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INTRODUCTION 

A Pritner Road Map 

The Apple IIGS is the most recent step in an evolutionary climb that 
dates back to the earliest days of personal computers for everyday 

people. The IIGS is at once compatible with its past and representative of the 
future. You can run thousands of programs and plug in hundreds of boards 
already available for earlier generation Apple lis . At the same time, by 
offering casual Apple II programmers and serious developers built-in pro­
gramming power matched only by the Macintosh , the IIGS paves a path to 
new generations of innovative and truly user-friendly software designs. 

The programming power inside the Apple IIGS consists of a carefully 
crafted programmer's toolbox, which simplifies the design of sophisticated 
Apple II programs, for both newcomers and experienced programmers. 

This book provides an introduction to concepts crucial to learning to 
program the Apple IIGS by way of its toolbox . Along the way we'll discuss 
principles of program design to help you start visualizing your applications 
right now. We won't limit our discussions to a single programming lan­
guage. In fact, we'll even help you choose a language if you're still unde­
cided. We'll compare C, Pascal, and assembly language, since these will 
probably be the most popular languages for toolbox programming. Later in 
the book, a few program examples will illustrate toolbox operations in a 
pseudolanguage that closely resembles both C and Pascal. 

Whether you're brand new to programming on the Apple II or if you 
come to the toolbox as an experienced programmer, this book is where you 
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should begin your IIGS toolbox experience. Start your toolbox explorations 
in the chapter appropriate to your expertise: 

1. If you are brand new to programming or if you are an experienced 
programmer only in BASIC on any computer, then start with 
Chapter 1. 

2 . If you have programmed earlier models of Apple II in Pascal , C, or 
assembly language, then you can skip Part One and head right for 
the toolbox discussions, beginning in Chapter 4. Of course, if 
you're rusty, it wouldn't hurt to start at Chapter I, skimming over 
the parts you know and studying the subjects that need brushing 
up on. 

3 . Some experienced Macintosh programmers may also come by, 
hoping to see how the Apple IIGS toolbox is different from the 
Mac's. For you, Chapter 8 is the place to start. 

No matter where you begin, bear in mind that this is a book about program­
ming concepts. Aside from a little hands-on exploration in the early chap­
ters, you won' t be needing your IIGS nearby . It's more important that you 
grasp the ideas presented here. You will encounter them again, and have 
plenty of hands-on experience when you start real programming. 

There are hardly any prerequisites for understanding this book . We rec­
ommend, however, that you spend time familiarizing yourself with the 
visual orientation of the Apple IIGS Finder. Notice how you work with 
screen menus , window, and icons. The Finder demonstrates the funda­
mental "feel" of the highly graphical interface that toolbox programming 
promotes. For you it may well be a new way of interacting with a computer. 
We also suggest that you acquaint yourself with the Control Panel , which 
you can summon from the keyboard at any time by pressing the Apple, Con­
trol , and Escape keys simultaneously. 

That's all you'll need to know to begin your lessons with The Apple 
IIGS Toolbox Revealed. 



Part One 

Programming Fundamentals -
A Crash Course In Plain English 



CHAPTER 1 

Under the Hood 

This chapter and the others in this part of the book are intended for 
two types of readers: (l) those who have never programmed a com­

puter before, and (2) those who have experience programming a personal 
computer in the BASIC programming language. You may think it odd that 
we've placed an experienced BASIC programmer in the same classroom 
with the complete neophyte. BASIC programmers, however, will see in the 
next couple chapters that the BASIC language has hidden many funda­
mental computing concepts. If you are a Pascal or C programmer, you will 
likely have worked with most of these concepts, but if it has been a while 
since you iast typed some code, then feel free to tag along as we start by 
peeking under the hood of the Apple IIGS. 

THE ENGINE 

Whenever you open the hood of your car, you can't help seeing its main com­
ponent, the engine. It is at the physical center of the engine com­
partment. Surrounding components attached to it perform the tasks needed 
to make the car move. The engine is also the functional center of the 
automobile, regulating such things as battery recharging, vehicle speed (in 
response to the press of the gas pedal), the amount of exhaust going to the tail 
pipe, and so on. 

5 
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CPU 
AJl computers - whether a desktop model like your Apple IIGS or a giant 
mainframe computer that a credit card company uses to generate monthly 
bills - need an engine to regulate the workings inside the machine. The 
computer engine, however, doesn't have any moving parts (although invis­
ible electrons move through it) and is small enough to get lost in a desk 
drawer. It consists of a single integrated circuit chip . A common name for 
this chip, derived from its primary function , is the central processing unit , 
or CPU. This kind of chip is also frequently called a microprocessor because 
it is, in a sense, a self-contained computer on a single chip. You can locate 
the CPU chip on your Apple IIGS main circuit board (the motherboard) by 
using Figure 1-1 as a reference. 

