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Introduction

The Apple IIGs is two computers in one, and this book is about both of them.
It’s also about the two most powerful programming languages for the Apple
Ilgs: assembly language and C.

Apple calls the IIs a two-in-one computer because it runs most soft-
ware written for earlier Apple IIs, yet offers today’s computer user a host
of brand new Macintosh-like features—plus full color—at an Apple II
price.

This book is a two-in-one book, twice over; it teaches you how to
program the IIGs in both of its operating modes—8-bit emulation mode and
16-bit native mode—and it teaches you to do that in two languages—assembly
language and C.

If you want to learn to program both of the computers built into the
IIgs—in C, assembly language, or both—this is the book you are looking
for.

In plain English, and with the help of many, many figures and tables,
this book introduces you to the IIgs from the ground up: how it’s laid out,
how its microprocessor works, and how it is different from—and similar to—
other computers in the Apple II family. After that ground has been covered,
you learn how to start programming the Apple Ilgs in assembly language
and C.

What This Book Can Do for You

If you've written programs in BASIC, Pascal, or any other programming
language, this book is all you need to start programming the Apple IIGs in
assembly language. If you’re an experienced assembly language programmer,
you can learn how to expand your knowledge to include all the new and
special features of the Apple Ilgs . If you’re primarily a C programmer, you
can learn how to deal with all the Ilgs’s new features in programs written
in C.
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This book is also an asset to assembly language programmers who would

like to start saving time by including C routines in their programs and to C
programmers who would like to streamline and speed up portions of their
programs by learning some assembly language. If either of these possibilities
appeals to you, you’ll be happy to learn that the software development system
used to write the programs in this book, the Apple Programmer’s Workshop
(APW), makes it easy to combine routines written in assembly language and
C—and this book teaches you how.

What You Can Find in These Pages

As you read this book, and type and run the many example programs, you
may notice that

B Unlike many books on C and assembly language programming, it is

written in English, not computerese, and is designed for people who
want to learn to program, not just for professional programmers and
engineers (though some of them will find it useful, too).

It includes a complete course on how to use the Apple Ilgs Toolbox,
a set of built-in assembly language subroutines that distinguish the
Ilgs from all previous Apple IIs. The Toolbox is what provides the
Ilgs with such spectacular graphics features as windows, pull-down
menus, icons, and mouse-controlled commands. This book teaches
you how to use most of the tools in the Toolbox, in both C and
assembly language.

It is packed with what almost every computer book could use more
of: type-and-run programs that do far more than illustrate the points
being discussed. They are designed to put the Ilgs through its paces
as you learn how it works. When you finish this book, these
programs form a useful library of commonly used Apple IIs
routines.

What You Can Learn

By the time you finish this book, you’ll also know how to

B Program the Apple Ilgs’s 65C816 chip in assembly language, in

both its §-bit emulation mode and its 16-bit native mode. Part 1
covers the fundamentals of Apple IIGs programming. Most of the
programs in this segment are written in emulation mode. In part 2,
you can pull out all the stops and learn how to program the IlGs in
its full 16-bit native mode.
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What You Need

Ready, Set, Go!

8 Write text-based programs using the Toolbox’s Text Tool Set and
write super high-resolution graphics programs using QuickDraw II—
a IIs tool set that you use to design text screens, pictures, and even
printed documents with a palette of 4,096 colors and a screen
resolution of up to 640-by-200 pixels.

B Equip your programs with eye-catching graphics features such as
pull-down menus, multiple windows, icons, and the dialog boxes
that serve as communication windows between the user and the Ics.

B Write sound tracks for your programs using the Ilcs’s 15-voice, 32-
oscillator sound and music synthesizer—the most powerful sound
system in any computer in the IIGs class.

You learn how to do all of this—and much, much more—in both C and
assembly language.

To use this book, you need an Apple Ilgs with at least two 3.5-inch disk
drives, a monochrome or color monitor, and at least 512K of extra memory.
A hard disk, a 1-megabyte RAM disk, and at least another 512K of extra
memory are highly recommended.

As you advance in your knowledge of IlGs programming, a few books
besides this one might come in handy. Two works that every serious IIGs
programmer should own are the Apple ligs Toolbox Reference and the Apple
Ils ProDOS 16 Reference, both written at Apple and published by Addison-
Wesley. The Apple 1lGs Toolbox Reference is a particularly important work
because it explains exactly how to use every tool in the Ilgs Toolbox in
programs written in both assembly language and C.

Three other books that are required reading for IIGs programmers are
the Apple lls Programmer’s Workshop Reference, the Apple IIGs Program-
mer’s Workshop Assembler Reference, and the Apple llGs Programmer’s
Workshop C Reference, which were also written at Apple and published by
Addison-Wesley. Many other books that you might find useful or interesting
are listed in the Bibliography.

If you’ve read this far, it’s a safe bet that you’re at least a little bit interested
in learning how to program the Apple IlGs in C, assembly language, or both.
There’s no better time to begin than right now. So turn the page and start
from the top—with chapter 1.

Xi
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CHAPTER

Introducing
the Apple llgs

The Apple |l for the Rest of Us

II? When hardware engineers at Apple Computer attempted that

feat, they came up with the Apple llgs-—a remarkable new
personal computer that offers Macintosh-like features at an Apple II price,
with super high-resolution graphics and spectacular sound thrown in as part
of the bargain.

@I hat do you get when you cross an Apple Macintosh with an Apple

An Apple ll—Plus!

The specifications of the Apple 1IGs are not quite the same as those of the
Apple Macintosh. For example, the IIgs uses a 65C816 microprocessor, but
Macintosh computers are built around chips of the 68000 family. Also, the
IIGs has a different type of screen display. The IlGs generates a color video
display with a screen resolution of either 320-by-200 pixels or 640-by-200
pixels, depending on the graphics mode. The Macintosh Plus and the Mac
SE produce black-and-white displays that measure 512-by-342 pixels. Table
1-1 lists the most important specifications of the Apple IlGs.

There are other differences between the Ilgs and the Macintosh. One
difference, immediately apparent to a potential computer purchaser, is that a
Mac, even a low-end model, is considerably more expensive than a IlGs.
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Table 1-1
Apple ligs Specifications
Feature Specifications Comments
CPU 65C816 16-bit microprocessor with 24-bit (16
MHz) addressing capability. 6502 and
65C02 compatible.
Operating speeds 2.8 MHz and 1 Selectable dual operating speeds provide
MH:z compatibility with earlier Apple Ils.
Memory capacity 256K RAM, RAM expandable to 8.25 megabytes. One
128K ROM megabyte of memory available for ROM

Desktop user
interface

Mouse

Toolbox

Keyboard

Monitor outputs

Text modes

Graphics modes

Resolution

Colors

Sound

Enhanced monitor

BASIC

Control panel

Clock
Serial ports

AppleTalk

Disk port

Mouse, windows,

pull-down menus
Two button

In RAM and
ROM

78 keys

RGB and NTST

40 column and 80

column

Apple 1 modes
and super high-
resolution mode
320-by-200
pixels, 640-by-
200 pixels
4,096

32-oscillator
synthesizer

Built into ROM

Applesoft

Built-in desk
accessory

Built in

Two built-in
serial ports
Uses one serial
port

Disk I/O port
uses custom IC

expansion.

Macintosh-like programming and user
environment.

Connects with Iles by ADB (Apple
Desktop Bus) cable.

Toolbox contains more than 800 prewritten
routines that can be used in application
programs.

Detached keyboard has built-in numeric
keypad and can be used to type in foreign
languages.

Can be used with analog RGB monitor,
composite monitor, or TV (with modulator
adaptor).

Text modes measure 40 columns by 24
lines and 80 columns by 24 lines. Border,
foreground colors, and background colors
are user-selectable.

All Apple Ilc and IIe graphics modes, plus
super high-resolution mode.

Two screen resolutions offered in super
high-resolution mode.

4,096-color palette available in super high-
resolution mode; 16 or more colors can be
displayed simultaneously.

Ensoniq synthesizer supports 15 indepen-
dent voices. Sound chip includes 64K of
dedicated RAM for storing sound patterns.

Handles 24 -bit addresses. Includes mini-
assembler and I/O routines. Can perform
hex math.

Enhanced BASIC interpreter built into
ROM.

Can be used to set display parameters, slot
and port use, operating speed, RAMdisk,
and disk drives.

Provides time and date.

Support modems, printers, and AppleTalk.
Serial card can also be installed.

AppleTalk can be used with either serial
port. No peripheral card required.

Up to six disk drives can be supported by
built-in port, or plug-in cards, or both.
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Table 1—1 (cont.)

Feature Specifications Comments
Hard disk Optional Hard disk 20SC can be connected with
SCSI interface card.
Expansion slots Seven slots for Supports plug-in cards as well as built-in
plug-in cards ports.
Game I/O External and External 9-pin jack, internal 16-pin socket.
internal ADB (Apple Desktop Bus) connector also
available for game controllers.
Operating system ProDOS 16, Designed to use ProDOS 16, but also com-
ProDOS 8, DOS patible with ProDOS 8 and DOS.
Interrupts Fully supported Built-in interrupt handler. Vertical blank

interrupts, scan line interrupts, mouse and
sound interrupts, and many other kinds of
interrupts are supported.

Another difference, not quite so obvious but as important from a pro-
grammer’s point of view, is that the Mac and the Iics don’t ‘‘speak’ the
same machine language. The Mac has a 32-bit microprocessor designed to
be programmed in 68000 assembly language. The main microprocessor in
the IIs, the 65C816, is a 16-bit successor to the 8-bit 6502 and 65C02 chips
in older Apple IIs. (The difference between an 8-bit chip and a 16-bit chip
is covered in chapter 5.) Furthermore, the memory of the Macintosh is laid
out as one continuous bank, but the memory map of the Ilcs is broken into
64K banks, like the memory map of an Apple Ilc or an expanded Apple Ile.
The memory architecture of the Apple 1IGs is covered in chapter 4.

Because of the Apple Ils’s 6502-family microprocessor, color display,
IIc and lle compatibility, and Apple II heritage, it is actually related more
closely to earlier members of the Apple II than to the Mac (although it is
something of a Mac lookalike). Nontheless, the IIgs is much more than just
a souped-up Apple II.

‘‘Like Janus, the god of doorways,’” one Apple spokesman explained,
“‘the TIcs looks in two directions.’” First, he pointed out, the computer looks
toward the future: ‘“With its many high-performance features—such as its
improved color display, advanced sound system, 16-bit processor, and larger
memory, it makes it possible for more powerful programs to be designed.”’
But, he emphasized, it also ‘‘looks back on the past. Because it also has the
features of earlier members of the Apple II family, it can run most of the vast
library of software that was written for its predecessors, such as the Apple
IIc and the Apple Ile.”

The IlGs, in its forward-looking stance, is a new breed of Apple II,
operated in a Macintosh-like desktop environment—complete with a super
high-resolution screen, icons, pull-down menus, desk accessories, and a
mouse. To make life easier for the programmer who wants to use these new
features, the IIgs comes with a fully equipped Toolbox—an enormous library
of prewritten routines that are easily incorporated into user-written programs.
With the Toolbox, programmers working in high-level languages such as C,
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Memory Magic

24-Bit
Addressing

The Apple llcs
as an Apple I

The llgs in
Native Mode

The Memory
Manager

assembly language, Pascal, and even BASIC can make use of windows,
menus, icons, and the rest of the Ilgs desktop environment without writing
the code from scratch. With the help of the Toolbox, it is easier to write
sophisticated, eye-catching programs for the IlGs than it is to write simpler
programs for earlier Apple Ils.

The main features of the Ilgs Toolbox are described in detail in part 2,
which begins with chapter 7. Important tools in the Toolbox are covered
individually, beginning in chapter 7.

Of all the remarkable features of the Ilgs, the one probably most welcome to
programmers is the [IGs’s prodigious memory capacity. The computer comes
with 256K of RAM and 128K of ROM—a far bigger supply of memory than
the 128K of RAM and 32K of ROM built into its most recent predecessor,
the Apple Ilc. You can expand the generous amount of RAM supplied with
the IIGs to as much as 8.25 megabytes with the simple addition of a plug-in
card.

The huge memory capacity of the Ilgs is made possible by the addressing
capabilities of its 65C816 microprocessor. As you will see in chapter 4, the
65C816 has 24-bit addressing capability, giving it a total memory space of
16 megabytes. Of this total, 8.25 megabytes are available for RAM expansion
and 1 megabyte is available for ROM expansion.

The memory of the Ilgs is mapped out in detail in chapter 4. In chapter
6, which is devoted to the addressing modes of the Ilgs, you’ll see how the
IIgs addresses memory.

Because the IIGs is compatible with earlier Apple IIs, its memory layout can
be used in two ways: in a mode that emulates earlier Apple IIs or in a mode
that takes full advantage of the computer’s memory capacity. When the Ilgs
is in Apple 1I emulation mode, only 128K of memory is used, and that 128K
is laid out like the main and auxiliary memory banks of a Ilc or Ile. Figure
I-1 is a map that shows how the memory of the Apple IlGs is organized
when it is operated in Apple II emulation mode.

When the IIGs is in native mode, another 128K of RAM and a full 128K of
ROM are added, along with whatever additional memory is installed. All this
added memory is available for use in application programs, except for a few
areas in low memory claimed by ROM addresses, operating system RAM,
sound and video RAM, and system I/O memory. Figure 1-2 is a map that
shows the memory architecture of a IIGs system running in 16-bit native mode.

One new feature of the Ilgs is that all memory-related operations can be
handled by a special tool called the Memory Manager. The Memory Manager
is active when the Ilgs is booted and, from that moment on, is in complete
control of the computer’s memory. It can allocate, deallocate, and compact
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memory while application programs are running, taking most of the burden
of memory management off the programmer. The memory architecture of the
IIgs and the role of the Memory Manager are discussed in more detail in
chapter 4.

Faster than a Speeding Apple I

In addition to a larger memory capacity, the IlGs runs faster than earlier
members of the Apple Il family. The Ilgs’s 65C816 processor operates at 2.8
MHz, almost three times as fast as the 1 MHz speed of the 6502 and 65C02
chips in the Ile and Ilc. But the 65C816 can also be set to run at the same
speed as a 6502 or 65C02. Because of this dual-speed capability, the IIGs can
run most of the vast library of software for earlier Apples. You can experiment
with operating speeds. Many programs designed for earlier Apples can be run
on a [Igs at either the 1 MHz speed they were designed for or the Ilgs’s native
clock speed of 2.8 MHz. This can add new challenges to arcade-style games
designed for earlier Apples. On a llgs, some games can be accelerated to
almost three times their speed on earlier Apple IIs.

Besides the 65C816 chip’s faster speed and expanded memory address-
ing capability, it has a bigger and more powerful set of internal registers. Its
accumulator, X register, and Y register are expanded from 8 bits to 16 bits.
It also has three new registers: an 8-bit data bank register, an 8-bit program
bank register, and a 16-bit direct page register. Other features of the 65C816
include 11 new addressing modes and 36 new assembly language instructions,
for a total of 24 addressing modes and a total vocabulary of 91 assembly
language mnemonics. These new features are examined in chapter 5.

GS: Graphics and Sound

lics Graphics

The Ilgs has many other special features. Two attributes are so important that
the computer was named after them: the g in Ilcs stands for graphics and the
s stands for sound. So let’s pause for a closer look at the graphics capabilities
of the Ilgs and a brief glance at the llcs world of sound.

The IIs can handle both text modes and all three graphics modes of its most
recent predecessors, the IIc and the Ile. Like the IIc and the Ile, the IIGs has
two text modes. It can produce a 40-column, 24-line text screen, which is
displayed on an ordinary television screen, or an 80-column, 24-line text
screen, which requires a high-resolution color or monochrome monitor. The
IlGs’s three graphics modes are like those in the Ilc and the Ile: a low-resolution
mode, a high-resolution mode, and a double high-resolution graphics mode
with a 16-color palette and a screen display 560 dots wide by 192 dots high.

But these three graphics modes—designed for earlier Apples and built
into the Ilgs primarily for compatibility—are not the modes for which the
Apple Ilcs is named. Besides the three graphics modes in the Ic and the
expanded lle, the Iles has two new graphics modes called super high-
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resolution modes. One of these, 320 mode, has a screen display that measures
320 dots wide by 200 dots high. The other, 640 mode, has a 640-by-200 dot
display. In super high-resolution graphics mode, a palette of 4,096 colors is
available, and up to 16 colors—or even more, with interrupts—can be dis-
played simultaneously.

Both of the graphics modes native to the IIGs are produced by a large-
scale integrated (LSI) video chip called the video graphics controller, or VGC.
The VGC can generate 4,096 colors and, with video interrupts, can simul-
taneously display up to 256 colors on the screen. Without using interrupts or
other special techniques, the VGC can display up to 16 colors at a time in
320 mode and up to 6 colors at a time (including black and white) in 640
mode. With a color-interleaving system called dithering, a 640-mode screen,
like a 320-mode screen, can display up to 16 colors at a time. More details
about Iles graphics—and a collection of type-and-run graphics programs—
are presented in chapter 8.

llcs Sound In addition to spectacular graphics, the IlGs has sensational sound. Computer
critics have raved that the IlGs has the finest sound system of any computer
in its class.

The IlGs owes its sonic superiority to a 15-voice, 32-oscillator integrated
circuit called the digital oscillator chip, or DOC. The DOC is manufactured
by Ensoniq and used in their line of professional sound synthesizers. The chip
has 64K of independent RAM and can generate waveforms from digital sam-
ples stored on a disk and loaded into its memory. So it can produce multivoice
music and other kinds of complex sounds without tying up the Ilgs’s main
MICrOprocessor.

The Ils sound system includes another custom chip called a general
logic unit, or GLU. The GLU chip is a system interface with the DOC. This
enables the Ilcs to produce sound in two ways: with its DOC chip or with a
simple, switch-controlled circuit that produces notes, tones, and beeps in the
manner of earlier Apple IIs.

The Ilgs sound system, like most of the computer’s other new features,
is designed to be programmed with the help of the Ilgs Toolbox. The sound-
producing capabilities of the Apple IlGs are described in more detail in chapter
13.

A Closer Look at the Toolbox

In the earliest models of the IIGs, parts of the Toolbox were built into ROM
and parts were included on a system disk. In later models, as the design of
the Toolbox became more solid, tools originally included on the system disk
were moved into ROM. From a programmer’s point of view, it ordinarily
doesn’t matter whether a given IlGs tool is built into ROM or provided on a
system disk and loaded into RAM when needed (except that tools in ROM
load and work faster). That’s because the Toolbox includes a special tool-
finding and tool-loading program called the Tool Locator. The Tool Locator
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can automatically find any tool-—in ROM or RAM-—and then load that tool
into memory.

After a tool is found and loaded by the Tool Locator, it can be incor-
porated into an application program by calling an assembly language macro—
if the program is written in assembly language. C programs call Toolbox
functions using standard C calling functions.

The Apple Ilgs Programmer’s Workshop (APW), the software package
used to write and assemble the assembly language programs in this book,
comes with a library of macros that make it easy to include Toolbox macros
in application programs. There’s more about macros in chapters 3 and 7. The
APW C compiler, which was used to write and compile the C programs in
this book, has an interface library that allows Toolbox functions to be in-
corporated into C programs. There’s more about that in chapter 3.

The APW assembler is introduced in chapter 2, and the APW C compiler
makes its first appearance in chapter 3. Most of the assembly language pro-
grams in part 2 contain calls to APW Toolbox macros. Most of the C programs
use Toolbox functions in the APW C interface library.

Opening the Toolbox

The Apple IIgs Toolbox contains a large assortment of useful prewritten
routines. Five of these tools are of primary importance. Apple refers to them
as the ‘‘Big Five.”” These five major tools are

B The Tool Locator. Details about the Tool Locator are presented in
chapters 3 and 7.

B The Memory Manager. The Memory Manager is covered in more
detail in chapter 7.

B QuickDraw II, which handles graphics and drawing routines.
QuickDraw II, modeled after the QuickDraw tool set for the Apple
Macintosh Toolbox, is examined in chapter 8.

B The Event Manager, which handles mouse operations and determines
what the IlGs does in response to various moving and clicking
operations that involve the mouse. The Event Manager is covered in
chapter 7.

B The Miscellaneous Tool Set, which—despite its unimportant-
sounding name—is vital to the operation of the Ilgs. The
Miscellaneous Tool Set handles low-level mouse operations,
firmware interrupt operations, access to the RAM that is backed up
by the built-in battery, reading and setting the computer’s built-in
clock, and many other important functions. The Miscellaneous Tool
Set contains so many different kinds of tools that it is not covered in
a chapter of its own, but is referred to as required in part 2.

The other tools in the IIgs Toolbox are
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The Menu Manager, which is used to create and control pull-down
menus. The Menu Manager is the subject of chapter 7.

The Window Manager, which takes care of the document and picture
windows displayed by application programs. With the help of the
Window Manager, you can place multiple windows on the screen.
You can also scroll, shrink, expand, and drag windows, and place
windows in front of and behind other windows on the screen. You
get a close look at the Window Manager in chapter 10.

The Dialog Manager, which handles alert dialogs—text windows
that warn of impending danger—and boxes that let you choose func-
tions by activating controls (such as scroll bars and pushbuttons) dis-
played on the screen. The Dialog Manager is examined in chapter
1.

The Control Manager, which handles scroll bars, buttons, and all
other kinds of onscreen controls used by tools such as the Window
Manager and the Dialog Manager.

The Font Manager, which controls the selection, loading, styling,
displaying, and printing of character fonts.

The LineEdit Tool Set, which handles keyboard text input when the
IIgs is in super high-resolution graphics mode.

The Text Tool Set, which handles keyboard text input when the IlGs
is in 40-column or 80-column text mode. The Text Tool Set is intro-
duced in chapter 3.

The Scrap Manager, which manages cut-and-paste operations.

The Standard File Operations Tool Set, which works with ProDOS
16 to create dialog windows that load and save disk files. The Stan-
dard File Operations Tool Set and ProDOS 16 are covered in chapter
12.

The List Manager, which handles lists displayed on the screen when
the Ilcs is in super high-resolution display mode. The List Manager
is used by higher-level tool sets such as the Standard File Tool Set
and the Font Manager. It is also available for use by application
programs.

The Print Manager, which interfaces the IIGs to a variety of printers,
including dot-matrix graphics printers such as the ImageWriter and
laser printers such as the LaserWriter.

QuickDraw Auxiliary, which adds some tools—and more graphics
power—to QuickDraw II.

The Integer Math Tool Set, which can make life easier for the
designer of mathematically oriented programs. With the help of the
Integer Math Tool Set, a program can easily handle mathematic
operations ranging from simple integer addition to complex
trigonometric functions.
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B The Standard Apple Numerics Environment (SANE), which includes
a library of more advanced arithmetic and mathematic operations.

@ The Sound Tool Set, which controls both the old-fashioned switch-
style sound system of the IIgs and the computer’s newer super-
sophisticated digital oscillator chip (DOC) sound synthesizer. In-
structions for programming the Sound Tool Set, and some type-and-

run routines that put it through its paces, are presented in chapter
13.

8 The Desk Manager, which controls the operation of desk accesso-
ries—mini-applications that can be run at any time without interfer-
ing with application programs.

B The Scheduler, which delays the activation of desk accessories and
other applications until the resources they need are available.

B The Apple Desktop Bus (ADB), a tool for connecting input devices
such as the keyboard, the mouse, graphics tablets, and game control-
lers to the Apple Ilcs.

The disk operating system used by the IIs is ProDOS 16. ProDOS 16
is a 16-bit descendent of ProDOS 8, the Ilc and Ile operating system. The
IlGs can run programs written under ProDOS 8, ProDOS 16, and even Apple
DOS, the operating system that preceded ProDOS 8. To help programmers
use ProDOS effectively, the lIgs Toolbox includes a Standard File Manager,
which is covered in chapter 12.

What Happens When You Turn It On

10

When you turn on the Ilgs and boot the system disk, the first thing you see
depends upon how much memory your Ilgs has. If it has 512K of memory
or more, you'll see the IlGs Finder—a screen patterned after the opening
screen of the Apple Macintosh, but displayed in full color. If your Ils has
less than 512K of memory, the startup screen will be a Program Launcher—
a plainer looking display that does not have all the features of the Finder,
but does allow you to select and run programs with a mouse. If you have
512K of memory and still see a Launcher display, your system disk is not a
Finder disk, which now comes with every Apple IlGs, but a Launcher disk,
which was packed with the first Ilgs computers and is now outdated. Early
Ilcs disks were missing some tools, had bugs in others, and thus won’t work
with some of the programs in this book. So, if you have a Launcher disk
instead of a Finder disk, please see your Apple dealer. Figure 1-3 is an
illustration of the Finder disk’s screen display. On the opening screen of
the Finder disk, the Apple IIGs displays icons, or small pictures, repre-
senting various components in the system. On the Finder screen, each
3.5-inch disk in a disk drive is represented by an icon that looks like a
3.5-inch disk. If your system includes a hard disk, a RAM card, or a hard
disk drive, those are represented by icons too.
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Figure 1-3
Finder disk screen display

From the Ilcs Finder disk, you can load, or launch, any executable
program stored on a disk. For example, you can use the Launcher to load the
APW assembler-editor system, the APW C compiler, or programs you have
created using the APW system.

The User Environment

Much has been written and said about the new era in personal computing that
began with the introduction of the Apple Macintosh. By offering the personal
computer user a new type of user environment—featuring such innovations
as windows, pull-down menus, icons, and the mouse—the Apple Macintosh
started such a revolution in desktop computing that even IBM was finally
forced to incorporate Mac-like features in its personal computer line.

The secret behind the success of the Macintosh—and the Ilgs—is event-
driven programming. In the pre-Macintosh era, computers were designed to
operate under a system called sequential programming. If pre-Mac computers
were difficult to understand and easy to hate, it was largely because of the
sequential design of their programs. When a program is written in a sequential
fashion, it presents the user with an onscreen prompt and expects the user to
type in something. If the user types in a response that the computer considers
acceptable, the computer goes to another part of the program it is running—

11
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that is, into another mode. At that point, the user might be presented with
another menu, forcing a choice that puts the program into still another mode.

To get from one kind of operation to another, the user of a sequentially
designed program usually has to move up or down through a hierarchy of
menus, often having to pass through one mode to get to another. This approach
puts the computer in charge of the user and often makes the user feel sub-
servient, intimidated, and even angry at the machine.

Event-driven programming, in the hands of a skilled programmer, can
reverse this scenario and make the computer the servant of the user. The main
characteristic of an event-driven program is that it is modeless. When an
event-driven program is executed, the computer can do just about anything
the program allows at just about any time, without the user having to switch
modes or move through a heirarchy of menus.

The I[les—with its pull-down menus, windows, and icons—is very
much at home with modeless, event-driven programs. In a typical IIGs pro-
gram, you are first presented with a menu. With the help of a mouse, you
can then select a menu option. If you make a mistake while runnning an
event-driven program, the program (if it is well-written) courteously indicates
the mistake and suggests an alternate approach. This style of programming
makes you the master and the computer the servant—which, of course, is
the way things ought to be.

So it is not difficult to see why computers programmed in the old-
fashioned sequential style have been the targets of so much wrath and why
event-driven computers like the Mac have become so popular—among pro-
gram designers and users. All the programs in part 2 are event-driven pro-
grams, and more about event-driven programming is presented in chapter 9.

To support event-driven programming, a computer needs a host of fea-
tures that were unavailable in the computers of yesteryear. The IIGs, like the
Macintosh, has all the features needed to make event-driven programming
possible: windows, pull-down menus, icons, dialog windows that enable the
user to communicate with the computer, and the mouse. Because of these
features, the *‘feel’’ of the Ils is similar to the feel of the Mac—although
a few features of the venerable Apple II line have also been thrown in so that
the computer’s Apple II heritage is not forgotten.

The goal of this book is to help you learn to program the IIgs in the
way it was meant to be programmed—using its mouse-controlled, event-
driven, user environment. You’ll do that using both assembly language, which
is fast but not easy to master, and C, which is a little slower (though still
light-years ahead of BASIC) but considerably easier to learn and quite a bit
easier to manage.

In this chapter, you looked at the Apple Ilgs, some of its principal
features, and its most important programming tool, the Ilgs Toolbox. In
chapter 2, you start programming the IlGs in assembly language. In chapter
3, you start writing some C programs.



CHAPTER

Programming the
ligs in
Assembly Language

Using the APW Assembler

haven’t done any assembly language programming for the Apple

IIGs, you’re in for a big surprise. Programs written for the IlGs run
faster, offer more sophisticated graphics and sound capabilities, and—best
of all, from a programmer’s point of view—can use more than 800 prewritten
routines built into the Apple Ilgs Toolbox. Some of the tools in the Ilgs
Toolbox are built into ROM and others are loaded into RAM when you boot
the computer’s system disk. But they’re all available for use at any time in
application programs.

-y I f you’ve written assembly language programs for an Apple II, but

The APW Assembler-Editor

The Apple llcs Programmer’s Workshop (APW), which was used to write
most of the assembly language programs in this book, comes with a library
of macros that make it quite easy to use the lIGs Toolbox in user-written
programs. APW was created by the Byte Works Inc., a small company in
Albuquerque, New Mexico, and is marketed by Apple. It is the first assembler-
editor package offered solely for the Apple Ilgs, and it is designed with all
the Ilgs’s advanced features in mind.

13



Fundamentals of llcs Programming

14

The APW  Apple calls the APW package ‘‘a development environment for the Apple

Package

A Warning

IIs computer.’” It contains

B A shell that enables the llgs programmer to run programs and use
many useful file management and utility functions.

B An editor that can be used to write assembly language programs, C
programs, executable shell files (exec files), and text files.

M An assembler that converts, or assembles, assembly language
programs into machine language programs.

B A linker that converts machine code files produced by the APW
assembler or C compiler into load files—files the Ilgs system loader
can load into memory. Briefly, here’s how the linker works. When a
program is written using the APW assembler or the APW C
compiler, it is stored in memory in a format called object module
format, or OMF. Before an OMF file can be executed, however, it
must be linked, or converted into a format that the system loader can
load into memory. The process of converting OMF files into linked
files, or loadable and executable files, is the job of the APW linker.
To create a linked file, the linker resolves external references
(references in one program segment to routines or data in another).
The linker then creates relocation dictionaries that the system loader
uses to relocate code as needed when it is loaded into memory.

B A generous selection of utility programs that perform many
functions. These programs format disks, copy files and disks, catalog
disk directories, assemble and link assembly language programs,
disassemble machine code and display it as source code, display the
contents of memory, and much more. (It is beyond the scope of this
book to examine the APW system’s utility programs in detail.)

B An optional C compiler that converts, or compiles, C programs into
executable machine language programs.

B An optional debugger that helps programmers correct assembly
language programs.

Before we go into any more detail about the APW development system, it
should be pointed out that the version of the system available at this
writing may not be exactly the same as the one you’re using. The APW
development system evolved from the ORCA/M assembler, which was de-
signed long before the advent of the Apple IlGs, and the evolution of the
APW system is still continuing. When this book was written, APW was a
text-oriented system that did not use the sophisticated graphics or event-driven
programming capabilities of the Apple Ilgs. By the time you read this, APW
may have evolved into a super high-resolution program with windows, pull-
down menus, and mouse controls. If that’s the kind of APW system you have,
some of the information in the following paragraphs won’t apply because
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Using the
APW Shell

Getting Started

When you use the APW system to write an assembly language program, the
system’s shell provides the interface that allows you to execute APW
commands and programs. When you are writing a program, for example, you
can activate the APW editor and assembler by typing shell commands. You
can also use the shell to perform such tasks as copying files, deleting files,
and listing directories. More ways to use the shell as an assembly language
programming tool are described in the Apple 1iGs Programmer’s Workshop
Assembler Reference, written by the folks at Apple and published by Addison-
Wesley.

There’s no such thing as a standard IIGs configuration, and APW systems can
also be different (a system designed for assembly language programmers will
include a machine language assembler, one intended for C programmers will
include a C compiler, and still other systems could include both an assembler
and a C compiler).

Ordinarily, an APW system designed for assembly language program-
ming will include two disks: one labeled /APW and the other labeled /APWU
(for APW utilities). A C-based package will generally include one disk labeled
/APW and one labeled /APWC.

In this chapter, we devote our attention primarily to APW systems
designed around the APW assembler. Specific tips on installing and operating
C-based systems are provided in chapter 3.

To simplify the installation of the APW development system, the de-
signers of the system have placed a utility program called INSTALL on the
APW disk. For owners of hard disks, a utility called HDINSTALL is provided.

It’s easy to install an APW package on an Apple IIGs system. First,
you should back up your original APW disks and put them in a safe spot.
Then, if you are using a floppy disk system, place the copy of your /APW
disk in one drive and a blank formatted disk in another. If you have a hard
disk system, you can use APW’s HDINSTALL program to install APW on
your hard disk.

If you have a floppy disk system, you can install APW by simply booting
APW from your master disk copy and typing a command like this following
APW’s # prompt:

install /apw /Lname of your disk]

If all has gone well, the APW system will install itself on your blank formatted
disk. When installation of your /APW disk is complete, you should see a
prompt on the screen telling you that it is now time to install your /APWU
disk. You can then remove the /APW disk, insert your /APWU disk, and
type the command install /APWU. Your disks will start to spin again, and
when everything is finished, you will have an installed copy of APW, complete
on a single disk.

APW’s HDINSTALL program works in a similar way, except that the
program is installed in a hard disk directory instead of on an individual floppy.

15
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What the APW  When you have the APW system installed on a disk—either hard or floppy—

System
Contains

a catalog of the system will reveal that it contains the following files:

B A directory titled SYSTEM. This directory contains the APW

program and text editor, which you will use to write your source
code programs; a LOGIN file, which takes over when APW is
booted and can configure APW to your individual Apple llcs system;
a SYSHELP file, which you can use to obtain information about any
shell command by simply typing the word HELP followed by the
actual command; and a few other files used by the APW system.

A LANGUAGES directory, which includes the APW assembler (or,
if you have a C-based system, your C compiler). The LANGUAGES
directory also includes a file called LINKED that is used link object
code programs after they have been assembled.

A LIBRARIES file, which contains a subdirectory called
AINCLUDE. In the AINCLUDE directory, you will find a collection
of files divided into two categories. About half the files begin with
the prefix E16, and the other half start with the prefix M16.

The files that begin with M16 are APW macros: short, prewritten
assembly language source files that you can incorporate easily into ap-
plication programs. The files that begin with E16 are equate listings:
source code files that define constants often used in Apple IIGs programs.
After you learn how to use the equate files in the AINCLUDE library,
they can be very useful in assembly language programs.

In a C-based APW system, C libraries are also included in the
LIBRARIES directory.

A UTILITIES directory, which contains many important APW
utilities. These include MACGEN, which is used to include APW
macros in application programs; MAKELIB, which can be used to
convert application programs into libraries so that they can be
accessed more rapidly; and DEBUG, which can be used to run
APW’s optional assembly language debugger.

B APW.SYS16, the main APW program.

Using the APW System

16

After you set up the APW system, you can boot it by itself, from your llGs
finder disk, or from a hard disk, depending upon your preference and the
configuration of your Ilgs system. No matter how you launch APW, the first
thing you’ll see after APW goes into action is a screen heading that looks
something like this:
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Apple I1GS Programmer’s Workshop
Copyright Byte Works, Inc. 1980—1986
Copyright Apple Computer, Inc. 1986

AlLL Rights Reserved

A few lines below this display is a number sign prompt followed by a cursor:
#

When this prompt appears on the screen, APW is installed and operating,
and the computer is in the APW shell’s command line mode. If you’'re using
a pair of 3.5-inch drives and don’t have a hard disk drive, you may have to
do a little prefix changing; that is, you may have to direct APW to read your
data disk by using the APW shell’sprefix command. The pref ix command
can be followed by a full or partial pathname, like this:

prefix /MYVOLUME
or by a device number with a period in front of it, like this:
prefix .D2

More details on the use of the prefix command are in the Apple llgs Pro-
grammer’s Workshop Reference, the Apple llGs Programmer’s Workshop As-
sembler Reference, and the Apple llcs ProDOS 16 Reference (all were
prepared by Apple and published by Addison-Wesley).

The APW Editor

After APW is up and running, and the prefix of your data disk is set, it’s
easy to activate the APW editor. Just tell APW you want to edit a file and
enter the name of the file. For example, type this line following APW’s #
prompt (don’t type the prompt, just the two words that follow it):

#edit ZIP.SRC

This line tells APW you want to start editing a file named ZIP.SRC.
Although the SRC suffix is not required, it is often used to distinguish source
code files (assembly language programs) from object code files (machine
language programs). The convention in this book is to give source code
programs the SRC suffix and to assign no suffix to machine language pro-
grams.

When you type a command line using the format edit filename,
APW looks on your data disk for a file with the name you have provided. If
it can find one, it displays the file on the screen so you can edit it. If there
is no file on the disk with that name, APW goes into editor mode and presents

17
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a blank screen—blank, that is, except for a ruler line at the bottom. Then
you can write a new program that will have the filename you have chosen.

This is a good time to install and load APW and type the command
line edit ZIP.SRC, if you haven’t done so already. Then you’ll be ready
to type, assemble, and execute the ZIP.SRC program, which appears in listing
2-1. If you’re familiar with the adventures of a certain pinhead cartoon char-
acter, you’ll understand how the program got its name.

Listing 2—1
ZIP.SRC program

*

* ZIP.

SRC

* A program that asks an important question

*

Zippy

testmsg

KEEP ZIP

LIST ON

START

phk ; make program bank

plb ; and data bank the same

pea testmsg|-16 ; push msg bank on stack

pea testmsg ; push msg address on stack
ldx #%$200¢C ; put tool no. in x reg

jsL $E10000 ; long jump to tool dispatcher
rtl ; long return

dc c’Are we programming yet?’,h'00’

END
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The ZIP.SRC program is written in the Apple Ils’s 16-bit native mode.
It doesn’t use the Memory Manager or some of the other advanced features
of the IlIGs, but it is a native mode program.

in a few moments you’ll examine the ZIP.SRC program line by line.
First, though, let’s take a close look at the APW editor, so you can see how
it works and how it is used in assembly language programming.

If you’ve programmed an Apple II or another microcomputer using other
kinds of assembly language editors, one of the first things you may notice
about the ZIP.SRC program is that it has no line numbers. The APW editor
doesn’t need them. Line numbers date back to the days of line-oriented editors,
when programs were corrected a line at a time and lines were referred to by
their line numbers. The APW editor doesn’t have any use for line numbers
because it is a screen-oriented editor, with a cursor that you move with arrow
keys and cut-and-paste functions, which allow large blocks of text—not just
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No Origin
Directive

Control
Commands

individual lines—to be copied, deleted, and moved. The APW editor operates
similar to a full-featured word processor and is a remarkably sophisticated
program editing system.

If you’re an old hand at Apple Il assembly language programming, another
odd fact you may notice about listing 2—1 is that it has no origin directive.
Almost every program ever written for a pre-Gs Apple II begins with an origin
directive, usually abbreviated ORG, that tells the assembler (and the program-
mer) where to load the program into memory. The APW assembler has an
ORG directive and can use it to assemble programs designed to run in the
Apple Ilcs’s 8-bit emulation mode. But Apple strongly advises that you not
use the origin directive in programs written in native mode. When you write
a native mode program for the IIcs, Apple suggests that you let the Memory
Manager make all decisions about where to place programs in memory. If
you ignore that advice and insist on placing programs in specific locations by
using origin directives, you may interfere with the Memory Manager’s op-
erations and clobber other programs resident in memory.

Before you start typing the ZIP.SRC program, you may want to practice
typing on the empty screen that appears before you now. As noted, you can
use the arrow keys to move the cursor around the screen. You can also move
the cursor using the spacebar, the Delete key, the Tab key, and the Return
key, just as you would with a word processor.

To move the cursor more than one line up or down at a time, or to
move it right or left more than one word at a time, hold down the ¢§ key on
your keyboard while you press an arrow key. Pressing (3-Right arrow or (§-Left
arrow moves the cursor right or left a word at a time. Pressing (3-Up arrow or
&-Down arrow moves the cursor to the top or bottom of your screen.

You can move the cursor to the beginning of a line by typing (3-< and
to the end of a line by typing &->>. (-1 moves the cursor to the top of a file,
(5-9 moves the cursor to the bottom of a file, and ¢3-2 through (3-8 move the cursor
to various points in-between.

Typing Control-T or &-T deletes a line of text; typing Control-Z or (3-Z
restores it. Control-W or 3-W deletes a word. Control-Z or ¢§-Z restores the last
word deleted, if what you last deleted is a word and not a line.

To delete a block of text, press Control-X or (§3-X and then use the arrow
keys to highlight the block you want to delete. When the block is highlighted,
you can delete it by pressing the Return key. Then you can move the cursor
to another place in your program—or even to a program on another disk—
and place the deleted block there by simply pressing Control-V or
S-V.

You can copy a block to another position or to another program by
following the same procedure, but substituting Control-C or (3-C for the
Control-X or §-X that you use when you want a block deleted. Other control
commands recognized by the APW editor are listed in table 2—1.
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APW Editor Commands

Function

Command

Beep the speaker
Beginning of line

Bottom of screen/Page down

Change
Clear
Copy

Cursor down
Cursor left
Cursor right
Cursor up
Cut

Define macros
Delete
Delete character

Delete character left
Delete line

Delete to end of line
Delete word

End of line

End macro definition
Enter escape mode
Execute macro

Find

Insert line

Insert space
Paste

Quit

Quit macro definitions

Control-G
G-<
Contro]—Cf)—J
-Down arrow
See Search and replace
See Delete
Control-C
ule
Control-J
Down arrow

Control-H
Left arrow

Control-U
Right arrow

Control-K
Up arrow

Control-X
3-x
(j—Esc
d}—Delete
Control-F
-F
Delete
Control-D
Control-T
&T
Control-Y
w2
Control-W
-W
g-.
Option-Esc
See Turn on escape mode
Option-letter key
See Search
Control-B
@B
(j—spacebar
Control-V
-V
Control-Q
a3Q
Option
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Table 2—-1 (cont.)

Function Command
Remove blanks Cdontrol—R
-R
Repeat count I to 32,767
Return Return
Control-M
Screen moves Cf)—l to C_‘}—‘)
Scroll down one line Control-P
-P
Scroll up one line Control-O
&o
Search down (j-L
Search up (fS-K
Search and replace down A3
Search and replace up d—H
Set and clear tabs d—Tab
Control-G3-1
Start of line d}-,
G<
Tab Tab
Control-1
Tab left Control-A
G-a
Toggle auto indent mode @-Return
d-Emer
Control-(3-M
Toggle escape mode Esc
Toggle insert mode Control-E
-E
Toggle select mode Control-(§-X
Toggle wrap mode Control-C3-W
Top of screen/Page up Control-(3-K
-Up arrow
Turn on escape mode Control-_
Undo delete Control-Z
Sz
Word left ('_‘S-Left arrow
Control-C3-H
Word right -Right arrow
Control-(3-U

Examining the ZIP.SRC Program

After you’re familiar with the operation of the APW editor, you’re ready for
the line-by-line examination of the ZIP.SRC program, beginning with the

first line:
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Assembler
Directives

Program
Segments

KEEP Z1IP

Now what does that mean?

In source code written using the APW assembler-editor system, statements
called assembler directives are often placed in the headings of programs,
before the first lines of executable code. The line KEEP ZIP is such a directive.
When the ZIP.SRC program is assembled, the KEEP ZIP directive tells the
assembler to save the machine language version of the program as a file named
ZIP. Because the source code version of the program is titled ZIP.SRC, there
is no conflict between these two filenames.
The next line of the program:

LIST ON

is also an assembler directive. It is there because the APW assembler will
not generate a listing when a program is assembled unless you tell it to. The
LIST ON directive tells the assembler to produce a listing.

The next line of the program:
lippy START

is made up of two parts: a label and an assembler directive. The label is
Zippy and the directive is START. We’ll look at the START directive first.

The APW assembler, unlike most assemblers designed for small com-
puters, generates programs divided into modules called program segments.
The division of programs into segments greatly facilitates the writing of well-
designed modular programs. Thanks to the use of program segments, a long
complex program written with the APW system can consist of one small
segment, or main loop, that calls other segments as needed. Furthermore,
each segment can include a set of local variables used only in that segment—
and the program can use a set of global variables recognized by every segment
in the program.

Because local variables in an APW program have no effect outside the
segments in which they appear, local variables in one segment can have the
same names as local variables in another segment, without conflict. Even if
a local variable is given the same name as a global variable, it will not cause
a conflict; APW simply uses the local variable and ignores the global one.

Now turn your attention again to the line:

Zippy START

As pointed out, this line consists of two parts: the label Zippy and the
directive START. It marks the beginning of a program segment named Z i ppy
and, in this case, also marks the beginning of the ZIP.SRC program. The
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segment ends, as all APW program segments do, with the END directive.
Because the ZIP.SRC program is only one segment long, the END directive
also marks the end of the program.

In programs written using the APW assembler-editor system, every
program segment begins with a line that includes START or a similar directive
(DATA is used to begin data segments, for example), and every program ends
with the END directive. When a START or DATA directive begins a segment,
the directive must be preceded by a label that provides the segment’s name.

The next two lines in the ZIP.SRC program are the first lines that contain
executable code. They are

phk ; make program bank
plb ; and data bank the same

The abbreviations phk and p lb are assembly language instructions, or mne-
monics. The words that follow the semicolons in the right-hand column are
comments, which are used like REM statements in BASIC programs. They
are ignored by the APW assembler, but can provide valuable information to
the next person who reads and tries to make sense of a program. (And that
person could be you, because even people who write programs often find it
difficult to figure out what they were trying to do after the ink on a program
is dry.)

In programs written using the APW assembler, comments are usually
preceded by semicolons, asterisks, or exclamation points. Asterisks and ex-
clamation points are often used to identify remarks that take up a whole line.
Semicolons must be used to set off comments that appear in the right-hand
column of an APW source code program.

Now back to the program in progress. The mnemonics phk and plb are
often encountered in the initialization sections of Ilgs assembly language pro-
grams. They set up two internal registers in the 65C816—the data bank
register and the program bank register—so that both registers point to the
same bank of memory. We won’t cover the memory architecture of the Ilcs
until chapter 4, and the internal registers of the 65C816 aren’t introduced
until chapter 5. For now, it’s sufficient to note that placing data used by a
program and the program itself in the same memory bank simplifies matters
greatly for the 65C816 processor when the program is assembled and run.

The phk and p Lb mnemonics belong to a category of instructions called
stack operations because they manipulate a special area of memory called the
stack. In assembly language jargon, a stack is an area of memory in which
data is stored temporarily in the order last-in, first-out, abbreviated LIFO. A
stack is sometimes compared with a spring-mounted stack of plates in a
cafeteria. When a plate is placed on top of the stack, it covers up the plate
that was previously on top, and it must be removed before the next plate can
again be accessed.

In 65C816 assembly language, the phk instruction means push the
program bank register on the stack, and the p lb instruction means pull the
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data bank register off the stack. When you use these two instructions together,
they transfer the contents of the program bank register into the data bank
register, using the stack as a temporary storage area for the data being trans-
ferred. This roundabout procedure is used because there is no 65C816 in-
struction for accomplishing the transfer more directly. More details about the
stack—and about the phk and p lb mnemonics—are presented in chapters 5
and 6.
Now let’s move on to the next two lines of the ZIP.SRC program:

pea testmsg|-16 ; push msg bank on stack
pea testmsg ; push msg address on stack

The pea mnemonic, like the phk and plb instructions, is a stack
operation. It means push effective address. In the ZIP.SRC program, it pushes
the address of a text message onto the stack so that the message can be
displayed on the screen. The address being pushed on the stack is the starting
address of a string called testmsg. That string appears, along with an iden-
tifying label, in the last line of the program:

testmsg # dc ¢’Are we programming yet?',h00°

The rather cryptic formatting of this line is discussed in a few moments, when
we get to the end of the program. First, though, look again at the two lines
that push the address of testmsg onto the stack.

In chapter 5, you’ll see why the pea instruction has to be used twice
to push the address of the testmsg string onto the stack. Briefly, though, this
is the reason. Because the 65C816 is a 16-bit chip, it can perform manipu-
lations on pieces of data up to 16 bits long. But because it has a 24-bit data
bus, it can access addresses that are up to 24 bits long. So it takes two
operations to push an address onto the stack: one to push the 8-bit bank number
of the address and another to push the 16-bit remainder of the address. When
a 24-bit address is pushed on the stack in this way, it must be pulled off the
stack in a similar fashion, but in reverse order. If you don’t quite understand
this, don’t worry. Stack operations are covered in more detail in chapter 6.

Now you’re ready to take a look at the operands used by the pea mnemonic
in these same two lines:

pea testmsg}—16 ; push msg bank on stack
pea testmsg ; push msg address on stack

As you have seen, the testmsg operand is a label that identifies a
text string. In the ZIP.SRC program, testmsg|~16 means the first 16
bits of the address of the testmsg string. For reasons that become clearer in
chapters 4 and 5, the first 16 bits of the address of the testmsg string hold
the bank number of the address. So, in the ZIP.SRC program, the statement
pea testmsg II -16 pushes the bank number of the address in ques-
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tion onto the stack. Then the statement pea testmsg pushes the rest of the
address.
The next two lines print the string labeled testmsg on the screen:

ldx #$200¢C ; put tool no. in x reg
jsl $E10000 ; long jump to tool dispatcher

To understand what these two lines do, you need to know something
about how the Apple Ilgs Toolbox works. The Toolbox isn’t examined until
chapter 7, but it wouldn’t hurt to point out now that each tool in the Toolbox
has a 2-byte identification number, and a program can call any tool in memory
by using its identification number.

