:

You can use the following program to de termine the address of the file buffer for file 2.
A fter the G E T_BU F command executes, the address will be stored a t BU F F PTR .

JSR MLI
D F B $D3
DA PARMTBL
B C S E RR O R
RTS

;G E T_BU F
. � Address of parame ter table
.•Branch if error occurred

134 G S/O S and ProD O S 8 Commands

PARMTBL D F B 2
D F B 2

;The # of parame ters
;F ile re ference number

BU F F PTR DS 2 .•Buffer address is re turned here

Command Descriptions 135

G S/O S ProD O S 8

G e tDevNumber none
$2020

Purpose:

To de termine the device re ference number corresponding to a specified device name
or volume name .

There is no equiva lent ProD O S 8 command.

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (2)

+ 2 to +5 dev _ name I Pointer to device/volume name
string

-1- 6 to +7 dev _ num R Device re ference number

Descriptions of parame ters:
pcount The number of parame ters in the G S/O S parame ter table . The min�

imum va lue is 1; the maximum is 2.

dev _ name A pointer to a class 1 device name string or the class 1 volume name
string. A volume name must be preceded by a pa thname separa tor.

dev _ num The device’s re ference number.

Note: If dev name points to a volume name , the dev num G S/O S re turns repre �
sents the current device re ference number for the volume . The volume s dev num
will change if the disk is removed and placed in another disk drive .

Common error codes:

O ther possible error codes are $07, $11.

$10 The specified device name does not exist.

$40 The volume name specified conta ins inva lid characters or does not
start with a va lid separa tor (/ or :).

$45 The disk with the specified volume name can’t be found, or the
name , a lthough preceded by a separa tor, is otherwise inva lid.

136 G S/O S and ProD O S 8 Commands

Programming example:

Here is a G S/O S code fragment you can use to de termine the device re ference
number for a disk whose name is /APPLE W O RKS . G S:

_G e tDevNumber G DN_Parms

RTS

G DN Parms AN O P

D C I2'2' ;The number of parame ters
D C 14'Vol Name '
O S 2 ;Device re f number re turned here

VolName G SS tring '/APPLE W O RKS . G S'

Don’t forge t to include a leading slash (or colon) in the volume name .

Command Descriptions 137

G S/O S ProD O S 8

G e tD irEntry none
$2010

Purpose:
To read an open directory file . G S/O S re turns entries tha t conta in informa tion about
the files in a directory.

There is no equiva lent ProD O S 8 command. Under ProD O S 8, you must open the
directory file , read it into memory, and interpre t the da ta yourse lf. This requires an
understanding of the structure of a directory file . See Chapter 2.

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (17)

+ 2 to +3 re f _ num I Re ference number for the file

+ 4 to +5 flags R Extended file flag

+ 6 to + 7 base I Base code

+ 8 to +9 displacement I D isplacement code

+10 to + 13 name _ buffer I Pointer to name buffer

+14 to +15 entry _ num R Absolute directory entry number

+16 to +17 file _ type R F ile type code

+ 18 to + 21 eof R S ize of the file

+ 22 to +25 block _ count R Number of blocks file uses

+ 26 to +33 crea te _ td R T ime and da te of crea tion

+ 34 to +41 modify _ td R T ime and da te of modifica tion

+ 42 to +43 access R Access code

+ 44 to +47 aux _ type R Auxiliary type code

+ 48 to + 49 file _ sys _ id R Opera ting system ID code

+ 50 to + 53 option _ list R Pointer to option list

+ 54 to +57 res _ eof R S ize of the resource fork

+ 58 to + 61 res _ block _ count R Number of blocks resource fork uses

138 G S/O S and ProD O S 8 Commands

Descriptions of parame ters:
pcount The number of parame ters in the G S/O S parame ter table . The min�

imum va lue is 5; the maximum is 15.

re f _ num The re ference number G S/O S assigned to the directory file when it
was first opened.

flags B it 15 of this word indica tes whe ther the file represented by the current
directory entry is an extended file (bit 15 = 1) or not (bit 15 = 0).

base This code te lls G S/O S how to ca lcula te the number of the next
directory entry to read. If base = 0, displacement is an absolute
directory entry; if base = 1, G S/O S adds displacement to the current
entry number to ge t the next entry number; if base = 2, G S/O S
subtracts displacement from the current entry number to ge t the
next entry number. Note tha t G S/O S se ts the current entry number
to 0 when it first opens a file and upda tes it each time the applica tion
ca lls G e tD irEntry.

displacement If base = 0, this represents the absolute number of the directory
entry to be re turned. O therwise , it represents the displacement to
the next directory entry to be re turned, which can be positive or
nega tive , depending on the va lue of base .

Note tha t if base and displacement are both zero, G S/O S re turns in
the entry _ num fie ld the tota l number of active entries in the subdi �
rectory. It a lso se ts the current entry number to the first entry in the
subdirectory.

To step through the directory one entry a t a time , se t both base and
displacement to 1 and keep ca lling G e tD irEntry until error $61 (end
of directory) occurs.

name _ buffer A pointer to a class 1 output buffer in which G S/O S stores the
filename it finds in the directory entry. For volumes forma tted for
the ProD O S file system, the buffer size should be 19 bytes (15 for
the name bytes, 2 for the length word, and 2 for the buffer size
word). S ince G e tD irEntry could a lso be used to read directories of
fore ign opera ting systems tha t use longer filenames (such as Macin�
tosh H F S or C D-R OM H igh S ierra), you might want to make the
buffer even larger.

If the output buffer you provide is too sma ll, G e tD irEntry re turns as
much of the name as will fit in the buffer, but re turns the actua l length.

entry _ num

file _ type

The absolute directory entry number of the current entry.

A code indica ting the type of da ta the file holds. See Table 2-5 for a
description of the ProD O S file type codes.

Command Descriptions 139

eof A va lue tha t holds the current E O F position. This va lue is equa l to
the size of the file (in bytes). If the file is an extended file , this fie ld
re la tes to the da ta fork of the file only.

block _ count This fie ld conta ins the tota l number of blocks used by the file for da ta
storage and index blocks. If the file is an extended file , this fie ld
re la tes to the da ta fork of the file only.

crea te _ td The time and da te of crea tion. These 8 bytes represent the following
parame ters in the following order:

seconds
minutes
hour in 24-hour military forma t
year year minus 1900
day day of month minus 1
month 0 = January, 1 = F ebruary, and so on
[not used]
weekday 1 = Sunday, 2 = Monday, and so on

Note: This forma t is the same as the one used by the ReadT imeHex
function in the IIg s ’s Misce llaneous Tool Se t but is different from
the one used in a standard file entry for the ProD O S file system.

modify _ td The time and da te of last modifica tion. The ordering of these 8 bytes
is the same as for crea te _ time .

access This fie ld conta ins severa l 1-bit codes de fining the access a ttributes
of the file . See F igure 2-10 for a description of these bits.

aux _ type This is the auxiliary type code . The meaning of the code depends on
the file type code and on the program tha t crea ted the file in the first
place . For SYS , BIN , BAS , and VAR files, it is a de fault loading
address; for TXT files, it is a record length; for SR C files, it is an
APW language type code .

file _ sys _ id The file system identifica tion code . The currently de fined va lues are

$00 = [reserved]
$01 = ProD O S/S O S
$02 = D O S 3.3
$03 = D O S 3.2/3.1
$04 = Apple II Pasca l
$05 = Macintosh MF S
$06 = Macintosh H F S
$07 = Macintosh XL (LISA)
$08 = Apple C P/M
$09 = [reserved]
$0A = MS-D O S

140 G S/O S and ProD O S 8 Commands

$0B = H igh S ierra (C D-R OM)
$0C = IS O 9660 (C D-R OM)

A ll other va lues are reserved.

option list A pointer to a class 1 output buffer where G S/O S re turns file infor�
ma tion unique to the file system transla tor used to access the file .

res_eof A va lue tha t holds the current E O F position of the resource fork of
an extended file . This va lue is equa l to the size of the resource fork of
the file (in bytes).

res_block_count This fie ld conta ins the tota l number of blocks used by the resource
fork of an extended file for da ta storage and for index blocks.

Common error codes:

$4F The name buffer is too sma ll to hold the filename .

$61 End of directory. When you rece ive this error, close the subdirectory
file you opened be fore ca lling G e tD irEntry.

O ther possible error codes are $07, $27, $43, $4A , $4B , $52, $53, $58.

Programming example:

Here is a G S/O S subroutine tha t displays the names of a ll the files in a given
subdirectory by repea tedly ca lling G e tD irEntry. On entry to the subroutine , the
long-word pointer to the subdirectory pa thname must be in the A (high word) and X
(low word) registers.

C a ta log START

STX
STA

Name P tr

Name_P tr+2
;Se t up pointer to pa thname

Open Open Prms ;0pen the subdirectory file
LDA re f num
STA re f numl
STA re f num2

-•*

G e tD irEntry G D E_Parms
B C S Exit

LDA NameBuff+2 ;Put length in high byte
XBA ; so it's just be fore the
STA NameBuff+2 ; filename

PushP tr NameBuff+3 ;Point to length byte
DrawS tring .•D isplay filename

JSR C RLF . � Move to start of next line

Command Descriptions 141

/

E ND

BRA Read D ir

Exit C lose C lose_Prms ;C lose subdirectory file

RTS

Open_Prms AN O P

D C 1212 ‘ ;The number of parame ters

re f num DS 2 . � Re ference number

Name P tr DS 4 . � Pointer to subdir pa thname

C lose_Prms AN O P

D C I2T1

re f numl DS 2

G D E_Parms AN O P

D C I2'5'

re f num2 DS 2 ;re ference number

DS 2 ;fl ags

D C I2T' .-Base = " increment11

D C I2T' .•displacement = +1

D C 14'NameBuff' ;Pointer to name buffer

NameBuff D C 12119' ;Buffer size

DS 2 ;Length

DS 15 ;F ilename

Notice tha t the va lues for base and displacement are both se t to 1 in the G e tD irEntry
parame ter table so tha t a ll active entries in the directory will be re turned as G e t �
D irEntry is ca lled aga in and aga in. The read loop ends when G e tD irEntry re turns an
error. (This will norma lly be error code $61 —“end of directory.”)

A lso notice the trickery used to se t up a standard Pasca l-type string for DrawS tring
to act on. Pasca l strings are preceded by a single length byte , but the length in the
G e tD irEntry name buffer occupies 2 bytes. The low-order length byte is stored a t
Name Buff+3 to se t up the Pasca l-type string. The subroutine assumes tha t the file
name will not exceed 255 characters.

142 G S/O S and ProD O S 8 Commands

G S/O S ProD O S 8

G e tE O F G E T _ E O F
$2019 $D1

Purpose:

To de termine the va lue of the current end-of-file pointer (E O F) of an open file . This
va lue represents the size of the file .

Parame ter table:

ProD O S 8

O ffse t Symbolic Name

Input
or
Result Description

+ 0 num. parms I Number of parame ters (2)

+ 1 re f _ num I Re ference number for the file

+ 2 to +4 eof R The end-of-file position

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (2)

+ 2 to +3 re f _ num I Re ference number for the file

+ 4 to +7 eof R The end-of-file position

Descriptions of parame ters:

num parms The number of parame ters in the ProD O S 8 parame ter table (a lways 2).

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 2; the maximum is 2.

re f num The re ference number ProD O S 8 or G S/O S assigned to the file when
it was first opened.

eof A va lue tha t holds the current E O F position. This va lue is equa l to
the size of the file (in bytes).

Command Descriptions 143

Common error codes:

$43 The file re ference number is inva lid. You might be using a re ference
number for a file tha t you’ve a lready closed.

O ther possible error codes are $04, $07.

Programming example:
Use the G e tE O F command to quickly de termine how big an open file is. For example ,
a fter you ca ll this G S/O S subroutine , the size of open file #1 is stored a t Position
(low-order bytes first):

G e tE O F G E_Parms

B C S Error

RTS

.•Branch if error occurred

G E Parms D C I2'2* ;The # of parame ters

D C I2'T ;F i1e re ference number

Position DS 4 .•Current E O F position

144 G S/O S and ProD O S 8 Commands

G S/O S ProD O S 8

G e tF ile lnfo G E T _ FILE _ IN F O
$2006 $C4

Purpose:

To re trieve the informa tion stored in a file’s directory entry. This includes the access
code , file type code , auxiliary type code , storage type code , the number of blocks the
file uses, and the da te and time the file was crea ted and last modified.

a When pa thname points to the name of a volume directory ra ther than the name of a standard file , the
volume size (in blocks) is re turned in the aux type fie ld, and the number of blocks currently in use by a ll
files on the volume is re turned in the blocks used fie ld.

Parame ter table:

ProD O S 8 Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 num_ parms I Number of parame ters (10)

+1 to + 2 pa thname I Pointer to the pa thname string

+ 3 access R Access code

+ 4 file _ type R F ile type code

+ 5 to +6 aux _ type R Auxiliary type code3

+ 7 storage _ type R S torage type code

4- 8 to +9 blocks _ used R B locks used by the file3

+ 10 to +11 modify _ da te R Modifica tion da te

4-12 to 4-13 modify _ time R Modifica tion time

+ 14 to +15 crea te _ da te R Crea tion da te

+16 to +17 crea te _ time R Crea tion time

Command Descriptions 145

G S/O S

O ffse t Symbolic Name

Input
or
Result Description

+ 0 to +1 pcount I Number of parame ters (12)

+ 2 to +5 pa thname I Pointer to the pa thname string

-1- 6 to +7 access R Access code

+ 8 to +9 file _ type R F ile type code

+10 to +13 aux _ type R Auxiliary type code

-1-14 to +15 storage _ type R S torage type code

+ 16 to + 23 crea te _ td R Crea tion time and da te

+ 24 to +31 modify _ td R Modifica tion time and da te

+ 32 to +35 option _ list R Pointer to option list

+ 36 to + 39 eof R S ize of the file

+ 40 to +43 blocks _ used R B locks used by the file

+ 44 to +47 resource _ eof R S ize of resource fork

+ 48 to +51 resource _ blocks R B locks used by resource fork

Descriptions of parame ters:

num panns The number of parame ters in the ProD O S 8 parame ter table (a lways
10).

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 1; the maximum is 12.

pa thname A pointer to a class 0 (ProD O S 8) or class 1 (G S/O S) string describ�
ing the pa thname of the file to be used. If the pa thname specified is
not preceded by a separa tor (/ for ProD O S 8; / or : for G S/O S), the
opera ting system appends the name to the de fault pre fix (in G S/O S ,
this is the 0/ pre fix) to crea te a full pa thname .

access This fie ld conta ins severa l 1-bit codes tha t de fine the access a t �
tributes of the file . See F igure 2-10 for a description of these bits.

file type This code indica tes the type of da ta the file holds. See Table 2-5 for
a description of the ProD O S file type codes.

aux type This is the auxiliary type code . The meaning of the code depends on
the file type code and on the program tha t crea ted the file in the first

146 G S/O S and ProD O S 8 Commands

storage type

blocks used

modify da te

modify time

crea te da te

crea te time

crea te td

place . For SYS , BIN , BAS , and VAR files, it is a de fault loading
address; for TXT files, it is a record length; for SR C files, it is an
APW language type code .

Exception: Under ProD O S 8, if the pa thname is a volume direc �
tory name , aux type holds the volume size (in blocks).
This code describes the physica l organiza tion of the file on the
disk:

$01 = seedling file
$02 = sapling file
$03 = tree file
$04 = Pasca l region on a partitioned disk
$05 = extended file
$0D = directory file (linked list)
$0F = volume directory file (linked list)

This fie ld conta ins the tota l number of blocks used by the file for
da ta storage and index blocks. (Use G e tE O F to de termine the
number of bytes in a file .) If the file is an extended file , this is the
number of blocks used by the da ta fork only. This fie ld is unde �
fined for a G S/O S subdirectory file .

Exception: Under ProD O S 8, if the pa thname fie ld points to a
volume directory name , blocks used conta ins the number of
blocks in use on the disk by a ll files.
This fie ld conta ins the da te (year, month, day) the file was last
modified. F igure 8-1 in Chapter 8 shows the forma t of these
bytes.
This fie ld conta ins the time (hour, minute) the file was last modi �
fied. F igure 8-1 in Chapter 8 shows the forma t of these bytes.
This fie ld conta ins the da te (year, month, day) the file was crea ted.
F igure 8-1 in Chapter 8 shows the forma t of these bytes.
This fie ld conta ins the time (hour, minute) the file was crea ted.
F igure 8-1 in Chapter 8 shows the forma t of these bytes.
The time and da te of crea tion. These e ight bytes represent the
following parame ters in the following order:

storage _ type

blocks _ used

modify _ da te

modify _ time

crea te _ da te

crea te _ time

crea te _ td

seconds

minutes
hour
year

day
month

[not used]

weekday

in 24-hour military forma t
year minus 1900
day of month minus 1

0 = January, 1 = F ebruary, and so on

1 = Sunday, 2 = Monday, and so on

Command Descriptions 147

resource blocks

Note-. This forma t is the same as the one used by the ReadT imeHex
function in the IIg s ’ s Misce llaneous Tool Se t, but is different from
the one used in a standard directory entry for the ProD O S file
system.

modify _ td The time and da te of last modifica tion. The ordering of these e ight
bytes is the same as for crea te _ td.

option _ list A pointer to a class 1 output buffer where G S/O S re turns file infor�
ma tion unique to the file system transla tor used to access the file .

eof The size of the file in bytes. If the file is an extended file , this is the size
of the da ta fork only. This fie ld has no meaning for a subdirectory file .

resource _ eof If the file is an extended file , this is the size of the resource fork.

If the file is an extended file , this is the number of blocks the
resource fork uses on disk.

Common error codes:

$40 The pa thname conta ins inva lid characters, or a full pa thname was not
specified (and no de fault pre fix has been se t up). Verify tha t the
filenames and directory names specified in the pa thname adhere to
the naming rules described in Chapter 2 and, if a partia l pa thname
was specified, tha t a de fault pre fix has been se t up.

$44 A directory in the pa thname was not found. Solution: Double-check
the spe lling of the pa thname , insert the disk conta ining the correct
directory, or change the de fault pre fix.

$45 The volume directory was not found. Solution: Double-check the
spe lling of the volume directory name , insert the correct disk, or
change the de fault pre fix.

$46 The file was not found.

O ther possible error codes are $04, $07, $27, $4A , $4B , $52, $53, $58.

Programming example:

See the example given for the Se tF ile lnfo command.

148 G S/O S and ProD O S 8 Commands

G S/O S ProD O S 8

G e tF STInfo none
$202B

Purpose:

To ge t genera l informa tion about the characteristics of a G S/O S file system transla tor.
There is no equiva lent ProD O S 8 command.

Parame ter table:

G S/O S

O ffse t Symbolic Name

Input
or
Result Description

+ 0 to +1 pcount I Number of parame ters (8)

+ 2 to +3 F ST_num I F ST re ference number

+ 4 to +5 file_sys_id R F ile system ID

+ 6 to +9 F ST_name R Pointer to F ST name

+ 10 to +11 version R F ST version number

+ 12 to + 13 a ttributes R F ST a ttributes

+ 14 to + 15 block _ size R F ST block size

+ 16 to + 19 max _ vol _ size R F ST volume size

+ 20 to + 23 max _ file _ size R F ST file size

Descriptions of parame ters:
pcount The number of parame ters in the G S/O S parame ter table . The min�

imum va lue is 1; the maximum is 8.

F ST _ num The F ST re ference number. G S/O S assigns consecutive re ference
numbers, beginning with 1, to the F STs it finds in the system.

file_sys_id The identifica tion code for the file system tha t the F ST supports:

$01 = ProD O S/S O S
$02 = D O S 3.3
$03 = D O S 3.2/3.1
$04 = Apple II Pasca l
$05 = Macintosh MF S
$06 = Macintosh H F S
$07 = Macintosh XL (LISA)

Command Descriptions 149

$08 = Apple C P/M
$09 = Character F ST
$0A = MS-D O S
$0B = H igh S ierra (C D-R OM)
$0C = IS O 9660 (C D-R OM)

F ST _ name A pointer to class 1 output buffer where G S/O S re turns the name of
the file system transla tor.

version The version number of the file system transla tor:

bit 15 1 = prototype version

0 = fina l version

bits 14-8 ma jor version number

bits 7-0 minor version number

a ttributes The a ttributes of the file system transla tor:

bit 15 1 = F ST wants filenames in uppercase

bit 14 1 = character F ST; 0 = block F ST

bit 12 1 - F ST wants the characters in

filenames to have the high-order

bit clear

block _ size The size (in bytes) of the blocks the F ST handles.

max vol size The maximum size (in blocks) of the disk volumes the F ST handles,

max file size The maximum size (in bytes) of the files the F ST handles.

Common error codes:

$53 Parame ter out of range . G S/O S re turns this error if the F ST re fer�
ence number does not exist.

Another possible error code is $07.

Comments:

G S/O S provides no simple way to de termine how many F STs are active . To ge t
informa tion on a ll F STs, keep ca lling G e tF STInfo with successive ly higher F ST_
num va lues (beginning a t 1) until G S/O S re turns an error code of $53.

150 G S/O S and ProD O S 8 Commands

G S/O S ProD O S 8

G e tLeve l none
$201B

Purpose:

To de termine the va lue of the system file leve l.

• There is no equiva lent ProD O S 8 command. The system file leve l is stored a t LE V EL
($B F94) in the ProD O S 8 system globa l page .

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (1)

4- 2 to +3 leve l R The system file leve l

Descriptions of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 1; the maximum is 1.

leve l The va lue of the system file leve l. The va lues tha t can be re turned
range from $0000 to $00F F .

Common error codes:

[none]

Another possible error code is $07.

Programming example:

Here is a G S/O S subroutine for re turning the system file leve l number:

_G e tLeve1
RTS

GL_Parms

GL_Parms AN O P

D C 12'1'' ;The number of parame ters

theLeve l DS 2 .•System file leve l re turned here

Command Descriptions 151

G S/O S ProD O S 8

G e tMark G E T _ MARK
$2017 $C F

Purpose:

To de termine the va lue of the current position-in-file pointer (Mark) of an open file .
Subsequent read or write opera tions take place a t this position.

Parame ter table:

ProD O S 8

O ffse t Symbolic Name

Input
or
Result Description

+ 0 num_ parms I Number of parame ters (2)

+ 1 re f _ num I Re ference number for the file

+ 2 to +4 position R The current Mark position

G S/O S

O ffse t Symbolic Name

Input
or
Result Description

+ 0 to +1 pcount I Number of parame ters (2)

+ 2 to +3 re f _ num I Re ference number for the file

+ 4 to +7 position R The current Mark position

Descriptions of parame ters:

num panns The number of parame ters in the ProD O S 8 parame ter table (a lways 2).

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 2; the maximum is 2.

re f num The re ference number ProD O S 8 or G S/O S assigned to the file when
it was first opened.

position The current Mark position in bytes.

Common error codes:

$43 The file re ference number is inva lid. You might be using a re ference
number for a file tha t you’ve a lready closed.

152 G S/O S and ProD O S 8 Commands

O ther possible error codes are $04, $07.

Programming example:

Here is a ProD O S 8 subroutine tha t reads and displays the current Mark position of
an open file:

JSR MLI
D F B $C F ;G E T_MARK
DA PARMTBL ;Address of parame ter table

B C S E RR O R ;Branch if error occurred

LDA P O SITIO N+2

JSR PRBYT E ;Print high part (PRBYT E=$F DDA)

LDA P O SITIO N+1

JSR PRBYT E ;Print mid part

LDA P O SITIO N

JSR PRBYT E ;Print low part

LDA #$8D
JSR C O UT ;Fol lowed by C R (C O UT=$F D E D)

RTS

PARMTBL D F B 2 ;The # of parame ters
D F B 1 ;F ile re ference number

P O SITIO N DS 3 .•Current Mark position

The system Monitor subroutine ca lled PRBYT E ($F DDA) prints the byte in the
accumula tor as two hexadecima l digits.

Command Descriptions 153

noneG e tName
$2027

G S/O S ProD O S 8

Purpose:

To de termine the name of the applica tion currently running.

There is no equiva lent ProD O S 8 command. Under ProD O S 8, you can deduce the
name by examining the pa thname or partia l pa thname stored a t $280 when the
applica tion starts up.

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (1)

+ 2 to +5 da ta _ buffer R Pointer to applica tion name string

Descriptions of parame ters:
pcount The number of parame ters in the G S/O S parame ter table . The min�

imum va lue is 1; the maximum is 1.

da ta buffer A pointer to a class 1 output buffer where the name of the current
applica tion is to be re turned. The name is an AS CII string preceded
by a length word. The output buffer should be 35 bytes long to
accommoda te the longest filename you might encounter. (Macintosh
filenames can be up to 31 characters long.)

Common error codes:

[none]

O ther possible error codes are $07, $4F .

Programming example:

A running applica tion some times needs to be able to de termine wha t its name is. It
would need to know this, for example , if it had to transfer a copy of itse lf to a RAMdisk
when it was started up. The applica tion shouldn’t assume a specific name because the
user may have renamed the applica tion.

Here is how to de termine the name of the applica tion:

_G e tName G N_Parms

RTS

154 G S/O S and ProD O S 8 Commands

G N Parms AN O P
D C Il'l'
D C 14'NameSpace'

NameSpace D C I2'35'
TheName DS 33

;The number of parame ters
;Pointer to class 1 buffer

;S ize of buffer
;Space for class 1 name string

G e tName re turns the filename only, preceded by a length word. The subdirectory it
resides in is given by the 1/ pre fix, provided the applica tion, or a desk accessory,
hasn’t changed it since the applica tion was launched. Use G e tPre fix to de termine the
specific va lue of this pre fix.

Command Descriptions 155

G e tPre fix
$200A

G E T PR E FIX
$C7

G S/O S ProD O S 8

Purpose:

To de termine the name of the de fault pre fix (ProD O S 8) or any of the 32 G S/O S
pre fixes (0/ through 31/).

Parame ter table:

ProD O S 8 Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 num _ parms I Number of parame ters (1)

+1 to +2 pre fix R Pointer to pre fix name string

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (2)

+ 2 to +3 pre fix _ num I Pre fix number (0 to 31)

+ 4 to + 7 pre fix R Pointer to pre fix name string

Note-. The G S/O S G e tPre fix command uses the colon as a separa tor character in the
pre fix strings which it re turns. In addition, if the pre fix name used with Se tPre fix
conta ined lowercase characters, G e tPre fix does not convert them to uppercase (but the
ProD O S 8 G E T_PR E FIX command does).

Descriptions of parame ters:
num _ parms

pre fix

The number of parame ters in the ProD O S 8 parame ter table (a lways 1).

A pointer to a class 0 (ProD O S 8) or class 1 (G S/O S) output buffer in
which the opera ting system re turns the pre fix name . The name is in
AS CII and is preceded and followed by a pa thname separa tor char�
acter (/ for ProD O S 8; / or : for G S/O S).

For ProD O S 8, the buffer must be 67 bytes long to accommoda te the
longest possible pre fix tha t might be active (64 characters) plus the
preceding length byte and the two separa tor characters.

156 G S/O S and ProD O S 8 Commands

For G S/O S , a pa thname can be up to 8K in size , but it is rare to
encounter any longer than 67 characters. You should se t the class 1
buffer length word to 69 when you ca ll G e tPre fix; if the buffer isn’t
big enough, G S/O S re turns error code $4F , and you can ca ll the
command aga in using the length word re turned a fter the buffer size
length word.

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 2; the maximum is 2.

pre fix num The G S/O S pre fix number (0 to 31). This is a binary number, not an
AS CII number string followed by a slash.

Common error codes:

$56 The pa thname buffer address is inva lid because it has been marked
as in use in the ProD O S 8 system bit map. Specify a buffer address
tha t does not conflict with areas a lready used by ProD O S 8 or its file
buffers. Examine the system bit map to de termine the free and
protected areas.

O ther possible error codes are $04, $07, $4F , $53.

Programming example:

This G S/O S subroutine ge ts the 7/ pre fix and stores it in the buffer beginning a t
Pa thName (preceded by a length word):

G e tPre fix G P Parms
B C S Error
RTS

;Branch if error occurred

G P Parms D C 12121
D C I2'7' ;G e t pre fix 7/

D C 14'Pa thBuff1

Pa thBuff D C 12'69' ;S ize of buffer
Pa thName DS 67

Note tha t if a 7/ pre fix has not ye t been se t up (with Se tPre fix), the pre fix length word
re turned by G e tPre fix will be zero.

Command Descriptions 157

G S/O S ProD O S 8

G e tSysPre fs none
$200F

Purpose:

To de termine the sta te of the system pre ferences sta tus word.

There is no equiva lent ProD O S 8 command.

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (1)

+ 2 to +3 pre ferences I System pre ferences

Descriptions of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 1; the maximum is 1.

pre ferences The system pre ferences sta tus word:

bit 15 1 = display mount volume dia log
0 = don't display the dia log

Common error codes:

[none]

Comments:

G S/O S commands tha t have pa thnames as input parame ters norma lly display a mount
volume dia log box (to ask the user to insert a specified disk volume) if the commands
can’t find the volume they are expecting. If the applica tion wants to handle “volume
not found” errors itse lf, it can use Se tSysPre fs to clear bit 15 of the pre ferences word.

158 G S/O S and ProD O S 8 Commands

G S/O S ProD O S 8

none G E T _ TIME
$82

Purpose:

To read the da te and time from the system clock into the ProD O S 8 system globa l
page a t DAT E ($B F90-$B F91) and TIME ($B F92-$B F93).

There is no equiva lent G S/O S command. Use the ReadAsciiT ime and ReadT imeHex
functions in the Iles’s Misce llaneous Tool Se t instead. See Chapter 8.

Parame ter table:

[no parame ter table , but the ca ller must point to a dummy table]

Common error codes:

[none]

Programming example:

When you use this command, the current da te (year, month, day) and time (hour,
minute) are stored in a reserved area of the ProD O S 8 system globa l page from $B F90
to $B F93. The da te is stored in the DAT E loca tions ($B F90 and $B F91), and the time
is stored in the TIME loca tions ($B F92 and $B F93) in the specia l packed forma t
described in F igure 8-1 of Chapter 8.

Note , however, tha t G E T TIME re turns the time only if a ProD O S-compa tible
clock, like the built-in IlG S clock, Thunderware Thunderclock, Prome theus Versacard,
or Applied Engineering T imemaster H . O ., is insta lled. When ProD O S 8 first starts up,
it insta lls a specia l clock driver for reading these types of cards. (We see how to insta ll
custom clock drivers in Chapter 8.)

The subroutine to use to read the current da te and time is very simple since no
parame ter table is required and no errors can occur. Here it is:

JSR MLI
D F B $82 ;G E T_TIME

DA $0000 ;Dummy parame ter table
RTS

Notice the use of a dummy parame ter table pointer of $0000.

Command Descriptions 159

G e tVersion
$202A

none

G S/O S ProD O S 8

Purpose:

To re turn the G S/O S version number.

There is no equiva lent ProD O S 8 command. Under ProD O S 8, the minor re lease
number is stored a t $B F F F in the ProD O S 8 system globa l page . The ma jor re lease
number is a lways 1.

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to 4-1 pcount I Number of parame ters (1)

4-2 to 4-3 version R G S/O S version number

Descriptions of parame ters:
pcount The number of parame ters in the G S/O S parame ter table . The min�

imum va lue is 1; the maximum is 1.

version The version of the G S/O S opera ting system currently in use . The
low-order byte conta ins the minor re lease number, and the high-
order byte conta ins the ma jor re lease number. (This means, for
example , tha t version 2.1 would be represented by $0201.) B it 7 of
the high-order byte is 1 if the re lease is a prototype (be ta) version.

Common error codes:

[none]

Another possible error code is $07.

Programming example:

Here is a subroutine tha t will print out the G S/O S version number in AS CII in the
current desktop window:

Show_Vers START

_G e tVersion G V_Parms
LDA Version ;G e t version word

PHA ;(Save two copies on stack)

160 G S/O S and ProD O S 8 Commands

PHA

XBA
AND #$007F

O RA #$0030
PHA
_DrawChar

PushWord #$2E
DrawChar

;Swap high/low
.•Isola te ma jor version #

.•Convert to AS CII

;Period (.)

PLA
AND #$O O F F

O RA #$0030
PHA

DrawChar

;G e t version word back
.•Isola te minor version #

.•Convert to AS CII

PLA
BPL Exit

;G e t version word back
.•Branch if prototype bit not 1

PushWord #$70
DrawChar

;'p' for prototype

Exit RTS

G V_Parms

Version

AN O P
d c irr

DS 2
;The number of parame ters
.•Version word re turned here

E ND

This subroutine works only if the ma jor and minor version numbers are less than 10.

Command Descriptions 161

NewLine
$2011

N E WLIN E
$C9

G S/O S ProD O S 8

Purpose:

To enable or disable newline read mode . When you enable newline read mode ,
subsequent read opera tions automa tica lly termina te once the specified character (the
newline character) has been read. When you disable newline read mode , read opera �
tions termina te when the end-of-file position is reached or the requested number of
characters has been read.

Parame ter table:

ProD O S 8 Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 num_parms I Number of parame ters (3)

+ 1 re f _ num I Re ference number for the file

+ 2 enable _ mask I Newline enable mask

+ 3 newline _ char I Newline character

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (4)

+ 2 to +3 re f _ num I Re ference number for the file

+ 4 to +5 enable _ mask I Newline enable mask

+ 6 to +7 num _ chars I Number of characters in table

+ 8 to +11 newline _ table I Pointer to newline character table

Descriptions of parame ters:

num_parms The number of parame ters in the ProD O S 8 parame ter table (a lways 3).

re f_num The re ference number ProD O S 8 or G S/O S assigned to the file when
it was first opened.

162 G S/O S and ProD O S 8 Commands

enable _ mask This va lue is logica lly ANDed with each byte subsequently read from
the file . If the result of the AND opera tion is the same as newline _ char
(or, for G S/O S , any of the characters in newline _ table), the read
request termina tes; otherwise , the read continues norma lly.

Exception: If enable _ mask is zero, newline read mode is disabled, and
read opera tions are not a ffected.

newline _ char The va lue of the newline character. Read requests automa tica lly
termina te if the logica l AND of enable _ mask and the character
be ing read equa ls newline _ char.

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 3; the maximum is 3.

num _ chars The number of characters in the newline character table . If enable _
mask is not zero, num _ chars cannot be zero.

newline _ table A pointer to a table of active G S/O S newline characters. E ach character
occupies one byte in the table and the table can be up to 256 bytes long.

Common error codes:

$43 The file re ference number is inva lid. You might be using a re ference
number for a file tha t you’ve a lready closed.

O ther possible error codes are $04, $07.

Programming example:

A common situa tion is one where you want to read one line a t a time from a textfile .
S ince each line in a standard ProD O S textfile is termina ted by $0D , the AS CII code
for the carriage re turn character, you could simply se t enable mask equa l to $F F and
the newline character to $0D be fore executing the Newline command. But some
applica tions may use the nega tive AS CII code for the carriage re turn character ($8D)
for an end-of-line character. If you want to termina te a read opera tion for e ither $0D
or $8D , use a newline character of $0D and se t the enable mask to $7F .

Here is a G S/O S subroutine tha t se ts the $0D/$8D newline read mode for you:

_NewLine NL_Parms
B C S Error
RTL

PARMTBL D C I2'4' ;4 parame ters
D C I2T' ;F ile re ference number (#1 assumed)
D C I2'$7F ' .•enable mask
D C I2T' .•Number of newline characters
D C I4'NL_Table' .•Pointer to table

NL_Table D C Il'JO D1 ;C arriage re turn

Command Descriptions 163

Null
$200D

G S/O S

Purpose:

To execute pending events in the G S/O S signa l queue and the Scheduler’s task queue .

There is no equiva lent ProD O S 8 command.

Parame ter table:

G S/O S

O ffse t Symbolic Name

Input
or
Result Description

+ 0 to +1 pcount I Number of parame ters (0)

Meanings of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 0; the maximum is 0.

Common error codes:

[none]

Comments:

As expla ined in Chapter 6, some interrupt handlers place events in the G S/O S signa l
queue to ensure tha t they are dea lt with when the system isn’t busy. They can a lso
place tasks into the Scheduler tool se t’s task queue if they wish.

The events in the signa l and task queues are norma lly processed when a G S/O S
command ends or, if no G S/O S commands are be ing used, every sixtie th of a second,
in response to a task triggered by a vertica l blanking interrupt.

If your applica tion isn’t making G S/O S commands for extended periods, and inter�
rupts are disabled, it should ca ll the Null command periodica lly so tha t signa l queue
and task queue events may be processed.

none

ProD O S 8

164 G S/O S and ProD O S 8 Commands

none O N LIN E
$C5

G S/O S ProD O S 8

Purpose:

To de termine the volume directory name of a specific disk or the names of a ll active
ProD O S 8 volumes.

Under G S/O S , use the Volume command instead.

Parame ter table:

ProD O S 8

O ffse t Symbolic Name

Input
or
Result Description

+ 0 num _ parms I Number of parame ters (2)

+ 1 unit _ num I Unit number

+ 2 to +3 da ta _ buffer I Pointer to da ta buffer

Descriptions of parame ters:

num _ parms The number of parame ters in the ProD O S 8 parame ter table (a lways 2).

unit _ num The slot and drive number for the disk drive to be accessed. The
forma t of this byte is as follows:

7 6 5 4 3 2 1 0
| DR | SLO T | [Unused] |

ProD O S 8 assigns a drive number of 1 or 2 to each drive in the system.
DR = 0 for drive 1, and DR = 1 for drive 2. SLO T is usua lly the actua l
slot number for the disk controller card (1-7 decima l; 001-111 binary)
but may be the number of a phantom, or logica l, slot.

The unit _ num va lue for the /RAM volume is $B0, meaning it is the
logica l slot 3, drive 2 device .

Exception: If unit _ num is 0, the volume names of a ll drives are re �
turned.

da ta _ buffer A pointer to a buffer conta ining the volume name informa tion for the
specified drive . If unit _ num is 0, the volume names of a ll drives are
re turned. E ach volume name entry is 16 bytes long.

The first byte of each 16-byte record conta ins the drive and slot
number for the disk volume and the length of its volume name in the
following forma t:

Command Descriptions 165

7 6 5 4 3 2 1 0

| DR | SLO T | [name length] |

DR and SLO T are de fined in the same way as unit_num. Name
length conta ins the length of the volume name for the device de fined
by DR and SLO T . (If name length is zero, an error occurred; in
this case , the error code is stored in the next byte . If the error code is
$57 (“duplica te volume”), the third byte of the record conta ins the
unit _ num for the duplica te .)

The next 15 bytes of the record conta in the volume name (in stan �
dard AS CII). This name is not preceded by a slash (/).

If unit _ num is 0, the record a fter the last va lid 16-byte record
begins with a $00 byte . You must reserve a 256-byte buffer area if
you ca ll O N _ LIN E with unit_ num se t to 0.

Common error codes:

$27 The disk is unreadable probably because a portion of the disk me �
dium is permanently damaged. This error a lso occurs if the drive
door on a 5.25-inch drive is open or no disk is in the drive .

$28 No device connected. ProD O S 8 re turns this error if you do not have
a second 5.25-inch drive connected to the drive controller, but you
try to access it.

$2E A disk with an open file was removed from its drive be fore executing
the command. Solution: C lose a ll files on the disk to be removed
be fore executing the O N _ LIN E command.

$2F Device not on line . ProD O S 8 re turns this error if no disk is in a
3.5-inch drive .

$52 The disk in the drive specified by unit_ num is not a ProD O S-
forma tted disk. Solution: Use only ProD O S-forma tted disks with
ProD O S 8!

$56 The pa thname buffer address is inva lid because it has been marked
as in use in the ProD O S 8 system bit map. Specify a buffer address
tha t does not conflict with areas a lready used by ProD O S 8 or its file
buffers. Examine the system bit map to de termine the free and
protected areas.

O ther possible error codes are $04, $55.

O N LIN E handles error conditions quite differently from how the other MLI
commands do. G enera lly, if an error occurs, name length is se t to 0, and the error code
is stored in the second byte of the corresponding 16-byte record. The error code is not
stored in the accumula tor, and the carry flag is not se t. Errors are handled in the

166 G S/O S and ProD O S 8 Commands

standard way, however, when errors $55 (“Volume Control B lock full”), $56 (“buffer
address inva lid”), and $04 (“incorrect number of parame ters”) occur.

Programming example:

This ProD O S 8 program reads the volume directory name of a disk tha t is in the slot
6, drive 2 disk device .

.-O NLIN E

.•Address of parame ter table
;Branch if error occurred

JSR MLI
D F B $C5
DA

B C S

RTS

PARMTBL
E RR O R

PARMTBL D F B 2 ;The # of parame ters is stored here
D F B S E O .•unit num = slot 6, drive 2
DA BU F F E R .•Pointer to 16-byte buffer

BU F F E R DS 1 ;S lot/drive (bits 4-7) and length
of volume name (bits 0-3)

DS 15 .•Volume name (in AS CII)

If the volume directory name was ASM. FILE S , the byte stored a t BU F F E R would be
$E9, and the bytes stored beginning a t BU F F E R +1 would be

41 53 4D 2E 46 49 4C 45 53

These are the AS CII codes for the characters in ASM. FILE S .

Command Descriptions 167

Open
$2010

O P E N
$C8

G S/O S ProD O S 8

Purpose:

To prepare a file for subsequent read and write opera tions. When you open a file , the
position-in-file pointer (Mark) points to the start of the file (tha t is, Mark = 0), and its
file leve l is se t equa l to the system file leve l. Under G S/O S open a lso re turns a ll the
file’s directory a ttributes.

Parame ter table:

ProD O S 8 Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 num __ parms I Number of parame ters (3)

+ 1 to 4-2 pa thname I Pointer to the pa thname string

+ 3 to +4 io _ buffer R Pointer to I/O buffer

+ 5 re f _ num R Re ference number for the file

G S/O S

O ffse t Symbolic Name

Input
or
Result Description

4- 0 to +1 pcount I Number of parame ters (15)

4-2 to +3 re f _ num R Re ference number for the file

4-4 to 4-7 pa thname I Pointer to the pa thname string

+ 8 to +9 request _ access I Access permissions requested

4-10 to 4-11 resource _ num I Fork designa tor

+12 to +13 access R Access code

+ 14 to + 15 file _ type R F ile type code

4-16 to 4-19 aux _ type R Auxiliary type code

4-20 to 4-21 storage _ type R S torage type code

168 G S/O S and ProD O S 8 Commands

+ 22 to + 29 crea te _ td R Crea tion time and da te

+ 30 to + 37 modify _ td R Modifica tion time and da te

+ 38 to + 41 option _ list R Pointer to option list

+ 42 to + 45 eof R S ize of the file

+ 46 to + 49 blocks _ used R B locks used by the file

+ 50 to + 53 resource _ eof R S ize of resource fork

+ 54 to + 57 resource _ blocks R B locks used by resource fork

Important: You can usua lly open a closed file only. But, if a file is open, and its
write-enabled access code bit is not se t (tha t is, you aren’t a llowed to write to it), it
may be opened more than once simultaneously.

Descriptions of parame ters:

num parms The number of parame ters in the ProD O S 8 parame ter table (a lways 3).

pa thname A pointer to a class 0 (ProD O S 8) or class 1 (G S/O S) string describ�
ing the pa thname of the file to be used. If the pa thname specified is
not preceded by a separa tor (/ for ProD O S 8; / or : for G S/O S), the
opera ting system appends the name to the de fault pre fix (in G S/O S ,
this is the 0/ pre fix) to crea te a full pa thname .

io buffer A pointer to a 1024-byte file buffer tha t the open file can use . The
low-order byte of this pointer must be $00. (Tha t is, the buffer must
begin on a page boundary.)

The first ha lf of the file buffer for a standard file conta ins a copy of
the current file da ta block be ing accessed; the second ha lf conta ins
the current file index block. Only the first ha lf of the buffer is used
for a directory file; it conta ins the current directory file block.

re f num The re ference number ProD O S 8 or G S/O S assigns to the file . A ll file
opera tions on open files use this re ference number (instead of a pa th�
name) to identify the file . The file leve l is se t to the va lue of the system
file leve l. (For ProD O S 8, this va lue is stored a t $B F94. For G S/O S , use
G e tLeve l and Se tLeve l to read and se t the system file leve l.)

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 2; the maximum is 15. If the file is for a character
device , the maximum va lue is only 3.

request access This word describes the requested access permission:

bit 1 1 = request write access
bit 0 1 = request read access

Command Descriptions 169

You cannot request write access for files on a C D-R OM drive .

If this word is $0000, the access granted is the same as a llowed by
the access _ code word.

resource_ num If the file is an extended file , this word te lls G S/O S which fork to
open:

$0000 open da ta fork
$0001 open resource fork

Note-. The rest of the parame ters in the G S/O S parame ter list are the same as those
re turned by the G e tF ile lnfo command.

Common error codes:

$40 The pa thname conta ins inva lid characters, or a full pa thname was not
specified (and no de fault pre fix has been se t up). Verify tha t the
filenames and directory names specified in the pa thname adhere to
the naming rules described in Chapter 2 and, if a partia l pa thname
was specified, tha t a de fault pre fix has been se t up.

$42 An a ttempt was made to open a ninth file . ProD O S 8 a llows only
e ight open files.

$44 A directory in the pa thname was not found. Solution: Double-check
the spe lling of the pa thname , insert the disk conta ining the correct
directory, or change the de fault pre fix.

$45 The volume directory was not found. Solution: Double-check the
spe lling of the volume directory name , insert the correct disk, or
change the de fault pre fix.

$46 The file was not found.

$50 The file is open. You can open only files tha t are closed unless the
file is not write-enabled.

$56 The pa thname buffer address is inva lid because it has been marked
as in use in the ProD O S 8 system bit map. Specify a buffer address
tha t does not conflict with areas a lready used by ProD O S 8 or its file
buffers. Examine the system bit map to de termine the free and
protected areas.

O ther possible error codes are $04, $07, $27, $4A , $4B , $52.

Programming example:

The following G S/O S subroutine opens a file ca lled S E SAME tha t resides in the
subdirectory identified by 0/:

170 G S/O S and ProD O S 8 Commands

Pa thName G SS tring 'S E SAME ' ;F ilename

Open O P Panns
B C S
RTS

Error ;Branch if error occurred

O P Parms D C 12'2' ;0nly need 2 parame ters

DS 2 ;re f num re turned here

D C 14'Pa thName' .•Pointer to pa thname

G S/O S re turns an error code of $46 if the file you try to open does not ye t exist.

Once you open a file , you should take the re ference number Open re turns and store it
in the parame ter tables of other G S/O S commands which you might use to access the
file while it is open.

Command Descriptions 171

O SShutdown
$2003

G S/O S

Purpose:

To shut down G S/O S prior to a cold reboot or power down opera tion.

There is no equiva lent ProD O S 8 command.

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (1)

+ 2 to +5 shutdown _ flag I Pointer to next pa thname

Descriptions of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 1; the maximum is 1.

shutdown flag The two low-order bits in this flag control the mechanics of the
shutdown opera tion:

bit 0 : 1 = G S/O S shuts down and system is rebooted
0 = G S/O S shuts down and the user is asked

to e ither reboot or power down

bit 1 : 1 = RAM disk is le ft intact upon reboot
0 = RAM disk is initia lized upon reboot

Common error codes:

[none]

Comments:
When G S/O S shuts down it writes to disk any blocks in the disk cache , closes a ll new
desk accessories, shuts down the Desk Manager, then disposes of a ll device drivers
and file system transla tors. The O SShutdown command should be used by program
se lectors like the F inder, not applica tions.

none

ProD O S 8

172 G S/O S and ProD O S 8 Commands

Quit
$2029

Q UIT
$65

C S/O S ProD O S 8

Purpose:

To termina te the current applica tion. Under ProD O S 8, control passes to the ProD O S
8 se lector program or, if G S/O S was the boot opera ting system, to a system program
(ProD O S 8 or G S/O S) the applica tion specifies. (The standard se lector program asks
the user to enter the pre fix and pa thname of the next ProD O S 8 system program to run.)
Under G S/O S , the applica tion can pass control to another system program (ProD O S 8 or
G S/O S) or re turn control to the applica tion tha t ca lled it (typica lly the F inder).

Parame ter table:

ProD O S 8 Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 num _ parms I Number of parame ters (4)

+ 1 quit _ type I Quit type code

+ 2 to +3 pa thname I Pointer to next pa thname

+ 4 [reserved] I Reserved area

+ 5 to +6 [reserved] I Reserved area

G S/O S

O ffse t Symbolic Name

Input
or
Result Description

+ 0 to +1 pcount I Number of parame ters (2)

+ 2 to +5 pa thname I Pointer to next pa thname

+ 6 to +7 flags I Re tum/Restart flags

Descriptions of parame ters:

num parms The number of parame ters in the ProD O S 8 parame ter table (a lways 4).

quit type The Pro D O S 8 quit type code . The only quit types currently de fined
are $00 (standard quit) and $E E (quit to system program). Type $E E
may be used only if the system was first booted up under G S/O S .

Command Descriptions 173

pa thname A pointer to the class 0 (ProD O S 8) or class 1 (G S/O S) pa thname of
the next system program to run. The file type code of the program
must be $F F (ProD O S 8 system) or $B3 (G S/O S system). Note; The
pa thname cannot reside in page 2 of memory since the Q UIT com�
mand handler uses this area . For ProD O S 8, this fie ld must be zero if
quit type is $00.

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 0; the maximum is 2.

flags The Quit option flags; only bits 15 and 14 are significant. If bit 15 is
1, the program’s UserID is to be placed on the Quit Re turn S tack so
tha t the program can be restarted la ter. If bit 14 is 1, the program is
capable of be ing restarted from memory.

Note; The reserved areas in the ProD O S 8 parame ter table must be zeroed be fore
ca lling the Q UIT command.

Common error codes:

$46 The file with the specified pa thname was not found.

$5C The file with the specified pa thname is not an executable program.
The pa thname must be a ProD O S 8 system program (file type $F F)
or a G S/O S system program (file type $B3).

$5D The specified pa thname represents a ProD O S 8 system program, but
the P8 system file (which conta ins the ProD O S 8 opera ting system)
is not present in the SYST EM/ subdirectory of the G S/O S boot disk.

$5F The Quit Re turn S tack has overflowed. This stack can hold only 16
entries.

O ther possible error codes are $04, $07, $40, $5E .

Programming example:

A ll we ll-designed system programs use Q UIT to exit so tha t control can pass to
another system program. Here is the usua l ca lling sequence from a ProD O S 8
applica tion:

JSR ML I

D F B $65 ;Q UIT

DA PARMTBL ;Address of parame ter table

B C S E RR O R .•Branch if error occurred

RTS

PARMTBL D F B 4 ;The number of parame ters

D F B 0 .-Quit type code

174 G S/O S and ProD O S 8 Commands

DA $0000

D F B 0

DA $0000

When you execute a Q UIT command with a quit type of $00, ProD O S 8 moves the
code residing a t $D100-$D3F F in the second 4K bank of bank-switched RAM (ca lled
the se lector code or dispa tcher code) to loca tion $1000 in ma in memory and then
executes a JMP $1000 instruction.

When the standard ProD O S 8 se lector (the one de fined inside the PR O D O S file)
takes over, it performs the following steps:

• It asks you to enter the pre fix and name of the next system program to be
executed.

• It stores the length of the name of the system program a t $280, followed by the
AS CII-encoded name itse lf.

• It closes a ll open files.

• It clears the ProD O S 8 system bit map and marks as in use zero page , the stack
(page 1), the video RAM area (pages 4-7), and the ProD O S 8 globa l page (page
$B F).

• It enables the 40-column screen and connects the standard input (keyboard) and
output (video) subroutines. (You can do this in your own se lector program by
executing the following group of instructions:

LDA $C082

STA $C O O O

STA $C O O E

STA $C O O C

JSR S E TN O RM

JSR INIT

JSR S E TKBD

JSR S E TVID

;Read-enable monitor R OM

;Turn off 80ST0R E

;Turn off a lterna te char, se t

;Turn off 80 columns

;$F E84: norma l-video characters

;$F B2F: full-screen text mode

;$F E89: connect keyboard

;$F E93: connect 40-column video

The writes to the $C000, $C00E , and $C00C soft switches don’t do anything on
an Apple II P lus but are required for a He , lie , or IIg s to ensure the system
switches to standard 40-column mode . Note tha t the Monitor R OM must be
read-enabled be fore ca lling the S E TN O RM, INIT , S E TKBD , and S E TVID sub �
routines because it will have been disabled when the se lector first takes over.)