Rear Panel Connectors 

DO 
0 

0000 

0000 

Figure 1-1. Apple IIGS motherboard and CPU chip. 
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The 65816 Chip 
If you look closely at the actual CPU chip on the motherboard, you'll see 
many cryptic numbers on its top. Among them you'll find the part number, 
65SC816. This part, generically known as the 65816, is an advanced and 
greatly enhanced version of the 6502 CPU, around which all Apple II com­
puters have been built since the very beginning. The Apple lie, for exam­
ple , has a 6502 on its main board, while the Apple lie has a low-power con­
sumption version of that chip, called the 65C02, on its main board. Among 
the many enhancements built into the 65816 are increased processing speed 
and the ability to work with far more information than the 6502 was ever 
meant to manage . These enhancements give the Apple IIGS the power it 
needs for super high-resolution color graphics, responsive mouse control of 
a screen cursor, and many more desirable features to aid user and pro­
grammer alike. 

We said that a microprocessor is essentially a "computer on a chip." 
That phrase grew out of a long history of gradually combining the abilities of 
more and more integrated circuits into fewer and fewer chips. While a micro­
processor like the 65816 performs the tasks that a personal computer's cen­
tral brain needs, it is hardly an entire computer that we could use directly. 
Just as a car engine needs a water pump, a battery, and other components to 
work, a microprocessor needs extra integrated circuit chips to allow us to 
communicate with the computer via the keyboard or mouse and to allow the 
computer to communicate with us via the screen or speaker. Additional cir­
cuitry manages the movement of information to and from disk drives, print­
ers, and modems. Most of the other chips you see on the IIGS motherboard 
are those support chips. 

MEMORIES 

Among the other chips on the motherboard are two types of memory chips, 
called RAM and ROM. Each type performs a distinctly different function in 
the IIGS . 

RAM 

RAM stands for Random Access Memory. You'll find these chips arranged in 
two groups on your IIGS motherboard (Figure l-2). 

These chips store information while the computer is turned on. The kind 
of information kept there includes: the contents of the video display screen, 
certain numbers that the microprocessor needs for its own housekeeping, 
characters you type on the keyboard or load in from disk, and programs (as 
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Rear Panel Connectors 

RAM Chips 

Figure 1-2. Apple IIGS motherboard and RAM chips. 

you type them in or run them) . We ' ll get into how these chips store informa­
tion in the next chapter. 

Reading and Writing Memory 

As you run an applications program, such as a word processor or a spread­
sheet, the content of the RAM chips is constantly changing. Practically any 
action that takes place causes information to be written to or erased from 
RAM. Even if you can't see explicit action on the screen, such as when a pro­
gram is calculating, the CPU is frenetica1ly writing, reading, and rewriting 
RAM. 

(For the sake of accuracy, the term "Random Access Memory" does not 
accurately describe this kind of chip, because all types of memory chips can 
have their information accessed in a random fashion. That is, the micro­
processor can fetch a character from a specific space in a memory chip 
without "thumbing through" the contents of other spaces. The precise name 
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for the kind of memory chips we're discussing here is Read/Write Memory, 
or RWM . That means that the microprocessor can both fetch information 
from a specific spot in a chip and put information there, too. Tradition , how­
ever, dictates the general acceptance of the term "RAM", so we '11 use it 
here, too.) 

RAM: The Fuel Tank 

The amount of RAM inside a computer is an important measure of the 
machine's capabilities. The more RAM available to a programmer, the more 
sophisticated or complex programs can be. Lots of RAM also makes it pos­
sible to work efficiently on very large word processing documents, spread­
sheets, or databases . With enough memory, all necessary data can be stored 
for instant, electronic recall rather than electromechanical recall of small 
chunks from a comparatively slow disk drive. You can say, then that RAM 
capacity is analogous to the size of the fuel tank on an automobile. The 
larger the capacity, the more you 'II be able to do with the machine, and the 
more work you'll be able to do without refueling . 

Apple IIGS users should have little trouble accommodating early JIGS 
commercial programs in RAM supplied with the machine. Eventually, how­
ever, commercial developers will exploit the design opportunities offered by 
the computer' s color graphics, sound, and inexpensive RAM chips to build 
sophisticated programs requiring a RAM expansion card. 

ROM 

There's one last key component of the computer's memory circuitry that you 
should know about. It's called Read-Only Memory, or ROM. 

If you recall what we said earlier about a RAM chip's reading and 
writing abilities, then the ROM's characteristics should be obvious from its 
name: information in ROM is for reading only. Neither you nor the micro­
processor can alter the contents of ROM. 