In the ZIP.SRC program, a utility called the tool dispatcher calls a tool
with the identification number $200C. Tool number $200C, as you can verify
by looking at the list of Ilcs tools presented in appendix B, is a tool called
WriteCString. The WriteCString call is part of the Text Tool Set. It
can be used to print a C-style string (a string ending in $00) on a text output
device such as a printer or a monitor screen.

The ZIP.SRC program uses the tool dispatcher to make the WriteCString
call, which prints the string labeled testmsg on the screen. More informa-
tion about tool calls is provided in chapter 7. For the moment, it’s sufficient
to note that the following steps must be taken to call a tool using the tool
dispatcher:

1. Certain parameters (in this case the address of the string to be
printed) must be pushed on the stack.

2. The identification number of the tool to be called must be placed in
the 65C816’s X register. (More information about the X register and
the 65C816’s other internal registers is presented in chapter 5.) In the
ZIP.SRC program, the statement used to load WriteCString’s ID
number into the X register is Ldx #$200C.

3. The tool dispatcher must be called with the statement js L $E10000,
which means jump to a subroutine located at memory address
$E10000. The jsl mnemonic, which stands for jump ro
subroutine—long, is often used in Apple IIgs programs to access
subroutines that lie across bank boundaries.

The last line of executable code in the ZIP.SRC program is
rtl ; long return

The rt{ mnemonic, which stands for return from subroutine—long, is
used at the end of a subroutine (or the end of a program) that is called from

across bank boundaries. This instruction is examined in greater detail in chap-
ter 5.
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Now we have come to the line
testmsg # dc c’Are we programming yet?’,h00°

In this line, testmsg is a label that identifies the string that follows. The
abbreviation dc, which comes next in the line, stands for define constant
and means, obviously, a constant is being defined. The abbreviation c,
which comes next, means a character string follows.

The text that follows ¢ and is enclosed in single quotation marks is
the string printed on the screen when you run the program. After the string
is a comma, then the abbreviation h, which tells the assembler that the
next value it encounters is a hexadecimal number.

The hex number that follows h is also enclosed in single quotation
marks. The number is $00, the conventional terminator for C-style strings.

The last word in listing 2—1 is, appropriately enough

END

This ends the program segment labeled Zippy and also ends the ZIP.SRC
program.

The APW Editor’s Menu

When you finish typing the ZIP.SRC program, you can leave the APW editor
by typing Control-Q. Your program disappears from the screen and is replaced
by the APW editor’s menu. By picking menu choice S, you can save the
ZIP.SRC program under the filename you chose when you entered the editor
(this filename appears at the top of the menu). Or, by selecting menu choice
N, you can save it under a different name. After you save the program, you
can choose menu selections to load another file, return to the editor (and to
the program you just finished editing), or exit from the editor.

Assembling the ZIP.SRC Program

26

When you have typed the ZIP.SRC program and have made sure that it
contains no mistakes, return to the APW shell by selecting menu choice E.
You can then assemble and link your program by typing
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ASML ZIP.SRC
You can then run it by typing:
Z1P

When the ZIP.SRC program prints its important question on the screen, you
can answer it with a resounding yes!
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CHAPTER

Programming
the llcs in C

And Learning More About the
APW Development System

chapter you’ve been waiting for. Even if you are interested only in

assembly language, it is strongly suggested that you read this chapter
because it contains valuable information about the APW system that you won’t
find elsewhere in this book.

It’s important to note, however, that this chapter does not teach you C
programming from the ground up. If that’s what you need, you’ll have to
supplement this book with an introductory text on C programming. (A few
are listed in the Bibliography.) But even if you’ve never written a line of C
code, you are still invited to type, compile, and run the two sample programs
in this chapter.

If you’re an experienced C programmer, you’ll be ready to write C
programs for the Ilgs when you finish this chapter. If you’re new to C, you’ll
get some hands-on experience in writing simple C programs using the Apple
Programmer’s Workshop, plus a basic understanding of how things are done
in C. If you know a little about C and are interested in learning more, this
chapter and the information on C in the rest of this book provide a general
understanding of how the language works and how it fits into the Apple Ilcs
programming environment.

‘ I f you want to learn how to program the Apple IlGs in C, this is the
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Before you start programming in C, we’ll present some historical and technical
information about the language. The C language was invented by Dennis
Richie of Bell Laboratories and was originally designed for developing ap-
plications and utilities in the UNIX environment. Since then, it has become
popular among professional and amateur programmers as a general-purpose
language. C programs have been written for virtually every kind of micro-
computer, minicomputer, and mainframe computer. Apple recognized C’s
usefulness and popularity by making it the first high-level language for the
Apple Ilcs.

C is successful because it offers a balance between the programmer-
friendly features of a high-level language and the speed and versatility of
assembly language. It is almost (though not quite) as easy to work in as a
high-level language such as Pascal. Yet it offers the kind of unrestricted access
to the Ilgs’s memory, operating system, and /O functions that is otherwise
available only in assembly language.

A C program is a collection of functions, or sets of instructions for performing
specific tasks. Information to be processed in a C program is passed to a
function with a parameter list. A parameter list is a list of values, separated
by commas and all contained between parentheses, that follows the function’s
name. The parameter list doesn’t have to contain any parameters. But if there
are no parameters, the name of the function must still be followed by a pair
of parentheses, like this:

function()

Parentheses are not the only punctuation marks you’ll find in a C pro-
gram. C uses the semicolon as a separator between statements in a program
and uses braces to group statements into blocks.

Any C expression that has a value can be used as a parameter in a
parameter list. A C function usually returns a value as its result. So a
function itself can be used as a parameter or as an argument to another
function.

The value returned by a function does not have to be used by the
program in which the function appears. A function can also perform other
actions called side effects. Many C functions are used only for their side
effects.

C provides several ways to make decisions, perform looping operations, and
assign and store data. In addition, a number of preprocessor (or compiler)
directives facilitate the development of large programs and provide easy access
to commonly used code and definitions. APW C also supports enumerated
types, and assignments and comparisons between structured variables of the
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same type. If you’re an experienced C programmer, you’il understand this.
If not, these and other features of APW C are explored in the programs in
this chapter and the rest of this book.

C in the APW Environment

Pascal
Functions

A Limitation
of APW C

The Apple Programmer’s Workshop (APW), an Apple product, is the de-
velopment system used to write the C programs in this book. In addition to
the standard integer arithmetic offered by most C development systems, the
APW system also supports floating-point math. And, along with the standard
C libraries—which provide some compatibility with C code developed using
other systems—APW C also has a large set of interface libraries to support
the Apple Ilgs Toolbox. These libraries contain a complete set of function
declarations, along with definitions of constants and data structures, that are
designed to be used with the 1IGs Toolbox. This means you can access the
Toolbox directly from C as well as from programs written in assembly lan-

guage.

One noteworthy feature of APW C is that you can define Pascal-style
functions. Pascal functions make it possible to use the calling and parameter-
passing conventions of Pascal in a C program. Many Toolbox routines were
developed using Pascal-style conventions, and APW C’s Pascal function type
makes it possible to use them. Pascal functions also allow routines written in
Pascal and linked with a C program to be called from C.

As any C buff will tell you, you can generally do anything in C that you can
do in assembly language. In APW C, however, there is a major exception
because the 65C816 chip has a *‘split personality.”’

As you saw in previous chapters, the 65C816 has a native (16-bit) mode
that takes advantage of 16-bit registers and data paths and a 6502/65C02
emulation (8-bit) mode that emulates earlier members of the 6502 family.
Emulation mode enables the IIGs to run most software designed for earlier
Apple IIs. It also allows assembly language programmers to create and as-
semble programs that are compatible with earlier machines.

But APW C is strictly a native mode language; you can’t use it to write
programs in 8-bit emulation mode. Even when it’s used to write native mode
programs, sometimes its inability to deal with 8-bit machine code is a limi-
tation. In most applications, though, this is not a problem. The APW C
compiler also supplies an inline assembler that allows the programmer to
insert assembly language code directly into C functions.

When it comes to creating native mode applications for the Ilcs—com-
plete with windows, menus, desk accessories, color graphics, and sound—
APW C is a powerful and efficient tool.
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Using APW C

Using APW C
Without a
Hard Disk

If you typed, assembled, and executed the assembly language program in
chapter 2, you should have no trouble getting used to the APW C development
system. When you work with the C programs, you’ll use the same editor that
you used in chapter 2. When you compile and link them, you’ll use similar
APW commands.

In a moment, you’ll fire up your APW development system and start
writing programs in C. First, though, it must be pointed out that the following
instructions apply to a version of APW that may no longer be current by the
time you read these words.

As explained in chapter 2, the APW system used to write the programs
in this book is a text-based utility that does not make use of the IlGs’s so-
phisticated graphics interface and event-driven programming capabilities. If
APW has been completely overhauled by the time you read this, some of the
details in the next few paragraphs may not apply to your APW system. But
most of the information that follows should prove helpful, even if APW has
been modified.

Adding C to the APW environment is simple if you have a hard disk. Simply
start up the APW shell on your hard disk, insert the /APWC floppy in a 3.5-
inch disk drive, and type this line following APW’s # prompt:

copy /apwc/languages/= 5
Then type
copy /apwc/libraries/= 2

If you don’t have a hard disk, the previous method won’t work because there
is not enough room on one 3.5-inch disk for both a C and an assembly language
APW package. One way to deal with this problem is to copy one or more of
the large directories in the APW system onto another floppy disk or onto a
RAM disk. Then set APW’s shell prefixes so they look for the transferred
files in their new locations.

You can also set up two stripped-down versions of APW—one for
assembly language and one for C—so that you can put a fairly complete
assembly language development system on one floppy and a fairly complete
C development system on the other. They won’t be on the same disk, however.

If you want to work in both C and assembly language using two floppy
disks, here is a relatively painless way to get started:

1. Back up your original APW disks, store them in a safe place, and
use your backup copies to conduct the following operations.

2. Start up the computer using a copy of the APW disk. Start APW
from your finder disk.
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3. Insert a copy of /APWC in your second drive and type the following
commands (not the # prompts, just what follows them):

#copy 2/= [apwc/libraries
#delete -¢c 2/ainclude/=

#copy /apwc/languages/= 5
#delete —-¢ /apwc/languages/=
#delete /apwc/languages
#prefix 2 /apwc/libraries

These commands set up the APW assembler and compiler on one
disk, and the C and assembler support libraries on another.

If you are planning to use this configuration regularly, you can tailor
the APW LOGIN file (an exec file that calls APW when the APW disk is
booted) so that everything is ready to go as soon as you boot up. To edit the
LOGIN file, simply type this line following APW’s # prompt:

edit 4/login
When the editor comes up, add this line to the end of the LOGIN file:
prefix 2 /apwc/libraries

To save your amended LOGIN file, press Control-Q to leave the editor,
then make menu choices S and E. Each time you want to use APW, make
sure the modified copy of /APWC is in one of your disk drives when you
load APW.SYS16 from the IlGs finder or (on older system disks) the Ilgs
launcher.

After you’ve used APW C for a while, you may find many files on the
/APWC disk you can do without. You may want to create a custom configu-
ration that can save you even more disk space—and time.

As mentioned previously, C programs for the 1IGs are created using the APW
editor. They are compiled using commands—such as compile and
assemb le——that can also be used with the assembler.

To create a C program using the editor, however, you first must set
APW’s language to C. You can do this by simply typing the following com-
mand after APW’s # prompt:

cc

After you use the cc command, any new files you create using the
editor are recognized by the APW system as C language source files. APW
compiles them using the C compiler when you issue a compi le command.
If you work mostly in C, you can use the editor to add the cc command to
your LOGIN file. The editor then makes all new files C language source files.
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Now, at last, you’re ready to write a program in C. To begin, start up the
editor with a new filename:

#edit myprog.c

C source files written under APW do not require the c suffix. But it is
a good idea to use the ¢ suffix because it distinguishes C source files from
other kinds of files and makes them easy to spot when you catalog your
directory.

When your editor comes up, you can type in a C program like you
would type in an assembly language program. Some tips are provided in
chapter 2. However, APW C programs, unlike APW assembly language pro-
grams, are standard-looking pieces of code. In fact, as long as they use the
IlIgs’s standard text input and output mode, and don’t require the use of
graphics calls in the Ilgs Toolbox, they look just like C programs written for
any other machine.

For example, type in listing 3-1, the Hello World program found in so
many texts on C.

Listing 3—1
Hello World program

main()

{
printf(Hello World!\n")

}

When you’ve typed the program, you can leave the editor by pressing
Control-Q. Then choose menu selection S to save your work and menu se-
lection E to return to the APW shell’s familiar # prompt.

Next, look at the directory of the current disk to make sure myprog.c
was saved as a C language source file. To list the program, type, after APW’s
# prompt:

cat myprog.c

APW shows you a screen display like the one in figure 3—1.
Note that the last item on the second line in figure 3—1, under the heading

Name
MYPROG

Type
SRC

Blocks Modified Created Access Subtype

1 9Jun8720:30 9 Jun 87 20:30 DNBWR cc

34

Figure 3-1
Cataloging a single file
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Subtype, is CC. That shows myprog.c has indeed been saved as a C language
source file. If there’s something else under Subtype in your disk directory,
you probably didn’t use the cc command before you made the new file. In
this case, type the following line to change the subtype of myprog.c before
compiling it:

change myprog.c cc

Compiling a C Program

After you save a C source file and exit the editor, you can compile the file
by typing a line like this:

#compile myprog.c keep=myprog

The compile command in the previous line means exactly the same
thing as APW’s assemble command. You can use either one, in C or in
assembly language, because the shell looks at the source file’s language to
decide whether to invoke the C compiler or the assembler. The keep directive
in the command line tells the compiler to create an object file named my-
prog.root in the current directory. Any valid full or partial pathname can be
used as the value of the keep command.

Linking a C Program

When you wrote an assembly language program in chapter 2, you assembled
and linked it using the command ASML, which means assemble and link. And
when APW received that command, it assembled and linked the program
automatically. To create an executable C file, however, you must invoke the
linker by specifically using a Link command.

Before we link our Hello World program, it might be helpful to explain
how the APW linker works. All APW assemblers and compliers, including
the APW C compiler, generate object code files that have the same format.
This format is called object module format, or OMF. To the linker, it doesn’t
matter whether a program was written in C, assembly language, or Pascal.
In fact, because all assembled and compiled APW files have the same format,
the APW linker can link object files written in any combination of development
languages available under APW.

From an object module file created by the APW assembler or C compiler,
the linker generates a load file, a file the system loader can load into memory.
If necessary, the linker resolves any external references (references to seg-
ments of machine code outside the OMF file it is linking) and creates relocation
dictionaries that the system loader uses later, at load time, to relocate the load
file produced by the linker.

To instruct the linker to link an OMF file and produce a load file, type
a command line like this:
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link 2/start myprog keep=myprog

There are a few points about this command line that haven’t been explained.
But go ahead and type and enter the line, and after you link and run the
program, we’ll do the explaining.

Linking a C program can take a while, but when it’s done you’ll see
the # prompt in its usual place, waiting for your next command. Then you
can run the program you have linked by simply typing

myprog

followed by a carriage return. The greeting ‘‘Hello World!”’ is printed on
your screen. The # prompt then appears on the next line, letting you know
that myprog has finished executing and you can enter another command.

Now let’s go back for another look at the line you typed to link the
myprog program:

link 2/start myprog keep=myprog

To understand what the more cryptic parts of this line mean, it helps to know
something about how C programs work.

Part of what makes programs like Hello World so much shorter and
easier to write in C than in assembly language is that the compiler takes care
of many details. For example, you don’t need to worry about whether to use
jsl or jsr when calling a subroutine, what to do with values placed on the
stack, how many words to take off the stack, or what addressing mode to
use. The compiler knows how to do all this. But it doesn’t know anything
about how to start or end a program, or how to read input from the keyboard
or print to the screen.

The secret behind the brevity of the Hello World program (it is con-
densed into one line of code) is the existence of C libraries, which include a
number of useful programs. Here’s how a few of them work.

If you look in the LIBRARIES subdirectory of your /APWC disk, you’ll see
a file called START.ROOT and another file called CLIB. START.ROOT is
the object code of an assembly language program on the /APWC disk. Typing
start following the link command links the code in START.ROOT to
your program.

When you link a C program, it is first linked to START.ROOT. When
you execute a C program, the function named main () is called as a subroutine
from a machine language program. And START.ROOT is that program.
START.ROOT calls main () using the machine language equivalent of a js L
instruction. The program then returns to START.ROOT using the machine
language equivalent of an rtl instruction, which is placed at the end of
main() by the compiler. Details of how the jsl and rtl instructions work
are in appendix A.

When the START.ROOT program is called, it does whatever is nec-
essary to start up a C program. It also handles any arguments typed on the
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command line so that they are accessible through the C input parameters argc
and argv, if applicable. It then carries out the machine language equivalent
of the assembly language statement js | main(), which causes the machine
code generated by the C program labeled main() to be executed.

At the end of the C function main() (which, as its name indicates, is
always the main function in a C program), START.ROOT encounters
the machine language equivalent of an rtl instruction—which, as noted,
is placed there by the compiler. This instruction returns control to
START.ROOT, which then takes care of returning to the shell prompt # or,
if you launched your program from the finder or the program launcher, to
one of those utilities.

Now let’s review again the line that you typed to link the Hello World program:
link 2/start myprog keep=myprog

In this line, the names listed after link are pathnames—they can be
full or partial pathnames—that tell the linker where to find the object files
that make up your program. When C programs are linked, there are always
at least two such pathnames in the Link command line. The linker auto-
matically looks for files with the suffix ROOT, so there’s no need to include
the ROOT suffix in your filenames. The 2/ prefix in 2/start refers to the
LIBRARIES subdirectory.

The keep directive, as noted, tells the linker where to send its output.
Again, you can specify any legal pathname. Typically, an executable file is
given the same name as its corresponding source code and object code files.
Because executable files, by convention, do not have a suffix, the linker creates
a load file called simply myprog.

Now you’re ready to examine CLIB, another important file in the LIBRARIES
directory on the /APWC disk. As you’ve seen, the START.ROOT program
takes care of initializing and ending C programs, relieving that burden from
the programmer. And, as you may notice when you look at the code for the
Hello World program, C also relieves the programmer of such chores as
reading inputs from the keyboard and printing characters on the screen. These
details, as well as those needed for other kinds of input and output operations,
are provided by the CLIB file.

The CLIB file is a special file created by the MAKELIB program.
(MAKELIB is in the UTILITIES directory on the /APWC disk.) CLIB is
made up of object files containing routines, most of which are written in C,
that take care of many common programming actions in a standard manner.

To understand how the CLIB file works, look at how it was used when
you compiled the myprog.c program. When the C compiler compiled the
program, it didn’t know anything about how to print on the screen. It also
didn’t know anything about CLIB. It created a storage area containing the
ASCII codes for the message ‘‘Hello World,”’” generated code to put the
address of that storage area on the stack, then tried to generate a line of
machine language code that would carry out the C statement
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printf(CHello World'\n)

To create a machine language statement that would execute a printf
function, the compiler generated an object code statement equivalent to the
assembly language statement jsl printf. Then the jsl instruction was
converted into a machine language opcode. But the printf instruction re-
mained the same because the compiler didn’t know what it meant. In other
words, the compiler treated printf as a symbolic reference.

In assembly language jargon, a symbolic reference is another name for a label
that identifies a program segment—that is, a segment of code or data
that begins with the start directive. In C, a compiler generates a symbolic
reference to identify the location of a function or variable.

The APW linker treats symbolic references in the same way in C and
assembly programs. In both, one of the jobs of the APW linker is to resolve
symbolic references. When the linker encounters a symbolic reference in a
program being linked, it first scans each program listed on the Link command
line to see if it contains the reference in question. If it doesn’t find the segment
there, it searches for it in any files that appear in the LIBRARIES subdirectory
and have the file type LIB.

When the linker linked the Hello World program, there were no other
filenames on the Link command line. So, when it encountered the C function
printf, it went directly to the LIBRARIES directory and searched for it
there.

Finally, in the CLIB file, the linker found what it was looking for: a
code segment labeled printf. It added that segment to the executable file
it was creating. Then the linker replaced the symbolic reference operand of
the jsl printf statement with a value marking the location of the start of
the printf routine in relation to the beginning of the load file being created
by the linker.

The analysis of the printf function has served as an introduction to a useful
set of prewritten C functions called standard C libraries. These libraries,
stored in the CLIB file, include more than 40 routines. Most of the routines
emulate the behavior of the standard C routines available in UNIX systems.
Many of them deal with various aspects of input and output, such as file
handling, reading the keyboard, and printing text. In addition to I/O routines,
there are mathematic routines, such as sine and cosine functions, and memory
allocation routines, such as malloc, calloc, and free. The routines are
explained in chapter 5 of the Apple IiGs Programmer’s Workshop C Reference.

CLIB also contains routines that are not called directly from C programs.
These provide an interface with the SANE floating-point math routines in the
IIgs Toolbox. When you include floating-point arithmetic expressions in your
C code, the C compiler generates calls to these SANE interfaces to perform
the calculations. Much of the functionality of the standard C libraries can
also be achieved by making direct calls to the tools in the Toolbox and to
ProDOS. In fact, standard C libraries make extensive use of routines in the
Text Tool Set and ProDOS for text I/O and file handling. The standard C
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libraries not only simplify your work, they also make it possible to port C
source code written for other machines over to the Ilcs.

Another Sample Program: The Name Game

Now that you’ve typed and run a very simple C program and understand how
to create a C program, you’re ready to write a slightly more complex program.
The name of the program is the Name Game. It was written in 1980, in
BASIC. Since then it has been translated into five programming languages
and has appeared in various forms in more than a dozen books and magazine
articles. It will also turn up, in an assembly language version, in chapter 7.

Now you’re ready to type, compile, execute, and analyze the Name
Game. Load APW and type this line following the # prompt:

edit namegame.c

When the editor comes up, you can type in the Name Game program,
which appears in listing 3-2.

Listing 3-2
Name Game program (C version)

#include <stdio.h>

main()

{

char replay = Y;
char namel25];

while ((replay == Y)|[(replay == y)){
putchar(0x8C);
printf (**x**x The Name Game ***x+\n\n\n") ;
printf(Hello, what's your name? ™ ;
scanf ("%424s" ,name);
fflush(stdin);

while(strcmp(name , George™ & &strcmp(name,'george™ &&
strcmp(name ,"GEORGE™) ) {
printf("\nGo away %s, bring me George!\n\n",name);
printf("'What is your name? ) ;
scanf (%24s" ,name);
fflush(stdin);
}

printf ("\nHi George! Try again? (Y/N) ™);
replay = getchar();
}
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When you have finished typing and correcting the program, press Con-
trol-Q, select S and E to leave the editor, save your work, and return to the
shell command line.

You can compile the Name Game by typing the command line
#compile namegame.c keep=namegame

If you typed in the program exactly as shown in listing 3—2, the compiler
generates a screen display that looks like the one in figure 3-2.
Now type a cat command, like this:

#cat namegame=

Your disk directory includes a new file called NAMEGAME.ROOT.

If you made any mistakes in typing the program, the compiler presents
a list of error messages. If there are any error messages on the screen, they
contain the numbers of the lines in which errors occurred. If the compiler has
found errors, enter the editor and compare the lines you typed with the lines
in listing 3-2. Then leave the editor, save your changes, and compile the
program again.

If you made so many errors that the first one scrolls off the screen (and
that’s easy to do, because one error in a C program can cause the compiler
to generate many error messages), use the APW shell’s redirection capability
to save the compiler’s error messages in a file. Or, if you have a printer
hooked up, send them to the printer.

To redirect the compiler’s error messages to a special error file, just
type this command:

#compile namegame.c keep=namegame >errors

Then, to view your file of error messages, you can type

Copyright Apple Computer Inc. and Megamax, Inc. 1986, 1987

FNAME="/RAM1/NAMEGAME.C PARMS=""LANG=""DFILE="/RAM1/NAMEGAME’
Compiling /RAMT/NAMEGAME.C

Exit
—exit(0)

Apple I1GS APW C Compiler
v1.0B7

ALl Rights Reserved
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APW C compiler's screen display
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Program

#type errors

While APW is printing your error file on the screen, you can stop the
display from scrolling by pressing a key. You can resume scrolling by pressing
another key.

To redirect your error file to the printer, type

#compile namegame.c keep=namegame >.printer

Then, if the printer is hooked up and online, you’ll get a paper copy of the
compiler’s output.

Even if you didn't make any errors in typing the Name Game program,
you might like to try these exercises in file redirection, just to see how they
work. They will come in handy eventually.

To link the Name Game, type the command line
#Llink 2/start namegame keep=namegame

This line works like the line that linked the Hello World program. It
creates a load file called NAMEGAME in the current directory. If the linker
displays an error message, you’ll have to activate the editor, correct the errors,
and compile and link the program again.

If the linker finds any errors in your program, it will probably present
a display similar to the one shown in figure 3-3.

The error showr in figure 3-3 was caused by the misspelling of a
subroutine’s name. In the example, the f was not included in the function
name printf somewhere in the program.

If all goes well and you don’t get an error message, you can now run
the Name Game by simply typing the command

#namegame

Pass1:
Pass2: ...
Error at 00000138 past main PC = 00000275 : Unresolved reference
Label: print

Link Editor V1.0 B5.1

1 errors found during Link.
8 was the highest error Level.

There are 3 segments, for a combined length of $00006F71 bytes.

Figure 3-3
An error message from the linker
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Because the Name Game is a game, please read no further until you play it!
Then come back and look at the following play-by-play listing of what should
happen when you play the game.

1. The screen clears, and the title *¥*** THE NAME GAME **%%
appears at the top of the screen.

2. The greeting Hello, what's your name? appears three lines below the
title.

3. As you type in your name, the letters you type appear after the ?
prompt.

4. If you don’t type George, george, or GEORGE, the computer
responds:

Go away the name you typed in, bring me George!
What is your name?

5. Steps 3 and 4 repeat until you type George.
6. When you finally give up and type George, the computer responds:

Hi George! Try again? (Y/N)

7. If you type Y or y, the computer starts the Name Game over again,
beginning with step 1. If you type anything else, you return to the
shell’s # prompt.

If the program doesn’t work in the manner described, you probably didn’t
type it exactly as shown in listing 3—2. Unfortunately, no compiler or linker
can spot and report every type of error that can be made in a program. Here
are a few types of errors that may not be noticed by the APW system:

B Misspellings.
W Discrepancies in the layout of a screen display.

W The program won’t print Hi George! even if you type in George or
keeps playing even after you type N. If one of these problems
occurs, press Control-(3-Reset (at the same time) to reboot the
machine.

W After performing all, part, or none of the steps listed in the play-by-
play description, the machine just freezes. You’ll have to reboot for
this one, too.

In programs that you write, errors like the last two are usually the hardest
to find. In such cases, all you can do is carefully go over your code until you
find your error. Then, each time you find an error and track down its cause,
it’s a good idea to think for a moment about why the error occurred.

When you start debugging your programs, you'll have to think in re-
verse. You’'ll need to figure out what kind of mistake was likely to cause a
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certain problem before you even know where to look in your source code!
This process is called debugging, and it’s an important part of programming—
in any language.

How the Name Game Works

Macros

If your Name Game program is debugged and running, you’re ready for a
line-by-line description of how it works. Let’s start at the top:

#include <stdio.h>

The term #include is a compiler directive, and the #inc lude di-
rective is a standard feature of C. The #inc lude directive replaces the line
the directive is on with the contents of the named source file. The < and >
around the filename tell the compiler to search for the filename in the 2/
CINCLUDE directory.

The Name Game program needs the contents of the <<stdio.h> file because
they provide definitions for the putchar and getchar macros. Macros
are often found in Apple Ilcs programs written in both assembly language
and C. When they are included in C programs, they are used like the functions
in the CLIB file. In the Name Game program, for example, the putchar
and getchar macros read each character input from the keyboard and print
every character displayed on the screen.

Macros, though they may look obscure to the uninitiated, are time-
saving and labor-saving aids for assembly language and C programmers. A
macro makes it possible to write a complex sequence of code using a single
word or a word followed by one or more symbolic variables. When the
program is compiled, the macro is replaced by the code it represents.

Macros are often used when the actual code for a frequently performed
action is obscure. So they not only save programming time, but also make
code more readable. In C programs, macros are more efficient than function
calls because the code replacement they require is handled at compile time,
and jsl and rtl instructions are not required. Also, symbolic variables can
be used more easily in macros than in subroutines.

Macros do have one disadvantage, however. When a macro is used
repeatedly in a program, it uses much more memory than if it were written
as a subroutine. A macro is replaced by the sequence of code it calls every
time it is used, but a subroutine can be used over and over without using any
additional memory.

More information about macros is presented in part 2. For now, all you
need to know about macros is that if you didn’t include <stdio.h> in the
heading of the Name Game program, putchar andgetchar wouldn’t work.
The fact that macros are implemented in a slightly different manner than true
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function calls is not too important at the moment and is mostly transparent
to the programmer.

Now let’s move to the next line in the Name Game program:
main()

As noted, every C program must have a function called main () . For example,
in the description of the START.ROOT routine, main() is the label the
routine jumped to.

To the C compiler, main() is just another function definition and is
treated the same as any other. When the compiler compiles amain () function,
it simply generates an OMF file segment whose start is labeled main. To
create this segment, it uses all the code between the first and last braces that
follow the main() declaration. Often, in longer C programs, the main()
function consists almost entirely of calls to other functions. (A general rule
for beginning C programmers is to avoid writing any C function that is too
long to fit on the computer screen at one time. If you follow this rule, it
reduces your chances of writing convoluted, hard-to-understand *‘spaghetti
code.”)

Now on to the next line in the Name Game program:
char replay = Y

This line is included in the program because you need a place to store
the response to the Try again? (Y/N) prompt. Because you will store a letter,
you declare the rep Lay variable to be type char. The program ends whenever
replay is not equal to Y’, so you start out making replay equal to Y’
to ensure that the game is played the first time through. Y” is a character
constant. The single quotes around Y tell the compiler that it is not the name
of a variable. C stores the ASCII value of the letter Y in the byte of memory
it associates with the name replay.

Now for the line
char namel[25];

This line is included in the program because you also need a place to
store the name the user types in. The statement sets aside 25 bytes to hold
the name. The identifier name refers to the address of the first byte in the
string. The memory area addressed by the identifier name is an array of type
char.

After the name L] array is set up, a line is skipped in the program, and this
line appears:

while ((replay == Y)||(replay == y)){
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Logical OR
Operator

The Name of the
Name Game

The skipped line and the indentation before wh1i Le are conventions that
make C programs easier to read. (Refer to the complete program, listing 3—
2, to see the indentation.) The compiler ignores them.

The statement itself has two parts. The first part—inside the parentheses
that follow the word whi Le—is a condition. The second is a block of code
enclosed by braces. Only the first brace appears on the same line as whi Le.
The closing brace appears farther down in the program, preceding the closing
brace of main (). When the program is run, it repeatedly executes the block
of code between the braces as long as the condition inside the parentheses
that follow the whi Le statement is true. In this case, the block that is executed
is the rest of the program.

The || symbol in the while statement is C’s logical OR operator. As
long as the variable replay is equal to either Y or y, the while
statement’s condition is true, and the block that follows it is executed.

Both an uppercase Y and a lowercase y are used in the whi Le statement
because the C language is case sensitive—that is, it distinguishes between
uppercase and lowercase letters. So, in C programs with inputs that are not
case sensitive, you often need to write code that forces C to accept either
uppercase or lowercase letters as inputs from the keyboard.

The next line in the program:

putchar(0x8C);

calls the putchar macro defined in the header file <stdio.h>. This line
illustrates a fast way to send a single ASCII code to the program’s output
stream—in this case, the screen. If you wanted to print a single letter on the
screen, the argument to put char (the value inside the parentheses that follow
the name of the function) would be the desired letter, enclosed in single
quotation marks.

Because the Apple-style ASCII code to clear the screen is not a printable
character, but the hexadecimal value $8C, you can just send the code number
itself by omitting the single quotation marks. The 0x preceding the value 8C
means 8C is a hexadecimal number. In C, hex constants are indicated by the
prefix 0x. So Ox8C represents the same value as $8C in assembly language.

The next line:

printf ("**** THE NAME GAME ****x\n\n\n") ;

calls the CLIB routine printf. In this case, the C compiler reserves a space
in memory for the characters inside the quotation marks, stores them there
with a terminating O (null character), and passes the address to the printf

routine.
We’ll discuss what the printf routine does in a moment. But first,
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we’ll describe the 0 that CLIB adds to the characters inside the quotation
marks before printf goes into action.

In C, the word string describes an array of characters whose last value
is 0. A 0 is called a null character because it does not represent any letter or
control character. So 0 is used to mark the end of a string. It tells various C
routines that work with strings when they have found the end of a string.

Now you can move to the printf routine. The C compiler interprets
another special character—the backslash character (\)—as an escape char-
acter. Instead of placing a backslash in the stored string, it treats the character
that follows it in a special way. For example, n following a backslash stands
for newline, which in C talk means a carriage return. So the three\n’s before
the closing quotation marks in the line

printf ("*** THE NAME GAME ***x\n\n\n");

insert three newlines (carriage returns) in the string passed to printf. This
means two lines are skipped before the next item is displayed on the screen.
In the next line

printf(Hello, what is your name? ");

you do not include \n because you want the player’s answer to appear on the
same line as the question.

The scanf routine in the statement
scanf ("% 24s" ,name) ;

is another powerhouse from CLIB. It works like printf, but in reverse. It
takes values of text data from the keyboard, echoes them to the screen as
they are typed, and stores them in a designated variable or string.

In the scanf routine there are two arguments inside the parentheses,
separated by a comma. The first argument, % 24s, instructs scanf to read
up to 24 characters from the keyboard and place them, in the order they are
input, in a string (character array). The second argument, name, is the address
of 25 bytes of storage. This tells scanf where to store the character string.

When the user types a carriage return or has input 24 characters, scanf
stops accepting characters. If input is ended by a white space character—a
space, tab, or newline character—scanf does not add it to the stored string.
When input has ended, a O is placed at the end of the string of characters
that have been typed in, making the array called name a C string. Control
then returns to the next statement in the calling routine.

In a scanf string like the one in the Name Game program, the % symbol
preceding 24 limits the length of the string to 24 characters, plus the
terminating O that makes it a C string. This is a total of 25 characters, which
is the size of the character array name. If you allowed an unlimited number
of input characters, scanf would blindly store every character the user enters
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in the area of memory that begins with the first character of the array name.
If more than 24 characters were input, the program could eventually crash or
overwrite other data stored in memory.

Other values can follow % in a scanf argument to cause the function
to read and store data in different ways. You can find more information on
this topic in the Apple Ilcs Programmer’s Workshop C Reference.

The next three lines in the program are

printf("What is your name? ) ;
scanf ("%24s",name) ;
fflush(stdin);

stdin is defined in <stdio.h>. It represents the standard input stream,
which is normally the keyboard. ff Lush is a standard library call that removes
any data ‘‘queued,’’ or waiting to be read from or written to. The scanf
call, which precedes ff lush in the program, takes in whatever is typed up
to, but not including, the first white space character typed. Sometimes, you
will be interested in this character. In this case, you are not, so fflush
disposes it.

If you left the ff Lush call out of the program, the next input request—
the getchar () call near the end of the program-—would accept the pending
white space character as its input instead of waiting for the user’s response.

Now for the next statement in the Name Game program:

while(strcmp(name,'George™) &&strcmp(name , ‘george”) &&
strcmp(name ,"GEORGE™ ){

You may notice that the whi Le loop in this statement is on two lines.
This was done simply because the statement is too long to fit on one line. C
doesn’t care about extra spaces and carriage returns in source code, as long
as they are not within a name or between quotation marks.

Now let’s see what the statement does. Although the program is already
inside a while loop that recycles the Name Game as many times as users
want, you can create another whi le loop that keeps users typing in entries
until they decide to go get George (or lie and tell the computer that their name
is George).

This loop within a loop introduces another new CLIB routine, strcmp.
The strcmp function compares the C string name with the C string George
and generates a value of 0 if the strings are the same. In C, O stands for the
logical value false, and any nonzero value stands for true. Our goal is to
repeat the while loop that asks for George as long as the character array
name is different from three variations of the name George.

Because the result of strcmp is nonzero (true) when the string stored
in name is different from the string stored in George, you use the logical
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AND operator && to make the comparison. This says: ‘“While name is dif-
ferent from George, AND name is different from george, AND name is
different from GEORGE, carry out the following block of code.”” Otherwise,
the program moves to the statement following the closing brace of the block:

printf(\nGo away, %s, bring me George!'\n\n",name);

What’s new here is that %s, the same term used in the scanf statement,
is now used in a printf statement. In this case, it causes printf to print
on the screen the string stored in name. This operation is the reverse of the
one carried out by scanf, which replaces the contents of name with the
string of characters typed at the keyboard. So in this context, you can think
of the screen and the keyboard as the input and output sides of the same
device.

These are the next two lines in the inner whi Le loop:

printf(What is your name? ");
scanf ("% 24s",name) ;

In these two statements, printf prints a line on the screen and scanf places
a new string in the variable name. There is nothing new here, but the results
are important. The scanf statement provides a new value to be tested by the
strcmp routine at the start of the loop. If this operation did not take place,
even typing George would not help the poor users. They would have to reboot
the machine to get it to stop its dialog.

This brings us to an important point in programming. When you write
a while loop, something must eventually happen within the loop to make
the condition being tested false and bring the loop to an end.

Now we come to the last statement in the inner whi Le loop:

fflush(stdin);

After the printf and scanf routines are carried out, the ff lush routine
“flushes™ the queue.

The end of the program’s inner while loop is marked by a closing
brace placed beneath the w that began the loop. This convention makes C
code easier to read and understand.

The next line is one you can’t get to unless you claim your name is George:
printf(\nHi, George! Try again? (Y/N)");
At this point, you can decide whether you want to play the game again, though

I can’t think of why anyone would want to.
This line stores your reply in the variable replay:
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replay = getchar();

The getchar () macro, which looks and works like an ordinary C
function, simply returns the ASCII code for the next character typed at the
keyboard. The statement in which it appears also makes it possible to end
the program. If you type any character other than Y or y, the condition for
the whi Le loop near the beginning of the program is not met. As a result,
the program passes control to the next statement after this block. But the only
thing after the } that ends this whi Le loop is the } that ends main(). The
compiler places the rtl instruction at the end of the generated code, so
execution continues with the next statement after jsl main() in
START.ROOT. The result is a return to the shell’s # prompt.

Making a Standalone Application

I hope you have now succeeded in getting the Name Game running. If you
have, you’re ready to turn it into a standalone application. But before you
can do that, you’ll have to tell the IIs that your name is George, so that the
Name Game will end and return to the APW shell. Then you can type the
command line

#filetype namegame s16

This changes the file type of the Name Game from exe, a file type which can
be executed only under APW, to s16, a file type that can be loaded from the
IIGs finder (or, on older system disks, the IIgs launcher).

Now you can astound your friends by letting them play the Name Game.
The program may not be impressive enough to put on the market. But with
a little imagination—and some fancy graphics tricks you’ll learn in this
book—you’ll soon be able to turn it into something more complex and more
or less annoying than the original.
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CHAPTER

Memory Magic

Mapping the Apple 1IGS

feat: they stuffed more than 9 megabytes of memory capacity into
a computer originally designed to work with 48K of RAM. The
secret of how they did it can be summed up in two words: bank switching.

Bank switching is based on the principle that two blocks of memory
can share the same address as long as they don’t try to use it at the same
time. When a computer uses bank switching, blocks of memory are assigned
identical addresses. Special switching facilities are provided so that memory
segments that use the same addresses can be switched into and out of the
space they share.

In the Apple llc and the expanded Apple Ile, blocks of memory that
use bank switching are controlled by special electronic circuits called soft
switches. A soft switch is a microcomputer circuit that can be turned on and
off, just like a light switch. You’ll take a closer look at some of the soft
switches built into Apple II computers later in this chapter. First, though,
let’s pause for a brief look at the memory architecture of microcomputers in
general and the Apple IiGs in particular.

I he engineers who created the Apple IlGs accomplished a remarkable

The term page is often used in memory mapping. A page is simply a block
of 256 bytes of memory, or $100 bytes in hex notation. It is a convenient
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unit of memory measurement because the 256 memory addresses in a page
can be expressed using the hex values $00 through $FF. For example, page
0 on the Apple II memory map is made up of memory addresses $00 through
$FF, and page 1 includes memory addresses $100 through $1FF. The address
at which a page number changes—for example, memory address $1FF, which
is the last address on page 1—is known in assembly language as a page
boundary.

(Incidentally, in Apple II graphics programming, the word page is also
used to describe one screenful of graphics memory. These different uses of
the same word should not be confused. You’ll enounter graphics pages again
later in this chapter.)

Another important unit of memory measurement is a bank. A bank is a group
of 256 pages, or a total of 65,536 (64K) banks of memory. The earliest
models of the Apple [I-—the original Apple II and the Apple 11 + —have just
one bank of memory, or a total of 64K. The Apple Ilc (and the expanded
Apple Ile) have two banks of memory, or 128K. A basic Apple IlGs, without
a memory expansion card, has four banks of memory, or 256K. The IIGs’s
central processor, the 65C816, can address up to 256 banks, or 16 megabytes,
of memory (that is, 16,384,000 bytes, or $FA0000 bytes in hex notation).
Because the 65C816 can address 16 megabytes of memory, the address
space of the Ilgs also totals 16 megabytes—at least in theory. Actually,
however, only 8.25 megabytes of memory are available for RAM expansion,
and 1 megabyte is available for ROM expansion. The Ilgs also comes with
four banks, or 256K, of RAM. Figure 4-1 is a simplified memory map of
an unexpanded Apple Ilgs, just as it comes out of the box: with 256K of
RAM. (A memory map of a fully expanded IIGs is presented in figure 1-2.)

The Memory Manager
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Until the advent of the llGs, people who wrote an assembly language program
for an Apple II had to decide exactly where in memory their program would
be loaded. Then they had to make sure the program would work properly
when it was assembled and loaded into the chosen locations. In other words,
it was the programmer’s responsibility to allocate and manage memory.
With the introduction of the IIGs, this situation changed dramatically.
The Ilgs, as mentioned in chapter 1, is equipped with an ultrasophisticated
programming tool that takes all responsibility for memory management from
the programmer. This tool, called the Memory Manager, can allocate blocks
of memory, discard blocks of memory when they are no longer needed, and
even rearrange blocks of memory so that available RAM space can be used
more efficiently. If you use the Memory Manager—and Apple strongly ad-
vises that you do—you will never again have to decide where in memory to
start a program or a data segment, and you will never again have to juggle
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Memory map of an unexpanded Apple llgs

blocks of memory so that they don’t ‘‘bump’’ into each other. All those
tasks—and virtually every kind of task that involves memory management—
are now jobs for the Ilcs Memory Manager.

But the IlGs programmer still needs to know something about the
memory architecture of the computer. The IIcs has a lot of firmware (pre-
written programs) installed in specific locations in ROM, and it is sometimes
helpful to know where they are. It is also helpful to know where screen
memory starts and ends, where color tables and other graphics-related data
are stored, and where important 1/0 routines can be found.

Another good reason for understanding the memory architecture of the
Ilgs is that it is sometimes necessary to place user-written routines in bank
0, so that they can access firmware designed for pre-gs Apple s without
moving across bank boundaries.

Now that you know why memory sometimes must be managed manu-
ally, let’s take a closer look at the Memory Manager. The Memory Manager
is built into ROM and goes to work automatically as soon as you turn on the
computer. Every time you load an application program, a utility called the
system loader (mentioned in chapter 1) calls the Memory Manager and re-
quests memory space for the program. The loader then loads the program
into memory at the address returned by the Memory Manager.

After an application program is running, it can summon the Memory
Manager and request (or allocate) additional memory. It can also ask the
Memory Manager to release (or deallocate) memory when it is no longer
needed, and it can query the Memory Manager at any time to find out how
much memory is available.
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Accessories

APW and the
Memory
Manager

Pointers and
Handles

The Memory Manager is so meticulous in its record keeping that it always
knows which blocks of memory are in use, which programs are using them,
and which blocks are free. So when the Memory Manager is active—and it
always is——several programs can be present in memory at the same time
(coresident), and you can switch back and forth among them at any time.
This ability to handle several coresident programs is an important feature of
the Memory Manager because it enables the 1Igs to use desk accessories.
Desk accessories are programs that can be loaded into memory once, then
called up and used whenever desired, even while an application is running.
Some accessories that can be handled in this way include clocks, calendars,
calculators, and note pads.

The Memory Manager also makes it possible for a s to be equipped
with any amount of memory ranging from the standard 256K to 8.25 mega-
bytes and for application programs to use the maximum amount of available
memory in a way that is transparent to the user (and to the programmer as
well).

Because the Memory Manager is such an integral part of the 1lgs, the APW
assembler-editor and the APW C compiler are designed to work closely with
the Memory Manager. When you use the APW assembler to write and
assemble an assembly language program for the 1lGs, you are advised not to
assign the program a specific starting point in memory and not to use
addressing modes that require literal addresses except when absolutely
necessary.

When you follow Apple’s guidelines for using the Memory Manager,
the APW assembler automatically produces machine code that is relocatable
and, therefore, can be handled easily by the Memory Manager. The Memory
Manager can handle a relocatable program easily because it can load the
program into any block of available RAM, and it can later move the program
to another block if needed.

To keep track of the IIGs’s memory, the Memory Manager uses two important
types of variables: pointers and handles. A pointer is a pair of memory
addresses that contain, or point to, a second memory address. In C and
assembly language programs, a pointer is a convenient tool for accessing a
memory address because the block of memory can be changed by simply
altering the addresses stored in the pointer. You examine how pointers work,
and how they are used in Apple llcs programs, in chapter 6. Figure 4-2 gives
a rough idea of how a pointer is used in an assembly language program.

When the Memory Manager allocates a block of memory, it usually
returns a handle rather than a pointer. A handle is a pair of memory addresses
that point to a pointer, which in turn points to still another address. Because
of the indirect way in which a handle is used, it is sometimes described as a
pointer to a pointer. The use of handles is illustrated in figure 4-3.

The concept of a handle may sound obscure, but the Memory Manager
has a good reason for using handles. The machine code produced by the APW
assembler is relocatable and can therefore be shuffled around in memory at
will by the Memory Manager. But even when a piece of machine code is
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Using a pointer in an assembly language program

relocatable, moving it around in memory can still cause problems. For ex-
ample, if a program contains a pointer and the code the pointer is supposed
to access is moved, the pointer contains an invalid address and will almost
certainly crash whatever program is running the next time it is used.

To keep this kind of disaster from occurring, the Memory Manager does
not assign a pointer when it allocates a block of memory. Instead, it stores
a pointer to the block in a non-relocatable table. The block’s handle is the
fixed address to this pointer. In other words, a handle is simply a 4-byte space
in which the current address of a block is kept. As the block is moved, this
pointer changes, but the correct pointer can always be found in the same place:
the handle.

Using this procedure, the Memory Manager can always keep track of
any block of code, and blocks of code can always access each other, no matter
how many times their addresses change.

The lilcs Memory Map

Now that you’ve seen how the Memory Manager works, you are ready to
examine the memory map of the Ilgs in more detail. Refer back to figure 4—
1, the simplified IlGs memory map at the beginning of this chapter.

As you learned in chapter 1, the IIGs’s memory space can be divided
into five major segments. Each of these segments can be subdivided into 64K
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Using a handle in an assembly language program

memory banks. Here is an outline of what each block of memory in the Ilgs
contains:

Banks $00 and $01 (memory addresses $000000 through $01FFFF)
include both free RAM and system memory. When the IIGs is in
Apple Ilc/lle emulation mode, the addresses in these two banks are
the only addresses available.

Banks $02 through $7F (memory addresses $020000 through
$7FFFFF) are available for RAM expansion.

Banks $EO and $E1 (memory addresses $E00000 through $E1FFFF)
include some free RAM, but are also used for system, input/output
(I/0), and display memory.

Banks $FO0 through $FD (memory addresses $FO0000 through
$EDFFFF) are available for ROM expansion.

Banks $FE and $FF (memory addresses $FE0000 through $FFFFFF)
are used for system firmware.

A more detailed map of the Apple Ilgs is presented later in this chapter.
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Mapping the ligs in Emulation Mode

As noted previously in this chapter and in chapter 1, the Apple Ilgs can be
used in two modes: Apple Ilc/lle emulation mode and native mode (that is,
as a fully equipped Apple 1IGs). In this section, you’ll see how the memory
of the IlGs is apportioned in emulation mode. Then you’ll examine the com-
puter’s memory layout in native mode.