• It loads the specified system program a t $2000 and starts executing it by jumping
to tha t loca tion.

You can a lso insta ll your own ProD O S 8 se lector code if you wish. If you do, it must
begin with a CLD instruction and it must perform the steps indica ted above .

Table 4-5 shows an a lterna tive se lector program tha t follows the above steps. To
insta ll the new se lector a t $D100 (bank2), BRUN the program file from disk. This
se lector is not interactive since it a lways passes control to the same system program:

Command Descriptions 175

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Table 4-5 A ProD O S 8 se lector program

;Write-enable bank2 BSR

G S/O S and ProD O S 8 Commands176

LO A

LDA

S C081

$C081

2000:

2003:

AD 81 C O 47

AD 81 C O 48

49

* ProD O S Se lector Program *
* �

* When this se lector is ca lled using *

* the Q UIT ($65) command, the system *

* file ca lled BASIC .SYST EM on the

* boot volume (given by SLO T) will *

* be automa tica lly executed. *
* *

* Copyright 1985-1988 G ary B . Little *
* *

* Last modified: August 26, 1988 *
* *

SLO T E Q U 6 ;S lot number of boot volume

PATHNAME E Q U $280 ;Full pa thname stored here

FILE BU F F E Q U $1100 ;1K file buffer

SYS_LO AD E Q U $2000 ;S tart addr of system program

ML I E Q U $B F O O ;G a teway to MLI

BITMAP E Q U $B F58 ;System bit map

* Soft switches for lie , lie , Iles:

XST0R E80 E Q U $C000 ;Enable norma l page2 switching

C0L800F F E Q U $C O O C ;Turn off 80-column hardware

XALT C HAR E Q U $C O O E ;D i sable MouseText characters

SSPA C E E Q U $D100 .•Se lector space (in bank2)

INIT E Q U $F B2F ;Se t full-screen text mode

H OME E Q U $F C58 ,-C lear the screen

S E TN O RM E Q U $F E84 ;Se t norma l video

S E TKBD E Q U $F E89 . � Connect keyboard driver

S E TVID E Q U $F E93 .•Connect video driver

O R G $2000

* S tore se lector code a t $D100 in bank2 of

* bank-switched RAM:

Table 4-5 Continued

2006: A2 00 50 LO X #0

2008: BD 15 20 51 MO V E C O D E LDA S ELE C T O R ,X ;Move the new code
200B: 90 00 DI 52 STA SSPA C E .X ; to its proper place

200E: E8 53 I NX

200F: D O F7 54 BN E MO V E C O D E

55

2011: AD 82 C O 56 LDA $C082 ;Write-protect BSR

57

2014: 60 58 RTS

59

60 S ELE C T O R E Q U �

61

62 * Here is the actua l se lector code:

63

64 O R G $1000

65

1000: D8 66 CLD .•(Required by ProD O S)

67

68 * G e t into pl a in vanilla 40-column mode:

69

1001: AD 82 C O 70 LDA $C082 ;Read-enable monitor R OM

71

1004: 8D O C C O 72 STA C0L800F F ;40-column screen

1007: 8D O E C O 73 STA XALT C HAR ;No MouseText

100A: 8D 00 C O 74 STA XST0R E80 ;Norma l page2 switching

75

100D: 20 84 F E 76 JSR S E TN O RM ;Norma l video

1010: 20 2F F B 77 JSR INIT ;Ful1 text window

1013: 20 93 F E 78 JSR S E TVID ;S tandard video output

1016: 20 89 F E 79 JSR S E TKBD ;S tandard keyboard input

1019: 20 58 F C 80 JSR H OME ;C l ear the screen

81

101C: 20 00 B F 82 JSR ML I

101F: C6 83 D F B $C6 ;Se t a null pre fix

1020: B E 10 84 DA P F X_PRMS

85

1022: 20 00 B F 86 JSR MLI

1025: C5 87 D F B $C5 ;O NLIN E for the boot volume

1026: 9A 10 88 DA OL PARMS

1028: B O 38 89 B C S E RR O R

90

102A: AD 9E 10 91 LDA NAME LE N ;G e t re turned length

102D: 29 O F 92 AND #$0F ;S trip slot, drive bits

102F: F O 31 93 B E Q E RR O R ;If zero, then error

1031: 8D 9E 10 94 STA NAME_LE N ;S tore length

95

96 * Put pre fix a t $281:

97
1034: A9 2F 98 LDA #7 .•S tart pre fix with slash

Command Descriptions 177

Table 4-5 Continued

146

147 * Initia lize the system bit map:

1036: 8D 81 02 99

100

STA PATHNAME+1

1039: A2 00 101 LDX #0

103B: BD 9F 10 102 PUTNAME LDA V OL_NAME ,X

103E: 9D 82 02 103 STA PATHNAME+2.X

1041: E8 104 I NX

1042: E C 9E 10 105 C PX NAME_LE N

1045: D O F4 106 BN E PUTNAME

107

1047: A9 2F 108 LDA #7 ;End pre fix with slash

1049: 9D 82 02 109 STA PATHNAME+2.X

104C: E8 110 I NX

111

112 * ... and then tack on the BASIC .SYST EM filename:

113

104D: A O 00 114 LDY #0

104F: B9 C3 10 115 PUTSYS LDA SYS_NAME ,Y

1052: F0 07 116 B E Q SAV ELE N ;Done if zero

1054: 90 82 02 117 STA PATHNAME+2.X

1057: E8 118 INX

1058: C8 119 INY

1059: D O F4 120 BN E PUTSYS ;(A lways taken)

121

105B: E8 122 SAV ELE N INX ;Add 1 for initia l slash

105C: 8E 80 02 123 STX PATHNAME ;S tore length be fore pa thname

124

105F: 4C 65 10 125 JMP RUN_SYS

126

1062: 4C 62 10 127 E RR O R JMP E RR O R

128

1065: 20 00 B F 129 RUN_SYS JSR ML I

1068: C8 130 D F B $C8 ;0pen system file

1069: A E 10 131 DA O P_PARMS

106B: B O F5 132 B C S E RR O R

133

106D: AD B3 10 134 LDA R E F NUM

1070: 8D B5 10 135 STA R E F NUM1 ;S tore re f # in R E AD table

136

1073: 20 00 B F 137 JSR ML I

1076: C A 138 D F B S C A ;Read system file

1077: B4 10 139 DA RD_PARMS

1079: B O E7 140 B C S E RR O R

141

107B: 20 00 B F 142 JSR ML I

107E: C C 143 D F B $C C ;C lose system file

107F: B C 10 144 DA CL_PARMS

1081: B O D F 145 B C S E RR O R

178 G S/O S and ProD O S 8 Commands

Table 4-5 Continued

148

1083: A9 C F 149 LDA #$C F .•Pages 0,1,4..7 in use

1085: 8D 58 B F 150 STA BITMAP

151

1088: A9 00 152 LDA #0

108A: A2 16 153 LDX #22

108C: 9D 58 B F 154 INITMAP STA BITMAP ,X ;Pages 8..$B E free

108F: C A 155 D E X

1090: D O F A 156 BN E INITMAP

157

1092: A9 01 158 LDA #1 ,-Page $B F in use

1094: 8D 6F B F 159 STA BITMAP+23

160

1097: 4C 00 20 161 JMP SYS_LO AD ;Execute system file

162

163 * O NLIN E parame ter table:

164

109A: 02 165 OL PARMS D F B 2

109B: 60 166 D F B SL0T*16 ,-Boot slot * 16

109C: 9E 10 167 DA NAME_LE N ;Pointer to len+name

168

109E: 00 169 NAME LE N DS 1 .•Length (bits 0..3)

109F: 00 00 00 170 V OL NAME DS 15 ;Volume name

10A2: 00 00 00 00 00 00 00 00

10AA: 00 00 00 00

171

172 * O P E N parame ter table:

173

10A E: 03 174 O P PARMS D F B 3

10A F: 80 02 175 DA PATHNAME ;Pointer to pa thname

10B1: 00 11 176 DA FILE BU F F

10B3: 00 177 R E F NUM DS 1 ;F ile re ference number

178

179 * R E AD parame ter table:

180

10B4: 04 181 RD PARMS D F B 4

10B5: 00 182 R E F NUM1 DS 1

10B6: 00 20 183 DA SYS_LO AD ;S tart of load buffer

10B8: F F F F 184 DW $F F F F .•(Enough for entire file)

10BA: 00 00 185 DW $0000

186

187 * CLO S E parame ter table:

188

10B C: 01 189 CL PARMS D F B 1

10BD: 00 190 D F B 0 ;A11 files

191

10B E: 01 192 P F X PRMS D F B 1

10B F: C l 10 193 DA P F X_NAME
194

Command Descriptions 179

Table 4-5 Continued

10C1: 01 195 P F X _NAME D F B 1

10C2: 2F 196 AS C '/'

197

10C3: 42 41 53 198 SYS NAME AS C 'BASIC .SYST EM' ;Name of system program

10C6: 49 43 2E 53 59 53 54 45

10C E: 4D

10C F: 00 199 D F B 0 . followed by zero

BASIC .SYST EM in the volume directory of the slot 6, drive 1 disk device . However,
this is the program tha t many users of ProD O S 8 will a lways want to se lect a fter
leaving other system programs. From BASIC .SYST EM, you can use the - (dash)
command to execute any other system program.

In certa in situa tions, your se lector code may be permitted to pass the name of a file to the
system program it se lects so tha t the system program can work with it when it first starts
up. For example , you can pass the name of an Applesoft program to BASIC .SYST EM, and
BASIC .SYST EM will run it as soon as its starts up. (If the se lector does not pass a name ,
BASIC .SYST EM runs the STARTUP program.) For the system program to accept a
filename , it must adhere to a specia l auto-run protocol tha t we look a t in Chapter 5.

If you are using a IlG S and you ran the ProD O S 8 applica tion a fter booting G S/O S ,
you can take advantage of quit type $E E to pass control from a ProD O S 8 applica �
tion directly to a ProD O S 8 or G S/O S system program without going through the
se lector code . A ll you have to do is place a pointer to the program’s pa thname in the
Q UIT parame ter list. These programs have file type codes of $F F (SYS) and $B3
(S16), respective ly. G S/O S was the bootup opera ting system if va lue a t loca tion
$E100BD is $01.

G S/O S considera tions:

Under G S/O S , an applica tion can use the Quit command to e ither pass control to a
specific system program (ProD O S 8 or G S/O S) or re turn control to the system
program whose UserID is on the top of a Quit Re turn S tack. (G S/O S assigns a unique
UserID to a system program when it starts up the program.)

The Quit Re turn S tack is where an applica tion places its UserID if it wishes to rega in
control the next time an applica tion quits without specifying the pa thname of the next
applica tion to run. The ava ilability of a Quit Re turn S tack makes it easy for a
supervisory program to execute subsidiary programs so tha t control a lways eventua lly
re turns to the origina l program. In fact, the IlG S Launcher or F inder a lways pushes its
UserID on the Quit Re turn S tack be fore launching an applica tion. If it did not, you
would not re turn to it when an applica tion ended.

180 G S/O S and ProD O S 8 Commands

If the pa thname pointer is 0, and the Quit Re turn S tack is not empty, G S/O S pulls a
UserID from the Quit Re turn S tack and executes the program with tha t ID . If the
Quit Re turn S tack is empty, G S/O S executes the program launched when the system
was booted.

Only the two high-order bits of the flags parame ter are significant. If bit 15 is 1,
G S/O S places the current applica tion’s UserID on the Quit Re turn S tack be fore
passing control to the applica tion described by the pa thname pointer. This means
control eventua lly will re turn to the current applica tion as la ter programs quit with a
0 pa thname parame ter. If bit 15 is 0, nothing is placed on the Quit Re turn S tack.

If bit 14 of the flags is 1, the ca lling program is capable of be ing restarted without
be ing re loaded from disk. (Programs tha t initia lize a ll the ir da ta areas when they start
up should be restartable .) If control re turns to the ca lling program, the program will
not be loaded from disk unless it has been purged from memory by the Iles Memory
Manager.

Command Descriptions 181

Read
$2012

R E AD
$C A__________

G S/O S ProD O S 8

Purpose:

To read bytes of da ta from an open file beginning a t the current Mark position. A fter
the read opera tion, the opera ting system increases Mark by the number of bytes read
from the file . The read opera tion ends when the specified number of bytes have been
transferred, when a newline character is encountered, or when the end of the file has
been reached.

Parame ter table:

ProD O S 8

O ffse t Symbolic Name

Input
or
Result Description

+ 0 num __ parms I Number of parame ters (4)

+ 1 re f _ num I Re ference number for file

+ 2 to +3 da ta _ buffer I Pointer to start of da ta buffer

+ 4 to +5 request _ count I Number of bytes to read

+ 6 to +7 transfer _ count R Number of bytes actua lly read

G S/O S

O ffse t Symbolic Name

Input
or
Result Description

+ 0 to +1 pcount I Number of parame ters (5)

+ 2 to +3 re f _ num I Re ference number for file

+ 4 to +7 da ta _ buffer I Pointer to start of da ta buffer

+ 8 to +11 request _ count I Number of bytes to read

4-12 to +15 transfer _ count R Number of bytes actua lly read

+16 to +17 cache _ priority I B lock caching priority leve l

182 G S/O S and ProD O S 8 Commands

Descriptions of parame ters:
num _ parms

re f _ num

The number of parame ters in the ProD O S 8 parame ter table (a lways 4).

The re ference number ProD O S 8 or G S/O S assigned to the file when
it was first opened.

da ta _ buffer A pointer to the beginning of a block of memory into which file da ta is
to be read. The size of the buffer must be request _ count characters.

request _ count The number of characters to be read from the file and placed in the
buffer pointed to by da ta _ buffer.

transfer _ count The number of characters actua lly read from the file . It usua lly equa ls
request _ count, but it will be less if the opera ting system reaches the
end of the file or if newline read mode is active and a newline character
is read. See the discussion of the NewLine command.

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 4; the maximum is 5 (or 4 if the file is a character file).

cache _ priority This code indica tes how G S/O S is to handle the caching of disk
blocks re la ted to the read opera tion:

$0000 do not cache blocks

$0001 cache blocks

This fie ld is not used for character devices.

Common error codes:

$43 The file re ference number is inva lid. You might be using a re ference
number for a file tha t you’ve a lready closed.

$4C The end-of-file position has been reached. Solution: S top reading
from the file . Note tha t ProD O S 8 or G S/O S flags this error only if
no bytes were read from the file . (Tha t is, transfer _ count is 0.)

$4E The file cannot be accessed. Solution: Se t the read-enabled bit of the
file’s access code to 1 using S E T_FILE_IN F O .

$56 The pa thname buffer address is inva lid because it has been marked
as in use in the ProD O S 8 system bit map. Specify a buffer address
tha t does not conflict with areas a lready used by ProD O S 8 or its file
buffers. Examine the system bit map to de termine the free and
protected areas.

O ther possible error codes are $04, $07, $27.

Programming example:

The following G S/O S subroutine reads up to $1000 bytes from open file #1 into the
block of memory beginning a t Buffer. As usua l, the reading opera tion begins a t the
current Mark position in the file . By making repea ted ca lls to the program, further
$1000-byte blocks of the file can be read.

Command Descriptions 183

Read RD Parms

B C S

RTS

Error ;Branch if error occurred

RD Parms D C I2'4' ;Parame ter count

D C I2'l' ;F ile re ference number

D C 14'Buffer' ;Pointer to da ta buffer

D C 14'$1000' ;Number of bytes to read

TransCnt DS 4 ;# of bytes actua lly read

Buffer DS $1000 ;Da ta buffer

A fter every ca ll to this subroutine , you must examine the 4-byte number a t TransCnt
to de termine how many bytes were actua lly read. This number may be less than $1000
if G S/O S reaches the end-of-file position part way through the reading opera tion or if
it encounters a newline character. (See the discussion of the NewLine command for
informa tion on newline characters.)

If the Read command re turns error code $4C (“end of file”), no bytes were read, and
you can close the file .

184 G S/O S and ProD O S 8 Commands

none
R E AD BLO C K

$80

G S/O S ProD O S 8

Purpose:

To transfer one block (512 bytes) of informa tion from an Apple-forma tted disk device
to a buffer in memory.

Under G S/O S , use the DRead command instead.

Parame ter table:

ProD O S 8

O ffse t Symbolic Name

Input
or
Result Description

+ 0 num _ parms I Number of parame ters (3)

+ 1 unit —num I Unit number

+ 2 to +3 da ta_ buffer R Pointer to the da ta input buffer

+ 4 to +5 block _ num I Number of block to be read from

Warning: Do not use R E AD BLO C K if you want your applica tion to work with an
AppleShare file server volume over AppleTa lk.

Descriptions of parame ters:
num parms The number of parame ters in the ProD O S 8 parame ter table (a lways 3).

unit num The slot and drive number for the disk drive to be accessed. The
forma t of this byte is as follows:

7 6 5 4 3 2 1 0
| DR | SLO T | [Unused] ~~|

ProD O S 8 assigns a drive number of 1 or 2 to each drive in the
system. DR = 0 for drive 1, and DR = 1 for drive 2. SLO T is
usua lly the actua l slot number for the disk controller card (1-7
decima l; 001-111 binary) but may be the number of a phantom, or
logica l, slot.

The unit num va lue for the /RAM volume is $B0, meaning it is the
logica l slot 3, drive 2 device .

da ta _buffer A pointer to the beginning of a 512-byte block of memory tha t is to
hold the contents of the specified block when R E AD —BLO C K
successfully comple tes.

Command Descriptions 185

block num The number of the block to be read. The permitted va lues for
block num depend on the disk device:

• 0-279 for 5.25-inch drives
• 0-1599 for 3.5-inch drives
• 0-127 for the ProD O S 8 /RAM volume

You can de termine the volume size for a device using the G E T_
FILE IN F O command and specifying the name of the volume
directory for the disk in the device . The size (in blocks) is re turned a t
re la tive positions $5 and $6 in the parame ter table .

Common error codes:

$27 The disk is unreadable , probably because a portion of the disk
medium is permanently damaged. This error a lso occurs if the drive
door on a 5.25-inch drive is open or no disk is in the drive .

$28 No device connected. This error comes back if you do not have a
second 5.25-inch drive connected to the drive controller, but you try
to access it.

O ther possible error codes are $04, $07, $11, $2F , $53, $56.

Programming example:

R E AD BLO C K is one of two low-leve l disk-access commands ProD O S 8 provides.
(WRIT E BLO C K is the other.) Use it to read any block on a ProD O S-forma tted disk,
whe ther it be a file da ta block, index block, directory block, or a boot record block.

You can a lso use R E AD BLO C K to read any sector on a D O S 3.3-forma tted disk.
See Appendix II for suggestions on how to do this.

Here’s a short ProD O S 8 program tha t reads into memory the volume bit map block
(block 6) on a 5.25-inch disk in slot 6, drive 1 and then ca lcula tes the number of free
blocks on the disk:

JSR ML I

D F B $80 ;R E AD_BLO C K

DA PARMTBL .•Address of parame ter table

B C S E RR O R .•Branch if error occurred

LDA #0

STA C O UNT E R

STA C O UNT E R+1 ;Zero the counter

LDY #34 .-B it map bytes from 0 to 34

N E XTBYT E LDA BLKBU F F .Y ;G e t next bit in volume bit map

LDX #8 ;8 bits to test

T E STBIT LSR ;Put next bit into carry

B C C N E XTBIT .•Branch if block not free

186 G S/O S and ProD O S 8 Commands

N E XTBIT

IN C C O UNT E R

BN E N E XTBIT

IN C C O UNT E R+1

D E X

BN E T E STBIT

.•Branch if not past 255

; ... e lse bump high part

;Decrement bit counter

.•Branch if not done

D E Y .•Move to next byte

BPL N E XTBYT E . � Branch if not done

RTS

PARMTBL D F B 3 ;The # of parame ters

D F B $60 ,-unit number code (slot 6, drive 1)

DA BLKBU F F .•Pointer to 512-byte buffer

DW 6 ;B lock number for volume bit map

BLKBU F F DS 512 ;This is the block buffer

C O UNT E R DS 2 ;# of free blocks stored here

Reca ll from Chapter 2 tha t the first 280 bits (35 bytes) in the volume bit map act as
usage flags for the 280 blocks on a standard disk. If the bit is 1, the block is not in use;
if it is 0, it is. This program simply scans through these 35 bytes and counts the
number of 1 bits. The 2-byte result is stored in C O UNT E R and C O UNT E R +1.

Command Descriptions 187

Under G S/O S , use the ChangePa th command instead.

none R E NAME
$C2

G S/O S ProD O S 8

Purpose:

To change the name of a file on disk.

Parame ter table:

ProD O S 8 Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 num_parms I Number of parame ters (2)

+1 to +2 curr _ name I Pointer to current pa thname

+ 3 to +4 new _ name I Pointer to new pa thname

Descriptions of parame ters:

num_ parms The number of parame ters in the ProD O S 8 parame ter table (a lways 2).

curr __ name A pointer to a class 0 ProD O S 8 string describing the current
pa thname of the file to be renamed. If the pa thname specified is not
preceded by a separa tor (/), the opera ting system appends the name
to the de fault pre fix to crea te a full pa thname .

new _ name A pointer to a class 0 ProD O S 8 string describing the new pa thname
for the file . If the pa thname specified is not preceded by a separa tor
(/), the opera ting system appends the name to the de fault pre fix to
crea te a full pa thname . The new _ name must be the same as curr
_ name except for the filename itse lf. (Tha t is, it must describe a file
in the same directory.) For example , you can rename a file ca lled
/F O O TBALL/C ANADA/B C .LIO NS
/F O O TBALL/C ANADA/VAN C O UV E R .LIO NS but not as
/F O O TBALL/USA/D E TR OIT .LIONS .

Common error codes:

$2B The disk is write-protected.

$40 The pa thname conta ins inva lid characters, or a full pa thname was not
specified (and no de fault pre fix has been se t up). Verify tha t the
filenames and directory names specified in the pa thname adhere to

188 G S/O S and ProD O S 8 Commands

the naming rules described in Chapter 2' and, if a partia l pa thname
was specified, tha t a de fault pre fix has been se t up.

$44 A directory in the pa thname was not found. Solution: Double-check
the spe lling of the pa thname , insert the disk conta ining the correct
directory, or change the de fault pre fix.

$45 The volume directory was not found. Solution: Double-check the
spe lling of the volume directory name , insert the correct disk, or
change the de fault pre fix.

$46 The file was not found.

$47 The new filename specified a lready exists.

$4E The file cannot be accessed. Solution: Se t the rename-enabled bit of
the file’s access code to 1 using S E T FILE IN F O .

$50 The file is open. You can rename only closed files.

O ther possible error codes are $04, $27, $4A .

Programming example:
Here is a subroutine tha t will change the name of a file ca lled BATMAN in the
/SUP E R .H E R O E S volume directory to a file ca lled BRU C E .WAYN E in the same
directory.

JSR MLI

D F B $C2 [R E NAME code

[Address of parame ter table

[Branch if error occurred

DA

B C S

RTS

PARMS

E RR O R

PARMS D F B 2 ;2 parame ters

DA PATH1 [Pointer to current pa thname

DA PATH2 [Pointer to new pa thname

PATH1 STR '/SUP E R .H E R O E S/BATMAN' [O ld pa thname

PATH2 STR '/SUP E R .H E R O E S/BRU C E.WAYN E ' [New pa thname

Note tha t you cannot rename /SUP E R .H E R O E S/BATMAN as /ID E NTITIE S/BRU C E .
WAYN E because this would viola te the rule tha t the two pa thnames must identify files in
the same directory.

Command Descriptions 189

Rese tC ache
$2026

none

G S/O S ProD O S 8

Purpose:

To force an immedia te resiz ing of the G S/O S disk cache using the size va lue stored in
Ba ttery RAM. (Ba ttery RAM holds system configura tion and pre ferences informa tion
even when the Apple IlG S has been turned off.)

There is no equiva lent ProD O S 8 command.

Parame ter table:

G S/O S

O ffse t Symbolic Name

Input
or
Result Description

+ 0 to +1 pcount I Number of parame ters (0)

Descriptions of parame ters:
pcount The number of parame ters in the G S/O S parame ter table . The min�

imum va lue is 0; the maximum is 0.

Common error codes:

[none]

Comments:

A program can use the Misce llaneous Tool Se t’s WriteBParam function to change the
size of the G S/O S disk cache , as follows:

PushWord #newC acheS ize

PushWord #$0081 ;Parame ter re ference number
LDX #$0B03 .-WriteBParam
JSL $E10000

The newC acheS ize va lue represents the size of the cache (in K units) divided by 32.
This means, for example , tha t you would use a va lue of 4 to se t up a 128K cache . You
can only se t the cache size to a multiple of 32K .

The new cache size se tting usua lly doesn’t take e ffect until the system is rebooted. If the
program ca lls Rese tC ache , however, the change takes e ffect immedia te ly. U tility pro �
grams like the D isk C ache desk accessory on the G S/O S system disk use Rese tC ache .

190 G S/O S and ProD O S 8 Commands

SessionS ta tus
$201F

G S/O S

Purpose:

To de termine whe ther a write-de ferra l session (initia ted with a BeginSession com�
mand) is in progress.

There is no equiva lent ProD O S 8 command.

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (1)

+ 2 to +3 sta tus R S ta tus code

Descriptions of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 0; the maximum is 1.

sta tus This code indica tes whe ther a write-de ferra l session is in progress:

$0000 write-de ferra l session not in progress

$0001 write-de ferra l session in progress

Common error codes:

[none]

Comments:
Write-de ferra l sessions are use ful for acce lera ting file transfer opera tions. You can
begin such a session with BeginSession and end it with EndSession. SessionS ta tus
te lls you whe ther a session is currently in progress.

none

ProD O S 8

Command Descriptions 191

none S E T_BU F
$D2

G S/O S ProD O S 8

Purpose:
To move the ProD O S 8 file buffer for an open file from its current position to another
1024-byte area in memory.

There is no equiva lent G S/O S command. G S/O S takes care of a ll buffer-management
opera tions interna lly.

Parame ter table:

Descriptions of parame ters:

ProD O S 8 Input
or

O ffse t Symbolic Name Result Description

+ 0 num_parms I Number of parame ters (2)

+ 1 re f _ num I Re ference number for the file

+ 2 to +3 io _ buffer I Pointer to I/O buffer

Common error codes:

num _ parms

re f _ num

The number of parame ters in the ProD O S 8 parame ter table (a lways 2).

The re ference number ProD O S 8 assigned to the file when it was
first opened.

io _ buffer A pointer to the new 1024-byte area to which the file’s current buffer
is to be transferred. The low-order byte of this pointer must be $00
(tha t is, the buffer must begin on a page boundary).

Another possible error code is $04.

$43 The file re ference number is inva lid. You might be using a re ference
number for a file tha t you’ve a lready closed.

$56 The pa thname buffer address is inva lid because it has been marked
as in use in the ProD O S 8 system bit map. Specify a buffer address
tha t does not conflict with areas a lready used by ProD O S 8 or its file
buffers. Examine the system bit map to de termine the free and
protected areas.

192 G S/O S and ProD O S 8 Commands

Programming example:

The following ProD O S 8 program will move the file buffer for file 1 from its current
position to $2000. You are responsible for ensuring tha t the area $2000-$23F F will
not be used for any other purpose .

JSR MLI

D F B $D2 ; S E T_BU F

[Address of parame ter table

[Branch if error occurred

DA

B C S

RTS

PARMTBL

E RR O R

PARMTBL D F B 2 [The # of parame ters

D F B 1 [F ile re ference number

DA $2000 [Pointer to new buffer

Command Descriptions 193

Se tE O F
$2018

S E T E O F
$D0

G S/O S ProD O S 8

Purpose:

To change the current end-of-file pointer (E O F) of an open file . If you reduce E O F ,
a ll da ta blocks past the end of the new E O F are freed up; if you increase E O F ,
however, ProD O S 8 and G S/O S do not a lloca te new blocks for the file until you
actua lly write da ta to the new part of the file . If the new E O F is less than Mark, Mark
is se t equa l to the new E O F . You can change the E O F of any file whose write-enabled
access code bit is se t to 1.

Parame ter table:

ProD O S 8

O ffse t Symbolic Name

Input
or
Result Description

+ 0 num _ panns I Number of parame ters (2)

+ 1 re f _ num I Re ference number for the file

+ 2 to +4 eof I The new end-of-file position

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (3)

+ 2 to +3 re f _ num I Re ference number for the file

+ 4 to +5 base I Code for de termining new eof

+ 6 to +9 displacement I The new end-of-file position

Descriptions of parame ters:

num panns The number of parame ters in the ProD O S 8 parame ter table (a lways 2).

re f num The re ference number ProD O S 8 or G S/O S assigned to the file when
it was first opened.

eof The new E O F position.

194 G S/O S and ProD O S 8 Commands

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 3; the maximum is 3.

base This code te lls G S/O S how to de termine the new va lue for the
end-of-file pointer:

$0000 new E O F = displacement

$0001 new E O F = old E O F + displacement

$0002 new E O F = Mark + displacement

$0003 new E O F = Mark - displacement

displacement G S/O S uses this va lue in conjunction with the base code to de ter�
mine the new va lue for the end-of-file pointer.

Common error codes:

$2B The disk is write-protected.

$43 The file re ference number is inva lid. You might be using a re ference
number for a file tha t you’ve a lready closed.

$4D The position is out of range .

$4E The file cannot be accessed. Solution: Se t the write-enabled bit of
the file’s access code to 1 using S E T_FILE_IN F O .

O ther possible error codes are $04, $07, $27, $4E .

Programming example:

Consider a situa tion in which you must read an entire file into memory, modify it, and
then write it back to the same file . If you are not care ful, and the new file is sma ller
than the origina l, the ta il end of the old file (the part not overwritten) will unexpect �
edly rema in as part of the new file .

To avoid this, you can do one of two things: De le te the file be fore rewriting it, or write
to the file and then use the Se tE O F command to fix the new E O F position. The
second me thod is faster and more convenient because it is not necessary to go to the
trouble of first de le ting, and then re-crea ting, a file .

Suppose the new file length is $1534 bytes. To se t the E O F for this file , you would
ca ll a G S/O S subroutine like this:

LDA #$1534 ;Se t up new E O F va lue

STA New_E0F

LDA #$0000

STA New_E0F+2

Se tE O F E0F_Parms

B C S Error ;Branch if error occurred

RTS

Command Descriptions 195

E O F Parms D C I2'3' ;The # of parame ters

D C I2'l' ;F ile re ference number

D C I2’0' ;E O F = displacement

New_E0F DS 4 ;New E O F position

196 G S/O S and ProD O S 8 Commands

Se tF ile lnfo
$2005

S E T FILE IN F O
________________ $C3

G S/O S ProD O S 8

Purpose:

To modify the informa tion stored in a file ’s directory entry. This includes the access code ,
file type code , auxiliary type code , and the da te and time the file was last modified.

Parame ter table:

ProD O S 8 Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 num_parms I Number of parame ters (10)

+ 1 to + 2 pa thname I Pointer to the pa thname string

+ 3 access I Access code

+ 4 file _ type I F ile type code

+ 5 to +6 aux _ type I Auxiliary type code

+ 7 [not used] I

+ 8 to +9 [not used] I

+ 10 to +11 modify _ da te I Modifica tion da te

+ 12 to +13 modify _ time I Modifica tion time

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (12)

+ 2 to +5 pa thname I Pointer to the pa thname string

+ 6 to +7 access I Access code

4- 8 to +9 file _ type I F ile type code

4-10 to + 13 aux _ type I Auxiliary type code

+ 14 to + 15 [not used] I

Command Descriptions 197

+16 to + 23 crea te _ dt I Crea tion da te and time

+ 24 to + 31 modify _ dt I Modifica tion da te and time

+ 32 to + 35 option _ list I Pointer to option list

+ 36 to + 39 [not used] I

+ 40 to + 43 [not used] I

+ 44 to + 47 [not used] I

+ 48 to + 51 [not used] I

Descriptions of parame ters:
num_parms

pa thname

The number of parame ters in the ProD O S 8 parame ter table (a lways 7).

A pointer to a class 0 (ProD O S 8) or class 1 (G S/O S) string describ�
ing the pa thname of the file to be used. If the pa thname specified is
not preceded by a separa tor (/ for ProD O S 8; / or : for G S/O S), the
opera ting system appends the name to the de fault pre fix (in G S/O S ,
this is the 0/ pre fix) to crea te a full pa thname .

access This fie ld conta ins severa l 1-bit codes tha t de fine the access a t �
tributes of the file . See F igure 2-10 for a description of these bits.
Note , however, tha t under G S/O S you cannot clear the backup-
needed a ttribute with Se tF ile lnfo; use the C learBackup command
instead. Under ProD O S 8, you can clear the bit but only if you first
store $F F a t BUBIT ($B F95) in the ProD O S 8 system globa l page .
Backup programs should clear this a ttribute to indica te tha t the file
has been backed up.

file _ type This code indica tes the type of da ta the file holds. See Table 2-5 for
a description of ProD O S file type codes. Under the ProD O S F ST ,
only the low-order byte of file _ type is significant.

aux _ type This is the auxiliary type code . The meaning of the code depends on
the file type code and on the program tha t crea ted the file in the first
place . For SYS , BIN , BAS , and VAR files, it is a de fault loading
address; for TXT files, it is a record length; for SR C files, it is an
APW language type code . Under the ProD O S F ST , only the low-
order word is significant.

[Not Used] These bytes are not used. They act as padding to preserve symme try be �
tween this parame ter list and the G E T_FILE_IN F O parame ter list.

198 G S/O S and ProD O S 8 Commands

modify _ da te This fie ld conta ins the da te (year, month, day) the file was last modified.
The current da te should be stored here be fore executing the command.
F igure 8-1 in Chapter 8 shows the forma t of these bytes.

modify _ time This fie ld conta ins the time (hour, minute) the file was last modified.
The current time should be stored here be fore executing the com�
mand. F igure 8-1 in Chapter 8 shows the forma t of these bytes.

crea te _ da te This fie ld conta ins the da te (year, month, day) the file was crea ted.
F igure 8-1 in Chapter 8 shows the forma t of these bytes.

crea te _ time This fie ld conta ins the time (hour, minute) the file was crea ted.
F igure 8-1 in Chapter 8 shows the forma t of these bytes.

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 2; the maximum is 12.

crea te _ td The time and da te of crea tion. These e ight bytes represent the
following parame ters in the following order:

seconds

mi nutes

hour in 24-hour military forma t

year year minus 1900

day day of month minus 1

month 0 = January, 1 = F ebruary, and so on

[not used]

weekday 1 = Sunday, 2 = Monday, and so on

Note: This forma t is the same as the one used by the ReadT imeHex function in the
IlG S’s Misce llaneous Tool Se t but is different from the one used in a standard file
entry for the ProD O S file system.

modify _ td The time and da te of last modifica tion. The ordering of these 8 bytes
is the same as for crea te _ time .

option _ list A pointer to a class 1 input buffer conta ining informa tion unique to
the file system transla tor used to access the file . The ProD O S F ST
does not require any such informa tion.

Note: The parame ters marked by [not used] must be se t to zero.

Common error codes:

$2B The disk is write-protected.

$40 The pa thname conta ins inva lid characters, or a full pa thname was not
specified (and no de fault pre fix has been se t up). Verify tha t the
filenames and directory names specified in the pa thname adhere to
the naming rules described in Chapter 2 and, if a partia l pa thname
was specified, tha t a de fault pre fix has been se t up.

Command Descriptions 199

$44 A directory in the pa thname was not found. Solution: Double-check
the spe lling of the pa thname , insert the disk conta ining the correct
directory, or change the de fault pre fix.

$45 The volume directory was not found. Solution: Double-check the
spe lling of the volume directory name , insert the correct disk, or
change the de fault pre fix.

$46 The file was not found.

$4E The access code specified for the file is not permitted. Solution:
Ensure tha t the reserved bits of the access code are a ll zero.

O ther possible error codes are $04, $07, $27, $4A , $4B , $52, $53, $58.

Programming example:

The following ProD O S 8 program will lock a file ca lled PRIS O N E R by changing the
va lue of its access code byte . It is assumed tha t PRIS O N E R is loca ted in the currently
active directory (the one specified by the de fault pre fix).

LDA #10
STA PARMTBL
JSR MLI
D F B $C4

,-S tore # of parms for G E T FILE IN F O

,-G E T_FILE_IN F O
;Address of parame ter table
;Branch if error occurred

DA

B C S

PARMTBL

E RR O R

LDA PARMTBL+3 ;G e t current access code
AND #$3D ,-C lear bits 1, 6, and 7 (write ,

rename , and destroy bits)
STA PARMTBL+3 ;S tore new access code

LDA #7
STA PARMTBL ;S tore # of parms for S E T_FILE_IN F O

JSR MLI ;Save new access code to disk

D F B $C3 ;S E T_FILE_IN F O
DA PARMTBL ;Address of parame ter table

B C S E RR O R ;Branch if error occurred

RTS

PARMTBL DS 1 ;The # of parame ters is stored here

DA PATHNAME
DS 1 ,-access code

DS 1 ,-file type code

DS 2 ;auxiliary type code
DS 1 ;storage type code

DS 2 ;blocks used
DS 2 ;da te of modifica tion
DS 2 ;time of modifica tion
DS 2 ;da te of crea tion

200 C S/O S and ProD O S 8 Commands

DS 2 ;time of crea tion

PATHNAME STR 'PRIS O N E R ' ;Pa thname (in AS CII)

There are two interesting things to note about this program. F irst, it uses the
G E T FILE IN F O command to read the file’s current access code and other
directory informa tion. S ince the parame ter table for this command and the S E T_
FILE IN F O command are symme tric, there is no need to crea te two tables; a ll tha t
has to be done is store the proper parame ter number a t the head of the table be fore
ca lling each command.

Second, notice how the file is locked. The existing access code is logica lly ANDed
with $3D (binary 00111101) to clear bits 1, 6, and 7 to zero while leaving the others
una ffected. As F igure 2-10 in Chapter 2 indica tes, clearing these bits will disable
write , rename , and destroy opera tions, respective ly.

Command Descriptions 201

Se tLeve l
$201A

G S/O S

Purpose:

To se t the system file leve l.

There is no equiva lent ProD O S 8 command. To change the va lue of the system file
leve l, store the new va lue a t LE V EL ($B F94) in the system globa l page .

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (1)

+ 2 to +3 leve l I The new system file leve l

Meanings of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 1; the maximum is 1.

leve l The va lue of the system file leve l. Lega l va lues range from $0000 to
$00F F .

Common error codes:

$59 Inva lid file leve l. The file leve l must be a number be tween $0000
and $00F F .

Another possible error code is $07.

Programming example:
Here is how to se t the system file leve l to 2:

Se tLeve l SL_Parms
RTS

SL Parms AN O P

D C 12'T ' .-The number of parame ters
D C 12 ‘2'1 ;New system file leve l

The system file leve l a ffects the performance of subsequent Open, C lose , and F lush
opera tions.

none

ProD O S 8

202 G S/O S and ProD O S 8 Commands

Se tMark
$2016

S E T MARK
$C E

G S/O S ProD O S 8

Purpose:

To change the current position-in-file pointer (Mark) of an open file . You can se t Mark
to any position within the file; subsequent read or write opera tions take place a t tha t
position.

Parame ter table:

ProD O S 8

O ffse t Symbolic Name

Input
or
Result Description

+ 0 num_ parms I Number of parame ters (2)

+ 1 re f _ num I Re ference number for the file

4-2 to 4-4 position I The new mark position

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

4-0 to +1 pcount I Number of parame ters (3)

4-2 to 4-3 re f _ num I Re ference number for the file

4-4 to 4-5 base I Code for de termining new mark

4- 6 to 4-9 displacement I The new mark position

Descriptions of parame ters:

num panns The number of parame ters in the ProD O S 8 parame ter table (a lways 2).

re f_ num The re ference number ProD O S 8 or G S/O S assigned to the file when
it was first opened.

position This fie ld holds the new Mark position. This position must not
exceed the E O F position for the file .

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 3; the maximum is 3.

Command Descriptions 203

base This code te lls G S/O S how to de termine the new va lue for the Mark
pointer:

Common error codes:

$0000 new Mark = displacement

$0001 new Mark = E O F - displacement
$0002 new Mark = old Mark + displacement
$0003 new Mark = old Mark - displacement

displacement G S/O S uses this va lue in conjunction with the base code to de ter�
mine the new va lue for the Mark pointer.

O ther possible error codes are $04, $07, $27.

$43 The file re ference number is inva lid. You might be using a re ference
number for a file tha t you’ve a lready closed.

$4D The Mark position is larger than the E O F position.

Programming example:

Suppose you have crea ted a large textfile in which informa tion is arranged in 98-byte
records, and you want to directly access the 23rd such record. The easiest way to do
this is to move the Mark pointer directly to the start of this record, and then use the
Read or Write command.

You can de termine the proper va lue for Mark by multiplying the record length (98) by the
record number (23); the result is 2254 (or $08C E). Here ’s how to move Mark to this
position (assume tha t the file is open and has a re ference number of 1) under G S/O S:

Se tMark SM Parms

LDA #$08C E

STA NewMark

LDA #$0000
STA NewMark+2 ;(high-order word is zero)

B C S
RTS

Error ;Branch if error occurred

PARMTBL D C 12'31 ;The # of parame ters

D C i2'r ;F ile re ference number
D C I2'0' ;New Mark = displacement

New_Mark DS 4 ;New Mark position

Remember tha t the Mark position cannot exceed the E O F position.

204 G S/O S and ProD O S 8 Commands

Se tPre fix
$2009

S E T PR E FIX
$C6

G S/O S ProD O S 8

Purpose:

To se t the de fault pre fix to a specified directory pa th. When you pass a filename or partia l
pa thname to an MLI command, ProD O S 8 or G S/O S automa tica lly converts it into a full
pa thname by appending it to the current va lue of the pre fix you’re trying to se t.

Parame ter table:

ProD O S 8 Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 num _ parms I Number of parame ters (1)

+ 1 to + 2 pre fix I Pointer to the new pre fix string

G S/O S

O ffse t Symbolic Name

Input
or
Result Description

+ 0 to +1 pcount I Number of parame ters (2)

+ 2 to +3 pre fix _ num I Pre fix number (0 to 31)

+ 4 to +7 pre fix I Pointer to the new pre fix string

Descriptions of parame ters:

num _ parms

pa thname

The number of parame ters in the ProD O S 8 parame ter table (a lways 1).

A pointer to a class 0 (ProD O S 8) or class 1 (G S/O S) string describ�
ing the pa thname of the pre fix. If the pa thname specified is not
preceded by a separa tor (/ for ProD O S 8; / or : for G S/O S), ProD O S
8 appends the name to the de fault pre fix and G S/O S appends it to
the pre fix string for the pre fix you’re trying to se t, thus crea ting a full
pa thname . An optiona l separa tor may be placed a t the end of the
pre fix pa thname .

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 2; the maximum is 2.

Command Descriptions 205

Common error codes:

pre fix _ num The G S/O S pre fix number (0 to 31). This is a binary number, not an
AS CII number string followed by a slash.

O ther possible error codes are $04, $07, $27, $53.

$40 The pa thname conta ins inva lid characters, or a full pa thname was not
specified (and no de fault pre fix has been se t up). Verify tha t the
filenames and directory names specified in the pa thname adhere to
the naming rules described in Chapter 2 and, if a partia l pa thname
was specified, tha t a de fault pre fix has been se t up.

$44 A directory in the pa thname was not found. Solution: Double-check
the spe lling of the pa thname , insert the disk conta ining the correct
directory, or change the de fault pre fix.

$45 The volume directory was not found. Solution: Double-check the
spe lling of the volume directory name , insert the correct disk, or
change the de fault pre fix.

$46 The file was not found.

$4B A nondirectory name was specified in the pre fix string. Solution: Try
aga in with a pre fix string tha t conta ins only directory names.

Programming example:

It is often convenient to be able to se t the ProD O S 8 de fault pre fix to the name of the
volume directory on a disk in a specific disk drive . If this is done , a ll files in the
volume directory can be re ferred to by filename a lone , ra ther than by full pa thname .

This can be done in two simple steps: F irst, use the O N LIN E command to
de termine the volume name for tha t disk, and second, use S E T PR E FIX to assign
tha t name to the de fault pre fix. One complica tion does arise , however: The name
re turned by O N LIN E is not quite in the forma t required by S E T PR E FIX .
Fortuna te ly, we can easily overcome this discrepancy.

JSR MLI
D F B $C5
DA PARMTBL
B C S E RR O R

.-O NLIN E
;Address of parame ter table

;Branch if error occurred

LDA BU F F E R
AND #$0F
STA P F XNAME
IN C P F XNAME

;G e t length byte

.•S trip off slot/drive bits

.-S tore length for S E T_PR E FIX
;(add 1 for leading slash)

LDA #7'
STA BU F F E R ;Put slash in front of volume name

206 G S/O S and ProD O S 8 Commands

JSR MLI

D F B $C6 ;S E T_PR E FIX

;Branch if error occurred

DA

B C S

RTS

PARMTBL1

E RR0R1

PARMTBL D F B 2 ;The # of parame ters

D F B S E O ;unit number = slot 6, drive 2

DA BU F F E R ;Pointer to 16-byte buffer

PARMTBL1 D F B 1 ;The # of parame ters

DA P F XNAME [Pointer to volume name

P F XNAME O S 1 [Length of name for S E T_PR E FIX

BU F F E R DS 1 ;S lot/drive (bits 4-7) and length

of volume name (bits 0-3)

DS 15 [Volume name (in AS CII)

The O N LIN E command re turns a volume name tha t is not preceded by the slash
required by S E T PR E FIX . This problem is fixed by reading the name length by
S E T_ PR E FIX , storing it a t the previous memory loca tion (P F XNAME), and then
overwriting the name length byte with the slash. A fter this has been done , the da ta
structure beginning with P F XNAME is in the forma t required by S E T PR E FIX .

Command Descriptions 207

G S/O S ProD O S 8

Se tSysPre fs none
$200C

Purpose:

To se t the G S/O S globa l system pre ferences.

There is no equiva lent ProD O S 8 command.

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (1)

+ 2 to +3 pre ferences I System pre ferences

Descriptions of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 1; the maximum is 1.

pre ferences Use bit 15 of this va lue to indica te whe ther G S/O S should display a
mount volume dia log box if a disk volume can’t be found during
execution of certa in G S/O S commands:

bit 15 1 = display mount volume dia log box

0 = don't display the dia log box

Common error codes:

[none]

Comments:

G S/O S commands tha t have pa thnames as input parame ters norma lly display a mount
volume dia log box (to ask the user to insert a specified disk volume) if the commands
can’t find the volume they may need to comple te . If the applica tion wants to handle
“volume not found” errors itse lf, it can use Se tSysPre fs to clear bit 15 of the pre fer�
ences word.

208 G S/O S and ProD O S 8 Commands

Unbindlnt
$2032

none

G S/O S ProD O S 8

Purpose:

To remove a G S/O S interrupt handling subroutine .

Under ProD O S 8, use the D E ALLO C_INT command instead.

Parame ter table:

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (1)

+ 2 to +3 int_num I Interrupt handler re ference number

Descriptions of parame ters:
pcount The number of parame ters in the G S/O S parame ter table . The min�

imum va lue is 1; the maximum is 1.

int_num The identifica tion number for the interrupt handler. G S/O S assigned
this number when the handler was insta lled using the B indlnt com�
mand.

Important: Do not remove an interrupt-handling subroutine until your applica tion has
first told the source of the interrupts to stop genera ting interrupts. If you remove the
subroutine first, the system will crash the next time an interrupt occurs.

Common error codes:

$53 The int_num parame ter is not va lid. Use the number B indlnt
re turned when you insta lled the interrupt handler.

O ther possible error codes are $04, $07.

Comments:
See Chapter 6 for a discussion of how to handle interrupts in a G S/O S environment.

Command Descriptions 209

G S/O S ProD O S 8

Volume none
$2008

Purpose:

To re turn sta tus informa tion about a disk volume .

Under ProD O S 8, use the O N LIN E command instead.

Parame ter table:

G S/O S

O ffse t Symbolic Name

Input
or
Result Description

+ 0 to +1 pcount I Number of parame ters (6)

+ 2 to +5 dev _ name I Pointer to the device name string

+ 6 to +9 vol _ name R Pointer to the volume name string

4-10 to +13 tota l _ blocks R S ize of the volume in blocks

+14 to +17 free _blocks R Number of unused blocks

+18 to +19 file_sys_id R Opera ting system ID code

+ 20 to +21 block _size R Number of bytes in a block

Meanings of parame ters:

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 2; the maximum is 6.

dev _ name A pointer to a class 1 string conta ining the device name . (Use DInfo
to ge t a list of active device names.)

vol —name A pointer to a class 1 output buffer where G S/O S re turns the disk
volume name string. The buffer should be 35 bytes long.

tota l —blocks The tota l number of blocks on the disk volume .

free _ blocks The number of unused blocks on the disk volume . For the H igh
S ierra F ST , this va lue is a lways zero.

file_ sys_ id The identifica tion code for the file system on the disk volume . The
currently de fined va lues are:

210 G S/O S and ProD O S 8 Commands

$00 = [reserved]
$01 = ProD O S/S O S
$02 = D O S 3.3
$03 = D O S 3.2/3.1
$04 = Apple II Pasca l
$05 = Macintosh MF S
$06 = Macintosh H F S
$07 = Macintosh XL (LISA)
$08 = Apple C P/M
$09 = [reserved]
$0A = MS-D O S
$0B = H igh S ierra (C D-R OM)
$0C = IS O 9660 (C D-R OM)

block size The size of a disk block in bytes.

Common error codes:

$10 The specified device name does not exist.

$27 The disk is unreadable probably because a portion of the disk me �
dium is permanently damaged. This error a lso occurs if the drive
door on a 5.25-inch drive is open or no disk is in the drive .

$28 No device connected. This error is re turned if you do not have a
second 5.25-inch drive connected to the drive controller, but you try
to access it.

$2F Device not on line . This error is re turned if no disk is in a 3.5-inch
drive .

O ther possible error codes are $07, $11, $2E , $40, $45, $4A , $52, $55, $57, $58.

Programming example:

You can use the DInfo command to de termine the G S/O S device names for disks
a ttached to the system. It is these names tha t Volume requires as inputs.

To ge t the sta tus for a particular device , say .APPLE DISK3.5A , so tha t you can
de termine the number of blocks in use on the disk, use a subroutine like this:

_Volume Vol_Parms

S E C ;Used blocks = tota l blocks

LDA tota l_blk ; minus free blocks

SB C free_blk

STA used_blk

LDA tota l_blk+2

SB C free_blk+2

STA used_blk+2

RTS

Command Descriptions 211

usedblk DS 4

Vol_Parms AN O P
D C 12 ’ 6' ;The number of parame ters

D C 14'DevName ' ;Pointer to device name

D C I4'VolSpace' ;Pointer to volume name
tota l_blk DS 4 ,-tota l blocks

free_blk DS 4 ;free blocks

sys_i d DS 2 ;fi1e system ID

block_sz DS 2 ;bytes per block

DevName G SS tring ’.APPLE DISK3.5A '

Vol Space D C I2'35‘ ;S ize of class 1 buffer

Vol Name DS 33 ;Space for volume name

212 G S/O S and ProD O S 8 Commands

Write
$2013

G S/O S

Purpose:

To write bytes of da ta to an open file . Writing begins a t the current Mark position.
A fter you write the da ta to the file , the opera ting system increases the Mark position
by the number of bytes written. If the new Mark position is grea ter than E O F , E O F
is se t equa l to Mark.

Parame ter table:

ProD O S 8

O ffse t Symbolic Name

Input
or
Result Description

+ 0 num _ panns I Number of parame ters (4)

+ 1 re f _ num I Re ference number for the file

+ 2 to +3 da ta _ buffer I Pointer to start of da ta buffer

+ 4 to +5 request _ count I Number of bytes to write

+ 6 to +7 transfer _ count R Number of bytes actua lly written

Descriptions of parame ters:
num panns The number of parame ters in the ProD O S 8 parame ter table (a lways 4).