ROM's Role 

While the microprocessor is a powerful chip in its own right, it doesn't really 
know what to do when you supply electricity to it. It 's a bundle of potential 
energy waiting for something to do. The ROM contains a fixed list of 
instructions that the microprocessor follows, starting the instant you turn on 
the computer. In the first few seconds your IIGS comes to life, the ROM 
shows the microprocessor how to set up the various components on the 
motherboard so that the combination of chips will act as a IIGS - how 
information is to be displayed on the screen, how to react to presses of the 
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Rear Panel Connectors 
LJ u .__. • • lll....J LJ LJ 

DO 
0 

0000 

0000 0 -.,..~-----Hf-l!!t-- ROM Chip 

D 0 
Figure l -3. Apple IIGS motherboard and ROM chip. 

keyboard keys, how to respond to a diskette that has been placed in one of the 
disk drives, and more. 

The Apple IIGS ROM has much more in it than just the start-up instruc­
tions for the system. It's also where a large portion of the programmer's 
toolbox is located. That's right. Much of what programmers need for putting 
together fancy-looking, Macintosh-like programs is contained in that 
lone chip. We'll have much more to say about the tools and ROM in later 
chapters. 

COMPATIBILITY 

When you purchased your Apple IIGS, quite likely one of the selling points 
that clinched the deal was the machine's compatibility with most software 
already available for the Apple lle and lie. For two computers to be compat­
ible with each other, many specific items about each machine's design must 
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be identical. Video display characteristics of both machines, for instance, 
must be the same. Since software written for one machine expects to display 
a well-defined number of dots on a video screen, a computer that doesn't 
have the requisite number of dots may not produce the program's video 
output at all. Disk drives, too, must be identical in the way they write infor­
mation onto a disk and read information from it. While to the naked eye the 
5 V4-inch floppy diskette for an Apple lie looks like a 51/4-inch diskette for an 
IBM Personal Computer, each machine encodes information on a disk much 
differently from the other. Neither machine would even recognize that a 
diskette recorded for the other machine had information on it. 

Compatibility issues, however, reach much more deeply inside a 
computer. For one, ROM instructions must be sufficiently equal so that 
important systemwide functions, such as display characteristics and infor­
mation flow in and out of the computer's connectors, are the same. Even 
more fundamentally, the two machine's microprocessor chips must be 
functiona11y identical . Each chip must respond to instructions the same 
way. 

Two Modes 
We noted earlier that previous Apple II computers were based on the 6502 
microprocessor, while the 65816 is at the core of the IIGS. One major reason 
the IIGS is compatible with earlier Apple II software is that the new chip can 
act as if it were a 6502. When it behaves in this manner, it is said to emulate 
the 6502. When it behaves like a full-blown 65816, it operates in what is 
called native mode. 

Emulation mode programming gets a boost by another chip on the IIGS 
motherboard. Called the Mega II, the chip was designed by Apple's 
engineers to place on a single chip as much of the "old" Apple II as possible. 
The Mega II chip provides the IIGS with Apple He- and lie-compatible video 
display resolutions and controls communications to outside devices through 
expansion slots and rear panel connectors (called ports). As a programmer, 
however, you won't have to know much about the Mega II, because the 
65816 (under the guidance of ROM) automatically knows when to put it in 
use, in both emulation and native modes. 

When you program for the Apple IIGS, you have the choice of program­
ming the machine either in its native mode, which this book emphasizes, or 
in emulation mode. Advanced programmers also have the choice of mixing 
modes by switching from one to the other and back in the middle of a pro­
gram, if necessary. Toolbox programming, though, is entirely in native 
mode. Information on programming in emulation mode is readily available, 
because it is identical to programming an Apple lie or Ilc, both of which are 
abundantly documented in other books. 

ll 
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Rear Panel Connectors 

[)[)[)[) 

0000 D 0 
Figure 1-4 . Apple IIGS motherboard and Mega II chip. 

PROGRAMS: THE COMPUTER'S ROAD MAPS 

So far , we've been talking mostly about the pieces that define a machine and 
its capabilities. Assembling a fine automobile from components, though, 
does not necessarily make it a productive machine. It needs someplace to go. 
Similarly, without a program to run, a computer, as defined by its CPU, 
ROM, and other chips , doesn't do a thing. You could, then, compare a pro­
gram to a road map for the automobile. 

Step by Step 

A computer program is nothing more than a series of instructions for the 
microprocessor and its related chips to follow. A word processing program, 
for example, tells the machine to display characters you type on the keyboard 
so they are arranged into neat sentences and paragraphs on the screen. Other 
instructions tell the computer what to do when you press the mouse button 
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when the cursor is in a certain place on the screen. Still other instructions cal­
culate the number of lines on a page until it is time to display a dotted line 
representing a page break, and begin counting lines for the next page. 