Figure 4—4 is a memory map of the Apple IlGs in Apple Ilc/Ile emulation
mode. In this mode, the IlGs operates as a 128K computer, and banks $00
and $01 are referred to as main memory and auxiliary memory—the same
names they are known by in the Apple llc and the expanded Apple Ile.

If you’re familiar with Apple lic or Apple Ile assembly language pro-
gramming, the map in figure 4-4 will be familiar. If you’re new to Apple II
programming, though, a little map reading is in order. So let’s pause for a
closer look at what the various blocks of memory in figure 4—4 contain when
the IlGs is in emulation mode.

$FFFF
FAM FAM MONITOR
$E000 55500 | $D000 $D000 | $0000 INTEAP A TER
BANK 1 | BANK 2 BANK 1 | BANK 2
$D000
o /O ROM
FoEred HARDWARE ADDRESSES
FREE FREE
RAM RAM
$6000
HIGH-RES HIGH-RES
PAGE 2 PAGE 2
$4000
HIGH-RES HIGH-RES
PAGE 1 PAGE 1
$2000
FREE FREE
RAM RAM
$0C00 ey TEXT
PAGE 2 PAGE 2
$0800 —=pyr TEXT
50400 |_-PAGE 1 PAGE 1
s0200 |_RAM RAM
S9a00 [ STACK STACK
$0000 L-PAGEQ PAGEO
Figure 4-4

A map of the llgs in emulation mode
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B Addresses $00 to $FF (page 0). As you will see in chapter 5,

memory addresses $00 to $FF, also known as page O, are an
important part of the memory map of any microcomputer. When the
operand of an assembly language statement is a page O address, the
instruction can be carried out faster because a page number does not
have to be specified. And, as you shall see in chapter 6, some
addressing modes require their operands to be on page 0.

For now, it’s sufficient to note that in an Apple Ilc or an
expanded Apple Ile, there are two bank-switchable page zeros: one
in main memory and one in auxiliary memory. When the IlGs is
operated in native mode, any page in bank $00 can be used as page
0—but we’ll save further discussion of that point for chapters 5 and 6.

Addresses $100 to $1FF (stack). The stack is a temporary storage
area where values can be tucked away until needed. How the stack
works and how it is used are examined in chapter 6.

In the Apple IIc and the expanded Apple Ile, there are two
bank-switchable stacks: one in main memory and one in auxiliary
memory. When the Ilcs is operated in native mode, the stack, like
page 0, can be located anywhere in bank $00. This operation is also
covered in chapters 5 and 6.

Addresses $0200 to $O3FF (input buffer, vectors, and link
addresses). In bank $00, these addresses are used by the Applesoft
input buffer and for certain operating system vectors and link
addresses. In bank $01, they are available as free RAM.

Addresses $0400 to $OBFF (text and low-resolution pages 1 and 2).
As noted, the block of memory in which a screen display is stored is
sometimes referred to as a page. In the earliest models of the Apple
I1, there were four such pages: two for text and low-resolution
screen displays, and two for high-resolution displays. In the Apple
IIc, the expanded Apple Iie, and the Apple IlGs, a second pair of
high-resolution graphics pages and a second pair of text and low-
resolution graphics pages are provided in auxiliary RAM.

In all Apple II computers, animated displays can be created by
using soft switches to flip between one high-resolution page and
another, or between one text or low-resolution display and another.
In the Apple IlGs, however, this capability exists only when the
computer is in emulation mode, with Ilc/lle-style text or graphics
displays. Soft switches are examined at the end of this chapter.

As figure 4—4 illustrates, text and low-resolution page 1
extends from $0400 to $07FF, and text and low-resolution page 2
extends from $0800 to $OBFF. In application programs that do not
use Apple Ilc/Ile-style text or low-resolution graphics, both of these
blocks of memory can be used as RAM.

W Addresses $0C00 to $1FFF (free RAM). In both bank $00 and
bank $01, this block of memory is available for use as free RAM.
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How Pre-Gs
Programs Use
Memory

B Addresses $2000 to $5FFF (high-resolution pages 1 and 2). In all
Apple II computers, addresses $2000 through $3FFF are used for
data displayed on high-resolution page 1, and addresses $4000 to
$5FFF are used for data displayed on high-resolution page 2. On
the Apple Ilc, the expanded Apple Ile, and the Apple llcs, the
same blocks of addresses can be used for the same purposes in
auxiliary memory. In programs that do not use Ilc/Ile-style high-
resolution graphics, all of these memory blocks can be used as
free RAM.

B Addresses $6000 to $BFFF (free RAM). In banks $00 and $01,
this block of memory is available for use as free RAM.

B Addresses $C000 to $CFFF (hardware addresses and [/O ROM).
In bank $00, this segment of memory is reserved for system
hardware addresses and system I/O ROM. In bank $01, it is
available for use as free RAM.

B Addresses $D000 to $DFFF (language card area). This block of
memory consists of bank-switched RAM that is reserved mostly
for use by ProDOS and for other system uses. When BASIC is
used, addresses $D000 through $F7FF in bank $01 are claimed by
the Ilgs’s BASIC interpreter. Why this segment of memory is
called the language card area is explained later in this chapter.

B Addresses $E000 to $FFFF (bank-switched RAM and monitor
firmware). When both the Ilgs monitor and Applesoft BASIC are
not in use, addresses $E000 through $FFFF in bank $00 and bank
$01 can be used as free RAM. When BASIC is in use, however,
it occupies addresses $D000 to $F7FF in bank $01. When the
monitor is active, it claims memory addresses $F800 through
$FFFF in bank $01.

When you load a program written for a pre-Gs Apple II computer into the
Apple Ilcs, the Ilgs firmware automatically sets up banks $00 and $01 as
main and auxiliary memory and configures both banks for Apple Ilc/Ile-style
operations. The firmware also allocates pages $00 and $01 in bank $00 for
use as page O and the stack, respectively. (There’s more about page 0 and
the stack later in this chapter and in chapter 6.)

When the IlGs configures itself for emulation mode, memory outside
banks $00 and $01 is not available for use in programs. But it can be used
as a big RAM disk, designated /RAMS.

As you can see by looking at figure 4-4, the largest block of memory
in main memory, or bank $00, is fabeled main RAM. The largest block in
auxiliary memory, or bank $01, is labeled auxiliary RAM. When the IIGs is
in emulation mode, main RAM extends from $6000 to $BFFF in bank $00,
and auxiliary RAM uses the same block of memory in bank $01. Application
programs can use both of these blocks as free RAM.

In the Apple IlGs, just as in earlier Apple IIs, an application can switch
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between bank $00 and bank $01 using soft switches—bytes in memory that,
like a light switch, can be turned on and off to change memory banks and
control Ilc-style and Ile-style text and graphics displays.

In the memory addresses that extend from $D000 to $DFFF in both bank $00
and bank $01, there is another block of bank-switchable memory that has
come to be known as the language card area of RAM. It got its name when
the Pascal language was first introduced for the Apple II and required more
memory than what was available. The card added to accommodate Pascal no
longer exists—it is now built into the main circuit board of Apple II
computers—but this area of memory retains its original name.

Because there are two language card areas—one in bank $00 and one
in bank $01—there are actually four banks of useable RAM between memory
addresses $D000 and $E000. In bank $00, most of the language card space
in both main memory and bank-switched memory is reserved for use by
ProDOS (which is covered in chapter 12) and for other needs of the IlGs
operating system. In bank $01, the bank-switched portion of the language
card area is also reserved for use by system memory, but the portion that
does not have to be bank switched is available for use as free RAM.

Now that you’ve had a good look at the emulation mode memory map
of the IIcs, it should be pointed out that the map is misleading in one respect.
When the IIGs is running in emulation mode, it does not directly address banks
$00 and $01. Instead, all data in banks $00 and $01 is copied into banks $EO
and $E1. It is the copied data that the IIcs reads from and writes to when it
is running an emulation program. This process, known as memory shadowing,
is carried out because banks $EO and $EI are synchronized for use with
emulation mode programs, but banks $00 and $01 are not. A fuller description
of memory shadowing is presented at the end of this chapter.

As noted, the Apple I1Gs has two memory maps; it uses one in emulation
mode and the other in native mode. You’ve just examined the emulation mode
memory map, and in a few moments you’ll see how the map changes when
the Ilcs is switched to native mode. Before that, though, it is helpful to explore
how the Apple IlGs emulates an Apple Ilc.

As you may remember from chapter 1, the designers of the Ils faced a
double-edged problem. They wanted to build a computer that would not only
run programs designed for earlier Apples, but also take full advantage of the
increased operating speed and expanded memory addressing capabilties of the
65C816 microprocessor. They came up with an ingenious solution. They
created a new integrated chip, the Mega II, to interface the new features of
the IlGs with the old features of earlier members of the Apple II family.

The first job for the designers of the Mega II chip was achieving some
kind of compatibility between the 2.8 MHz operating speed of the Apple Ils
and the 1 MHz operating speed of earlier Apples. They attained this goal by
incorporating the Mega II into the design of the IIcs, as illustrated in figure
4-5.



4—Memory Magic

10 e 128K EXTRA
SLOTS PORTS ROM RAM
,Ja8K ) MEGA Il FPI L J28K
SLOw S CHIP CHIP \ FAST
RAM” RAM
VIDEO
UDEQ 65C816
Figure 4-5

Incorporating the Mega |l chip into the llgs’s design

As figure 4-5 shows, the Mega II chip is connected to

B The Apple Ilgs’s ports and slots, which are operated under the
control of a 1 MHz chip and are therefore compatible with the ports
and slots in earlier Apple IIs.

B A 128K block of RAM called slow RAM, which is built into the Ilgs
to make it compatible with earlier members of the Apple II family.

B The video chips that generate the Ilgs’s text and graphics displays
when it is running in IIc/Ile emulation mode.

B The VGC (video graphics controller) chip, which generates the Ilcs’s
super high-resolution graphics display. Although the VGC chip was
designed specifically for the Ilgs and is not found in earlier Apple

IIs, it operates at a 1 MHz clock speed so that it is synchronized
with other video circuitry that is IIc/Ile compatible.

To interface the Mega II module with the 65C816 and the components
it controls, Apple engineers designed another special chip called the fast
processor interface, or FP1. The FPI, as figure 4—5 shows, is connected not
only to the Mega II chip and its 1 MHz components, but also to all the Ilgs
components that operate at 2.8 MHz. These components include

B A 128K block of fast RAM that is laid out exactly like the 128K of
slow RAM controlled by the Mega Il

W All the 128K of ROM built into the IlGs

B All expansion RAM that the IIgs owner may install

B The 65C816 processor (which must be switched from 2.8 MHz to 1
MHz before the IIGs can operate in Ilc/Ile emulation mode)
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Now you’re ready to study the concept of memory shadowing, which was
briefly mentioned in this chapter. Memory shadowing is a technique the 1ls
uses to copy data from banks $00 and $01 into banks $EO and $EI so that
programs can be run from banks $EOQ and $E! when the computer is in
emulation mode. Here, as promised, is an explanation of why memory
shadowing is used in the lics and how it works.

Because programs written for the Ilc and the Ile use memory addresses
$0000 through $FFFF, the designers of the IIs had to build the computer so
that Ilc and Ile programs could be run in banks $00 and $01. But banks $00
and $01 are also important to the operation of the llGs in native mode, so
they were designed to operate at the native mode speed of 2.8 MHz, not at
the emulation mode speed of 1 MHz (the speed at which Ilc/Ile programs
must be run).

To make the IlGs compatible with programs written for earlier Apple
IIs, the creators of the Ilgs had to equip it with at least two banks of 1 MHz
RAM. They didn’t want to slow down banks $00 and $01 just to make them
Ilc/Ile compatible, so they decided to slow down banks $EO and $EI—the
only other two banks available on a bare-bones Ilgs—and make them run at
| MHz.

Banks $EO and $EI1 also have all the features needed to run Apple
Ilc/lle programs. These features include language card mapping in memory
addresses $D000 through $DFFF, space for hardware and I/O memory in
addresses $C000 through $CFFF, and display buffers used for Ifc/Ile-style
video displays.

After all these features were incorporated into banks $EO and $E1, only
one problem remained: how to run emulation mode programs designed to be
executed from banks $00 and $01 using the clock speed and Ilc/Ile features
built into banks $EQ and $E1. To solve this problem, the designers of the
IIGs used the technique of memory shadowing. Here’s how it works.

The Quagmire State and the Shadow Register

To find out the current status of the Ilas’s shadowing operations, you can
read the status of a memory location called the shadow register. The shadow
register keeps track of the Ilgs’s shadowing state, which is also known as the
computer’s quagmire state because shadowing can make memory locations
move around like shifting sand. The shadow register, or quagmire register,
is at memory address $C035 in bank $EO.

In addition to controlling memory shadowing, the shadow register can
also activate or deactivate the I/O and language card areas at addresses $C000
through $DFFF. See table 4—1.

When the shadow register selects shadowing for an area, the Ilgs hard-
ware executes any instruction that writes into the selected area in bank $00
or $01 by writing into both the selected area and the same address in bank
$00 or bank $01. Then, because the RAM in banks $EO and $EI1 runs at 1
MHz, all code that is shadowed is executed at slow speed.

Shadowing of the I/O and language card spaces is controlled by bit 6
of the shadow register, sometimes referred to as the IOLC (I/O and language
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Table 4-1
The Shadow Register

Bit Value Description

0 1 Text page | shadowing disabled

| 1 High-res page | shadowing disabled

2 1 High-res page 2 shadowing disabled

3 | Super high-res buffer shadowing disabled
4 1 Shadowing of auxiliary high-res pages disabled
5 Reserved—do not find modify

6 1 I/O and language card operation disabled
7 Reserved—do not modify

card) bit. This bit is normally set to 0, which enables /O in the $CXXX
memory addresses and maps the 4K of RAM that ordinarily resides in that
space into a second bank of RAM in the $DXXX address range. Figure 4~
6 illustrates this operation.

Shadowing and Interrupts

Some of the interrupt routines used in emulation mode are in ROM in the
I/O space of the $CO7X address range. For this code to operate, /O must
remain enabled in the $CXXX range of memory in bank $00, and the high
16K of RAM must remain mapped as a language card. In other words, the
IOLC bit of the shadow register must be clear. If a program changes the
IOLC bit so that it can use RAM in the $CXXX range, the interrupt routines
in that area won’t work. So IOLC shadowing must be left on even by programs
running in native mode, which otherwise do not use language card mapping.

Display Shadowing

Programs run on the IIGs can also use display shadowing, which works a little
differently than I/0O shadowing. When I/O shadowing is used, both reading
and writing are slowed to 1 MHz. When only display shadowing is selected,
however, the slowdown affects only instructions that write to the shadowed
areas. The 65C816 still reads from the display areas of banks $00 and $01
at 2.8 MHz.

When the IlGs loads a program, it automatically sets display shadowing
to whatever is appropriate for the program’s operating system: on for DOS
3.3, UCSD Pascal, and ProDOS 8, and off for ProDOS 16 (the operating
system used in native mode). An application can turn off shadowing of in-
dividual displays by setting individual bits in the shadow register.

More details about memory shadowing and how the shadow register
works can be found in the Apple IIcs Hardware Reference.

63



Fundamentals of llcs Programming

BANK $E1 (64K) BANK $01 (64K)
$FFFF $FFFF
$E000 $E000
$C000 $C000
$A000 $A000 )
$8000 $8000
32K
$6000 $6000 VIDEO
BUFFER
$4000 $4000
$2000 $2000 |
$0800 4 $0800
$0400 4 $0400
$0000 $0000
11O SPACE HIGH-RES HIGH-RES TEXT TEXT
GRAPHICS  GRAPHICS  PAGE 1 PAGE 2
PAGE 2 PAGE 1
Figure 4-6

Memory shadowing in the Apple llgs

Mapping the ligs in Native Mode
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The memory map used by the Ilgs in native mode is considerably different
from the one used in emulation mode. The most obvious difference is the
native mode map is bigger. It can contain at least 256K of memory and as
much as 8.25 megabytes of memory. There are other differences, too. For
example, to give native mode programs as much free RAM as possible in
banks $00 and $01, the computer’s native mode ROM is in banks $FE and
$FF, opening up almost all the memory space in banks $00 and $01 for use
as free RAM. System ROM includes Applesoft BASIC, the 1Igs monitor,
port firmware, and the part of the Ilgs Toolbox built into ROM.

Figure 4-7 shows how memory is allocated when the IlGs is in native
mode. Programs can occupy most of the space in banks $00 and $01, and all
the expansion RAM space ir banks $02 through $7F (if expansion RAM is
installed). Applications can call the Memory Manager to obtain the memory
they need in those areas.

In banks $EO and $E1, however, there are some blocks of memory that
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Detailed memory map of banks $EQ and $E1

are not available for use as free RAM, even when the IIGs is in native mode.
For example, the I/O space in the $CXXX region and text page 1 are shadowed
from memory banks $00 and $01 into banks $EO and $E1. These areas have
to be shadowed for the proper operation of interrupts and peripheral cards,
and thus cannot be used as free RAM by application programs.

There are other areas in banks $EO and $E1, however, that are available
for use in application programs. If you decide to use these banks in a program,
remember that they are timed to operate as slow RAM—operating at 1 MHz—
when they are written to. But they can be read from at the fast speed of 2.8
MHz. If a program merely reads from them, without writing to them, they
won’t slow the program.

Here is an outline of how the various blocks of memory in banks $E0
and $E1 are used when the IIGs is running in native mode:

B Addresses $0000 to $03FF in bank $E0. Reserved for system use.
This block of RAM—used for shadowing page 0, the stack, and
other important addresses when the IIGs is in emulation mode—is
reserved for future expansion. It is not managed by the Memory
Manager, but you can use it by managing it yourself. If you do, though,
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your application may not be compatible with future models of the
IlGs.

Addresses $0400 to $O7FF in bank $EO (text page 1). Text page 1 is
shadowed into this area even when the IlGs is in native mode. It is
not managed by the Memory Manager, but you can use it if you
manage it yourself. That could get you into trouble, however,
because you never know when something such as a desk accessory
might decide to use text page 1 and try to use this segment of
memory.

Addresses $0800 to $OBFF in bank $EO (text page 2). Text page 2 is
not likely to be used by a desk accessory (though it could be), so
this region is fairly safe for use by an application program. The
Memory Manager doesn’t manage it, though, so once again, beware.

Addresses $0CO00 to $1FFF in bank $EO. Reserved for use by the
Ilgs system.

Addresses $2000 to $SFFF in bank $EO (high-resolution pages 1 and
2). Available for use by application programs that don’t use high-
resolution graphics pages 1 and 2. Managed as special memory by
the Memory Manager (more about that in chapter 7).

Addresses $6000 to $BFFF in bank $EO (free RAM). This 24K
chunk of memory is allocated as free RAM and is managed by the
Memory Manager.

Addresses $C000 to $FFFF in bank $EO. Used by the IlGs system.
This segment of memory includes I/O space, the language card area,
and other addresses used by the Ilgs system. It’s off-limits to
application programs.

Addresses $0000 to $03FF in bank $E1. Reserved for system use.
Not managed by the Memory Manager. Use at your own risk.

Addresses $0400 to $OBFF in bank $E1 (alternate text pages 1 and
2). Rarely used and probably safe, but not managed by the Memory
Manager.

Addresses $0C00 to $1FFF in bank $E1. Reserved for use by the
IIGs system.

Addresses $2000 to $5FFF in bank $E1 (alternate high-resolution
pages 1 and 2). Available for use by programs that don’t use
alternate high-resolution pages 1 and 2. Managed as special memory
by the Memory Manager. The special memory designation is
covered in chapter 7.

Addresses $6000 to $BFFF in bank $E1 (super high-resolution
display). This is the super high-resolution screen display area of the
Hes. It can be managed as special memory by the Memory Manager.
But most programs written for the Ilgs use super high-resolution
graphics, so using this area of memory as free RAM—even by a
program that doesn’t require super high-res graphics—is strongly
discouraged.
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Soft Switches

Accessing Soft
Switches

B Addresses $A000 to $BFFF in bank $E1 (free RAM). Free RAM
managed by the Memory Manager.

B Addresses $C000 to $FFFF in bank $E1. Reserved for system use.
Not managed by the Memory Manager and not recommended for use
as free RAM by application programs.

B Banks $F0 through $FD. Reserved for use by a ROM expansion
card used for additional firmware and by applications that are stored
as ROM disk files.

If you’re an old hand at Apple II programming, you may be familiar with
the concept of soft switches: bytes in memory that perform operations by
simply being read from or written to.

If you like to manage Apple II operations using soft switches, you’ll
be happy to know that the IIGs has all the soft switches its predecessors have—
and an extra register to help you access them conveniently.

The soft switches in the IiGs, like the ones in earlier Apple IIs, reside
in the $CXXX block of memory in bank $00. And, like their counterparts,
they can be used for bank switching, I/O and graphics operations, and pro-
tecting certain blocks of memory by making it possible to read from them
but not write to them. Table 4-2 lists some of the most often used soft switches
in the Apple IIGs and earlier Apple Ils.

There are three ways to manipulate the soft switches in the Ilcs:

1. Some soft switches can be toggled on or off with either a read
operation, such as lda, or a write operation, such as sta. For
example, you can change the setting of the Page2 soft
switch at $C055 with a statement such as

sta $C055
or a statement like
lda $C055

More details of how the Page2 soft switch works are presented in a
moment.

2. Some soft switches can be turned on or off with a write operation.
For example, you can turn on the RAMWTrt switch at $C005 by
writing any value to it, using a statement such as

sta $C005
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Table 4-2
Soft Switches

Arranged by Name

Name Address Access Function

80Store $C000 Write Off: RAMRd and RAMWTrt determine
RAM locations

80Store $C001 Write On: Page2 switches between main and
auxiliary display pages

AltZP $C008 Write Off: Using main-memory page 0 and
stack

AltZP $C009 Write On: Using auxiliary-memory page 0 and
stack

Bank Select $CO080 Two Reads Read RAM; no write; use $D000 bank 2

Bank Select $CO081 Two Reads Read ROM; write RAM; use $D000 bank
2

Bank Select $C082 Read Read ROM; no write; use $D000 bank 2

Bank Select $C083 Two Reads Read and write RAM; use $D000 bank 2

Bank Select $CO088 Read Read RAM; no write; use $D000 bank 1

Bank Select $C088 Read Read RAM; no write; use $D000 bank 1

Bank Select $C089 Two Reads Read ROM; write RAM; use $D000 bank
1

Bank Select $CO8A Read Read ROM; no write; use $D000 bank 1

Bank Select $CO8B Two Reads Read and write RAM; use $D000 bank 1

DHiRes $COSE Read/Write On: If OIUDis is on, turn on double high
resolution

DHiRes $COSF Read/Write Off: If IOUD:is is on, turn off double
high resolution

HiRes $C056 Read Off: Display text page

HiRes $C057 Read On: Show high-res pages; make Page2
switch between high-res pages

I0UDis $CO7F Write On: Disable 10U access for $C058-
$CO5F; enable zDHiRes switch access

IOUDis $CO7F Write Off: Enable IOU access for $C058-
$COSF; disable DHiRes switch access

Page2 $C054 Read Off: Select text page 1 and high-
resolution page 1

Page?2 $CO055 Read On: If 80Store off, use main memory
displays; if on, use auxiliary displays

RAMRd $C002 Write Off: Read main 48K RAM

RAMRd $CO013 Write On: Read auxiliary 48K RAM

RAMWIrt $C004 Write Off. Write to main 48K RAM

RAMWrt $C005 Write On: Write to auxiliary 48K RAM

Rd80Store $C018 Read bit 7 Bit 7 tells whether 80Store is on (1) or
off (0)

RAAIZP $CO016 Read bit 7 Bit 7 tells whether auxiliary memory (1)
or main memory (0) accessed

RdBnk2 $CO11 Read bit 7 Bit 7 tells whether $D000 is bank 2 (1)
or bank 1 (0)

RdDHiRes  $CO7F Read bit 7 Read DHiRes switch (1 =o0n)
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Table 4-2 (cont.)

Arranged by Name

Name Address Access Function

RdHiRes $Co1D Read bit 7 Bit 7 tells whether high resolution is on
(1) or off (0)

RdIOUDis  $CO7E Read bit 7 Read IOUDis switch (1 =off)

RALCRAM  $C012 Read bit 7 Reading RAM (1) or ROM (0)

RdPage2 $Co1C Read bit 7 Bit 7 tells whether Page2 is on (1) or off
0)

RARAMRd $C013 Read bit 7 Bit 7 tells whether main memory (0) or
auxiliary memory (1) is being accessed

RDRAMWrt $C014 Read bit 7 Read whether main memory (0) or auxil-

iary memory (1) is being accessed

Arranged by Address

Address Name Access Function

$C000 80Store Write Off: RAMRd and RAMWTrt determine
RAM locations

$C001 80Store Write On: Page2 switches between main and
auxiliary display pages

$C002 RAMRd Write Off: Read main 48K RAM

$C004 RAMWrt Write Off: Write to main 48K RAM

$C005 RAMWTt Write On: Write to auxiliary 48K RAM

$C008 AltZP Write Off: Using main-memory page 0 and
stack

$C009 AltZP Write On: Using auxiliary-memory page 0 and
stack

$COL1 RdBnk2 Read bit 7 Bit 7 tells whether $D000 is bank 2 (1)
or bank 1 (0)

$C012 RALCRAM Read bit 7 Reading RAM (1) or ROM (0)

$C013 RAMRd Write On: Read auxiliary 48K RAM

$C013 RdRAMRA Read bit 7 Bit 7 tells whether main memory (0) or
auxiliary memory (1) is being accessed

$C014 RARAMWTrt Read bit 7 Read whether main memory (0) or auxil-
iary memory (1) is being accessed

$C016 RdAAItZP Read bit 7 Bit 7 tells whether auxiliary memory (1)
or main memory (0) is being accessed

$CO18 Rd80Store  Read bit 7 Bit 7 tells whether 80Store is on (1) or
off (0)

$Co1C RdPage?2 Read bit 7 Bit 7 tells whether Page2 is on (1) or off
0)

$CO1D RdHiRes Read bit 7 Bit 7 tells whether high resolution is on
(1) or off (0)

$C054 Page2 Read Off: Select text page 1 and high-resolu-
tion page 1

$C055 Page2 Read On: If 80Store off, use main memory
displays; if on, use auxiliary displays

$C056 HiRes Read Off: Display text page

$C057 HiRes Read On: Show high-res pages; make Page2

switch between high-res pages
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Table 4-2 (cont.)

Arranged by Address

Address Name Access Function

$CO5E DHiRes Read/Write On: If OlUDis is on, turn on double high
resolution

$COsF DHiRes Read/Write Off: If IOUDis is on, turn off double
high resolution

$CO7E RdAIOUDis  Read bit 7 Read IOUDis switch (1 = off)

$CO7F I0UDis Write On: Disable IOU access for $C058-
$COSF; enable
DHiRes switch access

$CO7F IOUDis Write Off: Enable IOU access for $C058-
$COSF; disable DHiRes switch access

$CO7F RdDHiRes Read bit 7 Read DHiRes switch (1 =on)

$C080 Bank Select Two Reads Read RAM; no write; use $D000 bank 2

$Co081 Bank Select Two Reads Read ROM; write RAM; use $D000 bank
2

$C082 Bank Select Read Read ROM; no write; use $D000 bank 2

$C083 Bank Select Two Reads Read and write RAM; use $D000 bank 2

$C088 Bank Select Read Read RAM,; no write; use $D000 bank 1

$C088 Bank Select Read Read RAM; no write; use $D000 bank 1

$C089 Bank Select Two Reads Read ROM; write RAM; use $D000 bank
1

$CO8A Bank Select Read Read ROM; no write; use $D000 bank 1

$C08B Bank Select Two Reads Read and write RAM; use $D000 bank |

3. You can read some soft switches to see whether a given bit is on or
off. For example, you can read bit 7 of the RAMWTrt switch, at
$C014, to find out whether main memory (bank $00) or auxiliary
memory (bank $01) is being used for writing.

4. As a precaution against accidents, some soft switches have to be
accessed twice in succession before they respond. For example, to
turn on the soft switch at $C083, you must carry out a pair of
operations, like this:

lda $C083
lda $C083

Please note that in this case, memory address $C083 is not being
written to, but is merely being accessed with a read operation (lda).
If you were writing to it—for example, with a sta instruction—it
wouldn’t matter what was in the accumulator when the operation was
carried out. That’s because it’s the act of accessing the switch, not
the value written to it, that causes the switch to do its work. When
you access a switch with a write operation, you can store any value
in it (even a 0) and the result is always the same.
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Using Soft
Switches

As you may notice in table 4-2, the same name is sometimes used for two
or more soft switches. That’s because some switches are activated with one
switch and deactivated with another. And some switches are turned on with
one address, turned off with another, and read from with still another. In table
4-2, nine switches that select memory banks are grouped under the same
name: bank select. The following sections explain the operation of some
important switches.

Selecting Main or Auxiliary RAM

Two switches, RAMRd and RAMWTrt, select main or auxiliary RAM in the
48K memory space in banks $00 and $01 when the IIcs is in emulation mode.
When RAMRA is on and the 80Store switch (which controls display memory)
is off, RAMRA selects auxiliary memory for reading. When both 80Store and
RAMRA are off, RAMRAJ selects main memory for reading. When RAMWrt
is on and the 80Store switch is off, RAMWTrt selects auxiliary memory for
writing. When both RAMWTrt and the 80Store switch are off, RAMWTrt selects
main memory for writing. That may sound quite complicated, but after you
start using these three soft switches, you’ll become accustomed to how they
work.

Both the RAMRd and RAMWrt switches use three memory addresses.
One address turns the switch on, one turns it off, and one reads its state. To
read the state of RAMRd, RAMWrt, or any other three-address switch listed
in table 4-2, just check bit 7 of the appropriate memory address. If the switch
is off, bit 7 is cleared to 0. If the switch is on, bit 7 is set to 1.

Selecting Display Memory

When the IIGs is displaying Ilc/Ile-style high-resolution graphics, three soft
switches—=80Store, HiRes, and Page2—can select the portion of RAM used
for screen memory. Each of these switches has three memory addresses—
one that turns it on, one that turns it off, and one that reads its state by
checking bit 7.

If the HiRes switch is off, Page2 switches between text pages 1 and 2.
If HiRes is on, Page2 switches between high-resolution graphics pages 1
and 2.

If 80Store is off, RAMRd and RAMWTrt determine whether to use the
display pages in main or auxiliary RAM, and Page2 selects pages for display
only—not for reading or writing. If 80Store is on, however, it overrides
RAMRd and RAMWTrt with respect to the display pages selected by HiRes
and Page2.

The Machine State Register

There is one drawback in using the soft switches in table 4-2. Because they
are in slow RAM—memory that runs at the emulation speed of 1 MHz,
instead of the native mode speed of 2.8 MHz—the system is slowed down
every time a soft switch is accessed directly.
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But there is a way to access eight of the most commonly used soft
switches without paying the penalty of changing operating speeds. That
method is to use a special memory address called the machine register. (It’s
also called the state register or machine state register.) This register is situated
at memory address $C068. Table 4-3 shows how each bit in the machine
register is used.

Table 4-3
The Machine State Register
Bit Name Description

Bit 0 INTCXROM Determines whether internal or slot card ROM
will be used in the $C100 to $CTFF block of
memory

Bit 1 ROMBank Selects the ROM bank in main memory (0) or
auxiliary memory (1)

Bit 2 Bank2 Selects the main RAM bank (0) or auxiliary
RAM bank (1)

Bit 3 RAROM Activates the correct bank select switch to read
ROM

Bit 4 RAMWrt Turns the RAMWTrt switch off and on

Bit 5 RAMRd Turns the RAMRJ switch off and on

Bit 6 Page2 Turns the Page2 switch off and on

Bit 7 AltZP Turns the AItZP switch off and on

In this chapter, you saw how much memory is in the IIcs, its location,
how it is accessed, and its uses. In chapter 5, you take an inside look at the
65C816 processor and see what makes it go.
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CHAPTER

In the Chips

Inside the 65C816 Microprocessor

members of the Apple Il family is the 65C816 central processing
unit, or CPU. The 65C816, as noted in chapter 1, is a 16-bit chip
that runs almost three times as fast as the 6502 and 65C02 processors in earlier
Apple IIs.
The 65C816 has other advantages over its 8-bit predecessors. Because
of its 16-bit data-handling capacity, programs written for the 65C816 are 25
to 50 percent shorter than programs written for earlier 6502-style processors.
The 65C816 can also address far more memory than any of its 8-bit coun-
terparts.
In this chapter and in chapter 6, you see how the 65C816 does all those
things and what its advanced features mean to the Apple IIgs programmer.
The instruction set of the 65C816 is described in appendix A.

’ I ne major component that sets the Apple llgs apart from earlier

All in the (6502) Family

The 65C816 is a member of the venerable 6502 family of microprocessors.
The first Apple II, built in 1977, was designed around a 6502 chip. Since
then, various models of the 6502 have been built into every computer in the
Apple II line. The CPU in the Apple Ile was a slightly improved 6502 called
the 6502B. The Apple Ilc was built around a further expanded 6502 called
a 65C02. The 65C02 is equipped with 27 more assembly language instructions
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than the original 6502, plus an expanded set of addressing modes. A few
months after the 65C02 appeared in the Apple Ilc, it became standard equip-
ment in the Apple Ile.

Apple is not the only manufacturer that has used 6502 chips in its
products. The Commodore 64’s CPU is a 6502-style chip called the 6510,
and the Commodore 128 runs on a version of the 6502 called an 8502. Atari
still uses 6502 chips in its line of 8-bit computers. Because of their versatility,
availability, and low price, 6502-family chips have been widely used in stan-
dalone configurations in the fields of robotics and computer-aided manufac-
turing.

There are a number of important differences between the 65C816 and
all its 6502 predecessors, including the original 6502 and the 65C02. For
example:

B The 65C816 is the first 16-bit chip in the 6502 family. It can
perform calculations on 16-bit values—numbers ranging from 0 to
65,535—without dividing them into smaller numbers as its
predecessors had to do.

B All previous 6502-family chips had 16-bit address buses. Therefore,
they could address memory locations ranging from $0000 to $FFFF,
or from 0 to 65,535 in decimal notation. But the 65C816 has a 24-
bit address bus, so it can address up to 16 megabytes of memory
(although only 8.25 megabytes of its RAM addressing capability are
utilized by the Apple IlGs).

B The 65C816 has nine internal registers, three more than its predeces-
sors. In this chapter, you’ll examine all nine of the 65C816’s
internal registers.

B The 65C816 operates at a clock speed of 2.8 MHz, compared with a
clock speed of 1.024 MHz for all previous members of the 6502
family.

B The 65C816 recognizes 9 new addressing modes and 78 new
machine language opcodes. Thus, it can do more with less code than
its 8-bit predecessors.

B The 65C816 can be operated in two modes: in native mode as a full-
featured 16-bit chip and in an emulation mode as a 65C02. The
processor’s emulation mode makes the Apple IIgs compatible with
earlier Apple IIs.

Inside the 65C816
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The most important components of the 65C816 are illustrated in figure 5~1.
They include:

B A 16-bit data bus
W A 24-bit address bus

M Nine internal registers
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Buses

Internal
Registers

B An arithmetic and logic unit, or ALU

In this chapter, you’ll examine these components in detail, beginning with
the 65C816’s data and address buses.

The rectangles across the top and bottom of figure 5—1 represent buses, lines
used for the transmission of addresses, instructions, and data. The bus at the
top of the illustration is a data bus, and the one at the bottom is an address
bus.

Data buses are quite appropriately named; they move data between the
registers in the CPU and the memory registers in a computer’s RAM and
ROM. An address bus transmits the addresses that data is being moved from
and to.

When the 65C816 is operated in 8-bit emulation mode, it has an 8-bit
data bus and a 16-bit address bus. It can perform operations on numbers
ranging from $00 to $FF (0 to 255 in decimal) and can access memory
addresses ranging from $0000 to $FFFF (0 to 65,535 in decimal).

When the processor is running in native mode, it has a 16-bit data bus
and a 24-bit address bus. It can perform operations on numbers ranging from
$0000 to SFFFF (0 to 65,535 in decimal) and can access memory addresses
ranging from $000000 to $FFFFFF (0 to 16,772,215 in decimal).

As mentioned, the 65C816 has nine internal registers. They are the

B Accumulator

B X register

B Y register

B Program counter
B Stack pointer

B Processor status register

16-BIT DATA BUS

PBR
(K)

DBRj] |P

SYSTEM
CONTROL

(8) (SP)

SO

4
C

PROGRAM/DATA
ADDRESS BUFFER 16-BIT ADDRESS BUS

Figure 5-1
Simplified block diagram of the 65C816
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B Data bank register
B Program bank register

8 Direct page register

Three of the 65C816’s registers—the data bank register, program bank
register, and direct page register—handle the extended addressing functions
of the 65C816 and are initialized to O when the chip is in emulation mode.
But when the 65C816 is in native mode, all nine of its internal registers are
active.

Figure 5-2 shows how the 65C816’s registers are used when the chip
is in native mode. Figure 5-3 shows the configuration of the registers when
the 65C816 is in emulation mode. Now let’s examine each register, in both
native mode and emulation mode.

Accumulator

The accumulator (abbreviated A or C) is a 16-bit register divided into two 8-
bit registers when the 65C816 is in emulation mode. When the 65C816 is in
native mode, the accumulator is referred to as the A register. But when the
register is split for emulation mode operations, its low-order byte is abbre-
viated A, its high-order byte is abbreviated B, and the register as a whole is
abbreviated C. The accumulator is the 65C816’s busiest register. You'll take
a closer look at it later in this chapter.

ACCUMULATOR (A OR C)

(LTI LI ITTT]
X

LLTTTTTTITITTITT]

Y
LTI ITTITTT

DBR (B)
LTI TTITT
(00) S
[oJofofofofolofof [T T T T TTTTTTI[TIT]
P
[nlvim]x]d]iTz]ec
PC £
(LI TITT T TITTITITTI
PBR (K)
CTTTTT 1
(00) D
[ofofoJoJofofofo] T T [T T T TTTTTIITTII
BITS
[322l212019]18117]16[15[1 4[1312[11[10[9 T8 7 [6[5[4[3[2[ 1] 0]
Figure 5-2

65C816 register configuration in native mode
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ACCUMULATOR
CITIel [IITTTATTT]
(00) X
[ofoJoJofofofofo] [ [T TT T T]
(00) Y
[oJoJofofofofofo] T T T [T [ []
DBR (8)
LTI T IT]
(00) (01) S

[oToTolofoJololo]olololoTofoloGT T TT T T [ T

P
nlv]-bld]ifz]c]

PC
[TTdpeal TTTTTIPELTT T
PBR (K)
LITITTIT7T]

(00} D
[oTofofofofoTolo] T T T T TTTTITTITITITI
BITS
[3221z0n9fisfi7[efisN1 413121 1[10[ 9[8[ 7]6[5]4[3[2]1]0]
Figure 5-3

65C816 register configuration in emulation mode

X Register

The X register (abbreviated X) is an 8-bit register when the 65C816 is in 8-
bit emulation mode, but expands into a 16-bit register when the processor is
in 16-bit native mode. In the 65C816, as in other 6502-family processors,
the X register is often used for the temporary storage of data. But it also has
an important special feature. It can be incremented with a simple 1-byte
assembly language instruction (inx) and decremented with another 1-byte
instruction (dex). It is therefore used quite often as a counter and as an index
register during loops in programs.

Y Register

The Y register (abbreviated Y) is also an 8-bit register when the 65C816 is
in 8-bit emulation mode and expands to a 16-bit register when the processor
is in 16-bit native mode. The Y register, like the X register, can be incremented
and decremented with a pair of 1-byte instructions (iny and dey). The Y
register is also used as an index register and for storing data.
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Program Counter

The program counter (abbreviated PC) is a pair of 8-bit registers. In both
emulation mode and native mode, these two registers are combined and used
as one 16-bit register.

The two 8-bit registers that make up the program counter are sometimes
referred to as the program counter low (PCL) register and the program counter
high (PCH) register. During native mode operations, the contents of the PCL
and PCH registers are appended to the value of another 8-bit register called
the program bank register. The combined contents of all three registers are
then treated as a single 24-bit address. You’ll learn more about the program
bank register later in this chapter.

It is important to remember that the program counter (and the program
bank register, if the 65C816 is running in native mode) always contains the
memory address of the next instruction to be executed. When that instruction
is carried out, the address of the instruction that follows it is loaded into the
program counter.

Stack Pointer

The stack pointer (abbreviated S or SP) is a register that always contains the
address of the next available memory address in a block of RAM called the
stack. It is an 8-bit register in emulation mode and a 16-bit register in native
mode. As you may recall from chapter 2, the 65C816 stack is a special block
of memory in which data is often stored temporarily during the execution of
a program. When the 65C816 is in emulation mode, the stack is always on
page 1 in bank $00 (unless a soft switch shifts it to bank $01), so the stack
pointer has to be only 1 byte long. But in native mode the stack can start
anywhere in bank $00, so the stack pointer has to be 2 bytes long.

When subroutines are used in assembly language programs, the 65C816
often uses the stack as a temporary storage location for return addresses. The
stack is also available for use in application programs. The operation of the
stack is discussed in more detail in chapter 6, which is devoted to 65C816
addressing.

Processor Status Register

The processor status register (often called simply the status register, but ab-
breviated P) is an 8-bit register that keeps track of the results of operations
performed by the 65C816. The processor status register is such an important
part of the 65C816 processor that you’ll take a closer look at it later in this
chapter.

Program Bank Register

The program bank register (abbreviated PBR or K) is an 8-bit register ini-
tialized to O when the 65C816 is in 8-bit emulation mode. When the processor
is in native mode, however, the program bank register becomes very impor-
tant. In native mode, every time the 65C816 has to get an instruction from
memory, it gets it from the location pointed to by the concatenation of the
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program bank register and the program counter. So, when the 65C816 is in
native mode, it uses the program bank register to extend the addressing ca-
pability of the program counter to 24 bits.

Because of the hybrid nature of the 65C816, it is not quite accurate to
view the program counter and the program bank register as a single register.
Sometimes they do work as one register, but more often they don’t. Most of
the instructions the 65C816 inherited from the 6502 use the address stored in
the program counter, but ignore the bank number stored in the program bank
register. In other words, they recognize only short addresses. But there are
a few new or redesigned instructions that do treat the PC and the PBR as one
24-bit register. In other words, they recognize long addresses.

Instructions that recognize only short addresses work fine in programs
written for the native mode 65C816; they just can’t cross bank boundaries.
That usually doesn’t cause any serious problems in [IGs programs because a
IIgs program segment can’t cross a bank boundary. If it tries, the program
counter simply rolls over to memory address $0000 in whatever bank the
segment started in. For example, if the program counter increments past
$FFFF, it rolls over to $0000 without incrementing the program bank register.

Instructions that recognize long addresses are a little easier to work
with. You can move them from any address to any other address, without
worrying about bank boundaries. Unfortunately, there are only five such in-
structions: jmp (when it is used to jump to an absolute long or indirect long
address), jsl (jump to subroutine—Ilong), rtl (return from subroutine—
long), brl (branch to long address), and rti (return from interrupt).

Because the program bank register always contains the bank number of
the program currently being executed, there is no assembly language instruc-
tion for changing the value of the PBR. But there is an instruction— phk—
that pushes the value of the PBR onto the stack so that it can be pulled off
the stack and into another register. More information on that topic is provided
in chapter 6.

Data Bank Register

The data bank register (abbreviated DBR or B) is an 8-bit register that is
initialized to 0 when the 65C816 is in 8-bit emulation mode. When the 65C816
is in native mode, the DBR designates the bank currently being used as a
data bank by instructions that read and write data.

Usually, the data bank register and the program bank register contain
the same bank number, because assembly language programs are ordinarily
stored in the same bank as the data they access. But sometimes it is more
convenient to store a program in one bank and place a long data segment,
such as a bit map, in another. The value of the data bank register can be
changed temporarily to permit access to the bit map.

The data bank register works much like the program bank register. When
the 65C816 is in native mode and an instruction for fetching or storing data
is used with a 16-bit operand, the address specified by the operand is con-
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catenated with the value of the data bank register to form a 24-bit address.
For example, if a program is running in bank $06, and the 65C816 enounters
the instruction

lda $FEFO

the accumulator is loaded with the contents of memory address $06FEFO.
There are ways to force the 65C816 to access addresses in other banks with
instructions such as Lda, but you won’t get into that subject until chapter 6.
The data bank register can be accessed with the instructions phb and
plb. The phb instruction pushes the address of the DBR on the stack. The
plb instruction can be used to pull a value off the stack and place it in the
data bank register. These operations are explained in more detail in chapter 6.

Direct Page Register

An area of memory called page 0 is a very valuable piece of real estate
in the memory map of pre-Gs Apple Ils. In the Apple Ilc and the Apple Ile,
page O extends from memory address $00 to memory address $FF in bank
$00 or bank $01 (depending on the soft switch settings), and can therefore
be accessed with a 1-byte operand. So instructions that address memory
locations on page O run faster than they would if they accessed locations
elsewhere in memory.

That is not the only reason that space on page 0 is so valuable. Some
65C02 addressing modes, called indirect addressing modes, require their op-
erands to be page 0 addresses. As a result, space on page O is at a real premium
in 8-bit Apple IlIs.

In programs written for the Apple Ilgs, however, page O is no longer
the high-rent district. With the help of a new 16-bit register called the direct
page register (abbreviated D), a IIgs programmer can move what was once
called page O to any 256-byte area of memory in bank $00 that begins on a
byte boundary. Because it has become a moveable page in the Apple IIcs, it
is no longer called page 0, but is referred to as the direct page.

When you want to instruct the IIGs to use a given page as a direct page,
all you have to do is place the starting address of the direct page of your
choice in the direct page register. You can even give different segments in a
program different direct pages, so that a direct page used by one part of a
program doesn’t conflict with the direct page used by another.

There are two instructions for accessing the direct page register: phd,
which pushes the value in the direct page register on the stack, and pld,
which pulls a value off the stack and places it in the direct page register.
More details about these instructions and direct page addressing are provided
in chapter 6.
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The Arithmetic and Logical Unit

The arithmetic and logical unit, or ALU, is a component that can perform
arithmetic and logical operations on data stored in a computer. It does its
work with the help of the 65C816’s busiest internal register, the accumulator.

As you shall soon see, the 65C816 wouldn’t be much of a micropro-
cessor if someone took away its accumulator. Every time the 65C816 is called
upon to perform an operation on a value, the value first has to be placed in
the accumulator.

The accumulator does its work with the help of another very busy
component, the ALU. Every time the Ils performs a calculation or a logical
operation, the ALU is where the work is actually done.

The ALU performs only two kinds of calculations: addition and sub-
traction. The ALU solves division and multiplication problems by sequences
of addition and subtraction operations.

Another job of the ALU is to compare values. But as far as the 65C816
chip is concerned, the comparison of two numbers is also an arithmetic op-
eration. When the 65C816 chip compares two values, it subtracts one value
from the other. Then, by merely checking the results of this subtraction, it
can determine whether the subtracted value is more than, less than, or the
same as the value it was subtracted from.

As figure 5-1 illustrates, the ALU is often depicted in diagrams as a
V-shaped hopper. The ALU has two inputs (traditionally illustrated as the
two arms of the hopper) and one output (represented as the bottom of the V).
When two numbers are added, subtracted, or compared, one number is placed
in the ALU through one of its inputs and the other number is put in through
the other input. The ALU then carries out the requested calculation and puts
the answer on a data bus so it can be transported to another register.

Here’s a more detailed look at what happens inside the accumulator and
the ALU when two numbers are added, subtracted, or compared. First, a
number is stored in the 65C816’s accumulator. Next, the accumulator deposits
that number in the ALU through one of the ALU’s inputs. The other number
is placed in the ALU through its other input. Then the ALU carries out the
requested calculation, and the result of the calculation finally appears at the
output of the ALU. As soon as the answer appears, it is placed in the ac-
cumulator, where it replaces the value originally stored there.

Listing 5-1, a tiny assembly language program titled ADDNRS.S,
shows how this process works.

Listing 5—1
ADDNRS.S program, version 1
lda #2
adc #2
sta $8000

The first statement in the ADDNRS.S program, lda #2, means load
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the accumulator with the literal number 2. As you may recall from chapter
1, the # in front of the numeral 2 means the 2 is interpreted as a literal
number. If there were no #, the 2 would be interpreted as the address of a
memory register.

The second instruction in the listing, adc, means add with carry. In
65C816 arithmetic, the addition of two numbers often results in a carry from
a low-order word to a high-order word (or from a low byte to a high byte if
the processor is in emulation mode)—in much the same way that you carry
numbers from one column to another in ordinary pencil-and-paper addition.
If there was a carry in the ADDNRS.S program, the adc instruction would
be able to handle it. Later in this chapter you’ll find out how. But in this
addition problem, there is no number to be carried, so the adc instruction
only adds 2 and 2.

When the statement adc #2 is executed, the 2 that has been loaded
into the accumulator is deposited into one of the ALU’s inputs. The instruction
adc #2 is placed in the ALU’s other input. The ALU then carries out this
instruction; it adds 2 and 2, and places the sum back in the accumulator.