G S/O S Input
or
Result DescriptionO ffse t Symbolic Name

+ 0 to +1 pcount I Number of parame ters (5)

+ 2 to +3 re f _ num I Re ference number for the file

+ 4 to + 7 da ta _ buffer I Pointer to start of da ta buffer

+ 8 to +11 request _ count I Number of bytes to write

+12 to +15 transfer _ count R Number of bytes actua lly written

+16 to +17 cache _ priority I B lock-caching priority code

WRIT E
$C B

ProD O S 8

Command Descriptions 213

re f _ num The re ference number ProD O S 8 or G S/O S assigned to the file when
it was first opened.

da ta _ buffer A pointer to the beginning of a block of memory tha t conta ins the
da ta to be written to the file .

request _ count The number of characters to be written to the file from the buffer
pointed to by da ta _ buffer.

transfer _ count This result conta ins the number of characters actua lly written to the
file and usua lly equa ls request _ count. However, it will be less than
request _ count if the disk becomes full part way through a write
opera tion or if some other disk error occurs tha t prevents the file
from be ing written to.

pcount The number of parame ters in the G S/O S parame ter table . The min�
imum va lue is 4; the maximum is 5 (or 4 for a character device file).

cache _ priority This code indica tes how G S/O S is to handle the caching of disk
blocks re la ted to the write opera tion:

$0000 do not cache blocks

$0001 cache blocks

This fie ld is not used for character devices.

Common error codes:

$2B The disk is write-protected.

$43 The file re ference number is inva lid. You might be using a re ference
number for a file tha t you’ve a lready closed.

$48 The disk is full.

$4E The file cannot be accessed. Solution: Se t the write-enabled bit of
the file’s access code to 1 using S E T _ FILE _ IN F O .

$56 The pa thname buffer address is inva lid because it has been marked
as in use in the ProD O S 8 system bit map. Specify a buffer address
tha t does not conflict with areas a lready used by ProD O S 8 or its file
buffers. Examine the system bit map to de termine the free and
protected areas.

O ther possible error codes are $04, $07, $27.

Programming example:

This G S/O S subroutine writes 256 bytes to file 2; the da ta buffer begins a t loca tion
Buffer.

214 G S/O S and ProD O S 8 Commands

Write WR_Parms

B C S

RTS

Error ;Branch if error occurred

WR Parms D C 12'4' ;Parame ter count

D C I2'2' ;F ile re ference number (assume #2)

D C 14'Buffer' ;Pointer to da ta buffer

D C I4'256' ;Number of bytes to write

TransCnt DS 4 ;# of bytes actua lly written

Buffer DS 256 ;Da ta buffer

If no error occurred, the number stored a t TransCnt should be equa l to 256, the
request count. But if the disk becomes full during the write , TransCnt will be less
than 256.

If you want to append da ta to the end of an open file , use G e tE O F to de termine the
file size , and then use Se tMark to se t the Mark pointer to the E O F va lue . Subsequent
Write opera tions will begin a t the end of the file .

Command Descriptions 215

none
WRIT E BLO C K

$81
G S/O S ProD O S 8

Purpose:

To transfer the contents of a 512-byte buffer from memory to a block on an Apple-
forma tted disk.

Under G S/O S , use the DWrite command instead.

Parame ter table:

ProD O S 8 Input
or

O ffse t Symbolic Name Result Description

+ 0 num _ parms I Number of parame ters (3)

+ 1 unit _ num I Unit number

+ 2 to +3 da ta _ buffer I Pointer to the da ta output buffer

+ 4 to +5 block _ num I Number of block to be written to

Warning: Do not use WRIT E BLO C K if you want your applica tion to work with an
AppleShare file server volume over AppleTa lk.
Descriptions of parame ters:

num _parms The number of parame ters in the ProD O S 8 parame ter table (a lways 3).

unit num The slot and drive number for the disk drive to be accessed. The
forma t of this byte is as follows:

7 6 5 4 3 2 1 0

| DR | SLO T | [Unused]

ProD O S 8 assigns a drive number of 1 or 2 to each drive in the
system. DR = 0 for drive 1, and DR = 1 for drive 2. SLO T is
usua lly the actua l slot number for the disk controller card (1—7
decima l; 001-111 binary) but may be the number of a phantom, or
logica l, slot.

The unit num va lue for the /RAM volume is $B0, meaning it is the
logica l slot 3, drive 2 device .

da ta buffer A pointer to the beginning of a 512-byte block of memory tha t is to
be written to the disk.

216 G S/O S and ProD O S 8 Commands

block _ num The number of the block to be accessed. The permitted va lues for
block_ num depend on the disk device:

• 0-279 for 5.25-inch drives
• 0-1599 for 3.5-inch drives
• 0-127 for the ProD O S 8 /RAM volume

Common error codes:

You can de termine the volume size for a device using the G E T
_ FILE _ IN F O command and specifying the name of the volume
directory for the disk in the device . The size (in blocks) is re turned a t
re la tive positions $5 and $6 in the parame ter table .

O ther possible error codes are $04, $07, $11, $2F , $53, $56.

$27 The disk is unwriteable probably because a portion of the disk
medium is permanently damaged. This error a lso occurs if the drive
door on a 5.25-inch drive is open or no disk is in the drive .

$28 No device connected. This error is re turned if you do not have a
second 5.25-inch drive connected to the drive controller, but you try
to access it.

$2B The disk is write-protected.

Programming example:

WRIT E BLO C K is perhaps the most dangerous of a ll the ProD O S 8 commands since it
le ts you overwrite any block on the disk with any da ta you want. It is very use ful,
however, for trying to recover damaged files and making backup copies of disks.

It is a lso possible to use WRIT E BLO C K to write to any sector on a D O S 3.3-
forma tted disk. See Appendix II for suggestions on how to do this.

Here’s an interesting ProD O S 8 program tha t a llows you to rename the volume
directory of a disk in slot 6, drive 1 to AR E A:

JSR MLI

D F B $80

DA PARMTBL

B C S E RR O R

LDX #0

LDY #5

MO V E NAME LDA N E WNAME .X

B E Q S E TLE N

STA BLKBU F F .Y

I NX

INY

BN E MO V E NAME

;R E AD_BLO C K

.•Address of parame ter table

;Branch if error occurred

.•O ffse t for volume name

.•Branch if a t end

.-Move new name into place

.•(A lways taken)

Command Descriptions 217

S E TLE N TXA

O RA #$F0
LDY #4

STA BLKBU F F ,Y

;G e t new name length
;Merge directory ID bits

;Save new name length

JSR MLI
D F B $81

DA PARMTBL

B C S E RR O R
RTS

;WRIT E_BLO C K

;Address of parame ter table
;Branch if error occurred

PARMTBL D F B 3
D F B $60

DA BLKBU F F

DW 2

;The # of parame ters
;unit number code (slot 6, drive 1)
;Pointer to 512-byte buffer

;B lock number for volume directory

BLKBU F F DS 512 ;This is the block buffer

N E WNAME AS C 'AR E A'
D F B 0

;New volume name (<=15 chars)
.•(Termina te with 0)

We saw in Chapter 2 tha t the volume directory of a disk a lways begins in block 2 and
tha t the volume name is the first entry in tha t directory block (beginning a t offse t 5).
This program simply reads in block 2 (using R E AD BLO C K), changes the volume
name , and then writes the block back to disk. The chore is simplified because the
parame ter tables for R E AD BLO C K and WRIT E BLO C K are identica l.

O f course , the pre ferred way to rename a volume directory is to use the R E NAME
command.

218 G S/O S and ProD O S 8 Commands

C HAPT E R 5

System
Programs

A system program is simply an assembly-language program, requiring the resources of
G S/O S or ProD O S 8, tha t communica tes directly with users. It is genera lly a primary
applica tion like a word processor, spreadshee t, or te lecommunica tions program or a
programming environment for languages like C , BASIC , or Pasca l.

Under ProD O S 8, a system program takes control of the entire Apple II memory
space , except for the portion ProD O S 8 uses, and is responsible for managing it
properly. This space includes the 64K ma in memory bank in a ll Apple Ils and the 64K
auxiliary memory bank in a lie , lies, or He with an extended 80-column text card.

Under G S/O S , a system program must use the IlG S Memory Manager to a lloca te
blocks of memory it may need. S ince the Memory Manager a lloca tes only blocks tha t
are not in use , the system program will peace fully co-exist with other programs tha t
may be in memory a t the same time .

The opera ting system identifies a system program by inspecting its file type code . A
ProD O S 8 system program has a file type code of $F F and a directory mnemonic of
SYS . A G S/O S system program has a file type code of $B3 and a directory mnemonic
of S16. But assigning a file type code of $B3 or $F F to a program file is not enough to
convert it to a true system program. As we see , a system program must a lso follow
certa in software conventions and take care not to interfere with memory areas used by
the opera ting system or other co-resident programs.

In this chapter, we review the fea tures of we ll-designed G S/O S and ProD O S 8
system programs. We then examine one very common, and very important, ProD O S 8
system program, BASIC .SYST EM. The discussion of BASIC .SYST EM is quite de �
ta iled: We see how it insta lls itse lf in the system, how it ca lls ProD O S 8 commands,
how its command se t can be extended, and how it handles errors. We a lso take a close
look a t the globa l page it uses to manage the communica tion be tween ProD O S 8 and
Applesoft programs. The ana lysis of BASIC .SYST EM should assist you in crea ting
your own ProD O S 8 system programs.

219

TH E STRU C TUR E O F A G S/O S SYST EM PR O G RAM

To be considered a true G S/O S system program, a program must possess four basic
properties.

1. The executable code for the program must be in 65816/6502 assembly language ,
and it must be stored to disk as a load file in Apple’s object module forma t (OMF).
This is not to say you cannot use a high-leve l language like C , Pasca l, or BASIC to
crea te a system program. You can as long as the language compiler crea tes na tive
assembly-language object code . The Apple Programmer’s Workshop linker takes
care of crea ting load files for you, as does the linker for Merlin 8/16.

2. The program must have a file type code of $B3. You can use the Apple Program�
mer’s Workshop FILE TYP E command to se t the file type a fter compiling and
linking an applica tion. By assigning the $B3 file type code , you can execute the
programs directly from the Apple IlG S F inder.

3. The program must use the IlG S toolbox’s Memory Manager tool se t to a lloca te any
blocks of memory it may need. By using the Memory Manager, the program can
avoid overwriting memory areas used by other co-resident programs, such as desk
accessories, printer drivers, or interrupt handlers.

4. The program must end using the G S/O S Quit command. It can use the Quit
command to re turn to the system program tha t ca lled it (usua lly the F inder) or to
ca ll another system program as if it were a subroutine , rega ining control when the
other system program ends. (See Chapter 4 for a discussion of the Quit command.)

In genera l, you can assign any va lid name to a system program. If you want to crea te
a disk tha t automa tica lly boots and runs the system program, you should assign it a
name tha t ends in .SYS16, place the program file in the root directory of the disk, and
de le te the START program from the SYST EM/ subdirectory. A lterna tive ly, you can
name the system program START and put it in the SYST EM/ subdirectory.

Entry Conditions

G S/O S launches a system program by first loading it into memory using the System
Loader tool se t’s Initia lLoad function. It then uses the Memory Manager to a lloca te a
direct page/stack space for use by the system program.

The size of the direct page/stack space depends on whe ther the program includes a
direct page/stack object segment. If it doesn’t (the usua l case for most applica tions
you’re like ly to deve lop), G S/O S uses the Memory Manager’s NewHandle function to
a lloca te a 4096-byte space in bank S O O , which begins on a page boundary. (The other
important Memory Manager a ttributes of the block are: locked, fixed, purge leve l 1,
may use specia l memory, and no fixed starting address.)

220 System Programs

If the program file does include a direct page/stack object segment, G S/O S a llo�

ca tes a direct page/stack space tha t is the same size as the object segment. (See

Chapter 7 of the Apple IIg s Programmer’s Workshop Re ference for how to crea te a

direct page/stack object segment.)
In e ither situa tion, G S/O S se ts the A (accumula tor), D (direct page), and SP (stack

pointer) registers to the following va lues be fore passing control to the program:

A = the User ID the System Loader assigns to the program.

D = the address of the first byte in the direct page/stack space .

SP = the address of the last byte in the direct page/stack space .

Note tha t the stack occupies the upper end of the direct page/stack space . S ince the

stack grows downward in memory, it may eventua lly collide with the portion of the

space used for direct page storage . It is the responsibility of the applica tion to ensure

it a lloca tes enough direct page/stack space to prevent such a collision.
The direct page/stack space tha t the System Loader automa tica lly se ts up is made

purgeable when the system program ends by ca lling the Quit command. This means

the applica tion does not have to explicitly re lease this memory with the D isposeHandle

function be fore ending.
Your system program can a lso a lloca te a direct page/stack space on the fly a t

execution time . To do this, it should first ca ll D isposeHandle to free up the space the

System Loader a lloca tes. Use F indHandle to de termine the handle to this space; the

high word of the long address tha t F indHandle requires is $0000; the low word is the

va lue stored in the D or SP register. Here is a piece of code tha t will do the trick:

PHA ;Space for result (long)

PHA

P E A $0000 ;H igh word of addr is a lways zero

PHD ;Low word of addr in dp/stack space

_F indHandle ;(leave handle on stack)

_D i sposeHandl e

The program must then use NewHandle to a lloca te the direct page/stack space it
requires (the Memory Manager a ttributes for this space should be as described earlier

in this section), and then put the starting address of the block in the D register and the

ending address in the SP register. Here is a subroutine tha t performs these chores

(UserID is a variable tha t holds the program’s master user ID):

DP_Hndl G E Q U $00 ; (Assume $00 is free)

PHA

PHA

PushLong #$800

PushWord UserID

;2K space

;Use program's user ID

;Space for result

The S tructure of a G S/O S System Program 221

PushWord #$C105

PushLong #$00000000

NewHandle

.•A ttributes

;(Any bank $00 address)

PLA

STA

PLA

STA DP Hndl+2

DP Hndl

;Pop handle

LDA

T C D

[DP Hndl] [G e t absolute address

[Se t up new direct page

CLC

AD C

D E C

TAX

TXS

RTS

#$800

A

[C a lcula te address of

[the last byte in space

[Se t up new stack ptr

Note tha t the user ID for the direct page/stack memory block should be se t to the system

program’s master user ID so tha t the block will be automa tica lly discarded when the

system program ends. The master user ID is in the A register when the system program

starts up; the Memory Manager’s MMS tartup function re turns the same va lue .

TH E STRU C TUR E O F A PR O D O S 8 SYST EM PR O G RAM

A properly designed ProD O S 8 system program is an executable assembly-language

program adhering to certa in conventions and protocols tha t re la te to its interna l
structure and the way it takes control of the system.

F irst, a system program must be designed to be loaded and executed beginning a t
loca tion $2000 in ma in memory a lthough it can la ter re loca te itse lf anywhere e lse in

memory not used by ProD O S 8 or system Monitor routines. The load address of $2000

is manda tory.
You can use the BASIC .SYST EM - (dash) command to execute a system program.

It is a lso possible to automa tica lly execute a system program when ProD O S 8 first
starts up by giving the program a name of the form xxxxxxxx.SYST EM and ensuring it
is the first entry in the volume directory with such a name .

Some system programs follow an optiona l auto-run protocol tha t a llows a ProD O S 8

se lector program to pass the name of a file to them. (Reca ll from Chapter 4 tha t a

se lector program ge ts control when an applica tion ca lls the Q UIT command.) The

standard ProD O S 8 se lector program does not a llow for filename passing, but many

independent se lectors, such as ProSe l and RunRun, do. The description of the Q UIT

command in Chapter 4 includes instructions on how to write your own se lector.
The auto-run protocol is quite simple . If the first byte of the system program

($2000) is $4C (a JMP opcode) and the fourth and fifth bytes ($2003 and $2004) are

both $E E , the sixth byte ($2005) holds the size of a buffer tha t begins a t the very next

222 System Programs

byte . This buffer begins with a name length byte and is followed by the standard

AS CII codes for the characters in the name of a file the system file is to work with

when it first starts up. (A system program file usua lly has a de fault filename stored

here .) Thus if the se lector program de tects the presence of the three identifica tion

bytes, it could prompt the user to enter the name of a da ta file , load the system

program, store the length and name of the da ta file beginning a t $2006, and then

execute the system program by jumping to $2000.
The BASIC .SYST EM system program adheres to the auto-run protocol. Here is

wha t the first part of tha t program looks like:

START1 ;Ma in program entry point

JMP START1 .•Must be a JMP instruction

D F B S E E .•Identifica tion byte 1

D F B S E E .•Identifica tion byte 2

D F B $41 .-S ize of following buffer

D F B $07 .•Length of filename

AS C 'STARTUP' .-Name of auto-run file

As you can see , BASIC .SYST EM de fines a de fault auto-run file ca lled STARTUP . This

is the name of the Applesoft program BASIC .SYST EM loads and runs whenever it
starts up unless the se lector passes a different name .

The se lector program ensures tha t when a system program ge ts control, its pa th �

name or partia l pa thname is stored a t $281; loca tion $280 conta ins the length of the

name . This permits the system program to deduce the precise directory it is loca ted

in. This is he lpful for loading subsidiary programs or da ta files loca ted in the same

directory as the system program itse lf.
O ften, a system program de fines an interpre tive programming environment in

which applica tion programs can be written and executed. (BASIC .SYST EM is the best
example of such a program.) In this case , the code for the interpre ter should be tucked

away in a sa fe place tha t will not conflict with memory areas the applica tion program

can use . The best position for the code is in a contiguous block a t the upper end of
ma in RAM memory, just be low the ProD O S 8 globa l page a t $B F00; this leaves the

space from $800 to the start of the code free for use as a work area . The system

program can protect the code space by se tting to 1 those bits in the system bit map

corresponding to the pages in use . If this is done , the ProD O S 8 command interpre ter

will not a llow these areas to be inadvertently used as file buffers or I/O buffers. (See

Chapter 3 for a discussion of the system bit map.)
When a system program first ge ts control, it should perform severa l pre liminary

housekeeping chores.

• Initia lize the microprocessor stack pointer. To ensure the maximum amount
of stack space is ava ilable to the system program, the stack pointer should be

The S tructure of a ProD O S 8 System Program 223

se t to the bottom of the stack. This can be done with the following two in�

structions:

LDX #$F F

TXS

You should ensure tha t no more than three quarters of the stack is used a t any

given time .

• Initia lize the rese t vector. When rese t is pressed on an Apple II, control
ultima te ly passes to the subroutine whose address is stored in the rese t vector

a t S O F T E V ($3F2-$3F3) but only if the number stored a t PWR E DUP ($3F4) is

the same as the number genera ted by logica lly exclusive-O R ing the number

stored a t S O F T E V +1 with the constant $A5. If PWR E DUP is not se t up

properly, the system reboots when rese t is pressed. To point the rese t vector to

a subroutine ca lled RTRAP within the system program and fix up PWR E DUP ,
execute the following code:

.•Address

STA S O F T E V ;$3F2

LDA #<RTRAP

LDA #>RTRAP ;Address

STA S O F T E V+1 ;$3F3

E O R #$A5 [twiddle

STA PWR E DUP ;$3F4

low

high

the bits

A genera l-purpose RTRAP subroutine should close a ll open files and then jump

to the cold start entry point of the system program. It is not sa fe to do anything

e lse because it is impossible for the rese t subroutine to de termine the sta te of
the system just be fore the rese t condition becomes active .

• Initia lize the version numbers in the ProD O S 8 globa l page . IBAKV E R ($B F F C)

must be se t equa l to the earliest version of ProD O S 8 the system program will
work with; store a 0 here if any version will do. IV E RSIO N ($B F F D) must be se t
equa l to the version number of the system program be ing used.

When these chores have been comple ted, the system program can begin its ma in

duties. If the system program adheres to the auto-run protocol, it must start working

with the file whose name (preceded by a length byte) is stored beginning a t $2005.
The system program is then free to do a lmost anything it wants as long as it does not
overwrite the ProD O S 8 system globa l page (page $B F) or da ta areas in other pages

used by ProD O S 8 or system Monitor subroutines the system program might ca ll. (See

Chapter 3 for a discussion of ProD O S 8 memory usage .)
If a system program wants to crea te specia l classes of files, it can use any of the

user-de finable file type codes, $F1-$F8. A ll other codes are reserved. (See Table 2-5 in

Chapter 2 for a description of the file type codes ProD O S uses for standard da ta files.)
When a system program crea tes a file , it can use the 2-byte auxiliary type code in its

directory entry (a t re la tive bytes $1F and $20; see Chapter 2) to hold misce llaneous

224 System Programs

informa tion about the file . This code is saved to disk when you first crea te the file with the

C R E AT E command; you can change it with the S E T FILE IN F O command. Here is

the meaning of the auxiliary type code for each type of file BASIC .SYST EM uses:

BIN de fault loading address

TXT record length (0 for sequentia l files)

BAS de fault loading address (usua lly $0801)

VAR starting address of a block of variables

When the time comes for the system program to quit, the system program should first
scramble the PWR E DUP byte by decrementing it; this causes the system to reboot if

rese t is pressed. It should then close a ll open files and reconnect /RAM if it was

earlier disconnected. (See Chapter 7 for instructions on how to do this.) F ina lly, it
should pass control to another system program with the Q UIT command. As we saw

in Chapter 4, this causes the standard ProD O S 8 se lector program to be executed.
Here is wha t the code will look like:

[close a ll open

[restore /RAM]

files]

D E C $3F4 ;Scramble PWR E DUP byte

JSR $B F O O ;C a ll the MLI

D F B $65 ;Q UIT

DA PARMTBL

B C S E RR O R

BRK ;(shouldn't ge t here)

PARMTBL D F B 4 ;4 parame ters

D F B 0

DA 0

D F B 0

DA 0

The se lector code is responsible for passing control to another system program in an

orderly manner. The standard ProD O S 8 se lector asks you to enter the pre fix and

pa thname of the next system program to be loaded and executed.
If your ProD O S 8 applica tion is running on a IlG S , and the bootup opera ting

system was G S/O S , you can a lso use Q UIT to transfer control directly to another

ProD O S 8 or G S/O S system program. (See the discussion of the Q UIT command in

Chapter 4 for how to do this.)

TH E BASIC .SYST EM INT E RPR E T E R

The BASIC .SYST EM interpre ter is probably the most commonly used ProD O S 8

system program. It is the program loaded whenever an Applesoft programming

The BASIC .SYST EM Interpre ter 225

environment is going to be used; it extends the Applesoft command se t by providing a

group of 32 disk commands an Applesoft program can use . BASIC .SYST EM insta lls

itse lf by storing the addresses of its interna l character input and output subroutines in

the system Monitor’s input link (KSW: $38-$39) and output link (C SW; $36-$37).
(The subroutines whose addresses are stored in these links are ca lled whenever a

character input or output opera tion is to be performed.)
The BASIC .SYST EM input subroutine norma lly reads input from the current input

device (usua lly the keyboard) and will identify and execute any va lid disk commands

entered while the system is in Applesoft command mode . But if a file has previously

been opened for read opera tions, it ge ts its input from the file instead.
S imilarly, the BASIC .SYST EM output subroutine norma lly sends output to the current

output device (usua lly the video screen) unless a file has been opened to rece ive the

output instead. It is a lso a lways on the lookout for arguments of PRINT sta tements tha t
begin with a [Control-D] code; such arguments are assumed to be BASIC .SYST EM disk

commands, and BASIC .SYST EM tries to interpre t them as such. The output subroutine

can spot these PRINT sta tements because BASIC .SYST EM a lways opera tes with Apple �

soft trace mode on; this means line numbers will be sent to the output subroutine be fore

the line is actua lly executed, giving BASIC .SYST EM a chance to check any PRINT sta te �

ments on tha t line . (By the way, the line numbers genera ted in trace mode are not dis �

played by BASIC .SYST EM unless the Applesoft TRA C E command has been executed.)
F igure 5-1 shows a BASIC .SYST EM memory map. When BASIC .SYST EM is first

loaded, it re loca tes its command interpre ter to the high end of ma in RAM memory a t
$9A00-$B E F F (just be low the ProD O S 8 system globa l page), reserves a IK genera l-
purpose file buffer from $9600 to $99F F , and then se ts the Applesoft HIMEM pointer a t
$73-$74 to $9600. (HIMEM represents the upper limit for storage of Applesoft string

variables.) This leaves the space from $0800 to $95F F free for Applesoft program and

variable storage .
BASIC .SYST EM a lso uses the area be tween $3D0 and $3E C for storage of

position-independent vectors to some of its interna l subroutines. We examine how

BASIC .SYST EM uses page three in more de ta il la ter in this chapter.
The BASIC .SYST EM interpre ter, because of its intima te connection to the Apple �

soft R OM interpre ter, can a lso be sa id to use a ll those RAM areas used by Applesoft
itse lf. This includes the input buffer a t $200-$2F F (BASIC .SYST EM a lso uses most of
this page as a temporary da ta buffer when it executes certa in disk commands), the

microprocessor stack a t $100-$lF F , and severa l loca tions in zero page . (See Chapter 4

of Inside the Apple lie for a de ta iled description of how Applesoft uses these areas.)
O ther areas, such as the video RAM area from $400 to $7F F and the system vector

area from $3E D to $3F F , are a lso reserved for use in a BASIC .SYST EM environment.

The BASIC .SYST EM Commands

Most of the BASIC .SYST EM disk commands provide convenient access to files for I/O

opera tions (O P E N , R E AD , P O SITIO N , WRIT E , APP E ND , FLUSH , and CLO S E),
genera l file management (C AT , C ATALO G , C R E AT E , D ELE T E , LO C K , PR E FIX ,

226 System Programs

F igure 5-1 BASIC .SYST EM memory map

< (ProD O S 8 globa l page)
<— BASIC .SYST EM globa l page

<—BASIC .SY ST EM interpre ter

<— G enera l-purpose file buffer

(moves down by $400 bytes When
a file is opened; moves up when a

file is closed.)

Applesoft program and

variable space

<-----V ideo RAM
$3D O ..$3E C used for vectors
Input buffer + da ta area
6502 stack

(Much of zero page used)

R E NAME , UNLO C K , and V E RIF Y), or program file loading and execution (-,
BLO AD , BRUN , BSAV E , E X E C , LO AD , RUN , and SAV E). There are a lso com�

mands for e ffecting I/O redirection (IN# and PR#), to perform garbage collection of
Applesoft string variables (F R E), to save and load Applesoft variables to and from files

(ST O R E and R E ST O R E), to transfer control from one Applesoft program to another

without destroying existing variables (C HAIN), and to disconnect BASIC .SYST EM

and run another ProD O S 8 system program (BY E). One command (N OMO N) is

a llowed but does nothing; it is included to ma inta in compa tability with programs

running under D O S 3.3 tha t use N OMO N to disable the display of disk commands

and I/O opera tions.
To use a BASIC .SYST EM command from within a program, you must use the PRINT

sta tement to print a [Control-D] character, the BASIC .SYST EM command, the command

parame ters, and then a carriage re turn. For example , to list a ll the files in the /RAM

volume on an Apple lie , you would execute a line tha t looks some thing like this:

100 PRINT C HR$(4);" C ATALO G /RAM"

The BASIC . SYST EM Interpre ter 227

In this example , the C HR$(4) sta tement genera tes the [Control-D] character, the BASIC . �
SYST EM command is C ATALO G , and the command parame ter is /RAM (a pa thname).
The required carriage re turn is automa tica lly genera ted by the PRINT sta tement.

If you re entering a BASIC .SYST EM command directly from the keyboard in Apple �

soft command mode , you don’t have to worry about the [Control-D], A ll you have to do is

type in the command followed by the command arguments. The keyboard equiva lent of
the C ATALO G command is simply

C ATALO G /RAM

You should be aware , however, tha t BASIC .SYST EM does not permit a ll its com�

mands to be entered from the keyboard in this way.
Most BASIC .SYST EM commands support, or require , severa l parame ters for spec �

ifying such things as the pa thname for the file to be acted on, loading addresses, and

lengths. Table 5-1 gives brie f descriptions of the 13 different parame ters recognized

by BASIC .SYST EM.
The le tter parame ters shown in Table 5-1 (,A#, ,B#, and so on, where # represents

the va lue of a parame ter) can be specified in any order by appending them to the end

of the command line . The snum and pa thname parame ters cannot appear in the same

command line . When one of these parame ters is specified, it must be placed immedi �
a te ly a fter the command name . The exception is the R E NAME command, which

requires two pa thnames; the second pa thname must appear right a fter the first one .
Note tha t most BASIC .SYST EM commands may be entered with slot (,S#) and drive

(,D#) parame ters tha t specify the physica l loca tion of the disk to be accessed. It is not
necessary to use these parame ters if the pa thname specified is a full pa thname or if a

pre fix is active because BASIC .SYST EM will automa tica lly search a ll insta lled disk drives

for the file . But if a filename or partia l pa thname is specified, and no pre fix has ye t been

de fined or e ither the ,S# or ,D# parame ter is used, BASIC .SYST EM automa tica lly uses

the name of the volume directory specified by the slot and drive parame ters (or the ir de �

faults) to crea te the full pa thname . BASIC .SYST EM’S ability to use slot and drive param�

e ters a llows Applesoft programs to ma inta in grea ter compa tibility with a D O S 3.3 environ �

ment where the slot and drive must be specified to access disks in the nonde fault drive .
Le t’s now take a quick look a t each of the 32 BASIC .SYST EM commands. Table

5-2 summarizes the command syntax for each of these commands. (See Apple’s BASIC

Programming with ProD O S for de ta iled informa tion on these commands; see the

bibliography in Appendix III.) These commands can be divided into four distinct
ca tegories: file management commands, file loading and execution commands, file

input/output commands, and misce llaneous commands.

F ile Management Commands

C AT . This command displays a list of the names of the files on the disk. Only the

names of the files in the directory specified in the pa thname parame ter following the

228 System Programs

Table 5-1 BASIC .SYST EM command line parame ters

Parame ter S tandard Meaning Permitted Va lues

pa thname The active file See rules in Chapter 2

snum Active I/O slot 0-7b

,A#a S tarting address $0000-$F F F F

,B# Byte number $0000-$F F F F F

,D# D isk drive number 1-2C

, E# Ending address $0000-$F F F F

, F# F ie ld number $0000-$F F F F

,L# Length $0000-$F F F F

, @ # Line number $0000-$F F F F

,R# Record number $0000-$F F F F

,S# D isk slot number 1-7C

,T# F ile type code $00-$F Fd

,v# Volume number $00-$F F

N O T E S:
aThe “#” in the parame ter name represents the parame ter’s va lue . The va lue can be specified in

hexadecima l or decima l forma t. (Hexadecima l numbers must be preceded by $).
bHexadecima l va lues are not a llowed for snum.
cIn a command line tha t includes a pa thname , the S and D parame ters specified must correspond to an

insta lled disk drive , or a “no device connected” error will occur.
dA three-character file type mnemonic corresponding to a va lue can be specified with the T parame ter

instead. Table 2-5 in Chapter 2 shows the mnemonics ava ilable .

C AT command are displayed. (If no such parame ter is specified, the currently active

directory is used.) C AT a lso displays the type of each file (as a three-character

mnemonic such as BAS , BIN , TXT , and SYS; see Table 2-4), the number of blocks it
occupies, and the da te it was last modified. A fter the names of a ll files have been

listed, the number of blocks free and blocks used on the disk are displayed.

C A T AL O G . This command is similar to C AT . It displays the very same informa tion for

each file as we ll as its time of last modifica tion, crea tion da te and time , size (in bytes), and

“subtype” entry (the file’s auxiliary type code; the entries displayed are the de fault loading

The BASIC .SYST EM Interpre ter 229

Table 5-2 The syntax for each BASIC .SYST EM command

- pa thname [,S#] [,D#]

APP E ND pa thname [,T type] [,L#] [,S#] [,D#]

BLO AD pa thname [,A#] [,B#] [,L# | , E#J [,T type] [,S#] [,D#J

BRUN pa thname [,A#] [,B#] [,L# , E#] [,S#] [,D#]

BSAV E pa thname ,A# ,L# | , E# [,B#] [,T type] [,S#] [,D#]

BY E

C AT [pa thname] [,S#] [,D#]

C ATALO G [pa thname] [,S#] [,D#]

C HAIN pa thname [, @ #] [,S#] [,D#]

CLO S E [pa thname]

C R E AT E pa thname [,T type] [,S#] [,D#]

D ELE T E pa thname [,S#] [,D#]

E X E C pa thname [, F# | ,R#] [,S#] [,D#]

FLUSH [pa thname]

F R E

IN# snum | A# | snum,A#

LO AD pa thname [,S#] [,D#]

LO C K pa thname [,S#] [,D#]

N OMO N [anything]

O P E N pa thname [,L#] [,T type] [,S#] [,D#]

P O SITIO N pa thname , F# | ,R#

PR# snum | A# | snum,A#

PR E FIX [pa thname] [,S#] [,D#]

R E AD pa thname [,R#] [, F#] [,B#]

R E NAME pa thname l,pa thname2 [,S#] [,D#]

R E ST O R E pa thname [,S#] [,D#]

RUN pa thname [,©#] [,S#] [,D#]

230 System Programs

Table 5-2 Continued

UNLO C K

SAV E

ST O R E

pa thname [,S#] [,D#]

pa thname [,S#] [,D#]

pa thname [,S#] [,D#]

WRIT E

V E RIF Y [pa thname] [,S#] [,D#]

pa thname [,R#] [, F#] [,B#]

n o t e : Bracke ts enclose optiona l parame ters and vertica l bars separa te a lterna tive parame ters.

address for a BIN file and the record length for a TXT file). It a lso displays the disk

capacity in blocks.

C R E A T E . This command crea tes a directory entry for a specified file . It is primarily

for crea ting subdirectory files since the other common types of ProD O S files (Apple �

soft programs, binary files, and textfiles) are automa tica lly crea ted by other BASIC .-
SYST EM commands (SAV E , BSAV E , and O P E N). For example , if the volume direc �

tory is active and you want to crea te a subdirectory ca lled D EMO .PR O G RAMS , you

would enter the command

C R E AT E D EMO .PR O G RAMS

from the keyboard. A fter you do this, the subdirectory appears as a file entry when you

ca ta log the directory in which the file was crea ted. The file type mnemonic used to

identify it in the ca ta log listing is DIR . O ther types of files can be crea ted using the

,T type parame ter.

D E L E T E . This command de le tes a file by removing its entry from the directory and

a ltering the volume bit map to free up the blocks the file uses. Only unlocked files can

be erased with the D ELE T E command.

L O C K . This command protects a file from be ing accidenta lly or intentiona lly de �

le ted, modified, or renamed. Once a file has been locked, it cannot be de le ted,
modified, or renamed unless it is first unlocked. You can te ll which files are locked by

ca ta loging the disk (using the C AT or C ATALO G command); if the name of the file is

preceded by an asterisk (*), it is locked.

The BASIC .SYST EM Interpre ter 231

PR E FIX . This command de fines the cha in of directory names to which any filename

or partia l pa thname specified will automa tica lly be appended to genera te a full
pa thname . It is this full pa thname on which the BASIC .SYST EM commands will act.
If the pa thname parame ter specified a fter the PR E FIX command does not begin with

a slash, it is appended to the de fault pre fix.

R E NAME . This command changes the name of any file on the disk from the first
pa thname parame ter specified to the second.

UNLO C K . This command unlocks a locked file so tha t it can be de le ted, modified,
or renamed.

V E RIF Y . This command checks whe ther a file exists. If no error occurs, the file does

exist. Entering V E RIF Y by itse lf (tha t is, without a pa thname) causes Apple’s copy �

right notice to appear.

F ile Loading and Execution Commands

- (dash). This is the inte lligent run command. Its parame ter can be the pa thname of
an Applesoft program, a binary program, or a textfile , in which cases the - behaves

exactly like a RUN , BRUN , or E X E C command, respective ly. The - command can a lso

be used to execute ProD O S 8 system (SYS) programs.

BLO AD . This command transfers da ta from a file to an area of memory. The most
common form of this command is

BLO AD MY . FILE ,A#

where # represents the address of the beginning of the block to which the file is to be

transferred. The de fault file type is binary (BIN), but you can override this with the

,T type parame ter. The BLO AD command can a lso be used without the ,A# parame �

ter; in this case , the file is loaded a t the loca tion from which it was origina lly saved to

disk using the BSAV E command. (This address appears in the subtype column when

the disk is ca ta loged using the C ATALO G command.) Any portion of a file can be

loaded using one or more optiona l parame ters: ,B# (the starting position within the

file), ,L# (the number of bytes to be transferred), and , E# (the last memory loca tion to

be transferred to).

BRUN . This command is the same as BLO AD except tha t a fter the file loads, it is

automa tica lly executed. Execution begins a t the loading address. The BRUN com�

mand can be used with binary (BIN) files only.

232 System Programs

B S A V E . This command saves the contents of a range of memory to a file . (The

de fault file type used is binary (BIN) but you can override this de fault with the ,T type

parame ter.) For example , to save the contents of memory from $300 to $3C F to a

binary file ca lled PA G E .THR E E , you would enter the command

BSAV E PA G E .THR E E ,A$300, E$3C F

or

BSAV E PA G E .THR E E ,A$300,L$D0

where the ,A$300 parame ter indica tes the starting address of the range , , E$3C F

indica tes the ending address, and ,L$D0 indica tes the number of bytes to be saved.
You can a lso use the ,B# parame ter to indica te the byte position in the file the write

opera tion is to take place .

E X E C . This command redirects subsequent requests for input to a specified file instead

of the keyboard until everything in the file has been read. For example , suppose you have

de fined a file ca lled MY .STARTUP tha t conta ins the following two lines:

H OME

C ATALO G

When you enter E X E C MY .STARTUP from command mode , the screen clears, and

the disk is ca ta loged, just as if you had entered the two commands directly from the

keyboard. You can use the , F# or ,R# parame ters to specify the number of the first
line in the file to be executed.

L O A D . This command loads an Applesoft program into memory.

R U N . This command is the same as the LO AD command except tha t a fter the program

is loaded, it is automa tica lly executed. The , @ # parame ter can be used to specify the

Applesoft line number to be executed first; the de fault is the first line number. (If RUN is

entered without a pa thname , the program a lready in memory is executed.)

SAV E . This command saves an Applesoft program to a file on disk. The file type

mnemonic for a program file is BAS .

F ile Input/Output Commands

O P E N . This command opens a file (by de fault, a TXT file) for reading and writing. If

the pa thname specified does not exist, a new file is crea ted. A file must be opened be fore

it can be accessed using the BASIC .SYST EM R E AD , WRIT E , FLUSH , and P O SITIO N

The BASIC .SYST EM Interpre ter 233

commands. Textfiles can be opened as one of two basic types: sequentia l or random

access. A sequentia l textfile is one in which lines of informa tion are stored one a fter

another, separa ted only by a carriage re turn code; if you want to access informa tion

anywhere in the file , you usua lly have to read a ll the informa tion preceding it.
A random-access textfile is organized as a series of fixed-length records tha t hold

re la ted groups of informa tion; any record can be accessed randomly (tha t is, without
reading a ll previous records first) simply by specifying its record number when using

the R E AD command. The record length is assigned to a random-access textfile when

it is first opened by using the ,L# parame ter; it is displayed in the subtype column of
a C ATALO G listing in the form R = $xxxx. For example , if the record length is 127,
the subtype entry would be R = $007F .

R E AD . This command redirects subsequent requests for input to an open file

instead of the keyboard. If a random-access textfile is be ing read, the record number

to be accessed can be specified using the ,R# parame ter. You can a lso specify a fie ld

number (a fie ld is a string of characters termina ted by a carriage re turn code) using

the , F# parame ter or a byte number using the ,R# parame ter. If more than one of
these parame ters is used, R E AD first skips to the proper record number, then to the

proper fie ld number, and fina lly to the proper byte position. (Tha t is, the byte position

is re la tive to the current fie ld position.)

P O SITIO N . This command se ts the position in the file a t which subsequent read

and write opera tions will take place . The number of fie lds to skip over is specified by

the , F# or ,R# parame ter.

WRIT E . This command redirects subsequent output to an open file instead of the video

screen. It works much like the R E AD command except in the opposite direction.

APP E ND . This command opens a file and redirects subsequent output to the end of the

file . The de fault file type is a textfile , but you can override this with the ,T type parame ter.

FLUSH . When BASIC .SYST EM opens a file , it a lloca tes a file buffer for it in

memory. Da ta written to the file is stored in this buffer and is not transferred to disk

until the buffer fills up or another file block needs to be accessed. The FLUSH

command forces any da ta stored in the buffer to be saved to disk even if the buffer is

not ye t full. This minimizes the risk of da ta loss in the event of an unexpected exit
from the program (caused by a loss of power, pressing Rese t, and so on), but it slows

down disk write opera tions considerably. FLUSH a lso causes the file’s directory entry

to be upda ted. If you use FLUSH without a pa thname , a ll open files are flushed.

CLO S E . This command closes a file tha t was opened with the O P E N or APP E ND

command. When you close a file , its buffer is automa tica lly flushed, and its directory

entry is upda ted. If you use CLO S E without a pa thname , a ll open files are closed.

234 System Programs

Misce llaneous Commands

BY E . This command disconnects BASIC .SYST EM and passes control to a ProD O S

8 system program by ca lling the Q UIT command. This invokes the ProD O S 8 se lector

program (as discussed earlier in this chapter). The standard se lector prompts you to

enter the pre fix and partia l pa thname of the next system program to run; once you

provide this informa tion, the program is executed.

C H AIN . This command transfers control from one Applesoft program to another

while ma inta ining the names and current va lues of a ll the variables in the pro �

gram from which control is be ing passed. This a llows very large programs

to be executed by breaking them into separa te modules and cha ining them to �

ge ther. You can cha in to any line number in the new program using the , @ #

parame ter.

F R E . This command forces garbage collection of Applesoft string variables. This

command is much faster than the one of the same name built in to the Applesoft
interpre ter. (See Chapter 4 of Inside the Apple lie for more informa tion on the

garbage collection procedure .)

IN #. This command redirects subsequent requests for input to a periphera l card

subroutine a t $CnO O (where n is a slot number) or to a user-insta lled subroutine . If a

slot number of 0 is specified, the standard keyboard input subroutine a t K E YIN

($F D1B) is used instead. IN# can a lso be used to associa te the address of any input
subroutine with any slot number by using the snum,A# construct; once this is done ,
an IN#n command can be used to direct la ter requests for input to this subroutine

ra ther than to $CnO O .

N O M O N . This command is a llowed but does nothing. Under D O S 3.3 it disables

the display of disk commands and I/O opera tions; under BASIC .SYST EM, these

commands and opera tions are never displayed.

P R #. This command redirects subsequent output to a periphera l card subroutine a t
$CnO O or to a user-insta lled subroutine . If a slot number of 0 is specified, the standard

40-column video output subroutine a t C O UT1 ($F D F0) is used instead. PR# can a lso

be used to associa te the address of any output subroutine with any slot number by

using the snum,A# construct; once this is done , a PR#n command can be used to

direct subsequent output to this subroutine ra ther than to $CnO O .

R E S T O R E . This command initia lizes the names and va lues of the variables in an

Applesoft program to those conta ined in the file specified in the argument. This file

must have a file type code of VAR (the type crea ted by the ST O R E command).

The BASIC . SYST EM Interpre ter 235

ST O R E . This command saves the names and current va lues of a ll the variables in an

Applesoft program to a disk file . The mnemonic for the file type code BASIC .SYST EM

assigns to the file is VAR .

BASIC .SYST EM AND TH E INPUT AND O UTPUT LINKS

Applesoft programs some times need to redirect input or output requests to a device in

one of the Apple’s expansion slots (ca lled ports on the IlG S or the slotless Apple lie).
The easiest way to do this is to use the BASIC .SYST EM IN# and PR# commands.
For example , to redirect output to a printer in slot 1, you would execute this

sta tement:

PRINT C HR$(4);"PR#1"

The confusingly similar Applesoft commands of the same names must not be used to

redirect I/O when using BASIC .SYST EM.
You can a lso use a specia l form of the IN# and PR# commands to redirect I/O to

a subroutine loca ted anywhere in memory. The only restriction on its use is tha t the

first byte of the new subroutine must be a 6502 CLD (clear decima l flag) instruction.
To direct I/O to any such subroutine , you must execute a sta tement like

PRINT C HR$(4);"IN# Aaddr"

or

PRINT C HR$(4);"PR# Aaddr"

where addr represents e ither the decima l starting address of the new I/O subroutine

or, if preceded by $, the hexadecima l starting address.
Problems can arise if you try to redirect I/O in a BASIC .SYST EM environment

using assembly-language techniques. Traditiona lly, I/O requests are redirected by

storing the address of a new input routine in KSW ($38-$39) and the address of a new

output routine in C SW ($36-$37); KSW and C SW are the input and output links,
respective ly. As we saw earlier, this is exactly how BASIC .SYST EM ge ts its hooks into

the system. Thus if we were to overwrite these links, we would interfere with the

opera tion of BASIC .SYST EM and may even disconnect it. (If you accidenta lly discon �

nect BASIC .SYST EM like this, you can reconnect it by executing a JSR BIE NTRY

instruction; BIE NTRY is loca ted a t $B E00.)
You can avoid this problem in one of two ways. You can use the BRUN command to

load and execute any assembly-language program tha t modifies the standard I/O links.
This works because just be fore the program tha t is BRUN ends, BASIC .SYST EM

checks whe ther the I/O links have changed. If they have , the new link addresses are

moved into BASIC .SYST EM’S own interna l I/O links, and the addresses of its own I/O

236 System Programs

subroutines are restored. The BASIC .SYST EM I/O links are used just like the stan �

dard ones, and the subroutines whose addresses are stored in them are ca lled when

BASIC .SYST EM wants to perform standard (nondisk) I/O opera tions.
A lterna tive ly, you can insta ll a new input or output subroutine by storing its

address directly into the appropria te interna l BASIC .SYST EM link itse lf: the input
link a t V E C TIN ($B E32-$B E33) or the output link a t V E C T O UT ($B E30-$B E31).

Any other me thod used to change the standard input links (such as P O K E ing new

va lues from an Applesoft program or using C ALL to execute a subroutine tha t stores

new va lues) will not work properly.

R E S E RVIN G SPA C E AB O V E TH E FILE BU F F E RS

As F igure 5-1 shows, once you insta ll BASIC .SYST EM, it occupies the memory space

from $9A00 to $B E F F in ma in memory. It a lso se ts up a $400-byte (IK) genera l-
purpose buffer tha t initia lly sits just be low this area , beginning a t $9600. To prevent
the space above $9600 from be ing overwritten by Applesoft programs, BASIC . �
SYST EM se ts the Applesoft HIMEM pointer to $9600; this forces Applesoft to store

string variables be low $9600. (HIMEM re fers to the address stored in the Applesoft
end-of-string pointer a t $73—$74.)

The genera l-purpose buffer a lways occupies the IK area just above HIMEM even

if HIMEM changes. BASIC .SYST EM uses it as a temporary storage area for directory

blocks when it needs to ca ta log the disk.
BASIC .SYST EM automa tica lly adjusts HIMEM whenever files are opened or

closed with the O P E N , APP E ND , and CLO S E commands. It is not immedia te ly

obvious why a change is necessary, so le t’s examine how BASIC .SYST EM manages

files in a bit more de ta il. When BASIC .SYST EM opens a file , it crea tes a $400-byte

buffer for it by lowering HIMEM by tha t number of bytes (and moving the genera l-
purpose buffer down with it) and then reserving the $400-byte area beginning a t the

origina l HIMEM position for use as the buffer. If it opens another file (up to e ight
files can be open a t once), it repea ts the process, meaning the new buffer fits in just
be low the first one . (Exception: If you open a file with the E X E C command, BASIC . �
SYST EM a lways places its buffer immedia te ly above the highest-addressed active

buffer.) When you close a file , ProD O S 8 removes the file’s buffer by re loca ting the

lowest-addressed active file buffer to the position of the closed buffer and then ra ising

HIMEM by $400 bytes. Note tha t BASIC .SYST EM takes a ll steps necessary to ensure

tha t Applesoft’s string variables are not overwritten despite the fluctua tions in HIMEM.
It is often convenient to reserve a sa fe area of memory where assembly-language

programs may be stored without fear of be ing overwritten by e ither BASIC .SYST EM

or Applesoft itse lf. One such area is from $300 to $3C F in page three , but there is

room for only very short programs there . Under D O S 3.3, an a lterna tive area can be

reserved simply by lowering HIMEM and storing the program be tween the new and

cld HIMEM loca tions. But you can’t do this with BASIC .SYST EM because of the way

it manages buffers when files are opened or closed.

Reserving Space Above the F ile Buffers 237

When you’re using BASIC .SYST EM, you can reserve a sa fe area above the $400-
byte directory buffer beginning a t HIMEM. To do this, follow these steps:

1. C lose a ll files with the BASIC .SYST EM CLO S E command.

2. Lower HIMEM by a multiple of $100 (256) bytes with the Applesoft HIMEM:
command. (The HIMEM: command simply places the address specified in its
argument directly into the HIMEM pointer.)

You must perform these steps be fore any Applesoft string variables have been de fined
since the existing Applesoft string space will be overwritten. A fter comple ting these two
steps, the area from HIMEM + $400 to $99F F can be used for storing assembly-language
programs without danger of the ir be ing overwritten by BASIC .SYST EM opera tions.

Be very care ful when using the Applesoft HIMEM: command because no checks
are made to ensure the address specified in the command is an integra l multiple of
256. BASIC .SYST EM does not opera te properly if HIMEM does not point to a page
boundary.

A lterna tive ly, you can, a t any time , ca ll the G E TBU F R ($B E F5) subroutine from an
assembly-language program if you want to free up a space of contiguous 256-byte pages
above HIMEM. Do this by placing the number of pages to be reserved in the accumula �
tor and then ca lling G E TBU F R; on exit, the carry flag is clear if there was enough free
space ava ilable , or se t if there wasn’t. If a ll went we ll, the number of the first page
reserved is in the accumula tor. We see an example of how to use G E TBU F R la ter in this
chapter in the insta lla tion code for a user-de fined command ca lled O NLIN E .

You can dea lloca te space reserved with G E TBU F R by ca lling the F R E E BU F R
($B E F8) subroutine . This subroutine frees up a ll buffers tha t G E TBU F R has reserved
since bootup by se tting HIMEM back to its origina l va lue stored a t PA G E T O P
($B E F B). (You can se lective ly free up the most recently a lloca ted buffers by se tting
PA G E T O P to the page number, less 4, of the start of the buffer you want to rema in.)

Whenever you reserve space above HIMEM, it is usua lly a good idea to modify the
system bit map to indica te tha t the memory pages reserved are in use . If you do this,
the ProD O S 8 command interpre ter will not permit these pages to be used as buffer
areas when ProD O S 8 commands are requested. But if you want to use part of the
space as an I/O buffer when opening a file , don’t mark the pages as in use; if you do,
you will ge t an error when you try to open a file .

BASIC .SYST EM PA G E THR E E USA G E

We saw in Chapter 3 tha t ProD O S 8 reserves the area from $3D0 to $3E C for use by
system programs like BASIC .SYST EM. As Table 5-3 shows, BASIC .SYST EM uses
only the first six loca tions; these loca tions conta in two 3-byte JMP instructions to the
BASIC .SYST EM warm-start entry point.

BASIC .SYST EM a lso initia lizes most of the system vectors from $3E D to $3F F
when it starts up. Table 5-4 shows the contents of this area of page three .

238 System Programs

Table 5-3 ProD O S 8-BASIC .SYST EM page 3 vectors

N O T E: Loca tions $3D6-$3E C are a lso reserved for use by a ProD O S 8 system program.

Address Description of Vector

$3D0-$3D2 A JMP instruction to the BASIC .SYST EM warm-start entry point. A

ca ll to this vector reconnects BASIC .SYST EM without destroying

the Applesoft program in memory. Use the 3D0G command to move

from the system monitor to Applesoft.

$3D3-$3D5 Another JMP instruction to the BASIC .SYST EM warm-start entry

point.

