

Programming
the Apple IIGSTM

in C and Assembly Language

33tliOBU
UCF

10.v,-

HOWARDWSAMS &.COMPANY
HAYDEN BOOKS

Related Titles

C Primer Plus, Revised Edition
Mitchell Waite, Stephen Prata, and
Donald Martin, The Waite Group

Advanced C Primer+ +
Stephen Prata, The Waite Group

C Programming Techniques for
the Macintosh™
Zigurd R. Medneiks and
Terry M. Schilke

C with Excellence:
Programming Proverbs
Henry Ledgard with John Tauer

Topics in C Programming
Stephen G. Kochan and Patrick Wood

Programming in C
Stephen Kochan

Apple" lIe Troubleshooting &
Repair Guide
Robert C. Brenner

Basic Apple" BASIC
James S. Coan

Printer Troubleshooting &
Repair
John Heilborn

Desktop Publishing Bible
James S. Stockford, Editor,
The Waite Group

Computer Dictionary,
Fourth Edition
Charles J. Sippi

Musical Applications of
Microprocessors, Second Edition
Hal Chamberlin

For the retailer nearest you, or to order directly from the publisher,
caI/SOO-42S-SAMS. In Indiana, Alaska, and Hawaii caI/317-29S-5699.

Programming
the Apple IIGSTM

in C and Assembly Language

Mark Andrews
with

Michael Halpin

'fff
HOWARDwSAMS &.COMPANY

A Division of Mucmtllun. Inc.
4300 West 62111} Strco!

Indianapolis. Indiana 46268 USA

©1988 by Mark Andrews

FIRST EDITION
FIRST PRINTING-1987

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to the use of the
information contained herein. While every precaution has been taken in the
preparation of this book, the publisher assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the
use of the information contained herein.

International Standard Book Number: 0-672-22599-9
Library of Congress Catalog Card Number: 87-62537

Acquisitions Editor: Greg Michael
Manuscript Editor: Susan Pink Bussiere, Techright
Technical Reviewer: Eagle I. Berns
Designer: T. R. Emrick
Cover Art: Ric Harbin
Compositor: J. Jarrett Engineering, Inc.

Printed in the United States of America

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service
marks are listed below. In addition, terms suspected of being trademarks
or service marks have been appropriately capitalized. Howard W. Sams &
Co. cannot attest to the accuracy of this information. Use of a term in this
book should not be regarded as affecting the validity of any trademark or
service mark.

Apple, the Apple logo, Apple'Talk, ImageWriter, LaserWriter. and ProDOS
are registered trademarks of Apple Computer, Inc.

Apple Ilos, Apple Desktop Bus, AppleWorks, APW (Apple Ilos Pro-
grammer's Workshop), Mac, Macintosh, and SANE are trade-
marks of Apple Computer, Inc.

Ensoniq is a trademark of Ensoniq Corporation.

Jell-O is a registered trademark of General Foods Corporation.

ORCA/M is a trademark of the Byte Works, Inc.

PaintWorks is a trademark of Activision.

UNIX is a registered mark of AT&T.

Contents

Introduction ix
Acknowledgments xii

Part 1 Fundamentals of Apple IIGS Programming

Introducing the Apple IIGS

An Apple II-Plus! 1
Memory Magic 4
Faster than a Speeding Apple II 6
GS: Graphics and Sound 6
A Closer Look at the Toolbox 7
Opening the Toolbox 8
What Happens When You Turn It On 10
The User Environment 11

2 Programming the IIGS in Assembly Language 13

The APWAssembler-Editor 13
Using the APW System 16
The APW Editor 17
Examining the ZIP.SRC Program 21
The APW Editor's Menu 26
Assembling the ZIP.SRC Program 26

3 Programming the IIGS in C 29

The C Language 30
C in the APW Environment 31
Installing APW C 32
Writing a C Program 34
Compiling a C Program 35

v

Programming the Apple IIGS

Linking a C Proqrsm 35
Another Sample Program: The Name Game 39
How the Name Game Works 43
Making a Standalone Application 49

4 Memory Magic 51

Memory Pages 51
Memory Banks 52
The Memory Manager 52
The IIGS Memory Map 55
Mapping the IIGS in Emulation Mode 57
Mapping the IIGS in Native Mode 64
Soft Switches 67

5 In the Chips 73

All in the (6502) Family 73
Inside the 65C816 74
The Arithmetic and Logical Unit 81
The Processor Status Register 82

6 The Right Address 95

The Addressing Modes of the 65C816 96
Simple Addressing Modes 98
Indexed Addressing 111
Indirect Addressing 115
Stack Addressing 120
Block Move Addressing 125

Part 2 The Apple JIGS Toolbox

7 Introducing the IIGS Toolbox 129

Tool Sets 129
What the Toolbox Can Do 130
What the Toolbox Contains 130
How To Use the Toolbox 133
The Memory Manager 137
Pointers and Handles 138
Properties of Memory Blocks 143
The Event Manager 144
Types of Events 145
Priorities of Events 146
Event Records 147
Loading and Initializing the Event Manager 150
Writing an Event Loop 152
The EVENT.S1 Program 156

vi

Contents

Using the IIGS Toolbox from C 156
The EVENTC Program 161
EVENTS1 and EVENTC Listings 163

8 IIGS Graphics 171

What QuickDraw II Can Do 171
Pixel Maps and Conceptual Drawing Planes 175
Graphics Modes 177
GrafPorts 181
Drawing with a Pen in QuickDraw II 186
OuickDraw Coordinates 190
Coordinate Conversion 190
Strings and Text 191
Loading and Initializing OuickDraw 193
The PAINTBOX Program 194
The SKETCHER Program 194
PAINTBOXS1 and PAINTBOXC Listings 195
SKETCHER.S1 and SKETCHER.C Listings 203

9 The Menu Manager 213

Menus and the IIGS User 213
Initializing the Menu Manager 216
Using the Menu Manager 217
Using TaskMaster 220
The MENU Program 229
MENU.S1 and MENU.C Listings 232

10 Doing Windows 247

Kinds of Windows 247
Window Frames 248
Controls 248
What the Window Manager Does 250
Window Regions 251
Initializing the Window Manager 251
TaskMaster 251
Window Records 253
Windows and GrafPorts 256
Coordinates and the Window Manager 260
Running the WINDOWS.S1 Program 263
Other Features of WINDOWS1 264
The WINDOWS1 and IN/TOUITS1 Programs 265
The WINDOWC and INITOUITC Programs 266
WINDOWS1 and INITOUITS1 Listings 266
WINDOWC and IN/TOUITC Listings 287

vii

Programming the Apple IIGS

11 Dialog with a IIGS 295

What Dialog Windows Look Like 295
Dialog I/O 297
Dialog Items 297
Types of Dialog Windows 299
Manipulating Dialog Windows 301
Initializing the Dialog Manager 302
Creating a Dialog Window 303
Creating an Item List 304
Using a Dialog Window in a Program 306
The DIALOG.S1 Program 308
The DIALOG.C Program 312

12 The Standard File Operations Tool Set 319

Introducing ProDOS 16 320
Loading a File with ProDOS 16 321
Saving a File with ProDOS 16 323
Using the Standard File Tool Set 326
Loading a File with the Standard File Tool Set 328
The SF.S1 Program 333
The SF.C Program 340

13 The Sound of Music 349

The Characteristics of Sound 349
Sound Hardware in the IIGS 350
Sound Tools in the Toolbox 351
More About the Science of Sound 351
Initializing the Sound Tool Set and the

Note Synthesizer 354
How the Note Synthesizer Works 354
The MUSIC Program 357
Not the End 358
MUSIC.S1, MUSIC.C, and INITQUITC Listings 358

Appendix A The 65C816 Instruction Set 371

Appendix B Apple IIGS Toolbox Calls 425

Bibliography 467

Index 471

viii

Introduction

The Apple IIGS is two computers in one, and this book is about both of them.
It's also about the two most powerful programming languages for the Apple
IIGs: assembly language and C.

Apple calls the IIGS a two-in-one computer because it runs most soft-
ware written for earlier Apple lIs, yet offers today's computer user a host
of brand new Macintosh-like features-plus full color-at an Apple II
price.

This book is a two-in-one book, twice over; it teaches you how to
program the IIGS in both of its operating modes-8-bit emulation mode and
lfi-bit native mode-and it teaches you to do that in two languages-assembly
language and C.

If you want to learn to program both of the computers built into the
Ilos-s-in C, assembly language, or both-this is the book you are looking
for.

In plain English, and with the help of many, many figures and tables,
this book introduces you to the IIGS from the ground up: how it's laid out,
how its microprocessor works, and how it is different from-and similar to-
other computers in the Apple II family. After that ground has been covered,
you learn how to start programming the Apple IIGS in assembly language
and C.

What This Book Can Do for You

If you've written programs in BASIC, Pascal, or any other programming
language, this book is all you need to start programming the Apple IIGS in
assembly language. If you're an experienced assembly language programmer,
you can learn how to expand your knowledge to include all the new and
special features of the Apple IIGS . If you're primarily a C programmer, you
can learn how to deal with all the IIGs's new features in programs written
in C.

ix

Programming the Apple IIGS

This book is also an asset to assembly language programmers who would
like to start saving time by including C routines in their programs and to C
programmers who would like to streamline and speed up portions of their
programs by learning some assembly language. If either of these possibilities
appeals to you, you'll be happy to learn that the software development system
used to write the programs in this book, the Apple Programmer's Workshop
(APW), makes it easy to combine routines written in assembly language and
C-and this book teaches you how.

What You Can Find in These Pages

As you read this book, and type and run the many example programs, you
may notice that

• Unlike many books on C and assembly language programming, it is
written in English, not computerese, and is designed for people who
want to learn to program, not just for professional programmers and
engineers (though some of them will find it useful, too).

• It includes a complete course on how to use the Apple I1GS Toolbox,
a set of built-in assembly language subroutines that distinguish the
I1GS from all previous Apple lIs. The Toolbox is what provides the
IIGS with such spectacular graphics features as windows, pull-down
menus, icons, and mouse-controlled commands. This book teaches
you how to use most of the tools in the Toolbox, in both C and
assembly language.

• It is packed with what almost every computer book could use more
of: type-and-run programs that do far more than illustrate the points
being discussed. They are designed to put the IIGS through its paces
as you learn how it works. When you finish this book, these
programs form a useful library of commonly used Apple IIGS
routines.

What You Can Learn

By the time you finish this book, you'll also know how to

• Program the Apple IIGS'S 65C816 chip in assembly language, in
both its 8-bit emulation mode and its 16-bit native mode. Part 1
covers the fundamentals of Apple IIGS programming. Most of the
programs in this segment are written in emulation mode. In part 2,
you can pull out all the stops and learn how to program the IIGS in
its full 16-bit native mode.

x

What You Need

Ready, Set, Go!

Introduction

• Write text-based programs using the Toolbox's Text Tool Set and
write super high-resolution graphics programs using QuickDraw II-
a IIGS tool set that you use to design text screens, pictures, and even
printed documents with a palette of 4,096 colors and a screen
resolution of up to 640-by-200 pixels.

• Equip your programs with eye-catching graphics features such as
pull-down menus, multiple windows, icons, and the dialog boxes
that serve as communication windows between the user and the IIGs.

• Write sound tracks for your programs using the IIGs's 15-voice, 32-
oscillator sound and music synthesizer-the most powerful sound
system in any computer in the IIGS class.

You learn how to do all of this-and much, much more-in both C and
assembly language.

To use this book, you need an Apple IIGS with at least two 3.5-inch disk
drives, a monochrome or color monitor, and at least 512K of extra memory.
A hard disk, a l-megabyte RAM disk, and at least another 512K of extra
memory are highly recommended.

As you advance in your knowledge of IIGS programming, a few books
besides this one might come in handy. Two works that every serious IIGS
programmer should own are the Apple llcs Toolbox Reference and the Apple
llcs ProDOS 16 Reference, both written at Apple and published by Addison-
Wesley. The Apple llcs Toolbox Reference is a particularly important work
because it explains exactly how to use every tool in the IIGS Toolbox in
programs written in both assembly language and C.

Three other books that are required reading for IIGS programmers are
the Apple llcs Programmer's Workshop Reference, the Apple llcs Program-
mer's Workshop Assembler Reference, and the Apple llcs Programmer's
Workshop C Reference, which were also written at Apple and published by
Addison-Wesley. Many other books that you might find useful or interesting
are listed in the Bibliography.

If you've read this far, it's a safe bet that you're at least a little bit interested
in learning how to program the Apple IIGS in C, assembly language, or both.
There's no better time to begin than right now. So tum the page and start
from the top-with chapter 1.

xi

xii

Acknowledgments

Many thanks to Eagle I. Berns, Steve Glass, Loretta Barnard, Kevin Arm-
strong, Brent Olson, David D. Good, Greg Borovsky, Eric Ford, Anil Gur-
sahani, Ray Hughes, Brian Hurley, Dennis Kudo, and Alireza Latifi, all of
Apple. Without their help and patience, this book could not have been written.

To Swami Muktananda

DOD 0o DO 0
DO DOD
DO 0 0
ODD
ODD

DO DODD
DO 0
DOD DOD

PART [i]
Fundamentals
of Apple IIGS
Programming

CHAPTER

Introducing
the Apple IIGS
The Apple /I for the Rest of Us

Iwl hat do you got when you "0" au Apple Macintosh with an Apple
II? When hardware engineers at Apple Computer attempted that
feat, they came up with the Apple IIGs-a remarkable new

personal computer that offers Macintosh-like features at an Apple II price,
with super high-resolution graphics and spectacular sound thrown in as part
of the bargain.

An Apple II-Plus!
The specifications of the Apple IIGS are not quite the same as those of the
Apple Macintosh. For example, the IIGS uses a 65C816 microprocessor, but
Macintosh computers are built around chips of the 68000 family. Also, the
IIGS has a different type of screen display. The IIGS generates a color video
display with a screen resolution of either 320-by-200 pixels or 640-by-200
pixels, depending on the graphics mode. The Macintosh Plus and the Mac
SE produce black-and-white displays that measure 512-by-342 pixels. Table
1-1 lists the most important specifications of the Apple IIGs.

There are other differences between the IIGS and the Macintosh. One
difference, immediately apparent to a potential computer purchaser, is that a
Mac, even a low-end model, is considerably more expensive than a IIGs.

1

Fundamentals of IIGS Programming

Table 1-1
Apple IIGS Specifications

2

Feature Specifications

CPU 65C816

Operating speeds 2.8 MHz and I
MHz

Memory capacity 256K RAM,
128K ROM

Desktop user Mouse, windows,
interface pull-down menus
Mouse Two button

Toolbox In RAM and
ROM

Keyboard 78 keys

Monitor outputs RGB and NTST

Text modes 40 column and 80
column

Graphics modes Apple II modes
and super high-
resolution mode

Resolution 320-by-200
pixels, 640-by-
200 pixels

Colors 4,096

Sound 32-oscillator
synthesizer

Enhanced monitor Built into ROM

BASIC Applesoft

Control panel Built-in desk
accessory

Clock Built in
Serial ports Two built-in

serial ports
AppleTalk Uses one serial

port
Disk port Disk I/O port

uses custom IC

Comments

16-bit microprocessor with 24-bit (16
MHz) addressing capability. 6502 and
65C02 compatible.
Selectable dual operating speeds provide
compatibility with earlier Apple IIs.
RAM expandable to 8.25 megabytes. One
megabyte of memory available for ROM
expansion.
Macintosh-like programming and user
environment.
Connects with Ilcs by ADB (Apple
Desktop Bus) cable.
Toolbox contains more than 800 prewritten
routines that can be used in application
programs.
Detached keyboard has built-in numeric
keypad and can be used to type in foreign
languages.
Can be used with analog RGB monitor,
composite monitor, or TV (with modulator
adaptor).
Text modes measure 40 columns by 24
lines and 80 columns by 24 lines. Border,
foreground colors, and background colors
are user-selectable.
All Apple IIc and lIe graphics modes, plus
super high-resolution mode.

Two screen resolutions offered in super
high-resolution mode.

4,096-color palette available in super high-
resolution mode; 16 or more colors can be
displayed simultaneously.
Ensoniq synthesizer supports 15 indepen-
dent voices. Sound chip includes 64K of
dedicated RAM for storing sound patterns.
Handles 24 -bit addresses. Includes mini-
assembler and I/O routines. Can perform
hex math.
Enhanced BASIC interpreter built into
ROM.
Can be used to set display parameters, slot
and port use, operating speed, RAMdisk,
and disk drives.
Provides time and date.
Support modems, printers, and AppleTalk.
Serial card can also be installed.
AppleTalk can be used with either serial
port. No peripheral card required.
Up to six disk drives can be supported by
built-in port, or plug-in cards, or both.

1-lntroducing the IIGS

Table 1-1 (cont.)
Feature Specifications

Hard disk Optional

Expansion slots Seven slots for
plug-in cards

Game I/O External and
internal

Operating system ProDOS 16,
ProDOS8,DOS

Interrupts Fully supported

Comments

Hard disk 20SC can be connected with
SCSI interface card.
Supports plug-in cards as well as built-in
ports.
External 9-pin jack, internal 16-pin socket.
ADB (Apple Desktop Bus) connector also
available for game controllers.
Designed to use ProDOS 16, but also com-
patible with ProDOS 8 and DOS.
Built-in interrupt handler. Vertical blank
interrupts, scan line interrupts, mouse and
sound interrupts, and many other kinds of
interrupts are supported.

Another difference, not quite so obvious but as important from a pro-
grammer's point of view, is that the Mac and the IIGS don't "speak" the
same machine language. The Mac has a 32-bit microprocessor designed to
be programmed in 68000 assembly language. The main microprocessor in
the IIGs, the 65C816, is a 16-bit successor to the 8-bit 6502 and 65C02 chips
in older Apple lIs. (The difference between an 8-bit chip and a 16-bit chip
is covered in chapter 5.) Furthermore, the memory of the Macintosh is laid
out as one continuous bank, but the memory map of the IIGS is broken into
64K banks, like the memory map of an Apple IIc or an expanded Apple lIe.
The memory architecture of the Apple IIGS is covered in chapter 4.

Because of the Apple IIGs's 6502-family microprocessor, color display,
IIc and lIe compatibility, and Apple II heritage, it is actually related more
closely to earlier members of the Apple II than to the Mac (although it is
something of a Mac lookalike). Nontheless, the IIGS is much more than just
a souped-up Apple II.

"Like Janus, the god of doorways," one Apple spokesman explained,
"the IIGS looks in two directions." First, he pointed out, the computer looks
toward the future: "With its many high-performance features-such as its
improved color display, advanced sound system, 16-bit processor, and larger
memory, it makes it possible for more powerful programs to be designed. "
But, he emphasized, it also' 'looks back on the past. Because it also has the
features of earlier members of the Apple II family, it can run most of the vast
library of software that was written for its predecessors, such as the Apple
IIc and the Apple lie."

The IIGs, in its forward-looking stance, is a new breed of Apple II,
operated in a Macintosh-like desktop environment-complete with a super
high-resolution screen, icons, pull-down menus, desk accessories, and a
mouse. To make life easier for the programmer who wants to use these new
features, the IIGS comes with a fully equipped Toolbox-an enormous library
of prewritten routines that are easily incorporated into user-written programs.
With the Toolbox, programmers working in high-level languages such as C,

3

Fundamentals of JIGS Programming

assembly language, Pascal, and even BASIC can make use of windows,
menus, icons, and the rest of the IIGS desktop environment without writing
the code from scratch. With the help of the Toolbox, it is easier to write
sophisticated, eye-catching programs for the IIGS than it is to write simpler
programs for earlier Apple lIs.

The main features of the IIGS Toolbox are described in detail in part 2,
which begins with chapter 7. Important tools in the Toolbox are covered
individually, beginning in chapter 7.

Memory Magic
Of all the remarkable features of the IIGS, the one probably most welcome to
programmers is the IIGS'S prodigious memory capacity. The computer comes
with 256K of RAM and 128K of ROM-a far bigger supply of memory than
the 128K of RAM and 32K of ROM built into its most recent predecessor,
the Apple IIc. You can expand the generous amount of RAM supplied with
the IIGS to as much as 8.25 megabytes with the simple addition of a plug-in
card.

4

24-Bit
Addressing

The Apple IIGS
as an Apple II

The IIGS in
Native Mode

The Memory
Manager

The huge memory capacity of the IIGS is made possible by the addressing
capabilities of its 65C816 microprocessor. As you will see in chapter 4, the
65C816 has 24-bit addressing capability, giving it a total memory space of
16 megabytes. Of this total, 8.25 megabytes are available for RAM expansion
and 1 megabyte is available for ROM expansion.

The memory of the IIGS is mapped out in detail in chapter 4. In chapter
6, which is devoted to the addressing modes of the IIGS, you'll see how the
IIGS addresses memory.

Because the IIGS is compatible with earlier Apple Ils, its memory layout can
be used in two ways: in a mode that emulates earlier Apple lIs or in a mode
that takes full advantage of the computer's memory capacity. When the IIGS
is in Apple II emulation mode, only 128K of memory is used, and that 128K
is laid out like the main and auxiliary memory banks of a IIc or lIe. Figure
I-I is a map that shows how the memory of the Apple IIGS is organized
when it is operated in Apple II emulation mode.

When the IIGS is in native mode, another 128K of RAM and a full 128K of
ROM are added, along with whatever additional memory is installed. All this
added memory is available for use in application programs, except for a few
areas in low memory claimed by ROM addresses, operating system RAM,
sound and video RAM, and system I/O memory. Figure 1-2 is a map that
shows the memory architecture of a IIGS system running in 16-bit native mode.

One new feature of the IIGS is that all memory-related operations can be
handled by a special tool called the Memory Manager. The Memory Manager
is active when the IIGS is booted and, from that moment on, is in complete
control of the computer's memory. It can allocate, deallocate, and compact

BANK $01/$E1
AUXILIARY MEMORY

$FFFF

RAM

1-lntroducing the IIGS

BANK $OO/$EO
MAIN MEMORY

RAM

$6000

$4000

$2000
$OCOO
$0400
$0000

TEXT DISPLAY

HI-RES DISPLAY

SYSTEM I/O

E1W%ll LANGUAGE CARD AREA

SYSTEM AND FREE RAM

c=J FREE RAM

Figure 1-1
Memory map of the IIGSin IIc/lle emulation mode

$00 $01 $02 TO $7F $EO $F1 $FO TO $FD $FE $FF
$FFFF

$EOOO
$DOOO t:'J1<1=mm
$COOO

$AOOO

$6000

$4000

$2000
$OCOO
$0400 ,<'.,'
$0000 "';........_-'

BUILT-IN EXPANSION BUILT-IN EXPANSION BUILT-IN
RAM RAM RAM ROM ROM

mttl
RESERVED
MEMORY

SYSTEM
I/O

DISPLAY
MEMORY

c=J
FREE
RAM

Figure 1-2
Memory map of the IIGS in 16-bit native mode

5

Fundamentals of JIGS Programming

memory while application programs are running, taking most of the burden
of memory management off the programmer. The memory architecture of the
IIGS and the role of the Memory Manager are discussed in more detail in
chapter 4.

Faster than a Speeding Apple II
In addition to a larger memory capacity, the IIGS runs faster than earlier
members of the Apple II family. The IIGS'S 65C816 processor operates at 2.8
MHz, almost three times as fast as the 1 MHz speed of the 6502 and 65C02
chips in the lIe and lIe. But the 65C816 can also be set to run at the same
speed as a 6502 or 65C02. Because of this dual-speed capability, the IIGS can
run most of the vast library of software for earlier Apples. You can experiment
with operating speeds. Many programs designed for earlier Apples can be run
on a IIGS at either the I MHz speed they were designed for or the IIGS'S native
clock speed of 2.8 MHz. This can add new challenges to arcade-style games
designed for earlier Apples. On a IIGS, some games can be accelerated to
almost three times their speed on earlier Apple lIs.

Besides the 65C816 chip's faster speed and expanded memory address-
ing capability, it has a bigger and more powerful set of internal registers. Its
accumulator, X register, and Y register are expanded from 8 bits to 16 bits.
It also has three new registers: an 8-bit data bank register, an 8-bit program
bank register, and a 16-bit direct page register. Other features of the 65C816
include II new addressing modes and 36 new assembly language instructions,
for a total of 24 addressing modes and a total vocabulary of 91 assembly
language mnemonics. These new features are examined in chapter 5.

GS: Graphics and Sound
The IIGS has many other special features. Two attributes are so important that
the computer was named after them: the g in IIGS stands for graphics and the
s stands for sound. So let's pause for a closer look at the graphics capabilities
of the IIGS and a brief glance at the lIGS world of sound.

IIGS Graphics The IIGS can handle both text modes and all three graphics modes of its most
recent predecessors, the lIe and the lIe. Like the lIe and the Ile, the IIGS has
two text modes. It can produce a 40-column, 24-line text screen, which is
displayed on an ordinary television screen, or an 80-column, 24-line text
screen, which requires a high-resolution color or monochrome monitor. The
IIGS'S three graphics modes are like those in the lIe and the lIe: a low-resolution
mode, a high-resolution mode, and a double high-resolution graphics mode
with a 16-color palette and a screen display 560 dots wide by 192 dots high.

But these three graphics modes-designed for earlier Apples and built
into the IIGS primarily for compatibility-are not the modes for which the
Apple lIGS is named. Besides the three graphics modes in the lIe and the
expanded Ile, the IIGS has two new graphics modes called super high-

6

1-lntroducing the IIGS

resolution modes. One of these, 320 mode, has a screen display that measures
320 dots wide by 200 dots high. The other, 640 mode, has a 640-by-200 dot
display. In super high-resolution graphics mode, a palette of 4,096 colors is
available, and up to 16 colors-or even more, with interrupts-can be dis-
played simultaneously.

Both of the graphics modes native to the IIGS are produced by a large-
scale integrated (LSI) video chip called the video graphics controller, or VGc.
The VGC can generate 4,096 colors and, with video interrupts, can simul-
taneously display up to 256 colors on the screen. Without using interrupts or
other special techniques, the VGC can display up to 16 colors at a time in
320 mode and up to 6 colors at a time (including black and white) in 640
mode. With a color-interleaving system called dithering, a 640-mode screen,
like a 320-mode screen, can display up to 16 colors at a time. More details
about IIGS graphics-and a collection of type-and-run graphics programs-
are presented in chapter 8.

IIGS Sound In addition to spectacular graphics, the IIGS has sensational sound. Computer
critics have raved that the IIGS has the finest sound system of any computer
in its class.

The IIGS owes its sonic superiority to a lfi-voice, 32-oscillator integrated
circuit called the digital oscillator chip, or DOC. The DOC is manufactured
by Ensoniq and used in their line of professional sound synthesizers. The chip
has 64K of independent RAM and can generate waveforms from digital sam-
ples stored on a disk and loaded into its memory. So it can produce multivoice
music and other kinds of complex sounds without tying up the IIGS' s main
microprocessor.

The IIGS sound system includes another custom chip called a general
logic unit, or GLU. The GLU chip is a system interface with the DOC. This
enables the IIGS to produce sound in two ways: with its DOC chip or with a
simple, switch-controlled circuit that produces notes, tones, and beeps in the
manner of earlier Apple lIs.

The IIGS sound system, like most of the computer's other new features,
is designed to be programmed with the help of the IIGS Toolbox. The sound-
producing capabilities of the Apple IIGS are described in more detail in chapter
13.

A Closer Look at the Toolbox
In the earliest models of the IIGS, parts of the Toolbox were built into ROM
and parts were included on a system disk. In later models, as the design of
the Toolbox became more solid, tools originally included on the system disk
were moved into ROM. From a programmer's point of view, it ordinarily
doesn't matter whether a given IIGS tool is built into ROM or provided on a
system disk and loaded into RAM when needed (except that tools in ROM
load and work faster). That's because the Toolbox includes a special tool-
finding and tool-loading program called the Tool Locator. The Tool Locator

7

Fundamentals of IIGS Programming

can automatically find any tool-in ROM or RAM-and then load that tool
into memory.

After a tool is found and loaded by the Tool Locator, it can be incor-
porated into an application program by calling an assembly language macro-
if the program is written in assembly language. C programs call Toolbox
functions using standard C calling functions.

The Apple IIGS Programmer's Workshop (APW), the software package
used to write and assemble the assembly language programs in this book,
comes with a library of macros that make it easy to include Toolbox macros
in application programs. There's more about macros in chapters 3 and 7. The
APW C compiler, which was used to write and compile the C programs in
this book, has an interface library that allows Toolbox functions to be in-
corporated into C programs. There's more about that in chapter 3.

The APW assembler is introduced in chapter 2, and the APW C compiler
makes its first appearance in chapter 3. Most of the assembly language pro-
grams in part 2 contain calls to APW Toolbox macros. Most of the C programs
use Toolbox functions in the APW C interface library.

Opening the Toolbox
The Apple IIGS Toolbox contains a large assortment of useful prewritten
routines. Five of these tools are of primary importance. Apple refers to them
as the "Big Five." These five major tools are

• The Tool Locator. Details about the Tool Locator are presented in
chapters 3 and 7.

• The Memory Manager. The Memory Manager is covered in more
detail in chapter 7.

• QuickDraw II, which handles graphics and drawing routines.
QuickDraw II, modeled after the QuickDraw tool set for the Apple
Macintosh Toolbox, is examined in chapter 8.

• The Event Manager, which handles mouse operations and determines
what the IIGS does in response to various moving and clicking
operations that involve the mouse. The Event Manager is covered in
chapter 7.

• The Miscellaneous Tool Set, which-despite its unimportant-
sounding name-is vital to the operation of the IIGs. The
Miscellaneous Tool Set handles low-level mouse operations,
firmware interrupt operations, access to the RAM that is backed up
by the built-in battery, reading and setting the computer's built-in
clock, and many other important functions. The Miscellaneous Tool
Set contains so many different kinds of tools that it is not covered in
a chapter of its own, but is referred to as required in part 2.

The other tools in the IIGS Toolbox are

8

1-lntroducing the IIGS

• The Menu Manager, which is used to create and control pull-down
menus. The Menu Manager is the subject of chapter 7.

• The Window Manager, which takes care of the document and picture
windows displayed by application programs. With the help of the
Window Manager, you can place multiple windows on the screen.
You can also scroll, shrink, expand, and drag windows, and place
windows in front of and behind other windows on the screen. You
get a close look at the Window Manager in chapter 10.

• The Dialog Manager, which handles alert dialogs-text windows
that warn of impending danger-and boxes that let you choose func-
tions by activating controls (such as scroll bars and pushbuttons) dis-
played on the screen. The Dialog Manager is examined in chapter
11.

• The Control Manager, which handles scroll bars, buttons, and all
other kinds of onscreen controls used by tools such as the Window
Manager and the Dialog Manager.

• The Font Manager, which controls the selection, loading, styling,
displaying, and printing of character fonts.

• The LineEdit Tool Set, which handles keyboard text input when the
IIGS is in super high-resolution graphics mode.

• The Text Tool Set, which handles keyboard text input when the IIGS
is in 40-column or SO-column text mode. The Text Tool Set is intro-
duced in chapter 3.

• The Scrap Manager, which manages cut-and-paste operations.
• The Standard File Operations Tool Set, which works with ProDOS
16 to create dialog windows that load and save disk files. The Stan-
dard File Operations Tool Set and ProDOS 16 are covered in chapter
12.

• The List Manager, which handles lists displayed on the screen when
the IIGS is in super high-resolution display mode. The List Manager
is used by higher-level tool sets such as the Standard File Tool Set
and the Font Manager. It is also available for use by application
programs.

• The Print Manager, which interfaces the IIGS to a variety of printers,
including dot-matrix graphics printers such as the ImageWriter and
laser printers such as the LaserWriter.

• QuickDraw Auxiliary, which adds some tools-and more graphics
power-to QuickDraw II.

• The Integer Math Tool Set, which can make life easier for the
designer of mathematically oriented programs. With the help of the
Integer Math Tool Set, a program can easily handle mathematic
operations ranging from simple integer addition to complex
trigonometric functions.

9

Fundamentals of JIGS Programming

• The Standard Apple Numerics Environment (SANE), which includes
a library of more advanced arithmetic and mathematic operations.

• The Sound Tool Set, which controls both the old-fashioned switch-
style sound system of the Ilos and the computer's newer super-
sophisticated digital oscillator chip (DOC) sound synthesizer. In-
structions for programming the Sound Tool Set, and some type-and-
run routines that put it through its paces, are presented in chapter
13.

• The Desk Manager, which controls the operation of desk accesso-
ries-mini-applications that can be run at any time without interfer-
ing with application programs.

• The Scheduler, which delays the activation of desk accessories and
other applications until the resources they need are available.

• The Apple Desktop Bus (ADB), a tool for connecting input devices
such as the keyboard, the mouse, graphics tablets, and game control-
lers to the Apple Ilos.

The disk operating system used by the IIos is ProDOS 16. ProDOS 16
is a l6-bit descendent of ProDOS 8, the IIc and lIe operating system. The
IIos can run programs written under ProDOS 8, ProDOS 16, and even Apple
DOS, the operating system that preceded ProDOS 8. To help programmers
use ProDOS effectively, the IIos Toolbox includes a Standard File Manager,
which is covered in chapter 12.

What Happens When You Turn It On
When you tum on the Ilos and boot the system disk, the first thing you see
depends upon how much memory your IIos has. If it has 5l2K of memory
or more, you'll see the Ilos Finder-a screen patterned after the opening
screen of the Apple Macintosh, but displayed in full color. If your Ilos has
less than 5l2K of memory, the startup screen will be a Program Launcher-
a plainer looking display that does not have all the features of the Finder,
but does allow you to select and run programs with a mouse. If you have
5l2K of memory and still see a Launcher display, your system disk is not a
Finder disk, which now comes with every Apple Ilos, but a Launcher disk,
which was packed with the first IIos computers and is now outdated. Early
IIos disks were missing some tools, had bugs in others, and thus won't work
with some of the programs in this book. So, if you have a Launcher disk
instead of a Finder disk, please see your Apple dealer. Figure 1-3 is an
illustration of the Finder disk's screen display. On the opening screen of
the Finder disk, the Apple IIos displays icons, or small pictures, repre-
senting various components in the system. On the Finder screen, each
3.5-inch disk in a disk drive is represented by an icon that looks like a
3.5-inch disk. If your system includes a hard disk, a RAM card, or a hard
disk drive, those are represented by icons too.

10

1-lntroducing the IIGS

ftiil!l=SCREEN.666

L1
SYS.UTllS

o
OlAl06.1CONS

<P.
SHRPRINT

L1
ICONS

L1
SYSTEM

o
SHR.OA

L1
APPlETAlK

9itells

<P.
PROOOS

NO
File Edit

••1

CJ PO 50
PROOOSCJ 00

CJ 002
CJ 003
CJ SAMPLE
CJ SCREENo SF.Sl

SHRPRI
CJ STO.FI:t-¢':LP'-----
CJ SYS.UT
CJ SYSTEM

SYSTEMP
CJ TM

Figure 1-3
Finder disk screen display

From the IIGS Finder disk, you can load, or launch, any executable
program stored on a disk. For example, you can use the Launcher to load the
APW assembler-editor system, the APW C compiler, or programs you have
created using the APW system.

The User Environment
Much has been written and said about the new era in personal computing that
began with the introduction of the Apple Macintosh. By offering the personal
computer user a new type of user environment-featuring such innovations
as windows, pull-down menus, icons, and the mouse-the Apple Macintosh
started such a revolution in desktop computing that even IBM was finally
forced to incorporate Mac-like features in its personal computer line.

The secret behind the success of the Macintosh-and the IIGs-is event-
driven programming. In the pre-Macintosh era, computers were designed to
operate under a system called sequential programming. If pre-Mac computers
were difficult to understand and easy to hate, it was largely because of the
sequential design of their programs. When a program is written in a sequential
fashion, it presents the user with an onscreen prompt and expects the user to
type in something. If the user types in a response that the computer considers
acceptable, the computer goes to another part of the program it is running-

11

Fundamentals of IIGS Programming

that is, into another mode. At that point, the user might be presented with
another menu, forcing a choice that puts the program into still another mode.

To get from one kind of operation to another, the user of a sequentially
designed program usually has to move up or down through a hierarchy of
menus, often having to pass through one mode to get to another. This approach
puts the computer in charge of the user and often makes the user feel sub-
servient, intimidated, and even angry at the machine.

Event-driven programming, in the hands of a skilled programmer, can
reverse this scenario and make the computer the servant of the user. The main
characteristic of an event-driven program is that it is modeless. When an
event-driven program is executed, the computer can do just about anything
the program allows at just about any time, without the user having to switch
modes or move through a heirarchy of menus.

The lIas-with its pull-down menus, windows, and icons-is very
much at home with modeless, event-driven programs. In a typical Ilos pro-
gram, you are first presented with a menu. With the help of a mouse, you
can then select a menu option. If you make a mistake while runnning an
event-driven program, the program (if it is well-written) courteously indicates
the mistake and suggests an alternate approach. This style of programming
makes you the master and the computer the servant-which, of course, is
the way things ought to be.

So it is not difficult to see why computers programmed in the old-
fashioned sequential style have been the targets of so much wrath and why
event-driven computers like the Mac have become so popular-among pro-
gram designers and users. All the programs in part 2 are event-driven pro-
grams, and more about event-driven programming is presented in chapter 9.

To support event-driven programming, a computer needs a host of fea-
tures that were unavailable in the computers of yesteryear. The Ilos, like the
Macintosh, has all the features needed to make event-driven programming
possible: windows, pull-down menus, icons, dialog windows that enable the
user to communicate with the computer, and the mouse. Because of these
features, the "feel" of the Ilos is similar to the feel of the Mac-although
a few features of the venerable Apple II line have also been thrown in so that
the computer's Apple II heritage is not forgotten.

The goal of this book is to help you learn to program the Ilos in the
way it was meant to be programmed-using its mouse-controlled, event-
driven, user environment. You'll do that using both assembly language, which
is fast but not easy to master, and C, which is a little slower (though still
light-years ahead of BASIC) but considerably easier to learn and quite a bit
easier to manage.

In this chapter, you looked at the Apple Ilos, some of its principal
features, and its most important programming tool, the Ilos Toolbox. In
chapter 2, you start programming the Ilos in assembly language. In chapter
3, you start writing some C programs.

12

CHAPTER

Programming the
IIGS in

Assembly Language
Using the APW Assembler

: I·] f you've written assembly language progmm' fm an Apple II, but
: haven't done any assembly language programming for the Apple

IIGs, you're in for a big surprise. Programs written for the IIGS run
faster, offer more sophisticated graphics and sound capabilities, and-best
of all, from a programmer's point of view-can use more than 800 prewritten
routines built into the Apple IIGS Toolbox. Some of the tools in the IIGS
Toolbox are built into ROM and others are loaded into RAM when you boot
the computer's system disk. But they're all available for use at any time in
application programs.

The APW Assembler-Editor
The Apple IIGS Programmer's Workshop (APW), which was used to write
most of the assembly language programs in this book, comes with a library
of macros that make it quite easy to use the IIGS Toolbox in user-written
programs. APW was created by the Byte Works Inc., a small company in
Albuquerque, New Mexico, and is marketed by Apple. It is the first assembler-
editor package offered solely for the Apple IIGs, and it is designed with all
the IIGs's advanced features in mind.

13

Fundamentals of IIGS Programming

The APW
Package

Apple calls the APW package "a development environment for the Apple
I1GS computer." It contains

• A shell that enables the I1GS programmer to run programs and use
many useful file management and utility functions.

• An editor that can be used to write assembly language programs, C
programs, executable shell files (exec files), and text files.

• An assembler that converts, or assembles, assembly language
programs into machine language programs.

• A linker that converts machine code files produced by the APW
assembler or C compiler into load files-files the I1GS system loader
can load into memory. Briefly, here's how the linker works. When a
program is written using the APW assembler or the APW C
compiler, it is stored in memory in a format called object module
format, or OMF. Before an OMF file can be executed, however, it
must be linked, or converted into a format that the system loader can
load into memory. The process of converting OMF files into linked
files, or loadable and executable files, is the job of the APW linker.
To create a linked file, the linker resolves external references
(references in one program segment to routines or data in another).
The linker then creates relocation dictionaries that the system loader
uses to relocate code as needed when it is loaded into memory.

• A generous selection of utility programs that perform many
functions. These programs format disks, copy files and disks, catalog
disk directories, assemble and link assembly language programs,
disassemble machine code and display it as source code, display the
contents of memory, and much more. (It is beyond the scope of this
book to examine the APW system's utility programs in detail.)

• An optional C compiler that converts, or compiles, C programs into
executable machine language programs.

• An optional debugger that helps programmers correct assembly
language programs.

A Warning Before we go into any more detail about the APW development system, it
should be pointed out that the version of the system available at this
writing may not be exactly the same as the one you're using. The APW
development system evolved from the ORCA/M assembler, which was de-
signed long before the advent of the Apple IIGS, and the evolution of the
APW system is still continuing. When this book was written, APW was a
text-oriented system that did not use the sophisticated graphics or event-driven
programming capabilities of the Apple IIGs. By the time you read this, APW
may have evolved into a super high-resolution program with windows, pull-
down menus, and mouse controls. If that's the kind of APW system you have,
some of the information in the following paragraphs won't apply because

14

Using the
APW Shell

Getting Started

2-Programming the IIGS in Assembly

When you use the APW system to write an assembly language program, the
system's shell provides the interface that allows you to execute APW
commands and programs. When you are writing a program, for example, you
can activate the APW editor and assembler by typing shell commands. You
can also use the shell to perform such tasks as copying files, deleting files,
and listing directories. More ways to use the shell as an assembly language
programming tool are described in the Apple Ilcs Programmer's Workshop
Assembler Reference, written by the folks at Apple and published by Addison-
Wesley.

There's no such thing as a standard I1GS configuration, and APW systems can
also be different (a system designed for assembly language programmers will
include a machine language assembler, one intended for C programmers will
include a C compiler, and still other systems could include both an assembler
and a C compiler).

Ordinarily, an APW system designed for assembly language program-
ming will include two disks: one labeled IAPW and the other labeled IAPWU
(for APW utilities). A C-based package will generally include one disk labeled
IAPW and one labeled IAPWC.

In this chapter, we devote our attention primarily to APW systems
designed around the APW assembler. Specific tips on installing and operating
C-based systems are provided in chapter 3.

To simplify the installation of the APW development system, the de-
signers of the system have placed a utility program called INSTALL on the
APW disk. For owners of hard disks, a utility called HDlNSTALL is provided.

It's easy to install an APW package on an Apple I1GS system. First,
you should back up your original APW disks and put them in a safe spot.
Then, if you are using a floppy disk system, place the copy of your IAPW
disk in one drive and a blank formatted disk in another. If you have a hard
disk system, you can use APW's HDINSTALL program to install APW on
your hard disk.

If you have a floppy disk system, you can install APW by simply booting
APW from your master disk copy and typing a command like this following
APW's # prompt:

instaLL /apw /Lname of your disk]

If all has gone well, the APW system will install itself on your blank formatted
disk. When installation of your IAPW disk is complete, you should see a
prompt on the screen telling you that it is now time to install your IAPWU
disk. You can then remove the IAPW disk, insert your IAPWU disk, and
type the command ins taL L / APWU . Your disks will start to spin again, and
when everything is finished, you will have an installed copy of APW, complete
on a single disk.

APW's HDINSTALL program works in a similar way, except that the
program is installed in a hard disk directory instead of on an individual floppy.

15

Fundamentals of IIGS Programming

What the APW
System

Contains

When you have the APW system installed on a disk-either hard or f1oppy-
a catalog of the system will reveal that it contains the following files:

• A directory titled SYSTEM. This directory contains the APW
program and text editor, which you will use to write your source
code programs; a LOGIN file, which takes over when APW is
booted and can configure APW to your individual Apple IIos system;
a SYSHELP file, which you can use to obtain information about any
shell command by simply typing the word HELP followed by the
actual command; and a few other files used by the APW system.

• A LANGUAGES directory, which includes the APW assembler (or,
if you have a C-based system, your C compiler). The LANGUAGES
directory also includes a file called LINKED that is used link object
code programs after they have been assembled.

• A LIBRARIES file, which contains a subdirectory called
AINCLUDE. In the AINCLUDE directory, you will find a collection
of files divided into two categories. About half the files begin with
the prefix E16, and the other half start with the prefix M16.

The files that begin with M16 are APW macros: short, prewritten
assembly language source files that you can incorporate easily into ap-
plication programs. The files that begin with El6 are equate listings:
source code files that define constants often used in Apple IIos programs.
After you learn how to use the equate files in the AINCLUDE library,
they can be very useful in assembly language programs.

• In a C-based APW system, C libraries are also included in the
LIBRARIES directory.

• A UTILITIES directory, which contains many important APW
utilities. These include MACGEN, which is used to include APW
macros in application programs; MAKELIB, which can be used to
convert application programs into libraries so that they can be
accessed more rapidly; and DEBUG, which can be used to run
APW's optional assembly language debugger.

• APW.SYSI6, the main APW program.

Using the APW System

After you set up the APW system, you can boot it by itself, from your IIos
finder disk, or from a hard disk, depending upon your preference and the
configuration of your IIos system. No matter how you launch APW, the first
thing you'll see after APW goes into action is a screen heading that looks
something like this:

16

The APW Editor

2-Programming the I/GS in Assembly

App Le IIGS Programmer's Workshop
Copyright Byte Works, Inc. 1980-1986
Copyri ght App Le Computer, Inc. 1986

ALL Ri ghts Reserved

A few lines below this display is a number sign prompt followed by a cursor:

When this prompt appears on the screen, APW is installed and operating,
and the computer is in the APW shell's command line mode. If you're using
a pair of 3.5-inch drives and don't have a hard disk drive, you may have to
do a little prefix changing; that is, you may have to direct APW to read your
data disk by using the APW shell's pref i x command. The pref i x command
can be followed by a full or partial pathname, like this:

pref i x IMYVOLUME

or by a device number with a period in front of it, like this:

prefix .D2

More details on the use of the pref i x command are in the Apple Ilcs Pro-
grammer's Workshop Reference. the Apple Ilcs Programmer's Workshop As-
sembler Reference. and the Apple llcs ProDOS 16 Reference (all were
prepared by Apple and published by Addison-Wesley).

After APW is up and running, and the prefix of your data disk is set, it's
easy to activate the APW editor. Just tell APW you want to edit a file and
enter the name of the file. For example, type this line following APW's #
prompt (don't type the prompt, just the two words that follow it):

#edit ZIP.SRC

This line tells APW you want to start editing a file named ZIP.SRC.
Although the SRC suffix is not required, it is often used to distinguish source
code files (assembly language programs) from object code files (machine
language programs). The convention in this book is to give source code
programs the SRC suffix and to assign no suffix to machine language pro-
grams.

When you type a command line using the format ed i t f i l ename,
APW looks on your data disk for a file with the name you have provided. If
it can find one, it displays the file on the screen so you can edit it. If there
is no file on the disk with that name, APW goes into editor mode and presents

17

Fundamentals of IIGS Programming

a blank screen-blank, that is, except for a ruler line at the bottom. Then
you can write a new program that will have the filename you have chosen.

This is a good time to install and load APW and type the command
line edit ZIP.SRC, if you haven't done so already. Then you'll be ready
to type, assemble, and execute the ZIP.SRC program, which appears in listing
2-1. If you're familiar with the adventures of a certain pinhead cartoon char-
acter, you'll understand how the program got its name.

Listing 2-1
ZIP.SRC program

** ZIP.SRC
* A program that asks an important questi on

*
KEEP ZIP
LIST ON

Zippy START
phk ; make program bank
pLb ; and data bank the same

pea testmsgl-16 ; push msg bank on stack
pea testmsg ; push msg address on stack

Ldx #$200C ; put tooL no. in x reg
jsL $E10000 ; Long jump to tooL dispatcher
rt L ; Long return

testmsg dc cAr e we programming yet?',h'OO'

END

The ZIP.SRC program is written in the Apple IIos's 16-bit native mode.
It doesn't use the Memory Manager or some of the other advanced features
of the IIos, but it is a native mode program.

In a few moments you'll examine the ZIP.SRC program line by line.
First, though, let's take a close look at the APW editor, so you can see how
it works and how it is used in assembly language programming.

If you've programmed an Apple II or another microcomputer using other
kinds of assembly language editors, one of the first things you may notice
about the ZIP.SRC program is that it has no line numbers. The APW editor
doesn't need them. Line numbers date back to the days of line-oriented editors,
when programs were corrected a line at a time and lines were referred to by
their line numbers. The APW editor doesn't have any use for line numbers
because it is a screen-oriented editor, with a cursor that you move with arrow
keys and cut-and-paste functions, which allow large blocks of text-not just

18

No Origin
Directive

Control
Commands

2-Programming the IIGS in Assembly

individual lines-to be copied, deleted, and moved. The APW editor operates
similar to a full-featured word processor and is a remarkably sophisticated
program editing system.

If you're an old hand at Apple II assembly language programming, another
odd fact you may notice about listing 2-1 is that it has no origin directive.
Almost every program ever written for a pre-os Apple II begins with an origin
directive, usually abbreviated ORG, that tells the assembler (and the program-
mer) where to load the program into memory. The APW assembler has an
ORG directive and can use it to assemble programs designed to run in the
Apple Ilos's 8-bit emulation mode. But Apple strongly advises that you not
use the origin directive in programs written in native mode. When you write
a native mode program for the Ilos, Apple suggests that you let the Memory
Manager make all decisions about where to place programs in memory. If
you ignore that advice and insist on placing programs in specific locations by
using origin directives, you may interfere with the Memory Manager's op-
erations and clobber other programs resident in memory.

Before you start typing the ZIP.SRC program, you may want to practice
typing on the empty screen that appears before you now. As noted, you can
use the arrow keys to move the cursor around the screen. You can also move
the cursor using the spacebar, the Delete key, the Tab key, and the Return
key, just as you would with a word processor.

To move the cursor more than one line up or down at a time, or to
move it right or left more than one word at a time, hold down the a key on
your keyboard while you press an arrow key. Pressing a-Right arrow or a-Left
arrow moves the cursor right or left a word at a time. Pressing a-Up arrow or
a-Down arrow moves the cursor to the top or bottom of your screen.

You can move the cursor to the beginning of a line by typing 0-< and
to the end of a line by typing 0->. 0-1 moves the cursor to the top of a file,
0-9moves the cursor to the bottom of a file, and0-2 through 0-8 move the cursor
to various points in-between.

Typing Control-Tor 0-T deletes a line of text; typing Control-Z or a-Z
restores it. Control-W or 0-W deletes a word. Control-Z or c-z restores the last
word deleted, if what you last deleted is a word and not a line.

To delete a block of text, press Control-X or a-X and then use the arrow
keys to highlight the block you want to delete. When the block is highlighted,
you can delete it by pressing the Return key. Then you can move the cursor
to another place in your program-or even to a program on another disk-
and place the deleted block there by simply pressing Control-V or
a-V.

You can copy a block to another position or to another program by
following the same procedure, but substituting Control-C or c-c for the
Control-X or a-X that you use when you want a block deleted. Other control
commands recognized by the APW editor are listed in table 2-1.

19

Fundamentals of IIGS Programming

Table 2-1
APW Editor Commands

Function Command

20

Beep the speaker
Beginning of line

Bollom of screen/Page down

Change
Clear
Copy

Cursor down

Cursor left

Cursor right

Cursor up

Cut

Define macros
Delete
Delete character

Delete character left

Delete line

Delete to end of line

Delete word

End of line

End macro definition
Enter escape mode
Execute macro
Find
Insert line

Insert space
Paste

Quit

Quit macro definitions

Control-G
0-,
0-<
Control-a-J
a-Down arrow
See Search and replace
See Delete
Control-C
o-C
Control-J
Down arrow
Control-H
Left arrow
Control-U
Right arrow
Control-K
Up arrow
Control-X
a-X
o-Esc
a-Delete
Control-F
o-F
Delete
Control-D
Control-T
o-T
Control-Y
o-Y
Control-W
O-W
0-.
o->
Option-Esc
See Turn on escape mode
Option-letter key
See Search
Control-B
o-B
a-spacebar
Control-V
O-V
Control-Q
o-Q
Option

2-Programming the llcs in Assembly

Table 2-1 (cont.)
Function Command

Remove blanks Control-R
O-R

Repeat count I to 32,767
Return Return

Control-M
Screen moves 0-1 to 0-9
Scroll down one line Control-P

O-P
Scroll up one line Control-O

0-0
Search down O-L
Search up O-K
Search and replace down 0-1
Search and replace up O-H
Set and clear tabs a-Tab

Control-O-I
Start of line 0-,

0-<
Tab Tab

Control-I
Tab left Control-A

a-A
Toggle auto indent mode a-Return

a-Enter
Control-O-M

Toggle escape mode Esc
Toggle insert mode Control-E

O-E
Toggle select mode Control-O-X
Toggle wrap mode Control-O-W
Top of screen/Page up Control-O-K

a-Up arrow
Tum on escape mode Control-_
Undo delete Control-Z

O-Z
Word left a-Left arrow

Control-O-H
Word right a-Right arrow

Control-O-U

Examining the ZIP.SRC Program
After you're familiar with the operation of the APW editor, you're ready for
the line-by-line examination of the ZIP.SRC program, beginning with the
first line:

21

Fundamentals of IIGS Programming

KEEP ZIP

Now what does that mean?

Assembler
Directives

In source code written using the APW assembler-editor system, statements
called assembler directives are often placed in the headings of programs,
before the first lines of executable code. The line KE EP ZIP is such a directive.
When the ZIP.SRC program is assembled, the KEEP ZIP directive tells the
assembler to save the machine language version of the program as a file named
ZIP. Because the source code version of the program is titled ZIP.SRC, there
is no conflict between these two filenames.

The next line of the program:

LIST ON

is also an assembler directive. It is there because the APW assembler will
not generate a listing when a program is assembled unless you tell it to. The
LIST ON directive tells the assembler to produce a listing.

Program The next line of the program:
Segments

Zippy START

is made up of two parts: a label and an assembler directive. The label is
Zippy and the directive is START. We'll look at the START directive first.

The APW assembler, unlike most assemblers designed for small com-
puters, generates programs divided into modules called program segments.
The division of programs into segments greatly facilitates the writing of well-
designed modular programs. Thanks to the use of program segments, a long
complex program written with the APW system can consist of one small
segment, or main loop, that calls other segments as needed. Furthermore,
each segment can include a set of local variables used only in that segment-
and the program can use a set of global variables recognized by every segment
in the program.

Because local variables in an APW program have no effect outside the
segments in which they appear, local variables in one segment can have the
same names as local variables in another segment, without conflict. Even if
a local variable is given the same name as a global variable, it will not cause
a conflict; APW simply uses the local variable and ignores the global one.

Now turn your attention again to the line:

Zippy START

As pointed out, this line consists of two parts: the label Zippy and the
directive START. It marks the beginning of a program segment named Zippy
and, in this case, also marks the beginning of the ZIP.SRC program. The

22

2-Programming the IIGS in Assembly

segment ends, as all APW program segments do, with the END directive.
Because the ZIP.SRC program is only one segment long, the END directive
also marks the end of the program.

In programs written using the APW assembler-editor system, every
program segment begins with a line that includes START or a similar directive
(DATA is used to begin data segments, for example), and every program ends
with the END directive. When a START or DATA directive begins a segment,
the directive must be preceded by a label that provides the segment's name.

Comments The next two lines in the ZIP.SRC program are the first lines that contain
executable code. They are

phk
pLb

; make program bank
; and data bank the same

Stack
Operations

The abbreviations phk and p Lb are assembly language instructions, or mne-
monics. The words that follow the semicolons in the right-hand column are
comments, which are used like REM statements in BASIC programs. They
are ignored by the APW assembler, but can provide valuable information to
the next person who reads and tries to make sense of a program. (And that
person could be you, because even people who write programs often find it
difficult to figure out what they were trying to do after the ink on a program
is dry.)

In programs written using the APW assembler, comments are usually
preceded by semicolons, asterisks, or exclamation points. Asterisks and ex-
clamation points are often used to identify remarks that take up a whole line.
Semicolons must be used to set off comments that appear in the right-hand
column of an APW source code program.

Now back to the program in progress. The mnemonics ph k and p Lb are
often encountered in the initialization sections of IIGS assembly language pro-
grams. They set up two internal registers in the 65C816-the data bank
register and the program bank register-so that both registers point to the
same bank of memory. We won't cover the memory architecture of the IIGS

until chapter 4, and the internal registers of the 65C816 aren't introduced
until chapter 5. For now, it's sufficient to note that placing data used by a
program and the program itself in the same memory bank simplifies matters
greatly for the 65C8l6 processor when the program is assembled and run.

The ph k and p Lb mnemonics belong to a category of instructions called
stack operations because they manipulate a special area of memory called the
stack. In assembly language jargon, a stack is an area of memory in which
data is stored temporarily in the order last-in, first-out, abbreviated LIFO. A
stack is sometimes compared with a spring-mounted stack of plates in a
cafeteria. When a plate is placed on top of the stack, it covers up the plate
that was previously on top, and it must be removed before the next plate can
again be accessed.

In 65C816 assembly language, the ph k instruction means push the
program bank register on the stack, and the p Lb instruction means pull the

23

Fundamentals of IIGS Programming

data bank register off the stack. When you use these two instructions together,
they transfer the contents of the program bank register into the data bank
register, using the stack as a temporary storage area for the data being trans-
ferred. This roundabout procedure is used because there is no 65C816 in-
struction for accomplishing the transfer more directly. More details about the
stack-and about the ph k and p Lb mnemonics-are presented in chapters 5
and 6.

Now let's move on to the next two lines of the ZIP.SRC program:

pea testmsgl-16
pea testmsg

; push msg bank on stack
; push msg address on stack

The pea mnemonic, like the ph k and p Lb instructions, is a stack
operation. It means push effective address. In the ZIP.SRC program, it pushes
the address of a text message onto the stack so that the message can be
displayed on the screen. The address being pushed on the stack is the starting
address of a string called testmsg. That string appears, along with an iden-
tifying label, in the last line of the program:

testmsg # dc cAr e we programming yet?',h'OO'

The rather cryptic formatting of this line is discussed in a few moments, when
we get to the end of the program. First, though, look again at the two lines
that push the address of t estms9 onto the stack.

In chapter 5, you'll see why the pea instruction has to be used twice
to push the address of the t est msg string onto the stack. Briefly, though, this
is the reason. Because the 65C816 is a 16-bit chip, it can perform manipu-
lations on pieces of data up to 16 bits long. But because it has a 24-bit data
bus, it can access addresses that are up to 24 bits long. So it takes two
operations to push an address onto the stack: one to push the 8-bit bank number
of the address and another to push the lo-bit remainder of the address. When
a 24-bit address is pushed on the stack in this way, it must be pulled off the
stack in a similar fashion, but in reverse order. If you don't quite understand
this, don't worry. Stack operations are covered in more detail in chapter 6.

Operands Now you're ready to take a look at the operands used by the pea mnemonic
in these same two lines:

pea testmsgl-16
pea testmsg

; push msg bank on stack
; push msg address on stack

As you have seen, the testmsg operand is a label that identifies a
text string. In the ZIP.SRC program, testmsg 1-16 means the first /6
bits of the address of the testmsg string. For reasons that become clearer in
chapters 4 and 5, the first 16 bits of the address of the testmsg string hold
the bank number of the address. So, in the ZIP.SRC program, the statement
pea testmsgl-16 pushes the bank number of the address in ques-

24

2-Programming the IIGS in Assembly

tion onto the stack. Then the statement pea testmsg pushes the rest of the
address.

The next two lines print the string labeled testmsg on the screen:

ldx #$200C
jsl $E10000

; put tool no. inxreg
; long jump to tool dispatcher

Using the Tool
Dispatcher

To understand what these two lines do, you need to know something
about how the Apple IlGS Toolbox works. The Toolbox isn't examined until
chapter 7, but it wouldn't hurt to point out now that each tool in the Toolbox
has a 2-byte identification number, and a program can call any tool in memory
by using its identification number.

In the ZIP.SRC program, a utility called the tool dispatcher calls a tool
with the identification number $200C. Tool number $200C, as you can verify
by looking at the list of IlGS tools presented in appendix B, is a tool called
Wri teCStri ng. The Wri teCStri ng call is part of the Text Tool Set. It
can be used to print a C-style string (a string ending in $00) on a text output
device such as a printer or a monitor screen.

The ZIP.SRC program uses the tool dispatcher to make the Wri teCSt ri ng
call, which prints the string labeled testmsg on the screen. More informa-
tion about tool calls is provided in chapter 7. For the moment, it's sufficient
to note that the following steps must be taken to call a tool using the tool
dispatcher:

I. Certain parameters (in this case the address of the string to be
printed) must be pushed on the stack.

2. The identification number of the tool to be called must be placed in
the 65C816's X register. (More information about the X register and
the 65C816' s other internal registers is presented in chapter 5.) In the
ZIP.SRC program, the statement used to load WriteCString's ID
number into the X register is ldx #$200C.

3. The tool dispatcher must be called with the statement j s l $E10000,
which means jump to a subroutine located at memory address
$£10000. The j s l mnemonic, which stands for jump to
subroutine-long, is often used in Apple IIGS programs to access
subroutines that lie across bank boundaries.

The last line of executable code in the ZIP.SRC program is

rtL ; long return

The rt l mnemonic, which stands for return from subroutine-long, is
used at the end of a subroutine (or the end of a program) that is called from
across bank boundaries. This instruction is examined in greater detail in chap-
ter 5.

25

Fundamentals of IIGS Programming

Text in an Now we have come to the line
Assembly
Language testmsg # dc cAr e we programming yet?',h'OO'
Program

In this line, testmsg is a label that identifies the string that follows. The
abbreviation dc, which comes next in the line, stands for define constant
and means, obviously, a constant is being defined. The abbreviation c ,
which comes next, means a character string follows.

The text that follows c and is enclosed in single quotation marks is
the string printed on the screen when you run the program. After the string
is a comma, then the abbreviation h, which tells the assembler that the
next value it encounters is a hexadecimal number.

The hex number that follows h is also enclosed in single quotation
marks. The number is $00, the conventional terminator for C-style strings.

The last word in listing 2-1 is, appropriately enough

END

This ends the program segment labeled Zippy and also ends the ZIP.SRC
program.

The APW Editor's Menu

When you finish typing the ZIP.SRC program, you can leave the APW editor
by typing Control-Q. Your program disappears from the screen and is replaced
by the APW editor's menu. By picking menu choice S, you can save the
ZIP.SRC program under the filename you chose when you entered the editor
(this filename appears at the top of the menu). Or, by selecting menu choice
N, you can save it under a different name. After you save the program, you
can choose menu selections to load another file, return to the editor (and to
the program you just finished editing), or exit from the editor.

Assembling the ZIP.SRC Program

When you have typed the ZIP. SRC program and have made sure that it
contains no mistakes, return to the APW shell by selecting menu choice E.
You can then assemble and link your program by typing

26

2-Programming the IIGS in Assembly

ASML ZIP.SRC

You can then run it by typing:

ZIP

When the ZIP.SRC program prints its important question on the screen, you
can answer it with a resounding yes!

27

CHAPTER

Programming
the IIGS in C

And Learning More About the
APW Development System

IJJ· f you want to learn how to program the Apple nos in C, this is the
! chapter you've been waiting for. Even if you are interested only in
, assembly language, it is strongly suggested that you read this chapter
because it contains valuable information about the APW system that you won't
find elsewhere in this book.

It's important to note, however, that this chapter does not teach you C
programming from the ground up. If that's what you need, you'll have to
supplement this book with an introductory text on C programming. (A few
are listed in the Bibliography.) But even if you've never written a line of C
code, you are still invited to type, compile, and run the two sample programs
in this chapter.

If you're an experienced C programmer, you'll be ready to write C
programs for the nos when you finish this chapter. If you're new to C, you'll
get some hands-on experience in writing simple C programs using the Apple
Programmer's Workshop, plus a basic understanding of how things are done
in C. If you know a little about C and are interested in learning more, this
chapter and the information on C in the rest of this book provide a general
understanding of how the language works and how it fits into the Apple nos
programming environment.

29

Fundamentals of IIGS Programming

The C Language
Before you start programming in C, we'll present some historical and technical
information about the language. The e language was invented by Dennis
Richie of Bell Laboratories and was originally designed for developing ap-
plications and utilities in the UNIX environment. Since then, it has become
popular among professional and amateur programmers as a general-purpose
language. e programs have been written for virtually every kind of micro-
computer, minicomputer, and mainframe computer. Apple recognized C's
usefulness and popularity by making it the first high-level language for the
Apple IIos.

e is successful because it offers a balance between the programmer-
friendly features of a high-level language and the speed and versatility of
assembly language. It is almost (though not quite) as easy to work in as a
high-level language such as Pascal. Yet it offers the kind of unrestricted access
to the Ilos's memory, operating system, and 110 functions that is otherwise
available only in assembly language.

Structure of a C
Program

Important
Features

30

A e program is a collection of functions, or sets of instructions for performing
specific tasks. Information to be processed in a e program is passed to a
function with a parameter list. A parameter list is a list of values, separated
by commas and all contained between parentheses, that follows the function's
name. The parameter list doesn't have to contain any parameters. But if there
are no parameters, the name of the function must still be followed by a pair
of parentheses, like this:

functionO

Parentheses are not the only punctuation marks you'll find in a e pro-
gram. e uses the semicolon as a separator between statements in a program
and uses braces to group statements into blocks.

Any e expression that has a value can be used as a parameter in a
parameter list. A e function usually returns a value as its result. So a
function itself can be used as a parameter or as an argument to another
function.

The value returned by a function does not have to be used by the
program in which the function appears. A function can also perform other
actions called side effects. Many e functions are used only for their side
effects.

e provides several ways to make decisions, perform looping operations, and
assign and store data. In addition, a number of preprocessor (or compiler)
directives facilitate the development of large programs and provide easy access
to commonly used code and definitions. APW e also supports enumerated
types, and assignments and comparisons between structured variables of the

3-Programming the IIGS in C

same type. If you're an experienced C programmer, you'll understand this.
If not, these and other features of APW C are explored in the programs in
this chapter and the rest of this book.

C in the APW Environment

The Apple Programmer's Workshop (APW), an Apple product, is the de-
velopment system used to write the C programs in this book. In addition to
the standard integer arithmetic offered by most C development systems, the
APW system also supports floating-point math. And, along with the standard
C libraries-which provide some compatibility with C code developed using
other systems-APW C also has a large set of interface libraries to support
the Apple IIGS Toolbox. These libraries contain a complete set of function
declarations, along with definitions of constants and data structures, that are
designed to be used with the lIGS Toolbox. This means you can access the
Toolbox directly from C as well as from programs written in assembly lan-
guage.

Pascal
Functions

A Limitation
of APW C

One noteworthy feature of APW C is that you can define Pascal-style
functions. Pascal functions make it possible to use the calling and parameter-
passing conventions of Pascal in a C program. Many Toolbox routines were
developed using Pascal-style conventions, and APW C's Pascal function type
makes it possible to use them. Pascal functions also allow routines written in
Pascal and linked with a C program to be called from C.

As any C buff will tell you, you can generally do anything in C that you can
do in assembly language. In APW C, however, there is a major exception
because the 65C816 chip has a "split personality."

As you saw in previous chapters, the 65C816 has a native (l6-bit) mode
that takes advantage of 16-bit registers and data paths and a 6502/65C02
emulation (8-bit) mode that emulates earlier members of the 6502 family.
Emulation mode enables the lIGS to run most software designed for earlier
Apple lIs. It also allows assembly language programmers to create and as-
semble programs that are compatible with earlier machines.

But APW C is strictly a native mode language; you can't use it to write
programs in 8-bit emulation mode. Even when it's used to write native mode
programs, sometimes its inability to deal with 8-bit machine code is a limi-
tation. In most applications, though, this is not a problem. The APW C
compiler also supplies an inline assembler that allows the programmer to
insert assembly language code directly into C functions.

When it comes, to creating native mode applications for the Ilos-i-com-
plete with windows, menus, desk accessories, color graphics, and sound-
APW C is a powerful and efficient tool.

31

Fundamentals of IIGS Programming

Installing APW C
If you typed, assembled, and executed the assembly language program in
chapter 2, you should have no trouble getting used to the APW C development
system. When you work with the C programs, you'll use the same editor that
you used in chapter 2. When you compile and link them, you'll use similar
APW commands.

In a moment, you'll fire up your APW development system and start
writing programs in C. First, though, it must be pointed out that the following
instructions apply to a version of APW that may no longer be current by the
time you read these words.

As explained in chapter 2, the APW system used to write the programs
in this book is a text-based utility that does not make use of the Ilos's so-
phisticated graphics interface and event-driven programming capabilities. If
APW has been completely overhauled by the time you read this, some of the
details in the next few paragraphs may not apply to your APW system. But
most of the information that follows should prove helpful, even if APW has
been modified.

Using APW C
with a Hard Disk

Using APW C
Without a
Hard Disk

32

Adding C to the APW environment is simple if you have a hard disk. Simply
start up the APW shell on your hard disk, insert the IAPWC floppy in a 3.5-
inch disk drive, and type this line following APW's # prompt:

copy /apwc/ languages/= 5

Then type

copy /apwc/libraries/= 2

If you don't have a hard disk, the previous method won't work because there
is not enough room on one 3.5 -inch disk for both a C and an assembly language
APW package. One way to deal with this problem is to copy one or more of
the large directories in the APW system onto another floppy disk or onto a
RAM disk. Then set APW's shell prefixes so they look for the transferred
files in their new locations.

You can also set up two stripped-down versions of APW-one for
assembly language and one for C-so that you can put a fairly complete
assembly language development system on one floppy and a fairly complete
C development system on the other. They won't be on the same disk, however.

If you want to work in both C and assembly language using two floppy
disks, here is a relatively painless way to get started:

I. Back up your original APW disks, store them in a safe place, and
use your backup copies to conduct the following operations.

2. Start up the computer using a copy of the APW disk. Start APW
from your finder disk.

The Language
Barrier

3-Programming the IIGS in C

3. Insert a copy of IAPWC in your second drive and type the following
commands (not the # prompts, just what follows them):

#copy 2/ = /apwc/ Li brari es
#deLete -c 2/aincLude/=
#copy /apwc/ Languages/ = 5
#de Lete -c / apwcILanguages/ =
#deLete /apwc/Languages
#prefix 2 /apwcILibraries

These commands set up the APW assembler and compiler on one
disk, and the C and assembler support libraries on another.

If you are planning to use this configuration regularly, you can tailor
the APW LOGIN file (an exec file that calls APW when the APW disk is
booted) so that everything is ready to go as soon as you boot up. To edit the
LOGIN file, simply type this line following APW's # prompt:

edit 4ILogi n

When the editor comes up, add this line to the end of the LOGIN file:

prefix 2 /apwc/Libraries

To save your amended LOGIN file, press Control-Q to leave the editor,
then make menu choices Sand E. Each time you want to use APW, make
sure the modified copy of IAPWC is in one of your disk drives when you
load APW.SYS16 from the lIGS finder or (on older system disks) the lIGS

launcher.
After you've used APW C for a while, you may find many files on the

IAPWC disk you can do without. You may want to create a custom configu-
ration that can save you even more disk space-and time.

As mentioned previously, C programs for the lIGS are created using the APW
editor. They are compiled using commands-such as compi Le and
assemb Le-that can also be used with the assembler.

To create a C program using the editor, however, you first must set
APW's language to C. You can do this by simply typing the following com-
mand after APW's # prompt:

cc

After you use the c c command, any new files you create using the
editor are recognized by the APW system as C language source files. APW
compiles them using the C compiler when you issue a compi Le command.
If you work mostly in C, you can use the editor to add the cc command to
your LOGIN file. The editor then makes all new files C language source files.

33

Fundamentals of IIGS Programming

Writing a C Program
Now, at last, you're ready to write a program in C. To begin, start up the
editor with a new filename:

#edi t myprog. c

C source files written under APW do not require the c suffix. But it is
a good idea to use the c suffix because it distinguishes C source files from
other kinds of files and makes them easy to spot when you catalog your
directory.

When your editor comes up, you can type in a C program like you
would type in an assembly language program. Some tips are provided in
chapter 2. However, APW C programs, unlike APW assembly language pro-
grams, are standard-looking pieces of code. In fact, as long as they use the
IIGS'S standard text input and output mode, and don't require the use of
graphics calls in the IIGS Toolbox, they look just like C programs written for
any other machine.

For example, type in listing 3-1, the Hello World program found in so
many texts on C.

Listing 3-1
Hello World program

rna in ()

pri ntf ("He LLo Wor Ld !\n")

When you've typed the program, you can leave the editor by pressing
Control-Q. Then choose menu selection S to save your work and menu se-
lection E to return to the APW shell's familiar # prompt.

Next, look at the directory of the current disk to make sure myprog.c
was saved as a C language source file. To list the program, type, after APW's
prompt:

cat myprog.c

APW shows you a screen display like the one in figure 3-1.
Note that the last item on the second line in figure 3-1, under the heading

Name
MYPROG

Type
SRC

BLocks
1

Modified
9 Jun 87 20:30

Created
9 Jun 87 20:30

Access
DNBWR

Subtype
CC

34

Figure 3-1
Cataloging a single file

3-Programming the /lGS in C

Subtype, is Cc. That shows myprog.c has indeed been saved as a C language
source file. If there's something else under Subtype in your disk directory,
you probably didn't use the cc command before you made the new file. In
this case, type the following line to change the subtype of myprog.c before
compiling it:

change myprog.c cc

Compiling a C Program
After you save a C source file and exit the editor, you can compile the file
by typing a line like this:

#comp; Le myprog. c keep=myprog

The como i Le command in the previous line means exactly the same
thing as APW's assemb Le command. You can use either one, in C or in
assembly language, because the shell looks at the source file's language to
decide whether to invoke the C compiler or the assembler. The keep directive
in the command line tells the compiler to create an object file named my-
prog.root in the current directory. Any valid full or partial pathname can be
used as the value of the keep command.

Linking a C Program
When you wrote an assembly language program in chapter 2, you assembled
and linked it using the command ASML, which means assemble and link. And
when APW received that command, it assembled and linked the program
automatically. To create an executable C file, however, you must invoke the
linker by specifically using a L;nk command.

Before we link our Hello World program, it might be helpful to explain
how the APW linker works. All APW assemblers and compliers, including
the APW C compiler, generate object code files that have the same format.
This format is called object module format. or OMF. To the linker, it doesn't
matter whether a program was written in C, assembly language, or Pascal.
In fact, because all assembled and compiled APW files have the same format,
the APW linker can link object files written in any combination of development
languages available under APW.

From an object module file created by the APW assembler or C compiler,
the linker generates a load file, a file the system loader can load into memory.
If necessary, the linker resolves any external references (references to seg-
ments of machine code outside the OMF file it is linking) and creates relocation
dictionaries that the system loader uses later, at load time, to relocate the load
file produced by the linker.

To instruct the linker to link an OMF file and produce a load file, type
a command line like this:

35

Fundamentals of I/GS Programming

Link 2/start rnyprog keep=rnyprog

There are a few points about this command line that haven't been explained.
But go ahead and type and enter the line, and after you link and run the
program, we'll do the explaining.

Linking a C program can take a while, but when it's done you'll see
the # prompt in its usual place, waiting for your next command. Then you
can run the program you have linked by simply typing

rnyprog

followed by a carriage return. The greeting "Hello World!" is printed on
your screen. The # prompt then appears on the next line, letting you know
that myprog has finished executing and you can enter another command.

Now let's go back for another look at the line you typed to link the
myprog program:

Link 2/start rnyprog keep=rnyprog

To understand what the more cryptic parts of this line mean, it helps to know
something about how C programs work.

Part of what makes programs like Hello World so much shorter and
easier to write in C than in assembly language is that the compiler takes care
of many details. For example, you don't need to worry about whether to use
j s Lor j s r when calling a subroutine, what to do with values placed on the
stack, how many words to take off the stack, or what addressing mode to
use. The compiler knows how to do all this. But it doesn't know anything
about how to start or end a program, or how to read input from the keyboard
or print to the screen.

The secret behind the brevity of the Hello World program (it is con-
densed into one line of code) is the existence of C libraries, which include a
number of useful programs. Here's how a few of them work.

36

START.ROOT
File

If you look in the LIBRARIES subdirectory of your IAPWC disk, you'll see
a file called START. ROOT and another file called CLIB. START.ROOT is
the object code of an assembly language program on the IAPWC disk. Typing
start following the Link command links the code in START.ROOT to
your program.

When you link a C program, it is first linked to START. ROOT. When
you execute a C program, the function named rna in () is called as a subroutine
from a machine language program. And START.ROOT is that program.
START.ROOT calls rna in () using the machine language equivalent of a j s L
instruction. The program then returns to START. ROOT using the machine
language equivalent of an r t L instruction, which is placed at the end of
rna i n () by the compiler. Details of how the j s Land r t L instructions work
are in appendix A.

When the START.ROOT program is called, it does whatever is nec-
essary to start up a C program. It also handles any arguments typed on the

3-Programming the IIGS in C

command line so that they are accessible through the C input parameters a rgc
and a rgv, if applicable. It then carries out the machine language equivalent
of the assembly language statement j s Lrna; n () , which causes the machine
code generated by the C program labeled rna; n () to be executed.

At the end of the C function rna; n () (which, as its name indicates, is
always the main function in a C program), START. ROOT encounters
the machine language equivalent of an rt L instruction-which, as noted,
is placed there by the compiler. This instruction returns control to
START. ROOT, which then takes care ofreturning to the shell prompt # or,
if you launched your program from the finder or the program launcher, to
one of those utilities.

Another Look Now let's review again the line that you typed to link the Hello World program:
at Link

L; nk 2/start rnyprog keep=rnyprog

In this line, the names listed after L;nk are pathnames-they can be
full or partial pathnames-that tell the linker where to find the object files
that make up your program. When C programs are linked, there are always
at least two such pathnames in the L; nk command line. The linker auto-
matically looks for files with the suffix ROOT, so there's no need to include
the ROOT suffix in your filenames. The 21 prefix in 2/ s tar t refers to the
LIBRARIES subdirectory.

The keep directive, as noted, tells the linker where to send its output.
Again, you can specify any legal pathname. Typically, an executable file is
given the same name as its corresponding source code and object code files.
Because executable files, by convention, do not have a suffix, the linker creates
a load file called simply myprog.

eLiB File Now you're ready to examine CLIB, another important file in the LIBRARIES
directory on the IAPWC disk. As you've seen, the START.ROOT program
takes care of initializing and ending C programs, relieving that burden from
the programmer. And, as you may notice when you look at the code for the
Hello World program, C also relieves the programmer of such chores as
reading inputs from the keyboard and printing characters on the screen. These
details, as well as those needed for other kinds of input and output operations,
are provided by the CLIB file.

The CLIB file is a special file created by the MAKELIB program.
(MAKELIB is in the UTILITIES directory on the IAPWC disk.) CLIB is
made up of object files containing routines, most of which are written in C,
that take care of many common programming actions in a standard manner.

To understand how the CLIB file works, look at how it was used when
you compiled the myprog.c program. When the C compiler compiled the
program, it didn't know anything about how to print on the screen. It also
didn't know anything about CLIB. It created a storage area containing the
ASCII codes for the message "Hello World," generated code to put the
address of that storage area on the stack, then tried to generate a line of
machine language code that would carry out the C statement

37

Fundamentals of IIGS Programming

pri ntf ("HeLLo WorLd !\n")

To create a machine language statement that would execute apr in t f
function, the compiler generated an object code statement equivalent to the
assembly language statement j s L p r i n t f. Then the j s L instruction was
converted into a machine language opcode. But the pri ntf instruction re-
mained the same because the compiler didn't know what it meant. In other
words, the compiler treated printf as a symbolic reference.

38

Symbolic
References

Standard C
Libraries

In assembly language jargon, a symbolic reference is another name for a label
that identifies a program segment-that is, a segment of code or data
that begins with the start directive. In C, a compiler generates a symbolic
reference to identify the location of a function or variable.

The APW linker treats symbolic references in the same way in C and
assembly programs. In both, one of the jobs of the APW linker is to resolve
symbolic references. When the linker encounters a symbolic reference in a
program being linked, it first scans each program listed on the Lin k command
line to see if it contains the reference in question. If it doesn't find the segment
there, it searches for it in any files that appear in the LIBRARIES subdirectory
and have the file type LIB.

When the linker linked the Hello World program, there were no other
filenames on the Link command line. So, when it encountered the C function
p r i n t f, it went directly to the LIBRARIES directory and searched for it
there.

Finally, in the CLIB file, the linker found what it was looking for: a
code segment labeled pr i nt f. It added that segment to the executable file
it was creating. Then the linker replaced the symbolic reference operand of
the j s L p r i n t f statement with a value marking the location of the start of
the p r i n t f routine in relation to the beginning of the load file being created
by the linker.

The analysis of the p r i n t f function has served as an introduction to a useful
set of prewritten C functions called standard C libraries. These libraries,
stored in the CLIB file, include more than 40 routines. Most of the routines
emulate the behavior of the standard C routines available in UNIX systems.
Many of them deal with various aspects of input and output, such as file
handling, reading the keyboard, and printing text. In addition to I/O routines,
there are mathematic routines, such as sine and cosine functions, and memory
allocation routines, such as rna LLoc, ca LLoc, and free. The routines are
explained in chapter 5 of the Apple lies Programmer's Workshop CReference.

CLIB also contains routines that are not called directly from C programs.
These provide an interface with the SANE floating-point math routines in the
IIGS Toolbox. When you include floating-point arithmetic expressions in your
C code, the C compiler generates calls to these SANE interfaces to perform
the calculations. Much of the functionality of the standard C libraries can
also be achieved by making direct calls to the tools in the Toolbox and to
ProDOS. In fact, standard C libraries make extensive use of routines in the
Text Tool Set and ProDOS for text I/O and file handling. The standard C

3-Programming the IIGS in C

libraries not only simplify your work, they also make it possible to port C
source code written for other machines over to the IIGs.

Another Sample Program: The Name Game
Now that you've typed and run a very simple C program and understand how
to create a C program, you're ready to write a slightly more complex program.
The name of the program is the Name Game. It was written in 1980, in
BASIC. Since then it has been translated into five programming languages
and has appeared in various forms in more than a dozen books and magazine
articles. It will also tum up, in an assembly language version, in chapter 7.

Now you're ready to type, compile, execute, and analyze the Name
Game. Load APW and type this line following the # prompt:

ed it namegame. c

When the editor comes up, you can type in the Name Game program,
which appears in listing 3-2.

Listing 3-2
Name Game program (C version)

#i nc Lude <stdi o. h>

main ()
{
char repLay = 'Y';
char name[25J;

whi Le «repLay == 'Y')II(repLay == y»{
putchar(Ox8C>;
pri ntf ("**** The Name Game ****\n\n\n");
pri ntf CHeLLo, what's your name? ");
scanf (,,%24s",name);
ffLush(stdin);

whi Le(s t rcmp (name ,"George") &&s t rcmp(name ,"george") &&
strcmp(name,"GEORGE"» {

pri ntf C\nGo away %s, bri ng me George! \n\n",name);
pri ntf ("What is your name? ");
scanf (,,%24s",name);
ffLush(stdin);

pri ntf ("\nHi George! Try agai n? (YIN) ");
repLay = getchar();
}

39

Fundamentals of IIGS Programming

When you have finished typing and correcting the program, press Con-
trol-Q, select Sand E to leave the editor, save your work, and return to the
shell command line.

Compiling the You can compile the Name Game by typing the command line
Name Game

#compi Le namegame.c keep=namegame

Ifyou typed in the program exactly as shown in listing 3-2, the compiler
generates a screen display that looks like the one in figure 3-2.

Now type a ca t command, like this:

#cat namegame=

Your disk directory includes a new file called NAMEGAME.ROOT.
If you made any mistakes in typing the program, the compiler presents

a list of error messages. If there are any error messages on the screen, they
contain the numbers of the lines in which errors occurred. If the compiler has
found errors, enter the editor and compare the lines you typed with the lines
in listing 3-2. Then leave the editor, save your changes, and compile the
program again.

If you made so many errors that the first one scrolls off the screen (and
that's easy to do, because one error in a C program can cause the compiler
to generate many error messages), use the APW shell's redirection capability
to save the compiler's error messages in a file. Or, if you have a printer
hooked up, send them to the printer.

To redirect the compiler's error messages to a special error file, just
type this command:

#compi Le namegame.c keep=namegame >errors

Then, to view your file of error messages, you can type

AppLe IIGS APW C Compi Ler
V1.DB7

Copyright AppLe Computer Inc. and Megamax, Inc. 1986, 1987
ALL Ri ghts Reserved

FNAME ='/RAM1 INAMEGAME.C'PARMS =" LANG =U 0FILE=' IRAM1 INAMEGAME'
CompiLing IRAM1/NAMEGAME.C
Exit
_exiteD)

Figure 3-2
APW C compiler's screen display

40

3-Programming the IIGS in C

#type errors

While APW is printing your error file on the screen, you can stop the
display from scrolling by pressing a key. You can resume scrolling by pressing
another key.

To redirect your error file to the printer, type

#compi Le namegame. c keep=namegame >. pri nter

Then, if the printer is hooked up and online, you'll get a paper copy of the
compiler's output.

Even if you didnt make any errors in typing the Name Game program,
you might like to try these exercises in file redirection, just to see how they
work. They will come in handy eventually.

Linking the To link the Name Game, type the command line
Program

#L ink 2/start namegame keep=namegame

This line works like the line that linked the Hello World program. It
creates a load file called NAMEGAME in the current directory. If the linker
displays an error message, you'll have to activate the editor, correct the errors,
and compile and link the program again.

If the linker finds any errors in your program, it will probably present
a display similar to the one shown in figure 3-3.

The error shown in figure 3-3 was caused by the misspelling of a
subroutine's name. In the example, the f was not included in the function
name pri ntf somewhere in the program.

If all goes well and you don't get an error message, you can now run
the Name Game by simply typing the command

#namegame

Link Editor V1.0 85.1

Pass1:
Pass2:
Error at 00000138 past main PC = 00000275: UnresoLved reference
LabeL: print ••.••••••••••••••••••.•••..•••••.••..••...••••••••••••...•

1 errors found during Link.
8 was the hi ghest error Leve L.

There are 3 segments, for a combined Length of $00006F71 bytes.

Figure 3-3
An error message from the linker

41

Fundamentals of IIGS Programming

42

Playing the
Name Game

The Art of
Debugging

Because the Name Game is a game, please read no further until you play it!
Then come back and look at the following play-by-play listing of what should
happen when you play the game.

1. The screen clears, and the title **** THE NAME GAME ****
appears at the top of the screen.

2. The greeting Hello. what's your name? appears three lines below the
title.

3. As you type in your name, the letters you type appear after the?
prompt.

4. If you don't type George, george, or GEORGE, the computer
responds:

Go away the name you typed in, bring me George!
What is your name?

5. Steps 3 and 4 repeat until you type George.
6. When you finally give up and type George, the computer responds:

Hi George! Try agai n? (YIN)

7. If you type Y or y, the computer starts the Name Game over again,
beginning with step 1. If you type anything else, you return to the
shell's # prompt.

If the program doesn't work in the manner described, you probably didn't
type it exactly as shown in listing 3-2. Unfortunately, no compiler or linker
can spot and report every type of error that can be made in a program. Here
are a few types of errors that may not be noticed by the APW system:

• Misspellings.
• Discrepancies in the layout of a screen display.
• The program won't print Hi George! even if you type in George or
keeps playing even after you type N. If one of these problems
occurs, press Control-a-Reset (at the same time) to reboot the
machine.

• After performing all, part, or none of the steps listed in the play-by-
play description, the machine just freezes. You'll have to reboot for
this one, too.

In programs that you write, errors like the last two are usually the hardest
to find. In such cases, all you can do is carefully go over your code until you
find your error. Then, each time you find an error and track down its cause,
it's a good idea to think for a moment about why the error occurred.

When you start debugging your programs, you'll have to think in re-
verse. You'll need to figure out what kind of mistake was likely to cause a

3-Programming the IIGS in C

certain problem before you even know where to look in your source code!
This process is called debugging, and it's an important part of programming-
in any language.

How the Name Game Works
If your Name Game program is debugged and running, you're ready for a
line-by-line description of how it works. Let's start at the top:

#; nc lude <s td i o. h>

The term #; nc lude is a compiler directive, and the #; nc lude di-
rective is a standard feature of C. The #; nc lude directive replaces the line
the directive is on with the contents of the named source file. The < and>
around the filename tell the compiler to search for the filename in the 2/
CINCLUDE directory.

Macros The Name Game program needs the contents of the <stdio.h> file because
they provide definitions for the pu t c ha rand get cha r macros. Macros
are often found in Apple IIos programs written in both assembly language
and C. When they are included in C programs, they are used like the functions
in the CUB file. In the Name Game program, for example, the putchar
and get c ha r macros read each character input from the keyboard and print
every character displayed on the screen.

Macros, though they may look obscure to the uninitiated, are time-
saving and labor-saving aids for assembly language and C programmers. A
macro makes it possible to write a complex sequence of code using a single
word or a word followed by one or more symbolic variables. When the
program is compiled, the macro is replaced by the code it represents.

Macros are often used when the actual code for a frequently performed
action is obscure. So they not only save programming time, but also make
code more readable. In C programs, macros are more efficient than function
calls because the code replacement they require is handled at compile time,
and j 5 land rt l instructions are not required. Also, symbolic variables can
be used more easily in macros than in subroutines.

Macros do have one disadvantage, however. When a macro is used
repeatedly in a program, it uses much more memory than if it were written
as a subroutine. A macro is replaced by the sequence of code it calls every
time it is used, but a subroutine can be used over and over without using any
additional memory.

More information about macros is presented in part 2. For now, all you
need to know about macros is that if you didn't include <5 t d i o. h> in the
heading of the Name Game program, putcha r and get cha r wouldn't work.
The fact that macros are implemented in a slightly different manner than true

43

Fundamentals of I/GS Programming

function calls is not too important at the moment and is mostly transparent
to the programmer.

The MainO Now let's move to the next line in the Name Game program:
Attraction

ma in ()

As noted, every C program must have a function called ma i nO . For example,
in the description of the START.ROOT routine, ma in () is the label the
routine jumped to.

To the C compiler, ma i nO is just another function definition and is
treated the same as any other. When the compiler compiles a ma i nO function,
it simply generates an OMF file segment whose start is labeled ma in. To
create this segment, it uses all the code between the first and last braces that
follow the ma t nO declaration. Often, in longer C programs, the mainC)
function consists almost entirely of calls to other functions. (A general rule
for beginning C programmers is to avoid writing any C function that is too
long to fit on the computer screen at one time. If you follow this rule, it
reduces your chances of writing convoluted, hard-to-understand "spaghetti
code.")

A Prompt and a Now on to the next line in the Name Game program:
Response

char repLay = Y;

This line is included in the program because you need a place to store
the response to the Try again? (YIN) prompt. Because you will store a letter,
you declare the rep Lay variable to be type char. The program ends whenever
rep Lay is not equal to Y, so you start out making rep Lay equal to Y
to ensure that the game is played the first time through. Y is a character
constant. The single quotes around Y tell the compiler that it is not the name
of a variable. C stores the ASCII value of the letter Y in the byte of memory
it associates with the name rep Lay.

Setting Up a Now for the line
String

char name[25];

This line is included in the program because you also need a place to
store the name the user types in. The statement sets aside 25 bytes to hold
the name. The identifier name refers to the address of the first byte in the
string. The memory area addressed by the identifier name is an array of type
char.

44

The While
Statement

After the name[] array is set up, a line is skipped in the program, and this
line appears:

whi Le ((repLay == Y)IICrepLay == y»{

Logical OR
Operator

3-Programming the IIGS in C

The skipped line and the indentation before whi Le are conventions that
make C programs easier to read. (Refer to the complete program, listing 3-
2, to see the indentation.) The compiler ignores them.

The statement itself has two parts. The first part-inside the parentheses
that follow the word whi Le-is a condition. The second is a block of code
enclosed by braces. Only the first brace appears on the same line as whi Le.
The closing brace appears farther down in the program, preceding the closing
brace of rna in () . When the program is run, it repeatedly executes the block
of code between the braces as long as the condition inside the parentheses
that follow the wh i Le statement is true. In this case, the block that is executed
is the rest of the program.

The I: symbol in the whi Le statement is C's logical OR operator. As
long as the variable rep Lay is equal to either Y or y. the whi Le
statement's condition is true, and the block that follows it is executed.

Both an uppercase Y and a lowercase yare used in the whi Le statement
because the C language is case sensitive-that is, it distinguishes between
uppercase and lowercase letters. So, in C programs with inputs that are not
case sensitive, you often need to write code that forces C to accept either
uppercase or lowercase letters as inputs from the keyboard.

The next line in the program:

putchar(Ox8c);

calls the put c ha r macro defined in the header file <stdio.h>. This line
illustrates a fast way to send a single ASCII code to the program's output
stream-in this case, the screen. If you wanted to print a single letter on the
screen, the argument to put c ha r (the value inside the parentheses that follow
the name of the function) would be the desired letter, enclosed in single
quotation marks.

Because the Apple-style ASCII code to clear the screen is not a printable
character, but the hexadecimal value $8C, you can just send the code number
itself by omitting the single quotation marks. The Ox preceding the value 8C
means 8C is a hexadecimal number. In C, hex constants are indicated by the
prefix Ox. So Ox8C represents the same value as $8C in assembly language.

The Name of the The next line:
Name Game

pri ntf C**** THE NAME GAME ****\n\n\n");

calls the CUB routine p r i n t f . In this case, the C compiler reserves a space
in memory for the characters inside the quotation marks, stores them there
with a terminating 0 (null character), and passes the address to the p r i n t f
routine.

We'll discuss what the pri ntf routine does in a moment. But first,

45

Fundamentals of IIGS Programming

we'll describe the 0 that CUB adds to the characters inside the quotation
marks before p r i n t f goes into action.

In C, the word string describes an array of characters whose last value
is O. A 0 is called a null character because it does not represent any letter or
control character. So 0 is used to mark the end of a string. It tells various C
routines that work with strings when they have found the end of a string.

Now you can move to the pri ntf routine. The C compiler interprets
another special character-the backslash character (\)-as an escape char-
acter. Instead of placing a backslash in the stored string, it treats the character
that follows it in a special way. For example, n following a backslash stands
for newline, which in C talk means a carriage return. So the three \n's before
the closing quotation marks in the line

pri ntf ("**** THE NAME GAME ****\n\n\n");

insert three newlines (carriage returns) in the string passed to pri ntf. This
means two lines are skipped before the next item is displayed on the screen.

In the next line

pri ntf (''HeLLo, what is your name? ");

you do not include \n because you want the player's answer to appear on the
same line as the question.

The Scanf The s can f routine in the statement
Routine

scanf ("% 24s",name);

is another powerhouse from CUB. It works like pri ntf, but in reverse. It
takes values of text data from the keyboard, echoes them to the screen as
they are typed, and stores them in a designated variable or string.

In the s can f routine there are two arguments inside the parentheses,
separated by a comma. The first argument, %24s, instructs s canf to read
up to 24 characters from the keyboard and place them, in the order they are
input, in a string (character array). The second argument, name, is the address
of 25 bytes of storage. This tells s can f where to store the character string.

When the user types a carriage return or has input 24 characters, s can f
stops accepting characters. If input is ended by a white space character-a
space, tab, or newline character-scanf does not add it to the stored string.
When input has ended, a 0 is placed at the end of the string of characters
that have been typed in, making the array called name a C string. Control
then returns to the next statement in the calling routine.

46

Counting
Characters

In a scanf string like the one in the Name Game program, the % symbol
preceding 24 limits the length of the string to 24 characters, plus the
terminating 0 that makes it a C string. This is a total of 25 characters, which
is the size of the character array name. If you allowed an unlimited number
of input characters, s canf would blindly store every character the user enters

3-Programming the IIGS in C

in the area of memory that begins with the first character of the array name.
If more than 24 characters were input, the program could eventually crash or
overwrite other data stored in memory.

Other values can follow % in a scanf argument to cause the function
to read and store data in different ways. You can find more information on
this topic in the Apple lIes Programmer's Workshop C Reference.

The next three lines in the program are

pri ntf ("What is your name? ");
scanf (,,%24s",name);
fflush (s t d i n);

stdi n is defined in <stdio.h>. It represents the standard input stream,
which is normally the keyboard. f fLu sh is a standard library call that removes
any data "queued," or waiting to be read from or written to. The scanf
call, which precedes ff Lush in the program, takes in whatever is typed up
to, but not including, the first white space character typed. Sometimes, you
will be interested in this character. In this case, you are not, so ff Lush
disposes it.

If you left the ff Lus h call out of the program, the next input request-
the get cha r () call near the end of the program-would accept the pending
white space character as its input instead of waiting for the user's response.

A Loop Within Now for the next statement in the Name Game program:
a Loop

st rcmp(name;'GEORGE"»{

You may notice that the whi Le loop in this statement is on two lines.
This was done simply because the statement is too long to fit on one line. C
doesn't care about extra spaces and carriage returns in source code, as long
as they are not within a name or between quotation marks.

Now let's see what the statement does. Although the program is already
inside a whi Le loop that recycles the Name Game as many times as users
want, you can create another wh i Le loop that keeps users typing in entries
until they decide to go get George (or lie and tell the computer that their name
is George).