Now you’re ready for the third and last instruction in the ADDNRS.S
program. The numbers 2 and 2 have been added, and their sum is now in the
accumulator. The instruction in line 3, sta, means store the contents of the
accumulator (in the memory address that follows). Because the accumulator
now holds the value 4 (the sum of 2 and 2), the number 4 will be stored
somewhere.

The memory address that follows the instruction sta is $8000—the
hexadecimal equivalent of the decimal address 32768. So it appears that the
number 4 will be stored in memory register $8000.

Now take a close look at the operand in line 3: the hexadecimal number
$8000. There is no # in front of the value $8000, so the APW assembler
will not interpret it as a literal number. Instead, $8000 is interpreted as a
memory address—which is what a number has to be in assembly language
if it is not designated as a literal number and carries no other identifying
labels.

(Incidentally, if you want the assembler to interpret $8000 as a literal
number, you have to write #$8000. When # and $ both appear before a
number, the number is interpreted as a literal hexadecimal number. If the
third line of the program was sta #$8000, however, there would be a syntax
error. That’s because sta is an instruction that must be followed by a value
that can be interpreted as a memory address—not by a literal number.)

The Processor Status Register

82

The processor status register (P) is built differently from the other registers
in the 65C816 and is used differently, too. Unlike the 65C816’s other registers,
the processor status register isn’t designed for storing or processing numbers.
Instead, its 8 bits are flags that keep track of several kinds of important
information. Figure 5—4 shows the layout of the processor status register.
As illustrated in figure 5—4, the processor status register can be visu-
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The P Register

alized as a rectangular box containing eight square compartments, with a ninth
and tenth compartment sitting on top. (More about those later.) Each of the
lower compartments in figure 5-4 represents one of the register’s 8 bits. If
a bit has the binary value 1, it is set. If it has the binary value 0, it is reset,
or clear.

The bits in the 65C816 status register—like the bits in all 8-bit regis-
ters—are customarily numbered from 0 to 7. By convention, the rightmost
bit in an 8-bit register 1s referred to as bit 0, and the leftmost bit is referred
to as bit 7.

Now let’s look briefly at each of the P register’s ten flags. Then the operation

Flags at @ of each flag is described in greater detail.
Glance
Status Flags
Four of the processor status register’s eight bits are called status flags. They
ALWAYS 1IFe=1
{ biIFe=1

xIFe=0

EMULATION BIT  0=NATIVE MODE
1= EMULATION MODE

b € Il xce INSTRUCTION SWAPS FLAGS
Inlvlm X d| i }z c
L CARRY 0=NO CARRY

1=CARRY

ZERO 0=NONZERO RESULT
1=ZERO RESULT

IRQ DISABLE 0=NOT DISABLED
1=DISABLE

DECIMAL MODE  0=BINARY
1=BCD

IFe= 0,

BREAK (b) FLAG  0=HARDWARE INTERRUPT
1= BREAK CAUSED BY SOFTWARE

INTERRUPT
IFe=1,
INDEX REG.
SELECT (x) FLAG 0=16 BIT X AND Y REGISTERS
1=

1
8-BIT X AND Y REGISTERS

MEMORY/ACC.

SELECT 0=16-BIT ACCUMULATOR AND MEMORY
1=8-BIT ACCUMULATOR AND MEMORY

OVERFLOW 0=NO OVERFLOW
1= QOVERFLOW

NEGATIVE 0=POSITIVE
1=NEGATIVE

Figure 5-4

Processor status register
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keep track of the results of operations carried out by the other registers inside
the 65C816 processor.

Bit 0: carry (c) flag. In arithmetic operations, the carry flag deter-
mines whether a number will be carried from one 16-bit integer to
another (if the 65C816 is in native mode) or from one 8-bit byte to
another (if the 65C816 is in emulation mode).

Bit 1: zero (z) flag. Novice programmers often get confused about
the way this flag works; it does the opposite of what you might
expect. When the result of a calculation is 0, the zero flag is set.
When the result of a calculation is not 0, the zero flag is cleared.

Bit 6: overflow (v) flag. This bit determines if there has been a
carry, or overflow, to the leftmost bit in a byte or word as the result
of a calculation involving signed numbers.

Bit 7: negative (n) flag. If the result of a calculation is negative, this
flag is set. If the result of a calculation is not negative, the flag is
cleared.

Condition Flags

The other four bits in the processor status register are called condition flags.
They determine if certain conditions exist with respect to the configuration
of the 1IGs or the operation of a program.

Bit 2: IRQ disable (i) flag. If the IRQ (interrupt) disable flag is set,
interrupts are disabled. If it is clear, they are enabled.

Bit 3: decimal mode (d) flag. If the decimal flag is set, the 65C816
performs addition and subtraction operations in binary coded decimal
(BCD) mode. If it is clear, the processor will add and subtract in its
normal binary mode.

Bit 4: index register select (x) flag. This flag, together with the e
flag (described in a moment), determines whether the 65C02 treats
its X and Y registers as 8-bit or 16-bit registers.

Bit 5: memory/accumulator select (m) flag or break (b) flag. When
the 65C816 is in emulation mode, bit 5 is a break flag and can be
read following an interrupt to determine whether the interrupt was
hardware generated or software generated. When the 65C816 is in
native mode, however, it doesn’t need a break flag because a set of
interrupt vectors make a break flag unnecessary.

Because a break flag is not needed in native mode operations,
bit 5 of the P register is free to be used for another purpose when
the 65C816 is in 16-bit mode. During native mode operations, bit 5
is called the memory/accumulator select flag and is used to deter-
mine whether the accumulator and the IIgs’s memory registers are
treated as 8-bit or 16-bit registers.
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Toggling
Between Native
and Emulation
Mode

The processor status register also has a tenth flag. The emulation (e) flag
determines whether the 65C816 will operate in native mcde or emulation
mode. Because the P register contains only eight bits, the e flag is a ‘‘hanging
bit’’ that shares bit 0 with the carry (c) flag. Normally, bit 0 is a carry flag,
but a special assembly language instruction—x ce—exchanges the positions
of the two flags, placing the e flag in bit O and making the ¢ flag the hanging
bit. The e flag can then be set or cleared using the mnemonics sec (set carry)
and clc (clear carry). After the e flag is set or cleared, the xce mnemonic
can switch the e flag and the c flag back to their original positions. As you
may have guessed by now, there are some significant differences between the
way the 65C816 works in native mode and in emulation mode. Switching the
65C816 back and forth between native mode and emulation mode can be a
tricky business. It involves three P register flags—the e, m, and x flags—
and setting them so they work together is an important part of 65C816
programming. Here are some handy facts and tips about the e, m, and x flags.

Emulation Flag

The e (emulation) flag of the processor status register determines whether the
65C816 will operate as a full-featured 16-bit chip or as an 8-bit 65C02 chip.
When the e flag is set to 1, the 65C816 processor is in emulation mode and
works exactly like the 65C02 chip in the Apple lic and later models of the
Apple lle. For example, when the 65C816 is in emulation mode

B It uses an 8-bit accumulator, 8-bit X register, 8-bit Y register, and 8-
bit stack pointer.

B ]t can address only one 64K bank of memory—either bank $00 or
bank $01, depending upon soft switch settings.

It uses page $00 as page 0, and it uses page $01 as the stack.

B To perform arithmetic and logical operations on numbers greater
than 8 bits (numbers greater than 255), it must break them into
smaller increments.

B When it receives an instruction to fetch data (for example, Lda), it
fetches 1 byte of data at a time, from just one memory location.
When it receives an instruction to store data (for example, sta), it
stores 1 byte of data at a time, in just one memory location.

When the e flag is cleared to 0, the 65C816 goes into native mode.
Then it becomes a 16-bit chip, with these characteristics:

8 Its accumulator, X register, and Y register are expanded into 16-bit
registers.

B Its program bank register and data bank register are activated, giving
the capability of addressing up to 16 megabytes of memory
(although only 8.25 megabytes of memory are available in the Apple
IIGs).

M Its stack pointer is expanded into a 16-byte register, providing it

85



Fundamentals of lics Programming

86

with the capability of using a stack situated anywhere within bank
$00, not limited to a memory capacity of 256 bytes.

B [ts direct page register is activated, providing it with the capability
of placing its direct page (the equivalent of a page 0) anywhere in
bank $00.

B [t becomes capable of carrying out arithmetic and logical operations
on 16-bit numbers (numbers ranging from O to 65,535) without
breaking them into smaller increments.

B When it receives an instruction to fetch data (for example, Lda), it
fetches 2 bytes of data at a time, from two consecutive memory
locations. When it receives an instruction to store data (for example,
sta), it stores 2 bytes of data at a time, in two consecutive memory
locations.

As explained, the ¢ flag can be set and cleared using the instructions
xce, sec, and c Lc. There are also APW commands and macros that perform
the same actions. You’ll learn more about those in chapter 7 and later chapters.

Memory/Accumulator Flag

When the 65C816 is running in emulation mode—that is, when the P register’s
¢ flag is set—the 65C816 accumulator is always 8 bits wide. But when the
processor is running in native mode—that is, when the P register’s e flag is
clear—the width of the accumulator can be set to either 8 bits or 16 bits,
depending upon the setting of the P register’s m (memory/accumulator) flag.

When the 65C816 is in 8-bit mode and the accumulator is 16 bits wide,
its low-order bit is the A register, its high-order bit is the B register, and both
bytes combined are sometimes referred to as the C register. When the ac-
cumulator is configured in this fashion, the accumulator’s B register becomes
an extra 65C816 register in which 8-bit values can be stored.

Here’s how the B register works. When the 65C816 is switched from
16-bit mode to 8-bit mode, the accumulator’s high-order bit becomes the B
register, and any value that was there remains there. Any time thereafter, a
new 65C816 instruction, xba, can exchange the values of the A and B reg-
isters. No other 65C816 instruction affects the B register. As long as the
65C816 remains in 8-bit mode, the ‘‘hidden’’ B register can be used as a safe
storage space for any 8-bit value.

Here, in summary, is the formula for setting the width of the accu-
mulator. If e=1, the 65C816 is in emulation mode and the accumulator is 8
bits wide. If e=0 and m =0, the 65C816 is in native mode, the accumulator
is 16 bits wide, and the accumulator always addresses memory 2 bytes at a
time. But if e=0 and m=1, the 65C816 is in native mode, the accumulator
is 8 bits wide, and the accumulator always addresses memory 1 byte at a
time.

When the 65C816 is in native mode and the m flag is used to shorten
the accumulator to 8 bits, the data stored in the B register (the accumulator’s
high byte) simply stays there. Because the 65C816 does not use the B register
during 8-bit operations, the data remains there, untouched, until it is moved
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into the lower 8 bits of the accumulator using the xba instruction or until the
accumulator is switched back into 16-bit mode.

If you’re wondering why anyone would want to use an 8-bit accumulator
in 16-bit mode, there’s a simple answer. For example, when you need to read
a string of 1-byte ASCII characters stored in a block of memory, it’s desirable
to fetch them and process them 1 byte at a time. Similarly, it’s sometimes
desirable to write a series of 1-byte values into memory. An 8-bit accumulator
can often perform jobs like that more easily and conveniently than a 16-bit
accumulator.

The m flag is set using the assembly language mnemonic sep, which
stands for set status bits. To use the instruction, just follow it with a 1-byte
value that has a set bit in the position corresponding to the bit in the P register
you want to set. You don’t have to do any bit masking because zeros in the
operand have no effect on their corresponding bits. Because the P register’s
m flag is bit 5 when the 65C816 is in native mode, you set it with the statement

sep %00100000
or
sep #%$20

which means the same thing.

The m flag is cleared with the instruction rep, which stands for reset
status bits. rep works like sep, but in reverse. Give it an operand with a
bit set, and it clears the corresponding bit in the P register, without affecting
any bits that correspond to zeros in the operation. You could therefore clear
the P register’s m flag with the statement

rep %#00100000
or
rep #%$20

It is easier to set and clear the m flag with APW directives and macros.
You’ll see how those methods work starting in chapter 7.

Index Register Select Flag

When the 65C816 is running in emulation mode-—that is, when the P register’s
e flag is set—the 65C816’s X and Y registers (like its accumulator) are always
8-bit registers. But when the processor is running in native mode—that is,
when the P register’s e flag is clear—the widths of the X and Y registers (like
the width of the accumulator) can be set to either 8 bits or 16 bits, depending
upon the setting of the P register’s index register select (x) flag.

The x flag sets the width of both the X register and the Y register. The
formula for using it is much like the formula for setting the width of the
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accumulator. If e=1, the 65C816 is in emulation mode and its X and Y
registers, like its accumulator, are 8-bit registers. If e=0 and x=0, the
65C816 is in native mode and the X and Y registers are 16-bit registers that
always access memory 2 bytes at a time. But if e=0 and x=1, the 65C816
is in native mode and the X and Y registers are 8-bit registers that always
address memory 1 byte at a time.

The X and Y registers can be placed in 8-bit mode for the same reason
that the accumulator can be turned into an 8-bit register. For example, when
you need to read a string of 1-byte ASCII characters stored in a block of
memory, it’s desirable to access them using the X register or the Y register.
And when the accumulator is in 8-bit mode, it’s usually a good idea to shorten
the X and Y registers, too, because it’s easier to keep track of registers that
are the same length.

One note of caution should be mentioned regarding the use of the x
flag. When it is used to reduce the size of the X and Y registers to 8 bits,
the contents of their high-order bytes are lost. So before you slice the X and
Y registers in half, be sure to save the values of their high bytes if you want
to use them later.

The x flag, like the m flag, can be set using the assembly language
mnemonic sep. Because the P register’s x flag is bit 4, it can be set with the
statement

sep %00010000
or
sep #%$10

which means the same thing.
The x flag, like the m flag, can be cleared with the rep instruction:

rep 0001100000
or

rep #$120

APW directives and macros make it easier to set and clear the x flag.
They are covered starting in chapter 7.

Now, as promised, let’s take a closer look at each bit, or flag, in the processor
Status register.

Carry Flag

As pointed out in chapter 2, the 65C816 cannot perform arithmetic operations
on numbers longer than 16 bits (greater than 65,535) without dividing them
into smaller numbers. When the 65C816 chip is in 8-bit emulation mode, its
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arithmetic capabilities are reduced even further. In emulation mode, when
you need to perform an operation involving a number greater than 255—or
even a calculation with a result greater than 255—each number greater than
255 must be broken down into smaller numbers. When the calculation is
completed, all numbers that have been split must be patched together before
they can be output in a form that makes sense to the user. When the 65C816
is in native mode, it can handle larger numbers. But when an arithmetic
operation involves the use of numbers greater than 65,535, they must be
broken down into smaller units even when the processor is running in 16-bit
mode.

This kind of mathematic ‘‘cutting and pasting,”’ as you can imagine,
involves a lot of carrying (in addition problems) and borrowing (in subtraction
problems). The carry flag of the P register (bit 0) keeps up with all of this
carrying and borrowing.

It is therefore considered good programming practice to clear the carry
flag prior to an addition operation and to set the carry flag prior to a subtraction
operation. If you don’t do this, your calculations may be thrown off by the
leftover results of previous calculations. The assembly language instruction
to clear the P register’s carry bit is ¢ l¢c, which stands for clear carry. The
instruction to set the carry bit is sec, which stands for sef carry.

Here’s how the carry bit works in 6502/65C816 addition and subtraction
operations. Before a multiprecision addition problem (one that requires the
use of more than one word) is performed in 65C816 assembly language, the
carry flag of the P register is customarily cleared using c lc. Then the low-
order words of the two numbers (or the low-order bytes, if the 65C816 is in
emulation mode) are added. If this operation results in a carry to a high-order
word (or byte), the 65C816 automatically sets the carry flag. Then, when the
high-order words (or bytes) of the two numbers are added, the chip auto-
matically adds the value of the carry flag. If the carry flag holds a 0, there
is no carry. If it holds a 1, there is a carry, and the result of the operation is
correct.

Because it is recommended that the carry flag be cleared before any
addition operation, the ADDNRS.S program in listing 5—1 can be improved
as shown in listing 5-2. Preceding the addition operation with the clc in-
struction clears the carry bit, ensuring that no unwanted carry is included in
the operation. You'’ll see more examples of how the carry bit works in addition
problems later in this book.

)

Listing 52
ADDNRS.S program, version 2
clc
lda #2
adc #2
sta $8000

The carry flag is also used in subtraction problems, but in the opposite
way from its use in addition problems. Before a subtraction operation, the
carry bit is usually set using sec. Then, if the subtraction operation requires
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that a low-order word or byte borrow a number from a high-order word or
byte, the number needed is provided by the carry bit. The carry flag has other
uses, most of which are described in later chapters.

Zero Flag

When the result of an arithmetic or logical operation is 0, the status register’s
zero flag (bit 1) is automatically set. Addition, subtraction, and logical op-
erations can all result in changes to the status of the zero flag. The zero flag
is often tested in programming loops that count down to 0 and to see if two
numbers are equal.

When you write routines that use the zero flag, it’s important to re-
member one 6502/65C816 convention that may seem odd at first. When the
result of an operation is 0, the zero flag is set to 1. When the result of an
operation is not zero, the zero flag is cleared to 0. This convention is easy
to forget—and can trip you up if you aren’t careful.

There are no assembly language instructions to clear or set the zero
flag. It’s strictly a read bit, so instructions to write to it are not provided.

interrupt Disable Flag

The Apple IIGs, unlike many earlier members of the Apple II family, supports
a wide variety of interrupts, instructions that halt all 6502/65C816 operations
temporarily so that more time critical operations can take place. Some inter-
rupts are called maskable interrupts because you can prevent them from taking
place by setting the interrupt disable flag (bit 2) of the processor status register.
Other interrupts are called nonmaskable interrupts because they are essential
to the operation of a computer and you can’t stop them from taking place.

The most common reason for using the P register’s interrupt disable
flag is to write a sequence of code that would not work properly if an interrupt
took place while the code is executed. For example, if a program is setting
up an interrupt and gets cut off in midstream by another interrupt, the whole
program might crash. The best way to keep this kind of disaster from hap-
pening is to set the interrupt disable flag, execute the sensitive segment of
code, and then clear the interrupt disable flag. That way, an unexpected
interrupt cannot come along and crash the program.

The assembly language instruction to clear the interrupt flag is cLi.
The instruction to set the interrupt flag is sei. Examples showing how this
flag works are presented in later chapters.

Decimal Mode Flag

The 65C816 processor normally operates in binary mode, using standard
binary numbers. But the chip can also operate in binary coded decimal, or
BCD, mode. To put the computer in BCD mode, you have to set the decimal
flag of the 65C816 status register.

When the 65C816 is in BCD mode, it uses the same ten digits used in
the standard decimal system: the numbers O through 9. Because the hexa-
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decimal digits A through F are not used in the BCD system, they are not
recognized by the 65C816 when the Ilcs is in BCD mode.

Table 5—-1 shows how the IIgs converts the numbers O through 9 into
BCD numbers when the 65C816 is in BCD mode. It also shows the hexa-
decimal and binary equivalents of the decimal numbers O through 15.

As table 5-1 shows, the binary numbers 1010 through 1111, which
equate to the digits A through F in the hexadecimal system and 10 through
15 in the decimal system, are nt used when the 65C816 chip is in BCD mode.
Instead, the numbers 10 through 15 are written in the BCD system as the
separate digits 1 and O through 1 and 5, just as they are in the standard decimal
system. For example, the number 13 is written in BCD as the binary equivalent
of 1 (0001) and 3 (0011). So, when the 65C816 is in BCD mode, it converts
the decimal values 11 through 15 into the binary numbers 0001 0000 through
0001 0101.

Because the binary numbers 1010 through 1111 are not used in the BCD
system, it takes more memory to store numbers using BCD notation than it
does to store non-BCD binary numbers. In many applications (for example,
in floating-point arithmetic operations), a full byte of memory is used for each
decimal digit in a BCD number. When BCD notation is used in this way,
BCD numbers require even more memory.

Figure 5-5 shows how the decimal number 255 is stored in memory
as a BCD number if each digit in the number is expressed as an individual
byte. In comparison, figure 5—6 shows how the 65C816 chip stores the decimal
number 255 in memory if the BCD flag is not set.

As figures 5-5 and 5-6 illustrate, at the rate of one byte per digit, it
takes three times as many bytes to store the number 255 in BCD notation as

Table 5-1
BCD-to-Binary Conversion
Decimal Hexadecimal BCD Notation Binary Notation
0 0 0000 0000
1 1 0001 0001
2 2 0010 0010
3 3 0011 0011
4 4 0100 0100
5 5 0101 0101
6 6 0110 0110
7 7 0111 0111
8 8 1000 1000
9 9 1001 1001
10 A 0001 0000 1010
11 B 0001 0001 1011
12 C 0001 0010 1100
13 D 0001 0011 1101
14 E 0001 0100 1110
15 F 0001 0101 1111

a1
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BCD NUMBER: 2 5 5
BINARY EQUIVALENT: 00000010 00000101 00000101

Figure 5-5
Expressing a number in BCD mode

DECIMAL NUMBER: 255

HEXADECIMAL EQUIVALENT FF

BINARY EQUIVALENT 11111111
Figure 5-6

Expressing a number in binary mode

it does in binary notation. There are many applications in which BCD numbers
use even more memory. For example, when the 65C816 performs floating-
point arithmetic, extra bytes are usually required to indicate how many digits
are in the number, whether the number is positive or negative, and how many
decimal places are in the number.

In floating-point arithmetic—which is often used in ‘‘number-crunch-
ing’’ operations because of its high degree of accuracy—it could take six or
more binary numbers to express a three-digit decimal number. Figure 5-7
shows how the number 2.55 is expressed as a 6-byte BCD number. This
illustration shows only one of the many methods for converting decimal num-
bers into BCD numbers for use in floating-point operations.

In addition to using extra memory, BCD arithmetic is slower than binary
arithmetic. But because BCD numbers, like decimal numbers, are based on
10, they are also more accurate in arithmetic operations that use fractions and
decimal values. So BCD arithmetic is often used in programs in which ac-
curacy of calculations is more important than speed or memory efficiency.

Converting BCD numbers into decimal numbers is also easier than
converting standard binary numbers. So BCD numbers are sometimes used
in programs that require the instant display of numbers on a video monitor.

When the status register’s decimal mode flag is set, the 65C816 chip
performs all its arithmetic using BCD numbers. You probably won’t be using
much BCD arithmetic in your assembly language programs—at least not for

DECIMAL NUMBER: 2.55
FLOATING-POINT BCD: 0011 0010 0000 0010 0101 0101

MEANING OF EACH BCD DIGIT

0011 (3): THE NUMBER HAS THREE DIGITS

0010 (2): DECIMAL POINT IS TO THE LEFT OF THE DIGIT 2

0000 (0): THE NUMBER IS POSITIVE (0001 WOULD MEAN NEGATIVE)
0010 (2): FIRST DIGIT (2)

0101 (5): SECOND DIGIT (5)

0101 (5): THIRD DIGIT (5)

Figure 5-7
A floating-point binary number
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a while—so you’ll usually want to make sure that the decimal flag is clear
before the computer starts performing arithmetic operations.

The assembly language instruction that clears the decimal flag is cld.
The sed instruction sets it. The ¢ Ld instruction is often used before arithmetic
operations take place to ensure that the 6502/65C816 chip has not been placed
and left in decimal mode. So a further improved version of the ADDNRS.S
program presented in listing 5—1 is shown in listing 5-3.

Listing 5-3
ADDNRS.S program, version 3
cld
cle
Lda #2
adc #2
sta $8000

Index Register Select Flag or Break Flag

Bit 4 of the processor status register is an index register select (x) flag when
the 65C816 is in native mode and a break (b) flag when the processor is in
emulation mode.

You have seen how bit 4 works in its role as an index register select
flag. Now you will take a brief look at how it is used in emulation mode, in
its capacity as a break flag.

When the assembly language instruction brk halts a program and the
65C816 is in emulation mode, an interrupt is generated, the program halts,
and the b flag is set automatically. If an interrupt is hardware generated,
however, the b flag is not set.

The brk instructions that result in the setting of the break flag are often
used by program designers during debugging. After a program is debugged,
any brk instructions placed in the program for use during debugging are
usually removed. Other than the brk menmonic, there are no assembly lan-
guage instructions that set or clear the break flag.

Memory/Accumulator Select Flag

When the 65C816 is in native mode, bit 5 is the memory/accumulator select
flag (m), which we have discussed. In emulation mode and in pre-65C816
processors, bit 5 is not used.

Overflow Flag

The overflow flag, bit 6, detects an overflow from the next-to-leftmost bit to
the leftmost bit in a binary number. The overflow flag is used primarily in
addition and subtraction problems involving signed numbers. When the
65C816 microprocessor performs calculations on signed numbers, each num-
ber is expressed as a 15-bit value (or as a 7-bit value in emulation mode),
with the leftmost bit designating the number’s sign. When the leftmost bit is
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used in this way, an overflow from the next-to-leftmost bit to the leftmost bit
can make the result of a calculation incorrect. So after a calculation involving
signed numbers is performed, the v flag is often tested to see whether such
an overflow has occurred. Then, if an unwanted overflow has occurred, you
can take corrective action.

The assembly language instruction that clears the overflow flag is c Lv.
The v flag is a read-only bit, so there is no specific instruction to set it.

Negative Flag

The negative flag, bit 7, is set when the result of an operation is negative and
cleared when the result of an operation is 0. The negative flag is often used
in operations involving signed numbers. The negative flag also can be tested
to see whether one number is less than another number and used to detect
whether a counter in a loop has decremented past 0. Other uses are discussed
in later chapters. There are no instructions to set or clear the negative flag;
it’s strictly a read-only bit.



CHAPTER

The Right Address

The Addressing Modes of the 65C816

language and machine language. For every mnemonic in an assem-
bly language program, there’s a numeric machine language instruc-
tton that means the same thing.

In chapter 5, you saw that while that’s the truth, it isn’t quite the whole
truth. Most instructions in 6502/65C816 assembly language have more than
one equivalent instruction in machine language. For example, when the adc
mnemonic is used in a IIgs program, it can be converted into 15 different
numeric instructions when it is assembled into machine language. To under-
stand why this is true, you need to know how to use addressing modes in
6502/65C816 assembly language.

In the world of assembly language programming, an addressing mode
is a tool for locating and using information stored in a computer’s memory.
The 65C816 can access the memory locations in the IIGs in 24 ways; in other
words, it has 24 addressing modes.

In this chapter, you examine all 24 of the 65C816’s addressing modes,
and you see how to use them in IIGs assembly language. First, though, let’s
look at the 15 ways that one mnemonic—ad c¢—can be converted into machine
language. See table 6-1.

Later in this chapter, you’ll examine all these addressing modes and
see how they work in assembly language programs. First, though, let’s com-
pare the assembly language statements and the machine language statements
listed in table 6-1.

: I n chapter 2, you saw the one-to-one correlation between assembly
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Table 6-1
15 Ways to Address the adc Mnemonic
Assembly Machine
Language Language
Addressing Mode Statement Equivalent Bytes

Immediate adc #%$03 69 03 2
Direct adc $03 65 03 2
Direct indexed with X adc $03,x 75 03 2
Absolute adc $0300 6D 00 03 3
Absolute indexed with X  adc $0300,x 7D 00 03 3
Absolute indexed with Y  adc $0300,y 79 00 03 3
Direct indexed indirect adc ($03,x) 61 03 2
Direct indirect indexed adc ($03),y 7103 2
Direct indirect adc (30300) 72 03 2
Stack relative indexed adc (3,S),y 73 03 2
indirect

Stack relative adc 3,s 63 03 2
Direct indirect long adc [$03] 67 03 2
Direct indirect adc [$031,y 77 03 2
long indexed

Absolute long adc $030300 6F 00 03 03 4
Absolute long indexed adc $030300,x 7F 00 03 03 4

with X

In the assembly language column, all 15 statements have the same
mnemonic, but each has a different operand. In the machine language column,
the staternents have quite a different structure. There are 15 different opcodes,
but only three kinds of operands: the 1-byte operand 03, the 2-byte operand
00 03, and the 3-byte operand 00 03 03.

This arrangement illustrates an important difference between assembly
language and machine language, a difference that you first observed in chapter
2. In 6502/65C816 machine language, addressing modes are distinguished by
differences in their opcodes. But in 6502/65C816 assembly language, the 24
available addressing modes can be identified by differences in their operands.

The Addressing Modes of the 65C816
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Table 6-2 shows the 24 addressing modes recognized by the 65C816. As
you can see, they can be divided into five categories:

B Simple addressing

B Indexed addressing

B [Indirect addressing
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B Stack addressing

B Block move addressing

In this chapter, you’ll examine these five addressing modes and all 24 of the
65C816’s addressing modes.

Table 6-2

The 65C816’s 24 Addressing Modes

Simple Addressing

Addressing Mode Example Identifier
Implied rts i
Immediate lda #2 #
Absolute lda $0C00 a
Absolute long Lda $030300 al
Direct sta $FA d
Accumulator inc a (or ina) Acc
Program counter relative bcc Label r
Program counter relative long brt Label rl

Indexed Addressing

Addressing Mode Example Identifier
Absolute indexed with X lda $0C00,x a,x
Absolute indexed with Y lda $0C¢00,y ay
Direct indexed with X lda $FA,x d,x
Direct indexed with Y stx $FA,y dy
Absolute long indexed with X lda $030300,x al,x

Indirect Addressing

Addressing Mode Example Identifier
Direct indirect Lda ($FA) ()
Direct indirect long lda [$FA] [d]
Absolute indirect jml ($0300) (a)
Absolute indexed indirect jsr ($0300,x) (a,x)
Direct indexed indirect lda ($FA,x) (d,x)
Direct indirect indexed lda ($FA) ,y (d),y
Direct indirect long indexed lda [$031],y [d},y

Stack Addressing

Addressing Mode Example Identifier
Stack pha s
Stack relative lda $30,s 1S
Stack relative indirect indexed lda ($30,s),y (r,s),y

Block Move Addressing

Addressing Mode Example Identifier

Block source bank, destination mvn 6,0 xya

bank
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The 65C816 has the following simple adddressing modes:
Implied addressing

Immediate addressing
Absolute addressing
Absolute long addressing

Accumulator addressing

n

a

]

]

M Direct addressing
]

B Program counter relative addressing
n

Program counter relative long addressing

Listing 6-1, titled AddrDemol, uses four addressing modes. They are
all simple addressing modes, but one of them—simple stack addressing—
can also be classified as a stack addressing mode (as it is in table 6-2). First
you’ll examine each addressing mode in the AddrDemo1 program. Then you’ll
see how each instruction in the program works and what the program does.

Listing 61
AddrDemo1 program

* ADDRESSING DEMO #1: Four kinds of addressing

Demo

result

KEEP AddrDemo1

START

equ $2000

phk ; stack addressing
plb ; stack addressing
lda #%$2200 ; immediate address
clc ; implied address
adc #3$0022 ; immediate address
sta result ; absolute address
brk ; implied address
END

The four addressing modes used in listing 61 are:

B Stack addressing
@ Implied addressing
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Stack
Addressing

B Immediate addressing

B Absolute addressing

Let’s take a close look at each of these four addressing modes. Then,
with the help of some other short programs, you’ll examine the rest of the
65C816’s 24 addressing modes.

To understand how stack addressing works, it helps to know what a stack is.
A stack, sometimes known as a hardware stack, is an area of RAM that is
often compared with a stack of plates in a diner. When you place a value on
the stack, it ‘‘covers up’’ the value previously in the top position on the stack
and becomes the new top value on the stack. To get to the value that was
previously on top, you have to remove the value that was just added. Then
the value that was on the top of the stack before becomes the top value again.

This stacked plate analogy, as you shall see later in this chapter, is not
completely accurate. But we can use it to explain how stack addressing works
in the AddrDemol program.

In the AddrDemol program, stack addressing is used in the lines

phk ; stack addressing
plb ; stack addressing

In these two lines, the value of the 65C816 program bank register is placed
on the stack. Then it is pulled off the stack and deposited in the 65C816 data
bank register.

The mnemonic in the first line, phk, means push the program bank
register on the stack. It does exactly what its name suggests. The mnemonic
in the second line, plb, means pull the top value off the stack and place it
in the data bank register. It does what its name implies, too.

When the phk and plb instructions are used together at the beginning
of a program, as they are in AddrDemol, they ensure that the program and
its data use the same 64K bank of memory. It is sometimes desirable—even
necessary—for a program to access data stored in another bank. On those
occasions, the value of the data bank register can be changed temporarily.
But most of the time, the program bank and the data bank should be the same.
If they aren’t, instructions that fetch and store data—such as lda and sta—
might try to access data in the wrong banks, causing crashes and other pro-
gramming catastrophes.

Using stack addressing to change the value of the data bank register is
indirect and inconvenient, but there’s one good reason for it. It’s the only
method the 65C816 instruction set provides.

Types of Stack Addressing

As table 62 shows, there are three major types of stack addressing: simple
stack addressing, stack relative addressing, and one complex form of stack
addressing called stack relative indirect indexed addressing. In the Addr-
Demo 1 program, the phk and plb instructions use simple stack addressing.
The other two kinds of stack addressing are covered later in this chapter.
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Implied
Addressing

Mnemonics that use stack addressing are all 1-byte instructions (which
means they don’t have operands), and all but three—rts, rtl, and rti—
start with p. Some stack instructions push values onto the stack, some pull
values off the stack, and three-—the three that begin with r—pull addresses
off the stack and use them as addresses to jump to.

Emulation Mode and Native Mode

There are some differences between the way stack addressing works when
the 65C816 is in 16-bit native mode and 8-bit emulation mode. For example,
in emulation mode, the stack pointer is always on page 1 and has only 256
addresses. But when the processor is in native mode, the stack can start at
any address in bank O, and the length of the stack is limited only by the
amount of available RAM in that bank.

Another difference is that some instructions push only 1 byte onto the
stack in emulation mode, but all instructions push at least 2 bytes onto the
stack when the processor is in native mode. The differences between native
mode and emulation mode operations are described in table 6-3.

Table 6-3
Simple Stack Addressing Operations
Instructions Operations
brk » COp (software interrupts) Push PBR, P, and PC onto the stack
irq, nmi, abort, res Push PBR, P, and PC onto the stack
(hardware interrupts)
rti Pull P, PC, and PBR off the stack
rts Pull PC off the stack
rti Pull PC and PBR off the stack
pei Push a direct page word onto the stack
pea Push bytes 3 and 2 of the instruction

onto the stack; this is really a push im-
mediate instruction

per Push onto the stack a value obtained by

adding the PC to the contents of bytes 3
and 2 of the instruction

pha, phb, phd, phk, php, Push register contents onto the stack.

phx, phy (Number of bytes pushed varies, depend-
ing on the register pushed and the pro-
cessor mode.)

pla, plb, pld, plp, plx, Pull the top element off the stack and

ply into the register. (Number of bytes pulled
varies, depending on the register pushed
and the processor mode.)

Another kind of 1-byte addressing—implied addressing—appears in these
two lines of the AddrDemol program:

clc ; implied address
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Immediate
Addressing

and
brk ; implied address

In the implied addressing mode, the operand is not spelled out, but
merely understood, like the understood object of an intransitive verb in English
grammar. When you use implied addressing, all you have to type is the three-
letter assembly language instruction. Its syntax does not require (in fact does
not allow) the use of an expressed operand.

Two lines in the AddrDemol program use immediate addressing:
lda #$2200

and

adc #$0022

When immediate addressing is used in a 65C816 instruction, the operand
that follows the opcode mnemonic is a literal number—not the address of a
memory location. So in a statement that uses immediate addressing, # (the
symbol for a literal number) always appears before the operand.

When an immediate address is used in an assembly language statement,
the assembler does not have to peek into a memory location to find a value.
Instead, the value itself is placed directly into the accumulator. Then the
operation that the statement calls for can be immediately performed; in other
words, an immediate address forms the effective address of an operand.

When the 65C816 is in native mode and its accumulator and index
registers are in their 16-bit modes, every instruction that uses immediate
addressing has a 2-byte operand. But when the 65C816 is in emulation mode,
or when its accumulator and index registers are in their 8-bit modes, instruc-
tions that use immediate addressing have 1-byte operands.

The immediate addressing mode is often used to create pointers, or
addresses that point to other address. For example, the following code segment
converts the address of a block of data called Picture into a pointer stored
in a variable called PicPtr:

lda #<Picture
sta PicPtr

lda #"Picture
sta PicPtr+2

This fragment of code uses two forms of addressing: immediate ad-
dressing and absolute addressing, which are covered in the next sections.
Absolute addressing uses an operand that specifies a memory location as its
effective address.
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Absolute
Addressing

In this code, the statements that use immediate addressing are lda
#<Picture and lda # Picture. The statements that use absolute ad-
dressing are sta PicPtr and sta PicPtr+2.

This code loads the 24-bit address of the data segment Picture into
a pointer situated in a pair of memory addresses labeled PicPtr and
PicPtr+2. If the fragment were encountered in an assembly language pro-
gram, it would load the 24-bit address of the data segment Picture into a
2-word pointer labeled PicPtr, depositing the low-order word of the address
in PicPtr and placing the high-order word in PicPtr+2.

In this code, < and " are special symbols recognized as directives by
the APW assembler. They are used as prefixes of the label Picture so that
the APW assembler will split the address of the data segment specified by
the label Picture into two 16-bit words. One word can then be loaded into
the pointer PicPtr, and the other can be loaded into PicPtr+2.

When the APW assembler encounters the statement lda #<Picture,
it loads the 2 low bytes of the address of Picture into the pointer PicPtr.
When it reaches the statement lda # Picture, it loads the 2 high bytes of
the address of Picture into PicPtr+2. The full address of the data segment
Picture is stored, in the 65C816’s typical low-byte-first format, in the two
memory addresses labeled PicPtr and PicPtr+2. For example, if the
address of the data block Picture is $E12000, the value $2000 (the low
word of the address) is stored in PicPtr, and the value $OOE1 (the high
word of the address) is stored in PicPtr+2.

The symbol < in the statement lda #<Picture is optional. It can be
eliminated, as it is in these lines of code:

lda #Picture

sta PicPtr

lda #"Picture

sta PicPtr+2

One line in the AddrDemol program uses absolute addressing:

sta result ; absolute address

In this line, the word result is a symbolic label defined previously in the
program:

result equ $2000
So the symbolic label result in the statement
sta result

stands for the hexadecimal value $2000.
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How the
AddrDemo1
Prcgram Works

If this line was written as
sta #result

the APW assembler would assemble the value $2000 into a literal number,
and the addressing mode used in the statement would be immediate addressing.

In this case, however, the operand of the s ta mnemonic is not preceded
by #, so the APW assembler does not interpret it as a literal number. Instead,
as you have seen in programs in chapter 2, the operand in the statement sta
result is interpreted as a memory address. Another way of saying this is
that in the AddrDemo! program, the statement sta result uses absolute
addressing.

Now you see that in a statement using absolute addressing, the operand
is a memory location, not a literal number. In reading and writing operations
that use absolute addressing, the operation called for is always performed on
the value stored in the specified memory location, not on the operand itself.
When a jump instruction (jmp or jsr) uses absolute addressing, however,
the address jumped to is the absolute address that is expressed as the operand.

In both native mode and emulation mode, every instruction that uses
absolute addressing has a 16-bit operand. When the 65C816 is in native inode,
however, the assembler extends the effective address of the operand to 24
bytes by concatenating it with a bank register. If the instruction that uses
absolute addressing is a read or write instruction, such as lda or sta, the
assembler extends the operand to 3 bytes by combining it with the 65C816’s
data bank register. If the instruction is a jump instruction (jmp or jsr), the
assembler extends the operand to 3 bytes by combining it with the program
bank register.

You have completed an analysis of the addressing modes in the AddrDemol
program and are ready to see how it works.
As noted, the lines

phk ; stack addressing
plb ; stack addressing

copy the contents of the program bank register into the data bank register, so
the program accesses data from the same bank in which the program is running.
Now let’s look at the lines

lda #%$2200 ; immediate address
clc ; implied address

adc #%$0022 ; immediate address
sta result ; absolute address

In the statement Lda #$2200, the 65C816’s accumulator is loaded with
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Direct
Addressing

the literal value $2200. Then the mnemonic c L¢ clears the P register’s carry
flag in preparation for an addition operation.

Next, in the statement adc #$0022, the literal value $0022 is added
to the value of $2200 that is already in the accumulator. Finally, the statement
sta result stores the result of the addition—the number $2222—in an
absolute memory address.

What is this memory address? Because the symbolic label result was
assigned the value $2000 and the mnemonic sta is a write instruction and
not a jump instruction, the APW assembler calculates the effective address
of the operand result by concatenating the value of the result with the contents
of the 65C816’s data bank register. In other words, the effective address of
the operand is the address $2000 in whatever data bank the program is loaded
into.

And what data bank is that? Well, frankly, there’s no way of knowing.
As you learned in chapter 4, it is up to the Ilgs system loader, not the IlGs
programmer, to decide where to place a program when it is loaded into
memory. And when a program has been loaded into memory, the IIcs Memory
Manager can move it. So, when you write a program for the IlGs, you can
never be sure where the program will start in memory or even what bank it
will be loaded into.

When you type, run, assemble, and load the AddrDemol program, you
can only be sure that the result of the addition of the numbers $2200 and
$0022 are stored in memory addresses $2000 and $2001 in some bank of
memory.

You won’t have to stay in the dark for very long, however. The last
line in AddrDemol is
brk ;> implied address
As soon as you run the program, you will hear a beep from your computer
and will discover that the brk instruction, which ends the program, has
“‘bounced’’ the program into the IIgs monitor. You will see the contents of
all the 65C816’s registers, including its data bank register (D), listed on the
screen. You can use your monitor’s display memory functions (described in
chapter 2) to list the contents of memory addresses $2000 and $2001 in the
64K bank pointed to by the data bank register. If the 2-byte value stored in
those two addresses is $2222—the sum of $2200 and $0022—you’ll know
that the AddrDemol program worked properly.

If you’re an experienced 6502/65C02 programmer, you're familiar with the
concept of page 0 addressing, a technique that can save time and allow memory
locations to be addressed in some tricky (and quite useful) ways.

In pre-gs Apple IlIs, page O is a 256-byte block of RAM that extends
from memory address $00 through memory address $FF. Every memory
location on page O has a 1-byte address and thus can be addressed using a
1-byte operand. Another noteworthy fact about page O is that some ad-
dressing—as you shall see later in this chapter—actually requires direct page
operands.
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Because the 256 memory addresses on page 0 are so valuable, page 0
is the high-rent district in pre-Gs Apple IIs. It is such a desirable piece of real
estate, in fact, that the designers of the Apple Il operating system, the Apple
I monitor, and Applesoft BASIC claimed most of it for themselves. They
left only a few bytes free for use in application programs.

Because space on page 0 is so useful and so scarce, designers of 6502-
based computers tried for years to increase the amount of page O storage
space. In designing the Apple IlGs, they finally succeeded. In the Hgs, as
you may recall from chapter 4, the concept of page 0 addressing is expanded
into something called direct page addressing. This form of addressing allows
any page in bank $00 to be used as a page 0 and allows different programs,
or even different segments of the same program, to use different pages in
bank $00 as their own private page 0.

Because a Ilgs program can use any page in bank $00 as a page 0, the
form of addressing that was called page 0 addressing is now more properly
referred to as direct page addressing. The page of bank $00 memory that is
accessed through direct page addressing is no longer known as page 0, but
is more properly referred to as the direct page.

In a statement that uses direct page addressing, the operand always
consists of just 1 byte—a number from $00 to $FF. When the 65C816 as-
sembles a statement that uses direct addressing, it interprets the operand as
an offset that, when added to the contents of the data bank register, specifies
the operand’s effective address.

That’s quite a mouthful, but listing 6-2 is a short program that shows
how direct addressing works.

Listing 6-2
AddrDemo2 program

*

Demo

ADDRESSING DEMO #2: Direct addressing

KEEP AddrDemo?

START

phk ; make program bank and
plb ; data bank the same
lda #$2000 ; make the direct page

tcd ; start at $2000

lda #$5500 ; immediate address
clce

adc #$0055 ; immediate address
sta $60 ; direct page address
brk ; quit to the monitor
END
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AddrDemo2, like AddrDemol, starts with the instructions

phk ; make program bank and
plb ; data bank the same

These statements, as their comments now reveal, make the program bank and
the data bank the same.
The next lines are

lda #$2000 ; make the direct page
tcd ; start at $2000

These two lines are very important. They set aside page #$20 in bank $00,
memory addresses $2000 through $20FF, for use as a direct page.

The next three lines work much like their corresponding lines in the
previous program:

lda #$5500 ; immediate address
clc
adc #3$0055 ; immediate address

They add the literal numbers $5500 and $0055, taking care to clear the carry
flag before the addition is carried out so that the result of the operation is
correct.

The next line is the part of the AddrDemo2 program that you have been
waiting for:

sta $60 ; direct page offset

Using the value $60 as an offset, this line stores the result of the addition of
$5500 and $0055 in the direct page address $2060.

The AddrDemo2 program, like the AddrDemol program, ends with a
brk instruction so that you can use the 1Igs monitor to check its results. Type,
assemble, and run the program. Then use your monitor to peek into memory
addresses $00/2060 and $00/2061. If everything has worked correctly, those
two memory locations now hold the 2-byte value $5555—the sum of the
addition of $5500 and $0055.

Forcing Absolute Addressing

Now that you know how the AddrDemo2 program works, let’s go back and
take another look at the line

sta $60
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If you’ve written assembly language programs for pre-Gs Apple Ils, you may
notice that this statement works much differently in the AddrDemo2 program
than it would in a 6502 or 65C02 program. In the AddrDemo?2 program, the
operand $60 in the statement sta $60 is not a complete address, but merely
an offset that is used to calculate a direct page address. But if the AddrDemo2
program were written for an 8-bit chip—or for a 65C816 chip running in
emulation mode—the operand $60 would be interpreted as a literal address:
the page 0 address $60.

This brings us to a problem faced by Apple ligs assembly language
programmers. Because the 65C816 interprets the 1-byte operand in a statement
like sta $60 as an offset for calculating a direct page address, there is no
straightforward way to access 1-byte addresses in the program bank or data
bank currently in use. In other words, there is no direct way to access the
addresses $00 through $FF in the current program or data bank.

Suppose you are writing a 65C02 program. You want the operand in
the statement sta $60 to be assembled not as a direct page offset, but as
absolute memory address $0060 in the current data bank. What would you
do?

Fortunately, there is a way out of this dilemma. If you are writing a
program with the APW assembler, and you want the statement sta $60 to
mean store the value of the accumulator in the absolute address $XX0060
(with XX representing the current data bank), you could force APW to as-
semble it that way by merely writing

sta |$60
or
sta !'$60

You can use a vertical bar or an exclamation point as a prefix to force absolute
addressing.

The prefix { or the prefix ! can also force absolute addressing in state-
ments that use symbolic labels as operands. For example, if the symbolic
label memloc is defined as the value $333 in an assembly language program,
the statement

Lda |memLloc
or the statement

lda 'memloc
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cause the operand memLoc to be interpreted as the absolute address $XX0333.
So the accumulator is loaded with the value stored at that physical address—
not at the address calculated by adding $333 to the contents of the direct page
register.

Forcing Absolute Long Addressing

Now that you have dealt with the problem of forcing absolute addressing,
you're ready to look at another problem that arises often in Ilgs assembly
language programming. Suppose you are writing a 65C02 program, and you
want the operand in the statement sta $60 to be assembled as the absolute
address $000060—in other words, as an absolute long address in bank $00.
What would you do?

The APW assembler also provides a solution to this problem. If you
are writing a program in which you want the statement sta $60 to mean
store the value of the accumulator in address $000060, you can force the
assembler to assemble it as an absolute long address by writing

sta >$60

The > prefix forces absolute long addressing. You’ll see more examples of
absolute long addressing later in this chapter.

The > prefix can also force absolute long addressing in statements that
use symbolic labels as operands. For example, if the symbolic label memloc
is defined as the value $333 in an assembly language program, the statement

lda >memloc

causes the operand memloc to be interpreted as an absolute long address. So
the accumulator is loaded with the value stored in memory address $000333.
But the statement

Lda memloc

is interpreted as a direct address. In this case, the accumulator is loaded with
the value stored in a direct page address calculated by adding the literal value
$333 to the contents of the direct page register.

A direct page operand can be written using the <C prefix, as in the
following examples:

lda <$60
lda <memloc

When < is used in this way, it is ignored by the APW assembler. It merely
shows people reading the program that the addressing mode is direct address-

ing.
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Akisolute Long Another example of absolute long addressing appears in listing 6-3,
Addressing AddrDemo3.

Listing 6—-3
AddrDemo3 program

k

ADDRESSING DEMO #3: Absolute Long addressing

KEEP AddrDemo3

Demo START
phk ;> make the program bank
plb ; and data bank the same
lda #$BB00O ; immediate address
clc
adc #3$00BB ; immediate address
sta $012030 ; absolute long address
brk ; quit to the monitor
END
In the AddrDemo3 program, the lines

lda #$BB0O ; immediate address

clc

adc #3$00BB ; immediate address

sta $012030 ; absolute long address

add the literal numbers $BB00 and $00BB, and store their sum in the absolute
long address $012030. After you type, assemble, and run the program, you
can confirm that it works by using the IIgs monitor to view the contents of

memory addresses $01/2030 and $01/2031.