Table 5-4 Initia liza tion of page 3 system vectors by ProD O S 8 and BASIC .SYST EM

Vector Name Address Contents Description

X F E RLO C $3E D-$3E E [not
initia lized]

BRK $3F O-$3F1 $F A59

R E S E T $3F2-$3F3 $B E00

$3F4 $1B

& $3F5-$3F7 JMP $B E03

US E R $3F8-$3F A JMP $B E00

NMI $3F B-$3F D JMP $F F59

IR Q $3F E-$3F F $B F E B

Address control passes to when X F E R

($C314) is ca lled (He , lie , IIg s)

Address of a subroutine tha t displays

the 6502 registers and then enters the

system Monitor

Address of the BASIC .SYST EM

warm-start entry point (reconnects

BASIC .SYST EM) followed by

“powered-up” byte

Jump to BASIC .SYST EM’S externa l
entry point for command strings (see

Chapter 5)

Jump to BASIC .SYST EM’S warm-start
entry point

Jump to the system Monitor’s cold-start
entry point

Address of the specia l ProD O S 8

interrupt handler (see Chapter 6)

n o t e : The addresses stored a t each vector loca tion are stored with the low-order byte first.

BASIC .SYST EM Page Three Usage 239

BASIC .SYST EM does not use the rest of page three (from $300 to $3C F), so it is a
convenient area for holding short assembly-language subroutines you can ca ll from an
Applesoft program.

TH E BASIC .SYST EM GLO BAL PA G E: $B E O O-$B E F F

The BASIC .SYST EM globa l page occupies loca tions $B E00 to $B E F F , just benea th
the ProD O S 8 globa l page . It conta ins severa l fixed-position subroutines and da ta
areas tha t assembly-language programs can use to communica te easily with BASIC . �
SYST EM. For example , the globa l page conta ins entry points for executing AS CII
command strings, handling user-insta lled commands, handling errors, and executing
MLI commands. Table 5-5 is a source listing for the BASIC .SYST EM globa l page .

The G O SYST EM Subroutine

Most of the globa l page supports the G O SYST EM ($B E70) subroutine tha t the BASIC . �
SYST EM code ca lls whenever it needs to execute an MLI command. On entry, G O SYS �
T EM constructs a standard JSR MLI ca ll by storing the MLI command number (passed
in the accumula tor) a t SYS C ALL ($B E85) and the address of the command’s parame ter
table a t SYSPARM ($B E86). (As Table 5-5 shows, each command BASIC .SYST EM uses
has its own parame ter table in the globa l page —the va lues in the table are se t up be fore
the ca ll to G O SYST EM.) S ince SYS C ALL and SYSPARM are loca ted right a fter the JSR
MLI instruction, as required by the MLI command interpre ter, the command is properly
invoked when the JSR MLI is actua lly executed.

You can use G O SYST EM in your own assembly-language programs to execute
MLI commands. To do this, first se t up the parame ters in the appropria te interna l
parame ter table , and then ca ll G O SYST EM with the MLI command number in the
accumula tor. The code to do this is very simple and looks like this:

[se t up parame ter

table here]

LDA #CMDNUM ;Put MLI command number in A

JSR G O SYST EM ;Le t G O SYST EM execute command

B C S E RR O R

This me thod is a bit more convenient than simply ca lling MLI ($B F00) in the usua l
way because BASIC .SYST EM has a lready reserved space for the command parame ter
tables in the globa l page . Furthermore , G O SYST EM automa tica lly se ts up the JSR
MLI/D F B CMDNUM/DA PARMTBL ca lling block and converts MLI error codes to
the more familiar BASIC .SYST EM error codes. We ta lk more about error handling in
the next section.

Note , however, tha t you can use G O SYST EM to execute MLI commands only from
$C0 to $D3. O ther commands you must execute using the standard JSR MLI technique .

240 System Programs

Table 5-5 Source listing for the BASIC .SYST EM globa l page

2 **************************************

3 * BASIC .SYST EM G loba l Page *

4 * for BASIC .SYST EM version 1.2 *

5 * *

6 * Comments copyright 1985-1988 *

7 * G ary B . Little *

8 * *

9 * Last modified: August 26, 1988 *

10 *
11 **************************************
12

13 * Note: these addresses are va lid for

14 * BASIC .SYST EM version 1.2 only!

15

16 TXBU F2 E Q U $280

17 SYS O UT E Q U $9A2F .•Interna l output subroutine

18 SYSIN E Q U $9ABA [Interna l input subroutine

19 N O D E V E RR E Q U $9A E E

20 E RR O R E Q U S9A F0

21 PRT E RR E Q U $9F88

22 PA G E G E T E Q U $A2B5

23 PA G E F R E E E Q U $A301

24 SYNTAX E Q U $A677

25 WARMD O S E Q U $AB F1

26 D O S O UT E Q U $B7F1 ;Character out intercept

27 D O SIN E Q U $B7F4 ;Character in intercept

28 SYS C TBL E Q U $B805 .•Table of parm table addresses

29 MLIE RTBL E Q U $B9E E [Table of MLI error codes

30 BIE RRTBL E Q U $BA01 .•Table of Applesoft error codes

31 C ALLX E Q U $B C A8

32 TXBU F E Q U $B C BD

33

34 ML I E Q U $B F O O

35

36 C0UT1 E Q U $F D F O [V ideo output (40 column)

37 K E YIN E Q U $F D1B ;Keyboard input (40 column)

38 C0UT80 E Q U $C307 ;V ideo output (80 column)

39 K E YIN80 E Q U $C305 .•Keyboard input (80 column)

40

41 O R G $B E O O

42

B E O O: 4C F l AB 43 BIE NTRY JMP WARMD O S [Connect BASIC .SYST EM I/O links

B E03: 4C 77 A6 44 D O S CMD JMP SYNTAX [Execute command string a t $200

B E06: 4C 9E B E 45 E XTRN CMD JMP XR E TURN ;User command handler

46

^7 ***

48 * E RR O UT is ca lled by BASIC .SYST EM whenever a *

49 * disk error condition is de tected. (The error *
50 * code -- 2..22 -- is stored in the accumula tor.) *

The BASIC . SYST EM G loba l Page: $B E00-$B E F F 241

Table 5-5 Continued

51

52

53

54

55

56

60

61

62

63

64

65

66

67

68

69

70

71

72

73

82

83

84

85

86

87

88

89

90

91

92

93

94

95

�
*
*

�
�
�
*
�

�
�
*
�
�
*
�

�
�
*
*
*
�
*
*
*
�

*

**
*
*
*
*
�

it

*

The following table holds the addresses to

be placed in the output link whenever a

IN#s command is entered. If a periphera l

card is in a particular slot, the entry

will be of the form CsO O; if no card is

insta lled, the address of the subroutine

tha t genera tes a "no device connected"

error code is stored instead. Any address

can be placed in the table using the

Applesoft PRINT C HR$(4);"IN# s,A#"

construct.

�
*
�

�
�
*
**

�
it

it

�
�
*
�
*
**

it

�
it

it

it

E RR O UT stores the error code in E RR C O D E and in

$D E (required by Applesoft), and then if O N E RR

is active , it passes control to the Applesoft

error-handling subroutine; if it isn't, an

error message is printed by ca lling PRINT E RR .

The following table holds the addresses to

be placed in the output link whenever a

PR#s command is entered. If a periphera l

card is in a particular slot, the entry

will be of the form CsO O; if no card is

insta lled, the address of the subroutine

tha t genera tes a "no device connected"

error code is stored instead. Any address

can be placed in the table using the

Applesoft PRINT C HR$(4);"PR# s,A#"

construct.

� kirie kirititirititirlfkirititititirirititltitititltititititirititititifkifkitirifkirifkitititit

B E09: 4C F0 9A 57 E RR O UT JMP E RR O R .•Applesoft error handler

B E O C: 4C 88 9F 58 PRINT E RR JMP PRT E RR ;Print error message

B E O F: 00 59 E RR C O D E D F B 0 ;Error code

B E10: F0 F D 74 O UTV E C T O DA C0UT1 ;S tandarc1 video output

B E12: 00 C l 75 0UTV E C T1 DA $C100 ;(Assume printer card)

B E14: 00 C2 76 O UTV E C T2 DA $C200 ;(Assume modem card)

B E16: 00 C3 77 0UTV E C T3 DA $C300 ;(Assume 80-column card)

B E18: 00 C4 78 0UTV E C T4 DA $C400 ; (Assume mouse card)

B E1A: 00 C5 79 0UTV E C T5 DA $C500 ; (Assume 3.5-inch drive)

B E1C: 00 C6 80 0UTV E C T6 DA $C600 ; (Assume 5.25-inch drive

B E1E: 00 C7 81 0UTV E C T7 DA $C700 ; (Assume RAMdisk card)

B E20: IB F D 96 INV E C T O DA K E YIN ;S tandard keyboard input

B E22: 00 C l 97 INV E C T1 DA $C100 ;(Assume printer card)

B E24: 00 C2 98 INV E C T2 DA $C200 ;(Assume modem card)

B E26: 00 C3 99 INV E C T3 DA $C300 ;(Assume 80-column card)

242 System Programs

Table 5-5 Continued

B E28: 00 C4 100 INV E C T4 DA $C400 ;(Assume mouse card)

B E2A: E E 9A 101 INV E C T5 DA N O D E V E RR

B E2C: 00 C6 102 INV E C T6 DA S C600 .•(Assume 5.25-inch drive)

B E2E: E E 9A 103 INV E C T7 DA N O D E V E RR

104

105

106 * The BASIC .SYST EM I/O li nks are stored here . *

107 * These are the addresses control will pass *

108 * to if the input or output is not handled *

109 * interna lly. �

110

B E30: 07 C3 111 V E C T O UT DA C0UT80 ;ProD O S output link

B E32: 05 C3 112 V E C TIN DA K E YIN80 ;ProD O S input link

113

114 * Misce llaneous interna l BASIC .SYST EM parame ters:

115

B E34: F l B7 116 VD O SIO DA D O S O UT .•Character out intercept

B E36: F4 B7 117 DA D O SIN .•Character in intercept

118

B E38: 2F 9A 119 VSYSIO DA SYS O UT .•Interna l output subroutine

B E3A: BA 9A 120 DA SYS IN .•Interna l input subroutine

121

B E3C: 06 122 D E F SLT D F B 6 ;De fault slot #

B E3D: 01 123 D E F DRV D F B 1 ;De fault drive #

124

B E3E: 00 125 PR E G A D F B 0 jTemporary storage for A

B E3F: 00 126 PR E G X D F B 0 .•Temporary storage for X

B E40: 00 127 PR E G Y D F B 0 .•Temporary storage for Y

128

B E41: 00 129 DTRA C E D F B 0 ;bit 7=1 ==> Applesoft trace on

130

B E42: 00 131 STAT E D F B 0 ;0=direct, oO=in program

B E43: 00 132 E XA C TV D F B 0 ;bit 7=1 ==> E X E C file open

B E44: 00 133 IFILA C TV D F B 0 ;bit 7=1 ==> input file active

B E45: 00 134 O FILA C TV D F B 0 ;bit 7=1 ==> output file active

B E46: 00 135 P F XA C TV D F B 0 ;bit 7=1 ==> pre fix input active

B E47: 00 136 DIR FLG D F B 0 ;bit 7=1 ==> dir. file active

B E48: 00 137 E DIR FLG D F B 0 ;bit 7=1 ==> end of directory

B E49: 00 138 STRIN G S D F B 0 ;Counter for free space ca lc.

B E4A: 00 139 TBU F PTR D F B 0 ;Character count for WRIT E

B E4B: 00 140 INPTR D F B 0 ;Char. count for kbd input

B E4C: 00 141 C HRLAST D F B 0 ;Last character printed

B E4D: 00 142 O P E N C NT D F B 0 ;Number of open files (not E X E C)

B E4E: 00 143 E X FILE D F B 0 ;E X E C file close flag

B E4F: 00 144 C AT FLA G D F B 0 ;D i rectory input flag

145

146

147 * The following three loca tions will be used if *

148 * you are adding user commands to BASIC .SYST EM. *

The BASIC . SY ST EM G loba l Page: $B E O O-$B E F F 243

Table 5-5 Continued

* Notes on PBITS and F BITS:
*
*
� k

*
*
* the parame ters actua lly found.
*

PBITS/F BITS:* Meaning of bits in
�
�
*
*
*
*r
*
*
�

of bits in PBITS+l/F BITS+1:� Meaning
*
�
�
*
*
*
*
�
*

A

B

E

L

bit

bi t

bit

bi t

bi t

bi t

bi t

bit

bit

bit

bit

bi t

bi t

bit

bit

bi t

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

a llowed/found

a llowed/found

a llowed/found

a llowed/found

a llowed/found

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

: if pa thname not specified

requi red/found

va lid in direct mode

optiona l (no names+parms)

if it doesn't exist

fe tch pre fix

slot number 1

command N O T 1

pa thname is i

crea te file

file type optiona l (T parame ter)/found

second pa thname required (for R E NAME)/found

filename a llowed/found

Once BASIC .SYST EM has identified a va lid command,

it stores a number in PBITS and PBITS+1 tha t

re flects the syntax of the command. It then ca lls

the command parser, which upda tes F BITS and

F BITS+1 to re flect

parame ter

parame ter

parame ter

parame ter

parame ter

S/D parame ters a llowed/found

F parame ter a llowed/found

R parame ter a llowed/found

149

B E50: 00 00 150 XTRNADDR DA 0 .•Address of user command handler
B E52: 00 151 XLE N D F B 0 ;Length of user command - 1

B E53: 00 152 X C NUM D F B 0 ;Command number in use (0=user)

B E54: 00 00 184 PBITS DW 0 .•Permitted parame ter bits B E56

00 00 185 F BITS DW 0 ;Found parame ter bits

186

187 **

188 * The followi ng table is where command parame ters �
189 * are stored during a parsing opera tion. The *
190 * entries for unspecified parame ters are not �
191 * changed. �
192 **

B E58: 00 00 193 APARM DA 0 ;A (address) parame ter

B E5A: 00 00 00 194 BPARM DS 3 ;B (byte #) parame ter

B E5D: 00 00 195 E PARM DA 0 ;E (end addr) parame ter

B E5F: 00 00 196 LPARM DW 0 ;L (length) parame ter
B E61: 00 197 SPARM D F B 0 ;S (slot) parame ter

244 System Programs

Table 5-5 Continued

B E62: 00 198 DPARM D F B 0 ;D (drive) parame ter

B E63: 00 00 199 F PARM DW 0 ;F (fie ld #) parame ter

B E65: 00 00 200 RPARM DW 0 ;R (record #) parame ter

B E67: 00 201 VPARM D F B 0 ;V (volume #) parame ter

B E68: 00 00 202 8PARM DW 0 (line #) parame ter

B E6A: 00 203 TPARM D F B 0 ;T (file type code) parame ter

B E6B: 00 204 SLPARM D F B 0 ;slot (for IN#, PR#) parame ter

B E6C: B C B C 205 PATH1 DA TXBU F-1 .•Pointer to first pa thname

B E6E: 80 02 206 PATH2 DA TXBU F2 ;Pointer to second pa thname

207

208
� � * � * � **** � * � � � * � � � � � � � � � � * � � � �

209 * A ll BASIC .SYST EM MLI ca lls are routed to G O SYST EM *

210 * with the command number in the accumula tor. *

211 * Prior to ca lling G O SYST EM, BASIC .SYST EM *

212 * se ts up the appropri a te parame ter table in the *

213 * globa l
page as required by the ca l 1. G O SYST EM *

214 * handles a ll MLI ca lls from $C0..$D3 inclusive . If *

215 * an error occurs, an Applesoft error code is *

216 * re turned in A with the carry flag se t. *

217
� �

B E70: 8D 85 B E 218 G O SYST EM STA SYS C ALL ;Save MLI command number

B E73: 8E A8 B C 219 STX C ALLX ;Save X register

B E76: 29 IF 220 AND #$1F ;# mod 32

B E78: AA 221 TAX

B E79: BD 05 B8 222 LDA SYS C TBL.X ;G e t address of parm table

B E7C: 8D 86 B E 223 STA SYSPARM ; (low) and save it

B E7F: A E A8 B C 224 LDX C ALLX ;Restore X

B E82: 20 00 B F 225 JSR MLI ;Do the MLI ca ll

B E85: 00 226 SYS C ALL D F B 0 ;MLI command # stored here

B E86: 00 227 SYSPARM D F B 0 .•Address of parm table (low)

B E87: B E 228 D F B $B E ;H igh address a lways $B E

B E88: B O 01 229 B C S BAD C ALL ;Branch if error

B E8A: 60 230 RTS

231

232
� A*

233 * The BA O C ALL subroutine converts the MLI *

234 * error code to a corresponding Applesoft *

235 * error code . �

236
� � � � � � � � � � * � � � * � * � � � � ** � � * � � � * � * � **** � *** � *

B E8B: A2 12 237 BAD C ALL LDX #$12

B E8D: DD E E B9 238 MLIE RR1 CMP MLIE RTBL.X ;Is it a "known" MLI error?

B E90: F O 05 239 B E Q MLIE RR2 ;Yes, so branch

B E92: C A 240 D E X ;Check a ll 19 possibilities

B E93: 10 F8 241 BPL MLIE RR1

B E95: A2 13 242 LDX #$13 ;Not known, so "I/O error"

243

B E97: BD 01 BA 244 MLIE RR2 LDA BIE RRTBL.X ;Convert to Applesoft error code

B E9A: A E A8 B C 245 LDX C ALLX ;Restore X

B E9D: 38 246 S E C error

The BASIC .SYST EM G loba l Page: $B E00-$B E F F 245

Table 5-5 Continued

B E9E: 60 247 XR E TURN RTS

B E9F: 00 248 D F B $00 ;Unused byte

249

250 **
251 * The parame ter tables for each of the MLI functions *
252 * supported by BASIC .SYST EM follow. These tables *

253 * must be filled in be fore ca lling G O SYST EM. *
254 **
255 * Parm table for C R E AT E:

B E A O: 07 256 D F B $07 ;Number of parame ters
B E A1: B C B C 257 DA TXBU F-1 .•Pa thname pointer

B E A3: C3 258 D F B $C3 ;Access code
B E A4: 00 259 D F B 0 [F ile type code
B E A5: 00 00 260 DW $0000 ;Auxiliary type code
B E A7: 00 261 D F B 0 ;S torage type code (usua lly 1)
B E A8: 00 00 262 DW 0 ;Crea te da te
B E AA: 00 00 263 DW 0 .•Crea te time

264

265 * Parm table for D E STR O Y , S E T_PR E FIX , G E TPR E FIX:

B E A C: 01 266 D F B $01 ;Number of parame ters
B E AD: B C B C 267 DA TXBU F-1 ;Pa thname pointer

268

269 * Parm table for R E NAME:

B E A F: 02 270 D F B $02 ;Number of parame ters
B E B O: B C B C 271 DA TXBU F-1 [O ld pa thname pointer

B E B2: 80 02 272 DA TXBU F2 ;New pa thname pointer

273

274 * Parm table for S E T FILE IN F O and G E T FILE IN F O:

B E B4: 00 275 D F B $00 ~;=7 (S FI) or =10 (G FI)

B E B5: B C B C 276 DA TXBU F-1 .•Pa thname pointer

B E B7: 00 277 D F B $00 ;Access code

B E B8: 00 278 D F B $00 ,-F ile type code
B E B9: 00 00 279 DW $0000 ;Auxiliary type code
B E BB: 00 280 D F B $00 [S torage type code (G FI only)
B E B C: 00 00 281 DW $0000 ;B locks used (G FI only)
B E B E: 00 00 282 DW $0000 [Modifica tion da te

B E C O: 00 00 283 DW $0000 [Modifica tion time

B E C2: 00 00 284 DW $0000 [Crea te da te (G FI only)
B E C4: 00 00 285 DW $0000 [Crea te time (G FI only)

286

287 * Parm table for O N LIN E , S E T MARK , G E T MARK .
288 � S E T E O F , G E T E O F ,S E T BU F , G E T BU F:

B E C6: 02 289 D F B $02 [Number of parame ters
B E C7: 00 290 D F B $00 [Unit or re ference number
B E C8: 00 291 D F B $00 ,-2-byte pointer to da ta buffer
B E C9: 00 292 D F B $00 ; (BU F , 0N_LIN E), or 3-byte
B E C A: 00 293 D F B $00 ; position (MARK , E O F)

294

295 * Parm tabl e for O P E N:

246 System Programs

Table 5-5 Continued

B E F3: B8 B3

B E C B: 03 296 D F B $03 ;Number of parame ters

B E C C: B C B C 297 DA TXBU F-1 .•Pa thname pointer

B E C E: 00 00 298 DA $0000 ;Buffer pointer (IK)

B E D O: 00 299 D F B 0 .•Re ference number

300

301 * Parm table for N E WLIN E:

B E D1: 03 302 D F B $03 ;Number of parame ters

B E D2: 00 303 D F B 0 ;Re ference number

B E D3: 7F 304 D F B $7F ;Ignore sta te of high bit

B E D4: 0D 305 D F B $0D ;Newline is $0D or $8D

306

307 * Pa rm table for R E AD and WRIT E:

B E D5: 04 308 D F B $04 ;Number of parame ters

B E D6: 00 309 D F B $00 ;Re ference number

B E D7: 00 00 310 DA $0000 ;Buffer pointer

B E D9: 00 00 311 DW $0000 ;Number of bytes to read/write

B E DB: 00 00 312 DW $0000 ;Actua l number read/written

313

314 * Parm table for CLO S E and FLUSH:

B E DD: 01 315 D F B $01 ,-Number of parame ters

B E D E: 00 316 D F B 0 [Re ference number

317

B E D F: 00 318 D F B 0 [Unused byte

319

B E E O: C3 C F D O 320 AS C " C O PYRIG HT APPLE , 1983"

B E E3: D9 D2 C9 C7 C8 D4 A0 C l

B E E B: D O D O C C C5 A C A O B l B9

321

322 ***

323 * C a ll G E TBU F R to free up "A" pages above HIMEM. If *

324 * the carry flag is se t upon exit, there was not *

325 * enough memory to do so; otherwise , "A" will *

326 * conta in the number of the first page of the *

327 * buffer. C a ll F R E E BU F R to remove the buffer, and *

328 * restore HIMEM to its bootup va lue (tha t va lue is *

329 * stored a t PA G E T O P). *

330 ***

B E F F: 00

B E F5: 4C B5 A2 331 G E TBU F R JMP PA G E G E T [Reserve "A" pages above HIMEM

B E F8: 4C 01 A3 332 F R E E BU F R JMP PA G E F R E E [Restore origina l HIMEM

B E F B: 96 333 PA G E T O P D F B $96 [HIMEM page on boot

334

B E F C: 00 00 00 335 DS 4 [Unused bytes

The BASIC .SYST EM G loba l Page: $B E00-$B E F F 247

Important: When using G O SYST EM, be care ful not to disturb the va lues of certa in
parame ter table entries tha t BASIC .SYST EM se ts up as constants. These parame ters are

• The pa thname pointers in a ll parame ter lists

• The time and da te entries a t $B E AA-$B E AB and $B E A8-$B E A9 in the
C R E AT E parame ter list (they should both be zero)

• The “newline character” entry a t $B E D4 in the N E WLIN E parame ter list (it
should a lways be $0D)

If you want to temporarily change any of these parame ters, save the ir va lues first, then
restore them a fter the G O SYST EM ca ll.

In the following section we discuss some of the other important areas of the
BASIC .SYST EM globa l page .

BASIC .SYST EM E RR O R HANDLIN G

If a ca ll to G O SYST EM results in a system error, G O SYST EM branches to BAD-
C ALL ($B E8B), a subroutine tha t converts the MLI error code in the accumula tor
into a BASIC .SYST EM (Applesoft) error code . Table 5-6 shows the correspondence
be tween a given MLI code and a BASIC .SYST EM code .

Note tha t only 19 MLI error codes are specifica lly dea lt with by BAD C ALL. It
automa tica lly converts a ll others to error code 8 (“I/O Error”). Moreover, four BASIC . �
SYST EM error codes do not correspond to any MLI error code a t a ll; these error
codes are genera ted by illega l conditions within BASIC .SYST EM itse lf—such as an
a ttempt to load a program tha t is too large .

A fter BASIC .SYST EM converts the MLI error code , it ca lls E RR O UT ($B E09) to
handle the error. This subroutine first stores the error code in E RR C O D E ($B E0F)
and a t $D E (the Applesoft interpre ter expects to find an error code a t $D E) and then
checks if the Applesoft O N E RR G O T O error-trapping fea ture is active . If it is, control
passes to the interna l Applesoft error-handling subroutine . If it isn’t, BASIC .SYST EM
ca lls PRINT E RR ($B E0C) to print the error message corresponding to the error code
(see Table 5-6).

If you are writing an assembly-language program tha t opera tes in an Applesoft-
BASIC .SYST EM environment, you can ca ll E RR O UT or PRINT E RR to handle er�
rors. But you must ensure tha t you ca ll these subroutines with a BASIC .SYST EM
(Applesoft) error code , ra ther than an MLI error code , in the accumula tor. You can
execute a JSR BAD C ALL instruction (with the error code in the accumula tor) to
perform the necessary error code conversion.

E X E C UTIN G DISK C OMMAND STRIN G S F R OM ASS EMBLY LAN G UA G E

An assembly-language program can use the D O S CMD ($B E03) subroutine in the
BASIC .SYST EM globa l page to interpre t and execute a standard BASIC .SYST EM

248 System Programs

Table 5-6 BASIC .SYST EM error codes and messages

BASIC .SYST EM Error Code MLI Error Code BASIC S! ST EM Error Message

$00 $00 [no error occurred]

$02 $4D RAN G E E RR O R

$03 $28 N O D E VIC E C O NN E C T E D

$04 $2B WRIT E PR O T E C T E D

$05 $4C E ND O F DATA

$06 $45,$44 PATH N O T F O UND

$07 $46 PATH N O T F O UND

$08 [a ll others] I/O E RR O R

$09 $48 DISK F ULL

$0A $4E FILE LO C K E D

$0B $53 INVALID PARAME T E R

$0C $56,$42,$41 N O BU F F E RS AVAILABLE

$0D $4B FILE TYP E MISMAT C H

$0E — PR O G RAM T O O LAR G E

$0F — N O T DIR E C T C OMMAND

$10 $40 SYNTAX E RR O R

$11 $49 DIR E C T O RY F ULL

$12 $43 FILE N O T O P E N

$13 $47 DUPLIC AT E FILE NAME

$14 $50 FILE BUSY

$15 — FILE(S) STILL O P E N

$16 — DIR E C T C OMMAND

disk command stored in the Apple input buffer a t $200 as an AS CII string followed by

a carriage re turn code ($8D). D O S CMD is e ffective only when an Applesoft program

is actua lly running, so an Applesoft program must use the C ALL command to access

the assembly-language program.

Executing D isk Command S trings from Assembly Language 249

(Under D O S 3.3, assembly-language programs can execute disk commands by
sending code $04 (Control-D) to the standard character output subroutine , C O UT
($F D E D), followed by the AS CII codes for the command and a carriage re turn code .
BASIC .SYST EM does not support this technique .)

D O S CMD can execute most, but not a ll, BASIC .SYST EM disk commands. The
commands it does not handle properly are - (dash), BUN , LO AD , C HAIN , R E AD ,
WRIT E , APP E ND , and E X E C . When you ca ll D O S CMD to execute a command it
can handle , it re turns a BASIC .SYST EM error code in the accumula tor. If no error
occurred, the code is 0, and the carry flag is clear. If an error did occur, the carry flag
is se t. Handle an error condition by ca lling E RR O UT ($B E09) or PRINT E RR
($B E0C) (as described in the previous section) or by passing control to your own
error-handling code .

Important: Just be fore a program using D O S CMD ends, it must clear the carry flag
and execute a CLC instruction. If it ends with the carry flag se t, the Applesoft
program tha t ca lled it may not work properly.

ADDIN G C OMMANDS T O BASIC .SYST EM

One of the best fea tures of BASIC .SYST EM is its support of user-de fined externa l
commands. To see how to extend BASIC .SYST EM’S standard command se t, le t’s take a
look a t exactly wha t happens when BASIC .SYST EM encounters a string of characters tha t
may represent a va lid command. F igure 5-2 shows a flowchart of this procedure .

The first thing BASIC .SYST EM does is check if one of its 32 standard commands
has been specified (C ATALO G , O P E N , WRIT E , and so on). If one has been, it
handles it interna lly.

But if the command can’t be identified, BASIC .SYST EM does not immedia te ly re turn
an error code; ra ther, it ca lls a subroutine in its globa l page , E XTRN CMD ($B E06), to see
if a user-insta lled externa l command handler will cla im the command. (The handler’s
address is a lways stored a t $B E07 and $B E08.) If no externa l command handler has been
insta lled, E XTRN CMD simply jumps to a “do-nothing” RTS instruction a t XR E TURN
($B E9E). If the externa l command handler does not cla im the command, and if the
command was issued from within a program, a BASIC .SYST EM syntax error condition
occurs. If, on the other hand, the command was entered in Applesoft command mode , it is
passed on for considera tion by the Applesoft interpre ter. Only if the interpre ter does not
recognize it does an Applesoft syntax error occur.

Le t’s assume an externa l command handler has been insta lled so tha t a ca ll to
E XTRN CMD will pass control to it. Such a handler first executes a CLD instruction,
which Apple says it will use as an identifica tion byte in future versions of BASIC .SYS�
T EM. The handler then de termines whe ther its command has, in fact, been entered; it
can do this by checking if the first few characters in the command line ma tch the
expected command string. (The command line is stored in the Apple’s standard input

250 System Programs

F igure 5-2 A flowchart showing how BASIC .SYST EM executes externa l commands

I________________________ „________________________I

Externa l
command

code

Adding Commands to BASIC .SYST EM 251

buffer beginning a t $200 in AS CII form with the high bit of each code se t to 1.) If they
don’t ma tch, the subroutine must end with the carry flag se t to indica te tha t it did not
cla im the command.

If the handler de tects the correct command, the handler can do one of two things.
It can proceed to parse any expected parame ters (such as a pa thname , one of the 11
BASIC .SYST EM le tter parame ters, or specia l parame ters de fined by the command
itse lf) from the command line and then actua lly execute the command. A lterna tive ly, if
a ll the possible parame ters are capable of be ing recognized by BASIC .SYST EM, the
handler can ask BASIC .SYST EM to do the parsing and syntax checking; the handler
does this by se tting certa in bits in PBITS ($B E54) and PBITS +1 ($B E55) to indica te
the required command syntax. If BASIC .SYST EM does the parsing and it de tects an
error, BASIC .SYST EM handles the error itse lf. Table 5-1 shows the command line
parame ters supported by BASIC .SYST EM and the range of va lues tha t they can take on.

W ith three exceptions, each bit in PBITS and PBITS +1 is a flag indica ting
whe ther the particular parame ter associa ted with tha t bit is required or a llowed. The
exceptions are bits tha t indica te particular characteristics of the command: whe ther a
pre fix must be fe tched for it, whe ther it is va lid in Applesoft command mode , and
whe ther a file tha t is specified should be crea ted if it doesn’t a lready exist. The
meaning of each bit is as follows:

PBITS ($B E54)

bit 7 F e tch the current pre fix if a pa thname is not

specified. The command line cannot conta in a

pa thname and a se t of parame ters unless bit 0 of

PBITS is a lso se t to 1.

bit 6 A slot number is required (for example , IN#, PR#).

The slot number must be the first parame ter a fter

the command name , and no pa thnames can appear on

the command line (so bit 0 and bit 1 of PBITS must

both be 0).

bit 5 The command is not va lid in command mode .

bit 4 A pa thname is optiona l. Pa thnames and parame ters

cannot be specified on the same command line .

bit 3 Crea te a file if the one specified does not exist,

bit 2 The file type parame ter is a llowed (T parame ter).

The T parame ter can be a number or a three-

character file type mnemonic corresponding

to a file type code (see Table 2-4 in Chapter 2).

For example , ,TDIR se lects the file type code

for a DIR file ($0F).

bit 1 A second pa thname is required (for example ,

R E NAME). Two pa thnames must be specified, or

the first le tter parame ter will be incorrectly

interpre ted as a pa thname .

bit 0 A pa thname is a llowed. Pa thnames and parame ters

can be specified on the same command line .

If the S and D bit (bit 2) of PBITS+1 is a lso

se t to 1, a pa thname is manda tory, and parame ters

252 System Programs

a lone cannot be specified without genera ting a

syntax error.

PBITS+1 ($B E55)

bit 7 The A parame ter is a llowed.

bit 6 The B parame ter is a llowed.
bit 5 The E parame ter is a llowed.

bit 4 The L parame ter is a llowed.
bit 3 The 8 parame ter is a llowed.
bit 2 The S and D parame ters are a llowed. The S (slot)

and D (drive) parame ters must correspond to an

existing disk drive if preceded by a filename; if

preceded by a slot number specifica tion (see bit 6

of PBITS), they do not. If the S and D parame ters

are a llowed, but not specified, the ir va lues

de fault to those stored a t D E F SLT ($B E3C) and

O E F DRV ($B E3D). If this bit is se t, and no pre fix

is active , the name of the volume directory on the

slot S , drive D drive is fe tched and used to

crea te a full pa thname whenever a filename or

partia l pa thname is specified. If a pre fix is

active , it will be fe tched like this only if an S

or D parame ter is actua lly specified.
bit 1 The F parame ter is a llowed.

bit 0 The R parame ter is a llowed.

(One other parame ter is a lways a llowed and a lways parsed: the V (volume) parame ter.
BASIC .SYST EM commands tolera te this parame ter but do not use it; it has been

included to ma inta in compa tibility with D O S 3.3 commands tha t do use it.)
The descriptions for PBITS and PBITS + 1 apply when the corresponding bit is se t

to 1. For example , if the command a llows a pa thname and A and E parame ters, the

handler would se t PBITS to $01 and PBITS +1 to $A0. If a pa thname is actua lly

manda tory, bit 2 of PBITS + 1 (the S and D bit) must be se t to 1 as we ll. As indica ted

above , this actua lly serves two purposes: F irst, it te lls BASIC .SYST EM to automa ti �
ca lly crea te a full pa thname if one is not specified, and second, it te lls BASIC .-
SYST EM a pa thname must be specified.

If BASIC .SYST EM is not to do any parsing, PBITS must be se t to 0. Whe ther or

not the command handler does its own parsing, if the command is found, the subrou �

tine must store the length of the command string minus 1 in XLE N ($B E52), store 0

(the code number for an externa l command) in X C NUM ($B E53), and then store a t
XTRNADDR ($B E50-$B E51) the address control is to pass to a fter BASIC .SYST EM

ultima te ly parses the command line . The la tter step must be performed even if the

handler has indica ted tha t no parsing need be performed. Lastly, the carry flag must
be cleared be fore executing the RTS to re turn control to BASIC .SYST EM.

When control re turns to BASIC .SYST EM, the parame ters in the command line are

parsed according to the instructions stored in PBITS and PBITS +1 (if applicable).
The va lues of the parame ters tha t are actua lly parsed from the line are stored in a

globa l page parame ter table loca ted from $B E58 to $B E6F (see Table 5-7); if a

Adding Commands to BASIC .SYST EM 253

Table 5-7 BASIC .SYST EM parame ter table3

N O T E S:

aThe va lue associa ted with a parame ter is stored in this table as it is parsed by BASIC .SYST EM. If S and

D parame ters are a llowed, but not specified, the de fault va lues stored a t D E F SLT ($B E3C) and

D E F DRV ($B E3D) are transferred to this table .
bA bug in BASIC .SYST EM (versions 1.1 and 1.2) causes the V parame ter to be stored in @ PARM ra ther

than VPARM (as shown). This means V and @ cannot be used toge ther on the same command line

because the va lue of the first parame ter specified will be overwritten by the va lue of the other.

Loca tion Symbolic Name Meaning

$B E58-$B E59 APARM A (address) parame ter

$B E5A-$B E5C BPARM B (byte #) parame ter

$B E5D-$B E5E E PARM E (end addr) parame ter

$B E5F-$B E60 LPARM L (length) parame ter

$B E61 SPARM S (slot) parame ter

$B E62 DPARM D (drive) parame ter

$B E63-$B E64 F PARM F (fie ld #) parame ter

$B E65-$B E66 RPARM R (record #) parame ter

$B E67 VPARM V (volume #) parame ter13

$B E68-$B E69 @ PARM @ (line #) parame ter*3

$B E6A TPARM T (file type code) parame ter

$B E6B SLPARM slot (for IN#, PR#) parame ter

$B E6C-$B E6D PATH1 Pointer to first pa thname

$B E6E-$B E6F PATH2 Pointer to second pa thname

particular parame ter is not de tected in the parsing opera tion, its entry in the table

stays as it was be fore the externa l command was executed. The actua l parame ters tha t
were successfully parsed are indica ted by se tting the appropria te bits in F BITS

($B E56) and F BITS+ 1 ($B E57). (Table 5-7 describes a BASIC .SYST EM version 1.1

and 1.2 bug tha t hinders the proper parsing of a command line tha t uses both the V

and @ parame ters.)
Note tha t the first pa thname parsed from a command line is stored in a buffer

pointed to by VPATH1 ($B E6C) and the second is stored in a buffer pointed to by

VPATH2 ($B E6E). These are the same buffers pointed to by the pa thname pointers in

254 System Programs

the MLI parame ter tables used by BASIC .SYST EM’s G O SYST EM ($B E70) subrou �

tine . This means an externa l command handler can use G O SYST EM to perform MLI

commands without first having to modify these pointers.
A fter a successful parse , BASIC .SYST EM jumps to the subroutine whose address is

stored a t XTRNADDR ($B E50-$B E51); this is the second ha lf of the externa l com�

mand handler. This subroutine can actua lly execute the command (if this wasn’t done

in the first ha lf) and then re turn with a zero in the accumula tor and the carry flag clear

if there was no error.
If an error is de tected, it can be passed to BASIC .SYST EM for handling by se tting

the carry flag and placing the appropria te error code in the accumula tor (the BASIC . �
SYST EM error code , not the MLI error code). A lterna tive ly, the command handler

can dea l with the error itse lf; if it does, the carry flag must be cleared and the

accumula tor se t to 0 be fore re turning to BASIC .SYST EM.
Note tha t if BASIC .SYST EM does the parsing, the second part of the command

handler can examine F BITS to de termine exactly wha t parame ters were found and

then read the ir va lues from the table beginning a t $B E58. If some parame ters (marked

as optiona l in PBITS and PBITS +1) must be specified, the second part of the

command handler can check the appropria te bits of F BITS and F BITS +1 to ensure

tha t they are 1; if they’re not, an error condition can be flagged by loading the

accumula tor with the BASIC .SYST EM error code (16 for “syntax error”) and se tting

the carry flag be fore re turning.

The O NLIN E Command

In this section, we see how to design and insta ll the handler for a new BASIC . �
SYST EM command ca lled O NLIN E . This command displays the names of any, or a ll,
of the disk volumes currently ava ilable to the system. O NLIN E is use ful if you

habitua lly forge t the name of a disk microseconds a fter putting it into a disk drive .
The syntax of the O NLIN E command is

O NLIN E [,S#] [,D#J

where the bracke ts mean the enclosed parame ter (slot number or drive number) is

optiona l. If a specific slot or drive number is specified, only the name of the volume

for the corresponding disk device is displayed. But if both parame ters are omitted, the

volume names for a ll disk devices are displayed. The O NLIN E command can be

typed in while in Applesoft command mode , or it can be executed within a program

using a PRINT C HR$(4);“O NLIN E” sta tement.
Table 5-8 shows the O NLIN E insta lla tion program, which is executed with the

BRUN command. The first part of the program insta lls the image of the O NLIN E

command handler code tha t begins a t $2100. It first finds a sa fe spot above HIMEM

to store the image , pa tches it so tha t it will execute a t this new position, and then

moves the code to its new home . It a lso links in the command handler by storing its

Adding Commands to BASIC .SYST EM 255

Table 5-8 Adding the O NLIN E command to BASIC .SYST EM

3 * BASIC .SYST EM " O NLIN E " C OMMAND *
4 * *

5 * O NLIN E [,Sn] [,Dn] *

6 * *

7 * Copyright 1985-1988 G ary B . Little *

8 *

9 * Last modified: August 26, 1988 *

10 *

12 SBLO C K E Q U $3C ;Parame ters for block move

13 E BLO C K E Q U $3E

14 F BLO C K E Q U $42

15 HI MEM E Q U $73 ;Use this as O N_LIN E buffer

16

17 IN E Q U $200 .•Command input buffer

18

19 E XTRN CMD E Q U $B E06 ;Externa l command JMP opcode

20 E RR O UT E Q U $B E09 ;Error handler

21 XTRNADDR E Q U $B E50 ;S tart of externa l cmd handler

22 XLE N E Q U $B E52 ;Externa l cmd name length (-1)

23 X C NUM E Q U $B E53 ;Command # (0 for externa l)

24 PBITS E Q U $B E54 ;Command parame ter bits

25 F BITS E Q U $B E56 ;Parame ters found in parse

26 VSLO T E Q U $B E61 ;S lot parame ter specified

27 VDRIV E Q U $B E62 ;Drive parame ter specified

28 G E TBU F R E Q U $B E F5 ;G e t a free space

29

30 ML I E Q U $B F O O ;Entry point to MLI

31

32 C R O UT E Q U $F D8E ;Print a C R

33 C O UT E Q U $F D E D ;Character output subroutine

34 MO V E E Q U $F E2C ;B lock move subroutine

35

36 O R G $2000

37

38 * C a lcula te # of pages tha t we need to reserve:

39

2000: 38 40 S E C

2001: A9 22 41 LDA #>E ND

2003: E9 21 42 SB C #>CMD C O D E

2005: 8D 74 20 43 STA PA G E S

2008: E E 74 20 44 IN C PA G E S

45

200B: AD 74 20 46 LDA PA G E S ,-Reserve the pages for the

200E: 20 F5 B E 47 JSR G E TBU F R ; command handler

2011: 90 05 48 B C C INSTALL .•C arry clear if O K

49

2013: A9 O E 50 LDA #14 PR O G RAM T O O LAR G E " error

256 System Programs

Table 5-8 Continued

99

move to fina l loca tion:

61

62

63

64

65

66

67

* Insta ll the externa l command handler *
* by storing its address a fter the *
* JMP a t E XTRN CMD . *

2015: 4C 09 B E 51

52

JMP E RR O UT

2018: 8D 75 20 53 INSTALL STA P G START ;Save starting page #

54

55 * Insta ll the new command handler:

56

201B: AD 07 B E 57 LDA E XTRN CMD+1 ;Se t up link to
201E: 8D 26 21 58 STA N E XT CMD+1 ; existing externa l command

2021: AD 08 B E 59 LDA E XTRN CMD+2

2024: 8D 27 21 60 STA N E XT CMD+2

new page #

2027: A9 00 68 LDA #0

2029: 8D 07 B E 69 STA E XTRN CMD+1

202C: AD 75 20 70 LDA P G START

202F: 8D 08 B E 71 STA E XTRN CMD+2

72

73 * Re loca te the code:

74

2032: AD 75 20 75 LDA P G START ;G e t

2035: 8D O F 21 76 STA CMD C O D E+$O F

2038: 8D 1A 21 77 STA CMD C0D E+S1A

203B: 8D 32 21 78 STA CMD C0D E+J32

203E: 8D 49 21 79 STA CMD C0D E+$49

2041: 8D 4E 21 80 STA CMD C0D E+$4E

2044: 80 55 21 81 STA CMD C0D E +$55

2047: 8D 6F 21 82 STA CMD C00E +$6F

204A: 8D 75 21 83 STA CMD C0D E+S75

204D: 8D 8A 21 84 STA CMD C0D E +J8A

2050: 8D A4 21 85 STA CMD C0D E+SA4

2053: 8D D5 21 86 STA CMD C0D E+$D5

87

88 * Se t up parame ters for block i

89

2056: A9 00 90 LDA #<CMD C O D E

2058: 85 3C 91 STA SBLO C K

205A: A9 21 92 LDA #>CMD C0D E

205C: 85 3D 93 STA SBLO C K+1

94

205E: A9 03 95 LDA #<E ND

2060: 85 3E 96 STA E BLO C K

2062: A9 22 97 LDA #>E ND

2064: 85 3F 98 STA E BLO C K+1

Adding Commands to BASIC .SYST EM 257

Table 5-8 Continued

;(Must start on page boundary)

CMD C O D E E Q U
�

;Length of command handler

.•S tarting page of cmd handler

112

113

114

115

116

117

118

119

* This is the command checker. It *

* scans the input buffer to see *

* if the command has been entered. *

;Move it!

2066: A9 00 100 LO A #0

2068: 85 42 101 STA F BLO C K

206A: AD 75 20 102 LDA P G START

206D: 85 43 103 STA F BLO C K+1

104

206F: A O 00 105 LDY #0

2071: 4C 2C F E 106 JMP MO V E

107

2074: 00 108 PA G E S DS 1

2075: 00 109 P G START DS 1

110

2076: 00 00 00 111 DS $2100-*

2079: 00 00 00 00 00 00 00 00

2081: 00 00 00 00 00 00 00 00

2089: 00 00 00 00 00 00 00 00

2091: 00 00 00 00 00 00 00 00

2099: 00 00 00 00 00 00 00 00

20A1: 00 00 00 00 00 00 00 00

20A9: 00 00 00 00 00 00 00 00

20B1: 00 00 00 00 00 00 00 00

20B9: 00 00 00 00 00 00 00 00

20C1: 00 00 00 00 00 00 00 00

20C9: 00 00 00 00 00 00 00 00

20D1: 00 00 00 00 00 00 00 00

20D9: 00 00 00 00 00 00 00 00

20E1: 00 00 00 00 00 00 00 00

20E9: 00 00 00 00 00 00 00 00

20F1: 00 00 00 00 00 00 00 00

20F9: 00 00 00 00 00 00 00

2100: D8 120 CLD

2101: A O 00 121 LDY #0

2103: A2 00 122 LDX #0

2105: BD 00 02 123 C HK CMD LDA IN ,X ;G e t command character

2108: E8 124 I NX

2109: C9 A O 125 CMP #$A0 ; Is it a blank?

210B: F O F8 126 B E Q C HK CMD ;If it is, ignore it

210D: D9 E E 21 127 CMP CMDNAME .Y .-Same as our command?

2110: F O O B 128 B E Q C HK CMD1 ;Yes, so branch

2112: C9 E O 129 CMP #$E0 ;Lowercase?

2114: 90 O E 130 B C C N O T F O UND ;No, so branch

2116: 29 D F 131 AND #$D F ;Convert to uppercase

258 System Programs

Table 5-8 Continued

2118: D9 E E 21 132 CMP CMDNAME .Y ;O K now?

211B: D O 07 133 BN E N O T F O UND ;No, so branch

211D: C8 134 C HK CMD1 INY

211E: C O 06 135 C PY #CMDLE N-CMDNAME ;A t end?

2120: D O E3 136 BN E C HK CMD ;No, so branch

2122: F0 04 137 B E Q S E TRULE S ;Yes, so branch

138

2124: 38 139 N O T F O UND S E C ;Se t carry to indica te fa ilure

2125: 4C 00 00 140 N E XT CMD JMP $0000 ;(F ill in when insta lled)

141

2128: 88 142 S E TRULE S D E Y

2129: 8C 52 B E 143 STY XLE N ;S tore command length-1

144

212C: A9 51 145 LDA #<E X E C UT E ;Put address of command handler

212E: 8D 50 B E 146 STA XTRNADDR ; into XTRNADDR

2131: A9 21 147 LDA #>E X E C UT E

2133: 8D 51 B E 148 STA XTRNADDR+1

149

2136: A9 00 150 LDA #0

2138: 8D 53 B E 151 STA X C NUM ;Externa l cmd number = 0

152

153 * Se t up string parsing rules:

154

213B: A9 10 155 LDA #$10 .•Pa thname is optiona l

213D: 8D 54 B E 156 STA PBITS

2140: A9 04 157 LDA #$04 ;S lot, drive a llowed

2142: 8D 55 B E 158 STA PBITS+1

159

2145: A5 73 160 LDA HI MEM ;Se t O N_LIN E buffer (a t least

2147: 8D E C 21 161 STA BU F F E R ; 256 bytes) to free area

214A: A5 74 162 LDA HIMEM+1 ; beginning a t HIMEM

214C: 8D E D 21 163 STA BU F F E R+1

164

214F: 18 165 CLC ;C l ear carry to indica te success

2150: 60 166 RTS

167

168 * BASIC .SYST EM comes here a fter it has

169 * successfully parsed the command line:

170

2151: A9 00 171 E X E C UT E LDA #0

2153: 8D E B 21 172 STA UNITNUM ;(Assume a ll volumes)

2156: AD 57 B E 173 LDA F BITS+1 ;Examine result of parse

2159: 29 04 174 AND #$04 ;S lot, drive specified?

215B: F O 13 175 B E Q D O C ALL ;No, so check everything

215D: AD 61 B E 176 LDA VSLO T ;G e t slot # specified

2160: O A 177 ASL

2161: O A 178 ASL

2162: O A 179 ASL

2163: O A 180 ASL ,-S lot * 16

Adding Commands to BASIC .SYST EM 259

Table 5-8 Continued

2164: A E 62 B E 181 LDX VDRIV ;G e t drive # specified

2167: E O 02 182 C PX #2 .•Drive 2?

2169: D O 02 183 BN E SAV E UN ;No, so branch

216B: 09 80 184 O RA #$80 ;Se t "drive 2" bit

216D: 80 E B 21 185 SAV E UN STA UNITNUM ,-S tore slot, drive as unit num

186

2170: 20 00 B F 187 D O C ALL JSR MLI

2173: C5 188 D F B $C5 .-O N LIN E ca ll

2174: E A 21 189 DA OLPARM ,-Address of parm table

190

2176: 20 8E F D 191 JSR C R O UT

2179: A O 00 192 LDY #0

217B: 98 193 S C AN TYA

217C: 48 194 PHA

217D: B l 73 195 LDA (HIMEM),Y ;G e t slot, drive + length

217F: F O 61 196 B E Q S C AN2 ;If $00, then a ll done

2181: 29 O F 197 AND #$0F ; Isol a te length bits

2183: F O 4E 198 B E Q N E XTNAME ;If 0, then must be error

2185: 48 199 PHA

200

2186: A2 00 201 LDX #0

2188: BD F4 21 202 PRTMS G1 LDA SLO TMS G .X ;Print slot #

218B: F O 06 203 B E Q PRTNUM1

218D: 20 E D F D 204 JSR C O UT

2190: E8 205 I NX

2191: D O F5 206 BN E PRTMS G1

207

2193: B l 73 208 PRTNUM1 LDA (HIMEM),Y ;G e t slot, drive + length

2195: 29 70 209 AND #$70 ;Isol a te slot bits

2197: 4A 210 LSR

2198: 4A 211 LSR

2199: 4A 212 LSR

219A: 4A 213 LSR ;We now have slot #

219B: 09 B O 214 O RA #$B0 ;Convert to AS CII digit

219D: 20 E D F D 215 JSR C O UT

216

21A0: A2 00 217 LDX #0

21A2: BD F A 21 218 PRTMS G2 LDA DRIV EMS G ,X ;Print drive #

21A5: F O 06 219 B E Q PRTNUM2

21A7: 20 E D F D 220 JSR C O UT

21AA: E8 221 INX

21AB: D O F5 222 BN E PRTMS G2

223

21AD: A2 B l 224 PRTNUM2 LDX #$B1 jAssume drive 1

21A F: B l 73 225 LDA (HIMEM),Y

21B1: 10 02 226 BPL PSKIP ;Branch if drive 1

21B3: A2 B2 227 LDX #$B2 ;Must be drive 2

21B5: 8A 228 PSKIP TXA

21B6: 20 E D F D 229 JSR C O UT

260 System Programs

Table 5-8 Continued

21B9: A9 BA 230 LDA #":

21BB: 20 E D F D 231 JSR C O UT

21B E: A9 A O 232 LDA #$A0

21C0: 20 E D F D 233 JSR C O UT

234

21C3: 68 235 PLA

21C4: AA 236 TAX

21C5: C8 237 PRTNAME I NY

21C6: B l 73 238 LDA (HIMEM),Y ;G e t next character in name

21C8: 09 80 239 O RA #$80 ;Se t high bit
21C A: 20 E D F D 240 JSR C O UT ; and display it
21C D: C A 241 D E X

21C E: D O F5 242 BN E PRTNAME ;Branch until done

21D0: 20 8E F D 243 JSR C R O UT

244

21D3: AD E B 21 245 N E XTNAME LDA UNITNUM ;Was only one volume specified?