This loop within a loop introduces another new CUB routine, st rcmp.
The st rcmp function compares the C string name with the C string George
and generates a value of 0 if the strings are the same. In C, 0 stands for the
logical value false, and any nonzero value stands for true. Our goal is to
repeat the whi Le loop that asks for George as long as the character array
name is different from three variations of the name George.

Because the result of s t r cmp is nonzero (true) when the string stored
in name is different from the string stored in George, you use the logical

47

Fundamentals of lias Programming

AND operator && to make the comparison. This says: "While name is dif-
ferent from George, AND name is different from george, AND name is
different from GEORGE, carry out the following block of code." Otherwise,
the program moves to the statement following the closing brace of the block:

pri ntf ('\nGo away, %s, bri ng me George !\n\n",name);

What's new here is that %s, the same term used in the s canf statement,
is now used in a pri ntf statement. In this case, it causes pri ntf to print
on the screen the string stored in name. This operation is the reverse of the
one carried out by scanf, which replaces the contents of name with the
string of characters typed at the keyboard. So in this context, you can think
of the screen and the keyboard as the input and output sides of the same
device.

These are the next two lines in the inner whi Le loop:

printf("What is your name? ");
scanf ("% 24s",name);

In these two statements, pri ntf prints a line on the screen and scanf places
a new string in the variable name. There is nothing new here, but the results
are important. The scanf statement provides a new value to be tested by the
s t r cmp routine at the start of the loop. If this operation did not take place,
even typing George would not help the poor users. They would have to reboot
the machine to get it to stop its dialog.

This brings us to an important point in programming. When you write
a whi Le loop, something must eventually happen within the loop to make
the condition being tested false and bring the loop to an end.

Now we come to the last statement in the inner whi Le loop:

ffLush(stdin);

After the pri ntf and scanf routines are carried out, the ff Lush routine
"flushes" the queue.

The end of the program's inner whi Le loop is marked by a closing
brace placed beneath the w that began the loop. This convention makes C
code easier to read and understand.

When Your The next line is one you can't get to unless you claim your name is George:
Name Is George

pri ntf nnHi, George! Try agai n? (YIN)");

At this point, you can decide whether you want to play the game again, though
I can't think of why anyone would want to.

This line stores your reply in the variable rep Lay:

48

3-Programming the IIGS in C

replay = getchar();

The get c ha r () macro, which looks and works like an ordinary C
function, simply returns the ASCII code for the next character typed at the
keyboard. The statement in which it appears also makes it possible to end
the program. If you type any character other than Y or y, the condition for
the whi le loop near the beginning of the program is not met. As a result,
the program passes control to the next statement after this block. But the only
thing after the} that ends this whi le loop is the} that ends rna in (). The
compiler places the r t l instruction at the end of the generated code, so
execution continues with the next statement after j s l rnain () in
START.ROOT. The result is a return to the shell's # prompt.

Making a Standalone Application
I hope you have now succeeded in getting the Name Game running. If you
have, you're ready to tum it into a standalone application. But before you
can do that, you'll have to tell the I10s that your name is George, so that the
Name Game will end and return to the APW shell. Then you can type the
command line

#f i letype narnegarne s 16

This changes the file type of the Name Game from exe, a file type which can
be executed only under APW, to s16, a file type that can be loaded from the
IIos finder (or, on older system disks, the IIos launcher).

Now you can astound your friends by letting them play the Name Game.
The program may not be impressive enough to put on the market. But with
a little imagination-and some fancy graphics tricks you'll learn in this
book-you'll soon be able to tum it into something more complex and more
or less annoying than the original.

49

CHAPTER

Memory Pages

Memory Magic
Mapping the Apple IIGS

[T··1 he engine", who created the Apple IIG' accomplished a remarkable
feat: they stuffed more than 9 megabytes of memory capacity into
a computer originally designed to work with 48K of RAM. The

secret of how they did it can be summed up in two words: bank switching.
Bank switching is based on the principle that two blocks of memory

can share the same address as long as they don't try to use it at the same
time. When a computer uses bank switching, blocks of memory are assigned
identical addresses. Special switching facilities are provided so that memory
segments that use the same addresses can be switched into and out of the
space they share.

In the Apple IIc and the expanded Apple IIe, blocks of memory that
use bank switching are controlled by special electronic circuits called soft
switches. A soft switch is a microcomputer circuit that can be turned on and
off, just like a light switch. You'll take a closer look at some of the soft
switches built into Apple II computers later in this chapter. First, though,
let's pause for a brief look at the memory architecture of microcomputers in
general and the Apple IIGS in particular.

The term page is often used in memory mapping. A page is simply a block
of 256 bytes of memory, or $100 bytes in hex notation. It is a convenient

51

Fundamentals of IIGS Programming

unit of memory measurement because the 256 memory addresses in a page
can be expressed using the hex values $00 through $FF. For example, page
oon the Apple II memory map is made up of memory addresses $00 through
$FF, and page I includes memory addresses $100 through $1FF. The address
at which a page number changes-for example, memory address $1FF, which
is the last address on page I-is known in assembly language as a page
boundary.

(Incidentally, in Apple II graphics programming, the word page is also
used to describe one screenful of graphics memory. These different uses of
the same word should not be confused. You'll enounter graphics pages again
later in this chapter.)

Memory Banks
Another important unit of memory measurement is a bank. A bank is a group
of 256 pages, or a total of 65,536 (64K) banks of memory. The earliest
models of the Apple II-the original Apple II and the Apple II+-have just
one bank of memory, or a total of 64K. The Apple IIc (and the expanded
Apple lIe) have two banks of memory, or l28K. A basic Apple I1GS, without
a memory expansion card, has four banks of memory, or 256K. The IIGS's
central processor, the 65C8l6, can address up to 256 banks, or 16 megabytes,
of memory (that is, 16,384,000 bytes, or $FAOOOO bytes in hex notation).

Because the 65C8l6 can address 16 megabytes of memory, the address
space of the IIGS also totals 16 megabytes-at least in theory. Actually,
however, only 8.25 megabytes of memory are available for RAM expansion,
and I megabyte is available for ROM expansion. The IIGS also comes with
four banks, or 256K, of RAM. Figure 4-1 is a simplified memory map of
an unexpanded Apple IIGS, just as it comes out of the box: with 256K of
RAM. (A memory map of a fully expanded IIGS is presented in figure 1-2.)

The Memory Manager
Until the advent of the IIGS, people who wrote an assembly language program
for an Apple II had to decide exactly where in memory their program would
be loaded. Then they had to make sure the program would work properly
when it was assembled and loaded into the chosen locations. In other words,
it was the programmer's responsibility to allocate and manage memory.

With the introduction of the IIGS, this situation changed dramatically.
The IIGS, as mentioned in chapter 1, is equipped with an ultrasophisticated
programming tool that takes all responsibility for memory management from
the programmer. This tool, called the Memory Manager, can allocate blocks
of memory, discard blocks of memory when they are no longer needed, and
even rearrange blocks of memory so that available RAM space can be used
more efficiently. If you use the Memory Manager-and Apple strongly ad-
vises that you do-you will never again have to decide where in memory to
start a program or a data segment, and you will never again have to juggle

52

4-Memory Magic

$FFFF

$EOOO

0000COOO

$AOOO

$6000

$4000

$2000
$OCOO
$0400
$0000

RAM RAM RAM RAM ROM ROM

tt;tl
RESERVED
MEMORY

tf);nYc/;"]
SYSTEM
1/0

DISPLAY
MEMORY

CJ
FREE
RAM

Figure 4-1
Memory map of an unexpanded Apple IIGS

blocks of memory so that they don't "bump" into each other. All those
tasks-and virtually every kind of task that involves memory management-
are now jobs for the IIGS Memory Manager.

But the IIGS programmer still needs to know something about the
memory architecture of the computer. The IlGS has a lot of firmware (pre-
written programs) installed in specific locations in ROM, and it is sometimes
helpful to know where they are. It is also helpful to know where screen
memory starts and ends, where color tables and other graphics-related data
are stored, and where important I/O routines can be found.

Another good reason for understanding the memory architecture of the
IlGS is that it is sometimes necessary to place user-written routines in bank
0, so that they can access firmware designed for pre-os Apple Ils without
moving across bank boundaries.

Now that you know why memory sometimes must be managed manu-
ally, let's take a closer look at the Memory Manager. The Memory Manager
is built into ROM and goes to work automatically as soon as you tum on the
computer. Every time you load an application program, a utility called the
system loader (mentioned in chapter I) calls the Memory Manager and re-
quests memory space for the program. The loader then loads the program
into memory at the address returned by the Memory Manager.

After an application program is running, it can summon the Memory
Manager and request (or allocate) additional memory. It can also ask the
Memory Manager to release (or deallocate) memory when it is no longer
needed, and it can query the Memory Manager at any time to find out how
much memory is available.

53

Fundamentals of IIGS Programming

Managing Desk
Accessories

APW and the
Memory
Manager

Pointers and
Handles

54

The Memory Manager is so meticulous in its record keeping that it always
knows which blocks of memory are in use, which programs are using them,
and which blocks are free. So when the Memory Manager is active-and it
always is-several programs can be present in memory at the same time
(coresident), and you can switch back and forth among them at any time.
This ability to handle several coresident programs is an important feature of
the Memory Manager because it enables the IIGS to use desk accessories.
Desk accessories are programs that can be loaded into memory once, then
called up and used whenever desired, even while an application is running.
Some accessories that can be handled in this way include clocks, calendars,
calculators, and note pads.

The Memory Manager also makes it possible for a IIGS to be equipped
with any amount of memory ranging from the standard 256K to 8.25 mega-
bytes and for application programs to use the maximum amount of available
memory in a way that is transparent to the user (and to the programmer as
well).

Because the Memory Manager is such an integral part of the IIGS, the APW
assembler-editor and the APW C compiler are designed to work closely with
the Memory Manager. When you use the APW assembler to write and
assemble an assembly language program for the Ilos, you are advised not to
assign the program a specific starting point in memory and not to use
addressing modes that require literal addresses except when absolutely
necessary.

When you follow Apple's guidelines for using the Memory Manager,
the APW assembler automatically produces machine code that is relocatable
and, therefore, can be handled easily by the Memory Manager. The Memory
Manager can handle a relocatable program easily because it can load the
program into any block of available RAM, and it can later move the program
to another block if needed.

To keep track of the IIGS' s memory, the Memory Manager uses two important
types of variables: pointers and handles. A pointer is a pair of memory
addresses that contain, or point to, a second memory address. In C and
assembly language programs, a pointer is a convenient tool for accessing a
memory address because the block of memory can be changed by simply
altering the addresses stored in the pointer. You examine how pointers work,
and how they are used in Apple I1GS programs, in chapter 6. Figure 4-2 gives
a rough idea of how a pointer is used in an assembly language program.

When the Memory Manager allocates a block of memory, it usually
returns a handle rather than a pointer. A handle is a pair of memory addresses
that point to a pointer, which in tum points to still another address. Because
of the indirect way in which a handle is used, it is sometimes described as a
pointer to a pointer. The use of handles is illustrated in figure 4-3.

The concept of a handle may sound obscure, but the Memory Manager
has a good reason for using handles. The machine code produced by the APW
assembler is relocatable and can therefore be shuffled around in memory at
will by the Memory Manager. But even when a piece of machine code is

4-Memory Magic

MAY MOVE--

POINTER -

INFORMATION ,-

ADDRESS OF
INFORMATION

Figure 4-2
Using a pointer in an assembly language program

relocatable, moving it around in memory can still cause problems. For ex-
ample, if a program contains a pointer and the code the pointer is supposed
to access is moved, the pointer contains an invalid address and will almost
certainly crash whatever program is running the next time it is used.

To keep this kind of disaster from occurring, the Memory Manager does
not assign a pointer when it allocates a block of memory. Instead, it stores
a pointer to the block in a non-relocatable table. The block's handle is the
fixed address to this pointer. In other words, a handle is simply a 4-byte space
in which the current address of a block is kept. As the block is moved, this
pointer changes, but the correct pointer can always be found in the same place:
the handle.

Using this procedure, the Memory Manager can always keep track of
any block of code, and blocks of code can always access each other, no matter
how many times their addresses change.

The IIGS Memory Map
Now that you've seen how the Memory Manager works, you are ready to
examine the memory map of the IIGS in more detail. Refer back to figure 4-
I, the simplified IIGS memory map at the beginning of this chapter.

As you learned in chapter 1, the IIGs's memory space can be divided
into five major segments. Each of these segments can be subdivided into 64K

55

Fundamentals of IIGS Programming

MAY MOVE--

HANDLE
(NEVER MOVES)

POINTER __
(MAY MOVE)

INFORMATION f---

ADDRESS OF -POINTER

AD-D-RESSO-F- I---
INFORMATION----------

Figure 4-3
Using a handle in an assembly language program

memory banks. Here is an outline of what each block of memory in the IIGS
contains:

• Banks $00 and $01 (memory addresses $000000 through $OlFFFF)
include both free RAM and system memory. When the IIGS is in
Apple Ilc/Ile emulation mode, the addresses in these two banks are
the only addresses available.

• Banks $02 through $7F (memory addresses $020000 through
$7FFFFF) are available for RAM expansion.

• Banks $EO and $El (memory addresses $EOOOOO through $E1FFFF)
include some free RAM, but are also used for system, input/output
(110), and display memory.

• Banks $FO through $FD (memory addresses $FOOOOO through
$FDFFFF) are available for ROM expansion.

• Banks $FE and $FF (memory addresses $FEOOOO through $FFFFFF)
are used for system firmware.

A more detailed map of the Apple IIGS is presented later in this chapter.

56

4-Memory Magic

Mapping the IIGS in Emulation Mode
As noted previously in this chapter and in chapter I, the Apple IIGS can be
used in two modes: Apple IIcllIe emulation mode and native mode (that is,
as a fully equipped Apple IIGs). In this section, you'll see how the memory
of the IIGS is apportioned in emulation mode. Then you'll examine the com-
puter's memory layout in native mode.

Figure 4-4 is a memory map of the Apple IIGS in Apple IIcllIe emulation
mode. In this mode, the IIGS operates as a 128K computer, and banks $00
and $0 I are referred to as main memory and auxiliary memory-the same
names they are known by in the Apple IIc and the expanded Apple lIe.

If you're familiar with Apple IIc or Apple lIe assembly language pro-
gramming, the map in figure 4-4 will be familiar. If you're new to Apple II
programming, though, a little map reading is in order. So let's pause for a
closer look at what the various blocks of memory in figure 4-4 contain when
the IIGS is in emulation mode.

$FFFF

$EOOO

$0000
$C100
$COOO

$6000

$4000

$2000

$OCOO

$0800

$0400
$0200
$0100
$0000

RAM RAM MONITOR

BASIC$0000 $0000 I $0000 $0000 I
BANK 1 BANK 2 BANK 1 BANK 2 INTERPRETER

1/0 ROM
HARDWARE ADDRESSES

FREE FREE
RAM RAM

HIGH-RES HIGH-RES
PAGE 2 PAGE 2

HIGH-RES HIGH-RES
PAGE 1 PAGE 1

FREE FREE
RAM RAM

TEXT TEXT
PAGE 2 PAGE 2
TEXT TEXT
PAGE 1 PAGE 1
RAM RAM

STACK STACK
PAGE 0 PAGE 0

Figure 4-4
A map of the IIGS in emulation mode

57

Fundamentals of IIGS Programming

• Addresses $00 to $FF (page 0). As you will see in chapter 5,
memory addresses $00 to $FF, also known as page 0, are an
important part of the memory map of any microcomputer. When the
operand of an assembly language statement is a page 0 address, the
instruction can be carried out faster because a page number does not
have to be specified. And, as you shall see in chapter 6, some
addressing modes require their operands to be on page O.

For now, it's sufficient to note that in an Apple lIe or an
expanded Apple lIe, there are two bank-switchable page zeros: one
in main memory and one in auxiliary memory. When the Ilos is
operated in native mode, any page in bank $00 can be used as page
O-but we'll save further discussion of that point for chapters 5 and 6.

• Addresses $100 to $IFF (stack). The stack is a temporary storage
area where values can be tucked away until needed. How the stack
works and how it is used are examined in chapter 6.

In the Apple lIe and the expanded Apple Ile, there are two
bank-switchable stacks: one in main memory and one in auxiliary
memory. When the Ilos is operated in native mode, the stack, like
page 0, can be located anywhere in bank $00. This operation is also
covered in chapters 5 and 6.

• Addresses $0200 to $03FF (input buffer, vectors, and link
addresses). In bank $00, these addresses are used by the Applesoft
input buffer and for certain operating system vectors and link
addresses. In bank $01, they are available as free RAM.

• Addresses $0400 to $OBFF (text and low-resolution pages 1 and 2).
As noted, the block of memory in which a screen display is stored is
sometimes referred to as a page. In the earliest models of the Apple
II, there were four such pages: two for text and low-resolution
screen displays, and two for high-resolution displays. In the Apple
Ilc, the expanded Apple Ile , and the Apple Ilos, a second pair of
high-resolution graphics pages and a second pair of text and low-
resolution graphics pages are provided in auxiliary RAM.

In all Apple II computers, animated displays can be created by
using soft switches to flip between one high-resolution page and
another, or between one text or low-resolution display and another.
In the Apple Ilos, however, this capability exists only when the
computer is in emulation mode, with IIclIIe-style text or graphics
displays. Soft switches are examined at the end of this chapter.

As figure 4-4 illustrates, text and low-resolution page 1
extends from $0400 to $07FF, and text and low-resolution page 2
extends from $0800 to $OBFF. In application programs that do not
use Apple IIclIIe-style text or low-resolution graphics, both of these
blocks of memory can be used as RAM.

• Addresses $OCOO to $IFFF (free RAM). In both bank $00 and
bank $01, this block of memory is available for use as free RAM.

58

How Pre-Gs
Programs Use

Memory

4-Memory Magic

• Addresses $2000 to $SFFF (high-resolution pages 1 and 2). In all
Apple II computers, addresses $2000 through $3FFF are used for
data displayed on high-resolution page 1, and addresses $4000 to
$SFFF are used for data displayed on high-resolution page 2. On
the Apple lIe, the expanded Apple lIe, and the Apple IIGS, the
same blocks of addresses can be used for the same purposes in
auxiliary memory. In programs that do not use IIc/lle-style high-
resolution graphics, all of these memory blocks can be used as
free RAM.

• Addresses $6000 to $BFFF (free RAM). In banks $00 and $01,
this block of memory is available for use as free RAM.

• Addresses $COOO to $CFFF (hardware addresses and I/O ROM).
In bank $00, this segment of memory is reserved for system
hardware addresses and system I/O ROM. In bank $01, it is
available for use as free RAM.

• Addresses $DOOO to $DFFF (language card area). This block of
memory consists of bank-switched RAM that is reserved mostly
for use by ProDOS and for other system uses. When BASIC is
used, addresses $DOOO through $F7FF in bank $01 are claimed by
the IIGS'S BASIC interpreter. Why this segment of memory is
called the language card area is explained later in this chapter.

• Addresses $EOOO to $FFFF (bank-switched RAM and monitor
firmware). When both the IIGS monitor and Applesoft BASIC are
not in use, addresses $EOOO through $FFFF in bank $00 and bank
$01 can be used as free RAM. When BASIC is in use, however,
it occupies addresses $DOOO to $F7FF in bank $01. When the
monitor is active, it claims memory addresses $F800 through
$FFFF in bank $01.

When you load a program written for a pre-GS Apple II computer into the
Apple IIGS, the IIGS firmware automatically sets up banks $00 and $01 as
main and auxiliary memory and configures both banks for Apple IIc/lle-style
operations. The firmware also allocates pages $00 and $01 in bank $00 for
use as page 0 and the stack, respectively. (There's more about page 0 and
the stack later in this chapter and in chapter 6.)

When the IIGS configures itself for emulation mode, memory outside
banks $00 and $01 is not available for use in programs. But it can be used
as a big RAM disk, designated /RAMS.

As 'You can see by looking at figure 4-4, the largest block of memory
in main memory, or bank $00, is labeled main RAM. The largest block in
auxiliary memory, or bank $01, is labeled auxiliary RAM. When the IIGS is
in emulation mode, main RAM extends from $6000 to $BFFF in bank $00,
and auxiliary RAM uses the same block of memory in bank $01. Application
programs can use both of these blocks as free RAM.

In the Apple IIGS, just as in earlier Apple lIs, an application can switch

59

Fundamentals of IIGS Programming

between bank $00 and bank $01 using soft switches-bytes in memory that,
like a light switch, can be turned on and off to change memory banks and
control IIc-style and Ile-style text and graphics displays.

Language Card
Area

Mega II Chip

60

In the memory addresses that extend from $DOOO to $DFFF in both bank $00
and bank $01, there is another block of bank-switchable memory that has
come to be known as the language card area of RAM. It got its name when
the Pascal language was first introduced for the Apple II and required more
memory than what was available. The card added to accommodate Pascal no
longer exists-it is now built into the main circuit board of Apple II
computers-but this area of memory retains its original name.

Because there are two language card areas-one in bank $00 and one
in bank $Ol-there are actually four banks of useable RAM between memory
addresses $DOOO and $EooO. In bank $00, most of the language card space
in both main memory and bank-switched memory is reserved for use by
ProDOS (which is covered in chapter 12) and for other needs of the IIGS
operating system. In bank $01, the bank-switched portion of the language
card area is also reserved for use by system memory, but the portion that
does not have to be bank switched is available for use as free RAM.

Now that you've had a good look at the emulation mode memory map
of the IIGS, it should be pointed out that the map is misleading in one respect.
When the IIGS is running in emulation mode, it does not directly address banks
$00 and $01. Instead, all data in banks $00 and $01 is copied into banks $EO
and $El. It is the copied data that the IIGS reads from and writes to when it
is running an emulation program. This process, known as memory shadowing,
is carried out because banks $EO and $E1 are synchronized for use with
emulation mode programs, but banks $00 and $01 are not. A fuller description
of memory shadowing is presented at the end of this chapter.

As noted, the Apple IIGS has two memory maps; it uses one in emulation
mode and the other in native mode. You've just examined the emulation mode
memory map, and in a few moments you'll see how the map changes when
the IIGS is switched to native mode. Before that, though, it is helpful to explore
how the Apple IIGS emulates an Apple IIc.

As you may remember from chapter 1, the designers of the IIGS faced a
double-edged problem. They wanted to build a computer that would not only
run programs designed for earlier Apples, but also take full advantage of the
increased operating speed and expanded memory addressing capabilties of the
65C816 microprocessor. They came up with an ingenious solution. They
created a new integrated chip, the Mega II, to interface the new features of
the IIGS with the old features of earlier members of the Apple II family.

The first job for the designers of the Mega II chip was achieving some
kind of compatibility between the 2.8 MHz operating speed of the Apple IIGS
and the 1 MHz operating speed of earlier Apples. They attained this goal by
incorporating the Mega II into the design of the IIGS, as illustrated in figure
4-5.

4-Memory Magic

1/0 1/0 128K EXTRA
SLOTS PORTS ROM RAM

128K MEGA II FPI 128K
"SLOW CHIP CHIP "FAST"
RAM" RAM

VIDEO '-- 65C816CHIPS

Figure 4-5
Incorporating the Mega II chip into the IIGs's design

As figure 4-5 shows, the Mega II chip is connected to

• The Apple IIGS'S ports and slots, which are operated under the
control of a I MHz chip and are therefore compatible with the ports
and slots in earlier Apple lIs.

• A 128K block of RAM called slow RAM, which is built into the IIGS
to make it compatible with earlier members of the Apple II family.

• The video chips that generate the IIGS'S text and graphics displays
when it is running in IIc/IIe emulation mode.

• The VGC (video graphics controller) chip, which generates the IIGS'S
super high-resolution graphics display. Although the VGC chip was
designed specifically for the IIGS and is not found in earlier Apple
lIs, it operates at a I MHz clock speed so that it is synchronized
with other video circuitry that is IIc/IIe compatible.

To interface the Mega II module with the 65C816 and the components
it controls, Apple engineers designed another special chip called the fast
processor interface, or FPI. The FPI, as figure 4-5 shows, is connected not
only to the Mega II chip and its I MHz components, but also to all the IIGS
components that operate at 2.8 MHz. These components include

• A 128K block of fast RAM that is laid out exactly like the 128K of
slow RAM controlled by the Mega II

• All the 128K of ROM built into the IIGS
• All expansion RAM that the IIGS owner may install
• The 65C816 processor (which must be switched from 2.8 MHz to I
MHz before the IIGS can operate in IIc/IIe emulation mode)

61

Fundamentals of I/GS Programming

62

Memory
Shadowing

Now you're ready to study the concept of memory shadowing, which was
briefly mentioned in this chapter. Memory shadowing is a technique the IIGS
uses to copy data from banks $00 and $01 into banks $EO and $E1 so that
programs can be run from banks $EO and $E1 when the computer is in
emulation mode. Here, as promised, is an explanation of why memory
shadowing is used in the IIGS and how it works.

Because programs written for the lIe and the lIe use memory addresses
$0000 through $FFFF, the designers of the IIGS had to build the computer so
that lIe and lIe programs could be run in banks $00 and $01. But banks $00
and $01 are also important to the operation of the IIGS in native mode, so
they were designed to operate at the native mode speed of 2.8 MHz, not at
the emulation mode speed of 1 MHz (the speed at which IIcllIe programs
must be run).

To make the IIGS compatible with programs written for earlier Apple
lIs, the creators of the IIGS had to equip it with at least two banks of 1 MHz
RAM. They didn't want to slow down banks $00 and $01 just to make them
IIcllIe compatible, so they decided to slow down banks $EO and $El-the
only other two banks available on a bare-bones Ilos-i-and make them run at
1 MHz.

Banks $EO and $E 1 also have all the features needed to run Apple
lIe/lIe programs. These features include language card mapping in memory
addresses $DOOO through $DFFF, space for hardware and I/O memory in
addresses $COOO through $CFFF, and display buffers used for Ilc/Ile-style
video displays.

After all these features were incorporated into banks $EOand $El, only
one problem remained: how to run emulation mode programs designed to be
executed from banks $00 and $01 using the clock speed and IIcllIe features
built into banks $EO and $El. To solve this problem, the designers of the
IIGS used the technique of memory shadowing. Here's how it works.

The Quagmire State and the Shadow Register

To find out the current status of the IIGS's shadowing operations, you can
read the status of a memory location called the shadow register. The shadow
register keeps track of the IIGS' s shadowing state, which is also known as the
computer's quagmire state because shadowing can make memory locations
move around like shifting sand. The shadow register, or quagmire register,
is at memory address $C035 in bank $EO.

In addition to controlling memory shadowing, the shadow register can
also activate or deactivate the I/O and language card areas at addresses $COOO
through $DFFF. See table 4-1.

When the shadow register selects shadowing for an area, the IIGS hard-
ware executes any instruction that writes into the selected area in bank $00
or $01 by writing into both the selected area and the same address in bank
$00 or bank $01. Then, because the RAM in banks $EO and $El runs at 1
MHz, all code that is shadowed is executed at slow speed.

Shadowing of the I/O and language card spaces is controlled by bit 6
of the shadow register, sometimes referred to as the IOLC (I/O and language

4-Memory Magic

Table 4-1
The Shadow Register

Bit

o
I
2
3
4
5
6
7

Value Description

Text page I shadowing disabled
High-res page I shadowing disabled
High-res page 2 shadowing disabled
Super high-res buffer shadowing disabled
Shadowing of auxiliary high-res pages disabled
Reserved-do not find modify
110 and language card operation disabled
Reserved-do not modify

card) bit. This bit is normally set to 0, which enables I/O in the $CXXX
memory addresses and maps the 4K of RAM that ordinarily resides in that
space into a second bank of RAM in the $DXXX address range. Figure 4-
6 illustrates this operation.

Shadowing and Interrupts

Some of the interrupt routines used in emulation mode are in ROM in the
I/O space of the $C07X address range. For this code to operate, I/O must
remain enabled in the $CXXX range of memory in bank $00, and the high
16K of RAM must remain mapped as a language card. In other words, the
IOLC bit of the shadow register must be clear. If a program changes the
IOLC bit so that it can use RAM in the $CXXX range, the interrupt routines
in that area won't work. So IOLC shadowing must be left on even by programs
running in native mode, which otherwise do not use language card mapping.

Display Shadowing

Programs run on the IIGS can also use display shadowing, which works a little
differently than I/O shadowing. When I/O shadowing is used, both reading
and writing are slowed to I MHz. When only display shadowing is selected,
however, the slowdown affects only instructions that write to the shadowed
areas. The 65C816 still reads from the display areas of banks $00 and $01
at 2.8 MHz.

When the IIGS loads a program, it automatically sets display shadowing
to whatever is appropriate for the program's operating system: on for DOS
3.3, UCSD Pascal, and ProDOS 8, and off for ProDOS 16 (the operating
system used in native mode). An application can tum off shadowing of in-
dividual displays by setting individual bits in the shadow register.

More details about memory shadowing and how the shadow register
works can be found in the Apple Iles Hardware Reference.

63

Fundamentals of ttos Programming

'-------' $0000

I-------i $EOOO

$COOO

$AOOO

$8000

32K
$6000 VIDEO

BUFFER

$4000

$2000

BANK $01 (64K)
....-------, $F FFF

BANK $E1 (64K)

$0000 l.--__---J

$0800
$0400

$2000

$8000 1-------1

$4000

$6000

$AOOO 1-------1

$EOOO

$COOO

$FFFF ,.----,

1/0 SPACE HIGH-RES
GRAPHICS
PAGE 2

.mIIJ]
HIGH-RES
GRAPHICS
PAGE 1

K!:\J
TEXT
PAGE 1

TEXT
PAGE 2

Figure 4-6
Memory shadowing in the Apple IIGS

Mapping the IIGS in Native Mode
The memory map used by the IIos in native mode is considerably different
from the one used in emulation mode. The most obvious difference is the
native mode map is bigger. It can contain at least 256K of memory and as
much as 8.25 megabytes of memory. There are other differences, too. For
example, to give native mode programs as much free RAM as possible in
banks $00 and $01, the computer's native mode ROM is in banks $FE and
$FF, opening up almost all the memory space in banks $00 and $01 for use
as free RAM. System ROM includes Applesoft BASIC, the Ilos monitor,
port firmware, and the part of the Ilos Toolbox built into ROM.

Figure 4-7 shows how memory is allocated when the Ilos is in native
mode. Programs can occupy most of the space in banks $00 and $01, and all
the expansion RAM space in banks $02 through $7F (if expansion RAM is
installed). Applications can call the Memory Manager to obtain the memory
they need in those areas.

In banks $EOand $E I, however, there are some blocks of memory that

64

4-Memory Magic

BANK $E1

AUXILIARY LANGUAGE
CARD (RESERVED)

AUX. BANK $00 IAUX. BANK $01
(RESERVED) (RESERVED)

1/0 (RESERVED)

8K FREE RAM

SUPER HI-RES
GRAPHICS

DOUBLE HI-RES
PAGE 2

(OR FREE RAM)
DOUBLE HI-RES

PAGE 1
(OR FREE RAM)

RESERVED FOR
SYSTEM USE

TEXT PAGE 2
(OR FREE RAM)

TEXT PAGE 1
(OR FREE RAM)

RESERVED FOR
SYSTEM USE

$0800

$2000

$0400

$4000

$6000

$OCOO

$DOOO

$EOOO

$6000

$AOOO

$FFFF
BANK $EO

MAIN LANGUAGE
CARD (RESERVED)

MAIN BANK $00 IMAIN BANK $01
(RESERVED) (RESERVED)

I/O (RESERVED)

24K
FREE RAM

DOUBLE HI-RES
PAGE 2

(OR FREE RAM)
DOUBLE HI-RES

PAGE 1
(OR FREE RAM)

RESERVED FOR
SYSTEM USE

TEXT PAGE 2
(OR FREE RAM)

TEXT PAGE 1
(OR FREE RAM)

RESERVED FOR
SYSTEM USE

$0000

Figure 4-7
Detailed memory map of banks $EOand $E1

are not available for use as free RAM, even when the IIGS is in native mode.
For example, the I/O space in the $CXXX region and text page I are shadowed
from memory banks $00 and $0 I into banks $EO and $E1. These areas have
to be shadowed for the proper operation of interrupts and peripheral cards,
and thus cannot be used as free RAM by application programs.

There are other areas in banks $EOand $E I, however, that are available
for use in application programs. If you decide to use these banks in a program,
remember that they are timed to operate as slow RAM--operating at 1MHz-
when they are written to. But they can be read from at the fast speed of 2.8
MHz. If a program merely reads from them, without writing to them, they
won't slow the program.

Here is an outline of how the various blocks of memory in banks $EO
and $E1 are used when the IIGS is running in native mode:

• Addresses $0000 to $03FF in bank $EO. Reserved for system use.
This block of RAM-used for shadowing page 0, the stack, and
other important addresses when the IIGS is in emulation mode-is
reserved for future expansion. It is not managed by the Memory
Manager, but you can use it by managing it yourself. If you do, though,

65

Fundamentals of IIGS Programming

your application may not be compatible with future models of the
Ilos.

• Addresses $0400 to $07FF in bank $EO (text page 1). Text page I is
shadowed into this area even when the Ilos is in native mode. It is
not managed by the Memory Manager, but you can use it if you
manage it yourself. That could get you into trouble, however,
because you never know when something such as a desk accessory
might decide to use text page 1 and try to use this segment of
memory.

• Addresses $0800 to $OBFF in bank $EO (text page 2). Text page 2 is
not likely to be used by a desk accessory (though it could be), so
this region is fairly safe for use by an application program. The
Memory Manager doesn't manage it, though, so once again, beware.

• Addresses $OCOO to $IFFF in bank $EO. Reserved for use by the
Ilcs system.

• Addresses $2000 to $5FFF in bank $EO (high-resolution pages I and
2). Available for use by application programs that don't use high-
resolution graphics pages I and 2. Managed as special memory by
the Memory Manager (more about that in chapter 7).

• Addresses $6000 to $BFFF in bank $EO (free RAM). This 24K
chunk of memory is allocated as free RAM and is managed by the
Memory Manager.

• Addresses $COOO to $FFFF in bank $EO. Used by the nos system.
This segment of memory includes 110 space, the language card area,
and other addresses used by the nos system. It's off-limits to
application programs.

• Addresses $0000 to $03FF in bank $El. Reserved for system use.
Not managed by the Memory Manager. Use at your own risk.

• Addresses $0400 to $OBFF in bank $EI (alternate text pages I and
2). Rarely used and probably safe, but not managed by the Memory
Manager.

• Addresses $OCOO to $IFFF in bank $El. Reserved for use by the
JIos system.

• Addresses $2000 to $5FFF in bank $EI (alternate high-resolution
pages I and 2). Available for use by programs that don't use
alternate high-resolution pages I and 2. Managed as special memory
by the Memory Manager. The special memory designation is
covered in chapter 7.

• Addresses $6000 to $BFFF in bank $EI (super high-resolution
display). This is the super high-resolution screen display area of the
nos. It can be managed as special memory by the Memory Manager.
But most programs written for the nos use super high-resolution
graphics, so using this area of memory as free RAM-even by a
program that doesn't require super high-res graphics-is strongly
discouraged.

66

Sof1t Switches

Accesslnq Soft
Switches

4-Memory Magic

• Addresses $AOOO to $BFFF in bank $El (free RAM). Free RAM
managed by the Memory Manager.

• Addresses $COOO to $FFFF in bank $El. Reserved for system use.
Not managed by the Memory Manager and not recommended for use
as free RAM by application programs.

• Banks $FO through $FD. Reserved for use by a ROM expansion
card used for additional firmware and by applications that are stored
as ROM disk files.

If you're an old hand at Apple II programming, you may be familiar with
the concept of soft switches: bytes in memory that perform operations by
simply being read from or written to.

If you like to manage Apple II operations using soft switches, you'll
be happy to know that the IIGS has all the soft switches its predecessors have-
and an extra register to help you access them conveniently.

The soft switches in the IIGS, like the ones in earlier Apple Ils, reside
in the $CXXX block of memory in bank $00. And, like their counterparts,
they can be used for bank switching, 110 and graphics operations, and pro-
tecting certain blocks of memory by making it possible to read from them
but not write to them. Table 4-2 lists some of the most often used soft switches
in the Apple IIGS and earlier Apple Ils.

There are three ways to manipulate the soft switches in the IIGs:

1. Some soft switches can be toggled on or off with either a read
operation, such as l da , or a write operation, such as sta. For
example, you can change the setting of the Page2 soft
switch at $C055 with a statement such as

sta $C055

or a statement like

Lda $C055

More details of how the Page2 soft switch works are presented in a
moment.

2. Some soft switches can be turned on or off with a write operation.
For example, you can tum on the RAMWrt switch at $C005 by
writing any value to it, using a statement such as

sta $C005

67

Fundamentals of IIGS Programming

Table 4-2
Soft Switches
Arranged by Name

Name Address Access Function

80Store $COOO Write Off: RAMRd and RAMWrt determine
RAM locations

80Store $COOI Write On: Page2 switches between main and
auxiliary display pages

AltZP $C008 Write Off: Using main-memory page 0 and
stack

AltZP $C009 Write On: Using auxiliary-memory page 0 and
stack

Bank Select $C080 Two Reads Read RAM; no write; use $DOOO bank 2
Bank Select $C081 Two Reads Read ROM; write RAM; use $DOOO bank

2
Bank Select $C082 Read Read ROM; no write; use $DOOO bank 2
Bank Select $C083 Two Reads Read and write RAM; use $DOOO bank 2
Bank Select $C088 Read Read RAM; no write; use $DOOO bank I
Bank Select $C088 Read Read RAM; no write; use $DOOO bank I
Bank Select $C089 Two Reads Read ROM; write RAM; use $DOOO bank

I
Bank Select $C08A Read Read ROM; no write; use $DOOO bank I
Bank Select $C08B Two Reads Read and write RAM; use $DOOO bank I
DHiRes $C05E Read/Write On: If Oll.Ilfis is on, tum on double high

resolution
DHiRes $C05F Read/Write Off: If IOUDis is on, tum off double

high resolution
HiRes $C056 Read Off: Display text page
HiRes $C057 Read On: Show high-res pages; make Page2

switch between high-res pages
IOUDis $C07F Write On: Disable IOU access for $C058-

$C05F; enable zDHiRes switch access
IOUDis $C07F Write Off: Enable IOU access for $C058-

$C05F; disable DHiRes switch access
Page2 $C054 Read Off: Select text page I and high-

resolution page I
Page2 $C055 Read On: If 80Store off, use main memory

displays; if on, use auxiliary displays
RAMRd $COO2 Write Off: Read main 48K RAM
RAMRd $COI3 Write On: Read auxiliary 48K RAM
RAMWrt $COO4 Write Off: Write to main 48K RAM
RAMWrt $COO5 Write On: Write to auxiliary 48K RAM
Rd80Store $COI8 Read bit 7 Bit 7 tells whether 80Store is on (I) or

off (0)
RdAltZP $COI6 Read bit 7 Bit 7 tells whether auxiliary memory (I)

or main memory (0) accessed
RdBnk2 $COII Read bit 7 Bit 7 tells whether $DOOO is bank 2 (I)

or bank I (0)
RdDHiRes $C07F Read bit 7 Read DHiRes switch (I = on)

68

4-Memary Magic

Table 4-2 (cont.)
Arranged by Name

Name Address Access Function

RdHiRes $COID Read bit 7 Bit 7 tells whether high resolution is on
(I) or off (0)

RdIOUDis $C07E Read bit 7 Read IOUDis switch (I = off)
RdLCRAM $COI2 Read bit 7 Reading RAM (I) or ROM (0)
RdPage2 $COIC Read bit 7 Bit 7 tells whether Page2 is on (I) or off

(0)
RdRAMRd $C013 Read bit 7 Bit 7 tells whether main memory (0) or

auxiliary memory (I) is being accessed
RDRAMWrt $COI4 Read bit 7 Read whether main memory (0) or auxil-

iary memory (I) is being accessed

Arranged by Address
Address Name Access Function

$COOO 80Store Write Off: RAMRd and RAMWrt determine
RAM locations

$COOI 80Store Write On: Page2 switches between main and
auxiliary display pages

$COO2 RAMRd Write Off: Read main 48K RAM
$COO4 RAMWrt Write Off: Write to main 48K RAM
$COO5 RAMWrt Write On: Write to auxiliary 48K RAM
$COO8 AltZP Write Off: Using main-memory page 0 and

stack
$COO9 AltZP Write On: Using auxiliary-memory page 0 and

stack
$COII RdBnk2 Read bit 7 Bit 7 tells whether $DOOO is bank 2 (I)

or bank I (0)
$COI2 RdLCRAM Read bit 7 Reading RAM (I) or ROM (0)
$C013 RAMRd Write On: Read auxiliary 48K RAM
$C013 RdRAMRd Read bit 7 Bit 7 tells whether main memory (0) or

auxiliary memory (I) is being accessed
$COI4 RdRAMWrt Read bit 7 Read whether main memory (0) or auxil-

iary memory (I) is being accessed
$COI6 RdAltZP Read bit 7 Bit 7 tells whether auxiliary memory (I)

or main memory (0) is being accessed
$COI8 Rd80Store Read bit 7 Bit 7 tells whether 80Store is on (I) or

off (0)
$COIC RdPage2 Read bit 7 Bit 7 tells whether Page2 is on (I) or off

(0)
$COID RdHiRes Read bit 7 Bit 7 tells whether high resolution is on

(I) or off (0)
$C054 Page2 Read Off: Select text page I and high-resolu-

tion page 1
$C055 Page2 Read On: If 80Store off, use main memory

displays; if on, use auxiliary displays
$C056 HiRes Read Off: Display text page
$C057 HiRes Read On: Show high-res pages; make Page2

switch between high-res pages

69

Fundamentals of IIGS Programming

Table 4-2 (cont.)
Arranged by Address

Address Name Access Function

$C05E DHiRes Read/Write On: If mUDis is on, tum on double high
resolution

$C05F DHiRes Read/Write Off: If IOUDis is on, tum off double
high resolution

$C07E RdIOUDis Read bit 7 Read IOUDis switch (I = off)
$C07F IOUDis Write On: Disable IOU access for $C058-

$C05F; enable
DHiRes switch access

$C07F IOUDis Write Off: Enable IOU access for $C058-
$C05F; disable DHiRes switch access

$C07F RdDHiRes Read bit 7 Read DHiRes switch (I = on)
$C080 Bank Select Two Reads Read RAM; no write; use $DOOO bank 2
$C081 Bank Select Two Reads Read ROM; write RAM; use $DOOO bank

2
$C082 Bank Select Read Read ROM; no write; use $DOOO bank 2
$C083 Bank Select Two Reads Read and write RAM; use $DOOO bank 2
$C088 Bank Select Read Read RAM; no write; use $DOOO bank 1
$C088 Bank Select Read Read RAM; no write; use $DOOO bank I
$C089 Bank Select Two Reads Read ROM; write RAM; use $DOOO bank

I
$C08A Bank Select Read Read ROM; no write; use $DOOO bank I
$C08B Bank Select Two Reads Read and write RAM; use $DOOO bank I

3. You can read some soft switches to see whether a given bit is on or
off. For example, you can read bit 7 of the RAMWrt switch, at
$COI4, to find out whether main memory (bank $00) or auxiliary
memory (bank $0 I) is being used for writing.

4. As a precaution against accidents, some soft switches have to be
accessed twice in succession before they respond. For example, to
tum on the soft switch at $COS3, you must carry out a pair of
operations, like this:

lda $C083
lda $C083

Please note that in this case, memory address $COS3 is not being
written to, but is merely being accessed with a read operation (lda).
If you were writing to it-for example, with a s t a instruction-it
wouldn't matter what was in the accumulator when the operation was
carried out. That's because it's the act of accessing the switch, not
the value written to it, that causes the switch to do its work. When
you access a switch with a write operation, you can store any value
in it (even a 0) and the result is always the same.

70

Using Soft
Switches

4-Memory Magic

As you may notice in table 4-2, the same name is sometimes used for two
or more soft switches. That's because some switches are activated with one
switch and deactivated with another. And some switches are turned on with
one address, turned off with another, and read from with still another. In table
4-2, nine switches that select memory banks are grouped under the same
name: bank select. The following sections explain the operation of some
important switches.

Selecting Main or Auxiliary RAM

Two switches, RAMRd and RAMWrt, select main or auxiliary RAM in the
48K memory space in banks $00 and $01 when the IIGS is in emulation mode.
When RAMRd is on and the 80Store switch (which controls display memory)
is off, RAMRd selects auxiliary memory for reading. When both 80Store and
RAMRd are off, RAMRd selects main memory for reading. When RAMWrt
is on and the 80Store switch is off, RAMWrt selects auxiliary memory for
writing. When both RAMWrt and the 80Store switch are off, RAMWrt selects
main memory for writing. That may sound quite complicated, but after you
start using these three soft switches, you'll become accustomed to how they
work.

Both the RAMRd and RAMWrt switches use three memory addresses.
One address turns the switch on, one turns it off, and one reads its state. To
read the state of RAMRd, RAMWrt, or any other three-address switch listed
in table 4-2, just check bit 7 of the appropriate memory address. If the switch
is off, bit 7 is cleared to O. If the switch is on, bit 7 is set to 1.

Selecting Display Memory

When the IIGS is displaying IIc/IIe-style high-resolution graphics, three soft
switches-80Store, HiRes, and Page2-can select the portion of RAM used
for screen memory. Each of these switches has three memory addresses-
one that turns it on, one that turns it off, and one that reads its state by
checking bit 7.

If the HiRes switch is off, Page2 switches between text pages 1 and 2.
If HiRes is on, Page2 switches between high-resolution graphics pages 1
and 2.

If 80Store is off, RAMRd and RAMWrt determine whether to use the
display pages in main or auxiliary RAM, and Page2 selects pages for display
only-not for reading or writing. If 80Store is on, however, it overrides
RAMRd and RAMWrt with respect to the display pages selected by HiRes
and Page2.

The Machine State Register

There is one drawback in using the soft switches in table 4-2. Because they
are in slow RAM-memory that runs at the emulation speed of 1 MHz,
instead of the native mode speed of 2.8 MHz-the system is slowed down
every time a soft switch is accessed directly.

71

Fundamentals of IIGS Programming

But there is a way to access eight of the most commonly used soft
switches without paying the penalty of changing operating speeds. That
method is to use a special memory address called the machine register. (It's
also called the state register or machine state register.) This register is situated
at memory address $C068. Table 4-3 shows how each bit in the machine
register is used.

Table 4-3
The Machine State Register

Bit Name Description

Bit 0 INTCXROM Determines whether internal or slot card ROM
will be used in the $C100 to $C7FF block of
memory

Bit I ROMBank Selects the ROM bank in main memory (0) or
auxiliary memory (I)

Bit 2 Bank2 Selects the main RAM bank (0) or auxiliary
RAM bank (I)

Bit 3 RdROM Activates the correct bank select switch to read
ROM

Bit 4 RAMWrt Turns the RAMWrt switch off and on
Bit 5 RAMRd Turns the RAMRd switch off and on
Bit 6 Page2 Turns the Page2 switch off and on
Bit 7 AltZP Turns the AltZP switch off and on

In this chapter, you saw how much memory is in the Ilos, its location,
how it is accessed, and its uses. In chapter 5, you take an inside look at the
65C816 processor and see what makes it go.

72

CHAPTER

In the Chips
Inside the 65C816 Microprocessor

-0 Ine major component that sets the Apple IIe' apart from earlier
members of the Apple II family is the 65C8l6 central processing
unit, or CPU. The 65C8l6, as noted in chapter 1, is a 16-bit chip

that runs almost three times as fast as the 6502 and 65C02 processors in earlier
Apple lIs.

The 65C8l6 has other advantages over its 8-bit predecessors. Because
of its 16-bit data-handling capacity, programs written for the 65C8l6 are 25
to 50 percent shorter than programs written for earlier 6502-style processors.
The 65C816 can also address far more memory than any of its 8-bit coun-
terparts.

In this chapter and in chapter 6, you see how the 65C8l6 does all those
things and what its advanced features mean to the Apple Ilos programmer.
The instruction set of the 65C816 is described in appendix A.

All iin the (6502) Family
The 65C8l6 is a member of the venerable 6502 family of microprocessors.
The first Apple II, built in 1977, was designed around a 6502 chip. Since
then, various models of the 6502 have been built into every computer in the
Apple II line. The CPU in the Apple lIe was a slightly improved 6502 called
the 6502B. The Apple IIc was built around a further expanded 6502 called
a 65C02. The 65C02 is equipped with 27 more assembly language instructions

73

Fundamentals of IIGS Programming

than the original 6502, plus an expanded set of addressing modes. A few
months after the 65C02 appeared in the Apple Ilc, it became standard equip-
ment in the Apple lIe.

Apple is not the only manufacturer that has used 6502 chips in its
products. The Commodore 64's CPU is a 6502-style chip called the 6510,
and the Commodore 128 runs on a version of the 6502 called an 8502. Atari
still uses 6502 chips in its line of 8-bit computers. Because of their versatility,
availability, and low price, 6502-family chips have been widely used in stan-
dalone configurations in the fields of robotics and computer-aided manufac-
turing.

There are a number of important differences between the 65C816 and
all its 6502 predecessors, including the original 6502 and the 65C02. For
example:

• The 65C816 is the first 16-bit chip in the 6502 family. It can
perform calculations on 16-bit values-numbers ranging from 0 to
65,535-without dividing them into smaller numbers as its
predecessors had to do.

• All previous 6502-family chips had 16-bit address buses. Therefore,
they could address memory locations ranging from $0000 to $FFFF,
or from 0 to 65,535 in decimal notation. But the 65C816 has a 24-
bit address bus, so it can address up to 16 megabytes of memory
(although only 8.25 megabytes of its RAM addressing capability are
utilized by the Apple Ilos).

• The 65C816 has nine internal registers, three more than its predeces-
sors. In this chapter, you'll examine all nine of the 65C816's
internal registers.

• The 65C816 operates at a clock speed of 2.8 MHz, compared with a
clock speed of 1.024 MHz for all previous members of the 6502
family.

• The 65C816 recognizes 9 new addressing modes and 78 new
machine language opcodes. Thus, it can do more with less code than
its 8-bit predecessors.

• The 65C8l6 can be operated in two modes: in native mode as a full-
featured 16-bit chip and in an emulation mode as a 65C02. The
processor's emulation mode makes the Apple Ilos compatible with
earlier Apple lIs.

Inside the 65C816
The most important components of the 65C8l6 are illustrated in figure 5-1 .
They include:

• A 16-bit data bus
• A 24-bit address bus
• Nine internal registers

74

5-ln the Chips

• An arithmetic and logic unit, or ALU

In this chapter, you'll examine these components in detail, beginning with
the 65C816's data and address buses.

Buses The rectangles across the top and bottom of figure 5-1 represent buses, lines
used for the transmission of addresses, instructions, and data. The bus at the
top of the illustration is a data bus, and the one at the bottom is an address
bus.

Data buses are quite appropriately named; they move data between the
registers in the CPU and the memory registers in a computer's RAM and
ROM. An address bus transmits the addresses that data is being moved from
and to.

When the 65C816 is operated in 8-bit emulation mode, it has an 8-bit
data bus and a 16-bit address bus. It can perform operations on numbers
ranging from $00 to $FF (0 to 255 in decimal) and can access memory
addresses ranging from $0000 to $FFFF (0 to 65,535 in decimal).

When the processor is running in native mode, it has a 16-bit data bus
and a 24-bit address bus. It can perform operations on numbers ranging from
$0000 to $FFFF (0 to 65,535 in decimal) and can access memory addresses
ranging from $000000 to $FFFFFF (0 to 16,772,215 in decimal).

Internal
Registers

As mentioned, the 65C816 has nine internal registers. They are the

• Accumulator
• X register
• Y register
• Program counter
• Stack pointer
• Processor status register

SYSTEM
CONTROL

Figure 5-1
Simplified block diagram of the 65C816

75

Fundamentals of IIGS Programming

• Data bank register
• Program bank register
• Direct page register

Three of the 65C816' s registers-the data bank register, program bank
register, and direct page register-handle the extended addressing functions
of the 65C816 and are initialized to 0 when the chip is in emulation mode.
But when the 65C816 is in native mode, all nine of its internal registers are
active.

Figure 5-2 shows how the 65C816's registers are used when the chip
is in native mode. Figure 5-3 shows the configuration of the registers when
the 65C816 is in emulation mode. Now let's examine each register, in both
native mode and emulation mode.

Accumulator

The accumulator (abbreviated A or C) is a 16-bit register divided into two 8-
bit registers when the 65C816 is in emulation mode. When the 65C816 is in
native mode, the accumulator is referred to as the A register. But when the
register is split for emulation mode operations, its low-order byte is abbre-
viated A, its high-order byte is abbreviated B, and the register as a whole is
abbreviated C. The accumulator is the 65C816's busiest register. You'll take
a closer look at it later in this chapter.

ACCUMULATOR (A OR C)
1 1 [I 1 1 I [1 I 1

DBR (B)

I I \ I I I I I
(00)

1010[0101010[0101

PBR (K)

I I I I I
(00)

1010101010[010101

I I

I I I
BITS

x
I I I I

y

I 1 [

s
1 [

P

I 1 1 1 I I 1 1 1 1

D
[I I

Figure 5-2
65C816 register configuration in native mode

76

5-ln the Chips

ACCUMULATOR
I $ 1 I I 1 I A I I I I
(00) x

10101010101010101 I 1 I I I
(00) Y

10101010101010101 1
DBR (B)
I I I I I

(00) (01) 8
10\01010101010\0101010101010\011 I I I I

P
Inlvl-Ibldl i Izlcl
PC

IpCH! I I ! I Ip¢L! I j I
PBR (K)
I 1 I I I

(00)
10101010101010101 I I I

BIT8

D
I I I

Figure 5-3
65C816 register configuration in emulation mode

X Register

The X register (abbreviated X) is an 8-bit register when the 65C816 is in 8-
bit emulation mode, but expands into a 16-bit register when the processor is
in 16-bit native mode. In the 65C816, as in other 6502-family processors,
the X register is often used for the temporary storage of data. But it also has
an important special feature. It can be incremented with a simple I-byte
assembly language instruction (i nx) and decremented with another I-byte
instruction (dex). It is therefore used quite often as a counter and as an index
register during loops in programs.

Y Register

The Y register (abbreviated Y) is also an 8-bit register when the 65C816 is
in 8-bit emulation mode and expands to a l o-bit register when the processor
is in 16-bit native mode. The Y register, like the X register, can be incremented
and decremented with a pair of I-byte instructions (i ny and dey). The Y
register is also used as an index register and for storing data.

77

Fundamentals of IIGS Programming

Program Counter

The program counter (abbreviated PC) is a pair of 8-bit registers. In both
emulation mode and native mode, these two registers are combined and used
as one l6-bit register.

The two 8-bit registers that make up the program counter are sometimes
referred to as the program counter low (PCL) register and the program counter
high (PCH) register. During native mode operations, the contents of the PCL
and PCH registers are appended to the value of another 8-bit register called
the program bank register. The combined contents of all three registers are
then treated as a single 24-bit address. You'll learn more about the program
bank register later in this chapter.

It is important to remember that the program counter (and the program
bank register, if the 65C816 is running in native mode) always contains the
memory address of the next instruction to be executed. When that instruction
is carried out, the address of the instruction that follows it is loaded into the
program counter.

Stack Pointer

The stack pointer (abbreviated S or SP) is a register that always contains the
address of the next available memory address in a block of RAM called the
stack. It is an 8-bit register in emulation mode and a 16-bit register in native
mode. As you may recall from chapter 2, the 65C816 stack is a special block
of memory in which data is often stored temporarily during the execution of
a program. When the 65C816 is in emulation mode, the stack is always on
page I in bank $00 (unless a soft switch shifts it to bank $01), so the stack
pointer has to be only I byte long. But in native mode the stack can start
anywhere in bank $00, so the stack pointer has to be 2 bytes long.

When subroutines are used in assembly language programs, the 65C816
often uses the stack as a temporary storage location for return addresses. The
stack is also available for use in application programs. The operation of the
stack is discussed in more detail in chapter 6, which is devoted to 65C816
addressing.

Processor Status Register

The processor status register (often called simply the status register, but ab-
breviated P) is an 8-bit register that keeps track of the results of operations
performed by the 65C8l6. The processor status register is such an important
part of the 65C8l6 processor that you'll take a closer look at it later in this
chapter.

Program Bank Register

The program bank register (abbreviated PBR or K) is an 8-bit register ini-
tialized to 0 when the 65C816 is in 8-bit emulation mode. When the processor
is in native mode, however, the program bank register becomes very impor-
tant. In native mode, every time the 65C816 has to get an instruction from
memory, it gets it from the location pointed to by the concatenation of the

78

5-ln the Chips

program bank register and the program counter. So, when the 65C816 is in
native mode, it uses the program bank register to extend the addressing ca-
pability of the program counter to 24 bits.

Because of the hybrid nature of the 65C816, it is not quite accurate to
view the program counter and the program bank register as a single register.
Sometimes they do work as one register, but more often they don't. Most of
the instructions the 65C816 inherited from the 6502 use the address stored in
the program counter, but ignore the bank number stored in the program bank
register. In other words, they recognize only short addresses. But there are
a few new or redesigned instructions that do treat the PC and the PBR as one
24-bit register. In other words, they recognize long addresses.

Instructions that recognize only short addresses work fine in programs
written for the native mode 65C816; they just can't cross bank boundaries.
That usually doesn't cause any serious problems in IIos programs because a
IIos program segment can't cross a bank boundary. If it tries, the program
counter simply rolls over to memory address $0000 in whatever bank the
segment started in. For example, if the program counter increments past
$FFFF, it rolls over to $0000 without incrementing the program bank register.

Instructions that recognize long addresses are a little easier to work
with. You can move them from any address to any other address, without
worrying about bank boundaries. Unfortunately, there are only five such in-
structions: j mp (when it is used to jump to an absolute long or indirect long
address), j s l (jump to subroutine-long), rt l (return from subroutine-
long), brl (branch to long address), and rti (return from interrupt).

Because the program bank register always contains the bank number of
the program currently being executed, there is no assembly language instruc-
tion for changing the value of the PBR. But there is an instruction- phk-
that pushes the value of the PBR onto the stack so that it can be pulled off
the stack and into another register. More information on that topic is provided
in chapter 6.

Data Bank Register

The data bank register (abbreviated DBR or B) is an 8-bit register that is
initialized to 0 when the 65C816 is in 8-bit emulation mode. When the 65C8l6
is in native mode, the DBR designates the bank currently being used as a
data bank by instructions that read and write data.

Usually, the data bank register and the program bank register contain
the same bank number, because assembly language programs are ordinarily
stored in the same bank as the data they access. But sometimes it is more
convenient to store a program in one bank and place a long data segment,
such as a bit map, in another. The value of the data bank register can be
changed temporarily to permit access to the bit map.

The data bank register works much like the program bank register. When
the 65C816 is in native mode and an instruction for fetching or storing data
is used with a 16-bit operand, the address specified by the operand is con-

79

Fundamentals of IIGS Programming

catenated with the value of the data bank register to form a 24-bit address.
For example, if a program is running in bank $06, and the 65C816 enounters
the instruction

lda $FEFO

the accumulator is loaded with the contents of memory address $06FEFO.
There are ways to force the 65C816 to access addresses in other banks with
instructions such as lda, but you won't get into that subject until chapter 6.

The data bank register can be accessed with the instructions phb and
p lb. The phb instruction pushes the address of the DBR on the stack. The
p l b instruction can be used to pull a value off the stack and place it in the
data bank register. These operations are explained in more detail in chapter 6.

Direct Page Register

An area of memory called page 0 is a very valuable piece of real estate
in the memory map of pre-os Apple lIs. In the Apple IIc and the Apple lIe,
page 0 extends from memory address $00 to memory address $FF in bank
$00 or bank $01 (depending on the soft switch settings), and can therefore
be accessed with a I-byte operand. So instructions that address memory
locations on page 0 run faster than they would if they accessed locations
elsewhere in memory.

That is not the only reason that space on page 0 is so valuable. Some
65C02 addressing modes, called indirect addressing modes, require their op-
erands to be page 0 addresses. As a result, space on page 0 is at a real premium
in 8-bit Apple lIs.

In programs written for the Apple IIos, however, page 0 is no longer
the high-rent district. With the help of a new 16-bit register called the direct
page register (abbreviated D), a Ilos programmer can move what was once
called page 0 to any 256-byte area of memory in bank $00 that begins on a
byte boundary. Because it has become a moveable page in the Apple Ilos, it
is no longer called page 0, but is referred to as the direct page.

When you want to instruct the Ilos to use a given page as a direct page,
all you have to do is place the starting address of the direct page of your
choice in the direct page register. You can even give different segments in a
program different direct pages, so that a direct page used by one part of a
program doesn't conflict with the direct page used by another.

There are two instructions for accessing the direct page register: phd,
which pushes the value in the direct page register on the stack, and p ld,
which pulls a value off the stack and places it in the direct page register.
More details about these instructions and direct page addressing are provided
in chapter 6.

80

5-ln the Chips

The Arithmetic and Logical Unit
The arithmetic and logical unit, or ALU, is a component that can perform
arithmetic and logical operations on data stored in a computer. It does its
work with the help of the 65C8l6' s busiest internal register, the accumulator.

As you shall soon see, the 65C8l6 wouldn't be much of a micropro-
cessor if someone took away its accumulator. Every time the 65C816 is called
upon to perform an operation on a value, the value first has to be placed in
the accumulator.

The accumulator does its work with the help of another very busy
component, the ALU. Every time the Ilos performs a calculation or a logical
operation, the ALU is where the work is actually done.

The ALU performs only two kinds of calculations: addition and sub-
traction. The ALU solves division and multiplication problems by sequences
of addition and subtraction operations.

Another job of the ALU is to compare values. But as far as the 65C816
chip is concerned, the comparison of two numbers is also an arithmetic op-
eration. When the 65C8l6 chip compares two values, it subtracts one value
from the other. Then, by merely checking the results of this subtraction, it
can determine whether the subtracted value is more than, less than, or the
same as the value it was subtracted from.

As figure 5-1 illustrates, the ALU is often depicted in diagrams as a
V-shaped hopper. The ALU has two inputs (traditionally illustrated as the
two arms of the hopper) and one output (represented as the bottom of the V).
When two numbers are added, subtracted, or compared, one number is placed
in the ALU through one of its inputs and the other number is put in through
the other input. The ALU then carries out the requested calculation and puts
the answer on a data bus so it can be transported to another register.

Here's a more detailed look at what happens inside the accumulator and
the ALU when two numbers are added, subtracted, or compared. First, a
number is stored in the 65C816' s accumulator. Next, the accumulator deposits
that number in the ALU through one of the ALU's inputs. The other number
is placed in the ALU through its other input. Then the ALU carries out the
requested calculation, and the result of the calculation finally appears at the
output of the ALU. As soon as the answer appears, it is placed in the ac-
cumulator, where it replaces the value originally stored there.

Listing 5-1, a tiny assembly language program titled ADDNRS. S,
shows how this process works.

Listing 5-1
ADDNRS.S program, version 1

Lda #2
adc #2
sta $8000

The first statement in the ADDNRS.S program, Lda #2, means load

81

Fundamentals of IIGS Programming

the accumulator with the literal number 2. As you may recall from chapter
I, the # in front of the numeral 2 means the 2 is interpreted as a literal
number. If there were no #, the 2 would be interpreted as the address of a
memory register.

The second instruction in the listing, adc, means add with carry. In
65C816 arithmetic, the addition of two numbers often results in a carry from
a low-order word to a high-order word (or from a low byte to a high byte if
the processor is in emulation mode)-in much the same way that you carry
numbers from one column to another in ordinary pencil-and-paper addition.
If there was a carry in the ADDNRS.S program, the adc instruction would
be able to handle it. Later in this chapter you'll find out how. But in this
addition problem, there is no number to be carried, so the adc instruction
only adds 2 and 2.

When the statement adc #2 is executed, the 2 that has been loaded
into the accumulator is deposited into one of the ALU' s inputs. The instruction
ad c #2 is placed in the ALU's other input. The ALU then carries out this
instruction; it adds 2 and 2, and places the sum back in the accumulator.

Now you're ready for the third and last instruction in the ADDNRS.S
program. The numbers 2 and 2 have been added, and their sum is now in the
accumulator. The instruction in line 3, s t a, means store the contents of the
accumulator (in the memory address that follows). Because the accumulator
now holds the value 4 (the sum of 2 and 2), the number 4 will be stored
somewhere.

The memory address that follows the instruction s t a is $8000-the
hexadecimal equivalent of the decimal address 32768. So it appears that the
number 4 will be stored in memory register $8000.

Now take a close look at the operand in line 3: the hexadecimal number
$8000. There is no # in front of the value $8000, so the APW assembler
will not interpret it as a literal number. Instead, $8000 is interpreted as a
memory address-which is what a number has to be in assembly language
if it is not designated as a literal number and carries no other identifying
labels.

(Incidentally, if you want the assembler to interpret $8000 as a literal
number, you have to write #$8000. When # and $ both appear before a
number, the number is interpreted as a literal hexadecimal number. If the
third line of the program was sta #$8000, however, there would be a syntax
error. That's because sta is an instruction that must be followed by a value
that can be interpreted as a memory address-not by a literal number.)

The Processor Status Register
The processor status register (P) is built differently from the other registers
in the 65C816 and is used differently, too. Unlike the 65C816's other registers,
the processor status register isn't designed for storing or processing numbers.
Instead, its 8 bits are flags that keep track of several kinds of important
information. Figure 5-4 shows the layout of the processor status register.

As illustrated in figure 5-4, the processor status register can be visu-

82

5-ln the Chips

alized as a rectangular box containing eight square compartments, with a ninth
and tenth compartment sitting on top. (More about those later.) Each of the
lower compartments in figure 5-4 represents one of the register's 8 bits. If
a bit has the binary value 1, it is set. If it has the binary value 0, it is reset,
or clear.

The bits in the 65C816 status register-like the bits in all 8-bit regis-
ters-are customarily numbered from 0 to 7. By convention, the rightmost
bit in an 8-bit register is referred to as bit 0, and the leftmost bit is referred
to as bit 7.

The P Register
Flags at a
Glance

Now let's look briefly at each of the P register's ten flags. Then the operation
of each flag is described in greater detail.

Status Flags

Four of the processor status register's eight bits are called status flags. They

xce INSTRUCTION SWAPS FLAGS

IF e= 1,
INDEX REG.
SELECT (x) FLAG 0= 16 BIT X AND Y REGISTERS

1 =8-BIT X AND Y REGISTERS

IF e=O,
BREAK (b) FLAG 0 = HARDWARE INTERRUPT

1 = BREAK CAUSED BY SOFTWARE
INTERRUPT

CARRY 0 = NO CARRY
1 = CARRY

ZERO 0 = NONZERO RESULT
1=ZERO RESULT

IRQ DISABLE 0 = NOT DISABLED
1= DISABLE

DECIMAL MODE 0= BINARY
1=BCD

b IF e= 1
x IF e=O

EMULATION BIT 0 = NATIVE MODE
1= EMULATION MODE

ALWAYS 11Fe=1

MEMORY/ACC.
SELECT 0 = 16-BIT ACCUMULATOR AND MEMORY

1=8-BIT ACCUMULATOR AND MEMORY

OVERFLOW 0 = NO OVERFLOW
1 = OVERFLOW

NEGATIVE 0 = POSITIVE
1= NEGATIVE

{

ibl
Inlvlmlxldl i Izlcl

L

[

Figure 5-4
Processor status register

83

Fundamentals of IIGS Programming

keep track of the results of operations carried out by the other registers inside
the 65C816 processor.

• Bit 0: carry (c) flag. In arithmetic operations, the carry flag deter-
mines whether a number will be carried from one 16-bit integer to
another (if the 65C816 is in native mode) or from one 8-bit byte to
another (if the 65C816 is in emulation mode).

• Bit 1: zero (z) flag. Novice programmers often get confused about
the way this flag works; it does the opposite of what you might
expect. When the result of a calculation is 0, the zero flag is set.
When the result of a calculation is not 0, the zero flag is cleared.

• Bit 6: overflow (v) flag. This bit determines if there has been a
carry, or overflow, to the leftmost bit in a byte or word as the result
of a calculation involving signed numbers.

• Bit 7: negative (n) flag. If the result of a calculation is negative, this
flag is set. If the result of a calculation is not negative, the flag is
cleared.

Condition Flags

The other four bits in the processor status register are called condition flags.
They determine if certain conditions exist with respect to the configuration
of the I1GS or the operation of a program.

• Bit 2: IRQ disable (i) flag. If the IRQ (interrupt) disable flag is set,
interrupts are disabled. If it is clear, they are enabled.

• Bit 3: decimal mode (d) flag. If the decimal flag is set, the 65C816
performs addition and subtraction operations in binary coded decimal
(BCD) mode. If it is clear, the processor will add and subtract in its
normal binary mode.

• Bit 4: index register select (x) flag. This flag, together with the e
flag (described in a moment), determines whether the 65C02 treats
its X and Y registers as 8-bit or 16-bit registers.

• Bit 5: memory/accumulator select (m) flag or break (b) flag. When
the 65C816 is in emulation mode, bit 5 is a break flag and can be
read following an interrupt to determine whether the interrupt was
hardware generated or software generated. When the 65C816 is in
native mode, however, it doesn't need a break flag because a set of
interrupt vectors make a break flag unnecessary.

Because a break flag is not needed in native mode operations,
bit 5 of the P register is free to be used for another purpose when
the 65C816 is in 16-bit mode. During native mode operations, bit 5
is called the memory/accumulator select flag and is used to deter-
mine whether the accumulator and the I1GS' s memory registers are
treated as 8-bit or 16-bit registers.

84

Toggling
Between Native
and Emulation

Mode

5-ln the Chips

The processor status register also has a tenth flag. The emulation (e) flag
determines whether the 65C8l6 will operate in native mode or emulation
mode. Because the P register contains only eight bits, the e flag is a "hanging
bit" that shares bit 0 with the carry (c) flag. Normally, bit 0 is a carry flag,
but a special assembly language instruction-xce-exchanges the positions
of the two flags, placing the e flag in bit 0 and making the c flag the hanging
bit. The e flag can then be set or cleared using the mnemonics sec (set carry)
and c lc (clear carry). After the e flag is set or cleared, the xce mnemonic
can switch the e flag and the c flag back to their original positions. As you
may have guessed by now, there are some significant differences between the
way the 65C8l6 works in native mode and in emulation mode. Switching the
65C816 back and forth between native mode and emulation mode can be a
tricky business. It involves three P register flags-the e, m, and x flags-
and setting them so they work together is an important part of 65C8l6
programming. Here are some handy facts and tips about the e, m, and x flags.

Emulation Flag

The e (emulation) flag of the processor status register determines whether the
65C816 will operate as a full-featured 16-bit chip or as an 8-bit 65C02 chip.
When the e flag is set to I, the 65C816 processor is in emulation mode and
works exactly like the 65C02 chip in the Apple IIc and later models of the
Apple lIe. For example, when the 65C816 is in emulation mode

• It uses an 8-bit accumulator, 8-bit X register, 8-bit Y register, and 8-
bit stack pointer.

• It can address only one 64K bank of memory-either bank $00 or
bank $0 I, depending upon soft switch settings.

• It uses page $00 as page 0, and it uses page $01 as the stack.
• To perform arithmetic and logical operations on numbers greater
than 8 bits (numbers greater than 255), it must break them into
smaller increments.

• When it receives an instruction to fetch data (for example, lda), it
fetches I byte of data at a time, from just one memory location.
When it receives an instruction to store data (for example, sta), it
stores I byte of data at a time, in just one memory location.

When the e flag is cleared to 0, the 65C816 goes into native mode.
Then it becomes a 16-bit chip, with these characteristics:

• Its accumulator, X register, and Y register are expanded into 16-bit
registers.

• Its program bank register and data bank register are activated, giving
the capability of addressing up to 16 megabytes of memory
(although only 8.25 megabytes of memory are available in the Apple
IIos).

• Its stack pointer is expanded into a 16-byte register, providing it

85

Fundamentals of IIGS Programming

with the capability of using a stack situated anywhere within bank
$00, not limited to a memory capacity of 256 bytes.

• Its direct page register is activated, providing it with the capability
of placing its direct page (the equivalent of a page 0) anywhere in
bank $00.

• It becomes capable of carrying out arithmetic and logical operations
on 16-bit numbers (numbers ranging from 0 to 65,535) without
breaking them into smaller increments.

• When it receives an instruction to fetch data (for example, Lda), it
fetches 2 bytes of data at a time, from two consecutive memory
locations. When it receives an instruction to store data (for example,
sta), it stores 2 bytes of data at a time, in two consecutive memory
locations.

As explained, the e flag can be set and cleared using the instructions
xc e, sec, and c Lc. There are also APW commands and macros that perform
the same actions. You'll learn more about those in chapter 7 and later chapters.

Memory/Accumulator Flag

When the 65C816 is running in emulation mode-that is, when the P register's
e flag is set-the 65C816 accumulator is always 8 bits wide. But when the
processor is running in native mode-that is, whenthe P register's e flag is
clear-the width of the accumulator can be set to either 8 bits or 16 bits,
depending upon the setting of the P register's m (memory/accumulator) flag.

When the 65C816 is in 8-bit mode and the accumulator is 16 bits wide,
its low-order bit is the A register, its high-order bit is the B register, and both
bytes combined are sometimes referred to as the C register. When the ac-
cumulator is configured in this fashion, the accumulator's B register becomes
an extra 65C816 register in which 8-bit values can be stored.

Here's how the B register works. When the 65C816 is switched from
16-bit mode to 8-bit mode, the accumulator's high-order bit becomes the B
register, and any value that was there remains there. Any time thereafter, a
new 65C816 instruction, xba, can exchange the values of the A and B reg-
isters. No other 65C816 instruction affects the B register. As long as the
65C816 remains in 8-bit mode, the "hidden" B register can be used as a safe
storage space for any 8-bit value.

Here, in summary, is the formula for setting the width of the accu-
mulator. If e = 1, the 65C816 is in emulation mode and the accumulator is 8
bits wide. If e = 0 and m = 0, the 65C816 is in native mode, the accumulator
is 16 bits wide, and the accumulator always addresses memory 2 bytes at a
time. But if e=O and m= 1, the 65C816 is in native mode, the accumulator
is 8 bits wide, and the accumulator always addresses memory 1 byte at a
time.

When the 65C816 is in native mode and the m flag is used to shorten
the accumulator to 8 bits, the data stored in the B register (the accumulator's
high byte) simply stays there. Because the 65C816 does not use the B register
during 8-bit operations, the data remains there, untouched, until it is moved

86

5-ln the Chips

into the lower 8 bits of the accumulator using the xba instruction or until the
accumulator is switched back into l6-bit mode.

Ifyou're wondering why anyone would want to use an 8-bit accumulator
in l6-bit mode, there's a simple answer. For example, when you need to read
a string of l-byte ASCII characters stored in a block of memory, it's desirable
to fetch them and process them 1 byte at a time. Similarly, it's sometimes
desirable to write a series of l-byte values into memory. An 8-bit accumulator
can often perform jobs like that more easily and conveniently than a l6-bit
accumulator.

The m flag is set using the assembly language mnemonic sep , which
stands for set status bits. To use the instruction, just follow it with a l-byte
value that has a set bit in the position corresponding to the bit in the P register
you want to set. You don't have to do any bit masking because zeros in the
operand have no effect on their corresponding bits. Because the P register's
m flag is bit 5 when the 65C8l6 is in native mode, you set it with the statement

sep %00100000

or

sep #$20

which means the same thing.
The m flag is cleared with the instruction rep, which stands for reset

status bits. rep works like sep, but in reverse. Give it an operand with a
bit set, and it clears the corresponding bit in the P register, without affecting
any bits that correspond to zeros in the operation. You could therefore clear
the P register's m flag with the statement

rep %00100000

or

rep #$20

It is easier to set and clear the m flag with APW directives and macros.
You'll see how those methods work starting in chapter 7.

Index Register Select Flag

When the 65C8l6 is running in emulation mode-that is, when the P register's
e flag is set-the 65C8l6's X and Y registers (like its accumulator) are always
8-bit registers. But when the processor is running in native mode-that is,
when the P register's e flag is clear-the widths of the X and Y registers (like
the width of the accumulator) can be set to either 8 bits or 16 bits, depending
upon the setting of the P register's index register select (x) flag.

The x flag sets the width of both the X register and the Y register. The
formula for using it is much like the formula for setting the width of the

87

Fundamentals of lles Programming

accumulator. If e = I, the 65C816 is in emulation mode and its X and Y
registers, like its accumulator, are 8-bit registers. If e=O and x=O, the
65C816 is in native mode and the X and Y registers are 16-bit registers that
always access memory 2 bytes at a time. But if e = 0 and x = I, the 65C8l6
is in native mode and the X and Y registers are 8-bit registers that always
address memory I byte at a time.

The X and Y registers can be placed in 8-bit mode for the same reason
that the accumulator can be turned into an 8-bit register. For example, when
you need to read a string of I-byte ASCII characters stored in a block of
memory, it's desirable to access them using the X register or the Y register.
And when the accumulator is in 8-bit mode, it's usually a good idea to shorten
the X and Y registers, too, because it's easier to keep track of registers that
are the same length.

One note of caution should be mentioned regarding the use of the x
flag. When it is used to reduce the size of the X and Y registers to 8 bits,
the contents of their high-order bytes are lost. So before you slice the X and
Y registers in half, be sure to save the values of their high bytes if you want
to use them later.

The x flag, like the m flag, can be set using the assembly language
mnemonic sep. Because the P register's x flag is bit 4, it can be set with the
statement

sep %00010000

or

sep #$10

which means the same thing.
The x flag, like the m flag, can be cleared with the rep instruction:

rep %0001100000

or

rep #$120

APW directives and macros make it easier to set and clear the x flag.
They are covered starting in chapter 7.

A Closer Look
at the P

Register's Flags

88

Now, as promised, let's take a closer look at each bit, or flag, in the processor
status register.

Carry Flag

As pointed out in chapter 2, the 65C816 cannot perform arithmetic operations
on numbers longer than 16 bits (greater than 65,535) without dividing them
into smaller numbers. When the 65C816 chip is in 8-bit emulation mode, its

5-ln the Chips

arithmetic capabilities are reduced even further. In emulation mode, when
you need to perform an operation involving a number greater than 255-or
even a calculation with a result greater than 255-each number greater than
255 must be broken down into smaller numbers. When the calculation is
completed, all numbers that have been split must be patched together before
they can be output in a form that makes sense to the user. When the 65C816
is in native mode, it can handle larger numbers. But when an arithmetic
operation involves the use of numbers greater than 65,535, they must be
broken down into smaller units even when the processor is running in 16-bit
mode.

This kind of mathematic "cutting and pasting," as you can imagine,
involves a lot of carrying (in addition problems) and borrowing (in subtraction
problems). The carry flag of the P register (bit 0) keeps up with all of this
carrying and borrowing.

It is therefore considered good programming practice to clear the carry
flag prior to an addition operation and to set the carry flag prior to a subtraction
operation. If you don't do this, your calculations may be thrown off by the
leftover results of previous calculations. The assembly language instruction
to clear the P register's carry bit is e Le, which stands for clear carry. The
instruction to set the carry bit is see, which stands for set carry.

Here's how the carry bit works in 6502/65C816 addition and subtraction
operations. Before a multiprecision addition problem (one that requires the
use of more than one word) is performed in 65C816 assembly language, the
carry flag of the P register is customarily cleared using e Le. Then the low-
order words of the two numbers (or the low-order bytes, if the 65C816 is in
emulation mode) are added. If this operation results in a carry to a high-order
word (or byte), the 65C816 automatically sets the carry flag. Then, when the
high-order words (or bytes) of the two numbers are added, the chip auto-
matically adds the value of the carry flag. If the carry flag holds a 0, there
is no carry. If it holds a I, there is a carry, and the result of the operation is
correct.

Because it is recommended that the carry flag be cleared before any
addition operation, the ADDNRS.S program in listing 5-1 can be improved
as shown in listing 5-2. Preceding the addition operation with the e Le in-
struction clears the carry bit, ensuring that no unwanted carry is included in
the operation. You'll see more examples of how the carry bit works in addition
problems later in this book.

Listing 5-2
ADDNRS.S program, version 2

cLe
Lda #2
ade #2
sta $8000

The carry flag is also used in subtraction problems, but in the opposite
way from its use in addition problems. Before a subtraction operation, the
carry bit is usually set using see. Then, if the subtraction operation requires

89

Fundamentals of I/GS Programming

that a low-order word or byte borrow a number from a high-order word or
byte, the number needed is provided by the carry bit. The carry flag has other
uses, most of which are described in later chapters.

Zero Flag

When the result of an arithmetic or logical operation is 0, the status register's
zero flag (bit 1) is automatically set. Addition, subtraction, and logical op-
erations can all result in changes to the status of the zero flag. The zero flag
is often tested in programming loops that count down to 0 and to see if two
numbers are equal.

When you write routines that use the zero flag, it's important to re-
member one 6502/65C816 convention that may seem odd at first. When the
result of an operation is 0, the zero flag is set to I. When the result of an
operation is not zero, the zero flag is cleared to O. This convention is easy
to forget-and can trip you up if you aren't careful.

There are no assembly language instructions to clear or set the zero
flag. It's strictly a read bit, so instructions to write to it are not provided.

Interrupt Disable Flag

The Apple Ilos, unlike many earlier members of the Apple II family, supports
a wide variety of interrupts, instructions that halt all 6502/65C816 operations
temporarily so that more time critical operations can take place. Some inter-
rupts are called maskable interrupts because you can prevent them from taking
place by setting the interrupt disable flag (bit 2) of the processor status register.
Other interrupts are called nonmaskable interrupts because they are essential
to the operation of a computer and you can't stop them from taking place.

The most common reason for using the P register's interrupt disable
flag is to write a sequence of code that would not work properly if an interrupt
took place while the code is executed. For example, if a program is setting
up an interrupt and gets cut off in midstream by another interrupt, the whole
program might crash. The best way to keep this kind of disaster from hap-
pening is to set the interrupt disable flag, execute the sensitive segment of
code, and then clear the interrupt disable flag. That way, an unexpected
interrupt cannot come along and crash the program.

The assembly language instruction to clear the interrupt flag is eLi.
The instruction to set the interrupt flag is s e i . Examples showing how this
flag works are presented in later chapters.

Decimal Mode Flag

The 65C816 processor normally operates in binary mode, using standard
binary numbers. But the chip can also operate in binary coded decimal, or
BCD, mode. To put the computer in BCD mode, you have to set the decimal
flag of the 65C816 status register.

When the 65C816 is in BCD mode, it uses the same ten digits used in
the standard decimal system: the numbers 0 through 9. Because the hexa-

90

5-ln the Chips

decimal digits A through F are not used in the BCD system, they are not
recognized by the 65C816 when the IIGS is in BCD mode.

Table 5-1 shows how the IIGS converts the numbers a through 9 into
BCD numbers when the 65C816 is in BCD mode. It also shows the hexa-
decimal and binary equivalents of the decimal numbers a through 15.

As table 5-1 shows, the binary numbers 1010 through 1111, which
equate to the digits A through F in the hexadecimal system and 10 through
15 in the decimal system, are nt used when the 65C816 chip is in BCD mode.
Instead, the numbers 10 through 15 are written in the BCD system as the
separate digits 1 and athrough 1 and 5, just as they are in the standard decimal
system. For example, the number 13 is written in BCD as the binary equivalent
of 1 (0001) and 3 (0011). So, when the 65C816 is in BCD mode, it converts
the decimal values 11 through 15 into the binary numbers 0001 0000 through
0001 0101.

Because the binary numbers 101a through 1111 are not used in the BCD
system, it takes more memory to store numbers using BCD notation than it
does to store non-BCD binary numbers. In many applications (for example,
in floating-point arithmetic operations), a full byte of memory is used for each
decimal digit in a BCD number. When BCD notation is used in this way,
BCD numbers require even more memory.

Figure 5-5 shows how the decimal number 255 is stored in memory
as a BCD number if each digit in the number is expressed as an individual
byte. In comparison, figure 5-6 shows how the 65C816 chip stores the decimal
number 255 in memory if the BCD flag is not set.

As figures 5-5 and 5-6 illustrate, at the rate of one byte per digit, it
takes three times as many bytes to store the number 255 in BCD notation as

Table 5-1
BCD-to-Binary Conversion

Decimal Hexadecimal BCD Notation Binary Notation

0 0 0000 0000
I 1 0001 0001
2 2 0010 0010
3 3 0011 0011
4 4 0100 0100
5 5 0101 0101
6 6 0110 0110
7 7 0111 0111
8 8 1000 1000
9 9 1001 1001
10 A 00010000 1010
11 B 0001 0001 1011
12 C 00010010 1100
13 D 00010011 1101
14 E 00010100 1110
15 F 00010101 1111

91

Fundamentals of I/GS Programming

BCD NUMBER: 2 5 5
BINARY EQUIVALENT: 000000100000010100000101

Figure 5-5
Expressing a number in BCD mode

DECIMAL NUMBER: 255
HEXADECIMAL EQUIVALENT FF
BINARY EQUIVALENT 11111111

Figure 5-6
Expressing a number in binary mode

it does in binary notation. There are many applications in which BCD numbers
use even more memory. For example, when the 65C816 performs floating-
point arithmetic, extra bytes are usually required to indicate how many digits
are in the number, whether the number is positive or negative, and how many
decimal places are in the number.

In floating-point arithmetic-which is often used in "number-crunch-
ing" operations because of its high degree of accuracy-it could take six or
more binary numbers to express a three-digit decimal number. Figure 5-7
shows how the number 2.55 is expressed as a 6-byte BCD number. This
illustration shows only one of the many methods for converting decimal num-
bers into BCD numbers for use in floating-point operations.

In addition to using extra memory, BCD arithmetic is slower than binary
arithmetic. But because BCD numbers, like decimal numbers, are based on
10, they are also more accurate in arithmetic operations that use fractions and
decimal values. So BCD arithmetic is often used in programs in which ac-
curacy of calculations is more important than speed or memory efficiency.

Converting BCD numbers into decimal numbers is also easier than
converting standard binary numbers. So BCD numbers are sometimes used
in programs that require the instant display of numbers on a video monitor.

When the status register's decimal mode flag is set, the 65C816 chip
performs all its arithmetic using BCD numbers. You probably won't be using
much BCD arithmetic in your assembly language programs-at least not for

DECIMAL NUMBER: 2.55
FLOATING-POINT BCD: 0011001000000010 01010101

MEANING OF EACH BCD DIGIT

0011 (3): THE NUMBER HAS THREE DIGITS
0010 (2): DECIMAL POINT IS TO THE LEFT OF THE DIGIT 2
0000 (0): THE NUMBER IS POSITIVE (0001 WOULD MEAN NEGATIVE)
0010 (2): FIRST DIGIT (2)
0101 (5): SECOND DIGIT (5)
0101 (5): THIRD DIGIT (5)

Figure 5-7
A floating-point binary number

92

5-ln the Chips

a while-so you'll usually want to make sure that the decimal flag is clear
before the computer starts performing arithmetic operations.

The assembly language instruction that clears the decimal flag is e Ld.
The sed instruction sets it. The e Ld instruction is often used before arithmetic
operations take place to ensure that the 6502/65C816 chip has not been placed
and left in decimal mode. So a further improved version of the ADDNRS.S
program presented in listing 5-1 is shown in listing 5-3.

Listing 5-3
ADDNRS.S program, version 3

cLd
cLe
Lda #2
ade #2
sta $8000

Index Register Select Flag or Break Flag

Bit 4 of the processor status register is an index register select (x) flag when
the 65C816 is in native mode and a break (b) flag when the processor is in
emulation mode.

You have seen how bit 4 works in its role as an index register select
flag. Now you will take a brief look at how it is used in emulation mode, in
its capacity as a break flag.

When the assembly language instruction b r k halts a program and the
65C8l6 is in emulation mode, an interrupt is generated, the program halts,
and the b flag is set automatically. If an interrupt is hardware generated,
however, the b flag is not set.

The b r k instructions that result in the setting of the break flag are often
used by program designers during debugging. After a program is debugged,
any b r k instructions placed in the program for use during debugging are
usually removed. Other than the brk menmonic, there are no assembly lan-
guage instructions that set or clear the break flag.

Memory/Accumulator Select Flag

When the 65C816 is in native mode, bit 5 is the memory/accumulator select
flag (m), which we have discussed. In emulation mode and in pre-65C816
processors, bit 5 is not used.

Overflow Flag

The overflow flag, bit 6, detects an overflow from the next-to-leftmost bit to
the leftmost bit in a binary number. The overflow flag is used primarily in
addition and subtraction problems involving signed numbers. When the
65C816 microprocessor performs calculations on signed numbers, each num-
ber is expressed as a I5-bit value (or as a 7-bit value in emulation mode),
with the leftmost bit designating the number's sign. When the leftmost bit is

93

Fundamentals of IIGS Programming

used in this way, an overflow from the next-to-leftmost bit to the leftmost bit
can make the result of a calculation incorrect. So after a calculation involving
signed numbers is performed, the v flag is often tested to see whether such
an overflow has occurred. Then, if an unwanted overflow has occurred, you
can take corrective action.

The assembly language instruction that clears the overflow flag is c Lv.
The v flag is a read-only bit, so there is no specific instruction to set it.

Negative Flag

The negative flag, bit 7, is set when the result of an operation is negative and
cleared when the result of an operation is O. The negative flag is often used
in operations involving signed numbers. The negative flag also can be tested
to see whether one number is less than another number and used to detect
whether a counter in a loop has decremented past O. Other uses are discussed
in later chapters. There are no instructions to set or clear the negative flag;
it's strictly a read-only bit.

94

CHAPTER

The Right Address
The Addressing Modes of the 65C816

[1]' I n chapter 2, you saw the one-to-one correlation between assembly
language and machine language. For every mnemonic in an assem-
bly language program, there's a numeric machine language instruc-

tion that means the same thing.
In chapter 5, you saw that while that's the truth, it isn't quite the whole

truth. Most instructions in 6502/65C816 assembly language have more than
one equivalent instruction in machine language. For example, when the ad c
mnemonic is used in a nos program, it can be converted into 15 different
numeric instructions when it is assembled into machine language. To under-
stand why this is true, you need to know how to use addressing modes in
6502/65C816 assembly language.

In the world of assembly language programming, an addressing mode
is a tool for locating and using information stored in a computer's memory.
The 65C816 can access the memory locations in the nos in 24 ways; in other
words, it has 24 addressing modes.

In this chapter, you examine all 24 of the 65C816's addressing modes,
and you see how to use them in nos assembly language. First, though, let's
look at the 15ways that one mnemonic-adc-can be converted into machine
language. See table 6-1.

Later in this chapter, you'll examine all these addressing modes and
see how they work in assembly language programs. First, though, let's com-
pare the assembly language statements and the machine language statements
listed in table 6-1.

95

Fundamentals of IIGS Programming

Table 6-1
15 Ways to Address the adc Mnemonic

Assembly Machine
Language Language

Addressing Mode Statement Equivalent Bytes

Immediate adc #$03 6903 2
Direct adc $03 6503 2
Direct indexed with X adc $03,x 7503 2
Absolute adc $0300 60 00 03 3
Absolute indexed with X adc $0300,x 70 00 03 3
Absolute indexed with Y adc $0300,y 7900 03 3
Direct indexed indirect adc ($03,x) 61 03 2
Direct indirect indexed adc ($03),y 71 03 2
Direct indirect adc ($0300) 72 03 2
Stack relative indexed adc (3,S),y 7303 2
indirect
Stack relative adc 3,s 6303 2
Direct indirect long adc [$03] 6703 2
Direct indirect adc [$03],y 77 03 2
long indexed
Absolute long adc $030300 6F 0003 03 4
Absolute long indexed adc $030300,x 7F 00 03 03 4
with X

In the assembly language column, all 15 statements have the same
mnemonic, but each has a different operand. In the machine language column,
the statements have quite a different structure. There are 15 different opcodes,
but only three kinds of operands: the l-byte operand 03, the 2-byte operand
00 03, and the 3-byte operand 00 03 03.

This arrangement illustrates an important difference between assembly
language and machine language, a difference that you first observed in chapter
2. In 6502/65C816 machine language, addressing modes are distinguished by
differences in their opcodes. But in 6502/65C816 assembly language, the 24
available addressing modes can be identified by differences in their operands.

The Addressing Modes of the 65C816

Table 6-2 shows the 24 addressing modes recognized by the 65C816. As
you can see, they can be divided into five categories:

• Simple addressing
II Indexed addressing
• Indirect addressing

96

6-The Right Address

• Stack addressing
• Block move addressing

In this chapter, you'll examine these five addressing modes and all 24 of the
65C816's addressing modes.

Table 6-2
The 65C816's 24 Addressing Modes

Addressing Mode

Implied
Immediate
Absolute
Absolute long
Direct
Accumulator
Program counter relative
Program counter relative long

Addressing Mode

Absolute indexed with X
Absolute indexed with Y
Direct indexed with X
Direct indexed with Y
Absolute long indexed with X

Addressing Mode

Direct indirect
Direct indirect long
Absolute indirect
Absolute indexed indirect
Direct indexed indirect
Direct indirect indexed
Direct indirect long indexed

Addressing Mode

Stack
Stack relative
Stack relative indirect indexed

Addressing Mode

Block source bank, destination
bank

Simple Addressing
Example

rts
Lda #2
Lda $OCOO
Lda $030300
sta $FA
ine a (or ina)
bee LabeL
brL LabeL

Indexed Addressing
Example

Lda $OCOO,x
Lda $OCOO,y
Lda $FA,x
stx $FA,y
Lda $030300, X

Indirect Addressing
Example

Lda ($FA)
Lda [$FA]
jm L ($0300)
j sr ($0300,x)
Lda ($FA,x)
Lda ($FA),y
Lda [$03],y

Stack Addressing
Example

pha
Lda $30,s
Lda ($30,s),y

Block Move Addressing
Example

mvn 6,0

Identifier

#
a
al
d
Ace

rl

Identifier

a,x
a,y
d,x
d,y
al,x

Identifier

(d)

Id]
(a)
(a,x)
(d,x)
(d),y
Id],y

Identifier

r,s
(r,s),y

Identifier

xya

97

Fundamentals of IIGS Programming

Simple Addressing Modes
The 65C816 has the following simple adddressing modes:

• Implied addressing
• Immediate addressing
• Absolute addressing
• Absolute long addressing
• Direct addressing
• Accumulator addressing
• Program counter relative addressing
• Program counter relative long addressing

Listing 6-1, titled AddrDemo I, uses four addressing modes. They are
all simple addressing modes, but one of them-simple stack addressing-
can also be classified as a stack addressing mode (as it is in table 6-2). First
you'll examine each addressing mode in the AddrDemol program. Then you'll
see how each instruction in the program works and what the program does.

Listing 6-1
Addruernot program

** ADDRESSING DEMO #1: Four ki nds of addressi ng
*

KEEP AddrDemo1

Demo START

resuLt equ $2000

phk ; stack addressing
pLb ; stack addressing

Lda #$2200 ; immediate address
cLc ; impLied address
adc #$0022 ; immediate address
sta resuLt ; absoLute address

brk ; impLied address

END

The four addressing modes used in listing 6-1 are:

• Stack addressing
• Implied addressing

98

Stack
Addressing

6-The Right Address

• Immediate addressing
• Absolute addressing

Let's take a close look at each of these four addressing modes. Then,
with the help of some other short programs, you'll examine the rest of the
65C816's 24 addressing modes.

To understand how stack addressing works, it helps to know what a stack is.
A stack, sometimes known as a hardware stack, is an area of RAM that is
often compared with a stack of plates in a diner. When you place a value on
the stack, it "covers up" the value previously in the top position on the stack
and becomes the new top value on the stack. To get to the value that was
previously on top, you have to remove the value that was just added. Then
the value that was on the top of the stack before becomes the top value again.

This stacked plate analogy, as you shall see later in this chapter, is not
completely accurate. But we can use it to explain how stack addressing works
in the AddrDemol program.

In the AddrDemol program, stack addressing is used in the lines

phk
pLb

; stack addressing
; stack addressing

In these two lines, the value of the 65C816 program bank register is placed
on the stack. Then it is pulled off the stack and deposited in the 65C816 data
bank register.

The mnemonic in the first line, phk, means push the program bank
register on the stack. It does exactly what its name suggests. The mnemonic
in the second line, p Lb, means pull the top value off the stack and place it
in the data bank register. It does what its name implies, too.

When the phk and pLb instructions are used together at the beginning
of a program, as they are in AddrDemo I, they ensure that the program and
its data use the same 64K bank of memory. It is sometimes desirable-even
necessary-for a program to access data stored in another bank. On those
occasions, the value of the data bank register can be changed temporarily.
But most of the time, the program bank and the data bank should be the same.
If they aren't, instructions that fetch and store data-such as Lda and sta-
might try to access data in the wrong banks, causing crashes and other pro-
gramming catastrophes.

Using stack addressing to change the value of the data bank register is
indirect and inconvenient, but there's one good reason for it. It's the only
method the 65C816 instruction set provides.

Types of Stack Addressing

As table 6-2 shows, there are three major types of stack addressing: simple
stack addressing, stack relative addressing, and one complex form of stack
addressing called stack relative indirect indexed addressing. In the Addr-
Demo 1 program, the phk and p Lb instructions use simple stack addressing.
The other two kinds of stack addressing are covered later in this chapter.