In the AddrDemo3 program, the absolute long address $012030 is ex-
pressed in the easiest possible way: as a literal number. Operands are usually
expressed as literal numbers in programs that use absolute long addressing.
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Addressing

The accumulator addressing mode performs an operation on a value stored
in the 6502/65C816 processor’s accumulator. When you use accumulator
addressing mode, some assemblers require that you use an a as an operand.
The APW assembler requires the use of the a operand in all but three cases.
The aliases cpa, dea, and ina can be substituted for the assembly language
statements cmp a, dec a, and inc a.

Another example of a statement that uses the accumulator addressing
mode (no alias allowed) is asl a. This statement rotates each bit in the
accumulator one position to the left, with the leftmost bit (bit 15 in native
mode or bit 7 in emulation mode) dropping into the carry bit of the processor
status (P) register.

Prograni counter relative addressing is used for branching—a method for
instructing a program to jump to a given routine under certain conditions.
There are nine branching instructions in 65C816 assembly language. All begin
with b, which stands for branch to, and eight use program counter relative
addressing.

Some examples of branching instructions are

B bcce: Branch to a specified address if the carry flag is clear.
B bcs: Branch to a specified address if the carry flag is set.

B beq: Branch to a specified address if the result of an operation is
equal to O.

B bne: Branch to a specified address if the result of an operation is not
equal to 0.

@ bra: Branch always.

The bra mnemonic is one of two unconditional branching instructions
used in 65C816 assembly language. The other unconditional branching mne-
monic, brl (branch always—Ilong), uses another form of addressing, called
program counter relative long addressing, which is covered in the next section.
All nine branching instructions are described in chapter 5, in the section
devoted to the 65C816 instruction set.

The nine branching mnemonics are often used with three other instruc-
tions called comparison instructions. Typically, a comparison instruction com-
pares two values, and the conditional branch instruction then determines what
should be done according to the result of the comparison.

The three comparison instructions are

8 cmp: Compare the number in the accumulator with . . .

B cpx: Compare the value in the X register with . . .

B cpy: Compare the value in the Y register with . . .
Conditional branching instructions can also follow arithmetic operations, logi-
cal operations, and various kinds of bit testing operations.

Usually, a branch instruction causes a program to branch to a specified
address if certain conditions are met or not met. A branch might be made,
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for example, if one number is larger than another, if two numbers are equal,
or if an operation results in a positive, negative, or zero value.

(The AddrDemo4 program shows one way to use program counter rela-
tive addressing. We present this program and examine it line by line in a few
moments.)

Program As you saw in chapter 5, one disadvantage of the eight branching instructions

Counter that use program counter relative addressing is their very short range: a

Relative Long displacement of — 128 bytes to + 127 bytes counting from the end of the
Addressing branching instruction.

But the 65C816 has one branching instruction—br L —that can cause
a program to branch to any address within the current program bank. So brl,
instead of accepting a 1-byte operand like all other branching instructions,
takes a 2-byte operand. The br L instruction’s 2-byte operand is interpreted
as an offset. This offset is added to the value of the program bank register
to calculate the destination address of the branch.

Because br L is an unconditional branching instruction, you cannot use
it to test the outcome of an arithmetic or comparison operation and then branch
if some condition is or is not met. You can use it, however, with conditional
branching instructions to extend their range. For example, in this code se-
quence

lda value

bne next

brl longbranch
next lda something

the value of the variable labeled value is tested to see if it equals 0. If it
equals 0, the br L instruction causes a long-range branch to a segment of code
labeled Longbranch. If value is not equal to O, the program continues.
Except for a few extra cycles of machine time, the effect is the same as if
the segment were coded

lda value
beq shortbranch

but the branch is a long one.

Indexed Addressing

In indexed addressing, the 65C816’s X and Y registers provide an index that
is used to calculate an effective address. The 65C816 has five kinds of indexed
addressing:

B Absolute indexed addressing with X

B Absolute indexed addressing with Y

B Direct indexed addressing with X
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Absolute

Indexed

Addressing

with X

B Direct indexed addressing with Y
B Absolute long indexed addressing with Y

Let’s examine each of these five types of indexed addressing.

An indexed address, like a relative address, is calculated using an offset. But
in an indexed address, the offset is determined by the current contents of the
X or Y register.

A statement that uses absolute indexed addressing with X can be written
this way:

Lda $0€00,x

The second and third bytes of the statement are added to the X register to
form the low-order 16 bits of the operand’s effective address. The high-order
8 bits of the effective address are taken from the data bank register. In other
words, the value of the X register is used as an offset to calculate the lower
16 bits of the effective address, and the upper 8 bits come from the direct
page register.

Listing 6-4, AddrDemo4, is a short program that uses indexed ad-
dressing. The routine is designed to move byte-by-byte through a string of
ASCII characters, storing the string in a text buffer. When the string is stored
in the buffer, the routine ends.

Listing 64
AddrDemo4 program

* X * ¥

demo

txtbuf
eol

Loop

ADDRESSING DEMO #4: Program counter relative addressing

and absolute indexed addressing

KEEP AddrDemo4

START

equ
equ

phk
plb

Ldx
lda
sta
cmp
beq
inx

$2000
$0d

; make the program bank
; and data bank the same

#0
text,x
txtbuf ,x
#eol
fini
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bra Lloop

finji brk

text dc c¢This sentence is really moving!’,h0d
END

Absolute
Indexed
Addressing
with Y

The text to be moved is labeled text, and the buffer to be filled with
text is labeled txtbuf. As you can see by looking at the line labeled text,
the text to be read ends with an end-of-line (EOL) character, the ASCII
character $0d. The EOL character equates to the Return key on the Ilcs
keyboard.

As the program proceeds through the string, it tests each character to
see if it is a carriage return. If the character is not a carriage return, the
program moves to the next character. If the character is a carriage return,
there are no more characters in the string, and the routine ends.

In addition to showing how absolute indexed X addressing works, the
program also demonstrates the use of program counter relative addressing.
In the sequence

ldx #0

Loop lda text,x
sta txtbuf,x
cmp #eol
beq fini
inx
bra Loop

the branching instructions beq and bra control the loop that prints text on
the screen.

Absolute indexed addressing with Y works like absolute indexed addressing
with X except it uses a different index register. A statement that uses absolute
indexed addressing with Y can be written as

lda $0€00,y

The second and third bytes of the statement are added to the Y register
to form the low-order 16 bits of the operand’s effective address. The high-
order 8 bits of the effective address are taken from the data bank register. In
other words, the value of the Y register is used as an offset to calculate the
lower 16 bits of the effective address, and the upper 8 bits come from the
direct page register.
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A statement that uses direct indexed addressing with X looks like one that
uses absolute indexed addressing with X, except it has a 1-byte operand. For
example:

lda $30,x

In this statement, the second byte is added to the sum of the direct page
register and the X register to form a 16-bit effective address. In other words,
the X register is used as an offset to calculate the lower 16 bits of the effective
address, and the upper 8 bits come from the direct page register.

The APW assembler always interprets a 2-byte instruction written in
the form Lda $30,x as a direct indexed address. You must use special pre-
fixes when you want the operand to be interpreted as a data bank offset or
as a long address in bank $00, rather than as a direct page offset. These
prefixes are the same ones that distinguish between direct addressing and
absolute addressing.

In indexed addressing modes, as in unindexed addressing modes, the
prefix | (or !) forces the APW assembler to interpret a 1-byte indexed operand
as an absolute indexed address. And the prefix > forces the assembler to
interpret a 1-byte indexed operand as an absolute long indexed address. Thus,
in the statement

Lda |$40,x

the assembler concatenates the address $40 with the contents of the data bank
register. Then it adds the value of the X register to calculate the effective
address.

In the statement

lda >%$40,x

the value of the X register is added to the address $000040. The result of that
calculation is the effective address.

Direct indexed addressing with Y works like direct indexed addressing with
X, except it uses a different register. The following statement uses direct
indexed addressing with Y:

lda $30,y

In this statement, the second byte of the instruction is added to the sum of
the direct page register and the Y register to form a 16-bit effective address.
In other words, the Y register is used as an offset to calculate the lower 16
bits of the effective address, and the upper 8 bits are taken from the direct
page register.

It should come as no surprise by now to learn that the APW assembler
always interprets a 2-byte instruction written in the form Lda $30,y as a
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direct indexed address. So, in this case also, you must use a special prefix
when you want the operand to be interpreted as a data bank offset or as a
long address in bank $00. This prefix is the same one you have been using
for the same purpose in other addressing modes: the symbol } Thus, in
the statement

tda |$40,x

the assembler concatenates the address $40 with the contents of the data bank
register. It then adds the value of the X register to calculate the effective
address.

There is nothing new in any of this, but you may be surprised to know
that the syntax

lda >$40,y

is never invoked to force the assembler to use absolute long indexed addressing
with Y. That’s because there is no such addressing mode. In 65C816 assembly
language, the X register is the only index register that can be used for absolute
indexed addressing.

Absolute Long In absolute long indexed addressing, the effective address is calculated by
Indexed adding a long (24-bit) address to the value of the X register. There is no
Addressing comparable addressing mode that uses the Y register.
with X A statement that uses absolute long indexed addressing with X can be
written this way:

Lda $E16000,x

The value of the X register is added to the long address $E16000 to form the
operand’s effective address.

Indirect Addressing

In 65C816 assembly language, indirect addressing modes are modes in which
data in memory is accessed indirectly, that is, through pointers contained in
other memory locations.
The 65C816 has seven indirect addressing modes:

B Direct indirect addressing

B Direct indirect long addressing

B Absolute indirect addressing

B Absolute indexed indirect addressing

B Direct indexed indirect addressing
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B Direct indirect indexed addressing

B Direct indirect long indexed addressing

We’ll sort this out in the following sections.

Absolute indirect addressing is really made up of two addressing modes: one
is used with the jmp (jump) instruction and the other is used with the jml
(jump—Iong) instruction.

When absolute indirect addressing is used with jmp, the syntax is

jmp ($4000)
A jml instruction that uses absolute indirect addressing looks like this:
jml ($E1AQ00)

In both formats, a symbolic label can be substituted for the address inside
the parentheses.

When absolute indirect addressing is used with the jmp instruction, the
address inside the parentheses is a pointer to a memory address. This address
and the following memory address contain the lower 16 bits of the effective
address of the operand. The program bank register contains the upper 8 bits
of the effective address. These two values are concatenated, and the result is
the complete effective address of the operand.

When the absolute indirect addressing mode is used with the jml in-
struction, the parentheses that follow the instruction contain a long (24-byte)
address. This address and the next two memory addresses contain all 3 bytes
of the destination address.

Direct indirect addressing uses the syntax

lda ($FB)

or

lda (<$FB)

Notice that in each case, the value inside the parentheses is only I byte long.
When you use direct indirect addressing, the operand is an offset that

is added to the contents of the direct page register to calculate the lower 16

bits of the operand’s effective address. The upper 8 bits of the effective address

are taken from the direct page register.

Direct indirect long addressing uses the syntax

lda [$FB]

or
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lda [<$FB]

Notice that in each case, the value inside the parentheses is only 1 byte long.

When you use direct indirect long addressing, the operand is an offset
that is added to the contents of the direct page register to calculate the op-
erand’s long (24-byte) effective address.

Two of the 65C816’s indirect addressing modes—direct indexed indirect
addressing and direct indirect indexed addressing—are so closely related that
it makes sense to examine them in combination.

If you think their names are confusing, you’re not the first one with
that complaint. Here’s a memory trick to help eliminate the confusion. Direct
indexed indirect addressing—which has an x in the second word of its name—
is an addressing mode that uses the X register. Direct indirect indexed ad-
dressing—which doesn’t have an x in the second word of its name—uses the
Y register. With that introduction, let’s examine both of these indirect ad-
dressing modes—beginning with direct indexed indirect addressing.

The syntax for a statement that uses direct indexed indirect addressing
is

lda ($FB,x)
or
lda (<$FB,x)

Notice that the value inside the parentheses is only 1 byte long.

The most common use for direct indexed indirect addressing is to cal-
culate addresses using tables of pointers, or jump tables, located on the direct
page. Each address in a direct page jump table is 16 bits long, and must be
added to the contents of the current data bank register to yield an effective
address. Hence, each item in a direct page jump table is a 2-byte pointer to
a 3-byte address situated in the data bank of the program currently being
executed.

In a statement that uses direct indexed indirect addressing, both the
value of the X register and the value that appears in front of it are offsets
used to calculate the operand’s final address.

When the 65C816 encounters a statement that uses direct indexed in-
direct addressing, it first adds the value of the X register to the contents of
the direct page register. Then it adds this sum to the value inside the paren-
theses (that is, the second byte of the instruction). The result is a pointer to
the low-order 16 bits of the operand’s effective address. The high-order 8
bits of the effective address are taken from the data bank register.

An example might help clarify this process. Suppose memory address
$BO on the direct page holds the number $00, memory address $B1 on the
direct page holds the number $80, and the X register holds the number 0, as
follows:
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Direct page + $B0 = #$00
Direct page + $B1 = #$80
X register = #3%00

Now suppose you are running a program that contains the direct indexed
indirect instruction Lda ($B0,x) . If all these conditions exist when the Ilgs
encounters the instruction Lda ($B0,x), the 65C816 chip adds the contents
of the X register (0) to the hexadecimal number $B0. The sum of $B0 and
0 is $BO.

Next, the 65C816 checks the contents of the direct page memory ad-
dresses $BO and $BI1. It finds the number $00 in the direct page memory
address $B0 and the number $80 in the direct page address $B1.

Because the 65C816 convention is to store 16-bit numbers in memory
with the low byte first, the processor interprets the number in $B0 and $B1
as $8000. So it loads the accumulator with the number $8000, the 16-bit
value stored in $B0 and $B1. It then concatenates that value with the contents
of the data bank register. The result is the operand’s effective address.

Now let’s suppose when the IIGs encounters the statement lda
($B0,x), its 65C816’s X register holds the number $04, instead of the
number $00.

Here is a table illustrating those values, plus a few more equates you’ll
be using soon:

Direct page + $B0 = #$00
Direct page + $B1 = #$80
Direct page + $B2 = #3$0D
Direct page + $B3 = #S3FF
Direct page + $B4 = #$FC
Direct page + $B5 = #$1C
X register = #3%04

If these conditions exist when the IIgs encounters the instruction Lda
($B0,x), the 65C816 adds the number $04 (the value in the X register) to
the number $B0. It then checks memory addresses $B4 and $BS. In those
two addresses, it finds the address $1CFC (low byte first). It then concatenates
that value with the contents of the data bank register. The result is the op-
erand’s effective address.

Until the advent of the 65C816 and direct page addressing, direct in-
dexed indirect addressing was called simply indexed indirect addressing and
required the use of jump tables on page 0. Free space on page 0 was so
difficult to find that indexed indirect addressing was not used very often in
application programs.

With the 65C816, there is no longer any reason to avoid using direct
indexed indirect addressing. In programs written for the Ilgs, direct page
addresses are so readily available that any application program can use as
many as the programmer desires. So, if you ever need to include jump tables
in a Ilgs program, you might consider using direct indexed indirect addressing.
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Direct indirect indexed addressing uses the syntax
lda ($FB),y

or

lda (<$FB) ,y

Direct indirect indexed addressing uses the Y register (never the X
register) as an offset to calculate the base address of the beginning of a table.
The starting address of the table has to be stored on the direct page, but the
table itself is stored in the bank currently being used as a data bank.

When the APW assembler encounters a direct indirect indexed address
in a program, it first adds the number in parentheses—the second byte of the
instruction—to the contents of the data bank register. The sum of that op-
eration is combined with the contents of the data bank register to form a 24-
bit base address. Finally, that address is added to the value of the Y register
to form the effective address of the operand.

Here’s an example of how direct indirect indexed addressing is used.
Suppose the 65C816 chip is running a program and comes to the instruction
lda (3$B0) ,y. First it looks into direct page memory addresses $BO and
$B1. Suppose it finds the number $BO in direct page address $00 and the
number $50 in direct page address $B1. And suppose the Y register contains
a 0. The following illustrates these conditions:

Direct page + $B0 = #3$00
Direct page + $B1 = #8$50
Y register = #$04

If these conditions exist when the 65C816 encounters the instruction
adc ($B0) ,y, the processor concatenates the numbers $00 and $50, and it
comes up with the address $5000 (in the 65C816 chip’s peculiar low-byte-
first fashion). It then adds the contents of the Y register ($04) to the number
$5000—for a total of $5004.

The processor then combines the 16-bit number $5004 with the 8-bit
value of the data bank register. The result is the 24-bit effective address of
the operand.

Direct indirect indexed addressing is a valuable tool in assembly lan-
guage programming. Only one address—the starting address of a table—has
to be stored on the direct page. Yet that address, added to the contents of the
Y register, can be used as a pointer to locate any other address in memory.

Direct indirect long indexed addressing uses the syntax
lda [$FB],y

or
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lda [<$FB1,y

In direct indirect long indexed addressing, the Y register is used as an
offset to calculate the base address of the beginning of a table. The starting
address of the table has to be stored on the direct page, but the table itself
can be stored anywhere in memory.

In direct indirect long indexed addressing, the value in parentheses (the
second instruction of the address) is added to the contents of the direct register.
The sum of these two numbers is an address on the direct page. In this address
and the two addresses that follow, a 24-bit base address is stored. This base
address is added to the value of the Y register to form the 24-bit effective
address of the operand.

Absolute indexed indirect addressing is used with only two instructions: jmp
(jump) and jsr (jump to subroutine). It provides a means for jumping to
any address in memory with a jump table placed in the current program bank.
The syntax is

jmp ($0300,x)

Or, when a 1-byte operand is used and the assembler must be forced to generate
a 2-byte instruction, the syntax is:

jmp (|$30,x)

A symbolic label can be substituted for the literal address in each of these
examples.

In a statement that uses absolute indexed indirect addressing, the value
inside the parentheses is added to the value of the X register to form a 16-
bit address. This address is combined with the contents of the program bank
register to form a 24-bit base address. Finally, this base address is added to
the value of the X register, forming the operand’s 24-bit effective address.

Stack Addressing

120

The 65C816 has three stack addressing modes:

B Stack relative addressing
W Stack relative indirect indexed addressing
B Simple stack addressing

To understand how stack addressing works, it is essential to have an
understanding of what a stack is, and what it does.
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The Stack

Stack
Operations

A stack, as pointed out in the beginning of this chapter, is an area of memory
often used for the temporary storage of data that is waiting to be processed.
In pre-cs Apple Ils, the stack is exactly 256 bytes long and occupies page
l—memory addresses $100 through $1FF—in either main or auxiliary
memory. In the IIs, the stack can be placed anywhere in bank $00. The only
restriction on its length is the availability of free RAM in bank $00.

In both the Ilgs and earlier Apples, the stack is called a LIFO (last-in
first-out) block of memory. It is often compared to a spring-loaded stack of
plates in a diner. When you put a number in the memory location on top of
the stack, it covers up the number that was previously on top. So the number
on top of the stack must be removed before the number under it—which was
previously on top—-can be accessed.

Although the stacked plate analogy is a useful technique for describing
how the stack works, it is not completely accurate. Actually, the stack is
nothing but a block of RAM—and blocks of RAM don’t really move up and
down like a stack of plates inside the Ilgs. When you place a number on the
65C816 stack, here’s what really happens.

Suppose, for simplicity, that you have placed the stack on page 1 in
memory bank $00. (The stack was in this location in earlier Apple IIs, so
we’ll keep it there for this description.)

Now the block of memory in which the stack is situated—in this case,
page | in bank $00—is used in stack operations from high memory downward.
The first number stored in a page 1 stack is in register $01FF, the next number
is placed in register $01FE, and so on. A program can keep placing values
on the stack, in this from-the-top-down fashion, until it runs out of free RAM.
When the stack is on page 1, it will run out of free memory when it reaches
memory address $100 because all RAM below that address is claimed by
page 0. By starting the stack higher in memory, you can make the stack
bigger. But because we’re using page 1 for the stack in this example, the last
stack address that we can currently use is memory address $100.

As you saw in chapter 5, the 65C816 chip keeps track of stack manipula-
tions with the help of a special register called the stack pointer. In the 65C816,
the stack pointer is a 16-bit address, and the upper 8 bits always hold the
number of the page where the stack starts. When the stack starts on page 1,
for instance, the high byte of the stack pointer holds a 1.

When there is nothing stored on the stack, the value of the stack pointer’s
low byte is $FF. If there are 256 bytes on the stack, the value of the stack
pointer’s low byte is $00.

As soon as a value is stored on the stack, the 65C816 chip automatically
decrements the stack pointer by 1. And each time another value is stored on
the stack, the stack pointer is decremented again. Therefore, the stack pointer
always points to the address of the next value that will be stored on the stack.

Suppose several numbers are stored on the stack. And let’s also suppose you
want to retrieve one of those values from the stack. What will happen?
When a number stored on the stack is retrieved, the value of the stack
pointer is incremented by 1. That effectively removes one value from the
stack, because the next value stored on the stack has the same position on
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the stack as the one that was removed. That’s a little tricky to comprehend,
given the upside-down nature of the stack. Figure 6--1 will help you understand
how this works. This figure shows an empty stack, with the stack pointer
pointing to the first available address on the stack: $01FF.

BOTTOM STACK

STACK POINTER OF STACK  ADDRESSES

$01FF — $01FF

$01FE

$01FD

$01FC

Figure 6-1
How the stack pointer works
Now let’s place a number (whose value is arbitrary) on the stack. This
kind of operation is illustrated in figure 6-2. In this figure, the value of the
stack pointer is decremented, and the number placed on the stack is now
stored at the highest address in the stack, memory register $01FF.

BOTTOM STACK

OF STACK  ADDRESSES

$2E $01FF
STACK POINTER
$01FE $01FE
$01FD
$01FC
Figure 6-2

Placing a number on the stack

Figure 6-3 shows what happens if you place another number (also with
an arbitrary value) on the stack. The stack pointer is decremented again, and
a second number is now on the stack.

Figure 6—4 shows what happens if you ‘‘remove’’ one number from
the stack. Stack address $O1FE still holds the value $BO, but the value of the
stack pointer is decremented and now points to memory address $01FE. So
the next number placed on the stack will be stored at memory address $01FE.
When that happens, the number previously stored in that stack position—
$BO-—will be erased.

To see how that works, we’ll store one more number on the stack. This
time, for no special reason, the value of the number placed on the stack is
$17. This process is illustrated in figure 6-5. Register $01FE now holds the
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BOTTOM STACK
OF STACK ADDRESSES
$2E $01FF
$BO $O1FE
STACK POINTER
$01FD $01FD
$01FC
Figure 6-3
Placing another number on the stack
BOTTOM STACK
OF STACK ADDRESSES
$2E $01FF
STACK POINTER
$01FE $BO $01FE
$01FD
$01FC
Figure 6-4
Pulling a number off the stack
BOTTOM STACK
OF STACK ADDRESSES
$2E $01FF
$17 $01FE
STACK POINTER
$01FD $01FD
$01FC
Figure 65

One last stack manipulation

value $17. The value of the stack pointer is decremented, the value $BO is
erased by the value $17, and the next number placed on the stack will be
stored in memory register $01FD.

How the llgs

As mentioned, the 65C816 often uses the stack for temporary data storage
Uses the Stack

during the operation of a program. When a program jumps to a subroutine,
for example, the processor pushes onto the top of the stack the memory address
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Instructions that

Use Stack
Addressing

Stack Relative
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Addressing

that the program will have to return to. Then, when the subroutine ends with
an rts instruction, the return address is pulled from the top of the stack and
loaded into the 65C816’s program counter. Then the program can return to
the proper address, and normal processing can resume.

As you saw at the beginning of this chapter, phk and p Lb are two instructions
that use stack addressing. Other mnemonics that use this addressing mode
include

M pha: Push the contents of the accumulator onto the stack.
phx: Push the contents of the X register onto the stack.
phy: Push the contents of the Y register onto the stack.
php: Push the contents of the P register onto the stack.

pla: Pull the top value off the stack and deposit it in the
accumulator.

B plp: Pull the top value off the stack and deposit it into the P
register.

The php and plp operations are often included in assembly language
subroutines so that the contents of the P register won’t be erased during
subroutines. When you jump to a subroutine that may change the status of
the P register, it’s a good idea to begin the subroutine by pushing the contents
of the P register onto the stack. Then, just before the subroutine ends, you
can restore the P register’s previous state with a php instruction. This ensures
that the P register’s contents aren’t destroyed during the subroutine.

Programs written for the IIGs often use stack addressing because of the
way the IIcs Toolbox is designed. As you shall see in part 2, most routines
in the Toolbox are called by placing values on the stack, accessing a macro,
and then pulling values off the stack when the macro returns. We go into
more detail about how to do that in chapter 7.

The 65C816, as pointed out at the beginning of this section, has three
addressing modes that use the stack. One of these modes, simple stack ad-
dressing, was covered at the start of this chapter. The other two, stack relative
addressing and stack relative indirect indexed addressing, are examined next.

Stack relative addressing is the first addressing mode in the 6502 chip family
that has made it possible to access a byte in the stack without removing the
last byte pushed onto the stack. A statement that uses stack relative addressing
is written in this format

lda 3,s

The value that follows the mnemonic is an offset that is added to the contents
of the stack pointer to form the effective address. When the statement is
assembled into machine code, the operand is assembled as a single byte.
Because the stack is always in bank $00, the effective address calculated by
adding the operand to the stack pointer is always 16 bytes long.
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In determining what offset to use to access a value on the stack, it is
important to remember that offsets used in stack relative addressing start at
1, not at 0. The stack pointer always points to the next available stack location,
which is 1 byte below the last byte pulled off the stack. So, to load the
accumulator with the last value pushed onto the stack using stack relative
addressing, you would use this statement:

lda1,s

Stack Relative You can use stack relative indirect indexed addressing to access a value
Ind rect Indexed indirectly, with a pointer pushed onto the stack. The format of a statement
Addressing that uses stack relative indirect indexed addressing is

lda ($30,s),y

Stack relative indirect indexed addressing works much like direct in-
direct indexed addressing. The value between the parentheses is a 1-byte
offset. The 65C816 adds this offset to the contents of the stack pointer to
form the lower 16 bits of a base address in bank $00. The upper 8 bits of the
base address are taken from the data bank register. Finally, the value of the
Y register is added to this base address, and the result is the effective 24-
byte address of the operand.

A Warning Now that you know how stack addressing works, it’s time to add a note of
warning: The 65C816 stack can be a dangerous section of memory for novice
programmers to play with. When you use the stack in an assembly language
routine, it’s extremely important when the routine ends to leave the stack
exactly as you found it. If you’ve placed a value on the stack during a routine,
it must be removed from the stack before the routine ends and normal pro-
cessing resumes. Otherwise, there might be ‘‘garbage’ on the stack when
the next routine is called, and that can result in program crashes, memory
wipeouts, and various other programming disasters. Remember: Mismanage-
ment of the hardware stack is extremely hazardous to the health of assembly
language programs.

Block Move Addressing
The 65C816 has one addressing mode for block moves. It is called block
source bank, destination bank addressing. This addressing mode is used by
two instructions: mvn (block move next, or block move negative) and mvp
(block move previous, or block move positive). The syntax is
mvn 0,0
A statement that uses block move addressing takes a 2-byte operand. In source

code written using the APW assembler, these 2 bytes are separated by a
comma. The first byte of the operand specifies the 64K bank of memory that
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a block of data is being moved to, and the second byte specifies the bank in
which the source data lies. The Y register contains the lower 16 bits of the
destination address. The X register contains the lower 16 bits of the source
address. The number of bytes to be moved, minus 1, is contained in the C
register, the 65C816’s 16-bit accumulator. More details about how block move
addressing mode works can be found in chapter 5 and appendix A, which
deals with the 65C816 instruction set.
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Tool Sets

CHAPTER | 7

Introducing
the llcs Toolbox

Using the Event Manager
and the Memory Manager

of the Apple II family is the IIGs has a gigantic Toolbox: a collection
of more than 800 prewritten routines that greatly simplify the writing
of sophisticated programs.

We have encountered a number of the tools in the Ilgs Toolbox in
previous chapters, but we haven’t gone into detail about how they work. In
this chapter, you are formally introduced to the various tool Kits in the Tool-
box, and you take a close look at what they are and what they do.

[ l he biggest difference between the Apple IlGs and earlier members

The 800-plus routines in the Ilgs Toolbox are divided into tool sets, or col-
lections of related routines. Each routine in a tool set performs one function,
or fundamental operation. For example, the QuickDraw II tool set contains
one routine that draws a rectangle, another that draws an oval, and so on.
Some tool sets in the Toolbox manage important features of the Apple
IIgs and are therefore called managers. For example, the Ilgs Memory Man-
ager allocates, deallocates, and keeps track of all memory used by the com-
puter. The Event Manager keeps track of mouse and keyboard operations and
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calls other manager tools, such as the Menu Manager and the Window Man-
ager. The Menu Manager and the Window Manager, as their names imply,
manage IIGs operations that involve menus and windows.

What the Toolbox Can Do

The most important reason for learning how to use the Toolbox is that it can
take care of much of the drudgery that otherwise is the responsibility of the
programmer. It can free your application so it can concentrate on its most
important tasks rather than deal with routine background work and trivial
details.

Another reason for using the Toolbox is that its routines are always
available to help you perform many important tasks. Most of the remarkable
capabilities of the llgs are accessed easily through the Ilgs Toolbox, the
various tool sets in the Toolbox, and each set’s individual tools.

What the Toolbox Contains

130

The Big Five

The tools in the IIGs Toolbox are listed in chapter 1. We’ll list them again,
in more detail.

Five vital IlGs tool sets are dubbed the ‘‘Big Five.”” All these tools must be
used in every event-driven lIGs application because they are the basic frame-
work upon which other tools build. The ‘‘Big Five’’ tools are

B The Tool Locator, which provides the mechanism for dispatching
tool calls. You don’t need to know a tool’s memory location; the
Tool Locator knows, and it retrieves the tool when you make a tool
call.

B The Memory Manager, which allocates, deallocates, and keeps track
of all memory used in every program. When your application needs
memory, it must request it from the Memory Manager. When a
well-written application ends, it calls the Memory Manager again to
deallocate the memory it no longer needs.

B The Miscellaneous Tool Set, which includes mostly system-level
routines that must be available for other tool sets. The Miscellaneous
Tool Set is vital to the operation of the IIcs. It keeps track of mouse
movements, takes care of battery-powered memory functions, and
handles interrupts. All tools except the Tool Locator and the
Memory Manager depend on the tools in the Miscellaneous Tool Set
in some way.

B QuickDraw II, which controls the graphics environment of the Ilgs
and draws objects and text when the computer is in super high-
resolution graphics mode. QuickDraw Il draws the menus, windows,
controls, and other object used by many of the tools in the Toolbox.
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Desktop
Interface
Tool Sets

B The Event Manager, which manages all the IIGs’s event-driven
programming. The Event Manager keeps track of keyboard and
mouse events, maintains a queue of the events that take place, and
passes information about events to the application.

Another important group of tools control the Ilcs desktop interface. The
desktop interface tool group is the interface between the Ilgs user and the
computer’s programs. Most of the IIGs programs you write will use desktop
interface utilities such as the Window Manager, Menu Manager, Dialog Man-
ager, and LineEdit Tool Set.

The tool sets in the desktop interface group are

B The Window Manager, which draws, updates, maintains, and
deallocates windows. Because the IIGs is designed to be used in a
window environment, the Window Manager is one of the most
important tools in the Toolbox.

B The Control Manager, which draws pushbuttons, scroll bars, and
other objects on the super high-resolution screen. When the Control
Manager draws controls, you can activate them by clicking the
mouse. In this way, you can scroll windows, turn functions off and
on, and cause various other things to happen. The Control Manager
is primarily a low-level tool set whose functions are used by other
tools such as the Window Manager. But the Control Manager can
also create and manipulate user-designed controls.

® The Menu Manager, which controls and maintains pull-down menus
and items in menus. Because the lls is designed to be used in a
menu environment, the Menu Manager is one of the most important
tool sets in the Toolbox.

B The LineEdit Tool Set, which performs much the same function in
the super high-resolution environment that the Text Tool Set
performs when the computer is in text mode. The LineEdit Tool Set
places text on the screen and allows the user to edit it. In addition,
LineEdit offers ‘‘cut-and-paste’’ operations that provide convenient
methods for editing, deleting, and moving text.

B The Dialog Manager, which offers a convenient and easy-to-use
interface between the 1IGs and the user. The Dialog Manager creates
windows to display messages and can accept user input. Windows
created by the Dialog Manager can warn the user of dangers or
special situations and provide the user with an easy method for
making decisions and passing them to a IIGs program.

B The Scrap Manager, which offers the user a method of storing
information temporarily so it can be moved to another location,
document, or application. When information is no longer needed, the
Scrap Manager can delete it.

B The Desk Manager, which manages desk accessories, mini-
applications executed while other applications are running. The Desk
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Manager controls clocks, calculators, note pads, and other useful
desktop utilities.

B The Standard File Operations Tool Set, which provides an easy-to-
use interface with ProDOS 16 in a super high-resolution
environment. When the Standard File Operations Tool Set is
activated, it presents a special dialog window that can load, save,
open, and close disk files without requiring the user to master the
technical details of ProDOS 16.

M The List Manager, a low-level tool set used primarily by other tool
sets, such as the Standard File Operations Tool Set and the Font
Manager. The List Manager creates lists of items, such as files and
fonts, and is also available for use in application programs.

B The Font Manager, which keeps track of the character fonts
available to the Ilgs and provides applications with information about
them. The Font Manager can tell you how many fonts are available
and the characteristics of those fonts. It can also underline text, print
in boldface or italics, and print text of various sizes on a printer or
the screen.

B QuickDraw II Auxiliary, which adds special capabilities to
QuickDraw II. The tools in the QuickDraw II Auxiliary tool set can
combine various drawing calls into a single picture, shrink and
reduce drawn objects and the bit maps used to create screen
windows, and draw icons and other objects on the super high-
resolution screen.

Math Tool Sets The Apple IiGs has two tool sets that perform arithmetic and mathematic
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The Print
Manager

operations:

B The Integer Math Tool Set, which includes routines that perform
operations using integers. The Integer Math Tool Set handles
integers, long integers, and signed fractional numbers. It can also
convert integers, hexadecimal numbers, and decimal numbers from
one form to another and from one base to another.

B The SANE Tool Set, which supports the Standard Apple Numerics
(SANE) mathematics package. With the SANE Tool Set, the IlGs
can carry out extended-precision calculations in accordance with the
widely accepted IEEE standard.

The Print Manager allows applications to use standard QuickDraw II routines
to print text or graphics on a printer. It can interface an application with a
standard dot-matrix printer such as an Apple ImageWriter, or a laser printer
such as the Apple LaserWriter, or a network of laser printers.
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Scund-Related The Iigs has three sound-related tool sets:
Tool Sets
B The Sound Tool Set, which provides a method for using the IIGs’s
sound hardware without using specific hardware input-output
addresses.

8 The Note Synthesizer, which creates notes, sound patterns, and
waveforms with sound-synthesizing techniques similar to those used
by synthesizers in professional sound studios.

B The Note Sequencer, which provides a convenient method for
incorporating sequences of musical notes into a program.

Specialized The Apple Iics has one group of tools that are categorized as specialized
Tools tools. They include

B The Apple Desktop Bus (ADB) Tool Set, which interfaces the Ilgs
with its keyboard, mouse, and other I/O devices such as graphics
tablets and game controllers.

B The Scheduler, which prevents a tool call from crashing the system
by asking for a temporarily unavailable system resource.

B The Text Tool Set, which provides an interface between Apple II
character device drivers and applications running in native mode.

Hov' To Use the Toolbox

In early models of the IIgs, many of the tools in the Toolbox were provided
on the system disk and had to be loaded into RAM. In newer models, in-
creasing numbers of tools have been taken off the system disk and included
in ROM. More tools are instantly available to application programs without
using disk space, loading time, or what would otherwise be free memory.

You seldom need to keep track of a tool’s location or even whether the
toolkit that contains the tool is in ROM or RAM. A tool set called the Tool
Locator keeps track of all tools for you and takes care of most of the ‘‘house-
keeping’’ involved in loading and unloading tools.

The Tool Locator is automatically initialized when ProDOS 16 is booted,
and from then on you can use it any time you like. In an assembly language
program written using APW, the easiest way to use the Tool Locator is to
decide what tools you will use in a program and then make the APW macro
call

-LoadTools

All the tools you’ll need in your program are then loaded into memory.
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Making the Before you can make a LoadTools call, you have to design a tool table
LoadTools Call containing the identification number and lowest suitable version number of
each tool set you plan to use in your program. The available tools are listed

in table 7-1.
Table 7-1
Tools in the llas Toolbox
Version on
Tool Number Tool System Disk 3.0

1 Tool Locator 0201

2 Memory Manager 0200

3 Miscellaneous Tool Set 0200
4 QuickDraw II 0202

5 Desk Manager 0202

6 Event Manager 0201

7 Scheduler 0200

8 Sound Manager 0200

9 Apple Desktop Bus 0201
10 SANE 0202
11 Integer Math Tool Set 0200
12 Text Tool Set 0200
13 Not used

14 Window Manager 0201
15 Menu Manager 0200
16 Control Manager 0201
17 System Loader 0103
18 QuickDraw Auxiliary 0202
19 Print Manager 0102
20 LineEdit Tool Set 0200
21 Dialog Manager 0200
22 Scrap Manager 0102
23 Standard File Operations Tool Set 0200
24 Disk Utilities 0100
25 Note Synthesizer 0100
26 Note Sequencer 0100
27 Font Manager 0201
28 List Manager 0201

The LoadTools call must be used with a carefully designed tool table
to work properly. The first word in the tool table must contain the number
of tool sets that will be loaded. Next, you must list the ID number of each
tool set, along with the minimum acceptable version number of each tool set
to be loaded. Listing 7—1 shows how the LoadTools call is included in a
Ilgs assembly language program.
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Listing 71
Tool loading routine
*
*ROUTINE FOR LOADING TOOLS
*
LoadEmUp START
PushLong #ToolTable
—LoadTools
rts
ToolTable dc i1% ; no. of tools to load
dc 1%$04,%$0100 ; quickdraw
dc i'$05,%$0100° ; desk manager
dc i'$06,%$0100° ; event manager
dc 1i'$0E,$0000 ; wWindow manager

dc i'$0F,$0100° ; menu manager

dc i'$10,%0100° ; control manager
dc 1'$12,%$0000° ; aqd auxiliary

dc i'$13,%$0000° ; print manager

dc 1'$14,%$0000° ; line edit

dc 1'$15,%$0000° ; dialog manager
dc i'$17,%$0100° ; std file manager
dc i'$1B,$0100° ; font manager

dc i$1C,$0000° ; Llist manager

END

Init Wlizing Tools Some tool sets—such as the Tool Locator, the Text Tool Set, and the Integer
Math Tool Set—are present in ROM at all times and thus do not have to be
loaded before they are used. But most tool sets do have to be loaded and then
have to be started up, or initialized. When you’re finished using a tool set,
you should shut it down.

It is very easy to initialize a tool set, and it is just as easy to shut one
down. To initialize or shut down a tool set, you make a specific call. The
following call, for example, initializes the LineEdit Tool Set:

—_LEStartup
and this call shuts it down:

~LEShutdown

The sample programs in the rest of this book give you plenty of practice in
starting up and shutting down tool sets.
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There are two important points to think about when you plan to call a
Ilgs tool from your application. One is tool dependency, making sure certain
tools are loaded and initialized before other tools that rely on them are called.
The second point is making sure the IIGs is in 16-bit native mode before any
tools are loaded, initialized, and called.

It is very important to start up tools in the correct order. A tool set
dependency chart, which shows what tools have to be started before other
tools can be used, appears in table 7-2. You can practice starting up tool sets
in the proper order by typing, assembling (or compiling), and running the
sample programs in chapters 8 through 13.

Table 7-2
Tool Set Dependency

Dependencies (with minimum version number needed)

Tool [Memory| Misc. | Quick- | Event | Window | Control | Menu [LineEdit| Dialog Scrap List
Hex | Dec| Tool Set | Locator |Manager|Tool Set| Draw II | Manager | Manager | Manager | Manager | Tool Set | Manager | Manager | Manager
$01| 1 Tool
Locator
$02{ 2| Memory | $0102
Manager
$031! 3 Misc. | $0102 | $0102
Tool Set
$04 | 4| Quick- [$0102 | $0102 | $0102
Draw II
$12| 18 | Quick- | $0102 | $0102 | $0102 | $0102
Draw II
Auxiliary
$06| 6 Event | $0102 | $0102 | $0102 | $0102
Manager
$OE | 14 [ Window | $0102 [ $0102 | $0102 | $0102 | $0100
Manager
$10| 16 | Control | $0102 | $0102 | $0102 | $0102 | $0100 | $0103
Manager
$0F | 15 Menu | $0102 [ $0102 | $0102 | $0102 | $0100 | $0103 | $0103
Manager
$14 | 20 | LineEdit | $0102 | $0102 { $0102 | $0102 | $0100
Tool Set
$15| 21 | Dialog {$0102 | $0102 | $0102 | $0102 | $0100 | $0103 | $0103 | $0103 | $0100
Manager
$16| 22 Scrap | $0102 | $0102
Manager
$05( 5 Desk $0102 | $0102 | $0102 | $0102 | $0100 | $0103 | $0103 | $0103 | $0100 | $0101 | $0101
Manager
$17 | 23 | Standard | $0102 | $0102 | $0102 | $0102 | $0100 | $0103 | $0103 | $0103 | $0100 | $0101
File
Tool Set
$1C| 28 List $0102 [ $0102 | $0102 | $0102 { $0100 | $0103 | $0103
Manager
$131 19 Print $0102 | $0102 | $0102 | $0102 | $0100 | $0103 | $0103 | $0103 | $0100 | $0101 $0100
Manager
$1B} 27 Font $0102 { $0102 | $0102 | $0102 | $0100 | $0103 | $0103 | $0103 | $0100 | $0101 $0100
Manager
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It is also important to make sure the lIGs is in native mode, rather than
emulation mode, when you use the Toolbox in a program. When the 65C816
is in native mode, its ¢, m, and x flags are all set to 0, providing it with a
16-bit accumulator and 16-bit index registers. Almost ail the tools in the
Toolbox require the 65C816 to be in native mode and simply will not work
if the processor is in its 8-bit state. Exceptions to this rule are rare and are
documented in the Apple llGs Toolbox Reference.

The Memory Manager

How an
Application
Obt iins Memory

The Memory Manager, like the Tool Locator, resides in ROM and thus does
not have to be loaded or initialized. It goes into action as soon as you turn
on the Ilgs. From then on, it controls the allocation, deallocation, and po-
sitioning of every byte in the computer’s memory. The Memory Manager
constantly keeps track of how much memory is free and which blocks of
memory are allocated to which programs.

The Memory Manager works closely with ProDOS 16 and the System
Loader to provide needed memory spaces for loading programs and data and
to provide buffers for input and output. All Apple Ilcs software, including
the System Loader and ProDOS 16, must obtain memory space by making
requests (calls) to the Memory Manager.

When a block of memory is allocated by the Memory Manager, it is
assigned a number of important attributes that the Memory Manager stores
in a special location. These attributes determine how the Memory Manager
may modify each block (such as moving it or deleting it), if each block can
be purged from memory, if it must be placed in memory in a special way
(for example, starting on a page boundary), and what program owns it.

When a program asks for a block of memory, it must pass to the Memory
Manager a list of attributes that it wants to assign to the block. These attributes
are passed in the form of a word. This is shown in figure 7—1 and is examined
more closely later in this chapter. When a group of attributes is assigned to
a block of memory, the Memory Manager takes them into account whenever
it has to purge, allocate, deallocate, or compact memory.

When an application makes a ProDOS 16 call that requires allocation of
memory (such as opening a file or writing from a file to a memory location),
ProDOS 16 first obtains any needed memory blocks from the Memory
Manager and then performs its tasks. Likewise, the System Loader requests
any needed memory either directly or indirectly (through ProDOS 16 calls)
from the Memory Manager. Conversely, when an application informs the
operating system that it no longer needs memory, that information is passed
to the Memory Manager, which in turn frees the application’s allocated
memory. In all these cases, the memory allocation and deallocation is au-
tomatic as far as the application is concerned.

When an application needs memory for its own use, it must request the
memory directly from the Memory Manager. In a few moments, you’ll see
how a program can request memory from the Memory Manager.
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How the
Memory
Manager
Uses Memory

RESERVED RESERVED
(ALWAYS 0) (UNDEFINED)

—r——

[ishahisfhefifio[ol8 76 [5[4]3[2]1]0]

PURGE LEVEL L 1=MUST BE IN FIXED BANK

1=FIXED 1=MUST HAVE FIXED ADDRESS

1=LOCKED 1=MUST BE PAGE-ALIGNED

L 1-MAY NOT USE SPECIAL MEMORY
1=MAY NOT CROSS BANK BOUNDARY

Figure 7-1
Attributes word used by the Memory Manager

From the Memory Manager’s point of view, the memory in the IIGs is divided
into three categories:

B Allocatable memory (managed by the Memory Manager). There are
no special restrictions on the use of this memory. It includes banks
$02 through $DF and parts of banks $EO and $EI.

B Special memory (managed by the Memory Manager and allocatable
except under special conditions). There are certain restrictions on the
use of this memory because it is used like Apple Ile and Ilc memory
when the Ilgs is in emulation mode. Special memory may not be
used by desk accessories, tool sets, and other routines that might be
called while IlIc/lle-style applications are running. Banks $00 and
$01 and parts of banks $EO and $E1 are special memory.

B Unmanaged memory (reserved and not managed by the Memory
Manager). This category of memory includes the language card area
from $D000 to $DFFF in banks $00, $01, $EO, and $E1, addresses
$0000—$0800 in banks 0 and 1, and addresses $0000—$2000 in
banks $EO and $E1. The Memory Manager marks this memory as
“‘busy’’ at startup time and does not interfere with it thereafter.

Figure 7-2 shows how the Memory Manager handles allocatable, special,
and unmanaged memory.

Pointers and Handles

138

Because the Memory Manager can move a memory block and thus change
its starting address, Ilgs applications cannot use simple pointers to access
entry points in memory. Instead, each time the Memory Manager allocates
a memory block, it returns to the requesting application a special kind of
pointer called a handle. Then the application that owns the memory block
can always access it safely by using its handle, rather than an ordinary pointer.

A handle is sometimes described as a ‘‘pointer to a pointer.”” It is a
fixed, or unmovable, memory location that contains the address of a simple
pointer. The handles used by the IlGs are kept in an unmovable, unpurgeable
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How To Assign
a Handle

BANK $00 BANK $01
$FFFF

$E000
LANGUAGE CARD LANGUAGE CARD
$D000
110 lle}

$6000

$0C00
$0800
$0000

BANK $EO BANK $E1
$FFFF

$E000

LANGUAGE CARD LANGUAGE CARD
$DC00

110 110
$C000

$A000

L]

UNMANAGED
MEMORY

n
ALLOCATABLE
$6000 BUT SPECIAL

$2000

$C000 ALLOCATABLE
$0800 MEMORY

$0000

Figure 7-2
Allocatable, special, and unmanaged memory

block of memory that starts at memory address $E11700. Each time a block
of memory is assigned, the Memory Manager stores its starting address, along
with its attributes, into one of the handles that start at $E11700.

Before a program can request a block of memory (and a handle) from the
Memory Manager, it must obtain a user identification code, or user
ID, from the Memory Manager. To get a user ID, a program can make the
MMStartup call, in this fashion:
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PushWord #0 ;space for return
-MMStartup
PullWord MyID

In this example, a word is pushed onto the stack so that MMStartup
has a place on the stack to push its data. Then the APW macro_MMStartup
makes the MMStartup call. When you make the call, it assigns a user ID
number and places it on the stack. When the call returns, the user ID assigned
by the Memory Manager is pulled off the stack and placed in a program
variable called MyID.

If you’re wondering why the MMStartup call has to be made to get a
user ID, the answer is simply that that’s the way it’s done. Because the
Memory Manager is a ROM-based tool and is always active, it doesn’t have
to be started with a startup call. But the conventional way to get a user ID
is to request it with an MMStartup call. And more than one MMStartup
call can be made in a program. This would all be less confusing if the
MMStartup call had a different name. You just have to remember that the
MMStartup call does not really start up the Memory Manager. It is used
primarily for obtaining user IDs.

After you have a user ID from the Memory Manager, you can request
as many memory blocks as you like. As long as the Memory Manager has
enough free RAM available, it will assign memory blocks and return handles.
You have to keep track of the handles the Memory Manager assigns and what
you’re using them for. One good reason to keep track of handles is that you
must dispose of any handles before you end the application. Otherwise, they
remain in memory after the application ends, wasting memory space and
possibly interfering with other programs.

Before you can dispose of a handle, though, you have to get one. Listing
7-2 is a fragment of assembly language code that shows how to get a handle
from the Memory Manager.