21D6: D O O A 246 BN E S C AN2 ;Yes, so branch

247

21D8: 68 248 PLA

21D9: 18 249 CLC

2IDA: 69 10 250 AD C #16 ;Move to next name

21D C: A8 251 TAY

21DD: C O E O 252 C PY #224 ;A t end of table?

21D F: D O 9A 253 BN E S C AN ;No, so branch

21E1: 48 254 PHA

255

21E2: 68 256 S C AN2 PLA

21E3: 20 8E F D 257 JSR C R O UT

21E6: 18 258 CLC ;CLC ==> no error

21E7: A9 00 259 LDA #0 ;Error code = 0

21E9: 60 260 RTS

261

21E A: 02 262 OLPARM D F B 2 ;Two parame ters

21E B: 00 263 UNITNUM D F B 0 ;Unit number (DSSS O O O O)

21E C: 00 00 264 BU F F E R DA $0000 ;Device buffer

265

21E E: C F C E C C 266 CMDNAME AS C " O NLIN E " ;Externa l command name

21F1: C9 C E C5

267 CMDLE N E Q U
�

268

21F4: D3 C C C F 269 SLO TMS G AS C "SLO T " ,00

21F7: D4 A O 00

21F A: A C A O C4 270 DRIV EMS G AS C " , DRIV E " ,00

21F D: D2 C9 D6 C5 A O 00

271

272 E ND E Q U
�

Adding Commands to BASIC .SYST EM 261

starting address a t E XTRN CMD + 1 ($B E07) and E XTRN CMD + 2 ($B E08). And,
just in case another user command handler has a lready been insta lled, it grabs the

address previously stored in E XTRN CMD + 1 and E XTRN CMD + 2 and stores it in

the targe t address of a JMP instruction in the body of the O NLIN E command handler.
This JMP is executed only if the O NLIN E handler doesn’t recognize the command

passed to it. This means control a lways da isy-cha ins down to a previously insta lled

externa l command handler so tha t it will have a chance to cla im the command.
The G E TBU F R ($B E F5) subroutine is used to loca te a “sa fe” buffer large enough

to store the command handler. It is ca lled with the number of pages required in the

accumula tor (1). If we run out of room, the carry flag will be se t, and a “program too

large” error message will be printed by ca lling E RR O UT ($B E09). O therwise , the first
memory page in the block freed up will be re turned in the accumula tor. As we saw

earlier in the chapter, we can now use this block to store a program without fear of its

la ter be ing overwritten by file buffers or string variables.
S ince the O NLIN E command handler is not inherently re loca table , a ll re ferences

to interna l absolute addresses must be a ltered to re flect the change in the position of
the code . The re loca tion procedure is re la tive ly simple in our example because the

code for the command handler was assembled on a page boundary, and it is be ing

moved to another page boundary. This means only the high-order part of each

absolute address in the handler need be modified. A lthough it is possible to write a

complex subroutine to automa tica lly pa tch the code , we chose to “manua lly” pa tch it
by inspecting the handler to identify addresses to be changed and then storing the

new page number a t these positions. If you change the handler in any way, you will
have to reca lcula te which addresses must be pa tched and make the necessary changes

to the insta lla tion code .
The code is moved into place by using the system Monitor block move subroutine ,

MO V E ($F E C2). This subroutine moves the block of memory beginning a t the

address stored in $3C-$3D and ending a t the address stored in $3E-$3F to the block

beginning a t the address stored in $42-$43. MO V E must be ca lled with the Y register

se t to zero.
The ma in part of the O NLIN E command handler begins a t CMD C O D E . The first

thing it does is check if the AS CII codes for the word “O NLIN E” or “online” are a t
the beginning of the input buffer a t $200 (intervening spaces are ignored). If not, the

carry flag is se t (indica ting not handled), and the jump a t N E XT CMD is executed; as

expla ined above , this gives a previously insta lled command handler a crack a t identi �
fying the command.

If the “O NLIN E” command is de tected, the length of the command (minus 1) is

stored a t XLE N ($B E52); the externa l command number (0) is stored a t X C NUM

($B E53); and the address of the postparsing subroutine , E X E C UT E , is stored a t
XTRNADDR ($B E50) and XTRNADDR+1 ($B E51). F ina lly, the parsing rules are

stored in PBITS ($B E54) and PBITS +1 ($B E55): pa thname optiona l, slot and drive

a llowed. The pa thname optiona l bit must be se t because the O NLIN E command does

262 System Programs

not use a pa thname . A fter the parsing rules have been se t up, the carry flag is cleared

(“no error”), and an RTS re turns control to BASIC .SYST EM.
BASIC .SYST EM then parses the command line according to the instructions in

PBITS , upda tes F BITS ($B E56) and F BITS +1 ($B E57) to indica te the results of the

parse , and then jumps to E X E C UT E . (Its address was previously stored in XTRNADDR .)
E X E C UT E examines F BITS to see if a specific slot and drive were specified. If so,

the slot and drive specified are re trieved from VSLO T ($B E61) and VDRIV ($B E62)

and used to form the unit number required by the O N LIN E command. If not, the

unit number is se t to 0; this indica tes to the MLI tha t a ll volumes are to be examined.
Once the O N LIN E command has been executed, the names of the active

volumes are stored in the buffer beginning a t HIMEM. (See the discussion of
O N LIN E in Chapter 4 for a description of the structure of this buffer.) The volume

names are then extracted from the buffer and displayed in the following forma t:

SLO T 6, DRIV E 1: T E ST .V OLUME

Adding Commands to BASIC .SYST EM 263

C HAPT E R 6

Interrupts

In this chapter, we see how G S/O S and ProD O S 8 react to and handle interrupt
signa ls genera ted by I/O devices. G S/O S and ProD O S 8 both le t you insta ll assembly �

language subroutines to service sources of interrupts. They a lso de fine rules these

subroutines must follow to ensure they will function smoothly toge ther. In particular,
the rules dicta te the me thod an interrupt-handling subroutine must use to indica te

whe ther it serviced the interrupt.
Be fore we begin, we should review the concept of an interrupt. An interrupt is an

e lectrica l signa l an I/O device sends to the microprocessor in an a ttempt to ge t its

immedia te and undivided a ttention. The signa l is sent down a specia l line connected

be tween a specific pin on the expansion slot connector used by the interrupting device

and the IR Q {interrupt request) pin on the microprocessor. (On the Apple lie and IlG S ,
equiva lent connections are made be tween the microprocessor and each built-in I/O

device capable of interrupting the system.)
An I/O device typica lly genera tes an interrupt signa l when it has new da ta to be

read or when it is ready to rece ive more da ta . When the microprocessor de tects an

active IR Q signa l, it comple tes the current instruction, stops executing the ma in

program, and then passes control to an interrupt-handling subroutine . This subroutine

(insta lled by the opera ting system or the applica tion) is responsible for servicing the

interrupt by clearing the condition tha t caused the interrupt and performing the

necessary I/O opera tion. When it finishes, control re turns to the ma in program a t the

point where it was interrupted, and execution of tha t program continues as if it had

never been disturbed.
The advantage of using an interrupt scheme like this to control I/O devices is tha t

it is the most e fficient one for handling asynchronous I/O opera tions (tha t is, opera �

tions tha t can occur a t any time). If interrupts were not ava ilable , a program would

have to waste a lot of time frequently polling each I/O device in the system to ensure

tha t incoming da ta was not lost or tha t outgoing da ta was be ing pushed out as quickly

as possible . This is comparable to picking up a te lephone without a ringer every few

seconds to see if anyone is ca lling in. By adding the ringer (the interrupt signa l), you

can go about your norma l duties until the phone rings (an active interrupt signa l
occurs), and then you can pick up the te lephone (service the interrupt).

265

C OMMO N INT E RRUPT S O UR C E S

Many I/O devices ava ilable for the Apple II are capable of genera ting interrupts. Le t’s
look a t the sources of interrupts usua lly ava ilable on three of the most common I/O

devices: the clock, the asynchronous seria l interface , and the mouse .

C lock—A clock device is able to keep track of the time and da te without the

assistance of the microprocessor. (The logic is handled by a discre te integra ted

circuit.) It typica lly conta ins a sma ll ba ttery tha t a llows the clock to keep track

of the time even when the computer is off. Most clock cards genera te interrupts

a t regular interva ls: every second, minute , or hour.

Asynchronous seria l interface—An asynchronous seria l interface is most
commonly used to link the computer to printers and modems. It can be told to

genera te interrupts whenever it is ready to send out a character or whenever it
rece ives a character.

Mouse—A mouse is an input device tha t is norma lly capable of genera ting

interrupts when it is moved or its button is pressed.

R E A C TIN G T O INT E RRUPTS

It is important to rea lize tha t the IR Q interrupt signa l is maskable . In other words, it
is possible for a program to instruct the microprocessor to ignore an active IR Q

interrupt signa l. It can do this by executing an S EI (se t interrupt disable flag)

instruction. (The interrupt disable flag is a bit in the microprocessor sta tus register.) If
interrupts are disabled like this, the ma in program running in the system won’t be

disturbed. T ime-critica l opera tions, like disk reads and writes, cannot be interrupted

without loss of da ta , so interrupts are a lways disabled first.
The instruction tha t causes the microprocessor to respond to IR Q interrupts is CLI

(clear interrupt disable flag). An applica tion should clear the interrupt disable flag

whenever possible so tha t it will perform smoothly in an environment in which

interrupting devices may be active .
When the microprocessor rece ives an IR Q signa l, it immedia te ly pushes the

contents of the program counter register and the sta tus register on the stack. If the

processor is a 6502 (or, on the IlG S , a 65816 in 6502 emula tion mode), it passes control
to a low-leve l interrupt handler whose address is stored a t $F F F E-$F F F F (low-order

byte first). If the processor is in 65816 na tive mode , the handler’s address is stored a t
$F F E E-$F F E F in bank $00.

The low-leve l interrupt handler is in the firmware R OM on any Apple II. On

mode ls prior to the Apple IIg s , its ma in duty is to pass control to a high-leve l
interrupt handler whose address is stored in the user-de finable interrupt vector a t
$03F E and $03F F (low-order byte first). On the Apple lies, the low-leve l handler

actua lly tries to process interrupts from built-in devices and passes control to the

user-de finable interrupt vector only if it is unable to do so.

266 Interrupts

A properly designed high-leve l interrupt handler should perform the following

chores in the following order:

• Save the current va lues in the A , X , and Y registers and a ll informa tion about
the current machine sta te .

• C lear the source of the interrupt. (It usua lly does this by reading the sta tus

registers of the I/O device .)

• Service the interrupt by performing the I/O opera tion required.

• Restore the A , X , and Y registers to the ir initia l va lues, and restore the same

machine sta te .

• End with an RTI (re turn from interrupt) instruction.

When ProD O S 8 is active , the user-de finable interrupt vector points to a genera l-
purpose interrupt handler within the ma in body of the opera ting system ca lled the

interrupt dispa tcher. When G S/O S is active , the vector points to a similar dispa tcher

which manages ProD O S 16-style interrupt handlers. G S/O S-style interrupt handlers

actua lly bind to the system a t the low-leve l firmware leve l; control never passes to the

user-de finable interrupt vector unless the interrupt is uncla imed. G S/O S-style inter�

rupt handlers are added to the system with the B indlnt command.
The ProD O S 8 interrupt dispa tcher conta ins no specific code for identifying and

servicing an interrupt. (This isn’t too surprising since it could hardly be expected to

support every possible source of interrupts.) To service an interrupt, it polls each

member in a group of user-insta lled interrupt subroutines, the addresses of which are

stored in an interna l interrupt vector table . These subroutines are integra ted into the

system with the ProD O S 8 ALLO C INT E RRUPT command.
F igure 6-1 shows the events tha t take place when an interrupt occurs under

ProD O S 8. The interrupt dispa tcher takes over and ca lls the first subroutine whose

address it finds in the interrupt vector table . This subroutine will e ither recognize and

cla im the interrupt or not. If it does, the opera ting system restores a ll registers and

re turns to the interrupted program. If it doesn’t, the opera ting system tries aga in by

ca lling the next subroutine whose address is in the interrupt vector table . (The

opera ting system examines the sta te of the carry flag to de termine if the interrupt was

cla imed; if it was cla imed, the carry flag comes back cleared.) This process repea ts

until the interrupt is cla imed, a t which point the interrupt dispa tcher re turns control
to the interrupted applica tion by executing an RTI instruction. If none of the insta lled

subroutines cla im the interrupt, a critica l error occurs and the system hangs.
The advantage of using a dispa tching scheme like this to handle interrupts is tha t it

a llows for the deve lopment of interrupt-handling subroutines tha t are specific to only

one device . Tha t is, a subroutine need not concern itse lf with handling mouse , clock,
seria l, and “you-name-it” interrupts a ll a t once . If the opera ting system rules are

followed, you can easily insta ll a mouse interrupt subroutine from one manufacturer

Reacting to Interrupts 267

Program starts
here Exit here if

Exit here if hangs)
interrupt is

serviced

F igure 6-1 How ProD O S 8 handles interrupts

and a clock interrupt subroutine from another and they should work properly toge ther.
(See Eyes and Lichty’s Programming the 65816 for de ta iled informa tion on how the

6502 and 65816 microprocessors react to interrupt signa ls.)

INT E RRUPTS AND PR O D O S 8

The ProD O S 8 genera l-purpose interrupt-handling subroutine (stored in the user

IR Q vector a t $03F E-$03F F) did not work flawlessly in the first versions of ProD O S

8; the one used in the newest versions of ProD O S 8 do. The mora l is to a lways use the

most current version of ProD O S 8 if you want the system to work smoothly with

interrupts.
You use ALLO C INT E RRUPT to store the address of an interrupt-handling

subroutine a t the next ava ilable loca tion in an 8-byte interrupt vector table in the

ProD O S 8 globa l page beginning a t $B F80. (A dummy $0000 address is stored in the

table if a vector is unused.) Table 6-1 lists a ll the globa l page loca tions used by the
ProD O S 8 interrupt-handling subroutine .

268 Interrupts

Table 6-1 G loba l page da ta areas used by the ProD O S 8 interrupt-handling subroutine

Address Symbolic Labe l Description

$B F80 INTRUPT1 The address of the first user-insta lled interrupt subroutine

$B F82 INTRUPT2 The address of the second user-insta lled interrupt
subroutine

$B F84 INTRUPT3 The address of the third user-insta lled interrupt
subroutine

$B F86 INTRUPT4 The address of the fourth user-insta lled interrupt
subroutine

$B F88 INTAR E G The A register is stored here when an interrupt occurs

$B F89 INTXR E G The X register is stored here when an interrupt occurs

$B F8A INTYR E G The Y register is stored here when an interrupt occurs

$B F8B INTSR E G The stack pointer is stored here when an interrupt occurs

$B F8C INTPR E G The processor sta tus register is stored here when an
interrupt occurs

$B F8D INTBANKID The identifica tion code for the active $Dx bank is stored
here when an interrupt occurs

$B F8E INTADDR The address of the instruction be ing executed when an
interrupt occurred is stored here when an interrupt occurs

The user-insta lled interrupt subroutine must adhere to the following rules:

• Its first instruction must be CLD .

• If the interrupt was not genera ted by its device , it must se t the carry flag (with
an S E C instruction) and exit.

• If its device is the source of the interrupt, it must cla im the interrupt by
performing the necessary I/O opera tion, clear the interrupt condition (usua lly by
reading the device sta tus), clear the carry flag with CLC , and exit.

• It must exit with a ll soft switches in the sta tes they were in on entry. Most of
these switches are used for memory bank switching or for controlling video
display modes. (See Appendix III of Inside the Apple lie .)

• The subroutine must end with an RTS instruction (not an RTI instruction). The
ProD O S 8 interrupt handler executes the necessary RTI instruction.

Interrupts and ProD O S 8 269

There is no need for such a subroutine to save and restore the microprocessor’s
registers. The ma in ProD O S 8 interrupt-handling subroutine automa tica lly does this
for you. Two other nice fea tures of the ProD O S 8 subroutine tha t significantly simplify
the writing of an interrupt subroutine are

• The contents of loca tions $F A-$F F are saved be fore control passes to your
interrupt subroutine and are restored when you’re through. This frees up seven
convenient zero page loca tions for unrestricted use by your subroutine .

• A t least 16 bytes of stack space are freed up be fore your interrupt subroutine
ge ts control. This should be enough for even the most complex subroutines.

The program in Table 6-2 (MO US E .MO V E) shows how to properly insta ll an
interrupt-handling subroutine in a ProD O S 8 environment. To be able to run this
specific example , you must be using an Apple lie with the Apple Mouse option, an
Apple He (or II P lus) with an Apple Mouse card insta lled in slot 4, or an Apple IlG S
with its built-in mouse . The program assumes the mouse firmware is in slot 4; if it’s
not, change the SLO T E Q U 4 directive to re flect the actua l slot. (The mouse firmware
is in slot 7 of the lie P lus and the memory expandable version of the lie , but it is in
slot 4 of earlier mode ls.)

MO US E .MO V E directs the mouse to genera te interrupts whenever it is rolled
across a table top. When the mouse is moved, the interrupt handler identifies the
mouse as the source of the interrupt and then prints the le tter M on the screen. A ll
this happens more or less invisibly to the ma in program tha t is running; it just slows
down by the time it takes to service the interrupt.

The first thing MO US E .MO V E does is insta ll the address of the interrupt handler
(IR Q HNDL) in the ProD O S 8 interrupt vector table using the ALLO C INT E R�
RUPT command. If an error occurs, the program branches to E RR O R and enters the
system Monitor. (An error occurs only if the interrupt vector table is full.) O therwise ,
the next step is to initia lize the mouse and enable mouse movement interrupts by
sending a mouse mode code of 3 to a subroutine ca lled S E TMO US E . The address of
this subroutine , and a ll other standard mouse subroutines, begin somewhere in the
mouse interface’s firmware in page $C4; the exact offse t for each subroutine is stored
in a table beginning a t loca tion $C412. The offse t for S E TMO US E is the zeroth entry
in this table; the offse ts for the other mouse subroutines used are indica ted a t the
beginning of the program.

MO US E R is the standard subroutine the programs ca lls to execute a mouse
subroutine . It is responsible for se tting up the correct subroutine address and placing
the correct numbers in the microprocessor registers be fore passing control to the
mouse firmware .

When the mouse is moved, an interrupt occurs, and ProD O S 8 quickly ca lls
IR Q HNDL. This subroutine first does wha t a ll good interrupt handlers should: It
de termines whe ther the interrupt was caused by the expected source (tha t is, mouse

270 Interrupts

Table 6-2 MO US E .MO V E , a program tha t handles mouse movement interrupts

2

3 * MO US E .MO V E *

4 * Mouse Movement Interrupt Handler *

5 * *

6 * Copyright 1985-1988 G ary B . Little *

7

8

�

* Last

�

modified: August 26, 1988 *

9 � �

10

11 SLO T E Q U 4 ;SIot number of mouse card

12

13 ML I E Q U $B F O O ;Entry point to ProD O S MLI

14

15 MTABLE E Q U SL0T*$100+$C000+$12 ;S tart of R OM table

16

17 * Mouse subroutine numbers:

18 S E TM E Q U 0 ;Se t mouse mode

19 S E RV EM E Q U 1 .•Service mouse interrupt

20 R E ADM E Q U 2 ,-Read mouse

21 INITM E Q U 7 .•Initia lize the mouse

22

23 C O UT E Q U $F D E D ;S tandard output

24

25 O R G $300

26

0300: 4C 06 03 27 JMP E NABLE .•C ALL 768 to enable

0303: 4C 22 03 28 JMP DISABLE .•C ALL 771 to disable

29

30 * Insta ll the interrupt handler:

31

0306: 78 32 E NABLE S EI ;Interrupts off for this

33

0307: A9 02 34 LDA #2

0309: 8D 39 03 35 STA AIPARMS . � S tuff correct parm count

030C: 20 00 B F 36 JSR ML I

030F: 40 37 D F B $40 ;ALLO C_INT E RRUPT

0310: 39 03 38 DA AIPARMS

0312: B0 29 39 B C S E RR O R

40

41 * Prepare the mouse:

42

0314: A2 07 43 LDX #INITM

0316: 20 5B 03 44 JSR MO US E R .•Initia lize the mouse

45

0319: A2 00 46 LDX #S E TM

031B: A9 03 47 LDA #$03 .•(Movement interrupt mode)

031D: 20 5B 03 48 JSR MO US E R ;Se t the mouse mode

49

0320: 58 50 CLI ;Enable 6502 interrupts

Interrupts and ProD O S 8 271

Table 6-2 Continued

0321: 60 51 RTS

52

53 * Here's the code to "remove " the interrupt:

0322: 78 54 DISABLE S EI ;Interrupts off for this

55
0323: A2 00 56 LDX #S E TM

0325: A9 00 57 LDA #0 ;(Turn mouse off)

0327: 20 5B 03 58 JSR MO US E R

59

032A: A9 01 60 LDA #1

032C: 8D 39 03 61 STA AIPARMS ;S tuff correct parm count

032F: 20 00 B F 62 JSR ML I ;(Remove interrupt handle i

0332: 41 63 D F B $41 ;D E ALLO C_INT E RRUPT

0333: 39 03 64 DA AIPARMS

0335: B O 06 65 B C S E RR O R
66

0337: 58 67 CLI

0338: 60 68 RTS
69

0339: 00 70 AIPARMS DS 1 ;# of parms

033A: 00 71 DS 1 .•Interrupt code # put here

033B: 3E 03 72 DA IR Q HNDL ;Address of handler

73
0330: 00 74 E RR O R BRK ;(ine legant error handler!^

75
76 ** � * � � *** � � � � � * � * � * � � * � � * � ***** �

77 * Here's the interrupt handler *

78 ********************************

033E: D8 79 IR Q HNDL CLD

033F: A2 01 80 LDX #S E RV EM

0341: 20 5B 03 81 JSR MO US E R .•Check for mouse interrupt

0344: B O 14 82 B C S IR Q E XIT .•Branch if it isn't

83
0346: A2 02 84 LDX #R E ADM ;C l ear IR Q condition

0348: 20 5B 03 85 JSR MO US E R

86
034B: AD 82 C O 87 LDA $C082 .•Enable monitor R OMs
034E: A9 C D 88 LDA #$C D

0350: 20 E D F D 89 JSR C O UT ;D i splay "M"

0353: AD 8B C O 90 LDA $C08B

0356: AD 8B C O 91 LDA $C08B ;R/W-enable bankl of BSR

92
0359: 18 93 CLC
035A: 60 94 IR Q E XIT RTS

95
96 **

97 * MO US E R executes the mouse subroutine *
98 * specified by the code in the X *
99 * register. �

272 Interrupts

Table 6-2 Continued

035B: 48

100

101

MO US E R PHA

035C: BD 12 C4 102 LO A MTABLE .X ;G e t subroutine addr and

035F: 8D 7C 03 103 STA MO US E ; se t up an indirect JMP

0362: 68 104 PLA

0363: 8E 73 03 105 STX XSAV E

0366: 8C 74 03 106 STY YSAV E

0369: 20 75 03 107 JSR D OMO US E ;Execute subroutine

036C: A C 74 03 108 LDY YSAV E

036F: A E 73 03 109 LDX XSAV E

0372: 60 110 RTS

111

0373: 00 112 XSAV E DS 1

0374: 00 113 YSAV E DS 1

114

0375: A2 C4 115 D OMO US E LDX #$C O+SLO T ;(Mouse in slot 4)

0377: A0 40 116 LDY #SL0T*16

0379: 6C 7C 03 117 JMP (MO US E)

118

037C: 00 119 MO US E DS 1 .•Subroutine address (low)

037D: C4 120 D F B S C O+SLO T ;(H igh part is a lways $Cn)

movement). W ith the Apple Mouse , this de termina tion is made by ca lling the S E RV E �
MO US E subroutine . If the carry flag is se t, some thing e lse must have caused the
interrupt, and the subroutine ends with the carry flag se t.

If the interrupt was caused by movement of the mouse , the interrupt is immedi �
a te ly serviced by displaying the le tter M on the screen by ca lling C O UT ($F D E D),
the standard character output subroutine . Be fore the subroutine ends, the carry flag is
cleared so tha t ProD O S 8 will know tha t the interrupt was serviced.

You must remember to perform one important step be fore ca lling C O UT (or any
other system Monitor or Applesoft subroutine): Read-enable the R OM area from $D000
to $F F F F . Do this by reading $C082, the soft switch tha t disables bank-switched
RAM. This step is necessary because bank-switched RAM (which is where ProD O S 8
resides) is a lways read-enabled when the interrupt subroutine takes over, and so the
R OM tha t shares the same address space is not ava ilable . If you do throw the $C082
switch, you must la ter re-enable the ProD O S 8 bank-switched RAM (which includes
bankl of the $Dx bank) for reading and writing by reading from $C08B twice in
succession.

You can remove interrupt subroutines from ProD O S 8 with the D E ALLO C_
INT E RRUPT command. But be fore doing this, you must ensure tha t interrupts are
disabled on the I/O device . Notice how this is done in MO US E .MO V E . When the

Interrupts and ProD O S 8 273

program is entered a t $303, control passes to the DISABLE subroutine . This subrou �
tine first turns off mouse interrupts by sending the appropria te mode code (0) to
S E TMO US E and then removes the address of the mouse interrupt handler from the
ProD O S interrupt vector table by ca lling the D E ALLO C_ INT E RRUPT command.
(The interrupt code number is a lready in the parame ter table from the previous
ALLO C INT E RRUPT ca ll.)

Interrupts During MLI Commands

The ProD O S 8 interrupt scheme just described works perfectly we ll in most situa �
tions. Adjustments must be made , however, if an interrupt handler has to ca ll a
ProD O S 8 MLI command. (Because of bugs in earlier versions of ProD O S 8, these
adjustments work re liably only when using the most recent versions of ProD O S 8.)

It’s easy to see why changes are necessary. Consider a situa tion in which an interrupt
occurs when the ma in program is in the middle of executing an MLI command. Typica lly,
the MLI command will have stored important informa tion in an MLI da ta area tha t is
used by a ll MLI commands. If another MLI command were permitted to be executed a t
this time , this da ta area might be overwritten, causing unpredictable behavior when the
first MLI command rega ined control. You must ensure , then, tha t an interrupt subroutine
does not make MLI ca lls while another MLI ca ll is pending.

To avoid this potentia lly disastrous situa tion, every interrupt subroutine tha t makes
MLI ca lls must first examine MLIA C TV ($B F9B) to see if an MLI command is
currently active . Reca ll from Chapter 4 tha t bit 7 of MLIA C TV is norma lly 0 hut is se t
to 1 whenever an MLI command is ca lled.

This means if bit 7 of MLIA C TV is 0, the interrupt can be processed norma lly.
If bit 7 is 1, however, an MLI ca ll is in progress, and the MLI ca ll to be made by

the interrupt handler must be de ferred until the current ca ll has finished. Here’s wha t
an interrupt subroutine must do to achieve this result:

• C lear the hardware interrupt condition.

• Take the address stored a t CMDADR ($B F9C-$B F9D), and put it in a sa fe 2-
byte area . (As we saw in Chapter 4, CMDADR holds the address of the
instruction tha t rece ives control a fter a JSR MLI instruction is executed.)

• Replace CMDADR with the address of the portion of the interrupt handler tha t
makes the MLI ca ll.

• C lear the carry flag (CLC), and finish with RTS .

A fter these steps have been performed, control will not re turn to the ma in program
when an interrupt occurs but to the portion of the interrupt handler tha t makes the
MLI ca ll (tha t is, the new address stored in CMDADR). Once the MLI ca ll has been
made , the interrupt handler passes control to the address origina lly stored in CMD�
ADR , thus comple ting the interrupt cycle .

274 Interrupts

For this procedure to work properly, the reentrant portion of the interrupt subrou �
tine tha t makes the MLI ca ll must preserve the va lue of the sta tus register and the A ,
X , and Y registers, and it must end with a JMP to the old CMDADR . Here is wha t
such a subroutine looks like:

PHP

PHA

TYA

PHA

TXA

PHA

[make the MLI ca ll]

PLA

TAX

PLA

TAY

PLA

PLP

JMP (OLDADR)

OLDADR is simply the address a t which the origina l address in CMDADR is stored.
This procedure may seem a little confusing a t first. F igure 6-2 should he lp clarify

the flow of control.
The BUTT O N .TIME program in Table 6-3 should a lso he lp clarify how to dea l

with the MLI problem. This program enables button interrupts on a mouse and
handles such interrupts by reading the current time (using the G E T_TIME com�
mand) and displaying it on the screen. Once BUTT O N .TIME has been insta lled, the
current time will a lways be a t your fingertips. The program assumes a mouse card in
slot 4; if tha t is not the case , change the SLO T E Q U 4 directive to re flect the actua l
slot number.

As usua l, the first thing the interrupt handler does is verify tha t the source of
the interrupt is as expected. If it is, the sta te of bit 7 of MLIA C TV is tested using
a BIT instruction. If no MLI command is active , bit 7 will be 0, and the interrupt can
be serviced right away by ca lling the G E T TIME command and then displaying
the da te .

If an MLI command is active , bit 7 will be 1, and the BMI branch will transfer
control to SWAPADR . SWAPADR takes the current address stored in CMDADR and
stores it in OLDADR and then places the address of PHAS E2 in CMDADR be fore
clearing the carry flag and exiting. This means when the current MLI command ends,
PHAS E2 will take over, and the G E T_TIME command will be executed. The time
da ta is then re trieved from TIME ($B F92 and $B F93), converted to AS CII digits, and
displayed on the screen. F ina lly, a JMP (OLDADR) is executed to re turn control to
the ma in program.

Interrupts and ProD O S 8 275

F igure 6-2 Handling interrupts during ProD O S 8 MLI commands

Program starts
here

PHAS E 1 put CMDADR
in OLDADR
Put PHAS E2
in CMDADR

PHAS E 2

(C a ll MLI command)

CMDADR = $B F9C/$B F9D

Note: CMDADR initia lly conta ins the address in the ma in
program to which control is to pass a fter the
JSR $B F O O instruction is executed.

INT E RRUPTS AND G S/O S

G enera lly, the Apple IlG S handles interrupts a t the low-leve l firmware leve l when
G S/O S is active . The firmware ma inta ins an interrupt vector table , each e lement of
which is a JML instruction to the handler for a particular built-in interrupt source , and
passes control through the appropria te vector when an interrupt occurs. (See Chapter
8 of Apple Has F irmware Re ference for a de ta iled description of how the firmware
processes interrupts.)

276 Interrupts

Table 6-3 BUTT O N .TIME , a program to illustra te how to handle interrupts during
MLI ca lls

2 it*************************************

33

34 O R G $300

35

3 � BUTT O N .TIME �

4 * This program displays the time *

5 * when you click the mouse ! button. *

6 � �

7 * Copyright 1985-1988 G ary B . Little *

8 � it �

9 * Last modified: August 26, 1988 *

10 � *

11 *** � * � * � *** � ** � � *** � ** � *********** � ***

12 SLO T E Q U 4 ;Mouse slot number

13

14 MLI E Q U $B F O O ;Entry point to ProD O S MLI

15

16 MINUT E S E Q U $B F92 ;ProD O S minutes

17 H O URS E Q U $B F93 ;ProD O S hours

18

19 MLIA C TV E Q U $B F9B ;>=$80 if MLI busy

20 CMDADR E Q U $B F9C .•Re turn addr for MLI ca ller

21

22 H E XD E C E Q U $E D24 ;Print X/A as decima l number

23

24 MTABLE E Q U SL0T*$100+$C000+$12 ;S tart of R OM table

25

26 * Mouse subroutine numbers

27 S E TM E Q U 0 ;Se t mouse mode

28 S E RV EM E Q U 1 ;Service mouse interrupt

29 R E ADM E Q U 2 ;Read mouse

30 INITM E Q U 7 ;Initia lize the mouse

31

32 C O UT E Q U $F D E D ;S tandard output

47

48 * Prepare the mouse:

49

0300: A9 00 36 LDA #0 ;F ix ProD O S 1.4 bug by

0302: 8D 9B B F 37 STA MLIA C TV ; clearing busy flag

38

39 * Insta ll the interrupt handler:

40

0305: 78 41 S EI ;D i sable interrupts for this

42

0306: 20 00 B F 43 JSR MLI

0309: 40 44 D F B $40 ;ALLO C_INT E RRUPT

030A: 1C 03 45 DA AIPARMS

030C: B0 12 46 B C S E RR O R

Interrupts and G S/O S 277

Table 6-3 Continued

030E: A2 07 50 LDX #INITM

0310: 20 A O 03 51 JSR MO US E R ;Initia lize the mouse
52

0313: A2 00 53 LDX #S E TM

0315: A9 05 54 LDA #$05 .•(Button interrupt mode)

0317: 20 A O 03 55 JSR MO US E R ;Se t the mouse mode
56

031A: 58 57 CLI ;Enable 6502 interrupts
031B: 60 58 RTS

59

031C: 02 60 AIPARMS D F B 2 ;# of parms
031D: 00 61 DS 1 ;Interrupt code # put here

031E: 21 03 62 DA IR Q HNDL ;Address of handler
63

0320: 00 64 E RR O R BRK .•(Ine legant error handler!)

65
66
67 * Here's the interrupt handler *

68 ********************************

0321: D8 69 IR Q HNDL CLD
0322: A2 01 70 LDX #S E RV EM
0324: 20 A O 03 71 JSR MO US E R ;Check for mouse interrupt

0327: 90 01 72 B C C :1 .•Branch if it is

0329: 60 73 RTS

74

032A: A2 02 75 :1 LDX #R E ADM ;C lear interrupt condition

032C: 20 A O 03 76 JSR MO US E R

77
032F: 2C 9B B F 78 BIT MLIA C TV ;In middle of MLI ca l 1 ?

0332: 30 52 79 BMI MLIWAIT ;Yes, so branch
80

0334: AD 82 C O 81 LDA $C082 .•Enable monitor R OMs

0337: 20 54 03 82 JSR SH O WTIME

033A: AD 8B C O 83 LDA $C08B ;R/W-enable bankl of BSR

033D: AD 8B C O 84 LDA $C08B ; (it's active for IR Q)

85

0340: 18 86 CLC ;(IR Q was serviced)
0341: 60 87 RTS

88
89 **

90 * This is the 'de ferred' interrupt handler *
91 **

0342: 08 92 PHAS E2 PHP ;Save a ll registers first

0343: 48 93 PHA

0344: 8A 94 TXA

0345: 48 95 PHA
0346: 98 96 TYA
0347: 48 97 PHA

98

278 Interrupts

Table 6-3 Continued

0348: 20 54 03 99

100

JSR SH O WTIME

034B: 68 101 PLA ;Restore a ll registers

034C: A8 102 TAY

034D: 68 103 PLA

034E: AA 104 TAX

034F: 68 105 PLA

0350: 28 106 PLP

107

0351: 6C 9E 03 108 JMP (OLDADR)

109

110 ******************************

111 * Read the time and print it *

112 * as HH:I4M. *

113 ******************************

0354: 20 00 B F 114 SH O WTIME JSR MLI

0357: 82 115 D F B $82 ;G E T_TIME

0358: 00 00 116 DA $0000

117

035A: A E 93 B F 118 LDX H O URS

0350: E0 O A 119 C PX #10 ; 10 or grea ter?

035F: B O 05 120 B C S STI ;Yes, so branch

0361: A9 B O 121 LDA #$B0

0363: 20 E D F D 122 JSR C O UT ;Print leading zero

0366: A9 00 123 STI LDA #0

0368: 20 24 E D 124 JSR H E XD E C ;Print H O URS

036B: A9 BA 125 LDA #$BA

0360: 20 E D F D 126 JSR C O UT ;Print a colon

127

0370: A E 92 B F 128 LDX MINUT E S

0373: E0 O A 129 C PX #10 ;10 or grea ter?

0375: B O 05 130 B C S ST2 ;Yes, so branch

0377: A9 B O 131 LDA #$B0

0379: 20 E D F D 132 JSR C O UT ;Print leading zero

037C: A9 00 133 ST2 LDA #0

037E: 20 24 E D 134 JSR H E XD E C ;Print MINUT E S

0381: A9 8D 135 LDA #$8D

0383: 4C E D F D 136 JMP C O UT

137

138

139 * We now handle the case where an interrupt *

140 * occurs during an MLI ca ll. The address �

141 * stored a t CMDADR is saved and replaced by �

142 * the address of PHAS E2. �

143 ***

0386: AD 9C B F 144 MLIWAIT LDA CMDADR

0389: 8D 9E 03 145 STA OLDADR

038C: AD 9D B F 146 LDA CMDADR+1

038F: 8D 9F 03 147 STA OLDADR+1

Interrupts and G S/O S 279

Table 6-3 Continued

0392: A9 42 148 LDA #<PHAS E2
0394: 8D 9C B F 149 STA CMDADR
0397: A9 03 150 LDA #>PHAS E2
0399: 8D 9D B F 151 STA CMDADR+1
039C: 18 152 CLC . � ("Interrupt handled")
0390: 60 153 RTS

154
039E: 00 00 155 OLDADR DS 2

156
j57 **

158 * MO US E R executes the mouse subroutine *

159 * specified by the code in the X *
160 * register. *

161 **

03A0: 48 162 MO US E R PHA
03A1: BD 12 C4 163 LDA MTABLE .X ;G e t subroutine addr and
03A4: 8D C l 03 164 STA MO US E ; se t up an indirect JMP
03A7: 68 165 PLA

03A8: 8E B8 03 166 STX XSAV E

03AB: 8C B9 03 167 STY YSAV E

03A E: 20 BA 03 168 JSR D OMO US E ;Execute subroutine

03B1: A C B9 03 169 LDY YSAV E

03B4: A E B8 03 170 LDX XSAV E

03B7: 60 171 RTS
172

03B8: 00 173 XSAV E DS 1

03B9: 00 174 YSAV E DS 1
175

03BA: A2 C4 176 D OMO US E LDX #$C O+SLO T

03B C: A0 40 177 LDY #SL0T*16

03B E: 6C C l 03 178 JMP (MO US E)

179

03C1: 00 180 MO US E DS 1 ,-Subroutine address (low)

03C2: C4 181 D F B S C O+SLO T ;(H igh part is a lways $Cn)

You use the G S/O S B indlnt command to assign an interrupt-handling subroutine to
a particular interrupt source . One parame ter which B indlnt requires is a vector
re ference number (vrn), a code describing the source of the interrupt to which the
handler is to be assigned:

$0008 AppleTa lk (S C C)

$0009 Seria l ports (S C C)
$000A Scan-line re trace
$000B Ensoniq wave form comple tion
$000C Vertica l blanking signa l (VBL)
$000D Mouse (movement or button)
$000E 1/4-second timer

280 Interrupts

$000F Keyboard

$0010 ADB response byte ready

$0011 ADB service request (SR Q)

$0012 Desk Accessory request keystroke

$0013 F lush keyboard buffer request keystroke

$0014 Keyboard micro abort

$0015 1-second timer

$0016 V ideo graphics controller (externa l)

$0017 O ther interrupt source

S tandard system interrupt handlers for many of these interrupt sources are a lready in
place when an applica tion starts up. The vrn for interrupts emana ting from devices on
periphera l cards is $0017.

When you use B indlnt to insta ll a new interrupt handler, remember tha t the new
handler does not replace the old handler. G S/O S cha ins toge ther a ll handlers associ �
a ted with the same vm, and each handler is ca lled in turn (in reverse order of
insta lla tion). If one of the handlers cla ims the interrupt, G S/O S se ts the carry flag
be fore ca lling the next handler in the cha in; otherwise , it clears the carry flag.

It may be possible to process certa in types of interrupts without insta lling an
interrupt handler. For example , the built-in handler for the vertica l blanking interrupt
source (vm = $000C) performs any “heartbea t” tasks which an applica tion, or the
opera ting system, may have placed in a queue with the Se tHeartBea t function in the
Misce llaneous Tool Se t. (See Apple lies Toolbox Re ference , Volume 1 for a description
of the Se tHeartBea t function.)

G S/O S Interrupt Handling

When an interrupt occurs on the Apple IlG S , the firmware intermpt dispa tcher
identifies the source and then ca lls each handler for tha t interrupt source until one of
them cla ims it. Uncla imed interrupts are usua lly ignored, but if 65,536 of them occur
consecutive ly, a fa ta l system error occurs.

An intermpt handler is ca lled a t fast speed in 65816 na tive mode with 8-bit A and
X registers (m = 1 and x = 1) and with the direct page and da ta bank registers
zeroed. {Exception: For Seria l Communica tions Controller interrupts with vm =
$0008 or vm = $0009, the direct page and da ta bank registers take on no particular
va lue .) Moreover, the interrupt disable flag in the processor sta tus register is se t to 1.
The sta te of the carry flag indica tes whe ther another handler for the same vm has
a lready dea lt with the interrupt (carry se t) or not (carry se t). A ll other flags in the
processor sta tus register are unde fined.

The characteristics of a G S/O S interrupt-handling subroutine are as follows:

• It must not enable interrupts with a CLI instruction.

• It must be capable of de termining if the source of the interrupt is the one it is de �
signed for. (If the device corresponding to the vm can genera te only one type of in�
terrupt, the handler can assume tha t its type of interrupt has occurred, of course .)

Interrupts and G S/O S 281

• If the source of the interrupt is not the one the handler is designed for, the
handler must se t the carry flag with S E C and exit.

• If the source of the interrupt is the one the handler is designed for, the handler
must cla im the interrupt by performing the necessary I/O opera tion, clear the inter�
rupt condition (usua lly by reading the device sta tus), clear the carry flag with CLC ,
and exit. (See Table 6-4 for instructions on how to clear certa in common Apple IlG S
interrupt conditions.) Note , however, tha t if G S/O S has se t the carry flag prior to
ca lling the handler (because a handler with the same vm has dea lt with the
interrupt), the handler should not clear the interrupt condition; tha t will have been
done by the first handler to dea l with the interrupt and must not be repea ted.

• It must exit with an RTL (not an RTI) instruction.

The interrupt handler need not preserve the sta tus of the A , X , and Y registers since
G S/O S takes care of tha t. However, the handler must end a t fast speed, in 65816
na tive mode with 8-bit A and X registers, and with the da ta bank and direct page
registers zeroed. (These are the entry conditions.)

You must insta ll an interrupt handler with the R indlnt command (see Chapter 4). Once
you’ve insta lled an interrupt handler, you can enable the source of the interrupts. For
built-in devices, you can do this by passing the appropria te interrupt source re ference
number to the Apple lies Misce llaneous Tool Se t’s IntSource function, as follows:

PushWord #SrcRe fNum ;Push interrupt source re ference #
LDX #$2303 ;IntSource

JSL $E10000

Table 6-5 lists the interrupt source re ference numbers for the interrupts you can
enable with IntSource . Notice tha t these numbers come in pa irs: One is for enabling
the source , and the other is for disabling the source .

Use Unbindlnt to remove an interrupt handler, but only a fter you have told the
externa l device to stop genera ting interrupts (using IntSource if you’re dea ling with
built-in lies devices). The int_num parame ter you pass to Unbindlnt is the number
re turned by B indlnt when you insta lled the handler.

Handling Interrupts When the System Is Busy

G S/O S and tool se t command handlers are genera lly not reentrant, so a standard
interrupt handler should never try to directly ca ll a G S/O S command or a tool se t
function. If an interrupt happens to occur in the middle of the execution of a G S/O S
command, for example , and the handler tries to ca ll a G S/O S command, G S/O S
re turns error code $07 (“G S/O S is busy”), and the opera tion fa ils.

An interrupt handler tha t needs to use a G S/O S command or a tool se t function to
process an interrupt request must de fer execution until the system is not busy. It can
do this by insta lling a signa l handler in the G S/O S signa l queue; G S/O S processes the

282 Interrupts

Table 6-4 C learing Apple IlG S interrupt conditions

Interrupt Condition How to C lear the Condition

1/4-second interrupt

1-second interrupt

Scan-line interrupt

Write anything to $E0C047

C lear bit 6 of $E0C032

C lear bit 5 of $E0C032

Table 6-5 Interrupt source re ference numbers for IntSource

Re ference Number Meaning

$0000 Enable keyboard interrupts

$0001 D isable keyboard interrupts

$0002 Enable vertica l blanking interrupts

$0003 D isable vertica l blanking interrupts

$0004 Enable 1/4-second interrupts

$0005 D isable 1/4-second interrupts

$0006 Enable 1-second interrupts

$0007 D isable 1-second interrupts

$000A Enable Apple Desktop Bus da ta interrupts

$000B D isable Apple Desktop Bus da ta interrupts

$000C Enable scan-line interrupts

$000D D isable scan-line interrupts

$000E Enable externa l V G C interrupts

$000F D isable externa l V G C interrupts

e lements in this queue when system resources are guaranteed not to be busy, meaning
the signa l handler can use G S/O S commands and tool se t functions as it pleases.

It is still the duty of the interrupt handler to verify the source of the interrupt, clear
the source of the interrupt, and re turn with the carry flag clear. Moreover, the
interrupt handler must insta ll the signa l handler by passing its address and priority
number to the G S/O S signa l insta ller, as follows:

Interrupts and G S/O S 283

LDA
LDX

LDY
JSL

#0000
#DoS i gna l
#ADoS igna l

$01F C88

;S igna l priority number
;Handl er address (low)

;Handler address (high)
;C a ll signa l insta ller routine

These instructions must be performed in full na tive mode . S ince the interrupt handler
is in 8-bit na tive mode when it ga ins control, and must exit in 8-bit na tive mode , you
must precede the above instructions with a R E P $30 instruction (and LO N G A O N
and LO N GI O N directives) and follow them with a S E P $30 instruction (and LO N G A
O F F and LO N GI O F F directives).

G S/O S ca lls the signa l handler (with a JSL instruction) in full na tive mode with
interrupts disabled. The A , X , Y , and da ta bank registers are unde fined, and the direct
page register takes on the va lue currently se t by the applica tion. The signa l handler
must end with an RTL instruction.

The program fragment in Table 6-6 shows how to insta ll (and remove) an interrupt
handler for the Apple IlG S 1-second interrupt source . To insta ll it, ca ll On_lSec; to
remove it, ca ll O ff_ ISec. Both these subroutines use the IntSource function to enable
and disable , respective ly, the source of the interrupt.

The ma in interrupt handler begins a t OneSec. The first ma in chore it performs is to
clear the source of the interrupt by clearing bit 6 of loca tion $E0C032 (see Table 6-4).
Then, since we ’re assuming the handler must ca ll a G S/O S command, it insta lls the
signa l handler a t DoS igna l be fore clearing the carry flag and ending with RTL. G S/O S
la ter ca lls DoS igna l when the system is not busy, thereby comple ting the handling of
the interrupt.

284 Interrupts

Table 6-6 G S/O S subroutines for dea ling with 1-second interrupts

On ISec _B indInt BI_Parms

LO A i nt_num

STA int_numl

PushWord #6

_IntSource

RTL

.•Insta ll handler

.•Enable 1-second interrupts

O ff_lSec PushWord #7

_IntSource

Unbindlnt UI Parms

RTL

BI_ Parms D C 12'3'

i nt num DS 2

D C 12* $0015*

D C 14'OneSec

UI_ Parms D C 12*1*

i nt numl DS 2

.•D isable 1-second interrupts

. � Remove handler

;vrn for 1-second interrupt

; This is the interrupt handler:

OneSec AN O P

LO N G A O F F ;8-bit registers on entry

LO N G I O F F

PHB ,-Must preserve da ta bank

PHK

PLB

LDA $E0C032

AND #$B F .-B it 6 = 0

STA S E0C032 .•C lear 1-second interrupt source

R E P $30 ;Go to full na tive mode

LO N G A O N

LO N G I O N

LDA #0000 ;Priority number (anything will do)
LDX #DoS igna l

LDY #“DoS igna l

JSL J01F C88 ;Insta ll signa l handler

S E P $30 .•Back to 8-bit mode

LO N G A O F F

LO N GI O F F

PLB ;Restore da ta bank

CLC ;CLC = we handled it
RTL ;A lways end with RTL

Interrupts and G S/O S 285

Table 6-6 Continued

; This is the signa l handler:

DoS igna l AN O P
LO N G A O N ;16-bit registers on entry
LO N GI O N

; C a ll the G S/O S command here

RTL ,-A lways end with RTL

286 Interrupts

C HAPT E R 7

D isk Devices

Low-leve l communica tion with a block-structured da ta storage device like a 3.5-inch
disk drive or a hard disk is managed by an assembly-language subroutine ca lled a disk
driver. (This name is conventiona l only —a disk driver may actua lly communica te with
a block storage device tha t is not a disk drive .) We say “low leve l” because the disk
driver is the subroutine every opera ting system command eventua lly ca lls to access
the disk, and it is the disk driver tha t directly manipula tes the I/O loca tions tha t
control the opera tion of the drive .

The important tasks conventiona l disk drivers perform are

• Moving the disk’s read/write head over any track on the disk

• Identifying da ta blocks within each track

• Reading and writing da ta blocks

• Reading the write-protect (or other) sta tus of the disk

• Forma tting the disk

The driver for a 5.25-inch drive performs these tasks using severa l disk I/O loca tions
for controlling the disk stepper motor, storing a byte on a disk, reading a byte from a
disk, and sensing the write-protect sta tus of the disk.

Under ProD O S 8, it is re la tive ly easy to add a custom disk driver (such as one for
controlling a RAM disk) to the system —it’s just a ma tter of changing a few bytes in the
system globa l page to te ll ProD O S 8 where you’ve loaded the driver and wha t slot and
drive numbers you want to assign to it. The only difficult part is deciding where to put
the driver so tha t it won’t be overwritten by applica tions.

G S/O S has a more forma l mechanism for adding disk drivers, but we do not discuss
them here; G S/O S comes with drivers for a ll the disk drivers you’re ever like ly to
need. If you do need to know about how to write G S/O S disk drivers, re fer to G S/O S
Re ference , Volume 2.

In this chapter, we investiga te just how G S/O S and ProD O S 8 de termine wha t disk
devices are ava ilable and how they keep track of the disk drivers associa ted with each

287

of these devices. We a lso review the genera l characteristics of a ProD O S 8 disk driver
and learn how to write one from scra tch.

H O W G S/O S AND PR O D O S 8 K E E P TRA C K O F DISK D E VIC E S

When G S/O S and ProD O S 8 boot up, one of the first things they do is de termine how
many disk devices are connected to the system and how they may be accessed, for
example , through a card in a slot or a RAM-based driver. (G S/O S a lso checks for
character devices.) We see how these opera ting systems identify disk devices in the
next section.

G S/O S Device Scan

When you boot G S/O S , it scans the IlG S system looking for both block-structured disk
devices and character devices. When it identifies a device for which a driver exists in
the SYST EM/DRIV E RS/ subdirectory on the boot disk, it loads the driver into
memory and insta lls it. Apple currently provides drivers for 3.5- and 5.25-inch disk
drives, S C SI drives, and the console (the standard keyboard input and text-screen
output system). If no driver for the device exists on disk, G S/O S tries to genera te one
in memory on the fly; it can genera te character drivers for printer and modem interfaces
and disk drivers for most SmartPort devices. The disk devices G S/O S cannot genera te a
driver for are the 5.25-inch disk drive and the HD20S C S C SI hard disk.

G S/O S assigns a unique device number and device name to each device it finds in
the system. It assigns device numbers consecutive ly, beginning with 1, and the device
names begin with a period and can be up to 31 characters long (for example , .D E V3
and .APPLE DISK3.5). Unlike ProD O S 8, G S/O S does not use unit numbers (which
are derived from slot and drive numbers) to identify disk devices. You can use the
G S/O S DInfo command to de termine the names of a ll the devices in the system.

ProD O S 8 Device Scan

Table 7-1 lists a ll the system globa l page loca tions ProD O S 8 uses to manage disk
devices.