The programs you' ll be writing will probably be stored on either a 
floppy disk or a hard disk. When you wish to run a program, a command ­
perhaps a command you type or an action by the mouse-controlled 
pointer - will load a copy of the disk's program into the machine's RAM. 
Then the microprocessor will start obeying the instructions, one by one. 
Some of your instructions will cause the microprocessor to reach over into 
ROM for some further instructions that Apple's engineers put there for con­
venience, as you'll see later. 

Program execution will continue until you give the stop or quit com­
mand written into your program. When the microprocessor receives that 
command, it instantly returns you to the screen from which you started. Even 
though your program may no longer be in memory, it is still safe and sound 
on the disk. It's ready to run again whenever you need it. 

In the next chapter, we push even deeper inside the computer. You ' ll 
learn the true meaning of many buzzwords hurled at you since you first heard 
about personal computers. Get ready to think small. 

Things to do: 

I. ROM 
Instructions. 

2.RAM 
Instructions. 

Figure 1-5. The CPU follows ROM and RAM instructions step by step. 



CHAPTER 2 

Under the Microscope 

U ntil now, we've been discussing physical pieces of the IIGS - things 
you can see when you lift off the computer's cover. Now we'll go one 

giant step further by explaining key concepts about what occurs inside the 
chips on the motherboard. Because much of what you'lllearn in this chapter 
can't be photographed even with an electron microscope, most everything 
will be illustrated in diagrams. These diagrams will help you visualize what 
goes on at the chip level, as if we had a special microscope that not only 
peeks inside the chips , but interprets what's there for us to see plainly. The 
types of diagrams you'll learn to use in this chapter will become second 
nature to you by the end of the book. You can expect to see them in advanced 
programming materials, since even professional programmers rely on such 
diagrams to understand the workings of new chips and software procedures. 

In this chapter we' 11 encounter precise definitions for terms such as bit, 
byte, address, pointer, and memory map. We'll also look inside the 65816 
microprocessor to see the kind of work it does when running a program, and 
learn the meanings of terms such as stack, pointers, and flags. 

GOING WITH THE FLOW 

When you look at the Apple IIGS motherboard, you probably notice that 
each chip has a number of connections coming from it. These connections, 
called pins, are attached to the motherboard in particular spots so that low-

15 
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voltage electricity can pass from one chip to the next. You might say that 
electricity is the computer's blood, the wiring its veins. 

Electricity with a Message 

The electricity, however, is used as a way of communicating information 
between components on the motherboard and to slots and ports connecting to 
the outside world. The language of this information is about as simple as you 
can get, with a vocabulary of only two entries. One entry is represented in the 
circuits by a high voltage level; the other is represented by a low voltage 
level. The terms "high" and "low" are relative to each other, and don't 
indicate that the high voltage is necessarily dangerous. In fact, the high­
voltage signal is usually about as high as that generated by a couple of 
flashlight batteries, while the low voltage is usually less than a quarter 
of that. 

CAUTION: Just because the high voltage in the chip communications lines 
is only a few volts, this does not mean that it is safe to stick your hands inside 
the computer when the power is turned on. There may be places on the circuit 
board that handle enough current to give you a shock. Also, owing to the 
inherent conductivity of human skin, touching the closely spaced pins on 
some chips may cause unexpected short circuits , which may have one or two 
undesirable results: (I) an abnormally high current flow into your finger, 
causing a shock, and (2) a blow to one or more chips on the motherboard, 
necessitating replacement of the entire board. Therefore , always tum off the 
computer before removing the cover. 

The designers of the 6581 6 microprocessor imbedded instructions into 
the chip so that it performs very specific actions in response to precise 
sequences of these low- and high-voltage signals. You'll see examples of 
this later on, but for now, take it on faith that the microprocessor is "born" 
understanding this two-entry vocabulary. 

Human Notation 

The low-high notation is a bit cumbersome for us humans, so to make 
things easier, the low and high entries in the chip's vocabulary are repre­
sented by the digits 0 and I , respectively. This is illustrated in Figure 
2-1. From now on, we will use this 0 and 1 notation when discussing indi­
vidual voltage pulses flowing through the computer. 
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High 

VOLTAGE 

Low 

1 0 1 1 0 0 0 1 

DIRECTION OF TRAVEL THROUGH 
CIRCUIT 

Figure 2-1. Low- and high-voltage flow with their 0 and 1 representations. 