Listing 7-2

Getting a handle from the Memory Manager
PushLong #0 ; space for result
PushLong #$8000 ; size of block
PushWord MyID ; user ID
PushWord #0 ; attributes
PushLong #0 ; Location (0=don’t care)
-NewHandle

PullLong MyHandle

The call to get a block of memory (along with a handle) is NewHand Le.
But before you make a NewHand Le call, you must push these parameters on
the stack:

B A space for a result (1 word).

B The size of the block of memory being requested (2 words). In
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How the
Memory
Manager
Uses Handles

Dereferencing
a Handle

listing 7-2, the length of the block being requested is $8000, or
32K.

B The user ID of the application requesting the block (1 word).

B The block’s attributes (1 word). A diagram of this word appears in
figure 7-1. (An explanation of each bit is provided later in this
chapter.)

B The starting address of the block (2 words). Unless there is an
overwhelming need to store a block in a specific location, this
parameter should be #0 so that the Memory Manager determines
where to store the block being requested.

After a handle is assigned to a block of memory and the program that owns
the handle is told what the handle is, the Memory Manager can move the
block as often as needed, and the block’s handle will not change. If the
Memory Manager changes the location of the block, it updates the address
stored in the handle, but does not change the address of the handle. Thus,
the application that owns the memory block can always use the block’s handle
to access it, no matter how often the block itself is moved in memory.

If an application is sure that a block of memory will always remain in the
same spot—that is, if it has requested a locked and unpurgeable handle—
the application can access the block by its pointer as well as by its handle.
To obtain a pointer to a particular block or location, a special kind of operation
called dereferencing is used. Listing 7-3 is a routine that dereferences a
handle—that is, it tells you what its handle is. The segment of code that
appears in listing 7-3 is used in several programs in part 2.

Listing 7-3
Dereferencing a handle

Deref START
sta DPTemp
stx DPTemp+2
ldy #4
lda [DPTempl,y
ora #%$8000
sta [DPTempl,y
dey
dey
lda [DPTempl,y
tax
lda [DPTempl
rts

END

In a dereferencing operation, the application reads the address stored
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Memory
Fragmentation
and Compaction

Purging Memory
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in the location pointed to by the handle. That address is the pointer to the
block. If the Memory Manager moves the block, the pointer is no longer
valid.

Because the Memory Manager does not allocate and deallocate memory in
any order, memory can become fragmented into a jumble of free and allocated
memory blocks. When this happens, the Memory Manager may not be able
to allocate a requested block, even if enough free memory is available. So
the Memory Manager has the capability of compacting memory, or moving
all relocatable blocks so that bigger blocks of memory become available.
Figure 7-3 shows how the Memory Manager compacts memory.

As you can guess by looking at figure 7-3, when fixed and locked
blocks are present in memory, the Memory Manager can’t do a very good
Job of compacting memory. For this reason, applications should avoid re-
questing fixed and locked blocks, and settle for movable blocks when possible.

If the Memory Manager compacts as much memory as possible and still can’t
allocate a block, it tries to purge any blocks marked unlocked and purgeable.
When a block is purged, its contents are discarded, and the memory it occupied
is free for other uses.

When a block is purged, its handle remains allocated, but the value of
the master pointer that its handle points to is set to 0, or nil. A handle that
points to a nil master pointer is called an empty handle. When the block of
memory assigned to a handle is purged, an application asks the Memory

BEFORE AFTER
FREE

7

FREE

FREE

FREE %

FREE

Figure 7-3

How the Memory Manager compacts memory
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Manager to reallocate the purged block. After a block of memory is purged,
however, the data in it is irretrievably lost, so only the memory—not the
data—can be retrieved by a program.

Properties of Memory Blocks

Allocation
Attributes

Modifiable
Attributes

As mentioned, an application program can control the properties of a memory
block by setting up a memory attributes word and passing it to the Memory
Manager in a NewHandle call. Most attributes in an attributes word are
defined when the block is allocated and can’t be changed. Some attributes,
however, can be modified after allocation.

The layout of a memory attributes word is shown in figure 7-1. In each
bit position, a value of 1 means the attribute defined by the bit applies to the
block. You might think of setting the bit to 1 as applying a restriction to the
block.

When a block is allocated, several bits in the attributes word set restrictions
on how the block is allocated. These attributes can only be set when the block
is allocated. The allocation attributes are

B Fixed. If a block is fixed, it cannot be moved when memory is
compacted. Code blocks are usually fixed, but data blocks usually
should not be fixed.

B Bank boundary limited. Specifies that a block must not cross banks.
Code blocks may never cross banks, and making a data bank cross
bank boundaries is very risky.

B Special memory usable. Specifies that the block may be allocated in
special memory, or memory used by the Ilc and Ile. Special memory
includes banks $00 and $01 and screen memory.

B Page aligned. For timing or other special reasons, code or data may
need to be page aligned.

B Fixed address. The block must be at a specified address when
allocated. A fixed address attribute should be used only in special
situations, for example, in allocating a graphics screen.

# Fixed bank. The block must start in a specified bank, for example,
on the direct page.

As noted, the Memory Manager can move or purge a block while making
room for a new block. The attributes that determine whether a block can be
moved or purged can be changed by an application after a block is created.
These attributes are

W Locked. When a block is locked, it is unmovable and unpurgeable
regardless of the setting of the fixed or purge level attributes. A
block can thus be locked temporarily while it is being executed or
referenced.
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B Purge level. Purge level is a 2-bit number defining the purge priority
of a block.

When the Memory Manager starts purging blocks of memory, the order
of the purging is based on the purge level of the block. The purge level is a
2-bit number specifying the purging priority of the block. The values are

3 Most purgeable (used by System Loader)

2 Next most purgeable

1 Least purgeable

0 Not purgeable

Application programs should use only purge levels 0, 1, and 2; level 3
is reserved for the System Loader. When some applications exit, the memory
is not freed but its blocks are set to level 3. The old application can thus be
restarted without accessing the disk if the new application did not need the

space. If the Memory Manager purges any blocks of an application in this
state, it purges all of that application’s blocks.

The Event Manager
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Because the llgs is designed to use event-driven programming, the Event
Manager is a vital tool set. It allows applications to monitor the actions initiated
by the user—such as movements using the mouse, keyboard, and keypad—
and to respond accordingly.

In an event-driven program, the actions tracked and handled by the
Event Manager are known, logically enough, as events. For example, when
the user presses or releases the button on top of the mouse, that is a mouse
down or mouse up event. When the user presses a key on the keyboard, that
is a key down event. If the user presses a key and holds it down, that is an
auto-key event.

When an event recognized by the Event Manager takes place, the Event
Manager may report it immediately or place it in a queue, according to its
priority. When the Event Manager has a series of events waiting in its queue,
it removes and reports them, one at a time. But they are not necessarily
reported in the order in which they were detected because some events have
higher priorities than others. You examine the priorities of events later in this
section.

When the Event Manager detects a user-generated event—such as a
mouse button being pressed or a key being held down—it places information
about the event in a record in memory called an event record. The application
can then access the contents of the event record to find out what kind of event
has taken place so that it can determine what to do. You see what an event
record looks like and how it is used later in this section.

When a user-generated event is detected, and information about it is
placed in an event record, the application using the Event Manager decides
what to do about the reported event. But not all events detected by the Event
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Manager are generated by the user. The Event Manager is also used by other
tools in the IIcs Toolbox. For example, the Window Manager uses events to
coordinate the order and display of windows on the screen. When toolkits
such as the Window Manager use the Event Manager, they often decide what
to do about the event notifications they receive.

Later in this section, you see how application programs and other tools
in the Ilgs Toolbox use the Event Manager. Before that, though, let’s sce
what kinds of events are handled by the Event Manager.

Types of Events

Mouse Events

Keyboard
Events

Window Events

Events handled by the Event Manager can be categorized by types. Some
types of events report actions by the user. Others are generated by the Window
Manager, the Control Manager, device drivers, or even the application being
executed. The Ilgs system handles some events before the application ever
sees them, but it leaves others for applications to handle. We’ll now pause
to examine the types of events the Event Manager can handle.

When you press the button on the top of the Ilgs mouse, the system generates
a mouse down event. When you release the button, the system generates

a mouse up event. Movements of the mouse update the cursor position but
are not reported as events.

When you press any character key on the Ilcs keyboard or keypad, the system
generates a key down event. The character keys include all keys except Shift,
Caps, Lock, Control, Option, and Apple, which are called modifier keys.
Modifier keys are treated differently and generate no keyboard events of their
own. When an event is posted, the state of the modifier keys is reported in
a special modifier field in the event record. The program using the Event
Manager then decides what the pressing of a modifier key should do.

The character keys on the keyboard and keypad also generate auto-key
events when you hold them down. Two different time intervals are associated
with auto-key events. The first auto-key event is generated after an initial
delay has elapsed since the key was originally pressed. This is called the
repeat delay. Subsequent auto-key events occur each time a certain repeat
interval has elapsed since the last such event. This is called the repeat speed.
You can change these values by using the Ilgs Control Panel.

The Window Manager generates events to coordinate the display of windows
on the screen. (You examine the Window Manager in greater detail in chapter
10.) Events generated by the Window Manager are divided into two categories:
activate events and update events.

An activate event is generated each time an inactive window becomes
active or an active window becomes inactive. Activate and deactivate events
generally take place in pairs; that is, one window is deactivated and then
another is activated.
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An update event takes place when all or part of a window’s contents
need to be drawn or redrawn, usually as a result of the user opening, closing,
activating, or moving a window.

Other Events There are other events the Event Manager can handle. For example:

W Device driver events, which (as you might guess) are generated by
device drivers. A device driver event can signify the receipt or
interruption of I/O data.

B A desk accessory event, which takes place when you activate a
classic desk accessory such as the Ilgs Control Panel.

B Application events, which are defined by application programs. A
program can define as many as four application events of its own
and can use them for any purpose. A call titled PostEvent places
application-defined events in the event queue.

Priorities of Events
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When the Event Manager is active, it collects events from a variety of sources
and reports them to the application on demand, one at a time. But, as noted,
the events are not necessarily reported in the order in which they took place
because some have a higher priority than others. The Event Manager places
events in a queue and handles them according to a strict priority system.

In general, the Event Manager retrieves events from the event queue in
the order in which they were posted. But the way in which types of events
are generated and detected causes some events to have a higher priority than
others. Also, not all events are kept in the event queue. Furthermore, when
an application asks for an event, it can specify the types of events it is interested
in, and this can cause the Event Manager to pass over some events in favor
of others.

If the queue becomes full, the Event Manager begins discarding old
events to make room for new ones as they’re posted. Discarded events are
always the oldest ones in the queue.

Events are carried out by the Event Manager in the following order:

1. Activate events (a window becoming inactive before another window
becomes active). Activate events have priority over all other types of
events. They are detected in a special way and are never actually
placed in the event queue. The Event Manager’s GetNextEvent
and EventAvai l routines (which you look at in more detail later)
check for pending activate events before looking in the event queue,
so they always return such an event if one is available. Because of
the special way the routines detect activate events, there can’t be
more than two such events pending at the same time. At most, there
is one event for a window becoming inactive, followed by another
event for a window becoming active.
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2. Switch events (reserved for future use). Switch events also remain
outside the event queue. If no activate events are pending, the
GetNextEvent and EventAvail routines check for a switch event
before looking in the event queue. If a switch event is available, the
routines check to see if any update events are pending. If so, they
return the update event to the application. GetNextEvent and
EventAvail return switch events to the application only if update
events are pending. This ensures that all windows are updated before
the application is switched.

3. Mouse down, mouse up, key down, auto-key, device driver,
application-defined, and desk accessory events (handled in order of
posting). This category includes all event types placed in the event
queue. With the exceptions noted previously, the Event Manager
retrieves them from the queue in the order of their posting. The
GetNextEvent and EventAvail calls only return events from this
category.

4. Update events (in front-to-back window order). Update events, like
activate and switch events, are not placed in the event queue, but are
detected in another way. If no higher priority event is available,
GetNextEvent and EventAvail check for windows whose
contents need to be drawn. If they find one, they return an update
event for that window. GetNextEvent and EventAvail also
check the order (from front to back) in which windows are displayed
on the screen. If two or more windows require updating,
GetNextEvent and EventAvail return an update event for the
frontmost window.

Event Records

When the Event Manager detects an event, it returns information about the
event in an event record. The event record includes the following information:
B Type of event detected
B Time the event was posted, in ticks since system startup
W | ocation of the mouse when the event was posted, expressed in
global (screen) coordinates
B State of mouse buttons and modifier keys when the event was posted

B Additional information that might be required for a particular type of
event, such as which key the user pressed or which window is being
activated

Every event, including a null event, results in data being entered into
an event record by the Event Manager. Listing 7-4 shows how an event
record is included in a data section of a program.
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Listing 7—-4

An event record
EventRecord anop
What ds 2 ; event code (word)
Message ds 4 ; event message (long)
When ds 4 ; ticks since startup (long)
Where ds 4 ; mouse location (point)
Modifiers ds 2 ; modifier flags (word)

The What Field
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The Message
Field

The Modifiers
Field

In listing 7-4, the When field contains the number of ticks since the
system was last started. The Where field contains the location of the mouse,
in global coordinates, when the event was posted. Now you’ll examine the
contents of the other fields in an event record.

The What field of an event record contains an event code that tells what
kind of event was detected by the Event Manager. The Event Manager’s event
codes, and their meanings, are listed in table 7-3.

The Message ficld contains an event message that returns additional
information about the detected event. The nature of this message depends on
the event type, as shown in table 7-4.

The Modifiers field of an event record shows the state that various keys
and control buttons were in when an event was posted. In addition, the
ActiveFlag and ChangeF Lag bits in the Modi fiers field provide further
information about activate events. See table 7-5.

Table 7-3
Event Manager's Event Codes
Code Name Meaning
0 NullEvt Null event
1 MouseDownEvt Mouse down event
2 MouseUpEvt Mouse up event
3 KeyDownEvt Key down event
4 Undefined
5 AutoKeyEvt Auto-key event
6 UpdateEvt Update event
7 Undefined
8 ActivateEvt Activate event
9 SwitchEvt Switch event
10 DeskAccEvt Desk accessory event
11 DriveEvt Device driver event
12 App1Evt Application-defined event
13 App2Evt Application-defined event
14 App3Evt Application-defined event
15 App4Evt Application-defined event
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Table 7-4
Event Messages
Event Type Event Message
Mouse down Button number (0 or 1) in low word; high word undefined
Mouse up Button number (0 or 1) in low word; high word undefined
Key down ASCII code in low word, low byte; low word, high byte clear;
upper 3 bytes undefined
Auto-key ASCII code in low word, low byte; low word, high byte clear;
upper 3 bytes undefined
Activate Pointer to window
Update Pointer to window
Device driver Defined by device driver
Application Defined by application
Switch Undefined
Desk accessory Undefined
Null Undefined
Table 7-5
Modifiers Field of an Event Record
Bit Name Value
0 ActiveFlag 0 = Window being deactivated
1 = Window being activated
1 ChangeFlag 0 = No change
1 = Active window being
changed to system or application
window
2 Reserved
3 Reserved
4 Reserved
5 Reserved
6 BtnOState 0 = Mouse button down
I = Mouse button up
7 Btni1State 0 = Mouse button 2 down
1 = Mouse button 2 up
8 Apple key 0 = Apple key up
I = Apple key down
9 Shift key 0 = Shift key up
I = Shift key down
10 Caps lock key 0 = Caps lock up
I = Caps lock down
11 Option key 0 = Option key up
1 = Option key down
12 Control key 0 = Control key up
1 = Control key down
13 Keypad 0 = Key pressed on keyboard
1 = Key pressed on keypad
14 Reserved
15 Reserved
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Bits 6 through 13 of the Modifiers field show the state of the mouse
button and modifier keys at the time an event was posted. The BtnOState
and Btn1State bits (bits 6 and 7) are set to 1 if the corresponding mouse
button is up. The bits for the five modifier keys are set to 1 if their corre-
sponding keys are down.

The ActiveF lagissetto 1if a window pointed to by the event message
is being activated or set to O if it is being deactivated. The ChangeF Lag bit
is set to 1 if the active window is being changed from an application window
to a system window, or vice versa. Otherwise, it is set to 0.

Loading and Initializing the Event Manager
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Now that you know how to interpret event records, you’re ready to load and
initialize the Event Manager. Before the Event Manager tool set is started
up, it must be loaded. In most cases, the best way to load the Event Manager
is with the Tool Locator’s _LoadTools call, described previously in this
chapter.

When the Event Manager is loaded, several other operations must be
carried out before it can be started. For example, before a call to start the
Event Manager can be issued, these tool sets must be in memory and ini-
tialized:

B Tool Locator. (No action needed; initialization is automatic.)

M Memory Manager. (Does not have to be loaded; must be initialized
if a user ID is needed.)

M Miscellaneous Tool Set. (Must be loaded and initialized.)
B QuickDraw II. (Must be loaded and initialized.)

Before a program can start up the Event Manager, it must also obtain
four direct pages that are reserved for use by QuickDraw II and the Event
Manager. The QuickDraw tool set requires three reserved direct pages and
the Event Manager requires three. Listing 7-5 is a fragment of code that
shows how to set up three private direct pages for QuickDraw and one for
the Event Manager.

Listing 7-5
Reserving direct pages for QuickDraw and the Event Manager
PushLong #0 ; space for handle
PushLong #$300 ; eight pages
PushWord MyID
PushWord #$C001 ; locked, fixed, fixed bank

PushLong #0
_NewHandle



7—lIntroducing the llcs Toolbox

pla

sta DPHandle
pla

sta DPHandle+2

lda [DPHandlel
sta DPPointer

In listing 7-5, the Memory Manager call NewHand L e obtains the direct
page workspace that QuickDraw and the Event Manager need. The parameters
passed to NewHand Le specify a block size of $400 (three pages for QuickDraw
and one for the Event Manager) and an attribute word of $C001, or %1100
0000 0000 0001. This parameter tells the Memory Manager that the block it
assigns should be locked and fixed and should be situated in bank $00.

When QuickDraw and the Event Manager have the reserved page zeros
they need, they can be started up with the calls @DStartup and EMStartup.
Listing 7-6 shows how QuickDraw and the Event Manager are initialized in
a program.

Listing 7-6
Starting the Event Manager

*%x% INITIALIZE

**x*% INITIALIZE

QUICKDRAW II *%%*

lda DPPointer ; pointer to direct page
pha

PushWord #ScreenMode ; either 320 or 640 mode
PushWord #160 ; max size of scan Line
PushWord MyID

-QbStartup

ErrorCheck Could not start QuickDraw.’

EVENT MANAGER **%*

lda DPPointer ; pointer to direct page
clc

adc #$300 ; QD direct page + #%$300
pha ; (@D needs 3 pages)
PushWord #20 ; queue size

PushWord #0 ; Xclamp Llow

PushWord #MaxX ; Xclamp high

PushWord #0 ; Y clamp Llow

PushWord #200 ; Y clamp high
PushWord MyID

_EMStartup

ErrorCheck Could not start Event Manager.’
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Writing an Event Loop

When you load the Event Manager, start the tools it uses, and supply
QuickDraw and the Event Manager with the direct page space they need, you
are ready to write a program that uses an event loop handled by the Event
Manager.

Some ruffles and flourishes would be appropriate at this point because
learning to write event loops is one of the most important skills you’ll master
in your quest to become an Apple IIGs programmer. If you follow Apple’s
Ics interface guidelines—and you should, if you want your programs to be
user-friendly and compatible with future models of the Ilcs—every program
you write has to be based on an event loop. After you start writing event loop
programs, you’ll probably be glad you did. Event-driven programs are easier
to write, understand, and use than old-fashioned sequential-style programs.
In an event-driven program, a very short main loop controls an extremely
complex program, and a quick glance usually tells you a lot about how the
program works.

Listing 7-7 is the main loop of a simple event-driven program, called
EVENT.S1, which is listed in its entirety later in this section. Let’s pause
for a look at its main loop and then move on to the complete program.

Listing 7—-7
Main loop of an event-driven program
Again PushWord #0 ; space for result
PushWord #$000A ; key down & mouse down events
PushLong #EventRecord
-GetNextEvent
pla
beq Again
lda EventWhat ; get event code
asl a ; code * 2 = table ocation
tax ; X is index register
jsr (EventTable,x) ; look up event’s routine
lda QuitFlag
beqg again
rts
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How an Event Aslisting 7-7 illustrates, the heart of a typical event loop is the Event Manager

Loop Works

Interpreting the
Event Record

call GetNextEvent. When you call GetNextEvent, you have to pass it
three parameters:

B A 1-word space on the stack, which GetNextEvent fills with a
value before it returns.

B A [-word mask, which tells GetNextEvent what kinds of events to
look for and what kinds of events to ignore. An event mask is a
word in which each bit stands for one type of event. By setting
certain bits and leaving other bits clear, you instruct the Event
Manager to be on the lookout for certain types of events, and to pay
no attention to others. Table 7-6 lists the Event Manager’s event
mask. When the Event Manager is in an event loop, it reports each
type of event that has a bit set in the event mask and ignores each
event whose corresponding bit is clear. If you pass the Event
Manager an event mask of $FFFF, it reports on all events detected.

B A pointer to an event record. When an application uses the Event
Manager, it must place an event record somewhere in memory.
Then, when the Event Manager posts an event, it can place
important information about the event in the event record.

When the Event Manager processes a GetNextEvent call, it returns a
I-word Boolean value: a nonzero value (true) if an event was detected and a
zero value (false) if there was no event.

The GetNextEvent call is usually used in a loop. In listing 7-7,
GetNextEvent is used in the loop labeled Again. Each time the loop makes
a cycle, GetNextEvent is called. Then the 1-word Boolean value returned
by GetNextEvent is pulled off the stack. If GetNextEvent does not detect
an event, the program branches back to the line labeled Again and makes
another GetNextEvent call.

If GetNextEvent detects an event, it places information about the event in
an event record, which must be set up by the program using the Event
Manager. Listing 7-8 is an event record you’ll be using in the EVENT.S1
program later in this chapter.

Listing 7-8
Event record in the EVENT.S1 program
EventData DATA
EventRecord anop
EventWhat ds 2
EventMessage ds 4
EventWhen ds 4
EventWhere ds 4
EventModifiers ds 2

END
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Table 7-6
Event Manager’'s Event Mask
Bit Name Value
0 Not used
Mouse down mask 0 = No mouse down event
1 = Mouse down event
2 Mouse up mask 0 = No mouse up event
1 = Mouse up event
3 Key down mask 0 = No key down event
1 = Key down event
Not used
5 Auto-key mask 0 = No auto-key event
1 = Auto-key event
6 Update mask 0 = No update event
1 = Update event
Not used
Activate mask 0 = No activate event
1 = Activate event
9 Switch mask 0 = No switch event
1 = Switch event
10 Desk accessory mask 0 = No desk accessory event
1 = Desk accessory event
11 Device driver mask 0 = No device driver event
1 = Device driver event
12 Not used
13 Application-defined events
14 Application-defined events
15 Application-defined events

As listing 7-8 shows, the event record in the EVENT.S1 program has
five elements, or fields:

W What field, called EventWhat. In this field, the Event Manager
returns a code telling what kind of event was detected. The event
codes that can be returned in this field are listed in table 7-3.

B Message field, called EventMessage. The nature of this message
depends on the type of event detected, as shown in table 7—4.

B When field, called EventWhen. In this field, the Event Manager
returns the number of clock ticks since the system was last started.

B Where field, called EventWhere. In this field, the Event Manager
places the location of the mouse, in global coordinates, when the
event was posted.

B Modifiers field, called EventModifiers. When a
GetNextEvent call returns, this field contains information about
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Using an
Event Table

activate events and the states of certain keyboard keys and hand-
controller buttons when an event was posted. A bit-by-bit
explanation of this field is in table 7-5.

When the Event Manager detects an event and places information about it in
an event record, the EVENT.S1 program uses a block of data called an event
table to decide what to do about the event. An event table is simply a table
of pointers to subroutines that an application program uses to respond to events
of various types. In the EVENT.S1 program, when the GetNextEvent call
detects an event and places its event code in the Wha't field of an event record,
an addressing mode called absolute indexed indirect addressing interprets the
event code returned by the Event Manager and jumps to the appropriate
subroutine. Listing 7-9 shows the event table used in the EVENT.S1 program.

Listing 7-9
Event table in the EVENT.S1 program
EventTable DATA
dc i‘ignore’ ; 0 nutl
dc idoQuit’ ; 1 mouse down
dc i“ignore’ ; 2 mouse up
dc i'doQuit’ ; 3 key down
dc i“ignore’ ; 4 undefined
dc i“ignore’ ; 5 auto-key down
dc i‘ignore’ ; 6 update event
dc iignore’ ; 7 undefined
dc i’ignore’ ; 8 activate
dc iignore’ ; 9 switch
dc i’ignore’ ; 10 desk acc
dc iignore’ ; 11 device driver
dc i‘ignore’ ; 12 application
dc i“ignore’ ; 13 ap
dc i‘ignore’ ; 14 ap
dc i‘ignore’ ; 15 ap
dc iignore’ ; 0 in desk
END

Listing 7-10, a fragment of code, uses indexed indirect addressing to
loop through an event table to look for an event code returned by the
GetNextEvent call.

In the first line of listing 7-10, the 65C816 accumulator is loaded with
the event code that the Event Manager placed in the EventWhat field of the
event record. In the next line, an as | a instruction multiplies the event code
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Listing 7-10
Looping through an event table
lda EventWhat ; get event code
asl a ; code * 2 = table location
tax ; X is index register
jsr (EventTable,x) ; look up event’s routine

now in the accumulator by 2. Because each address in the event table is 2
words, this operation converts the code in the accumulator to the proper offset
for the address in the table the program is looking for.

When this offset is calculated, the tax instruction copies it into the X
register. Finally, in the last line of the example, the absolute indexed indirect
addressing mode is used to jump to the desired subroutine.

The EVENT.S1 Program

Now that you know how event loops work, you're ready to type, assemble,
and execute the EVENT.S1 program. This program prints a message on the
screen and then goes into an event loop. During the event loop, an event
mask allows the GetNextEvent call to respond only to key down and mouse
down events, so nothing more will happen until a key or the button on the
Ilgs mouse is pressed. When the mouse button or a key is pressed, another
message is printed on the screen and the program ends. The complete listing
of the EVENT.S1 program (listing 7—12) is at the end of this chapter.

Using the llgs Toolbox from C
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If all you wanted to do in C was write standard, vanilla-flavored, UNIX-style
programs, you probably wouldn’t be using an Apple Ilgs. The real fun (and
possible profit) in using the IlGs is in creating programs with razzle-dazzle
features like windows, pull-down menus, and glorious color and sound.
Thanks to the Ilgs C Interface Library, which allows you to make IIgs Toolbox
calls from C programs, you can put the Ilgs through all its spectacular paces
from programs written in C.

The APW C compiler, which was used to write all the C programs in
this book, fully supports the use of the Ilgs Toolbox from C. In addition to
the definitions needed to use the standard C library routines, the APW directory
LIBRARIES/CINCLUDE contains all you need (probably more than you
need) to use all the Toolbox calls and data structures in C programs. In
addition, APW has made thousands of predefined tool-related constants avail-
able to C programmers. These include bit-flag attribute values and the error
codes returned by tools. The IIGs C Interface Library also contains many other
miscellaneous values to convey special information to and from various tool
calls.
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Pascal-Type
Functions

C Toolbox
Header File

APW C implements an extension to standard C that allows you to use a special
set of Pascal calling conventions as well as standard C conventions. In Pascal,
the arguments passed to a function are pushed onto the stack from left to
right, so the rightmost argument ends up at the top of the stack. In normal
C functions, the leftmost argument winds up on top. Pascal-type functions—
and this includes all IIgs Toolbox routines and any functions you compile
from Pascal source code—expect space for any values they return to be pushed
onto the stack before they are called. Instead of returning values in the A and
X registers as you might expect a well-behaved C call to do, they place the
values they return in the space reserved for them on the stack. Naturally, if
the space is not reserved, whatever is there is ‘‘clobbered’’ by the returned
values, and your program gets the wrong values back when the call returns.

You’ll rarely have to worry about any of this, however, as long as you
use the Ilgs C Interface Library. Unless you are writing modules in Pascal
that are called from C or writing your own Toolbox routines, you won’t need
to declare anything as Pascal to make Toolbox calls. In APW C, all the
conversion details needed to make Toolbox calls are included in a special
collection of header files in APW/LIBRARIES/CINCLUDE.

You don’t need to look at the contents of APW’s header files to use them in
making Toolbox calls. All you have to do is use an #inc lude definition to
include the names of the tool sets you need in the heading of your program,
then make sure you follow the calling conventions listed under C at the bottom
of each page in the Apple IlGs Toolbox Reference. It may be instructive,
however, to look at one or two of APW’s header files. You can print one to
the printer by making this shell call:

#type 2/cinclude/control.h >.printer

If you use the APW editor instead of your printer to look at a header
file, make sure you don’t inadvertently change the file’s contents. If you do,
be sure you don’t save the changes when you quit. Better yet, lock your disk
or make a copy of the file and open the copy with the editor.

When you print the contents of a header file on the screen or the printer,
the first thing you’ll see is a heading, which is a comment. Under that, you’ll
see something like this:

#ifndef _quickdraw-
#include <quickdraw.h>
#endif

#ifndef _event.
#include <event.h>

#endif

#ifndef _control-
#define _control_
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Next are the real contents of the file. Because the definitions that follow
depend in part on definitions provided in other headers, they have to be
included first. That’s why two # include statements head up the file. Be-
cause C ‘‘complains’’ if you try to compile the same group of definitions
more than once, conditional compilation protects against this occurrence:

#1fndef _control.
The last line:
define _control_

ensures that the definitions that follow are never recompiled during this com-
pilation.

Next you’ll see a long list of constant definitions, each preceded by the
expression

#define

These definitions allow you to use certain named constants described
in Apple’s Toolbox and C manuals without looking up their values. They
make your code easier to write and read. The comments tell you a little about
the use of each constant. The ones that say error are values placed in the
global variable _too LErr if an error is detected by one of the tool calls.

After the constant definitions, you’ll see a listing of type definitions.
These allow you to declare variables in your source that match the structures
expected by various tool calls. For instance, you can write:

CtlRecHndl myCtl;

You can then store a control’s handle, returned by NewControl or another
function, in the variable called myCt L. For example:

myCt{ = NewControl(........ );
Then there is a listing of function declarations. For example:

extern Pascal CtlRecHndl NewControl ()
inline(0x0000, dispatcher);

This declares a Pascal function returning 4 bytes (long) to be interpreted as
a pointer-to-a-pointer to Ct LRecHndl. It also tells the compiler to insert the
inline trap instructions in the object code instead of the usual jsl function
name generated for normal C functions.
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The Inline
Trap Call

Making Calls
with Glue

At the end of the function declarations is the line
#endif

That’s the ending required by the conditional compilation directive at the
beginning of the file.

In IIgs C, almost all Toolbox routines are called with the aid of an inline
trap. This mechanism is provided so that the linker won’t go looking in C
libraries for Toolbox routines when it runs across their names in C programs.
The inline trap mechanism distinguishes Toolbox calls from C library calls
so that this won’t happen.

Because tool calls are not located where the linker can find them and
because they may be moved as tools are revised, a routine called the Tool
Dispatcher, which is always located at address $E1000, uses a jump table to
access each tool. This table is updated with each revision of the tools. To
call a tool in assembly language, you push the tool number onto the stack
and then do a long jump (is L) to SE1000. The engineers who designed APW
C could have placed assembled routines for making each call into CLIB, and
then you could have called them just as you would any other library routine.
But this method would increase the size of CLIB and be inefficient, because
it would turn each tool call into two nested subroutine calls.

Instead, they designed the inline trap, which inserts dispatcher calls
directly into the object code generated by the C compiler. That’s why it is
called inline. You will never need to use this call directly; it is used auto-
matically by the function definitions in the headers. But knowing how it works
and why it is there gives you a better understanding of what happens when
you make a tool call.

A few tool routines are not accessed using inline dispatcher calls placed in
your. object code. These routines return too much data on the stack, have
arguments smaller than a word (less than 2 bytes), or are otherwise not directly
compatible with the APW C compiler. For these, routines called glue have
been written in assembly language, assembled, and added to CLIB. The glue
routines accept input supplied by compiled C code, adapt it (if necessary) to
the format required by the call, execute an inline trap, and pass any results
back to the calling routine in a way that can be handled easily in C. If you
look in an appropriate C header file, you’ll see that such calls look like ordinary
C function declarations. For example, in the file misctool.h, you can find this
line:

extern TimeRec ReadTimeHex();

Because of this function, the call ReadTimeHex is accessed by a long
jump (jsl) instead of an inline trap call. This, in turn, causes the APW
linker to find a glue routine called ReadTimeHex in CLIB and link it with
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Pointers,
Handles, and
the Memory
Manager

your program. Again, all the details are handled for you. All you have to do
is make the call and pass it any required arguments (in this case there are
none).

Two very important definitions in the types.h file are
char *Pointer;

and

Pointer *Handle;

Many of the tools in the Ils Toolbox deal with handles, or pointers to
pointers. A handle, as you may recall from chapter 4, is a variable in which
the address of another variable, called a master pointer, is stored. All handles
must be assigned by the Memory Manager. Much of the data used by the
tools in the Toolbox has to be referenced with handles, rather than directly
with pointers. The use of handles allows the Memory Manager to compact
memory by shuffling data around and purging programs and data that are no
longer being used. During this procedure, the address of the master pointer,
which the handle points to, remains constant. But the value contained in the
master pointer is updated by the Memory Manager whenever the data to which
it points is moved.

The definitions of pointer and handle in the types.h file are generic
definitions. Because the data type char is a byte, the smallest addressable unit
of memory, the definitions char *Pointer; and Pointer *Handle; are
handy for referencing general-purpose data. Most Toolbox routines don’t
require you to specify the data structure. You just indicate the location of the
data structure or, specifically, its master pointer. Variables of type handle are
perfect for storing this information. If you want to access the first byte of
information pointed to by a handle’s master pointer you can write

**myhandle

In some cases, the data pointed to, or at least the part of the data closest to
the beginning of the block, has a specified structure. In such cases, an ap-
propriate data structure is defined in an appropriate toolbox header file. These
definitions use the C typedef statement. A typedef statement declares
certain names to stand for a particular data structure or some other complex
data type. For each of these definitions, a pointer type and a handle type are
also provided. For example, at the end of the definition of a Ct LRec in ctl.h,
you’d see

} CtlRec, *CtLRecPtr, **CtlRecHndl;
There is an advantage to defining a type that is a handle to a specific

structure. When you make a call that gives you a handle to some data that is
structured as follows:
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CtlRecHndl myHandle;
myHandle = GetWindowControls();

myHand Le is set to the address of the master pointer for the active window’s
first control. If you want to know the size, shape, and location of this control,
you can write

Rect myRect;
myRect = (*myHandle)->ctlRec;

The EVENT.C Program

The EVENT.C program needs no introduction. It’s a C language version of
the EVENT.S1 program. The EVENT.C program appears in listing 7-13 at
the end of this chapter.

The EVENT.C program uses the standard C library routine printf to
display a message on the IIcs text screen. Because this program is interested
only in key down and mouse down events, a #define statement creates a
mask for the Event Manager GetNextEvent call. Thus, the result of
GetNextEvent can be treated as a Boolean-type value. It returns a nonzero
value (true) when a key or the mouse button is pressed, and it returns a zero
value (false) if a key down or mouse down event is not detected. By setting
a done flag to a nonzero value and using it for the condition of the while
loop in the EVENT.C program, you guarantee that the loop will end.

Actually, you can compress the while loop even more, eliminating
the need for a done flag:

while(!GetNextEvent (SIMPLE_MASK ,&myEvent));

Although this line accomplishes the same thing as the loop in the program,
the syntax we chose is more commonly encountered in event loops that actually
do something. That is why it is used in the EVENT.C program.

Listing 7—11, titled INITQUIT.C, is not a complete C program. You
can tell that right away because it doesn’t have a main() function. Instead,
it’s an inc Lude file designed to be used with the EVENT.C program. If you
want to type and run EVENT.C, you have to type INITQUIT.C, save it on
disk, and then include it in EVENT.C with the line

#include "initquit.c”

which is the first line of the EVENT.C program.

INITQUIT.C does two important things. First, using #inc lude state-
ments, it provides EVENT.C with the Toolbox interface files it needs. It then
provides the C functions needed to start up and shut down the tools that are
loaded and initialized.
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The INITQUIT.C program is designed to be used not only with the
EVENT.C program, but also with two other programs—PAINTBOX.C and
SKETCHER.C—that you encounter in chapter 8. So it’s easy to see why it
is separated from the rest of the code in EVENT.C. By typing it separately
and treating it as an inc lude file, you can create it once and then use it in
three different programs. It can be modified and used in even more programs—
and you will see it again, in expanded versions, in later chapters.

Listing 7—-11
INITQUIT.C program

#include <TYPES.H>
#include <LOCATOR.H>
#include <MEMORY.H>
#include <MISCTOOL.H>
#include <QUICKDRAW.H>
#include <EVENT.H>

#define MODE O /* 320 graphics mode */

#define MaxX 320 /* max X for cursor (for Event Mgr) */

#define dpAttr attrLocked+attrFixed+attrBank /* for allocating direct page
space */

int MyID; /* for Memory Manager */

int ToolTablell = {2,
4, 0x0100, /* QD version 1.1 */
6, 0x0100, /* Event version 1.1 */
I3

StartTools() /* start up these tools: */

{
TLStartUp(); /* Tool Locator */
MyID = MMStartUpQ); /* Mem Manager */
MTStartUp(); /* Misc Tools */
LoadTools(ToolTable); /* load tools from disk */
ToollInit(); /* start up the rest */

}

ToolInit() /* init the rest of needed tools */

{

char **xy;
y = NewHandle(0Ox400L,MyID,dpAttr,0L); /* reserve 4 pages */
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QDStartUp((int) *y, MODE, 160, MyID); /* uses 3 pages */
EMStartUp((int) (*y + 0x300), 20, 0, MaxX, 0, 200, MyID>;

Shutbown() /* shut down all of the tools we started */
{

Grafoff();

EMShutDown();

QDShutbown();

MTShutDown();

MMShutDown(MyID);

TLShutDown();

EVENT.S1 and EVENT.C Listings

Listing 7—-12
EVENT.S1 program

* EVENT.S1

; This program prints a message on the screen and then goes into
; an event loop. During the Loop, the _GetNextEvent mask al lows
; the Event Manager to Look only for key down and mouse down

; events. When one of these is detected, the Loop ends, another
; message is printed on the screen, and the program ends.

*%x%x A FEW ASSEMBLER DIRECTIVES ***
Title ‘Event’

ABSADDR on

LIST off

SYMBOL off

65816 on

mcopy event.macros

KEEP Event
*

* BEGINNING OF PROGRAM
*
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Begin

*

* SOME DIRECT PAGE ADDRESSES AND A FEW

*

DPData

DPPointer
DPHandle

ScreenMode
MaxX

*

* MAIN PROGRAM
*

MainProgram

*%%x SET UP INPUT AND OUTPUT SLOTS **x

164

START
Using QuitData

jmp MainProgram

END

START

gequ $10
gequ DPPointer+4

gequ $00
gequ 320

END

LOOP

START

phk
plb

tdc
sta MyDP

jsr Toollnit

PushWord #0
PushLong #3
_SetlInputDevice
PushWord #0
-InitTextDev

PushWord #0
PushlLong #3
~SetOutputDevice
PushWord #1
“InitTextDev

; skip over data

EQUATES

; direct page pointer

r

’

r

r

320 mode
X clamp high

get current direct page
and save it for the moment

start up all tools we'll need

set input to slot 3

set output to slot 3
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jsr PrintMsg1 ;
jsr EventLoop ;

*%% WHEN EVENT LOOP ENDS, WE'LL SHUT DOWN **x*

MyDP

*

* EVENT LOOP
*

EventLoop

Again

*

* ROUTINE THAT
*

PrintMsg1

jsr Shutdown
jmp Endit

ds 2

END

START

Using QuitData
Using EventTable
Using EventbData

PushWord #0 ;
PushWord #$000A ;
PushlLong #EventRecord
-GetNextEvent

pla

beq Again

lda EventWhat ;
asl a H
tax ;
jsr (EventTable,x) ;
lda QuitFlag

beqg again

rts

END

PRINTS OPENING STRING

START
GrafOoff

PushWord #$8C ;
MWriteChar

print message on screen
check for key & mouse events

space for result
key down & mouse down events

get event code

code * 2 = table Llocation
X is index register
look up event’s routine

clear screen
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PushLong #StartMsg
WriteCString

rts
StartMsg dc cPress any key to continue: ',h'0d00’

END

*

* THIS IS WHERE WE INITIALIZE OUR TOOLS
*

ToolInit START
using MMData

*%* START UP TOOL LOCATOR ***

_TLStartup ; Tool Locator

*%% INITIALIZE MEMORY MANAGER **x*

PushWord #0
_MMStartup

pla
sta MyID

*%% INITIALIZE MISC. TOOLS SET #*%x*
—MTStartup
*%* GET SOME DIRECT PAGE MEMORY FOR TOOLS THAT NEED IT **xx%

PushLong #0 ; space for handle
PushLong #$800 ; eight pages
PushWord MyID

PushWord #$Cc001 ; locked, fixed, fixed bank
PushLong #0

NewHandle

pla
sta DPHandle
pla sta DPHandle+2

lda [DPHandlel
sta DPPointer

166



7—Introducing the llas Toolbox

*%%x INITIALIZE QUICKDRAW II #%x%

lda DPPointer ; pointer to direct page
pha

PushWord #ScreenMode ; either 320 or 640 mode
PushWord #160 ; max size of scan line
PushWord MyID

-QDStartup

**x% INITIALIZE EVENT MANAGER ***

* THE ROUTINE

EndIt

lda DPPointer ; pointer to direct page
cle

adc #%$300 ; QD direct page + #$300
pha ; (@D needs 3 pages)
PushWord #20 ;> queue size

PushWord #0 ; X clamp low

PushWord #MaxX ; X clamp high

PushWord #0 ; Y clamp low

PushWord #200 ; Y clamp high

PushWord MylID

~EMStartup

rts

END

THAT ENDS THE PROGRAM

START
Using QuitData
Using MMData

PushWord #%$8C ; clear screen
WriteChar

PushlLong #EndMsg
MWriteCString

PushWord MyID
-MMShutdown

jsr Shutdown

-Quit QuitParams
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EndMsg dc cThank You. ,h'0d00’
END

*

* SHUT DOWN ALL THE TOOLS WE STARTED UP
*

Shutbown START
Using MMData

-EMShutDown
-QDShutbDown
~MTShutbDown

PushLong DPHandle
-DisposeHandle

PushWord MyID
—MMShutDown
~TLShutbown

rts
END
*

* ROUTINE THAT SETS THE QUIT FLAG
*

do@Quit START
Using QuitData

lda #$8000
sta QuitFlag

rts

END

*
* A USEFUL AND CONVENIENT WAY NOT TO DO ANYTHING

*
Ignore START

rts

END
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*

* DATA SEGMENTS
*

EventTable DATA
dc i“ignore’ ; 0 null
dc idoQuit’ ; 1 mouse down
dc i‘ignore’ ; 2 mouse up
dc idoQuit’ ; 3 key down
dc i‘ignore’ ; 4 undefined
dc i‘ignore’ ;> 5 auto-key down
dc iignore’ ; 6 update event
dc i“ignore’ ;> 7 undefined
dc iignore’ ;> 8 activate
dc i“ignore’ ; 9 switch
dc iignore’ ;5 10 desk acc
dc i‘ignore’ 5 11 device driver
dc i“ignore’ ; 12 application
dc i‘ignore’ ; 13 application
dc i’ignore’ ; 14 application
dc i’ignore’ ; 15 application
dc i‘ignore’ ; 0 in desk
END
EventData DATA
EventRecord anop ; table for Event Manager
EventWhat ds 2
EventMessage ds 4
EventWhen ds 4
EventWhere ds 4
EventModifiers ds 2
END
QuitDbata DATA
QuitFlag ds 2
QuitParams dc 40
dc 40
dc 1407
END
MMData DATA
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MyID

de 10 program ID word

END
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Listing 7-13
EVENT.C program

#include "initquit.c
#include <stdio.h> /* needed for putchar =*/

#define SIMPLE_MASK (mDownMask + keyDownMask)

EventRecord myEvent;
Boolean done = false;

main()

{
StartTools();
PrintMsg();
EventlLoop();
ShutbDown();

}

PrintMsg()> /* send message to stdout, then switch display

{

putchar(0x8C); /* clear screen */

printf('Press any key to continuewn”;

GrafOoff(); /* display standard text screen */
}
EventLoop()
{

while(!done)

done = GetNextEvent(SIMPLE_MASK,&myEvent);

}

*/




CHAPTER

llcs Graphics

Using QuickDraw Il

- I here are more than 800 tools in the Apple Ilgs Toolbox, and more
T than a fourth of them are in one tool set: QuickDraw II. QuickDraw
II is the tool set that draws everything on the screen when the Ilcs
is in super high-resolution screen mode. It is used not only by application
programs, but also by other tools. When the Window Manager places a win-
dow on the screen, all the window’s components—scroll bars, title bar, and
so on—are drawn by QuickDraw II. When a pushbutton appears in a dialog
box, the button and its contents are drawn by QuickDraw II. Even text dis-
played on a super high-resolution screen is drawn by QuickDraw II.

You can also use the QuickDraw II tool set in your own application
programs. This chapter contains two type-and-run programs that demonstrate
some of QuickDraw’s capabilities. One of the programs, PAINTBOX, draws
a rectangle on the screen. The other, SKETCHER, displays a white screen
on which you can draw sketches using the llgs mouse.

Before those programs are presented, though, a description of how
QuickDraw II works is helpful. So the first section of this chapter is devoted
to a description of QuickDraw II.

What QuickDraw Il Can Do

When the Apple Macintosh was designed, its high-resolution screen dis-
play was controlled by a tool set called QuickDraw. Now, with the advent
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Point Data
Structure

Rectangle Data
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Structure

of the Ilgs, a Ilgs version of the original QuickDraw tool set has been de-
signed—QuickDraw II. When Ilcs programmers talk about QuickDraw II,
they often leave off the II and refer to it simply as QuickDraw. So when you
see the term QuickDraw in this book, please remember that, unless otherwise
specified, we are discussing QuickDraw II.

The QuickDraw II tool set can draw various kinds of objects on a screen:

B [ines (straight or irregular)

B Rectangles (including squares)

B Ovals (including circles)

B Arcs (actually segments of circles)
B Polygons (multisided figures)

B Regions (collections of other kinds of objects)

QuickDraw can perform the following graphic operations on rectangles,
rounded-corner rectangles, ovals, arcs, regions, and polygons:

B Framing, which outlines the shape
B Painting, which fills the shape with a specified color or pattern

B FErasing, which paints the shape using the current background color
or background pattern

M Inverting, which inverts the pixels in the shape

Every object drawn in QuickDraw is made up of points. In QuickDraw, a
point data structure contains two integers. The first integer in the structure
defines the point’s vertical, or Y, coordinate. The second integer defines the
point’s horizontal, or X, coordinate. Thus, a point can be defined in an
assembly language program as

APoint anop
YCoord ds 2
XCoord ds 2

When you define a rectangle, QuickDraw stores it in memory as a data
structure. In QuickDraw, a rectangle data structure is made up of two point
structures. One of the points defines the upper left corner of the rectangle,
and the other defines the lower right corner of the rectangle. Thus, it takes
only four integers to define the size and location of a rectangle. So a rectangle
can be defined this way in an assembly language program:

ARect anop
UYCoord ds 2
UXCoord ds 2
LYCoord ds 2
LXCoord ds 2
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Drawing a
Rectangle

Drawing Ovals,
Arcs, and
Round
Rectangles

Region and
Polygon Data
Structures

To draw a rectangle in QuickDraw, you pass its coordinates to a rectangle
drawing call such as FrameRect or DrawRect. The FrameRect call
outlines a rectangle using the current color, size, pattern, and mask of the
current QuickDraw pen. The PaintRect call paints a rectangle on the screen
using the current pen color, pen pattern, and pen mask. The QuickDraw pen
and its attributes are described later in the chapter.

The rectangle data structure is also used for drawing three other kinds of
objects: ovals, arcs, and round rectangles. To draw an oval using QuickDraw,
you define a rectangle and pass its coordinates to an oval drawing call, such
as FrameOval or PaintOval. The FrameOval call works much like
FrameRect. It outlines an oval using the current color, size, pattern, and
mask of the current QuickDraw pen. The PaintOval call paints an oval on
the screen using the current pen color, pattern, and mask.

In QuickDraw jargon, arcs are actually segments of circles. To draw
an arc in QuickDraw, you first define the rectangle in which it will lie. Then
you pass the rectangle’s coordinates, along with the angle described by the
arc, to the FrameArc or PaintArc call. From then on, the FrameArc and
PaintArc calls work like FrameOval and PaintOval.

‘‘Round rectangles,”” in QuickDraw lingo, are actually rounded-
cornered rectangles. To draw a round rectangle in QuickDraw, you pass the
rectangle’s coordinates and the height and width of its rounded corners to a
round rectangle drawing call such as FrameRRect or PaintRRect.
QuickDraw takes care of the rest of the details.