99

Fundamentals of JIGS Programming

Mnemonics that use stack addressing are all I-byte instructions (which
means they don't have operands), and all but three-rts, rt l, and rti-
start with p. Some stack instructions push values onto the stack, some pull
values off the stack, and three-the three that begin with r-pull addresses
off the stack and use them as addresses to jump to.

Emulation Mode and Native Mode

There are some differences between the way stack addressing works when
the 65C816 is in 16-bit native mode and 8-bit emulation mode. For example,
in emulation mode, the stack pointer is always on page I and has only 256
addresses. But when the processor is in native mode, the stack can start at
any address in bank 0, and the length of the stack is limited only by the
amount of available RAM in that bank.

Another difference is that some instructions push only I byte onto the
stack in emulation mode, but all instructions push at least 2 bytes onto the
stack when the processor is in native mode. The differences between native
mode and emulation mode operations are described in table 6-3.

Table 6-3
Simple Stack Addressing Operations

Instructions

b r k, eo p (software interrupts)
irq, nmi, abort, res
(hardware interrupts)
rti
rts
rt l
pei
pea

per

pha, phb, phd, phk, php ,
phx, phy

pla, plb, pld, plp, plx,
ply

Operations

Push PBR, P, and PC onto the stack
Push PBR, P, and PC onto the stack

Pull P, PC, and PBR off the stack
Pull PC off the stack
Pull PC and PBR off the stack
Push a direct page word onto the stack
Push bytes 3 and 2 of the instruction
onto the stack; this is really a push im-
mediate instruction
Push onto the stack a value obtained by
adding the PC to the contents of bytes 3
and 2 of the instruction
Push register contents onto the stack.
(Number of bytes pushed varies, depend-
ing on the register pushed and the pro-
cessor mode.)
Pull the top element off the stack and
into the register. (Number of bytes pulled
varies, depending on the register pushed
and the processor mode.)

Implied
Addressing

Another kind of I-byte addressing-implied addressing-appears in these
two lines of the AddrDemol program:

100

de ; implied address

6-The Right Address

and

brk ; impLied address

In the implied addressing mode, the operand is not spelled out, but
merely understood, like the understood object of an intransitive verb in English
grammar. When you use implied addressing, all you have to type is the three-
letter assembly language instruction. Its syntax does not require (in fact does
not allow) the use of an expressed operand.

Immediate Two lines in the AddrDemol program use immediate addressing:
Addressing

Lda #$2200

and

adc #$0022

When immediate addressing is used in a 65C816 instruction, the operand
that follows the opcode mnemonic is a literal number-not the address of a
memory location. So in a statement that uses immediate addressing, # (the
symbol for a literal number) always appears before the operand.

When an immediate address is used in an assembly language statement,
the assembler does not have to peek into a memory location to find a value.
Instead, the value itself is placed directly into the accumulator. Then the
operation that the statement calls for can be immediately performed; in other
words, an immediate address forms the effective address of an operand.

When the 65C816 is in native mode and its accumulator and index
registers are in their 16-bit modes, every instruction that uses immediate
addressing has a 2-byte operand. But when the 65C816 is in emulation mode,
or when its accumulator and index registers are in their 8-bit modes, instruc-
tions that use immediate addressing have l-byte operands.

The immediate addressing mode is often used to create pointers, or
addresses that point to other address. For example, the following code segment
converts the address of a block of data called Pic t u r e into a pointer stored
in a variable called Pi cPtr:

Lda #<Pi cture
sta PicPtr
Lda #'Pi cture
sta Pi cPt r+2

This fragment of code uses two forms of addressing: immediate ad-
dressing and absolute addressing, which are covered in the next sections.
Absolute addressing uses an operand that specifies a memory location as its
effective address.

101

Fundamentals of IIGS Programming

In this code, the statements that use immediate addressing are lda
#<Pi cture and lda #'Picture. The statements that use absolute ad-
dressing are sta PicPtr and sta PicPtr+2.

This code loads the 24-bit address of the data segment Pic t u r e into
a pointer situated in a pair of memory addresses labeled Pi cPt rand
Pic Pt r + 2. If the fragment were encountered in an assembly language pro-
gram, it would load the 24-bit address of the data segment Pi cture into a
2-word pointer labeled Pi cPt r , depositing the low-order word of the address
in Pi cPt r and placing the high-order word in Pi cPt r + 2.

In this code, < and ' are special symbols recognized as directives by
the APW assembler. They are used as prefixes of the label Pi cture so that
the APW assembler will split the address of the data segment specified by
the label Pi cture into two 16-bit words. One word can then be loaded into
the pointer Pi cPt r , and the other can be loaded into Pi cPt r + 2.

When the APW assembler encounters the statement lda #<Pi cture,
it loads the 2 low bytes of the address of Pic t u r e into the pointer Pic Pt r .
When it reaches the statement l da #' Pic t u r e , it loads the 2 high bytes of
the address of Pic t u r e into Pic Pt r + 2 . The full address of the data segment
Pi cture is stored, in the 65C816's typicallow-byte-first format, in the two
memory addresses labeled Pic Pt rand Pic Pt r + 2. For example, if the
address of the data block Pic t u r e is $E12000, the value $2000 (the low
word of the address) is stored in Pic Pt r, and the value $OOE1 (the high
word of the address) is stored in Pic Pt r + 2 .

The symbol < in the statement lda #<Pi cture is optional. It can be
eliminated, as it is in these lines of code:

lda #Pi cture
sta PicPtr
lda #' Pi cture
sta Pi cPt r+2

Absolute One line in the AddrDemol program uses absolute addressing:
Addressing

staresult ; absolute address

In this line, the word resu l t is a symbolic label defined previously in the
program:

resu l t equ $2000

So the symbolic label resu l t in the statement

sta resu l t

stands for the hexadecimal value $2000.

102

How the
AddrDemo1

Pro gram Works

6-The Right Address

If this line was written as

sta#resuLt

the APW assembler would assemble the value $2000 into a literal number,
and the addressing mode used in the statement would be immediate addressing.

In this case, however, the operand of the s t a mnemonic is not preceded
by #, so the APW assembler does not interpret it as a literal number. Instead,
as you have seen in programs in chapter 2, the operand in the statement s t a
resu Lt is interpreted as a memory address. Another way of saying this is
that in the AddrDemol program, the statement sta resu Lt uses absolute
addressing.

Now you see that in a statement using absolute addressing, the operand
is a memory location, not a literal number. In reading and writing operations
that use absolute addressing, the operation called for is always performed on
the value stored in the specified memory location, not on the operand itself.
When a jump instruction (j mp or j s r) uses absolute addressing, however,
the address jumped to is the absolute address that is expressed as the operand.

In both native mode and emulation mode, every instruction that uses
absolute addressing has a 16-bit operand. When the 65C816 is in native mode,
however, the assembler extends the effective address of the operand to 24
bytes by concatenating it with a bank register. If the instruction that uses
absolute addressing is a read or write instruction, such as Lda or sta, the
assembler extends the operand to 3 bytes by combining it with the 65C816's
data bank register. If the instruction is a jump instruction (j mp or j s r), the
assembler extends the operand to 3 bytes by combining it with the program
bank register.

You have completed an analysis of the addressing modes in the AddrDemo I
program and are ready to see how it works.

As noted, the lines

phk
pLb

; stack addressing
; stack addressing

copy the contents of the program bank register into the data bank register, so
the program accesses data from the same bank in which the program is running.
Now let's look at the lines

Lda #$2200 ; i mmedi ate address
cLc ; impLied address
adc #$0022 ; immediate address
sta resuLt ; absoLute address

In the statement Lda #$2200, the 65C816's accumulator is loaded with

103

Fundamentals of IIGS Programming

the literal value $2200. Then the mnemonic c Lc clears the P register's carry
flag in preparation for an addition operation.

Next, in the statement adc #$0022, the literal value $0022 is added
to the value of $2200 that is already in the accumulator. Finally, the statement
sta resuLt stores the result of the addition-the number $2222-in an
absolute memory address.

What is this memory address? Because the symbolic label resu Ltwas
assigned the value $2000 and the mnemonic s t a is a write instruction and
not a jump instruction, the APW assembler calculates the effective address
of the operand result by concatenating the value of the result with the contents
of the 65C8I6's data bank: register. In other words, the effective address of
the operand is the address $2000 in whatever data bank the program is loaded
into.

And what data bank is that? Well, frankly, there's no way of knowing.
As you learned in chapter 4, it is up to the IIGS system loader, not the IIGS
programmer, to decide where to place a program when it is loaded into
memory. And when a program has been loaded into memory, the IIGS Memory
Manager can move it. So, when you write a program for the IIGS, you can
never be sure where the program will start in memory or even what bank it
will be loaded into.

When you type, run, assemble, and load the AddrDemoi program, you
can only be sure that the result of the addition of the numbers $2200 and
$0022 are stored in memory addresses $2000 and $2001 in some bank of
memory.

You won't have to stay in the dark for very long, however. The last
line in AddrDemo I is

brk ; impLied address

104

Direct
Addressing

As soon as you run the program, you will hear a beep from your computer
and will discover that the brk instruction, which ends the program, has
"bounced" the program into the IIGS monitor. You will see the contents of
all the 65C8I6's registers, including its data bank register (D), listed on the
screen. You can use your monitor's display memory functions (described in
chapter 2) to list the contents of memory addresses $2000 and $2001 in the
64K bank pointed to by the data bank register. If the 2-byte value stored in
those two addresses is $2222-the sum of $2200 and $0022-you'1l know
that the AddrDemo 1 program worked properly.

If you're an experienced 6502/65C02 programmer, you're familiar with the
concept of page 0 addressing, a technique that can save time and allow memory
locations to be addressed in some tricky (and quite useful) ways.

In pre-os Apple Ils, page 0 is a 256-byte block of RAM that extends
from memory address $00 through memory address $FF. Every memory
location on page 0 has a I-byte address and thus can be addressed using a
I-byte operand. Another noteworthy fact about page 0 is that some ad-
dressing-as you shall see later in this chapter-actually requires direct page
operands.

6-The Right Address

Because the 256 memory addresses on page 0 are so valuable, page 0
is the high-rent district in pre-os Apple lIs. It is such a desirable piece of real
estate, in fact, that the designers of the Apple II operating system, the Apple
II monitor, and Applesoft BASIC claimed most of it for themselves. They
left only a few bytes free for use in application programs.

Because space on page 0 is so useful and so scarce, designers of 6502-
based computers tried for years to increase the amount of page 0 storage
space. In designing the Apple IIGS, they finally succeeded. In the IIGS, as
you may recall from chapter 4, the concept of page 0 addressing is expanded
into something called direct page addressing. This form of addressing allows
any page in bank $00 to be used as a page 0 and allows different programs,
or even different segments of the same program, to use different pages in
bank $00 as their own private page O.

Because a IIGS program can use any page in bank $00 as a page 0, the
form of addressing that was called page 0 addressing is now more properly
referred to as direct page addressing. The page of bank $00 memory that is
accessed through direct page addressing is no longer known as page 0, but
is more properly referred to as the direct page.

In a statement that uses direct page addressing, the operand always
consists of just 1 byte-a number from $00 to $FF. When the 65C816 as-
sembles a statement that uses direct addressing, it interprets the operand as
an offset that, when added to the contents of the data bank register, specifies
the operand's effective address.

That's quite a mouthful, but listing 6-2 is a short program that shows
how direct addressing works.

Listing 6-2
AddrDemo2 program

** ADDRESSING DEMO #2: Direct addressing
*

KEEP AddrDemo2

Demo START

phk
plb
lda #$2000
tcd
lda #$5500
dc
adc #$0055
sta $60

brk

END

; make program bank and
; data bank the same
; make the di rect page
; start at $2000
; immediate address

; i mmedi ate address
; direct page address

; quit to the monitor

105

Fundamentals of lias Programming

AddrDemo2, like AddrDemo I, starts with the instructionsHow the
AddrDemo2

Program Works phk
plb

; make program bank and
; data bank the same

These statements, as their comments now reveal, make the program bank and
the data bank the same.

The next lines are

lda #$2000
ted

; make the di reet page
; start at $2000

These two lines are very important. They set aside page #$20 in bank $00,
memory addresses $2000 through $20FF, for use as a direct page.

The next three lines work much like their corresponding lines in the
previous program:

lda #$5500
de
ade #$0055

; immediate address

; immediate address

They add the literal numbers $5500 and $0055, taking care to clear the carry
flag before the addition is carried out so that the result of the operation is
correct.

The next line is the part of the AddrDemo2 program that you have been
waiting for:

sta $60 ; di reet page offset

106

Using the value $60 as an offset, this line stores the result of the addition of
$5500 and $0055 in the direct page address $2060.

The AddrDemo2 program, like the AddrDemol program, ends with a
brk instruction so that you can use the IIGS monitor to check its results. Type,
assemble, and run the program. Then use your monitor to peek into memory
addresses $00/2060 and $00/2061. If everything has worked correctly, those
two memory locations now hold the 2-byte value $5555-the sum of the
addition of $5500 and $0055.

Forcing Absolute Addressing

Now that you know how the AddrDemo2 program works, let's go back and
take another look at the line

sta $60

6-The Right Address

If you've written assembly language programs for pre-os Apple lIs, you may
notice that this statement works much differently in the AddrDemo2 program
than it would in a 6502 or 65C02 program. In the AddrDemo2 program, the
operand $60 in the statement sta $60 is not a complete address, but merely
an offset that is used to calculate a direct page address. But if the AddrDemo2
program were written for an 8-bit chip-or for a 65C816 chip running in
emulation mode-the operand $60 would be interpreted as a literal address:
the page 0 address $60.

This brings us to a problem faced by Apple IIGS assembly language
programmers. Because the 65C816 interprets the I-byte operand in a statement
like s t a $60 as an offset for calculating a direct page address, there is no
straightforward way to access l-byte addresses in the program bank or data
bank currently in use. In other words, there is no direct way to access the
addresses $00 through $FF in the current program or data bank.

Suppose you are writing a 65C02 program. You want the operand in
the statement s t a $60 to be assembled not as a direct page offset, but as
absolute memory address $0060 in the current data bank. What would you
do?

Fortunately, there is a way out of this dilemma. If you are writing a
program with the APW assembler, and you want the statement s t a $60 to
mean store the value of the accumulator in the absolute address $XX0060
(with XX representing the current data bank), you could force APW to as-
semble it that way by merely writing

or

sta !$60

You can use a vertical bar or an exclamation point as a prefix to force absolute
addressing.

The prefix I or the prefix ! can also force absolute addressing in state-
ments that use symbolic labels as operands. For example, if the symbolic
label mem Loc is defined as the value $333 in an assembly language program,
the statement

Lda Imem Loc

or the statement

Lda ! mem Loc

107

Fundamentals of IIGS Programming

cause the operand mem Lac to be interpreted as the absolute address $XX0333.
So the accumulator is loaded with the value stored at that physical address-
not at the address calculated by adding $333 to the contents of the direct page
register.

Forcing Absolute Long Addressing

Now that you have dealt with the problem of forcing absolute addressing,
you're ready to look at another problem that arises often in Ilos assembly
language programming. Suppose you are writing a 65C02 program, and you
want the operand in the statement s t a $60 to be assembled as the absolute
address $OOO060-in other words, as an absolute long address in bank $00.
What would you do?

The APW assembler also provides a solution to this problem. If you
are writing a program in which you want the statement s t a $60 to mean
store the value of the accumulator in address $000060, you can force the
assembler to assemble it as an absolute long address by writing

sta >$60

The> prefix forces absolute long addressing. You'll see more examples of
absolute long addressing later in this chapter.

The> prefix can also force absolute long addressing in statements that
use symbolic labels as operands. For example, if the symbolic label mem Lac
is defined as the value $333 in an assembly language program, the statement

Lda >memLac

causes the operand memLac to be interpreted as an absolute long address. So
the accumulator is loaded with the value stored in memory address $000333.
But the statement

Lda mem Lac

is interpreted as a direct address. In this case, the accumulator is loaded with
the value stored in a direct page address calculated by adding the literal value
$333 to the contents of the direct page register.

A direct page operand can be written using the < prefix, as in the
following examples:

Lda <$60
Lda <mem Lac

When < is used in this way, it is ignored by the APW assembler. It merely
shows people reading the program that the addressing mode is direct address-
ing.

108

Absolute Long
Addressing

6-The Right Address

Another example of absolute long addressing appears in listing 6-3,
AddrDemo3.

Listing 6-3
AddrDemo3 program

k

Ir ADDRESSING DEMO #3: Absolute long addressing
Ir

KEEP AddrDemo3

Demo START

phk ; make the program bank
plb ; and data bank the same

lda #$8800 ; immediate address
de
ade #$0088 ; immediate address
sta $012030 ; absolute long address

brk ; quit to the monitor

END

In the AddrDemo3 program, the lines

lda #$8800
de
ade #$0088
sta $012030

; immediate address

; immediate address
; absolute long address

add the literal numbers $BBOO and $OOBB, and store their sum in the absolute
long address $012030. After you type, assemble, and run the program, you
can confirm that it works by using the IIGS monitor to view the contents of
memory addresses $0112030 and $01/2031.

In the AddrDemo3 program, the absolute long address $012030 is ex-
pressed in the easiest possible way: as a literal number. Operands are usually
expressed as literal numbers in programs that use absolute long addressing.

109

Fundamentals of IIGS Programming

Accumulator
Addressing

Program
Counter Relative

Addressing

110

The accumulator addressing mode performs an operation on a value stored
in the 6502/65C816 processor's accumulator. When you use accumulator
addressing mode, some assemblers require that you use an a as an operand.
The APW assembler requires the use of the a operand in all but three cases.
The aliases cpa, dea, and ina can be substituted for the assembly language
statements cmp a, dec a, and inc a.

Another example of a statement that uses the accumulator addressing
mode (no alias allowed) is as La. This statement rotates each bit in the
accumulator one position to the left, with the leftmost bit (bit 15 in native
mode or bit 7 in emulation mode) dropping into the carry bit of the processor
status (P) register.

Program counter relative addressing is used for branching-a method for
instructing a program to jump to a given routine under certain conditions.
There are nine branching instructions in 65C816 assembly language. All begin
with b, which stands for branch to, and eight use program counter relative
addressing.

Some examples of branching instructions are

• bee: Branch to a specified address if the carry flag is clear.
• be s: Branch to a specified address if the carry flag is set.
• beq: Branch to a specified address if the result of an operation is
equal to O.

• bn e: Branch to a specified address if the result of an operation is not
equal to O.

• bra: Branch always.

The bra mnemonic is one of two unconditional branching instructions
used in 65C816 assembly language. The other unconditional branching mne-
monic, br L (branch always-long), uses another form of addressing, called
program counter relative long addressing, which is covered in the next section.
All nine branching instructions are described in chapter 5, in the section
devoted to the 65C816 instruction set.

The nine branching mnemonics are often used with three other instruc-
tions called comparison instructions. Typically, a comparison instruction com-
pares two values, and the conditional branch instruction then determines what
should be done according to the result of the comparison.

The three comparison instructions are

• cmp: Compare the number in the accumulator with.
• cpx: Compare the value in the X register with.
• cpy: Compare the value in the Y register with.

Conditional branching instructions can also follow arithmetic operations, logi-
cal operations, and various kinds of bit testing operations.

Usually, a branch instruction causes a program to branch to a specified
address if certain conditions are met or not met. A branch might be made,

Program
Counter

Relative Long
Addressing

6-The Right Address

for example, if one number is larger than another, if two numbers are equal,
or if an operation results in a positive, negative, or zero value.

(The AddrDem04 program shows one way to use program counter rela-
tive addressing. We present this program and examine it line by line in a few
moments.)

As you saw in chapter 5, one disadvantage of the eight branching instructions
that use program counter relative addressing is their very short range: a
displacement of - 128 bytes to + 127 bytes counting from the end of the
branching instruction.

But the 65C816 has one branching instruction-br L-that can cause
a program to branch to any address within the current program bank. So br L,
instead of accepting a I-byte operand like all other branching instructions,
takes a 2-byte operand. The br L instruction's 2-byte operand is interpreted
as an offset. This offset is added to the value of the program bank register
to calculate the destination address of the branch.

Because b r L is an unconditional branching instruction, you cannot use
it to test the outcome of an arithmetic or comparison operation and then branch
if some condition is or is not met. You can use it, however, with conditional
branching instructions to extend their range. For example, in this code se-
quence

Lda va Lue
bne next
br l Longbranch

next lda somethi ng

the value of the variable labeled va Lue is tested to see if it equals 0. If it
equals 0, the br Linstruction causes a long-range branch to a segment of code
labeled Longbranc h. If va Lue is not equal to 0, the program continues.
Except for a few extra cycles of machine time, the effect is the same as if
the segment were coded

Lda va lue
beq shortbranch

but the branch is a long one.

Indexed Addressing
In indexed addressing, the 65C8I6' s X and Y registers provide an index that
is used to calculate an effective address. The 65C816 has five kinds of indexed
addressing:

• Absolute indexed addressing with X
• Absolute indexed addressing with Y
• Direct indexed addressing with X

111

Fundamentals of IIGS Programming

• Direct indexed addressing with Y
• Absolute long indexed addressing with Y

Let's examine each of these five types of indexed addressing.

Absolute
Indexed

Addressing
with X

An indexed address, like a relative address, is calculated using an offset. But
in an indexed address, the offset is determined by the current contents of the
X or Y register.

A statement that uses absolute indexed addressing with X can be written
this way:

Lda $OCOO,x

The second and third bytes of the statement are added to the X register to
form the low-order 16 bits of the operand's effective address. The high-order
8 bits of the effective address are taken from the data bank register. In other
words, the value of the X register is used as an offset to calculate the lower
16 bits of the effective address, and the upper 8 bits come from the direct
page register.

Listing 6-4, AddrDem04, is a short program that uses indexed ad-
dressing. The routine is designed to move byte-by-byte through a string of
ASCII characters, storing the string in a text buffer. When the string is stored
in the buffer, the routine ends.

Listing 6-4
AddrDem04 program

** ADDRESSING DEMO #4: Program counter reLative addressing
* and absoLute indexed addressing
*

KEEP AddrDemo4

112

demo

txtbuf
eoL

Loop

START

equ $2000
equ soa

phk
pLb

Ldx #0
Lda text,x
sta txtbuf,x
cmp #eoL
beq fini
i nx

; make the program bank
; and data bank the same

6-The Right Address

bra Loop

fin; brk

tex t dc cTh i s sentence ; s rea LLy movi ng! ',h'Od'

END

The text to be moved is labeled text, and the buffer to be filled with
text is labeled txt bu f . As you can see by looking at the line labeled t ext,
the text to be read ends with an end-of-line (EOL) character, the ASCII
character $Od. The EOL character equates to the Return key on the IIGS
keyboard.

As the program proceeds through the string, it tests each character to
see if it is a carriage return. If the character is not a carriage return, the
program moves to the next character. If the character is a carriage return,
there are no more characters in the string, and the routine ends.

In addition to showing how absolute indexed X addressing works, the
program also demonstrates the use of program counter relative addressing.
In the sequence

Ldx #0
Loop Lda text,x

sta txtbuf,x
cmp #eoL
beq fini
;nx
bra Loop

the branching instructions beq and bra control the loop that prints text on
the screen.

Absolute
Indexed

Addressing
with Y

Absolute indexed addressing with Y works like absolute indexed addressing
with X except it uses a different index register. A statement that uses absolute
indexed addressing with Y can be written as

Lda $OCOO,y

The second and third bytes of the statement are added to the Y register
to form the low-order 16 bits of the operand's effective address. The high-
order 8 bits of the effective address are taken from the data bank register. In
other words, the value of the Y register is used as an offset to calculate the
lower 16 bits of the effective address, and the upper 8 bits come from the
direct page register.

113

Fundamentals of IIGS Programming

114

Direct
Indexed

Addressing
with X

Direct
Indexed

Addressing
with Y

A statement that uses direct indexed addressing with X looks like one that
uses absolute indexed addressing with X, except it has a l-byte operand. For
example:

Lda $30,x

In this statement, the second byte is added to the sum of the direct page
register and the X register to form a l6-bit effective address. In other words,
the X register is used as an offset to calculate the lower 16 bits of the effective
address, and the upper 8 bits come from the direct page register.

The APW assembler always interprets a 2-byte instruction written in
the form Lda $30,x as a direct indexed address. You must use special pre-
fixes when you want the operand to be interpreted as a data bank offset or
as a long address in bank $00, rather than as a direct page offset. These
prefixes are the same ones that distinguish between direct addressing and
absolute addressing.

In indexed addressing modes, as in unindexed addressing modes, the
prefix I (or !) forces the APW assembler to interpret a l-byte indexed operand
as an absolute indexed address. And the prefix> forces the assembler to
interpret a l-byte indexed operand as an absolute long indexed address. Thus,
in the statement

Lda I$40,x

the assembler concatenates the address $40 with the contents of the data bank
register. Then it adds the value of the X register to calculate the effective
address.

In the statement

Lda >$40,x

the value of the X register is added to the address $000040. The result of that
calculation is the effective address.

Direct indexed addressing with Y works like direct indexed addressing with
X, except it uses a different register. The following statement uses direct
indexed addressing with Y:

Lda $30,y

In this statement, the second byte of the instruction is added to the sum of
the direct page register and the Y register to form a l6-bit effective address.
In other words, the Y register is used as an offset to calculate the lower 16
bits of the effective address, and the upper 8 bits are taken from the direct
page register.

It should come as no surprise by now to learn that the APW assembler
always interprets a 2-byte instruction written in the form Lda $30,y as a

Absolute Long
Indexed

Addressing
with X

6-The Right Address

direct indexed address. So, in this case also, you must use a special prefix
when you want the operand to be interpreted as a data bank offset or as a
long address in bank $00. This prefix is the same one you have been using
for the same purpose in other addressing modes: the symbol I. Thus, in
the statement

lda 1$40,x

the assembler concatenates the address $40 with the contents of the data bank
register. It then adds the value of the X register to calculate the effective
address.

There is nothing new in any of this, but you may be surprised to know
that the syntax

lda >$40,y

is never invoked to force the assembler to use absolute long indexed addressing
with Y. That's because there is no such addressing mode. In 65C816 assembly
language, the X register is the only index register that can be used for absolute
indexed addressing.

In absolute long indexed addressing, the effective address is calculated by
adding a long (24-bit) address to the value of the X register. There is no
comparable addressing mode that uses the Y register.

A statement that uses absolute long indexed addressing with X can be
written this way:

lda $E16000,x

The value of the X register is added to the long address $EI6000 to form the
operand's effective address.

Indirect Addressing
In 65C816 assembly language, indirect addressing modes are modes in which
data in memory is accessed indirectly, that is, through pointers contained in
other memory locations.

The 65C816 has seven indirect addressing modes:

• Direct indirect addressing
• Direct indirect long addressing
• Absolute indirect addressing
• Absolute indexed indirect addressing
• Direct indexed indirect addressing

115

Fundamentals of tles Programming

• Direct indirect indexed addressing
• Direct indirect long indexed addressing

We'll sort this out in the following sections.

Absolute
Indirect

Addressing

Absolute indirect addressing is really made up of two addressing modes: one
is used with the j mp (jump) instruction and the other is used with the j ml
(jump-long) instruction.

When absolute indirect addressing is used with j mp, the syntax is

jmp ($4000)

A j ml instruction that uses absolute indirect addressing looks like this:

jml ($E1AOOO)

In both formats, a symbolic label can be substituted for the address inside
the parentheses.

When absolute indirect addressing is used with the j mp instruction, the
address inside the parentheses is a pointer to a memory address. This address
and the following memory address contain the lower 16 bits of the effective
address of the operand. The program bank register contains the upper 8 bits
of the effective address. These two values are concatenated, and the result is
the complete effective address of the operand.

When the absolute indirect addressing mode is used with the j mL in-
struction, the parentheses that follow the instruction contain a long (24-byte)
address. This address and the next two memory addresses contain all 3 bytes
of the destination address.

Direct Indirect Direct indirect addressing uses the syntax
Addressing

Lda ($FB)

or

Lda «$FB)

Notice that in each case, the value inside the parentheses is only 1 byte long.
When you use direct indirect addressing, the operand is an offset that

is added to the contents of the direct page register to calculate the lower 16
bits of the operand's effective address. The upper 8 bits of the effective address
are taken from the direct page register.

Direct Indirect Direct indirect long addressing uses the syntax
Long

Addressing Lda [$FB]

or

116

Direct Indexed
Indirect

Addressing

6-The Right Address

lda [<$FB]

Notice that in each case, the value inside the parentheses is only 1 byte long.
When you use direct indirect long addressing, the operand is an offset

that is added to the contents of the direct page register to calculate the op-
erand's long (24-byte) effective address.

Two of the 65C816's indirect addressing modes-direct indexed indirect
addressing and direct indirect indexed addressing-are so closely related that
it makes sense to examine them in combination.

If you think their names are confusing, you're not the first one with
that complaint. Here's a memory trick to help eliminate the confusion. Direct
indexed indirect addressing-which has an x in the second word of its name-
is an addressing mode that uses the X register. Direct indirect indexed ad-
dressing-which doesn't have an x in the second word of its name-uses the
Y register. With that introduction, let's examine both of these indirect ad-
dressing modes-beginning with direct indexed indirect addressing.

The syntax for a statement that uses direct indexed indirect addressing
is

lda ($FB,x)

or

lda «$FB,x)

Notice that the value inside the parentheses is only 1 byte long.
The most common use for direct indexed indirect addressing is to cal-

culate addresses using tables of pointers, or jump tables, located on the direct
page. Each address in a direct page jump table is 16 bits long, and must be
added to the contents of the current data bank register to yield an effective
address. Hence, each item in a direct page jump table is a 2-byte pointer to
a 3-byte address situated in the data bank of the program currently being
executed.

In a statement that uses direct indexed indirect addressing, both the
value of the X register and the value that appears in front of it are offsets
used to calculate the operand's final address.

When the 65C816 encounters a statement that uses direct indexed in-
direct addressing, it first adds the value of the X register to the contents of
the direct page register. Then it adds this sum to the value inside the paren-
theses (that is, the second byte of the instruction). The result is a pointer to
the low-order 16 bits of the operand's effective address. The high-order 8
bits of the effective address are taken from the data bank register.

An example might help clarify this process. Suppose memory address
$BO on the direct page holds the number $00, memory address $Bl on the
direct page holds the number $80, and the X register holds the number 0, as
follows:

117

Fundamentals of JIGS Programming

Direct page + $BO
Direct page + $B1
X register

#$00
#$80
#$00

Now suppose you are running a program that contains the direct indexed
indirect instruction Lda ($80, x) . If all these conditions exist when the nos
encounters the instruction Lda ($80,x), the 65C816 chip adds the contents
of the X register (0) to the hexadecimal number $BO. The sum of $BO and
o is $BO.

Next, the 65C816 checks the contents of the direct page memory ad-
dresses $BO and $B1. It finds the number $00 in the direct page memory
address $BO and the number $80 in the direct page address $B1.

Because the 65C816 convention is to store 16-bit numbers in memory
with the low byte first, the processor interprets the number in $BO and $B1
as $8000. So it loads the accumulator with the number $8000, the 16-bit
value stored in $BOand $B1. It then concatenates that value with the contents
of the data bank register. The result is the operand's effective address.

Now let's suppose when the nos encounters the statement Lda
($80, x) , its 65C816's X register holds the number $04, instead of the
number $00.

Here is a table illustrating those values, plus a few more equates you'll
be using soon:

Direct page + $BO #$00
Direct page + $Bl #$80
Direct page + $B2 #$OD
Direct page + $B3 #$FF
Direct page + $B4 #$FC
Direct page + $B5 #$IC
X register #$04

If these conditions exist when the nos encounters the instruction Lda
($80, x) , the 65C816 adds the number $04 (the value in the X register) to
the number $BO. It then checks memory addresses $B4 and $B5. In those
two addresses, it finds the address $ICFC (low byte first). It then concatenates
that value with the contents of the data bank register. The result is the op-
erand's effective address.

Until the advent of the 65C816 and direct page addressing, direct in-
dexed indirect addressing was called simply indexed indirect addressing and
required the use of jump tables on page O. Free space on page 0 was so
difficult to find that indexed indirect addressing was not used very often in
application programs.

With the 65C816, there is no longer any reason to avoid using direct
indexed indirect addressing. In programs written for the nos, direct page
addresses are so readily available that any application program can use as
many as the programmer desires. So, if you ever need to include jump tables
in a nos program, you might consider using direct indexed indirect addressing.

118

6-The Right Address

[Iirect Indirect Direct indirect indexed addressing uses the syntax
Indexed

Addressing Lda ($FB),y

or

Lda «$FB),y

Direct indirect indexed addressing uses the Y register (never the X
register) as an offset to calculate the base address of the beginning of a table.
The starting address of the table has to be stored on the direct page, but the
table itself is stored in the bank currently being used as a data bank.

When the APW assembler encounters a direct indirect indexed address
in a program, it first adds the number in parentheses-the second byte of the
instruction-to the contents of the data bank register. The sum of that op-
eration is combined with the contents of the data bank register to form a 24-
bit base address. Finally, that address is added to the value of the Y register
to form the effective address of the operand.

Here's an example of how direct indirect indexed addressing is used.
Suppose the 65C816 chip is running a program and comes to the instruction
Lda ($BO) ,y. First it looks into direct page memory addresses $BO and
$B1. Suppose it finds the number $BO in direct page address $00 and the
number $50 in direct page address $B1. And suppose the Y register contains
a o. The following illustrates these conditions:

Direct page + $BO
Direct page + $B1
Y register

#$00
#$50
#$04

If these conditions exist when the 65C816 encounters the instruction
adc ($BO),y, the processor concatenates the numbers $00 and $50, and it
comes up with the address $5000 (in the 65C816 chip's peculiar low-byte-
first fashion). It then adds the contents of the Y register ($04) to the number
$5000-for a total of $5004.

The processor then combines the 16-bit number $5004 with the 8-bit
value of the data bank register. The result is the 24-bit effective address of
the operand.

Direct indirect indexed addressing is a valuable tool in assembly lan-
guage programming. Only one address-the starting address of a table-has
to be stored on the direct page. Yet that address, added to the contents of the
Y register, can be used as a pointer to locate any other address in memory.

Oi rect Indirect Direct indirect long indexed addressing uses the syntax
Long Indexed
Addressing Lda [$FB],y

or

119

Fundamentals of JIGS Programming

Lda [<$FB],y

In direct indirect long indexed addressing, the Y register is used as an
offset to calculate the base address of the beginning of a table. The starting
address of the table has to be stored on the direct page, but the table itself
can be stored anywhere in memory.

In direct indirect long indexed addressing, the value in parentheses (the
second instruction of the address) is added to the contents of the direct register.
The sum of these two numbers is an address on the direct page. In this address
and the two addresses that follow, a 24-bit base address is stored. This base
address is added to the value of the Y register to form the 24-bit effective
address of the operand.

Absolute
Indexed Indirect

Addressing

Absolute indexed indirect addressing is used with only two instructions: j mp
(jump) and j s r (jump to subroutine). It provides a means for jumping to
any address in memory with a jump table placed in the current program bank.
The syntax is

j mp ($0300,x)

Or, when a l-byte operand is used and the assembler must be forced to generate
a 2-byte instruction, the syntax is:

jmp(I$30,x)

A symbolic label can be substituted for the literal address in each of these
examples.

In a statement that uses absolute indexed indirect addressing, the value
inside the parentheses is added to the value of the X register to form a 16-
bit address. This address is combined with the contents of the program bank
register to form a 24-bit base address. Finally, this base address is added to
the value of the X register, forming the operand's 24-bit effective address.

Stack Addressing

The 65C816 has three stack addressing modes:

• Stack relative addressing
• Stack relative indirect indexed addressing
• Simple stack addressing

To understand how stack addressing works, it is essential to have an
understanding of what a stack is, and what it does.

120

The Stack

Stack
Operations

6-The Right Address

A stack, as pointed out in the beginning of this chapter, is an area of memory
often used for the temporary storage of data that is waiting to be processed.
In pre-os Apple lIs, the stack is exactly 256 bytes long and occupies page
I-memory addresses $100 through $IFF-in either main or auxiliary
memory. In the Ilos, the stack can be placed anywhere in bank $00. The only
restriction on its length is the availability of free RAM in bank $00.

In both the Ilos and earlier Apples, the stack is called a LIFO (last-in
first-out) block of memory. It is often compared to a spring-loaded stack of
plates in a diner. When you put a number in the memory location on top of
the stack, it covers up the number that was previously on top. So the number
on top of the stack must be removed before the number under it-which was
previously on top-can be accessed.

Although the stacked plate analogy is a useful technique for describing
how the stack works, it is not completely accurate. Actually, the stack is
nothing but a block of RAM-and blocks of RAM don't really move up and
down like a stack of plates inside the Ilos. When you place a number on the
65C816 stack, here's what really happens.

Suppose, for simplicity, that you have placed the stack on page 1 in
memory bank $00. (The stack was in this location in earlier Apple lIs, so
we'll keep it there for this description.)

Now the block of memory in which the stack is situated-in this case,
page I in bank $OO-is used in stack operations from high memory downward.
The first number stored in a page I stack is in register $OlFF, the next number
is placed in register $OlFE, and so on. A program can keep placing values
on the stack, in this from-the-top-down fashion, until it runs out of free RAM.
When the stack is on page I, it will run out of free memory when it reaches
memory address $100 because all RAM below that address is claimed by
page O. By starting the stack higher in memory, you can make the stack
bigger. But because we're using page I for the stack in this example, the last
stack address that we can currently use is memory address $100.

As you saw in chapter 5, the 65C816 chip keeps track of stack manipula-
tions with the help of a special register called the stack pointer. In the 65C816,
the stack pointer is a 16-bit address, and the upper 8 bits always hold the
number of the page where the stack starts. When the stack starts on page 1,
for instance, the high byte of the stack pointer holds a I.

When there is nothing stored on the stack, the value of the stack pointer's
low byte is $FF. If there are 256 bytes on the stack, the value of the stack
pointer's low byte is $00.

As soon as a value is stored on the stack, the 65C816 chip automatically
decrements the stack pointer by I. And each time another value is stored on
the stack, the stack pointer is decremented again. Therefore, the stack pointer
always points to the address of the next value that will be stored on the stack.

Suppose several numbers are stored on the stack. And let's also suppose you
want to retrieve one of those values from the stack. What will happen?

When a number stored on the stack is retrieved, the value of the stack
pointer is incremented by I. That effectively removes one value from the
stack, because the next value stored on the stack has the same position on

121

Fundamentals of IIGS Programming

$01FFI $01FF I
I

STACK POINTER

the stack as the one that was removed. That's a little tricky to comprehend,
given the upside-down nature of the stack. Figure 6-1 will help you understand
how this works. This figure shows an empty stack, with the stack pointer
pointing to the first available address on the stack: $OIFF.

BOTTOM STACK
OF STACK ADDRESSES

$01FE

$01FD

$01FC

Figure 6-1
How the stack pointer works

Now let's place a number (whose value is arbitrary) on the stack. This
kind of operation is illustrated in figure 6-2. In this figure, the value of the
stack pointer is decremented, and the number placed on the stack is now
stored at the highest address in the stack, memory register $OIFF.

BOTTOM STACK
OF STACK ADDRESSES

$2E
STACK POINTER

I $01FE I
I

$01FF

$01FE

$01FD

$01FC

Figure 6-2
Placing a number on the stack

Figure 6-3 shows what happens if you place another number (also with
an arbitrary value) on the stack. The stack pointer is decremented again, and
a second number is now on the stack.

Figure 6-4 shows what happens if you "remove" one number from
the stack. Stack address $OlFE still holds the value $BO, but the value of the
stack pointer is decremented and now points to memory address $OlFE. So
the next number placed on the stack will be stored at memory address $OlFE.
When that happens, the number previously stored in that stack position-
$BO-will be erased.

To see how that works, we'll store one more number on the stack. This
time, for no special reason, the value of the number placed on the stack is
$17. This process is illustrated in figure 6-5. Register $OlFE now holds the

122

6-The RightAddress

BOTTOM STACK
OF STACK ADDRESSES

$01FD

$01FF

$01FE

$2E

$BO
TACK POINTER

I $01FD I
I

S

$01FC

Figure 6-3
Placing another number on the stack

BOTTOM STACK
OF STACK ADDRESSES

$01FF

$01FE

$2E
TACK POINTER

I $01FE I $BOI

S

$01FD

$01FC

Figure 6-4
Pulling a number off the stack

BOTTOM STACK
OF STACK ADDRESSES

$01FF

$01FD

$01FE

$2E

$17
TACK POINTER

I $01FD I
I

s

$01FC

Figure 6-5
One last stack manipulation

value $17. The value of the stack pointer is decremented, the value $BO is
erased by the value $17, and the next number placed on the stack will be
stored in memory register $OIFD.

How the IIGS
U ses the Stack

As mentioned, the 65C816 often uses the stack for temporary data storage
during the operation of a program. When a program jumps to a subroutine,
for example, the processor pushes onto the top of the stack the memory address

123

Fundamentals of JIGS Programming

that the program will have to return to. Then, when the subroutine ends with
an r t 5 instruction, the return address is pulled from the top of the stack and
loaded into the 65C816's program counter. Then the program can return to
the proper address, and normal processing can resume.

Instructions that
Use Stack
Addressing

Stack Relative
Addressing

124

As you saw at the beginning of this chapter, phk and p Lb are two instructions
that use stack addressing. Other mnemonics that use this addressing mode
include

• pha: Push the contents of the accumulator onto the stack.
• phx: Push the contents of the X register onto the stack.
• phy: Push the contents of the Y register onto the stack.
• php: Push the contents of the P register onto the stack.
• p La: Pull the top value off the stack and deposit it in the
accumulator.

• p Lp: Pull the top value off the stack and deposit it into the P
register.

The ph p and p Lp operations are often included in assembly language
subroutines so that the contents of the P register won't be erased during
subroutines. When you jump to a subroutine that may change the status of
the P register, it's a good idea to begin the subroutine by pushing the contents
of the P register onto the stack. Then, just before the subroutine ends, you
can restore the P register's previous state with a php instruction. This ensures
that the P register's contents aren't destroyed during the subroutine.

Programs written for the IIGS often use stack addressing because of the
way the IIGS Toolbox is designed. As you shall see in part 2, most routines
in the Toolbox are called by placing values on the stack, accessing a macro,
and then pulling values off the stack when the macro returns. We go into
more detail about how to do that in chapter 7.

The 65C816, as pointed out at the beginning of this section, has three
addressing modes that use the stack. One of these modes, simple stack ad-
dressing, was covered at the start of this chapter. The other two, stack relative
addressing and stack relative indirect indexed addressing, are examined next.

Stack relative addressing is the first addressing mode in the 6502 chip family
that has made it possible to access a byte in the stack without removing the
last byte pushed onto the stack. A statement that uses stack relative addressing
is written in this format

Lda 3,5

The value that follows the mnemonic is an offset that is added to the contents
of the stack pointer to form the effective address. When the statement is
assembled into machine code, the operand is assembled as a single byte.
Because the stack is always in bank $00, the effective address calculated by
adding the operand to the stack pointer is always 16 bytes long.

6-The Right Address

In determining what offset to use to access a value on the stack, it is
important to remember that offsets used in stack relative addressing start at
I, not at O. The stack pointer always points to the next available stack location,
which is I byte below the last byte pulled off the stack. So, to load the
accumulator with the last value pushed onto the stack using stack relative
addressing, you would use this statement:

Lda 1,5

5 taek Relative
lndrect Indexed

Addressing

You can use stack relative indirect indexed addressing to access a value
indirectly, with a pointer pushed onto the stack. The format of a statement
that uses stack relative indirect indexed addressing is

Lda ($30,5),y

Stack relative indirect indexed addressing works much like direct in-
direct indexed addressing. The value between the parentheses is a I-byte
offset. The 65C816 adds this offset to the contents of the stack pointer to
form the lower 16 bits of a base address in bank $00. The upper 8 bits of the
base address are taken from the data bank register. Finally, the value of the
Y register is added to this base address, and the result is the effective 24-
byte address of the operand.

A Warning Now that you know how stack addressing works, it's time to add a note of
warning: The 65C816 stack can be a dangerous section of memory for novice
programmers to play with. When you use the stack in an assembly language
routine, it's extremely important when the routine ends to leave the stack
exactly as you found it. If you've placed a value on the stack during a routine,
it must be removed from the stack before the routine ends and normal pro-
cessing resumes. Otherwise, there might be "garbage" on the stack when
the next routine is called, and that can result in program crashes, memory
wipeouts, and various other programming disasters. Remember: Mismanage-
ment of the hardware stack is extremely hazardous to the health of assembly
language programs.

810ck Move Addressing
The 65C816 has one addressing mode for block moves. It is called block
source bank, destination bank addressing. This addressing mode is used by
two instructions: mvn (block move next, or block move negative) and mvp
(block move previous, or block move positive). The syntax is

mvn 0,0

A statement that uses block move addressing takes a 2-byte operand. In source
code written using the APW assembler, these 2 bytes are separated by a
comma. The first byte of the operand specifies the 64K bank of memory that

125

Fundamentals of IIGS Programming

a block of data is being moved to, and the second byte specifies the bank in
which the source data lies. The Y register contains the lower 16 bits of the
destination address. The X register contains the lower 16 bits of the source
address. The number of bytes to be moved, minus 1, is contained in the C
register, the 65C816' s 16-bit accumulator. More details about how block move
addressing mode works can be found in chapter 5 and appendix A, which
deals with the 65C816 instruction set.

126

D[JO 0o DO 0
D[] DOD
[JD 0 0
ODD
[J 0 0

O[] DODD
[]O 0

O[JD DOD

PART [!]
The Apple IIGS

Toolbox

CHAPTER

TOI)1 Sets

Introducing
the IIGS Toolbox

Using the Event Manager
and the Memory Manager

TIhe biggest difference hetween tho Apple lIG' and earlier members
of the Apple II family is the IIGS has a gigantic Toolbox: a collection
of more than 800 prewritten routines that greatly simplify the writing

of sophisticated programs.
We have encountered a number of the tools in the IIGS Toolbox in

previous chapters, but we haven't gone into detail about how they work. In
this chapter, you are formally introduced to the various tool kits in the Tool-
box, and you take a close look at what they are and what they do.

The 800-plus routines in the IIGS Toolbox are divided into tool sets, or col-
lections of related routines. Each routine in a tool set performs one function,
or fundamental operation. For example, the QuickDraw II tool set contains
one routine that draws a rectangle, another that draws an oval, and so on.

Some tool sets in the Toolbox manage important features of the Apple
IIGS and are therefore called managers. For example, the IIGS Memory Man-
ager allocates, deallocates, and keeps track of all memory used by the com-
puter. The Event Manager keeps track of mouse and keyboard operations and

129

The JIGS Toolbox

calls other manager tools, such as the Menu Manager and the Window Man-
ager. The Menu Manager and the Window Manager, as their names imply,
manage IIGS operations that involve menus and windows.

What the Toolbox Can Do
The most important reason for learning how to use the Toolbox is that it can
take care of much of the drudgery that otherwise is the responsibility of the
programmer. It can free your application so it can concentrate on its most
important tasks rather than deal with routine background work and trivial
details.

Another reason for using the Toolbox is that its routines are always
available to help you perform many important tasks. Most of the remarkable
capabilities of the IIGS are accessed easily through the IIGS Toolbox, the
various tool sets in the Toolbox, and each set's individual tools.

What the Toolbox Contains
The tools in the IIGS Toolbox are listed in chapter 1. We'll list them again,
in more detail.

The Big Five Five vital IIGS tool sets are dubbed the "Big Five." All these tools must be
used in every event-driven IIGS application because they are the basic frame-
work upon which other tools build. The "Big Five" tools are

• The Tool Locator, which provides the mechanism for dispatching
tool calls. You don't need to know a tool's memory location; the
Tool Locator knows, and it retrieves the tool when you make a tool
call.

• The Memory Manager, which allocates, deallocates, and keeps track
of all memory used in every program. When your application needs
memory, it must request it from the Memory Manager. When a
well-written application ends, it calls the Memory Manager again to
deallocate the memory it no longer needs.

• The Miscellaneous Tool Set, which includes mostly system-level
routines that must be available for other tool sets. The Miscellaneous
Tool Set is vital to the operation of the IIGs. It keeps track of mouse
movements, takes care of battery-powered memory functions, and
handles interrupts. All tools except the Tool Locator and the
Memory Manager depend on the tools in the Miscellaneous Tool Set
in some way.

• QuickDraw II, which controls the graphics environment of the IIGS
and draws objects and text when the computer is in super high-
resolution graphics mode. QuickDraw II draws the menus, windows,
controls, and other object used by many of the tools in the Toolbox.

130

Desktop
Interface
Tool Sets

7-lntroducing the JIGS Toolbox

• The Event Manager, which manages all the IIGs's event-driven
programming. The Event Manager keeps track of keyboard and
mouse events, maintains a queue of the events that take place, and
passes information about events to the application.

Another important group of tools control the IIGS desktop interface. The
desktop interface tool group is the interface between the IIGS user and the
computer's programs. Most of the IIGS programs you write will use desktop
interface utilities such as the Window Manager, Menu Manager, Dialog Man-
ager, and LineEdit Tool Set.

The tool sets in the desktop interface group are

• The Window Manager, which draws, updates, maintains, and
deallocates windows. Because the IIGS is designed to be used in a
window environment, the Window Manager is one of the most
important tools in the Toolbox.

• The Control Manager, which draws pushbuttons, scroll bars, and
other objects on the super high-resolution screen. When the Control
Manager draws controls, you can activate them by clicking the
mouse. In this way, you can scroll windows, tum functions off and
on, and cause various other things to happen. The Control Manager
is primarily a low-level tool set whose functions are used by other
tools such as the Window Manager. But the Control Manager can
also create and manipulate user-designed controls.

• The Menu Manager, which controls and maintains pull-down menus
and items in menus. Because the IIGS is designed to be used in a
menu environment, the Menu Manager is one of the most important
tool sets in the Toolbox.

• The LineEdit Tool Set, which performs much the same function in
the super high-resolution environment that the Text Tool Set
performs when the computer is in text mode. The LineEdit Tool Set
places text on the screen and allows the user to edit it. In addition,
LineEdit offers "cut-and-paste" operations that provide convenient
methods for editing, deleting, and moving text.

• The Dialog Manager, which offers a convenient and easy-to-use
interface between the IIGS and the user. The Dialog Manager creates
windows to display messages and can accept user input. Windows
created by the Dialog Manager can warn the user of dangers or
special situations and provide the user with an easy method for
making decisions and passing them to a IIGS program.

• The Scrap Manager, which offers the user a method of storing
information temporarily so it can be moved to another location,
document, or application. When information is no longer needed, the
Scrap Manager can delete it.

• The Desk Manager, which manages desk accessories, mini-
applications executed while other applications are running. The Desk

131

The IIGS Toolbox

Manager controls clocks, calculators, note pads, and other useful
desktop utilities.

• The Standard File Operations Tool Set, which provides an easy-to-
use interface with ProDOS 16 in a super high-resolution
environment. When the Standard File Operations Tool Set is
activated, it presents a special dialog window that can load, save,
open, and close disk files without requiring the user to master the
technical details of ProDOS 16.

• The List Manager, a low-level tool set used primarily by other tool
sets, such as the Standard File Operations Tool Set and the Font
Manager. The List Manager creates lists of items, such as files and
fonts, and is also available for use in application programs.

• The Font Manager, which keeps track of the character fonts
available to the IIGS and provides applications with information about
them. The Font Manager can tell you how many fonts are available
and the characteristics of those fonts. It can also underline text, print
in boldface or italics, and print text of various sizes on a printer or
the screen.

• QuickDraw II Auxiliary, which adds special capabilities to
QuickDraw II. The tools in the QuickDraw II Auxiliary tool set can
combine various drawing calls into a single picture, shrink and
reduce drawn objects and the bit maps used to create screen
windows, and draw icons and other objects on the super high-
resolution screen.

Math Tool Sets The Apple IIGS has two tool sets that perform arithmetic and mathematic
operations:

• The Integer Math Tool Set, which includes routines that perform
operations using integers. The Integer Math Tool Set handles
integers, long integers, and signed fractional numbers. It can also
convert integers, hexadecimal numbers, and decimal numbers from
one form to another and from one base to another.

• The SANE Tool Set, which supports the Standard Apple Numerics
(SANE) mathematics package. With the SANE Tool Set, the IIGS
can carry out extended-precision calculations in accordance with the
widely accepted IEEE standard.

132

The Print
Manager

The Print Manager allows applications to use standard QuickDraw II routines
to print text or graphics on a printer. It can interface an application with a
standard dot-matrix printer such as an Apple ImageWriter, or a laser printer
such as the Apple LaserWriter, or a network of laser printers.

7-lntroducing the IIGS Toolbox

S(und-Related The IIGS has three sound-related tool sets:
Tool Sets

• The Sound Tool Set, which provides a method for using the IIGs's
sound hardware without using specific hardware input-output
addresses.

• The Note Synthesizer, which creates notes, sound patterns, and
waveforms with sound-synthesizing techniques similar to those used
by synthesizers in professional sound studios.

• The Note Sequencer, which provides a convenient method for
incorporating sequences of musical notes into a program.

Specialized
Tools

The Apple IIGS has one group of tools that are categorized as specialized
tools. They include

• The Apple Desktop Bus (ADB) Tool Set, which interfaces the IIGS
with its keyboard, mouse, and other I/O devices such as graphics
tablets and game controllers.

• The Scheduler, which prevents a tool call from crashing the system
by asking for a temporarily unavailable system resource.

• The Text Tool Set, which provides an interface between Apple II
character device drivers and applications running in native mode.

Hov r To Use the Toolbox

In early models of the IIGS, many of the tools in the Toolbox were provided
on the system disk and had to be loaded into RAM. In newer models, in-
creasing numbers of tools have been taken off the system disk and included
in ROM. More tools are instantly available to application programs without
using disk space, loading time, or what would otherwise be free memory.

You seldom need to keep track of a tool's location or even whether the
toolkit that contains the tool is in ROM or RAM. A tool set called the Tool
Locator keeps track of all tools for you and takes care of most of the' 'house-
keeping" involved in loading and unloading tools.

The Tool Locator is automatically initialized when ProDOS 16 is booted,
and from then on you can use it any time you like. In an assembly language
program written using APW, the easiest way to use the Tool Locator is to
decide what tools you will use in a program and then make the APW macro
call

_LoadTooLs

All the tools you'll need in your program are then loaded into memory.

133

The IIGS Toolbox

Making the
LoadTools Call

134

Before you can make a LoadToo Ls call, you have to design a tool table
containing the identification number and lowest suitable version number of
each tool set you plan to use in your program. The available tools are listed
in table 7-1.

Table 7-1
Tools in the IIGS Toolbox

Version on
Tool Number Tool System Disk 3.0

I Tool Locator 0201
2 Memory Manager 0200
3 Miscellaneous Tool Set 0200
4 QuickDraw II 0202
5 Desk Manager 0202
6 Event Manager 0201
7 Scheduler 0200
8 Sound Manager 0200
9 Apple Desktop Bus 0201
10 SANE 0202
II Integer Math Tool Set 0200
12 Text Tool Set 0200
13 Not used
14 Window Manager 0201
IS Menu Manager 0200
16 Control Manager 0201
17 System Loader 0103
18 QuickDraw Auxiliary 0202
19 Print Manager 0102
20 LineEdit Tool Set 0200
21 Dialog Manager 0200
22 Scrap Manager 0102
23 Standard File Operations Tool Set 0200
24 Disk Utilities 0100
25 Note Synthesizer 0100
26 Note Sequencer 0100
27 Font Manager 0201
28 List Manager 0201

The LoadToo Ls call must be used with a carefully designed tool table
to work properly. The first word in the tool table must contain the number
of tool sets that will be loaded. Next, you must list the ID number of each
tool set, along with the minimum acceptable version number of each tool set
to be loaded. Listing 7-1 shows how the LoadToo Ls call is included in a
IIGS assembly language program.

7-lntroducing the JIGS Toolbox

Listing 7-1
Tool loading routine

**ROUTINE FOR LOADING TOOLS
*
LoadEmUp

TooLTabLe

START

PushLong #TooLTabLe
_LoadTooLs

rts

de i'13' ; no. of tooLs to Load
de i '$04,$0100' ; quiekdraw
de i'$05,$0100' ; desk manager
de i '$06,$0100' ; event manager
de i'$OE,$OOOO' ; window manager
de i '$OF ,$0100' ; menu manager
de i'$10,$0100' ; controL manager
de i'$12,$0000' ; qd auxiLiary
de i '$13,$0000' ; print manager
de i '$14,$0000' ; Line edit
de i '$15,$0000' ; diaLog manager
de i'$17,$0100' ; std fiLe manager
de i'$18,$0100' ; font manager
de i '$1C,$0000' ; List manager

END

Init llizing Tools Some tool sets-such as the Tool Locator, the Text Tool Set, and the Integer
Math Tool Set-are present in ROM at all times and thus do not have to be
loaded before they are used. But most tool sets do have to be loaded and then
have to be started up, or initialized. When you're finished using a tool set,
you should shut it down.

It is very easy to initialize a tool set, and it is just as easy to shut one
down. To initialize or shut down a tool set, you make a specific call. The
following call, for example, initializes the LineEdit Tool Set:

_LEStartup

and this call shuts it down:

_LEShutdown

The sample programs in the rest of this book give you plenty of practice in
starting up and shutting down tool sets.

135

The IIGS Toolbox

There are two important points to think about when you plan to call a
Ilos tool from your application. One is tool dependency, making sure certain
tools are loaded and initialized before other tools that rely on them are called.
The second point is making sure the IIos is in 16-bit native mode before any
tools are loaded, initialized, and called.

It is very important to start up tools in the correct order. A tool set
dependency chart, which shows what tools have to be started before other
tools can be used, appears in table 7-2. You can practice starting up tool sets
in the proper order by typing, assembling (or compiling), and running the
sample programs in chapters 8 through 13.

Table 7-2
Tool Set Dependency

Dependencies (with minimum version number needed)
Tool Memory Misc. Quick- Event Window Control Menu LineEdit Dialog Scrap List

Hex Dec Tool Set Locator Manager Tool Set Draw II Manager Manager Manager Manager Tool Set Manager Manager Manager
$01 I Tool

Locator
$02 2 Memory $0102

Manager
$03 3 Misc. $0102 $0102

Tool Set
$04 4 Quick- $0102 $0102 $0102

Draw II
$12 18 Quick- $0102 $0102 $0102 $0102

Draw II
Auxiliary

$06 6 Event $0102 $0102 $0102 $0102
Manager

$OE 14 Window $0102 $0102 $0102 $0102 $0100
Manager

$10 16 Control $0102 $0102 $0102 $0102 $0100 $0103
Manager

$OF 15 Menu $0102 $0102 $0102 $0102 $0100 $0103 $0103
Manager

$14 20 LineEdit $0102 $0102 $0102 $0102 $0100
Tool Set

$15 21 Dialog $0102 $0102 $0102 $0102 $0100 $0103 $0103 $0103 $0100
Manager

$16 22 Scrap $0102 $0102
Manager

$05 5 Desk $0102 $0102 $0102 $0102 $0100 $0103 $0103 $0103 $0100 $0101 $0101
Manager

$17 23 Standard $0102 $0102 $0102 $0102 $0100 $0103 $0103 $0103 $0100 $0101
File

Tool Set
$IC 28 List $0102 $0102 $0102 $0102 $0100 $0103 $0103

Manager
$13 19 Print $0102 $0102 $0102 $0102 $0100 $0103 $0103 $0103 $0100 $0101 $0100

Manager
$IB 27 Font $0102 $0102 $0102 $0102 $0100 $0103 $0103 $0103 $0100 $0101 $0100

Manager

136

7-lntroducing the IIGS Toolbox

It is also important to make sure the IIGS is in native mode, rather than
emulation mode, when you use the Toolbox in a program. When the 65C8l6
is in native mode, its e, m, and x flags are all set to 0, providing it with a
l6-bit accumulator and l6-bit index registers. Almost all the tools in the
Toolbox require the 65C8l6 to be in native mode and simply will not work
if the processor is in its 8-bit state. Exceptions to this rule are rare and are
documented in the Apple Ilos Toolbox Reference.

ThE Memory Manager
The Memory Manager, like the Tool Locator, resides in ROM and thus does
not have to be loaded or initialized. It goes into action as soon as you tum
on the IIGS. From then on, it controls the allocation, deallocation, and po-
sitioning of every byte in the computer's memory. The Memory Manager
constantly keeps track of how much memory is free and which blocks of
memory are allocated to which programs.

The Memory Manager works closely with ProDOS 16 and the System
Loader to provide needed memory spaces for loading programs and data and
to provide buffers for input and output. All Apple IIGS software, including
the System Loader and ProDOS 16, must obtain memory space by making
requests (calls) to the Memory Manager.

When a block of memory is allocated by the Memory Manager, it is
assigned a number of important attributes that the Memory Manager stores
in a special location. These attributes determine how the Memory Manager
may modify each block (such as moving it or deleting it), if each block can
be purged from memory, if it must be placed in memory in a special way
(for example, starting on a page boundary), and what program owns it.

When a program asks for a block of memory, it must pass to the Memory
Manager a list of attributes that it wants to assign to the block. These attributes
are passed in the form of a word. This is shown in figure 7-1 and is examined
more closely later in this chapter. When a group of attributes is assigned to
a block of memory, the Memory Manager takes them into account whenever
it has to purge, allocate, deallocate, or compact memory.

How an
Application

Obt tins Memory

When an application makes a ProDOS 16 call that requires allocation of
memory (such as opening a file or writing from a file to a memory location),
ProDOS 16 first obtains any needed memory blocks from the Memory
Manager and then performs its tasks. Likewise, the System Loader requests
any needed memory either directly or indirectly (through ProDOS 16 calls)
from the Memory Manager. Conversely, when an application informs the
operating system that it no longer needs memory, that information is passed
to the Memory Manager, which in tum frees the application's allocated
memory. In all these cases, the memory allocation and deallocation is au-
tomatic as far as the application is concerned.

When an application needs memory for its own use, it must request the
memory directly from the Memory Manager. In a few moments, you'll see
how a program can request memory from the Memory Manager.

137

The IIGS Toolbox

1= MUST BE IN FIXED BANK

1= MUST HAVE FIXED ADDRESS

1= MUST BE PAGE-ALIGNED

=MAY NOT USE SPECIAL MEMORY

'------1 = MAY NOT CROSS BANK BOUNDARY

1= FIXED
1=LOCKED

RESERVED RESERVED
(ALWAYS 0) (UNDEFINED)

Figure 7-1
Attributes word used by the Memory Manager

How the
Memory
Manager

Uses Memory

From the Memory Manager's point of view, the memory in the IIGS is divided
into three categories:

• Allocatable memory (managed by the Memory Manager). There are
no special restrictions on the use of this memory. It includes banks
$02 through $DF and parts of banks $EO and $EI.

• Special memory (managed by the Memory Manager and allocatable
except under special conditions). There are certain restrictions on the
use of this memory because it is used like Apple lIe and lIe memory
when the IIGS is in emulation mode. Special memory may not be
used by desk accessories, tool sets, and other routines that might be
called while lIe/lIe-style applications are running. Banks $00 and
$01 and parts of banks $EO and $EI are special memory.

• Unmanaged memory (reserved and not managed by the Memory
Manager). This category of memory includes the language card area
from $DOOO to $DFFF in banks $00, $01, $EO, and $EI, addresses
$0000-$0800 in banks 0 and I, and addresses $0000-$2000 in
banks $EO and $E I. The Memory Manager marks this memory as
"busy" at startup time and does not interfere with it thereafter.

Figure 7-2 shows how the Memory Manager handles allocatable, special,
and unmanaged memory.

Pointers and Handles
Because the Memory Manager can move a memory block and thus change
its starting address, IIGS applications cannot use simple pointers to access
entry points in memory. Instead, each time the Memory Manager allocates
a memory block, it returns to the requesting application a special kind of
pointer called a handle. Then the application that owns the memory block
can always access it safely by using its handle, rather than an ordinary pointer.

A handle is sometimes described as a "pointer to a pointer." It is a
fixed, or unmovable, memory location that contains the address of a simple
pointer. The handles used by the IIGS are kept in an unmovable, unpurgeable

138

7-lntroducing the I/GS Toolbox

BANK $00 BANK $01
$FFFF

$OCOO
$0800
$0000

$6000

$DOOO

I

LANGUAFE CARD

I/O

IL-__-'

BANK $EO BANK $E1
$FFFF ,-----,

$EOOO

$DCOO

$COOO

$AOOO

$6000

$2000

$COOO
$0800
$0000

c:::J
UNMANAGED
MEMORY

nn
ALLOCATABLE
BUT SPECIAL

tklnW]
ALLOCATABLE
MEMORY

Figure 7-2
Allocatable, special, and unmanaged memory

block of memory that starts at memory address $E11700. Each time a block
of memory is assigned, the Memory Manager stores its starting address, along
with its attributes, into one of the handles that start at $EI1700.

How To Assign
a Handle

Before a program can request a block of memory (and a handle) from the
Memory Manager, it must obtain a user identification code, or user
ID, from the Memory Manager. To get a user ID, a program can make the
MMStartup call, in this fashion:

139

The JIGS Toolbox

PushWord #0
_MMStartup
PuLLWord My1D

; space for return

; space for resu Lt
; size of block
; user 1D
; attributes
; Location (O=don't care)

140

In this example, a word is pushed onto the stack so that MMStar t up
has a place on the stack to push its data. Then the APW macro _MMSta rtup
makes the MMStar t up call. When you make the call, it assigns a user ID
number and places it on the stack. When the call returns, the user ID assigned
by the Memory Manager is pulled off the stack and placed in a program
variable called MyI D.

If you're wondering why the MMStartup call has to be made to get a
user ID, the answer is simply that that's the way it's done. Because the
Memory Manager is a ROM-based tool and is always active, it doesn't have
to be started with a startup call. But the conventional way to get a user ID
is to request it with an MMStartup call. And more than one MMStartup
call can be made in a program. This would all be less confusing if the
MMStartup call had a different name. You just have to remember that the
MMStartup call does not really start up the Memory Manager. It is used
primarily for obtaining user IDs.

After you have a user ID from the Memory Manager, you can request
as many memory blocks as you like. As long as the Memory Manager has
enough free RAM available, it will assign memory blocks and return handles.
You have to keep track of the handles the Memory Manager assigns and what
you're using them for. One good reason to keep track of handles is that you
must dispose of any handles before you end the application. Otherwise, they
remain in memory after the application ends, wasting memory space and
possibly interfering with other programs.

Before you can dispose of a handle, though, you have to get one. Listing
7-2 is a fragment of assembly language code that shows how to get a handle
from the Memory Manager.

Listing 7-2
Getting a handle from the Memory Manager

PushLong #0
PushLong #$8000
PushWord My1D
PushWord #0
Push Long #0
..NewHand Le
PuLLLong MyHandLe

The call to get a block of memory (along with a handle) is NewHand Le.
But before you make a NewHand Le call, you must push these parameters on
the stack:

• A space for a result (I word).
• The size of the block of memory being requested (2 words). In

How the
Memory
Manager

Uses Handles

Dereferencing
a Handle

7-lntroducing the IIGS Toolbox

listing 7-2, the length of the block being requested is $8000, or
32K.

• The user ID of the application requesting the block (l word).
• The block's attributes (l word). A diagram of this word appears in
figure 7-1. (An explanation of each bit is provided later in this
chapter.)

• The starting address of the block (2 words). Unless there is an
overwhelming need to store a block in a specific location, this
parameter should be #0 so that the Memory Manager determines
where to store the block being requested.

After a handle is assigned to a block of memory and the program that owns
the handle is told what the handle is, the Memory Manager can move the
block as often as needed, and the block's handle will not change. If the
Memory Manager changes the location of the block, it updates the address
stored in the handle, but does not change the address of the handle. Thus,
the application that owns the memory block can always use the block's handle
to access it, no matter how often the block itself is moved in memory.

If an application is sure that a block of memory will always remain in the
same spot-that is, if it has requested a locked and unpurgeable handle-
the application can access the block by its pointer as well as by its handle.
To obtain a pointer to a particular block or location, a special kind of operation
called dereferencing is used. Listing 7-3 is a routine that dereferences a
handle-that is, it tells you what its handle is. The segment of code that
appears in listing 7-3 is used in several programs in part 2.

Listing 7-3
Dereferencing a handle

Deref START
sta DPTemp
stx DPTemp+2
Ldy #4
Lda [DPTemp],y
ora #$8000
sta [DPTemp],y
dey
dey
Lda [DPTemp],y
tax
Lda [DPTemp]
rts

END

In a dereferencing operation, the application reads the address stored

141

The IIGS Toolbox

Memory
Fragmentation

and Compaction

Purging Memory

in the location pointed to by the handle. That address is the pointer to the
block. If the Memory Manager moves the block, the pointer is no longer
valid.

Because the Memory Manager does not allocate and deallocate memory in
any order, memory can become fragmented into a jumble of free and allocated
memory blocks. When this happens, the Memory Manager may not be able
to allocate a requested block, even if enough free memory is available. So
the Memory Manager has the capability of compacting memory, or moving
all relocatable blocks so that bigger blocks of memory become available.
Figure 7-3 shows how the Memory Manager compacts memory.

As you can guess by looking at figure 7-3, when fixed and locked
blocks are present in memory, the Memory Manager can't do a very good
job of compacting memory. For this reason, applications should avoid re-
questing fixed and locked blocks, and settle for movable blocks when possible.

If the Memory Manager compacts as much memory as possible and still can't
allocate a block, it tries to purge any blocks marked unlocked and purgeable.
When a block is purged, its contents are discarded, and the memory it occupied
is free for other uses.

When a block is purged, its handle remains allocated, but the value of
the master pointer that its handle points to is set to 0, or nil. A handle that
points to a nil master pointer is called an empty handle. When the block of
memory assigned to a handle is purged, an application asks the Memory

BEFORE

FREE

FREE

AFTER

FREE

142

Figure 7-3
How the Memory Manager compacts memory

7-lntroducing the IIGS Toolbox

Manager to reallocate the purged block. After a block of memory is purged,
however, the data in it is irretrievably lost, so only the memory-not the
data--can be retrieved by a program.

Properties of Memory Blocks
As mentioned, an application program can control the properties of a memory
block by setting up a memory attributes word and passing it to the Memory
Manager in a -NewHand le call. Most attributes in an attributes word are
defined when the block is allocated and can't be changed. Some attributes,
however, can be modified after allocation.

The layout of a memory attributes word is shown in figure 7-1. In each
bit position, a value of 1 means the attribute defined by the bit applies to the
block. You might think of setting the bit to 1 as applying a restriction to the
block.

Allocation
Attributes

Modifiable
Attributes

When a block is allocated, several bits in the attributes word set restrictions
on how the block is allocated. These attributes can only be set when the block
is allocated. The allocation attributes are

• Fixed. If a block is fixed, it cannot be moved when memory is
compacted. Code blocks are usually fixed, but data blocks usually
should not be fixed.

• Bank boundary limited. Specifies that a block must not cross banks.
Code blocks may never cross banks, and making a data bank cross
bank boundaries is very risky.

• Special memory usable. Specifies that the block may be allocated in
special memory, or memory used by the IIc and lIe. Special memory
includes banks $00 and $01 and screen memory.

• Page aligned. For timing or other special reasons, code or data may
need to be page aligned.

• Fixed address. The block must be at a specified address when
allocated. A fixed address attribute should be used only in special
situations, for example, in allocating a graphics screen.

• Fixed bank. The block must start in a specified bank, for example,
on the direct page.

As noted, the Memory Manager can move or purge a block while making
room for a new block. The attributes that determine whether a block can be
moved or purged can be changed by an application after a block is created.
These attributes are

• Locked. When a block is locked, it is unmovable and unpurgeable
regardless of the setting of the fixed or purge level attributes. A
block can thus be locked temporarily while it is being executed or
referenced.

143

The IIGS Toolbox

• Purge level. Purge level is a 2-bit number defining the purge priority
of a block.

When the Memory Manager starts purging blocks of memory, the order
of the purging is based on the purge level of the block. The purge level is a
2-bit number specifying the purging priority of the block. The values are

3 Most purgeable (used by System Loader)
2 Next most purgeable
I Least purgeable
o Not purgeable

Application programs should use only purge levels 0, I, and 2; level 3
is reserved for the System Loader. When some applications exit, the memory
is not freed but its blocks are set to level 3. The old application can thus be
restarted without accessing the disk if the new application did not need the
space. If the Memory Manager purges any blocks of an application in this
state, it purges all of that application's blocks.

The Event Manager
Because the Ilos is designed to use event-driven programming, the Event
Manager is a vital tool set. It allows applications to monitor the actions initiated
by the user-such as movements using the mouse, keyboard, and keypad-
and to respond accordingly.

In an event-driven program, the actions tracked and handled by the
Event Manager are known, logically enough, as events. For example, when
the user presses or releases the button on top of the mouse, that is a mouse
down or mouse up event. When the user presses a key on the keyboard, that
is a key down event. If the user presses a key and holds it down, that is an
auto-key event.

When an event recognized by the Event Manager takes place, the Event
Manager may report it immediately or place it in a queue, according to its
priority. When the Event Manager has a series of events waiting in its queue,
it removes and reports them, one at a time. But they are not necessarily
reported in the order in which they were detected because some events have
higher priorities than others. You examine the priorities of events later in this
section.

When the Event Manager detects a user-generated event-such as a
mouse button being pressed or a key being held down-it places information
about the event in a record in memory called an event record. The application
can then access the contents of the event record to find out what kind of event
has taken place so that it can determine what to do. You see what an event
record looks like and how it is used later in this section.

When a user-generated event is detected, and information about it is
placed in an event record, the application using the Event Manager decides
what to do about the reported event. But not all events detected by the Event

144

7-lntroducing the IIGS Toolbox

Manager are generated by the user. The Event Manager is also used by other
tools in the IIGS Toolbox. For example, the Window Manager uses events to
coordinate the order and display of windows on the screen. When toolkits
such as the Window Manager use the Event Manager, they often decide what
to do about the event notifications they receive.

Later in this section, you see how application programs and other tools
in the IIGS Toolbox use the Event Manager. Before that, though, let's see
what kinds of events are handled by the Event Manager.

Types of Events
Events handled by the Event Manager can be categorized by types. Some
types of events report actions by the user. Others are generated by the Window
Manager, the Control Manager, device drivers, or even the application being
executed. The IIGS system handles some events before the application ever
sees them, but it leaves others for applications to handle. We'll now pause
to examine the types of events the Event Manager can handle.

Mouse Events

Keyboard
Events

Window Events

When you press the button on the top of the IIGS mouse, the system generates
a mouse down event. When you release the button, the system generates
a mouse up event. Movements of the mouse update the cursor position but
are not reported as events.

When you press any character key on the IIGS keyboard or keypad, the system
generates a key down event. The character keys include all keys except Shift,
Caps, Lock, Control, Option, and Apple, which are called modifier keys.
Modifier keys are treated differently and generate no keyboard events of their
own. When an event is posted, the state of the modifier keys is reported in
a special modifier field in the event record. The program using the Event
Manager then decides what the pressing of a modifier key should do.

The character keys on the keyboard and keypad also generate auto-key
events when you hold them down. Two different time intervals are associated
with auto-key events. The first auto-key event is generated after an initial
delay has elapsed since the key was originally pressed. This is called the
repeat delay. Subsequent auto-key events occur each time a certain repeat
interval has elapsed since the last such event. This is called the repeat speed.
You can change these values by using the IIGS Control Panel.

The Window Manager generates events to coordinate the display of windows
on the screen. (You examine the Window Manager in greater detail in chapter
10.) Events generated by the Window Manager are divided into two categories:
activate events and update events.

An activate event is generated each time an inactive window becomes
active or an active window becomes inactive. Activate and deactivate events
generally take place in pairs; that is, one window is deactivated and then
another is activated.

145

The IIGS Toolbox

An update event takes place when all or part of a window's contents
need to be drawn or redrawn, usually as a result of the user opening, closing,
activating, or moving a window.

Other Events There are other events the Event Manager can handle. For example:

• Device driver events, which (as you might guess) are generated by
device drivers. A device driver event can signify the receipt or
interruption of I/O data.

• A desk accessory event, which takes place when you activate a
classic desk accessory such as the IIos Control Panel.

• Application events, which are defined by application programs. A
program can define as many as four application events of its own
and can use them for any purpose. A call titled PostEvent places
application-defined events in the event queue.

Priorities of Events
When the Event Manager is active, it collects events from a variety of sources
and reports them to the application on demand, one at a time. But, as noted,
the events are not necessarily reported in the order in which they took place
because some have a higher priority than others. The Event Manager places
events in a queue and handles them according to a strict priority system.

In general, the Event Manager retrieves events from the event queue in
the order in which they were posted. But the way in which types of events
are generated and detected causes some events to have a higher priority than
others. Also, not all events are kept in the event queue. Furthermore, when
an application asks for an event, it can specify the types of events it is interested
in, and this can cause the Event Manager to pass over some events in favor
of others.

If the queue becomes full, the Event Manager begins discarding old
events to make room for new ones as they're posted. Discarded events are
always the oldest ones in the queue.

Events are carried out by the Event Manager in the following order:

1. Activate events (a window becoming inactive before another window
becomes active). Activate events have priority over all other types of
events. They are detected in a special way and are never actually
placed in the event queue. The Event Manager's GetNextEvent
and EventAvai L routines (which you look at in more detail later)
check for pending activate events before looking in the event queue,
so they always return such an event if one is available. Because of
the special way the routines detect activate events, there can't be
more than two such events pending at the same time. At most, there
is one event for a window becoming inactive, followed by another
event for a window becoming active.

146

Event Records

7-lntroducing the I/GS Toolbox

2. Switch events (reserved for future use). Switch events also remain
outside the event queue. If no activate events are pending, the
GetNextEvent and EventAvai l routines check for a switch event
before looking in the event queue. If a switch event is available, the
routines check to see if any update events are pending. If so, they
return the update event to the application. GetNextEvent and
EventAvai l return switch events to the application only if update
events are pending. This ensures that all windows are updated before
the application is switched.

3. Mouse down, mouse up, key down, auto-key, device driver,
application-defined, and desk accessory events (handled in order of
posting). This category includes all event types placed in the event
queue. With the exceptions noted previously, the Event Manager
retrieves them from the queue in the order of their posting. The
GetNextEvent and EventAvai l calls only return events from this
category.

4. Update events (in front-to-back window order). Update events, like
activate and switch events, are not placed in the event queue, but are
detected in another way. If no higher priority event is available,
GetNextEvent and EventAvai l check for windows whose
contents need to be drawn. If they find one, they return an update
event for that window. GetNextEvent and EventAvai l also
check the order (from front to back) in which windows are displayed
on the screen. If two or more windows require updating,
GetNextEvent and EventAvai l return an update event for the
frontmost window.

When the Event Manager detects an event, it returns information about the
event in an event record. The event record includes the following information:

• Type of event detected
• Time the event was posted, in ticks since system startup
• Location of the mouse when the event was posted, expressed in
global (screen) coordinates

• State of mouse buttons and modifier keys when the event was posted
• Additional information that might be required for a particular type of
event, such as which key the user pressed or which window is being
activated

Every event, including a null event, results in data being entered into
an event record by the Event Manager. Listing 7-4 shows how an event
record is included in a data section of a program.

147

The IIGS Toolbox

Listing 7-4
An event record

EventRecord
What
Message
When
Where
Modifiers

anop
ds 2
ds 4
ds 4
ds 4
ds 2

; event code (word)
; event message (Long)
; ticks since startup (Long)
; mouse Location (point)
; modifier fLags (word)

The What Field

The Message
Field

The Modifiers
Field

In listing 7-4, the When field contains the number of ticks since the
system was last started. The Whe re field contains the location of the mouse,
in global coordinates, when the event was posted. Now you'll examine the
contents of the other fields in an event record.

The What field of an event record contains an event code that tells what
kind of event was detected by the Event Manager. The Event Manager's event
codes, and their meanings, are listed in table 7-3.

The Message field contains an event message that returns additional
information about the detected event. The nature of this message depends on
the event type, as shown in table 7-4.

The Mod i fie r s field of an event record shows the state that various keys
and control buttons were in when an event was posted. In addition, the
Ac t i ve Flag and Change Flag bits in the Modi fie r s field provide further
information about activate events. See table 7-5.

Table 7-3
Event Manager's Event Codes

Code Name Meaning

0 NuLLEvt Null event
I MouseDownEvt Mouse down event
2 MouseUpEvt Mouse up event
3 KeyDownEvt Key down event
4 Undefined
5 AutoKeyEvt Auto-key event
6 UpdateEvt Update event
7 Undefined
8 ActivateEvt Activate event
9 SwitchEvt Switch event
10 DeskAccEvt Desk accessory event
II DriveEvt Device driver event
12 App1Evt Application-defined event
13 App2Evt Application-defined event
14 App3Evt Application-defined event
15 App4Evt Application-defined event

148

Event Type

Mouse down
Mouse up
Key down

Auto-key

Activate
Update
Device driver
Application
Switch
Desk accessory
Null

7-lntroducing the JIGS Toolbox

Table 7-4
Event Messages

Event Message

Button number (0 or I) in low word; high word undefined
Button number (0 or I) in low word; high word undefined
ASCII code in low word, low byte; low word, high byte clear;
upper 3 bytes undefined
ASCII code in low word, low byte; low word, high byte clear;
upper 3 bytes undefined
Pointer to window
Pointer to window
Defined by device driver
Defined by application
Undefined
Undefined
Undefined

Table 7-5
Modifiers Field of an Event Record

Bit

o
Name

ActiveFlag

Change Flag

Value

o = Window being deactivated
I = Window being activated
o = No change
I = Active window being
changed to system or application
window

2 Reserved
3 Reserved
4 Reserved
5 Reserved
6 BtnOState 0 Mouse button down

I Mouse button up
7 Btn1State 0 Mouse button 2 down

I Mouse button 2 up
8 Apple key 0 Apple key up

I Apple key down
9 Shift key 0 Shift key up

I Shift key down
IO Caps lock key 0 Caps lock up

I Caps lock down
II Option key 0 Option key up

I Option key down
12 Control key 0 Control key up

I Control key down
13 Keypad 0 Key pressed on keyboard

1 Key pressed on keypad
14 Reserved
15 Reserved

149

The JIGS Toolbox

Bits 6 through 13 of the Modi fie r s field show the state of the mouse
button and modifier keys at the time an event was posted. The BtnOState
and Bt n 1Stat e bits (bits 6 and 7) are set to 1 if the corresponding mouse
button is up. The bits for the five modifier keys are set to 1 if their corre-
sponding keys are down.

The Act i ve FLag is set to 1 if a window pointed to by the event message
is being activated or set to 0 if it is being deactivated. The Change FLag bit
is set to 1 if the active window is being changed from an application window
to a system window, or vice versa. Otherwise, it is set to O.

Loading and Initializing the Event Manager
Now that you know how to interpret event records, you're ready to load and
initialize the Event Manager. Before the Event Manager tool set is started
up, it must be loaded. In most cases, the best way to load the Event Manager
is with the Tool Locator's .Loadtoo Ls call, described previously in this
chapter.

When the Event Manager is loaded, several other operations must be
carried out before it can be started. For example, before a call to start the
Event Manager can be issued, these tool sets must be in memory and ini-
tialized:

• Tool Locator. (No action needed; initialization is automatic.)
• Memory Manager. (Does not have to be loaded; must be initialized
if a user ID is needed.)

• Miscellaneous Tool Set. (Must be loaded and initialized.)
• QuickDraw II. (Must be loaded and initialized.)

Before a program can start up the Event Manager, it must also obtain
four direct pages that are reserved for use by QuickDraw II and the Event
Manager. The QuickDraw tool set requires three reserved direct pages and
the Event Manager requires three. Listing 7-5 is a fragment of code that
shows how to set up three private direct pages for QuickDraw and one for
the Event Manager.

Listing 7-5
Reserving direct pages for QuickDraw and the Event Manager

150

Push Long #0
PushLong #$300
PushWord MyID
PushWord #$C001

PushLong #0
_NewHandLe

; space for hand Le
; eight pages

; Locked, fixed, fixed bank

7-lntroducing the IIGS Toolbox

pla
sta DPHandle
pla
sta DPHand le+2

lda [DPHandle]
sta DPPointer

In listing 7-5, the Memory Manager call NewHandl e obtains the direct
page workspace that QuickDraw and the Event Manager need. The parameters
passed to NewHand le specify a block size of $400 (three pages for QuickDraw
and one for the Event Manager) and an attribute word of $COOI, or %1100
0000 0000 0001. This parameter tells the Memory Manager that the block it
assigns should be locked and fixed and should be situated in bank $00.

When QuickDraw and the Event Manager have the reserved page zeros
they need, they can be started up with the calls QDStartup and EMSta rtup.
Listing 7-6 shows how QuickDraw and the Event Manager are initialized in
a program.

Listing 7-6
Starting the Event Manager

*** INITIALIZE QUICKDRAW II ***

lda DPPointer
pha
PushWord #ScreenMode
PushWord #160
PushWord MyID
_QDStartup
ErrorCheck 'cou ld not

*** INITIALIZE EVENT MANAGER ***

; poi nter to di rect page

; ei ther 320 or 640 mode
; maxsizeofscanline

start Qui ckp rav,.'

; poi nter to di rect page

; QD di rect page + #$300
; (QD needs 3 pages)
; queue size
; Xclamp low
; Xclamp high
; y clamp low
; y clamp high

lda DPPointer
de
adc #$300
pha
PushWord #20
PushWord #0
PushWord #MaxX
PushWord #0
PushWord #200
PushWord MyID
_EMStartup
ErrorCheck 'Could not start Event Manager.'

151

The IIGS Toolbox

Writing an Event Loop

When you load the Event Manager, start the tools it uses, and supply
QuickDraw and the Event Manager with the direct page space they need, you
are ready to write a program that uses an event loop handled by the Event
Manager.

Some ruffles and flourishes would be appropriate at this point because
learning to write event loops is one of the most important skills you'll master
in your quest to become an Apple IIGS programmer. If you follow Apple's
IIGS interface guidelines-and you should, if you want your programs to be
user-friendly and compatible with future models of the Ilos-s-every program
you write has to be based on an event loop. After you start writing event loop
programs, you'll probably be glad you did. Event-driven programs are easier
to write, understand, and use than old-fashioned sequential-style programs.
In an event-driven program, a very short main loop controls an extremely
complex program, and a quick glance usually tells you a lot about how the
program works.

Listing 7-7 is the main loop of a simple event-driven program, called
EVENT. S1, which is listed in its entirety later in this section. Let's pause
for a look at its main loop and then move on to the complete program.

Listing 7-7
Main loop of an event-driven program

Again

152

PushWord #0
PushWord #$OOOA
PushLong #EventRecord
_GetNextEvent

pLa
beq Again

Lda EventWhat
as L a
tax

jsr (EventTabLe,x)
Lda QuitFLag
beq again

rts

; space for resu Lt
; key down & mouse down events

; get event code
; code * 2 = tabLe ocation
; Xis index regi ster

; Look up event's routine

How an Event
Loop Works

Interpreting the
Event Record

7-lntroducing the IIGS Toolbox

As listing 7-7 illustrates, the heart of a typical event loop is the Event Manager
call GetNextEvent. When you call GetNextEvent, you have to pass it
three parameters:

• A l-word space on the stack, which GetNextEvent fills with a
value before it returns.

• A l-word mask, which tells GetNextEvent what kinds of events to
look for and what kinds of events to ignore. An event mask is a
word in which each bit stands for one type of event. By setting
certain bits and leaving other bits clear, you instruct the Event
Manager to be on the lookout for certain types of events, and to pay
no attention to others. Table 7-6 lists the Event Manager's event
mask. When the Event Manager is in an event loop, it reports each
type of event that has a bit set in the event mask and ignores each
event whose corresponding bit is clear. If you pass the Event
Manager an event mask of $FFFF, it reports on all events detected.

• A pointer to an event record. When an application uses the Event
Manager, it must place an event record somewhere in memory.
Then, when the Event Manager posts an event, it can place
important information about the event in the event record.

When the Event Manager processes a GetNextEvent call, it returns a
I-word Boolean value: a nonzero value (true) if an event was detected and a
zero value (false) if there was no event.

The GetNextEvent call is usually used in a loop. In listing 7-7,
GetNextEvent is used in the loop labeled Agai n. Each time the loop makes
a cycle, GetNextEvent is called. Then the I-word Boolean value returned
by GetNextEvent is pulled off the stack.IfGetNextEvent does not detect
an event, the program branches back to the line labeled Agai n and makes
another GetNextEvent call.

IfGetNextEvent detects an event, it places information about the event in
an event record, which must be set up by the program using the Event
Manager. Listing 7-8 is an event record you'll be using in the EVENT.SI
program later in this chapter.

Listing 7-8
Event record in the EVENT.S1 program

EventData DATA

EventRecord
EventWhat
EventMessage
EventWhen
EventWhere
EventModifiers

anop
ds 2
ds 4
ds 4
ds 4
ds 2

END

153

The JIGS Toolbox

154

Table 7-6
Event Manager's Event Mask

Bit Name Value

0 Not used
I Mouse down mask 0 No mouse down event

I Mouse down event
2 Mouse up mask 0 No mouse up event

I Mouse up event
3 Key down mask 0 No key down event

I Key down event
4 Not used
5 Auto-key mask 0 No auto-key event

I Auto-key event
6 Update mask 0 No update event

I Update event
7 Not used
8 Activate mask 0 No activate event

I Activate event
9 Switch mask 0 No switch event

I Switch event
10 Desk accessory mask 0 No desk accessory event

I Desk accessory event
11 Device driver mask 0 No device driver event

I Device driver event
12 Not used
13 Application-defined events
14 Application-defined events
15 Application-defined events

As listing 7-8 shows, the event record in the EVENT.Sl program has
five elements, or fields:

• What field, called EventWhat. In this field, the Event Manager
returns a code telling what kind of event was detected. The event
codes that can be returned in this field are listed in table 7-3.

• Message field, called EventMessage. The nature of this message
depends on the type of event detected, as shown in table 7-4.

• When field, called EventWhen. In this field, the Event Manager
returns the number of clock ticks since the system was last started.

• Where field, called EventWhere. In this field, the Event Manager
places the location of the mouse, in global coordinates, when the
event was posted.

• Modifiers field, called EventModifiers. When a
GetNextEvent call returns, this field contains information about

Using an
Event Table

7-lntroducing the IIGS Toolbox

activate events and the states of certain keyboard keys and hand-
controller buttons when an event was posted. A bit-by-bit
explanation of this field is in table 7-5.

When the Event Manager detects an event and places information about it in
an event record, the EVENT.SI program uses a block of data called an event
table to decide what to do about the event. An event table is simply a table
of pointers to subroutines that an application program uses to respond to events
of various types. In the EVENT.SI program, when the GetNextEvent call
detects an event and places its event code in the What field of an event record,
an addressing mode called absolute indexed indirect addressing interprets the
event code returned by the Event Manager and jumps to the appropriate
subroutine. Listing 7-9 shows the event table used in the EVENT.SI program.

Listing 7-9
Event table in the EVENT.S1 program

EventTable DATA

dc i'ignore ; 0 null
dc tdoaui t ; 1 mouse down
dc i'ignore , ; 2 mouse up
dc i 'doaui t ; 3 key down
dc i'ignore ; 4 undefined
dc i'ignore , ; 5 auto-key down
dc i'ignore , ; 6 update event
dc i 'i gnore ; 7 undefined
dc i 'i gnore ; 8 activate
dc i'ignore , ; 9 switch
dc i'ignore ; 10 desk acc
dc i 'i gnore ; 11 device driver
dc i'ignore ; 12 application
dc i'ignore , ; 13 ap
dc i'ignore , ; 14 ap
dc i'ignore , ; 15 ap
dc i 'i gnore , ; 0 in desk

END

Listing 7-10, a fragment of code, uses indexed indirect addressing to
loop through an event table to look for an event code returned by the
GetNextEvent call.

In the first line of listing 7-10, the 65C816 accumulator is loaded with
the event code that the Event Manager placed in the EventWha t field of the
event record. In the next line, an as l a instruction multiplies the event code

155

The IIGS Toolbox

Listing 7-1 a
Looping through an event table

Lda EventWhat ; get event code
asL a ; code * 2 = tabLe Location
tax ; X is index register
jsr (EventTabLe,x) ; Look up event's rout i ne

now in the accumulator by 2. Because each address in the event table is 2
words, this operation converts the code in the accumulator to the proper offset
for the address in the table the program is looking for.

When this offset is calculated, the tax instruction copies it into the X
register. Finally, in the last line of the example, the absolute indexed indirect
addressing mode is used to jump to the desired subroutine.

The EVENT.51 Program
Now that you know how event loops work, you're ready to type, assemble,
and execute the EVENT.Sl program. This program prints a message on the
screen and then goes into an event loop. During the event loop, an event
mask allows the GetNextEvent call to respond only to key down and mouse
down events, so nothing more will happen until a key or the button on the
nos mouse is pressed. When the mouse button or a key is pressed, another
message is printed on the screen and the program ends. The complete listing
of the EVENT.Sl program (listing 7-12) is at the end of this chapter.

Using the IIGS Toolbox from C
If all you wanted to do in C was write standard, vanilla-flavored, UNIX-style
programs, you probably wouldn't be using an Apple nos. The real fun (and
possible profit) in using the nos is in creating programs with razzle-dazzle
features like windows, pull-down menus, and glorious color and sound.
Thanks to the nos C Interface Library, which allows you to make nos Toolbox
calls from C programs, you can put the nos through all its spectacular paces
from programs written in C.

The APW C compiler, which was used to write all the C programs in
this book, fully supports the use of the nos Toolbox from C. In addition to
the definitions needed to use the standard C library routines, the APW directory
LIBRARIES/CINCLUDE contains all you need (probably more than you
need) to use all the Toolbox calls and data structures in C programs. In
addition, APW has made thousands of predefined tool-related constants avail-
able to C programmers. These include bit-flag attribute values and the error
codes returned by tools. The Ilos C Interface Library also contains many other
miscellaneous values to convey special information to and from various tool
calls.

156

Pascal-Type
Functions

C Toolbox
Header File

7-lntroducing the IIGS Toolbox

APW C implements an extension to standard C that allows you to use a special
set of Pascal calling conventions as well as standard C conventions. In Pascal,
the arguments passed to a function are pushed onto the stack from left to
right, so the rightmost argument ends up at the top of the stack. In normal
C functions, the leftmost argument winds up on top. Pascal-type functions-
and this includes all IIGS Toolbox routines and any functions you compile
from Pascal source code-expect space for any values they return to be pushed
onto the stack before they are called. Instead of returning values in the A and
X registers as you might expect a well-behaved C call to do, they place the
values they return in the space reserved for them on the stack. Naturally, if
the space is not reserved, whatever is there is "clobbered" by the returned
values, and your program gets the wrong values back when the call returns.

You'll rarely have to worry about any of this, however, as long as you
use the IIGS C Interface Library. Unless you are writing modules in Pascal
that are called from C or writing your own Toolbox routines, you won't need
to declare anything as Pascal to make Toolbox calls. In APW C, all the
conversion details needed to make Toolbox calls are included in a special
collection of header files in APWILIBRARIES/CINCLUDE.

You don't need to look at the contents of APW's header files to use them in
making Toolbox calls. All you have to do is use an #i nc lude definition to
include the names of the tool sets you need in the heading of your program,
then make sure you follow the calling conventions listed under C at the bottom
of each page in the Apple Ilos Toolbox Reference. It may be instructive,
however, to look at one or two of APW's header files. You can print one to
the printer by making this shell call:

#type 2/ci nclude/contro t , h >. pri nter

If you use the APW editor instead of your printer to look at a header
file, make sure you don't inadvertently change the file's contents. If you do,
be sure you don't save the changes when you quit. Better yet, lock your disk
or make a copy of the file and open the copy with the editor.

When you print the contents of a header file on the screen or the printer,
the first thing you'll see is a heading, which is a comment. Under that, you'll
see something like this:

#i fndef _qui c kdr aa;
#include <quickdraw.h>
#endif

#i fndef _event-
#i nc lude <event. h>
#endif

#i fndef _cont ro l_
#def i ne _cont ro L,

157

The IIGS Toolbox

158

Next are the real contents of the file. Because the definitions that follow
depend in part on definitions provided in other headers, they have to be
included first. That's why two # include statements head up the file. Be-
cause C "complains" if you try to compile the same group of definitions
more than once, conditional compilation protects against this occurrence:

#ifndef _control_

The last line:

def i ne _cont ro L

ensures that the definitions that follow are never recompiled during this com-
pilation.

Next you'll see a long list of constant definitions, each preceded by the
expression

#define

These definitions allow you to use certain named constants described
in Apple's Toolbox and C manuals without looking up their values. They
make your code easier to write and read. The comments tell you a little about
the use of each constant. The ones that sayer ro r are values placed in the
global variable _too l Err if an error is detected by one of the tool calls.

After the constant definitions, you'll see a listing of type definitions.
These allow you to declare variables in your source that match the structures
expected by various tool calls. For instance, you can write:

CtlRecHndl myCtl;

You can then store a control's handle, returned by NewCont ro l or another
function, in the variable called myC t l. For example:

myCtl = NewControl(••••••••);

Then there is a listing of function declarations. For example:

extern Pascal CtlRecHndl NewControlO
inline(OxOOOO, dispatcher);

This declares a Pascal function returning 4 bytes (long) to be interpreted as
a pointer-to-a-pointer to Ct l RecHnd l. It also tells the compiler to insert the
inline trap instructions in the object code instead of the usual j s l function
name generated for normal C functions.