ProD O S 8 stores the number of active disk devices, less 1, in D E V C NT ($B F31) in
the system globa l page . It stores the physica l loca tions of the disk devices (tha t is,
the ir slot and drive numbers) in encoded form in a 14-byte table beginning a t
D E VLST ($B F32). As F igure 7-1 shows, the high-order 4 bits of each entry in this
table hold the drive and slot number in packed form, and the low-order 4 bits hold an
identifica tion code unique to the type of disk device insta lled (5.25-inch drive , 3.5-
inch drive , HD20S C hard disk, and so on).

You can a lso use the ProD O S 8 O N LIN E command to de termine the slot and
drive loca tions of a ll the disk drives in the system.

288 D isk Devices

Table 7-1 ProD O S 8 globa l page areas used for disk drive identifica tion

Address Symbolic Name Description

"No device connected" address$B F10 D E VADR01

$B F12 D E VADR11 S lot 1, drive 1 driver address

$B F14 D E VADR21 S lot 2, drive 1 driver address

$B F16 D E VADR31 S lot 3, drive 1 driver address

$B F18 D E VADR41 S lot 4, drive 1 driver address

$B F1A D E VADR51 S lot 5, drive 1 dri ver address

$B F1C D E VADR61 S lot 6, drive 1 dri ver address

$B F1E D E VADR71 S lot 7, drive 1 dri ver address

$B F20 D E VADR02 "No device connected" address

$B F22 D E VADR12 S lot 1, drive 2 dri ver address

$B F24 D E VADR22 S lot 2, drive 2 driver address

$B F26 D E VADR32 S lot 3, drive 2 driver address

$B F28 D E VADR42 S lot 4, drive 2 driver address

$B F2A D E VADR52 S lot 5, drive 2 driver address

$B F2C D E VADR62 S lot 6, drive 2 driver address

SB F2E D E VADR72 S lot 7, drive 2 driver address

$B F30 D E VNUM Device code for the last device accessed

$B F31 D E V C NT Number of active devices minus 1

$B F32 D E VLST Table of active disk device codes (14 entries in table)

N O T E: The forma t of the entries in D E VLST and D E VNUM is the same as shown in F igure 7-1, except
tha t the low-order 4 bits of D E VNUM are a lways 0.

F igure 7-1 The forma t of D E VLST ($B F32) table entries

E ach byte in the 14-byte D E VLST table holds the slot, drive , and disk identifica tion
number in a specia l packed forma t:

7 6 5 4 3 2 1 0

| DR | SLO T | DISK_ID |

where DR = 0 for a drive 1 device
= 1 for a drive 2 device

SLO T = 1-7 (slot number for the device)

DISK ID = $0 for a 5.25-inch disk drive
= $B for a 3.5-inch disk drive
= $F for the /RAM device
= the high-order 4 bits stored a t $CnF E if a disk controller adhering to

the extended protocol is be ing used

N O T E: The /RAM device is logica lly equiva lent to a slot 3, drive 2 disk drive . Its D E VLST entry is $B F .

How G S/O S and ProD O S 8 Keep Track of D isk Devices 289

Suppose you are using a two-drive Apple lie with an extended 80-column text card
insta lled in the auxiliary slot and a disk controller card insta lled in slot 6. ProD O S 8
se ts up D E V C NT and D E VLST as follows:

$00

D E V C NT ($B F31) $02 <— three devices

D E VLST ($B F32) $E0 <--- slot 6, drive 2
$60 <— slot 6, drive 1
$B F <— slot 3, drive 2 (/RAM)
$00 1

> <--- 11 zero entries

ProD O S 8 reserves a 32-byte area beginning a t $B F10 for use as a disk driver vector
table . This table holds the addresses of the disk driver to be used for each of the 14
possible slot and drive combina tions and 2 impossible ones (slot 0, drive 1 and slot 0,
drive 2). The first part of the table , from $B F10 to $B F1F , holds the addresses for the
e ight drive 1 devices in ascending slot order (0-7); the second part holds similar
informa tion for the e ight drive 2 devices.

S ince a disk controller card cannot reside in slot 0 (a slot tha t doesn’t even exist on
the Apple He , lie , or IIg s), ProD O S 8 uses the two slot 0 entries in the disk driver
vector table for a specia l purpose: to hold the address of the subroutine tha t genera tes
MLI error $28 if ProD O S 8 ca lls it. This is the code for the “no device connected”
error. If the vector table entry for a given slot and drive combina tion is this address,
ProD O S 8 has not assigned a disk device to tha t slot and drive .

The six most common entries in the disk driver vector table are as follows:

$D000 disk driver for a standard 5.25-inch disk drive (in bank-switched RAM)

$F F00 disk driver for the /RAM RAMdisk volume (in bank-switched RAM)

$D E A C address of “no device connected” error subroutine (in bank-switched
RAM)

$Cn0A UniD isk 3.5 and Apple IIg s SmartPort (n = slot number of the
controller card)

$Cn4E Apple II Memory Expansion card (n = slot number of the memory
card)

The first three addresses are those used by ProD O S 8 version 1.7 only. (The others are
fixed in R OM on firmware or controller cards.) They may change when Apple re leases
la ter versions of ProD O S 8.

290 D isk Devices

H O W G S/O S AND PR O D O S 8 ID E NTIF Y DISK D E VIC E S

To connect a disk device to an Apple II, you genera lly a ttach it to a disk controller
card loca ted in a periphera l expansion slot. (The lie and IlG S both have built-in disk
controllers, so no card is necessary.) This card is responsible for booting the disk and,
in some cases, for transferring da ta be tween the Apple and the disk medium.

A controller card holds a program in R OM tha t occupies the address space from
$CnO O to $CnF F (where n is the slot number) and, some times, from $C800 to $C F F F .
For standard 5.25-inch disk controllers, this program is capable of only transferring a
short loader program from the disk medium into RAM and executing it; this loader
then reads in the rest of the disk opera ting system from disk. (This is where the term
booting comes from: The opera ting system picks itse lf up by its own bootstraps.)

O ther controllers may conta in code tha t performs much more sophistica ted tasks,
such as reading or writing any block on the disk, doing sta tus checks, and forma tting a
disk. Inte lligent controllers with these capabilities are used with 3.5-inch disks and
hard disks. Apple currently uses an inte lligent controller ca lled a SmartPort for
3.5-inch drives and RAMdisk memory cards. (A SmartPort is built in to the IlG S and
newer mode ls of the lie .)

When ProD O S 8 or G S/O S first starts up, it examines each slot (beginning with 7
and working down to 1) to de termine whe ther a controller card for a disklike device is
present. A controller card conta ins the following unique pa ttern of bytes in its R OM (n
is the slot number):

$Cn01 $20

$CnO3 $00

$CnO5 $03

The va lue of the byte stored a t $CnO7 is a lso important. If the three identifica tion
bytes are present and loca tion $CnO7 conta ins $3C , and if the controller is in a
higher-numbered slot than any other disk controller, the origina l Apple II system
Monitor program in R OM (the one in the II P lus or the origina l lie) automa tica lly
boots the disk in the drive when you turn the system on. Unfortuna te ly, $CnO7 cannot
conta in $3C in the R OM of a controller for a disk device other than a 5.25-inch disk
drive because the Apple Pasca l opera ting system erroneously be lieves any such device
is a 5.25-inch disk drive . As a result, it is not possible to automa tica lly boot from a hard
disk or a 3.5-inch disk when using a system with the origina l Monitor program.

You can automa tica lly boot a non-5.25-inch disk device if you have an Apple IlG S
or an enhanced Apple lie . This is because the system Monitor in these computers
identifies a bootable disk drive by the presence of the first 3 identifica tion bytes only.

If you want to know if the disk controller is a SmartPort (perhaps so tha t you can
take advantage of the specia l SmartPort commands described la ter in this chapter),
check loca tion $CnO7. If it conta ins $00, it is a SmartPort.

How G S/O S and ProD O S 8 Identify D isk Devices 291

When ProD O S 8 or G S/O S finds the 3 identifica tion bytes, it looks a t the byte
stored a t $CnF F to de termine the exact type of controller it has found. If $CnF F
conta ins $00, ProD O S 8 and G S/O S consider the card a 5.25-inch disk controller with
standard 16-sector-per-track R OMs. In this case , ProD O S 8 places the appropria te
device code in the D E VLST table and the address of the interna l 5.25-inch disk
device driver in the ProD O S 8 disk driver vector table . Note tha t it actua lly makes
two entries in each table since each 5.25-inch disk controller can have two drives (or
volumes) a ttached to it. (They are re ferred to as drive 1 and drive 2.) The disk driver
itse lf ultima te ly de termines if there is actua lly a drive 2 device a ttached and re turns a
“device not connected” error code if an a ttempt is made to access it and it is not there .

If $CnF F conta ins $F F , G S/O S and ProD O S 8 consider the card a 5.25-inch disk
controller with 13-sector-per-track R OMs. (This was the disk forma tting scheme used
by Apple’s origina l 5.25-inch drive controller.) G S/O S and ProD O S 8 do not support
this type of controller card and so ignore it.

If $CnF F conta ins any other va lue , G S/O S and ProD O S 8 assume the disk
controller has a device driver entry point loca ted in R OM a t $CnXX , where XX is the
va lue stored a t $CnF F . If bits 0 and 1 of the byte stored a t $CnF E are both 1 (we
describe the meaning of these bits in the next section), ProD O S 8 stores this address
in the device driver vector table and adds an appropria te device code to D E VLST .
(The low-order 4 bits of the D E VLST entry are se t equa l to the high-order 4 bits of
the byte a t $CnF E .) If one , or both, of bits 0 and 1 of $CnF E are 0, G S/O S and
ProD O S 8 ignore the disk controller.

ProD O S 8 identifies three specia l “disk” devices in quite a different way. If it is
running on an Apple He with an extended 80-column card (the one with 64K of
auxiliary RAM on it), or on an Apple lie or lies, ProD O S 8 insta lls a specia l device ,
ca lled a RAMdisk, as the slot 3, drive 2 disk device . The medium for this disk is the
64K auxiliary memory space on the lie , lie , or IIg s , and disk I/O opera tions simply
involve the movement of da ta blocks be tween auxiliary and ma in memory. The
volume name for this RAMdisk is a lways /RAM.

G S/O S and ProD O S 8 crea te another type of RAMdisk using memory on the Apple
IIg s Memory Expansion card (or equiva lent) if the Control Pane l Minimum RAM
D isk S ize parame ter is not se t to zero. This RAMdisk is ca lled /RAM5. The third
specia l device , aga in ava ilable on the IIg s only, is a R OMdisk. A lthough Apple’s
memory card doesn’t support R OMdisk memory, severa l independent suppliers have
cards tha t do. Despite the name R OMdisk, the memory for the disk could a lso be in
ba ttery backed-up sta tic or dynamic RAM, E E PR OM, or E PR OM.

E XT E ND E D PR O T O C OL F O R DISK C O NTR OLLE R C ARDS

Apple has a lso de fined a specia l extended controller card R OM protocol tha t manu �
facturers of disk devices and disk controller cards must adhere to if the ir devices are to
work properly with G S/O S and ProD O S 8. (The 5.25-inch disk controllers do not
actua lly follow this protocol and are handled as specia l cases by G S/O S and ProD O S

292 D isk Devices

8.) This protocol de fines the use of 4 bytes in the controller card R OM space as follows
(n is the slot number of the card):

• $CnF C and $CnF D . The tota l number of blocks on the volume is stored here
(low-order byte first). This informa tion is for the bene fit of forma tting programs
tha t a lso initia lize the volume directory and volume bit map on disk. The
controller for the old 5-megabyte ProF ile hard disk has the number $2600
(9728) stored here . If the number is $0000 (as it is for most controller cards),
you must send a sta tus request to the disk driver to de termine the volume size;
the number of blocks comes back in the X register (low) and Y register (high).
We see how to make sta tus requests in the next section.

• $CnF E . This is the device characteristics byte . E ach bit holds misce llaneous
informa tion about the device:

bit 7 1 = the disk medium is removable

bit 6

bits 5,4

bit 3

bit 2

bit 1

bit 0

1 = the device is interruptible

The number of drives (or volumes) on the

device (0-3). An even va lue (0 or 2)

indica tes one drive; an odd va lue (1 or

indica tes two drives.

1 = the

1 = the

1 = the

1 = the

device

devi ce

devi ce

devi ce

driver

driver

driver

dri ver

supports

supports

supports

supports

forma t

wri te

read

sta tus

3)

The controller for the UniD isk 3.5 has the va lue $B F stored a t $CnF E . This means
the disk medium is removable (bit 7 = 1); the UniD isk 3.5 is not interruptible (bit
6 = 0); two volumes are supported (bits 5,4 = 11); and the device driver for the
UniD isk 3.5, loca ted in R OM on the controller card, supports forma t (bit 3 = 1),
write (bit 2 = 1), read (bit 1 = 1), and sta tus (bit 0=1) opera tions.

• $CnF F . This byte conta ins the offse t (from $Cn00) of the address of the ProD O S 8
disk driver for this device . If the byte a t $CnF E indica tes tha t the device can be
read from and its sta tus can be read (tha t is, bits 0 and 1 of the byte stored a t
$CnF E are both 1), the driver address is stored in the “drive 1” portion of the
device driver vector table in the ProD O S 8 globa l page when ProD O S 8 is first
booted. If the byte a t $CnF E indica tes tha t two drives are a ttached to the
controller, the address of the device driver is a lso stored in the “drive 2” portion of
the table unless ProD O S 8 is able to de termine tha t a second drive is not actua lly
connected. A fter the vector table is upda ted, bits 4-7 of the byte stored a t $CnF E
are stored in the low-order 4 bits of the D E VLST entry for the device .

The controller for the UniD isk 3.5 has the va lue $0A stored a t $CnF F , and its
D E VLST entry is of the form nB , where n is the controller slot number. This
means the address of the disk driver is $Cn0A .

Extended Protocol for D isk Controller C ards 293

Specia l C ases

$CnF F conta ins $00 for a 16-sector 5.25-inch disk controller and $F F for a 13-sector
5.25-inch disk controller. In these situa tions, G S/O S and ProD O S 8 a ttribute no
specia l meaning to the va lues stored a t $CnF C , $CnF D , and $CnF E .

If ProD O S 8 finds a 16-sector controller, it assumes the disk medium is a single
volume of 280 blocks and uses its own interna l disk driver to communica te with it.
G S/O S uses a similar driver it loads from the SYST EM/DRIV E RS/ subdirectory.
G S/O S and ProD O S 8 ignore the older 13-sector 5.25-inch disk controller.

C OMMUNIC ATIN G WITH A PR O D O S 8 DISK DRIV E R

Just be fore ProD O S 8 ca lls a disk driver subroutine , it se ts up four parame ters in the
microprocessor’s page zero area tha t serve to inform the disk driver of the precise
opera tion to be performed. These parame ters de fine the type of disk opera tion (read,
write , forma t, or check device sta tus), the slot and drive number of the disk device , the
address of the 512-byte (one block) da ta transfer buffer to be used, and the block number.

The four parame ters are stored in loca tions $42 to $47 and have the following
meanings:

• C OMMAND ($42). This loca tion holds the command code for the disk opera tion
to be performed. Four codes are de fined:

0 Check device sta tus. On re turn, the carry flag is

clear and the accumula tor is zero if the device is
ready to accept read and write commands. Moreover,
the number of blocks on the disk is in the X
register (low) and Y register (high) but only if
the device's controller R OM adheres to the
extended ProD O S 8 protocol (remember tha t
5.25-inch disk controllers do not). If the device
is not ready to accept read and write commands,
the carry flag is se t, and the accumula tor
conta ins an MLI error code . The standard drivers
for 3.5- and 5.25-inch drives re turn an error code
on a sta tus request if the disk medium is
write-protected (error $2B) or no disk is in the
drive (error $2F).

1 Read one block from the disk.
2 Write one block to the disk.
3 Forma t the disk. When you forma t a disk, specia l

address marks are se t up to a llow each sector to
be identified by the disk driver. G enera lly,
the forma tting process does not a lso se t up the
boot record, volume directory, and bit map blocks;
this must be done by making write requests. (The
driver for /RAM is an exception.) The forma t
request is actua lly not supported by the standard

294 D isk Devices

5.25-inch device driver because of space

limita tions; instead, a separa te utility program

(such as F iler on the ProD O S 8 master disk) must

be used to forma t a diske tte or hard disk and to

lay out the boot record, volume directory, and bit

map. The source code for the standard diske tte

forma tting subroutines (ca lled F O RMATT E R) can a lso

be licensed from Apple for use in other forma tting

programs. The forma t request is supported by the

/RAM driver and the 3.5-inch disk driver.

• S LO T DRIV E ($43). These loca tions hold the drive and slot numbers of the
disk device to be accessed, in the following forma t:

bit 7

bits 4,5,6

bits 0,1,2,3

0 (drive 1) or 1 (drive 2)

slot number (1-7)

a lways 0

For example , a slot 6, drive 2 device would be represented as 11100000 ($E0).

• BU F F E R _PTR ($44-$45). These loca tions hold the address (low-order byte first)
of the start of a 512-byte area of memory tha t holds the image of the block to be
written to the disk (C OMMAND = 2) or tha t will hold the block read from the disk
(C OM MAND = 1). BU F F E R _PTR should a lso be properly se t up be fore making a
forma t request (C OMMAND = 3) because the forma tting subroutines for some disk
devices (like /RAM) may use the buffer area for temporary da ta storage .
BLO C K NUM ($46-$47). These loca tions hold the number (low-order byte first)
of the block on the disk to be written to (C OMMAND = 2) or read from
(C OMMAND = 1).

The disk driver performs the I/O opera tion dicta ted by these parame ters and then
re turns control to the ca ller. If no error occurred, the carry flag is clear, and the
accumula tor is zero.

Errors can occur, of course , when ProD O S 8 communica tes with a disk device . The
disk drivers flag error conditions in the standard MLI way: by se tting the carry flag
and placing an appropria te MLI error code in the accumula tor. Table 7-2 shows the
error codes and conditions supported by the ProD O S 8 disk driver for standard
5.25-inch disk drives. Any other properly implemented disk driver will identify and
report these error conditions in the same way.

TH E SMARTP O RT C O NTR OLLE R

A SmartPort is the inte lligent device controller Apple now uses to interface to a ll its
high-capacity disk drives, including the UniD isk 3.5, Apple 3.5 Drive , and HD20S C
S C SI hard disk. The SmartPort firmware can handle up to 127 devices cha ined

The SmartPort Controller 295

Table 7-2 ProD O S 8 disk driver error codes

MLI Error Code Meaning

$27 I/O error

$28 No disk device is connected

$2B The medium is write-protected

$2F The device is off-line

toge ther to the same SmartPort, but the Apple power supply gives out we ll be fore
then —for the SmartPort on the IlG S , for example , Apple recommends connecting no
more than four 3.5-inch drives.

As we mentioned earlier in this chapter, the SmartPort firmware has the same three
basic identifica tion bytes as any other ProD O S-compa tible disk controller. A $00 a t
loca tion $CnO7 serves to unique ly identify the controller as a SmartPort, however. The
SmartPort ID type byte a t $CnF B gives you a little more informa tion about the
SmartPort:

RAMdisk card
S C SI devices

bit 0 1 = supports
bit 1 1 = supports
bit 2 [reserved]
bit 3 [reserved]
bit 4 [reserved]
bit 5 [reserved]
bit 6 [reserved]
bit 7 1 = supports extended commands

The SmartPort assigns a unique unit number (from $01 to $7F) to each device
connected to it. The numbers it assigns are consecutive , starting with $01. (The
SmartPort controller itse lf is unit number $00.) Programs use the unit number to
identify the device a SmartPort command is directed to.

In genera l, the SmartPort assigns unit numbers to devices in the order they appear
in the cha in of devices. But on the IlG S , the SmartPort considers any R OMdisk or
/RAM5 RAMdisk (the RAMdisk you se t up with the Control Pane l) in the system to be
part of the SmartPort cha in and assigns unit numbers to them first. To complica te
ma tters further, if the startup device (se t using the Control Pane l) is a SmartPort
device , the SmartPort rearranges unit numbers to ensure the startup device has a unit
number of $01. The only sa fe way to de termine which device corresponds to a given
unit number is to use the SmartPort’s S ta tus command (see be low).

Many ProD O S 8 commands use slot and drive parame ters to identify a disk device ,
so ProD O S 8 automa tica lly assigns slot and drive combina tions to SmartPort unit
numbers when it first boots up. Assuming the SmartPort is in slot 5, ProD O S 8 assigns

296 D isk Devices

the first four SmartPort devices to slot 5, drive 1; slot 5, drive 2; slot 2, drive 1; and
slot 2, drive 2. It ignores any other devices tha t may be connected to the SmartPort.
The phantoming of the third and fourth devices to slot 2 is necessary because ProD O S
8 has space for only two drives per slot in its disk driver vector table .

Using SmartPort Commands

The SmartPort firmware provides severa l commands a program can use to communi �
ca te with a disk device . Under ProD O S 8, you won’t have to use them for common
types of disk opera tions because you can use the disk driver commands described in
the previous section instead. Under G S/O S , you can probably ge t by with the DInfo,
DRead, DWrite , DS ta tus, and D Control commands. You will have to use SmartPort
commands to obta in extended sta tus informa tion and to perform specia l control
opera tions, however.

To use a SmartPort command, you must first de termine the dispa tch address of the
command interpre ter. This address is a lways 3 bytes past the standard ProD O S 8
device driver entry point, so its offse t into page $CnO O is the va lue stored a t $CnF F
plus 3.

You ca ll a standard SmartPort command much as you ca ll a ProD O S 8 MLI
command:

JSR DISPAT C H .•DISPAT C H = $CnO O+($CnF F)+3

D F B CMDNUM .•SmartPort command number

DA PARM_BLK ;Pointer to SmartPort parame ters

B C S E RR O R ;C arry se t if error occurred

where DISPAT C H is the SmartPort dispa tch address, CMDNUM is the SmartPort
command number, and PARM_BLK is a command-specific parame ter block. (If
G S/O S is active on a lies, you must ca ll the SmartPort dispa tcher in emula tion mode
with code tha t resides in bank $00.) If an error occurs, the carry flag is se t, and the
accumula tor conta ins the error code . If the opera tion was successful, the carry flag is
clear, and the accumula tor is zero.

If bit 7 of the SmartPort ID type byte a t $CnF B is 1 (and it is for the IIg s
SmartPort), the SmartPort a lso supports extended SmartPort commands. The com�
mand number for an extended command is the same as the number for the corre �
sponding standard command except tha t bit 6 is se t to 1. Tha t means, for example , if
the standard command number is $01, the extended command number is $41.

You ca ll extended commands just like standard commands except tha t the pointer
to the parame ter block conta ins a long address (4 bytes) ra ther than a short address (2
bytes). This permits access to a parame ter block loca ted anywhere in the IIg s ’ s 16Mb
memory space . The other difference be tween a standard and extended command is
the structure of the parame ter block for the command, as we see be low.

The SmartPort Controller 297

Important: The IlG S SmartPort clobbers severa l loca tions in the ca ller’s 65816
direct page (IlG S R OM version 01) or true zero page (origina l IlG S R OM) when
you ca ll a SmartPort command. The a ffected loca tions are $57 through $5A . If
these loca tions are important to your applica tion, save them be fore a SmartPort
ca ll and restore them a fterward.

A ll SmartPorts support a standard se t of commands so tha t ProD O S 8 or G S/O S can
communica te with it properly. The ones you probably will never use in an applica tion
are ReadB lock, WriteB lock, Forma t, and Init (you can use ProD O S 8 disk driver or
G S/O S commands instead) as we ll as Open, C lose , Read, and Write (appropria te for
character devices only). Le t’s now take a close look a t the two rema ining commands,
S ta tus and Control.

S ta tus Command

The S ta tus command is for de termining the sta tus of any device in the SmartPort
cha in or the SmartPort controller itse lf. Its command number is $00 (standard) or $40
(extended), and the standard parame ter block looks like this:

parame ter count (byte , a lways $03)

unit number (byte , from $00 to $7E)

sta tus list pointer (low byte)

sta tus list pointer (high byte)

sta tus code (byte , from $00 to $F F)

The extended parame ter block uses a 4-byte pointer to the sta tus list instead (low-order
bytes first). You must reserve space for the sta tus list be fore ca lling the S ta tus command.

There are four possible va lues for the sta tus code byte:

$00
$01
$02
$03

re turn device sta tus
re turn device control block
re turn newline sta tus
re turn device informa tion block

O f these , you probably won’t use code $01 or $02 very often. Code $01 re turns a
device-dependent control block, up to 256 bytes long, preceded by a length byte; a
length byte of $00 means the block is 256 bytes long. Code $02 is for character
devices only.

Code $00 (re turn device sta tus) re turns 4 or 5 bytes in the sta tus list depend �
ing on whe ther a standard or extended ca ll is made . The first byte is a genera l device
sta tus byte:

298 D isk Devices

bit 0

bit 1

bit 2

bit 3

bit 4

bit 5

bit 6

bit 7

1 = disk switched (block device only) or

1 = device is open (character device only)

1 = device is interrupting

1 = medium is write-protected (block device only)

1 = device a llows forma tting

1 = a disk is in the drive

1 = device a llows reading

1 = device a llows writing

1 = block device

0 = character device

Note tha t the disk-switched bit is 1 if a disk has been e jected and another disk
(perhaps the same one) has been inserted since the last sta tus check. But this bit is
significant only if the device supports disk-switched errors; it does if bit 6 of the
subtype byte re turned by the code $03 sta tus command is 1 (see be low). O f Apple’s
SmartPort devices, only the Apple 3.5 Drive for the IlG S supports these types of
errors. (The UniD isk 3.5 does not.)

The next 3 bytes (standard ca ll) or 4 bytes (extended ca ll) hold the size of the
device in blocks. These bytes are zero if the device is a character device .

The SmartPort handles a S ta tus ca ll differently if the unit number is $00. In this case ,
it re turns an 8-byte sta tus list describing the sta tus of the SmartPort controller itse lf:

byte 0 number of devices the SmartPort controls

byte 1 interrupt sta tus (no interrupt if bit 6 is se t)

byte 2 manufacturer of driver:

$00 = unknown

$01 = Apple

$02 = third-party driver

Bytes 3 through 7 are reserved.
Code $03 (re turn device informa tion block) re turns more de ta iled sta tus informa �

tion in the sta tus list. The form of the list a fter a standard ca ll is as follows:

device sta tus (byte)

block size (low byte)

block size (medium byte)

block size (high byte)

ID string length (byte)

ID string (16 bytes)

device type (byte)

device subtype (byte)

version (2 bytes)

The SmartPort Controller 299

For an extended ca ll, the block size fie ld occupies 4 bytes instead of 3.
The device sta tus and block size bytes are the same as those re turned by a sta tus

code $00 ca ll. The ID string is a sequence of up to 16 standard AS CII characters (the
high-order bit of each character is 0) representing the name of the device . The
16-character string space is padded with spaces if necessary.

The device type byte te lls you the genera l na ture of the device you’re dea ling with.
The currently de fined va lues are as follows:

$00 Memory expansion card RAMdisk
$01 3.5-inch disk drive
$02 ProF ile-type hard disk
$03 G eneric S C SI hard disk
$04 R OMdi sk
$05 S C SI C D-R OM
$06 S C SI tape or other S C SI sequentia l device
$07 S C SI hard disk
$08 [reserved]
$09 S C SI printer
$0A 5.25-inch disk drive
$0B [reserved]
$0C [reserved]
$0D Pri nter
$0E C lock
$0F Modem

The subtype byte indica tes some of the characteristics of the device:

bit 7 1 = supports extended SmartPort commands
bit 6 1 = supports disk-switched errors
bit 5 1 = nonremovable medium

The other 5 bits are reserved.
Version is a word (low-order byte first) describing the version number of the

SmartPort device driver.

Control Command

The Control command sends control informa tion to a device . Its command number is
$04 (standard) or $44 (extended), and the standard parame ter block looks like this:

parame ter count (byte , a lways $03)

unit number (byte , from $00 to $7E)

control list pointer (low byte)

control list pointer (high byte)

control code (byte , from $00 to $F F)

300 D isk Devices

The extended parame ter block uses a 4-byte pointer to the control list instead

(low-order bytes first).
The Control command understands five genera l control codes, only one of which

(e ject medium) is particularly use ful to most applica tions: $00 (device rese t), $01 (se t
device control block), $02 (se t newline sta tus), $03 (service device interrupt), and $04

(e ject medium). Device-specific control codes are numbered $05 and above .
The most use ful control code for most applica tions is the one tha t causes a 3.5-inch

disk to e ject automa tica lly. For the UniD isk 3.5 SmartPort card and the interna l IlG S

SmartPort, the e ject control code is $04, and the control list conta ins two $00 bytes.
(For a summary of other device-specific control codes, see Chapter 7 of Apple IlG S

F irmware Re ference .)
Remember to use the e ject command with 3.5-inch drives only. You can easily check

whe ther you’re dea ling with a 3.5-inch drive by using the S ta tus command. If you are , the

device type byte is $01, the block size is $000640, and the ID string is DISK 3.5.
If you need to be convinced to do a S ta tus check first, keep in mind tha t revisions

A and B of the S C SI card (a SmartPort device) for Apple’s HD20S C hard disk use a

control code of $04 to forma t the disk! Tha t’s not an opera tion you want to perform

accidenta lly. (For revision C of the S C SI card, the $04 code is the e ject code .)

TH E PR O D O S 8 RAMDISK: TH E /RAM V OLUME

We saw earlier tha t ProD O S 8 automa tica lly insta lls a specia l RAMdisk driver if you

are using an Apple IlG S , Apple lie , or Apple He with an extended 80-column text card

and crea tes a specia l volume ca lled /RAM. (Apple II P lus users are out of luck.) A ll
these systems have 64K of auxiliary memory tha t maps to addresses in exactly the

same way as the standard 64K of ma in RAM memory usua lly used for program and

da ta storage . In this auxiliary memory, the RAMdisk driver stores the volume direc �

tory, volume bit map, and file blocks. F igure 7-2 shows a map of the usage of auxiliary

memory by /RAM.
S ince no slow-moving mechanica l parts are used to perform “disk” opera tions (a ll I/O

opera tions simply involve block moves from one part of memory to another), the RAMdisk

responds much more quickly than a conventiona l disk drive . But its contents are tempo�

rary, so you must be care ful to transfer any files from it to a permanent disk medium

be fore turning off the Apple or rebooting ProD O S 8, or you will lose a ll of your da ta .

Characteristics of the /RAM Volume

When ProD O S 8 initia lizes the /RAM volume , it a lloca tes only one volume directory

block (block 2; reca ll tha t standard disks use four directory blocks). This means there is

room for only 12 entries in the volume directory, not the usua l 51. If files are crea ted

inside subdirectories, however, you can store as many files as will fit on the volume .
When ProD O S 8 first initia lizes the /RAM volume , 119 blocks are ava ilable for file

storage . (They are numbered from 8 to 126.) S ince a 64K space is norma lly capable of
holding 128 512-byte blocks, you might be wondering about the “missing” 9 blocks.

The ProD O S 8 RAMdisk: The /RAM Volume 301

F igure 7-2 A map of auxiliary memory usage on the Apple He , lie , and IlG S with

ProD O S 8 active

Auxiliary

bank-switched

RAM

«— $F F F A ..$F F F F reserved

for rese t and interrupt
vectors

$F E00..$F F F9 not used

Bank2Bank 1

Auxiliary

memory

$B F F F

$ocoo

$0900

$oSoo

$0400

$0200

$0100

$0000

«— /RAM block storage area

(blocks 2,3,8.126)

i— Unused but reserved

r On lie only:

$300..$87F is seria l input buffer

$88O ..$8F F is keyboard buffer

- V ideo RAM (80-column mode)

Part of /RAM device driver

6502 stack

$3C ..$43 used by /RAM device driver

Two of these are re la tive ly easy to track down: One is used for the volume directory

(block 2) and another for the volume bit map (block 3). There is no room in auxiliary

memory for the other seven blocks (0, 1, 4-7, and 127) because space must be

reserved to support the /RAM disk driver itse lf ($0000-$03F F), the 80-column text
screen ($0400-$07F F), the keyboard and seria l input buffers on the Apple lie

($0800-$08F F), and the auxiliary memory interrupt vectors ($F F F A-$F F F F). Thus

these seven blocks are marked as “in use” in the /RAM volume bit map.
The areas of auxiliary memory tha t the /RAM volume or its driver does not use are

as follows:

302 D isk Devices

$0Q-$3B , $44-$F F

$0900-$0B F F

$F E00-$F F F9

Despite the apparent ava ilability of these areas, they should be considered reserved for

future use by la ter versions of ProD O S 8 and must not be used by nonsystem software .
The first 8K of memory a lloca ted for use by files stored in /RAM maps to loca tions

$2000-$3F F F in auxiliary memory. This same space is used whenever you activa te

page 1 of the double-width high-resolution graphics display mode ava ilable on the

IlG S , He , or lie . If you are going to use this graphics mode while /RAM is active , you

must first prevent any meaningful program from be ing stored a t these loca tions. The

easiest way to do this is to ensure tha t the first file saved to /RAM is a dummy file

exactly 8K bytes long. You can do this by entering the following command from

Applesoft command mode:

BSAV E /RAM/DUMMY ,A$2000, E$3F F F

The second 8K area used to store files in /RAM is mapped to loca tions $4000-$5F F F ,
the same area used as the second page of double-width high-resolution graphics. You

can protect this page by saving another dummy file tha t is 8K long.

Removing and Re insta lling /RAM

You may want your applica tion to use the auxiliary memory area for purposes other

than as a convenient file-storage device . O ther common uses for auxiliary memory are

as a da ta buffer for a printer spooler or as an input buffer for a communica tions

program. But be fore you start overwriting the RAM volume with such da ta , you must
remove the /RAM volume from the system in an orderly manner. If you don’t, the

system could crash when ProD O S 8 tries to interpre t wha t you’ve written to auxiliary

memory as directory, bit map, or file informa tion.
It’s actua lly quite simple to remove the /RAM device from the system.

1. Examine MA C HID ($B F98) to see if you’re running in a 128K system. (B its 4 and

5 of MA C HID will both be 1 if you are .) /RAM can exist in only a 128K system.

2. Check tha t /RAM has not a lready been removed by loca ting the $B F device code

(slot 3, drive 2) among the active entries in the D E VLST table . You should a lso

check for any entry of the form $BX , where X = $3, $7, or $B; by convention,
these slot 3, drive 2 devices, though not equiva lent to /RAM, will a lso use the first
bank of auxiliary memory. (C ards such as RamWorks III and MultiRAM have

severa l banks of auxiliary memory ava ilable .) The actua l $BX byte stored in

D E VLST must be saved if you la ter want to re insta ll the /RAM device .

The ProD O S 8 RAMdisk: The /RAM Volume 303

3. Remove the $BX entry from the D E VLST table by moving higher-addressed

active entries down one position (starting with the lowest-addressed one).

4. Replace the slot 3, drive 2 entry in the device vector table (a t $B F26-$B F27) with

the address stored a t the slot 0, drive 1 entry (a t $B F10-$B F ll). (This will be the

address of the subroutine tha t genera tes a “no device connected” error condition.)
The origina l slot 3, drive 2 entry must be saved if you la ter want to re insta ll the

/RAM device .

5. Decrement D E V C NT ($B F31).

6. Make an O N LIN E ca ll with unit num se t to $B0. This frees up an interna l
buffer so tha t you can have more disk volumes active a t once .

A fter you perform these steps, the /RAM device disappears from ProD O S 8, and

auxiliary memory can be sa fe ly used for other purposes.
When your applica tion ends, it should re insta ll /RAM. Do this by performing the

following steps:

1. As a precaution, verify tha t you have not a lready re insta lled /RAM by checking for

a slot 3, drive 2 device code in D E VLST .

2. Restore the origina l slot 3, drive 2 device vector tha t you saved be fore /RAM was

disconnected.

3. Move each active entry in D E VLST to the next higher memory loca tion (starting

with the highest-addressed entry), and then store the /RAM device code (tha t you

saved be fore /RAM was disconnected) a t the first entry in the list (a t $B F32).

4. Increment D E V C NT ($B F31).

5. Initia lize the volume directory and volume bit map of the /RAM device by se tting

up the disk driver parame ters for a forma t request ($42 = 3, $43 = $B0, $44-

$45 = 512-byte buffer address) and then ca lling the disk driver. S ince the /RAM

device driver resides in bank 1 of bank-switched RAM, you must enable tha t bank

by reading $C08B twice in succession be fore making the ca ll. When the ca ll ends,
reenable the Applesoft and motherboard R OMs by reading $C082. Here is a

subroutine tha t performs a ll these chores:

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

#3

$42

#$B0

$43

$73

$44

$74

$45

;Forma t code

;Unit number code

;Se t buffer address

; to HIMEM

$C08B ;Read/write enable bankl

304 D isk Devices

LDA $C08B

JSR T O RAM

LDA $C082

RTS

T O RAM JMP ($B F26)

; (where the driver is)

;Reenable Applesoft R OMs

;C a ll the /RAM driver

A fter you re insta ll /RAM like this, it is once aga in ava ilable for use as a file-storage device .

WRITIN G A PR O D O S 8 DISK DRIV E R

The best way to learn about disk drivers and how ProD O S 8 insta lls them is to

actua lly write one . In this section, we do just tha t by crea ting a driver for an 8K

version of /RAM ca lled /RAM8. It is suitable for use in an Applesoft programming

environment and can be used by a ll ProD O S 8 users (unlike /RAM, which is not
ava ilable to Apple II P lus users). The RAMdisk driver itse lf resides in page three , and

the “disk” storage space it uses is loca ted from $0800 to $27F F . We ensure tha t
Applesoft programs do not conflict with the RAMdisk storage space by se tting the

Applesoft start-of-program pointer a t $67-$68 to $2801 and then initia liz ing the other

Applesoft pointers and da ta areas by executing a N E W command.
Re fore we begin to crea te the disk driver, le t’s outline the steps to follow to remedy

the Applesoft conflict, bind the driver into ProD O S 8, and then initia lize the RAM�

disk. This is rea lly a five-step process.
The first step in the procedure is to adjust the Applesoft pointers so tha t when you

enter or load BASIC programs, they will not overwrite the /RAM8 volume:

LDA #$01 .-S tarting address (low)

STA $67 ;Program pointer (low)

LDA #$28 ;S tarting address (high)

STA $68 ;Program pointer (high)

LDA #0

STA $2800

JSR $D64B ;Applesoft N E W command

(Applesoft insists tha t the byte preceding the start of the program, $2800, be se t to $00.)
Second, a slot and drive number for our new device must be se lected. This is most

easily done by examining the D E VLST table to see wha t combina tions are a lready in

use and picking one tha t isn’t. Le t’s assume tha t slot 3, drive 1 is ava ilable .
We then must store $30 in the D E VLST table (this is the code for a slot 3, drive 1

device; see F igure 7-1) and increment D E V C NT . Here’s the code to do it:

LDA #$30

IN C D E V C NT

LDY D E V C NT

STA D E VLST ,Y

;D E VLST code for slot 3, drive 1

;Adding one device

;D E V C NT now points to next ava ilable

; position in D E VLST

.-S tuff device code in D E VLST

Writing a ProD O S 8 D isk Driver 305

The next step is to insta ll the address of the disk driver in the disk driver vector table

(low-order byte first). The address of the slot 3, drive 1 entry in this table is $B F16.
Here’s how to store the address:

LDA #<RAMDISK

STA $B F16

LDA #>RAMDISK

STA $B F17

;G e t low-order address byte

;G e t high-order address byte

RAMDISK is the address of the disk driver tha t performs the I/O opera tions. (We see

wha t it looks like in a moment.)
F ina lly, we must initia lize the volume directory block and the volume bit map. But

be fore we can do this, we must know three things:

• The number of directory blocks

• The block number of the volume bit map block

• The number of blocks on the volume

S ince it’s unlike ly we ’ll be saving very many files in the 8K /RAM8 volume , we can save

some space by using just one directory block (instead of the four used on standard disks).
This block must be loca ted a t block 2 to conform to ProD O S conventions.

The volume bit map block will be stored a t block 3, leaving a tota l of 14 blocks (7K)

for file storage . To keep the file storage area contiguous, we assign these blocks to

numbers 4 through 17 and mark blocks 0 and 1 as in use in the volume bit map. (We

can’t use block 0 for file storage anyway since ProD O S uses a zero entry in a file index

block as a placeholder for a sparse file .) This means ProD O S will think the volume

size is 18 blocks (instead of 16), but tha t will not ma tter since the two extra blocks will
not be ava ilable for file storage .

S ince a 1 bit in the volume bit map indica tes a block is free , the volume bit map

block must begin with a $0F byte (blocks 0-3 in use , blocks 4—7 free), followed by an

$F F byte (blocks 8-15 free) and a $C0 byte (blocks 16 and 17 free). The rema ining

bytes in the block will never be used but should be se t to zero.
W ith this background informa tion, it is re la tive ly simple to initia lize /RAM8. The

first step is to prepare an image of the volume directory block and then use the

WRIT E BLO C K command to write it to block 2. (You may want to review Chapter

2 for a description of the structure of such a block.) Every byte in the block will be

zero except the following:

$04 storage type code and name length ($F4)

$05-$08 AS CII string for "RAM8" ($52 $41 $4D $38)

$22 access code ($C3)

$23 entry length ($27)

$24 entries per block ($0D)

306 D isk Devices

$27-$28 block number for volume bit map ($0003)

$29-$2A number of blocks on volume ($0012)

S ince the directory links (a t $00-$01 and $02-$03 in the block) are both zero, this will
be the only block tha t ProD O S examines for files in the volume directory.

The fina l step in the initia liza tion procedure is to write an image of the volume bit
map to block 3.

Now a ll we have to do is write the specia l /RAM8 disk driver. Be fore we begin, we

must decide wha t memory loca tions will be used to hold each block in the volume . A

convenient mapping scheme to use is as follows:

block 2 -> $800-$9F F

block 3 --> $A00-$B F F

block 4 -> $C O O-$O F F

block 17 -> $2600-$27F F

(The driver re turns an error code if a block number grea ter than 17 is requested.)
W ith this scheme in place , the page number for a given block is equa l to twice the

block number plus 4. This number can be easily ca lcula ted by the driver subroutine .
(To simplify the driver, we a lso assign block 0 to $400-$5F F and block 1 to

$600-$7F F even though these blocks are never used.)
As we saw earlier in this chapter, when the disk driver takes control, certa in parame �

ters are se t up in zero page by the ca lling program. One of these parame ters is a command

code tha t indica tes wha t type of opera tion is to be performed: read, write , check sta tus, or

forma t. To save space , our driver won’t include the forma tting code , so we ignore a ll
forma t requests. S ta tus requests will a lso be ignored because such requests are meaning�

less in the context of a RAMdisk. Here ’s wha t the driver will look like:

CLD

LO A $6

STA ZPSAV E

LDA $7

STA ZPSAV E+1

.•(required by ProD O S 8)

;Save zero page loca tions

LDA $47 ;Check block number (high)

.•Error if not zero

.•Check block number (low)

;Is it out of bounds?

;It's >=18, so error

BN E IO E RR O R

LDA $46

CMP #18

B C S IO E RR O R

ASL

CLC

AD C #4

STA $7

.•Multiply block by 2

... and add 4 to ge t
starting page of block

Writing a ProD O S 8 D isk Driver 307

LDA #0

STA $6

LDA $42

CMP #3

B E Q E XIT

CMP #0

B E Q E XIT

CMP #1

B E Q R E AD

CMP #2

B E Q WRIT E

;G e t command code

.•Forma t?

;Yes, so exit norma lly

.•Check sta tus?

;Yes, so

.-Read?

;Yes, so

.•Write?

;Yes, so

exit norma lly

branch

branch

E XIT CLC ,-CLC ==> no error

LDA #0

E XIT1 PHP

PHA

LDA ZPT EMP [Restore zero page loca ti
STA $6

LDA ZPT EMP+1

STA $7

PLA [Restore error code

PLP [Restore carry sta tus

RTS

IO E RR O R S E C [S E C ==> error occurred

LDA #$27 [1/0 E RR O R code

BN E E XIT1 [(a lways taken)

R E AD

["read" subroutine]

JMP E XIT

WRIT E

["write11 subroutine]

JMP E XIT

ZPT EMP DS 2 [Temporary storage space

Note tha t the driver must begin with the CLD instruction tha t ProD O S 8 checks to see if

a va lid driver is insta lled. The first part of the driver saves the contents of two zero page

loca tions we ’re going to overwrite and then checks whe ther the requested block number

(stored a t $46-$47) is within the a llowable range . If it isn’t, the driver ends with the carry

flag se t and the error code for “I/O error” ($27) in the accumula tor.
The next part simply ca lcula tes the address of the requested block and stores it in

two consecutive zero page loca tions ($6-$7) so tha t the driver can access the block of
da ta using the 6502 indirect indexed addressing mode .

The bodies of the R E AD and WRIT E subroutines are both very simple to write .
The R E AD code is responsible for moving the block of da ta from the address just

308 D isk Devices

ca lcula ted to the address specified by the ca ller. (This address is stored a t $44-$45.)
The WRIT E code performs just the opposite transfer. Here are the two subroutines

tha t will do the trick:

R E AD LDY #0

R1 LDA ($6),Y ;G e t block da ta
STA ($44),Y ; and move it to ca ller 's buffer

INY

BN E R1 ;Branch until 256 bytes done

IN C $6 ;Move to second ha lf

IN C $44

R2 LDA ($6),Y ;G e t block da ta
STA ($44),Y ; and move it to ca ller 's buffer

INY

BN E R2 ;Branch until 256 bytes done

D E C $44

JMP E XIT

WRIT E LDY #0

W1 LDA ($44),Y ;G e t da ta from ca ller's buffer

STA ($6),Y ; and move it to "disk" block

INY

BN E R1 .•Branch until 256 bytes done

IN C $44 ;Move to second ha lf
IN C $6

W2 LDA ($44),Y ;G e t da ta from ca ller's buffer

STA ($6),Y ; and move it to "disk" block

INY

BN E R2 ;Branch until 256 bytes done

D E C $44

JMP E XIT

As you can see , an I/O opera tion is simply the movement of a 512-byte block of da ta

from one area of memory to another.
Table 7-3 shows the comple te source listing for a slightly embe llished form of this

driver. One additiona l fea ture it includes is the marking of pages 3 and 8-27 as “in

use” in the system bit map in the ProD O S 8 globa l page to prevent the /RAM8

volume from be ing overwritten. Any a ttempt to load a file into these areas (using

BLO AD or BRUN) results in a “no buffers ava ilable” error.
Use the BRUN command to insta ll the driver program, and then prove to yourse lf

tha t it exists by entering the command:

C ATALO G /RAM8 (or C ATALO G ,S3,DI)

You should see a standard C ATALO G listing followed by an indica tion tha t there are

14 blocks free and 4 blocks used, as expected. You can now save files to /RAM8 as you

would to any other volume .

Writing a ProD O S 8 D isk Driver 309

Table 7-3 The /RAM8 disk driver program

2 **************************************
3

� it

4 * ProD O S RAMdisk disk driver *
5

� �

6 * This driver controls a 8K RAMdisk *

7 * volume ca lled /RAM8. it

8
� it

9 * Copyright 1985-1988 G ary B . Little *

10
* *

11 * Last modified: August 26, 1988 *
12

it it

13
* � it � it � � � * � * � � it * � it � it � it � � � it it * � � it � � � it � �

14 RAMPTR E Q U $6 .•Pointer to RAMdisk block

15

16 C OMMAND E Q U $42 ; Command code

17 BU F F E R E Q U $44 ;Buffer address

18 BLO C K E Q U $46 ;B lock number

19

20 TXTTAB E Q U $67 .•Applesoft program pointer

21

22 INITBLK E Q U $3000 ;B lock buffer

23

24 ML I E Q U $B F00 ;MLI interface

25 D E VADR01 E Q U $B F10 ;S tart of disk driver table

26 D E V C NT E Q U $B F31 ;# of disk devices (minus 1)

27 D E VLST E Q U $B F32 ,-Table of slot, drive for disks

28 BITMAP E Q U $B F58 .•S tart of system bit map

29

30 O R G $2000

31

32 * Move device driver code i into place:

33

2000: A O 00 34 LDY #0

2002: B9 F4 20 35 MO V E C O D E LDA B E GIN ,Y

2005: 99 00 03 36 STA RAMDISK ,Y

2008: C8 37 INY

2009: C O 7C 38 C PY #E ND-RAMDISK

200B: D O F5 39 BN E MO V E C O D E

40

41

42 * Mark pages 3, 8..27 as " in use" *
43 * in the system bit map. This *
44 * prevents /RAM8 or its driver *

45 * from be ing overwritten by BLO AD .*

46
� �

200D: AD 58 B F 47 LDA BITMAP

2010: 09 10 48 O RA #$10 ;B lock 3 bit = 1

2012: 8D 58 B F 49 STA BITMAP

2015: A9 F F 50 LDA #$F F

310 D isk Devices

Table 7-3 Continued

2017: 8D 59 B F 51 STA BITMAP+1 .•B locks 8..15

201A: 8D 5A B F 52 STA BITMAP+2 .•B locks 16..23

201D: AD 5B B F 53 LO A BITMAP+3

2020: 09 F0 54 O RA #$F0 [B lock 24..27 bits = 0

2022: 80 5B B F 55 STA BITMAP+3

56

2025: AD C7 20 57 LDA SLF AK E

2028: 0A 58 ASL

2029: O A 59 ASL

202A: O A 60 ASL

202B: O A 61 ASL [Multiply slot by 16

202C: A C C8 20 62 LDY D F AK E

202F: C O 01 63 C PY #1 [Drive 1?

2031: F O 02 64 B E Q S E TDS [Yes, so branch

2033: 09 80 65 O RA #$80 [Se t bit 7 ("drive 2" bit)

2035: 8D O F 20 66 S E TDS STA N E WDRSL

67

68 * Check for existing device:

2038: A C 31 B F 69 LDY D E V C NT

203B: B9 32 B F 70 D llP C H E C K LDA D E VLST .Y [G e t existing slot, drive

203E: C D D F 20 71 CMP N E WDRSL [Same as RAMdisk slot, drive?

2041: D O 01 72 BN E D C1

73

2043: 00 74 BRK [Crash if duplica te found

75

2044: 88 76 D C1 D E Y

2045: 10 F4 77 BPL DUP C H E C K ;No, so on to next device

78

2047: E E 31 B F 79 IN C D E V C NT [Add "disk" drive

204A: A C 31 B F 80 LDY D E V C NT

204D: AD D F 20 81 LDA N E WDRSL

2050: 99 32 B F 82 STA D E VLST .Y [Save slot, drive code

83

2053: AD C7 20 84 LDA SLF AK E [G e t slot #

2056: O A 85 ASL ;x2 to step into table
2057: A C C8 20 86 LDY D F AK E

205A: C O 01 87 C PY #1 [Drive 1?