Binary Numbering 

Through no accident, the 0 and l components of a microprocessor's vocab­
ulary are also the two digits that make up the binary numbering system . In 
binary math there are no such numerals as 2, 3, or all the rest up to 9 -just 
0 and I . Instead of columns of numbers associated with ones, tens, hun­
dreds, and so on (each increasing by a factor of 10 - hence the name of our 
decimal math), a binary number's columns increase by a factor of 2. In 
Figure 2-2, compare the different ways the decimal and binary numbering 
systems represent the decimal number 195. 

Decimal 
(base 10) 

Binary 
(base 2) 

I 
.lOO.s 

1 

I I I 
.l2&i M:i lli .lQs ~ 1s 2s ls 

1 100 0011 

1 X 100 = 100 
9 X 10 = 90 
5 X 1 = 5 

195 

L 1 X 128= 128 
lx 64= 64 
1 X 2= 2 
1 X 1 = 1 

195 

Figure 2-2. Decimal and binary representations of the decimal number 195. 
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In case the binary numbering system is new to you, we've provided a 
short course about it and the hexadecimal system in Appendix A. A firm 
understanding of these two numbering systems will be essential for under­
standing Apple IIGS toolbox programming. Turn to this appendix now if you 
haven't the faintest idea what we're talking about, or if you need a refresher. 

BITS TO BYTES 

A convention has evolved over the years that calls for Os and Is flowing 
through a computer to be grouped in batches of 8. New microprocessors, 
including the 65816, can deal with these pulses in groups of 16, but you will 
still work with them often in groups of 8. A sequence of 8 digits would look 
something like this: 

01011 110 

The extra space between the two groups of 4 is generally provided as a means 
of making the long binary number more readable. Placing 8 binary digits 
together, such as 01011110, makes it harder for us to figure out exactly what 
number it is, although the CPU is quite content with the unbroken series. 

Now, the term we just used, binary digit, contains a lot of syllables to 
describe a single 0 or 1. In common usage, these two words have been com­
bined into one short one, bit. A bit is the smallest unit of information that a 
computer deals with. In computer jargon, the binary number shown above 
would be called an 8-bit number. 

Eight bits is such a common grouping that a term has developed for the 
group: byte, pronounced like a "bite" out of an apple. A byte always consists 
of 8 bits, even if all bits are Os. 

"Bits" and "bytes" are sometimes confused, particularly when talking 
about them in the context of computer chips, such as microprocessors and 
memory chips (both RAM and ROM types). To clear up this confusion, let's 
first talk about microprocessors. 

8 = 1 bit 

II II lo lo lo !o II I q = 1 byte (8 bits) 

Figure 2-3. Comparative length of a bit and a byte. 
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Microprocessor Bits 

You probably remember somewhere in the Apple UGS product literature or 
in the salesperson • s pitch a claim that the computer has a 16-bit microproces­
sor, compared to the 8-bit microprocessor of the earlier Apple Us. Unfortu­
nately, this terminology means different things to different people. 

To one group, a 16-bit microprocessor accepts, massages, and sends 
back information in 16-bit-wide paths - literaJiy through 16 separate pins 
(known as data lines) on the chip. In other words, a group of 16 bits passes 
through the CPU and external circuits at one time, like 16 race horses taking 
off from the starting gate at the bell. An 8-bit microprocessor, then, sends 
and receives information only 8 bits at a time. With twice as much informa­
tion passing through a 16-bit computer at a given instant than through an 8-
bit computer, processes generally operate much faster, when both machines 
operate at the same speed. 

To another group of terminology makers, however, the bit rating of a 
microprocessor is measured by the width of information flowing only inside 
the microprocessor, regardless of the number of data lines connected to out­
side chips. For example, the model8088 chip in the IBM PC connects to the 
rest of the computer via eight data lines, while inside the chip, information 
shuffles about in 16-bit-wide chunks. That means that certain operations, 
such as simple arithmetic built into the chip, will be performed in the faster 
16-bit mode. Communicating the result of the arithmetic to the rest of the 
computer, however, will be done in only 8-bit-wide chunks. The designation 
for a chip operating at 8 bits externally and 16 bits internally is an 8116-bit 
microprocessor. 

The 65816 inside your IIGS, however, claims its 8/16-bit denomination 
for a slightly different reason. Internally, the chip can run as either an 8-bit 

Data 0 
Data 1 
Data 2 
Data 3 
Data 4 
Data 5 
Data 6 
Data 7 

To other 
circuitry 

Figure 2-4. A microprocessor's eight data lines. 
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(emulation mode) or a 16-bit (native mode) microprocessor. Its link to the 
outside world is via 8 data lines. A trend seems to be developing to ignore the 
data line count and refer to a microprocessor only according to its 
best internal capabilities. Hence, the 65816 is commonly called a 16-
bit chip. 