Thelnline
Trap Call

Making Calls
with Glue

7-lntroducing the IIGS Toolbox

At the end of the function declarations is the line

#endif

That's the ending required by the conditional compilation directive at the
beginning of the file.

In IIGS C, almost all Toolbox routines are called with the aid of an inline
trap. This mechanism is provided so that the linker won't go looking in C
libraries for Toolbox routines when it runs across their names in C programs.
The inline trap mechanism distinguishes Toolbox calls from C library calls
so that this won't happen.

Because tool calls are not located where the linker can find them and
because they may be moved as tools are revised, a routine called the Tool
Dispatcher, which is always located at address $ElOOO, uses a jump table to
access each tool. This table is updated with each revision of the tools. To
call a tool in assembly language, you push the tool number onto the stack
and then do a long jump (j s l) to $ElOOO. The engineers who designed APW
C could have placed assembled routines for making each call into CUB, and
then you could have called them just as you would any other library routine.
But this method would increase the size of CUB and be inefficient, because
it would tum each tool call into two nested subroutine calls.

Instead, they designed the inline trap, which inserts dispatcher calls
directly into the object code generated by the C compiler. That's why it is
called inline. You will never need to use this call directly; it is used auto-
matically by the function definitions in the headers. But knowing how it works
and why it is there gives you a better understanding of what happens when
you make a tool call.

A few tool routines are not accessed using inline dispatcher calls placed in
your: object code. These routines return too much data on the stack, have
arguments smaller than a word (less than 2 bytes), or are otherwise not directly
compatible with the APW C compiler. For these, routines called glue have
been written in assembly language, assembled, and added to CUB. The glue
routines accept input supplied by compiled C code, adapt it (if necessary) to
the format required by the call, execute an inline trap, and pass any results
back to the calling routine in a way that can be handled easily in C. If you
look in an appropriate C header file, you'll see that such calls look like ordinary
C function declarations. For example, in the file misctool.h, you can find this
line:

ex tern Ti meRec ReadT i meHex() ;

Because of this function, the call ReadTi meHex is accessed by a long
jump (j s l) instead of an inline trap call. This, in tum, causes the APW
linker to find a glue routine called ReadTi meHex in CUB and link it with

159

The lias Toolbox

your program. Again, all the details are handled for you. All you have to do
is make the call and pass it any required arguments (in this case there are
none).

Pointers, Two very important definitions in the types.h file are
Handles, and
the Memory char *Pointer;

Manager
and

Poi nter *Hand Le;

Many of the tools in the IIGS Toolbox deal with handles, or pointers to
pointers. A handle, as you may recall from chapter 4, is a variable in which
the address of another variable, called a master pointer, is stored. All handles
must be assigned by the Memory Manager. Much of the data used by the
tools in the Toolbox has to be referenced with handles, rather than directly
with pointers. The use of handles allows the Memory Manager to compact
memory by shuffling data around and purging programs and data that are no
longer being used. During this procedure, the address of the master pointer,
which the handle points to, remains constant. But the value contained in the
master pointer is updated by the Memory Manager whenever the data to which
it points is moved.

The definitions of pointer and handle in the types.h file are generic
definitions. Because the data type char is a byte, the smallest addressable unit
of memory, the definitions char *Po; nter; and Po; nter *Hand Le; are
handy for referencing general-purpose data. Most Toolbox routines don't
require you to specify the data structure. You just indicate the location of the
data structure or, specifically, its master pointer. Variables of type handle are
perfect for storing this information. If you want to access the first byte of
information pointed to by a handle's master pointer you can write

**myhandLe

In some cases, the data pointed to, or at least the part of the data closest to
the beginning of the block, has a specified structure. In such cases, an ap-
propriate data structure is defined in an appropriate toolbox header file. These
definitions use the C typedef statement. A typedef statement declares
certain names to stand for a particular data structure or some other complex
data type. For each of these definitions, a pointer type and a handle type are
also provided. For example, at the end of the definition of aCt LRec in ctl.h,
you'd see

} Ct LRec, *Ct LRecPt r, **Ct LRecHnd L;

There is an advantage to defining a type that is a handle to a specific
structure. When you make a call that gives you a handle to some data that is
structured as follows:

160

7-lntroducing the IIGS Toolbox

CtLRecHndL rnyHandLe;
rnyHandLe = GetWindowControLs();

rnyHand Le is set to the address of the master pointer for the active window's
first control. If you want to know the size, shape, and location of this control,
you can write

Rect rnyRect;
rnyRect = (*rnyHandLe)->ctLRec;

The EVENT.C Program
The EVENT.C program needs no introduction. It's a C language version of
the EVENT.Sl program. The EVENT.C program appears in listing 7-13 at
the end of this chapter.

The EVENT.C program uses the standard C library routine p r i n t f to
display a message on the IIGS text screen. Because this program is interested
only in key down and mouse down events, a #def i ne statement creates a
mask for the Event Manager GetNextEvent call. Thus, the result of
GetNextEvent can be treated as a Boolean-type value. It returns a nonzero
value (true) when a key or the mouse button is pressed, and it returns a zero
value (false) if a key down or mouse down event is not detected. By setting
a done flag to a nonzero value and using it for the condition of the wh i Le
loop in the EVENT.C program, you guarantee that the loop will end.

Actually, you can compress the whi Le loop even more, eliminating
the need for a done flag:

whiLe(!GetNextEvent(SIMPLE_MASK,&rnyEvent»;

Although this line accomplishes the same thing as the loop in the program,
the syntax we chose is more commonly encountered in event loops that actually
do something. That is why it is used in the EVENT.C program.

Listing 7-11, titled INITQUIT.C, is not a complete C program. You
can tell that right away because it doesn't have a rna in () function. Instead,
it's an inc Lude file designed to be used with the EVENT.C program. If you
want to type and run EVENT.C, you have to type INITQUIT.C, save it on
disk, and then include it in EVENT.C with the line

#i nc Lude "i ni tqui t , c''

which is the first line of the EVENT.C program.
INITQUIT.C does two important things. First, using #i nc Lude state-

ments, it provides EVENT.C with the Toolbox interface files it needs. It then
provides the C functions needed to start up and shut down the tools that are
loaded and initialized.

161

The IIGS Toolbox

The INITQUlT.C program is designed to be used not only with the
EVENT.C program, but also with two other programs-PAINTBOX.C and
SKETCHER.C-that you encounter in chapter 8. So it's easy to see why it
is separated from the rest of the code in EVENT.C. By typing it separately
and treating it as an inc lude file, you can create it once and then use it in
three different programs. It can be modified and used in even more programs-
and you will see it again, in expanded versions, in later chapters.

Listing 7-11
INITQUIT.C program

#include <TYPES.H>
#include <LOCATOR.H>
#include <MEMORY.H>
#include <MISCTOOL.H>
#include <GUICKDRAW.H>
#include <EVENT.H>

#define MODE 0 1* 320 graphics mode *1
#define MaxX 320 1* max X for cursor (for Event Mgr) *1
#define dpAttr attrLocked+attrFixed+attrBank 1* for allocating di rect page
space *1

i nt MyID; 1* for Memory Manager *1

int ToolTable[] {2,
4, Ox0100,
6, Ox0100,
};

1* GO version 1.1 *1
1* Event version 1.1 *1

1* start up these tools: *1StartToolsO
{

TLStartUp();
MyID = MMStartUpO;
MTStartUp();
LoadTools(ToolTable);
TooLInitO;

1* Tool Locator *1
1* Mem Manager *1
1* Misc Tools *1
1* load tools from disk *1
1* start up the rest *1

TooLInit 0
{
char **y;

1* init the rest of needed tools *1

162

y = NewHand le(Ox400L,MyID,dpAttr ,OU; 1* reserve 4 pages *1

7-lntroducing the IIGS Toolbox

QDStartUp«int) *y, MODE, 160, MyID); 1* uses 3 pages *1
EMStartUp«int) (*y + Ox300), 20,0, MaxX, 0,200, MyID);

ShutDownO
{

GrafOff0;
EMShutDownO;
QDShutDownO;
MTShutDownO;
MMShutDown(MyID);
TLShutDownO;

1* shut down aLL of the tooLs we started *1

EVENT.51 and EVENT.C Listings

Listing 7-12
EVENT.51 program

*
* EVENT.S1

*
; Thi s program pri nts a message on the screen and then goes into
; an event Loop. Duri ng the Loop, the _GetNextEvent mask a LLows
; the Event Manager to Look on Ly for key down and mouse down
; events. When one of these is detected, the Loop ends, another
; message is printed on the screen, and the program ends.

*** A FEW ASSEMBLER DIRECTIVES ***

Ti t Le 'Event'

ABSADDR on
LIST off
SYMBOL off
65816 on
mcopy event.macros

KEEP Event

*
* BEGINNING OF PROGRAM

*

163

The IIGS Toolbox

Begin

*

START
Using QuitData

jmp MainProgram

END

; ski p over data

* SOME DIRECT PAGE ADDRESSES AND A FEW EQUATES
*
DPData START

DPPointer gequ $10 ; direct page pointer
DPHandLe gequ DPPointer+4

ScreenMode gequ $00 ; 320 mode
MaxX gequ 320 ; X clamp hi gh

END

** MAIN PROGRAM LOOP
*
MainProgram START

phk
pLb

tdc
sta MyDP

j s r TooLInit

; get current direct page
; and save it for the moment

; start up aLL tooLs we'LL need

*** SET UP INPUT AND OUTPUT SLOTS ***
PushWord #0
Push Long #3
_SetInputDevi ce
PushWord #0
_InitTextDev

PushWord #0
Push Long #3
_SetOutputDevice
PushWord #1
_InitTextDev

164

; set input to sLot 3

; set output to sLot 3

jsr PrintMsg1
jsr EventLoop

7-lntroducing the IIGS Toolbox

; pri nt message on sc reen
; check for key &mouse events

*** WHEN EVENT LOOP ENDS, WE'LL SHUT DOWN ***
jsr Shutdown
jmp Endit

MyDP ds 2

END

*
* EVENT LOOP
*
EventLoop START

Using QuitData
Using EventTable
Using EventData

Again

*

PushWord #0
PushWord #$OOOA
PushLong #EventRecord
_GetNextEvent
pla
beq Again
lda EventWhat
as l a
tax
jsr (EventTable,x)
lda QuitFlag
beq again

rts

END

; space for result
; key down &mouse down event s

; get event code
; code * 2 = table location
; X is index register
; look up event's routi ne

* ROUTINE THAT PRINTS OPENING STRING
*
PrintMsg1 START

_GrafOff

PushWord #$8C
_Wri teChar

; clear screen

165

The IIGS Toolbox

PushLong #StartMsg
_WriteCString

rts

StartMsg

*

dc c'Pres s any key to continue: ',h'OdOO'

END

* THIS IS WHERE WE INITIALIZE OUR TOOLS
*
TooLInit START

using MMData

*** START UP TOOL LOCATOR ***

_TLStartup ; TooL Locator

*** INITIALIZE MEMORY MANAGER ***

PushWord #0
_MMStartup

pLa
sta MyID

*** INITIALIZE MISC. TOOLS SET ***

_MTStartup

*** GET SOME DIRECT PAGE MEMORY FOR TOOLS THAT NEED IT ***

166

Push Long #0
Push Long #$800
PushWord MyID
PushWord #$C001
Push Long #0
-NewHand Le

pLa
s ta DPHand Le
pLa

Lda [DPHandLe]
sta DPPoi nter

; space for handLe
; ei ght pages

; Locked, fixed, fixed bank

sta DPHandLe+2

*** INITIALIZE QUICKDRAW II ***

Lda DPPoi nter
pha
PushWord #ScreenMode
PushWord #160
PushWord MyID
_QDStartup

*** INITIALIZE EVENT MANAGER ***

7-lntroducing the JIGS Toolbox

; pointer to direct page

; either 320 or 640 mode
; max size of scan Line

Lda DPPointer ; pointer to direct page
dc
adc #$300 ; QD direct page + #$300
pha ; (QD needs 3 pages)
PushWord #20 ; queue size
PushWord #0 ; X cLamp Low
PushWord #MaxX ; X cLamp high
PushWord #0 ; y cLamp Low
PushWord #200 ; y cLamp high
PushWord MyID
_EMStartup

rts

END

** THE ROUTINE THAT ENDS THE PROGRAM
*
Endlt START

Using QuitData
Using MMData

PushWord #$8C
_Wri teChar

Push Long #EndMsg
_WriteCString

PushWord MyID
_MMShutdown

jsr Shutdown

_Quit QuitParams

; clear screen

167

The I/GS Toolbox

EndMsg

*

dc cThank You. ',h'OdOO'

END

* SHUT DOWN ALL THE TOOLS WE STARTED UP
*
ShutDown

*

START
Using MMData

_EMShutDown
_QDShutDown
_MTShutDown

PushLong DPHandLe
_DisposeHandLe

PushWord MyID
_MMShutDown
_TLShutDown

rts

END

* ROUTINE THAT SETS THE QUIT FLAG
*
doQuit

*

START
Using QuitData

Lda #$8000
sta QuitFLag
rts

END

* A USEFUL AND CONVENIENT WAY NOT TO DO ANYTHING
*
Ignore

168

START

rts

END

** DATA SEGMENTS
*
EventTab Le DATA

de i'ignore
de i 'doaui t '
de i'ignore
de i 'doaui t '
de i'ignore
de i'ignore
de i'ignore
de i'ignore
de i'ignore
de i'ignore
de i'ignore ,

de i 'i gnore
de i'ignore ,

de i'ignore ,
de i'ignore
de i'ignore
de i'ignore

END

EventData DATA

EventRecord anop
EventWhat ds 2
EventMessage ds 4
EventWhen ds 4
EventWhere ds 4
EventModifiers ds 2

END

QuitData DATA

QuitFlag ds 2

QuitParams de i 4'0'
de i 4'0'
de i 4'0'

END

MMData DATA

7-lntroducing the IIGS Toolbox

; 0 nu LL
; 1 mouse down
; 2 mouse up
; 3 key down
; 4 undefined
; 5 auto-key down
; 6 update event
; 7 undefined
; 8 activate
; 9 switch
; 10 desk ace
; 11 device driver
; 12 appLication
; 13 appLication
; 14 appLication
; 15 appLication
; 0 in desk

; tabLe for Event Manager

169

The IIGS Toolbox

MyID dc i '0'

END

program ID word

Listing 7-13
EVENT.C program

#incLude "initquit.c"
#incLude <stdio.h> 1* needed for putchar *1

#define SIMPLE_MASK (mDownMask + keyDownMask)

EventRecord myEvent;
Boo Lean done = fa Lse;

rna in ()
{
St a r t Too l s Oj
PrintMsg();
EventLoop();
ShutDown();
}

PrintMsg() 1* send message to stdout, then switch dispLay *1
{

putchar(Ox80; 1* clear screen *1
pri ntf (''Press any key to conti nue\n");
GrafOff(); 1* dispLay standard text screen *1

Event Loop()
{

whi Le(l done)
done = GetNextEvent(SIMPLE_MASK,&myEvent);

170

CHAPTER

IIGS Graphics
Using QuickDraw "

[T] here are more than 800 tools in the Apple [fGS Toolbox, and more
than a fourth of them are in one tool set: QuickDraw ll. QuickDraw
II is the tool set that draws everything on the screen when the Ilos

is in super high-resolution screen mode. It is used not only by application
programs, but also by other tools. When the Window Manager places a win-
dow on the screen, all the window's components-scroll bars, title bar, and
so on-are drawn by QuickDraw II. When a pushbutton appears in a dialog
box, the button and its contents are drawn by QuickDraw ll. Even text dis-
played on a super high-resolution screen is drawn by QuickDraw ll.

You can also use the QuickDraw II tool set in your own application
programs. This chapter contains two type-and-run programs that demonstrate
some of QuickDraw's capabilities. One of the programs, PAINTBOX, draws
a rectangle on the screen. The other, SKETCHER, displays a white screen
on which you can draw sketches using the IIGS mouse.

Before those programs are presented, though, a description of how
QuickDraw II works is helpful. So the first section of this chapter is devoted
to a description of QuickDraw II.

What QuickDraw II Can Do
When the Apple Macintosh was designed, its high-resolution screen dis-
play was controlled by a tool set called QuickDraw. Now, with the advent

171

The JIGS Toolbox

Point Data
Structure

Rectangle Data
Structure

172

of the IIGs, a IIGS version of the original QuickDraw tool set has been de-
signed-QuickDraw II. When IIGS programmers talk about QuickDraw II,
they often leave off the II and refer to it simply as QuickDraw. So when you
see the term QuickDraw in this book, please remember that, unless otherwise
specified, we are discussing QuickDraw II.

The QuickDraw II tool set can draw various kinds of objects on a screen:

• Lines (straight or irregular)
• Rectangles (including squares)
• Ovals (including circles)
• Arcs (actually segments of circles)
• Polygons (multisided figures)
• Regions (collections of other kinds of objects)

QuickDraw can perform the following graphic operations on rectangles,
rounded-comer rectangles, ovals, arcs, regions, and polygons:

• Framing, which outlines the shape
• Painting, which fills the shape with a specified color or pattern
• Erasing, which paints the shape using the current background color
or background pattern

• Inverting, which inverts the pixels in the shape

Every object drawn in QuickDraw is made up of points. In QuickDraw, a
point data structure contains two integers. The first integer in the structure
defines the point's vertical, or Y, coordinate. The second integer defines the
point's horizontal, or X, coordinate. Thus, a point can be defined in an
assembly language program as

APoint anop
YCoord ds 2
XCoord ds 2

When you define a rectangle, QuickDraw stores it in memory as a data
structure. In QuickDraw, a rectangle data structure is made up of two point
structures. One of the points defines the upper left comer of the rectangle,
and the other defines the lower right comer of the rectangle. Thus, it takes
only four integers to define the size and location of a rectangle. So a rectangle
can be defined this way in an assembly language program:

ARect anop
UYCoord ds 2
UXCoord ds 2
LYCoord ds 2
LXCoord ds 2

Drawing a
Rectangle

Drawing Ovals,
Arcs,and

Round
Rectangles

Region and
Polygon Data
Structures

8-IIGS Graphics

To draw a rectangle in QuickDraw, you pass its coordinates to a rectangle
drawing call such as FrameRect or DrawRect. The FrameRect call
outlines a rectangle using the current color, size, pattern, and mask of the
current QuickDraw pen. The Pa i ntRect call paints a rectangle on the screen
using the current pen color, pen pattern, and pen mask. The QuickDraw pen
and its attributes are described later in the chapter.

The rectangle data structure is also used for drawing three other kinds of
objects: ovals, arcs, and round rectangles. To draw an oval using QuickDraw,
you define a rectangle and pass its coordinates to an oval drawing call, such
as FrameOval or PaintOval. The FrameOval call works much like
FrameRect. It outlines an oval using the current color, size, pattern, and
mask of the current QuickDraw pen. The Pai ntOva l call paints an oval on
the screen using the current pen color, pattern, and mask.

In QuickDraw jargon, arcs are actually segments of circles. To draw
an arc in QuickDraw, you first define the rectangle in which it will lie. Then
you pass the rectangle's coordinates, along with the angle described by the
arc, to the FrameAr c or Pa i ntA rc call. From then on, the FrameAr c and
PaintArc calls work like FrameOval and PaintOval.

"Round rectangles," in QuickDraw lingo, are actually rounded-
cornered rectangles. To draw a round rectangle in QuickDraw, you pass the
rectangle's coordinates and the height and width of its rounded comers to a
round rectangle drawing call such as FrameRRect or PaintRRect.
QuickDraw takes care of the rest of the details.

Point and rectangle data structures are not the only kinds of data struc-
tures. QuickDraw uses many other data structures, and some of them are
described later in this chapter.

Regions and polygons make up a unique category in QuickDraw's library of
data structures. A region data structure is a QuickDraw object made up of
other QuickDraw objects. A polygon data structure is a figure that can have
any number of straight sides.

To set up a region or a polygon, you can't just "fill in the blanks" as
you do with other kinds of structures. The next section describes regions and
polygons and how they are created in Ilos programs.

Regions

A region is a data structure that can contain other structures, such as rectangles,
ovals, arcs, and rectangles. To initialize a region, you must use the QuickDraw
call NewRgn. This call sets up a region and gives you a handle to it. After
you create a region using the NewRgn call, you can open it for drawing using
OpenRgn.

When you create and open a region, you can draw objects in it by using

173

The IIGS Toolbox

the object framing calls FrameRec t , FrameOva L, and FrameRRec t. Each
call adds an object to the region you are creating.

When you finish drawing a region, you close it with the CLoseRgn
call. From then on, you can draw the region on the screen by passing its
handle to a region drawing call such as FrameRgn or PaintRgn.

Polygons

Polygons are created in a similar way: with a sequence of calls to QuickDraw
routines. Before you can start drawing a polygon, you issue the QuickDraw
call Open Po Ly. The OpenPo Ly call sets up a polygon and provides you with
a handle to it. You can then define the polygon using Li neTo calls.

You begin to define a polygon by moving the QuickDraw pen to the
polygon's starting point and drawing a line from there to the next point. You
can then draw another line from that point to the next point, and so on.

When you finish defining a polygon, you close it with the CLosePo Ly
call. From then on, you can draw or paint it on the screen by passing its
handle to polygon drawing calls such as FramePoLyand PaintPoLy.

The data structure for a polygon consists of two fixed length fields
followed by a variable length array. The following shows the data structure
for a polygon. (It is presented only for your information, because you will
probably never have to set up a polygon data structure in a program.
QuickDraw's polygon calls do that for you when they are used as described
in this section.)

PoLySize
PoLyBBox
PoLyPoints

An integer
A rectangle
An array [0 ... ?] of points

174

The Po LySi ze field of a polygon data structure contains the size, in
bytes, of the polygon variable. The maximum size of a polygon is 32K bytes.
The Po LyBBox field is a rectangle that encloses the polygon. Po LyPoi nts
is a dynamic array that expands as necessary to contain the points of the
polygon. It specifies the starting point of a polygon and each successive point
to which a line is drawn.

When QuickDraw II draws a polygon, it moves its pen to the starting
point of the polygon and then draws a series of lines to the remaining points,
in the same way points are set up when the polygon is defined. In other words,
QuickDraw "plays back" the same series of operations it uses to define the
polygon. As a result, polygons are not treated exactly the same as other
QuickDraw II shapes. For example, the procedure that frames a polygon draws
outside the actual boundary of the polygon, because QuickDraw II line draw-
ing routines draw below and to the right of the pen location.

Routines that fill a polygon with a pattern, however, stay inside the
boundary of the polygon. If the polygon's ending point isn't the same as its
starting point, these routines add a line between them to complete the shape.

A polygon is also scaled differently from a similarly shaped region if
it is being drawn as part of a picture. When a slanted line is stretched, it is

8-IIGS Graphics

drawn more smoothly if it's part of a polygon rather than part of a region.
You may find it helpful to keep in mind the conceptual difference between
polygons and regions. A polygon is treated more as a continuous shape; a
region is treated more as a set of bits.

Pixel Maps and Conceptual Drawing Planes
When you create an object, QuickDraw places the object in a two-dimensional
plane called a conceptual drawing space. When an object is placed in this
drawing space, its position, like a position on a map, can be pinpointed with
coordinates.

There is one fact about a conceptual drawing space that may be a little
difficult to grasp. The plane that it describes does not exist anywhere in the
IIGs's memory. When an object is defined in QuickDraw' s conceptual drawing
space, the object exists only as a mathematic image described by coordinates.
The object thus takes up much less space in memory than it would if it were
stored as a bit-mapped image.

But, before the object can be drawn-for example, on the IIGS screen
or on a printer-enough space to hold the drawing must be reserved in
memory. The memory area in which objects can be drawn is known as a
pixel map. A pixel map is made up of tiny dots called picture elements, or
pixels. After you create a pixel map, the objects drawn on it can be printed
or displayed.

The Big Picture The conceptual drawing space in which QuickDraw can store objects,
measured in pixels, extends from - 16K to + 16K horizontally and from
- 16K to + 16K verticaIIy-a space large enough to hold 1,024,000,000
pixels. Figure 8-1 is a simplified diagram of the IIGS' s conceptual drawing
plane.

This plane is divided into four segments. The coordinate numbered 0,0
is in the middle of the plane. Thus, if you wanted to draw a point in the exact
center of the plane, its coordinate would be 0,0.

The segments above and to the left of coordinate 0,0 use negative
coordinates. Only the segments below and to the right of 0,0 use positive
horizontal coordinates and positive vertical coordinates. For this reason, most
of the drawing takes place in the lower right segment of QuickDraw's con-
ceptual drawing plane.

If the entire conceptual drawing space of an Apple IIGS were transferred
to a giant pixel map, the map would measure four screens wide by eight
screens high (or eight screens wide by four screens high). You could create
such a map and display it on your screen, using Window Manager scroll bars
to move it, if the IIGS had enough memory capacity.

You don't need that much memory, however, to make full use of the
conceptual drawing plane. Even with an unexpanded IlGS system, you can
draw objects anywhere in QuickDraw's conceptual drawing space. But before
you can transfer an object or a picture from QuickDraw's conceptual drawing

175

The IIGS Toolbox

(-16K, -16K)

(-16K. -16K)

(0,0)

(+ 16K, -16K)

(+ 16K, + 16K)

Using Pixel
Maps

176

Figure 8-1
QuickDraw II conceptual drawing plane

space to an actual pixel map, you have to make sure there is enough room
in the computer's memory to store the pixel map on which your object or
picture will be drawn.

As mentioned, a pixel map is an area of memory that can contain an actual
drawing of a graphic image. This image, like an image stored in a conceptual
drawing space, is made up of a rectangular grid of pixels. Each pixel on a
pixel map has a value that displays a color on the IIGS screen or prints it on
a printer. Thus, the value assigned to each pixel in a pixel map is a color
code.

Pixels on a pixel map, like coordinates in QuickDraw's conceptual
drawing space, can be thought of as points in a Cartesian coordinate system;
that is, each pixel on a pixel map has a horizontal coordinate and a vertical
coordinate. In QuickDraw II, as in the original QuickDraw system for the
Macintosh, the coordinates on a pixel map fall on lines that separate the pixels
on the map, rather than on the pixels themselves. This method of assigning
coordinates is illustrated in figure 8-2.

THIS POINT

\ DEFINES THIS PIXEL

tr
Figure 8-2

Coordinates of a pixel

Pixel Maps and
Screen Memory

8-IIGS Graphics

This system of assigning coordinates makes it very easy to determine
when a pixel falls within a given rectangle and when it does not. Knowing
whether a pixel is inside a rectangle is quite important in QuickDraw II because
many calls deal only with pixels that fall in specific rectangles.

When QuickDraw is initialized, the pixel map it draws on is set by default
to the same area of memory that displays the super high-resolution screen,
memory address $EI2000 to memory address $EI9CFF. Thus, when you start
QuickDraw, its default drawing area is the screen. However, QuickDraw can
draw in any block of free RAM as easily as it can draw on the screen, and
applications can instruct QuickDraw to draw anywhere in memory.

Graphics Modes
The IIGS has two super high-resolution graphics modes: a 320-pixel mode and
640-pixel mode. When the JIGS is in 320 mode, the pixel map it uses for its
screen display measures 320 pixels wide by 200 pixels high. In 640 mode,
its screen display measures 640 pixels wide by 200 pixels high.

Each horizontal line on the IIGS screen is called a scan line. So, in both
320 mode and 640 mode, the super high-resolution screen is 200 scan lines
high.

Both super high-resolution screen modes use a "chunky"-style pixel
organization; the bits used to draw a given pixel on the screen are contained
in adjacent bits within I byte. In both 320 mode and 640 mode, each scan
line on the screen uses 160 bytes of memory. But the degree of "chunkiness"
used by each mode is different. In 320 mode, 4 bits represent each pixel
display on the screen. In 640 mode, only 2 bits create each screen pixel.
Consequently, using 640 mode doubles the number of pixels that can be
displayed in each scan line, although the number of bytes used for each scan
line is the same in 320 mode and 640 mode.

The use of 640 mode does involve one important trade-off, however.
Because only 2 bits define each screen pixel in 640 mode and 4 bits define
each pixel in 320 mode, the number of colors that can be displayed in 640
mode is reduced. In 320 mode, sixteen discrete colors can be displayed on
the screen simultaneously. In 640 mode, only four discrete colors can be
displayed.

This limitation of 640 mode is not as bad as it sounds. With the help
of a technique called dithering, you can create repeating color patterns that
make it appear that more than four colors are displayed. A full description
of dithering is beyond the scope of this chapter, but complete instructions for
using dithering techniques are in chapter 16 (the chapter on QuickDraw II)
of the Apple Ilos Toolbox Reference.

The number of colors displayed in both 320 mode and 640 mode can
be increased with special interrupts called scan-line interrupts. Instructions
for using scan-line interrupts are in chapter 4 (the video and graphics chapter)
of the Apple Ilos Hardware Reference.

177

The JIGS Toolbox

Selecting a
Graphics Mode

Selecting Colors

When QuickDraw is initialized, it determines which graphics mode to use by
looking at a parameter passed to it in the QDStartup call. As you will see
in the programs later in this chapter, the QDS ta r tup call has four parameters,
one of which is called Mas t e r SCB. If you pass the value $00 to the
QDStartup call in this parameter, QuickDraw starts in 320 mode. If you
pass the parameter $80, QuickDraw starts up in 640 mode.

There are also calls that change the graphics mode used inside a program.
Descriptions of these calls, and instructions for using them in programs, are
in the Apple IIes Toolbox Reference.

In both 320 mode and 640 mode, the Ilos selects colors to be displayed on
the screen from a block of RAM data called a color palette. The Ilos has
sixteen color palettes, and each scan line can take its colors from any color
palette. Each pixel on a scan line can be drawn in any of the sixteen colors
that make up the palette being used by that line. And the 16 colors in each
palette can be chosen from 4,096 colors.

When you write programs for the Ilos, you will rarely, if ever, have to
deal with color palettes by directly accessing their memory addresses.
QuickDraw II has a full complement of calls to select and manipulate color
palettes and the colors they contain. For example, the Se t Co Lo rTab Le call
sets a color table to specific values, and the Get CoL 0 r Tab Le call fills a color
table with the contents of another color table. There are also calls for getting
and setting single colors in color tables.

You can do just about anything with color palettes by using the color
table and color entry calls QuickDraw provides. To use colors and color tables
effectively, however, it is helpful to know a little about how the Ilos creates
and displays color on its screen.

The color palettes used by the Ilos extend from memory address
$EI9EOO through memory address $EI9FFF-an area that begins just 256
bytes higher than the RAM block used for screen memory. There are sixteen
color palettes in this space, with 32 bytes used by each palette. Each color
palette contains codes for sixteen colors, with 2 bytes used for each color.

A color table, then, is a table of sixteen 2-byte entries, or words. The
low nibble of the low byte of each word represents the intensity of the color
blue. The high nibble of the low byte represents the intensity of the color
green. The low nibble of the high byte represents the intensity of the color red.
The high nibble of the high byte is not used. The following illustrates the
structure of each color represented in a color palette:

High Byte
High Nibble Low Nibble
Reserved Red

Low Byte
High Nibble Low Nibble
Green Blue

178

As mentioned, each pixel is displayed differently in each of the super
high-resolution modes: 4 bits represent each pixel color in 320 mode, and 2
bits represent each pixel color in 640 mode. The higher resolution in 640

8-IIGS Graphics

mode carries a penalty. A pixel may be displayed in any of sixteen colors in
320 mode, but a pixel may be one of only four colors in 640 mode.

In both modes, the color information to display each pixel is placed in
the RAM area reserved for screen memory in a linear and contiguous manner.
The first byte of screen memory, in memory address $EI2000, corresponds
to the upper left comer of the screen display. The last byte in screen RAM,
memory address $E19CFF, corresponds to the lower right comer of the screen.
Each scan line uses 160 bytes of screen memory.

In 320 mode, it takes 4 bits to determine each pixel color, so two pixels
are stored in every byte in the super high-resolution screen buffer. Because
4 bits of data determine the color of each pixel, each pixel on a scan line can
represent one of the sixteen colors in the palette that controls the scan line
on which the pixel appears.

In 640 mode, color selection is more complicated. In this mode, the
640 pixels in each horizontal line occupy 160 adjacent bytes of memory, and
each byte holds 4 pixels that appear side by side on the screen. And the sixteen
colors in the palette that controls the scan line are divided into four groups
of four colors each. In other words, each palette used for a scan line in 640
mode contains four mini-palettes, each one made up of four colors.

By making careful use of the four mini-palettes used for each scan line,
a program can increase the apparent number of colors used in each scan line
in 640 mode. Unfortunately, the way in which colors are taken from the four
mini-palettes used by each scan line is not intuitive.

The first pixel in each scan line can use anyone of the four colors in
the third mini-palette in the scan line's full palette. The second pixel can use
any of the four colors in the full palette's fourth mini-palette. The third pixel
can use any of the four colors in the main palette's first mini-palette. And
the fourth pixel can use any of the four colors in the second mini-palette. The
way this system works is shown in figure 8-3.

This process repeats itself for each successive group of four pixels in
each scan line. Thus, even though a given pixel can be one of only four

PIXEL VALUE PALETTE
0 COLOR 1

PIXEL 1 COLOR 2
3 2 COLOR 3

3 COLOR 4
0 COLOR 5

PIXEL 1 COLOR 6
4 2 COLOR 7

3 COLOR 8
0 COLOR 9

PIXEL 1 COLOR 10
1 2 COLOR 11

3 COLOR 12
0 COLOR 13

PIXEL 1 COLOR 14
2 2 COLOR 15

3 COLOR 16

Figure 8-3
Mini-palettes in 640 mode

179

The IIGS Toolbox

Scan-Line
Control Bytes

180

colors, different pixels in a line can take on any of the colors in a palette.
With the help of dithering, software written in 640 mode can display l o-color
graphics and 80-column text on the same screen.

Dithering techniques increase the apparent number of colors on a screen
by placing certain colors next to each other. (Your eye blends them.) By
alternating colors in even and odd mini-palettes, a skilled programmer can
control this blending and can thus obtain full-color capabilities in 640 mode.
Instructions for using dithering techniques are in chapter 16 of the Apple IIes
Toolbox Reference.

In both 320 mode and 640 mode, the colors used for each scan line on the
screen are controlled with a group of RAM bytes called scan-line control
bytes, or SCBs.

Each scan-line control byte represents one scan line on the Ilos screen.
For each horizontal screen line, you can use the appropriate scan-line control
byte to select

• The 16-color palette from which the scan line will take its colors.
• If the scan line will use color fill mode. Color fill mode streamlines
the process of drawing consecutive pixels in the same color on a
scan line. Color fill is available only in 320 mode and is described
more fully in the Apple IIes Hardware Reference.

• If a scan-line interrupt should be generated for the scan line.
(Instructions for using scan-line interrupts are in the Apple IIes
Hardware Reference.)

• Whether the scan line will use 320-pixel or 640-pixel resolution.

Each of these scan-line attributes is controlled by 1 bit, or group of
bits, in the SCB for the line. The bits in a scan-line control byte, and what
they do, are described in table 8-1.

How To Use SCBs

When you write programs for the Ilos, you will rarely, if ever, need to
manipulate QuickDraw's scan-line control bytes by accessing them directly.
The QuickDraw tool set has several calls to get and set SCBs. It is easier
(and safer) to work with SCBs using these calls than it is to access them
directly by their memory locations. Calls that can be used to control SCB
settings include GetSCB, which returns the SCB setting for a given scan line,
SetSCB, which sets an SCB that controls a given line, and SetA LLSCBs,
which sets all the SCBs on the screen to a specified value.

Descriptions of all SCB calls, and instructions for using them, are out-
lined in chapter 16 (the QuickDraw II chapter) of the Apple IIes Toolbox
Reference.

Where To Find SCBs

The block of memory that contains QuickDraw's scan-line control bytes ex-
tends from memory address $E19DOO through memory address $E19DFF.

8-IIGS Graphics

Table 8-1
Structure of a Scan-Line Control Byte

Bit

7

6

5

4
0-3

Name

320/640 mode flag

SCB interrupt flag

Color fill mode flag

Palette select code

Value

I = Horizontal resolution equals 640
pixels.
o = Horizontal resolution equals 320
pixels.
I = Interrupt generated for this scan
line. (When this bit is I, the scan line
interrupt status bit is set at the begin-
ning of the scan line.)
o = Scan line interrupts disabled for
this scan line.
I = Color fill mode enabled. (This
mode is available in super hi-res 320-
pixel mode only. In 640-pixel mode,
color fill mode is disabled.)
o = Color fill mode disabled.
Reserved; do not modify.
Palette (0-15) chosen for this scan line.

GrafPorts

This section of memory, as shown in figure 8-4, falls between the area of
memory for the super high-resolution screen map and the area of memory for
the color palettes that control the colors of the pixels on the screen.

The address of the scan-line control byte for each scan line is $EI9DXX,
where XX is the hexadecimal value of the line. For example, the control byte
for the first scan line (line 0) is located in memory location $9DOO, the control
byte for the second scan line (line 1) is in location $9D01, and so on.

(Actually, only the first 200 bytes of the 255 bytes in the memory page
beginning at $EI9DOO are scan-line control bytes. The remaining 55 bytes
are reserved for future expansion. To make sure your programs are compatible
with future Apple 11 products, you should not modify these 55 bytes.)

Now that you know a few facts about QuickDraw 11, you're ready for more
detail. To understand how QuickDraw II works, you need to be familiar with
a data structure called a GrafPort. Without GrafPorts, there would be no such
thing as a QuickDraw tool set.

Here is a summary of what GrafPorts are and what they do. First, a
GrafPort is not a block of data designed to be displayed on the Ilos screen.
Rather, it is a data structure that contains important information that
QuickDraw uses to create a screen display.

A GrafPort, like most other kinds of QuickDraw data structures, is
made up of records. Some of the records in a GrafPort data structure are also
data structure. A GrafPort data structure also includes integers, pointers,

181

The IIGS Toolbox

Drawing
Environments

Using GrafPorts

182

$9FFF t--------i
COLOR
PALETTES

$9EOO I--------i
SCBTABLE

$9DOO I--------i

SCREEN
BUFFER

$2000

Figure 8-4
Memory map of screen buffer, 8CB table, and color palettes

handles, rectangles, and other kinds of data. Understanding how these kinds
of data are used by a GrafPort-and how they relate-is an important part
of understanding QuickDraw II.

The data stored in a GrafPort is sometimes referred to as a drawing
environment. A drawing environment is simply a collection of data that
QuickDraw can refer to easily when it needs to draw a screen display.

The advantage of the GrafPort system is that it allows a complex drawing
environment to be maintained in a single, easily accessible record. By switch-
ing between GrafPorts, QuickDraw can change drawing environments very
rapidly and can thus create many different kinds of screen displays quite
efficiently. More than one GrafPort can be stored in memory, and it is not
unusual to have several GrafPorts in memory at one time. When a program
uses several screen windows, for example, each window has a GrafPort of
its own.

In QuickDraw, all graphic operations are performed in GrafPorts. Before a
GrafPort can be used, it must be allocated and initialized with the QuickDraw
call OpenPo rt. But most applications do not call OpenPort directly. They
use the Ilos Window Manager, which makes the call for them.

The QuickDraw call CLosePort closes a GrafPort when it is no longer
needed. The GrafPort itself can be disposed of with the Memory Manager
call Di sposeHand Le. The Window Manager will also make these calls for
you when it is used to control the windows in a program.

In an application that uses multiple windows, each window is a separate
GrafPort. If an application draws into more than one GrafPort, the SetPort

Structure of a
Graf Port Record

8-I/GS Graphics

call sets up the GrafPort that is used for the drawing. Again, the Window
Manager makes this call when it manages the windows in a program.

At times, an application needs to preserve the current GrafPort. In this
case, the GetPort call saves the current port, and the Set Port call sets the
port to be drawn in. Then, when drawing in the second port is completed,
Set Po r t is used again to restore the previous port. The Window Manager
also takes care of making these calls when it manages the windows and
GrafPorts in a program.

The fields in a GrafPort include information on such topics as

• The area of memory (the pixel map) in which images are drawn.
This area of memory is pointed to by a pointer in the GrafPort record.

• Whether images are drawn in 320 mode or 640 mode.
• How drawings are trimmed, or clipped, to fit in the areas in which
they lie.

• The size, shape, and pattern of the pen used for drawing.
• The font used for displaying text and how text is styled.
• Where objects that are drawn are stored in memory.

The structure of a GrafPort is no secret. It has been published by Apple
and is listed in table 8-2. Apple strongly recommends, however, that
programmers avoid the temptation of directly modifying the fields in
GrafPorts. Instead, programmers are advised to access fields in GrafPorts
only through QuickDraw calls.

If you count all the bytes in the GrafPort in table 8-2, you will see
that a GrafPort data structure is 170 ($AA) bytes long. So, in an Apple IIGS

assembly language program, the memory space required for one GrafPort
could be set aside as follows:

Graf Port ds $AA

Portlnfo Data
Structure

As mentioned, a GrafPort data structure includes many kinds of values:
handles, integers, pointers, and even smaller data structures. In a GrafPort
structure, each of these values is known as a field. Thus, the first field in a
GrafPort structure, as table 8-2 illustrates, is a data structure within a data
structure: in this case, a 16-byte structure called Portlnfo. When a
Po r tI n f 0 structure lies outside a GrafPort structure, it is often called a
Loclnfo structure. And when a Loclnfo structure is used in a call that
transfers pixel map data from one area of memory to another (such as
PPToPort or PaintPixeLs), it is often referred to as a SrcLoclnfo
structure. So, in QuickDraw jargon, a PortInfo structure, a Loclnfo
structure, and a Sr c Loc I n f 0 structure are all the same.

Now let's see what a PortInfo (or Loclnfo, or SrcLoclnfo) struc-
ture looks like, and how it's used in a GrafPort data structure. The layout of
a Loc I n f 0 structure is illustrated in listing 8-1.

183

The IIGS Toolbox

184

Table 8-2
The Structure of a GrafPort

Field Length Description

Port Information

Portlnfo 16 bytes Loc I n f 0 data structure
PortRect 8 bytes Rectangle data structure
CL;pRgn 4 bytes Handle to a region
V;sRgn 4 bytes Handle to a region
BkPat 32 bytes Pattern data structure

Pen State Data Structure

PnLoc 4 bytes Point structure
PnS;ze 4 bytes Point structure
PnMode 2 bytes Integer
PnPat 32 bytes Pattern data structure
PnMask 8 bytes Mask data structure
PnV;s 2 bytes Integer

Font and Text Data

FontHandLe 4 bytes Handle to a font
FontlD 4 bytes Long integer
FontFLags 2 bytes Integer
TxS;ze 2 bytes Integer
TxFace 2 bytes Word
TxMode 2 bytes Integer
SpExtra 4 bytes Fixed point data structure
ChExtra 4 bytes Fixed point data structure

ForeGround and Background Color Data

FGCoLor 2 bytes Integer
BGCoLor 2 bytes Integer
P;cSave 4 bytes Handle
RgnSave 4 bytes Handle
PoLySave 4 bytes Handle
Graf Procs 4 bytes Pointer (Usually a null

pointer, set to 0)
ArcRot 2 bytes Integer
UserF;eLd 4 bytes Long integer
SysF;eLd 4 bytes Long integer

Add up the bytes in a Loclnfo structure, and you'll see that the struc-
ture is 16 bytes long. The first integer in a Loclnfo structure is called a
LoclnfoSCB.

Loclnfo
LoclnfoSCB
LoclnfoPicPtr
LoclnfoWidth
LIBoundsRect

anop
ds 2
ds 4
ds 2
ds 8

8-IIGS Graphics

Listing 8-1
Loclnfo Data Structure

;$00 for 320, $80 for 640
;pointer to pixeL image
;scan Line width (#160 is standard>
; format: 0,0,200,320

LoclnfoSCB Field

When a Loclnfo structure appears inside a GrafPort data structure, the
LoclnfoSCB field defines the screen resolution of the pixel image that the
GrafPort points to. If the value of LoclnfoSCB is $00, the pixel image is
displayed in 320 mode. If the value of LoclnfoSCB is $80, the pixel image
is displayed in 640 mode. An SCB can have other values, as explained pre-
viously in this chapter.

LoclnfoPicPtr Field

The next field in a Po r t Loc I n f 0 structure-the Loc I nfoP i cPt r field-
is a pointer to the pixel map that the GrafPort describes. When a GrafPort
is initialized, the pixel map that Po r t Loc I nf 0 points to is the super high-
resolution screen. An application can change the Loc I nfoP i cPt r field,
however, to point to any area of memory in which a pixel map can be stored.

LoclnfoWidth Field

The LoclnfoWidth field of a Loclnfo structure defines the maximum
width, in bytes, of a scan line on the screen. In both 320 mode and 640 mode,
the most common value for this field is the width, in bytes, of one screen-
sized scan line: 160, or $AO in hexadecimal notation.

L1BoundsRect Field

The LIBoundsRect field is a data structure that describes a rectangle. The
rectangle described by the LIBoundsRect structure describes a bounds rect-
angle: a rectangle that encloses the pixel map (or, sometimes, a portion of
the pixel map) that the current GrafPort is using. This pixel map is the same
one pointed to by the Loc I nfoP i cPt r field of the Loc I n f 0 data struc-
ture. More information about bounds rectangles is presented later in this
chapter.

An LIBoundsRect structure is made up of four integers, or words.
Each of these words defines one coordinate of the current GrafPort's bounds
rectangle. The order of these coordinates is: top left Y coordinate, top left X
coordinate, lower right Y coordinate, and lower right X coordinate. Because
a Ilos screen measures 200 scan lines down by 320 pixels across (in 320
mode), the coordinates used in the LIBoundsRec t structure exactly covering
a 320-mode screen are 0,0,200,320.

185

The IIGS Toolbox

Drawing with a Pen in QuickDraw II

QuickDraw does most of its drawing using a structure called a pen. Each
GrafPort in a program has one (and only one) graphics pen, which the GrafPort
uses for drawing lines, shapes, and text. A QuickDraw pen has five char-
acteristics: location, size (height and width), drawing mode, drawing pattern,
and drawing mask.

When a pen draws an image in a GrafPort, the pen location can always
be expressed as a point in the GrafPort's coordinate system or, if a pixel map
is used, as a pair of coordinates on the pixel map. The point that defines the
location of a pen-like any other point used in QuickDraw-can be located
using two integers, or words: an integer defining the point's vertical (Y)
coordinate and an integer defining the point's horizontal (X) coordinate.

In QuickDraw, the position of a pen is defined as the point where the
next line, shape, or character will begin. This point can be anywhere on a
GrafPort's coordinate plane. The top left comer of the pen is at the pen
location; the pen hangs below and to the right of this point. When a pen is
in a given location, the QuickDraw call Li neTo makes it draw a line, and
the call MoveTo moves it to another point without drawing a line. The MoveTo
and Li neTo calls are used in a type-and-run program, SKETCHER, which
is presented at the end of this chapter.

The pen used in QuickDraw II is rectangular. Its width and height are
controlled by several different QuickDraw calls, including SetPenSi ze,
SetPenState, GetPenSi ze , and GetPenState. The default size of a
QuickDraw pen is a I-by-l pixel square. A pen can be set to this size with
the QuickDraw call PenNorma L. The width and height of a pen can range
from coordinate $0000,$0000 to coordinate $3FFE,$3FFE (or 16382,16382
in decimal notation). If either the pen width or the pen height is less than I,
the pen will not draw a visible line.

Pen Patterns In addition to having a specific size, a QuickDraw pen also has a specific
pattern. A pen pattern is a 64-pixel image laid out as an 8-by-8 pixel square.
When QuickDraw is initialized, it uses a pen pattern made up of all zeros.
This type of pen pattern draws a solid line on the screen.

You can set the pen to draw in a pattern on the screen by setting up
the pattern in memory and then making the QuickDraw call SetPenPat.
When you want a pen to draw on the screen in a solid color other than black,
you can use the QuickDraw call SetSoL idPenPat. Instructions for using
both of these calls are in chapter 16 of the Apple fles Toolbox Reference.

Actually, there are two kinds of QuickDraw patterns: pen patterns and
background patterns. But both use the same kind of data structure: a 32-byte
structure that is a small pixel image. After you set the contents of a pattern,
you can use it as either a background pattern or a pen pattern. QuickDraw
doesn't care.

186

8-IIGS Graphics

In a data segment of a program, either kind of pattern is defined like
this:

PatternO ds 32

QuickDraw programs often use pen patterns that define repeating de-
signs. For example, when a pen pattern resembling a brick wall is created,
the pen that uses the pattern draws a brick wall, instead of a solid line, on
the screen. Figure 8-5 is a pen pattern resembling a brick wall. On the left
is what the pattern looks like in memory; on the right is what the pattern
looks like when a pen draws it on a screen.

Pen Masks Another attribute of a QuickDraw pen is a mask. A pen mask is an 8-by-8
bit square that, like a pen pattern, defines a repeating design. See figure 8-
6. As a line or an object is drawn, this design masks the pattern-only the
pixels that "show through" the pen mask appear on the screen. In other
words, only those pixels in the pattern aligned with a set bit in the pen mask
are drawn.

A pen mask, then, is a special kind of pattern that a pen can draw
through to create special effects on a screen. A pen mask is smaller than a
pen pattern or a background pattern; a pen mask data structure is only 8 bytes
long. In a data segment of a program, memory space for a pen mask is reserved
in this manner:

MaskO ds 8

The QuickDraw calls GetPenMask and SetPenMask transfer pen
masks to and from GrafPorts. The effect of using a pen mask is illustrated
in figure 8-7.

o
8ooo
8

•••••••••••••••••••••
Figure 8-5

Pen pattern in memory and on the screen

8oooo
Figure 8-6
Pen mask

187

The IIGS Toolbox

ooooo
8

..........•....•.··••••....••.•.....•.....•..........·

Pen Modes

Pen State
Structure

Figure 8-7
Effect of using a pen mask

Still another attribute of a QuickDraw pen is its mode. The pen mode
determines how the pen pattern will affect what is already in the pixel image
when lines or shapes are drawn. When the pen draws, QuickDraw II first
determines which pixels in the pixel image will be affected and finds their
corresponding pixels in the pattern. QuickDraw II then does a pixel-by-pixel
comparison based on the pen mode, which specifies one of eight Boolean
operations to perform. The resulting pixel is stored in its proper place in the
pixel image.

The QuickDraw calls GetPenMode and SetPenMode control the pen
mode used in a GrafPort. The pen modes used in QuickDraw are listed in
table 8-3.

A pen can be used for two kinds of drawing: normal drawing and erasing.
In normal drawing, the pen mode determines what is drawn on the screen.
Erasing just fills the affected pixels with the background pattern.

As mentioned, each QuickDraw GrafPort has its own drawing pen, and all
the attributes of each pen are defined in a structure called a pen state structure.
Listing 8-2 shows what a pen state structure looks like. For further details,
refer to the Apple Ilos Toolbox Reference.

Listing 8-2
Pen State Structure

PenState
Pnloc
PnSize
PnMode
PnPat
PnMask

anop
ds 4
ds 4
ds 2
ds 32
ds 8

;pen coordinates (Y and X)
;pen size (width and height)
;pen draws opaque or transparent pattern
;pen pattern: 32-byte pixel image
;pen mask: 8-byte pixel image

188

Bounds
Rectangles

Two kinds of rectangles are very important in QuickDraw. One is a bounds
rectangle, and the other is a port rectangle.

The bounds rectangle of a GrafPort, often abbreviated BoundsRect,
is the rectangle defined by the LIBoundsRect field of a GrafPort's loc Info
data structure. When a GrafPort draws on the IIos screen, the upper left comer
of its bounds rectangle corresponds to the upper left comer of the screen, and
the coordinates of its bounds rectangle and its pixel map are the same. If a

8-IIGS Graphics

Table 8-3
QuickDraw II Pen Modes

Number Name Description

$0000

$8000

$0001

$8001

$0002

$8002

$0003

$8003

COpy

not COpy

OR

notOR

XOR

notXOR

BIC

notBIC

The default drawing mode. The source
is copied into the destination, with
source pixels replacing destination
pixels.
The inverse of the source is copied into
the destination, with the pixels being
drawn replacing the destination pixels.
Source pixels are overlayed
nondestructively on top of destination
pixels.
The inverse of the source pixels are
overlayed nondestructively on top of
the destination pixels.
Source pixels are exclusive-ORed
(XOR) with destination pixels. If an
image is drawn in XOR mode, the
original appearance of the destination
can be restored by drawing the image
again in XOR mode.
Source pixels are reversed, then
exclusive-ORed with destination pixels.
Bit clear (B1 C) pen with destination.
This mode explicitly clears the pixels in
the destination image before another
image is copied in.
Clears the pixels in a destination
image, then copies the inverse of the
source image pixels into the destination
image.

GrafPort's bounds rectangle is smaller than the pixel map that the GrafPort
is using, however, the coordinates of the GrafPort's bounds rectangle and
the coordinates of its pixel map are not the same.

Port Rectangles A port rectangle, or PortRect, outlines the section of a BoundsRect that
is displayed on the super high-resolution screen. A port rectangle can be
visualized as a window through which part of a bounds rectangle is viewed.
A port rectangle can be the size of the screen or smaller. A good example of
a PortRect is a window created and displayed by the Window Manager.

Regardless of the size of a port rectangle, the only part of a drawing
that is displayed on the screen is the part that falls inside both the bounds
rectangle and the port rectangle of the current GrafPort.

A newly created GrafPort has its pixel map initialized to include the
entire screen. Its BoundRect and PortRect fields are set to rectangles
enclosing the screen. Thus, coordinate 0,0 of the GrafPort's bounds rectangle
and port rectangle corresponds to the top left comer of the screen. But this
situation can be changed-and often is changed-by application programs.

189

The JIGS Toolbox

Clip Regions Two other attributes of a GrafPort are its clip region and its visible region.
A clip region, or CLi pRgn, is a structure that clips, or trims, pictures or
drawings to a specified size. For a drawn object to be visible on the screen,
it must be situated inside its GrafPort's clip region, as well as inside its
GrafPort's bounds rectangle and port rectangle.

A clip region can be rectangular, or it can be drawn in any shape-
even an irregular shape. Because of this feature, a clip region can create
screens that are quite fancy. For example, if a GrafPort has a circle-shaped
clip region, pictures displayed on the screen can be trimmed, or clipped, into
round pictures.

A GrafPort' s clipping region is defined with the Set CLip and
CLipRect calls. The GetCLip and SetCLip calls save a GrafPort's
CLi pRgn while other clipping functions are performed, for example, when
you want to reset a CLi pRgn so you can redraw a newly displayed portion
of a document that's been scrolled.

Visible Regions A visible region. or Vi sRgn, is the part of a port rectangle visible on the
screen at a given time. A Vi sRgn, like a CLi pRgn, can be rectangular but
it doesn't have to be. When one window on a screen overlaps another, the
Window Manager uses a Vi sRgn structure to determine which part of the
partially hidden window should be displayed on the screen. Application
programs can use visible regions for similar purposes. QuickDraw II contains
a number of calls for manipulating visible regions.

QuickDraw Coordinates
When you define an object within QuickDraw's conceptual drawing plane,
or draw an object on a pixel map, you must use coordinates to tell QuickDraw
where to place the object. That can be a problem because QuickDraw uses
two kinds of coordinate systems: a global coordinate system and a local
coordinate system.

When a pixel map is stored in the IIGs's memory, its position within
the conceptual drawing space is defined by a set of global coordinates. In the
global coordinate system, coordinate 0,0 pinpoints where the upper left comer
of a pixel map lies within the conceptual drawing plane.

In addition to QuickDraw's global coordinate system, each GrafPort
created under QuickDraw has its own local coordinate system. In a GrafPort's
local coordinate system, coordinate 0,0 defines the upper left coordinate of
the GrafPort's bounds rectangle.

Coordinate Conversion
As mentioned, a newly created GrafPort has its pixel map set to point to the
entire screen, and its bounds rectangle and port rectangle are both set to
rectangles enclosing the screen. So, when a GrafPort is initialized, coordinate

190

8-IIGS Graphics

0,0 corresponds to the screen's top left comer and also to the top left comers
of its bounds rectangle and port rectangle.

But, as noted, a GrafPort does not have to use the screen as its pixel
map, and its pixel map does not have to be the same size as its bounds
rectangle. If a GrafPort's pixel image is larger or smaller than its bounds
rectangle, its local and global coordinate systems are not the same.

Sometimes a IIGS program needs to convert coordinates from one system
to another-from global to local and vice versa. One reason this is necessary
is that some tools in the Toolbox use global coordinates for their operations,
and others use local coordinates. For example, when the Event Manager
reports an event, it gives the mouse location in global coordinates. But when
you call the Control Manager to find out if the user clicked in a control in
one of your windows, you must pass the mouse location in local coordinates.

Another reason coordinate conversion is necessary is that sometimes-
for example, when windows are used-one coordinate system calculates co-
ordinates on the screen, while another system calculates coordinates in in-
dividual windows. You'll see how and why this is done in chapter 10, which
deals with the Window Manager.

Fortunately, there is an easy way to convert global coordinates to local
coordinates and vice versa. The QuickDraw call GLoba LToLoca L converts
any point expressed in global coordinates to a corresponding location ex-
pressed in local coordinates. Another QuickDraw call, Loca LToG Loba L,
does the same job in reverse.

One call often used with onscreen rectangles is Set0 r ; g; n. The
Se t Or i g; n call allows a program to change the coordinates of a Graf'Port's
port rectangle so that its coordinates correspond to those of the Graf'Port's
bounds rectangle. When you use the Se t Or i q i n call, the bounds and port
rectangles remain the same size and in the same location relative to each other,
but the upper left comer, or origin of the Po r t Re c t , is set to the point passed
by Se t Or i q i n. Details on the Se t Or i g; n call are in the Apple Ilos Toolbox
Reference.

If an application performs scrolling operations, it can use the
Sc ro LLRec t call to shift the pixels of the image and then use SetO r i g; n
to readjust the coordinate system after the shift. Details about the
Sc ro LLRect call are also in the Apple llos Toolbox Reference.

Strings and Text
QuickDraw recognizes three kinds of string and text structures:

• C-type strings. A C-type string ends with a null word (h'OO') and is
not preceded by a length byte.

• Pascal-type strings. A Pascal-type string is preceded by a length byte
and does not have to end with a null word.

• Text structures. You can define a QuickDraw text structure with the
DrawText call. When you make a DrawText call, you must pass

191

The IfGS Toolbox

QuickDraw an integer that defines the number of bytes you want to
write. A QuickDraw text structure can therefore be up to 65,535
bytes long.

Fontlnfo-
Record

and
FontGlobals-

Record
Structures

Two other kinds of text-related structures used by QuickDraw are the
FontInfoRecord structure and the FontG LobaLsReco rd structure. These
structures are used primarily by the Font Manager, but they are also available
for use in application programs. Listing 8-3 shows how the
FontInfoRecord and FontG LobaLsRecord structures are defined in an
assembly language program. If you're intrested in further details about these
and other font-related and text-related structures, look in the Apple lIes
Toolbox Reference.

Listing 8-3
FontlnfoRecord and FontGlobalsRecord Structures

FontInfoRecord
Ascent
Descent
WidMax
Leading

FontGLobaLsRec
FontID
FStyLe
FSize
FVersion
FWidMax
fbrExtent

anop
ds 2
ds 2
ds 2
ds 2

anop
ds 2
dc i'TextStyLe'
ds 2
ds 2
ds 2
ds 2

BufSizeRecord QuickDraw recognizes other kinds of structures that have special uses and
are not described in detail here. QuickDraw uses BufSi zeRecord to define
the sizes and characteristics of buffers in which text is stored. Listing 8-4
shows how the structure of a BufSi zeRecord is included in an assembly
language program. BufSi zeRecord is described in more detail in chapter
16 of the Apple lIes Toolbox Reference.

Listing 8-4
BufSizeRecord Structure

192

BufSizeRecord
MaxWidth
TextBufHeight
TextBufRowWrds
FontWidth

anop
ds 2
ds 2
ds 2
ds 2

a-lias Graphics

Cursor Records The cursor on the super high-resolution screen is user-definable. The data
structure to define a cursor is called, logically enough, a cursor record. Listing
8-5 shows a cursor record included in an assembly language program.

Listing 8-5
Cursor Record

Cursor
CursorHeight
CursorWidth
Cursor Image
CursorMask
HotSpotY
HotSpotX

anop
ds 2
ds 2
ds 32
ds 32
ds 2
ds 2

;where cursor points, y coord
; where cursor poi nts, x coord

PaintParams
Structure

QuickDraw has one special-purpose structure, called the PaintParams
structure, which is used injust one call: Pai nt Pi xe Ls. (This call is described
in chapter 16 of the Apple lIGS Toolbox Reference.) Listing 8-6 shows the
structure in an assembly language program.

Listing 8-6
PaintParams Structure

PaintParams anop
LocInfo1Ptr ds 4
LocInfo2Ptr ds 4
SrcRectPtr ds 4
DestPtPtr ds 4
ScreenMode ds 2
MaskHandLe ds 4

Loading and Initializing QuickDraw

Before QuickDraw is started up, the following tool sets must be loaded and
started up:

• Tool Locator (always loaded and active)

• Memory Manager

• Miscellaneous Tool Set

After these tool sets are loaded and initialized, you can initialize QuickDraw.

193

The IIGS Toolbox

The PAINTBOX Program
Now that you know a little about how QuickDraw works, you're ready to
type, assemble, and run a few programs that use QuickDraw.

The first program is called PAINTBOX. This program draws a rectangle
on the IIGS super high-resolution screen. The assembly language version of
the program is PAINTBOX.Sl (listing 8-7). The C version is PAINTBOX.C
(listing 8-8). Both program listings are at the end of this chapter.

PAINTBOX.51
Program

PAINTBOX.C
Program

When the PAINTBOX.S I program is executed, it first loads and initializes
QuickDraw II and the other tool sets it depends upon. Before QuickDraw is
initialized, the Memory Manager call NewHand Le reserves the three direct
pages QuickDraw needs, plus one direct page required by the Event Manager.
When NewHand Le reserves the requested space, it returns with a handle to
the space pushed onto the stack. The PAINTBOX.Sl program then pulls the
handle off the stack, stores it in a variable called DPHand Le (for direct page
handle), and uses it to provide the necessary direct page space to QuickDraw
and the Event Manager.

Next, in a program segment called DrawRect, the screen is cleared
to white (color code $F) with the QuickDraw call CLearScreen. The
call PenNa rma L is then used to set the pen color to black and the pen size
to one pixel by one pixel.

When the pen state is set, the SetRect call defines a rectangle in
QuickDraw's conceptual drawing space. The Pai ntRect call paints the rect-
angle on the screen.

After the rectangle is drawn, an event loop begins. This loop, like the
one used in the EVENT. S1 program in chapter 7, keeps checking for a key
down event or a mouse down event. As soon as it receives a notification of
either kind of event, the program ends.

PAINTBOX.C is a C version of PAINTBOX.Sl. It is designed to be used
with the #i nc Lude file INITQUIT.C, which appears in chapter 7.

From a program designer's point of view, PAINTBOX.C is almost
identical to EVENT.C-although you'd never know it by just running the
two programs! The only real difference is that PAINTBOX.C, instead of
displaying a message on a text screen, goes into super high-resolution graphics
and draws a black rectangle on a white screen.

PAINTBOX.C illustrates the advantage of writing programs split into
short procedures and functions. To transform EVENT.C into PAINTBOX.C,
you just replace the Pr in tMes sa ge function with one that draws a rectangle
on a super high-resolution screen.

The SKETCHER Program
The next program we'll look at, SKETCHER, is a little more complicated.
With this program, you can use the IIGS mouse to draw sketches on a super
high-resolution screen.

194

SKETCHER.S1
Program

SKETCHER.C
Program

8-IIGS Graphics

The assembly language version of the program is called SKETCHER.SI
(listing 8-9). The C version is SKETCHER.C (listing 8-10). Both listings
appear at the end of this chapter.

SKETCHER.S I, like PAINTBOX.S I, starts off by loading and initializing
QuickDraw and clearing the screen to white. But then it gets considerably
fancier. It uses the ShowCursor call to display the arrow-shaped cursor on
the screen. Then it goes into an event loop that allows the user to draw sketches
on the screen with the IIGS mouse. When the mouse moves, the cursor follows
it. When the mouse button is pressed, the cursor starts drawing a line.

As long as the mouse button remains pressed, SKETCHER.S I draws
on the screen. When the mouse button is released, the program stops drawing,
but the cursor still follows the movements of the mouse. The event loop in
SKETCHER.SI also looks for key down events. When it detects one, the
program ends.

SKETCHER.C is a C language version of the SKETCHER.SI program. It
is designed to be used with the #i nc Lude file INITQUIT.C, which is listed
in chapter 7.

SKETCHER.C is the first C language program you have encountered
so far that has really justified the use of an event loop. It is the first one in
which two or more different types of events require different responses.
SKETCHER.C does more than just set a done flag to a value returned by a
GetNext Event call. It requires done to be true only when a key down event
is detected. Mouse down events send the program to Sket c h, a routine that
sketches on the screen.

SKETCHER is the most ambitious program you have typed and run so
far. You should be able to have some fun with it-particularly if you ex-
periment with different pen colors, pen sizes, pen patterns, pen masks, back-
ground colors, and background patterns. You might want to add more event
loop functions, such as a screen clearing function that doesn't end the program
and a function that erases lines. You'll modify the SKETCHER program in
some of these ways-and in other ways we haven't discussed yet-in later
chapters.

PAINTBOX.51 and PAINTBOX.C Listings
Listing 8-7

PAINTBOX.51 program

** PAINTBOX.S1
*
*** A FEW ASSEMBLER DIRECTIVES ***

Tit Le 'Pa i n t Box

195

The IIGS Toolbox

ABSADDR on
LIST off
SYMBOL off
65816 on
mcopy paintbox.macros

KEEP PaintBox

** EXECUTABLE CODE STARTS HERE
*
Begin

*

START
Using QuitData

jmp MainProgram

END

; skip over data

* SOME DIRECT PAGE ADDRESSES AND A FEW EQUATES
*
DPData

DPPointer
DPHandle

ScreenMode
MaxX

*

START

gequ
gequ

gequ SOD
gequ 320

END

S10
DPPoi nter+4

; 320 mode
; X clamp hi gh

* MAIN PROGRAM LOOP
*
MainProgram START

phk

plb
tdc
sta MyDP

j s r TooLInit
jsr DrawRect
jsr EventLoop

; get current di rect page
; and save it for the moment

; start up all tools we'll need
; paint rectangle on screen
; check for key & mouse events

196

8-IIGS Graphics

*** WHEN EVENT LOOP ENDS, WE'LL SHUT DOWN ***

jsr Shutdown
jmp Endit

MyDP

*

ds 2

END

* THE ROUTINE THAT ENDS THE PROGRAM
*
EndIt START

Using QuitData

_Qui t Qui tParams

*** THIS ERROR SHOULD NEVER OCCURR ***

ErrorDeath have returned from a quit caLL!!!'

END

** THIS IS WHERE WE INITIALIZE OUR TOOLS
*
TooLInit START

using MMData

*** START UP TOOL LOCATOR ***

_TLStartup ; TooL Locator

*** INITIALIZE MEMORY MANAGER ***

PushWord #0
_MMStartup
ErrorDeath not init Memory Manager.'
pLa
sta MyID

*** INITIALIZE MISC. TOOLS SET ***

_MTStartup
ErrorDeath 'Could not init Misc Too Is ,"

197

The IIGS Toolbox

*** GET SOME DIRECT PAGE MEMORY FOR TOOLS THAT NEED IT ***

Push Long #0
PushLong #$400
PushWord MyID
PushWord #$C001
PushLong #0
_NewHand Le

; space for hand Le
; four pages

; Locked, fixed, fixed bank

; poi nter to di rect page

; $00 for 320, $80 for 640 mode
; max size of scan Line

; poi nter to di rect page

; QD di rect page + #$300
; (QD needs 3 pages)
; queue size
; XcLamp Low
; clamp hi gh
; Y cLamp Low
; Y clamp hi gh

ErrorDeath 'CouLd not get di rect page.'

pLa
sta DPHandLe
pLa
sta DPHand Le+2

Lda [DPHandLe]
sta DPPointer

*** INITIALIZE QUICKDRAW II ***

Lda DPPointer
pha
PushWord #ScreenMode
PushWord #160
PushWord MyID
_QDStartup
ErrorDeath 'CouLd not start Qui ckDraw.'

*** INITIALIZE EVENT MANAGER ***

Lda DPPointer
cLc
adc #$300
pha
PushWord #20
PushWord #0
PushWord #MaxX
PushWord #0
PushWord #200
PushWord MyID
_EMStartup
ErrorDeath not start Event Manager.'

rts

END

198

** SHUT DOWN ALL THE TOOLS WE STARTED UP
*

8-IIGS Graphics

ShutDown

** EVENT LOOP
*
EventLoop

Again

START
Using MMData

_EMShutDown
_QDShutDown
_MTShutDown

PushLong DPHandLe
_DisposeHandLe

PushWord MyID
_MMShutDown
_TLShutDown

rts

END

START
Using QuitData
Using EventTabLe
Using EventData

PushWord #0
PushWord #$OOOA
PushLong #EventRecord
_GetNextEvent
pLa
beq Again
Lda EventWhat
as L a
tax
jsr (EventTabLe,x)
Lda QuitFlag
beq again

rts

END

; space for resuLt
; key down &mouse down events

; get event code
; code * 2 = tabLe Location
; X is index register
; Look up routine

199

The IIGS Toolbox

** ROUTINE THAT DRAWS A RECTANGLE
*
DrawRect START

*** CLEAR SCREEN AND SET PEN STATE ***

Lda #$FFFF
*
*

pha
_CLearScreen

_PenNormaL

*** SET UP A RECTANGLE ***

PushLong #RectPtr
PushWord #$30
PushWord #$30
PushWord #$110
PushWord #$98
_SetRect

*** PAINT RECTANGLE ON SCREEN ***

PushLong #RectPtr
_PaintRect

rts

; coLor code for white,
; typed four times (once
; for each byte)

; push co Lor code on the stack
; does what it says

; make pen bLack & normaL size

; pointer to a rectangLe
; upper x coordinate
; upper y coordinate
; Lower x coordinate
; Lower y coordinate
; create a rectangLe

; pointer to our rectangLe
; paint it on the screen

RectPtr

*

ds 8

END

; our rectangLe

* ROUTINE THAT SETS THE QUIT FLAG
*
doQuit

200

START
Using QuitData

Lda #$8000

8-IIGS Graphics

sta QuitFlag
rts

END

** A USEFUL AND CONVENIENT WAY NOT TO DO ANYTHING
*
Ignore START

rts

END

*
* DATA SEGMENTS
*
EventTab Le DATA

dc i'ignore
dc idosu i t:
dc i'ignore
dc idocu t t '
dc i'ignore
dc i'ignore
dc i'ignore
dc i'ignore
dc i'ignore
dc i'ignore
dc i'ignore
dc i'ignore
dc i'ignore
dc i'ignore
dc i 'i gnore
dc i'ignore
dc i'ignore ,

END

EventData DATA

EventRecord anop
EventWhat ds 2
EventMessage ds 4

; 0 nuLL
; 1 mouse down
; 2 mouse up
; 3 key down
; 4 undefined
; 5 auto-key down
; 6 update event
; 7 undefined
; 8 activate
; 9 switch
; 10 desk acc
; 11 device driver
; 12 appLication
; 13 appLication
; 14 appLication
; 15 appLication
; 0 in desk

; tabLe for Event Manager

201

The JIGS Toolbox

EventWhen ds 4
EventWhere ds 4
EventModifiers ds 2

END

QuitData DATA

QuitFLag ds 2

QuitParams dc i 4'0'
dc i 4'0'
dc i 4'0'

END

MMData DATA

MyID dc i '0'

END

; program ID word

Listing 8-8
PAINTBOX.C program

#incLude "initquit.c"

#define SIMPLE_MASK (mDownMask + keyDownMask)

EventRecord myEvent;
BooLean done = faLse;

rna in 0
{
StartTooLsO;
DrawRect 0;
EventLoopO;
ShutDownO;
}

DrawRect() 1* send message to stdout, then switch dispLay *1
{

202

Rect myRect;

ClearScreen(OxFFFF);
PenNormal();
SetRect(&myRect,Ox30,Ox30,Ox110,Ox98);
PaintRect(&myRect) ;

EventLoop()
{

whi l e t l done)
done = GetNextEvent(SIMPLE_MASK,&myEvent);

SKETCHER.S1 and SKETCHER.C Listings
Listing 8-9

SKETCHER.S1 program

** SKETCHER. S1
*
*** A FEW ASSEMBLER DIRECTIVES ***

Ti t le 'Sketcher'

ABSADDR on
LIST off
SYMBOL off
65816 on
mcopy sketcher.macros

KEEP Sketcher

** EXECUTABLE CODE STARTS HERE
*

8-IIGS Graphics

Begin START
Using QuitData

jmp MainProgram

END

; skip over data

203

The IIGS Toolbox

** SOME DIRECT PAGE ADDRESSES AND A FEW EQUATES
*
DPData START

DPPointer gequ $10
DPHandLe gequ DPPoi nter+4

ScreenMode gequ $00 ; 320 mode
MaxX gequ 320 ; X clamp hi gh

END

** MAIN PROGRAM LOOP
*
MainProgram START

phk
pLb
tdc
sta MyDP

jsr TooLInit

; get current direct page
; and save it for the moment

; start up aLL tooLs we'LL need

*** CLEAR SCREEN AND SET PEN STATE ***

Lda #$FFFF
pha
_CLearScreen

_PenNormaL
_ShowCursor

j s r Event Loop

; coLor code for white
; push it on the stack
; does what it says

; make pen bLack & normaL size

; check for key & mouse events

*** WHEN EVENT LOOP ENDS, SHUT DOWN ***

jsr Shutdown
j mp Endit

MyDP

204

ds 2

END

** EVENT LOOP
*

8-IIGS Graphics

EventLoop

Again

*

START
Using QuitData
Using EventTable
Using EventData

PushWord #0
PushWord #$OOOF
PushLong #EventRecord
_GetNextEvent
pla
beq Agai n
lda EventWhat
as l a
tax
jsr (EventTable,x)
lda Qui t Flag
beq agai n

rts

END

; space for result
; key & mouse events

; get event code
; code * 2 = tab le locati on
; Xis index regi ster
; look up event's rout i ne

* ROUTINE TO DRAW SKETCHES ON THE SCREEN
*
MoveIt

loop

START
Using EventData

_ShowPen

lda EventWhere
sta MouseHouse
lda EventWhere+2
sta MouseHouse+2

Push Long MouseHouse
.J't'IoveTo

pea 0
pea 0
_StillDown
pla
beq out

; space for return
; check button zero

205

The IIGS Toolbox

PushLong #MouseHouse
_GetMouse
PushLong MouseHouse
_LineTo

bra loop

out

MouseHouse

*

_HidePen
rts

ds 4

END

* THE ROUTINE THAT ENDS THE PROGRAM
*
EndIt START

Using QuitData

_Quit QuitParams

*** IF THIS COMES BACK, DEAD ***

ErrorDeath just came back from a quit call!!!"

END

** THIS IS WHERE WE INITIALIZE OUR TOOLS
*
TooLInit START

using MMData

*** START UP TOOL LOCATOR ***

_TLStartup ; Tool Locator

*** INITIALIZE MEMORY MANAGER ***

PushWord #0
_MMStartup
ErrorDeath 'Could not i ni t Memory Manager."
pla
sta MyID

206

8-IIGS Graphics

*** INITIALIZE MISC. TOOLS SET ***

_MTStartup
ErrorDeath 'cou Ld not i ni t Mi sc Tool s ,"

*** GET SOME DIRECT PAGE MEMORY FOR TOOLS THAT NEED IT ***

Push Long #0
PushLong #$800
PushWord MyID
PushWord #$C001
PushLong #0
-NewHand Le

; space for handLe
; eight pages

; Locked, fixed, fixed bank

; poi nter to di rect page

; ei ther 320 or 640 mode
; maxsizeofscanLine

; pointer to direct page

; QD direct page + #$300
; (QD needs 3 pages)
; queue size
; X cLamp Low
; X cLamp high
; Y cLamp Low
; Y cLamp high

ErrorDeath 'Could not get di rect page."

pLa
sta DPHandLe
pLa
sta DPHand Le+2

Lda [DPHandLe]
sta DPPointer

*** INITIALIZE QUICKDRAW II ***

Lda DPPointer
pha
PushWord #ScreenMode
PushWord #160
PushWord MyID
_QDStartup
ErrorDeath not start QuickDraw."

*** INITIALIZE EVENT MANAGER ***

Lda DPPointer
dc
adc #$300
pha
PushWord #20
PushWord #0
PushWord #MaxX
PushWord #0
PushWord #200
PushWord MyID
_EMStartup
ErrorDeath not start Event Manager."

207

The JIGS Toolbox

rts

END

** SHUT DOWN ALL THE TOOLS WE STARTED UP
*
ShutDown

*

START
Using MMData

_EMShutDown
_QDShutDown
_MTShutDown

PushLong DPHandLe
_DisposeHandLe

PushWord MyID
_MMShutDown
_TLShutDown

rts

END

* ROUTINE THAT SETS THE QUIT FLAG
*
doQuit

*

START
Using QuitData

Lda #$8000
sta QuitFLag
rts

END

* A USEFUL AND CONVENIENT WAY NOT TO DO ANYTHING
*
Ignore

208

START

rts

END

8-IIGS Graphics

*
* DATA SEGMENTS
*
EventTable DATA

de i'ignore ; 0 null
de i'MoveIt' ; 1 mouse down
de i'ignore ; 2 mouse up
de i 'doau i t ' ; 3 key down
de i'ignore ; 4 undefined
de i'ignore ; S auto-key down
de i'ignore ; 6 update event
de i 'i gnore , ; 7 undefined
de i 'i gnore , ; 8 activate
de i'ignore, ; 9 switch
de i'ignore , ; 10 desk ace
de i'ignore , ; 11 device driver
de i'ignore ; 12 application
de i'ignore ; 13 application
de i'ignore ; 14 application
de i'ignore ; 1S application
de i'ignore ; 0 in desk

END

EventData DATA

EventRecord anop ; table for Event Manager
EventWhat ds 2
EventMessage ds 4
EventWhen ds 4
EventWhere ds 4
EventModifiers ds 2

END

QuitData DATA

QuitFlag ds 2

209

The IIGS Toolbox

QuitParams dc i 4'0'
dc i 4'0'
dc i 4'0'

END

MMData DATA

MylD dc i '0' ; program ID word

END

Listing 8-10
SKETCHER.C program

#incLude "i ni t qu i t v c"

#define MY_MASK (mDownMask + mUpMask + keyDownMask)

EventRecord myEvent;
BooLean done = faLse;

mainO
{
StartTooLs();
GrafPrep();
EventLoop();
ShutDownO;
}

GrafPrepO
{

CLearScreen(OxFFFF);
PenNormaL();
ShowCursor();

EventLoopO
{

whi Le(l done)
if (GetNextEvent(MY_MASK,&myEvent)

switch (myEvent.what) {

210

case mouseDownEvt:
MoveIt ();
break;

case keyDownEvt:
done = true;

MoveIt ()
{
Point MouseHouse;

ShowPen();
MoveTo(myEvent.where);

whi le (Sti llDown(O» {
GetMouse(&MouseHouse);
LineTo(MouseHouse);

HidePen();

8-I/GS Graphics

211

CHAPTER

The Menu Manager
Creating Menus

[0--\ ne of the most important feature' of the lIGS is its ability to display
pull-down menus-menus that allow the user to select almost any
function or application at almost any time, without going through

confusing levels of menus and without remembering command words or spe-
cial keys. Pull-down menus were introduced with the unveiling of the Apple
Macintosh-and the IIos has windows almost identical to those that created
such a sensation when they first appeared on the Mac.

Menus and the IIGS User
One reason why pull-down menus are so popular is that they are easy to use.
To use a pull-down menu, you just place a cursor inside an onscreen bar
called a menu bar, then click the button of the IIos mouse over a menu title
that also appears inside the menu bar. An application can then call the Menu
Manager, which highlights the selected title by redrawing it in inverted colors.

When a menu title is selected, you can drag the cursor into a series of
menu items that appear below the menu title. As long as the mouse button
is held down, the selected menu title is highlighted, and the menu items below
it are displayed. Dragging the mouse cursor up and down through the list of

213

The IIGS Toolbox

menu items highlights each item or command while the cursor is positioned
over it.

If the mouse button is released while an item is highlighted, the function
or application that the item identifies is selected. The item blinks briefly to
confirm the user's choice, and the menu disappears.

When you choose a menu item, the Menu Manager tells the application
which item was chosen, and the application can then perform the appropriate
action. When the application completes the action, it can remove the high-
lighting from the menu title, indicating that the operation is complete.

If you hold down the mouse button and move the cursor out of the
menu, the menu remains visible, though none of its items are highlighted. If
you release the mouse button outside the menu, no choice is made. The menu
simply disappears, and the application does not take any action. Thus, you
can always look at a menu without changing the document or the screen.

The IIGS can display menus in both 640-pixel mode and 320-pixel mode.
Figure 9-1 is a 640-mode menu, and figure 9-2 is a 320-mode menu.

Menu Bars Before we go into more detail about how the IIGS Menu Manager works, it
is helpful to review some of the terminology used so far in this chapter.

A menu bar is a rectangle that usually appears across the top of the IIGS
screen. Several menu titles are usually visible inside the bar. Some of these
titles may be dimmed, indicating they are disabled. A disabled menu can still

Figure 9-1
Menu in 640 mode

214

9-The Menu Manager

Figure 9-2
Menu in 320 mode

be pulled down, but all menu items under it will also be dimmed, and you
usually cannot select them.

Underneath each menu title, an application can place the names of as
many menu items as space allows. The items beneath a menu title, however,
are not ordinarily visible unless you place the cursor over the menu title and
pull the menu down.

A menu title and the items that appear beneath it make up a menu.
Thus, several menus (as many as space allows) can appear inside a menu bar.

System Menu Bar

The Menu Manager has one special kind of menu bar called a system menu
bar. Only one system menu bar can be on the screen at one time. The system
menu bar is always positioned at the top of the screen, and only the cursor
appears in front of it.

In applications that support desk accessories, the first menu on the menu
bar-that is, the leftmost menu-should be a desk accessories menu. In
programs written according to Apple's Human Interface Guidelines, the title
of a desk accessories menu should always be a specially designed colored
apple. In programs written for the Apple IIGs, a special Toolbox call,
FixAppLeMenu, sets up a desk accessories menu that has a colored apple
as its title.

215

The IIGS Toolbox

Desk accessories are special mini-applications that can be coresident in
memory with other applications and thus can be executed at any time. A
tutorial in writing desk accessory programs is beyond the scope of this book,
but instructions for writing desk accessories are in the Apple lIGS Toolbox
Reference.

Window Menu Bars

In addition to the system menu bar, an application can also use window menu
bars. Because window menu bars can appear in individual windows, they can
increase the number of menu titles visible on the screen. But they can also
be confusing to the IIGS user, so they should be used in moderation, if at all.

More About
Menus

Keyboard
Equivalents for

Menu
Commands

A number of menu items make up a typical Apple IIGS menu. The items are
listed vertically inside a shadowed rectangle, and each item may consist of
the text of a command, an object or icon defined by an application, or just
a line dividing groups of choices. Everything else on the screen, except the
cursor, always appears behind menus.

An application program can set up a keyboard equivalent for any menu item
so that you can issue a menu command from the keyboard, rather than the
mouse. The character specified as a menu command equivalent is usually the
first letter of a menu command. Typing the letter in either uppercase or
lowercase is usually allowed. For example, typing either Q or q while holding
down the Apple key can be used as an equivalent for a mouse selectable menu
item titled Quit.

Initializing the Menu Manager
Before the Menu Manager is started, these tool sets must already be loaded
and initialized:

• Tool Locator (always active)
• Memory Manager
• QuickDraw II
• Event Manager
• Window Manager
• Control Manager

The Menu Manager also requires one direct page. When one direct page
is reserved, and the previous tool sets are started, the MenuStartup call
initializes the Menu Manager. As soon as the Memory Manager is started,
an empty menu bar appears at the top of the screen. The application that uses
the menu bar must then finish drawing it by initializing a set of menus and
printing their names in the bar.

216

9-The Menu Manager

Using the Menu Manager
An assembly language program titled MENU.SI demonstrates how the Menu
Manager is used in an assembly language program. There is also a C language
version of the same program. (Both programs-listing 9-9 and listing 9-
lO-are at the end of this chapter.)

The MENU.S I program prints a menu bar and a set of menus on the
screen. Then it allows the user to place check marks in front of menu items
by clicking the mouse. It also allows the user to quit the program by selecting
a menu item titled Quit or by typing Q or q on the keyboard.

In the next few sections of this chapter, we divide the MENU.S 1 pro-
gram into parts and see how each part works. Then, at the end of the chapter,
we put all the parts together and type and run the program.

Defining Menus
and Items

The first step in creating a menu bar is to draw up a list of menus and menu
items, and place the list in a data segment of a program. In the MENU.Sl
program, menus and menu items are defined in the data segment titled
MenuData.

Interpreting Menu Data

As the MenuData table shows, the MENU.Sl program has six menus, and
there are several items under each menu title. In the data segment MenuData,
the menus and menu items used in the program are listed in a special format
required by the Menu Manager. For example, the menu titles in the listing
are numbered consecutively beginning with I, and the menu items in the
listing are numbered consecutively beginning with 257. This numbering sys-
tem is important because the Menu Manager uses it to distinguish between
menu titles and menu items in a table of menu data. The number assigned to
a menu title or a menu item is known as an ID number and is always preceded
by the letter N in a table of menu data. Table 9-1 shows the ID numbers you
can assign to menus and menu items and the uses for various ranges of ID
numbers.

Special Characters in Menu Data Tables

In a menu data table, the title of each menu is preceded by the> symbol.
The last item in each menu is followed by a line containing only a period.
A number of other special characters also appear in the listing.

For example, the L that precedes the title of each menu and each menu
item is merely a space filler required by the Menu Manager. If the> symbol
appears in front of the L, the text string that follows the L is the title of a
menu. If a space precedes the L, the string that follows the L is the title of
a menu item.

Actually, L, >, the space character, and the period do not have to be
used in the MENU. SI program. You can substitute other characters as long
as they are used consistently.

217

The ties Toolbox

Table 9-1
Menu and Menu Item 10 Numbers

Hex Number Decimal Number

Menu ID Numbers

Meaning

$0000

$OOOI-$FFFE
$FFFF

o

1-65534
65535

For internal use. Usually used for the front
(first) menu in a menu bar.
Reserved for application use.
For internal use. Usually used for the last item
in a menu bar.

Menu Item ID Numbers

$0000

$OOOI-$00F9
$OOFA
$OOFB
$OOFC
$OOFD
$OOFE
$OOFF
$0IOO-$FFFE
$FFFF

o

1-249
250
251
252
253
254
255
256-65534
65535

For internal use. Usually used for the front
(first) item in a menu.
Reserved for desk accessory items.
Reserved for Undo edit item.
Reserved for Cut edit item.
Reserved for Copy edit item.
Reserved for Paste edit item.
Reserved for Clear edit item.
Reserved for Close command item.
Reserved for application use.
For internal use. Usually used for the last item
in a menu.

218

A number of reserved characters, however, always have the same mean-
ing in tables of menu data. For example:

• The @ character, preceded by the symbols used for a symbol title
and followed immediately by a backslash (\) always represents the
colored Apple logo that usually appears as the leftmost element on a
menu bar. This symbol appears in the line labeled Menu 1 in the
MenuData table.

• The backslash character (\) always marks the end of a string of text
and the beginning of a series of special characters.

• The letter N, as noted, is a prefix for each ID number in a table of
menu data.

• The * symbol is a prefix for letters that can be used as keyboard
equivalents for menu selections. Usually this symbol is followed by
two letters: an uppercase letter and its corresponding lowercase
letter. When the prefix is used in this way, it means the keyboard
equivalent for the menu choice is not case sensitive. This prefix is
used in the second line following the label Menu2 in the MenuData
table.

• The ASCII character 13, a carriage return, is an end-of-line symbol
in tables of menu data. A null character (00) has the same meaning.

All of the characters that have special meanings in menu data tables are

9-The Menu Manager

listed in table 9-2. These characters can appear in any order following the
backslash character that separates the text on each line from the special char-
acters that follow it.

All of the characters in table 9-2 except the backslash character can be
used in names of menu items, but the characters «, B, C, I, U, and V cannot
be used in menu titles. There is no way to include a backs lash character (\)
in a text string because the Menu Manager always treats it as the beginning
of a series of special characters.

Building a Menu After a table of menu data is created and entered in a source code program,
the Menu Manager calls NewMenu and InsertMenu can be used to build a
menu. This is the syntax for issuing these two calls:

PushLong #0 ; space for return
PushLong #Menu6 ; ID number of menu
_NewMenu
PushWord #0 ; make this menu
_InsertMenu ; the front menu

The NewMenu call takes two long parameters: a 0 to leave 2 words on
the stack and a menu ID number. It returns one long parameter-a menu

Table 9-2
Special Characters in Table of Menu Data

Character

*

B
C

D
H

I
N
U
V

x

Meaning

Marks the end of a text string and the beginning of a series of
special characters.
Prefix for a character (or characters) that can be used as a keyboard
equivalent for a menu choice. This prefix is usually followed by an
uppercase letter and a corresponding lowercase letter, indicating that
the keyboard equivalent is not case sensitive.
Print the text of the preceding line in boldface.
Prefix for a character that can be printed in front of a menu item to
mark it. The character is identified by its ASCII code. For example,
CI8 means use a check mark (ASCII code 18) to mark the
preceding item.
Dim (disable) the preceding item.
A hexadecimal, non-ASCII ID number follows, in low-byte/high-
byte order.
Italicize the text of the preceding item.
Prefix for the ID number of a menu title or a menu item.
Underscore the text of the preceding item.
Place an underline under the preceding item without requiring a
separate item.
Color replacement, rather than an XOR operation, will be used for
highlighting. This symbol is usually used with the colored Apple
logo on a menu bar.

219

The IIGS Toolbox

handle-which is left on the stack in the previous example. For the reason
why, read on.

The InsertMenu call takes two parameters: a handle to a menu and
the l-word ID number after which the menu in question will be inserted. In
the previous example, only the second parameter is passed because the first
parameter-the menu handle just pushed onto the stack-is still there. If a
ois passed as the second parameter, as it is in this example, the menu being
inserted is placed in front of any other menus in the menu bar.

It's easy to use a 0 parameter to place an inserted menu on top of all
the rest. So menus are usually built backwards, in back-to-front order, as you
will see in the menu building segment of the MENU.SI program.

After you build a menu, you can draw it with the Fi xApp l eMenu,
Fi xMenuBa r , and DrawMenuBa r calls.

Activating a
Menu

After a menu is built, the next step in making it useful in a program is to
write a routine that accepts input from the user. You can use an Event Manager
loop, but it is much easier to use a tool called TaskMaster, which considerably
expands the capabilities of the Event Manager call GetNextEvent.

Using TaskMaster
TaskMaster is a tool in the Window Manager tool set, but it also has capa-
bilities designed to be used with the Menu Manager. When a program includes
menus, windows, or both, it can call TaskMaster instead of making the Event
Manager call GetNextEvent. When TaskMaster is called in a program, the
first thing it does is call GetNextEvent. Then it checks for twelve events
thatGetNext Event cannot handle, and it handles those events. Then it places
some information on the stack and in a record called a task record. Finally,
it returns to the calling program.

The following is a call to TaskMaster in an assembly language program:

PushWord #0
PushWord EventMask
PushLong TaskRecPtr
_TaskMaster
PullWord TaskCode

; space for resu l t
; standard GetNextEvent mask
; poi nter to a task record

; a code returned by TaskMaster

As the example illustrates, a call to TaskMaster takes three parameters:

• A null word (a 0) to save space on the stack for the result of the
call.

• An event mask. This l-word parameter is the same as the
EventMask parameter, which must be passed to the Event Manager
call GetNextEvent.

• A pointer to a record called a task record. A task record, as you
shall see, is just like an event record used by the Event Manager
call GetNextEvent, except it has two extra fields.

220

How TaskMaster
Works

9-The Menu Manager

Before a TaskMaster call returns, it places a word called a task code
on the stack. If TaskMaster detects an event, the task code tells where on the
desktop (that is, in what part of the screen) the event took place. The values
returned as a task code can vary, depending upon what kind of item is detected
by TaskMaster. For example, if TaskMaster detects any event that is not a
key down or button down event, the task code that it returns is the same as
the event code returned by the Event Manager. If TaskMaster detects a key
down or button down event, however, the values that can be returned as a
task code are the same as those returned by the Window Manager call
Fi ndWi ndow. These values, and their meanings, are listed in table 9-3.

One of the best ways to use TaskMaster is to set up a table including all tasks
it can handle. One such table, labeled Tas kTab le, appears in the MENU.S!
program. The first seventeen items in the table are identical to the items in
the event table used to make the GetNextEvent call in chapter 7. But at
the end of the table there are twelve extra items: the events that TaskMaster
looks for after it has called GetNextEvent.

When you call TaskMaster in a program, TaskMaster first makes the
Event Manager call GetNextEvent. GetNextEvent handles all the events
it can, then passes control back to TaskMaster.

Now TaskMaster goes to its expanded list of events and looks for events
that GetNextEvent cannot handle. Specifically, TaskMaster looks to see if
the mouse button has been clicked in

• the menu bar
• the system window (not an application window)
• the content region of any window
• the drag (title bar) region of any window

Table 9-3
Task Codes Returned by TaskMaster

Word

soooo
$0010
$0011
$0013
$0014
$0015
$0016
$0017
$0018
$0019
$OOIA
$OOIB
$8XXX

Code Name

wNoHit
wInDesk
wInMenuBar
wInContent
wInD rag
wInG row
wInGoAway
wInZoom
wInInfo
wInSpecial
wInDeskItem
wInFrame
wInSysWindow

Where Event Took Place

Not in a window or a menu
On the desktop
In the system menu bar
In a window's content region
In a window's drag region
In a window's grow box
In a window's close box
In a window's zoom box
In a window's information bar
In a special menu item bar
Desk accessory selected from Apple menu
In a window frame area
In a system window

221

The JIGS Toolbox

• the grow box of a window
• a window's go-away box
• a window's zoom box
• a window's information bar
• a window's vertical scroll bar
• a window's horizontal scroll bar
• a window's frame
• a menu's drop region

As you can see, most of the events TaskMaster looks for involve windows.
We won't go into detail about window events now; they are covered in chapter
10.

In addition to looking for window-related events, TaskMaster can detect
when the mouse button is clicked over a menu title or over a menu item-
that is, in a menu's "drop region." These two capabilities make TaskMaster
a valuable tool in programs that use the Menu Manager.

Event Records When TaskMaster calls GetNextEvent, the GetNextEvent routine returns
information in the usual way: by placing it in an event record. But the event
record TaskMaster uses, like the event table, is slightly expanded. An event
record in a program that uses TaskMaster has to be two fields longer than an
ordinary event record. Listing 9-1 shows an event record used by TaskMaster
in an assembly language program.

Listing 9-1
An event record used by TaskMaster

EventData DATA

EventReeord
EventWhat
EventMessage
EventWhen
EventWhere
EventModifiers
TaskData
TaskMask

anop
ds 2
ds 4
ds 4
ds 4
ds 2
ds 4
de i4'$OFFF'

The two extra fields used by TaskMaster are at the end of the event
record in listing 9-1. In one of the extra fields, TaskData, TaskMaster returns
information, in the same way that GetNextEvent returns data in the event
record fields for which it is responsible.

The other extra field, TaskMask, can be used to tell TaskMaster what
kinds of events to look for and what kinds of events to ignore. The Tas kMas k
field is used much like the event mask passed to the GetNextEvent call as
a parameter.

222

9-The Menu Manager

It is important to understand, however, that the event mask passed to
TaskMaster as a parameter is different from the Tas kMas k passed to
TaskMaster as part of a task record. The event mask passed to TaskMaster
is the same kind of mask passed to the Event Manager in the GetNext Event
call. Table 9-4 shows the layout of an event mask.

The value TaskMaster returns in the TaskData field can vary, de-
pending upon the kind of event TaskMaster has detected. For example, if
TaskMaster detects a key down event, it makes the Menu Manager call
MenuKey to determine if the key pressed is the keyboard equivalent of a
mouse-controlled menu selection. If the key is a menu-related key, TaskMaster
returns the ID number of the menu selected in the high word of the TaskDa t a
field and the ID number of the menu item selected in the low word. If the
ID number ranges between 1 and 249 ($0000-$OOF9), indicating a desk
accessory item, TaskMaster makes theOpenNDA call to open a desk accessory.
Then TaskMaster unhighlights the menu using the Hi Li teMenu call and
returns a task code of O.

IfTaskMaster detects any other kind of key event, it returns a key down
event: an ASCII character code (with the high bit clear) in the low-order byte
of the EventMessage field and the upper 3 bytes of the field undefined.

If a button down event in a menu item is detected, TaskMaster returns
with the menu's ID number in the high word of the TaskDat a field, the
item's ID number in the low word of the TaskData field, and a task code
of $0011 (wlnMenuBar).