Point and rectangle data structures are not the only kinds of data struc-
tures. QuickDraw uses many other data structures, and some of them are
described later in this chapter.

Regions and polygons make up a unique category in QuickDraw’s library of
data structures. A region data structure is a QuickDraw object made up of
other QuickDraw objects. A polygon data structure is a figure that can have
any number of straight sides.

To set up a region or a polygon, you can’t just ‘‘fill in the blanks’’ as
you do with other kinds of structures. The next section describes regions and
polygons and how they are created in IlGs programs.

Regions

A region is a data structure that can contain other structures, such as rectangles,
ovals, arcs, and rectangles. To initialize a region, you must use the QuickDraw
call NewRgn. This call sets up a region and gives you a handle to it. After
you create a region using the NewRgn call, you can open it for drawing using
OpenRgn.

When you create and open a region, you can draw objects in it by using
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the object framing calls FrameRect, FrameOval, and FrameRRect. Each
call adds an object to the region you are creating.

When you finish drawing a region, you close it with the CloseRgn
call. From then on, you can draw the region on the screen by passing its
handle to a region drawing call such as FrameRgn or PaintRgn.

Polygons

Polygons are created in a similar way: with a sequence of calls to QuickDraw
routines. Before you can start drawing a polygon, you issue the QuickDraw
call OpenPoly. The OpenPoly call sets up a polygon and provides you with
a handle to it. You can then define the polygon using LineTo calls.

You begin to define a polygon by moving the QuickDraw pen to the
polygon’s starting point and drawing a line from there to the next point. You
can then draw another line from that point to the next point, and so on.

When you finish defining a polygon, you close it with the ClosePoly
call. From then on, you can draw or paint it on the screen by passing its
handle to polygon drawing calls such as FramePolyand PaintPoly.

The data structure for a polygon consists of two fixed length fields
followed by a variable length array. The following shows the data structure
for a polygon. (It is presented only for your information, because you will
probably never have to set up a polygon data structure in a program.
QuickDraw’s polygon calis do that for you when they are used as described
in this section.)

PolySize An integer
PolyBBox A rectangle
PolyPoints An array [0 . . . 7] of points

The PolySize field of a polygon data structure contains the size, in
bytes, of the polygon variable. The maximum size of a polygon is 32K bytes.
The PolyBBox field is a rectangle that encloses the polygon. PolyPoints
is a dynamic array that expands as necessary to contain the points of the
polygon. It specifies the starting point of a polygon and each successive point
to which a line is drawn.

When QuickDraw II draws a polygon, it moves its pen to the starting
point of the polygon and then draws a series of lines to the remaining points,
in the same way points are set up when the polygon is defined. In other words,
QuickDraw ‘‘plays back’’ the same series of operations it uses to define the
polygon. As a result, polygons are not treated exactly the same as other
QuickDraw II shapes. For example, the procedure that frames a polygon draws
outside the actual boundary of the polygon, because QuickDraw II line draw-
ing routines draw below and to the right of the pen location.

Routines that fill a polygon with a pattern, however, stay inside the
boundary of the polygon. If the polygon’s ending point isn’t the same as its
starting point, these routines add a line between them to complete the shape.

A polygon is also scaled differently from a similarly shaped region if
it is being drawn as part of a picture. When a slanted line is stretched, it is
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drawn more smoothly if it’s part of a polygon rather than part of a region.
You may find it helpful to keep in mind the conceptual difference between
polygons and regions. A polygon is treated more as a continuous shape; a
region is treated more as a set of bits.

Conceptual Drawing Planes

When you create an object, QuickDraw places the object in a two-dimensional
plane called a conceptual drawing space. When an object is placed in this
drawing space, its position, like a position on a map, can be pinpointed with
coordinates.

There is one fact about a conceptual drawing space that may be a little
difficult to grasp. The plane that it describes does not exist anywhere in the
IIgs’s memory. When an object is defined in QuickDraw’s conceptual drawing
space, the object exists only as a mathematic image described by coordinates.
The object thus takes up much less space in memory than it would if it were
stored as a bit-mapped image.

But, before the object can be drawn—for example, on the Ilgs screen
or on a printer—enough space to hold the drawing must be reserved in
memory. The memory area in which objects can be drawn is known as a
pixel map. A pixel map is made up of tiny dots called picture elements, or
pixels. After you create a pixel map, the objects drawn on it can be printed
or displayed.

The conceptual drawing space in which QuickDraw can store objects,
measured in pixels, extends from — 16K to + 16K horizontally and from
— 16K to + 16K vertically—a space large enough to hold 1,024,000,000
pixels. Figure 8—1 is a simplified diagram of the Ilgs’s conceptual drawing
plane.

This plane is divided into four segments. The coordinate numbered 0,0
is in the middle of the plane. Thus, if you wanted to draw a point in the exact
center of the plane, its coordinate would be 0,0.

The segments above and to the left of coordinate 0,0 use negative
coordinates. Only the segments below and to the right of 0,0 use positive
horizontal coordinates and positive vertical coordinates. For this reason, most
of the drawing takes place in the lower right segment of QuickDraw’s con-
ceptual drawing plane.

If the entire conceptual drawing space of an Apple Iigs were transferred
to a giant pixel map, the map would measure four screens wide by eight
screens high (or eight screens wide by four screens high). You could create
such a map and display it on your screen, using Window Manager scroll bars
to move it, if the Ilcs had enough memory capacity.

You don’t need that much memory, however, to make full use of the
conceptual drawing plane. Even with an unexpanded llgs system, you can
draw objects anywhere in QuickDraw’s conceptual drawing space. But before
you can transfer an object or a picture from QuickDraw’s conceptual drawing
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(= 18K, — 16K) (+ 16K, —16K)

{0,0)

(- 16K, —~16K) (+ 16K, + 16K)

Figure 8—1
QuickDraw I conceptual drawing plane

space to an actual pixel map, you have to make sure there is enough room
in the computer’s memory to store the pixel map on which your object or
picture will be drawn.

As mentioned, a pixel map is an area of memory that can contain an actual
drawing of a graphic image. This image, like an image stored in a conceptual
drawing space, is made up of a rectangular grid of pixels. Each pixel on a
pixel map has a value that displays a color on the IlGs screen or prints it on
a printer. Thus, the value assigned to each pixel in a pixel map is a color
code.

Pixels on a pixel map, like coordinates in QuickDraw’s conceptual
drawing space, can be thought of as points in a Cartesian coordinate system;
that is, each pixel on a pixel map has a horizontal coordinate and a vertical
coordinate. In QuickDraw II, as in the original QuickDraw system for the
Macintosh, the coordinates on a pixel map fall on lines that separate the pixels
on the map, rather than on the pixels themselves. This method of assigning
coordinates is illustrated in figure 8-2.

THIS POINT
DEFINES THIS PIXEL

P

Figure 8-2
Coordinates of a pixel
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This system of assigning coordinates makes it very easy to determine
when a pixel falls within a given rectangle and when it does not. Knowing
whether a pixel is inside a rectangle is quite important in QuickDraw II because
many calls deal only with pixels that fall in specific rectangles.

Pixel Maps and When QuickDraw is initialized, the pixel map it draws on is set by default

Screen Memory to the same area of memory that displays the super high-resolution screen,
memory address $E12000 to memory address $E19CFF. Thus, when you start
QuickDraw, its default drawing area is the screen. However, QuickDraw can
draw in any block of free RAM as easily as it can draw on the screen, and
applications can instruct QuickDraw to draw anywhere in memory.

Graphics Modes

The IIcs has two super high-resolution graphics modes: a 320-pixel mode and
640-pixel mode. When the Ilcs is in 320 mode, the pixel map it uses for its
screen display measures 320 pixels wide by 200 pixels high. In 640 mode,
its screen display measures 640 pixels wide by 200 pixels high.

Each horizontal line on the IIGs screen is called a scan line. So, in both
320 mode and 640 mode, the super high-resolution screen is 200 scan lines
high.

Both super high-resolution screen modes use a ‘‘chunky’’-style pixel
organization; the bits used to draw a given pixel on the screen are contained
in adjacent bits within 1 byte. In both 320 mode and 640 mode, each scan
line on the screen uses 160 bytes of memory. But the degree of ‘‘chunkiness’’
used by each mode is different. In 320 mode, 4 bits represent each pixel
display on the screen. In 640 mode, only 2 bits create each screen pixel.
Consequently, using 640 mode doubles the number of pixels that can be
displayed in each scan line, although the number of bytes used for each scan
line is the same in 320 mode and 640 mode.

The use of 640 mode does involve one important trade-off, however.
Because only 2 bits define each screen pixel in 640 mode and 4 bits define
each pixel in 320 mode, the number of colors that can be displayed in 640
mode is reduced. In 320 mode, sixteen discrete colors can be displayed on
the screen simultaneously. In 640 mode, only four discrete colors can be
displayed.

This limitation of 640 mode is not as bad as it sounds. With the help
of a technique called dithering, you can create repeating color patterns that
make it appear that more than four colors are displayed. A full description
of dithering is beyond the scope of this chapter, but complete instructions for
using dithering techniques are in chapter 16 (the chapter on QuickDraw II)
of the Apple llcs Toolbox Reference.

The number of colors displayed in both 320 mode and 640 mode can
be increased with special interrupts called scan-line interrupts. Instructions
for using scan-line interrupts are in chapter 4 (the video and graphics chapter)
of the Apple llGs Hardware Reference.
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When QuickDraw is initialized, it determines which graphics mode to use by
looking at a parameter passed to it in the @DStartup call. As you will see
in the programs later in this chapter, the @DStar tup call has four parameters,
one of which is called MasterSCB. If you pass the value $00 to the
QDStartup call in this parameter, QuickDraw starts in 320 mode. If you
pass the parameter $80, QuickDraw starts up in 640 mode.

There are also calls that change the graphics mode used inside a program.
Descriptions of these calls, and instructions for using them in programs, are
in the Apple IlGs Toolbox Reference.

In both 320 mode and 640 mode, the IlGs selects colors to be displayed on
the screen from a block of RAM data called a color palette. The 1ls has
sixteen color palettes, and each scan line can take its colors from any color
palette. Each pixel on a scan line can be drawn in any of the sixteen colors
that make up the palette being used by that line. And the 16 colors in each
palette can be chosen from 4,096 colors.

When you write programs for the IIgs, you will rarely, if ever, have to
deal with color palettes by directly accessing their memory addresses.
QuickDraw II has a full complement of calls to select and manipulate color
palettes and the colors they contain. For example, the SetColorTable call
sets a color table to specific values, and the GetColorTab Le call fills a color
table with the contents of another color table. There are also calls for getting
and setting single colors in color tables.

You can do just about anything with color palettes by using the color
table and color entry calls QuickDraw provides. To use colors and color tables
effectively, however, it is helpful to know a little about how the IlGs creates
and displays color on its screen.

The color palettes used by the Ilgs extend from memory address
$E19E00 through memory address $E19FFF——an area that begins just 256
bytes higher than the RAM block used for screen memory. There are sixteen
color palettes in this space, with 32 bytes used by each palette. Each color
palette contains codes for sixteen colors, with 2 bytes used for each color.

A color table, then, is a table of sixteen 2-byte entries, or words. The
low nibble of the low byte of each word represents the intensity of the color
blue. The high nibble of the low byte represents the intensity of the color
green. The low nibble of the high byte represents the intensity of the color red.
The high nibble of the high byte is not used. The following illustrates the
structure of each color represented in a color palette:

High Byte Low Byte
High Nibble Low Nibble High Nibble Low Nibble
Reserved Red Green Blue

As mentioned, each pixel is displayed differently in each of the super
high-resolution modes: 4 bits represent each pixel color in 320 mode, and 2
bits represent each pixel color in 640 mode. The higher resolution in 640
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mode carries a penalty. A pixel may be displayed in any of sixteen colors in
320 mode, but a pixel may be one of only four colors in 640 mode.

In both modes, the color information to display each pixel is placed in
the RAM area reserved for screen memory in a linear and contiguous manner.
The first byte of screen memory, in memory address $E12000, corresponds
to the upper left corner of the screen display. The last byte in screen RAM,
memory address $E19CFF, corresponds to the lower right corner of the screen.
Each scan line uses 160 bytes of screen memory.

In 320 mode, it takes 4 bits to determine each pixel color, so two pixels
are stored in every byte in the super high-resolution screen buffer. Because
4 bits of data determine the color of each pixel, each pixel on a scan line can
represent one of the sixteen colors in the palette that controls the scan line
on which the pixel appears.

In 640 mode, color selection is more complicated. In this mode, the
640 pixels in each horizontal line occupy 160 adjacent bytes of memory, and
each byte holds 4 pixels that appear side by side on the screen. And the sixteen
colors in the palette that controls the scan line are divided into four groups
of four colors each. In other words, each palette used for a scan line in 640
mode contains four mini-palettes, each one made up of four colors.

By making careful use of the four mini-palettes used for each scan line,
a program can increase the apparent number of colors used in each scan line
in 640 mode. Unfortunately, the way in which colors are taken from the four
mini-palettes used by each scan line is not intuitive.

The first pixel in each scan line can use any one of the four colors in
the third mini-palette in the scan line’s full palette. The second pixel can use
any of the four colors in the full palette’s fourth mini-palette. The third pixel
can use any of the four colors in the main palette’s first mini-palette. And
the fourth pixel can use any of the four colors in the second mini-palette. The
way this system works is shown in figure 8-3.

This process repeats itself for each successive group of four pixels in
each scan line. Thus, even though a given pixel can be one of only four

PIXEL VALUE PALETTE

COLOR 1
COLOR 2
COLOR 3
COLOR 4
COLOR 5
COLOR 6
COLOR 7
COLOR 8
COLOR 9
COLOR 10
COLOR 11
COLOR 12
COLOR 13
COLOR 14
COLOR 15
COLOR 16

PIXEL
3

PIXEL

PIXEL

PIXEL

W= lo|win = |Oojw|N = |Oflw(N{=O

Figure 8-3
Mini-palettes in 640 mode
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colors, different pixels in a line can take on any of the colors in a palette.
With the help of dithering, software written in 640 mode can display 16-color
graphics and 80-column text on the same screen.

Dithering techniques increase the apparent number of colors on a screen
by placing certain colors next to each other. (Your eye blends them.) By
alternating colors in even and odd mini-palettes, a skilled programmer can
control this blending and can thus obtain full-color capabilities in 640 mode.
Instructions for using dithering techniques are in chapter 16 of the Apple IlGs
Toolbox Reference.

In both 320 mode and 640 mode, the colors used for each scan line on the
screen are controlled with a group of RAM bytes called scan-line control
bytes, or SCBs.

Each scan-line control byte represents one scan line on the IIGs screen.
For each horizontal screen line, you can use the appropriate scan-line control
byte to select

B The 16-color palette from which the scan line will take its colors.

B If the scan line will use color fill mode. Color fill mode streamlines
the process of drawing consecutive pixels in the same color on a
scan line. Color fill is available only in 320 mode and is described
more fully in the Apple Ilcs Hardware Reference.

B [f a scan-line interrupt should be generated for the scan line.
(Instructions for using scan-line interrupts are in the Apple IlGs
Hardware Reference.)

B Whether the scan line will use 320-pixel or 640-pixel resolution.

Each of these scan-line attributes is controlled by 1 bit, or group of
bits, in the SCB for the line. The bits in a scan-line control byte, and what
they do, are described in table 8—1.

How To Use SCBs

When you write programs for the Ilgs, you will rarely, if ever, need to
manipulate QuickDraw’s scan-line control bytes by accessing them directly.
The QuickDraw tool set has several calls to get and set SCBs. It is easier
(and safer) to work with SCBs using these calls than it is to access them
directly by their memory locations. Calls that can be used to control SCB
settings include Ge tSCB, which returns the SCB setting for a given scan line,
SetSCB, which sets an SCB that controls a given line, and SetALLSCBs,
which sets all the SCBs on the screen to a specified value.

Descriptions of all SCB calls, and instructions for using them, are out-
lined in chapter 16 (the QuickDraw II chapter) of the Apple llGs Toolbox
Reference.

Where To Find SCBs

The block of memory that contains QuickDraw’s scan-line control bytes ex-
tends from memory address $E19D00 through memory address $E19DFF.
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Table 8-1
Structure of a Scan-Line Control Byte
Bit Name Value
7 320/640 mode flag 1 = Horizontal resolution equals 640
pixels.
0 = Horizontal resolution equals 320
pixels.
6 SCB interrupt flag 1 = Interrupt generated for this scan

line. (When this bit is 1, the scan line
interrupt status bit is set at the begin-
ning of the scan line.)

0 = Scan line interrupts disabled for
this scan line.
5 Color fill mode flag 1 = Color fill mode enabled. (This

mode is available in super hi-res 320-
pixel mode only. In 640-pixel mode,
color fill mode is disabled.)

0 = Color fill mode disabled.

4 Reserved; do not modify.
0-3 Palette select code Palette (0—15) chosen for this scan line.

This section of memory, as shown in figure 8—4, falls between the area of
memory for the super high-resolution screen map and the area of memory for
the color palettes that control the colors of the pixels on the screen.

The address of the scan-line control byte for each scan line is SE19DXX,
where XX is the hexadecimal value of the line. For example, the control byte
for the first scan line (line 0) is located in memory location $9D00, the control
byte for the second scan line (line 1) is in location $9DO01, and so on.

(Actually, only the first 200 bytes of the 255 bytes in the memory page
beginning at $E19D00 are scan-line control bytes. The remaining 55 bytes
are reserved for future expansion. To make sure your programs are compatible
with future Apple II products, you should not modify these 55 bytes.)

Now that you know a few facts about QuickDraw 1I, you’re ready for more
detail. To understand how QuickDraw II works, you need to be familiar with
a data structure called a GrafPort. Without GrafPorts, there would be no such
thing as a QuickDraw tool set.

Here is a summary of what GrafPorts are and what they do. First, a
GrafPort is not a block of data designed to be displayed on the IlGs screen.
Rather, it is a data structure that contains important information that
QuickDraw uses to create a screen display.

A GrafPort, like most other kinds of QuickDraw data structures, is
made up of records. Some of the records in a GrafPort data structure are also
data structure. A GrafPort data structure also includes integers, pointers,
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$9FFF
COLOR
PALETTES
$9E00
SCB TABLE
$9D00
SCREEN
BUFFER
$2000
| |
Figure 8-4

Memory map of screen buffer, SCB table, and color palettes

handles, rectangles, and other kinds of data. Understanding how these kinds
of data are used by a GrafPort—and how they relate—is an important part
of understanding QuickDraw II.

The data stored in a GrafPort is sometimes referred to as a drawing
environment. A drawing environment is simply a collection of data that
QuickDraw can refer to easily when it needs to draw a screen display.

The advantage of the GrafPort system is that it allows a complex drawing
environment to be maintained in a single, easily accessible record. By switch-
ing between GrafPorts, QuickDraw can change drawing environments very
rapidly and can thus create many different kinds of screen displays quite
efficiently. More than one GrafPort can be stored in memory, and it is not
unusual to have several GrafPorts in memory at one time. When a program
uses several screen windows, for example, each window has a GrafPort of
its own.

In QuickDraw, all graphic operations are performed in GrafPorts. Before a
GrafPort can be used, it must be allocated and initialized with the QuickDraw
call OpenPort. But most applications do not call OpenPort directly. They
use the IIcs Window Manager, which makes the call for them.

The QuickDraw call C losePort closes a GrafPort when it is no longer
needed. The GrafPort itself can be disposed of with the Memory Manager
call DisposeHandle. The Window Manager will also make these calls for
you when it is used to control the windows in a program.

In an application that uses multiple windows, each window is a separate
GrafPort. If an application draws into more than one GrafPort, the SetPort
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call sets up the GrafPort that is used for the drawing. Again, the Window
Manager makes this call when it manages the windows in a program.

At times, an application needs to preserve the current GrafPort. In this
case, the GetPort call saves the current port, and the SetPort call sets the
port to be drawn in. Then, when drawing in the second port is completed,
SetPort is used again to restore the previous port. The Window Manager
also takes care of making these calls when it manages the windows and
GrafPorts in a program.

The fields in a GrafPort include information on such topics as

8 The area of memory (the pixel map) in which images are drawn.
This area of memory is pointed to by a pointer in the GrafPort record.

B Whether images are drawn in 320 mode or 640 mode.

B How drawings are trimmed, or clipped, to fit in the areas in which
they lie.

B The size, shape, and pattern of the pen used for drawing.
B The font used for displaying text and how text is styled.
8 Where objects that are drawn are stored in memory.

The structure of a GrafPort i1s no secret. It has been published by Apple
and is listed in table 8-2. Apple strongly recommends, however, that
programmers avoid the temptation of directly modifying the fields in
GrafPorts. Instead, programmers are advised to access fields in GrafPorts
only through QuickDraw calls.

If you count all the bytes in the GrafPort in table 8-2, you will see
that a GrafPort data structure is 170 ($AA) bytes long. So, in an Apple IlGs
assembly language program, the memory space required for one GrafPort
could be set aside as follows:

GrafPort ds $AA

As mentioned, a GrafPort data structure includes many kinds of values:
handles, integers, pointers, and even smaller data structures. In a GrafPort
structure, each of these values is known as a field. Thus, the first field in a
GrafPort structure, as table 8—2 illustrates, is a data structure within a data
structure: in this case, a 16-byte structure called PortInfo. When a
PortInfo structure lies outside a GrafPort structure, it is often called a
LocInfo structure. And when a LocInfo structure is used in a call that
transfers pixel map data from one area of memory to another (such as
PPToPort or PaintPixels), it is often referred to as a SrcLocInfo
structure. So, in QuickDraw jargon, a PortInfo structure, a LocInfo
structure, and a SrcLocInfo structure are all the same.

Now let’s see what aPortInfo (or LocInfo, orSrcLocInfo) struc-
ture looks like, and how it’s used in a GrafPort data structure. The layout of
a LocInfo structure is illustrated in listing 8—1.

183



The lics Toolbox

Table 8-2
The Structure of a GrafPort

Field Length Description

Port Information

PortInfo 16 bytes LocInfo data structure
PortRect 8 bytes Rectangle data structure
ClipRgn 4 bytes Handle to a region
VisRgn 4 bytes Handle to a region
BkPat 32 bytes Pattern data structure

Pen State Data Structure

PnLoc 4 bytes Point structure
PnSize 4 bytes Point structure
PnMode 2 bytes Integer

PnPat 32 bytes Pattern data structure
PnMask 8 bytes Mask data structure
PnVis 2 bytes Integer

Font and Text Data

FontHandle 4 bytes Handle to a font
FontID 4 bytes Long integer
FontFlags 2 bytes Integer

TxSize 2 bytes Integer

TxFace 2 bytes Word

TxMode 2 bytes Integer

SpExtra 4 bytes Fixed point data structure
ChExtra 4 bytes Fixed point data structure

ForeGround and Background Color Data

FGColor 2 bytes Integer

BGColor 2 bytes Integer

PicSave 4 bytes Handle

RgnSave 4 bytes Handle

PolySave 4 bytes Handle
GrafProcs 4 bytes Pointer (Usually a null

pointer, set to Q)

ArcRot 2 bytes Integer
UserField 4 bytes Long integer
SysField 4 bytes Long integer

Add up the bytes in a LocInfo structure, and you’ll see that the struc-
ture is 16 bytes long. The first integer in a LocInfo structure is called a
LocInfoSCB.
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Listing 8-1
LocInfo Data Structure

LocInfo
LocInfoSCB
LocInfoPicPtr
LocInfoWidth
LIBoundsRect

anop
ds 2
ds
ds
ds

00 N~

;$00 for 320, $80 for 640
;pointer to pixel image

;scan Lline width (#160 is standard)
;format: 0,0,200,320

LocinfoSCB Field

When a LocInfo structure appears inside a GrafPort data structure, the
LocInfoSCB field defines the screen resolution of the pixel image that the
GrafPort points to. If the value of LocInfoSCB is $00, the pixel image is
displayed in 320 mode. If the value of LocInfoSCB is $80, the pixel image
is displayed in 640 mode. An SCB can have other values, as explained pre-
viously in this chapter.

LocinfoPicPtr Field

The next field in a PortLocInfo structure—the LocInfoPicPtr field—
is a pointer to the pixel map that the GrafPort describes. When a GrafPort
is initialized, the pixel map that PortLocInfo points to is the super high-
resolution screen. An application can change the LocInfoPicPtr field,
however, to point to any area of memory in which a pixel map can be stored.

LocInfoWidth Field

The LocInfoWidth field of a LocInfo structure defines the maximum
width, in bytes, of a scan line on the screen. In both 320 mode and 640 mode,
the most common value for this field is the width, in bytes, of one screen-
sized scan line: 160, or $A0 in hexadecimal notation.

LIBoundsRect Field

The LIBoundsRect field is a data structure that describes a rectangle. The
rectangle described by the LIBoundsRect structure describes a bounds rect-
angle: a rectangle that encloses the pixel map (or, sometimes, a portion of
the pixel map) that the current GrafPort is using. This pixel map is the same
one pointed to by the LocInfoPicPtr field of the LocInfo data struc-
ture. More information about bounds rectangles is presented later in this
chapter.

An LIBoundsRect structure is made up of four integers, or words.
Each of these words defines one coordinate of the current GrafPort’s bounds
rectangle. The order of these coordinates is: top left Y coordinate, top left X
coordinate, lower right Y coordinate, and lower right X coordinate. Because
a lIgs screen measures 200 scan lines down by 320 pixels across (in 320
mode), the coordinates used in the LIBoundsRec t structure exactly covering
a 320-mode screen are 0,0,200,320.
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Pen Patterns

QuickDraw does most of its drawing using a structure called a pen. Each
GrafPort in a program has one (and only one) graphics pen, which the GrafPort
uses for drawing lines, shapes, and text. A QuickDraw pen has five char-
acteristics: location, size (height and width), drawing mode, drawing pattern,
and drawing mask.

When a pen draws an image in a GrafPort, the pen location can always
be expressed as a point in the GrafPort’s coordinate system or, if a pixel map
is used, as a pair of coordinates on the pixel map. The point that defines the
location of a pen—Ilike any other point used in QuickDraw—can be located
using two integers, or words: an integer defining the point’s vertical (Y)
coordinate and an integer defining the point’s horizontal (X) coordinate.

In QuickDraw, the position of a pen is defined as the point where the
next line, shape, or character will begin. This point can be anywhere on a
GrafPort’s coordinate plane. The top left corner of the pen is at the pen
location; the pen hangs below and to the right of this point. When a pen is
in a given location, the QuickDraw call LineTo makes it draw a line, and
the call MoveTo moves it to another point without drawing a line. The MoveTo
and LineTo calls are used in a type-and-run program, SKETCHER, which
is presented at the end of this chapter.

The pen used in QuickDraw II is rectangular. Its width and height are
controlled by several different QuickDraw calls, including SetPenSize,
SetPenState, GetPenSize, and GetPenState. The default size of a
QuickDraw pen is a 1-by-1 pixel square. A pen can be set to this size with
the QuickDraw call PenNormal. The width and height of a pen can range
from coordinate $0000,$0000 to coordinate $3FFE,$3FFE (or 16382,16382
in decimal notation). If either the pen width or the pen height is less than 1,
the pen will not draw a visible line.

In addition to having a specific size, a QuickDraw pen also has a specific
pattern. A pen pattern is a 64-pixel image laid out as an 8-by-8 pixel square.
When QuickDraw is initialized, it uses a pen pattern made up of all zeros.
This type of pen pattern draws a solid line on the screen.

You can set the pen to draw in a pattern on the screen by setting up
the pattern in memory and then making the QuickDraw call SetPenPat.
When you want a pen to draw on the screen in a solid color other than black,
you can use the QuickDraw call SetSolidPenPat. Instructions for using
both of these calls are in chapter 16 of the Apple llcs Toolbox Reference.

Actually, there are two kinds of QuickDraw patterns: pen patterns and
background patterns. But both use the same kind of data structure: a 32-byte
structure that is a small pixel image. After you set the contents of a pattern,
you can use it as either a background pattern or a pen pattern. QuickDraw
doesn’t care.
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Pen Masks

In a data segment of a program, either kind of pattern is defined like
this:

PatternO ds 32

QuickDraw programs often use pen patterns that define repeating de-
signs. For example, when a pen pattern resembling a brick wall is created,
the pen that uses the pattern draws a brick wall, instead of a solid line, on
the screen. Figure 8-5 is a pen pattern resembling a brick wall. On the left
is what the pattern looks like in memory; on the right is what the pattern
looks like when a pen draws it on a screen.

Another attribute of a QuickDraw pen is a mask. A pen mask is an 8-by-8
bit square that, like a pen pattern, defines a repeating design. See figure §—
6. As a line or an object is drawn, this design masks the pattern—only the
pixels that ‘‘show through’’ the pen mask appear on the screen. In other
words, only those pixels in the pattern aligned with a set bit in the pen mask
are drawn.

A pen mask, then, is a special kind of pattern that a pen can draw
through to create special effects on a screen. A pen mask is smaller than a
pen pattern or a background pattern; a pen mask data structure is only 8 bytes
long. In a data segment of a program, memory space for a pen mask is reserved
in this manner:

MaskO ds 8
The QuickDraw calls GetPenMask and SetPenMask transfer pen

masks to and from GrafPorts. The effect of using a pen mask is illustrated
in figure 8-7.
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Figure 8-5

Pen pattern in memory and on the screen
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Figure 8-6
Pen mask
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Pen Modes

Pen State
Structure

Figure 8-7
Effect of using a pen mask

COOOOOOO

Still another attribute of a QuickDraw pen is its mode. The pen mode
determines how the pen pattern will affect what is already in the pixel image
when lines or shapes are drawn. When the pen draws, QuickDraw II first
determines which pixels in the pixel image will be affected and finds their
corresponding pixels in the pattern. QuickDraw II then does a pixel-by-pixel
comparison based on the pen mode, which specifies one of eight Boolean
operations to perform. The resulting pixel is stored in its proper place in the
pixel image.

The QuickDraw calls GetPenMode and SetPenMode control the pen
mode used in a GrafPort. The pen modes used in QuickDraw are listed in
table 8-3.

A pen can be used for two kinds of drawing: normal drawing and erasing.
In normal drawing, the pen mode determines what is drawn on the screen.
Erasing just fills the affected pixels with the background pattern.

As mentioned, each QuickDraw GrafPort has its own drawing pen, and all
the attributes of each pen are defined in a structure called a pen state structure.
Listing 8—2 shows what a pen state structure looks like. For further details,
refer to the Apple IIGs Toolbox Reference.

{

Listing 8-2
Pen State Structure

PenState

PnLoc

PnSize
PnMode

PnPat

PnMask

ds
ds
ds
ds
ds

anop

4 ;pen coordinates (Y and X)

4 ;pen size (width and height)

2 ;pen draws opaque or transparent pattern
32 ;pen pattern: 32-byte pixel image

8 ;pen mask: 8-byte pixel image
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Bounds
Rectangles

Two kinds of rectangles are very important in QuickDraw. One is a bounds
rectangle, and the other is a port rectangle.

The bounds rectangle of a GrafPort, often abbreviated BoundsRect,
is the rectangle defined by the LIBoundsRect field of a GrafPort’s LocInfo
data structure. When a GrafPort draws on the IIGs screen, the upper left corner
of its bounds rectangle corresponds to the upper left corner of the screen, and
the coordinates of its bounds rectangle and its pixel map are the same. If a
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Port Rectangles

Table 8-3
QuickDraw Il Pen Modes
Number Name Description
$0000 COPY The default drawing mode. The source

is copied into the destination, with
source pixels replacing destination
pixels.

$8000 notCOPY The inverse of the source is copied into
the destination, with the pixels being
drawn replacing the destination pixels.

$0001 OR Source pixels are overlayed
nondestructively on top of destination
pixels.

$8001 notOR The inverse of the source pixels are

overlayed nondestructively on top of
the destination pixels.

$0002 XOR Source pixels are exclusive-ORed
(XOR) with destination pixels. If an
image is drawn in XOR mode, the
original appearance of the destination
can be restored by drawing the image
again in XOR mode.

$8002 notXOR Source pixels are reversed, then
exclusive-ORed with destination pixels.
$0003 BIC Bit clear ( BIC) pen with destination.

This mode explicitly clears the pixels in
the destination image before another
image is copied in.

$8003 notBIC Clears the pixels in a destination
image, then copies the inverse of the
source image pixels into the destination
image.

GrafPort’s bounds rectangle is smaller than the pixel map that the GrafPort
is using, however, the coordinates of the GrafPort’s bounds rectangle and
the coordinates of its pixel map are not the same.

A port rectangle, or PortRect, outlines the section of a BoundsRect that
is displayed on the super high-resolution screen. A port rectangle can be
visualized as a window through which part of a bounds rectangle is viewed.
A port rectangle can be the size of the screen or smaller. A good example of
a PortRect is a window created and displayed by the Window Manager.

Regardless of the size of a port rectangle, the only part of a drawing
that is displayed on the screen is the part that falls inside both the bounds
rectangle and the port rectangle of the current GrafPort.

A newly created GrafPort has its pixel map initialized to include the
entire screen. Its BoundRect and PortRect fields are set to rectangles
enclosing the screen. Thus, coordinate 0,0 of the GrafPort’s bounds rectangle
and port rectangle corresponds to the top left corner of the screen. But this
situation can be changed—and often is changed—by application programs.
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Clip Regions

Visible Regions

Two other attributes of a GrafPort are its clip region and its visible region.
A clip region, or CLipRgn, is a structure that clips, or trims, pictures or
drawings to a specified size. For a drawn object to be visible on the screen,
it must be situated inside its GrafPort’s clip region, as well as inside its
GrafPort’s bounds rectangle and port rectangle.

A clip region can be rectangular, or it can be drawn in any shape—
even an irregular shape. Because of this feature, a clip region can create
screens that are quite fancy. For example, if a GrafPort has a circle-shaped
clip region, pictures displayed on the screen can be trimmed, or clipped, into
round pictures.

A GrafPort’s clipping region is defined with the SetClip and
ClipRect calls. The GetClip and SetClip calls save a GrafPort’s
ClipRgn while other clipping functions are performed, for example, when
you want to reset a CLipRgn so you can redraw a newly displayed portion
of a document that’s been scrolled.

A visible region, or VisRgn, is the part of a port rectangle visible on the
screen at a given time. A VisRgn, like a CLipRgn, can be rectangular but
it doesn’t have to be. When one window on a screen overlaps another, the
Window Manager uses a VisRgn structure to determine which part of the
partially hidden window should be displayed on the screen. Application
programs can use visible regions for similar purposes. QuickDraw II contains
a number of calls for manipulating visible regions.

QuickDraw Coordinates

When you define an object within QuickDraw’s conceptual drawing plane,
or draw an object on a pixel map, you must use coordinates to tell QuickDraw
where to place the object. That can be a problem because QuickDraw uses
two kinds of coordinate systems: a global coordinate system and a local
coordinate system.

When a pixel map is stored in the Ilgs’s memory, its position within
the conceptual drawing space is defined by a set of global coordinates. In the
global coordinate system, coordinate 0,0 pinpoints where the upper left corner
of a pixel map lies within the conceptual drawing plane.

In addition to QuickDraw’s global coordinate system, each GrafPort
created under QuickDraw has its own local coordinate system. In a GrafPort’s
local coordinate system, coordinate 0,0 defines the upper left coordinate of
the GrafPort’s bounds rectangle.

Coordinate Conversion
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As mentioned, a newly created GrafPort has its pixel map set to point to the
entire screen, and its bounds rectangle and port rectangle are both set to
rectangles enclosing the screen. So, when a GrafPort is initialized, coordinate
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0,0 corresponds to the screen’s top left corner and also to the top left corners
of its bounds rectangle and port rectangle.

But, as noted, a GrafPort does not have to use the screen as its pixel
map, and its pixel map does not have to be the same size as its bounds
rectangle. If a GrafPort’s pixel image is larger or smaller than its bounds
rectangle, its local and global coordinate systems are not the same.

Sometimes a IIgs program needs to convert coordinates from one system
to another—from global to local and vice versa. One reason this is necessary
is that some tools in the Toolbox use global coordinates for their operations,
and others use local coordinates. For example, when the Event Manager
reports an event, it gives the mouse location in global coordinates. But when
you call the Control Manager to find out if the user clicked in a control in
one of your windows, you must pass the mouse location in local coordinates.

Another reason coordinate conversion is necessary is that sometimes—
for example, when windows are used—one coordinate system calculates co-
ordinates on the screen, while another system calculates coordinates in in-
dividual windows. You'’ll see how and why this is done in chapter 10, which
deals with the Window Manager.

Fortunately, there is an easy way to convert global coordinates to local
coordinates and vice versa. The QuickDraw call GlobalTolLocal converts
any point expressed in global coordinates to a corresponding location ex-
pressed in local coordinates. Another QuickDraw call, LocalToGlobal,
does the same job in reverse.

One call often used with onscreen rectangles is SetOrigin. The
SetOrigin call allows a program to change the coordinates of a GrafPort’s
port rectangle so that its coordinates correspond to those of the GrafPort’s
bounds rectangle. When you use the SetOrigin call, the bounds and port
rectangles remain the same size and in the same location relative to each other,
but the upper left corner, or origin of the PortRect, is set to the point passed
by SetOrigin. Details on the SetOrigin call are in the Apple IIGs Toolbox
Reference.

If an application performs scrolling operations, it can use the
ScrollRect call to shift the pixels of the image and then use SetOrigin
to readjust the coordinate system after the shift. Details about the
ScrollRect call are also in the Apple IIGs Toolbox Reference.

Strings and Text

QuickDraw recognizes three kinds of string and text structures:
B C-type strings. A C-type string ends with a null word (h’00’) and is
not preceded by a length byte.

M Pascal-type strings. A Pascal-type string is preceded by a length byte
and does not have to end with a null word.

B Text structures. You can define a QuickDraw text structure with the
DrawText call. When you make a DrawText call, you must pass
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Fontinfo-
Record

and
FontGlobals-
Record
Structures

BufSizeRecord
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QuickDraw an integer that defines the number of bytes you want to
write. A QuickDraw text structure can therefore be up to 65,535
bytes long.

Two other kinds of text-related structures used by QuickDraw are the
FontInfoRecord structure and the FontGlobalsRecord structure. These
structures are used primarily by the Font Manager, but they are also available
for use in application programs. Listing 8-3 shows how the
FontInfoRecord and FontGlobalsRecord structures are defined in an
assembly language program. If you’re intrested in further details about these
and other font-related and text-related structures, look in the Apple IllGs
Toolbox Reference.

Listing 8—-3
FontinfoRecord and FontGlobalsRecord Structures

FontInfoRecord anop

Ascent ds 2
Descent ds 2
WidMax ds 2
Leading ds 2

FontGlobalsRec anop

FontID ds 2
FStyle dc iTextStyle’
FSize ds 2
FVersion ds 2
FWidMax ds 2
fbrExtent ds 2

QuickDraw recognizes other kinds of structures that have special uses and
are not described in detail here. QuickDraw uses BufSizeRecord to define
the sizes and characteristics of buffers in which text is stored. Listing 8—4
shows how the structure of a BufSizeRecord is included in an assembly
language program. BufSizeRecord is described in more detail in chapter
16 of the Apple IIGs Toolbox Reference.

Listing 8—4
BufSizeRecord Structure

BufSizeRecord anop
MaxWidth ds 2
TextBufHeight ds 2
TextBufRowWrds ds 2
FontWidth ds 2
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Cursor Records The cursor on the super high-resolution screen is user-definable. The data
structure to define a cursor is called, logically enough, a cursor record. Listing
8—5 shows a cursor record included in an assembly language program.

Cursor
CursorHeight
CursorWidth
Cursorlmage
CursorMask
HotSpotY
HotSpotX

Listing 8-5
Cursor Record
anop
ds 2
ds 2
ds 32
ds 32
ds 2 swhere cursor points, y coord
ds 2 ;where cursor points, x coord

PaintParams QuickDraw has one special-purpose structure, called the PaintParams
Structure structure, which is used in just one call: PaintPixeUs. (This call is described
in chapter 16 of the Apple liGs Toolbox Reference.) Listing 8—6 shows the

structure in an assembly language program.

Listing 8—6
PaintParams Structure

PaintParams
LocInfol1Ptr
LocInfo2Ptr
SrcRectPtr
DestPtPtr
ScreenMode
MaskHandle

anop
ds
ds
ds
ds
ds
ds

SN

Loading and Initializing QuickDraw

Before QuickDraw is started up, the following tool sets must be loaded and

started up:

B Tool Locator (always loaded and active)

B Memory Manager

B Miscellaneous Tool Set

After these tool sets are loaded and initialized, you can initialize QuickDraw.
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The PAINTBOX Program

PAINTBOX.S1
Program

PAINTBOX.C
Program

Now that you know a little about how QuickDraw works, you’re ready to
type, assemble, and run a few programs that use QuickDraw.

The first program is called PAINTBOX. This program draws a rectangle
on the s super high-resolution screen. The assembly language version of
the program is PAINTBOX.S1 (listing 8-7). The C version is PAINTBOX.C
(listing 8-8). Both program listings are at the end of this chapter.

When the PAINTBOX.S1 program is executed, it first loads and initializes
QuickDraw II and the other tool sets it depends upon. Before QuickDraw is
initialized, the Memory Manager call NewHand Le reserves the three direct
pages QuickDraw needs, plus one direct page required by the Event Manager.
When NewHand le reserves the requested space, it returns with a handle to
the space pushed onto the stack. The PAINTBOX.S1 program then pulls the
handle off the stack, stores it in a variable called DPHand Le (for direct page
handle), and uses it to provide the necessary direct page space to QuickDraw
and the Event Manager.

Next, in a program segment called DrawRect, the screen is cleared
to white (color code $F) with the QuickDraw call ClearScreen. The
call PenNormal is then used to set the pen color to black and the pen size
to one pixel by one pixel.

When the pen state is set, the SetRect call defines a rectangle in
QuickDraw’s conceptual drawing space. The PaintRect call paints the rect-
angle on the screen.

After the rectangle is drawn, an event loop begins. This loop, like the
one used in the EVENT.S1 program in chapter 7, keeps checking for a key
down event or a mouse down event. As soon as it recetves a notification of
either kind of event, the program ends.

PAINTBOX.C is a C version of PAINTBOX.S1. It is designed to be used
with the #include file INITQUIT.C, which appears in chapter 7.

From a program designer’s point of view, PAINTBOX.C is almost
identical to EVENT.C—although you’d never know it by just running the
two programs! The only real difference is that PAINTBOX.C, instead of
displaying a message on a text screen, goes into super high-resolution graphics
and draws a black rectangle on a white screen.

PAINTBOX.C illustrates the advantage of writing programs split into
short procedures and functions. To transform EVENT.C into PAINTBOX.C,
you just replace the PrintMessage function with one that draws a rectangle
on a super high-resolution screen.

The SKETCHER Program
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The next program we’ll look at, SKETCHER, is a little more complicated.
With this program, you can use the IIGs mouse to draw sketches on a super
high-resolution screen.
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SKETCHER.S1
Program

SKETCHER.C
Program

The assembly language version of the program is called SKETCHER.S1
(listing 8-9). The C version is SKETCHER.C (listing 8—10). Both listings
appear at the end of this chapter.

SKETCHER.S1, like PAINTBOX.S1, starts off by loading and initializing
QuickDraw and clearing the screen to white. But then it gets considerably
fancier. It uses the ShowCursor call to display the arrow-shaped cursor on
the screen. Then it goes into an event loop that allows the user to draw sketches
on the screen with the IIgs mouse. When the mouse moves, the cursor follows
it. When the mouse button is pressed, the cursor starts drawing a line.

As long as the mouse button remains pressed, SKETCHER.S1 draws
on the screen. When the mouse button is released, the program stops drawing,
but the cursor still follows the movements of the mouse. The event loop in
SKETCHER.S1 also looks for key down events. When it detects one, the
program ends.

SKETCHER.C is a C language version of the SKETCHER.S1 program. It
is designed to be used with the #inc Lude file INITQUIT.C, which is listed
in chapter 7.

SKETCHER.C ;s the first C language program you have encountered
so far that has really justified the use of an event loop. It is the first one in
which two or more different types of events require different responses.
SKETCHER.C does more than just set a done flag to a value returned by a
GetNextEvent call. It requires done to be true only when a key down event
is detected. Mouse down events send the program to Sketch, a routine that
sketches on the screen.

SKETCHER is the most ambitious program you have typed and run so
far. You should be able to have some fun with it—particularly if you ex-
periment with different pen colors, pen sizes, pen patterns, pen masks, back-
ground colors, and background patterns. You might want to add more event
loop functions, such as a screen clearing function that doesn’t end the program
and a function that erases lines. You’ll modify the SKETCHER program in
some of these ways—and in other ways we haven’t discussed yet—in later
chapters.

PAINTBOX.S1 and PAINTBOX.C Listings

Listing 8—7
PAINTBOX.S1 program

*

* PAINTBOX.S1
*

*%% A FEW ASSEMBLER DIRECTIVES ***

Title PaintBox’
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*

* EXECUTABLE C
*

Begin

*

* SOME DIRECT
*

DPData

DPPointer
DPHandle

ScreenMode
MaxX

*

* MAIN PROGRAM
*

MainProgram

196

ABSADDR on

LIST off

SYMBOL off

65816 on

mcopy paintbox.macros

KEEP PaintBox

ODE STARTS HERE

START
Using QuitData

jmp MainProgram ; skip over data

END

PAGE ADDRESSES AND A FEW EQUATES

START

gequ $10
gequ DPPointer+4

gequ $00 ; 320 mode

gequ 320 ; X clamp high

END

LOOP

START

phk

plb

tdc ; get current direct page

sta MyDP ; and save it for the moment
jsr Toollnit ; startup all tools we'll need
jsr DrawRect ; paint rectangle on screen
jsr EventlLoop ; check for key & mouse events
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*%% WHEN EVENT LOOP ENDS, WE'LL SHUT DOWN #*¥%*

jsr Shutdown
jmp Endit

MyDP ds 2
END
*

* THE ROUTINE THAT ENDS THE PROGRAM
*

EndIt START
Using QuitData
-Quit QuitParams
*%% THIS ERROR SHOULD NEVER OCCURR *x*
Errorbeath We have returned from a quit call!!!”

END

*

* THIS IS WHERE WE INITIALIZE OUR TOOLS
*

Toollnit START
using MMData

**k* START UP TOOL LOCATOR ***
_TLStartup ; Tool Locator
*%x% INITIALIZE MEMORY MANAGER #*x%*
PushWord #0
-MMStartup
ErrorDeath Could not init Memory Manager.’
pla
sta MyID
*x% INITIALIZE MISC. TOOLS SET **x%

-MTStartup
ErrorDeath Could not init Misc Tools.’
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*%*%* GET SOME DIRECT PAGE MEMORY FOR TOOLS THAT NEED IT *%*

PushLong #0 ; space for handle
PushlLong #%$400 ; four pages

PushWord MyID

PushWord #$C001 ; locked, fixed, fixed bank
PushLong #0

NewHandle

ErrorDeath Could not get direct page.’

pla

sta DPHandle
pla

sta DPHandle+2

lda [DPHandlel
sta DPPointer

*x% INITIALIZE QUICKDRAW II **x%

lda DPPointer ; pointer to direct page

pha

PushWord #ScreenMode ; $00 for 320, $80 for 640 mode
PushWord #160 ; max size of scan line
PushWord MyID

QbDStartup

ErrorDeath Could not start QuickDraw.’