205C: F O 03 88 B E Q FIXTABLE ;Yes, so branch

89

205E: 18 90 CLC

205F: 69 10 91 AD C #16 [O ffse t to drive 2 table
92

2061: A8 93 FIXTABLE TAY

2062: A9 00 94 LDA #<RAMDISK [Save address of driver

2064: 99 10 B F 95 STA D E VADR O l.Y ; in vector table
2067: A9 03 96 LDA #>RAMDISK

2069: 99 11 B F 97 STA D E VADR O l+l.Y
98

99

Writing a Pro D O S 8 D isk Driver 311

Table 7-3 Continued

206C: A9 01

100

101

102

103

* Change Applesoft program pointer *
* and initia lize program space . *

LDA #1

206E: 85 67 104 STA TXTTAB

2070: A9 28 105 LDA #$28

2072: 85 68 106 STA TXTTAB+1

2074: A9 00 107 LDA #0

2076: 8D 00 28 108 STA $2800 ;Must begin with $00 byte
2079: 20 4B D6 109 JSR $D64B ;Applesoft "N E W" command

110

111

112 * Initia lize the RAMdisk *
113

207C: 20 E4 20 114 JSR Z E R O BLK

115

207F: A O 00 116 LDY #0

2081: B9 C9 20 117 D O NAME LDA V OLNAME ,Y
2084: F0 06 118 B E Q S E TLE N

2086: 99 05 30 119 STA INITBLK+5.Y ;Put volume name in buffer

2089: C8 120 INY

208A: D O F5 121 BN E D O NAME

122

208C: 98 123 S E TLE N TYA

208D: 09 F0 124 O RA #$F0 ;Se t “directory11 bits
208F: 8D 04 30 125 STA INITBLK+4 ;Save file type + name length

126

127 * S tore mi sc. volume parame ters:

2092: A O 22 128 LDY #$22

2094: B9 A C 20 129 D O PARMS LDA INITPARM-$22,Y
2097: 99 00 30 130 STA INITBLK ,Y
209A: C8 131 INY

209B: C O 2B 132 C PY #$2B

209D: D O F5 133 BN E D O PARMS

134

209F: A9 02 135 LDA #2

20A1: 80 E2 20 136 STA BLKNUM ;Writing to block 2

20A4: A9 00 137 LDA #0

20A6: 8D E3 20 138 STA BLKNUM+1

20A9: 20 D7 20 139 JSR D O WRIT E

140

141

142 * F ix up the volume bit map *
143

20A C: 20 E4 20 144 JSR Z E R O BLK

20A F: A9 O F 145 LDA #$0F ;0..3 in use / 4..7 free

20B1: 8D 00 30 146 STA INITBLK

20B4: A9 F F 147 LDA #$F F ;8..15 free

20B6: 80 01 30 148 STA INITBLK+1

312 D isk Devices

Table 7-3 Continued

194

195 B E GIN E Q U *
196

20B9: A9 C O 149 LDA #$C0 ;16, 17 free

20BB: 8D 02 30 150 STA INITBLK+2

151

20B E: E E E2 20 152 IN C BLKNUM ;Change to block 3

20C1: 20 D7 20 153 JSR D O WRIT E

154

20C4: 4C D O 03 155 JMP $3D0 ;Reconnect ProD O S hooks

156

20C7: 03 157 SLF AK E D F B 3 ;RAMdisk slot #

20C8: 01 158 D F AK E D F B 1 ;RAMdisk drive #

159

20C9: 52 41 4D 160 V OLNAME AS C 'RAM8',00 .•Volume name

20C C: 38 00

161

20C E: C3 162 INITPARM D F B $C3 .•Access code

20C F: 27 163 D F B $27 .•Entry length
20D0: 0D 164 D F B 13 ;Entries/block

20D1: 00 00 165 DW 0 ;F ile count
20D3: 03 00 166 DW 3 ;B lock for bit map

20D5: 12 00 167 DW 18 ;Tota l blocks

168

169
� a*****************************

170 * Write .a block to the device *
171

� � � � � � � � � * * � � � � � * � � * � � * � � � * � it * �

20D7: 20 00 B F 172 D O WRIT E JSR ML I

20DA: 81 173 D F B $81 ;WRIT E BLO C K command

200B: D E 20 174 DA CMDLIST

20DD: 60 175 RTS

176

20D E: 03 177 CMDLIST D F B 3

20D F: 00 178 N E WDRSL DS 1 ;Drive and slot
20E0: 00 30 179 DA INITBLK ;I/O buffer

20E2: 00 00 180 BLKNUM DW 0 .•B lock # ge ts filled in here

181

182

183 * Zero the block *
184

� * � * � * � � ********* �

20E4: A9 00 185 Z E R O BLK LDA #0

20E6: A8 186 TAY

20E7: 99 00 30 187 ZB1 STA INITBLK ,Y
20E A: C8 188 INY

20E B: D O F A 189 BN E ZB1

20E D: 99 00 31 190 ZB2 STA INITBLK+256,Y
20F0: C8 191 INY

20F1: D O F A 192 BN E ZB2

20F3: 60 193 RTS

Writing a Pro D O S 8 D isk Driver 313

Table 7-3 Continued

197

198 * This is the device driver *
199 * for the /RAM8 volume . *

200
� * � � � * � � � ** � � � � � *** � � � � * � ** � *

201

202 O R G $300

203

204 RAMDISK E Q U
�

205

0300: D8 206 CLD ;(Required by ProD O S)

207

208 * Save zero page loca tions:

0301: A5 06 209 LDA RAMPTR

0303: 80 7A 03 210 STA ZPT EMP

0306: A5 07 211 LDA RAMPTR+1

0308: 8D 7B 03 212 STA ZPT EMP+1

213

214

215 * Check for block range ierror *
216

030B: A5 47 217 LDA BLO C K+1 [Check block number (high)

030D: 00 34 218 BN E IO E RR O R ;Error if not zero

030F: A5 46 219 LDA BLO C K ;Check block number (low)

0311: C9 12 220 CMP #18 ;Is it out of bounds?

0313: B O 2E 221 B C S IO E RR O R ;It's >=18, so error

222

223
* � ********* � * � * � * � *** � ********** � *

224 * Convert block # to RAM address *
225

0315: 0A 226 ASL .•Multiply block by 2

0316: 18 227 CLC

0317: 69 04 228 AD C #4 ;... and add 4 to ge t

0319: 85 07 229 STA RAMPTR+1 [S tarting page of block

031B: A9 00 230 LDA #0

031D: 85 06 231 STA RAMPTR

232

233

234 * Check command code *

235

031F: A5 42 236 LDA C OMMAND ;G e t command code

0321: C9 03 237 CMP #3 [Forma t?

0323: F0 O C 238 B E Q E XIT [Yes, so exit norma lly
0325: C9 00 239 CMP #0 [Check sta tus?

0327: F0 08 240 B E Q E XIT ;Yes, so exit norma lly
0329: C9 01 241 CMP #1 [Read?

032B: F O IB 242 B E Q R E AD ;Yes, so branch

032D: C9 02 243 CMP #2 [Write?

032F: F O 30 244 B E Q WRIT E ;Yes, so write
245

314 D isk Devices

Table 7-3 Continued

0331: 18 246 E XIT CLC ;CLC ==> no error

0332: A9 00 247 LDA #0

0334: 08 248 E XIT1 PHP

0335: 48 249 PHA

0336: AD 7A 03 250 LDA ZPT EMP

0339: 85 06 251 STA RAMPTR

033B: AD 7B 03 252 LDA ZPT EMP+1

033E: 85 07 253 STA RAMPTR+1

0340: 68 254 PLA ;Restore error code

0341: 28 255 PLP .•Restore carry sta tus

0342: 60 256 RTS

257

0343: 38 258 IO E RR O R S E C ;S E C ==> error occurred

0344: A9 27 259 LDA #$27 .-I/O E RR O R code

0346: D O E C 260 BN E E XIT1 ; (a lways taken)

261

262

263 * Perform R E AD command by *
264 * transferring da ta from the *

265 * RAM to the da ta buffer. *

266
* � * � � **** � * � *** � * � * � ***** � ** � *

0348: A O 00 267 R E AD LDY #0

034A: B l 06 268 F R OMC ARD LDA (RAMPTR),Y

034C: 91 44 269 STA (BU F F E R),Y
034E: C8 270 INY

034F: D O F9 271 BN E F R OMC ARD

0351: E6 07 272 IN C RAMPTR+1

0353: E6 45 273 IN C BU F F E R+1

0355: B l 06 274 F C1 LDA (RAMPTR),Y
0357: 91 44 275 STA (BU F F E R),Y
0359: C8 276 INY

035A: D O F9 277 BN E F C1

035C: C6 45 278 D E C BU F F E R+1

035E: 4C 31 03 279 JMP E XIT

280

281

282 * Perform WRIT E command by *
283 * transferring da ta from the *
284 * da ta buffer to the RAMcard.*
285

� � Mr

0361: A0 00 286 WRIT E LDY #0

0363: B l 44 287 T O C ARD LDA (BU F F E R),Y
0365: 91 06 288 STA (RAMPTR),Y
0367: C8 289 INY

0368: D O F9 290 BN E T O C ARD

036A: E6 45 291 IN C BU F F E R+1

036C: E6 07 292 IN C RAMPTR+1

036E: B l 44 293 T CI LDA (BU F F E R),Y
0370: 91 06 294 STA (RAMPTR),Y

Writing a ProD O S 8 D isk Driver 315

Table 7-3 Continued

301

302 E ND E Q U *

0372: C8 295 INY

0373: D O F9 296 BN E T CI

0375: C6 45 297 D E C BU F F E R+1

0377: 4C 31 03 298

299

JMP E XIT

037A: 00 00 300 ZPT EMP DS 2

When you use the /RAM 8 disk driver, be care ful not to run any graphics programs

tha t use the primary high-resolution graphics screen. The video RAM buffer this

screen uses ($2000-$3F F F) overlaps the /RAM8 block storage area . Moreover, the

Applesoft program must not overwrite the device driver in page 3, or the storage

space itse lf, with P O K E sta tements. If you want to avoid these memory conflicts, you

can re loca te the disk driver (and its corresponding storage space) to an area above

HIMEM and the BASIC .SYST EM genera l-purpose file buffer using the techniques

described in Chapter 5.
You can remove the /RAM8 device from the system using the technique described

above for the remova l of the /RAM volume . You will a lso have to clear the appropria te

bits in the system bit map, rese t the Applesoft program pointer to $801, and execute

an Applesoft N E W command to initia lize other important Applesoft da ta pointers.

316 D isk Devices

C HAPT E R 8

C locks

In Chapter 2, we saw tha t the directory entry for each file on a disk forma tted for the
ProD O S file system conta ins 4 bytes for the time and da te the file was crea ted and 4
more bytes for the time and da te it was last modified. Most other file systems save
similar time and da te informa tion.

The ProD O S file system’s da te-stamping fea ture is very use ful, especia lly for those
who routine ly save severa l versions of the same file on different disks. Three months
la ter you won’t have to guess which one is the la test version; a ll you have to do is
compare modifica tion da tes. The BASIC .SYST EM C ATALO G command displays
these da tes when it lists the names of the files on disk.

G S/O S and ProD O S 8 de termine the current time and da te by accessing a rea l-time
clock/ca lendar chip interfaced to the microprocessor. On the IlG S , this chip is an integra l
part of the system and does not occupy a slot or port; on the lie and II P lus, you must add
an optiona l clock card. There are a lso clocks ava ilable for the slotless lie .

A computer clock conta ins specia l integra ted circuits tha t a llow it to keep track of
the current time and da te independently of the microprocessor. It is the Apple’s
digita l wa tch, if you like . C locks keep the correct time even when the Apple is turned
off because they are powered by ba tteries.

ProD O S 8 uses a specia l assembly-language program, ca lled a clock driver, to
transfer the time and da te from the card to the Apple in an understandable form.
ProD O S 8 comes with interna l clock drivers for the built-in IIg s clock and for any
clock card tha t understands a standard se t of time-re la ted commands origina lly used in
Thunderware’s Thunderclock. ProD O S 8 automa tica lly insta lls the correct driver into
the system when it first boots up. If there is no recognizable clock, ProD O S 8 insta lls
a null driver, and applica tion programs should ask the user to enter the correct time
and da te if tha t informa tion is needed. G S/O S a lways insta lls a driver for the built-in
clock on the Apple IIg s .

In this chapter, we examine how ProD O S 8 dea ls with time issues in genera l. In
particular, we see how it de tects the presence of a clock card, how it insta lls the clock
driver, and how to design and insta ll your own ProD O S 8 clock driver for a nonstand �
ard clock. (S ince G S/O S has a built-in driver for the IIG S clock, you will never have to
insta ll your own driver; there fore G S/O S has no mechanism for insta lling custom clock

317

drivers.) We a lso go through some use ful examples of how to make the most of the
time and da te capabilities of G S/O S and ProD O S 8.

H O W G S/O S AND PR O D O S 8 R E AD TH E TIME AND DAT E

Whenever ProD O S 8 needs to know the time and da te it a lways makes the same ca ll:
JSR DAT E TIME . The code starting a t DAT E TIME ($B F06) is e ither a 1-byte RTS
instruction (if no ProD O S-compa tible clock is in the system) or a 3-byte JMP instruc �
tion tha t passes control to a ProD O S 8 clock driver (if a compa tible clock is present).
In e ither case , the 2 bytes a t $B F07-$B F08 a lways hold the address of the start of the
ProD O S 8 clock driver space .

The clock driver reads the time and da te from the clock and stores the da ta in a
specia l forma t a t TIME ($B F92-$B F93) and DAT E ($B F90-$B F91) in the ProD O S 8
globa l page . F igure 8-1 describes the forma t used. If no clock driver is present, TIME
and DAT E are not modified because the RTS instruction stored a t DAT E TIME
($B F06) immedia te ly bounces control back to the ca ller. The only way to se t the time
and da te in this situa tion is to write directly to the TIME and DAT E loca tions.

The approved me thod of de termining the da te and time in a ProD O S 8 applica tion
is to use the G E T_TIME command. Reca ll from Chapter 4 tha t you can do this by
executing a subroutine like this one:

JSR $B F O O .•Make a ca ll to the MLI

D F B $82 ;G E T_TIME

DA $0000 ;Dummy parame ter table

RTS

When this subroutine finishes, the TIME and DAT E loca tions conta in the current
time and da te in the forma t described above .

G S/O S has no equiva lent opera ting system command for re turning the current time
and da te . If you want the time and da te , you must use two commands in the Apple
IIg s Misce llaneous Tool Se t: ReadT imeHex and ReadAsciiT ime .

ReadT imeHex (toolbox command $0D03) re turns the current time and da te param�
e ters as binary numbers. Here ’s how to ca ll it from 65816 full na tive mode:

PHA ;Space for results

PHA ; (e ight bytes)

PHA

PHA

LDX #$0D03 .•ReadT imeHex

JSL $E10000

PLA ;WeekDay (high)

PLA ,-Month (high), Day (low)

PLA ;CurYear (high), Hour (low)
PLA .•Minute (high). Second (low)

318 C locks

F igure 8-1 The forma ts of the ProD O S 8 DAT E and TIME bytes

(a) DAT E ($B F90-$B F91)

7 6 5 4 3 2 1 0

$B F91Y6 Y5 Y4 Y3 Y2 Y1 Y0 M3

7 6 5 4 3 2 1 0

M2 Ml M0 D4 03 D2 DI D O $B F90

The year is encoded as Y6 Y5 Y4 Y3 Y2 Y1 Y O (bits 1-7 of the high-order byte). Only
the last two digits of the year are stored (tha t is, 89 for 1989).

The month is encoded as M3 M2 Ml MO (bits 5—7 of the low-order byte and bit 0
of the high-order byte). January is month 1, and December is month 12.

The day of the month is encoded as D4 D3 D2 DI D O (bits 0-4 of the low-order byte).
For example , November 30, 1989, would be stored as follows:

H igh-order byte Low-order byte

0 1111110

YYYYYYYYYYYYY

1989

10 110 0 11

M MMMMM DDDDDDDDD

is stored in military (24-hour) forma t.
The minute is encoded as M5 M4 M3 M2 Ml MO (bits 0-5 of the low-order byte).
For example , 9:20 p.m. (21:20) would be stored as follows:

Month (S O B) Day ($1E)

November 30

H igh-order byte Low-order byte

0 0 0 1 0 1 0 1

HHHHHHHHH

Hours ($15)

21

Minutes ($14)

20

How G S/O S and ProD O S 8 Read the T ime and Da te 319

The va lues ReadT imeHex re turns are as follows:

WeekDay 1..7 1 = Sunday, 2 = Monday, and so on
Month 0..11 0 = January, 1 = F ebruary, and so on
Day 0..30 day of month minus 1
CurYear 0..99 current year minus 1900
Hour 0..23 hour in military forma t

Minute 0..59

Second 0..59

ReadAsciiT ime (toolbox command $0F03) re turns a 20-byte AS CII-encoded character
string describing the current time and da te . Here is how to ca ll it:

PushP tr T imeS tring ;Pointer to string area

LDX #$0F03 ;ReadAsciiT ime

JSL $E10000

RTS

T imeS tring DS 20 ,-Space for time string

Note tha t the time string re turned is not preceded by a length byte . The string is
a lways exactly 20 bytes long, and the high-order bit of each byte is se t to 1.

The forma t of the time string depends on the se ttings of the da te and time forma ts
in the Control Pane l. There are six possibilities:

mm/dd/yy HH:MM:SS XM

dd/mm/yy HH:MM:SS XM

yy/mm/dd HH:MM:SS XM

mm/dd/yy HH:MM:SS

dd/mm/yy HH:MM:SS

yy/mm/dd HH:MM:SS

XM = AM or PM

24-hour military forma t

The first forma t listed here is the Control Pane l’s de fault.

H O W PR O D O S 8 ID E NTIFIE S A CLO C K C ARD

When you first boot ProD O S 8 on a system other than the IlG S , ProD O S 8 examines
each periphera l expansion slot in the system for a standard clock card. ProD O S 8
identifies such a card by the following unique pa ttern of bytes in the card’s dedica ted
$Cn00-$CnF F R OM space (n is the slot number):

S CnO O $08

$CnO2 $28

$Cn04 $58

$Cn06 $70

320 C locks

If it finds a clock card, ProD O S 8 insta lls its standard clock driver and changes the
RTS opcode ($60) a t $B F06 to a JMP opcode ($4C). S ince the 2 bytes following this
opcode conta in the address of the clock driver space (low-order byte first), the driver
takes control whenever a program executes a JSR $B F06 instruction. Actua lly, a
program should a lways use the G E T_TIME command to read the time and da te; the
G E T_TIME command handler is wha t ca lls the clock driver directly.

The built-in IlG S clock does not occupy a slot or port, so ProD O S 8 can’t identify it
by checking bytes in R OM. Instead, it simply checks to see wha t Apple II mode l it is
running on; if it’s a IlG S , it insta lls the IlG S clock driver.

ProD O S 8 a lso se ts the clock bit (bit 0) of the machine identifica tion byte ,
MA C HID ($B F98), to 1 if it finds a clock.

WRITIN G AND INSTALLIN G A PR O D O S 8 CLO C K DRIV E R

If you are using a nonstandard clock, you must write and insta ll your own ProD O S 8
clock driver. Two examples of nonstandard clocks are a clock interfaced through the
seria l port of a lie and a clock on a multifunction periphera l card tha t does not occupy
a phantom slot.

Writing a clock driver is no easy fea t since it requires de ta iled informa tion concern �
ing how the clock circuitry is interfaced to the Apple and the procedure a programmer
must follow to extract time and da te informa tion from the card. If you’re lucky, the
manufacturer of the card will have a de ta iled technica l re ference manua l tha t conta ins
this informa tion. But more commonly you will have to beg, borrow, or stea l this
informa tion be fore you can ge t started. Happily, manufacturers of nonstandard clock
cards have a lready written the ir own ProD O S 8 clock drivers and include them on
disk with the ir hardware .

The genera l characteristics of a clock driver are:

• It must start with a CLD instruction.

• It must read the time and da te from the clock card and store the results in the
proper forma t in the globa l page TIME ($B F92-$B F93) and DAT E ($B F90-
$B F91) loca tions.

Once you write a driver, you must move it to an area of memory tha t other programs
will not use . The best ava ilable area is the one the very clock driver you are replacing
uses; you can a lways find the starting address of this area a t $B F07-$B F08 (low-order
byte first).

If you choose to use the standard driver area (and we do recommend this se lection),
keep severa l important considera tions in mind:

• Never assume the standard clock driver will reside a t the same position in
every version of ProD O S 8. To ensure your driver will run properly a t any
address tha t might be stored a t $B F07—$B F08, you should avoid using JMP and

Writing and Insta lling a ProD O S 8 C lock Driver 321

JSR instructions or storing da ta within the ma in body of the driver. If you don’t,
the code will not be re loca table , and you will need to pa tch it to resolve a ll
interna l absolute address re ferences a fter you move it to its new position.

• Make sure your clock driver is no longer than 125 bytes. ProD O S 8 reserves
this amount of space for its standard drivers, and Apple has guaranteed this
amount of driver space .

• Be fore moving your clock driver into position, write-enable bank 1 of bank-
switched RAM by reading from loca tion $C08B twice in succession. (The
standard clock driver resides in bank-switched RAM.) A fter the move , re-enable
the Applesoft and system monitor R OM area by reading from loca tion $C082.

The next step in the insta lla tion procedure is to se t up a JMP instruction a t $B F06
tha t points to your clock driver. Do this by storing $4C (the JMP opcode) a t $B F06
and the address of the driver a t $B F07-$B F08 (low-order byte first). If you have
loaded the driver a t the address of the standard clock driver, you can skip the la tter
step since the correct driver address will a lready be in place .

F ina lly, you should se t bit 0 of MA C HID ($B F98) to 1 to indica te tha t a clock has
been insta lled in the system. Do this by executing the following short piece of code:

LDA MA C HID

O RA #$01

STA MA C HID

;G e t ID byte

;S tore a 1 in bit 0

. � Upda te ID byte

The easiest way to insta ll a clock driver is to make the insta lla tion program part of the
STARTUP program, which automa tica lly runs when ProD O S 8 executes the BASIC .-
SYST EM Applesoft interpre ter.

TIME /DAT E UTILITY PR O G RAMS

An Applesoft T ime and Da te Variable

Some dia lects of BASIC have a specia l variable ca lled TIME$ tha t a lways conta ins the
current time in the standard HH:MM:SS form. This variable is very use ful when a
program needs to display the current time , automa tica lly time-stamp printed reports,
ca lcula te e lapsed times, perform benchmarking studies, and so on.

You can use the R E AD .TIME subroutine in Table 8-1 to re turn the time and da te
in the form DD-MM-19YY HH:MM in any Applesoft string variable you specify. A fter
loading the subroutine , use it by executing the following sta tement from within an
Applesoft program:

C ALL 768,TM$

TM$ represents the name of the variable tha t is to hold the time string.

322 C locks

R E AD .TIME

C ALL 768,TM$

The

Copyright 1985-1988 G ary B . Little

Last modified: August 28, 1988*

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

program reads the time and

and stores it in an Applesoft

�
�

*
*

************:H************************
�
�
�
�
�
�

TM$ string has the form

DD-MM-19YY HH:MM

�
�
*
�
�
�
�
�
�
�
*
�
�
�
�

� � � � � it********************************

This

da te

string variable . The syntax is

Table 8-1 R E AD .TIME , a program to load the time and da te into an Applesoft
string variable

18 F R E T O P E Q U $6F ;Bottom of string space

19 VARPNT E Q U $83 ;Pointer to string da ta

20

21 IN E Q U $200 ;Input buffer

22

23 MLI E Q U $B F O O ;Entry point to MLI

24 DAT E E Q U $B F90 ;Year + Month + Day

25 TIME E Q U $B F92 jMinutes + Hours

26

27 C HK C OM E Q U $D E B E ;Skip comma

28 PTR G E T E Q U $D F E3 ;Loca te a variable

29 G E TSPA C E E Q U $E452 ;G e t string space for "A" chars

30 MO VSTR E Q U $E5E2 ,-Move string to free space

31

32 O R G $300

33

0300: 20 00 B F 34 JSR MLI .-C a ll the MLI and

0303: 82 35 D F B $82 ; se lect G E T_TIME command

0304: 00 00 36 DA $0000 ;(no parame ter table)

37

38 * “Unpack" the time:

39

0306: AD 92 B F 40 LDA TIME ;G e t minutes

0309: 8D B8 03 41 STA MINUT E S ; and save them

030C: AD 93 B F 42 LDA TIME+1 ;G e t hours

030F: 8D B9 03 43 STA H O URS ; and save them

0312: AD 90 B F 44 LDA DAT E ;G e t "day" bits (0...4),

0315: 29 IF 45 AND #$1F ; strip "month" bits,

0317: 8D BA 03 46 STA DAY ; and store correct number

031A: AD 91 B F 47 LDA DAT E +1 ;G e t "year" bits (1...7)

031D: 8D B C 03 48 STA Y E AR ; and month bit (0).

T ime /Da te U tility Programs 323

Table 8-1 Continued

0320: AD 90 B F 49 LDA DAT E ;G e t month bits (5...7)
0323: 4E B C 03 50 LSR Y E AR ;Put "year" bits into 0...6
0326: 6A 51 R O R ;G e t "month" bits in one byte

0327: 4A 52 LSR ; and move them into
0328: 4A 53 LSR ; the lower 5 bits

0329: 4A 54 LSR

032A: 4A 55 LSR

032B: 8D BB 03 56 STA MO NTH ;Save month bits (0...4)

57

58 * Assemble the Applesoft time/da te string:

59

032E: A2 00 60 LDX #0

0330: 8E B7 03 61 STX TIME P O S ,-C lear ptr to time string

0333: 8A 62 F O RMTIME TXA

0334: 48 63 PHA

0335: BD BD 03 64 LDA F O RMAT ,X ;G e t forma tting byte

0338: 08 65 PHP

0339: A E B7 03 66 LDX TIME P O S

033C: 28 67 PLP

0330: 30 IE 68 BMI N O TNUM ;Branch if not number

033F: A8 69 TAY ;G e t time code in Y

70

0340: B9 B8 03 71 LDA TIME DATA ,Y ;G e t binary time/da te da ta

0343: 20 92 03 72 JSR C O NV E RT ;Convert to B C D

0346: 48 73 PHA ;Save number

0347: 4A 74 LSR ;Move "tens" digit to

0348: 4A 75 LSR ; lower 4 bits by

0349: 4A 76 LSR ; shifting right four

034A: 4A 77 LSR ; times

034B: 09 30 78 O RA #$30 .•Convert to AS CII digit

034D: 90 00 02 79 STA IN ,X

0350: E8 80 I NX

0351: 68 81 PLA ;G e t origina l number back

0352: 29 O F 82 AND #$0F ;Isola te units digit

0354: 09 30 83 O RA #$30 ;Convert to AS CII digit

0356: 9D 00 02 84 STA IN ,X

0359: E8 85 I NX

035A: 4C 63 03 86 JMP T O N E XT

87

035D: 29 7F 88 N O TNUM AND #$7F ;S trip high bit for Applesoft

035F: 9D 00 02 89 STA IN ,X ;Insert punctua tion

0362: E8 90 INX

0363: 8E B7 03 91 T O N E XT STX TIME P O S

0366: 68 92 PLA

0367: AA 93 TAX

0368: E8 94 INX ;Go to next position

0369: E O O C 95 C PX #12 ;A t end of templa te?

036B: D O C6 96 BN E F O RMTIME ;No, so keep going

97

324 C locks

Table 8-1 Continued

98 * Move string to bottom of string space:

99

036D: AD B7 03 100 LDA TIME P O S ;G e t length of string

0370: 20 52 E4 101 JSR G E TSPA C E ;Make room for it

0373: A2 00 102 LDX #0

0375: A0 02 103 LDY #2 ;Y/X point to string

0377: 20 E2 E5 104 JSR MO VSTR ;Move the string (length in A)

105

106 * Point Applesoft variable to time/da te string.

107 * The string is now positioned a t the bottom

108 * of string space and is pointed to by F R E T O P .

109

037A: 20 B E D E 110 JSR C HK C OM ;Skip over comma

037D: 20 E3 D F 111 JSR PTR G E T

0380: AD B7 03 112 LDA TIME P O S ;G e t length of string

0383: A0 00 113 LDY #0

0385: 91 83 114 STA (VARPNT),Y ;... and save it

0387: C8 115 I NY

0388: A5 6F 116 LDA F R E T O P

038A: 91 83 117 STA (VARPNT),Y ;Save address (low)

038C: C8 118 INY

038D: A5 70 119 LDA F R E T O P+1

038F: 91 83 120 STA (VARPNT),Y ;Save address (high)

0391: 60 121 RTS

122

123

124 * B inary to B C D Conversion �

125 * Number must be 0...99 �

126 � � � � � � � � � � � st****************

0392: 8D B6 03 127 C O NV E RT STA T EMP ;Put # into work area

0395: 8E B5 03 128 STX XSAV E

0398: A9 00 129 LDA #0 ;S tart with a 0 result

039A: F8 130 S E D ;Use decima l arithme tic

039B: A2 06 131 LDX #6 ;Examine bits 0...6

039D: 4E B6 03 132 N E XTBIT LSR T EMP ;Move low bit into carry

03A0: 90 04 133 B C C N O W EIG HT .•Branch if it was zero

03A2: 18 134 CLC ; e lse add it

03A3: 7D A E 03 135 AD C BIND E C ,X ; to result

03A6: C A 136 N O W EIG HT D E X ;Count down to -1

03A7: 10 F4 137 BPL N E XTBIT .•Branch if more to go

03A9: D8 138 CLD .•Re turn to binary arithme ti

03AA: A E B5 03 139 LDX XSAV E

03AD: 60 140 RTS

141

03A E: 64 32 16 142 BIND E C D F B $64,$32,$16 ,-These are the we ights of

03B1: 08 04 02 143 D F B $08,$04,$02 ;the low 7 bits in

03B4: 01 144 D F B $01 ;a byte (in B C D)

145

03B5: 00 146 XSAV E DS 1 .•Temporary X loca tion

T ime /Da te U tility Programs 325

Table 8-1 Continued

0386: 00 147 T EMP DS 1 temporary work ariaa
03B7: 00 148 TIME P O S DS 1

149

150 TIME DATA E Q U A

151

03B8: 00 152 MINUT E S DS 1 ;Minutes (0...59)
03B9: 00 153 H O URS DS 1 ;Hours (0...23)
03 BA: 00 154 DAY DS 1 ;Day of month (1.. .31)
03BB: 00 155 MO NTH DS 1 ;Month of year (1. ..12)
03B C: 00 156 Y E AR DS 1 ;Year (0...99)

157

158 * Forma tting tempi a te for Jl DD-MM-19YY HH:MM"

159 * (digitsi re fer to ent:ries in TIME DATA table)

160

161 F O RMAT E Q U �

162

03BD: 02 163 D F B 2

03B E: AD 03 AD 164 D F B 11 - ” ,3, "
_ ii

03C1: B l B9 04 165 D F B "1" , "9" ,4

03C4: A0 A0 01 166 D F B $A0 ,$A C1,1
03C7: BA 00 167 D F B II . II .0

When you ca ll R E AD .TIME , it first uses the ProD O S 8 G E T_TIME command to
read the current time and da te into the ProD O S 8 globa l page loca tions. It then
unpacks the year, month, and day da ta from the DAT E loca tions and stores each of
them in its own temporary loca tion. The hours and minutes are a lready unpacked, but
they are a lso transferred to temporary loca tions.

A fter unpacking, R E AD .TIME begins to assemble the AS CII time string in the
Applesoft input buffer starting a t $200. It does this by scanning a specia l templa te
string tha t conta ins e ither AS CII characters or single-digit time codes. The AS CII
characters are transferred directly to the time string. When a time code is encoun �
tered, however, the corresponding time parame ter is loaded, converted to a binary-
coded decima l (B C D) number, and then stored as two consecutive AS CII digits in the
time string.

Next, R E AD .TIME moves the string from the input buffer to the ma in Applesoft
string space in the high end of memory to ensure the string will not be overwritten
the next time your program executes an Applesoft INPUT sta tement. This is done
using two Applesoft R OM subroutines ca lled G E TSPA C E ($E4B2) and MO VSTR
($E5E2). When you ca ll G E TSPA C E with the string length in the accumula tor, it
makes room for the string by lowering F R E T O P ($6F-$70), the pointer to the bottom
of string space , by the appropria te number of bytes. MO VSTR moves a string of
length A , pointed to by Y (high) and X (low), to this free space .

326 C locks

Once the time string is in position, R E AD .TIME loca tes the TM$ variable in the
Applesoft variable table by executing the following two instructions:

JSR C HK C OM

JSR PTR G E T

C HK C OM ($D E B E) and PTR G E T ($D F E3) are two more Applesoft R OM subroutines.
The first instruction advances the Applesoft program pointer by 1 byte , e ffective ly skip �
ping over the comma separa ting the C ALL address from the variable . The second
instruction stores the address of the 3-byte descriptor tha t de fines the string variable in
VARPNT ($83) and VARPNT +1 ($84). The first byte in the descriptor is the length of the
string; the next 2 bytes conta in the pointer to the contents of the string.

The fina l step is to store the new string length and pointer in the descriptor. The
length (TIME P O S) is stored in the first descriptor byte , and the pointer to the string,
found a t F R E T O P ($6F) and F R E T O P +1 ($70), is stored in the other 2 bytes.

Se tting the T ime and Da te on a C lockless Apple

Even if you do not have a clock in your Apple II, you can still da te- and time-stamp a
file by explicitly storing the current da te and time in the ProD O S 8 globa l page
loca tions just be fore saving the file to disk. This is somewha t inconvenient, but it’s
be tter than nothing. If you can survive with just the correct da te , life becomes much
easier because you have to se t the da te only once when you first turn the computer on
(assuming, perhaps na ive ly, tha t you don’t work past midnight).

The TIME DAT E program in Table 8-2 le ts you enter a time and da te in English.
A fter you do so, the program converts the informa tion into the encoded forma t used by
ProD O S 8 and then stores it in the ProD O S 8 globa l page loca tions.

T ime/Da te U tility Programs 327

Table 8-2 TIME DAT E , a program to manua lly se t the time and da te .

1 R EM "TIME DAT E "

2 R EM C O PYRIG HT 1985-1987 G ARY B . LITTLE

3 R EM D E C EMB E R 21, 1987

100 N O TRA C E : T E XT : PRINT C HR$ (21): SP E E D= 255: N O RMAL : H OME

110 DIM MT$(12)

140 F O R I = 1 T O 12: R E AD MT$(I): N E XT

150 DATA JANUARY , F E BRUARY ,MAR C H ,APRIL,MAY ,JUN E ,JULY ,AUG UST ,

S E PT EMB E R , O C TO B E R ,N O V EMB E R,D E C EMB E R

160 PRINT "PR O D O S TIME /DAT E S E TT E R"

165 PRINT " C O PYRIG HT 1985-1987 G ARY B . LITTLE "

170 T1 = 49042: R EM $B F92 (MINUT E S)

180 T2 = 49043: R EM $B F93 (H O URS)

190 T3 = 49040: R EM $B F90 (MMMDDDDD)

200 T4 = 49041: R EM $B F91 (YYYYYYYM)

400 VTAB 6: C ALL - 958: INPUT " E NT E R Y E AR (1900-1999): 19";A$:

YR = VAL (A$): IF YR < 0 O R YR > 99 O R A$ = " " TH E N 400

500 VTAB 7: C ALL - 958: INPUT " E NT E R MO NTH (JAN ...D E C): ";A$:M$ =

501 IF A$ = " " TH E N 500

505 F O R I = 1 T O LE N (A$): IF AS C (MID$ (A$,1,1)) > = 96 TH E N

B$ = B$ + C HR$ (AS C (MID$ (A$,I,1)) - 32): G O T O 507

506 B$ = B$ + MID$ (A$,I,1)

507 N E XT :A$ = B$

510 F O R I = 1 T O 12: IF A$ = MT$(I) O R A$ = LE F T$ (MT$(I),3) TH E N

MT = 1:1 = 12: N E XT : G O T O 600

PRINT "THIS TIME AND DAT E: G E T A$: PRINT A$

520 N E XT : G O T O 500

600 VTAB 8: C ALL - 958: INPUT " E NT E R DAY O F MO NTH (1-31) : ";A$

DY = VAL (A$): IF DY < 1 O R DY > 31 TH E N 600

720 VTAB 9: C ALL - 958: INPUT " E NT E R H O UR (0-23): ";A$:

HR = VAL (A$): IF HR < 0 O R HR > 23 O R A$ = " " TH E N 720

800 VTAB 10: C ALL - 958: INPUT " E NT E R MINUT E S (0-59): "; A$:

MN = VAL (A$): IF MN < 0 O R MN > 59 O R A$ = TH E N 800

1000 PRINT : PRINT "PR E SS ANY K E Y T O S E T":

1010 P O K E T1,MN

1020 P O K E T2,HR

1030 P O K E T4,2 * YR + INT (MT / 8)

1040 P O K E T3,32 * (MT - 8 * INT (MT / 8)) + DY

1050 H OME : PRINT "TH E TIME AND DAT E HAV E N O W B E E N S E T . "

328 C locks

C HAPT E R 9

G S/O S
Character
Devices

An important fea ture of G S/O S is tha t you can use its commands to communica te with
character devices, not just block-structured disk devices. For example , to ge t keyboard
input, you open the keyboard, read da ta from it, then close it, just as if it were a file on
a disk drive . Under ProD O S 8, you must use comple te ly different techniques to access
character devices, such as accessing memory-mapped hardware addresses or ca lling
firmware subroutines.

The character F ST is responsible for transla ting standard G S/O S commands into
commands tha t the driver for a character device understands. It resides in a file ca lled
C HAR . F ST in the SYST EM/F STS/ subdirectory of the boot disk.

In this chapter, we see how to use G S/O S commands to communica te with two
particularly important character devices: the keyboard and the video display screen.
The device driver tha t controls these devices is ca lled the Console Driver; we a lso
investiga te the commands this driver understands.

Note-. The Apple IlG S has a tool se t, ca lled the Text Tool Se t, tha t you can a lso use
to access character devices. But you should use the G S/O S commands since they
are more powerful and easier to use .

G S/O S C OMMANDS F O R C HARA C T E R D E VIC E S

The character F ST works with a sma ll subse t of G S/O S commands: Open, NewLine ,
Read, Write , C lose , and F lush. (You shouldn’t use NewLine , however, because the
Console Driver supports a more powerful way of termina ting input prema ture ly; see
the discussion of termina tor characters be low.) You can a lso use the G S/O S device
commands, DInfo, D Control, DRead, DS ta tus, and DWrite , to communica te directly
with any character-based device driver, including the Console Driver.

329

The name of the Console Driver is usua lly . C O NS OLE , but the user may be able
change it when a G S/O S driver configura tion program becomes ava ilable . To de ter�
mine the actua l name , ca ll the DInfo command with successive ly higher device
numbers (starting with 1) until DInfo re turns a device ID num of $000A . The
name tha t DInfo re turns for the device with this device ID num is the actua l name
of the Console Driver.

D Control and DS ta tus are important for se tting and re turning various parame ters
and opera ting mode flags the Console Driver uses. We summarize the D Control and
DS ta tus commands near the end of this chapter.

You won’t need to use DRead and DWrite to communica te with the Console
Driver (you can use Read and Write instead), so they are not described here .

K E YB O ARD INPUT

The Console Driver dea ls with character input from the Apple IlG S keyboard. It reads
da ta directly from the keyboard hardware or, if the IlG S Event Manager is active , from
the opera ting system event queue . The Console Driver re turns standard AS CII
character codes (bit 7 of each code is zero).

The Console Driver supports two ma in input modes: raw mode and user input mode .
In raw mode , the driver continuously polls for keyboard da ta until it has read in the

number of characters requested in the Read command parame ter table or until the
user enters a termina tor character. (More on termina tor characters be low.) It then
re turns these characters, including any termina tor character, in the Read command’s
da ta buffer. During a raw mode input opera tion, no cursor appears on the screen, and
characters are not echoed on the screen. Raw mode is use ful for programs tha t wish to
implement the ir own user input and editing routines.

In user input mode , the driver uses an inte lligent User Input Routine (UIR) to
re turn keyboard input. The UIR displays an input fie ld and a cursor, echoes input, and
permits editing according to Apple’s human-interface guide lines. An input opera tion
ends when the user enters a termina tor character.

To begin a keyboard input opera tion, you must first open the “file” ca lled . C O N �
S OLE using the G S/O S Open command. A fter doing this, se t up various input
parame ters and the appropria te input mode , as follows:

1. Se lect wa it or no-wa it mode . When wa it mode is active , G S/O S keeps processing
a Read command until the user has typed in the specified number of characters
from the keyboard (in raw mode) or until the user enters a termina tor character
(in raw or UIR mode). When no-wa it raw mode is active , G S/O S re turns control
to the applica tion as soon as it de termines there is no keyboard input ava ilable .
(The UIR a lways opera tes in wa it mode , so control never re turns until the user
enters a termina tor character.) This gives the applica tion a chance to perform
other tasks during a keyboard input opera tion, but the applica tion must keep
making Read ca lls until the user enters a termina tor character. The de fault mode
is wa it mode; to switch to no-wa it mode , use the G S/O S D Control command.

330 G S/O S Character Devices

2. Se t up the input port. The input port is a 17-byte record tha t keeps track of the sta tus
of a UIR input opera tion. When you open the Console Driver, G S/O S se ts up a
de fault input port suitable for most input opera tions. If you want to change some of
the entries in the port, for example , to se t the initia l cursor position and mode , now is
the time to do it. The procedure to follow is to read in a copy of the current input port
(with DS ta tus), change the desired fie lds, and then se t the new input port (with
D Control). A description of the fie lds in the input port appears be low.

3. Se t up the termina tor characters. A termina tor character is one tha t, when entered,
causes a Read opera tion to end. The Console Driver le ts you specify the termina �
tor character and the combina tion of modifier keys tha t must be he ld down when
the user enters it. When using the UIR , the applica tion must se t up a termina �
tor character, typica lly the Re turn key, or the user won’t be able to end an
input opera tion. You can se t up a list of termina tor characters with the D Control
command.

4. Se t up the de fault string. The UIR displays a de fault string in the input fie ld when
you ca ll the Read command for the first time a fter an Open. Use the D Control
command to se t up the de fault string.

Once these pre liminary steps are out of the way, use the Read command (with the
re ference number se t to the one re turned by Open) to re turn the number of characters
specified in the request count fie ld of its parame ter table .

On re turn from the Read command, use DS ta tus to ge t a copy of the input port.
The exit type fie ld of this port (see be low) indica tes the reason for the re turn of
control. In norma l raw mode , a $00 va lue indica tes tha t the specified number of
characters has been re turned, so input processing can end. In no-wa it raw mode , a $00
indica tes a no-wa it re turn, and the applica tion must inspect the transfer count fie ld
to de termine if any more characters have to be processed; if so, it must process them,
then ca ll the Read command aga in (a fter reducing request count) until the desired
number of characters have been re turned.

Any other va lue for exit type , in raw mode or UIR mode , indica tes tha t a
termina tor character was pressed. If the va lue corresponds to an applica tion-de fined
interrupt key (see be low), you should process it without disturbing the current UIR
environment, and then ca ll the Read command aga in. (When you ca ll Read aga in in
UIR mode , you don’t have to make any adjustments to the parame ter table because
the Console Driver keeps track of the sta te of the input opera tion when it was last
exited.) If you wish to abort the input opera tion instead, use D Control’s Abort Input
subcommand. This subcommand zeroes the entry type fie ld of the input port (see
be low) so tha t the next Read command will not be interpre ted as a continua tion of the
previous one .

If a non-zero exit type va lue does not correspond to an interrupt key, the input
opera tion is comple te . The Console Driver handles the next Read command as an
initia l entry to UIR mode .

Keyboard Input 331

When you’re through reading keyboard input, ca ll the C lose command. This is not
necessary, however, if you still need the Console Driver to process video output or
more input.

The Input Port

As we mentioned, the Console Driver ma inta ins an input port to keep track of the input
environment. The fie lds in the 17-byte input port are arranged in the following order:

fill char

de f cursor

cursor mode

beep flag

entry type

exit type

last char

last mod

last term ch

last term mod

cursor pos

input length

input fie ld

origin _h

origin _xl

origin _x2

origin _v

The va lues in these fie lds comple te ly describe the input environment. Here is wha l
each fie ld means:

fill—char. This is the character code tha t UIR sends to the Console Driver when it
wants to display an empty position in the input fie ld. The de fault va lue is $20 (a space).

de f_ cursor. Three bits in this byte indica te the de fault cursor mode a t the begin �
ning of a UIR session:

332 G S/O S Character Devices

bit 7 0 = put cursor a t end of de fault string

1 = put cursor a t beginning of de fault string
bit 6 0 = don't a llow the entry of control characters

1 = a llow the entry of control characters
bit 0 0 = use an insert cursor

1 = use an overstrike cursor

The de fault va lue is $00.

cursor—mode . One bit in this byte indica tes the current cursor sta tus in UIR mode:

bit 0 0 = an insert cursor is active
1 = an overstrike cursor is active

beep —flag. If this byte is nonzero (the de fault va lue), the UIR beeps if the user
a ttempts an illega l opera tion. If this byte is zero, there is no beep.

entry_type . When the applica tion ca lls the Read command, the Console Driver
inspects this byte to de termine the current input sta tus. The possible va lues are

$00 this is the initia l entry
$01 this is an interrupt key reentry
$02 this is a no-wa it mode reentry (raw mode only)

The Console Driver adjusts this byte whenever it re linquishes control to the applica �
tion, se tting it to $00 if a noninterrupt termina tor character was entered. This enables
the Console Driver to properly restart a Read opera tion tha t is a lready in progress.

exit —type . This byte indica tes the reason for the exit from the Read request:

$00 a raw-mode exit, because the maximum number of
characters have been read, or a no-wa it raw mode
exit

A nonzero va lue indica tes a termina tor key was pressed. The va lue is the entry number of
the termina tor character in the termina tor table . If the termina tor is not an interrupt key,
the Console Driver zeroes the entry type fie ld so tha t the next Read opera tion will begin
from scra tch; otherwise , it puts a $01 there so tha t the Console Driver will continue the
same input opera tion the next time the applica tion ca lls Read.

last —char. The AS CII code of the most recently typed key. The high-order bit is
a lways 0.

last —mod. The modifier byte of the most recently typed key. The meanings of the
bits in the modifier byte are the same as those for the bits in the high-order byte of a
termina tor modifier (see F igure 9-1).

Keyboard Input 333

F igure 9-1 The forma t of the termina tor mask and the termina tor modifier word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AS CII da ta

Shift key down
Control key down
C aps Lock key down
[reserved; must be zero]
Keypad key down
Interrupt key designa tor
Option key down
Open-Apple down

last— term_ch. The AS CII code of the most recently typed termina tor key. The
high-order bit is a lways 0.

last — term—mod. The modifier byte of the most recently typed termina tor key. The
meanings of the bits in the modifier byte are the same as those for the bits in the
high-order byte of a termina tor modifier (see F igure 9-1).

cursor—pos. The position of the cursor re la tive to the start of the UIR input fie ld. A
$00 va lue means the cursor is over the first character in the fie ld. The maximum va lue
is the length of the fie ld, meaning the cursor can move to the first character past the
end of the fie ld.

input— length. The current length of the string be ing edited. This is the same as the
number re turned in the transfer count fie ld of the Read command.

input —fie ld. This va lue is for the Console Driver’s priva te use .

origin—h. The horizonta l position of the cursor in UIR mode .

origin_xl. This va lue is for the Console Driver’s priva te use .

origin_x2. This va lue is for the Console Driver’s priva te use .

origin—v. The vertica l position of the cursor in UIR mode .

UIR Editing

The UIR supports severa l standard commands for editing the characters in the input fie ld:

334 G S/O S Character Devices

le ft-arrow
-le ft-arrow

Move the cursor one position to the le ft.
Move the cursor to the start of the previous word (if it’s
currently over a space) or to the start of the current word (if
it’s not).

right-arrow
-right-arrow

Move the cursor one position to the right.
Move the cursor to the end of the next word (if it’s currently
over a space) or to the end of the current word (if it’s not).

<-> or <-.
<-< or <-,

-E or Control-E

Move the cursor to the end of the input fie ld.
Move the cursor to the beginning of the input fie ld.
Toggle the cursor be tween insert mode (blinking under�
score) and overstrike mode (blinking box).

De le te or Control-D
or Control-De le te or
A -De le te or 6 -D Erase the character to the le ft of the cursor and move the

characters benea th and to the right of the cursor one position
to the le ft. The cursor a lso moves one position to the le ft.

-F or Control-F Erase the character undernea th the cursor and move the
characters to the right of the cursor one position to the le ft.
The cursor stays put.

-X or Control-X
or C lear
A -Y or Control-Y

Erase the entire input fie ld.
Erase the characters from the current cursor position to the
end of the input fie ld.

6 -Z or Control-Z
4 -Control- < char >

Restore the de fault input string.
Enter a control character. You can do this only if control
character entry is enabled by se tting bit 6 of the de f _ cursor
fie ld in the input port record.

Termina tor Characters

A termina tor character is one tha t when entered, causes a raw mode Read opera tion to
end even if the user has not ye t entered the number of characters specified in the
request count fie ld of the Read command. Entering a termina tor character a lso
forces a UIR opera tion to end right away. (In fact, the user must end a UIR opera tion
by entering a termina tor character, so the applica tion must de fine a t least one such
character.) The transfer count fie ld in the Read parame ter table conta ins the actua l
number of characters tha t Read has re turned in the da ta buffer fie ld.

When the user enters a termina tor character, the exit type fie ld in the input port
is se t to the position number of the termina tor character in the termina tor list. The
position number of the first item in the list is $01.

The Console Driver le ts you specify the termina tor character itse lf, as we ll as the
modifier keys (Open Apple , Shift, C aps Lock, and so on) tha t the user must hold down
while entering the character. It uses a da ta structure ca lled a termina tor list to hold

Keyboard Input 335

the de finitions of up to 254 termina tor characters and the ir modifiers. The list begins
with a termina tor mask and a termina tor count and is followed by the termina tor
characters and the ir modifiers.

Here is the meaning of each entry in a termina tor list:

Termina tor Mask (word). When the user enters a keystroke , the Console Driver
logica lly ANDs the keystroke da ta with the termina tor mask be fore checking the list of
termina tor modifiers for a ma tch. By se tting bits of the mask to zero, you can force
ma tches even if the associa ted modifier keys are be ing pressed. (F igure 9-1 shows the
meaning of the bits in a termina tor mask.) If the sta te of the C aps Lock key is
unimportant to your applica tion, for example , you would specify a mask of $F B F F (bit
10 = 0).

Termina tor Count (word). This word conta ins the number of entries in the list of
termina tor modifiers. If there are no termina tors, this word should be se t to zero.

Termina tor Modifiers (words). A termina tor modifier is a 2-byte va lue describing
the AS CII code of the termina tor (low byte) and the modifiers themse lves (high byte).
F igure 9-1 shows the meaning of each of the bits in a termina tor modifier.

If bit 13, the interrupt bit, of a termina tor modifier is se t to 1, the termina tor
character is considered an interrupt key. When the user enters an interrupt key, the
Read command ends, but the entry type byte in the input port is se t to $01. The next
time the same Read command is ca lled, input processing continues from where the
interruption took place .

One reason to de fine an interrupt key is to implement a he lp command. To include
a standard -? he lp key, for example , se t bits 15 and 13 in the modifiers byte and put
the AS CII code for a question mark in the low-order byte . You should a lso assign < -/
as an interrupt key so tha t the user can ge t he lp without having to press a Shift key
(? and / share the same keycap).

VID E O O UTPUT

The Console Driver a lso manages a ll activities re la ted to the display of characters on
the Apple IlG S text screen. There are actua lly two text screens: an 80-column, 24-line
screen and a 40-column, 24-line screen; you can switch be tween them by sending
control codes to the Console Driver with the G S/O S Write command.

The Console Driver stores video da ta directly to the video RAM buffers loca ted a t
$0400-$07F F in banks $E0 and $E1 of memory. As a result, applica tions tha t want to
access the screen bytes directly should not look a t the “traditiona l” video RAM buffers
in banks $00 and $01 even if these areas are se t up to shadow to banks $E0 and $E1.
See Exploring the Apple IlG S for a discussion of text screen shadowing.

The Console Driver le ts you confine video output opera tions to any rectangular
window within the full hardware screen; this window is ca lled a text port. When you first

336 G S/O S Character Devices

Open the . C O NS OLE device , the Console Driver se ts the boundaries of the text port to
the full 80-column text screen; you can change the boundaries with a control code .

The text port keeps track of a ll important screen-re la ted parame ters, including the
dimensions of the text port, the cursor position, and the se ttings of various cursor
movement parame ters. The cursor position marks where the Console Driver will
display the next outputted character. It is se t to the top le ft-hand comer of the text
port when you first open the . C O NS OLE device .

To display a character on the screen, use the G S/O S Write command to send the
character code to the Console Driver. Table 9-1 indica tes these character codes in
both norma l and inverse modes. (In norma l mode , the characters are white , and the
background is black; in inverse mode , the characters are black, and the background is
white . If MouseText mapping is enabled, MouseText symbols appear instead of
inverse uppercase characters.)

Notice tha t you can display inverse characters and MouseText symbols without
explicitly enabling inverse mode or MouseText mapping. Just send character codes
with the high-order bit se t to 1.