IfTaskMaster detects a button down event in the menu bar but no menu
item is selected, it returns a task code of O. TaskMaster can also detect and
handle a number of window-related events. These are covered in chapter 10.

Table 9-4
Bits in an Event Mask

Bit

o
I
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Function

Not used
Mouse down mask
Mouse up mask
Key down mask
Auto-key mask
Update mask
Active mask
Switch mask
Desk accessory mask
Driver mask
Application 1
Application 2
Application 3
Not used
Not used
Not used

223

The JIGS Toolbox

As mentioned, TaskMaster also returns a l-word event code, which it
pushes onto the stack. The task codes used by TaskMaster are listed in table
9-3.

Task Masks A task mask is a l-word parameter that must be passed to TaskMaster each
time TaskMaster is called. An application uses a task mask to tell TaskMaster
what events to look for or ignore.

In a task mask, bits 0 through 12 correspond to events TaskMaster can
handle. Each bit corresponds to one type of event. If a bit is set, TaskMaster
reports on the corresponding event. If a bit is clear, TaskMaster ignores the
corresponding event. For TaskMaster to look for every type of event it can
handle, the task mask should be $OOOOFFFF.

Bits 16 to 31 (the high word) in the task mask must always be clear.
The bits in the task mask field and their functions are listed in table 9-5.

Table 9-5
Bits in the Task Mask Field

Bit

o
I
2
3
4
5
6
7
8
9
10
II
12
13
14
15
16-31

Function

Menu key
Update handling
Find window
Menu select
Open NDA
System click
Drag window
Select window if event is wIn Conten t
Track go-away
Track zoom
Grow window
Scroll window
Handle special menu items
Not used
Not used
Not used
Must be clear

Accepting Input
from the User

224

When you create a task table and an event record for TaskMaster, you can
write a routine to accept input from the IIos user. The main event loop of
MENU.Sl, EventLoop in listing 9-2, is one such routine.

The event loop in listing 9-2 is straightforward. It calls TaskMaster,
pulls TaskMaster's event code off the stack, and then uses the code to jump
to a subroutine listed in a jump table called TaskTab Le. This table is a
standard event table of the type used by the Event Manager, with twelve
additional events TaskMaster is designed to handle. The TaskMaster section
of the event table used in MENU.S 1 is in listing 9-3.

EventLoop

9-The Menu Manager

Listing 9-2
Event loop in MENU.51

START
Using QuitData
Using TaskTabLe
Using EventData

Again PushWord #0
PushWord #$FFFF
PushLong #EventRecord
_TaskMaster
pLa
as L a
tax
jsr (TaskTabLe,x)
Lda Qui t Flag
beq again

rts
END

; space for resuLt
; recognize aLL events

; code * 2 = tabLe Location
; X is index register
; Look up routine

Listing 9-3
TaskMaster section of MENU.51 event table

** TaskMaster Events
*

de i'DoMenu' ; 1 in menu ba r
de i'ignore , ; 2 in system wi ndow
de i'ignore , ; 3 in content of wi ndow (MoveIt)
de i'ignore ; 4 in drag
de i'ignore ; 5 in grow
de i'ignore , ; 6 in go-away
de i'ignore ; 7 in zoom
de i'ignore ; 8 in info bar
de i'ignore, ; 9 in ver scroL L
de i'ignore , ; 10 in hor scro LL
de i'ignore ; 11 in frame
de i'ignore ; in drop

END

225

The IIGS Toolbox

As listing 9-3 shows, only the first item in the table-' 'in menu bar"-
is activated. So each time TaskMaster loops through the table, it looks for
only one kind of event: a button down event in the menu bar. If that event
is detected, TaskMaster jumps to a subroutine labeled DoMenu, which appears
in listing 9-4.

Listing 9-4
A routine that uses TaskMaster

** DoMenu
* Called when TaskMaster te lls us a new menu item is se lee ted •
*

DoMenu

GiveUp

START
Using TaskTable
Using EventData
Using MenuTable

Ida TaskData
emp #256
bee GiveUp

and #$OOFF
as l a
tax

jsr (MenuTable,x)

anop
PushWord #False
PushWord TaskData+2
_HiliteMenu

rts

END

; get TaskData value

; thi s shou ld never happen

; mask off hi gh byte
; double the value
; for 2-byte addresses

; false=unhighlight
; whi eh menu?
; unhighlight it

226

The DoMenu routine is also straightforward. Each time it is called, it
checks the TaskData field of the event record to see which item of which

9-The Menu Manager

menu (if any) the user selected. It then jumps to another table, labeled
MenuTab Le, to determine what kind of action to perform. This table appears
in listing 9-5.

Listing 9-5
MenuTable segment from MENU.S1

MenuTabLe DATA

*

*

*

*

*

*

Menu 1 (app l e)
dc i 'i gnore'

dc i'ignore'

Menu 2 (fiLe)
dc i'doQuit'

Menu 3 (appetizers)
dc i 'Che c kLt '
dc i 'Che ckLt '
dc iche ckj t
dc iche ck t t '

Menu 4 (entrees)
dc i 'Che ckLt '
dc i'CheckIt'

Menu 5 (beverages)
dc i 'Che ckLt '
dc i'CheckIt'
dc i'CheckIt'

Menu 6 (desserts)
dc i 'Che ckLt '
dc iche ckr t
dc iche ckt t

END

; one for the NDAs

; quit i t emse Lec ted

; 'sa Lad'
; 'j e LLo'
; 's l i ce s'
; 'juice,

; 'duck Ling'
; 'dump Lings'

; 'shake'
; 'co La'
; 'wi ne

; an appLe
; pie
; 'turnover

The data segment labeled MenuTab Le is a jump table version of the
table of menu data in listing 9-6. Both tables are in the MENU. S1 program
at the end of this chapter. The table in listing 9-5 sends the MENU.Sl program
to the subroutine the user selects. The table in listing 9-6 provides the Menu
Manager with the information it needs to create a menu that works with the
jump table in listing 9-5.

227

The lles Toolbox

MenuData

Return

Menu1

MenuZ

Listing 9-6
Data used to create a menu

DATA

equ 13

dc c '>L@\ XN1', i 1'RETURN'
dc c' LAn AppLe Menu\NZST,i 1'RETURN'
dc e.:

dc cc-L FiLe \NZ',i1'RETURN'
dc c LQui t \NZS8*Qq',i 1'RETURN'
dc c'.'

228

Menu3 dc c"> L Appetizers \N3',i 1'RETURN'
dc c LAppLe SaLad \NZS9',i 1'RETURN'
dc c LAppLe JeLLo \NZ60',i 1'RETURN'
dc c LAppLe SLices \NZ61',i 1'RETURN'
dc c LAppLe Juice \NZ6Z',i 1'RETURN'
dc c. '

Menu4 dc c"> L Entrees \N4',i 1'RETURN'
dc c LApp Le DuckLing \NZ63', i 1'RETURN'
dc c' LAppLe DumpLings \NZ64',i 1'RETURN'
dc c, '

MenuS dc c> L Beverages \NS',i 1'RETURN'
dc c LAppLe Shake \NZ6S',i 1'RETURN'
dc c' LAppLe CoLa \NZ66',i 1'RETURN'
dc c LAppLe Wine \NZ6T,i 1'RETURN'
dc c, '

Menu6 dc c"> L Desserts \N6',i 1'RETURN'
dc c LAppLes \NZ68',i 1'RETURN'
dc c LApp Le Pie \NZ69',i 1'RETURN'
dc c' LAppLe Turnover \N270',i 1'RETURN'
dc c. '

END

9-The Menu Manager

The MENU Program
Two programs that illustrate the use of the IIGS Menu Manager are at the end
of this chapter. One, an assembly language program titled MENU. SI, is in
listing 9-9. The other, a C program titled MENU.C, appears in listing
9-10.

MENU.51
Program

MENU.SI is a simple program; its menu table contains the names of only
two subroutines. One, Quit, ends the program. The other, CheckIt, uses
the Menu Manager call GetMItemMark to see if there is a check mark in
front of the menu item selected. If there is no check mark, the CheckIt
routine puts one there. If there is a check mark, CheckIt removes it.

Listing 9-7 is a source code listing of the CheckIt routine-and that
concludes our analysis of the MENU.Sl program. When you have typed and
run the program, be sure to save it. You'll use a similar menu, and add a
windowing capability, in chapter 10.

Listing 9-7
Checklt routine

CheckIt START
Using EventData

erasemark

putmark

return

PushWord #0
PushWord TaskData
_GetMItemMark
pLa
beq putmark

PushWord #0
PushWord TaskData
_SetMItemMark
bra return

PushWord #18
PushWord TaskData
_SetMItemMark

rts

END

; space for resuLt
; menu i tern number

; no check mark, so make one

; erase check mark
; menu item number

; ASCII for check mark
; menu item number

MENU.C
Program

MENU.C is the first program you have encountered so far that requires an
expanded version oflNITQUIT.C. In addition to the tool initialization in the
original version of INITQUIT.C, the Menu Manager requires the use of the
Window Manager and the Control Manager, so INITQUIT.C has grown. The
revised version of INITQUIT.C appears in listing 9-8.

229

The IIGS Toolbox

Listing 9-8
New version of INITQUIT.C

#include <TYPES.H>
#include <LOCATOR.H>
#include <MEMORY.H>
#include <MISCTOOL.H>
#include <QUICKDRAW.H>
#include <EVENT.H>
#include <CONTROL.H>
#include <WINDOW.H>
#include <MENU.H>

#define MODE mode640 1* 640 graphics mode def. from quickdraw.h *1
#define MaxX 640 1* max X for cursor Cfor Event Mgr) *1
#define dpAttr attrLocked+attrFixed+attrBank 1* for allocating direct
page space *1

int MyID;
Handle zp;

1* for Memory Manager *1
1* handle for page 0 space for tools *1

int Too l Tab l e Ll > {5,
4, Ox0100, 1* QD *1
6, Ox0100, 1* Event *1
14, Ox0100, 1* Window *1
16, Ox0100, 1* Control *1
15, Ox0100, 1* Menu *1
};

1* start up these tools: *1StartToo ls 0
{

TLSta rtUp0;
MyID = MMStartUpC);
MTStartUpO;
LoadToolsCToolTable);
ToollnitO;

1* Tool Locator *1
1* Mem Manager *1
1* Misc Tools *1
1* load tools from disk *1
1* start up the rest *1

}
TooLIni to
{

1* init the rest of needed tools *1

zp = NewHandleCOx600L,MyID,dpAttr,OL); I*reserve 6 pages *1
QDStartUpCCint) *zp, MODE, 160, MyID); 1* uses 3 pages *1
EMStartUpCCint) C*zp + Ox300), 20, 0, MaxX, 0, 200, MyID);
WindStartUpCMyID);
RefreshDesktopCNULL);
CtlStartUpCMyID, Cint) C*zp + Ox400»;
MenuStartUpCMyID, Cint) C*zp + Ox500»;
ShowCursorO;

230

9-The Menu Manager

ShutDown() 1* shut down aLL of the tooLs we started *1
{

GrafOff o ,
MenuShutDowno ,
CtLShutDown();
WindShutDown();
EMShutDown();
QDShutDown();
MTShutDowno ,
DisposeHandLe(zp); 1* reLease our page 0 space *1
MMShutDown(MyID);
TLShutDown();

Another significant difference between MENU.C and the event loop
programs in previous chapters is that MENU.C uses the Window Manager
call TaskMaster rather than the Event Manager call GetNextEvent. Be-
cause TaskMaster takes care of most of the event loop details in MENU.C,
the rest of the event loop routine is interested in the answer to just one question:
Was a menu item selected? If one was, you want to know whether it was the
Quit item in the Files menu or simply an item that should be checked or
unchecked.

The way in which the MENU.C program handles the checking of items
is a little tricky. Because the Menu Manager call CheckMItem returns the
ASCII value of a check mark when an item has been checked or a 0 if there
is no check mark, you can treat the call's result as a Boolean value; true if
an item is marked and false if it is not. Similarly, the Chec kMI tem call takes
a Boolean value as an input and uses the value to determine whether to check
or uncheck a menu item.

In the MENU.C program, you want to send a value of true to
CheckMItem if you want an item marked, and you want to send a value of
false if you want an item unmarked. By prefixing the logical inverse operator
! (pronounced "not" or, by UNIX fans, "bang") to GetMItemMark, you
can pass the result returned by GetMItemMark directly to the CheckMItem
routine.

Another trick used in the MENU.C program is the use of a pointer to
refer to the contents of the wmTaskData field in TaskMaster's task record.
By typecasting the address of this long word field to a pointer to a word called
data, you can reference the low word of the field (the item number) as
*data and the high word of the field (the menu number) as *(data+1>'
Even though the contents of the wmTaskData field may change with each
cycle through the event loop, the address of the information it contains always
remains the same. Thus, you merely have to set the value of data to this
address once before you begin the loop, and the value of *data and
* (da ta +1) will always be equal to the latest results.

231

The JIGS Toolbox

MENU.51 and MENU.C Listings
Listing 9-9

MENU.S1 program

** MENU.S1
*
*** A FEW ASSEMBLER DIRECTIVES ***

Ti t Le 'Menu'

ABSADDR on
LIST off
SYMBOL off
65816 on
mcopy menu.macros

KEEP Menu

** EXECUTABLE CODE STARTS HERE
*
Begin

*

START
Using QuitData

jmp MainProgram

END

; skip over data

* SOME DIRECT PAGE ADDRESSES AND A FEW EQUATES
*
DPData START

DPPointer gequ $00
DPHandLe gequ DPPointer+4

Tabptr gequ $00

ScreenMode gequ $80 ; 640 mode
MaxX gequ 640 ; X clamp hi gh

FaLse gequ $00

232

END

** MAIN PROGRAM LOOP
*

9-The Menu Manager

MainProgram START
Using GLobaLData

phk
pLb
tdc
sta MyDP

jsr TooLInit
jsr BuiLdMenu
jsr EventLoop

; get current direct page
; and save it for the moment

; start up aLL tooLs we'LL need
; create and draw menu bar
; check for key &mouse events

*** WHEN EVENT LOOP ENDS, WE'LL SHUT DOWN ***
jsr Shutdown
jmp Endit

END

*
* EVENT LOOP
*
EventLoop START

Using QuitData
Using TaskTabLe
Using EventData

Again PushWord #0
PushWord #$FFFF
PushLong #EventRecord
_TaskMaster
pLa
as L a
tax
jsr (TaskTabLe,x)
Lda QuitFlag
beq again

rts

END

; space for resuLt
; recognize aLL events

; code * 2 = tabLe Location
; X is index register
; Look up routine

233

The IIGS Toolbox

** CREATE AND DRAW MENU
*
BuildMenu

234

START
using MenuData

Push Long #0
PushLong #Menu6
_NewMenu
PushWord #0
_InsertMenu

PushLong #0
Push Long #Menu5
_NewMenu
PushWord #0
_InsertMenu

PushLong #0
PushLong #Menu4
-NewMenu
PushWord #0
_InsertMenu

Push Long #0
PushLong #Menu3
-NewMenu
PushWord #0
_InsertMenu

Push Long #0
PushLong #Menu2
_NewMenu
PushWord #0
_InsertMenu

PushLong #0
PushLong #Menu1
_NewMenu
PushWord #0
_InsertMenu

PushWord #1
_FixAppleMenu

PushWord #0
_FixMenuBar

; proceeding from back to front

; space for return

; space for return

; space for return

; space for return

; space for return
; 'wai t ' screen menu bar

; space for return

; get NDAs for Apple Menu

; init &draw the menu bar

pla

_0rawMenuBa r

rts

END

9-The Menu Manager

; discard menu bar height

** DoMenu
* Called when TaskMaster tells us a new menu item is selected.
*
DoMenu

GiveUp

*

START
Using TaskTable
Using EventData
Using MenuTable

lda TaskData
cmp #256
bcc GiveUp

and #$OOFF
as l a
tax

jsr (MenuTable,x)

anop
PushWord #False
PushWord TaskData+2
_Hi l i teMenu

rts

END

; get TaskData value

; this should never happen

; mask off high byte
; double the value
; for 2-byte addresses

; draw normal
; which menu?
; unhighlight it

* ROUTINE TO PRINT A CHECK MARK IN FRONT OF A MENU ITEM
*
Checklt START

Using EventData

PushWord #0
PushWord TaskData
_GetMltemMark
pla

; space for result
; menu item number

235

The IIGS Toolbox

beq putmark ; no check mark, so make one

erasemark

putmark

return

*

PushWord #0
PushWord TaskData
_SetMItemMark
bra return

PushWord #18
PushWord TaskData
_SetMItemMark

rts

END

; erase check mark
; menu item number

; ascii for check mark
; menu item number

* THIS IS WHERE WE INITIALIZE OUR TOOLS
*
TooLInit START

Using GLobaLData
Using TooLTabLe

*** START UP TOOL LOCATOR ***

_TLStartup ; TooL Locator

*** INITIALIZE MEMORY MANAGER ***

PushWord #0
_MMStartup

pLa
sta MyID

*** INITIALIZE MISC. TOOLS SET ***

_MTStartup

*** GET SOME DIRECT PAGE MEMORY FOR TOOLS THAT NEED IT ***

236

PushLong #0
Push Long #$800
PushWord MyID
PushWord #$C001
PushLong #0
_NewHandLe

; space for handLe
; eight pages

; Locked, fixed, fixed bank

pla
sta DPHandle
pla
sta DPHand le+2

lda [DPHandle]
sta DPPointer

*** INITIALIZE QUICKDRAW II ***

lda DPPoi nter
pha
PushWord #ScreenMode
PushWord #160
PushWord MyID
_QDStartup

*** INITIALIZE EVENT MANAGER ***

9-The Menu Manager

; pointer to direct page

; either 320 or 640 mode
; max size of scan line

lda DPPointer ; pointer to direct page
clc
adc #$300 ; QD direct page + #$300
pha ; (QD needs 3 pages)
PushWord #20 ; queue size
PushWord #0 ; X clamp low
PushWord #MaxX ; X clamp high
PushWord #0 ; y clamp low
PushWord #200 ; y clamp high
PushWord MyID
_EMStartup

*** LOAD SOME TOOLS FROM RAM ***

LoadEmUp PushLong #ToolTable
_LoadTools

*** WINDOW MANAGER ***

PushWord MyID
_WindStartup

PushLong #$0000
_Refresh

*** CONTROL MANAGER ***

PushWord MyID
lda DPPointer ; DP to use qd dp + $400

237

The IIGS Toolbox

de
ade #$400
pha
_Ct lStartup

*** MENU MANAGER ***
PushWord MyID
lda DPPointer
de
ade #$600
pha
_MenuStartup

_ShowCursor

rts

END

** THE ROUTINE THAT ENDS THE PROGRAM
*

; DP to use qd dp + $600

EndIt

*

START

Using QuitData

_Quit QuitParams

END

* SHUT DOWN ALL THE TOOLS WE STARTED UP
*
ShutDown

238

START
Using GlobalData

_MenuShutDown
_CtlShutDown
_WindShutDown
_EMShutDown
_QDShutDown
_MTShutDown

PushLong DPHandle
_DisposeHandle

PushWord MyID
_MMShutDown
_TLShutDown

rts

END

** ROUTINE THAT SETS THE QUIT FLAG
*

9-The Menu Manager

doQuit

*

START
Using QuitData

lda #$8000
sta Qui t Flag
rts

END

* A USEFUL AND CONVENIENT WAY NOT TO DO ANYTHING
*
Ignore START

rts

END

** DATA SEGMENTS
*
** Menu Data
*
MenuData

Return

Menu1

DATA

equ 13

dc c'>L@\XN1',i 1'RETURN'
dc c' LAn Apple Menu\N25T,i 1'RETURN'
dc c'.'

Menu2 dc cc-L Fi le \N2',i 1'RETURN'

239

The JIGS Toolbox

dc c LQuit \N2S8*Qq',i 1'RETURN'
dc c'.'

Menu3 dc c»L Appetizers \N3',i 1'RETURN'
dc c LApple Sa lad \N2S9', i 1'RETURN'
dc c LApple Jello \N260',i1'RETURN'
dc c LApple Slices \N261',i1'RETURN'
dc c LApple Jui ce \N262',i 1'RETURN'
dc c, '

Menu4

MenuS

Menu6

dc c'>L Entrees \N4',i 1'RETURN'
de c LApple Duckling \N263',i1'RETURN'
de c LApple Dumplings \N264',i1'RETURN'
dc c,"

de c'>L Beverages \NS',i 1'RETURN'
dc c LApple Shake \N26S',i 1'RETURN'
dc c' LApple Cola \N266',i1'RETURN'
dc c' LApple Wine \N26T,i1'RETURN'
dc c.

dc c'>L Desserts \N6',i 1'RETURN'
dc c LApples \N268',i 1'RETURN'
dc c ' LApple Pie \N269',i1'RETURN'
de c' LApple Turnover \N270',i 1'RETURN'
dc c'.'

END

MenuTable DATA

*

*

*

*

240

Menu 1 Capp l e)
dc i'ignore'
dc i 'i gnore'

Menu 2 (file)
dc idoaut t

Menu 3 (appetizers)
dc i'Checklt'
dc i 'Che ckLt '
dc i 'Che ckLt '
dc i'Checklt'

Menu 4 (entrees)
dc i 'Che ckLt '

; one for the NDAs

; quit item selected

; 'sa lad'
; 'j e l l o"
; 'slices'
; 'juice'

; 'duckling'

*

*

TaskTabLe

dc i'CheckIt' ; 'dump Lings'

Menu 5 (beverages)
dc i 'checkt t ; 'shake'
dc i'CheckIt' ; coLa
dc i 'che ckt t ; wine ,

Menu 6 (desserts)
dc i'CheckIt' ; 'an appLe ,

dc i 'Che c kLt ' ; pie ,

dc i'CheckIt' ; 'turnover'

END

DATA

9-The Menu Manager

dc i'ignore'
dc i'ignore'
dc i'ignore'
dc i'ignore'
dc i'ignore'
dc i'ignore'
dc i'ignore'
dc i'ignore'
de i'ignore'
dc i'ignore'
dc i'ignore'
dc i'ignore'
dc i 'i gnore'
dc i'ignore'
dc i'ignore'
dc i'ignore'
dc i 'i gnore'

** TaskMaster events
*

dc i'DoMenu'
dc i 'i gnore'
dc i'ignore'
dc i'ignore'
dc i'ignore'
dc i'ignore'
dc i'ignore'
dc i'ignore'

; 0 nu LL
; 1 mouse down
; 2 mouse up
; 3 key down
; 4 undefined
; 5 auto-key down
; 6 update event
; 7 undefined
; 8 activate
; 9 switch
; 10 desk acc
; 11 device driver
; 12 appLication
; 13 appLication
; 14 appLication
; 15 app l i ca t-i on
; 0 in desk

; 1 in menu bar
; 2 in system window
; 3 in content of window (Move It)
; 4 in drag
; 5 in grow
; 6 in go-away
; 7 in zoom
; 8 in info bar

241

The lias Toolbox

de ; '; gnore ,

de ;';gnore ,

de ; '; gnore ,

de ;';gnore

END

TooLTabLe DATA

de ;'5'
de ;'$04,$0100'
de ;'$06,$0100'
de ; '$0E, $0000'
de ;'$OF,$0100'
de ;'$10,$0100'

END

EventData DATA

EventReeord anop
EventWhat ds 2
EventMessage ds 4
EventWhen ds 4
EventWhere ds 4
EventMod;f;ers ds 2
TaskData ds 4
TaskMask de ; 4'$0 FFF'

END

Qu;tData DATA

Qu;tFLag ds 2

Qu;tParams de ; 4'0'
de ; 4'0'
de ; 4'0'

END

242

; 9 ;n ver scroLL
; 10 ;n hor scroLL
; 11 ;n frame
; i n drop

; number of tooLs ;n tabLe
; Qu;ekDraw
; Event Manager
; Window Manager
; Menu Manager
; ControL Manager

; tabLe for Event Manager

9-The Menu Manager

GlobalData DATA

My1D
MyDP

dc i '0'
ds 2

END

; program 1D word

Listing 9-10
MENU.C program

1************************************1
1* Data and routine to create menus *1
1************************************1

1* Set up menu strings. Because Cuses \ as an escape character,
we use two when we want a \ as an ordinary character. The \
at the end of each line tells C to ignore the carriage return. This lets
us set up our items in an easy-to-read verti ca l aLi gnment. *1

char *menu1 = "\
>L@\\XN1\r\
LAn Apple Menu\\N257\r\
· ,
char *menu2 = "\
>LFiLe \\N2\r\
LQuit \\N258*Qq\r\
· ,
char *menu3 = "\
>L Appetizers \\N3\r\
LAppLe SaLad \\N259\r\
LAppLe JeLLo \\N260\r\
LAppLe SLices \\N261\r\
LAppLe Juice \\N262\r\
· ,
char *menu4 = "\
>L Ent rees \ \N4\ r\
LAppLe DuckLing \\N263\r\
LAppLe Dumplings \\N264\r\
· ,
char *menu5 = "\

>L Beverages \\N5\r\
LAppLe Shake \\N265\r\
LAppLe CoLa \\N266\r\
LAppLe Wine \\N267\r\
· ,

243

The JIGS Toolbox

char *menu6 = "\
>L Desserts \\N6\r\
LAppLes \\N268\r\
LAppLe Pie \\N269\r\
LAppLe Turnover \\N270\r\
. ,
#define QUIT_ITEM 258 1* these wiLL heLp us check menu item numbers *1
#define LAST_ITEM 270

Bu i LdMenu 0
{

InsertMenu(NewMenu(menu6),0);
InsertMenu(NewMenu(menu5),0);
InsertMenu(NewMenu(menu4),0);
InsertMenu(NewMenu(menu3),0);
InsertMenu(NewMenu(menu2),0);
InsertMenu(NewMenu(menu1),0);
FixMenuBar();
DrawMenuBa r 0;

}

1********************************1
1* Main routine and event Loop *1
1********************************1

WmTaskRec myEvent;
BooLean done = faLse;

rna in 0
{

Sta rtToo Ls 0;
Bu i LdMenu 0;
Event Loop0;
ShutDownO;

1* When a menu bar event is returned, test the i tern number for a
checkabLe item. Use the LogicaL inverse of the vaLue returned by
GetMltemMark as a parameter to CheckMltem. This wi LL toggLe the check
mark for each item. *1

EventLoopO
{
Word *data = (Word *)&myEvent.wmTaskData; 1* address of item id *1

myEvent.wmTaskMask = OxOFFF;
whiLe (ldone)

244

9-The Menu Manager

if (TaskMaster(everyEvent,&myEvent) wlnMenuBar) {
if (*data = = QUIT-ITEM)

done = true;
else if «*data > QUIT-ITEM) && (*data <= LAST-ITEM»

CheckMltem (!GetMltemMark(*data), *data);
Hi l i t ejtenu Cf a Lse j e Cda t a + 1»; 1* data + 1 is address of menu
id *1

245

CHAPTER

Doing Windows
Using the Window Manager

IV] es, the Apple IIGS docs windows-s-and with real cia", too! To make
sure they're done properly, the Ilos employs a Window Manager.
The Window Manager-like the Event Manager, which was intro-

duced in chapter 7-is a very important toolkit in the Apple Ilos Toolbox.
It is the Window Manager's job to handle all windows placed on the Ilos
desktop. It can create, draw, shrink, expand, scroll, and move windows.
When you've finished working with a window, the Window Manager can
remove it from your screen. When you're through with a window for good,
the Window Manager can dispose it and deallocate its memory.

The Window Manager takes care of all kinds of windows, not just picture
windows and document windows, but also dialog windows, alert windows,
and windows custom-tailored for specific programs. Want a round window
or a triangular window? The Window Manager can make one. How about a
window that seems to explode when you click the mouse in its go-away box
or a window with custom-designed controls? No problem for the Apple Ilos
Window Manager. It's a toolkit that can do just about any kind of window.

Kinds of Windows
The kinds of windows the Window Manager can manage are divided into
three categories:

247

The IIGS Toolbox

Window Frames

• Document windows. Most of the windows used in IIGS programs are
in this category. A window doesn't have to contain text to be
classified as a document window. Windows that contain pictures
drawn with programs like PaintWorks Plus are also document
windows.

• Dialog windows. There are three kinds of dialog windows: modal
dialogs, modeless dialogs, and alert windows. Although low-level
operations for all three types of windows can be handled by the
Window Manager, they are mostly the responsibility of the Dialog
Manager. So we won't go into detail about them until chapter 11,
which is all about the Dialog Manager.

• Custom-designed windows. You can design custom windows using
the Window Manager, but that is beyond the scope of this book. If
you'd like to design your own windows, you can find some tips on
how to do it in the Apple lles Toolbox Reference.

Controls

There are two kinds of predefined window frames: alert window frames and
document window frames. An alert window frame is a double black line. A
document frame is a single black line or includes controls.

A window does not have to be an alert window to have an alert window
frame; document windows can have alert window frames, too. A standard
document window frame and an alert window frame are illustrated in figure
10-1.

The screen of the IIGS represents a working desktop. Various graphic objects
appear on this desktop and are manipulated with a mouse. A window is a

248

ooooo
8
8o

8

8oo

This window has
a normal frame.

This window has
an a I ert frame.

Figure 10-1
Document frame and alert frame

10-Doing Windows

desktop object that presents information; it can contain a document, a picture,
a message, or other items. Windows can be almost any size or shape, and
one or more of them can be on the desktop at any time.

Windows owe their name to the fact that they can show you more
information than the IIos screen can display at one time. When a window is
on the screen, you can look through it into a larger area. The information
displayed through a window can be pictures, text, data, or all three. When
you look at something through a window-for example, a picture-the win-
dow can be moved around over the picture with a control called a scroll bar.

Most document windows have two scroll bars: a horizontal scroll bar,
which scrolls the window horizontally, and a vertical scroll bar, which scrolls
the window vertically. You'll learn how to use both kinds of scroll bars before
you finish this chapter.

A document window can also have the following controls:

• A title bar, which is a horizontal bar that displays the window's
title, if there is one. A title bar can contain a close box, which
makes the window disappear from the screen, and a zoom box,
which changes the window's size. A title bar can be used as a drag
region for moving the window.

• A grow region, which is a small box in the lower right comer of a
window that changes the window's size.

• An information bar, another horizontal bar in which an application
can display information that won't be affected by the movements of
scroll bars.

Information bars may have their uses, but they are not popular in pro-
grams written for the IIos. A standard document window, without an infor-
mation bar, is illustrated in figure 10-2. The controls in the title bar of a
document window are used as follows:

• Clicking the mouse anywhere in an inactive window highlights its
title bar and makes it the active window, the window in which
drawing and other activities take place. The title bars of all other
windows become unhighlighted. Although these windows remain on
the screen, they become inactive windows. According to Apple's
Human Interface Guidelines, there should never be more than one
active window on the screen.

• Clicking the mouse in the close box, or go-away region, closes the
window. Usually, when you click the mouse in the close box, an
application program calls the Window Manager routine
HideWindow, which makes the window disappear from the screen.

• Pressing the mouse button in the window's drag region (title bar)
and then dragging the window pulls an outline of the window across
the screen. Holding the mouse button down and releasing it in a
new location moves the window there. Unless the Apple key is held

249

The IIGS Toolbox

Fonts

•
il--__ -i8 Uwasadati ani stormy nUjIt: The ram 'fr
It was adark and storllll nigh f.Jf' tor nIIt.. at _fell in torrentsexcept at occ mm r[.fM HtKi
vaIs, when it was checked bll a __r, .. I .J....J...J ..
of wind which swept up the str itwas II'avu.wm!JUSt
is in london that our scene Ii
along the housetops, and fier of wind whidt. un tM streds (for itthe scantIIfl.e of the l.ps -.•wr -r
a ainst the darkness. is in I.m1don that our scentUts),

is in Loraion tMt our seen aUmq the housaops, ani ftumy aqitatinq
the housetops, an:! f the c:m.n.tuf- of the rntMfIt' that strunnl"mfthe scanty flaae of the 1

against the darkness. tM darlness.
¢

Figure 10-2
Standard document window

down when the mouse button is released, the moved window
becomes the active window.

• Clicking the mouse inside the grow box and then dragging the grow
box changes the window's size.

To keep windows from getting lost, the Window Manager prevents them
from being dragged completely across the screen. The title bar can never be
moved to a point where the visible area of the title bar is less than four pixels
square.

Some windows are created by application programs and others are cre-
ated by tools in the Toolbox. (For example, the Dialog Manager can create
dialog windows.) Windows created by application programs and by tools in
the Toolbox are known collectively as application windows. Another class
of windows, called system windows, display desk accessories.

What the Window Manager Does
The Window Manager draws windows using QuickDraw II and the Control
Manager, and it disposes them with the help of the Memory Manager. After
a window is drawn on the screen, the Window Manager's main function is

250

10-Doing Windows

to keep track of overlapping windows. The Window Manager handles tasks
so that you can draw in any window without running into windows in front
of it. You can move a window to a different place on the screen, change its
size, or change its plane (front-to-hack order), and you don't have to worry
about details, such as how parts of various windows cover parts of other
windows. The Window Manager redraws windows as needed and ensures
that they overlap properly.

Window Regions
Every window is made up of two regions:

• A content region, which is the area that lies inside the window's
frame. An application can draw objects and text in this portion of a
window.

• A frame region, which is the outline of the entire window,
including its title bar and standard window controls.

A window's content region and frame region make up what is known as the
structure region of the window.

Every window also has a data area: a block of memory that includes
all the data that can be viewed through the window. If the window has scroll
bars, they can be used to move the window over its data area.

If a window has a grow box, a zoom box, or both, they can be used
to increase or decrease the size of the window, causing more or less of its
data area to be displayed. When the window is scrolled, it moves over the
data area. But when the window is moved from one part of the screen to
another, the data area is moved with it, so the view remains the same.

Initializing the Window Manager
Before the Window Manager can be started up, it must be loaded into memory,
and QuickDraw and the Event Manager must be loaded and initialized. The
Window Manager call WindStar t up can then be issued to initialize the
Window Manager. Then you can use the Window Manager call NewWindow
to create any windows needed in a program.

TaskMaster
In programs that use the Window Manager, there are two ways to handle user
input. One way is to use the Event Manager call GetNext Eve n t. The other
is to use the Window Manager call Ta s kMas t e r .

The easiest way to use the Window Manager is with TaskMaster. As
you may recall from chapter 9, TaskMaster can handle events related to menus

251

The IIGS Toolbox

252

as well as events that involve windows. The interaction between TaskMaster
and menus is covered in chapter 9. In this chapter, you see how to use
TaskMaster in programs that make use of windows.

WINDOW.Sl shows how an assembly language program can handle
windows using TaskMaster. WINDOW. C is a C language version of the same
program. Both programs are at the end of this chapter.

When TaskMaster is used in a program, it does the following. First,
TaskMaster makes the Event Manager call GetNextEvent. If an event isn't
ready, TaskMaster returns a task code of O. If an event is ready, TaskMaster
looks at it and tries to handle it. If TaskMaster can't handle the event, it
returns the event code to the application. The application can then handle the
event as if its event code had been returned by GetNextEvent.

If TaskMaster can handle the event, it calls standard functions to try to
complete the task. For example, if you press the mouse button in an active
window's zoom box, TaskMaster makes the Window Manager call
Tra c kZoom until the mouse leaves the zoom box or the mouse button is
released. If you release the mouse button while the mouse is in the zoom
box, TaskMaster calls ZoomWi ndow to zoom the window either in or out,
as appropriate. This takes care of the complete zoom operation selected by
the user, so TaskMaster returns no event.

If TaskMaster can handle only part of an event, it does what it can and
then returns control to the calling program. For example, if you press the
mouse in the active window's content region, TaskMaster can detect it, but
it can't do anything further. In this case, TaskMaster returns a task code of
$0013 (wInCon ten t). That lets an application program know that the mouse
button has been pressed in the active window's content region, but it is up
to the application to determine what to do next.

The operation of TaskMaster is covered in detail in chapter 9, but here's
a brief review. A call to TaskMaster takes three paramaters: a word to save
a space on the stack, an event mask, and a pointer to a task record.

The event mask passed to TaskMaster is like an event mask used by
the Event Manager. The task record used by TaskMaster is like an event
record used by the Event Manager, but with two extra fields. Each time
TaskMaster makes a GetNextEvent call, GetNextEvent fills in the first
seventeen fields of the task record being used by TaskMaster. Then
TaskMaster handles any events it can handle, fills in the last two fields of the
task record, and returns.

Listing 10-1 is a task record used in this chapter's example program,
WINDOW.Sl. The WINDOW.SI program, listed in its entirety at the end
of this chapter, is a sketcher program that allows the user to draw into a
window with a mouse. When a sketch is drawn, each dot in it is actually
drawn twice: once into the window on the screen and once into a pixel image
that paints the window's contents each time the window is updated. Thus,
sketches drawn using the WINDOW.Sl program do not disappear from
memory when a window is removed from the screen. They remain in memory
and can show up in a window again when it is redrawn on the screen. In later
chapters, the WINDOW.Sl program becomes even more sophisticated.

10-Doing Windows

Listing 10-1
Task record in WINDOW.S1

EventData

EventReeord
EventWhat
EventMessage
EventWhen
EventWhere
EventModifiers
TaskData
TaskMask

DATA

anop
ds 2
ds 4
ds 4
ds 4
ds 2
ds 4
de i4'$OFFF'

END

As you may recall from chapter 9, the event mask passed to TaskMaster
as a parameter is different from the Tas kMa s k passed to TaskMaster as part
of a task record. The event mask passed to TaskMaster is the same kind of
mask that is passed to the Event Manager in the GetNextEvent call.

A task mask is a word used by an application to tell TaskMaster what
kinds of events it should look for and what kinds of events it should ignore.
The high word of a task mask-bits 16 through 31-should always be clear.
In the low word of a task mask, each bit corresponds to a task; a set bit causes
TaskMaster to look for an event, and a cleared bit tells TaskMaster to ignore
an event. For TaskMaster to look for every type of event it can handle, the
task mask should be $OOOOFFFF. The bit layouts of an event mask and a task
mask are listed in chapter 9.

Window Records
For each window used in an application program, the Window Manager
maintains a window record. A window record contains a number of fields,
but only the first seven are directly accessible to application programs. The
rest of the fields in a window record can be accessed only through calls to
the Window Manager. Table 10-1 shows the seven window record fields
accessible to application programs.

When the Window Manager is active, it maintains a window list: a list
of all windows currently open. It is important to note that a window can be
open but hidden, and thus not visible on the screen.

As table 10-1 shows, the first field in a window record is a pointer to
the Window Manager's window list. The second field is the window's
GrafPort-the GrafPort itself, not a pointer to it. Thus, the length of the
GrafPort field is the length of a GrafPort; the field is 186 bytes.

When a window is created using the Window Manager call NewWi ndow,
the call returns a pointer to the new window's GrafPort. Thus, the value
returned by NewWi ndow is also a pointer to the second field of a window

253

The IIGS Toolbox

NewWindow
Call

254

Table 10-1
Window Record Fields Accessible to Application Programs
Name Length Function

wNext Long Pointer to next window in the window list
wport 186 bytes Window's port; returned window pointers

point to here
wStrucRgn Handle Handle of window's structural region (frame

plus content)
wContRgn Handle Handle of window's content region
wUpdateRgn Handle Handle of update regions (regions that needs

redrawing)
wControl Handle Handle of application's first control in content

region
wFrame Word Bit array that describes window's frame

record. So the value returned by NewWi ndow, as well as being a pointer to
a GratPort, can also calculate the addresses of the other six fields of a window
record.

In addition to a GrafPort and a pointer to the next window in the window
list, a window record contains a pointer to the window's title. A window's
title is a bit array that provides details about the window's frame and the
handles of four regions used to draw the window. The bit array in the wFr ame
field of a window record is shown in table 10-2.

Every window used in an application program must be set up with a call to
the Window Manager routine NewWi ndow. A call to NewWi ndow takes two
parameters: 2 null words (zeros) to save spaces on the stack and a pointer to
a parameter block. The call returns with a pointer to a window pushed onto
the stack. Listing 10-2 is a NewWi ndow call used in the WINDOW.Sl
program.

Listing 10-2
Call to NewWindow

Push Long #0 ; space for result
PushLong #WinOParamBlock
..NewWi ndow

pla
sta WinOPtr
pLa
sta WinOPtr+2

The IIGS Toolbox

Table 10-2
Bits in the wFrame Field

Bit Name of Field Value

0 F_HILITED I Frame highlighted
0 Frame not highlighted

F_ZOOMED I Currently zoomed
0 Frame not zoomed

2 F_AllOCATED I Record was allocated
0 Record was provided by application

3 F_CTRLTIE I Control's state is independent
0 Inactive window has inactive controls

4 F_INFO I Information bar
0 No information bar

5 F_VIS I Window is currently visible
0 Window is invisible

6 F_QCONTENT I Return wlnContent even if
window is inactive

0 Don't return wlnContent if
window is inactive

7 F_MOVE I Title bar is a drag region
0 No drag region

8 F_ZOOM I Zoom box on title bar
0 No zoom box (zoom box must have

title bar)
9 F_FlEX GrowWindow and ZoomWi ndow

won't change the origin
0 GrowWindowandZoomWindow

will affect the origin
10 F_GROW I Grow box

0 No grow box (grow box must have at
least one scroll bar)

11 F_BSCRl I Window frame horizontal scroll bar
0 No horizontal scroll bar

12 F_RSCRl I Window frame vertical scroll bar
0 No vertical scroll bar

13 F_AlERT I Alert type frame (don't set grow box,
close box, info bar, title bar, or scrolls)

0 Standard frame
14 F_ClOSE I Close box

0 No close box (close box must have title
bar)

IS F_TITlE I Title bar
0 No title bar

255

Parameter
Blocks

10-Doing Windows

Before an application makes a NewWi ndow ca LL, it must set up a parameter
block that spells out many details about the window. Listing 10-3 is a
NewWi ndow parameter block used in the WINDOW.Sl program. The fields
in a window's parameter block are described in table 10-3.

Listing 10-3
Parameter block for a NewWindow call

i 2'%1101110111000000' ;
i 4'Wi nOTi t Le' ;
i 4'0' ;
i 2'26,0,188,308' ;
i 4'0' ;
i 2'0' ;
i 2'0' ;
i 2'200' ;
i 2320' ;
i 2'200' ;
i 2'320' ;
i 2'2' ;
i 2'2' ;
i 2'20' ;
i 232' ;
i 4'0' ;
i 2'0' ;
i 4'0' ;
i 4'0' ;
i 4'Pai ntO' ;
i '26,0,188,308' ;
i 4'$ FFF FFFFF' ;
i 4'0' ;

WinOParamBLock
de
de
de
de
de
de
de
de
de
de
de
de
de
de
de
de
de
de
de
de
de
de
de
de

anop
i 'W i nOEnd-Wi nOPa ramB Lock'

Bits describing frame
Pointer to titLe
Ref Con
FuLL size (O=defauLO
CoLor tabLe pointer
VerticaL origin
HorizontaL origin
Data area height
Data area width
Max cont height
Max cont width
No. of pixeLs to scroLL vertically
No. of pixeLs to scroll horizontally
No. of pixeLs to page verticaLLy
No. of pixeLs to page horizontaLLy
Information bar text string
Info bar height
DefProc fieLd
Routine to draw info bar
Routine to draw content
Size/position of content
PLane to put window in
Address for record (0= to a LLocate)

WinOEnd anop

Windows and GrafPorts
Before the NewWi ndow call returns, it creates a GrafPort for the window
being set up and pushes a pointer to that GrafPort onto the stack. From that
point, the application that created the window can treat it as a GrafPort. The
application can draw into the window using QuickDraw II routines.

When the NewW i ndow call sets up a window, it uses the information
passed in the window's parameter block to create the window's attributes.
For example, the first field in the parameter block describes the window's
frame-using the bit layout illustrated in table lO-2-and the second field

256

10-Doing Windows

Table 10-3
Fields in a Window Parameter Block

Field Name Length Description

I paramLength Word Number of bytes in parameter table
2 wFrame Word Bit array describing window frame
3 wTitLe Pointer Pointer to window's title
4 wRefCon Long Reserved for application's use
5 wZoom Rect Size and position of window when

zoomed (0 = screen size)
6 wCoLor Pointer Pointer to window's color table
7 wYOrigin Word Content's vertical origin
8 wXOrigin Word Content's horizontal origin
9 wDataH Word Height of entire document or pixel

image
10 wDataW Word Width of entire document or pixel

image
11 wMaxH Word Maximum height of content allowed

by GrowWi ndow
12 WMaxW Word Maximum width of content allowed

by GrowWi ndow
13 wScroLLVer Word Number of pixels to scroll document

vertically using scroll bar arrows
13 wScroLLHor Word Number of pixels to scroll document

horizontally using scroll bar arrows
14 wPageVer Word Number of pixels to scroll vertically

using page control
14 wPageHor Word Number of pixels to scroll horizon-

tally using page control
IS wlnfoRefCon Long Value passed to information bar draw

routine
16 wlnfoHeight Word Height of information bar
17 wFrameDefProc Pointer Address of standard window defini-

tion procedure
18 wlnfoDefProc Pointer Address of routine that draws infor-

mation bar interior
19 wContDefProc Pointer Address of routine that draws content

region interior
20 wPosit i on Rect Window's starting position and size
21 wPLane Long Window's starting plane

(FFFFFFFF = frontmost)
22 wStorage Pointer Address of memory to use for

window record (0 = don't care)
23 paramLength Word Total number of bytes in parameter

table, including this field

257

The IIGS Toolbox

contains the window's title. In subsequent fields, the width and height of the
window's data areas and content areas are defined. A data area is a rectangle
that encloses all the data a window can work with (for example, a pixel map).
A content area is a rectangle enclosing the largest portion of the data area
that may be displayed on the screen.

Some fields in a window's parameter block duplicate fields in the win-
dow's window record. When a window is created using a NewW i ndow call,
the call uses information provided in the window's parameter block to fill in
the corresponding fields of the window's window record.

One very important field in a window parameter block is the fourth field
from the end of the block. This field contains a pointer to a routine that is
used to draw the contents of the window each time the window is displayed
on the screen. In the WINDOW.SI program, the field looks like this:

dc i 4'Pai ntO' ; Routi ne to draw content

258

The routine that paints a window must be written according to a specific
format, and must end with the assembly language mnemonic rt l.

In the Pai ntO segment of the WINDOW.SI program, the QuickDraw
call PPToPort copies the contents of a specific pixel map into the window
used in the program. This pixel map is set up in a program segment called
Ma keWinO and is accessed in the program by the pointer Pi cOPt r.

The program segments MakeWi nO and Pai ntO are in listing 10-5, the
complete listing of the WINDOW. SI program at the end of this chapter. Here
is what happens in the segment of code labeled Pa i n to.

First, the Memory Manager call NewHand l e reserves a 32K block of
RAM-enough memory to hold a pixel map that is the size of one screen.
The call returns with a handle to the requested block of data pushed onto the
stack. This handle is then pulled off the stack and stored in a variable called
WinOHandle. Later in the program, the PaintO routine uses the block of
data pointed to by Wi nOHand le to draw the contents of the program's window
on the screen.

When the handle called Wi nOHand le is assigned, a segment of code
labeled Deref dereferences the handle (converts it into a pointer). The Deref
routine also locks the handle being dereferenced so the Memory Manager
can't move the handle's block of memory in the middle of an important
operation, which could crash the program. Later, when the important operation
is over, the Unlock routine unlocks the handle, enabling the Memory Man-
ager to manage it again.

When Wi nOHand le is dereferenced, the pointer thus obtained is stored
in a Loclnfo data structure at the end of the WINDOW.SI program in a
field labeled Pi cOPt r. Then a NewWi ndow call creates a new window. To
set the new window's attributes, the NewWi ndow call uses the parameter
block in listing 10-3.

As explained previously, the WINDOW.S I program allows you to draw
into a screen window and, at the same time, to draw into the pixel map that
paints the window on the screen each time it is updated or redrawn. This is
why sketches drawn with the WINDOW.S I program do not vanish from

Window
Manager's
GrafPort

How a Window
Is Drawn

10-Doing Windows

memory when a window is removed from the screen. Instead, they remain
in RAM and can be redrawn into a window when it shows up again on the
screen.

To make this technique possible, the WINDOW.SI program creates a
GrafPort that can be used to draw into the pixel map from which the program's
window is drawn. This GrafPort is set up in the NewPort program segment.
For its Loc Info data, the new GrafPort uses the Pi cOLoc Info data structure
in the Port Data data segment at the end of the program.

When the GrafPort that points to a pixel image is created, the WIN-
DOW.SI program clears the area of memory used for the pixel image with
the BLkFiLL program segment. In this segment, the pen color is set to white
and the QuickDraw call Pai ntRect clears the bit image to white. Later in
the program, when the user asks for a new blank screen by making the menu
choice New, the program uses the BLkFiLL routine to clear both the window
port and the bit image port to white.

(Incidentally, the Pai ntRect call can be used to fill any block of RAM
with any value, even in a nongraphics program. To "stuff" a block of
memory, just pass to Pa i n t Re c t the size of the area you want filled and
the value you want it filled with. Pai ntRect does the rest-and you save
the time and effort it would take to write a 65C816 block fill program.)

The WINDOW.S I program, like every program that uses windows, has
another GrafPort that is created by the Window Manager. When you use the
Window Manager in a program, it always creates a special GrafPort that has
the entire screen as its port rectangle. In all programs that use the Window
Manager, this port is known as the Window Manager port. The Window
Manager uses it to draw all windows, along with their scroll bars and other
controls, on the IIos screen.

When the Window Manager draws or redraws a window, it always draws the
window's frame first. Then it draws the window's contents.

During this process, the Window Manager manipulates regions of the
Window Manager port as necessary to ensure that only what should be drawn
is drawn. The Window Manager generates an update event to draw a window's
contents. But before an update event can take place, the Window Manager
must accumulate, in the update region, the areas of the window's content
region that need updating.

In programs that use either TaskMaster or the Event Manager, the Event
Manager periodically calls a routine called CheckUpdate to see if there is
a window on the screen whose update region is not empty. If it finds one, it
reports that an update event has occurred and passes a pointer to the window
that needs updating in the event message field of its event record. If
TaskMaster is used, it then updates the window as required. Programs that
don't use TaskMaster have to do the updating themselves. Obviously, it's
easier to use TaskMaster.

Some Window Manager routines can change the state of a window from
inactive to active or from active to inactive. For each change, the Window
Manager generates an activate event, passing along the window pointer in

259

The IIGS Toolbox

the event message. The act i ve FLag bit in the mod i fie r s field of the event
record is set if the window becomes active and cleared if it becomes inactive.

When the Event Manager finds out from the Window Manager that an
activate event has been generated, it passes the event to the application or
TaskMaster through its GetNextEvent routine. An activate event has the
highest priority of any type of event, so when the Event Manager detects one
it gets immediate action.

Usually, activate events are generated in pairs, because when one win-
dow becomes active another usually becomes inactive, and vice versa. Oc-
casionally, however, a single activate event is generated, for example, when
there is only one window in the window list or when an active window is
closed permanently.

When a pair of activate events comes along, the Window Manager first
generates the event for the window becoming inactive. It then generates the
event for the window becoming active. In most applications, pairs of activate
events are handled competently by TaskMaster. Rarely does an application
program have to intervene.

Coordinates and the Window Manager
When NewWi ndow is called to create a window, it takes the window's bounds
rectangle from the Loclnfo field of the window's GrafPort. Thus, a win-
dow's local coordinates begin in the upper left comer of the bounds rectangle
specified in the Loc I n f 0 field of the window's GrafPort. In a window's
global coordinate system, coordinate 0,0 is always assigned to the pixel in
the upper left comer of the window's bounds rectangle.

Global
Coordinates in
WINDOW.51

Local
Coordinates in
WINDOW.51

Port Rectangle
in WINDOW.51

260

In the WINDOW. SI program, the Loc I n f 0 record that defines the window's
bounds rectangle is titled Pi cOLoclnfo. This record is in a data segment
labeled Po r t Da t a, which appears at the end of the program. The bounds
rectangle defined in the Pi cOLoclnfo record appears in the Pi cOFrame
field. In the WINDOW.SI program, therefore, the bounds rectangle assigned
to the program's window is the rectangle 0,0,200,320.

The global coordinates of a window are always based on a pixel image,
specifically, the pixel image pointed to by the second field of the window's
Loclnfo record. In a window's global coordinate system, coordinate 0,0 is
always assigned the pixel in the upper left comer of the window's pixel image.

The pointer to the pixel image used in the WINDOW.S I program is Pi cOPt r.
This pointer is the second field in a Loclnfo record called Pi cOLoclnfo.
The Pi cOLoclnfo record is in a data segment called PortData, which
appears at the end of the program.

The port rectangle of a window is a rectangle outlining the maximum portion
of the window that can be displayed on the screen at any given time. If a
window is partially hidden (for example, partly covered by another window
or partly off the screen), the window's visible region (Vi sRgn) is also used

Coordinate
Conversions in

WINDOW.51

10-Doing Windows

to determine how much of the window is visible on the screen. In the WIN-
DOW.Sl program, the Window Manager takes care of Vi sRgns automati-
cally. But, as you shall see shortly, the program has to perform a few
manipulations using port rectangles.

In programs like WINDOW. S1, coordinates often have to be converted from
one system to another. Some QuickDraw and Window Manager routines use
global coordinates, but others use local coordinates. For example, in the
segment of the WINDOW.Sl program labeled Movelt, TaskMaster returns
mouse coordinates in global coordinates, and the Event Manager call
GetMouse and the QuickDraw II call Li neTo require local coordinates. For
this reason, the QuickDraw call GLoba LTo Lo caL is used to convert the global
coordinates returned by TaskMaster to the local coordinates required by other
calls.

The Movelt segment of the WINDOW.Sl program is the heart of the
program. In this section, mouse movements are tracked and lines are drawn
on the screen. TaskMaster detects the location of the IIGS mouse and returns
it, in global coordinates, in the EventWhere field of its task record. The
mouse location is then converted into local coordinates in these two lines:

PushLong #EventWhere
_G Loba LToLoca L

The GLoba LToLoca L call converts the global coordinates in the Event-
Where record to local coordinates. After this conversion, the EventWhere
field contains local coordinates, which can then be used by calls that require
them. In the Movelt segment, other conversions are taken care of by the
StartDrawing and SetOrigin calls.

When a window is created, the upper left coordinate of its bounds
rectangle are usually set to 0,0. Thus, in the local coordinate system used by
a new window, the first pixel in its bounds rectangle is generally assigned
the coordinate 0,0.

As you have seen, every window has both a port rectangle and a bounds
rectangle. The intersection of a window's bounds rectangle and port rectangle
make up the largest possible area of the window that can be displayed on the
screen.

Suppose a window has a bounds rectangle that starts at local coordinate
0,0 and is the same size as the screen. Let's also suppose the window has a
port rectangle that covers a smaller area in the middle of the screen. The
coordinates of this port rectangle are 65,50 (the vertical coordinate is listed
first). A bounds rectangle and a port rectangle that fit this description are
illustrated in figure 10-3.

Now let's assume you want to use the WINDOW.Sl program to draw
a sketch in the window (that is, in the port rectangle) shown in figure 10-3.
You first have to convert the mouse location returned by TaskMaster from
global coordinates to local coordinates. But, because of the way the IIGS
Window Manager works, you also have to reset the origin of the window's

261

The IIGS Toolbox

262

BIT IMAGE

Bounds Reel

B

Figure 10-3
Relationship between a bit image, BoundsReet, and PortRect

port rectangle; you have to change the value of the upper left comer of the
port rectangle, as expressed in local coordinates.

This is why the port rectangle's origin must be reset. When the Window
Manager draws all the windows on a screen-complete with scroll bars, title
bars, and all other necessary features-it uses a GrafPort that has the whole
screen as its bounds rectangle. But before the Window Manager can draw
the content region of a single window (for example, when the window has
to be updated or redrawn), it has to switch to that window's GrafPort and
change the origin of the window's port rectangle from its usual value of 0,0
to the value it had when it was a port rectangle in the Window Manager's
GrafPort, which uses the whole screen as its bounds rectangle.

The logic of this procedure is a little difficult to follow. After the origin
of a window's port rectangle is changed, the Window Manager can draw into
the window, and the drawing ends up in the proper location on the screen.

When the Window Manager has finished drawing in a window, it must
set the window's origin back to 0,0 before it can leave the window's port
and return to its own GrafPort, so that it can regain the capability of drawing
anywhere on the screen.

When the Window Manager has to draw in a window, it automatically
carries out all the procedures just outlined. But when an application wants to
draw in a window, it has to perform the same kinds of operations the Window
Manager performs when it draws in a window.

To start drawing in a window, an application can use one of two ap-
proaches. It can either

• Make the QuickDraw call SetPort to make the window's port the
current port and then make the QuickDraw call Set 0 rig i n with
the proper parameters

• Make the Window Manager call Star t Draw i ng, which carries out
both of the previous steps automatically

10-Doing Windows

The simpler approach is to use the StartDrawing call-and that is what
is done in the WINDOW.Sl program.

After an application has finished drawing into a window, it must return
the origin of the window's port rectangle to its original state by making the
QuickDraw call SetOri gi n using parameters 0,0.

Running the WINDOWS.S1 Program
After the procedure for drawing into a window is understood, the operation
of the WINDOW.S1 program becomes straightforward. The main part of the
WINDOWS.Sl program is Mai nProg ram. In this section, the tools used by
the program are initialized, a menu is constructed, and the MakeWi nO sub-
routine is called to create a window.

Next, the NewPort subroutine is called to set up a GrafPort used by
the window's pixel map. Then the Bl kFill subroutine is called to clear the
pixel map to white. (You could clear the screen to another color by simply
replacing the color code $FF in the Bl kFill routine with a different color
code.)

When the window's pixel image is cleared, the WINDOW.Sl program
jumps to the Event Loop subroutine. This is the main event loop of the
program. While the event loop is running, TaskMaster continuously looks for
button down events. If TaskMaster detects a button down event, the program
uses a jump table labeled TaskTab l e to determine what should be done.

IfTaskMaster reports a menu event, the table called Tas kTab le sends
the program to the doMenu subroutine. It is up to doMenu to carry out an
appropriate response to the user's menu selection. Depending upon the menu
choice, the doMenu routine can either call the Repa i nt subroutine to draw
a new window, call the doWi nO subroutine to redraw a window, or jump to
the doQui t subroutine to end the program.

If a window event is detected, TaskMaster takes care of all routine
window-related operations, such as scrolling the window or changing its size.
IfTaskMaster detects a button down event in the window's go-away box, the
program jumps to a short subroutine titled doGoAway, which hides the win-
dow. If TaskMaster reports a button down event in the window's content
region, the program jumps to the Move It subroutine, which enables the user
to draw in the window.

The MoveIt routine, as noted, is the heart of the WINDOW.SI pro-
gram. In this segment of code, as long as the mouse is inside a window and
the mouse button is down, the QuickDraw call Li neTo draws a line on the
screen tracing the mouse's movements. When the mouse button is released,
the mouse's movements are still followed, but the tracing is done using the
MoveTo call rather than the Li neTo call, so no line is drawn on the screen.

You can clear the window at any time by making the menu selection
New. You can temporarily hide the window being drawn by clicking the
mouse in the window's go-away region. If a window is hidden, but is not
erased with a click in the menu item New, you can bring the window back

263

The I/GS Toolbox

into view by making the menu selection Untitled (for now, the title of the
window). After New is selected, however, the window is permanently erased
and cannot be retrieved from memory.

Other Features of WINDOW.51

The WINDOW.SI program has some new features that should be mentioned
before you conclude this chapter. One is the rnse r t sysb i sk subroutine,
which is called from the Too LI n i t program segment. The other new and
noteworthy feature is a macro called ErrorCheck, which is also called from
the Too LIn; t segment of the program.

The Lns e r t Sys b i sk subroutine is called when the WINDOW.SI pro-
gram tries to load the tools it needs and finds that the I1GS system disk-on
which some tools are stored-is not currently in the computer's disk drive.
When this condition is detected, Lns e r t SysDi sk is called and prints a
message on the screen asking the user to insert the system disk in the disk
drive.

The Err 0 r Che c k macro is called following several critical routines,
such as the loading of essential tools. If the calling of a vital routine is aborted
by an error, the ErrorCheck macro ends the program. A system failure
message-a rolling-Apple symbol accompanied by an error message and an
error number-is displayed on the screen.

InsertSysDisk
Routine

264

To see how the Inse r t Sys b i s k routine works, look through the Too LIn; t
segment for the label LoadEmUp. Study the code that follows the labels
LoadEmUp and DoInsertDi sk, and you'll see that this section of code
forms a loop. When the program comes to the LoadEmUp label, it makes the
Tool Locator call LoadTooLs to load all the tools used in the program. The
LoadToo Ls call, like most Toolbox calls, uses a specific convention for
detecting errors. If the call is completed successfully, without an error, it
returns with the P register's carry flag clear and a value of 0 in the accumulator.
If an error is encountered in making the call, however, the call returns with
the carry bit set and an error number in the accumulator.

In the WINDOW.SI program, if the LoadTooLs call returns without
an error, the program jumps a few lines to a section of code labeled
Too Ls Loaded and the tools that have been loaded start up normally. If the
call returns with the carry set and the number 45 in the accumulator, however,
the program jumps to the DoInse rt Di sk subroutine, which prints a message
on the screen asking the user to insert the I1GS system disk (which contains
some of the tools used by the computer). If the user complies and the necessary
tools are found, the program proceeds normally. If this doesn't solve the
problem, the program ends and a system failure message is displayed.

ErrorCheck
Macro

10-Doing Windows

To end programs and display system-death messages after fatal errors occur,
the WINDOW.Sl program uses the ErrorCheek macro. Several calls to the
Er rorCheek macro appear in the Too LIn; t segment of the WINDOW.S I
program.

The ErrorCheek macro appears in listing 10-4. To use it in your
programs, type it into a macro file and add it to your library of macros using
APW's MACGEN shell command.

Listing 10-4
ErrorCheck

MACRO
&Lab ErrorCheek &msg
&Lab bee end&sysent
pea x&sysentl-16
pea x&sysent
Ldx #$1503
jsL $E10000
x&sysent str "&msg"
end&sysent anop
MEND

The WINDOW.S1 and INITQUIT.S1 Programs
The WINDOW.Sl program, like the C language programs in the last few
chapters, is divided into two parts: WINDOW.SI and INITQUIT.Sl. The
WINDOW.Sl program, listing 10-5, and the INITQUIT.Sl program, listing
10-6, are at the end of this chapter.

Splitting a program into two or more parts can save a considerable
amount of typing. For example, INITQUIT.Sl-the portion of the program
that loads, starts up, and shuts down tools-is also used in sample programs
in chapters II and 12.

In programs written using the APW assembler-editor package, it's easy
to divide a program into sections and then put all the sections together again
at assembly time. All you have to do is type each section, save it as a separate
source code file, and then combine the files you have saved using the APW
assembler directive COPY. Look at the end of the WINDOW.Sl program in
listing 10-5, and you'll see that the last line of the listing is

COpy INITQUIT .S1

When the APW assembler reaches that line, it starts assembling INITQUIT. S1
and adds it to WINDOW.Sl, just as if the two listings were a single listing.
Furthermore, any number of COpy directives can appear at the end of a source
code listing. So you can add many modules to an APW program by using
the COpy directive.

265

The JIGS Toolbox

The WINDOW.C and INITQUIT.C Programs
The WINDOW.C program, listing 10-7, is a C language version of WIN-
DOW.S!. It is designed to be used with the INITQUlT.C program, listing
10-8, which performs the same functions as INITQUlT.Sl and was intro-
duced in chapter 9. THe WINDOW.C and INITQUlT.C programs appear at
the end of this chapter.

WINDOW.C and INITQUIT.C are combined into one program with
the statement

#i nc Lude "i ni tqui t. c"

This statement is in the first line of the WINDOW.C program.
There are significant differences between WINDOW.C and its assembly

language equivalent, WINDOW.S!. In WINDOW.C, for example, the
Ske t c h 0 function, which draws on the screen, is simplified. It uses the
function StartDrawingO just once, then it uses SetPortO thereafter.
This is a more streamlined way to write the SketchO routine in C, but the
method used in WINDOW.Sl works better in assembly language. Experiment
and you'll see why.

In WINDOW.C, the ErasePi cO() function, which is called repai nt
in WINDOW.S I, is also simplified. Instead of completely dismantling a win-
dow environment and then rebuilding it (the technique used in WINDOW.S!)
the ErasePi cO() function keeps the window's environment, but simply
erases what is in it. Because of differences in the way in which WINDOW.S!
and WINDOW.C work, this is another approach that works well in C, but
the technique used in WINDOW.S I works better in assembly language.

WINDOW.51 and IN;TQUIT.51 Listings
Listing 10-5

WINDOW.S1 program

** WINDOW.S1

*
*** A FEW ASSEMBLER DIRECTIVES ***

TitLe 'Window'
ABSADDR on
LIST off
SYMBOL off
65816 on
mcopy window.macros

KEEP window

266

10-Doing Windows

** EXECUTABLE CODE STARTS HERE
*
Begin

*

START
Using QuitData

jmp MainProgram

END

; skip over data

* SOME DIRECT PAGE ADDRESSES AND A FEW EQUATES
*
DPData START

DPTemp gequ $00
DPPointer gequ DPTemp+4
DPHandLe gequ DPPointer+4

ScreenMode gequ $00 ; 320 mode
MaxX gequ 320 ; X cLamp high

True gequ $8000
FaLse gequ $00

END

** MAIN PROGRAM LOOP
*
MainProgram START

Using GLobaLData
Using PortData

phk
pLb
tdc
sta MyDP

j sr TooLIni t
jsr BuiLdMenu
jsr MakeWinO

; get current direct page
; and save it for the moment

; start up all tooLs we'll need
; create and draw menu bar
; create empty window

267

The IIGS Toolbox

*** OPEN A PORT SO WE CAN DRAW IN PIXEL MAP ***

jsr NewPort

Lda #Pi cOPort
sta BLkToFi LL
Lda #'Pi cOPort
sta BLkToFi LL+2

j s r BLkFi LL

*** LINE THAT JUMPS TO THE EVENT LOOP ***

jsr EventLoop ; check for key & mouse events

*** WHEN EVENT LOOP ENDS, WE'LL SHUT DOWN ***

jsr Shutdown
jmp Endit

END

** EVENT LOOP
*
EventLoop

Again

268

START
Using QuitData
Using TaskTabLe
Using EventData

anop
PushWord #0
PushWord #$FFFF
Push Long #EventRecord
_TaskMaster
pLa
as L a
tax
jsr (TaskTabLe,x)
Lda QuitFLag
beq again

rts

END

; space for resuLt
; recognize aLL events

; code * 2 = tabLe Location
; X is index register
; Look up event's routine

10-Doing Windows

** ROUTINE TO DRAW SKETCHES ON THE SCREEN
*MoveIt

Loop

START
Using EventData
Using GLobaLData
Using PortData

Push long TaskData
_Sta rt Drawi ng
Pushlong #RectPtr
_GetPortRect
Pushlong #EventWhere
_G LobaLToloca L
Pushlong EventWhere
_MoveTo

pea 0
pea 0
_SetOrigin

Pushlong #PicOPort
_SetPort

Pushlong #RectPtr
_CLipRect

Push long EventWhere
_MoveTo

pea 0
pea 0
_Sti LLDown
pLa
beq out

Lda TaskData+2
pha
Lda TaskData
pha
_StartDrawing

Lda #AEventWhere
pha
Lda #EventWhere
pha
_GetMouse

; convert them to
; LocaL coordi nates
; move cursor to mouse Location

; space for return
; check button zero

269

The IIGS Toolbox

Lda EventWhere+2
pha
Lda EventWhere
pha
_LineTo

pea 0
pea 0
_SetOrigin

Lda #'Pi cOPort
pha
Lda #Pi cOPort
pha
_SetPort

Lda EventWhere+2
pha
Lda EventWhere
pha
_LineTo

brL Loop

out anop
rts

Rectptr ds 8

END

** REPAINT: MAKE NEW EMPTY WINDOW
*
Repaint

270

START
Using PortData
Using WindowData
Using GLobaLData

PushLong #0
_Get Port
PuLLLong ThisPortPtr

PushLong #PicOPort
_Set Port

PushLong #ScreenRect

ThisPortPtr
ScreenRect

NewPort

_C Li pRect

Lda #Pi cOPort
sta BLkToFi LL
Lda #'Pi cOPort
sta BLkToFi LL+2

jsr BLkFi Ll

PushLong ThisPortPtr
_SetPort

PushLong WinOPtr
_HideWindow

PushLong WinOPtr
_CLoseWindow

PushLong PicOHandLe
_DisposeHandLe

jsr MakeWinO
jsr doWinO

rts

ds 4
de i '0,0,200,320'

END

START
Using GLobaLData
Using PortData

PushLong #0
_Get Port
PuLLLong OrigPortPtr

PushLong #PicOPort
_OpenPort

PushLong #PicOPort
_SetPort

PushLong #ScreenRect
_CLipRect

10-Doing Windows

; space for resuLt

; save pointer to current port

; pointer to new port
; open a port for pixeL map

; make new port the current
; port (temporariLy)

271

The IIGS Toolbox

PushLong #PicOLocInfo
_Set Port Loc

PushLong OrigPortPtr
_Set Port

rts

; set up loc info for new port

; make original port
; the current port again

ScreenRect

*

dc i '0,0,200,320'

END

* CREATE AND DRAW A WINDOW
*
MakeWinO START

using GlobalData
using WindowData
using PortData

*** SET HANDLE FOR PIC 0 (new) ***

PushLong #$00
Push Long #$8000 ; 32K (one screen)
PushWord MyID
PushWord #$COOO ; locked and fixed
PushLong #0
_NewHandle

ErrorCheck not get handle.'

pla
sta PicOHandle
pla
sta PicOHandle+2

*** DEREF HANDLE, CLEAR MEMORY, AND CREATE POINTER ***

lda PicOHandle ; lock and de ref PicOHandle
ldx Pi cOHand le + 2 , whi le we do our thi ng wi th it
jsr Deref

sta PicOPtr ; de ref gives us a pointer
stx PicOPtr+2 ; to Pi cOHand l es pixel map

* ; so we'll save it

272

10-Doing Windows

*** SET UP WINDOW 0 ***
PushLong #0 ; space for result
PushLong #WinOParamBlock
_NewWi ndow

pla
sta WinOPtr
pla
sta WinOPtr+2

rts

END

* DoWinO
* Selects and shows window 0 (blank) in response to menu selection.

DoWinO START
using GlobalData
using WindowData

PushLong WinOPtr
_SelectWindow

PushLong WinOPtr
_ShowWindow

rts

END

** PaintO
* Draws empty window when TaskMaster calls.
*
PaintO START

using GlobalData
Using PortData
using WindowData

phb
phk
plb

phd
lda MyDP

273

The IIGS Toolbox

ted

PushLong #PieOLoeInfo
PushLong #PieOFrame
PushWord #0
PushWord #0
PushWord #0
_PPToPort

pLd
pLb
rt L

END

*** BLOCK FILL ROUTINE ***
BLkFi LL

Ori gPortPt r
AReet

274

START
Using GLobaLData
Using WindowData
Using PortData

Push Long #0
_GetPort
PuLLLong OrigPortPtr

PushLong BLkToFiLL
_Set Port

PushWord #$FF
_SetSoL idPenPat

Push Long #AReet
_PaintReet

_PenNormaL

PushLong OrigPortPtr
_Set Port

rts

ds 4
de i '0,0,200,320'

END

10-Doing Windows

** CREATE AND DRAW MENU
*
BuildMenu START

using MenuData

PushLong #0
PushLong #Menu3
_NewMenu
PushWord #0
_InsertMenu

Push Long #0
PushLong #Menu2
..NewMenu
PushWord #0
_InsertMenu

PushLong #0
Push Long #Menu1
..NewMenu
PushWord #0
_InsertMenu

PushWord #0
_FixMenuBar
pLa

_D rawMenuBa r

rts

END

; proceedi ng f rom back to front

; space for return

; space for return
; 'wai t ' screen menu bar

; space for return

; init & draw the menu bar

; discard menu bar height

** DoMenu
* CalLed when TaskMaster teLLs us a new menu item is selected.
*
DoMenu START

Using TaskTabLe
Using EventData
Using MenuTable

lda TaskData
cmp #256
bcc GiveUp ; this should never happen

275

The IIGS Toolbox

and #$OOFF
as L a
tax

jsr (MenuTabLe,x)

GiveUp anop
PushWord #FaLse
PushWord TaskData+2
_Hi Li teMenu

rts

END

; draw normaL
; which menu

** InsertSysDisk
* This routine is caLLed when tooLs need to be Loaded and the
* system disk is offLine. Routine asks user to insert system disk.
*
InsertSysDisk START

_SetPrefix SetPrefixParams
_GetPrefix GetPrefixParams

PushWord #0
PushWord #195
PushWord #30
PushLong #PromptStr
PushLong #VoLStr
PushLong #OKStr
PushLong #CanceLStr
_TLMountVoLume

pLa

rts

; space for resuLt
; x pos
; y pos
; prompt string
; voL string

PromptStr

VoLStr

OKStr

CanceLStr

str 'PLease insert the disk'

ds 16

str 'OK'

str 'Shutdown'

GetPrefixParams de i'7'

276

de i4'VoLStr'

SetPrefixParams de i'T
de i 4'BootSt r '

10-Doing Windows

BootStr

*

str '*1'

END

* WINDOW GO-AWAY ROUTINE
*
doGoaway

*

START
Using EventData

PushLong TaskData
_HideWindow
rts

END

* A USEFUL AND CONVENIENT WAY NOT TO DO ANYTHING
*
Ignore START

rts

END

** Deref
* Derefs the handLe passed in a and x registers.
* ResuLt passed baek in a and x registers.
*
Deref START

sta DPTemp
stx DPTemp+2
Ldy #2
Lda [DPTemp],y
tax
Lda [DPTemp]
rts

END

277

The JIGS Toolbox

** DATA SEGMENTS

*

** Menu Data

*
MenuData

Return

Menu1

Menu2

Menu3

DATA

equ 13

dc c"> L@\XN1',i 1'RETURN'
dc c LA Window Program \N25T,i 1'RETURN'
dc c;:

dc c'>t, Fi Le \N2',i 1'RETURN'
dc c LNew \N258V', i 1'RETURN'
dc c' LQui t \N259', i 1'RETURN'
dc c.

de c'>L Windows \N3',i 1'RETURN'
dc c LUntitLed \N260',i1'RETURN'
dc c'.'

END

MenuTabLe DATA

*

*

*

278

Menu 1 Capp Le)
dc i 'i gnore'
dc i 'i gnore'

Menu 2 (fiLe)
dc iRepa i nt
dc i'doQuit'

Menu 3 (windows)
dc i'doWinO'

END

; one for the NDAs
; 'a wi ndow program'

; 'doWinO' (new window)
; quit item seLected

; 'unt i t l ed'

10-Doing Windows

TaskTabLe DATA

dc i'ignore ; a nu LL
dc i'ignore , ; 1 mouse down
dc i'ignore ; 2 mouse up
dc i'ignore , ; 3 key down
dc i'ignore ; 4 undefined
dc i'ignore , ; 5 auto-key down
dc i'ignore ; 6 update event
dc i'ignore ; 7 undefined
dc i'ignore , ; 8 activate
dc i'ignore ; 9 switch
dc i'ignore , ; 10 desk acc
dc i'ignore ; 11 device driver
dc i 'i gnore ; 12 appLication
dc i'ignore , ; 13 appLication
dc i'ignore ; 14 appLication
dc i'ignore , ; 15 appLication
dc i'ignore ; a in desk

*
* TaskMaster events
*

dc i'DoMenu' ; 1 in menu bar
dc i'ignore ; 2 in system window
dc i'MoveIt' ; 3 in content of window (MoveIt)
dc i'ignore ; 4 in drag
dc i'ignore , ; 5 in grow
dc i'doGoAway' ; 6 in go-away
dc i'ignore , ; 7 in zoom
dc i'ignore ; 8 in info bar

dc i'ignore ; 9 in ver s c ro LL
dc i'ignore ; 10 in hor scroLL
dc i'ignore , ; 11 in frame
dc i'ignore ; in drop

END

TooLTabLe DATA

dc i'8' ; number of tooLs in tabLe
dc i '$04,$0100' ; quickdraw

279

The IIGS Toolbox

de i '$06,$0100'
de i '$OE,$OOOO'
de i'$OF,$0100'
de i '$10,$0100'
de i '$14,$0000'
de i'$15,$0000'
de i '$17,$0000'

END

EventData DATA

EventReeord anop
EventWhat ds 2
EventMessage ds 4
EventWhen ds 4
EventWhere ds 4
EventModifiers ds 2
TaskData ds 4
TaskMask de i4'$OFFF'

END

QuitData DATA

QuitFlag ds 2

QuitParams de i 4'0'
de i 4'0'
de i 4'0'

END

WindowData DATA

PieOHandle ds 4
WinOPtr ds 4
WinOTitle str 'Un t i t led'

280

; event manager
; window manager
; menu manager
; control manager

; std fi le manager

; table for Event Manager

10-Doing Windows

WinOParamBlock anop

de i'WinOEnd-WinOParamBlock'
de i2'%1101110111000000' ; Bits describing frame
de i4'WinOTitle' ; Pointer to title
de i4'0' ; Ref Con
de i2'26,0,188,308' ; Full Size (0= default)
de i4U' ; Color Table Pointer
de i2U' ; VerticaL origin
de i2U' ; HorizontaL origin
de i 2'200' ; Data Area Hei ght
de i2320' ; Data Area Width
de i2?00' ; Max Cont Height
de i2320' ; Max Cont Width
de i2'2' ; No. of pixeLs to scroll vertically
de i2'2' ; No. of pixeLs to scroll horizontaLly
de i2'20' ; No. of pixeLs topageverticaLLy
de i2'32' ; No. of pixeLs to page horizontally
de i4'0' ; Infomation bar text string
de i 2'0' ; Info bar hei ght
de i 4'0' ; DefProc
de i4U' ; Routine to draw info bar
de ; Routine to draw content
de i?6,0,188,308' ; Size/position of content
de i4'$FFFFFFFF' ; PLane to put window in
de i4'0' ; Address for window record (0 to

; a LLocate)
*
WinOEnd anop

END

GLobalData DATA

BLkToFi LL ds 4

MyID de i '0'
MyDP ds 2

BLockSize ds 4
FiLVaL ds 2

END

; program ID word

281

The IIGS Toolbox

PortData DATA

CType
CAux

OrigPortPtr

PieOPort

PieOLoelnfo
PieOPtr

PieOFrame

** IOData
*
IOData

ReplyReeord
GoodFlag
FType
AuxFType
FName
FullPathName

CreateParams
NameC de

de
de
de
de
de
de

DestParams
NameD

ds 4

ds $AA

de i '$00'
ds 4
de i'160'
de i'0,0,200,320'

END

DATA

anop
ds 2
de i'193'
de i '0'
ds 15
ds 128

anop
i 4'0'
i 2'$00C3'
i 2'$00C1'
i 4'$00000000'
i 2'$0001'
i 2'$0000'
i 2'$0000'

anop
de i 4'0'

; pointer to original port

; 320 mode
; MakeWinO fills this in
; width
; pic image frame reet

; $e1
; #0

; DRNWR
; super high-res graphics
; Aux
; type
; create date
; create time

OpenParams anop
OpenID ds 2
NamePtr ds 4

ds 4

ReadParams
ReadID
Pi eDestIN

282

anop
ds 2
ds 4
de i 4'$8000'
ds 4

; thi s many bytes
; how many xfered

WriteParams
WritelD
picDestOUT

anop
ds 2
ds 4
dc i 4'$8000'
ds 4

; this many bytes
; how many xfered

10-Doing Windows

CLoseParams anop
CLoselD ds 2

END

COpy INITQUIT.S1

Listing 10-6
INITQUIT.S1 program

** INITQUIT.S1: WHERE WE INITIALIZE OUR TOOLS
*
TooLInit START

Using GLobaLData
Using TooLTable

*** START UP TOOL LOCATOR ***

_TLStartup ; TooL Locator

*** INITIALIZE MEMORY MANAGER ***

PushWord #0
_MMStartup
ErrorCheck not init Memory Manager."

pLa
sta MylD

*** INITIALIZE MISC. TOOL SET ***

_MTStartup
ErrorCheck not init Misc TooLs."

*** GET SOME DIRECT PAGE MEMORY FOR TOOLS THAT NEED IT ***

PushLong #0
Push Long #$800

; space for handLe
; eight pages

283

The IIGS Toolbox

PushWord MyID
PushWord #$C001
Push Long #0
-NewHand le

; locked, fixed, fixed bank

; pointer to direct page

; either 320 or 640 mode
; max size of scan line

ErrorCheck not get direct page.

pla
sta DPHandle
pla
sta DPHandle+2

lda [DPHandleJ
sta DPPointer

*** INITIALIZE QUICKDRAW II ***

lda DPPointer
pha
PushWord #ScreenMode
PushWord #160
PushWord MyID
_QDStartup
ErrorCheck 'Could not start QuickDraw.'

*** INITIALIZE EVENT MANAGER ***

lda DPPointer ; pointer to direct page
clc
adc #$300 ; QD direct page + #$300
pha ; (QD needs 3 pages)
PushWord #20 ; queue size
PushWord #0 ; X clamp low
PushWord #MaxX ; X clamp high
PushWord #0 ; y clamp low
PushWord #200 ; y clamp high
PushWord MyID
_EMStartup
ErrorCheck "Cou ld not start Event Manager.

*** LOAD SOME TOOLS FROM RAM ***

LoadEmUp

284

PushLong #ToolTable
_LoadTools
bcc ToolsLoaded

cmp #$45
beq doInsertDisk

; prodos error: vol not found

DoInsertDisk

10-Doing Windows

sec
ErrorCheek 'Coul.d not Load t oo l s .:

anop
jsr InsertSysDisk
emp #1
beq LoadEmUp
sec
ErrorCheek 'TooL Loadi ng aborted.'

*** WINDOW MANAGER ***

TooLsLoaded PushWord MyID
_WindStartup
ErrorCheek 'CouLd not Start Window Manager.'

PushLong #$0000
_Ref resh

not start ControL Manager.'

not start Menu Manager.'

*** CONTROL MANAGER ***

PushWord MyID
Lda DPPointer
eLe
ade #$400
pha
_CtLStartup
ErrorCheek 'CouLd

*** MENU MANAGER ***

PushWord MyID
Lda DPPointer
cLe
ade #$500
pha
_MenuStartup
ErrorCheek 'cou Ld

_ShowCursor

*** LINE EDIT ***

; DP to use

; DP to use

qd dp + $400

qd dp +$500

PushWord MyID
Lda DPPointer
cLe
ade #$600
pha

; qd dp + $600

285

The IIGS Toolbox

_LEStartup
errorcheck not start up Line Edit.'

*** DIALOG MANAGER ***

PushWord MyID
_Di a LogSta rtup
errorcheck not start DiaLog Manager.'

*** STANDARD FILE MANAGER ***

PushWord MyID
Lda DPPointer
dc
adc #$700 ; qd dp + $700
pha
_SFStartup
errorcheck not start up SF Manager."

rts

END

** THE ROUTINE THAT ENDS THE PROGRAM
*
EndIt START

Using QuitData

_Quit QuitParams

*** A QUIT CALL RETURN; IF IT DOES, FINI ***

ErrorCheck returned from a quit caLL!"

END

** SHUT DOWN ALL THE TOOLS WE STARTED UP
*
ShutDown

286

START
Using GLobaLData
Using WindowData

_SFShutdown

_DialogShutdown
_LEShutdown
_MenuShutDown
_CtlShutDown
_WindShutDown
_EMShutDown
_QDShutDown
_MTShutDown

PushLong DPHandLe
_DisposeHandLe

PushLong PicOHandLe
_DisposeHandLe

PushWord MyID
_MMShutDown
_TLShutDown

rts

END

** ROUTINE THAT SETS THE QUIT FLAG
*

10-Doing Windows

doQuit START
Using QuitData

Lda #$8000
sta QuitFLag
rts

END

WINDOW.C and INITQUIT.C Listings
Listing 10-7

WINDOW.C program

#i nc lude "i ni tqui t , c"

************************************1
1* Data and routine to create menus *1
1************************************1

287

The JIGS Toolbox

1* Set up menu strings. Because Cuses \ as an escape character, we use
two when we want a \ as an ordinary character. The \ at the end of each
Line tells C to ignore the carriage return. This Lets us set up our items
in an easy-to-read verti ca LaLi gnment. *1

char *menu1 = "\
>L@\XN1\r\
LA Window Program \\N257\r\
· ,
char *menu2 = "\
>L Fi Le \\N2\r\
LNew \ \N258V\ r\
LQuit \\N259\r\
· ,
char *menu3 = "\
>L Wi ndows \ \N3\ r\
LUntitLed \\N260\r\
· ,
#define QUIT_ITEM 259
#define QUIT_ITEM 259
#define NEW_ITEM 258
#define UNTIT_ITEM 260

Bui LdMenu()
{

1* these wi LL heLp us check menu item numbers *1
1* these wiLL heLp us check menu item numbers *1

InsertMenu(NewMenu(menu3),0);
InsertMenu(NewMenu(menu2),0);
InsertMenu(NewMenu(menu1),0);
FixMenuBar();
DrawMenuBa r ();

1***1
* Data structures and routine to set up offscreen drawing environment *1
1***1

Loclnfo picOLoclnfo = { mode320,
NULL, 1* space for pointer to pixeL image *1

160, 1* width of image in bytes = 320 pixeLs *1
0,0,200,320 1* frame rect *1

};

Rect screenRect = {0,0,200,320};
GrafPort picOPort;

288

10-Doing Windows

#def i ne IMAGUTTR at t rLoc ked +at t r Fi xed +a tt rNoC ross +at t rNoSpec +at t rPage

PicOSetup() 1* called once by MakeWindow at start of program *1
{
GrafPortPtr thePortPtr;

picOLocInfo.ptrToPixImage
thePortPtr = GetPort();
OpenPort(&picOPort);
SetPort(&picOPort);
SetPortLoc(&picOLocInfo);
ClipRect(&screenRect);
EraseRect(&screenRect);
SetPort(thePortPtr);

*(NewHandle(Ox8000L,myID,IMAGUTTR,NULL»;

1**1
1* Data structures and routine to create window *1
1**1

1* Initialize template for NewWindow *1

#define FRAME fGContent+fMove+fZoom+fGrow+fBScroll+fRScroll
+fC lose+fTi t le

ParamList template sizeof (ParamList),
FRAME,

1* pointer to title *1
OL, 1* Ref Con *1
26,0,188,308, 1* full size (O=default) *1
NULL, 1* use default ColorTable *1
0,0, 1* origin *1
200,320, 1* data area height & width *1
200,320, 1* max cont height & width *1
2,2, 1* ver & hor scroll increment *1
20,32, 1* ver & hor page increment *1
NULL, 1* no info bar text string *1
0, 1* info bar height = none *1
NULL, 1* default def proc *1
NULL, 1* no info bar draw routine *1
NULL, 1* draw content must be filled in
at run time *1
26,0,188,308, 1* starting content rect *1
-1L, 1* topmost plane *1
NULL 1* let window manager allocate record *1

};

289

The JIGS Toolbox

1* draw content routine *1
pascal void DrawContent()
{

PPToPort(&picOLoclnfo,&(picOLoclnfo.boundsRect),O,O,modeCopy);

GrafPortPtr winOPtr;

MakeWindow() 1* complete template, make (the window,
and setup offscreen port *1

{
template.wContDefProc = DrawContent;
winOPtr = NewWindow(&template);
PicOSetup(); 1* create offscreen image for use by DrawContent *1

1***1
1* Main routine. Set up environment, call eventloop, and shut down *1
1***1
ma in ()
{
StartTools();
Bui ldMenu();
MakeWindow();
EventLoop();
DisposeHandle(FindHandle(picOLoclnfo.ptrToPixlmage»;
ShutDown();

}

1**************************************1
1* Event loop and supporting routines *1
1**************************************1
WmTaskRec myEvent;
Boolean done = false;

EventLoop()
{

myEvent.wmTaskMask = OxOFFF;
while(!done)

switch (TaskMaster(everyEvent,&myEvent»
case wlnMenuBar:

DoMenus();
break;

case wlnGoAway:
HideWindow(winOPtr);
break;

case wlnContent:
Sket ch ();

290

10-Doing Windows

DoMenus()
{
Word *data = (Word *)&myEvent.wmTaskData; 1* address of item id *1

sv i t ch Ceda t a) {
case QUIT_ITEM:

done = true;
break;

case NEW_ITEM:
ErasePicOO;
HideWindow(winOPtr);
CLoseWindow(winOPtr);
winOPtr = NewWindow(&tempLate);

case UNTIl-ITEM:
SeLectWindow(winOPtr);
ShowWindow(winOPtr);
break;

}
H'i I i t ejtenu r f a l se s e Cda t a + 1»; 1* data + 1 is address of menu id *1

ErasePi cOO
{
GrafPortPtr oLdPortPtr;

oLdPortPtr = GetPort();
SetPort(&picOPort);
CLipRect(&screenRect);
EraseRect(&screenRect);
SetPort(oLdPortPtr);

Sketch() 1* sketch into current port and into offscreen port *1
{
Point mouseLoc;
GrafPortPtr thePortPtr (GrafPortPtr)myEvent.wmTaskData;
Rect theRect;

mouseLoc = myEvent.wmWhere;

StartDrawing(thePortPtr);
system *1
GetPortRect(&theRect);
GLobaLToLocaL(&mouseLoc);

1* set up correct drawing coordinate

1* copy current Port Rect *1
1* get cursor pos in LocaL coordinates *1

291

1* set offscreen pen to same Location
1* switch back to port *1

The JIGS Toolbox

MoveTo(mouseLoc);
SetPort(&picOPort);
CLipRect(&theRect);
port rect *1
MoveTo(mouseLoc);
SetPort(thePortPtr);

1* set pen position to mouse
1* switch to offscreen port
1* cLip offscreen drawing to

Loc *1
*1

windov's

whi Le (Sti LLDown(O)) {
GetMouse(&mouseLoc);

LineTo(mouseLoc);
SetPort(&picOPort);
LineTo(mouseLoc);
SetPort(thePortPtr);

}
SetOrigin(O,O);

#incLude <TYPES.H>
#incLude <LOCATOR.H>
#incLude <MEMORY.H>
#incLude <MISCTOOL.H>
#incLude <QUICKDRAW.H>
#incLude <EVENT.H>
#incLude <CONTROL.H>
#incLude <WINDOW.H>
#incLude <MENU.H>
#incLude <LINEEDIT.H>
#incLude <DIALOG.H>

1* get new mouse coordinates *1

1* draw Line in both ports *1

1* restore normaL coordinates *1

Listing 10-8
INITQUIT.C program

#define MODE mode320 1* 640 graphics mode def. from quickdraw.h *1
#define MaxX 320 1* max X for cursor (for Event Mgr) *1
#define dpAttr attrLocked+attrFixed+attrBank 1* for aLLocating direct page
space *1

int myID; 1* for Memory Manager *1
HandLe zp; 1* handLe for page 0 space for tooLs *1

int TooLTabLe[] {7,
4, Ox0100, 1* GD *1
6, Ox0100, 1* Event *1
14, Ox0100, 1* Window *1
16, Ox0100, 1* ControL *1
15, Ox0100, 1* Menu *1

292

20, Ox0100,
21, Ox0100,
};

1* Line Edit *1
1* DiaLog *1

10-Doing Windows

1* start up these tooLs: *1Sta rtToo Ls 0
{

TLStartUpO;
myID = MMStartUp();
MTStartUpO;
LoadTooLs(TooLTabLe);
TooLIni to;

1* TooL Locator *1
1* Mem Manager *1
1* M;sc TooLs *1
1* Load tooLs from disk *1
1* start up the rest *1

1* init the rest of needed tooLs *1TooLInitO
{

zp = NewHandLe(Ox700L,myID,dpAttr,OL); 1* reserve 6 pages *1

QDStartUp«int) *zp, MODE, 160, myID); 1* uses 3 pages *1
EMStartUp«;nt) (*zp + Ox300), 20, 0, MaxX, 0,200, myID);
WindStartUp(myID);
RefreshDesktop(NULL);
CtLStartUp(myID, (int) (*zp + Ox400»;
MenuStartUp(myID, (int) (*zp + Ox500»;
LEStartUp(myID, (int) (*zp + Ox600»;
DiaLogStartUp(myID);
ShowCursor();

ShutDownO
{

GrafOff 0;
DiaLogShutDown();
LEShutDownO;
MenuShutDown();
CtLShutDown();
Wi ndShutDownO;
EMShutDownO;
QDShutDownO;
MTShutDownO;

1* shut down all of the tooLs we started *1

293

The IIGS Toolbox

DisposeHandLe(zp); 1* reLease our page 0 space *1
MMShutDown(myID);
TLShutDown();

294

CHAPTER

Dialog with a IIGS
Using the Dialog Manager

ITIhe main channel nf communication between the Apple Jlo, and it,
user is handled by a tool set known as the Dialog Manager. When
a program needs to inform the user of something important

or give the user guidance-or when a program needs to obtain information
from the user-the Dialog Manager provides the interface between computer
and user.

The Dialog Manager communicates with the Ilos user through dialog
windows-boxes that are usually programmed to appear on the screen when
they are needed. Dialog windows can display messages, obtain user input,
or both. They can contain icons, pictures, text, and user-operated controls.
Some icons can stay on the screen for a long time and can be moved around.
Others remain in one spot until they are deactivated and then go away as
quickly as they appeared.

In this chapter, you'll take a look at various kinds of dialog windows,
and you'll see how dialogs can be used in Ilos programs.

What Dialog Windows Look Like
Dialog windows resemble ordinary document windows, but they have controls
that ordinary windows usually do not have. A dialog window usually appears
near the top of the screen, in the center of the screen and slightly below the

295

The JIGS Toolbox

menu bar, and is somewhat narrower than the screen. Figure 11-1 shows a
typical dialog window.

As figure 11-1 shows, a dialog window looks something like a printed
form. Like a paper form, a dialog can contain messages, illustrations, and
blanks to be filled in by the user. These features can be presented in many
formats, such as

• Messages designed to provide the user with information,
instructions, or alerts.

• Controls such as buttons, scroll bars, and squares that can be
checked off by the user. Text messages mayor may not be supplied
along with these controls.

• Rectangles in which the user may type in text. These rectangles,
called edit lines, may be blank when they appear on the screen or
they may contain default text that can be edited by the user.

• Graphic symbols: either icons or pictures drawn using QuickDraw.
Icons are easier to manage than QuickDraw pictures and are thus
more commonly used. But there is no reason why a QuickDraw
picture can't appear in a dialog window.

• Any other types of items an application can define.

296

Figure 11-1
Typical dialog window

Dialog I/O

Dialog Items

11-Dialog with a IIGS

The simplest kind of dialog window is one that requires no response at all.
Such a noninteractive dialog might be created to print a message on the screen
while an application is performing a time-consuming process. When the op-
eration is finished, the dialog could be removed from the screen.

Another simple type of dialog is one that contains just two items: a
printed message and one button, often labeled OK, that the user can press
after reading the message. In most cases, the dialog in which the message
appears then disappears from the screen.

The button that makes the dialog disappear does not have to be labeled
OK. It could be labeled Start or Proceed, or it could have another name. But,
for simplicity, we call this button the OK button throughout this chapter.

Many kinds of dialog windows can be used in nos programs. Some
dialog windows display more than one message on the screen, some display
different messages at different times, and some accept input from the user.
For example, if a dialog window appears on the screen as the result of some
action by the user, it might contain a button labeled Cancel that is clicked to
cancel the action that caused the dialog to appear. Or there could be a button
labeled Help that is used to request additional information.

In Dialog Manager jargon, buttons with labels like OK, Cancel, and Help
are known as dialog items. There are many kinds of dialog items, and each
is designed to be used in a slightly different way. Some dialog items provide
information to the user, some obtain information from the user, and some do
both. The items that can be used in dialog windows can be divided into the
following categories:

• Button items. A button item is a simulated pushbutton that contains
a label such as OK, Help, or Cancel. A button item usually has
round comers and usually contains a label displayed in the standard
nos type font, or system font. When the user clicks the nos mouse
inside a button item, an application program can carry out whatever
response is appropriate .

• Check items. A check item is a small square box that is empty or
contains an X. When the user clicks the mouse in an empty check
item, an X appears. When the user clicks the mouse in a check item
that contains an X, the X disappears.

A dialog box can contain any number of check items.
When a dialog with a user ends, the application using the dialog can
check to see which boxes have been checked and which have been left
unchecked, and take the appropriate actions.

297

The lias Toolbox

298

• Radio items. A radio item is a small circle that is empty or contains
a still smaller circle. The inner circle in a radio item is usually
black. When the user clicks the mouse in an empty radio item, an
inner circle appears. When the user clicks the mouse in a radio item
that contains an inner circle, the inner circle disappears.

• Scroll bar items. A scroll bar item is a special scroll bar used only
in dialogs. A scroll bar item can be used to display the progress of
an operation. For example, the white square, or "thumb" of a
scroll bar, can move down the bar as files are printed to show the
user how the operation is progressing.

• Static text items. A static text item, usually abbreviated StatText
item, consists only of a Pascal-type string (a length byte followed
by a string of ASCII characters). StatText items only display
information; they cannot accept input from the user. Text in a
StatText item does not have to be enclosed in a visible rectangle,
and it cannot be edited.