RAM Chip Bits 

Bit terminology is also used to describe the capacity of memory chips - not 
the amount of the computer's memory specified in the product literature, but 
of the actual chips themselves. Chips are normally rated by the number of 
kilobits of information they can store. Strictly speaking, a kilobit is 1024 
bits. The "kilo" prefix, which should mean 1000, means 1024 in any com­
puter measure (since computer stuff is calculated in binary, 1024 [2'0] is the 
factor of 2 nearest to 1000). 

RAM Bytes 

The RAM chips inside the IIGS are 256-kilobit chips, commonly labeled 
256K chips. If each chip holds 256 kilobits, that means each holds 32 kilo­
bytes (remember, 8 bits for each byte). To bring the computer's total on­
board RAM to 256 kilobytes (that ' s the measure on the specifications 
sheets) , Apple had to plant eight 256 kilobit chips , which it did in two sepa­
rate banks on the motherboard. 

Since kilobits and kilobytes are both abbreviated by the letter "K", be 
careful to identify what kind of K you ' re looking at. Chips are measured in 
bits; system memory as a whole is measured in bytes. Keep your bits and 
bytes straight. 

OTHER MEASURES 

Bits and bytes aren't the only measures of computer data. You will encounter 
two other important terms: word and nibble. 

Word 

With a microprocessor such as the 65816 working with 16-bit-wide data 
internally, there is a convenient term to refer to these 2-byte-wide chunks: 
word. This "word" should not be confused with words in a spoken lan­
guage. A word inside a computer is simply any 2-byte (16-bit) collection 
of data . 
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Rear Panel Connectors 

128 + 128 = 256 
Kbytes 

Figure 1-S. Eight 256-Kbit chips makes 256 Kbytes of RAM. 

Nibble 

One other term you will see occasionally is nibble. Just as a nibble is a small 
bite, so is a computer's nibble exactly one half of a byte. In other words, a 
group of 4 bits is referred to as a nibble . By convention, a nibble is either the 
higher or lower half of a byte. You'll see how a nibble is used in a later 
chapter. 

A comparison of bit, nibble, byte, and word is illustrated in Figure 2-6. 

CHARACTER BYTES - ASCII CODES 

Some years ago, an industry standards committee assigned a unique code 
number to each letter, numeral (0 through 9), common punctuation mark , 
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l&ruUh 

1 bit IT) bit 

nibble 

eight bits l1l1l o 1 o I o 1 o I o 111 byte 

sixtbi~ 11lolol111lol11ol111lololololol11 word 

Figure 2-6. Bit, nibble, byte, and word lengths. 

and several special computer commands (often used to control printers, 
modems, and other external devices). Even the uppercase and lowercase 
versions of each letter of the alphabet had to have their own code numbers. 
The result was the American Standard Code for Information Interchange, or 
ASCII (pronounced "ass-key") for short. 

By strict definition, an ASCII code number is a 7-digit binary number, 
allowing for a total of 128 possible combinations (0 to 127, or 0000000 to 
1111111). Within the span of 128 codes are enough unique numbers to 
accommodate all letters, numerals, punctuation marks, and control codes. 
Since computers generally work with bits in multiples of 8, the 7-bit code is 
usually embedded in an 8-bit character, with the most significant bit always 
being 0. In the United States, these ASCII codes are the common way of 
sending characters between computers, whether over the telephone line (via 
modem) or through direct cabling. 

A number of personal computers also have extended ASCII codes , 
which tum a code number's most significant bit to a 1. Characters assigned 
to these code numbers (128-255) are not standardized among different com­
puter models. Some machines use these codes for graphics characters, others 
for foreign language letters. 

Together, a computer's 128 ASCII characters plus extended codes 
make up the machine's character set. 

Inside the computer, each character that you type on the keyboard or 
that appears on your screen is really known only by its code number. Video 
generation circuitry has a lookup table that it uses to display a particular pat­
tern of dots that to us looks like an" A" each time it receives the code number 
for that letter. 

' 
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ASCII X-Ray 

If you 'd like to see what some of this looks like in memory, you can use the 
IIGS ' built-in Monitor Program for a sneak peek. We'll be seeing the Apple 
ll's internal character codes , which differ from ASCII codes in one impor­
tant respect. Internally, standard characters (normally 0-127) are assigned 
code values 128- 255. In other words, the Apple II character values (often 
referred to as Apple ASCII values) are 128 greater than standard ASCII 
values. The lowercase "e", for example, is 101 in standard ASCII, and 229 
in Apple ASCII. 

To check out these characters, follow these steps: 

1. Turn on the computer without a disk in the disk drive . The message 
"Check startup device!" will appear on the screen. 

2. Hold down the Control key and press the Reset key. The screen will 
clear, and a left-facing bracket will appear at the upper left comer. 