*%*% INITIALIZE EVENT MANAGER **x

lda DPPointer ; pointer to direct page
clc

adc #$300 ; QD direct page + #3300
pha ; (QD needs 3 pages)
PushWord #20 ; Qqueue size

PushWord #0 ; Xclamp low

PushWord #MaxX ; clamp high

PushWord #0 ; Y clamp low

PushWord #200 ; Y clamp high
PushWord MyID

-EMStartup

ErrorDeath Could not start Event Manager.’
rts

END
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*

* SHUT DOWN ALL THE TOOLS WE STARTED UP

*

ShutDown

*

* EVENT LOOP
*

EventLoop

Again

START
Using MMData

—EMShutDown
-QDShutDown
—_MTShutDown

PushLong DPHandle
-DisposeHandle

PushWord MyID
-MMShutDown
~TLShutDown

rts

END

START

Using QuitData
Using EventTable
Using EventData

PushWord #0
PushWord #$000A
PushLong #EventRecord
—GetNextEvent

pla

beqg Again

lda EventWhat

asl a

tax

jsr (EventTable,x)
lda QuitFlag

beg again

rts

END

space for result
key down & mouse down events

; get event code

code * 2 = table location

; X is index register

Look up event’s routine
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*
* ROUTINE THAT DRAWS A RECTANGLE
*

DrawRect START

*%% CLEAR SCREEN AND SET PEN STATE *#¥%

lda #$FFFF ; color code for white,

* ; typed four times (once

* ; for each byte)
pha ;> push color code on the stack
—ClearScreen ; does what it says
-PenNormal ; make pen black & normal size

*** SET UP A RECTANGLE *%%

PushLong #RectPtr ; pointer to a rectangle
PushWord #3$30 ; upper x coordinate
PushWord #%$30 ; upper y coordinate
PushWord #$110 ; lower x coordinate
PushWord #%$98 ; lower y coordinate
-SetRect ; create a rectangle

**% PAINT RECTANGLE ON SCREEN **x*

PushLong #RectPtr ; pointer to our rectangle
~PaintRect ; paint it on the screen
rts

RectPtr ds 8 ; our rectangle
END

*

* ROUTINE THAT SETS THE QUIT FLAG

*

doQuit START

Using QuitData

Lda #$8000
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*

sta Quitflag
rts

END

* A USEFUL AND CONVENIENT WAY NOT TO DO ANYTHING

*

Ignore

*

START

rts

END

* DATA SEGMENTS

*

EventTable

*kk

EventData

EventRecord
EventWhat
EventMessage

DATA

dc i‘ignore’ ; 0 null

dc i'doQuit’ ; 1 mouse down

dc i“ignore’ ; 2 mouse up

dc i‘doQuit’ ; 3 key down

dc iignore’ ; 4 undefined

dc i‘ignore’ ; 5 auto-key down
dc iignore’ ; 6 update event
dc iignore’ ; 7 undefined

dc i“ignore’ ; 8 activate

dc i“ighore’ ; 9 switch

dc i“ignore’ ; 10 desk acc

dc i“ignore’ ;5 11 device driver
dc i“ignore’ ; 12 application
dc iignore’ ; 13 application
dc i“ignore’ ; 14 application
dc i“ignore’ ; 15 application
dc i“ignore’ ; 0 in desk

END

DATA

anop ; table for Event Manager
ds 2

ds 4
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EventWhen ds 4
EventWhere ds 4
EventModifiers ds 2

END

*ok ok

QuitData DATA

QuitFlag ds 2

QuitParams dc 40
dc 140
de 40
END

dkk

MMData DATA

MyID dc 110 ; program ID word
END

Listing 8—-8
PAINTBOX.C program

#include "initquit.c”
#define SIMPLE_MASK (mDownMask + keyDownMask)

EventRecord myEvent;
Boolean done = false;

main()

{
StartTools();

DrawRect();
EventLoop();
ShutDown();

}

DrawRect() /* send message to stdout, then switch display */

{
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Rect myRect;

ClearScreen(OxFFFF);

PenNormal();

SetRect(&myRect ,0x30,0x30,0x110,0x98);
PaintRect(&myRect) ;

}
EventLoop()
{
while(!done)
done = GetNextEvent(SIMPLE_MASK,&myEvent);
}

SKETCHER.S1 and SKETCHER.C Listings

Listing 8-9
SKETCHER.S1 program

*

* SKETCHER.S1
*

***x A FEW ASSEMBLER DIRECTIVES **x
Title ‘Sketcher’

ABSADDR on

LIST off

SYMBOL off

65816 on

mcopy sketcher.macros

KEEP Sketcher

*

* EXECUTABLE CODE STARTS HERE
*

Begin START
Using QuitData

jmp MainProgram ; skip over data

END
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*

* SOME DIRECT PAGE ADDRESSES AND A FEW EQUATES

*

DPData START
DPPointer gequ
DPHandle gequ
ScreenMode gequ $00
MaxX gequ 320
END
*
* MAIN PROGRAM LOOP
*
MainProgram START
phk
plb
tdc
sta MyDP

jsr Toollnit
**% CLEAR SCREEN AND SET PEN STATE

lda #$FFFF

pha

—ClearScreen

~PenNormal
-ShowCursor

jsr EventLoop

DPPointer+4

; 320 mode

; X clamp high

; get current direct page

; and save it for the moment

; startup all tools we'll need

*k K
; color code for white
; push it on the stack

; does what it says

; make pen black & normal size

; check for key & mouse events

*%% WHEN EVENT LOOP ENDS, WE'LL SHUT DOWN %%

jsr Shutdown
jmp Endit

MyDP ds

END
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*

* EVENT LOOP
*

EventLoop START
Using Quitbata
Using EventTable
Using EventData

Again PushWord #0 ; space for result
PushWord #$000F ; key & mouse events
PushLong #EventRecord
—GetNextEvent
pla
beq Again
lda EventWhat
asl a
tax
jsr (EventTable,x)
lda QuitFlag
beqg again

get event code

code * 2 = table location
X is index register

Look up event’s routine

NT NsT N N

rts
END

*

* ROUTINE TO DRAW SKETCHES ON THE SCREEN
*

Movelt START
Using EventData

-ShowPen

lda EventWhere
sta MouseHouse
lda EventWhere+2
sta MouseHouse+2

PushLong MouseHouse
MoveTo

Loop pea 0 ; space for return
pea O ; check button zero
Stillbown
pla
beq out
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PushLong #MouseHouse
-GetMouse

PushLong MouseHouse
-LineTo

bra loop

out -HidePen
rts

MouseHouse ds 4

END
* THE ROUTINE THAT ENDS THE PROGRAM

EndIt START
Using QuitData
—Quit QuitParams
*%% IF THIS COMES BACK, WE'RE DEAD ***
ErrorDeath We just came back from a quit call!!}

END

*
* THIS IS WHERE WE INITIALIZE OUR TOOLS
*

Toollnit START
using MMData

*%% START UP TOOL LOCATOR **x*

~TLStartup ; Tool Locator
*%% INITIALIZE MEMORY MANAGER **x%

PushWord #0

_MMStartup

ErrorbDeath Could not init Memory Manager.’

pla
sta MyID
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*x% INITIALIZE

MISC. TOOLS SET **%

-MTStartup
ErrorDeath Could not init Misc Tools.’

*%% GET SOME DIRECT PAGE MEMORY FOR TOOLS THAT NEED IT #*%%

*%%x INITIALIZE

*%x*% INITIALIZE

PushlLong #0 ; space for handle
PushLong #$800 ; eight pages

PushWord MyID

PushWord #$C001 ; locked, fixed, fixed bank
PushLong #0

_NewHandle

Errorbeath ‘Could not get direct page.’

pla

sta DPHandle
pla

sta DPHandle+2

lda [DPHandlel
sta DPPointer

QUICKDRAW II **%*

lda DPPointer ; pointer to direct page
pha

PushWord #ScreenMode ; either 320 or 640 mode
PushWord #160 ; max size of scan Line
PushWord MyID

-QDStartup

ErrorDeath Could not start QuickDraw.’

EVENT MANAGER **x*

lda DPPointer ; pointer to direct page
clc

adc #$300 ; QD direct page + #$300
pha ;> (QD needs 3 pages)
PushWord #20 ; gueue size

PushWord #0 ; X clamp Low

PushWord #MaxX 2 X clamp high

PushWord #0 ; Y clamp low

PushWord #200 ; Y clamp high

PushWord MyID

-EMStartup

ErrorDeath Could not start Event Manager.’
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rts
END

*

* SHUT DOWN ALL THE TOOLS WE STARTED UP
*

ShutDown START
Using MMData

-EMShutDown
-QDShutDown
-MTShutDown

PushLong DPHandle
_DisposeHandle

PushWord MyID
-MMShutDown
~TLShutDown

rts
END
*

* ROUTINE THAT SETS THE QUIT FLAG
*

doQuit START
Using QuitData

lda #$8000
sta QuitFlag

rts

END

*
* A USEFUL AND CONVENIENT WAY NOT TO DO ANYTHING

*
Ignore START

rts

END
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*

* DATA SEGMEN
*

EventTable

*kk

EventData

EventRecord
EventWhat
EventMessage
EventWhen
EventWhere
EventModifiers

*kk

QuitData

QuitFlag

TS

DATA

dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc
dc

END

i“ignore’
i'Movelt’
i‘ignore’
i'doQuit’
i‘ignore’
i“ignore’
i‘ignore’
i‘ignore’
i‘ignore’
i“ignore’
i‘ignore’
i‘ignore’
i‘ignore’
i“ignore’
i‘ignore’
i‘ignore’
i‘ignore’

DATA

anop

ds
ds
ds
ds
ds

END

VIR SR S A\

DATA

ds

s

AR TR TR T T ¥

4

nutl

mouse down
mouse up

key down
undefined
auto-key down
update event
undefined
activate
switch

10 desk acc

11 device driver
12 application
13 application
14 application
15 application
0 in desk

Voo ~NOWVM WD -2O

table for Event Manager
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QuitParams

*k%k

MMData

MyID

dc 1407

dc 1470

dc 140

END

DATA

de 110 ; program ID word
END
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Listing 8—10
SKETCHER.C program

#include "initquit.c”
#define MY_MASK (mDownMask + mUpMask + keyDownMask)

EventRecord myEvent;
Boolean done = false;

main()

{
StartTools();
GrafPrep();
EventlLoop();
ShutDown();

}

GrafPrep()

{
ClearScreen(0OxFFFF);
PenNormal (O ;
ShowCursor();

}

EventLoop()
{

while(!done)
if ( GetNextEvent(MY_MASK,&myEvent) )
switch (myEvent.what) {
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case mouseDownEvt:

MovelIt();
break;
case keyDownEvt:
done = true;
}
}
MoveIt()
{

Point MouseHouse;

ShowPen();
MoveTo(myEvent.where);

while (Stillbown(0)) {
GetMouse (&MouseHouse) ;
LineTo(MouseHouse);

}

HidePen();
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CHAPTER

The Menu Manager

Creating Menus

| g I ne of the most important features of the Ilas is its ability to display
| O pull-down menus—menus that allow the user to select almost any

function or application at almost any time, without going through
confusing levels of menus and without remembering command words or spe-
cial keys. Pull-down menus were introduced with the unveiling of the Apple

Macintosh—and the Ilgs has windows almost identical to those that created
such a sensation when they first appeared on the Mac.

Menus and the ligs User

One reason why pull-down menus are so popular is that they are easy to use.
To use a pull-down menu, you just place a cursor inside an onscreen bar
called a menu bar, then click the button of the IIGs mouse over a menu title
that also appears inside the menu bar. An application can then call the Menu
Manager, which highlights the selected title by redrawing it in inverted colors.

When a menu title is selected, you can drag the cursor into a series of
menu items that appear below the menu title. As long as the mouse button
is held down, the selected menu title is highlighted, and the menu items below
it are displayed. Dragging the mouse cursor up and down through the list of
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Menu Bars

menu items highlights each item or command while the cursor is positioned
over it.

If the mouse button is released while an item is highlighted, the function
or application that the item identifies is selected. The item blinks briefly to
confirm the user’s choice, and the menu disappears.

When you choose a menu item, the Menu Manager tells the application
which item was chosen, and the application can then perform the appropriate
action. When the application completes the action, it can remove the high-
lighting from the menu title, indicating that the operation is complete.

If you hold down the mouse button and move the cursor out of the
menu, the menu remains visible, though none of its items are highlighted. If
you release the mouse button outside the menu, no choice is made. The menu
simply disappears, and the application does not take any action. Thus, you
can always look at a menu without changing the document or the screen.

The IlGs can display menus in both 640-pixel mode and 320-pixel mode.
Figure 9-1 is a 640-mode menu, and figure 9-2 is a 320-mode menu.

Before we go into more detail about how the IIGs Menu Manager works, it
is helpful to review some of the terminology used so far in this chapter.

A menu bar is a rectangle that usually appears across the top of the IlGs
screen. Several menu titles are usually visible inside the bar. Some of these
titles may be dimmed, indicating they are disabled. A disabled menu can still

Figure 9-1
Menu in 640 mode
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o File Windows GiI'LIE Tests

Figure 9-2
Menu in 320 mode

be pulled down, but all menu items under it will also be dimmed, and you
usually cannot select them.

Underneath each menu title, an application can place the names of as
many menu items as space allows. The items beneath a menu title, however,
are not ordinarily visible unless you place the cursor over the menu title and
pull the menu down.

A menu title and the items that appear beneath it make up a menu.
Thus, several menus (as many as space allows) can appear inside a menu bar.

System Menu Bar

The Menu Manager has one special kind of menu bar called a system menu
bar. Only one system menu bar can be on the screen at one time. The system
menu bar is always positioned at the top of the screen, and only the cursor
appears in front of it.

In applications that support desk accessories, the first menu on the menu
bar—that is, the leftmost menu—should be a desk accessories menu. In
programs written according to Apple’s Human Interface Guidelines, the title
of a desk accessories menu should always be a specially designed colored
apple. In programs written for the Apple IIGs, a special Toolbox call,
FixAppleMenu, sets up a desk accessories menu that has a colored apple
as its title.
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More About
Menus

Keyboard

Equivalents for

Menu
Commands

Desk accessories are special mini-applications that can be coresident in
memory with other applications and thus can be executed at any time. A
tutorial in writing desk accessory programs is beyond the scope of this book,
but instructions for writing desk accessories are in the Apple Ilcs Toolbox
Reference.

Window Menu Bars

In addition to the system menu bar, an application can also use window menu
bars. Because window menu bars can appear in individual windows, they can
increase the number of menu titles visible on the screen. But they can also
be confusing to the IlGs user, so they should be used in moderation, if at all.

A number of menu items make up a typical Apple Iigs menu. The items are
listed vertically inside a shadowed rectangle, and each item may consist of
the text of a command, an object or icon defined by an application, or just
a line dividing groups of choices. Everything else on the screen, except the
cursor, always appears behind menus.

An application program can set up a keyboard equivalent for any menu item
so that you can issue a menu command from the keyboard, rather than the
mouse. The character specified as a menu command equivalent is usually the
first letter of a menu command. Typing the letter in either uppercase or
lowercase is usually allowed. For example, typing either Q or q while holding
down the Apple key can be used as an equivalent for a mouse selectable menu
item titled Quit.

Initializing the Menu Manager

216

Before the Menu Manager is started, these tool sets must already be loaded
and initialized:
B Tool Locator (always active)
Memory Manager
QuickDraw II
Event Manager
Window Manager

Control Manager

The Menu Manager also requires one direct page. When one direct page
is reserved, and the previous tool sets are started, the MenuStartup call
initializes the Menu Manager. As soon as the Memory Manager is started,
an empty menu bar appears at the top of the screen. The application that uses
the menu bar must then finish drawing it by initializing a set of menus and
printing their names in the bar.
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Using the Menu Manager

Defining Menus
and ltems

An assembly language program titled MENU.S1 demonstrates how the Menu
Manager is used in an assembly language program. There is also a C language
version of the same program. (Both programs—Ilisting 9-9 and listing 9—
10—are at the end of this chapter.)

The MENU.S1 program prints a menu bar and a set of menus on the
screen. Then it allows the user to place check marks in front of menu items
by clicking the mouse. It also allows the user to quit the program by selecting
a menu item titled Quit or by typing Q or q on the keyboard.

In the next few sections of this chapter, we divide the MENU.S1 pro-
gram into parts and see how each part works. Then, at the end of the chapter,
we put all the parts together and type and run the program.

The first step in creating a menu bar is to draw up a list of menus and menu
items, and place the list in a data segment of a program. In the MENU.S1
program, menus and menu items are defined in the data segment titled
MenubData.

Interpreting Menu Data

As the MenuData table shows, the MENU.S1 program has six menus, and
there are several items under each menu title. In the data segment MenuData,
the menus and menu items used in the program are listed in a special format
required by the Menu Manager. For example, the menu titles in the listing
are numbered consecutively beginning with 1, and the menu items in the
listing are numbered consecutively beginning with 257. This numbering sys-
tem is important because the Menu Manager uses it to distinguish between
menu titles and menu items in a table of menu data. The number assigned to
a menu title or a menu item is known as an ID number and is always preceded
by the letter N in a table of menu data. Table 9—1 shows the ID numbers you
can assign to menus and menu items and the uses for various ranges of ID
numbers.

Special Characters in Menu Data Tables

In a menu data table, the title of each menu is preceded by the > symbol.
The last item in each menu is followed by a line containing only a period.
A number of other special characters also appear in the listing.

For example, the L that precedes the title of each menu and each menu
item is merely a space filler required by the Menu Manager. If the > symbol
appears in front of the L, the text string that follows the L is the title of a
menu. If a space precedes the L, the string that follows the L is the title of
a menu item.

Actually, L, >, the space character, and the period do not have to be
used in the MENU.S1 program. You can substitute other characters as long
as they are used consistently.
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Table 9-1
Menu and Menu ltem ID Numbers

Hex Number Decimal Number Meaning

Menu ID Numbers

$0000 0 For internal use. Usually used for the front
(first) menu in a menu bar.

$0001-$FFFE 1-65534 Reserved for application use.

$FFFF 65535 For internal use. Usually used for the last item

in a menu bar.

Menu Item ID Numbers

$0000 0 For internal use. Usually used for the front
(first) item in a menu,

$0001-$00F9 1-249 Reserved for desk accessory items.

$00FA 250 Reserved for Undo edit item.

$00FB 251 Reserved for Cut edit item.

$O00FC 252 Reserved for Copy edit item.

$00FD 253 Reserved for Paste edit item.

$00FE 254 Reserved for Clear edit item.

$00FF 255 Reserved for Close command item.

$0100-$FFFE 256-65534 Reserved for application use.

$FFFF 65535 For internal use. Usually used for the last item
in a menu.

A number of reserved characters, however, always have the same mean-

ing in tables of menu data. For example:

218

The @ character, preceded by the symbols used for a symbol title
and followed immediately by a backslash (\) always represents the
colored Apple logo that usually appears as the leftmost element on a
menu bar. This symbol appears in the line labeled Menu1 in the
MenuData table.

The backslash character (\) always marks the end of a string of text
and the beginning of a series of special characters.

The letter N, as noted, is a prefix for each ID number in a table of
menu data.

The * symbol is a prefix for letters that can be used as keyboard
equivalents for menu selections. Usually this symbol is followed by
two letters: an uppercase letter and its corresponding lowercase
letter. When the prefix is used in this way, it means the keyboard
equivalent for the menu choice is not case sensitive. This prefix is
used in the second line following the label Menu?2 in the MenuData
table.

The ASCII character 13, a carriage return, is an end-of-line symbol
in tables of menu data. A null character (00) has the same meaning.

All of the characters that have special meanings in menu data tables are
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listed in table 9-2. These characters can appear in any order following the
backslash character that separates the text on each line from the special char-
acters that follow it.

All of the characters in table 9-2 except the backslash character can be
used in names of menu items, but the characters *, B, C, I, U, and V cannot
be used in menu titles. There is no way to include a backslash character (\)
in a text string because the Menu Manager always treats it as the beginning
of a series of special characters.

Building a Menu  After a table of menu data is created and entered in a source code program,
the Menu Manager calls NewMenu and InsertMenu can be used to build a
menu. This is the syntax for issuing these two calls:

PushlLong #0 ; space for return
PushLong #Menué ;> ID number of menu
-NewMenu

PushWord #0 ; make this menu
-InsertMenu ; the front menu

The NewMenu call takes two long parameters: a O to leave 2 words on
the stack and a menu ID number. It returns one long parameter—a menu

Table 9-2
Special Characters in Table of Menu Data
Character Meaning
\ Marks the end of a text string and the beginning of a series of

special characters.

* Prefix for a character (or characters) that can be used as a keyboard
equivalent for a menu choice. This prefix is usually followed by an
uppercase letter and a corresponding lowercase letter, indicating that
the keyboard equivalent is not case sensitive.

B Print the text of the preceding line in boldface.

C Prefix for a character that can be printed in front of a menu item to
mark it. The character is identified by its ASCII code. For example,
C18 means use a check mark (ASCII code 18) to mark the
preceding item.

D Dim (disable) the preceding item.

e

A hexadecimal, non-ASCII ID number follows, in low-byte/high-
byte order.

Italicize the text of the preceding item.
Prefix for the ID number of a menu title or a menu item.
Underscore the text of the preceding item.

< C Z =

Place an underline under the preceding item without requiring a
separate item.

>

Color replacement, rather than an XOR operation, will be used for
highlighting. This symbol is usually used with the colored Apple
logo on a menu bar.
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Activating a
Menu

handle—which is left on the stack in the previous example. For the reason
why, read on.

The InsertMenu call takes two parameters: a handle to a menu and
the 1-word ID number after which the menu in question will be inserted. In
the previous example, only the second parameter is passed because the first
parameter—the menu handle just pushed onto the stack—is still there. If a
0 is passed as the second parameter, as it is in this example, the menu being
inserted is placed in front of any other menus in the menu bar.

It’s easy to use a 0 parameter to place an inserted menu on top of all
the rest. So menus are usually built backwards, in back-to-front order, as you
will see in the menu building segment of the MENU.S1 program.

After you build a menu, you can draw it with the FixAppleMenu,
FixMenuBar, and DrawMenuBar calls.

After a menu is built, the next step in making it useful in a program is to
write a routine that accepts input from the user. You can use an Event Manager
loop, but it is much easier to use a tool called TaskMaster, which considerably
expands the capabilities of the Event Manager call GetNextEvent.

Using TaskMaster
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TaskMaster is a tool in the Window Manager tool set, but it also has capa-
bilities designed to be used with the Menu Manager. When a program includes
menus, windows, or both, it can call TaskMaster instead of making the Event
Manager call GetNextEvent. When TaskMaster is called in a program, the
first thing it does is call GetNextEvent. Then it checks for twelve events
thatGetNextEvent cannot handle, and it handles those events. Then it places
some information on the stack and in a record called a rask record. Finally,
it returns to the calling program.

The following is a call to TaskMaster in an assembly language program:

PushWord #0 ; space for result

PushWord EventMask ; standard GetNextEvent mask
PushbLong TaskRecPtr ; pointer to a task record
_TaskMaster

PullWord TaskCode ; a code returned by TaskMaster

As the example illustrates, a call to TaskMaster takes three parameters:

B A null word (a 0) to save space on the stack for the result of the
call.

B An event mask. This 1-word parameter is the same as the
EventMask parameter, which must be passed to the Event Manager
call GetNextEvent.

W A pointer to a record called a task record. A task record, as you
shall see, is just like an event record used by the Event Manager
call GetNextEvent, except it has two extra fields.
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How TaskMaster
Works

Before a TaskMaster call returns, it places a word called a task code
on the stack. If TaskMaster detects an event, the task code tells where on the
desktop (that is, in what part of the screen) the event took place. The values
returned as a task code can vary, depending upon what kind of item is detected
by TaskMaster. For example, if TaskMaster detects any event that is not a
key down or button down event, the task code that it returns is the same as
the event code returned by the Event Manager. If TaskMaster detects a key
down or button down event, however, the values that can be returned as a
task code are the same as those returned by the Window Manager call
FindWindow. These values, and their meanings, are listed in table 9-3.

One of the best ways to use TaskMaster is to set up a table including all tasks
it can handle. One such table, labeled TaskTable, appears in the MENU.S1
program. The first seventeen items in the table are identical to the items in
the event table used to make the GetNextEvent call in chapter 7. But at
the end of the table there are twelve extra items: the events that TaskMaster
looks for after it has called GetNextEvent.

When you call TaskMaster in a program, TaskMaster first makes the
Event Manager call GetNextEvent. GetNextEvent handles all the events
it can, then passes control back to TaskMaster.

Now TaskMaster goes to its expanded list of events and looks for events
that GetNextEvent cannot handle. Specifically, TaskMaster looks to see if
the mouse button has been clicked in

B the menu bar

B the system window (not an application window)
B the content region of any window

B the drag (title bar) region of any window

Table 9-3
Task Codes Returned by TaskMaster
Word Code Name Where Event Took Place

$0000 wNoHit Not in a window or a menu
$0010 wInDesk On the desktop
$0011 wInMenuBar In the system menu bar
$0013 wIinContent In a window’s content region
$0014 wlnDrag In a window’s drag region
$0015 wInGrow In a window’s grow box
$0016 wIinGoAway In a window’s close box
$0017 winZoom In a window’s zoom box
$0018 wIinlnfo In a window’s information bar
$0019 wInSpecial In a special menu item bar
$001A wIinDeskItem  Desk accessory selected from Apple menu
$001B wInFrame In a window frame area
$8XXX wInSysWindow In a system window
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Event Records
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the grow box of a window

a window’s go-away box

a window’s zoom box

a window’s information bar

a window’s vertical scroll bar

a window’s horizontal scroll bar

a window’s frame

B 3 menu’s drop region

As you can see, most of the events TaskMaster looks for involve windows.
We won’t go into detail about window events now; they are covered in chapter
10.

In addition to looking for window-related events, TaskMaster can detect
when the mouse button is clicked over a menu title or over a menu item—
that is, in a menu’s ‘‘drop region.’’ These two capabilities make TaskMaster
a valuable tool in programs that use the Menu Manager.

When TaskMaster calls GetNextEvent, the GetNextEvent routine returns
information in the usual way: by placing it in an event record. But the event
record TaskMaster uses, like the event table, is slightly expanded. An event
record in a program that uses TaskMaster has to be two fields longer than an
ordinary event record. Listing 9—1 shows an event record used by TaskMaster
in an assembly language program.

Listing 9-1
An event record used by TaskMaster
EventData DATA
EventRecord anop
EventWhat ds 2
EventMessage ds 4
EventWhen ds 4
EventWhere ds 4
EventModifiers ds 2
TaskData ds 4
TaskMask dc i4'$OFFF’

The two extra fields used by TaskMaster are at the end of the event
record in listing 9—1. In one of the extra fields, TaskData, TaskMaster returns
information, in the same way that GetNextEvent returns data in the event
record fields for which it is responsible.

The other extra field, TaskMask, can be used to tell TaskMaster what
kinds of events to look for and what kinds of events to ignore. The TaskMask
field is used much like the event mask passed to the GetNextEvent call as
a parameter.
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It is important to understand, however, that the event mask passed to
TaskMaster as a parameter is different from the TaskMask passed to
TaskMaster as part of a task record. The event mask passed to TaskMaster
is the same kind of mask passed to the Event Manager in the GetNextEvent
call. Table 94 shows the layout of an event mask.

The value TaskMaster returns in the TaskData field can vary, de-
pending upon the kind of event TaskMaster has detected. For example, if
TaskMaster detects a key down event, it makes the Menu Manager call
MenuKey to determine if the key pressed is the keyboard equivalent of a
mouse-controlled menu selection. If the key is a menu-related key, TaskMaster
returns the ID number of the menu selected in the high word of the TaskData
field and the ID number of the menu item selected in the low word. If the
ID number ranges between 1 and 249 ($0000-$00F9), indicating a desk
accessory item, TaskMaster makes the OpenNDA call to open a desk accessory.
Then TaskMaster unhighlights the menu using the HiliteMenu call and
returns a task code of 0.

If TaskMaster detects any other kind of key event, it returns a key down
event: an ASCII character code (with the high bit clear) in the low-order byte
of the EventMessage ficld and the upper 3 bytes of the field undefined.

If a button down event in a menu item is detected, TaskMaster returns
with the menu’s ID number in the high word of the TaskData field, the
item’s ID number in the low word of the TaskData field, and a task code
of $0011 (wInMenuBar).

If TaskMaster detects a button down event in the menu bar but no menu
item is selected, it returns a task code of 0. TaskMaster can also detect and
handle a number of window-related events. These are covered in chapter 10.

Table 9—4
Bits in an Event Mask
Bit Function
0 Not used
1 Mouse down mask
2 Mouse up mask
3 Key down mask
4 Auto-key mask
5 Update mask
6 Active mask
7 Switch mask
8 Desk accessory mask
9 Driver mask
10 Application 1
11 Application 2
12 Application 3
13 Not used
14 Not used
15 Not used
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Task Masks

Accepting Input
from the User
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As mentioned, TaskMaster also returns a 1-word event code, which it
pushes onto the stack. The task codes used by TaskMaster are listed in table
9-3.

A task mask is a 1-word parameter that must be passed to TaskMaster each
time TaskMaster is called. An application uses a task mask to tell TaskMaster
what events to look for or ignore.

In a task mask, bits O through 12 correspond to events TaskMaster can
handle. Each bit corresponds to one type of event. If a bit is set, TaskMaster
reports on the corresponding event. If a bit is clear, TaskMaster ignores the
corresponding event. For TaskMaster to look for every type of event it can
handle, the task mask should be $0000FFFF.

Bits 16 to 31 (the high word) in the task mask must always be clear.
The bits in the task mask field and their functions are listed in table 9-5.

Table 9-5
Bits in the Task Mask Field

Bit Function

Menu key

Update handling

Find window

Menu select

Open NDA

System click

Drag window

Select window if event is wWInContent
Track go-away

O 0~ N AW N~ O

Track zoom

=

Grow window

—_
—_

Scroll window

12 Handle special menu items
13 Not used

14 Not used

15 Not used

16-31 Must be clear

When you create a task table and an event record for TaskMaster, you can
write a routine to accept input from the IIgs user. The main event loop of
MENU.S1, EventLoop in listing 9-2, is one such routine.

The event loop in listing 9-2 is straightforward. It calls TaskMaster,
pulls TaskMaster’s event code off the stack, and then uses the code to jump
to a subroutine listed in a jump table called TaskTable. This table is a
standard event table of the type used by the Event Manager, with twelve
additional events TaskMaster is designed to handle. The TaskMaster section
of the event table used in MENU.SI is in listing 9-3.
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Listing 9-2
Event loop in MENU.S1

EventLoop START
Using QuitData
Using TaskTable
Using EventData

Again PushWord #0 ; space for resutt
PushWord #$FFFF ; recognize all events
PushlLong #EventRecord
_TaskMaster
pla
asl a ; code * 2 = table location
tax ; X is index register
jsr (TaskTable,x) ; look up event’s routine
lda QuitFlag
beq again
rts
END
Listing 9-3
TaskMaster section of MENU.S1 event table
*
* TaskMaster Events
*

dc i’DoMenu’ ; 1 in menu bar

dc i‘ignore’ 5 2 in system window
dc i“ignore’ ; 3 in content of window (Movelt)
dc i‘ignore’ ; 4 in drag

dc i“ignore’ 2 5 1in grow

dc i“ignore’ 5 6 in go-away

dc i’ignore’ ; 7 in zoom

dc i“ignore’ ; 8 in info bar

dc i‘ignore’ ; 9 in ver scroll

dc i“ignore’ 3 10 in hor scroll
dc i‘ignore’ ; 11 in frame

dc i‘ignore’ ; in drop

END
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As listing 9-3 shows, only the first item in the table—*‘in menu bar’”—
is activated. So each time TaskMaster loops through the table, it looks for
only one kind of event: a button down event in the menu bar. If that event
is detected, TaskMaster jumps to a subroutine labeled DoMenu, which appears
in listing 9—4.

Listing 9—-4
A routine that uses TaskMaster

DoMenu

* % ok *

DoMenu

GiveUp

Called when TaskMaster tells us a new menu item is selected.

START

Using TaskTable
Using EventData
Using MenuTable

Ida TaskData ; get TaskData value

cmp #256

bcc Givelp ;> this should never happen
and #3$00FF ; mask off high byte

asl a ; double the value

tax ; for 2-byte addresses

jsr (MenuTable,x)

anop

PushWord #False ; false=unhighlight
PushWord TaskData+2 ; which menu?
-HiliteMenu ; unhighlight it

rts

END
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The DoMenu routine is also straightforward. Each time it is called, it
checks the TaskData field of the event record to see which item of which
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menu (if any) the user selected. It then jumps to another table, labeled
MenuTab le, to determine what kind of action to perform. This table appears

in listing 9-5.

Listing 9-5
MenuTable segment from MENU.S1

MenuTable

*

DATA

Menu 1 (apple)
dc i“ignore’

dc iignore’

Menu 2 (file)
dc i'doQuit’

Menu 3 (appetizers)
dc i'Checklt’
dc i'ChecklIt’
dc i'CheckIt’
dc i'ChecklIt’

Menu 4 (entrees)
dc i'CheckIt’
dc i'CheckIt’

Menu 5 (beverages)
dc i'CheckIt’
dc i'CheckIt’
dc i'CheckIt’

Menu 6 (desserts)
dc i'CheckIt’
dc i'CheckIt’
dc i’CheckIt’

END

; one for the NDAs

; quit item selected

; ‘salad’
; ‘jello”
; slices’
; ‘juice’

; duckling’
; ‘dumplings’

; ‘shake’
; ‘cola’
; wine’

; ‘an apple’
; ‘pie’
; ‘turnover’

The data segment labeled MenuTable is a jump table version of the
table of menu data in listing 9—6. Both tables are in the MENU.S1 program
at the end of this chapter. The table in listing 9-5 sends the MENU.S1 program
to the subroutine the user selects. The table in listing 9-6 provides the Menu
Manager with the information it needs to create a menu that works with the

jump table in listing 9-5.
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MenuData

Return

Menu1

Menu?

Menu3

Menu4

Menu5

Menué

Listing 9-6
Data used to create a menu
DATA
equ 13

dc ¢c’>L@\XN1,iTRETURN’
dc ¢ LAn Apple Menu\N257°,7 1TRETURN’
dc c¢’.”

(2]

dc ¢’>L File \N2,iTRETURN
dc ¢’ LQuit \N258*Qqg’,i T'RETURN’
de ¢’

(o]

dc ¢’>L Appetizers \AN3’, i T'RETURN’
dc ¢ LApple Salad \N259,3i1T'RETURN’

dc ¢’ LApple Jello \N260°,i1T'RETURN’

dc ¢’ LApple Slices \N261°,31TRETURN’
dc ¢’ LApple Juice \N262°,i1RETURN’

dc c¢’.”

dc ¢’>L Entrees \N4",i1T'RETURN’

dc c¢” LApple Duckling \N263°,iTRETURN
dc ¢’ LApple Dumplings \N264,i1TRETURN
dc c¢’.”

dc ¢’>L Beverages \N5’,91'RETURN’

dc ¢’ LApple Shake \N265°,11TRETURN’

dc ¢’ LApple Cola \N2667,i1RETURN’

dc ¢’ LApple Wine \N267,11RETURN

dc c¢'.”

dc c¢’>L Desserts \N6",i1T'RETURN’

dc ¢” LApples \N268°,31TRETURN’

dc ¢” LApple Pie \N269°,i1RETURN’

dc ¢’ LApple Turnover \N270°,7i TRETURN’
dc c¢’.”

END
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The MENU Program

MENU.S1
Program

Two programs that illustrate the use of the Ilcs Menu Manager are at the end
of this chapter. One, an assembly language program titled MENU.S1, is in
listing 9-9. The other, a C program titled MENU.C, appears in listing
9-10.

MENU.S1 is a simple program; its menu table contains the names of only
two subroutines. One, Quit, ends the program. The other, CheckIt, uses
the Menu Manager call GetMItemMark to see if there is a check mark in
front of the menu item selected. If there is no check mark, the CheckIt
routine puts one there. If there is a check mark, CheckIt removes it.

Listing 9—7 is a source code listing of the CheckIt routine—and that
concludes our analysis of the MENU.S1 program. When you have typed and
run the program, be sure to save it. You’ll use a similar menu, and add a
windowing capability, in chapter 10.

Listing 9-7
Checklt routine

CheckIt

START
Using Eventbata

PushWord #0 ; space for result
PushWord TaskData ; menu item number
—GetMItemMark
pla
beq putmark ;s no check mark, so make one
erasemark PushWord #0 ; erase check mark
PushWord TaskData ; menu item number
SetMItemMark
bra return
putmark PushWord #18 ; ASCII for check mark
PushWord TaskData ; menu item number
-SetMItemMark
return rts
END
MENU.C MENU.C is the first program you have encountered so far that requires an
Pr ogram expanded version of INITQUIT.C. In addition to the tool initialization in the

original version of INITQUIT.C, the Menu Manager requires the use of the
Window Manager and the Control Manager, so INITQUIT.C has grown. The
revised version of INITQUIT.C appears in listing 9-8.
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Listing 9-8
New version of INITQUIT.C

#include <TYPES.H>
#include <LOCATOR.H>
#include <MEMORY.H>
#include <MISCTOOL.H>
#include <QUICKDRAW.H>
#include <EVENT.H>
#include <CONTROL.H>
#include <WINDOW.H>
#include <MENU.H>

#define MODE mode640 /* 640 graphics mode def. from quickdraw.h */

#define MaxX 640 /* max X for cursor (for Event Mgr) */

#define dpAttr attrLocked+attrFixed+attrBank /* for allocating direct
page space */

int MyID; /* for Memory Manager */
Handle zp; /* handie for page 0 space for tools */

int ToolTablell= {5,
4, 0x0100, /+* ap */
6, 0x0100, /* Event */
14, 0x0100, /* Window */
16, 0x0100, /* Control =*/
15, 0x0100, /* Menu */

1

StartTools() /* start up these tools: */

{
TLStartUp(); /* Tool Locator */
MyID = MMStartUp(); /* Mem Manager */
MTStartUp(); /* Misc Tools */
LoadTools(ToolTable); /* load tools from disk */
ToolInit(); /* start up the rest */

}

ToolInit() /* init the rest of needed tools */

{
zp = NewHandle(Ox600L _ MyID,dpAttr,0L); /*reserve 6 pages */
aDStartUp((int) *zp, MODE, 160, MyID); /* uses 3 pages */
EMStartUp((int) (*zp + 0x300), 20, 0, MaxX, 0, 200, MyID);
WindStartUp(MyID);
RefreshDesktop(NULL);
CtlStartUp(MyID, (int) (*zp + 0x400));
MenuStartUp(MyID, (int) (*xzp + 0x500));
ShowCursor();

}
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ShutbDown ()

{

Grafoff();
MenuShutDown();
CtLlShutbown();
WindShutDown();
EMShutDown();
QDShutbDown();
MTShutDown();

/* shut down all of the tools we started */

DisposeHandle(zp); /* release our page 0 space */
MMShutDown(MyID);

TLShutDown();

Another significant difference between MENU.C and the event loop
programs in previous chapters is that MENU.C uses the Window Manager
call TaskMaster rather than the Event Manager call GetNextEvent. Be-
cause TaskMaster takes care of most of the event loop details in MENU.C,
the rest of the event loop routine is interested in the answer to just one question:
Was a menu item selected? If one was, you want to know whether it was the
Quit item in the Files menu or simply an item that should be checked or
unchecked.

The way in which the MENU.C program handles the checking of items
is a little tricky. Because the Menu Manager call CheckMItem returns the
ASCII value of a check mark when an item has been checked or a 0 if there
is no check mark, you can treat the call’s result as a Boolean value; true if
an item is marked and false if it is not. Similarly, the CheckMItem call takes
a Boolean value as an input and uses the value to determine whether to check
or uncheck a menu item.

In the MENU.C program, you want to send a value of true to
CheckMItem if you want an item marked, and you want to send a value of
false if you want an item unmarked. By prefixing the logical inverse operator
! (pronounced ‘‘not’’ or, by UNIX fans, ‘‘bang’’) to GetMItemMark, you
can pass the result returned by GetMItemMark directly to the CheckMItem
routine.

Another trick used in the MENU.C program is the use of a pointer to
refer to the contents of the wmTaskData field in TaskMaster’s task record.
By typecasting the address of this long word field to a pointer to a word called
data, you can reference the low word of the field (the item number) as
*data and the high word of the field (the menu number) as *(data+1).
Even though the contents of the wmTaskData field may change with each
cycle through the event loop, the address of the information it contains always
remains the same. Thus, you merely have to set the value of data to this
address once before you begin the loop, and the value of *data and
*(data+1) will always be equal to the latest results.
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MENU.S1 and MENU.C Listings

Listing 9-9
MENU.S1 program

*

* MENU.S1
*

*k* A FEW ASSEMBLER DIRECTIVES **%
Title "Menu’

ABSADDR on

LIST off

SYMBOL off

65816 on

mcopy menu.macros

KEEP Menu

*

* EXECUTABLE CODE STARTS HERE
*

Begin START
Using QuitData

jmp MainProgram ; skip over data
END

*

* SOME DIRECT PAGE ADDRESSES AND A FEW EQUATES
*

DPData START

DPPointer gequ $00

DPHandle gequ DPPointer+4

TabPtr gequ $00

ScreenMode gequ $80 ; 640 mode
MaxX gequ 640 ; X clamp high
False gequ $00
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END
*
* MAIN PROGRAM LOOP
*
MainProgram START

Using GlobalbData

phk
plb
tdc
sta MyDP

jsr Toollnit
jsr BuildMenu
jsr EventLoop

; get current direct page

and save it for the moment

start up all tools we'll need
create and draw menu bar
check for key & mouse events

*%% WHEN EVENT LOOP ENDS, WE'LL SHUT DOWN ***

jsr Shutdown

jmp Endit
END
*
* EVENT LOOP
*
EventlLoop START
Using QuitData
Using TaskTable
Using EventData
Again PushWord #0

PushWord #$FFFF

PushLong #EventRecord

-TaskMaster

pla

asl a

tax

jsr (TaskTable,x)
lda QuitFlag

beq again

rts

END

space for result
recognize all events

code * 2 = table location

; X is index register

look up event’s routine
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* CREATE AND DRAW MENU

BuildMenu

234

START
using MenuData

PushLong #0
PushlLong #Menub
—NewMenu
PushWord #0
_InsertMenu

PushLong #0
PushLong #Menu5
NewMenu
PushWord #0
InsertMenu

PushlLong #0
PushlLong #Menu4
—NewMenu
PushWord #0
~InsertMenu

PushLong #0
PushlLong #Menu3
NewMenu
PushWord #0
~InsertMenu

PushlLong #0
PushlLong #Menu?2
NewMenu
PushWord #0
~InsertMenu

Pushbong #0
PushLong #Menu1
NewMenu
PushWord #0
-InsertMenu

PushWord #1
-FixAppleMenu

PushWord #0
—FixMenuBar

proceeding from back to front

space for return

space for return

space for return

space for return

space for return

‘wait’ screen menu bar

space for return

get NDAs for Apple Menu

init & draw the menu bar



9-The Menu Manager

DoMenu

* * * *

DoMenu

GiveUp

*

* ROUTINE TO
*

CheckIt

pla
-DrawMenuBar
rts

END

Called when TaskMaster tells us a

START

Using TaskTable
Using EventData
Using MenuTable

lda TaskData
cmp #256
bcc GiveUp

and #$00FF

asl a

tax

jsr (MenuTable,x)
anop

PushWord #False
PushWord TaskData+?2
-HiliteMenu

rts

END

; discard menu bar height

new menu item is selected.

; get Taskbata value
; this should never happen

; mask off high byte
; double the value
; for 2-byte addresses

; draw normal
; which menu?
; unhighlight it

PRINT A CHECK MARK IN FRONT OF A MENU ITEM

START
Using EventData

PushWord #0
PushWord TaskData
—GetMItemMark

pla

; space for result
; menu item number
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beq putmark ;
erasemark PushWord #0 ;
PushWord TaskData ;
—SetMItemMark
bra return
putmark PushWord #18 ;
PushWord TaskData ;
SetMItemMark
return rts
END

*

*# THIS IS WHERE WE INITIALIZE OUR TOOLS
*

ToollInit START
Using GlobalData
Using ToolTable
*%% START UP TOOL LOCATOR *#*%

TLStartup ;

*%x% INITIALIZE MEMORY MANAGER **%*
PushWord #0

-MMStartup

pla
sta MyID
*%%x INITIALIZE

MISC. TOOLS SET *#*%*

-MTStartup

*%* GET SOME DIRECT PAGE MEMORY FOR TOOLS

PushLong #0 ;
PushLong #$800 H
PushWord MyID

PushWord #$C001 ;
PushLong #0

NewHandle
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no check mark, so make one

erase check mark
menu item number

ascii for check mark
menu item number

Tool Locator

THAT NEED IT ***

space for handle
eight pages

locked, fixed, fixed bank
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*%% INITIALIZE

*%x% INITIALIZE

pla

sta DPHandle
pla

sta DPHandle+2

lda [DPHandlel
sta DPPointer

QUICKDRAW II **%

lda DPPointer

pha

PushWord #ScreenMode
PushWord #160
PushWord MyID
-@DStartup

EVENT MANAGER ***

lda DPPointer
clc

adc #3$300

pha

PushWord #20
PushWord #0
PushWord #MaxX
PushWord #0
PushWord #200
PushWord MyID
-EMStartup

*%* LOAD SOME TOOLS FROM RAM *#*%*

LoadEmUp

PushLong #ToolTable
-LoadTools

*%% WINDOW MANAGER ***

PushWord MyID
WindStartup

PushLong #$0000
-Refresh

*%%* CONTROL MANAGER **%*

PushWord MyID
lda DPPointer

; pointer to direct page

; either 320 or 640 mode

max size of scan line

; pointer to direct page

; QD direct page + #$300

(@D needs 3 pages)

; queue size
; X clamp Llow

clamp high

X
; Y clamp low
Y

clamp high

; DP to use = qd dp + $400
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clc

adc #$400
pha
CtilStartup

*%%x MENU MANAGER ***

PushWord MyID

lda DPPointer ; DP to use = qd dp + $600
clc

adc #$600

pha

—MenuStartup

_ShowCursor
rts

END

*

* THE ROUTINE THAT ENDS THE PROGRAM
*

EndIt START
Using QuitData
—Quit QuitParams

END

*

* SHUT DOWN ALL THE TOOLS WE STARTED UP
*

ShutDown START
Using Globalbata

—MenuShutDown
-CtlShutDown
WindShutbown
-EMShutDown
~QDShutDown
-MTShutDown

PushLong DPHandle
-DisposeHandle
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PushWord MyID
-MMShutDown
-TLShutDown

rts

END

*

* ROUTINE THAT SETS THE QUIT FLAG
*

doQuit START
Using QuitData

lda #$8000
sta QuitFlag

rts

END
*

* A USEFUL AND CONVENIENT WAY NOT TO DO ANYTHING
*

Ignhore START
rts

END

*

DATA SEGMENTS

* Menu Data

*

MenuData DATA

Return equ 13

Menu1 dc ¢>L@\XN1,31RETURN’
dc ¢ LAn Apple Menu\N257°,11TRETURN’
dc c’.’

Menu?2 dc ¢>L File \N2",11TRETURN’
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Menu3

Menué4

Menub5

Menué

*k%k

MenuTable

*

240

dc ¢’ LQuit \N258*@q’, i 1'RETURN’
dc c’.”

dc c¢>L Appetizers \N3",i1'RETURN’
dc ¢’ LApple Salad \N259°,i1'RETURN’

dc ¢’ LApple Jello \N260°,i1'RETURN’

dc ¢’ LApple Slices \N261,11TRETURN
dc ¢’ LApple Juice \N262°,i1'RETURN’

dc c¢'.’

dc ¢>L Entrees \N4", i 1'RETURN’

dc ¢’ LApple Duckling \N263°,i TRETURN’
dc ¢ LApple Dumplings \N264°,11TRETURN
dc c¢'.’

dc c¢>L Beverages \N5", 1 1'RETURN’
dc ¢’ LApple Shake \N265°,i1RETURN’
dc ¢’ LApple Cola \N266°,i1RETURN’
dc ¢’ LApple Wine \N267 ,i1RETURN
dc c¢'.’

dc ¢>L Desserts \N6’,i1'RETURN’

dc ¢’ LApples \N268°,i1'RETURN’

dc ¢’ LApple Pie \N269°,i1'RETURN’

dc ¢ LApple Turnover \N270°,11TRETURN’
dc c¢'.”

END

DATA
Menu 1 (apple)
dc i“ignore’ ; one for the NDAs

dc iignhore’

Menu 2 (file)
dc idoQuit’ ; quit item selected

Menu 3 (appetizers)

dc i'CheckIt’ ; ‘salad’
dc i'CheckIt’ ; jello’
dc i'CheckIt’ ; ‘slices’
dc i'CheckIt’ ; ‘juice’

Menu 4 (entrees)
dc i'CheckIt’ ; ‘duckling’
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dc i'Checklt’ ; dumplings’

* Menu 5 (beverages)
dc i'CheckIt’ ; ‘shake’
dc j’CheckIt’ ; ‘cola’
dc i'Checklt’ ; wine’

* Menu 6 (desserts)
dc i'CheckIt’ ; ‘an apple’
dc i'CheckIt’ ; pie’
dc i'CheckIt’ ; ‘turnover’
END

%k %k

TaskTable DATA
dc i“ignore’ ; 0 null
dc i“ignore’ ; 1 mouse down
dc i“ignore’ ; 2 mouse up
dc i“ignore’ ; 3 key down
dc¢ iignore’ ; 4 undefined
dc iignore’ ;5 5 auto-key down
dc i“ignore’ ; 6 update event
dc iignore’ ; 7 undefined
dc i“ignore’ ; 8 activate
dc iignore’ ; 9 switch
dc j“ignore’ ; 10 desk acc

dc iignore’ ; 11 device driver

r
dc iignore’ ; 12 application
dc iignore’ ; 13 application
dc i“ignore’ ; 14 application
dc i“ignore’ ; 15 application
dc i“ignore’ ; 0 in desk
*
* TaskMaster events
*
dc i'DoMenu’ ; 1 in menu bar
dc j“ignore’ ; 2 in system window
dc i"ignore’ 5 3 in content of window (Move It)
dc i“ignore’ ; 4 in drag
dc iignore’ 5 5 in grow
dc iignore’ ;5 6 in go-away
dc i‘“ignore’ ; 7 in zoom
dc i“gnore’ ; 8 in info bar
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*kk

ToolTable

*kk

EventData

EventRecord
EventWhat

EventMessage

EventWhen
EventWhere
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