• Long static text items. A long static text item, abbreviated
LongStatText item, consists only of a block of text. The text in a
LongStatText item is not preceded by a length byte, so its length
must be passed to the Dialog Manager as a parameter when the item
is created with a NewDItem call. More about this call is provided
later in this chapter. LongStatText items only display messages; they
cannot accept input from the user. Text in a LongStatText item does
not have to be enclosed in a visible rectangle, and it cannot be
edited.

• Edit line items. An edit line item contains space for one line of text
that is entered or edited by the user. The text usually appears inside
a visible rectangle. When an edit line item appears on the screen, it
is empty or contains default text. If it is empty, you can fill it in by
typing information, and you can edit the information after it has
been typed. If the item contains default text when it appears on the
screen, that text can be edited by the user.

• Icon items. An icon item contains an icon. Icons used in dialog
windows are stored in memory in a specific format and appear in
the dialog window when it is displayed on the screen. When the
user clicks the mouse in an icon item, the application using the
dialog can take whatever action is appropriate.

• Picture items. A picture item contains a picture drawn with
QuickDraw II. When the user clicks the mouse in a picture item,
the application using the dialog can take whatever action is
appropriate.

• User items. Any item that is not in any of the previous categories is
called a user item. User items are defined by application programs.

11-0ialog with a IIGS

Types of Dialog Windows
There are three kinds of dialog windows: modal dialogs, modeless dialogs,
and alert dialogs. Let's take a closer look at each of these types of dialog
windows.

Modal Dialogs

Modeless
Dialogs

Modal dialogs require the user to respond to a dialog message before taking
any other action. Modal dialogs derive their name from the fact that they put
a program in a state, or mode, of being unable to take any action outside a
dialog window. A modal dialog usually has at least one button item that is
clicked to perform some action and a Cancel button that is clicked to make
the dialog box go away. Normally, clicking the mouse anywhere outside the
dialog window only makes the IIGS speaker beep.

In programs written according to Apple's Human Interface Guidelines,
one button item in a dialog window may be outlined in bold; that is, it may
have a double outline. If such a button appears in a dialog box, it is usually
the OK button, the button that ends the dialog by initiating some action and
making the dialog window go away. When a button has a double outline, the
Return key on the keyboard can always be pressed as an alternative to clicking
the outlined button. In short, a button with a double outline is the dialog's
default button-the safest button to use in the current situation. If there is no
boldly outlined button, pressing the Return key will have no effect on the
dialog. A typical modal dialog window is illustrated in figure 11-2.

A dialog cannot be modal and modeless at the same time; different routines
create these two types of dialogs. When a program is running, however, it
can be difficult to distinguish between a modal dialog and a modeless dialog
because they often look alike.

A modeless dialog, like a modal dialog, usually has an OK button (often
doubly outlined) and a Cancel button. And, just like a modal dialog, a mode-
less dialog can contain other controls that do not erase the dialog window
and do not result in any change in a program until an OK button is pressed
to make the dialog go away.

But modeless dialogs do not put a program into any special state, or
mode, and thus do not require the user to respond to a dialog before taking
any other action. When a modeless dialog is on the screen, it can stay there
while the user performs actions unrelated to the dialog. For example, the user
might be permitted to work in various windows on the desktop before clicking
a button in the dialog window.

Because a modeless dialog can remain on the screen while document
windows (or even other dialog windows) are in use, you can create a modeless
dialog window that has a title bar and thus can be moved on the screen.
Because of this feature-and because they can stay on the screen while various
operations take place-modeless dialogs are used as desk accessories. Clocks,
calculators, notepads, and other desk accessory items are often incorporated
into programs in the form of modeless dialogs.

299

The JIGS Toolbox

Figure 11-2
Modal dialog window

Figure 11-3 shows a modeless dialog box that is similar to a document
window. Like a standard document window, it has both a title bar and a close
box. So it can be moved, hidden, closed, and opened again, like any other
similarly equipped window.

Alert Dialogs An alert dialog looks much like a modal dialog (or a modeless dialog without
a title bar). But an alert dialog has a special function. It appears only when
something has gone wrong or when something important must be brought to
the user's attention. Alert dialogs can provide a program with a convenient
method for reporting errors or issuing warnings.

An alert window is usually placed slightly farther below the menu bar
than a modal or modeless dialog. And an alert dialog often contains an icon
that gives the user a visual clue about the nature of the alert. There are three
standard types of alert icons: Stop, Note, and Caution. You can also design
other kinds of icons. An alert dialog can also be programmed to beep or make
other sounds when it is activated.

To help the user who isn't sure how to proceed when an alert box
appears, the button used most often in the current situation is displayed with
a double outline. This button is also the alert's default button. If the user
presses the Return key, the effect is the same as clicking the alert's default
button.

One special feature of an alert dialog is that it can behave in a different
way each time it is activated. This feature can give the user increasingly

300

11-Dialog with a IIGS

, I D II
/ *0 et- Il':"" 0 It
E II Q tr-., 9 L1I IL._..

Figure 11-3
Modeless dialog window

severe warnings each time an error is made or a dangerous situation becomes
more dangerous. For example, the first time an error is made, the error might
beep the speaker but generate no alert box. Thereafter, each successive error
might cause an alert dialog to be displayed, and each alert might carry an
increasingly severe warning.

Furthermore, the sound produced by an alert dialog does not have to
be a beep. It can be any sequence of tones, which may occur either by
themselves or with an alert dialog. Figure 11-4 is an illustration of a typical
alert dialog window.

Manipulating Dialog Windows

After a modal or modeless dialog is created, it can be manipulated like any
other window. With the help of routines provided by the Window Manager
and QuickDraw, an application can do just about anything to a dialog window:
show, hide, or move it, change its size or plane, or close and discard it when
it is no longer needed. The Dialog Manager even recognizes the CLi pRgn
field of the dialog window's GrafPort, so the QuickDraw II SetC Li pRgn
and CLi pRe c t routines can keep portions of a window from being displayed
on the screen.

When an alert window is designed, however, the Dialog Manager takes
care of most details, so that all alert windows have a standard appearance
and behavior. The size and location of the box are supplied as part of the
definition of the alert and are not changed easily. You do not have to specify
an alert window's plane because an alert always appears in front of all other
windows. After an alert window is on the screen, the application that uses it
never has to manipulate it. That's because an alert window requires the user
to respond before doing anything else, and the user's response makes the box
disappear.

301

The JIGS Toolbox

Figure 11-4
Alert dialog window

Initializing the Dialog Manager
Before the dialog is started, the following tool sets must be loaded and started:

• Tool Locator (always loaded and active)
• Memory Manager
• Miscellaneous Tool Set
• QuickDraw II
• Event Manager
• Window Manager
• Control Manager
• LineEdit Tool Set

After these tools are loaded and initialized, the DiaLogStartUp call
can be made to start up the Dialog Manager. If you want the type font used
in your dialog and alert windows to be something other than the system font,
you can make the Dialog Manager call SetDAFont.

When the Dialog Manager is loaded and started up, the NewModa L-
DiaLog, NewModeLessDiaLog, and GetNewModaLDiaLog calls can be
used to create dialog windows. NewMode LessDi a Log creates a dialog using
a special kind of dialog record, and GetNewModeLessDiaLog creates a
dialog using a template that can be accessed by more than one dialog window.

302

11-0ialog with a IIGS

After a dialog is set up, the NewDltem and GetNewDltem calls can
be used to create the items that appear in each dialog. The CLoseDi a Log
call can be used to close and dispose of any dialogs.

Creating a Dialog Window
The Dialog Manager requires the same kind of information to create a dialog
that the Window Manager requires to create a document window. These are
the steps that are usually used to set up a dialog window:

1. The application calls NewModaLDiaLog, GetNewModaLDiaLog, or
NewMode Les sDi a Log. In addition to creating a dialog window,
these calls determine how the window looks and behaves.

2. The Dialog Manager must be supplied with a rectangle that becomes
the port rectangle of the window's GrafPort.

3. The Dialog Manager must be told whether the window will be
visible or invisible when it is created. If it is created as a visible
window, it appears on the screen immediately. If it is created as an
invisible window, the Window Manager calls Se LectWi ndow and
ShowWi ndow must be made each time the window appears on the
screen.

If a modeless dialog is created, the plane in which it appears in relation
to other windows must also be specified. By convention, a newly created
window always appears in the frontmost plane.

The example program in this chapter, DIALOG.Sl, uses the call
NewModaLDiaLog to create a modal dialog window. Listing 11-1 shows
how NewModa LDi a Log is used in the program. Instructions for typing and
compiling the DIALOG.SI program in both assembly language and C are at
the end of this chapter.

Listing 11-1
Calling the NewModalDialog routine

Push Long #0
PushLong #DRect
PushWord #True
PushLong #0
_NewModaLDiaLog

pLa
sta MDiaLogPtr
pLa
sta MDiaLogPtr+2

; output

; visibLe
; ref con

303

The IIGS Toolbox

As listing 11-1 shows, the NewModa LDi a Log call takes four parame-
ters:

• 2 null words (zeros), which provide a space on the stack for a
2-word result.

• A pointer to a rectangle that defines the location of the dialog
window on the screen.

• A I-word space for a Boolean value. If the value is nonzero, or true,
the dialog is displayed on the screen as soon as it is created. If the
value is zero, the window is not displayed until a specific command,
such as ShowWi ndow, is called to display it on the screen.

When a NewModa LDi a Log call returns, a pointer to the dialog window
which it created is on the stack. In the DIALOG.SI program, this pointer is
stored in the MDi a LogPt r variable.

Creating an Item List
Before a dialog window can be displayed on the screen, the NewDItem call
must be used to create each item that will appear in the window. The dialog
window in the DIALOG.SI program contains three buttons: Start, Quit, and
Help. Listing 11-2 shows how the NewDItem call creates the Start button.

Listing 11-2
NewDltem call

PushLong MDiaLogPtr
PushWord #1
PushLong #ButtonRect1
PushWord #Buttonltem
Push Long #ButtonText1
PushWord #0
PushWord #0
Push Long #0
_NewDltem

; i tern be Longs to thi s window
; item ID number
; pointer to rect
; item type
; item descriptor
; initiaL vaLue
; visibLe/invis fLag
; coLor tabLe pointer

As listing 11-2 shows, the NewDItem call takes eight parameters:

• A pointer to the window to which the item belongs.
• A I-word identification number that will be used in all dialog-related
items to identify the item being created.

• A pointer to a rectangle that defines where the item will appear
inside its dialog window. Note that this rectangle is expressed not in
screen coordinates, but in local coordinates that treat the dialog
window as a bounds rectangle.

304

11-Dialog with a JIGS

• A l-word parameter identifying the type of item being created. This
parameter is a constant that can be found in APW's LIBRARIES/
AINCLUDE file, under the filename EI6.DIALOG. In the
DIALOG.Sl program, the constants for item types are listed in the
Di a LogData data segment.

By convention, the OK button in an alert's item list is
always assigned an ID of 1, and the Cancel button should always
have an ID of 2. The Dialog Manager provides predefined constants
equal to the item ID for OK and Cancel as follows:

OK
CanceL

equ
equ

1
2

In a modal dialog's item list, the item whose ID is 1 is generally
assumed to be the dialog's default button. If the user presses the Return
key, the Dialog Manager normally returns the ID of the default button,
just as when that item is actually clicked.

To conform with Apple's Human Interface Guidelines, the Dialog
Manager automatically prints a double outline in bold around the default
button, unless there is no default button-that is, no button item with
an ID number of 1. So, if you don't want a dialog to have a default
button, you should not assign any button an ID number of I. The item
types listed in the DIALOG.Sl program are shown in listing 11-3.

• A two-word parameter called a dialog item descriptor. The function
of this parameter can vary, depending upon the type of item being
created. Table 11-1 shows the functions the item descriptor
parameter can have when used with different kinds of items.

• A one-word parameter setting the initial value of the item descriptor,
if applicable.

• A flag determining whether the item being created should be visible
or invisible when the window is first displayed. This parameter can
also include item-specific information, for example, the family
number of a radio button or whether a scroll bar is horizontal or
vertical. Further information on item-specific data in this parameter
is in the Apple IIGS Toolbox Reference.

• A pointer to a color table, which can be used to change the standard
colors used to draw items in a dialog. Custom color tables can be
used for standard or custom-designed controls. But make sure your
use of color conforms to Apple's Human Interface Guidelines.

Listing 11-3
Item types in DIALOG.S1

DiaLogData DATA

Buttonltern
Checkltern
Radi oltern

equ
equ
equ

10
11
12

305

The JIGS Toolbox

ScroLLBarItem
UserCt LItem
StatText
Edi tText
EditLine
IconItem
Pi cItem
Userltem

equ
equ
equ
equ
equ
equ
equ
equ

END

13
14
15
16
17
18
19
20

Table 11-1
Item Descriptor Parameter in a NewDltem Call
Type Function of Descriptor Value

Buttonltem Pointer to a string containing N/A
item's label

Checkltem N/A o = not checked
I = checked

Radi oItem N/A o = not checked
I = checked

ScroLlBarItem Pointer to dialog scroll bar o or default value
action procedure if ltemDescr

= 0
UserCt LItem Pointer to control definition Initial value of

procedure control
UserCt LI tem2 Pointer to parameter block Initial value of

control
StatText Pointer to static string Application use
LongStatText Pointer to the beginning of Length of text (0

text to 32,767)
EditLine Pointer to default string Maximum length

allowed (0 to
255)

IconItem Handle to the icon Application use
PicItem Handle to the picture Application use
UserItem Pointer to item definition pro- Application use

cedure

Using a Dialog Window in a Program
When a modal dialog is created, the Moda LDi a Log call can be used to accept
user input. Listing 1!-4 shows how the Moda LDi a Log call is used in the
DIALOG.SI program. Let's take a look now at how the routine in listing
11-4 works. Then we'll see how the routine is used in the DIALOG.S!
program.

306

11-Dialog with a JIGS

Listing 11-4
ModalDialog call

Again

next

button2

noquit

PushWord #0
PushLong #0
_ModaLDiaLog
pLa

cmp #3
beq Again

cmp #1
beq noquit

Lda #$FFFF

sta QuitFlag

PushLong MDiaLogPtr
_CLoseDiaLog

rts

; space for resuLt
; fiLter procedure pointer

; button 2 was pressed

; use this exit for #1 or #3

The Moda LDi a Log call takes two parameters: a I-word null (zero)
value that saves a space on the stack and a pointer to a user-written filter
procedure, if there is one. A filter procedure, usually abbreviated
Fi LterProc, is a routine that an application can call to filter out unwanted
responses by the user (for example, to ignore non-numeric characters typed
in an Ed i t Line item that calls for numeric characters only). If a 0 is passed
to Moda LDi a Log in the Fi LterProc parameter, it means no filter process
is set up by the application using the dialog. In that case, Moda LDi a Log will
not look for one.

In the DIALOG.SI program, ModaLDiaLog is called with two 0 pa-
rameters: a null word to save a space on the stack and a null pointer because
there is no filter procedure in the program.

When a ModaLDiaLog call returns, a l-word value-the ID number
of the item selected by the user-is pushed on the stack. In the DIALOG.SI
program, this value is pulled off the stack and compared with the literal values
3 and 1. If the value is 3-the item ID number for the Help button-the
program loops back to the line labeled Aga in. That's because no help function
is written for the DIALOG.S I program. If you expand the program, you may
want to write a help function.

If the Moda LDi a Log call returns a value of I-the item ID number of
the Start button-the dialog is erased from the screen with a CLoseDi a Log
call and the DIALOG.SI program continues, as though there had never been
a dialog window on the screen.

If the routine in listing 11-4 discovers that the user has clicked a button
that is neither item 1 nor item 3, it is smart enough to determine that the user

307

The IIGS Toolbox

If the routine in listing 11-4 discovers that the user has clicked a button
that is neither item 1 nor item 3, it is smart enough to determine that the user
has made the only other choice, item 2. This is the Quit button, which ends
the program by storing a nonzero value in the program's qui t flag before
returning.

The DIALOG.51 Program
DIALOG.Sl is an expanded version of the WINDOW.Sl program in chapter
10, so you can save yourself a lot of work by modifying WINDOW.Sl instead
of typing the entire DIALOG.Sl program. To convert WINDOW.Sl into
DIALOG.S I, the following modifications are necessary:

1. Replace the heading of the WINDOW.S1 program with the heading
shown in listing 11-5.

2. Add three lines to the main program segment of the WINDOW.SI
program so that the segment looks like the one in listing 11-6.

3. Following the program segment labeled EventLoop, insert the
segment that appears in listing 11-7. This segment displays a dialog
window on the screen.

4. In the data segment labeled MenuData, change the line

de c LA Window Program \N25T,i 1'RETURN'

to

de c LA Di a Log Program \N25T,i 1'RETURN'

5. At the end of the program, add the data segment that appears in
listing 11-8. This segment provides the item codes used in the
DIALOG.SI program.

6. Before you assemble DIALOG.S1, make sure you have the latest
version of INITQUIT.S I saved on the same disk that holds your
DIALOG.SI source code. Then the COpy directive at the end of
DIALOG.Sl will combine the DIALOG.SI and INITQUIT.Sl
programs.

When you've typed, assembled, and executed DIALOG.SI, you'll be
ready to examine the portion that creates a dialog on the screen. Starting from
the beginning of the DIALOG.Sl program, move down the listing until you
see the label Mai n Program. Below that label look for this line:

jsr doDiaLog1

If you have typed and run the program, you should have no trouble
figuring out what this line does. After all tools are initialized and an empty
menu bar appears on the screen, the line jsr doOiaLog1 simply places a

308

11-Dialog with a IIGS

modal dialog on the screen and waits for the user's input. The user can do
one of three things: click Start, which erases the dialog box and resumes
execution of the DIALOG.SI program, click Help, which won't do anything
because there is no help routine, or click Quit, which ends the program.

Listing 11-5
Heading segment

** DIALOG.S1
*
*** A FEW ASSEMBLER DIRECTIVES ***

TitLe 'DiaLog'
ABSADDR on
LIST off
SYMBOL off
65816 on
mcopy diaLog.macros

KEEP diaLog

Listing 11-6
Main loop segment

*
** MAIN PROGRAM LOOP

MainProgram START
Using GLobaLData
Using PortData

phk
pLb
tdc
sta MyDP

; get current direct page
; and save it for the moment

jsr TooLInit ; start up aLL tooLs we'LL need

*** PUT DIALOG NO. 1 ON THE SCREEN ***

jsr doDiaLog1

jsr Bui LdMenu
jsr MakeWinO

; create and draw menu bar
; create empty window

309

The JIGS Toolbox

*** OPEN A PORT SO WE CAN DRAW IN WINDOW'S PIXEL MAP ***
jsr NewPort

Lda #PicOPort
sta BLkToFi LL
Lda #APicOPort
sta BLkToFiLL+2

jsr BLkFi LL

*** LINE THAT JUMPS TO THE EVENT LOOP ***
jsr EventLoop ; check for key & mouse events

*** WHEN EVENT LOOP ENDS, WE'LL SHUT DOWN ***
jsr Shutdown
jmp Endit

END

Listing 11-7
Dialog window segment

** DODIALOG1: PRINT DIALOG NO.1 ON THE SCREEN
*
doDiaLog1

310

START
using GLobaLData
using WindowData
using DiaLogData
using QuitData

PushLong #0
Push Long #DRect
PushWord #True
Push Long #0
..NewModa LDi a Log

pLa
sta MDiaLogPtr
pLa
sta MDiaLogPtr+2

PushLong MDiaLogptr
PushWord #1

; output

; visibLe
; ref con

; item beLongs to this window
; item 10 number

Again

next

button2

noquit

DRect

PushLong #ButtonRect1
PushWord #Buttonltem
Push Long #ButtonText1
PushWord #0
PushWord #0
PushLong #0
_NewDItem

PushLong MDiaLogPtr
PushWord #2
PushLong #ButtonRect2
PushWord #Buttonltem
PushLong #ButtonText2
PushWord #0
PushWord #0
Push Long #0
_NewDItem

PushLong MDiaLogPtr
PushWord #3
PushLong #ButtonRect3
PushWord #Buttonltem
PushLong #ButtonText3
PushWord #0
PushWord #0
PushLong #0
_NewDItem

PushWord #0
Push Long #0
_ModaLDiaLog
pLa

cmp #3
beq Again

cmp #1
beq noquit

Lda #$FFFF
sta Quit FLag

PushLong MDiaLogPtr
_CLoseDiaLog

rts

dc i'84,63,114,252'

11-Dialog with a IIGS

; pointer to button's rect
; item's id number
; item descriptor
; item's initiaL vaLue
; visibLe/invis fLag
; coLor tabLe pointer

; space for resuLt
; fi Lter procedure pointer

; button 2 was pressed

; use this exit for #1 or #3

; screen coordinates

311

The IIGS Toolbox

ButtonRect1
ButtonRect2
ButtonRect3

ButtonText1
ButtonText2
ButtonText3

MDiaLogPtr

dc i'8,129,22,179'
dc i '8,8,22,58'
dc i'8,67,22,117'

str 'Start'
str 'Qui t '
str 'He Lp'

ds 4

END

DiaLogData DATA

; LocaL coordinates using
; diaLog frame
; as a bounds rectangLe

Listing 11-8
DialogData segment

Buttonltem equ 10
Checkltem equ 11
Radioltem equ 12
ScroLLBarltem equ 13
UserCtLltem equ 14
StatText equ 15
EditText equ 16
EditLine equ 17
Iconltem equ 18
Picltem equ 19
Userltem equ 20

End

The DIALOG.C Program
Listing 11-9, DIALOG.C, is a C language version of the DIALOG.Sl pro-
gram. It is designed to be used with the inc Lude file INITQUIT.C, and it
works just like DIALOG. S1.

Listing 11-9
DIALOG.C program

#i nc Lude "i ni tqui t. c"

BooLean done = faLse;
WmTaskRec my Event;

312

11-Dialog with a IIGS

1************************************1
1* Data and routine to create menus *1
1************************************1
1* Set up menu strings. Because Cuses \ as an escape character, we use
two when we want a \ as an ordinary character. The \ at the end of each
Line tells C to ignore the carriage return. This Lets us set up our items
in an easy-to-read verticaL aLignment. *1

char *menu1 = "\
>L@\ \XN 1\ r\
LA Window Program \\N257\r\
· ,
char *menu2 = "\
>L Fi Le \\N2\r\
LNew \\N258V\r\
LQuit \ \N259\ r\
· ,
char *menu3 = '\
>L Windows \\N3\r\
LUntitLed \\N260\r\
· ,
#define QUIT_ITEM 259 1* these wi LL heLp us check menu item numbers *1
#define NEW_ITEM 258
#define UNTIT_ITEM 260

Bui LdMenu()
{

InsertMenu(NewMenu(menu3),O);
InsertMenu(NewMenu(menu2),O);
InsertMenu(NewMenu(menu1),O);
Fi xMenuBa r () ;
DrawMenuBar();

1**1
1* Data structures and routine to set up offscreen drawing environment *1
1***1
LocInfo picOLocInfo = { mode320,

NULL, 1* space for pointer to pixeL image *1
160, 1* width of image in bytes = 320 pixeLs *1
0,0,200,320 1* frame rect *1

};

Rect screenRect = {0,0,200,320};
GrafPort picOPort;

313

The JIGS Toolbox

#define IMAGE_ATTR attrLocked+attrFixed+attrNoCross+attrNoSpec+attrPage

PicOSetup() 1* caLLed once by MakeWindow at start of program *1
{
GrafPortPtr thePortPtr;

picOLocInfo.ptrToPixImage
thePortPtr = GetPort();
OpenPort(&picOPort);
SetPort(&picOPort);
SetPortLoc(&picOLocInfo);
CLipRect(&screenRect);
EraseRect(&screenRect);
SetPort(thePortPtr);

*(NewHandLe(Ox8000L,myID,IMAGE_ATTR,NULL»;

1**1
1* Data structures and routine to create window *1
1**1

1* InitiaLize tempLate for NewWindow *1

#def i ne FRAME fQContent + fMove+ f Zoom+fGrow+ fBSc ro LL+ fRSc ro LL+ fC Lose + fTi t Le

ParamList tempLate = { sizeof (ParamList),
FRAME,
'YUntitLed", 1* pointer to titLe *1
OL, 1* Ref Con *1
26,0,188,308, 1* fuLL size (O=defauLt) *1
NULL, 1* use defauLt CoLorTabLe *1
0,0, 1* origin *1
200,320, 1* data area height & width *1
200,320, 1* max cont height & width *1
2,2, 1* verticaL &horizontaL scroLL increment *1
20,32, 1* verticaL & horizontaL page increment *1
NULL, 1* no info bar text string *1
0, 1* info bar height = none *1
NULL, 1* defauLt def proc *1
NULL, 1* no info bar draw routine *1
NULL, 1* draw content must be fi LLed in at run time *1
26,0,188,308, 1* starting content rect *1
-1L, 1* topmost pLane *1
NULL 1* Let Window Manager aLLocate record *1

};

314

11-Dialog with a IIGS

1* draw content routine *1

pascaL void DrawContent()
{
PPToPort(&picOLoclnfo,&(picOLoclnfo.boundsRect),O,O,modeCopy);

GrafPortPtr winOPtr;

MakeWindowO 1* compLete tempLate, make window, and set up offscreen port *1
{

tempLate.wContDefProc = DrawContent;
winOPtr = NewWindow(&tempLate);
PicOSetup(); 1* create offscreen image for use by DrawContent *1

1***1
1* Data and routine to set up and dispLay diaLog *1
1***1

ItemTempLate item1
ItemTempLate item2
ItemTempLate item3

{1 ,{8, 129,22,179},buttonltem, "\pStart\r",O,O,NULL };
{2,{8,8,22,58},buttonltem, "\pQui t\r",O,O,NULL };
{3 ,{8,67,22, 117},buttonltem, "\pHe Lp\r",O,O ,NULL};

Di a LogTemp Late dtemp = {{84,63, 114,252},t rue,OL,&i tem1 ,&i tem2,&i tem3,NULL} ;

DoDiaLog() 1* Create and dispLay an opening diaLog box *1
{
GrafPortPtr dLgPtr;
Word hit;

dLgPtr = GetNewModaLDiaLog(&dtemp);

whiLe «hit = ModaLDiaLog(NULU) 3);
done = (hit == 2);
CLoseDiaLog(dLgPtr);

1**1
1* Main routine. Set up environment, caLL event Loop, and shut down *1
1**1

ma in 0
{

StartTooLsO;
DoDiaLogO;
Sui LdMenuO;

315

The IIGS Toolbox

MakeWindow();
EventLoop();
DisposeHandLe(FindHandLe(picOLocInfo.ptrToPixImage»;
ShutDownO;

1**************************************1
1* Event loop and supporting routines *1
1**************************************1

EventLoopO
{

myEvent.wmTaskMask = OxOFFF;
whi Le(l done)

switch (TaskMaster(everyEvent,&myEvent»
case wInMenuBar:

DoMenus();
break;

case wInGoAway:
HideWindow(winOPtr);
break;

case wInContent:
SketchO;

DoMenus()
{
Word *data = (Word *)&myEvent.wmTaskData; I*address of item id *1

swi t chCada t a) {
case QUIT_ITEM:

done = true;
break;

case NEW_ITEM:
ErasePi cOO;
HideWindow(winOPtr);
CLoseWindow(winOPtr);
winOPtr = NewWindow(&tempLate);

case UNTIT-ITEM:
SeLectWindow(winOPtr);
ShowWindow(winOPtr);
break;

}
Hi LiteMenu(faLse,*(data + 1»; 1* data + 1 is address of menu id *1

316

11-Dialog with a IIGS

ErasePicO()
{
GrafPortPtr oLdPortPtr;

oLdPortPtr = GetPort();
SetPort(&picOPort);
CLipRect(&screenRect);
EraseRect(&screenRect);
SetPort(oLdPortPtr);

Sketch() 1* sketch into current port and into offscreen port *1
{
Poi nt mouseLoc;
GrafPortPtr thePortPtr (GrafPortPtr)myEvent.wmTaskData;
Rect theRect;

mouseLoc = myEvent.wmWhere;

StartDrawing(thePortPtr); 1* set up correct drawing coordinate system *1
GetPortRect(&theRect); fr 1* copy current Port Rect *1
GLobaLToLocaL(&mouseLoc); 1* get cursor pos in LocaL coordinates *1

MoveTo(mouseLoc);
SetPort(&picOPort);
CLipRect(&theRect);
MoveTo(mouseLoc);
SetPort(thePortPtr);

whi Le (Sti LlDown(O» {
GetMouse(&mouseLoc);

LineTo(mouseLoc);
SetPort(&picOPort);
LineTo(mouseLoc);
SetPort(thePortPtr);

}
SetOrigin(O,O);

1* set pen position to mouse Loc *1
1* switch to offscreen port *1
1* clip offscreen drawing to window's Port Rect *1
1* set offscreen pen to same Location *1
1* switch back to port *1

1* get new mouse coordinates *1

1* draw Line in both ports *1

1* restore normaL coordinates *1

317

CHAPTER

The Standard FiIe
Operations Tool Set

And ProDOS 16

IuIntil the advent of the Apple II,"" it could be difficult to incorporate
disk drive operations into assembly language programs. Today, in
programs written for the IIGS, the job is much easier. Here are four

major reasons.
The Apple IIGS has new features that earlier Apple II computers do not

have. For example, the Memory Manager tool set relieves the programmer
of the responsibility of dealing with absolute addresses. It also has a new
kind of I/O port, a SmartPort, which keeps track of the locations of disk
drives and supports named devices and multiple, user-defined file prefixes.

The disk operating system in the IIGS is ProDOS 16-a 16-bit descen-
dent of ProDOS 8, which was designed for the Apple lIe and the Apple lIe.
ProDOS 16 is faster, more powerful, and easier to use than its 8-bit prede-
cessor. And, unlike ProDOS 8, ProDOS 16 makes use of several new features
of the Ilos.

The APW assembler-editor has a library of ProDOS macros that simplify
the job of making ProDOS calls. In this chapter, you'll see how those macros
are used.

The Standard File Operations Tool Set, which is included in the IIGS

Toolbox, makes the task of working with ProDOS 16 even easier. When the
Standard File Operations Tool Set is used in a program, a special dialog box
is created every time a file is loaded or saved. You can load or save the file
by either clicking the mouse inside a button item or typing the name of the
file in a line edit control. You can also search through directories using the

319

The lias Toolbox

Standard File Tool Set's dialog boxes, and you can even switch disks and
change directories. The tool set gives the programmer the option of using
predesigned dialog boxes or creating custom-designed boxes. Application
programs can select the types of files that will or will not be listed on the
screen.

In this chapter, you'll see how easy it is to create, load, save, and edit
files using ProDOS 16, the ProDOS macros in the APW assembler-editor
package, and the IIGS Standard File Operations Tool Set. These techniques
are demonstrated using a sample program called SF. S I, which is listed at the
end of this chapter. A C language version, SF.C, is also listed at the end of
this chapter. Figure 12-1 shows the Standard File Tool Set screen display.

Introducing ProDOS 16
If you have written Apple II programs using ProDOS 8, you probably won't
have any trouble understanding ProDOS 16. ProDOS 16 calls are made in
the same way as ProDOS 8 calls: by filling in a block of parameters, pushing
the address of the parameter block onto the stack, and jumping to a fixed
entry point.

There are two important differences in the way calls are made in ProDOS
8 and ProDOS 16. In ProDOS 16, a program must jump to the ProDOS entry
point with a j s Linstruction rather than a j s r instruction, and the entry point
is in bank $El rather than bank $00. In programs written using the APW

iii (Disk)
CJ Ar1.5f.52
CJ Build (Open)CJ Err!
D Finder.Data (t1ese)CJ Finder.Root
DUb
D Macros

Figure 12-1
Standard File Operations Tool Set screen display

320

12-The Standard File Operations Tool Set

library of ProDOS macros, neither of these details makes any difference; the
macros take care of them.

The kernel (or central part) of the Apple IIGS operating system is ProDOS
16, which is covered in detail in the Apple IIGS ProDOS 16 Reference. ProDOS
accesses the disk drive or disk devices on which files are stored and retrieved
and manages the creation and modification of files. ProDOS 16 also controls
certain features of the IIGS operating environment, such as pathname prefixes
and procedures for quitting programs and starting new ones.

ProDOS 16 can communicate with various disk drives, including hard
disk drives, 5.25-inch floppy disk drives, and 3.5-inch disk drives. Because
the IIGS has an intelligent disk port called a SmartPort, programs that use
ProDOS 16 do not have to specify a disk's slot number or drive number to
access the disk. Under ProDOS 16, a disk can also be accessed by its volume
name or device name.

In ProDOS 16, just as in ProDOS 8, disks are also known as volumes,
and information on a volume is divided into files. A file is an ordered sequence
of bytes that has several attributes, including a name and a file type.

There are two primary types of files in ProDOS 16: standard files and
directory files. Directory files contain the names and disk locations of other
files. When a volume is formatted, a volume directory file is placed on it.
The volume directory has the same name as the volume and usually contains
the names and disk locations of other directory files.

ProDOS 16 supports a hierarchical file system. In a hierarchical file
structure, volume directories can contain the names of other directories, called
subdirectories, and subdirectories can, in tum, contain the names of other
files or subdirectories.

In ProDOS 16, a file is identified by its pathname: a sequence of file-
names starting with the name of the volume directory and ending with the
name of the file. A pathname that begins with the name of a volume is a full
pathname and is always preceded by a slash (I). If the name of the volume
in which a file is stored is known, the file can be referenced by a partial
pathname: a pathname that is not preceded by a slash and does not include
a volume name.

Whether a pathname is preceded by a slash or not, the names of the
directories, subdirectories, and files in the pathname are all separated by
slashes. More details about pathnames are in the Apple IIGS ProDOS 16
Reference.

Loading a File with ProDOS 16

The SF.Sl program contains three code segments that make calls to ProDOS
16: EndIt, LoadOne, and SaveOne. Endlt makes the ProDOS call Qui t
to end the program. LoadOne appears in listing 12-1. SaveOne is explained
shortly.

321

The IIGS Toolbox

LoadOne

eont1

eont2

Listing 12-1
Loading a file using ProDOS 16

START
using IOData

_Open OpenParams
bee eont1
ErrorCheek "Cou ld not open picture fi l e ,"

anop
Lda OpenID
sta ReadID
sta CLoseID

_Read ReadParams
bee eont2
ErrorCheek 'Cou i d not read picture fi t e ,.'

anop
_CLose CLoseParams

de
rts

OpenParams anop
OpenID ds 2
NamePtr ds 4
IOBuffer ds 4

ReadParams
ReadID
Pi eDestIN

anop
ds 2
ds 4
de i 4'$8000'
ds 4

; this many bytes
; how many xfered

322

CLoseParams anop
CLoseID ds 2

END

In listing 12-1, the APW macro Open opens a file, the Read macro
copies it into memory, and the CLose macro closes it. In each of these calls,
a label that identifies a parameter block is used as an operand. The parameter
blocks used in the program appear at the end of the listing.

In the source code listing of the SF.S1 program, only one parameter-
the number of bytes to be read into RAM-is filled in. When you run the

12-The Standard File Operations Tool Set

program, a segment of code called Read I t fills in the other parameters.
You'll examine the Readlt segment later in this chapter.

As listing 12-1 shows, the ProDOS call Open takes three parameters:

• A I-word file identification number that ProDOS assigns to the file
being called when the Open call is made.

• A pointer to a string that contains the name of the file to be loaded.
The string must be provided by the program using the Open call.

• A pointer to a 1,024-byte I/O buffer that ProDOS allocates when the
call is made.

The ProDOS Read call takes four parameters:

• A I-word file identification number. This is the ID number ProDOS
assigns to the file when it is opened using an Open call.

• A pointer to a block of memory in which the file is stored. This
block of memory must be provided by the application program
making the Read call. In the SF.S I program, the block is allocated
using the Memory Manager call NewHand Le in the segment of code
labeled MakeWi nO.

• A long word containing the number of bytes read into memory. In
the SF.SI program, $8000 bytes (or 32K) of memory are loaded
into memory. This number was chosen because it is the length of
the IIGS screen buffer and is thus the number of bytes required by
one screenful of data.

• A long word that ProDOS fills in with the number of bytes actually
transferred after the Read call is made.

When the file is read, a CLose call should be issued to close the file.
A CLos e call takes one parameter: the I-word ID number assigned to the file
when it is opened.

Saving a File with ProDOS 16
In the SF.S I program, the code segment labeled SaveOne also makes a call
to ProDOS 16. Listing 12-2 shows how ProDOS 16 can be used to save a
program.

Listing 12-2
Saving a file using ProDOS 16

SaveOne START
using IOData
_Destroy DestParams
_Create CreateParams
bcc contO
ErrorCheck 'Cou Ld not create pi c fi Le.'

323

The JIGS Toolbox

contO

cont1

cont2

DestParams
NameD

_Open OpenParams
bee cont1
ErrorCheck 'CouLd not open pic fi Leo'

anop
Lda OpenID
sta WriteID
sta CLoseID

_Write WriteParams
bee cont2
ErrorCheck 'Cou ld not write to pic fi Leo'

anop
_CLose CLoseParams

cLc
rts
anop
de i 4'0'

CType
CAux

CreateParams
NameC de

de
de
de
de
de
de

OpenParams
OpenID
NamePtr

WriteParams
WriteID
PicDestOUT

anop
i 4'0'
i 2'$00C3'
i 2'$00C1'
i 4'$00000000'
i 2'$0001'
i 2'$0000'
i 2'$0000'

anop
ds 2
ds 4
ds 4

anop
ds 2
ds 4
de i 4'$8000'
ds 4

; DRNWR
; super high-res graphics
; Aux
; type
; create date
; create time

; this many bytes
; how many xfered

CLoseParams anop
CLoseID ds 2

END

324

12-The Standard File Operations Tool Set

Five ProDOS 16 calls appear in listing 12-2. Destroy, Create,
Open, Wri t e , and CLose. Let's take a closer look at each of these calls.

The Destroy call deletes a file. It is used in the SF.SI program to
delete one file so that another file can be created and placed in the RAM space
left by the first one. The Des t roy call takes just one paramater: the name
of the file being deleted.

The Create call takes seven parameters:

• A pointer to a string that contains the name of the file being created.
The string must be provided by the program using the Create call.

• A word whose bits contain information about how the file can be
accessed. Only the low-order byte of this word is significant, and
bits 2 through 4 are not used. The meanings of the other five bits
are listed in table 12-1.

• A word identifying the file's file type. ProDOS 16 file types are
listed in table 12-2.

• A long word identifying the file's auxiliary file type. Many
applications use this field. For example, APW source files (file type
$BO) use the auxiliary file type parameter to identify the language of
a file-that is, whether it is a 65C816 assembly language file, a C
file, an exec file, and so on. ProDOS 16 applies no restrictions to
this parameter, however, and user-written applications may use it to
distinguish between subtypes of files.

• A word identifying the file's storage type. This parameter identifies
the level in the ProDOS hierarchy in which a file falls. Values that
can be stored in this parameter, and their meanings, are listed in
table 12-3. The values most commonly used in this parameter are
$01 and $OD. More information on file storage types can be found
in the Apple lIes ProDOS 16 Reference.

• Create date: a word specifying the date on which a file was created.
Bits 0 through 4 hold the day of the month, bits 5 through 8 hold
the number of the month, and bits 9 through 15 hold the year. If no
date is specified when a file is created, ProDOS 16 supplies the date
from the system clock.

• Create time: a word specifying the time a file was created. Bits 0
through 5 hold the minute and bits 8 through 12 hold the hour. Bits
6, 7, and 13 through 15 are not used. If no date is specified when a
file is created, ProDOS 16 supplies the date from the system clock.

An Open call must be issued before a file can be saved on a disk. You
saw the parameters of an Open call previously, when you examined listing
12-1.

The ProDOS 16 call Wri te takes four parameters:

• A I-word file ID number assigned when the file is opened.
• A pointer to the memory address of the information to be saved as a

file.

325

The JIGS Toolbox

Table 12-1
Access Byte in the Create Call

Bit Name Function Value

7 D Destroy enable o = File can't be destroyed
bit I = File can be destroyed

6 RN Rename enable o = File can't be renamed
bit I = File can be renamed

5 B Backup needed o = File backup is required
bit I = Backup not required

4 Reserved
3 Reserved
2 Reserved
I W Write enable bit o = File can't be written to

I = File can be written to
0 R Read enable bit o = File can't be read

1 = File can be read

• A long word holding the number of bytes to be saved.
• A long word in which ProDOS stores the number of bytes that have

actually been transferred after the call is completed.

When you have finished saving a file, a CLose call should be issued
to close the file. A CLose call takes one parameter: the I-word ID number
assigned to the file when it is opened.

Using the Standard File Tool Set
The Standard File Operations Tool Set, as noted, offers the nos user an easy
and convenient method for loading and saving files-a collection of dialog
boxes that can be programmed to appear on the screen when needed. These
dialog boxes make loading and saving files as easy as clicking the mouse
button. The Standard File Tool Set is even more of a timesaver for the nos
programmer than it is for the nos user!

Before the Standard File Operations Tool Set is started up, the following
tool sets must be loaded and initialized:

• Tool Locator (always loaded and active)
• Window Manager
• Control Manager
• Menu Manager
• LineEdit Tool Set
• Dialog Manager

When these tool sets are loaded and started up, the Standard File Tool Set
can be initialized with the SFStar t up call. Before a program that uses the
tool set ends, SFShutdown should be called.

326

The IIGS Toolbox

Table 12-2
ProDOS 16 File Types

Type Name Description

$00 Uncategorized file
$01 BAD Bad block file
$02-03 Used by SOS (Apple III)
$04 TXT ASCII text file
$05 Used by SOS (Apple III)
$06 BIN Binary file
$07 Used by SOS (Apple III)
$08 FOT Apple II graphics screen file
$09-$OE SOS (Apple III) reserved
$OF D1R Directory file
$10-$18 Used by SOS (Apple III)
$19 ADB AppleWorks database file
$IA AWP AppleWorks word-processor file
$IB ASP AppleWorks spreadsheet file
$IC-$AF Reserved
$BO SRC APW source file
$BI OBI APW object file
$B2 LIB APW library file
$B3 SI6 ProDOS 16 application program file
$B4 RTL Run-time library
$B5 EXE ProDOS 16 shell application file
$B6 ProDOS 16 permanent initialization file
$B7 ProDOS 16 temporary initialization file
$B8 New desk accessory (NDA)
$B9 Classic desk accessory (CDA)
$BA Tool set file
$BB-$BE Reserved for ProDOS 16 load files
$BF ProDOS 16 document file
$CO-$EE Reserved
$EF PAS Pascal area on a partitioned disk
$FO CMD ProDOS 8 CI added command file
$FI-$F8 ProDOS 8 user-defined files 1-8
$F9 ProDOS 8 reserved
$FA INT Integer BASIC program file
$FB INV Integer BASIC variable file
$FC BAS Applesoft BASIC program file
$FD VAR Applesoft BASIC variables file
$FE REL Relocatable code file (EDASM)
$FF SYS ProDOS 8 system program file

327

12-The Standard File Operations Tool Set

Table 12-3
File Storage Types

Value

$()()

$01
$02
$03
$04
$05

Meaning

Inactive entry
Seedling file
Sapling file
Tree file
Apple II Pascal region on a partitioned disk
Directory file

Loading a File with the Standard File Tool Set

The easiest way to load a file using the Standard File Tool Set is with the
SFGetFi le call. The SFGetFi le routine displays a standard, predesigned
dialog box and allows the IIGS operator to use the dialog to open and load
the selected file. With SFGetFi le, the calling program can specify where
the dialog box will be placed on the screen and the prompt that appears at
the top of the box. The calling program can also filter the types of files to be
displayed in the box. But the routine does not allow an application program
to modify the appearance of the box. Programs that use a custom-designed
dialog box must use another Standard File routine, SFPGetFi leo

In the SF.Sl program, the SFGetFi le call loads files into memory.
Listing 12-3 shows the section of the program that uses the SFGet Fi l e call.

The SFGetFile
Call

328

As listing 12-3 illustrates, the SFGetFi le call takes five parameters:

• A I-word integer that specifies the horizontal screen coordinate
of the upper left comer of the dialog box.

• Another l-word integer that specifies the vertical screen coordinate
of the upper left comer of the dialog box.

• A pointer to a Pascal-style string that is printed as a prompt inside
the dialog box.

• A pointer to a "filter process" that can provide special instructions
to the Dialog Manager about the handling of files. If such a process
is used, it must be defined by the calling program. Instructions for
designing a filter process are in the Apple /lGS Toolbox Reference.
No filter process is used in the SF.Sl program.

• A pointer to a reply record, a specially designed record that the
SFGetFi le call fills with information before it returns. Listing 12-
4 shows the reply record used in the SF.Sl program.

LoadIt

12-The Standard File Operations Tool Set

Listing 12-3
SFGetFile call in SF.S1

START
using WindowData
using IOData

jsr Repaint

cont

PushWord #20
PushWord #20
Push Long #PromptPtr
PushLong #0
PushLong #TypeListPtr
Push Long #RepLyRecord
_SFGetFiLe

Lda GoodF Lag
bne cont
jmp return

Lda #FName
sta NamePtr
Lda
sta NamePtr+2

Lda WinOHandLe
Ldx Wi nOHand Le+2
jsr Deref
sta Pi cDestIn
stx Pi cDestIn+2
jsr LoadOne

Push Long NamePtr
PushLong WinOPtr
_SetWTi t Le

Lda WinOHandLe
Ldx Wi nOHand Le+2
jsr UnLock

PushLong NamePtr
PushWord #262
_SetMltemName
PushWord #0
PushWord #0
PushWord #3
_CaLcMenuSize

; upper x coordinate
; upper y coordinate

; no fi Lter process
; fiLe types to dispLay
; defined in iodata

; user canceLed operation

; update window titLe

; update 't i t Leo menu item
; menu item number
; update name of item

; menu number
; update width of items

329

The IIGS Toolbox

return

PromptPtr

TypeListPtr
NumEntries
Fi Letype1

rts

str 'Load Pi c ture e'

anop
de i 1'1'
de h'c t

END

Listing 12-4
Reply record used by SFGetFile call

RepLyReeord
GoodFlag
FType
AuxFType
FName
FuLLPathName

anop
ds 2
de ds 2
de i'D'
ds 15
ds 128

; in SF.S1, wiLL aLways be $C1
; #0

An SFGetFi Le reply record has five fields:

• A l-word flag, called GoodF Lag in the SF.Sl program, that holds a
Boolean value. The flag is cleared to 0 if the user aborts the
SFGet Fi Le operation by pressing a Cancel button inside the dialog
box. If the user does not press the Cancel button, the flag is set.

• A l-word parameter that contains the type of file selected by the
user. This parameter, like all other parameters in a reply record, is
filled in by the SFGet Fi Le call.

• A l-word parameter that contains the auxiliary file type of the file
selected by the user.

• A Pascal-style string that contains the name of the file selected by
the user. The length of this parameter can be set by the application
that calls SFGet Fi Le. The most common length for this parameter
is 15 bytes.

• Another Pascal-style string that contains the full pathname of the file
selected by the user. The length of this parameter must be set by the
application that calls SFGet Fi Le. The recommended length for the
parameter is 128 bytes.

All the information returned by the SFGet Fi Le call is placed in its reply
record; it does not push any values onto the stack.

In the SF.S I program, a pointer to the file name returned by SFGet Fi Le
is loaded into the NamePt r variable. The handle of the screen buffer used
in the program is then dereferenced (coverted into a pointer), and the LoadOne
subroutine loads the file chosen by the user into the screen buffer.

330

The SFPutFile
Call

Savelt

12-The Standard File Operations Tool Set

Next, the program makes the Window Manager call SetWTi t Le to
update the name of the window being displayed on the screen. Then the Menu
Manager routines SetMItemName and Ca LcMenuSi ze replace the menu
item Unti t Led with a menu item that displays the name of the selected
window.

The simplest way to save a file using the Standard File Tool Set is with the
call SFPutFi Le. The SFPutFi Le routine, like the SFGetFi Le routine,
displays a standard, predesigned dialog box. The Ilos operator can then use
the dialog to save the selected file on a disk. With SFPut Fi Le , like
SFGet Fi Le, the calling program can specify the location of the dialog box
on the screen, the prompt that appears at the top of the box, and the types
of files to be displayed in the box. But it does not permit an application
program to modify the design of the box. Programs that use a custom-tailored
dialog box must use another Standard File routine, SFPPut Fi Le .

In the SF. S1program, files are saved using the SFPut Fi Le call. Listing
12-5 shows how the call is used in the program.

Listing 12-5
SFPutFile call in SF.S1

START
Using WindowData
Using IOData

cont

PushWord #20
PushWord #20
Push Long #TopMsg
PushLong #WinOTitLe
PushWord #15
Push Long #RepLyRecord
_SFPutFiLe

Lda GoodFLag
bne cont
jmp return

Lda #FName
sta NamePtr
Lda #' FName
sta NamePtr+2

Lda WinOHandLe
Ldx WinOHandLe+2
jsr Deref
sta PicDestOut
stx Pi cDestOut +2

; upper X coordinate
; upper Y coordinate

; max Length of fiLename
; defined in iodata

; user canceLed operation

331

The IIGS Toolbox

return

jsr SaveOne

PushLong NamePtr
PushLong WinOPtr
_SetWTitLe

Lda WinOHandLe
Ldx Wi nOHand Le+2
jsr UnLock

PushLong NamePtr
PushWord #262
_SetMltemName

PushWord #0
PushWord #0
PushWord #3
_CaLcMenuSize

rts

; update window titLe

; update 't t t Lemenu item
; menu i tern number
; update name of item

; menu number
; update width of items

TopMsg

332

str name of picture:'

END

SFPutFi Le, like SFGetFi Le, takes five parameters. There are some
differences, however, between the parameter sequences used by the two calls.
The parameters that must be passed to the SF Pu t Fi Le call are

• A 2-byte integer that specifies the horizontal screen coordinate of
the upper left comer of the dialog box.

• Another 2-byte integer that specifies the vertical screen coordinate of
the upper left comer of the dialog box.

• A pointer to a Pascal-style string that is printed as a prompt inside
the dialog box.

• A pointer to a Pascal-type string that can be used to specify a
default file name. If a pointer is specified, the string that is pointed
to is printed in a line edit item inside the default box. You can then
save that file by clicking the mouse button inside an OK box or
pressing the Return key. If you want to save another file, the default
string can be erased or edited using standard line edit techniques. If
a 0 is passed in this parameter, a default string is not printed on the
screen.

• A pointer to the same kind of five-field reply record used by the
SFGet Fi Le call.

12-The Standard File Operations Tool Set

After the SFPutFi Le routine is called in the SF.Sl program, the
LoadOne subroutine loads the file selected by the user into the program's
window buffer. The name of the window is updated, and the menu is modified
so that it displays the new window's name.

The SF.S1 Program

The sample program in this chapter, SF.S1, is an expanded version of the
DIALOG.Sl program created in chapter 11. To convert DIALOG.Sl into
SF.S1, the following modifications are necessary:

I. Edit the heading of the program so that it looks like the one shown
in listing 12-6.

2. Following the program segment labeled Event Loop, insert the
segments shown in listing 12-7. These segments are the heart of the
SF.Sl program. They load and save files and control the Standard
File Tool Set.

3. Replace the data segment labeled MenuData with the segment
shown in listing 12-8.

4. At the end of the program, add the data segment shown in listing
12-9.

5. Make sure that the latest version of INITQUIT.Sl is on the same
disk that holds your SF.Sl source code. The COpy directive at the
end of the SF.Sl combines the SF.Sl program and the INITQUIT.Sl
program.

Listing 12-6
SF.S1 heading segment

** SF.S1
*
*** A FEW ASSEMBLER DIRECTIVES ***

Tit Le 'SF'

ABSADDR on
LIST off
SYMBOL off
65816 on
mcopy SF.macros

KEEP SF

333

The I/GS Toolbox

Listing 12-7
SF.S1 new segments

** LOADIT: ROUTINE TO LOAD A PICTURE FROM DISK
*
LoadIt

cont

334

START
using WindowData
using IOData

jsr Repaint

PushWord #20
PushWord #20
PushLong #PromptPtr
PushLong #0
PushLong #TypeListPtr
Push Long #RepLyRecord
_SFGetFi Le

Lda GoodFLag
bne cont
jmp return

Lda #FName
sta NamePtr
Lda # A FName
sta NamePtr+2

Lda WinOHandLe
Ldx Wi nOHand Le+2
jsr Deref
sta PicDestIn
stx Pi cDestIn+2
j s r LoadOne

PushLong NamePtr
PushLong WinOPtr
_SetWTi t Le

Lda WinOHandLe
Ldx WinOHandLe+2
jsr UnLock

PushLong NamePtr
PushWord #262
_SetMItemName

; upper x coordinate
; upper y coordinate

; no fiLter process
; fiLe types to dispLay
; defined in iodata

; user canceLed operation

; update window titLe

; update 'tit l e menu item
; menu item number
; update name of item

return

PromptPtr

TypeListPtr
NumEntries
Fi Letype1

*

PushWord #0
PushWord #0
PushWord #3
_CaLcMenuSize

rts

str 'Load Picture:'

anop
dc i 1'1'
dc h'c1'

END

12-The Standard File Operations Tool Set

; menu number
; update width of items

* SAVEIT: ROUTINE TO SAVE A PICTURE TO DISK
*
SaveIt

cont

START
Using WindowData
Using IOData

PushWord #20
PushWord #20
Push Long #TopMsg
PushLong #WinOTitLe
PushWord #15
PushLong #RepLyRecord
_SFPutFi Le

Lda GoodFlag
bne cont
jmp return

Lda #FName
sta NamePtr
Lda #' FName
sta NamePtr+2

Lda WinOHandLe
Ldx WinOHandLe+2
jsr Deref
sta PicDestOut
stx PicDestOut+2

; upper X coordinate
; upper Y coordinate

; max Length of fi Le name
; defined in iodata

; user canceLed operation

335

The JIGS Toolbox

jsr SaveOne

return

PushLong NamePtr
PushLong WinOPtr
_SetWTi t Le

Lda WinOHandLe
Ldx Wi nOHand Le+2
jsr UnLock

PushLong NamePtr
PushWord #262
_SetMltemName

PushWord #0
PushWord #0
PushWord #3
_CaLcMenuSize

rts

; update window titLe

; update 't i t l e menu item
; menu item number
; update name of item

; menu number
; update width of items

TopMsg str name of picture:'

END

** LoadOne
* Loads the picture whose pathname is passed in NamePtr to address
* passed in PicDestIN
*
LoadOne

cont1

336

START
using IOData

_Open OpenParams
bcc cont1
ErrorCheck 'CouLd not open picture fi Le.'

anop
Lda OpenID
sta ReadID
sta CLoseID

_Read ReadParams
bcc cont2
ErrorCheck 'CouLd not read picture fi t e ,"

cont2 anop
_CLose CLoseParams

de
rts
END

12-The Standard File Operations Tool Set

** SaveOne* Saves the picture whose pathname is passed in NamePtr from address
* passed in PicDestOUT
*
SaveOne START

using IOData

Lda NamePtr
sta NameC
sta NameD
Lda NamePtr + 2
sta NameC+2
sta NameD+2

_Destroy DestParams

Lda #$c1
sta CType
Lda #$0
sta CAux

; SuperHiRes picture type

; standard type = 0

contO

cont1

_Create CreateParams
bcc contO
ErrorCheck 'Coul.d not create pic fi Le.'

_Open OpenParams
bcc cont1
ErrorCheck not open pic fiLe.'

anop
Lda OpenID
sta WriteID
sta CLoseID

_Write WriteParams
bcc cont2
ErrorCheck 'CouLd not write to pic fi te ,:

337

The IIGS Toolbox

cont2

** Menu Data

*
MenuData

Return

Menu1

Menu2

Menu3

anop
_CLose CLoseParams

cLc
rts

END

Listing 12-8
SF.S1 new MenuData segment

DATA

equ 13

dc c'>L@\XN1',i 1'RETURN'
dc c LA Window Program \N25T,i 1'RETURN'
dc c.

dc c'>L Fi Le \N2',i 1'RETURN'
dc c' LNew \N258V',i 1'RETURN'
dc c LLoad \N259',i 1'RETURN'
dc c LSave \N260V',i 1'RETURN'
dc c LQui t\N261', i 1'RETURN'
dc c.

dc c»L Windows \N3',i 1'RETURN'
dc c' LUnti t Led \N262',i 1'RETURN'
dc c.

END

MenuTabLe DATA

*

*

338

Menu 1 Capp l e)
dc 1 1 gnore
dc i'ignore'

Menu 2 (fi t e)
dc i Repa i n t '
dc it.oadr t
dc i'Savelt'
dc idoaur t

; one for the NDAs
; 'a wi ndow program'

; 'doWi nO' (new wi ndow)

; quit item seLected

*

Menu 3 (w;ndows)
de ;'doW;nO'

END

12-The Standard File Operations Tool Set

; 'untitled'

** IOData
*
IOData

Listing 12-9
SF.S1 IOData segment

DATA

CType
CAux

RepLyReeord
GoodFlag
FType
Aux FType
FName
FuLLPathName

CreateParams
NameC de

de
de
de
de
de
de

DestParams
NameD

anop
ds 2
de ;'193'
de ;'0'
ds 15
ds 128

anop
; 4'0'
; 2'$00C3'
; 2'$00C1'
; 4'$00000000'
; 2'$0001'
; 2'$0000'
; 2'$0000'

anop
de ; 4'0'

; $e1
; #0

; DRNWR
; super high-res graph;es
; Aux
; type
; create date
; create time

OpenParams anop
OpenID ds 2
NamePtr ds 4

ds 4

ReadParams
ReadID
P; eDestIN

anop
ds 2
ds 4
de ; 4'$8000'
ds 4

; this many bytes
; how many xfered

339

The I/GS Toolbox

WriteParams
WriteID
PieDestOUT

CloseParams
CloseID

anop
ds 2
ds 4
de i 4'$8000'
ds 4

anop
ds 2

END

; this many bytes
; how many xfered

The SF.C Program
Listing 12-10 is a C language version of the SF.S I program. Designed to
be used with the i ne Lude file INITQUlT.C, it works almost exactly like the
SF.S I program.

In the C version of the SF program, files are not loaded and saved using
ProDOS calls, as they are in the assembly language version. Instead, SF.C
uses four C library routines: Open, CLose, Read, and Wri te. These routines
are called in the LoadIt and SaveIt segments of the program.

The Open function returns an integer, known as a file descriptor, for
each file successfully opened. If the call fails, it returns - I. In the SF.C
program, you test the value returned by Open. If the value is - I, a dialog
window appears on the screen and tells the user an I/O error has occurred.
Then the user can try to continue or quit. This dialog is created and displayed
in the BadIO segment of the program.

The event loop of the program is the same as the one that appeared in
the DIALOG.C program in chapter II. The DoMenus section is expanded
to accommodate some new menu choices, but the changes need little expla-
nation.

There are also changes in the way window titles are selected and dis-
played. These modifications are necessary because window titles can change
in the SF.SI program. Although there may be a more elegant way to accom-
modate the shifting of window titles, calling Hi deWi ndow and then
ShowWi ndow does the job.

Also, the File menu selection in SF.SI does not conform strictly to the
usual conventions for saving and loading files. For example, in the SF.SI
program, you can use the menu selections New, Load, or Quit without saving
first-and you can thus wipe out the picture currently on the screen without
warning. Because SF.S I is a tutorial program, we decided to forego fixing
that bug to avoid adding more complexity to the program.

One feature we did add was to disable the menu selection Save when
no window is open. Disabling an item lets the user know "that can't be done
right now," and ensures that TaskMaster does not return the constant that
represents the disabled item in the wmTaskData field.

340

12-The Standard File Operations Tool Set

Listing 12-10
SF.C program

#i nc Lude "i ni t qu i t , c''
#incLude <prodos.h>
#incLude <string.h>
#incLude <fcntL.h>

BooLean done = faLse;
WmTaskRec myEvent;

1************************************1
1* Data and routine to create menus *1
1************************************1

.1* Set up menu strings. Because C uses \ as an escape character, we use
two when we want a \ as an ordinary character. The \ at the end of each
Line tells C to ignore the carriage return. This Lets us set up our items
in an easy-to-read verticaL aLignment.. *1

char *menu1 = "\
>L@\\XN1\r\
LA Standard Fi Le Program \\N257\r\
· ,
char *menu2 = "\

>L Fi Le \\N2\r\
LNew \ \N258V\ r\
LOpen #\ \N259\ r\
LSave \\N260V\r\
LQuit #\\N261\r\
· ,
cha r *menu3 = "\
>L Windows \\N3\r\
LUntitLed \\N262\r\
· ,
#define NEW_ITEM 258
#define OPEN_ITEM 259
#define SAVE_ITEM 260
#define QUIT_ITEM 261 1* these wiLL heLp us check menu item numbers *1
#define TITLE_ITEM 262

Bui LdMenu()
{

InsertMenu(NewMenu(menu3),0);
InsertMenu(NewMenu(menu2),0);

341

The JIGS Toolbox

InsertMenu(NewMenu(menu1),0);
Fi xMenuBar();
DrawMenuBar();
DisabLeMltem(SAVE_ITEM);I* save is disabLed unti L a window is drawn *1

1***1
1* Data structures and routines to set up and refresh *1
1* offscreen drawing environment *1
1***1

Loclnfo picOLoclnfo = { mode320,
NULL, 1* space for pointer to pixeL image *1
160, 1* width of image in bytes = 320 pi xe Ls *1
0,0,200,320 1* frame rect *1

};

Rect screenRect = {0,0,200,320};
GrafPort picOPort;

#define IMAGE_ATTR attrLocked+attrFixed+attrNoCross+attrNoSpec+attrPage

PicOSetup() 1* caLLed once by MakeWindow at start of program *1
{
GrafPortPtr thePortPtr;

picOLoclnfo.ptrToPixlmage
thePortPtr = GetPort();
OpenPort(&picOPort);
SetPort(&picOPort);
SetPortLoc(&picOLoclnfo);
CLipRect(&screenRect);
EraseRect(&screenRect);
SetPort(thePortPtr);

ErasePicO()
{
GrafPortPtr oLdPortPtr;

oLdPortptr = GetPort();
SetPort(&picOPort);
CLipRect(&screenRect);
EraseRect(&screenRect);
SetPort(oLdPortPtr);

342

*(NewHandLe(Ox8000L,myID,IMAGE_ATTR,NULL»;

12-The Standard File Operations Tool Set

1***1
1* Data and routines for handLing Open and Save caLLs *1
1***1

#def i ne O_PI CLOAD O_RDONLY +O_BINARY
#defi ne O_PICSAVE O_WRONLY +O_CREAT +O_BINARY+O_TRUNC

SFRepLyRec fi Le = {O,193}; 1* intit 2 fieLds, rest are O'd *1
char curpath[130J; 1* pLace for C string version of pathname *1
Byte typeList[2J 1* we only want to open hi-res pictures *1
Fi LeRec fi LeInfo = {fi Le.fuLLPathname}; 1* initiaLize fi rst fieLd *1

LoadIt ()
{
int fi Ledes;
char oLdTitLe[16J;

strncpy(oLdTitLe,fi Le.fi Lename,16); 1* save titLe in case Load fai Ls *1

SFGet Fi Le (20,20;\pLoad Pi cture :",tIIULL, type Li st,&fi Le);
if(fi Le.good) {
p2cstr(strncpy(curpath,fi Le.fuLLPathname,(int>*fi Le.fuLLPathname+ 1)) ;

if«fiLedes = open(curpath,O_PICLOAD» != -1) {
read(fi Ledes,picOLocInfo.ptrToPixImage,Ox8000);
c Los e Cf i l edes r ;

SetMItemName(fi Le.fi Lename,262);
CaLcMenuSize(O,O,3);
RenewWind();

}
eLse {

BadIO(); 1* Load faiLed, put up message and restore titLe *1
strncpy(fi Le.fi Lename,oLdTitLe,16);

SaveIt(winPtr)
GrafPortPtr winPtr;
{
int fi Ledes;
char oLdTitLe[16J;

strncpy(oLdTitLe,fi Le.fi Lename,16); 1* save titLe in case save fai Ls *1

SFPutFi Le(20,20;\pType name of picture:",fi Le.fi Lename,15,&fi Le);

343

The IIGS Toolbox

if<fi Le.good) {
p2cstr(strncpy(curpath,fi Le.fuLLPathname,(int)*fiLe.fuLLPathname+

1» ;
if«fi Ledes = open(curpath,O_PICSAVE» ! 1= -1) {

write(fiLedes,picOLocInfo.ptrToPixImage,Ox8000);
c l ose Cf i t edes i ;

GELFILE-INFO(&fi LeInfo); 1* make fi l es type a hi res pi cture *1
fi LeInfo.fi LeType = OxC1;
SELF I LE_IN FO (&f i l e Irrf oLj

SetMltemName(fi Le.fi Lename, TITLE-ITEM);
CaLcMenuSize(0,0,3);

}
eLse { 1* save faiLed, put up message and restore titLe *1

BadIO() ;
strncpy(fi Le.fi Lename,oLdTi tLe,16);

}
eLse strncpy(fi Le.ti Lename,oLdTitLe,16);

1**1
1* Data structures and routines to create window *1
1**1

1* InitiaLize tempLate for NewWindow *1

#define FRAME fQContent+fMove+fZoom+fGrow+fBScroLL+fRScroLL+fCLose+fTitLe

ParamList tempLate = { sizeof(ParamList),
FRAME,
fi Le.fi Lename, 1* Pointer to titLe in SFRepLyRec *1
OL, 1* Ref Con *1
26,0,188,308, 1* FuLL size (O=defauLt) *1
NULL, 1* use defauLt CoLorTabLe *1

0,0, 1* orlgln *1
200,320, 1* data area height & width *1
200,320, 1* max cont height & width *1
2,2, 1* verticaL &horizontaL scroll increment *1
20,32, 1* verti ca L&hori zonta Lpage increment *1
NULL, 1* no info bar text string *1
0, 1* info bar height = none *1
NULL, 1* defauLt def proc *1
NULL, 1* no info bar draw routine *1
NULL, 1* draw content must be fi LLed in at run time *1
26,0,188,308, 1* starting content rect *1

344

-1L,
NULL

};

12-The Standard File Operations Tool Set

1* topmost pLane *1
1* Let window manager aLLocate record *1

1* draw content routine *1

pascaL void DrawContentC)
{

PPToPortC&picOLoclnfo,&CpicOLoclnfo.boundsRect),O,O,modeCopy);
}

GrafPortPtr winOPtr;

MakeWindowO 1* Set defauLt titLe s t r , compLete tempLate, make the window *1
{

strncpyCfi Le.fi Lename,"\pUntitLecf',9); 1* defauLt name for new window *1
tempLate.wContDefProc = DrawContent;
winOPtr = NewWindowC&tempLate);

RenewWindO 1* a way to restore
1* wi LL not affect the contents un Less ErasePi cO is ca LLed fi rst *1

EnabLeMltemCSAVE_ITEM);
HideWindowCwinOPtr);
CLoseWindowCwinOPtr);
winOPtr = NewWindowC&tempLate);
SeLectWindowCwinOPtr);
ShowWindowCwinOPtr);

1**1
1* Data and routines to set up and dispLay diaLogs *1
1**1

char prompt[40J = "\pUnabLe to Load or save ";

ItemTempLate item1
ItemTempLate item2
ItemTempLate item3
ItemTempLate item4
ItemTempLate item5

{ 1,{8,129,22,179},buttonltem,"\pStart\r",O,O,NULL};
{ 2,{8,8,22,58}.•bu t t.on I t emsYpau i t \r",O,O,NULL };
{ 3,{8,67,22, 117},buttonI tem,"\pHe Lp vr" ,O,O,NULL };
{ 4,{30,8,55,259},statText,prompt,O,O,NULL };
{ 1,{8,129,22,179},buttonltem,"\pOK",O,O,NULL };

Di a LogTempLate dtemp = {{84,63, tem1 ,&i tem2,&i tem3,NULL} ;
Di a LogTemp Late i otemp = {{84,23, rue,OL,&i tem5,&i tem2,&i tem4,NULL} ;

DoDi a Log 0
{

1* Create and dispLay an opening diaLog box *1

345

The JIGS Toolbox

GrafPortPtr dLgptr;
Word hit;

dLgPtr = GetNewModaLDiaLog(&dtemp);

while «hit = ModaLDiaLog(NULU) 3);
done = (hit == 2);
CLoseDiaLog(dLgPtr);

}

BadlOO
{
GrafPortPtr dLgptr;

strncat<prompt,fi Le.fi Lename + 1, *fi Le.fi l enameLj
*prompt = 23 + *fiLe.fiLename;
dLgPtr = GetNewModaLDiaLog(&iotemp);

done = (ModaLDiaLog(NULU == 2);
CLoseDiaLog(dLgPtr);

1**1
1* Main routine. Set up environment, caLL event Loop, and shut down *1
1**1

rna in 0
{

StartTooLsO;
DoDi a Log 0;
Bui LdMenuO;
MakeWi ndowO;
PicOSetup();
EventLoopO;
DisposeHandLe(FindHandLe(picOLoclnfo.ptrToPixlmage»;
ShutDownO;

1**************************************1
1* Event Loop and supporting routines *1
1**************************************1

Even t Loop()
{

myEvent.wmTaskMask = OxOFFF;
whiLe(!done)

switch (TaskMaster(everyEvent,&myEvent»
case wlnMenuBar:

346

12-The Standard File Operations Tool Set

DoMenus();
break;

case wInGoAway:
DisabLeMItem(SAVE_ITEM);
HideWindow(winOPtr);
break;

case wInContent:
Sketch 0;

DoMenus()
{
Word *data = (Word *)&myEvent.wmTaskData; 1* address of item id *1

swi tch (*data) {
case QUIT-ITEM:

done = true;
break;

case OPEN_ITEM:
Loadlt 0;
break;

case SAVE-ITEM:
Savelt 0;
HideWindow(winOPtr); 1* Make sure the titLe gets updated *1
ShowWindow(winOPtr);
break;

case NEW_ITEM:
ErasePi cOO;
st rncpy(fi Le. f i Lename;'\pUnti t Led",9);
RenewWind();
break;

case TITLE_ITEM:
EnabLeMItem(SAVE_ITEM);
SeLectWindow(winOPtr);
ShowWindow(winOPtr);
break;

}
HiLiteMenu(faLse,*(data + 1»; 1* data + 1 is address of menu id *1

}

Sketch() 1* sketch into current port, and into offscreen port *1
{
Point mouseLoc;
GrafPortPtr thePortPtr (GrafPortPtr)myEvent.wmTaskData;
Rect theRect;

347

The JIGS Toolbox

mouseLoc = myEvent.wmWhere;

StartDrawing(thePortPtr);
GetPortRect(&theRect);
GlobalToLocal(&mouseLoc);

1* set up correct drawi ng coordi nate system *1
1* copy current port rect *1
1* get cursor pos in local coordinates *1

}

MoveTo(mouseLoc);
SetPort(&picOPort);
ClipRect(&theRect);
MoveTo(mouseLoc);
SetPort(thePortPtr);

whi le (S't i llDown(O» {
GetMouse(&mouseLoc);

LineTo(mouseLoc);
SetPort(&picOPort);
LineTo(mouseLoc);
SetPort(thePortPtr);

}
SetOri gi n<O,O);

1* set pen position to mouse loc *1
1* switch to offscreen port *1
1* clip offscreen drawing to window's port rect *1
1* set offscreen pen to same location *1
1* switch back to port *1

1* get new mouse coordinates *1

1* draw line in both ports *1

1* restore normal coordinates *1

348

CHAPTER

The of Music
The IIGS as a Sound and Music Synthesizer

101 DC of tho most remarkable features of tho 110' is it, ahility [0 'yo-
thesize music and sounds. Some reviewers have declared that the
IIGS offers the finest sound-synthesizing capabilities of any computer

in its class. So it's no wonder that the s in IIGS stands for sound.
You don't have to be a musician or an audio engineer to understand

how the synthesizer built into the IIGS works. To write sound and music
programs for the Apple Ilos, however, it doesn't hurt to know a little bit
about how a music synthesizer produces sound. So, in the first part of this
chapter, you take a brief look at some important facts about the science of
sound and how the 11mproduces sound and music. Then you type, assemble,
and run a program that turns your IIGS keyboard into a music synthesizer
capable of producing an almost limitless variety of sounds.

The Characteristics of Sound
When you hear a sound from a musical instrument, four characteristics are
combined to create the sound you perceive. These four characteristics are

• Volume, or loudness
• Frequency, or pitch
• Timbre, or sound quality

349

The IIGS Toolbox

• Dynamic range, or the difference in level between the loudest sound
that can be heard and the softest sound that can be heard during a
given period of time. This time period can range between the time it
takes to playa single note and the length of a much longer listening
experience, such as a musical performance or a complete musical
recording.

Sound Hardware in the IIGS

To produce sounds that have these four characteristics-volume, frequency,
timbre, and dynamic range-the lIos is equipped with a pair of special-
purpose sound chips. One is the digital oscillator chip, or DOC, and the other
is the general logic unit, or OLU. Let's take a closer look at these two
processors.

The Digital
Oscillator Chip

The General
Logic Unit

350

The digital oscillator chip, or DOC, is a sound-generating microprocessor
designed by the Ensoniq sound synthesizer company. DOCs are used in
Ensoniq synthesizers as well as in the nos.

The basic sound-generating unit used by the DOC is a component called
an oscillator. To produce a sound, an oscillator must step through a table of
sound samples stored as digital numbers. This table must be supplied by the
application program using the oscillator. It can be created while a program
is running, or it can be stored on a disk and loaded into memory in advance.

The DOC contains thirty-two oscillators, but two are unavailable for
use in application programs. One is always used as a clock, and another is
reserved for future use. That leaves thirty oscillators, each of which can
function independently. In practice, however, the DOC's oscillators are used
in pairs because it takes at least two oscillators to produce a continuous
instrumental voice.

When two oscillators are used together to produce a sound, they form
a functional unit called a generator. So, in normal use, the DOC has fifteen
generators and thus is a 15-voice chip.

The DOC also has a component called an analog-to-digital converter,
or ADC. The ADC makes it possible for the DOC to record a digital sample
of an actual sound, so that the sound can be played back later from its digital
sample. More information about this capability is in the Apple Ilcs Hardware
Reference.

The general logic unit, or OLU, is a chip that interfaces the DOC processor
and the nos system. It also enables the nos to produce sound in the same
way as older Apple lIs: by toggling a single-bit switch that can make a speaker
vibrate at various rates of speed. But thanks to the OLU, this method of
producing sound is improved; its volume can now be software controlled.

In addition to its DOC and OLU chips, the nos has 64K of dedicated
RAM used only for storing sound samples. Because this area of memory is
used only by the DOC, it is sometimes referred to as DOC RAM.

13-The Sound of Music

Sound Tools in the Toolbox
The lIos Toolbox contains three tool kits that make it possible to write sound
and music programs without accessing the sound registers used by the DOC
and the GLU directly. These three tool sets are the

• Sound Tool Set, which starts and stops sounds, sets sound volumes,
performs read and write operations to and from DOC registers, and
reads and writes data to and from DOC RAM.

• Note Synthesizer, a higher-level tool set that produces and controls
musical notes. The Note Synthesizer can emulate the sound of
virtually any musical instrument and can produce unique musical
sounds with almost any characteristics desired.

• Note Sequencer, a still higher-level tool set that makes it easier to
combine various notes, chords, note patterns, and rhythms into
musical performances and compositions.

The sample program in this chapter, MUSIC.S 1, uses the Sound Tool
Set and the Note Synthesizer. It does not use the Note Sequencer because it
is an interactive program. The MUSIC.S 1 program appears at the end of this
chapter.

More About the Science of Sound
Now that you know something about how the lIos produces music and sound,
you're ready to take a closer look at the four primary characteristics of every
sound: volume, frequency, timbre, and dynamic range.

Volume If you've ever turned a volume knob on a radio, you know just about all
you'll need to know about volume to write sound and music programs for
the lIos.

In programs written using the Sound Tool Set, the volume of a sound
is controlled using the Sound Tool call SetSoundVo Lume. In programs that
use the Note Synthesizer, volume is expressed as a value ranging from 0 to
127 and is controlled by passing a parameter to the Note Synthesizer call
NoteOn.

As you shall see later, the NoteOn call must be made every time a note
is produced by the Note Synthesizer. In the MUSIC.Sl program, volume is
controlled using the Not eOn call. You'll see how this is done later in this
chapter.

Frequency The pitch of a musical note is determined by its frequency. In programs written
using the lIos Note Synthesizer, frequency is measured in semitones, or
halftones. A semitone value ranges from 0 to 127, with 60 representing
middle C.

The frequency of a note, like the note's volume, can be established by
passing a parameter to the Note Synthesizer call NoteOn. An example is
provided later in this chapter.

351

The IIGS Toolbox

Timbre Timbre, or note quality, is sometimes illustrated with the help of a waveform.
There are four basic varieties of waves: sine wave, square wave (or pulse
wave), triangle wave, and sawtooth wave. But these four types of waves can
be combined with each other, and with irregular wave patterns, in endless
varieties.

To understand how waveforms work, you need to know a little about
musical harmonics. So here is a crash course in music theory.

With the help of an electronic instrument, you can generate a tone that
has just one pure frequency. But when a note is played on a musical instru-
ment, more than one frequency is usually produced. In addition to a primary
frequency, or a fundamental, there is usually a set of secondary frequencies
called harmonics. It is this total harmonic structure that determines the timbre
of a sound.

When a tone containing only a fundamental frequency is viewed on an
oscilloscope, the pattern produced on the screen is a pure sine wave. When
a flute is played, the waveform produced is very close to that of a pure sine
wave. The waveform of a sine wave is shown in figure 13-1.

When harmonics are added to a tone, the result is a richer sound that
produces what is sometimes called a triangle wave. Triangle waveforms, or
waves that are close to triangle waveforms, are produced by instruments such
as xylophones, organs, and accordians. Figure 13-2 is a triangle wave.

When still more harmonics are added to a note, other kinds of waves
are formed. Harpsichords and trumpets, for example, produce a type of wave
sometimes called a sawtooth wave. A piano generates a squarish kind of wave
called a square wave or a pulse wave. A sawtooth wave is illustrated in figure
13-3, and a pulse wave is shown in figure 13-4.

Another kind of waveform that the DOC can produce is a noise wave-
form. A noise waveform creates a random sound output that varies with a
frequency proportionate to that of an oscillator built into Voice I. Noise
waveforms are often used to imitate the sound of explosions, drums, and other
nonmusical noises.

Figure 13-1
Sine waveform

Figure 13-2
Triangle waveform

352

13-The Sound of Music

-
Figure 13-3

Sawtooth waveform
-

Figure 13-4
Pulse waveform

Dynamic Range

A Close Look at
an ADSR
Envelope

In programs written for the IIGs, waveforms can be created when
needed-as they are in the MUSIC.Sl program-or they can be created and
loaded into memory in advance. No matter how a waveform is created, though,
it must be moved into DOC RAM before it can be used to produce a sound.

The dynamic range of a note-the difference in volume between its loudest
sound level and its sof1est sound level-can be illustrated in many ways. To
illustrate and control the dynamic ranges of notes, audio engineers sometimes
use a device called an ADSR envelope. or attack-decay-sustain-release
envelope. An ADSR envelope illustrates four distinct stages in the life of a
note: four phases every note undergoes between the time it starts and the time
it fades away. These bur phases-attack, decay, sustain, and release-are
shown in the ADSR envelope illustrated in figure 13-5.

As figure 13-5 shows, every note starts with an attack. The attack phase of
a note is the length of time it takes for the volume of the note to rise from a
level of zero to the note's peak volume.

As soon as a note reaches its peak volume, it begins to decay. The
decay phase of a note is the length of time it takes for the note to decay from
its peak volume to a predefined sustain volume.

When the decay phase of a note ends, the note is usually sustained for
a certain period of time at a certain volume. Then a release phase begins.
During this final phase, the volume of the note drops from its sustain level
back down to zero.

When the IIGS Note Synthesizer is used in a program, the ADSR en-
velope of each sound in the program can be set up by creating a data structure
called an instrument record. Then, when a note is played, the address of this
record can be passed as a parameter to the Note Synthesizer call NoteOn.

353

The IIGS Toolbox

A
T
T
A
C
K

o
E
C
A
y

s
u
S
T
A
I
N

s

Figure 13-5
ADSR envelope

R
E
L
E
A
S
E

Initializing the Sound Tool Set and the Note Synthesizer
The Sound Tool Set and the Note Synthesizer, like most tools in the Ilos
Toolbox, must be loaded and started before they can be used in a program.
In programs that use both tool kits, the Sound Tool Set must be started first
because the Note Synthesizer uses part of the Sound Tool Set's direct page.

In the MUSIC. S I program, the Sound Tool Set is initialized in a program
segment labeled SoundStartUp, and the Note Synthesizer is started in a
segment labeled NoteStartUp.

SoundStartUp, the call that initializes the Sound Tool Set, is quite
straightforward. It takes one parameter-a pointer to a direct page work-
space-and returns with the carry clear if there is no error.

NSStartup, the call that initializes the Note Synthesizer, takes two
parameters. The first parameter is a 2-byte update rate, which determines the
rate at which sound envelopes are generated. Update rates are expressed in
units of .4 cycles per second, or hertz. In the MUSIC.Sl program, the update
rate passed to the NSSt art up call is the decimal number 70, so the sound
envelope used in the program is updated at a rate of 60 times a second, or
60 hertz.

The second parameter passed to the NSStart up call is a pointer to an
interrupt-driven routine that can be used for note sequencing. No interrupts
are used in the MUSIC.S I program, so the value for this parameter is zero.

How the Note Synthesizer Works
When the Note Synthesizer is used in an application program, a sound gen-
erator must be allocated for each voice used in the program. The call to
allocate a generator is ALL 0 cGen.

The ALLocGen call takes two parameters: a 2-byte space to return a

354

13-The Sound of Music

result on the stack and a I-word value to establish the priority of the generator
being allocated.

This is how generator priorities work. Generator priorities can range
from 0 to 128. When a generator has a priority of 0, it is free and thus can
be allocated. If there are no free generators when a generator is to be allocated,
the Note Synthesizer looks for the lowest-priority generator and "steals" it-
if it has a priority of less than 128. If a generator has a priority of 128, it
cannot be stolen.

When the ALLocGen call returns, a generator number ranging from 0
to 13 is pushed onto the stack. Then, when a note is to be played by one of
the DOC's fifteen generators, the generator can be referred to by its assigned
number.

NoteOn Call When all the generators needed by a program are allocated, the NoteOn call
can be made each time a note is to begin, and the Not eOf f call can be made
each time a note is to end.

The NoteOn call takes four parameters:

• A l-word generator number (the identification number assigned by
the ALL 0 cGen call)

• A I-word semitone number (a number ranging from 0 to 127, with
the value 60 representing middle C)

• A I-word volume parameter (a number ranging from 0 to 127)
• A 2-word pointer to an instrument record

The structure of an instrument record is described in the next section.
The NoteOn call does not return any parameters.

The Structure of
an Instrument

Record

When the NoteOn call is used in a program, one of the parameters passed
to it is an instrument record. The instrument record used in the MUSIC.S I
program is shown in table 13-1. The routine that plays notes using the
instrument record is in the PLayNote segment of the program. The following
paragraphs describe each of the fields shown in table 13-1.

The Enve Lope field of an instrument record is composed of up to eight
linear segments. Each of these segments has a breakpoint value and an in-
crement value, or slope. During each segment, the volume of the note being
played ramps (increases or decreases) from its current value to its breakpoint
value. The time that th.s process takes is determined by the increment value
of the note's envelope.

The value of a breakpoint can range from 0 to 127. This range of values
represents the level of a sound on a logarithmic scale, with each 16 steps
changing the note's amplitude by 6 decibels (dB). The last breakpoint used
in an envelope should have a value of O.

Each increment value in the envelope field can range from 0 through
127. An increment is a value that is added to or subtracted from a note's
current level at the update rate passed to the No t eOn call, thus changing its

355

The IIGS Toolbox

Field Number

I
2

3
4
5
6
7
8
9
10...

Table 13-1
Instrument Record

Field Name

EnveLope
ReLeaseSegment
PriorityIncrement
PitchBLendRange
VibratoDepth
VibratoSpeed
Spare
AWaveCount
BWaveCount
WaveLists

Field Length

24 bytes
I byte
I byte
I byte
I byte
I byte
I byte
I byte
I byte
6 bytes each

356

frequency at a rate determined by its update rate. The sustain level of an
envelope is created by setting an increment value to O.

An increment is a 2-byte, fixed-point number, that is, a number that
represents a fraction. Specifically, the fraction represented by an increment
value is the value over 256. Thus, if an increment value is I, it represents
the fraction 1/256 and has to be added to a note's current volume 256 times-
over a total elapsed time of 2.56 seconds-to cause the volume of the note
to go up by 1.

The Re LeaseSegment field of an instrument record is a number rang-
ing from 0 to 7. This number determines how many segments it takes for the
release of a note to go down to O. When the release phase diminishes to 0,
the note ends.

The Pri 0 ri t y Inc rement field of an envelope is a number subtracted
from the envelope's generator priority when the envelope reaches its sustain
phase. Then, when the note reaches its release phase, its priority is cut in
half. The priority of each allocated generator is also decremented by I each
time a new generator is allocated. The purpose of this process is to ensure
that the "oldest" active generators are "stolen" first when a new generator
needs to be allocated.

The Pi tchBLendRange of an envelope is the number of semitones
that a pitch is raised when its pitchwheel-a constantly incrementing value-
reaches 127. The pi t chB LendRa nge field controls a sound's vibrato effect.
There are only three valid values for this field: I, 2, and 4.

The VibratoDepth field defines the initial depth of a note's vibrato.
Vibrato depth can range from 0 to 127, with a value of 0 meaning no vibrato
will be used. The VibratoSpeed field, a value ranging from 0 to 255,
controls the rate of vibrato oscillation. The next field, field 7, is reserved for
future expansion.

Each of the digital oscillator chip's generators is made up of a pair
of oscillators. Each oscillator in a pair can be used to synthesize as many differ-
ent kinds of sound waves as desired. In an instrument record, field 8,
AWaveCount, tells how many kinds of waves are defined for the first oscillator

13-The Sound of Music

in a pair. Field 9, BWaveCount, tells how many kinds of waves are defined
for the second oscillator.

In an instrument record, a WaveL; st is a variable length array. Each
element in a Wave L; s t array has 6 bytes, divided into four fields. Fields 8
and 9 of an instrument record-the AWaveCount and BWaveCount fields--
determine how many WaveL; st arrays the record contains.

The five fields in a Wa ve L; s t array are:

• TopKey (l byte). The highest semitone (ranging from 0 to 127) that
a waveform will play. When a note is played by an instrument, the
Note Synthesizer examines the TopKey field in each of the
instrument's waveforms until it finds one that will play the requested
note. Therefore, the waveforms listed in each wavelist should be
arranged in an order of increasing TopKey values, and the last
TopKey value in a wavelist should be 127.

• WaveAddress (I byte). This field contains the high byte of the
address of a waveform. This value is placed directly into a DOC
register that holds a pointer to a waveform address. The waveform
stored at the indicated address must be supplied by the program
being executed.

• WaveS; ze (l byte). This l-byte field is placed directly in a DOC
register that defines the size of the wave being accessed.

• DOCMode (l byte). This field determines what mode the DOC uses
to play the waveform listed. The most commonly used DOC mode is
swap mode, in which two oscillators are used together to form a
generator. DOC mode 0 is swap mode. More information on DOC
modes are in the Apple lies Hardware Reference.

• Re LP; t c h (2 bytes). This field is a 2-byte word that tunes the
waveform in which it appears. The high byte of the word (the
second byte of the field) is expressed in semitones, but can be a
signed number. The low byte (the first byte of the field) is a value
expressed in increments representing 1/256 of a semitone.

The MUSIC Program
Listing 13-1 is a complete listing of the MUSICSI program. Listing 13-2,
MUSICC, is a C language version of the program. INITQUIT.C, listing 13-
3, is an ; nc Lude file that handles disk input and output for MUSIC.C. All
three listings appear at the end of this chapter.

Type, assemble, and run the MUSIC program, and it will tum your
IIGS keyboard into the keyboard of a real sound synthesizer. The keys on the
Tab row are the synthesizer's white keys, and the keys on the numbers row
are the black keys. The keyboard layout of the MUSIC synthesizer is illustrated
in figure 13-6.

After you know how the IIGS produces sound, it isn't difficult to figure
out how the MUSICSI program works. It loads and starts up the Sound Tool

357

The IIGS Toolbox

NOTE

KEY

NOTE

KEY

F# G# A# C# D# F# G# A# C# D#
1 2 3 5 6 8 9 0 D= e

I.
'-- '-- -,.- -- '--- '---

F G A B C D E F G A B C D E

Tab Q W E R T Y U I a p [1 Return

Figure 13-6
Key layout of the MUSIC synthesizer

Set and the Note Synthesizer, and then enters a loop that reads characters
typed on the IIGS keyboard. In a segment labeled GetKey, the program
constantly checks to see if the user has pressed a key on either of the top two
rows of the keyboard. If such a key is pressed, the ASCII code of the typed
character is converted into a musical semitone, and the program segment
labeled PLayNote produces the appropriate musical sound. MUSIC.C is a
fairly straightforward translation of the program into C.

Not the End
This brings us to the end of this book, but we have barely begun to explore
the amazing capabilities of the Apple IIGS. If you have typed, assembled, and
executed the Name Game program, and the programs designed to demonstrate
the capabilities of the IIGS graphics and sound tools, you have all the supplies
to hack your way into the IIGS jungle and see what lies beyond that first row
of trees. So happy hunting!

MUSIC.S1, MUSIC.C, and INITQUIT.C Listings
Listing 13-1

MUSIC.S1 program

** MUSIC.S1: Creating a Mini-Synthesizer

*
keep musi c
65816 on
absaddr on
mcopy musi c.macros
Longi on
Longa on

358

13-The Sound of Music

Music START

phk
pLb

jsr SoundStartup

jsr LoadSound

jsr NoteStartup

eli ; this seems to be necessary

PrintLn
Pri nt Ln
Pri nt Ln
Pri nt Ln
Pri nt Ln
PrintLn
PrintLn

Your computer is now a mini-synthesizer.'

The whi te keys are on the TAB row.'
The bLack keys are on the number row.'

Keep shift Lock clown; press space bar to quit.'

Loop PushWord #0
PushWord #0
.Read Cha r
pLa
and #$7F
cmp #$20
beq exit

jsr GetKey
bcs Loop

jsr PLayNote

bra Loop

; no echo
; read key the user typed

; cLearhighbit
; space bar?

; convert ASCII to a note
; if carry set, no action

; ca LLNote Synthesi zer

exit j s r Shutdown
_Quit QuitParams

QuitParams anop
dc i 4'0'
dc i 2'0'

END

359

The IIGS Toolbox

GetKey START

Loop

short m,i
Ldx #23 ; 24 keys, starting from zero
cmp Key,x ; Look for key in tab Le
beq foundi t
dex
bp L Loop
jmp nonote ; search over--no note found

convert X reg content to a note
; found note--cLear carry

anop
txa
adc #$2A ;
cLc
jmp fini

foundit

nonote
fini

sec ; no note found--set carry
Long m,i
rts

Key de h'09 31 51 32 57 33 45 52 35 54' ; asci i codes
de h'36 59 55 38 49 39 4f 30 50 se
de h'3d 5d 7f ad'

END

** Start up the too Ls we'L L need
*
SoundStartup START

_TLStartup
PushWord #0
_MMStartup
ErrorCheck 'Cou Ld not ca LLMemory Manager'

pLa
sta MyID
-MTStartup
ErrorCheck 'Cou Ld not ca LLMi sc Too Ls

PushLong #TooLTabLe
_LoadTooLs
ErrorCheck 'cou Ld not Load sound too l s'

360

13-The Sound of Music

*** GET SOME DIRECT PAGE SPACE AND START UP SOUND TOOLS ***

; room for hand le
; one page

; type: locked, fixed

; and $0002
; on di rect page

; using addresses $0000

2
[OJ

o

PushLong #0
Push Long #$100
PushWord MyID
PushWord #$C001
Push Long #0
-NewHand le
ErrorCheck 'Not enough memory!'
pla
sta
pla
sta
lda
pha
_SoundStartup
ErrorCheck 'Could not start up sound tool'
rts

MyID ds 2
TooLTable dc i'1,25,0'
X

; one tool: #25, version 0

end

** Load Sound

*
LoadSound START

** This routine creates a square wave, which approximates the
* waveform created by a piano.
*

ldx #0
lda #$40

SetMode8 ; use 8-bi t accumu lator

topedge sta WaveForm,x
inx
cpx #128
bne topedge

; draw top edge of wave

361

The IIGS Toolbox

Lowedge anop
Lda #$CO
sta WaveForm,x
inx
cpx #256
bne Lowedge

SetMode16

; draw Low edge of wave

; restore 16-bi t accumu Lator

** Now we'L L move the wave over to the DOC, usi ng the sound too l s ,

*

WaveForm

PushLong #WaveForm
PushWord #0
PushWord #$100
_Wri teRamBLock
ErrorCheck 'wri ti ng wave'
rts

ds 256

END

; arg1: src ptr
; doc start address
; byte count

** NoteStartup

*
NoteStartup START

PushWord #70 ; 60 Hz updates
PushLong #0 ; no IRQ routine for me
_NSStartup
ErrorCheck 'coutd not start up note synthesizer'
rts

END

** Now we p Lay the note

*
PLayNote

362

START
usi ng NoteData
sta Semi Tone

PushWord #0
PushWord #64
J. LLocGen

; space for resu Lt
; medi um pri ori ty

; medi um vo Lume
; p t r to piano definition

13-The Sound of Music

ErrorCheck 'Cou Ld not a LLocate generator'
pLa
sta GenNum

PushWord GenNum
PushWord Semi Tone
PushWord #112
PushLong #Piano
_NoteOn
ErrorCheck Prob Lem wi th NoteOn ca LL'

** NormaLLy, we wouLd wait a whi Le before issuing a note off. But
* because a piano has a fast attack and a Long reLease, that
* isn't necessary in thi s case.
*

PushWord GenNum
PushWord SemiTone
_NoteOff
ErrorCheck 'Prob l em wi th NoteOff ca LLosci LLators
rts

SemiTone
GenNum

NoteData

ds 2
ds 2

END

DATA

Piano dc i1'127,0,121'
dc i1'112,20,1'
dc i 1'0,48,0'
dc i 1'0,20,5'
de i 1'0,0,0'
dc i 1'0,0,0'
dc i 1'0,0,0'
dc i 1'0,0,0'
dc i 13'
dc i132'
dc i 1'2,0,0,0,1, l'

; env: sharp attack
; come down more sLowLy
; s Low decay to 0
; andreLeasein112steps

; fi LL out 8 stages with O's
; re Lease segment
; priority inc
; pbrange,vibdep,vibf,spare3

363

The JIGS Toolbox

** MuLt;-sampLed piano waveforms.
* F; rst os c i LLator does the attack; second does Loop.

*
AWaveL;st de ;1'127,0,0,0,0,12'

BWaveL;st dc ;1'127,0,0,0,0,12'

END

** Rout; ne that shuts down too l s ,

*
Shutdown START

; topkey,addr,s;ze,ctrL,p;tch

1* end enveLope *1

1* aWaveForm *1
1* bWaveForm *1

....NSShutdown
ErrorCheck 'Pr-ob Lem with Note Synthesizer shutdown'
_SoundShutdown
rts

END

Listing 13-2
MUSIC.C program

#; nc Lude "i n i t qu i t , c''

#def; ne spa ce ' ,

EventRecord myEvent;
Word waveForm[257J;
Inst rument p i ano = {127,Ox7FOO, 1* enve Lope *1

112,Ox0114,
0,Ox0030,
0,Ox0514,
O,OxOOOO,
O,OxOOOO,
O,OxOOOO,
O,OxOOOO,
3,32,
2,0,0,0,1,1,
127,0,0,0,OxOCOO,
127,0,0,0,OxOCOO

};

1* Keys contain the Letters i n tp i ano keyboard "#order. The backsLashes *1
1* are foLLowed by the octaL ASCII vaLues of Tab, DeLete, and Return. *1

364

char keys[]

rna in ()

13-The Sound of Music

Star tT00 l s () ;
Prompt();
LoadSound();
asm { I*it is necessary to clear interrupts *1

cl i;
}

NSStartUp(70,nil);
errC'\pUnable to start up Note Synt he s i ze r v vr vrj

EventLoop ();
NSShutDown(};
Shutdown(};

LoadSoundO 1* it is more efficient to store words instead of bytes *1
{
int i;

for (i=0;i<64;i++)
waveForm[i] = Ox4040;

for (i=64;i<128;i++)
waveForm[i] = OxCOCO;

WriteRamBlock (waveForm,0,Ox100);
errC'Error in WriteRamBlock");

Prompt()
{
GrafOff 0;
pri ntf C'Your computer is now a mi ni -synthesi zer\n\n-);
printf("The white keys are on the tab row.\n-);
printf("The black keys are on the number row.\n\n-);
printf("Keep shift lock down: Press space bar to quit.\n-);

#define KEYMASK keyDownMask+autoKeyMask

EventLoopO
{
Boolean done
Word i;
char theKey;

false;

365

The IIGS Toolbox

whiLe C!done)
ifCGetNextEventCKEYMASK,&myEvent» {
theKey = Cchar)CmyEvent.message);
if CtheKey == space)
done = true;

eLse
ifCCi=findCharCkeys,theKey» < 24)
PLayNoteCi + Ox2A);

int findCharCstr,c) 1* position of c in str, strLen if not present *1
char *str;
char c;
{
int i=O;
whi LeC*str ! = c)
ifC*Cstr++»
i + +;

eLse
break;

return i;

PLayNoteCsemiTone)
Word semi Tone;
{
Word genNum;
NoteOnCCgenNum = ALLocGenCO,64»,semiTone,112,&piano);
NoteOffCgenNum,semiTone);

Listing 13-3
INITQUIT.C program

#incLude <TYPES.H>
#incLude <PRODOS.H>
#incLude <LOCATOR.H>
#incLude <MEMORY.H>
#incLude <MISCTOOL.H>
#incLude <QUICKDRAW.H>
#incLude <EVENT.H>
#incLude <SOUND.H>
#incLude <NOTESYN.H>

366

13-The Sound of Music

#define MODE mode320 1* 640 graphics mode def. from quickdraw.h *1
#defi ne MaxX 320 1* max X for cursor (for Event Mgr) *1
#define dpAttr attrLocked+attrFixed+attrBank 1* for
a LLocati ng di rect page space *1

#define er r Cs t r) ifLtooLErr) SysFai LMgrLtooLErr,str)

int myID;
Hand Le zp;
QuitRec qParms

1* for Memory Manager. *1
1* hand Le for page 0 space for too Ls *1

{NULL,O};

int tooLTabLe[] = {4,
4, Ox0100, 1* QD *1
6, Ox0100, 1* Event *1
8, Ox0100, 1* Sound *1
25, OxOOOO 1* NoteSyn *1
};

StartToo Ls 0
{

1* start up these tooLs: *1

TLStartUp(); 1* TooL Locator *1
LoadEmUp(); 1* Load tooLs from disk *1
myID = MMStartUp(); 1* Mem Manager *1

err('\pUnabLe to start up Memory Mgr.\r\r");
MTStartUp(); 1* Misc TooLs *1

e r r C'vpllnab Le to start up Misc. J oo Ls vr vr'T;
TooLInitO; I*start up the rest *1

LoadEmUpO I*Load tooLs, prompt for boot disk if not present *1
{
Word response;
Pointer voLName;

GET-BOOT_VOL(&voLName);

LoadTooLs(tooLTabLe);
whi LeLtooLErr == voLumeNotFound)

response = TLMountVoLume
<0,195,30," \pP Lease insert the di sk",vo LName," \pOK",'\pCance L");

if(response == 1)
LoadTooLs(tooLTabLe);

eLse {
TLShut Down0;
QUIT(&qParms); 1* try to exit gracefuLLy *1

367

The IIGS Toolbox

e r r C'vpllnab Le to Load t co Lsvr vr'Tj

TooLInitO
{

1* init the rest of needed tooLs *1

zp = NewHandLe(Ox500L,myID,dpAttr,OL); 1* reserve 6 pages *1
e r r C'vpllnab Le to aLLocate DP space\r\r");

QDStartUp«int) *zp, MODE, 160, myID); 1* uses 3 pages *1
e r r C'vptlnab t e to start up Qui ckDraw. \r\r");

EMStartUp«int) Uzp + Ox300), 20, 0, MaxX, 0, 200, myID);
e r r C'vpunab l e to start up Event Mgr.\r\r");

SoundStartUp«int) (*zp + Ox400»;
e r r C'vpllnab Le to start up Sound Mgr.\r\r");

ShutDown() 1* shut down aLL of the tooLs we started *1
{

GrafOffO;
SoundShutDown();
EMShutDownO;
QDShutDownO;
MTShutDownO;
DisposeHandLe(zp); 1* reLease our page 0 space *1
MMShutDown(myID);
TLShutDownO;

368

DOD 0o DO 0
DO DOD
DO 0 0
ODD
ODD

DO DODD
DO 0
DOD DOD

PART [!]
Appendix

APPENDIX

The 65C816
Instruction Set

ITIhi, section is a complet listing of 'lie 65C816 instruction se.. It
does not include pseudo-operations (also known as pseudo-ops, or
directives), which vary from assembler to assembler. Tables A-I,

A-2, and A-3 list the abbreviations used in this appendix.