3 . At that prompt, type 

CALL -151 

and press Return. This action starts the Monitor Program, and will 
display an asterisk as its prompt . 

4 . At this point , ty pe 

0200.Hello! 

and press Return twice. You're now looking at the contents of 16 
bytes of RAM. 

For the moment, ignore the group of characters along the left edge of the 
screen. Notice, though, that to the right of the colon is a series of2-digit hex 
numbers extending most of the way across the screen. Each 2-digit number 
is the hexadecimal equivalent of the content of a byte of memory. Since most 
of these bytes represent text characters, the actual characters appear in the 
group of letters along the right edge of the screen. Look up each hex byte (as 
displayed on the screen) in the Apple II character table in Appendix B to see 
the way each character of the word "Hello!" is stored as its code number, 
instead of the character as we would recognize it. 

If you want to see some more, you can use the Monitor to explore the 
contents of ROM. At the asterisk prompt, type 

FF/DOCF 
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0 0/ 0200 : 80 82 BO BO AE C8 ES EC EC EF Al 80 00 FF FF 00 - . 200 .Hello! . . . . 

Figure 2-7. Contents of 16 bytes of RAM. 

and press Return several times. You'll see all of Applesoft BASIC's reserved 
words strung end to end . 

HOW MEMORY WORKS 

To understand how memory works , we' ll start with an analogy. 
You can conceive of memory as a blackboard with row after row of 

blank spaces. Into these spaces can go characters, like letters ofthe alphabet. 
RAM-type memory allows you to write a character in a space, erase it, 

and write in another. Whenever you press a character key on the keyboard , 
that character is stored in a space in RAM . In the case of ROM , however, the 
characters are painted on the blackboard at the factory (the chip's factory) 
and cannot be altered . With the help of the Apple IIGS Monitor, we just saw 
that those character spaces in memory actually hold code numbers (when 
they are to represent recognizable characters) and bytes of instructions. 

E A c H s Q u A R E I S 
A u N I Q u E M E M 0 R y 

c E L L 

t- rrt 
I• 

~~ • l 
' 
I 

Figure 2-8. A RAM "blackboard." 
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The Memory Address 
For a microprocessor to fetch information from memory or save information 
there , it must have a way of denoting a location in memory , like a box 
number. In the blackboard scenario, you could establish row and column 
numbers (in hexadecimal, of course) that would look like those in 
Figure 2-9. 

The location for the byte $65 would be $0301, consisting of the column 
number, $03, and the row number, $01. This location number is called the 
address of a memory location, just like the street address on the front of your 
home or apartment building. The number of the address stays the same, 
regardless of how often the content of that cell changes or what that content 
is. It's exactly the same as your home address: many families may live at that 
address over decades, but the address of the building stays the same. 

The Memory Map 
We're now going move away from the blackboard analogy and orient your 
conception of memory to the way programmers visualize memory . Instead 
of thinking of memory as a grid of byte spaces, think of memory as a tall 
column of byte spaces, with each space having a unique address in numerical 
sequence. 

$00 
$01 
$02 
$03 
$04 
$05 
$06 
$07 

$00 $02 $04 $06 S08 SOA $0C $0E . . 

$65 

• 

Figure 1-9. Memory "blackboard" with addresses. 

~tl 
I 

lr 

1,; 
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$00 $02 $04 $06 $08 

$0000 
$00 $0001 
SOl $0002 

$02 
$03 
$04 
$05 

$06 
$07 

$65 

Figure 2-10. A tall column of memory spaces. 

$0300 
$0301 
$0302 
$0303 

$65 

In this format , you can show the contents of individual bytes or many 
bytes combined into a single block. This method of visualizing memory is 
called a memory map. 

Banked Memory 

Partly owing to the necessity of making the IIGS compatible with earlier 
Apple II computers, the IIGS memory is actually divided into banks, each 64 
kilobytes long. The earliest Apple II models had a built-in limit of 64 kilo­
bytes of memory . Of that 64K, ROM instructions required 16K, leaving only 
48K of RAM available in the memory map for programs and data - the so­
called user RAM. Gradually, ingenious software methods brought to the 
Apple II family the ability to switch between banks of memory. Under the 
guidance of well-designed programs, bank switching was completely hidden 
from the program user, and it appeared that the computer had one continuous 
block of memory . 

Cells of a memory bank are numbered consecutively with the addresses 
$0000 to $FFFF. You can envision a bank according to the map in Figure 
2-11. 