Control Commands

As Table 9-1 indica tes, the codes from $00 to $1F do not correspond to visible screen
characters. Instead, they represent commands to the Console Driver to perform
specia l screen-re la ted tasks such as clearing portions of the text port, positioning the
cursor, scrolling the text port, and enabling MouseText mapping. Table 9-2 gives a
comple te list of these commands.

Many of the commands in Table 9-2 simply involve sending the corresponding
code through the output stream. But some require you to follow the code with one or
more da ta bytes. In genera l, the va lues of these da ta bytes are 32 higher than the
va lue you are trying to se t.

Some of the commands in Table 9-2 re fer to globa l flags in the text port record
ca lled cons_DLE , cons scroll, cons wrap, cons_LF , and cons advance . The
se ttings of these variables govern how some cursor movement and scrolling opera tions
are to be performed. To se t these flags, use the Se t Cursor Movement command
(control code $15).

Multiple W indows

The Console Driver facilita tes the deve lopment of multiwindow text-screen applica �
tions because it has commands for saving and restoring a text port. To crea te a second
text port, for example , use the Push and Rese t Text Port ($01) command; then se t the
dimensions and characteristics of the new text port. To switch back to the origina l text
port, use the Pop Text Port ($04) command.

If the text ports overlap, you must a lso save and restore the screen da ta for the text
port tha t is about to be inactiva ted. You can do this with the Re turn Text Port Da ta
subcommand of the G S/O S DS ta tus command. To put the da ta back in the text port.

V ideo Output 337

Table 9-1 Character codes used by the Console Driver3

Character
Code Norma l Mode Inverse Mode

$00-$lF Control commands Control commands

$20-$3F Norma l symbols, digits ($A0-$B F)b Inverse symbols, digits ($20-$3F)

$40-$5F Norma l uppercase ($80-$9F) Inverse uppercase ($00-$1F)C

$60-$7F Norma l lowercase ($E0-$F F) Inverse lowercase ($60-$7F)

$80-$9F Inverse uppercase ($00-$lF) Norma l uppercase ($80-$9F)

$A0-$B F Inverse symbols, digits ($20-$3F) Norma l symbols, digits ($A0-$B F)

$C0-$D F MouseText symbols ($40-$5F) Norma l uppercase ($C0-$D F)

$ e o-$ f f Inverse lowercase ($60-7F) Norma l lowercase ($E0-$F F)

N O T E S:
“The exact sequence of characters from $20 to $7F is the same as the sequence de fined by the AS CII standard.
bThe numbers in parentheses indica te the va lues the Console Driver actua lly stores in the video RAM buffer.
cWhen MouseText mapping is on, MouseText symbols appear for character codes $40-$5F in inverse mode

instead of inverse uppercase characters.

use the Restore Text Port Da ta subcommand of the G S/O S D Control command. These
subcommands are described in the next section.

D E VIC E C OMMANDS

In this section, we summarize the D Control and DS ta tus subcommands you use to
communica te with the Console Driver. As we mentioned, these subcommands are for
se tting up the character input/output environment and re turning sta tus informa tion.

D Control and DS ta tus may re turn two possible errors:

$22 bad driver parame ter
$23 the Console Driver is not open

D Control re turns error $22 if the amount of da ta in the control list (request count
bytes) is not enough for the requested opera tion. DS ta tus re turns error $22 if the
sta tus list buffer isn’t large enough to hold a ll the da ta the opera tion needs to re turn.

D Control Subcommands

Reca ll from Chapter 4 tha t one parame ter in the D Control parame ter list is control
code , a numeric code describing the type of control opera tion a device driver is to
perform. O ther important parame ters are control list, a pointer to a control list buffer

338 G S/O S Character Devices

Table 9-2 The Console Driver’s video output commands

Command
Code Command Description

$00 Null. This command does nothing.

$01 Push and Rese t Text Port. This command saves the current text port
and then se ts the text port to its de fault sta te .

$02 Se t Text Port S ize . This command se ts the boundaries of the current
text port. It must be followed by four parame ters: window le ft + 32,
window top + 32, window right + 32, and window bottom + 32 (in
tha t order). The va lues of the parame ters are re la tive to the full hard �
ware screen and numbering begins with $00.

$03 C lear from Beginning of Line . This command erases a ll characters
from the le ft edge of the current line in the text port up to and in�
cluding the character benea th the cursor.

$04 Pop Text Port. This command restores the text port saved by Push and
Rese t Text Port (command $01) and makes it the current text port.

$05 Horizonta l Scroll. This command shifts the contents of a text port le ft
or right and erases the vaca ted space . It must be followed by a signed
byte describing the direction and extent of the shift: if nega tive , the
shift is to the le ft; if positive , the shift is to the right. The absolute
va lue of the byte gives the number of columns to shift.

$06 Se t Vertica l Position. This command se ts the vertica l position of the
cursor within the text port. It must be followed by a byte describing
the vertica l position + 32.

$07 R ing Be ll. This command beeps the speaker.

$08 Backspace . This command moves the cursor one position to the le ft. If
the cursor is a lready a t the le ft edge of the text port, and cons _ wrap
is true , it moves to the end of the previous line . If it is a t the top le ft �
hand corner of the text port, and cons _ scroll is a lso true , the text port
scrolls backward one line .

$09 Null. This command does nothing.

$0A Line F eed. This command moves the cursor one line down in the text
port without a ffecting the column position. If the cursor is on the last line
of the text port, and cons _ scroll is true , the text port scrolls up one line .

$0B C lear to End of Text Port. This command erases the characters from the
current cursor position to the end of the text port.

Device Commands 339

Table 9-2 Continued

Command
Code

$0C

$0D

$0E

$0F

$10

$11

$12

$13

$14

$15

Command Description

C lear Text Port and Home Cursor. This command erases the entire
text port and puts the cursor in the top le ft-hand comer.

C arriage Re turn. This command moves the cursor to the le ft edge of
the current line in the text port. If cons _ LF is true , a line feed
opera tion ($0A) automa tica lly follows.

Se t Norma l D isplay Mode . This command forces subsequently out �
putted characters to be displayed in norma l mode .

Se t Inverse D isplay Mode . This command forces subsequently out �
putted characters to be displayed in inverse mode .

DLE Space Expansion. This command is for outputting a sequence of
space characters very quickly. If cons _ DLE is true , this command
must be followed by a byte conta ining the number of space characters
+ 32 to be displayed. If cons _ DLE is fa lse , the next byte is ignored,
and no space characters are displayed.

Se t 40-Column Mode . This command turns on the 40-column display
mode hardware .

Se t 80-Column Mode . This command turns on the 80-column display
mode hardware .

C lear From Beginning of Text Port. This command erases a ll charac �
ters from the beginning of the text port up to and including the
character benea th the cursor.

Se t Horizonta l Position. This command se ts the horizonta l position of
the cursor within the text port. It must be followed by a byte describ�
ing the horizonta l position + 32.

Se t Cursor Movement. This command se ts the cursor movement flags,
which are arranged as follows in the byte:

moves up when on the first line or down when on the
last line)

7 6 5 4 3 2 1 0

0 0 0 DLE Scrl Wrap LF Adv

bit 4
bit 3

1 =
1 =

cons —
cons_

DLE is true (DLE space expansion can occur)
scroll is true (text port scrolls if the cursor

340 G S/O S Character Devices

Table 9-2 Continued

Command
Code Command Description

bit 2 1 = cons _ wrap is true (cursor moves past the end of a line
to the next line)

bit 1 1 = cons _ LF is true (carriage re turn is followed by a line feed)
bit 0 1 = cons _ advance is true (cursor moves one space to the

right a fter printing a character)

Many video output commands check these flags to de termine how to
behave when certa in cursor movement opera tions are requested. The
de fault se ttings for a ll these flags is true .

$16 Scroll Down One Line . This command scrolls the text port down one
line . The cursor stays put.

$17 Scroll Up One Line . This command scrolls the text port up one line .
The cursor stays put.

$18 D isable MouseText Mapping. This command turns off the conversion
of inverse uppercase characters to MouseText icons.

$19 Home Cursor. This command moves the cursor to the top le ft-hand
comer of the current text port.

$1A C lear Line . This command erases the line in the text port tha t the
cursor is on.

$1B Enable MouseText Mapping. This command enables the conversion of
inverse uppercase characters to MouseText icons.

$1C Move Cursor R ight. This command moves the cursor one position to
the right. If the cursor is on the right edge of the text port, and
cons _ wrap is true , the cursor moves to the beginning of the next line .
If cons _ scroll is a lso true , and the cursor is on the right edge of the
last line , the text port scrolls up one line .

$1D C lear to End of Line . This command erases a ll characters from the
current cursor position to the end of the current line .

$1E GotoXY . This command positions the cursor within the current text
port. It must be followed by bytes describing the horizonta l position
+ 32 and the vertica l position + 32.

$1F Move Cursor Up. This command moves the cursor up one line without
a ffecting the horizonta l position. If the cursor is on the top line of the
text port, and cons _ scroll is true , the text port scrolls up one line .

Device Commands 341

conta ining the da ta the control opera tion needs, and request count, the size of the
control list buffer.

We describe each of the important control code opera tions in the following paragraphs:

Se t Wa it/No-Wa it Mode (code $0004). Use this command to se t up wa it mode or
no-wa it mode be fore commencing a Read opera tion. Put $0000 in the control list for
wa it mode or $8000 for no-wa it mode . The se tting of the wa it/no-wa it flag is irre levant
as far as UIR opera tions are concerned because the UIR a lways opera tes in wa it
mode . The request count is a lways 2.

Se t Input Port (code $8000). Use this command to se t the input port to a given sta te .
A copy of the input port record must be in the control list, and the request count is
a lways 17.

Se t Termina tor List (code $8001). Use this command to se t up the termina tor list for
the Read command to use . The termina tor list must be in the control list; it begins
with a mask word and a termina tor count word, followed by the termina tor words (if
any). The request count must be equa l to 4 4- 2 X (termina tor count).

Restore Text Port Da ta (code $8002). Use this command to copy the video da ta in
the control list to the current text port. The da ta in the control list is in the same
forma t used by the Save Text Port Da ta DS ta tus command: port width byte , port
length byte , followed by the video bytes for each line in the text port. The request
count for a full 80 by 24 screen is 1922 (2 -I- 80 X 24).

Se t Read Mode (code $8003). Use this command to se lect be tween raw mode and
UIR mode . Put $0000 in the control list for UIR mode or $8000 for raw mode . The
request count is a lways 2.

Se t De fault S tring (code $8004). Use this command to se t up the de fault string to be
used by the UIR . Put the string in the control list and the length in the request
count fie ld. If you don’t want a de fault string, se t the length to zero. The de fault string
cannot exceed 254 characters.

Abort Input (code $8005). Use this command to cance l an input opera tion tha t is in
progress. If you don’t, the next Read command will pick up from where the last one
le ft off. The request count is a lways 0.

DS ta tus Subcommands

The G S/O S DS ta tus command uses a sta tus code parame ter describing the na ture of
the sta tus opera tion to be performed. A DS ta tus command re turns da ta in a sta tus
list buffer specified by the applica tion; the number of bytes re turned comes back in

342 G S/O S Character Devices

the transfer count fie ld. Be fore using the DS ta tus command, make sure the size of
the sta tus list buffer (the va lue in the request count fie ld) is large enough for the
expected transfer count.

We describe each of the important sta tus code opera tions in the following paragraphs:

Re turn Wa it/No-Wa it Mode (code $0002). This command re turns the current Read
mode in the sta tus list. Wa it mode is active if the result is $0000, and no-wa it mode is
active if the result is $8000. UIR opera tions a lways use wa it mode , notwithstanding
the sta tus of the wa it/no-wa it flag, however. The transfer count is 2.

Re turn Text Port (code $8000). This command re turns a copy of the current text
port record in the sta tus list. The transfer count is 16.

Re turn Input Port (code $8001). This command re turns a copy of the current input
port record in the sta tus list. The transfer count is 17.

Re turn Termina tor List (code $8002). This command re turns a copy of the current
termina tor list in the sta tus list. The termina tor list begins with a termina tor mask
(word) and a termina tor count word, followed by the termina tor words (if any). The
transfer count is 4 + 2 X (termina tor count).

Re turn Text Port Da ta (code $8003). This command re turns in the sta tus list a copy
of the characters tha t appear in the active text port. The re turned da ta begins with a
port width byte and a port length byte and is followed by the screen bytes for each
line of the text port. The transfer count for the full 80 by 24 text screen is 1922 (2 +
80 X 24).

Re turn Screen Character (code $8004). This command re turns in the sta tus list the
screen byte for the character benea th the current cursor position. The screen byte is
the va lue actua lly stored in video RAM to display the character, not the character code
(see Table 9-1). The transfer count is 1.

Re turn Read Mode (code $8005). This command re turns the read mode flag in the
sta tus list. The result is $0000 if UIR is active and $8000 if raw mode is active . The
transfer count is 2.

Re turn De fault S tring (code $8006). This command re turns the current de fault
input string in the sta tus list. The maximum transfer count is 254.

C O NS OLE DRIV E R PR O G RAMMIN G E XAMPLE

The program in Table 9-3 illustra tes many of the programming techniques you will
use when working with the Console Driver. It prompts the user to enter a name and

Console Driver Programming Example 343

uses the UIR to handle the response . The termina tor list includes two interrupt keys
(<-? and <-/) tha t the program responds to by displaying a dummy he lp screen,
asking the user to press Re turn to continue , and then re turning to the initia l Read
command to ge t the rest of the name input. The program ends when the user presses
Re turn or Esc (two other termina tor characters) while entering a name .

A fter you assemble the program with the APW assembler, change its file type to S16
(G S/O S system file) be fore running it. You can do this with the FILE TYP E command.

The program first ca lls G e tDevNumber to de termine the device number for the
. C O N S OLE device . It stores this number in the parame ter tables for a ll the D Control
and DS ta tus commands the program uses. The program then ca lls Open to enable
access to the Console Driver and copies the re ference number Open re turns to the
necessary parame ter tables.

Next, the program ca lls DS ta tus to re turn two copies of the de fault input port. The
first copy is used in the DoHe lp subroutine . The second copy is the one the ma in
Read command uses, but be fore the program ca lls Read, it changes the fill char fie ld
of the input port to $C9 (the code for the MouseText underscore symbol). A ca ll to
D Control te lls the Console Driver about the change .

The last three pre liminary steps are to use D Control to se t up the de fault input
string (to John Q . Public), se t up the termina tor list, and enable UIR mode . (Re �
member, the de fault is raw mode .)

Four termina tor characters are placed in the termina tor list: Re turn, Esc, #-?, and
#-/. Re turn and Esc are ordinary termina tors, whereas ^-? and <t-/ are interrupt

termina tors. (B it 13 of the termina tor modifier word is se t to 1.) Notice tha t the termina tor
mask (in the D C_Parmsl parame ter table) is se t to $A0F F so tha t only the Open-Apple
and interrupt modifier bits (and the AS CII character code) will be significant.

The Write command clears the screen, positions the cursor on the middle line , and
displays the “Enter your name: ” prompt.

The program ca lls the Read command to begin processing user input. On exit, it
ca lls DS ta tus to re trieve a copy of the current input port so tha t the exit type fie ld
can be inspected. If exit type is 3 or 4, a He lp key (<-? or ^-/) was pressed, and
control branches to DoHe lp. Any other exit must have been caused by the user
pressing Re turn or Esc, so the program ca lls the C lose command and ends.

S ince the DoHe lp subroutine uses video output and keyboard input commands, it
must be sure to preserve the Console Driver’s sta tus quo. It uses DS ta tus to save the
da ta in the text port (the characters on the screen) and uses Write to save the text port
record by sending the $01 command just be fore the he lp message .

The program saves the sta te of the input opera tion in progress by saving a copy of
the current input port. It then se ts up a de fault input port be fore ca lling the Read
command to wa it for a Re turn keypress. (In a more genera l applica tion, the read
mode , termina tor list, and de fault string would be saved too.)

On re turn, the input and text ports are restored, as are the da ta in the text port, and
the de fault string. Control then re turns to the ma in Read command so tha t the user
can finishing entering the name .

344 G S/O S Character Devices

Table 9-3 This program shows how to use the G S/O S Console Driver

* Console Driver Exerciser *
* �

* Copyright 1988 G ary B . Little *
� �

* Last modified: September 4, 1988 *
* *

K E E P C O NS OLE
MC O PY C O NS OLE .MA C

;Object code file
;Macro file

Console START

PHK
PLB

G e tDevNumber G DN Parms

LDA dev num

STA dev numl

STA dev_num2
STA dev num3
STA dev num4

STA dev num5
STA dev num6

STA dev_num7

Open Open Parms
LDA re f_num

STA re f numl
STA re f_num2
STA re f num3
STA re f num4
STA re f num5
STA re f num6

LDA #$8001
STA IP Cmd

DS ta tus IP_Parms ;G e t copy of std input port

LDA #$8001
STA IP_Cmdl

DS ta tus IP Parmsl ;G e t input port

* Make changes to the de fault port:

S E P #$20

Console Driver Programming Example 345

Table 9-3 Continued

LO N G A O F F

LDA #$C9
STA Input_Recl+ O

R E P #$20
LO N G A O N

LDA #$8000
STA IP_Cmdl

D Control IP_Parmsl

D Control DS_Parms
D Control D C_Parmsl
D Control D C Parms2

;New F ill Char

;Se t new input port

;Se t de fault string
;Se t termina tor list
;Se t UIR mode

Write Wr Parmsl ;Se t up prompt

G e tlnput _Read Read Parms

LDA #$8001
STA IP Cmdl
_DS ta tus IP_Parmsl ;G e t input port

LDA Input Recl+5 ;Exi t_type
AND #$O O F F

CMP #3 .•Termina tor #3?
B E Q DoHe lp
CMP #4 .•Termina tor #4?
B E Q DoHe lp

_C lose C lose_Parms

_Quit Quit Parms
BRK $00

* Here is where we display a he lp screen and wa it for
* any key to continue . We must preserve the text port,
* the text port da ta , and the input record.

DoHe lp AN O P

LDA #$8003
STA TP_Cmd
_DS ta tus TP_Parms

Wri te Wr Parms2

,-Save text port da ta

;Push port, display he lp screen

346 G S/O S Character Devices

Table 9-3 Continued

LDA #$8001
STA IP_Cmdl
_DS ta tus IP_Parmsl

LDA #$8000
STA IP_Cmd
_0Control IP Parms

_D Control DS_Parmsl

_Read OneByte

LDA #$8000
STA IP_Cmdl
_D Control IP_Parmsl

D Control DS Parms

_Write Wr_Parms3

LDA #$8002
STA TP Cmd
_D Control TP_Parms

JMP G e tlnput

Quit_Parms AN O P

D C I2'2'
D C I4'0'
D C 12'0'

Open Parms AN O P

D C 12'2'
re f_num DS 2

D C 14'Cons Name

Cons_Name D C I2'8'

D C C '. C O NS OLE '

Read Parms AN O P
D C I2'4'

re f_num2 DS 2

D C 14'Buffer'

D C I4'30'
rd_count DS 4

Buffer DS 30

;G e t current input port

;Se t up a virgin input port

;Se t de fault string to null

.•Restore input port

;Restore de fault string

;Pop text port

;Restore text port da ta

;G e t rest of input

;Re ference number re turned here

.•Length word

;Request count
;Actua l count

Console Driver Programming Example 347

Table 9-3 Continued

* Parame ter table for reading one character:

OneByte AN O P
D C I2'4‘

re f num5 DS 2
D C 14'The Char'
D C I4'l' ;Request count
DS 4

The Char DS 1

Wr_Parmsl AN O P
D C I2'4'

re f num3 DS 2
D C 14'Scr_Init'
D C I4'Msg_Len-Scr_Ini t'
DS 4

Scr_Init AN O P
D C I1'$O C ' ;C l ear screen
D C U'$1E ,$2O ,$2C ' ;Move to row 12, column 0
D C C 'Enter your name: 1

Msg_Len AN O P

Wr_Parms2 AN O P
D C I2’4'

re f num4 DS 2
D C I4'Scr_He lp'
D C I4'Msg_Lenl-Scr_He lp‘
DS 4

Scr_He lp AN O P
D C ir$or ;Push and rese t text port
D C Il'S O C ' ;C lear screen
D C Il'$1E ,$2A ,$2C ' ;Move to row 12, column 10
D C C 'This is a he l p screen!1
D C Il � $1E ,$2O ,$37' ;Move to row 23, column 0
D C C 'Press Re turn to continue: 1

Msg_Lenl AN O P

Wr Parms3 AN O P
D C I2'4‘

re f num6 DS 2
D C 14'Pop TP
D C 14'1'
DS 4

Pop_TP D C Il � $04l

348 G S/O S Character Devices

Table 9-3 Continued

C lose Parms AN O P

re f_numl

D C

DS

I2'l'

2

G0N_Parms AN O P

D C I2'2*

D C 14'Cons Name '

dev_num DS 2

* Parame ter table for se tting the

* de fault input string:

DS Parms AN O P

D C 12'5'

dev_numl DS 2

D C 12'$8004'

D C I4'De f_Name '

D C I4'S ize-De f_Name' ;Length of list

DS 4

De f Name D C C 'John Q . Public'

S ize AN O P

DS_Parmsl AN O P

D C I2'5‘

dev_num7 DS 2

D C 12'$8004'

D C 14'De f Name1

D C I4'0' ;No de fault

DS 4

D C_Parmsl AN O P

D C 12'5'

dev_num2 DS 2

D C 12'$8001' ;Se t termina tor list

D C I4'TermList'

D C I4'S ize l-TermList' .•Length of list

DS 4

TermList D C I2'$A0F F ' .•Termina tor mask

D C 12'4' .•Count

D C I2'$000D' .•Re turn

D C I2'$001B' ;Esc

D C I2'$A03F ' ;0A-? (interrupt)

D C I2'$A02F ' ;0A-/ (interrupt)

S ize l AN O P

D C Parms2 AN O P

Console Driver Programming Example 349

Table 9-3 Continued

D C I2'5'

dev num3 DS 2

D C I2'$8003' ; Se t read mode

D C I4'RM List'

D C I4'2‘ ;Length of list

DS 4

RM_List D C 12'$0000' ;UIR

IP_Parms AN O P

D C I2'5'

dev num5 DS 2

* IP Cmd = $8001 (re turn input port) for DS ta tus

* IP_Cmd = $8000 (se t input port) for D Control

IP_Cmd DS 2 ;Re turn/se t input port

D C 14'Input Rec'

D C 14'IPR S ize-Input Rec'

DS 4

Input_Rec DS 17

IPR S ize AN O P

;Space for input port record

IP_Parmsl AN O P

D C

dev num4 DS

12'5 ‘

2

* IP_Cmd = $8001 (re turn input port) for DS ta tus

* IP_Cmd = $8000 (se t input port) for D Control

IP_Cmdl DS

D C

D C

DS

2 ;Re turn/se t input port

I4'Input_Recl'

14'IPR_S ize l-Input_Recl'

4

Input_Recl DS 17

IPR S ize l AN O P

;Space for input port record

* � � � *** � *** � � � *** � � � * � * � � * � ** � � � ** � � � � � * � � � �

* Parame ter table for saving and restoring *

* the da ta in the text port. *
� * � * � � � � *** � * � * � * � � ** � � � ** � � � � � � * � � * � *** � � � *

TP_Parms AN O P

D C I2'5’

dev_num6 DS 2

350 G S/O S Character Devices

Table 9-3 Continued

TP_Cmd DS 2

D C 14'TextPort'

D C 14'TP Len-TextPort1

DS 4

TextPort DS 80*24+2

TP_Len AN O P

E ND

Console Driver Programming Example 351

APP E NDIX I

Using
Assemblers

Two assemblers were used to crea te the assembly-language example programs in this
book. Merlin 8/16 (Roger Wagner Publishing, 1050 P ioneer Way, Suite P , E l C a jon,
C A 92020, 619/442-0522) was used for the ProD O S 8 programs, and the Apple
Programmer’s Workshop (APW) assembler (APDA , Ma il S top 33-G , 20525 Mariani
Avenue , Cupertino, C A 95014, 800/282-2732) was used for the G S/O S programs.

The reason for using two different assemblers is primarily historica l. Merlin 8/16
(previously ca lled Merlin Pro) is probably the most popular assembler ava ilable for
crea ting ProD O S 8 applica tions primarily because it was introduced soon a fter Apple
first re leased ProD O S 8. S imilarly, the APW assembler is the most popular assembler
for crea ting G S/O S applica tions because it was the only 65816 assembler ava ilable
when the Apple IIg s came out, and its linker can crea te G S/O S load files. Even
though the current version of Merlin 8/16 now has a linker for crea ting G S/O S load
files, most programmers are more familiar with the APW assembler, so tha t’s the one
used for the G S/O S examples.

If you want to modify and reassemble the example programs, and you are not using
the same assembler, you may have to make changes to the source code to resolve any
differences in syntax and command structure . D ifferences usua lly arise in the area of
pseudo-instructions-, these are commands to the assembler tha t appear in the instruc �
tion fie ld of a line of source code . They can be used to place da ta bytes a t specific
loca tions within the program, to de fine symbolic labe ls, to indica te the starting address
of the program, and for severa l other purposes.

ME RLIN 8/16

Here are the meanings of some of Merlin 8/16’s most important pseudo-opcodes:

D F B $03 S tores the byte $03 in the object

code .

353

DS 16

DA $F D E D

ADRL $E100A8

AS C 'AB C D'

AS C "AB C D"

C O UT E Q U $F D E D

O R G $0300

STR 'string'

Reserves a da ta space of 16 bytes (to

no particular va lue).

S tores the address $F D E D in the

object code as $E D $F D (tha t is,

low-order byte first).

S tores the 65816 long address $E100A8

in the object code as $A8 $00 $E1 $00

(tha t is, low-order byte first).

S tores the AS CII codes for AB C D in

the object code (with bit 7 cleared

to 0).

S tores the AS CII codes for AB C D in

the object code (with bit 7 se t to

1).

Equa tes the symbolic labe l C O UT

with the address $F D E D .

Instructs the assembler to start

assembling the code beginning a t

$300.

S tores the AS CII codes for the

string, preceded by a length byte .

The operand forma ts for most ProD O S 8 assemblers like Merlin 8/16 are genera lly
quite similar. (The operand is the part tha t identifies wha t da ta or address an instruc �
tion is to act on.) One ma jor difference is the way in which the high- or low-order byte
of a 2-byte address is identified as an immedia te quantity. W ith Merlin 8/16, you use
an operand of the form # < Address to identify the low-order byte and # > Address to
identify the high-order byte , where Address is the address be ing examined.

Most other assemblers use quite a different me thod, the most common of which is
to use #Address to identify the low-order byte and /Address to identify the high-order
byte . One assembler, Apple’s 6502 Editor/Assembler, uses the same genera l me thod,
but it reverses the meaning: # > identifies the low-order byte , and # < identifies the
high-order byte! Be care ful.

APW ASS EMBLE R

Here are the meanings of some of the APW assembler’s most important pseudo-opcodes:

D C Il'$03'

DS 16

D C I2'$F D E D'

D C I4'$E100A8‘

S tores the byte $03 in the object

code .

Reserves a da ta space of 16 bytes (to

no particular va lue).

S tores the address $F D E D in the

object code as $E D $F D (tha t is,

low-order byte first).

S tores the 65816 long address $E100A8

in the object code as $A8 $00 $E1 $00
(tha t is, low-order byte first).

354 Using Assemblers

D C C 'AB C D'

C O UT G E Q U $F D E D

S tores the AS CII codes for AB C D in

the object code . By de fault, the

codes are stored with the high-order

bit off; you can use the MSB O N

directive if you want them stored

with the high-order bit on.

Equa tes the symbolic labe l C O UT

with the address $F D E D .

The APW assembler permits you to crea te macros — assembler directives tha t expand
into a series of 65816 instructions. APW comes with a standard se t of macros for a ll
G S/O S commands and IlG S tool se t functions. The macro name is the same as the
command or tool se t name except tha t it begins with an underscore character (). The
G S/O S macros require one parame ter, the address of the parame ter table for the
G S/O S command.

By using these standard macros, you don’t have to memorize G S/O S command num�
bers or tool se t function numbers. It a lso makes your source code easier to understand.

Here are five other macros some of the examples use:

STR S tores an AS CII string preceded by a length

byte .

STR1 S tores an AS CII string preceded by a length

word.

PushP tr Pushes the address of a da ta area on the

stack.

PushWord

PushLong

Pushes a word on the stack.

Pushes a long word on the stack.

To use a macro, put its name in the assembler’s instruction fie ld. If the macro has a
parame ter, put it in the operand fie ld. When the source code file is assembled, the
65816 instructions tha t the macro de fines are placed in the object code .

APW Assembler 355

APP E NDIX II

ProD O S B locks
and D O S 3.3
Sectors

The ProD O S 8 R E AD BLO C K and WRIT E BLO C K commands discussed in
Chapter 4 can be used to access directly any sector on any track of a D O S 3.3-
forma tted disk. This makes it easier to write ProD O S utilities capable of reading D O S
3.3 files or crea ting and writing D O S 3.3 files. To handle D O S 3.3 files properly you
will, of course , need de ta iled informa tion on how D O S 3.3 organizes and manages
diske tte files. (See Chapter 5 of Inside the Apple lie for this informa tion.)

To use R E AD BLO C K and WRIT E BLO C K with D O S 3.3 disks, first transla te
the D O S 3.3 sector number into a block number tha t these commands understand.
Sectors on a D O S 3.3 diske tte are identified by a track number (0-34) and a sector
number within the track (0-15). The corresponding ProD O S block number can be
ca lcula ted from the track and sector va lues by first multiplying the track number by 8 to
de termine the base block number and then adding to the base the re la tive block number
for the sector. The re la tive block numbers for each D O S 3.3 sector are as follows:

Re la tive B lock Number D O S 3.3 Sector Number

0 0 and 14

1 13 and 12

2 11 and 10

3 9 and 8

4 7 and 6

5 5 and 4

6 3 and 2

7 1 and 15

APW Assembler 357

For example , track 17, sector 15 on a D O S 3.3 diske tte corresponds to block number
143 (8 x 17 + 7).

S ince a ProD O S block is twice the size of a D O S 3.3 sector, each ProD O S block
corresponds to two D O S 3.3 sectors, as shown in the table . The first ha lf of the block
corresponds to the first sector in the pa ir, and the last ha lf corresponds to the second
sector. This doubling causes a complica tion when writing to a D O S 3.3 diske tte: A
sector other than the one you want to write to will a lso be written to. To avoid
destroying the da ta in the other sector, you must first read the desired block into a
buffer, transfer to it the contents of the sector to be written, and then write the block
back to diske tte . In this way, the contents of the other sector are not disturbed.

358 ProD O S B locks and D O S 3.3 Sectors

APP E NDIX III

B ibliography

G S/O S AND PR O D O S 8 R E F E R E N C E R O O KS

Apple Computer, Inc., G S/O S Re ference , Volume 1 (Apple Programmer’s and Deve l �
oper’s Associa tion, 1988). This manua l gives a programmer’s overview of G S/O S ,
describes the G S/O S commands, and discusses specific file system transla tors.

Apple Computer, Inc., G S/O S Re ference , Volume 2 (Apple Programmer’s and Deve l �
oper’s Associa tion, 1988). This manua l describes low-leve l G S/O S entities, like
device drivers and interrupt handlers.

Apple Computer, Inc., Apple IIg s ProD O S 16 Re ference (Addison-Wesley, 1987). This
is the officia l re ference manua l for ProD O S 16.

Apple Computer, Inc., ProD O S 8 Technica l Re ference Manua l (Addison-Wesley,
1987) . This is the officia l re ference manua l for ProD O S 8.

Apple Computer, Inc., BASIC Programming with ProD O S (Addison-Wesley, 1987).
This book describes how to use the BASIC .SYST EM commands.

APPLE II R E F E R E N C E B O O KS

Apple II Re ference Manua l (Apple Computer, Inc., 1979). The officia l re ference
manua l for the Apple II and Apple II P lus.

Apple Computer, Inc., Apple lie Technica l Re ference Manua l (Addison-Wesley, 1987).
The officia l re ference manua l for the Apple He .

Apple Computer, Inc., Apple lie Technica l Re ference Manua l (Addison-Wesley, 1987).
The officia l re ference manua l for the Apple lie .

Apple Computer, Inc., Apple IIg s Toolbox Re ference: Volume 1 (Addison-Wesley,
1988) . This book describes the Apple IIg s tool se t functions.

Apple Computer, Inc., Apple IIg s Toolbox Re ference: Volume 2 (Addison-Wesley,
1988). This book describes the Apple IIg s tool se t functions.

359

Apple Computer, Inc., Apple II S C SI C ard Technica l Re ference (Apple Programmer’s
and Deve loper’s Associa tion, 1988). This book describes the SmartPort ca lls for the
Apple II S C SI interface card.

G ary B . Little , Inside the Apple lie (Brady/Prentice Ha ll Press, 1985). This book is a
programmer’s guide to the Apple lie .

G ary B . Little , Inside the Apple lie (Brady/Prentice Ha ll Press, 1985). This book is a
programmer’s guide to the Apple He .

G ary B . Little , Exploring the Apple lies (Addison-Wesley, 1987). This book is a
programmer’s guide to the Apple IlG S .

65816 ASS EMBLY-LAN G UA G E B O O KS

David Eyes and Ron Lichty, Programming the 65816 (Brady/Prentice Ha ll Press,
1986). This book is a programmer’s guide to the 65816 microprocessor.

360 B ibliography

APP E NDIX IV

The Program
D isk

A disk conta ining the source code for each of the programs described in this book, as
we ll as four bonus programs, can be ordered directly from G ary Little . See the last
page of this book for ordering informa tion.

The files on the disk are one of five types:

• TXT (text) files having names of the form xxxxxxxxxxx.S . These files conta in
assembly-language source code in the forma t expected by the Merlin 8/16
assembler.

• $B0 (source) files. These files conta in assembly-language source code in the
forma t expected by the APW assembler.

• BAS (BASIC) files. These files conta in Applesoft programs tha t you can run
using the BASIC .SYST EM RUN or - command.

• BIN (binary) files. These files conta in assembly-language programs you can run
using the BASIC .SYST EM BRUN or - command. A BIN file is crea ted from its
corresponding source code file by assembling the source with Merlin 8/16 and
saving the object code to disk.

• SYS (system) files. These files conta in assembly-language programs you can run
by using the BASIC .SYST EM - command or by specifying the file’s pa thname
in a program se lector utility.

The program disk is not bootable because it does not conta in a copy of the PR O D O S
and BASIC .SYST EM files. These files can be transferred to it from a ProD O S 8
master disk using the ProD O S 8 F iler or System U tilities program.

The names of the programs on the disk are the same as those used in this book.
Here are descriptions of the four bonus programs (source code is included on the

program disk):

65816 Assembly-Language Books 361

TH E DISK .MAP PR O G RAM

The DISK .MAP program draws a map on the Apple ’s low-resolution graphics screen
showing the usage of each block on a ProD O S-forma tted 5.25-inch disk. To run the
program, enter the command

-DISK .MAP

from Applesoft command mode . A fter you do this, you will be asked for the slot
number of the drive in which the disk has been placed. (If you have two drives for a
slot, put the disk in the drive 1.) DISK .MAP maps each block on the disk to a unique
position in an 8 by 35 rectangular grid map. The horizonta l axis represents the track
number from 0 (le ft) to 34 (right); the vertica l axis represents the re la tive block
number within the track from 0 (bottom) to 7 (top).

D ifferently colored low-resolution graphic blocks are used to indica te the usage of
any particular disk block. If blue is used, the disk block is in use and readable; if white
is used, the disk block is in use but not readable (tha t is, it has been damaged). If the
graphic block is gray, the disk block is not be ing used.

DISK .MAP a lso displays the amount of free space on the disk and the name of the
volume directory.

TH E PR O TIME PR O G RAM

When you execute PR O TIME (with the - command), the TIME command is added to
the BASIC .SYST EM command se t. When you enter the TIME command from Apple �
soft command mode , the current time and da te are displayed in the following forma t:

DD-MMM-19YY HH:MM

where DD represents the day of the month, MMM represents the first three charac �
ters in the name of the month, 19YY represents the year, HH represents the hour, and
MM represents the minute .

For example , if the current da te is November 30, 1988 and the time is 9:20 p.m.,
you will see

30-N0V-1988 21:20

As you see , the time is displayed in 24-hour (military) forma t.
The TIME command behaves differently when it is invoked from within an Apple �

soft program. In this case , the time is not displayed on the screen; ra ther, the string
variable associa ted with the very next INPUT sta tement in the program is se t equa l to
the time string. For example , when you execute the program line

100 PRINT C HR$(4);"TIME ": INPUT TM$

362 The Program D isk

the time string is assigned to the TM$ variable . The Applesoft string parsing commands
can then be used to isola te e lements of the string your program may need to examine .

TH E PR O TYP E PR O G RAM

The PR O TYP E program adds the TYP E command to the BASIC .SYST EM command se t.
This command displays the contents of a file on the video screen or sends it to a printer.
It is most use ful for examining the contents of a file tha t conta ins readable text.

To insta ll the TYP E command, enter the command

-PR O TYP E

from Applesoft command mode . If a ll goes we ll, you will see the message

TYP E C OMMAND IS N O W INSTALLE D .

and the command will be ava ilable for use .
The syntax for the TYP E command is

TYP E pn [,L#][, F#][, E#][,R#][,T#][,S#][,S#][,D#]

where bracke ts are used to enclose optiona l parame ters, and # represents a decima l
or hexadecima l number, (a hexadecima l number must be preceded by $.) Here is the
meaning of each parame ter:

pn = pa thname for the file

,L# = number of lines to be printed per page

, F# = form size (in lines)

, E# = le ft margin position

,R# = rest code (nonzero means page pause)

,T# = title code (nonzero means number the pages)

, @ # = slot number for output

,S# = slot number for the file

,D# = drive number for the file

The de fault parame ters are 54 (,L#), 66 (, F#), 0 (, E#), 0 (,R#), 0 (,T#), current
output (, @ #).

As you can see , the TYP E command supports severa l parame ters used to forma t the
output and specify its destina tion. For example , the command

The PR O TYP E Program 363

TYP E MY .T E XT ,e i, F84,L72,R l,T l, E5

would be used to send a file ca lled MY .T E XT to a printer in slot 1 (, @ 1). The size of
the paper is 84 lines (, F84), 72 lines will be printed be fore a form feed is genera ted
(,L72), and there will be a pause a t the top of each new page to a llow you to insert
single shee t paper (,R1). Moreover, a page number will appear on each page (,T1), and
there will be a le ft margin of five spaces (, E5).

You can temporarily ha lt a ll output genera ted by the TYP E command by entering
[Control-S] from the keyboard. To resume , press [Control-S] once aga in. You can press
[Control-C] a t any time to cance l the command.

TH E SMARTP O RT PR O G RAM

S MARTP O RT is for de termining which slots in the Apple II have SmartPort control �
lers connected to them. It displays sta tus informa tion for the devices connected to
each SmartPort it finds. In particular, it displays the device name , the slot number and
unit number, the device type and subtype , the version number, the device sta tus, and
the tota l number of blocks the device supports. This last number is e ither a 4-byte
quantity or a 3-byte quantity depending on whe ther the SmartPort supports extended
commands. (See Chapter 7 for a thorough discussion of the characteristics of a
SmartPort.)

To run SMARTP O RT , enter the command

-SMARTP O RT

from Applesoft command mode . (SMARTP O RT is a system program, so you could a lso
run it from any program se lector.) When it starts up, you can specify whe ther or not
you want to send the results of the scan to a printer in slot 1.

364 The Program. D isk

IND E X

/RAM volume 8-9, 22, 53, 301-305
double hi-res 303
how to remove 303-305
volume bit map 23, 302

/RAM5 volume 9, 292, 296
- (dash) command 9, 232
*/ boot pre fix 17
& vector 55

access code 88
ALLO C _ INT E RRUPT 90-91, 93, 107,

267, 268, 270
APDA 353
APP E ND 234
Apple 3.5 Drive 2, 4
Apple 5.25 Drive 2
Apple II Memory Expansion C ard 4
Apple Programmer’s Workshop 79, 220,

353-355
AppleTa lk 50, 185
AppleWorks 14
APW see Apple Programmer’s Workshop
assemblers 353-355
asynchronous seria l 266
ATINIT file 50
Auricchio, R ick 2
auto-run protocol 180, 223
auxiliary memory 53, 301
auxiliary type code 32, 33, 34

backup-needed bit 37, 39
BAD C ALL 248
bank-switched RAM 5, 51-53

and interrupts 273
BAS file 32-33
BASIC .SYST EM program 4-5, 9, 11, 219,

225-263
auto-run protocol 223
commands
error codes
globa l page
parame ters

5, 226-236
82, 248
240-248
9

slot and drive parame ters 17
user commands 250-255

BeginSession 92, 122, 191
BIN file 33
B indlnt 90, 93-94, 267, 280, 282
BLO AD 232
block 22
boot pre fix (*/) 17
boot record 23, 49-50
booting

ProD O S 50-51
G S/O S 65-67

BRK vector 55
BRUN 232
BSAV E 233
BUBIT byte 198
BU F F E R _ PTR byte 295
buffers, file 5, 18, 19, 134, 192

and BASIC .SYST EM 5, 237-238
BY E 235

caching, G S/O S 11, 19-20
casse tte recorder 2
C AT 228-229
C ATALO G 229-231
C D-R OM 2, 4
C HAIN 235
ChangePa th 11, 95-96, 188
character devices 329 ff.
character F ST 329
C learBackup 97-98, 198
clock driver 317, 321-322

page two usage 54
clock cards

identifica tion bytes 320-321
interrupts 266

C lose 99-100
CLO S E (BASIC .SYST EM) 234
closing a file 19
CMDADR 72, 76, 82, 274-275
C OMMAND byte 294-295
Console Driver 68, 329-330

365

programming example 344-351
Control Pane l

RAM disk size 292
startup device 296
time forma t 320

Control-Y vector 55
Crea te 101-104
C R E AT E (BASIC .SYST EM) 231
critica l error 74
C SW link 226,236-237

dash (-) command 9, 232
da ta fork 11, 39—40
da te-stamping 8
DAT E byte 88, 159, 318
DAT E TIME 318
D Control 105-106,330-331

for Console Driver 338-342
D E ALLO C_ INT E RRUPT 90,91,

107-108, 273-274
de fault pre fix 10, 16
de fault string (UIR) 331, 342
D ELE T E 231
desk accessories 20, 67, 89
Desk Manager 172
Destroy 109-110
D E V C NT 288-290,304,305
device drivers 8, 66-67
device names 15, 22, 288
device re ference number 22, 288
D E VLST 288-290, 292, 293, 303-304,

305
DInfo 112-115, 211, 388, 330
direct page 220-222
directories 14-15
directory entries 26
directory header 26
D isk C ache desk accessory 20
D isk II 2
disk controller protocol 8, 291-294
disk devices 288-292

identifica tion of 290-292
disk drivers 287

under G S/O S 288
using commands 294-295
vector table 290

disk-switched bit 299

dispa tcher code 51, 175
D O S 3.1 2-3
D O S 3.2.1 3
D O S 3.3 3, 14, 17

directory 14
re la tionship to ProD O S 4-5
sectors 357-358

D O S CMD 248-250
DRead 116-117, 185
DS ta tus 118-119

and Console Driver 331, 338,
342-343

DWrite 120-121

e jecting disks 106, 301
EndSession 92, 122, 191
E O F pointer 19, 194-196
EraseD isk 26, 123-124
E RR C O D E 248
error handling

BASIC .SYST EM 248
E RR O R .MS G file 66
E RR O UT 262
Event Manager 330
E X E C 233
ExpandPa th 125
extended file 11, 39-41
E XTRN CMD 250,262

F BITS 254-255, 263
fie ld 32
file access code 35-37
file leve l 18-19, 99, 100, 151, 202
file system transla tor 2, 4, 11, 66,

130-131, 149-150
file type code 26-35, 89
file naming rules 13-14
FILE TYP E command 220
F inder 20, 21, 172, 180
F lush 126-127
FLUSH (BASIC .SYST EM) 234
Forma t 11, 21, 26, 123, 128-129
forma tting disks 21-22
F R E 235
F R E E BU F R 238
F ST see file system transla tor
F STSpecific 130-131

366 Index

G e tBootVol 132-133
G E T_BU F 134-135
G e tDevNumber 136-137
G e tD irEntry 11, 138-142

buffer size error 88
G e tE O F 143-144, 215
G e tF ile lnfo 145-148
G e tF STInfo 149-150
G e tLeve l 151
G e tMark 152-153
G e tName 11, 154-155
G e tPre fix 156-157
G e tSysPre fs 158
G E T_TIME 159, 275, 318, 321
G e tVersion 160-161
G E TBU F R 238,262
globa l page

BASIC .SYST EM 240-248
ProD O S 49, 50, 55-57

G O SYST EM 240, 248, 255
G SS tring macro 82, 355

HD20S C hard disk 2, 3
heartbea t tasks 281
hierarchica l directories 8, 14-15
H igh S ierra 4, 11, 14
HIMEM 5, 226, 237-238, 263, 316
Huston, D ick 2

IBAKV E R byte 224
IN# 235
inline entry point (G S/O S) 76
input link 236-237
input port 331, 332-334, 342, 343
input string

class 0 82
class 1 82

Integer BASIC 5
interleave 11
interrupt dispa tcher 267
interrupt handling 8, 265ff

and MLIA C TV 274-275
during MLI commands 274-275
G S/O S 276-284
insta lling handler 90-91
ProD O S 268-275

IntSource 282

invisibility bit 35, 37
IR Q interrupt 265-268

masking 266
user vector 55, 266, 268

IV E RSIO N byte 224

key block 38, 40-41
keyboard input 330-336
KWS link 226, 236-237

LE V EL 126, 127, 151, 202
LO AD 233
load files 10, 66, 353
LO C K 36, 231

M16. G S O S file 79-80
MA C HID 56-57, 303, 321, 322
machine identifica tion byte 56-57
machine language interface see MLI
Macintosh H F S 4, 11, 14
macros 79-80
Mark pointer 19, 203-204
master index block 38
Memory Manager 10, 67-68, 181, 219,

220
Menu Manager 20
Merlin 8/16 assembler 353-354
MLI 7-8, 71

command number 74
page zero usage 54

MLIA C TV 72, 274-275
mount volume dia log box 208
mouse interrupts 266, 270-274
MouseText 337-338
MO V E 262
MS-D O S 4, 14

NewLine 162-163, 184
and character F ST 329

NMI vector 55
no-wa it mode 330, 342, 343
N OMO N 235
Null 164

object module forma t 220
OMF see object module forma t
O N _ LIN E 165-167, 207, 263, 288

Ind e x 367

Open 18-19, 168-171O P E N
(BASIC .SYST EM) 233-24

opening a file 18-19
O S _ B O O T byte 69
O S _ KIND byte 69
output buffer

class 0 87-88
class 1 87-88

output link 236-237
O SShutdown 172

page three 54-55, 238-240
page two 54
page zero 54
PA G E T O P 238
parame ter table 74
partia l pa thname 16-17
Pasca l 3, 22, 37
Pasca l area 38
pa thname 15
PBITS 252-253, 255, 262
pcount 79
pointers 74
polling 265
P O SITIO N 234
powered-up byte 55
PR# 235
pre fix 10, 16-17, 88

de fault 10, 16
PR E FIX (BASIC .SYST EM) 232
PRINT E RR 248
ProD O S 16 1, 4, 49, 89

interrupts 267
PR O D O S file 4-5, 49-50, 65-66
ProF ile hard disk 3

volume bit map 23-24
PushLong macro 355
PushP tr macro 355
PushWord macro 355
PWR E DUP byte 224, 225

QuickDraw II 115
Quit 11, 173-181, 220, 222, 225
Quit Re turn S tack 180-181

RAMdisk 8-9, 154, 292, 301-316
writing a driver 305—316

random-access file 19, 32
raw mode 330, 342, 343
Read 182-184

caching 20
R E AD (BASIC .SYST EM) 234
R E AD _ BLO C K 116, 185-187, 357
R E AD .BLO C K program 43-48
ReadAsciiT ime 159, 318-320
reading a file 19
ReadT imeHex 89, 159, 318-320
R E NAME 95, 96, 188-189
R E NAME (BASIC .SYST EM) 232
Rese tC ache 20, 190
Rese t vector 55
resource file 11
resource fork 11, 39-^40
R E ST O R E 235
R OMdisk 292, 296
RUN 233

S16 file 219
sapling file 38
SAV E 233
SAV E X 72, 76
SAV E Y 72, 76
Scheduler 164
S C SI interface 2, 3, 301
sectors 21-22, 347-358
seedling file 38
se lector code 175
separa tor 15
S E RR 76
SessionS ta tus 191
S E T_BU F 192-193
Se tE O F 19, 194-196
Se tF ile lnfo 36, 97, 197-201
Se tHeartbea t 281
Se tLeve l 18, 202
Se tMark 203-204, 215
Se tPre fix 15, 17, 205-207
Se tSysPre fs 158, 208
Shepardson, Bob 2
signa l handler 282-284
signa l queue 164, 282-284
SLO T _DRIV E byte 295
SmartPort 291, 295-301

Control command 300—301

368 Index

dispa tch address 297
extended commands 297
standard commands 297
S ta tus command 298-300
unit number 296

S O F T E V bytes 224
sparse files 41^43
stack-based entry point (G S/O S) 80
START program 67, 220
START . G S . O S file 66-67
stepping motor 21
storage type 38-39
ST O R E 236
STR macro 82, 355
subdirectories 14-15
SYS file 33, 219
SYS 16 suffix 220
SYS C ALL 240
SYSD E ATH 74
SYS E RR 74
SYSPARM 240
system bit map 55-56
system disk, G S/O S 57
system error 80-82
System Loader 50, 66, 220, 221
system program

G S/O S 220-222
ProD O S 222-225

termina tors
characters 330-331, 335-336, 342
count 336
mask 336
modifiers 336

text port 336-338, 342, 343
Text tool se t 68, 329
time and da te

Applesoft variable 322-327
ProD O S 37
G S/O S 88-89

T ime byte 88, 159, 275, 318
tool se ts 67
T O OL.S E TUP file 67
tracks 21
tree file 38
TXT files 27-32, 41

UIR see user input routine
Unbindlnt 93, 209, 282
UniD isk 3.5 4
unit number 22, 288
UNLO C K 36, 232
user input mode 330
user input routine 330-332

de fault string 331, 342
editing 334-335

va lues 74
VAR file 33-35
VDRIV 263
V E C TIN 237
vector re ference number 93-94, 280-281
V E C T O UT 237
V E RIF Y 232
video output 336-338
Volume 165, 210-212
volume bit map 22-25
volume directory 14, 25-37
volume size 10, 11
VPATH1 254-255
VPATH2 254-255
vm see vector re ference number
VSLO T 263

wa it mode 330, 342, 343
W igginton, Randy 2
windows 337-337
Wozniak, S teve 2
Write 213-215

caching 20
WRIT E (BASIC .SYST EM) 234
WRIT E _ BLO C K 12, 123, 186, 216-218,

306, 357
WriteBParam 20, 190

X C NUM 253, 262
X F E R vector 55
XLE N 253, 262
XR E TURN 250
XTRNADDR 253, 255, 262

Ind e x 369

PR O G RAM DISK F O R
E XPLO RIN G APPLE G S/O S AND PR O D O S 8

BY G ARY B . LITTLE

A ll the programs listed in this book are ava ilable on disk, in source code form, directly
from the author. The disk a lso conta ins severa l other use ful programs, a ll described in
Appendix IV of this book.

To order the disk, simply clip or photocopy this entire page and comple te the coupon
be low. Enclose a check or money order for $15.00 in U .S . funds. (C a lifornia residents
add applicable sta te sa les tax.)

Ma il to: G ary B . Little
3304 P la teau Drive
Be lmont, C A
94002

P lease send me a copy of the Exploring Apple G S/O S and ProD O S 8 disk.

Specify disk forma t: 3 l/P or 5 ’Z i"

I am enclosing a check or money order in the amount of $15 in U .S . funds, plus
applicable C a lifornia sta te tax.

N ame:

Addres s:

C ity: S ta te/Province: Z ip:

Country:

I
I
I
I

I
R