Table A-1
Processor Status (P) Register Flags

Abbreviation Flag

n Negative (sign)
v Overflow
b Break
d Decimal

Interrupt
z Zero
c Carry
m Memory/accumulator select
e Emulation

371

Appendix A

372

Abbreviation

A
B
C
X
Y
P
S
M
D
DBR (or B)
PBR (or K)

Abbreviation

#
(a)

(a,x)

(d)

(d),y
(d,x)
(r.sr.y
a
a,x
a.y
Ace
al
al,x
d
d,x
d.y

[,S

rl

xya
ldj
[dJ,y

Table A-2
65C816 Registers

Register

Accumulator or 8-bit accumulator
B register (high-order byte of 16-bit accumulator)
16-bit accumulator
X register
Y register
Program counter
Stack pointer
Memory register
Direct page register
Data bank register
Program bank register

Table A-3
Addressing Modes

Mode

Immediate
Absolute indirect
Absolute indexed indirect
Direct indirect
Direct indirect indexed
Direct indexed indirect
Stack relative indirect indexed
Absolute
Absolute indexed with X
Absolute indexed with Y
Accumulator
Absolute long
Absolute indexed long
Direct
Direct indexed with X
Direct indexed with Y
Implied
Program counter relative
Stack relative
Program counter relative long
Stack
Block move
Direct indirect long
Direct indirect indexed long

adc add with carry

The 65C816 Instruction Set

6502, 65C02, 65C816

Adds the contents of the accumulator to the contents of the effective address
specified by the operand. If the P register's carry flag is set, a carry is also
added to the result. The sum is stored in the accumulator.

If the accumulator is in 8-bit mode when the adc instruction is issued,
two 8-bit numbers will be added, and the result of the operation is also 8 bits
long. If the operation results in a carry, the carry flag is set.

If the accumulator is in 16-bit mode when the instruction is issued, two
16-bit numbers are added, and the result of the operation is also 16 bits long.
If this operation results in a carry, the P register's carry flag is set.

The 65C816 has no instruction for adding without a carry. The adc
instruction is the only addition instruction available. The carry flag can be
cleared, however, with a c Lc instruction prior to an addition operation, and
then no carry is added to the result.

It is considered good programming practice to issue a c Lc instruction
before beginning any addition sequence. Then a carry bit will not be added
to the result by mistake. If the first operation in an addition sequence results
in a carry, the carry is added to the next higher-order operation, and each
intermediate result correctly reflects the carry from the previous operation.

If the decimal flag is set when an ad c instruction is issued, the addition
operation is carried out in binary coded decimal (BCD) format. If the decimal
flag is clear, binary addition is performed.

In emulation mode, ad c is an 8-bit operation. In native mode, it is a
l6-bit operation, with the high-order byte situated in the effective address
plus I.

Flags affected: n, v, z, c
Registers affected: A, P

Addressing Mode Bytes Opcode (hex)

adc (d) 2 72
adc (d) ,y 2 71
adc (d,x) 2 61
adc (r ,s),y 2 73
adc d 2 65
adc d,x 2 75
adc r,s 2 63
adc Cd] 2 67
adc [d],y 2 77
adc # 2 (3) 69
adc a 3 6D
adc a,x 3 7D

373

Appendix A

and

adc a,y
adc a L
adcaL,x

logical AND

3

4

4

79
6F

7F

6502, 65C02, 65C816
Performs a binary logical AND operation on the contents of the accumulator
and the contents of the effective address specified by the operand. See figure
A-I. Each bit in the accumulator is ANDed with the corresponding bit in the
operand. The result of the operation is stored in the accumulator.

0 0 1
AND 0 AND 1 AND 0 AND

0 0 0
Figure A-1

Truth table for AND

The and instruction is often used as a mask, to clear specified bits in
a memory location. When used as a mask, the instruction compares each bit
in a memory location with the corresponding bit in the accumulator. Each bit
cleared in the memory location clears the corresponding bit in the accumulator.
Bits set in the memory location have no effect on their corresponding bits in
the accumulator. For example, the sequence

Lda #$OOFF
and MEMLOC
sta MEMLOC

clears the high-order byte in MEM LOC, while leaving the low-order byte un-
changed.

The and instruction conditions the P register's nand z flags. The n flag
is set if the most significant bit of the result of the AND operation is set;
otherwise, it is cleared. The z flag is set if the result is 0; otherwise, it is
cleared.

In emulation mode, and is an 8-bit operation. In native mode, it is a
I6-bit operation, with the high-order byte situated in the effective address
plus 1.

Flags affected: n, z
Registers affected: A, P

374

Addressing Mode
and (d)
and (d),y
and (d,x)
and (r,s),y
and d
and d,x

Bytes
2

2

2

2

2

2

Opcode (hex)
32

31
21

33

25

35

asl

and r,s
and Ed]
and [d],y
and #
and a
and a,x
and a,y
and a L
and a L,x

arithmetic shift left

2

2

2

2 (3)

3

3

3

4

4

The 65C816 Instruction Set

23

27

37

29
2D

3D

39

2F

3F

6502, 65C02, 65C816
Shifts each bit in the accumulator or the effective address specified by the
operand one position to the left. See figure A-2. A 0 is deposited into the bit
o position, and the leftmost bit of the operand is forced into the carry bit of
the P register. The result of the operation is left in the accumulator or the
affected memory register. The as L instruction is often used in assembly
language programs as an easy method for dividing by 2.

In emulation mode, as L is an 8-bit operation. In native mode, it is a
16-bit operation, with the high-order byte situated in the effective address
plus 1.

Flags affected: n, z, c
Registers affected: A, P, M

Figure A-2
ASL operation

a

bcc

Addressing Mode

as LAce
as L d
as L d,x
as L a
asL a,x

branch if carry clear

Bytes

I

2

2

3

3

Opcode (hex)

OA
06
16

OE
IE

6502, 65C02,65C816
(Alias: b Lt.) Tests the P register's carry flag. Executes a branch if the carry
flag is clear. Results in no operation if the carry flag is set.

The destination of the branch must be within a range of - 128 to + 127
memory addresses from the instruction immediately following the bee in-
struction.

375

Appendix A

The be e instruction is used for three main purposes:

• To test the carry flag after an arithmetic operation
• To test a bit that has been moved into the carry flag using a rotate,
shift, or transfer operation

• To make a programming decision based on a comparison of two
values

When bee tests the result of a comparison operation, it comes after a
comparison instruction (emp, cpx , or epy). When two values are compared
with a comparison instruction, data in memory is subtracted from data in the
accumulator. This does not affect the value of the accumulator, but it con-
ditions the carry flag as a result of the comparison. The carry flag can then
be tested using be e. If the value in the accumulator is less than the value of
the operand, the carry is clear and a branch is taken.

If bee results in a branch, a l-byte signed displacement, fetched from
the second byte of the instruction, is sign-extended to 16 bits and added to
the program counter. When the address of the branch is calculated, the result
is loaded into the program counter, transferring control to that location.

Because the meaning of bee is not intuitively clear when the instruction
9is used as the result of a branch-after-compare operation, the APW assembler
also accepts an alias: b Lt , which stands for branch on less than and assembles
into the same machine language opcode as bee.

Flags affected: None
Registers affected: None

bcs

Addressing Mode

r

branch if carry set

Bytes

2

Opcode (hex)

90

6502, 65C02, 65C816

376

(Alias: bge.) Tests the P register's carry flag. Executes a branch if the carry
flag is set. Results in no operation if the carry flag is clear.

The destination of the branch must be within a range of - 128 to + 127
memory addresses from the address immediately following the bes instruc-
tion.

The bes instruction is used for three main purposes:

• To test the carry flag after an arithmetic operation
• To test a bit that has been moved into the carry flag using a rotate,
shift, or transfer operation

• To make a programming decision based on a comparison of two
values

When bes tests the result of a comparison operation, it comes after a
comparison instruction (emp, cpx , or epy). When two values are compared
using a comparison instruction, data in memory is subtracted from data in

The 65C816 Instruction Set

the accumulator. This does not affect the value of the accumulator, but it
conditions the carry flag as a result of the comparison. The carry flag can
then be tested using bcs. If the value in the accumulator is greater than or
equal to the value of the operand, the carry is set and a branch is taken.

If bcs results in a branch, a I-byte signed displacement, fetched from
the second byte of the instruction, is sign-extended to 16 bits and added to
the program counter. When the address of the branch is calculated, the result
is loaded into the program counter, transferring control to that location.

Because the meaning of bcs is not intuitively apparent when the in-
struction is used as the result of a branch-after-compare operation, the APW
assembler also accepts an alias: bg e, which stands for branch on greater than
or equal to and assembles into the same machine language opcode as bcs.

Flags affected: None
Registers affected: None

beq

Addressing Mode

r

branch if equal

Bytes

2

Opcode (hex)

80

6502, 65C02, 65C816
Tests the P register's zero flag. Executes a branch if the zero flag is set-
that is, if the result of the last operation which affected the zero flag was O.
Results in no operation if the zero flag is clear.

The destination of the branch must be within a range of - 128 to + 127
memory addresses from the address immediately following the beq instruc-
tion.

The beq instruction is used for several purposes:

• To test whether a value that has been pulled, shifted, incremented,
or decremented is equal to 0

• To test the value of an index register to determine whether a loop
has been completed

• To make a programming decision based on a comparison of two
values

When beq tests the result of a comparison operation, it comes after a
comparison instruction (cmp, CpX, or cpy). When two values are compared
using a comparison instruction, data in memory is subtracted from data in
the accumulator. This does not affect the value of the accumulator, but it
conditions the carry flag as a result of the comparison. The zero flag can then
be tested using beq. If the value in the accumulator is equal to the value of
the operand, the zero flag is set and a branch is made.

If beq results in a branch, a l-byte signed displacement, fetched from
the second byte of the instruction, is sign-extended to 16 bits and added to
the program counter. When the address of the branch is calculated, the result
is loaded into the program counter, transferring control to that location.

377

Appendix A

bge

Flags affected: None
Registers affected: None

Addressing Mode

r

branch if carry set

Bytes

2

Opcode (hex)

FO

bge is not a 65C816 instruction, but an alias recognized by the APW assem-
bler. When assembled, it generates the same machine language opcode as the
assembly language instruction bcs. For further details, see bcs.

bit test memory bits
against accumulator

6502, 65C02, 65C816

Performs a binary logical AND operation on the contents of the accumulator
and the contents of a specified memory location. The contents of the accu-
mulator are not affected, but three flags in the P register are affected.

If any bits in the accumulator and the value being tested match, the z
flag is cleared. If no match is found, the z flag is set. Thus, a bi t instruction
followed by a bne instruction can determine if there is a bit match between
the accumulator and the value of the operand. Similarly, a bit instruction
followed by a beq instruction detects a no-match condition.

Another result of the bit instruction, in all of its addressing modes
except immediate, is that bits 6 and 7 of the value in memory being tested
are transferred directly into the v and n flags of the P register. This feature
of the bi t instruction is often used in signed binary arithmetic. If a bi t
operation results in the setting of the n flag, the value tested is negative. If
the operation results in the setting of the v flag, that indicates an overflow
condition when signed numbers are used.

In the immediate addressing mode, the only P register flag affected by
the bi t instruction is the z flag.

Flags affected in all modes except immediate addressing mode: n, v, z
Flags affected in immediate addressing mode: z
Registers affected: P

378

Addressing Mode

bit d
bi t d,x

Bytes

2

2

Opcode (hex)

24
34

bit

bi t #
bi t a
bi t a,x

branch if less than

2 (30)

3
3

The 65C816 Instruction Set

89
2C
3C

b Lt is not a 65C816 instruction, but an alias recognized by the APW assem-
bler. When assembled, it generates the same opcode as the assembly language
instruction bee. For further details, see bee.

bmi branch on minus 6502, 65C02, 65C816
Tests the P register's n flag. Executes a branch if the n flag is set. Results in
no operation if the n flag is clear.

The destination of the branch must be within a range of - 128 to + 127
memory addresses from the address immediately following the bm i instruc-
tion.

In operations involving two's complement arithmetic, bmi is often used
to determine whether a value is negative. In logical operations, it is used to
determine if the high bit of a value is set. It is sometimes used to detect
whether short loops have counted down past O.

If bmi results in a branch, a l-byte signed displacement, fetched from
the second byte of the instruction, is sign-extended to 16 bits and added to
the program counter. When the address of the branch is calculated, the result
is loaded into the program counter, transferring control to that location.

Flags affected: None
Registers affected: None

bne

Addressing Mode

r

branch if not equal

Bytes

2

Opcode (hex)

30

6502, 65C02, 65C816
Tests the P register's zero flag. Executes a branch if the zero flag is clear (if
the result of the last operation which affected the zero flag was not zero).
Results in no operation if the zero flag is set.

The destination of the branch must be within a range of - 128 to + 127
memory addresses from the address immediately following the bne instruc-
tion.

The bne instruction is used for several purposes:

• To test whether a value that has been pulled, shifted, incremented,
or decremented is equal to zero

379

Appendix A

• To test the value of an index register to determine whether a loop
has been completed

• To make a programming decision based on a comparison of two
values

When bne tests the result of a comparison operation, it is used after a
comparison instruction (cmp, cpx, or cpy). When two values are compared
using a comparison instructions, data in memory is subtracted from data in
the accumulator. This does not affect the value of the accumulator, but it
conditions the carry flag as a result of the comparison. The zero flag can then
be tested using bne. If the value in the accumulator is not equal to the value
of the operand, the zero flag is set and a branch is made.

If bne results in a branch, a l-byte signed displacement, fetched from
the second byte of the instruction, is sign-extended to 16 bits and added to
the program counter. When the address of the branch is calculated, the result
is loaded into the program counter, transferring control to that location.

Flags affected: None
Registers affected: None

bpi

Addressing Mode

r

branch on plus

Bytes

2

Opcode (hex)

DO

6502, 65C02, 65C816
Tests the P register's n flag. Executes a branch if the n flag is clear. Results
in no operation if the n flag is set.

The destination of the branch must be within a range of -128 to + 127
memory addresses from the address immediately following the bm i instruction.

In operations involving two's complement arithmetic, bp Lis often used
to determine whether a value is negative. In logical operations, it is used to
determine if the high bit of a value is clear.

If bp L results in a branch, a I-byte signed displacement, fetched from
the second byte of the instruction, is sign-extended to 16 bits and added to
the program counter. When the address of the branch is calculated, the result
is loaded into the program counter, transferring control to that location.

Flags affected: None
Registers affected: None

bra

Addressing Mode

r

branch always

Bytes

2

Opcode (hex)

10

65C02, 65C816

380

The bra instruction always results in a branch; no testing is done. There are three
major differences between bra and the unconditional jump instruction j mp .

The 65C816 Instruction Set

Because signed displacements are used, a statement that uses the bra
instruction is only 2 bytes long, compared with the 3-byte length of a statement
containing a j mp instruction. Second, the bra instruction uses displacements
from the program counter and is thus relocatable. Last, the destination of the
branch must be within a range of - 128 to + 127 memory addresses from
the address immediately following the bra instruction.

When the branch instruction is used, a l-byte signed displacement,
fetched from the second byte of the instruction, is sign-extended to 16 bits
and added to the program counter. After the branch address is calculated, the
result is loaded into the program counter, transferring control to that location.

Flags affected: None
Registers affected: None

brk

Addressing Mode

r

break, or software
interrupt

Bytes

2

Opcode (hex)

80

6502, 65C02,65C816

Forces a software interrupt, usually passing control of the Apple IIos to the
monitor. In programs written for the 65C816, a b r k instruction can be handled
in two ways, depending on whether the processor is in native mode or emula-
tion mode.

If the 65C8l6 is in native mode, the program bank register is pushed
onto the stack. Next, the program counter is incremented by 2 and pushed
onto the stack. This incrementation takes place so that a break instruction can
be followed by a signature byte identifying which break in a program caused
the program to halt.

After the program counter is incremented by 2 and placed on the stack,
the program bank register is cleared to 0, and the program counter is loaded
from a special b r k vector situated at $00FFE6 and $00FFE7. (This vector
exists only in native mode, not in emulation mode, and that is why there is
no need for the P register to have a break flag when the 65C8l6 is configured
for emulation mode. In emulation mode, a b r k instruction sends a program
to vector $00FE6-$00FE7 instead of setting a special flag.) After the break
is executed, the P register's decimal flag is cleared to O.

If the 65C8l6 is in emulation mode when a b r k instruction is given,
the program counter is incremented by 2 and then pushed onto the stack, just
as in native mode. Next, the processor status register, with the b (break) flag
set, is pushed onto the stack. The interrupt disable flag is then set, and the
program counter is loaded from an interrupt vector at $FFFE and $FFFF.

This is a different interrupt vector from the one the b r k instruction uses
when the 65C8l6 is in native mode. In native mode, the brk instruction does
not have its own interrupt vector, as it does in emulation mode, but shares

381

Appendix A

one with hardware interrupts (lRQs). This shared vector is at memory ad-
dresses $FFFE and $FFFF. So, after an interrupt occurs, the interrupt handling
routine at $FFFE-$FFFF must pull the processor status register off the stack
and check the b flag to determine whether program processing was halted by
a software interrupt (b r k) instruction or a hardware interrupt.

If the break was caused by a software interrupt, the flag is set. But
hardware IRQs push the P register onto the stack with the b flag clear. So,
if the b flag is not set, the program was halted by a hardware IRQ.

When the 65C816 is in native mode, the P register's decimal flag is
not modified by the brk instruction.

Flags affected in native mode: band i
Flags affected in emulation mode: b, d, and i
Registers affected: None

Addressing Mode Bytes

2t

Opcode (hex)

00

tb r k is a I-byte instruction, but increments the program counter by 2 before pushing it onto
the stack.

brl branch always long 65C816
The br L instruction, like the bra instruction, always causes a branch. But
br L is a 3-byte instruction. The 2 bytes immediately following the opcode
form a 16-bit signed displacement from the program counter. Thus, the des-
tination of a br Linstruction can be anywhere within the current 64K program
bank.

After the destination address of the branch is calculated, the result is
loaded into the program counter, transferring control to that address.

There are two major differences between the b r L instruction and the
jump instruction j mp. The b r L instruction (like any other branch instruction)
is relocatable, but the j mp instruction is not. Also, j mp executes one cycle
faster than b r L.

Flags affected: None
Registers affected: None

Addressing Mode

r

Bytes

3

Opcode (hex)

82

bvc

382

branch if overflow clear 6502, 65C02, 65C816
Tests the overflow (v) flag in the 65C816 P register. Executes a branch if the
overflow flag is clear. Results in no operation if the overflow flag is set. This
instruction is used primarily in operations involving signed numbers.

The 65C816 Instruction Set

The destination of the branch must be within a range of - 128 to + 127
memory addresses from the address immediately following the bvc instruc-
tion.

The most common use for bv c is to detect whether there is an overflow
from bit 6 to bit 7 in a calculation involving signed numbers. The instruction
can also test bit 6 in a value that has been moved into the v flag by the bi t
instruction.

The v flag can be altered by the instructions adc, sbc, cLv, bit (in
all but immediate mode), s e p , and rep. It is also one of the flags restored
from the stack by the p Lp and r t L instructions.

Flags affected: None
Registers affected: None

Addressing Mode
r

Bytes
2

Opcode (hex)
50

bvs branch if overflow set 6502, 65C02, 65C816
Tests the overflow (v) flag in the 65C816 P register. Executes a branch if the
overflow flag is set. Results in no operation if the overflow flag is clear. This
instruction is used primarily in operations involving signed numbers.

The destination of the branch must be within a range of - 128 to + 127
memory addresses from the address immediately following the bvs instruc-
tion.

The most common use for bvs is to detect if there is an overflow from
bit 6 to bit 7 in a calculation involving signed numbers. The instruction can
also test bit 6 in a value that is moved into the v flag by the bit instruction.

The v flag can be altered by the instructions ad c , s be, c Lv, bit (in
all but immediate mode), s e p , and rep. It is also one of the flags restored
from the stack by the p Lp and r t i instructions.

Flags affected: None
Registers affected: None

clc

Addressing Mode
r

clear carry

Bytes
2

Opcode (hex)
70

6502, 65C02, 65C816
Clears the carry bit of the processor status register. The c Lc instruction should
be used prior to addition (ad c) operations to make sure that the carry flag is
clear before addition begins. It should also be used prior to the xc e (exchange
carry flag with emulation bit) instruction when the intent of the instruction is
to put the 65C8l6 into native mode.

Flags affected: c
Registers affected: P

383

Appendix A

cld

Addressing Mode

clear decimal mode

Bytes Opcode (hex)
18

Puts the computer into binary mode (its default mode) so that binary operations
(the kind most often used) can be carried out properly. When the decimal
flag is set, adc and sbc calculations are carried out in binary coded decimal
(BCD) mode.

It is a good practice to clear the decimal flag before beginning arithmetic
operations that should be carried out in binary mode, in case the flag has been
left in decimal mode following some previous decimal mode operation.

Flags affected: d
Registers affected: P

cli

Addressing Mode

clear interrupt
disable flag

Bytes Opcode (hex)
08

6502, 65C02,65C816

384

Enables hardware interrupts (lRQs) by clearing the P register's interrupt dis-
able (i) flag. (If the i flag is set, hardware interrupts are ignored.) When the
65C816 starts servicing an interrupt, it finishes the instruction currently exe-
cuting and then pushes the program counter and the P register on the stack.
It then sets the i flag and jumps to one of ten interrupt vectors on page $FF
of bank o. The routine that it finds there must determine the nature of the
interrupt and handle it accordingly.

When the interrupt service routine ends with rt i , the rt i instruction
pulls the P register off the stack and returns to the instruction following the
one that was executed just before the interrupt began. The restored P register
contains a cleared i flag, so eLi is ordinarily not necessary. However, if the
interrupt service routine is designed to service interrupts that occur while a
previous interrupt is still being handled, other interrupt handling routines must
be reenabled with a eLi instruction.

The eLi instruction is also used to reenable interrupts if they have been
disabled to allow the execution of time critical code or other code that cannot
be interrupted.

Flags affected: i
Registers affected: P

clv

Addressing Mode

clear overflow flag

Bytes

The 65C816 Instruction Set

Opcode (hex)
58

6502, 65C02, 65C816
Clears the P register's overflow (v) flag by setting it to O. Because the v flag
is cleared by a nonoverflow result of an ad c instruction, it is not usually
necessary to clear it before an addition operation. So, until the advent of the
bra (branch always) and br L (branch always-long) instructions, the most
common use of the c Lv instruction was to force an unconditional branch with
a sequence of code such as

cLv
bvc SOMEPLACE

Now, the bra and b r L instructions have made such sequences as this one
unnecessary. It is up to you to find some useful function for the c Lv instruc-
tion.

Incidentally, there is no specific instruction for setting the v flag. It can,
however, be set with the 65C02/65C816 instruction rep or by using a bi t
instruction with a mask that has bit 6 set.

Flags affected: v
Registers affected: P

cmp

Addressing Mode

compare with
accumulator

Bytes Opcode (hex)
B8

6502, 65C02, 65C816

Compares a specified literal number or the contents of a specified memory
location with the contents of the accumulator. The n, z, and c flags of the
status register are affected by this operation, and a branch instruction usually
follows. The result of the operation thus depends on what branch instruction
is used and whether the value in the accumulator is less than, equal to, or
more than the value tested.

When a cmp instruction is issued, the contents of the specified memory
location are subtracted from the accumulator. The result is not stored in the
acummulator, but the n, z, and c flags are conditioned as follows.

The z flag is set if the result of the comparison is 0 and cleared otherwise.
The n flag is set or cleared by the condition of the sign bit (bit 7) of the result.
The c flag is set if the value in the accumulator is greater than or equal to
the value in memory. Abc c instruction can then be used to detect if the

385

Appendix A

value in the accumulator is greater than the value in memory. The beq in-
struction can detect if the two values are equal. The bcs instruction can detect
if the value in the accumulator is greater than or equal to the value in memory.
A beq followed by bcs can detect if the value in the accumulator is greater
than the value in memory.

Flags affected: n, Z, c
Registers affected: P

Addressing Mode Bytes Opcode (hex)
cmp (d) 2 02
cmp (d),y 2 01
cmp (d,x) 2 CI
cmp (r,s),y 2 03
cmp d 2 C5
cmp d,x 2 05
cmp r,s 2 C3
cmp Ed] 2 C7
cmp [d],y 2 07
cmp # 2 (3) C9
cmp a 3 CO
cmp a,x 3 00
cmp a,y 3 09
cmp a L 4 CF
cmp aL,x 4 OF
cmp i 2 02

COp coprocessor enable 65C816
The cop instruction allows the 65C816 to tum control over to another pro-
cessor, such as a math, graphics, or music chip. When the coprocessor com-
pletes its assignment, it can return control to the 65C816.

The cop instruction, much like a brk instruction, causes a software
interrupt, but through a different vector: $00FFF4 and $00FFF5.

When a cop instruction is issued, the program counter is incremented
by 2 and pushed onto the stack. This operation allows the programmer to
follow cop with a signature byte that specifies which coprocessor handling
routine to execute. Unlike the brk instruction, which makes a signature byte
optional, the cop instruction requires a signature byte. Signature bytes from
$80 through $FF are reserved by the Western Design Center, which designed
the 65C816. Signature bytes in the range $00 through $7F are available for
use in application programs.

There are some differences between the way cop works in emulation
mode and native mode. When a cop instruction is used in emulation mode,
the program counter is incremented by 2 and pushed onto the stack, the status
register is pushed onto the stack, the interrupt disable flag is set, and the

386

The 65C816 Instruction Set

program counter is loaded from the emulation mode coprocessor vector at
$FFF4-FFF5. Then, after the command is executed, the P register's d (deci-
mal) flag is cleared.

When a cop instruction is issued in native mode, the program counter
bank register is pushed onto the stack, the program counter is incremented
by 2 and pushed onto the stack, the status register is pushed onto the stack,
the interrupt disable flag is set, the program bank register is cleared to 0, and
the program counter is loaded from the native mode coprocessor vector at
$00FFE4-00FFE5. Then, after the instruction is issued, the d (decimal) flag
is cleared.

Flags affected: d, i
Registers affected: P

Addressing Mode Bytes

2t

Opcode (hex)

02

cpa

cpx

tcop is a I-byte instruction, but the program counter is incremented by 2 before
it is pushed onto the stack, allowing (in fact requiring) a signature byte to be used
following the instruction.

cpa is not a 65C816 instruction, but an alias that the APW assembler rec-
ognizes as an alternate for the assembly language statement cmp a. For further
details, see cmp.

compare with X register 6502, 65C02, 65C816
Compares a specified literal number or the contents of a specified memory
location with the contents of the X register. The n, z, and c flags of the status
register are affected by this operation, and a branch instruction usually follows.
The result of the operation thus depends upon what branch instruction is used
and whether the value in the X register is less than, equal to, or more than
the value tested.

When a cpx instruction is issued, the contents of the specified memory
location are subtracted from the value of the X register. The result is not
stored in the X register, but the n, z, and c flags are conditioned as follows.

The z flag is set if the result of the comparison is 0 and cleared otherwise.
The n flag is set or cleared by the condition of the sign bit (bit 7) of the result.
The c flag is set if the value in the X register is greater than or equal to the
value in memory. Abc c instruction can then be used to detect if the value
in the X register is greater than the value in memory. A beq instruction can
detect if the two values are equal. Abc s instruction can detect if the value
in the X register is greater than or equal to the value in memory. A beq

387

Appendix A

instruction followed by be s can detect if the value in the X register is greater
than the value in memory.

Flags affected: n, z, c
Registers affected: P

Addressing Mode
epx d
epx #
epx a

Bytes
2

2 (3)

3

Opcode (hex)
E4

EO
EC

cpy compare with Y register 6502, 65C02, 65C816
Compares a specified literal number or the contents of a specified memory
location with the contents of the Y register. The n, z, and c flags of the status
register are affected by this operation, and a branch instruction usually follows.
The result of the operation thus depends upon what branch instruction is used
and whether the value in the Y register is less than, equal to, or more than
the value tested.

When a epy instruction is issued, the contents of the specified memory
location are subtracted from the value of the Y register. The result is not
stored in the Y register, but the n, z, and c flags are conditioned as follows.

The z flag is set if the result of the comparison is 0 and cleared otherwise.
The n flag is set or cleared by the condition of the sign bit (bit 7) of the result.
The c flag is set if the value in the Y register is greater than or equal to the
value in memory. Abe e instruction can then be used to detect if the value
in the Y register is greater than the value in memory. A beq instruction can
detect if the two values are equal. Abe s instruction can detect if the value
in the Y register is greater than or equal to the value in memory. A beq
instruction followed by bes can detect if the value in the Y register is greater
than the value in memory.

Flags affected: n, z, c
Registers affected: P

dea

Addressing Mode
epy d
epy #
epya

Bytes
2

2 (3)
3

Opcode (hex)
C4

CO
cc

388

dea is not a 65C816 instruction, but an alias that the APW assembler rec-
ognizes as an alternate for the assembly language statement de ea. For
further details, see dee.

dec decrement a memory
location

The 65C816 Instruction Set

6502, 65C02,65C816

dex

Decrements the contents of a specified memory location by I. It is important
to note that dec does not affect the carry flag. Thus, if the value to be
decremented is $00, the result of the dec operation is $FF.

Because dec does not change the carry flag, the carry flag cannot be
used to test the outcome of a dec operation. A dec instruction does condition
the nand z flags, however, so they can be used to test a value decremented
by dec.

Flags affected: n, z
Registers affected: P

Addressing Mode Bytes Opcode (hex)
dec Ace 1 3A

dec d 2 C6

dec d,x 2 D6

dec a 3 CE

dec a,x 3 DE

decrement the X register 6502, 65C02, 65C816
Decrements the contents of the X register by I. It is important to note that
dex does not affect the carry flag. Thus, if the value to be decremented is
$00, the result of dex is $FF.

Because dex does not change the carry flag, the carry flag cannot be
used to test the outcome of a dex operation. The dex instruction does con-
dition the nand z flags, however, so they can be used to test a value dec-
remented by dex.

Flags affected: n, z
Registers affected: P, M

Addressing Mode Bytes Opcode (hex)
CA

dey decrement the Y register 6502, 65C02, 65C816
Decrements the contents of the Y register by 1. It is important to note that
dey does not affect the carry flag. Thus, if the value to be decremented is
$00, the result of dey is $FF.

Because dey does not change the carry flag, the carry flag cannot be
used to test the outcome of a dey operation. The dey instruction does con-
dition the nand z flags, however, so they can be used to test a value dec-
remented by dey.

389

Appendix A

ear

Flags affected: n, Z

Registers affected: P, M

Addressing Mode

exclusive-OR with
accumulator

Bytes Opcode (hex)
88

6502, 65C02, 65C816

390

Performs an exclusive-OR operation on the contents of the accumulator and
a specified literal value or memory location. Each bit in the accumulator is
EORed with the corresponding bit in the operand, and the result of the op-
eration is stored in the accumulator. See figure A-3.

The eo r instruction is often used as a mask, to set specified bits in a
memory location. When used as a mask, the instruction compares each bit
in a memory location with the corresponding bit in the accumulator. If one
and only one of the two bits being compared is set, the corresponding bit in
the accumulator is set. Otherwise, the corresponding bit in the accumulator
is cleared.

When eor is used with a mask consisting of all ones-that is, a mask
of $FFFF in native mode or a mask of $FF in emulation mode-each bit in
the operand is reversed; that is, each set bit is cleared, and each cleared bit
is set. So eo r is used quite often to reverse the settings of the bits in a word
or a byte.

Here is another useful characteristic of eo r. When it is used on a value
twice in succession and with the same operand, the value is changed to another
value the first time the instruction is used, and it is converted back into its
original value the second time the instruction is used. Because of this char-
acteristic, the eor instruction is often used to encode values and then to
restore them to their original states. To encode a value using eo r , just perform
an EOR operation on it using an arbitrary I-byte key. Later, the value can
be restored to its original state by performing another EOR operation using
the same key.

The eor instruction conditions the P register's nand z flags. The n flag
is set if the most significant bit of the result of the EOR operation is set;
otherwise, it is cleared. The z flag is set if the result is 0; otherwise, it is
cleared.

In emulation mode, eo r is an 8-bit operation. In native mode, it is a
16-bit operation, with the high-order byte situated in the effective address
plus I.

0 0 1 1
EGR 0 EGR 1 EGR 0 EGR 1

0 1 1 0

Figure A-3
Truth table for EOR

The 65C816 Instruction Set

Flags affected: n, Z

Registers affected: A, P

Addressing Mode Bytes Opcode (hex)
eor (d) 2 52
eor (d),y 2 51
eor (d,x) 2 41
eor (r,s),y 2 53
ear d 2 45
ear d,x 2 55
eor r,s 2 43
eor Ed] 2 47
ear [d],y 2 57
ear # 2 (3) 49
ear a 3 40
ear a,x 3 50
ear a,y 3 59
ear a L 4 4F
ear a L,x 4 5F

ina

ina is not a 65C816 instruction, but an alias that the APW assembler rec-
ognizes as an alternate for the assembly language statement inc a. For
further details, see i nG •

inc increment memory 6502, 65C02, 65C816
Increments the contents of a specified memory location by 1. The inc in-
struction neither affects nor is affected by the carry flag. So, if a value being
incremented is $FF, the result of the inc operation is $00. Because inc does
not affect the carry flag, the result of an inc operation cannot be tested by
checking the carry flag. It does condition the nand z flags, however, so they
can be used to test the result of an inc operation.

Flags affected: n, z
Registers affected: M, P

Addressing Mode
inc Ace
inc d

Bytes

2

Opcode (hex)
IA

E6

391

Appendix A

inx

; nc d,x
; nc a
inc a,x

increment X register

2

3

3

F6
EE
FE

6502, 65C02, 65C816
Increments the contents of the X register by 1. The i nx instruction neither
affects nor is affected by the carry flag. So, if a value being incremented is
$FF, the result of the; nx operation is $00. Because; nx does not affect the
carry flag, the result of an ; nx operation cannot be tested by checking the
carry flag. It does condition the nand z flags, however, so they can be used
to test the result of an ; nx operation.

Flags affected: n, z
Registers affected: X, P

iny

Addressing Mode

increment Y register

Bytes Opcode (hex)
E8

6502, 65C02, 65C816
Increments the contents of the Y register by I. The i ny instruction neither
affects nor is affected by the carry flag. So, if a value being incremented is
$FF, the result of the; ny operation is $00. Because i ny does not affect the
carry flag, the result of an i ny operation cannot be tested by checking the
carry flag. It does condition the nand z flags, however, so they can be used
to test the result of an i ny operation.

Flags affected: n, z
Registers affected: X, P

jmp

Addressing Mode

jump to address

Bytes Opcode (hex)
C8

6502, 65C02, 65C816

392

Causes program execution to jump to the address specified. When a j mp
instruction is issued, the program counter is loaded with the target address,
causing control of the program in progress to be shifted to that address. When
j mp is used in the absolute addressing mode, its operand can be either 16
bits or 24 bits. If a 16-bit address is used, the destination of the jump can be
anywhere within the current program bank. If a 24-bit address is used, the
jump is referred to as a long jump, and its destination address can be anywhere
within the address space of the IIGs. When j mp carries out a long jump, it
has the same result as the j mL instruction.

The 65C816 Instruction Set

Flags affected: None
Registers affected: None

Addressing Mode
j rnp (a)
jrnp (a,x)
jrnp a
jrnp a L

Bytes
3

3

3

4

Opcode (hex)
6C

7C

4C

5C

jsl jump to subroutine-long 65C816
Jumps to a subroutine using long (24-bit) addressing. The j s L instruction
takes a 24-bit operand. It pushes a 24-bit (long) return address onto the stack,
then transfers control to the subroutine at the 24-bit address that is the operand.
This return address is the address of the last instruction byte (the fourth
instruction byte, or the third operand byte), not the address of the next in-
struction. It is the return address minus 1.

When you issue a j s L instruction, the current program counter bank
is pushed onto the stack first. Then the high-order byte and the low-order
byte of the address are pushed onto the stack in standard 6502/65C816 order,
low byte first. The program bank register and the program counter are then
loaded with the effective address specified by the operand, and control is
transferred to the specified address.

Flags affected: None
Registers affected: None

jsr

Addressing Mode
a L

jump to subroutine

Bytes
4

Opcode (hex)
22

6502, 65C02, 65C816
Causes program execution to jump to the address that follows the instruction.
That address should be the starting address of a subroutine that ends with the
r t s instruction. When the program reaches the r t s instruction, execution
of the program returns to the next instruction after the j s r instruction that
caused the jump to the subroutine.

When a j s r instruction is issued, the high-order byte and the low-order
byte of the address are pushed onto the stack in standard 6502/65C816 order,

393

Appendix A

low byte first. The program counter is then loaded with the effective address
specified by the operand, and control is transferred to the specified address.

Flags affected: None
Registers affected: None

Addressing Mode
j s r Ca,.x)
j s r a

Bytes
3
3

Opcode (hex)
Fe
20

Ida load the accumulator 6502, 65C02, 65C816
Loads the accumulator with the contents of the effective address of the op-
erand. The n flag is set if a value with the high bit set is loaded into the
accumulator. The z flag is set if the value loaded into the accumulator is O.

In emulation mode, Lda is an 8-bit operation. In native mode, it is a
16-bit operation, with the high-order byte situated in the effective address
plus 1.

Flags affected: n, z
Registers affected: A, P

Addressing Mode Bytes Opcode (hex)
Lda (d) 2 B2
Lda (d),y 2 BI
Lda (d,x) 2 Al
Lda (r,s),y 2 B3
Lda d 2 A5
Lda d,x 2 B5
Lda r,s 2 A3
Lda [dJ 2 A7
Lda [dJ,y 2 B7
Lda # 2 (3) A9
Lda a 3 AD
Lda a,x 3 BD
Lda a,y 3 B9
Lda a L 4 AF
Lda a L,x ' 4 BF

Idx load the X register 6502, 65C02, 65C816
Loads the X register with the contents of the effective address of the operand.
The n flag is set if a value with the high bit set is loaded into the X register.
The z flag is set if the value loaded into the X register is O.

In emulation mode, Ldx is an 8-bit operation. In native mode, it is a

394

The 65C816 Instruction Set

16-bit operation, with the high-order byte situated in the effective address
plus 1.

Flags affected: n, Z
Registers affected: X, P

Addressing Mode Bytes Opcode (hex)
Ldx d 2 A6
Ldx d,y 2 B6
Ldx # 2 (3) A2
Ldx a 3 AE
Ldx a,y 3 BE

Idy load the Y register 6502, 65C02, 65C816
Loads the Y register with the contents of the effective address of the operand.
The n flag is set if a value with the high bit set is loaded into the Y register.
The z flag is set if the value loaded into the Y register is O.

In emulation mode, Ldy is an 8-bit operation. In native mode, it is a
16-bit operation, with the high-order byte situated in the effective address
plus 1.

Flags affected: n, l

Registers affected: Y, P

Addressing Mode Bytes Opcode (hex)
Ldy d 2 A4
Ldy d,x 2 B4
Ldy # 2 (3) AD
Ldya 3 AC
Ldya,x 3 BC

Isr logical shift right 6502, 65C02,65C816
Moves each bit in the accumulator one position to the right. See figure A-4.
A 0 is deposited into the leftmost position (bit 15 in native mode and bit 7
in emulation mode), and bit 0 is deposited into the carry. The result is left
in the accumulator or in the affected memory register.

In emulation mode, Lsr is an 8-bit operation. In native mode, it is a
16-bit operation, with the high-order byte situated in the effective address
plus 1.

coBITS15

o
Figure A-4

LSR operation I

395

Appendix A

mvn

Flags affected: n, z, c
Registers affected: A, P, M

Addressing Mode
Lsr Ace
Ls r d
Lsr d,x
Ls r a
Lsr a,x

move block next, or
move block negative

Bytes
1

2
2

3

3

Opcode (hex)
4A

46

56
4E
5E

65C816

396

Copies a block of memory from one RAM address to another. Both mvn and
the 65C816's other block move instruction, mvp (move block previous, or
move block positive), can copy blocks from one bank to another and can copy
memory blocks that overlap. When overlapping blocks are moved, however,
mvn should be used only if the starting address of the block to be moved is
higher than the starting address of the destination. If the blocks overlap and
the starting address of the destination is higher than the starting address of
the source, use the mvp instruction. Otherwise, part of the block being copied
may be overwritten.

The mvn instruction takes two operands, each consisting of I byte. In
programs written using the APW assembler-editor, the operands are separated
by a comma. The first operand specifies the bank containing the block to be
moved, and the second specifies the bank to which the block will be moved.

The source address, destination address, and length of the move are
passed to the mvn instruction in the X, Y, and C (double accumulator) reg-
isters. The X register holds the source address, the Y register holds the des-
tination address, and the C register holds the length of the block being moved,
minus 1. For example, if the C register holds the value $OOFF, 256 bytes (or
$FF bytes in hexadecimal notation) are moved. The complete C register is
always used, regardless of the setting of the m flag.

When you issue an mvn instruction, the first byte to be moved is copied
from the source address stored in the X register to the destination address
stored in the Y register. Then the X and Y registers are incremented. Next,
the C register is decremented, and the next byte is moved. This sequence of
operations continues until the number of bytes originally stored in the C
register, plus I, are moved (until the value in C is $FFFF).

When the execution of an mvn operation is complete, the X and Y
registers point to addresses that lie I byte beyond the ends of the blocks to
which they originally pointed. The data bank register holds the value of the
destination bank value (the value of the first byte of the operand).

If the source and destination blocks do not overlap, the source block
remains intact after it is copied to the destination.

The operand field of the mvn instruction must be coded as two addresses:

The 65C816 Instruction Set

first the source, then the destination. When the instruction is assembled into
machine code, however, this order is reversed.

If the 65C816 receives an interrupt while an mvn move is in progress,
the copying of the byte being moved is completed and then the interrupt is
serviced. If the interrupt handling routine restores all registers or leaves them
intact and ends with an rt i instruction, the block move is resumed auto-
matically when the interrupt ends.

The mvn instruction is useful when blocks of code are moved from one
bank to another. For moves that take place within one bank, however, op-
erations that use other algorithms may be faster and more efficient.

If the 65C816 is in emulation mode or the A, X, and Y registers are
in 8-bit mode when the mvn instruction is issued, both addresses specified in
the operand must be on page 0 because the high bytes of the index registers
contain zeros.

Flags affected: None
Registers affected: None

Addressing Mode
xya

Bytes
3

Opcode (hex)
54

mvp move block previous, or
move block posltlve

65C816

Copies a block of memory from one RAM address to another. Both mvp and
the 65C816's other block move instruction, mvn (move block next, or move
block negative), can copy blocks from one bank to another and can copy
memory blocks that overlap. When overlapping blocks are moved, however,
mvp should be used only if the starting address of the block to be moved is
lower than the starting address of the destination. If the blocks overlap and
the starting address of the destination is higher than the starting address of
the source, use the mvn instruction. Otherwise, part of the block being copied
may be overwritten.

The mvp instruction takes two operands, each consisting of I byte. In
programs written using the APW assembler-editor, the operands are separated
by a comma. The first operand specifies the bank containing the block to be
moved, and the second specifies the bank to which the block will be moved.

The source address, destination address, and length of the move are
passed to the mvp instruction in the X, Y, and C (double accumulator) reg-
isters. The X register holds the address of the last byte of the block to be
moved, the Y register holds the last byte of the destination block, and the C
register holds the length of the block being moved, minus I. For example,
if the C register holds the value $OOFF, 256 bytes (or $FF bytes in hexadecimal
notation) are moved. The complete C register is always used, regardless of
the setting of the m flag.

When you issue an mvp instruction, the first byte to be moved is copied
from the source address stored in the X register to the destination address

397

Appendix A

stored in the Y register. Then the X and Y registers are decremented. Next,
the C register is decremented, and the next byte is moved. This sequence of
operations continues until the number of bytes originally stored in the C
register, plus 1, are moved (until the value in C is $FFFF).

When the execution of an mvp operation is complete, the X and Y
registers point to addresses that lie I byte past the starting addresses of the
blocks to which they originally pointed. The data bank register holds the value
of the destination bank value (the value of the first byte of the operand).

If the source and destination blocks do not overlap, the source block
remains intact after it is copied to the destination.

The operand field of the mvp instruction must be coded as two addresses:
first the address of the last byte of the source block, then the address of the
last byte of the destination block. When the instruction is assembled into
machine code, however, this order is reversed.

If the 65C816 receives an interrupt while an mvp move is in progress,
the copying of the byte being moved is completed and then the interrupt is
serviced. If the interrupt handling routine restores all registers or leaves them
intact and ends with an r t i instruction, the block move is resumed auto-
matically when the interrupt ends.

The mvp instruction is useful when blocks of code are moved from one
bank to another. For moves that take place within one bank, however, op-
erations that use other algorithms may be faster and more efficient.

If the 65C816 is in emulation mode or the A, X, and Y registers are
in 8-bit mode when the mvp instruction is issued, both addresses specified in
the operand must be on page 0 because the high bytes of the index registers
contain zeros.

Flags affected: None
Registers affected: None

nop

Addressing Mode
xya

no operation

Bytes
3

Opcode (hex)
44

6502, 65C02, 65C816

398

Causes the 65C816 to wait, and do nothing, for one or more cycles. The nap
instruction does not affect any registers except the program counter, which
is incremented once to point to the next instruction.

The nap instruction is often used to indicate spots in a program where
more code may be inserted. For example, in a sequence such as

LAB1 nap
Lda #$FF

you could insert more lines of source code between the nap and Lda instruc-
tions, without retyping the line containing the label LAB 1.

The 65C816 Instruction Set

The nop instruction can also be used to take up time. Every nop in a
program takes two cycles, so nop instructions are often used in delay loops
and to adjust the speeds of loops in which timing is important.

Flags affected: None
Registers affected: None

Addressing Mode

OR accumulator
with memory

Bytes Opcode (hex)
EA

6502, 65C02,65C816

Performs a binary inclusive-OR operation on the value in the accumulator
and a literal value or the contents of a specified memory location or immediate
value. See figure A-5. Each bit in the accumulator is ORed with the corre-
sponding bit in the operand, and the result of the operation is stored in the
accumulator.

The 0 r a instruction is often used as a mask, to set specified bits in a
memory location. When used as a mask, the instruction compares each bit
in a memory location with the corresponding bit in the accumulator. Each bit
set in the memory location sets the corresponding bit in the accumulator. Bits
cleared in the accumulator have no effect on their corresponding bits in the
memory location. For example, the sequence

Lda #$OOFF
ora MEMLOC
sta MEMLOC

sets all bits in the the low-order byte of MEMLOC, while leaving the high-
order byte of MEMLOC unchanged.

The ora instruction conditions the P register's nand z flags. The n flag
is set if the most significant bit of the result of the ORA operation is set;
otherwise, it is cleared. The z flag is set if the result is 0; otherwise it is
cleared.

In emulation mode, ora is an 8-bit operation. In native mode, it is a
16-bit operation, with the high-order byte situated in the effective address
plus 1.

Flags affected: n, Z
Registers affected: A, P

C
ORA C----

C

o
ORA 1

1

1
ORA 0

1
ORA

Figure A-5
Truth table for ORA

399

Appendix A

Addressing Mode Bytes Opcode (hex)
ora (d) 2 12
ora (d),y 2 II
ora (d,x) 2 01
ora (r,s),y 2 13
ora d 2 05
ora d,x 2 15
ora r,s 2 03
ora Cd] 2 07
ora [d],y 2 17
ora # 2 (3) 09
ora a 3 OD
ora a,x 3 ID
ora a,y 3 19
ora a l 4 OF
ora a l,x 4 IF

pea push effective address 65C816
Pushes a l6-bit operand, always expressed in absolute addressing mode, onto
the stack. This operation always pushes 16 bits of data, regardless of the
settings of the m and x mode select flags, and the stack pointer is decremented
twice.

Although the mnemonic pea would seem to suggest that the value
pushed onto the stack must be an address, the instruction can actually be used
to place any l6-bit value on the stack. For instance, the instruction

pea 0

pushes a 0 on the stack. Notice, however, that when pea places a literal value
on the stack, the context is unusual. The operand of the instruction is inter-
preted by the assembler as a literal value. Thus, it does not require the prefix
to designate it as a literal value. So, in this example, a literal 0, not the
value of memory address $0000, is pushed onto the stack.

Flags affected: None
Registers affected: S

Addressing Mode
s

Bytes
3

Opcode (hex)
F4

pei push effective indirect address 65C816

400

Pushes the 16-bit value located at the address formed by adding the direct
page offset specified by the operand to the direct page register. Although the

The 65C816 Instruction Set

mnemonic pei may seem to suggest that the instruction's operand must be
an address, it actually can be any kind of 16-bit data. The instruction always
pushes 16 bits of data, regardless of the settings of the m and x mode select
flags.

The first byte pushed is the byte at the direct page offset plus I (the
high byte of the double byte stored at the direct page offset). The byte of the
direct page offset itself (the low byte) is pushed next. The stack pointer then
points to the next available stack location, directly below the last byte pushed.

The syntax of the pe i instruction is that of direct page indirect. Unlike
other instructions that use this syntax, however, the effective indirect address,
rather than the data stored at that address, is pushed onto the stack.

Flags affected: None
Registers affected: S

Addressing Mode
s

Bytes
2

Opcode (hex)
D4

per push effective PC
relative indirect address

65C816

Adds the current value of the program counter to the value of a 2-byte operand
and pushes the result on the stack. When the program counter is added to the
operand, it contains the address of the next instruction (the instruction fol-
lowing the pe r instruction).

After the program counter and the operand are added, the high byte of
their sum is pushed onto the stack first, followed by the low byte. After the
instruction is completed, the stack pointer points to the next available stack
location, immediately below the last byte pushed. The pe r instruction always
pushes 16 bits of data, regardless of the settings of the m and x mode select
flags.

The syntax used with the pe r instruction is similar to that used with
branch instructions; that is, the data to be referenced is used as an operand.
The address referred to must be in the current program bank because pe r ' s
displacement is relative to the program counter.

The pe r instruction is useful when you write self-relocatable code in
which a given address (typically the address of a data area) must be accessed.
In this kind of application, the address pushed onto the stack is the run time
address of the data area, regardless of where the program was loaded in
memory. It could be pulled into a register, stored in an indirect pointer, or
used on the stack with the stack relative indirect indexed addressing mode to
access the data at that location.

The pe r instruction can also be used to push return addresses on the
stack, either as part of a simulated branch-to-subroutine or to place the return
address beneath the stacked parameters to a subroutine call. When pe r is

401

Appendix A

used in this way, it should be noted that a pushed return address should be
the desired return address minus I.

Flags affected: None
Registers affected: S

pha

Addressing Mode

s

push accumulator

Bytes

3

Opcode (hex)

62

Pushes the contents of the accumulator on the stack. The accumulator and
the P register are not affected.

In emulation mode, pha is an 8-bit operation. The contents of an 8-bit
accumulator are pushed on the stack, and the stack pointer is decremented
by 1.

In native mode, pha is a I6-bit operation. The high byte in the accu-
mulator is pushed first, then the low byte. The stack pointer then points to
the next available stack location, directly below the last byte pushed.

Flags affected: None
Registers affected: None

Addressing Mode

s

Bytes Opcode (hex)

48

phb push data bank register 65C816

402

Pushes the value of the data bank register (DBR) onto the stack. The stack
pointer then points to the next available stack location, directly below the
byte pushed. The data bank register itself is left unchanged.

The 65C816 data bank register is an 8-bit register, so only 1 byte is
pushed onto the stack, regardless of the settings of the m and x (mode select)
flags.

The phb instruction allows the programmer to save the current value
of the data bank register before changing the data bank's value. It is therefore
useful when a program in one bank must access data in another. After the
data in the other bank is accessed, the original value of the data bank register
can be restored.

Flags affected: None
Register affected: S

Addressing Mode
s

Bytes

The 65C816 Instruction Set

Opcode (hex)
8B

phd push direct page register 65C816

Pushes the contents of the direct page register (D) onto the stack. The most
important use of the phd instruction is to save the value of the D register
temporarily, prior to starting an operation that may change its value. After
the contents of the D register are saved, a subroutine may specify its own
direct page. Then, after the subroutine ends, the original value of the D register
can be restored.

Because the direct page register is always a l6-bit register, phd is always
a 16-bit operation, regardless of the settings of the m and x (mode select)
flags. When you use this instruction, the high byte of the direct page register
is pushed first, then the low byte. The direct page register itself is unchanged.
The stack pointer then points to the next available stack location, directly
below the last byte pushed.

Flags affected: None
Register affected: S

Addressing Mode
s

Bytes Opcode (hex)
OB

phk push program bank register 65C816

Pushes the current value of the program bank register onto the stack. The
ph k instruction is often used to set the data bank register and the program
bank register so that they contain the same values. A program can then access
data in its own bank.

To make the program bank register and the data bank register the same,
the following sequence is often used:

phk
pLb

; push contents of PBR on stack
; pu LL PBR va Lue ; nto data bank reg; ster

When the ph k instruction is used, the program bank register itself is
unchanged. The stack pointer then points to the next available stack location,
directly below the byte pushed. Because the program bank register is an 8-
bit register, only 1 byte is pushed onto the stack, regardless of the settings
of the m and x (mode select) flags.

Flags affected: None
Registers affected: S

403

Appendix A

Addressing Mode
s

Bytes Opcode (hex)
48

php push processor status 6502, 65C02,65C816
Pushes the contents of the P register on the stack. The P register itself is left
unchanged, and no other registers are affected.

Because the program bank register is an 8-bit register, only I byte is
pushed onto the stack, regardless of the settings of the m and x (mode select)
flags.

Note that the P register's e flag, a "hanging flag," is not pushed onto
the stack by the php instruction. The only way to access the e flag is with
the xce instruction.

Flags affected: None
Registers affected: None

phx

Addressing Mode
s

push X register

Bytes Opcode (hex)
08

65C02, 65C816
Pushes the contents of the X index register onto the stack. The X register
itself is unchanged.

When the 65C816 is in emulation mode or when the X and Y registers
are set to 8-bit lengths, the 8-bit contents of the X register are pushed onto
the stack. The stack pointer then points to the next available stack location,
directly below the byte pushed.

When the 65C816 is in native mode and the X and Y registers are set
to 16-bit lengths, the 16-bit contents of the X register are pushed onto the
stack. The high byte is pushed first, then the low byte. The stack pointer then
points to the next available stack location, directly below the last byte pushed.

Flags affected: None
Registers affected: S

phy

Addressing Mode
s

push Y register

Bytes Opcode (hex)
DA

65C02,65C816

404

Pushes the contents of the Y index register onto the stack. The Y register
itself is unchanged.

When the 65C816 is in emulation mode or when the X and Y registers
are set to 8-bit lengths, the 8-bit contents of the Y register are pushed onto

The 65C816 Instruction Set

the stack. The stack pointer then points to the next available stack location,
directly below the byte pushed.

When the 65C816 is in native mode and the X and Y registers are set
to 16-bit lengths, the 16-bit contents of the X register are pushed onto the
stack. The high byte is pushed first, then the low byte. The stack pointer then
points to the next available stack location, directly below the last byte pushed.

Flags affected: None
Registers affected: S

pia

Addressing Mode
s

pull accumulator

Bytes Opcode (hex)
5A

6502, 65C02, 65C816
Removes 1 byte from the stack and deposits it in the accumulator. The nand
z flags are conditioned, just as if an Lda operation had been carried out.

When the 6C816 is in emulation mode or when the accumulator is set
to an 8-bit length, the stack pointer is first incremented. Then the byte pointed
to by the stack pointer is loaded into the accumulator.

When the 65C816 is in native mode and the accumulator is set to a 16-
bit length, the low-order byte of the accumulator is pulled first, followed by
the high-order byte.

Flags affected: n, Z

Registers affected: A, S, P

Addressing Mode
s

Bytes Opcode (hex)
68

plb pull data bank register 6502, 65C02, 65C816
Pulls the 8-bit value on top of the stack into the data bank register (B) and
changes the value of the data bank to that value. All instructions referencing
data that specifies only 16-bit addresses will then get their bank address from
the value pulled into the data bank register. This is the only instruction that
can modify the data bank register.

The p Lb instruction is often used with ph k (push program bank register)
to set the data bank register and the program bank register so that they contain
the same values. A program can then access data that is in its own bank. To
make the program bank register and the data bank register the same, the
following sequence is often used:

phk
pLb

; push contents of PBR on stack
; pu LL PBR va Lue ; nto data bank reg; ster

405

Appendix A

When p Lb is used in a program, the stack pointer is incremented, then
the byte pointed to by the stack pointer is loaded into the register. Because
the bank register is an 8-bit register, p Lb pulls only I byte from the stack,
regardless of the settings of the m and x (mode select) flags.

Flags affected: n, Z

Registers affected: B, S, P

Addressing Mode
s

Bytes Opcode (hex)
AB

pld pull direct page register 65C816
Pulls the l6-bit value on top of the stack into the direct page register (D),
giving the D register a new value.

The most common use of p Ld is to restore the direct page register to
a previous value. When a program calls a subroutine that has its own direct
page, the program can save its direct page by using the instruction phd (push
direct page) before the subroutine is called. When the subroutine ends and
control returns to the program that called it, the original state of the D register
can be restored with a p Ld instruction.

The direct page register is a 16-bit register, so 2 bytes are pulled from
the stack, regardless of the settings of the m and x (mode select) flags. The
low byte of the direct page register is pulled first, then the high byte. The
stack pointer then points to where the high byte just pulled was stored, and
that is the next available stack location.

Flags affected: n, Z

Register affected: D, S, P

Addressing Mode
5

Bytes Opcode (hex)
2B

pip pull processor status
register

6502, 65C02, 65C816

406

Pulls the 8-bit value on top of the stack into the processor status register (P),
changing the value of the P register. p Lp is often used to restore flag settings
previously saved on the stack with a php (push processor status register)
instruction.

It should be noted, however, that the P register's e flag (the emulation
mode flag) cannot be retrieved from the stack with a p Lp instruction. That
is because it is a "hanging flag" that is not pushed on the stack by the php
instruction. The only way to set the e flag is with the xc e instruction.

The status register is an 8-bit register, so only I byte is pulled from the
stack by the p Lp instruction, regardless of the settings of the m and x (mode
select) flags. When the instruction is used in a program, the stack pointer is

The 65C816 Instruction Set

first incremented. Then the byte pointed to by the stack pointer is loaded into
the status register.

Flags affected: All except e
Registers affected: S, P

Addressing Mode
s

Bytes Opcode (hex)
28

pix pull X register from stack 65C02, 65C816
Pulls the value on top of the stack into the X index register, destroying the
register's previous contents. This operation conditions the nand z flags.

When the 65C816 is in emulation mode or when the X register is set
to an 8-bit length, the stack pointer is first incremented. Then the byte pointed
to by the stack pointer is loaded into the X register.

When the 65C816 is in native mode and the X register is set to a 16-
bit length, the low-order byte of the X register is pulled first, followed by
the high-order byte.

Flags affected: n, z
Registers affected: X, S, P

Addressing Mode
s

Bytes Opcode (hex)
FA

ply pull V register from stack 65C02,65C816
Pulls the value on top of the stack into the Y index register, destroying the
register's previous contents. This operation conditions the nand z flags.

When the 65C816 is in emulation mode or the Y register is set to an
8-bit length, the stack pointer is first incremented. Then the byte pointed to
by the stack pointer is loaded into the Y register.

When the 65C816 is in native mode and the Y register is set to a 16-
bit length, the low-order byte of the Y register is pulled first, followed by
the high-order byte.

Flags affected: n, Z

Registers affected: S, Y, P

rep

Addressing Mode
s

reset status bits

Bytes Opcode (hex)
7A

65C816
Clears flags in the status register according to the contents of an 8-bit operand.
For each bit set to 1 in the operand, rep resets, or clears, the corresponding

407

Appendix A

bit in the status register to O. For example, if bit 5 in the operand byte is set,
bit 5 in the P register is cleared to O. Zeros in the operand byte have no effect
on their corresponding status register bits.

The rep instruction allows the programmer to reset any flag or com-
bination of flags in the status register with a single 2-byte instruction. It is
the only direct means of clearing the m flag and the x flag (although instructions
that pull the P register affect the m and x flags).

When the 65C816 is in emulation mode, rep does not affect the break
flag or bit 5, the 6502's undefined flag bit. In native mode, however, all flags
except the e flag (the "hanging" flag) can be cleared with the rep instruction.
The only way to access the e flag is with the xce instruction.

Flags affected in native mode: All flags except e
Flags affected in emulation mode: All flags except b
Registers affected: P

rol

Addressing Mode

#

rotate left

Bytes

2

Opcode (hex)

C2

6502, 65C02, 65C816

408

Moves each bit in the accumulator or a specified memory location one position
to the left. See figure A-6.

C 15 BITS a

Figure A-6
ROL operation

The carry bit is deposited into the bit 0 location and is replaced by the
leftmost bit (bit 15 in native mode and bit 7 in emulation mode) of the
accumulator or the affected memory register. The n, z, and c flags are con-
ditioned according to the result of the rotation operation.

Flags affected: n, z, c
Registers affected: A, P, M

Addressing Mode Bytes Opcode (hex)

ro LAce I 2A
ro L d 2 26
ro L d,x 2 36
ro L a 3 2E
ro L a,x 3 3E

rotate right

The 65C816 Instruction Set

6502, 65C02, 65C816
Moves each bit in the accumulator or a specified memory location one position
to the right. See figure A-7.

15 BITS 0 C

Figure A-7
ROR operation

The carry bit is deposited into the leftmost location (bit 15 in native
mode and bit 7 in emulation mode) and is replaced by bit 0 of the accumulator
or the affected memory register. The n, c, and z flags are conditioned according
to the result of the rotation operation.

Flags affected: n, z, c
Registers affected: A, P, M

Addressing Mode Bytes Opcode (hex)
ror Acc 1 6A
ror d 2 66
ror d,x 2 76
ror a 3 6E
ror a,x 3 7E

rti return from interrupt 6502, 65C02, 65C816
The status of both the program counter and the P register are pulled from the
stack and restored to their original values in preparation for resuming the
routine in progress when an interrupt occurred. If the 65C816 is in native
mode, the program bank register is also pulled from the stack. The r t i
instruction is used to end interrupt handling routines and return control to the
program in progress when the interrupt occurred.

The rt i instruction pulls values off the stack in the reverse order from
the way they were pushed onto the stack by a hardware interrupt (IRQ) or a
software interrupt (brk or cop). It is up to the interrupt handling routine to
ensure that the values pulled off the stack by r t i are valid.

When the 65C02 is in native mode, 4 bytes are pulled from the stack:
the 8-bit status register, the 16-bit program counter, and the 8-bit program
bank register.

In emulation mode, 3 bytes are pulled from the stack: the status register
and the program counter.

409

Appendix A

Flags affected: n, v , b, d , i, Z, c
Registers affected: S, P

Addressing Mode
s

Bytes Opcode (hex)
40

rtl return from subroutine long 65C816
Returns to the program in progress from a subroutine that was called using
the instruction j s L (jump to subroutine-long).

When you call a subroutine using j s L, the 8-bit value of the program
bank register is pushed onto the stack, followed by the 16-bit value of the
program counter.

When you use an rt L instruction to end a subroutine, the instruction
pulls the value of the program counter from the stack, increments it by I,
and loads the incremented value into the program counter. Then it pulls the
program bank register off the stack and loads that into the program bank
register.

Flags affected: all except e
Register affected: S, P

Addressing Mode
s

Bytes Opcode (hex)
6B

rts return from subroutine 6502, 65C02, 65C816

410

At the end of a subroutine, r t s returns execution of a program to the next
address after the j s r (jump to subroutine) instruction that caused the program
to jump to the subroutine. At the end of an assembly language program, the
r t s instruction returns control of the IIGS to the utility that was in control
before the program began.

When a subroutine is called in a 65C816 program with a j s r instruction,
the contents of the program counter (a 16-bit value) are pushed onto the stack.
When the subroutine ends with an r t s instruction, the r t s instruction pulls
the return address from the stack, increments it, and places it in the program
counter, transferring control back to the instruction immediately following
the j s r instruction.

The instructions j s rand r t s do not push or pull the contents of the
program bank register. Therefore, they cannot be used to jump across bank
boundaries. When a program must cross a bank boundary to jump to a sub-
routine, it must use the instructions j s L(jump to subroutine-long) and rt L
(return from subroutine-long).

Flags affected: None
Registers affected: S

sbc

Addressing Mode

subtract with carry

Bytes

The 65C816 Instruction Set

Opcode (hex)
60

6502, 65C02,65C816
Subtracts the content of the effective address of the operand from the contents
of the accumulator. The opposite of the carry flag is also subtracted; because
subtraction is really reverse addition, the carry flag in a subtraction operation
is treated as a borrow.

Because of the way the carry flag is used in subtraction operations, you
should set it before a subtraction takes place. Then, if there is a borrow by
a lower-order word (or byte in emulation mode) from a higher-order word
(or byte in emulation mode), the carry flag is cleared. That causes a borrow,
and the result of the subtraction will be accurate.

In emulation mode, sbe is an 8-bit operation. In native mode, it is a
16-bit operation, with the high-order byte situated in the effective address
plus I.

The n, v , z, and c flags are all conditioned by the sbe instruction, and
its result is deposited in the accumulator.

Flags affected: n, v, z, c
Registers affected: A, P

Addressing Mode Bytes Opcode (hex)
sbe (d) 2 F2
sbe (d),y 2 Fl
sbe (d,x) 2 El
sbe (r,s),y 2 F3
sbe d 2 E5
sbe d,x 2 F5
sbe r,s 2 E3
sbe [dJ 2 E7
sbe [dJ,y 2 F7
sbe # 2 (3) E9
sbe a 3 ED
sbe a,x 3 FD
sbe a,y 3 F9
sbe a L 4 EF
sbeaL,x 4 FF

SE!C set carry 6502, 65C02, 65C816
Sets the carry flag. The see instruction is often used before the s be instruction
so that there is not an extra borrow in the subtraction operation. see is also
used prior to an xee (exchange carry flag with emulation bit) instruction if
the intent of the instruction is to put the 65C816 into 8-bit emulation mode.

Flags affected: c
Registers affected: P

411

Appendix A

sed

Addressing Mode

set decimal mode

Bytes Opcode (hex)
38

6502, 65C02,65C816
Sets the P register's d flag, taking the 65C816 out of normal binary mode
and preparing it for operations using BCD (binary coded decimal) numbers.
BCD arithmetic is more accurate than binary arithmetic-the usual type of
6510 arithmetic-but it is slower and more difficult to use and consumes
more memory. BCD arithmetic is most often used in accounting programs,
bookkeeping programs, and floating-point arithmetic.

The decimal flag can be cleared, returning the 65C816 to its default
binary mode, with a c Ld (clear decimal flag) instruction.

Flags affected: d
Registers affected: P

sei

Addressing Mode

set interrupt disable

Bytes Opcode (hex)
F8

6502, 65C02, 65C816
Sets the P register's i (interrupt disable) flag, disabling the processing of
hardware interrupts (lRQs). When the i bit is set, maskable hardware interrupts
are ignored.

When the 65C8l6 begins servicing an interrupt, it sets the i flag, so
interrupt handling routines that are themselves intended to be interruptable
must reenable interrupts with a eLi (clear interrupt) instruction. If other
interrupts are to remain disabled during the interrupt being serviced, a eLi
instruction is not necessary, because the r t i (return from interrupt) instruction
automatically restores the status register with the i flag clear, reenabling in-
terrupts.

Flags affected: i
Registers affected: P

sep

Addressing Mode

set status bits

Bytes Opcode (hex)
78

65C816

412

Sets bits in the processor status register according to the value of an 8-bit
operand. For each bit set in the operand, sep sets the corresponding bit in
the status register to I. For example, if bit 5 is set in the operand byte, bit
5 in the status register is set to I. Zeros in the operand byte have no effect
on their corresponding bits in the P register.

The 65C816 Instruction Set

The sep instruction enables the programmer to set any flag or com-
bination of flags in the status register with a single 2-byte instruction. Also,
it is the only direct means of setting the m and x (mode select) flags, although
instructions that pull the P status register indirectly affect the m and x mode
select flags.

When the 65C816 is in emulation mode, sep does not affect the break
flag or bit 5, the non-flag bit.

Flags affected in native mode: n, v, m, x, d, i, Z, c
Flags affected in emulation mode: n, v, d, i, Z, c
Registers affected: P

sta

Addressing Mode
sep #

store accumulator

Bytes
2

Opcode (hex)
E2

6502, 65C02, 65C816
Stores the contents of the accumulator in a specified memory location. The
contents of the accumulator are not affected.

In emulation mode, sta is an 8-bit operation. In native mode, it is a
16-bit operation, with the high-order byte situated in the effective address
plus 1.

Flags affected: None
Registers affected M

stp

Addressing Mode
sta (d)
sta (d),y
sta (d,x)
sta (r,s),y
sta dta
sta d,x
sta r,s
sta Cd]
sta [d],y
sta a
sta a,x
sta a,y
sta a L
sta a L,x

stop the processor

Bytes
2
2
2
2
2
2
2
2
2
3
3
3
4
4

Opcode (hex)
92
91
81
93
85
95
83
87
97
8D
9D
99
8F
9F

6502, 65C02, 65C816
Puts the 65C816 into a dormant state until a hardware reset occurs, that is,
until the processor's RES pin is pulled low.

The s t p instruction is designed for use in battery-powered computers
and other systems engineered to support a low-power mode. It can reduce

413

Appendix A

power consumption to almost 0 by putting the 65C816 out of action while it
is not actively in use.

Flags affected: None
Registers affected: None

stx

Addressing Mode

store X register

Bytes Opcode (hex)
DB

6502, 65C02, 65C816
Stores the contents of the X register in a specified memory location. The
contents of the X register are not affected.

In emulation mode, s t x is an 8-bit operation. In native mode, it is a
16-bit operation, with the high-order byte situated in the effective address
plus I.

Flags affected: None
Registers affected: M

sty

Addressing Mode
stx d
stx d,y
stx a

store Y register

Bytes
2
2
3

Opcode (hex)
86
96
8E

6502, 65C02, 65C816
Stores the contents of the Y register in a specified memory location. The
contents of the Y register are not affected.

In emulation mode, sty is an 8-bit operation. In native mode, it is a
16-bit operation, with the high-order byte situated in the effective address
plus I.

Flags affected: None
Registers affected: M

Addressing Mode
sty d
sty d,x
sty a

Bytes
2
2
3

Opcode (hex)
84
94
8C

stz store zero to memory 65C02,65C816

414

Stores a 0 in the effective address specified by the operand. The s t z instruc-
tion does not affect any of the flags in the P register.

In emulation mode, s t z is an 8-bit operation. In native mode, it is a

The 65C816 Instruction Set

16-bit operation, with the high-order byte situated in the effective address
plus I.

Flags affected: None
Registers affected: M

Addressing Mode Bytes Opcode (hex)

stz d 2 64
stz d,x 2 74
stz a 3 9C
stz a,x 3 9E

transfer accumulator
to X register

6502, 65C02, 65C816

Deposits the value in the accumulator into the X register. The nand z flags
are conditioned according to the result of this operation. The contents of the
accumulator are not changed.

In emulation mode, tax is an 8-bit operation. In native mode, it is a
16-bit operation, with the high-order byte situated in the effective address
plus 1.

Flags affected: n, z
Registers affected: X, P

Addressing Mode

transfer accumulator
to V register

Bytes Opcode (hex)

AA

6502, 65C02, 65C816

Deposits the value in the accumulator into the Y register. The nand z flags
are conditioned according to the result of this operation. The contents of the
accumulator are not changed.

In emulation mode, tay is an 8-bit operation. In native mode, it is a
16-bit operation, with the high-order byte situated in the effective address
plus 1.

Flags affected: n, z
Registers affected: Y, P

415

Appendix A

Addressing Mode Bytes Opcode (hex)

A8

tcd transfer 16-bit accumulator
to direct page register

65C816

Transfers the value in the 16-bit accumulator (C) to the direct page register
(D). The value of C is not changed.

When the t cd instruction is issued, both bytes in the 16-bit accumulator
are copied into the direct page register, regardless of the setting of the m flag.
If the accumulator is in 8-bit mode, the low-order byte of the 16-bit accu-
mulator (A) is transferred to the low byte of the direct page register, and the
value in the accumulator's "hidden" high-order byte (B) is transferred to the
high byte of the direct page register.

Flags affected: n, Z

Registers affected: D, P

Addressing Mode Bytes Opcode (hex)

58

tcs

416

transfer accumulator to stack pointer 65C816

Transfers the value in the accumulator to the stack pointer. The accumulator's
value is unchanged.

If the 65C816 is in native mode, tcs transfers both bytes in the 16-bit
accumulator (C) to the stack pointer, regardless of the setting of the m flag.
The accumulator's low-order byte (A) is transferred to the low byte of the
stack pointer, and the value in the accumulator's "hidden" high-order byte
(B) is transferred to the high byte of the stack pointer. If the 65C816 is in
emulation mode, only the 8-bit accumulator (A) is transferred.

The t csand t xs (transfer the X register to the stack pointer) instruc-
tions are the only instructions for changing the value iII the stack pointer.
They are also the only two transfer instructions that do not alter the nand Z

flags.
Flags affected: None
Registers affected: S

Addressing Mode Bytes

The 65C816 Instruction Set

Opcode (hex)
[8

tde transfer direct page register
to 16-bit accumulator

65C816

Transfers the value of the direct page register (D) to the 16-bit accumulator
(C). The value of the D register is not changed.

The tdc instruction transfers 16 bytes, regardless of the setting of the
m (accumulator/memory mode) flag. If the accumulator is in 8-bit mode, the
accumulator's low-order byte (A) takes the value of the low byte of the direct
page register, and the accumulator's "hidden" B register takes the value of
the high byte of the direct page register.

Flags affected: n, z
Registers affected: A, B, C, P

Addressing Mode Bytes Opcode (hex)
78

trb test and reset memory bits
against accumulator

65C02, 65C816

Logically ANDs the value in the accumulator with the complement of the
value in a memory location. This operation clears each memory bit that cor-
responds to a set bit in the accumulator, while leaving unchanged each memory
bit that corresponds to a cleared bit in the accumulator. The result of the
operation is stored in the memory location.

In addition, the P register's z flag is conditioned by the result of the
AND operation. It sets the z flag if the result of the operation is zero and
clears it if the result is not zero. This is the same way that the bi t instruction
conditions the zero flag. But t r b , unlike bit, is a read-modify-write instruc-
tion. It not only calculates a result and modifies a flag, but also stores the
result in memory.

In emulation mode, t rb is an 8-bit operation. In native mode, it is a
16-bit operation, with the high-order byte situated in the effective address
plus 1.

Flags affected: z
Registers affected: M, P

Addressing Mode
t rb d
trb a

Bytes
2
3

Opcode (hex)
14
Ie

417

Appendix A

tsb test and set memory bits
against accumulator

65C02, 65C816

Logically ORs the value in the accumulator with the value stored in a memory
location. This operation sets each memory bit that corresponds to a set bit in
the accumulator, while leaving unchanged each memory bit that corresponds
to a cleared bit in the accumulator. The result of the operation is stored in
the memory location.

In addition, the P register's z flag is conditioned by the result of the
OR operation. It sets the z flag if the result of the operation is zero and clears
it if the result is not zero. This is the same way that the bi t instruction
conditions the zero flag. But t s b, unlike bit, is a read-modify-write instruc-
tion. It not only calculates a result and modifies a flag, but also stores the
result in memory.

In emulation mode, t sb is an 8-bit operation. In native mode, it is a
16-bit operation, with the high-order byte situated in the effective address
plus I.

Flags affected: z
Registers affected: M, P

Addressing Mode

tsb d
tsb a

Bytes

2
3

Opcode (hex)

04
OC

tsc transfer stack pointer
to 16-bit accumulator

65C816

418

Transfers the value in the stack pointer (S) to the accumulator. The stack
pointer's value is unchanged.

If the 65C816 is in native mode, t s c transfers both bytes in the stack
pointer to the 16-bit accumulator (C), regardless of the setting of the m flag.
The accumulator's low-order byte (A) takes the value of the low byte of the
stack pointer, and the value in the accumulator's "hidden" high-order byte
(B) takes the value of the high byte of the stack pointer. If the 65C816 is in
emulation mode, B always takes a value of 1 because the stack is always
page 1 in 8-bit emulation mode.

Flags affected: None
Registers affected: A, B, C

tsx

Addressing Mode

transfer stack
to X register

Bytes

The 65C816 Instruction Set

Opcode (hex)
3B

6502, 65C02, 65C816

Deposits the value in the stack pointer into the X register. The nand c flags
are conditioned according to the result of this operation. The value of the
stack pointer is not changed.

When the 65C816 is in emulation mode, tsx is an 8-bit operation. If
the 65C816 is in native mode and the X register is in 16-bit mode, t sx is a
16-bit operation. If the 65C816 is in native mode and the X register is in 8-
bit mode, only the low-order byte of the stack pointer is transferred to the X
register.

Flags affected: n, c
Registers affected: X, P

txa

Addressing Mode

transfer X register
to accumulator

Bytes Opcode (hex)
BA

6502, 65C02, 65C816

Deposits the value in the X register into the accumulator. The nand z flags
are conditioned according to the result of this operation. The value of the X
register is not changed.

If the 65C816 is in native mode and the A and X registers are both in
16-bit mode, both bytes of the X register are transferred to the accumulator.

If the 65C816 is in emulation mode and the A and X registers are both
in 8-bit mode, the 8-bit X register is transferred to the 8-bit accumulator.

If the 65C816 is in native mode and the accumulator is in 8-bit mode
and the X register is in 16-bit mode, the low byte of the X register is moved
into the accumulator's low byte (A) and the accumulator's high byte (the
"hidden" register B) is not affected by the transfer.

If the 65C816 is in native mode and the accumulator is in 16-bit mode
and the X register is in 8-bit mode, the X register is moved into the accu-
mulator's low byte (A) and the accumulator's high byte (B) takes a value
ofO.

Flags affected: n, Z

Registers affected: A, P

419

Appendix A

txs

Addressing Mode

transfer stack
to X register

Bytes Opcode (hex)
8A

6502, 65C02, 65C816

Deposits the value in the X register into the stack pointer. No flags are
conditioned by this operation. The value of the X register is not changed.

When the 65C816 is in emulation mode, t xs is an 8-bit operation. If
the 65C816 is in native mode and the X register is in 16-bit mode, txs is a
16-bit operation. If the 65C816 is in native mode and the X register is in 8-
bit mode, the X register is transferred to the low byte of the stack pointer
and the high byte of the stack pointer is zeroed.

Flags affected: None
Registers affected: S

txy

Addressing Mode

transfer X register
to Y register

Bytes Opcode (hex)
9A

6502, 65C02,65C816

Transfers the value of the X register to the Y register. The value of the X
register is not changed.

When the 65C816 is in emulation mode, txy is an 8-bit operation.
When the 65C816 is in native mode and the X and Y registers are in native
mode, txy is a 8-bit operation. When the 65C816 is in native mode and the
X and Y registers are in 16-bit mode, txy is a 16-bit operation.

Flags affected: n, z
Registers affected: Y, P

tva

Addressing Mode

transfer Y register
to accumulator

Bytes Opcode (hex)
98

6502, 65C02, 65C816

420

Deposits the value in the Y register into the accumulator. The nand z flags
are conditioned according to the result of this operation. The value of the Y
register is not changed.

If the 65C816 is in native mode and the A and Y registers are both in
16-bit mode, both bytes of the Y register are transferred to the accumulator.

The 65C816 Instruction Set

If the 65C816 is in emulation mode and the A and X registers are both
in 8-bit mode, the 8-bit Y register is transferred to the 8-bit accumulator.

If the 65C816 is in native mode and the accumulator is in 8-bit mode
and the Y register is in l o-bit mode, the low byte of the Y register is moved
into the accumulator's low byte (A) and the accumulator's high byte (the
"hidden" register B) is not affected by the transfer.

If the 65C816 is in native mode and the accumulator is in 16-bit mode
and the Y register is in 8-bit mode, the Y register is moved into the accu-
mulator's low byte (A) and the accumulator's high byte (B) takes a value
ofO.

Flags affected: n, z
Registers affected: A, P

tyx

Addressing Mode

transfer Y register
to X register

Bytes Opcode (hex)
98

6502, 65C02, 65C816

Transfers the value of the Y register to the X register. The value of the Y
register is not changed.

When the 65C816 is in emulation mode, tyx is an 8-bit operation.
When the 65C816 is in native mode and the X and Y registers are in native
mode, t yx is an 8-bit operation. When the 65C816 is in native mode and
the X and Y registers are in 16-bit mode, tyx is an 16-bit operation.

Flags affected: n, Z
Registers affected: Y, P

wai

Addressing Mode

wait for interrupt

Bytes Opcode (hex)
BB

65C816
The wai instruction puts the 65C816 in a dormant condition during an external
event to reduce its power consumption or to provide an immediate response
to interrupts so that the proccessor can be synchronized with the external
event.

After an interrupt is received, control is generally vectored through one
of the hardware interrupt vectors, and an r t i instruction in an interrupt
handling routine returns control to the instruction following the wai instruc-
tion. But if interrupts are disabled by setting the P register's i flag and a
hardware interrupt takes place, the 65C816's wait condition is terminated and
control resumes with the next instruction, rather than through the interrupt

421

Appendix A

vectors. This system provides a very fast response to an interrupt, allowing
synchronization with external events.

Flags affected: None
Registers affected: None

Addressing Mode Bytes Opcode (hex)
CB

wdm reserved for future expansion 65C816
The letters wdm are the initials of William D. Mensch, Jr., the designer of
the 65C02 and the 65C816. The wdm instruction uses opcode $42, the only
one of the 65C816's 256 possible machine language opcodes that is not used.
It is left unused so that it can be a gateway to any new assembly language
instructions that may be added to the 65C8l6' s instruction set. If new in-
structions are added, they have to take 2-byte opcodes, and the wdm instruction
will signify that the next byte is an opcode in the processor's expanded in-
struction set.

If the wdm instruction is used in a IIGS program, it has no effect except
to consume time. It behaves like a 2-byte nop instruction. But you should
not use wdm in a program because it would make the program incompatible
with any future 65C02 family chips.

Flags affected: None
Registers affected: None

Addressing Mode Bytes
2t

Opcode (hex)
42

xba

422

tSubject to change in future processors.

swap the B and A accumulators
Swaps the contents of the 8-bit A register (the low-order byte of the l6-bit
accumulator C) with the contents of the 8-bit B register (the high-order byte
of the 16-bit accumulator C). When the 65C816 is in emulation mode, this
is the only way to access the accumulator's "hidden" B register. The transfer
conditions the P register's nand z flags.

The xba instruction can be used to invert the low-order, high-order
arrangement of a l6-bit value or to store an 8-bit value in the B register.
Because it is an exchange, the previous contents of both accumulators are
changed, replaced by the previous contents of the other.

Neither the m (mode select) flag nor the e (emulation mode) flag affects
this operation.

Flags affected: n, z
Registers affected: A, B, C, P

Addressing Mode Bytes

The 65C816 Instruction Set

Opcode (hex)
EB

xce exchange carry and emulation bits 65C816
Swaps the P register's carry flag with the e (emulation mode) flag. The xce
instruction is the only method for toggling the 65C816 between 16-bit native
mode and 8-bit emulation mode.

If the processor is in emulation mode, it can be switched to native mode
by clearing the carry bit and then executing the xc e instruction. If the pro-
cessor is in native mode, it can be switched to emulation mode by setting the
carry bit and then executing the xc e instruction.

Flags affected: c, e
Registers affected: P

Addressing Mode Bytes Opcode (hex)
FB

423

APPENDIX

Apple IIGS Toolbox
Calls

his appendix contains most of the calls in the Apple IIGS Toolbox.
The calls are listed alphabetic ally.

Tool Abbreviations
Abbreviation

ADS
eM
DM
DLM
EM
FM
1M
LE
LM
MM
MUM
MTS
PM

Meaning

Apple Desktop Bus

Control Manager

Desk Manager

Dialog Manager

Event Manager

Font Manager

Integer Math Tool Set

LineEdit Tool Set

List Manager

Memory Manager

Menu Manager

Miscellaneous Tool Set

Print Manager

425

Appendix B

Abbreviation

GD
SAN
SK
ST
SF

TT
WM

Tool Abbreviations (cont.)

Meaning

QuickDraw II

SANE Tool Set

Scheduler

Sound Tool Set

Standard File Operations Tool
Set

Text Tool Set

Window Manager

Toolbox Calls

426

Call
Call Tool Number Function

AbsOff ADB $1009 Disables automatic polling of an
absolute device.

AbsOn ADB $OF09 Enables automatic polling from
an absolute device.

AddFami Ly FM $ODIB Allows a family to be added to
the Font Manager's list of font
families.

AddFontVar FM $141B Allows a pre-existing family to
be added to the available font
list.

AddPt QD $8004 Adds two points and leaves their
sum in the destination point.

ALert DLM $1715 Invokes an alert defined by a
specified alert template.

ASynchADBReceive ADB $OD09 Receives data from a ADB
device.

AutoAbsPoLL ADB $1109 Reads flags to determine if
automatic polling is on or off.

BeginUpdate WM $IEOE Starts the window drawing
procedure when a window is
updated.

BLockMove MM $2B02 Copies a specified number of
bytes from a source to a
destination.

BringToFront WM $240E Brings a window to the front
and redraws other windows as
necessary.

Button EM $OD06 Returns the current state of the
specified mouse button.

CaLcMenuSize MUM $ICOF Sets menu dimensions, either
manually or automatically.

Toolbox Calls

Call
Call Tool Number Function

CautionALert DLM $IAI5 Performs functions similar to
those of the ALe r t routine.

CharBounds QD $AC04 Sets a specified rectangle to be
the bounds of a specified
character.

CharWidth QD $A804 Returns the width in pixels of a
specified character.

CheckHandLe MM $IE02 Checks a handle to see if it's
valid.

CheckMItem MUM $320F Displays or removes a check
mark to the left of a menu item.

CheckUpdate WM $OAOE Checks to see if any windows
need updating.

ChooseCDA OM $1105 Activates the Desk Manager and
displays the CDA menu.

ChooserFont FM $161B Displays a dialog for selection
of a new font, size, and/or
style.

ClrHeartBeat MTS $1403 Removes all tasks from the
heartbeat interrupt task queue.

CLampMouse MTS $IC03 Sets mouse clamp values and
places the mouse at the
minimum values.

CLearMouse MTS $IB03 Sets the mouse's X and Yaxis
positions to $0000 or clamp
minimums.

CLearScreen QD $1504 Sets the words in screen
memory to a specified value.

CLearSRQTabLe ADB $1609 Clears the SRQ list of all
entries.

CLipRect QD $2604 Makes the current port's clip
rectangle equal to a given
rectangle.

CLoseAIINDAs OM $1005 Closes all open NDAs.

CLoseDiaLog DLM $OCI5 Removes a dialog from the
screen and deletes it from the
window list.

CLoseNDA OM $1605 Closes a specified new desk
accessory.

CLoseNDAbyWinPtr OM $IC05 Closes the NDA whose window
pointer is passed.

CLosePoLy QD $C204 Completes the polygon creation
started with OpenPo Ly .

CLosePort QD $IA04 Deallocates the regions in a
port.

427

Appendix B

428

Call
Call Tool Number Function

CLoseRgn QD $6E04 Stops processing of a region and
returns the created region.

CLoseWindow WM $OVOE Removes a window from the
screen and deletes it from the
window list.

CompactMem MM $IF02 Compacts memory.

CopyRgn QD $6904 Copies the contents of a region
from one region to another.

CountFamiLies FM $091B Returns the number of font
families available.

Count Fonts FM $IOIB Returns the number of fonts
available that fit a certain
description.

CountMltems MUM $140F Returns the number of items in
a specified menu.

CreateList LM $091C Creates a list control and returns
its handle.

CStringBounds QD 4AE04 Sets a specified rectangle to be
the bounds of a specified C
string.

CStringWidth QD $AA04 Returns the width of a specified
C string.

CtLBootLnit CM $0110 Called only by the Tool Locator
when the system is booted.

CtLNewRes CM $1210 Reinitializes resolution and
mode.

CtLReset CM $0510 Called on system reset.

CtLShutDown CM $0310 Deactivates the Control
Manager.

CtLStartUp CM $0210 Starts up the Control Manager
for use by an application.

CtLStatus CM $0610 Checks the current status of the
Control Manager.

CtLTextDev IT $160C Passes a control code to a
specified text device.

CtLVersion CM $0410 Returns the version number of
the Control Manager.

Dec2Int 1M $280B Converts an ASCII string into a
16-bit signed or unsigned
integer.

Dec2Long 1M $290B Converts an ASCII string into a
32-bit integer.

DefauLtFi Lter DLM $3615 Calls a modal or an alert
dialog's standard default filter.

Toolbox Calls

Call
Call Tool Number Function

DeleteID MTS $2103 Deletes all references to a
specified user ID.

DeleteMenu MUM $OEOF Removes a specified menu from
the menu list.

DeleteMItem MUM $100F Removes a specified item from
the current menu.

DelHeartBeat MTS $1303 Deletes a specified task from the
heartbeat interrupt task queue.

DeskBootlnit DM $0105 Internal routine called at boot
time to initialize the Desk
Manager.

DeskReset DM $0505 Resets the Desk Manager.

DeskShutDown DM $0305 Shuts down the Desk Manager.

DeskStartUp CM $0205 Starts up the Desk Manager.

DeskStatus DM $0605 Tells if the Desk Manager is
active.

Desktop WM $OCOE Keeps track of regions on the
desktop and controls desktop
pattern.

DeskVersion DM $0405 Returns the version number of
the Desk Manager.

DialogBootlnit DLM $0115 Called by the Tool Locator at
initialization.

DialogReset DLM $0515 Resets the Dialog Manager.

DialogSelect DLM $1115 Handles modeless dialog events.

DialogShutDown DLM $0315 Shuts down the Dialog
Manager.

DialogStartUp DLM $0215 Starts up the Dialog Manager.

DialogStatus DLM $0615 Indicates if the Dialog Manager
is active.

DialogVersion DLM $0415 Returns the version number of
the Dialog Manager.

DiffRgn QD 47304 Returns a region that is the
difference between two regions.

Disable Increment ST Disables auto-increment mode.

DisableDltem DLM $3915 Disables a specified item in a
specified dialog.

Di sableMItem MUM $31OF Displays an item in dimmed
characters and makes it
unselectable.

DisposeAll MM $1102 Discards all the handles
belonging to a specified user ID.

429

Appendix B

430

Call
Call Tool Number Function

DisposeControl CM $OAIO Deletes a specified control from
its window's control list.

DisposeHandle MM $1002 Disposes of a specified block
and deallocates its handle.

DisposeMenu MUM $2EOF Frees the memory allocated by
NewMenu.

DisposeRgn QD $6804 Deallocates space for a specified
region.

DlgCopy DLM $1315 Applies the Line Ed i t
procedure LECopy to an
EditLine item.

DlgCut DLM $1215 Applies the Li neEdi t
procedure LECut to an
EditLine item.

DlgDelete DLM $1515 Applies the Li neEdi t
procedure LEDe Lete to an
EditLine item.

DlgPaste DLM $1415 Applies the Li neEdi t
procedure LEPaste to an
Edi t Line item.

DoWindows EM $0906 Returns the address of the Event
Manager's direct page work
area.

DragControL CM $1710 Pulls a dotted outline of a
control around the screen.

DragRect CM $IDIO Pulls a dotted outline of a
rectangle around the screen.

DragWindow WM $IAOE Pulls around the outline of a
window, following mouse
movements.

DrawChar QD $A404 Draws a specified character at
the current pen location.

DrawControLs CM $1010 Draws all controls currently
visible in a specified window.

DrawCString QD $A604 Draws a specified C string at the
current pen location.

DrawDiaLog DLM $1615 Draws the contents of a
specified dialog box.

Drawlcon QD $OBI2 Draws an icon on the screen.

DrawMember LM $OCIC Redraws a member of the list
whose state may have changed.

DrawMenuBar MUM $2AOF Draws the current menu bar,
along with any menu titles on
the bar.

DrawOneCtL CM $2510 Draws a specified control.

Toolbox Calls

Call
Call Tool Number Function

DrawString QD $A504 Draws a specified string at the
current pen location.

DrawText QD $A704 Draws specified text at the
current pen location.

EMBootLnit EM $0106 Called at boot time by the Tool
Locator.

EmptyRect QD $5204 Returns whether or not a
specified rectangle is empty.

EmptyRgn QD $7804 Checks to see if a specified
region is empty.

EMReset EM $0506 Returns an error if the Event
Manager is active.

EMShutDown EM $0306 Shuts down the Event Manager
and releases any workspace
allocated to it.

EMStartUp EM $0206 Initializes the Event Manager
and sets the size of the event
queue.

EMStatus EM $0606 Indicates a nonzero value if the
Event Manager is active.

EMVersion EM $0406 Returns the version of the Event
Manager.

EnabLeDtLtem DLM $3A15 Enables a specified item in a
specified dialog.

EnabLeMItem MUM $300F Displays an item normally and
allows it to be selected.

EndLnfoDrawing WM $51OE Puts the Window Manager back
into a global coordinate system.

EndUpdate WM $IFOE Ends the window drawing
procedure started by
BeginUpdate.

EquaLPt QD $8304 Indicates whether two points are
equal.

EquaLRect QD $5104 Compares two rectangles and
indicates if they are equal.

EquaLRgn QD $7704 Compares two regions and tells
if they are equal.

EraseArc QD $6404 Erases an arc by filling it with
the background pattern.

EraseControL CM $2410 Makes a specified control
invisible.

EraseOvaL QD $5A04 Erases an oval by filling it with
the background pattern.

ErasePoLy QD $BE04 Erases a specified polygon.

431

Appendix B

432

Call
Call Tool Number Function

EraseRect QD $5504 Erases a rectangle by filling it
with the background pattern.

EraseRgn QD $7B04 Fills the interior of a specified
region with the background
pattern.

EraseRRect QD 45F04 Erases the interior of a round
rectangle.

ErrorSound DLM $0915 Sets the sound procedure for
alerts to a specified procedure.

ErrWriteBlock IT $IFOC Writes a block of text to the
error output text device.

ErrWriteChar TT $190C Writes a character to the error
output text device.

ErrWriteCString IT $21OC Writes a C-style string to the
error output text device.

ErrWriteLine IT $IBOC Writes a string, plus a carriage
return, to the error output text
device.

ErrWriteString IT $IDOC Writes a string to the error
output text device.

EventAvail EM $OB06 Accesses the next available
event but leaves it in the queue.

FakeMouse EM $1906 Allows an application to use an
alternative pointing device.

FamNum2ltemID FM $l7lB Translates a font family number
into a menu item ID.

FamNum2ltemID FM $IBIB Tells if a menu item is
displayed in a specified font
family.

FFGeneratorStatus ST $1108 Reads the first 2 bytes of a
block corresponding to a
generator.

FFSoundDoneStatus ST $1408 Returns the free-form
synthesizer sound-playing status.

FFSoundStatus ST $1008 Returns the status of all fifteen
generators.

FFStartSound ST $OE08 Enables the DOC to start
generating sound on a particular
generator.

FFStopSound ST $OF08 Stops sound generators that may
be running.

Fi llArc QD $6604 Fills the interior of an arc.

Fi llOva l QD $5C04 Fills an oval with a specified
pattern.

Toolbox Calls

Call
Call Tool Number Function

Fi LLPo Ly QD $C004 Fills a specified polygon with a
specified pen pattern.

Fi LLRect QD $5704 Fills the interior of a specified
rectangle with a specified
pattern.

FiLLRgn QD $7D04 Fills the interior of a specified
region with a specified pattern.

Fi LLRRect QD $6104 Fills a round rectangle with a
specified pattern.

FindControL CM $1310 Tells in which control the
mouse button was pressed.

FindDLtem DLM $2415 Returns the ID of the item
located at a specified point in a
dialog.

Fi ndFami Ly FM $OAIB Returns the family number and
name of a particular font family.

FindFontStats FM $IIIB Places a Fan tID and a
FontStatBi ts in a specified
FontStat record.

FindHandLe MM $IA02 Returns the handle of the block
containing a specified address.

FindWindow WM $170E Tells if the mouse was clicked
inside a window, and where.

Fix2Frac IM $ICOB Converts fixed to fraction.

Fix2Long 1M $IBOB Converts fixed to long integer.

Fix2X 1M $IEOB Converts fixed to extended.

FixAppLeMenu DM $IE05 Adds the names of new desk
accessories to the specified
menu.

FixATan2 IM $170B Returns a fixed arc tangent of
the coordinates of two like
inputs.

FixDiv 1M $IIOb Divides two like inputs and
returns a rounded fixed result.

FixFontMenu FM $151B Appends the names of available
font families onto a specified
menu.

FixMenuBar MUM $130F Computes standard sizes for the
menu bar and menus.

FixMuL IM $OFOB Multiplies two 32-bit fixed
inputs and returns a 32-bit fixed
result.

FixRatio IM $OEOB Returns a 32-bit fixed-number
ratio of a numerator and a
denominator.

433

Appendix B

434

Call
Call Tool Number Function

F;xRound 1M $130B Takes a fixed input and returns
a rounded integer result.

FlashMenuBar MUM $OCOF Flashes the current menu bar
using colors set by
NewlnvertCoLor.

FlushEvents EM $1506 Removes specified queue events
until a stop mask is
encountered.

FMBootln;t FM $OIIB Called at boot time by the Tool
Locator.

FMGetCurFID FM $IAIB Returns the Fon tID of the
current font.

FMGetSysFID FM $191B Returns the Font I D of the
system font.

FMReset FM $051B Returns an error if the Font
Manager is active.

FMSetSysFont FM $181B Loads a specified font into
memory, makes it unpurgeable.

FMShutDown FM $03IB Shuts down the Font Manager.

FMStartUp FM $021B Initializes the Font Manager for
use by an application.

FMStatus FM $061B Returns a nonzero value if the
Font Manager is active.

FMVers;on FM $041B Returns the version number of
the Font Manager.

ForceBufD;ms QD $CC04 Works like SetBufDims, but
does not. pad MaxFBRExtent.

Frac2F;x 1M $lDOB Converts fraction to fixed.

Frac2X 1M $IFOB Converts fraction to extended.

FracCos 1M $150B Takes a fixed input and returns
its fractional cosine.

FracD;v 1M $120B Divides two like inputs and
returns a rounded fractional
result.

FracMul 1M $IOOB Multiplies two fractional inputs
and returns a rounded fractional
result.

FracSart 1M $140B Takes a fractional input and
returns a rounded fractional
square root.

FracSin 1M $160B Takes a fixed input and returns
its fractional sine.

Toolbox Calls

Call
Call Tool Number Function

FrameArc QD $6204 Draws the boundary of an arc
using the current pen state and
pattern.

FrameOval QD $5804 Frames an oval using the current
pen state and pen pattern.

FramePoly QD $BC04 Frames a specified polygon.

FrameRect QD $5304 Frames a rectangle using the
current pen state and pen
pattern.

FrameRgn QD $7904 Frames a specified region using
the current pen state and
pattern.

FrameRRect QD $5D04 Frames a round rectangle using
the current pen state and pen
pattern.

FreeMem MM $IB02 Returns the total number of free
bytes in memory.

FrontWindow WM $150E Returns a pointer to the first
visible window in the window
list.

FWEntry MTS $2403 Allows some Apple II entry
points to be supported from
native mode.

GetAbsClamp MTS $2B03 Returns the current values for
the absolute device clamps.

GetAbsScale ADB $1309 Reads absolute device scaling
values.

GetAddr MTS $1603 Returns the address of a
parameter referenced by the
firmware.

GetAddress QD $0904 Returns a pointer to a specified
table.

GetAlertStage DLM $3415 Returns the stage of the last
occurrence of an alert.

GetBackColor QD $A304 Returns the value of the
background color field from the
GrafPort.

GetBackPat QD $3504 Returns the current background
pattern.

GetBarColors MUM $180F Returns the colors for the
current menu bar.

GetCaretTime EM $1206 Returns the time between blinks
of the caret.

GetCharExtra QD $D504 Returns the c hEx t r a field
from the GrafPort.

435

Appendix B

436

Call
Call Tool Number Function

GetCLip QD $2504 Copies the CLi pRgn to a
specified region.

GetC Li pHand Le QD $C704 Returns a copy of the handle to
the CLi pRgn.

GetCoLorEntry QD $1104 Returns the value of a color in a
specified color table.

GetCoLorTabLe QD $OF04 Fills a color table with the
contents of another color table.

GetContentDraw WM $480E Returns a pointer to the routine
that draws a window's contents.

GetContentOrgin WM $3EOE Returns values used to set the
origin of a window's port.

GetContentRgn WM $2FOE Returns a handle to a specified
window's content region.

GetControLDltem DLM $IEI5 Returns a handle to the control
for a specified item.

GetCtLAction CM $2110 Returns the current value of a
specified control's Ct LA ct ion
field.

GetCtLDpage CM $IFIO Returns the value of the Control
Manager's direct page.

GetCtLParams CM $ICIO Returns a specified control's
additional parameter settings.

GetCtLRefCon CM $2310 Returns the current value of a
specified control's Ct LRefCon
field.

GetCtLTitLe CM $ODIO Returns the value in a specified
control's CtLData field.

GetCtLVaLue CM $IAIO Returns a specified control's
current Ct LVa Lue field.

GetCursorAdr QD $8F04 Returns a pointer to the current
cursor record.

GetDAStrPtr DM $1405 Returns the pointer to a table of
desk accessory strings.

GetDataSize WM $400E Returns the height and width of
the data area of a specified
window.

GetDbITi me EM $1106 Sets the time required between
mouse clicks for a double click.

GetDefButton DLM $3715 Returns the ID of the default
button item in a specified
dialog.

GetDefProc WM $310E Returns the address of a routine
that controls a window's
behavior.

Toolbox Calls

Call
Call Tool Number Function

GetDltemBox DLM $2815 Returns the display rectangle of
a specified item.

GetDItemType DLM $2615 Returns the type of a specified
item.

GetDltemVaLue DLM $2E15 Returns the current value of a
specified item.

GetErrGLobaLs TT $OEOC Returns the current values for
the error output device's global
parameters.

GetErrorDevice TT $140C Returns the type of driver
installed as the error output
device.

GetFamlnfo FM $OBIB Returns the name of a font
family that has a specified
family number.

GetFamNum FM $OCIB Returns a family number
corresponding to a given font
family name.

GetFGSi ze QD $CF04 Returns the size of the font
globals record.

GetFi rstDI tem DLM $2A15 Returns the ID of the first item
in a specified dialog.

GetFirstWindow WM $520E Returns the first window in the
Window Manager's window list.

Get Font QD $9504 Returns a handle to the current
font.

GetFontFLags QD $9904 Returns the current font flags.

GetFontGLobaLs QD $9704 Returns information about the
current font in the specified
record.

GetFontID QD $DI04 Returns the Fan tID in the
GrafPort.

Get FontInfo QD $9604 Returns information about the .
current font in the specified
record.

GetFontLore QD $D904 Returns information about the
current font in the specified
record.

GetForeCoLor QD $AI04 Returns the current foreground
color from the GrafPort.

GetFrameCoLor WM $100E Returns the color of a specified
window's frame.

GetFuncPtr TL $OBOI Returns a pointer, less I, to a
specified tool function.

437

Appendix B

438

Call
Call Tool Number Function

GetGrafProcs QD $4504 Returns a pointer to the current
port's GrafProcs record.

GetHandLeSize MM $1802 Returns the size of a specified
block.

GetInfoDraw WM $4AOE Returns a pointer to a window's
information bar drawing
procedure.

GetInfoRefCon WM $350E Returns a value associated with
an information bar drawing
routine.

GetInputDevi ce IT $120C Returns the type of driver
installed as the input device.

GetIRQEnab Le MTS $2903 Returns the interrupt enable
states of certain interrupt
sources.

GetIText DLM $IFI5 Returns the text of a specified
StatText or Ed; t Li ne
item.

GetListDefProc LM $OEIC Returns a pointer to the list
control's definition procedure.

GetLnGLobaLs TT $OCOC Returns current values for the
input device's global
parameters.

GetMasterSCB QD $1704 Returns a copy of the master
SCB.

GetMaxGrow WM $420E Returns the maximum values to
which a window's content can
grow.

GetMenuBar MUM $OAOF Returns the handle of the
current menu bar.

GetMenuFLag MUM $200F Returns the menu flag for a
specified menu.

GetMenuMgrPort MUM $IBOF Returns a pointer to the Menu
Manager's port.

GetMenuTitLe MUM $220F Returns a pointer to the title of
a menu.

GetMHandLe MUM $160F Returns a handle to a menu
record.

GetMltem MUM $250F Returns a pointer to the name of
an item.

GetMltemFLag MUM $270F Returns information about a
specified menu item.

GetMltemMark MUM $340F Returns the character displayed
to the left of a specified item.

Toolbox Calls

Call
Call Tool Number Function

GetMItemSty Le MUM $360F Returns the text style for a
specified menu item.

GetMouse EM $OC06 Returns the current mouse
location.

GetMouseCLamp MTS $ID03 Returns the current mouse
clamp values.

GetMTitLeStart MUM $IAOF Returns the starting position for
the leftmost title within the
current menu bar.

GetMTitLeWidth MUM $IEOF Returns the width of a menu
title.

GetNewDLtem DLM $3315 Adds a new item to a specified
dialog's item list using a
template.

GetNewID MTS $2003 Creates a new user ID.

GetNewModaLDiaLog DLM $3215 Creates a modal dialog and
returns a pointer to its GrafPort.

GetNextDItem DLM $2B15 Returns the ID of the next item
in a specified dialog.

GetNextEvent EM $OA06 Returns the next available event
of a specified type or types.

GetNextWindow WM $2AOE Returns a pointer to the next
window in the window list.

GetNumNDAs DM $IB05 Returns the total number of new
desk accessories currently
installed.

GetOSEvent EM $1606 Removes a specified type of
event from the queue.

GetOutGLobaLs TT $ODOC Returns current values for the
output device's global
parameters.

GetOutputDevice TT $130C Returns the type of driver
installed as the output device.

GetPage WM $460E Returns the number of pixels to
be scrolled by a scroll bar's
"page" region.

GetPen QD $2904 Returns the pen location.

GetPenMask QD $3304 Returns the pen mask at the
specified location.

GetPenMode QD $2F04 Returns the pen mode from the
current port.

GetPenPat QD $3104 Copies the current port's pen
pattern into a specified location.

439

Appendix B

440

Call
Call Tool Number Function

GetPenS;ze QD $2D04 Returns the current pen size at
the place indicated.

GetPenState QD $2B04 Returns the pen state from the
GrafPort.

GetP;cSave QD $3F04 Returns the contents of the
Pi cSave field in the GrafPort.

GetP;xel QD $8804 Returns the pixel below and to
the right of a specified point.

GetPolySave QD $4304 Returns the contents of the
Pi cSave field in the GrafPort.

GetPort QD $IC04 Returns a pointer to the current
port.

GetPortLoc QD $IE04 Returns the current port's map
information structure.

GetPortRect QD $2004 Returns the current port's port
rectangle.

GetRectInfo WM $4FOE Sets a rectangle in which objects
can be drawn in an information
bar.

GetRgnSave QD $4104 Returns the contents of the
RgnSave field in the GrafPort.

GetRomFont QD $D804 Fills a specified record with
information about the font in
ROM.

GetSCB QD $1304 Returns the value of a specified
scan-line control byte (SCB).

GetScrap SK $ODI6 Copies scrap information to the
specified handle.

GetScrapCount SK $1216 Returns the current scrap count.

GetScrapHandle SK $OEI6 Returns a copy of the handle for
the scrap of the specified type.

GetScrapPath SK $1016 Returns a pointer to the
pathname used for the clipboard
file.

GetScrapS;ze SK $OFI6 Returns the size of the specified
scrap.

GetScrapState SK $1316 Returns a flag indicating the
current state of the scrap.

GetScroll WM $440E Returns the number of pixels
scrolled by the arrows in a
scroll bar.

GetSoundVolume ST $OC08 Reads the volume setting for a
generator.

Toolbox Calls

Call
Call Tool Number Function

GetSpaceExtra QD $9F04 Returns the value of the
SpExtra field from the
GrafPort.

GetStandardSCB QD $OC04 Returns a copy of the standard
SCB in the low-order byte of
the word.

GetStructRgn WM $2EOE Returns a handle to a specified
window's structure region.

GetSysBar MUM $IIOF Returns the handle of the cur-
rent system menu bar.

GetSysFieLd QD $4904 Returns the contents of the
sys Fie Ld in the GrafPort.

GetSysFont QD $B304 Returns a handle to the current
system font.

GetTabLeAddress ST $OB08 Returns the jump table address
for low-level routines.

GetTextFace QD $9B04 Returns the current text face.

GetTextMode QD $9D04 Returns the current text mode.

GetTextSi ze QD $D304 Not yet implemented at the time
of this writing.

GetTick MTS $2503 Returns the current value of the
tick counter.

GetTSPt r TL $0901 Returns a pointer to the function
pointer table of a specified tool
set.

GettSysWFlag WM $4COE Indicates if a specified window
is a system window.

GetUpdateRgn WM $300E Returns a handle to a specified
window's update region.

GetUserFieLd QD $4704 Returns the contents of the
Use r Fie Ld field in the
GrafPort.

GetVector MTS $1103 Returns the vector address for a
specified vector reference num-
ber.

GetVisHandLe QD $C904 Returns a copy of the handle to
the Vi sRgn.

GetVisRgn QD $B504 Copies the contents of the
Vi sRgn into a specified
region.

GetWAP TL $OCOI Gets the pointer to the work
area for a specified tool set.

GetWControLs WM $330E Returns the handle of the first
control in the window's control
list.

441

Appendix B

Call
Call Tool Number Function

GetWFrame WM $2COE Returns a bit array that
describes a window's frame
type.

GetWKind WM $2BOE Tells if a window is a system or
application window.

GetWMgrPort WM $200E Returns a pointer to the Window
Manager's port.

GetWRefCon WM $290E Returns a value passed to
NewWi ndow or WRef Con by
an application.

GetWTitLe WM $OEOE Returns a pointer to a specified
window's title.

GetZoomRect WM $370E Returns a pointer to a rectangle
representing a window's zoomed
size.

GLobaLToLocaL QD $8504 Converts a point from global
coordinates to local coordinates.

GrafOff QD $OB04 Turns off super high-resolution
graphics mode.

GrafOn QD $OA04 Turns on super high-resolution
graphics mode.

GrowSize CM $IEIO Returns the height and width of
the grow box control.

GrowWindow WM $IBOE Expands or shrinks a window,
corresponding to mouse move-
ments.

HandToHand MM $2A02 Copies a block of bytes from a
source handle to a destination
handle.

HandToPtr MM $2902 Copies a block of bytes from a
handle to a pointer.

Hex2Int 1M $240B Converts a hexadecimal string
into a l6-bit unsigned integer.

Hex2Long 1M $250B Converts a hexadecimal string
into a 32-bit unsigned integer.

HexLt 1M $2AOB Converts a l6-bit unsigned
integer into a hexadecimal
string.

HideControL CM $OEIO Makes a specified control
invisible.

HideCursor QD $9004 Hides the cursor, that is, deere-
ments the cursor level.

Hi deDltem DLM $2215 Erases a specified item from a
specified dialog.

HidePen QD $2704 Decrements the pen level.

HideWindow WM $120E Makes a specified window
invisible.

442

Toolbox Calls

Call
Call Tool Number Function

HiLiteControl CM $1110 Changes the way a specified
control is highlighted.

Hi l i teMenu MUM $2COF Highlights or unhighlights the
title of a specified menu.

HiliteWindow WM $220E Highlights or unhighlights a
window's title bar, as appropri-
ate.

HiWord 1M $180B Returns the high-order word of
a long input.

HLock MM $2002 Locks a block specified by a
handle.

HLockA II MM $2102 Locks all the blocks belonging
to a specified user 10.

HomeMouse MTS $IA03 Positions mouse at the minimum
clamp position.

HUnlock MM $2202 Unlocks a block specified by a
handle.

HUnLockA II MM $2302 Unlocks all the blocks for a
specified user 10.

IMBootlnit 1M $0 JOB Called at boot time by the Tool
Locator.

IMReset 1M $050B Called when a system reset
occurs.

IMShutDown 1M $030B Standard tool call.

IMStartUp 1M $020B Standard tool call.

IMStatus 1M $060B Returns a nonzero value indicat-
ing that the Integer Math Tool
Set is active.

IMVersion 1M $040B Returns the version of the
Integer Math Tool Set.

InflateText- QO $0704 Inflates the text buffer to a speci-
Buffer fied size, if necessary.

InitColorTable QO $0004 Returns a copy of the standard
color table for the current mode.

InitCursor QO $CA04 Reinitializes the cursor.

InitMouse MTS $1803 Sets mouse clamp values to
$000 minimum and $3FF
maximum.

InitPalette MUM $2FOF Reinitializes the palettes used to
draw the apple on the menu bar.

InitPort QO $1904 Initializes specified memory
locations as a standard port.

InitTextDev IT $150C Initializes a specified text
device.

443

Appendix B

Call
Call Tool Number Function

InsertMenu MUM $ODOF Inserts a menu into the menu
list.

InsertMItem MUM $OFOF Inserts an item into a menu.

InsetRect QD $4C04 Inserts a specified rectangle by
specified displacements.

InsetRgn QD $7004 Shrinks or expands a specified
region.

InstaLLCDA OM $OF05 Installs a specified classic desk
accessory in the system.

Insta Ll Font FM $OEIB Loads a given font into memory
and makes it current and
unpurgeable.

Insta LLNDA OM $OE05 Installs a specified new desk
accessory in the system.

Int2Dec 1M $260B Returns a string representing a
l6-bit signed or unsigned
integer.

Int2Hex 1M $220B Converts a l6-bit unsigned
integer into a hexadecimal
string.

IntSource MTS $2303 Enables or disables certain inter-
rupt sources.

InvaLRect WM $3AOE Accumulates a rectangle into the
current window port's update
region.

InvaLRgn WM $3BOE Accumulates a region into the
current window port's update
region.

InvertArc QD $6504 Inverts the pixels inside a speci-
fied arc.

InvertOvaL QD $5B04 Inverts the pixels inside a speci-
fied oval.

InvertPoLy QD $BF04 Inverts a specified polygon.

InvertRect QD $5604 Inverts the pixels in the interior
of a specified rectangle.

InvertRgn QD $7C04 Inverts the pixels in the interior
of a specified region.

InvertRRect QD $6004 Inverts the pixels inside a speci-
fied round rectangle.

IsDiaLogEvent DLM $1015 Determines if an event should
be handled as part of a dialog.

ItemID2FamNum FM $171B Translates a menu item 10 into
a font family number.

Ki LlControLs CM $OBIO Disposes of all controls associ-
ated with a specified window.

444

Toolbox Calls

Call
Call Tool Number Function

Ki llPo Ly QD $C304 Disposes of a specified polygon.

LEActivate LE $OFI4 Highlights current selection
range in specified text.

LEBootLnit LE $0114 Called at boot time by the Tool
Locator.

LECLick LE $0014 Using mouse clicks, draws a
caret and highlights selected
text.

LECopy LE $1314 Copies selected text into the
LineEdit scrap.

LECut LE $1214 Removes selected text and
places it in the Li neEdi t
scrap.

LEDeactivate LE $1014 Unhighlights current selection
range in specified text.

LEDeLete LE $1514 Removes selected text and
redraws the remaining text.

LEDispose LE $OAI4 Releases the memory allocated
for a specified edit record.

LEFromScrap LE $1914 Copies the desk scrap to the
LineEdit scrap.

LeGetScrapLen LE $ICI4 Returns the size of the
LineEd i t scrap in bytes.

LEGetTextHand LE $2214 Returns a handle to the text of a
specified edit record.

LEGetTextLen LE $2314 Returns the length of the text of
a specified edit record.

LEldLe LE $OCI4 Places a blinking caret at the in-
sertion point in a specified line.

LElnsert LE $1614 Inserts specified text into other
text, and redraws the updated
text.

LEKey LE $1114 Places a character in text and
leaves an insertion point after it.

LENew LE $0914 Allocates text space and returns
a handle to a new edit record.

LEPaste LE $1414 Replaces selected text with the
contents of the Li neEdi t
scrap.

LEReset LE $0514 Returns an error if
Li neEdi t is active.

LEScrapHandLe LE $IBI4 Returns a handle to the
Li neEd i t scrap.

LESetCaret LE $IFI4 Sets the Caret Hook field in
the edit record to a specified
pointer.

445

Appendix B

Call
Call Tool Number Function

LESetHi Lite LE $IEI4 Sets the Hi Li teHook field in
the edit record to a specified
pointer.

LESetJust LE $2114 Sets up the LineEdit Tool Set
record for left, right, or center
justification.

LESetScrapLen LE $ID14 Sets the size of the
Li neEdi t scrap to a specified
number of bytes.

LESetSeLect LE $OEI4 Sets the selection range in the
specified text.

LESetText LE $0814 Incorporates a copy of specified
text into a specified edit record.

LEShutDown LE $0314 Shuts down the LineEdit Tool
Set and discards the
LineEdit scrap.

LEStartUp LE $0214 Initializes the LineEdit Tool Set
and allocates a handle for the
LineEdit scrap.

LEStatus LE $0614 Indicates whether or not the
LineEdit Tool Set is active.

LETextBox LE $1814 Draws specified text in a speci-
fied rectangle.

LETextBox2 LE $2014 Draws specified text in a speci-
fied rectangle.

LETextBox2 LE $2014 Draws text in a specified rectan-
gle, with specified justification.

LEToScrap LE $IAI4 Copies the Li neEdi t scrap to
the desk scrap.

LEVersion LE $0414 Returns version number of the
LineEdit Tool Set.

Line QD $3D04 Draws a line from the current
pen location to the specified dis-
placements.

LineTo QD $3C04 Draws a line from the current
pen location to a specified point.

ListBootInit LM $OIIC Called at boot time by the Tool
Locator.

ListReset LM $051C Called when a system reset
occurs.

ListShutDown LM $03IC Standard tool call.

ListStartUp LM $021C Standard tool call.

ListStatus LM $061C Returns a nonzero value indicat-
ing that the List Manager is
active.

ListVersion LM $041C Returns the version of the List
Manager.

446

Toolbox Calls

Call
Call Tool Number Function

LLDBitMap PM $IC13 Prints part or all of a specified
QuickDraw II bit map.

LLDControL PM $1B13 Resets the printer and generates
linefeeds and formfeeds.

LLDShutDown PM $IA13 Deallocates any memory allo-
cated by LLDStartUp.

LLDStartUp PM $1913 Sets up the necessary environ-
ment for low-level drivers.

LLDText PM $ID13 Prints a stream of text using the
native facilities of the printer.

LoadFont FM $121B Finds a specified font, loads it,
and makes it current.

LoadOneTooL TL $OFOI Loads a specified tool from disk
and checks its version.

LoadScrap SK $OAI6 Reads the desk scrap from the
scrap file into memory.

LoadSysFont FM $13IB Makes the system font current
without requiring its font ID.

LoadTooLs TL $OEOI Loads specified RAM-based tool
sets from disk into memory.

LocaLToGLobaL QD $8404 Converts a point from local
coordinates to global coordi-
nates.

Long2Dec 1M $270B Returns a string representing a
32-bit signed or unsigned
integer.

Long2Fix 1M $IAOB Converts long integer to fixed.

Long2Hex 1M $230B Converts a 32-bit unsigned
integer into a hexadecimal
string.

LongDivide 1M $ODOB Divides two 32-bit inputs, pro-
ducing a quotient and a remain-
der.

LongMuL 1M $OCOB Multiplies two 32-bit inputs and
produces a 64-bit result.

LoWord 1M $190B Returns the low-order word of a
long input.

MapPoLy QD $C504 Maps a polygon from a source
rectangle to a destination rectan-
gle.

MapPt QD $8A04 Maps a point from a source
rectangle to a destination rectan-
gle.

MapRect QD $8B04 Maps a rectangle from a source
rectangle to a destination rectan-
gle.

447

Appendix B

Call
Call Tool Number Function

MapRgn QD $8C04 Maps a region from a source
rectangle to a destination rectan-
gle.

MaxBLock MM $IC02 Returns the size of the largest
free block in memory.

MenuBootLnit MUM $OIOF Called at boot time.

MenuKey MUM $090F Allows the user to type a char-
acter to select a menu item.

MenuNewRes MUM $290F Restyles the menu after the
screen resolution changes.

MenuRefresh MUM $OBOF Called when the application is
not using the Window Manager.

MenuReset MUM $050F This call does nothing.

MenuSeLect MUM $2BOF Controls highlighting and pull-
down action when an item is
selected.

MenuShutDown MUM $030F Closes the Menu Manager's port
and frees any allocated menus.

MenuStartUp MUM $020F Initializes the Menu Manager at
application startup.

MenuStatus MUM $060F Checks the current status of the
Menu Manager.

MenuVersion MUM $040F Returns the version of the Menu
Manager.

MMBootlnit MM $0102 Initializes the Memory Manager
at boot time.

MMReset MM $0502 Used by the system at reset
time.

MMShutDown MM $0302 An application makes this call
when it is terminating.

MMStartUp MM $0202 An application makes this call
when starting up.

MMStatus MM $0602 Returns status indicating the
Memory Manager is active.

MMVersion MM $0402 Returns the version of the
Memory Manager.

ModaLDiaLog DLM $OFI5 Repeatedly gets and handles
events in a modal dialog's
window.

ModaLDiaLog2 DLM $2C15 Repeatedly gets and handles
events in a modal dialog's
window.

Move QD $3B04 Moves the current pen location
by specified X and Y displace-
ments.

MoveControL CM $1610 Moves a specified control to a
new location within its window.

448

Toolbox Calls

Call
Call Tool Number Function

MovePortTo QD $2204 Changes the location of the
current Graf'Port'sPortRect.

MoveTo QD $3A04 Moves the current pen location
to the specified point.

MoveWindow WM $190E Moves a window to another part
of the screen, not changing its
size.

MTBootIni t MTS $0103 Called at boot time.

MTReset MTS $0503 Clears the heartbeat task pointer
and sets the mouse flag to "not
found. "

MTShutDown MTS $0303 This call is not used in this tool
set.

MTStartUp MTS $0203 This call is not used in this tool
set.

MTSTATUS MTS $0603 Returns status indicating the
Miscellaneous Tool Set is
active.

MTVersion MTS $0403 Returns the version of the Mis-
cellaneous Tool Set.

MuLtipLy 1M $090B Multiplies two 16-bit inputs and
produces a 32-bit result.

Munger MTS $2803 Manipulates bytes in a string of
bytes.

NewControL CM $0910 Creates a control and returns a
handle to it.

NewDItem DLM $ODI5 Adds a new item to a dialog's
item list.

NewHandLe MM $0902 Creates a new block and returns
the handle to the block.

NewList LM $IOIC Resets the list control according
to a specified list record.

NewMenu MUM $2DOF Allocates space for a menu list
and its items.

NewMenuBar MUM $150F Creates a default menu bar with
no menus.

NewModaLDiaLog DLM $OAI5 Creates a modal dialog and
returns a pointer to its port.

NewModeLess- DLM $OBI5 Creates a modeless dialog and
DiaLog returns a handle to its port.

NewRgn QD $6704 Allocates space for a new
region.

NewWindow WM $090E Creates a window and returns a
pointer to its GrafPort.

NextMember LM $OBIC Searches a list record for a
specified member and returns its
value.

449

Appendix B

Call
Call Tool Number Function

NoteAlert DLM $1915 Performs the same functions as
the ALe r t routine.

ObscureCursor QD $9204 Hides the cursor until the mouse
moves.

OffsetPoly QD $C404 Offsets a polygon by specified
X and Y displacements.

OffsetRect QD $4B04 Offsets a specified rectangle by
specified displacements.

OffsetRgn QD $6F04 Moves a region a distance speci-
fied by X and Y displacements.

OpenNDA DM $1505 Opens a specified new desk ac-
cessory.

OpenPoly QD $C104 Opens a polygon structure for
updating, and returns its handle.

OpenPort QD $1804 Initializes specified memory
locations as a standard port.

OpenRgn QD $6D04 Allocates memory to hold infor-
mation about a region being
created.

OSEventAvail EM $1706 Accesses the next event of a
given type but leaves it in the
queue.

PackBytes MTS $2603 Packs bytes into a special
format that uses less storage
space.

PaintArc QD $6304 Paints the interior of an arc
using the current pen state and
pattern.

PaintOval QD $5904 Paints the interior of an oval
using the current pen state and
pattern.

PaintPixels QD $7F04 Transfers a region of pixels.

PaintPoly QD $BD04 Paints the interior of a polygon
using the current pen state and
pattern.

PaintRect QD $5404 Paints the interior of a rectangle
using the current pen state and
pattern.

PaintRgn QD $7A04 Paints the interior of a region
using the current pen state and
pattern.

PaintRRect QD $5E04 Paints the interior of a round
rectangle using the current pen
state and pattern.

ParamText DLM $IBI5 Substitutes text in StatText and
LongStatText items.

PenNormal QD $3604 Sets the pen state to the
standard state.

450

Toolbox Calls

Call
Call Tool Number Function

PinRect WM $21OE Pins a specified point inside a
specified rectangle.

PMBootlni t PM $0113 Called at boot time by the Tool
Locator.

PMReset PM $0513 Internal routine called only at
system reset.

PMShutDown PM $0313 Shuts down the Print Manager.

PMStartUp PM $0213 Initializes the Print Manager for
use by an application.

PMStatus PM $0613 Indicates whether or not the
Print Manager is active.

PMVersion PM $0413 Returns the version number of
the Print Manager.

PosMouse MTS $IE03 Positions mouse at specified
coordinates.

PostEvent EM $1406 Posts an event at the end of the
event queue.

PPToPort QD $D604 Transfers pixels from a source
pixel map to the current port.

PrChoosePrinter PM $1613 Displays a dialog for selecting a
printer and port driver.

PrCloseDoc PM $OFI3 Closes the GrafPort being used
for printing.

PrClosePage PM $1113 Finishes the printing of the
current page.

PrDefault PM $0913 Sets a print record to default
values for the appropriate
printer.

PrError PM $1413 Returns the result code left by
the last Print Manager routine.

PrJobDialog PM $OCI3 Displays a dialog for setting
print quality, pages to print, and
so on.

PrOpenDoc PM $OE13 Initializes a GrafPort for use in
printing and returns its pointer.

PrOpenPage PM $1013 Begins a new page.

PrPicFile PM $1213 Prints a spooled document.

PrSetError PM $1513 Given an error number,
performs a corresponding func-
tion.

PrStlDialog PM $OB13 Displays a dialog for inputting
page setup information.

PrValidate PM $OAI3 Checks if a print record is com-
patible with the Print Manager.

451

Appendix B

Call
Call Tool Number Function

Pt2Rect QD $5004 Creates a rectangle using an
upper left point and a lower
right point.

PtInRect QD $4F04 Detects if a specified point is in
a specified rectangle.

PtLnRgn QD $7504 Determines where a specified
point is within a specified
region.

PtrToHand MM $2802 Copies a specified number of
bytes from a source to a desti-
nation.

PurgeALL MM $1302 Purges all of the purgeable
blocks for a specified user ID.

PurgeHandLe MM $1202 Purges a specified purgeable
handle.

PutScrap SK $OCI6 Appends specified data to data
in the scrap of the same type.

QDBootLnit QD $0104 Initializes QuickDraw II at boot
time.

QDReset QD $0504 Resets QuickDraw II.

QDShutDown QD $0304 Frees up any buffers allocated
for QuickDraw II.

QDStartUp QD $0204 Starts up QuickDraw II.

QDStatus QD $0604 Returns if QuickDraw II is
active.

QDVersion QD $0404 Returns the version of Quick-
Draw II.

Random QD $8604 Returns a pseudorandom number
in the range - 32768 to
+ 32767.

Read Next ST Reads the next address pointed
to by the GLU address register.

Read RAM ST Reads any specified Ensoniq
RAM location.

Read Regi ster ST Reads any register within the
DOC.

ReadASCI IT i me MTS $OF03 Reads elapsed time since
00:00:00, Jan. I, 1904.

ReadBParam MTS $OC03 Reads date from a specified
parameter in battery RAM.

ReadBRam MTS $OA03 Reads 252 bytes of data, plus 4
checksum bytes, from battery
RAM.

ReadChar TT $220C Reads a character from an input
text device; returns it on the
stack.

452

Toolbox Calls

Call
Call Tool Number Function

ReadKeyMicroData ADB $OA09 Receive data from the
microcontroller.

ReadKeyMicro- ADB $OB09 Reads a data byte from the mi-
Memory crocontroller ROM.

ReadLine IT $240C Reads an input string and writes
it to a buffer.

ReadMouse MTS $1703 Returns mouse position, status,
and mode.

ReadRamBlock ST $OA08 Reads any number of locations
from DOC RAM into a buffer.

ReadTimeHex MTS $OD03 Returns current time in hexade-
cimal format.

ReAllocHandle MM $OA02 Reallocates a block that was
purged.

RectlnRgn QD $7604 Checks whether a specified rect-
angle intersects a specified
region.

RectRgn QD $6C04 Sets a specified region to a rect-
angle described by the input.

RefreshDesktop WM $390E Redraws the entire desktop and
all windows.

RemoveDItem DLM $OEI5 Removes an item from a dialog
and erases it from the screen.

ResetALertStage DLM $3515 Resets a dialog so that its next
stage is treated as its first stage.

ResetMember LM $OFIC Searches a list.record for a
member and clears its select
flag.

RestAll DM $OC05 Restores variables that were
saved in calling a desk acces-
sory.

RestoreBufDims QD $CE04 Restores QuickDraw's internal
buffers to the sizes described in
a record.

RestoreHandle MM $OB02 Reallocates a purged handle.

RestScrn DM $OA05 Restores the screen area saved
by the Desk Manager.

SANEBootlnit SAN $010 Not used in this tool set.

SANEDecStr816 SAN $OAOA Contains numeric scanners and
formatter.

SANEDecStr816 SAN $OBOA Contains elementary, financial,
and random number functions.

SANEFP816 SAN $090A Contains basic arithmetic opera-
tions and IEEE auxiliary opera-
tions.

453

Appendix B

454

Call
Call Tool Number Function

SANEReset SAN $050A Not used in this tool set.

SANEShutDown SAN $030A Zeros out the work area pointer
for the SANE Tool Set.

SANEStartup SAN $020A Starts up the SANE Tool Set for
use by an application.

SANEStatus SAN $060A Returns true, indicating the
SANE Tool Set is active.

SANEVersion SAN $040A Returns the version number of
the SANE Tool Set.

SaveA LL DM $0805 Saves all variables preserved in
activating a desk accessory.

SaveBufDims QD $CD04 Saves QuickDraw II's buffer
sizing information in an 8-byte
record.

SaveScrn DM $0905 Saves the 80-column text
screens in banks $00,01, EO,
and El.

ScaLePt QD $8904 Scales a point from a source
rectangle to a destination rectan-
gle.

SchAddTask SK $0907 Adds a task to Scheduler's
queue.

SchBootLnit SK $0107 Initializes the flags and counters
used by the Scheduler.

SchFlush SK $OA07 Flushes all tasks in the Schedu-
ler's queue.

SchReset SK $0507 Reinitializes flags and counters.

SchShutDown SK $0307 Not used in this tool set.

SchStartUp SK $0207 Not used in this tool set.

SchStatus SK $0607 Returns true, indicating the
Scheduler is active.

SchVersion SK $0407 Returns the version number of
the Scheduler.

ScrapBootLnit SK $0116 Internal routine called at load
time to initialize the Scrap
Manager.

ScrapReset SK $0516 Internal routine to reset the
Scrap Manager.

ScrapShutDown SK $0316 Shuts down the Scrap Manager.

ScrapStartUp SK $0216 Starts up the Scrap Manager.

ScrapStatus SK $0616 Always returns true: if the Scrap
Manager is loaded, it is active.

Toolbox Calls

Call
Call Tool Number Function

ScrapVersion SK $0416 Returns the version number of
the Scrap Manager.

ScroLLRect QD $7E04 Scrolls a rectangle inside certain
boundaries.

SDivide 1M $OAOB Divides two 16-bit inputs and
produces two 16-bit signed
results.

SectRect QD $4D04 Places the intersection of two
rectangles in a third rectangle.

SectRgn QD $7104 Places the intersection of two
regions in a third region.

SeLectMember LM $ODIC Selects a list member and scrolls
the list so it is at the top.

SeLectWindow WM $IIOE Makes a specified window the
active window.

SeLIText DLM $2115 Sets the selection range or the
insertion point for an
Ed; t L; ne item.

SendBehind WM $140E Places a window behind a speci-
fied window, redrawing as
appropriate.

Sendlnfo ADB $0909 Sends data to the microcon-
troller.

ServeMouse MTS $IF03 Returns the mouse interrupt
status.

SetAbsCLamp MTS $2A03 Sets clamp values for an
absolute device to new values.

SetAbsScaLe ADB $1209 Sets up scaling for absolute
devices.

SetALLSCBs QD $1404 Sets all scan-line control bytes
(SCBs) to a specified value.

SetBackCoLor QD $A204 Sets a GrafPort' s background
color field to a specified value.

SetBackPat QD $3404 Sets the background pattern to a
specified pattern.

SetBarCoLors MUM $170F Sets the normal, inverse, and
outline colors of the current
menu bar.

SetBufDims QD $CB04 Sets the size of the QuickDraw
II clipping and text buffers.

SetCharExtra QD $D404 Sets the chExtra field in the
GrafPort to the specified value.

SetCLip QD $2404 Copies a specified region into
the CL; pRgn.

SetCLipHandLe QD $C604 Sets the CL; pRgn handle field
in the GrafPort to a specified
value.

455

Appendix B

Call
Call Tool Number Function

SetCoLorEntry QD $1004 Sets the value of a color in a
specified color table.

SetCoLorTabLe QD $OE04 Sets a color table to specified
values.

SetContentDraw WM $490E Sets the pointer to a routine that
redraws a window's content
region.

SetContentOrigin WM $3FOE Sets the origin of the window's
port when handling an update
event.

SetCtLAction CM $2010 Sets a specified control's
CtlAction field to a new
action.

SetCtLLcons CM $1810 Provides a handle to a specified
new icon font.

SetCtLParams CM $IBIO Sets new parameters to a
control's definition procedure.

SetCtLRefCon CM $2210 Sets a specified control's
Ct lReCon field to a new value.

SetCtLTitLe CM $OCIO Sets a control's title to a given
string and redraws the control.

SetCtLVaLue CM $1910 Sets a control's Ct lVa lue
field and redraws the control.

SetCursor QD $8E04 Sets the cursor to an image
passed in a specified cursor
record.

SetDAFont DLM $ICI5 Sets the font of a given
window's port to a specified
font number.

SetDAStrPtr DM $1305 Allows a program to change the
built-in classic desk accessories.

SetDataSize WM $41OE Sets the height and width of the
data area of a specified window.

SetDefButton DLM $3815 Sets the ID of the default button
to a specified 10.

SetDefProc WM $320E Sets the address of the routine
that defines a window's
behavior.

SetDltemBox DLM $2915 Changes the display rectangle of
an item to a new display
rectangle.

SetDltemType DLM $2715 Changes the specified item to
the new desired type.

SetDltemVa Lue DLM $2F15 Sets the value of an item to a
new value and redraws the item.

SetEmptyRgn QD $6A04 Sets a specified region to the
empty region.

456

Toolbox Calls

Call
Call Tool Number Function

SetErrGLobaLs TT $OBOC Sets the global parameters for
the error output device.

SetErrorDevice TT $IIOC Sets the error output device to a
specified type and location.

SetEventMask EM $1806 Sets the system event mask to
the specified event mask.

Set Font QD $9404 Sets the current font to the speci-
fied font.

SetFontFLags QD $9804 Sets the font flags to the speci-
fied value.

SetFontID QD $D004 Sets the Fan tID field in the
GrafPort.

SetForeCoLor QD $A004 Sets a GrafPort' s foreground
color field to a specified value.

SetFrameCoLor WM $OFOE Sets the color of a specified
window's frame.

SetGrafProcs QD $4404 Sets a GrafPort' s
Graf Procs field to a speci-
fied value.

SetHandLeSize MM $1902 Changes the size of a specified
block.

SetHeartBeat MTS $1203 Installs a specified task into the
heartbeat interrupt task queue.

SetInfoDraw WM $160E Sets the pointer to a window's
information bar drawing proce-
dure.

SetlnfoRefCon WM $360E Sets a value associated with a
window's information bar
drawing routine.

SetlnputDevice TT $OFOC Sets the input device to a speci-
fied type and location.

SetIntUse QD $B604 Tells if the cursor should be
drawn using scan-line interrupts.

Set !Text DLM $2015 Fetches a string for an item that
contains text and redraws the
item.

SetLnGLobaLs TT $090C Sets the global parameters for
the input device.

SetMasterSCB QD $1604 Sets the master SCB to a speci-
fied value.

SetMaxGrow WM $430E Sets the maximum values to
which a window's content
region can grow.

SetMenuBar MUM $390F Sets the current menu bar.

SetMenuFlag MUM $IFOF Sets the menu to a specified
state.

SetMenuID MUM $370F Specifies a new menu number.

457

Appendix B

Call
Call Tool Number Function

SetMenuTitLe MUM $21OF Specifies the title for a menu.

SetMltem MUM $240F Specifies the name for a menu
item.

SetMItemB Link MUM $280F Determines how many times all
menu items should blink when
selected.

SetMltemFLag MUM $260F Controls the style of an item's
highlighting and underlining.

SetMItemID MUM $380F Specifies the ID number of a
menu item.

SetMItemMark MUM $330F Sets a specified character to
display or not display to the left
of a menu item.

SetMItemName MUM $3AOF Specifies the name for a menu
item.

SetMItemStyLe MUM $350F Sets the text style for a specified
menu item.

SetMouse MTS $1903 Sets the mode value for the
mouse.

SetMTitLeStart MUM $190F Sets the starting point for the
leftmost menu on the menu bar.

SetMTitLeWidth MUM $IDOf Sets the width of a title.

SetOrigin QD $2304 Sets the upper left comer of the
PortRect to a given point.

SetOriginMask WM $340E Specifies the mask used to put
the horizontal origin on a grid.

SetOutGLobaLs TT $OAOC Sets the global parameters for
the error output device.

SetOutputDevice TT $lOOC Sets the output device to a speci-
fied type and location.

Set Page WM $470E Sets the number of pixels that
define a "page" for scrolling.

SetPenMask QD $3204 Sets the pen mask to the speci-
fied mask.

SetPenMode QD $2E04 Sets the current pen mode to the
specified pen mode.

SetPenPat QD $3004 Sets the current pen pattern to
the specified pen pattern.

SetPenSize QD $2C04 Sets the current pen size to the
specified pen size.

SetPenState QD $2A04 Sets the pen state in the
GrafPort to the specified values.

SetPicSave QD $3E04 Sets the Pi cSave field to a
specified value.

SetPoLySave QD $4204 Sets the PoLySave field to a
specified value.

458

Toolbox Calls

Call
Call Tool Number Function

SetPort QD $IB04 Makes the specified port the
current port.

SetPortLoc QD $ID04 Sets the current port's map in-
formation structure.

SetPortRect QD $IF04 Sets the current port's rectangle
to the specified rectangle.

SetPortSize QD $2104 Changes the size of the current
GrafPort's Por t Rect.

SetPt QD $8204 Sets a point to specified hori-
zontal and vertical values.

Set Purge MM $2402 Sets the purge level of a block
specified by a handle.

SetPurgeALL MM $2502 Sets the purge level of all
blocks for a specified user ID.

SetPurgeStat FM $OFIB Makes a specified font in
memory unpurgeable or purgea-
ble.

SetRandSeed QD $8704 Sets the seed value for the
random number generator.

SetRect QD $4A04 Sets a specified rectangle to
specified values.

SetRectRgn QD $6B04 Sets a region to a specified rect-
angle.

SetRgnSave QD $4004 Sets the RgnSave field to a
specified value.

SetSCB QD $1204 Sets the scan-line control byte
(SCB) to a specified value.

SetScrapPath SK $1116 Sets the clipboard file pointer to
the specified value.

SetScroLL WM $450E Sets the number of pixels that
will be scrolled by scroll bar
arrows.

SetSoLidBackPat QD $3804 Sets the background pattern to a
solid pattern using a certain
color.

SetSoLidPenPat QD $3704 Sets the pen pattern to a solid
pattern using the specified color.

SetSoundMIRQV ST $1208 Sets the entry point into the
sound interrupt handler.

SetSoundVoLume ST $OD08 Changes the DOC registers'
volume setting, or the system
volume.

SetSpaceExtra QD $9E04 Sets the spExt ra field in the
GrafPort to the specified value.

SetStdProcs QD $8D04 Sets up a record of pointers for
customizing QuickDraw II opera-
tions.

459

Appendix B

Call
Call Tool Number Function

SetSwitch EM $1306 Informs the Event Manager of a
pending switch event.

SetSysBar MUM $120F Sets a new system bar.

SetSysFieLd QD $4804 Sets the SysFie Ld in the
GrafPort to a specified value.

SetSysFont QD $B204 Sets a specified font as the
system font.

SetSysWindow WM $4BOE Marks a specified window as a
system window.

SetTextFace QD $9A04 Sets the text face to the speci-
fied value.

SetTextMode QD $9C04 Sets the text mode to the speci-
fied value.

SetTextSi ze QD $D204 Call is not implemented at the
time of this writing.

SetTSPt r TL $OAOI Call used to modify tool sets by
installing patches.

SetUserFieLd QD $4604 Sets the Use r Fie Ld in the
GrafPort to a specified value.

SetUserSoundIRQV ST $1308 Sets the entry point for an
application-defined interrupt
handler.

SetVector MTS $1003 Sets the vector address for the
specified vector reference
number.

SetVisHandLe QD $C804 Sets the VisR9n handle field
in the GrafPort to a specified
value.

SetVisRgn QD $B404 Copies a specified region into
the Vi sRgn.

SetWAP TL $ODOI Sets the pointer to the work area
for a specified tool set.

SetWFrame WM $2DOE Sets the bit vector that describes
a specified window's frame
type.

SetWindowlcons WM $4EOE Sets the icon font for the
Window Manager.

SetWRefCon WM $280E Sets a window-record value
reserved for an application's
use.

SetWTitLe WM $ODOE Updates the title of a specified
window.

SetzoomRect WM $380E Sets the rectangle used to calcu-
late a window's zoomed size.

SFALLCaps SF $OD17 Allows an application to display
file names in all uppercase.

460

Toolbox Calfs

Call
Call Tool Number Function

SFBootlnit SF $0117 Initializes the Standard File
Operations Tool Set at boot
time.

SFGetFi le SF $0917 Displays the Standard File
Operations Tool Set's standard
dialog; returns data about
selected files.

SFPGetFile SF $0817 Displays a custom dialog and
returns information on selected
files.

SFPPutFile SF $OAI7 Displays a custom dialog and
returns data on files to be saved.

SFPutFi le SF $OAI7 Displays a dialog and returns
data about the file to be saved.

SFReset SF $0517 Resets the Standard File Opera-
tions Tool Set.

SFShutdown SF $0317 Shuts down the Standard File
Operations Tool Set.

SFStartUp SF $0217 Starts up the Standard File Op-
erations Tool Set.

SFStatus SF $0617 Tells if the Standard File Opera-
tions Tool Set is active.

SFVersion SF $0417 Returns the version number of
the Standard File Operations
Tool Set.

ShowControl CM $OFIO Makes a specified control
visible.

ShowCursor QD $9104 Shows the cursor incrementing
its level to 0, if necessary.

ShowDItem DLM $2315 Makes visible a specified item
from a specified dialog.

ShowHide WM $230E Shows or hides a window,
depending upon a specified pa-
rameter.

ShowPen QD $2804 Increments the pen level.

ShowWindow WM $130E Makes a specified window
visible and draws it if it was
invisible.

SizeWindow WM $ICOE Sizes a window's port rectangle
to a specified width and height.

SolidPattern QD $3904 Sets a specified pattern to a
solid pattern using a specified
color.

SortList LM $OAIC Alphabetizes a list by rearrang-
ing the array of member
records.

SoundBootlnit ST $0108 Called by the Tool Locator at
initialization.

461

Appendix B

Call
Call Tool Number Function

SoundReset ST $0508 Stops all generators that may be
generating sound.

SoundS hut Down ST $0308 Shuts down the Sound Manager.

SoundStartUp ST $0208 Initializes a work area to be
used by the sound tools.

SoundTooLStatus ST $0608 Returns status indicating
whether the Sound Tool Set is
active.

SoundVersion ST $0408 Returns the version of the
Sound Tool Set.

SRQPo LL ADB $1409 Adds a device to the SRQ list if
the device exists.

SRQRemove ADB $1509 Removes a device from the
SRQ list.

StartDrawing WM $4DOE Makes a specified window the
current port and sets its origin.

StartlnfoDrawing WM $500E Used for drawing outside a
window's information bar pro-
cedure.

StatusID MTS $2203 Inquires whether or not a speci-
fied user ID is active.

StatusTextDev TT $170C Executes a status call to a speci-
fied text device.

StiLLDown EM $OE06 Tests if the specified mouse
button is still down.

StopALert DLM $1815 Performs the same functions as
the ALe r t routine.

StringBounds QD $AD04 Sets a specified rectangle to be
the bounds of a specified string.

StringWidth QD $A904 Returns the width in pixels of a
specified string.

SubPt QD $8104 Subtracts one point from
another; leaves result in destina-
tion point.

SynchADBReceive ADB $OE09 Receive data from an ADB
device.

SysBeep MTS $2C03 Calls the Apple II monitor entry
point BEELI.

SysFaiLMgr MTS $1503 Displays a system failure
message and ends a program.

SystemCLick DM $1705 Called when application detects
a mouse down in a system
window.

SystemEdit DM $1805 Passes standard menu edits to
system windows.

462

Toolbox Calls

Call
Call Tool Number Function

SystemEvent DM $IA05 Entry point for the Event
Manager into the Desk
Manager.

SystemTask DM $1905 Called periodically to support
desk accessory actions.

TaskMaster WM $IDOE Calls GetNextEvent and
then handles certain other events
itself.

TestControL CM $1410 Tests which part of a control
contains a specified point.

TextBootLnit TT $OIOC Called at boot time; sets up
certain default device parame-
ters.

TextBounds QD $AF04 Sets a specified rectangle to be
the bounds of the specified text.

TextReadBLock TT $230C Reads a block of input charac-
ters and writes it to a buffer.

TextReset TT $050C Resets device parameters to the
defaults.

TextShutDown TT $030C A standard call that is unneces-
sary and performs no function.

TextStartUp TT $020C A startup call that is unneces-
sary and performs no function.

TextStatus TT $060C Returns $FFF, indicating the
Text Tool Set is active.

TextVersion TT $040C Returns the version of the Text
Tool Set.

TextWidth QD $AB04 Returns the width of the speci-
fied text.

TextWriteBLock TT $IEOC Writes a block of text to the
output text device.

TickCount EM $1006 Returns the number of ticks
since the system last started up.

TLBootLnit TL $0101 Initializes the Tool Locator and
all other ROM-based tool sets.

TLMountVoLume TL $1101 Displays a simulated dialog
asking the user to mount a
volume.

TLReset TL $0501 Initializes the Tool Locator and
other ROM-based tool sets.

TLShutDown TL $0301 Shuts down the Tool Locator
when an application shuts down.

TLStartUp TL $0201 Starts up the Tool Locator when
an application starts up.

TLSta tus TL $0601 Returns true, indicating the Tool
Locator is active.

463

Appendix B

Call
Call Tool Number Function

TLTextMount- TL $1201 Displays a 40-column text
VoLume window asking the user to

mount a volume.

TLVersion TL $0401 Returns the version of the Tool
Locator.

TotaLMem MM $ID02 Returns the size of all memory,
including the main 256K.

TrackControL CM $1510 Follows mouse movements until
the mouse button is released.

TrackGoAway WM $180E Removes a window from the
screen when the go-away box is
clicked.

TrackZoom WM $260E Zooms a window when the
mouse is clicked in the zoom
box.

UDivide 1M $OBOD Divides two 16-bit inputs, pro-
ducing a quotient and a remain-
der.

UnionRect QD $4E04 Places the union of two rectan-
gles in a third rectangle.

UnionRgn QD $7204 Places the union of two regions
in a third region.

UnLoadOneTooL TL $1001 Unloads a specified tool from
memory.

UnLoadScrap SK $0916 Writes the desk scrap to the
scrap file, and releases its
memory.

UnPackBytes MTS $2703 Unpacks data from the packed
format used by PackBytes.

UpdateDiaLog DLM $2515 Redraws the part of a dialog
that is in an update region.

VaLidRect WM $3COE Removes a given rectangle from
the current window's update
region.

VaLidRgn WM $3DOE Removes a specified region
from the current window's
update region.

WaitMouseUp EM $OF06 Tests if the mouse button is still
down.

WindBootLnit WM $OIOE Initializes the Window Manager
at boot time.

WindDragRect WM $530E Pulls around an outline of a
rectangle, following mouse
movements.

WindNewRes WM $250E Called after the screen resolu-
tion is changed.

WindReset WM $050E Resets the Window Manager.

464

Toolbox Calls

Call
Call Tool Number Function

W;ndShutDown WM $030E Shuts down the Window
Manager.

W;ndStartUp WM $020E Initializes the Window Manager.

W;ndStatus WM $060E Returns whether or not the
Window Manager is active.

W;ndVers;on WM $040E Returns the version number of
the Window Manager.

Wr;te Next ST Writes I byte of data to the next
DOC register or RAM address.

Wr; te RAM ST Writes a I-byte value to any
specified Ensoniq RAM
location.

Wr;te Reg; ster ST Writes a I-byte parameter to
any register in the DOC chip.

Wr;teBParam MTS $OB03 Writes data to a specified
parameter in battery RAM.

Wr;teBRam MTS $0903 Writes 252 bytes, plus 4
checksum bytes, to the battery
RAM.

WriteChar TT $180C Writes a character to the output
text device.

Wr;teCStr;ng TT $200C Writes a C-style string to the
output text device.

Wr;teL;ne TT $IAOC Writes a string, plus a carriage
return, to the output text device.

Wr;teRamBLkock ST $09080 Writes a specified number of
bytes from system RAM into
DOC RAM.

Wr;teStr;ng TT $lCOC Writes a string to the output text
device.

Wr;teT;meHex MTS $OE03 Sets the current time using
hexadecimal format.

X2F;x 1M $200B Converts extended to fixed.

X2Frac 1M $2 lOB Converts extended to fraction.

XorRgn QD $7404 Extend-ORs two regions and
places the result in a third
region.

ZeroScrap SK $OBI6 Clears the contents of the scrap.

ZoomW;ndow WM $270E Zooms a window to its
maximum size when the zoom
box is clicked.

465

Bibliography

The Apple IIe User's Guide.
New York: Macmillan, 1983.
Apple Human Interface Guidelines.
Menlo Park, CA: Addison-Wesley, 1987.
Apple Numerics Manual.
Menlo Park, CA: Addison-Wesley, 1987.
Apple Ilos Firmware Reference.
Menlo Park, CA: Addison-Wesley, 1987.
Apple Ilos Hardware Reference.
Menlo Park, CA: Addison-Wesley, 1987.
Apple IIes ProDOS i6 Reference.
Menlo Park, CA: Addison-Wesley, 1987.
Apple Ilcs Programmer's Workshop Assembler Reference.
Menlo Park, CA: Addison-Wesley, 1987.
Apple llos Programmer's Workshop C Reference.
Menlo Park, CA: Addison-Wesley, 1987.
Apple llcs Programmer's Workshop Reference.
Menlo Park, CA: Addison-Wesley, 1987.
Apple llos Toolbox Reference.
Menlo Park, CA: Addison-Wesley, 1987.
Programmer's introduction to the Apple Ilos.
Menlo Park, CA: Addison-Wesley, 1986.
Technical Introduction to the Apple Ilcs.
Menlo Park, CA: Addison-Wesley, 1986.

Andrews, Mark

Apple Roots: Assembly Language Programming.
Berkeley: Osborne McGraw-Hill, 1986.

467

Programming the Apple IIGS

Eyes, David

Programming the 65816.
New York: Brady (Prentiss-Hall), 1986.

Findley, Robert

6502 Software Gourmet Guide and Cookbook.
Rochelle Park, NJ: Hayden Book Co., Inc., 1979.

Fischer, Michael

Apple Ilcs Technical Reference.
Berkeley: Osborne McGraw-Hill, 1986, 1987.

Goodman, Danny

The Apple Ilos Toolbox Revealed.
New York: Bantam Books, 1986.

Hunter, Bruce H.

Understanding C.
Berkeley: Sybex, 1984.

Kerninghan, Brian W.

The C Programming Language.
Englewood Cliffs, NJ: Prentiss-Hall, 1978.

Leventhal, Lance A.

6502 Assembly Language Programming.
Berkeley: Osborne McGraw-Hill, 1979.
6502 Assembly Language Subroutines.
Berkeley: Osborne McGraw-Hill, 1982.

Maurer, W. Douglas

Apple Assembly Language.
Rockville, MD: Computer Science Press, Inc., 1984.

Mottola, Robert

Assembly Language Programming for the Apple II.
Berkeley: Osborne McGraw-Hili, 1982.

Wagner, Roger

Assembly Lines: The Book.
Santee, CA: Roger Wagner Publishing, Inc., 1984.

468

Waite, Mitchell

C Primer Plus.
Indianapolis, IN: Howard W. Sams & Co., Inc., 1985.

Zaks, Rodnay
Programming the Apple II in Assembly Language.
Berkeley: Sybex, 1983.
Programming the 6502.
Berkeley: Sybex, 1983.

Bibliography

469

A register. SeeAccumulator
Abort instruction, 101
Absolute addressing, 98,

102-103, 106-108
Absolute indexed addressing, 98,

112-113
Absolute indexed indirect

addressing, 98, 120
Absolute indirect addressing, 98,

116
Absolute long addressing, 98,

108-109
Absolute long indexed

addressing, 98, 115
Access byte, file, 325-326
Accumulator, 6, 76
and ALU, 81-82
and arithmetic instructions,

373-374, 410-411
and comparison instructions,

376-378, 380, 385-386
and load and store

instructions, 394, 413
and logical instructions,

374-375, 390-391,
399-400

and move instructions,
396-398

setting width of, 86
and shift and rotate

instructions, 375,
395-396, 408-409

Accumulator-cont
and stack operations, 123,

402,405
and transfer instructions,

415-422
Accumulator addressing, 98, 110
Activate events, 145-146, 259-260
ActiveFlag bit, 148, 150, 260
ADB (Apple Desktop Bus) Tool

Set, 133
ADC (analog-to-digital

converter), for sound,
350

Adc instruction, 82, 96, 373-374
and clc instruction, 383
and cld instruction, 384

Addition
in 85C816, 81-82
and carry flag, 89, 373, 383
and overflow flag, 93

AddrDemol program, 98-104
AddrDemoz program, 105-108
AddrDemo.I program, 109
AddrDemo-i program, 112-113
Address buses, for 65C816, 75
Addresses
24-bit, 4
splitting of, 102
and stack, 25

Addressing modes, 6, 74, 95-97,
372

block move, 98, 125-126
indexed, 98, 111-1l5

Index

Addressing modes-cont
indirect, 98, 115-120
simple, 98-111
stack, 98-101, 120-125

ADSR envelope, 353-354
AINCLUDE directory, 16
Alert icons and dialog windows,

300-301
Alert window frames, 248
Allocatable memory, 138-139
AllocGen call, 354
AltZP switch, 72
ALU (arithmetic and logical

unit), 81-82, 85-86
Ampersands, for C logical AND

operator, 48
Analog-to-digital converter, for

sound, 350
And instruction, 374-375
And operator, in C, 47-48
Apple Desktop Bus Tool Set, 133
Apple IIgs Programmer's

Workshop. SeeAPW
Application events, 146-147
Application windows, 250
APW, 8
assembler-editor, 13-22, 26-27
and C, 29-33
header files, 157
and Memory Manager, 54

/ APW and / APWU disks, 15
Arcs, drawing of, 173

471

Index

Arguments, for C functions,
36-37

Arithmetic and logical unit,
81-82, 85-86

Asl instruction, 1l0, 155, 375
Assembly language programs
APW assembler-editor for,

13-22, 26-27
assembling of, 26-27
directives in, 21
for disk drive operations,

319-348
and Memory Manager, 54
using pointers in, 55
and stack, 78
statements in, compared to

machine language, 95-96
text in, 26
using tools in, 159

ZIP.SRC program, 18-27
Asterisks
for assembly language

comments, 23
in menu data tables, 218-219

At sign character, in menu data
tables, 218-219

Attack decay-sustain-release
envelope, 353-354

Attributes, of memory blocks,
137, 143-144

Auto-key events, 144-145, 147
Auxiliary RAM, and soft

switches, 71
AWaveCount field, 356-357

B byte, in accumulator, 76, 86,
416, 418-420, 422

B character, in menu data tables,
219

B flag. See Break flag
B register. See Data bank

register
Backslash characters
in C, 46
in menu data tables, 218-219

Bank boundaries, 79
Bank boundary limited memory

blocks, 143
Bank numbers, 24, 79-80
Bank switching, 51
Banks, memory, 52
$EO and $El, 62, 65-66

472

Banks-cont
in emulation and native

modes, 85
for memory shadowing, 62
and move instructions,

396-397
and stack addressing, 24, 99

BASIC interpreter
in emulation mode, 59
in native mode, 64

Bcc instruction, 1l0, 375-376
and compare instructions,

385-388
BCD. See Binary coded decimal

mode
Bcs instruction, 1l0, 376-377
and compare instructions,

386-388
Bell Laboratories, and C, 30
Beq instruction, 1l0, 377-378
and compare instructions,

386-388
Bge instruction, 376-378
Big Five tool sets, 8, 130-131
Binary coded decimal mode,

90-93
and adc instruction, 373
and brk instruction, 381
and cld instruction, 384
and cop instruction, 387
and sed instruction, 411-412

Bit instruction, 378-379
compared to trb and tsb

instructions, 417
Block move addressing modes,

98, 125-126, 396-398
Blocks
in C, 30
of memory, allocation of, 52,

137, 143-144
of text, and APW editor, 19

BIt instruction, 375-376, 379
Bmi instruction, 379
Bne instruction, 1l0, 379-380
Books, about IIgs, 469-471
Bottom of file, APW editor

command, 19
Bounds rectangles, 188-189, 261
BoundsRect field, in GrafPort

structure, 189
Bpi instruction, 380
Bra instruction, 1l0, 380-381
Braces, in C, 30, 45

Branching, and program counter
addressing, 1l0-1l1

Break flag, 84, 93
and brk instruction, 381-382
and status register

instructions, 408, 412
Brk instruction, 93, 101, 104,

381-382
Brl instruction, 79, 1l0-1l1, 382
BtnlState bit, 150
Btn2State bit, 150
BufSizeRecord structure, 192
Buses, in 65C816, 75
Button dialog items, 297
Bvc instruction, 382-383
Bvs instruction, 383
BWaveCount field, 357
Byte Works Inc., 13

C, for assembly language
characters, 26

C character, in menu data tables,
219

C flag. See Carry flag
C programming language, 29-30
APW for, 31-33
compiler for, 14
creating programs in, 34-39
Name Game program in,

39-49
using Toolbox with, 156-161

C register. SeeAccumulator
CalcMenuSize call, 331, 427
Caret, with addresses, 102
Carriage return
in C, 46
in menu data tables, 218

Carry flag, 84-85, 88-90
and arithmetic instructions,

373, 41O-411
and branch instructions,

375-377
and clc instruction, 383-384
and increment and decrement

instructions, 389,
391-392

and sec instruction, 411
and xce instruction, 423

Case sensitivity, of C, 45
Catalog, of C file, 33-34
Cc, APW command, 33
ChangeFlag bit, 148, 150

Character constants, in C, 44
Check dialog items, 297
CheckMItem call, 231, 427
CheckUpdate call, 259, 427
CINCLUDE files, 156-157
Clc instruction, 85, 89, 373,

383-384
Cld instruction, 92, 384
Cli instruction, 90, 384-385, 412
CUB file, 36-38, 159
ClipRect call, 190, 301, 427
ClipRgn and clip regions, 190
Clock speed, 65C816, 74
Close
APW macro, 322-323
ProDOS 16 call, 325-326

Close boxes, 248
ClosePoly call, 174, 428
ClosePort call, 182, 428
CloseRgn call, 174, 428
Clv instruction, 94, 385
Cmp instruction, 110, 385-386
and branch instructions,

376-377, 380
Color, 176-180
and dithering, 7, 177
and GrafPorts, 184

Command line arguments, for
C, 36-37

Commas
in assembly language strings,

26
in C parameter lists, 30

Comments, in assembly language
programs, 23

Compaction, memory, 142
Comparisons, instructions for,

110
Compatibility, IIgs and other

Apple lIs, 3-4, 60. See
also Emulation mode

Compile command, for C
programs, 33, 35, 40-41

Complementing function, with
eor instruction, 390

Conceptual drawing planes,
175-177

Condition flags, 84
Constant definitions, for C

toolbox routines, 158
Content region, window, 251
Control commands, assembly

language, 20-22

Controls and Control Manager,
9, 131, 248-250, 296

Coordinate systems
conversion of, 190-191,

261-263
GrafPort, 186
pixel map, 176
QuickDraw II, 175, 190
and Window Manager,

260-263
Cop instruction, 101, 386-387
COPY assembler directive, 265
Coresident programs, and

Memory Manager, 54
Cpa instruction, 110, 385-387
Cpx instruction, 110, 387-388
and branch instructions,

376-377, 380
Cpy instruction, 110, 388
and branch instructions,

376-377, 380
Create, ProDOS 16 call, 325
C-type strings, 191
Cursor records, 193
Custom-designed windows, 248

D character, in menu data tables,
219

D flag. SeeDecimal mode flag
D register. SeeDirect page

register
Data area, window, 251
Data bank register, 79-80, 85,

104-105
in assembly language

programs, 23-24
and stack instructions, 99,

402,405
Data buses, for 65C816, 75
DATA directive, 24
Date, of file creation, 325
DBR. SeeData bank register
Dc instruction, 26
Dea instruction, 110, 388-389
Deactivate events, 145
DEBUG utility, 16
Debugging, of C programs,

42-43
Dec instruction, 110, 389
Decimal mode flag, 84, 90-93
and adc instruction, 373
and brk instruction, 381

Index

Decimal mode flag-cont
and cld instruction, 384
and cop instruction, 387
and sed instruction, 411-412

Default button, 305
Hdefine C directive, 157-158
Delay loops, and nop

instruction, 398
Desk accessories
events with, 146-147
management of, 54
menus for, 215-216
and modeless dialogs, 299
windows for, 250

Desk Manager, 10, 131-132
Desktop interface tool sets,

131-132
Destination bank addressing, 98,

125-126
Destroy, ProDOS 16 call, 325
Device driver events, 146-147
Dex instruction, 77, 389
Dey instruction, 77, 389-390
Dialog windows and Dialog

Manager, 9, 131, 248,
295-296

creation of, 302-304
DIALOG.C program, 312-317
DIALOG.Sl program,

306-312
items for, 297-298, 304-306
types of, 299-301

DialogStartUp call, 302, 429
Digital oscillator chip, 7, 350
Direct addressing, 98, 104-105
Direct indexed addressing, 98,

114-115
Direct indexed indirect

addressing, 98, 117-118
Direct indirect addressing, 98,

116
Direct indirect indexed

addressing, 98, 119
Direct indirect long addressing,

98, 116-117
Direct indirect long indexed

addressing, 98, 119-120
Direct page addressing, 105-106
Direct page operands, 108
Direct page register, 80, 86
and stack instructions,

402-403, 406
and ted instruction, 416-417

473

Index

Directives, assembler, 21
Directory files, 321
Disk drive operations, 319-348
Disk operating system. See

ProDOS16
Display memory. See Screen

display
Display shadowing, 63
DisposeHandle call, 182, 430
Dithering, of color, 7, 177
Division, and asl instruction, 375
DOC (digital oscillator chip), 7,

350
DOCMode field, 357
Document windows, 248-249
Drag region, window, 248
Drawing environments, 182
DrawMenuBar call, 220, 431
DrawText call, 191,431
Dynamic range, of sound, 350,

353

E flag. See Emulation flag
Edit line dialog items, 298
Editor-assembler, APW, 13-22,

26-27
80Store switch, 71-72

Empty handles, 142
EMStartup call, 151, 431
Emulation flag, 85-86
and stack instructions,

404,406
and xce instruction, 423

Emulation mode, 4
65C816 registers in, 76-77
memory map in, 5, 57-64
and native mode, toggling

between, 85-88
stack addressing in, 100

Encoding, and eor instruction,
390

END assembler directive, 23, 26
Hendif C directive, 159
Ensoniq, 7, 350
Envelope field, 355
Eor instruction, 390-391
Error checking macro, with

windows, 265
Error messages, C compiler,

40-41
Escape character, in C, 46
EventAvail call, 146-147, 432

474

Event-driven programming,
11-12, 152

EventMessage field, 223
Events and Event Manager, 8,

131,260
codes for, 148
EVENT.C Program, 161-163,

170
EVENT.Sl program, 156,

163-170
loops for, 152-156, 224
masks with, 153-154, 220,

223,253
and menus, 220-223
messages with, 149
priority of, 146-147
records for, 144, 147-150,

153-155, 222
tables for, 155-156
and Taskmaster, 220,

222-223, 252-253
types of, 145-146

EventWhat field, 155
EventWhere field, 261
Exclamation points
for absolute addressing,

107-108
for assembly language

comments, 23
as C logical inverse operator,

231
Extended addressing functions,

registers for, 76

Fast processor interface, and
Mega II, 61

Fast RAM, 61
Fflush() C function, 47
Files
loading of, 321-323, 328-333
programs using, 333-348
saving of, 323-326
types of, 325, 327

Filter procedures
with dialogs, 307
and SFGetFile call, 328

Finder disk, 10-11
FindWindow call, 221, 433
FixAppleMenu call, 215, 220, 433
Fixed address memory blocks,

143
Fixed bank memory blocks, 143

Fixed memory blocks, 143
FixMenuBar call, 220, 434
Flags, processor status register,

82-94, 371
and status register

instructions, 407-408,
412-413

Floating-point arithmetic, 92
Font and text data, in GrafPort

structure, 184
Font Manager, 9, 132
FontGlobalsRecord structure,

192
FontlnfoRecord structure, 192
FPI (fast processor interface),

and Mega II, 61
Fragmentation, memory, 142
Frame region, window, 251
FrameOval call, 173-174, 435
FramePoly call, 174, 435
FrameRect call, 173-174, 435
FrameRgn call, 174, 435
FrameRRect call, 173-174, 435
Frequency, sound, 351
Functions, in C, 30

General logic unit, 7, 350
Generators, sound, 350, 354-355
Getchar() C function, 43, 49
GetClip call, 190, 436
GetColorTable call, 178, 436
GetMItemMark call, 229, 231,

439
GetMouse call, 261, 439
GetNewDItem call, 303, 439
GetNewModalDialog call,

302-303, 439
GetNextEvent call, 146-147,

153-155, 260, 439
and TaskMaster, 220-223,

252-253
GetPenMask call, 187, 440
GetPenMode call, 188, 440
GetPenSize call, 186, 440
GetPenState call, 186, 440
GetPort call, 183, 440
GetSCB call, 180, 440
Global coordinate system,

190-191, 260-262
Global variables, in assembly

language programs, 21

GlobalToLocal call, 191, 261,
442

GLU (general logic unit), 7, 350
Glue routines, 159
GrafPort data structures,

181-185
coordinate systems with,

190-191
and dialog windows, 303
programs for, 194-211
strings and text with, 191-193
and windows, 253-254, 256,

258-260, 262
Graphics, 6-7
in dialog windows, 296
and GrafPorts, 181-185
modes for, 177-181
and pen, 184, 186-190
and pixel maps and

conceptual drawing
planes, 175-177

See also QuickDraw 11
Greater than sign
for absolute long addressing,

108
with #include C directive, 43
in menu data tables, 217

Grow region, window, 248

H, for hexadecimal numbers, 26
H character, in menu data

tables, 219
Handles, 138-143
and Memory Manager, 54-55,

160-161
for menus, 220

Hanging bit, 85
and stack instructions, 404,

406
Hard disks, installing APW C

on, 32
Harmonics, and sound, 352
HDINSTALL utility, 15
Header files, 157
Hexadecimal numbers
in assembly language

programs, 26
in C, 45
compared to decimal, 91

HideWindow call, 249, 443
Hierarchical file system, 321

Highlighting, of text, with APW
editor, 19

HiliteMenu call, 223, 443
HiRes switch, 72
Horizontal scroll bars, 249

I character, in menu data tables,
219

I (IRQ disable) flag, 84,
384-385, 412, 421

Icon dialog items, 298, 300
#ifndef C directive, 158
Immediate addressing, 98,

101-102
Implied addressing, 98, 100-101
Ina instruction, 110, 391-392
Inc instruction, 110, 391-392
#inelude C directive, 43, 266
with toolbox routines,

157-158, 163
Index register select flag, 84,

87-88, 93, 408, 412
Index registers. See X register; Y

register
Indexed addressing modes, 98,

111-115
Indirect addressing modes, 80,

98, 115-120
Information bars, 248
Initialization
of Dialog Manager, 302-303
of Event Manager, 150-152
of Menu Manager, 216
of QuickDraw 11, 193
of Sound Tool Set and Note

Synthesizer, 354
of tools, 135-137
of Window Manager, 251

INITQUIT.C program, 266,
292-294, 366-368

INITQUIT.S1 program, 265,
283-287

Inline assembler, for C, 31
Inline trap calls, 159
InsertMenu call, 219-220, 444
INSTALL utility, 75
Instruction set, 65C816, 371-423.

See also specific
instructions

Instrument records, 355-357
Integer Math Tool Set, 9, 132
Interrupt disable flag, 90

Index

Interrupts
and brk instruction, 381-382
and eli instruction, 384-385
and cop instruction, 386-387
and memory shadowing, 63
and move instructions,

396-398
and rti instruction, 409
scan-line, 177, 180
and sei instruction, 412
and wai instruction, 421

Inx instruction, 77, 392
Iny instruction, 77, 392
IOLC (I/O and language card)

bit, and memory
shadowing, 62-63

IRQ disable flag, 84, 384-385,
412, 421

Irq instruction, 101

Jml instruction, 116
Jmp instruction, 79, 103, 116,

120, 392-393
compared to bra and brl

instructions, 381-382
JsI instruction, 25, 79, 159, 320,

393
Jsr instruction, 103, 120,

393-394
Jump tables
and direct indexed indirect

addressing, 117-118
in event loop, 225

K register. See Program bank
register

KEEP directive, 21, 35, 37
Keyboard equivalents, for menu

commands, 216
Keyboard events, 144-145, 147
Keyboard input, in C, 43, 46

Labels
in assembly language

programs, 21
in C, 38

Language card area
in emulation mode, 59-60
and shadow register, 62-63

LANGUAGES directory, 16

475

Index

Last-in first-out storage, 23, 121
Lda instruction, 82, 394
Ldx instruction, 394-395
Ldy instruction, 395
LEShutdown call, 135, 446
Less than sign
with addresses, 102
with direct page operands,

108
with #include C directive, 43

LEStartup call, 135, 446
LIBoundsRect field, 185, 188
Libraries, for C, 31, 36, 38, 156
LIBRARIES file, 16, 36
LIFO (last-in first-out) storage,

24, 121
Line numbers, with assembly

language editors, 18
LineEdit Tool Set, 9, 131
LineTo call, 174, 186, 261, 447
Link command and linking, 14
of C programs, 35-39, 41
in emulation mode, 58

List Manager, 9, 132,
LIST ON assembler directive, 21
Literal numbers, 81-82
Load files, for C, 35
LoadTools call, 133-134, 447
Local coordinate system,

190-191,260-262
Local variables, in program

segments, 21
LocalToGlobal call, 191, 448
Loc1nfo data structure, 183-184,

188
Loc1nfoPicPtr field, 185
Loc1nfoSCB field, 184-185
Loc1nfoWidth field, 185
Locked memory blocks, 143
Logical operations, 85C816
and, 374-375, 378, 417
or, 399-400, 417-418

Logical operators, in C
AND, 47-48
inverse, 231
OR, 45

LOGIN file, 16, 33
Long addresses, 79
Long static text dialog items,

298
Loops
in C, 47-48

476

Loops-cont
delay, and nop instruction,

398
event, 152-156, 224

Lsr instruction, 395-396

M (memory/accumulator select)
flag, 84, 86-87, 93, 408,
412

MACGEN utility, 16
Machine language
compared to assembly

language, 95-96
IIgs vs. Macintosh, 3
and Memory Manager, 54
See also Assembly language

programming
Machine state register, 72
Macintosh computers, compared

to Apple Ilgs, 1, 3-4
Macros, for C, 43-44
Main() C function, 36-37, 44
Main RAM, and soft switches,

71
MAKELIB program, 16, 37
Maskable interrupts, 90
Masks
and and instruction, 374
and eor instruction, 390
and ora instruction, 399

Master pointers, 160-161
MasterSCB parameter, 178
Math tool sets, 132
Mega II integrated circuit, 60-61
Memory, 4-6
attributes of blocks of,

143-144
and BCD numbers, 91
and C macros, 43
for color palettes, 178
in emulation mode, 57-64
in native mode, 64-67
pages of, 3, 51-52
for SCBs, 180-181
and soft switches, 67-72
See also Banks, memory;

Memory Manager;
Memory maps

Memory/accumulator select flag,
84, 86-87, 93, 408, 412

Memory Manager, 4-6, 8, 52-53,
130, 137-138

Memory Manager-cont
and APW, 54
for assembly language

programs, 19
compaction of memory by,

142
and desk accessories, 54
and pointers and handles,

54-55, 138-143, 160-161
Memory maps, 3, 52-53, 55-56
in emulation mode, 5, 57-64
in native mode, 5, 64-67

Memory shadowing
in emulation mode, 60, 62-64
in native mode, 64-66

Mensch, William D, Jr., 421-422
MenuKey call, 223, 448
Menus and Menu Manager, 9,

131, 213
bars, 214-216
data tables for, 217-219
items for, 216-217
MENU.C program, 229-231,

243-245
MENU.Sl program, 229,

232-243
and TaskMaster, 220-228
titles for, 214-215, 217

MenuStartup call, 216, 448
Message field, 148, 154
Messages, in dialog windows,

296
Microprocessor, 65C816, 3
arithmetic and logical unit in,

81-82
buses in, 75
compared to 6502

microprocessors, 73-74
instruction set for, 371-423
processor status register in,

82-94
registers in, 75-80

Miscellaneous Tool Set, 8, 130
MMStartup call, 139-140, 449
Mnemonics, assembly language,

23
Modal dialogs, 299-300
Modeless dialogs, 299-301
Modeless programming, 12
Modifier keys, 145
Modifiers field, 148-150, 154,

260
Modules, assembly language, 21

Mouse events, 144-145, 147
and controls, 248-250
and menus, 213-214

MoveTo call, 186, 449
Music, programs for, 357-366.

See also Sound
Mvn instruction, 125, 396-397
Mvp instruction, 125,397-398

N character, in menu data tables,
218-219

N (negative) flag, 84, 94,
379-380

Name Game, C program, 39-49
Native mode, 4, 137
65C816 registers in, 76
and C, 31
and emulation mode, toggling

between, 85-88
memory map in, 5,64-67
stack addressing in, 100

Negative flag, 84, 94, 379-380
NewDItem call, 303-306, 450
NewHandle call, 140-141, 143,

151, 450
Newline, in C, 46
NewMenu call, 219, 450
NewModalDialog call, 302-304,

450
NewModelessDialog call,

302-303, 450
NewRgn call, 173, 450
NewWindow call, 251, 253-254,

256, 258, 450
Nil pointers, 142
Nmi instruction, 101
Noise waveforms, and sound,

352-353
Nonmaskable interrupts, 90
Nop instruction, 398-399
Not operator, in C, 231
Note Sequencer, 133, 351
Note Synthesizer, 133, 351,

354-357
NoteOff call, 355
NoteOn call, 351, 353, 355
Null characters
in C strings, 46
in menu data tables, 218

OMF (object module format)
and object code files, 14

assembly language, 17
for C, 35

Open
APW macro, 322-323
C library routine, 340
ProDOS 16 call, 325

OpenNDA call, 223, 450
OpenPoly call, 174, 450
OpenPort call, 182, 451
OpenRgn call, 173, 451
Operands, in assembly language

programs, 24-25
OR operator, in C, 45
Ora instruction, 399-400
Origin directive, 19
Oscillators, for sound, 350
Ovals, 173
Overflow flag, 84, 93-94,

382-383, 385

P register. See Processor status
register

Page aligned memory blocks, 143
Page2 switch, 72
Pages, of memory, 51-52
boundaries for, 52
and direct page register, 80
and Page 0 addressing, 58-59,

104-105
PA1NTBOX.C program,

194-195,202-203
PA1NTBOX.SI program,

194-202
PaintOval call, 173, 451
PaintParams structure, 193
PaintPixels call, 193, 451
PaintPoly call, 174, 451
PaintRect call, 173, 451
PaintRgn call, 174, 451
PaintRRect call, 173, 451
Parameter list, for C functions,

30
Parentheses, with C functions,

30
Pascal functions, 31, 157
Pascal-type strings, 191, 198
Pathnames, 321
PBR. See Program bank register
PC (program counter), 78-79
Pea instruction, 24-25, 101, 400

Index

Pei instruction, 101, 400-401
Pen and pen state data structure,

184, 186-190
PenNormal call, 186, 451
Per instruction, 101, 401-402
Percent sign, in C, 46-47
Pha instruction, 101, 123, 402
Phb instruction, 80, 101, 402
Phd instruction, 80, 101, 402
Phk instruction, 23-24 79, 99,

101, 403
Php instruction, 101, 123, 404
Phx instruction, 101, 123, 404
Phy instruction, 101, 123,

404-405
Picture dialog items, 298
PitchBiendRange field, 356
Pixel maps, 175-177
Pia instruction, 101, 123, 405
Plb instruction, 23-24, 80, 99,

101, 405-406
Pld instruction, 80, 101, 406
Pip instruction, 101, 123,

406-407
Pix instruction, 101, 407
Ply instruction, 101, 407
Point data structures, 172
Pointers, 138-143
in event tables, 155
and immediate addressing,

101-102
and Memory Manager, 54-55,

160-161
PolyBBox field, 174
Polygons and polygon data

structures, 173-175
PolyPoints array, 174
PolySize field, 174
Port rectangles, 189, 260-262
PortInfo data structure, 183-184
PortLocInfo structure, 185
PortRect field, 189
PostEvent call, 146, 452
Pound sign, for literal numbers,

81-82
PPToPort call, 258, 452
Prefix APW command, 17
Print Manager, 9, 132
Printf() C function, 45
PriorityIncrement field, 356
Processor status register, 78,

82-94, 371
and rti instruction, 409

477

Index

Processor status register-cont
and stack instructions,

403-404, 406-407
and status register

instructions, 407-408,
412-413

ProDOS 16, 10
and assembly language

programs, 319-321
loading files with, 321-323
and Memory Manager, 137
saving files with, 323-326

Program bank register
in assembly language

programs, 23-24
and brk instruction, 381
and emulation flag, 85
and jsl instruction, 393
and phk instruction, 403
and program counter, 78-79
and return instructions, 410
and stack addressing, 99

Program counter, 78-79
Program counter relative

addressing, 98, 110-111
Program counter relative long

addressing, 98, III
Program launcher disk, 10
Program segments, assembly

language, 21
Pulse waveform, 353
Purge level, memory block, 144
Putchar() C function, 43, 45

QDStartup call, 151, 178, 453
Quagmire state, 62
Queue, event, 144, 146-147
QuickDraw II, 8, 130, 171-175
coordinates for, 175, 190
and dialog windows, 296, 301
and Event manager, 150
and GrafPorts, 183
initialization of, 193
pen drawing with, 186-190
and strings and text, 191-193
and windows, 262

QuickDraw II Auxiliary, 9, 132
Quotation marks. See Single

quotation marks

Radio dialog items, 298

478

RAM (random-access memory)
free, 56, 58-59, 64, 67
and machine state register, 72
and Mega II chip, 60-61
and soft switches, 71-72

RAMRd switch, 71-72
RAMWrt switch, 71-72
Read, APW macro, 322-323
Read operations, and soft

switches, 67
Readability, of C programs, 43,

48
Read-only memory
expansion, 52, 56, 67
and machine state register, 72
in native mode, 64
tools in, 133

ReadTimeHex call, 159-160, 453
Rebooting, 42
Rectangles and rectangle data

structure, 172-173
bounds, 188-189, 261
in dialog windows, 296
port, 189, 260-262

Redirection, using APW shell,
40

Regions and region data
structure, 173-174

Registers, 65C816, 6, 75-80, 372
compared to 6502, 74
processor status register,

82-94
ReleaseSegment field, 356
Relocatable code
and Memory Manager, 54
and per instruction, 401

Relocation dictionaries, for C
modules, 35

RelPitch field, 357
Rep instruction, 86-88, 407-408
Repeat delay and repeat speed,

145
Res instruction, 101
Richie, Dennis, and C, 30
Rol instruction, 408
ROM. See Read-only memory
Ror instruction, 409
Round rectangles, 173
Rti instruction, 79, 100, 384,

409-410
Rtl instruction, 25, 79, 100, 410
Rts instruction, 100, 123, 410

S. See Stack and stack pointer
SANE. See Standard Apple

Numerics Environment
Sawtooth waveforms, and sound,

352
Sbc instruction, 411
and cld instruction, 384

Scan lines and SCB (scan-line
control bytes), 177-178,
180-181, 185

Scanf() C function, 46-47
Scheduler, 133
Scrap Manager, 9, 131
Screen display
in C, 43, 45
memory for, 56, 58-59, 177,

179
and pixel maps, 177
and soft switches, 72
startup, 10-11
super high-resolution, 66

Screen-oriented editors, 18
Scroll bars, 249, 298
ScrollRect call, 191, 455
Sec instruction, 85, 89, 411
Sed instruction, 92, 412
Sei instruction, 90, 412
SelectWindow call, 303, 456
Semicolons
for assembly language

comments, 23
in C statements, 30

Sep instruction, 86-88, 412-413
Separators, for C statements, 30
Sequential programming, 11, 152
SetAllSCB call, 180, 456
SetClip call, 190, 456
SetClipRgn call, 301
SetColorTable call, 178, 456
SetMItemName call, 331, 459
Setarigin call, 191,261-263,459
SetPenMask call, 187, 459
SetPenMode call, 188, 459
SetPenPat call, 186, 459
SetPenSize call, 186, 459
SetPenState call, 186, 459
SetPort call, 182-183, 262, 460
SetSCB call, 180, 460
SetSolidPenPat call, 186, 460
SetSoundVolume call, 351, 460
SetWTitle call, 330, 461
SEC program, 340-348
SFGetFile call, 328-331, 462

SFPutFile call, 331-333, 462
SESI program, 333-340
SFShutdown call, 326, 462
SFStartup call, 326, 462
Shadow register, 62-63
Shell, APW, 14-15,40
Shift instructions, 375, 395-396
ShowWindow call, 303, 462
Side effects, and C functions, 30
Signed numbers, and status

flags, 93-94
Simple addressing modes, 98-111
Sine waveform, 352
Single quotation marks
in assembly language

programs, 26
for C character constants, 44

SKETCHER.C program,
194-195, 210-211

SKETCHER.Sl program,
194-195, 203-210

Slash character, and pathnames,
321

Slow RAM, 61
SmartPort, 319, 321
Soft switches, 51, 67-72
Sound, 7
characteristics of, 349-354
MUSIC.C program, 364-366
MUSIC.Sl program, 357-374
and Note Synthesizer, 354-357
programs for, 357-368

Sound Tool Set, 10, 133, 351,
354

Source code files, assembly
language, 17

SP. See Stack and stack pointer
Special characters, in menu data

tables, 217-219
Special memory, 138-139
Special memory usable memory

blocks, 143
Specialized tool sets, 133
Specifications, for Apple IIgs,

2-3
SrcLocInfo structure, 183
Sta instruction, 82, 413
Stack and stack pointer, 78,

121-123
addressing modes using,

98-101, 124-125
in assembly language

programs, 23-24

Stack and stack pointer-cont
and brk instruction, 381
and eli instruction, 384
and cop instruction, 387
in emulation and native

modes, 58-59, 65, 85
and jump instructions, 393
and push and pull

instructions, 400-407
and return instructions,

409-410
and transfer instructions, 416,

418-420
Standalone C applications, 49
Standard Apple Numerics

Environment, 10
and CUB, 38
tool set for, 132

Standard File Operations Tool
Set, 9, 132, 319-320

loading files with, 321-323
programs using, 333-348
saving files with, 323-326

Standard File Tool Set, 326-333
START assembler directive, 21
START.ROOT file, and C, 36-37
StartDrawing call, 261-263, 463
Static text dialog items, 298
Status register and status flags,

78, 82-94
Stdin, in C, 47
Stdio.h C file, 43
Storage types, file, 325, 328
Stp instruction, 413-414
Strcmp() C function, 47
Strings
in assembly language

programs, 26
in C, 44-47
and QuickDraw II, 191-193

Structure region, window, 251
Stx instruction, 414
Sty instruction, 414
Stz instruction, 414-415
Subroutines, and stack, 123
and jump instructions,

393-394
and return instructions,

409-410
Subtraction, 410-411
and carry flag, 89, 384
and overflow flag, 93

Index

Super high-resolution graphics
modes, 6-7, 177

and QuickDraw II, 171
screen display in, 66

Switch events, 147
Symbolic references and

variables, and C, 38, 43
SYSHELP file, 16
SYSTEM directory, 16
System hardware addresses, in

emulation mode, 59
System loader, and Memory

Manager, 53, 137
System menu bars, 215-216
System ROM, in native mode,

64
System windows, 250
System-level routines, and

Miscellaneous Tool Set,
130

Tables, and direct indexed
indirect addressing,
117-118

TaskData field, 222-223,
226-227

TaskMask field, 222, 225
TaskMaster
and menus, 220-228
and task codes, 221
and task masks, 224, 253
and task records, 220, 253
and windows, 251-253

Tax instruction, 415
Tay instruction, 415
Tcd instruction, 106, 416
Tcs instruction, 416
Tdc instruction, 417
Text, 6
in assembly language

programs, 26
editing of, with APW editor,

19
and QuickDraw II, 191-193

Text Tool Set, 9, 133
Timbre, 352-353
Time, of file creation, 325
Title bars, 248
Tool Dispatcher, 25, 159
Tool Locator, 7-8, 130, 133
Tool sets, 129-130
dependency chart for, 136

479

Index

Tool sets-cont
loading of, 134-135

Toolbox, 3-4, 7-8, 129
in assembly language

programs, 13
and C, 31, 156-161
contents of, 8-10, 130-133
initializing and using, 133-137
list of calls in, 425-465
ROM for, 64
tables for, 134
and tool dispatcher, 25, 159
See also specific calls and

tools
ToolErr variable, 158
Top of file, APW editor

command, 19
TopKey field, 357
TrackZoom call, 252, 465
Trap calls, 159
Trb instruction, 417
Triangle waveforms, and sound,

352
Tsb instruction, 418
Tsc instruction, 418
Tsx instruction, 419
Txa instruction, 419
Txs instruction, 420
Txy instruction, 420
Tya instruction, 420-421
Type definitions, and C toolbox

routines, 158
Typedef C statement, 160
Tyx instruction, 421

U character, in menu data tables,
219

UNIX, and C, 30
Unmanaged memory, 138-139
Update events, 146-147, 259
Update region, window, 259
User dialog items, 298
UTILITIES directory, 16

V character, in menu data tables,
219

V (overflow) flag, 84, 93-94,
382-383, 385

Variables, in assembly language
programs, 21

Vertical bar
for absolute addressing, 107

480

Vertical bar-cont
for C logical OR operator, 45

Vertical scroll bars, 249
VGC (video graphics controller),

7,61
VibratoDepth field, 356
VibratoSpeed field, 356
Video graphics controller, 7, 61
VisRgn and visible regions, 190
VisRgns field, and Window

Manager, 261
Volume, of sound, 351
Volumes, disks as, 321

Wai instruction, 421-422
WaveAddress field, 357
WaveList array, 357
WaveSize field, 357
Wdm instruction, 422
WFrame field, 254-255
What field, 148, 154-155
When field, 148, 154
Where field, 148, 154
While, C statement, 44-45
Windows and Window Manager,

9, 131, 247
activation of, 249
and coordinate systems,

260-263
drawing of, 259-260
and Events Manager, 145-146
frames for, 248
and GrafPort, 253-254, 256,

258-260, 262
lists of, 253
menu bars in, 216
parameter blocks for, 256-257
records for, 253-256
regions in, 251
size of, 250-251
and TaskMaster, 251-253
and WINDOW.C program,

266, 287-292
and WINDOW.Sl program,

263-283
See also Dialog windows

WindStartup call, 251, 466
WmTaskData field, 231
Write, ProDOS 16 call, 325
Write operations, and soft

switches, 67, 71
WriteCString call, 25, 466

X character, in menu data tables,
219

X (index select register) flag, 84,
87-88, 93, 408, 412

X register, 6, 77
and cpx instruction, 387-388
and dex instruction, 389
in emulation and native

modes, 85, 87-88
and indexed addressing,

111-1l5, 117-118, 120
and inx instruction, 392
and ldx instruction, 394-395
and move instructions, 125,

396-398
and stack instructions, 123,

404-405, 407
and stx instruction, 414
and tool dispatcher, 25
and transfer instructions, 415,

420-421
Xba instruction, 86-87,422
Xce instruction, 85, 423
and clc instruction, 383
and sec instruction, 411

Y register, 6, 77
and cpy instruction, 388
and dey instruction, 389
in emulation and native

modes, 85, 87-88
and indexed addressing, 111,

113-115, 117-120, 125
and iny instruction, 392
and ldy instruction, 395
and move instructions, 125,

396-398
and stack instructions, 123,

125, 404-405, 407
and sty instruction, 414
and transfer instructions, 415,

420-421

Z (zero) flag, 84, 90
and branch instructions,

377-379
Zeros, storage of, with stz

instruction, 414-415
ZIP.SRC program, 17-27
Zoom boxes and ZoomWindow

call, 252, 467