Banks in the Apple IIGS are numbered (in hexadecimal , of course) from 
$00 to $FF (there is a gap, though, as we'll see in a moment) . If you do your 
hex arithmetic , there should be a theoretical maximum of 256 banks , each 
consisting of 64 kilobytes of memory. When you make a bank number part 
of an address , such as $0IFFFF (location $FFFF in bank $01), it means that 
the Apple ITGS should address up to 256 x 64K memory cells - a total of 
16 megabytes (16,777,216 addresses, to be precise). In practice, the IIGS 
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hex addresses 64K BANK decimal addresses 
$FFFF ~----~ 65535 

$0000 L---------1 0 

Figure 2-11. A 64K-bank memory map. 

places a cap on user RAM space at 4 megabytes, plus 128 kilobytes of special 
RAM assigned primarily to super high-resolution video and system mainte­
nance, plus up to l megabyte of ROM. 

THE APPLE IIGS MEMORY MAP 

Right out of the box, the IIGS has a tiny portion of its possible memory 
maximum already installed: 256 kilobytes of RAM and 128 kilobytes of 
ROM - a total of 384 kilobytes (there are an additional 64 kilobytes of 
sound-only RAM). A special memory expansion slot on the motherboard 
allows you to easily increase memory to 1 megabyte with the addition of a 
single memory expansion card. Expansion to multiple megabytes of RAM 
will be possible with memory cards built around higher-density, 1-megabit 
RAM chips. 

A schematic of the memory possibilities in the Apple IIGS is shown in 
Figure 2-12. Notice that RAM bank numbers stop at $3F (a total of64 banks, 
including $00) and resume for two more banks, $EO and $El. ROM banks 
$FE and $FF are the ones claimed by the IIGS ROM. ROM addresses below 
these banks are reserved for future use, leaving plenty of room available for 
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RAM Bank Numbers 

$00 $01 

RAM Expansion 

$02-12 $13-3F 

Addi­
tional 
RAM 

Expan-
sion 
Area 

RAM Banks 

$EO 

~ Standard Equipment 

F igure 2-12. Apple llGS memory map. 

$El 

I 
SFO-FD $FE $FF 

' I 1+- Future ROM 

ROM Banks 

D Expansion 

many enhancements to the IIGS for years to come. The uses of banks $00, 
$01, $EO, and $El differ depending on whether you are in native or emula­
tion mode. Although this book deals with native mode programming, we can 
say that in Apple II emulation mode, banks $00 and $01 are used as if they 
were the 128 kilobytes of memory in an Apple lle or lie. In that mode they 
are apportioned and managed identically to the way they are in those earlier 
machines. 

ONE SPECIAL BANK 

Bank $00 has a special place in Apple IIGS programming, because it is the 
only bank that can hold two important chunks of memory: the zero page and 
the stack. We'll discuss these one at a time. 

The Zero Page 

Assembly language programmers in particular will need to know about the 
location of a small piece of bank $00 called the zero page. A holdover from 
Apple II days, the zero page is a kind of scratch pad that various toolbox tools 
will use to store temporary data while in use. 
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The Stack 
A more visible application of a section of Bank $00 memory is for use as the 
stack. The stack is a temporary receptacle for even more transient data than 
what goes into the zero page. Moreover, there are substantial restrictions on 
the way you can retrieve information that is stored in the stack. An example 
from real life is in order. 

The favorite illustration of the mechanics of a stack is a spring-loaded 
meal tray dispenser at the start of a cafeteria line. When the busperson places 
trays atop the existing pile, the weight of the new trays pushes the trays orig­
inally there out of sight. Only the tray most recently placed on the stack is 
showing. As people pull trays from the top of the stack, trays from below 
gradually become available. 

You can think of a computer memory stack in much the same way. 
When the microprocessor places a new byte on the stack, it is said to push 
data on the stack. When the data is removed from the stack, it is said that the 
microprocessor pops data from the stack. At any given moment, the stack 
may be empty or it may contain hundreds of bytes of data. Since there is only 
one stack, it is sometimes necessary for the microprocessor to push data on 
the stack , then push some other data atop it temporarily. Then it pops the data 
in the reverse order it had been pushed. The rule with the stack is Last In, 
First Out. The stack is probably the most active place in memory while a pro­
gram is running on your computer. Not only does its content change con­
stantly , but it is rare for any chunk of data to sit on the stack for any length of 
time. 

The Inverted, Solid Stack 

Now that you've got a conceptual model for the workings of a stack, get 
ready to have that model blown away for two reasons: (1) the stack in the 

Top of I tray 
the stack __...l_;:"ij· ·i·i·j·jj·ii·i· i· "~l 

~ 
~ rg 
~ 

Figure ~13. A stack of trays. 

5 t Top of 
rays .__ the stack 

f. · · · · · i · J 4 Original 
tray 
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Apple IIGS grows downward; and (2) data on the stack really doesn' t move 
in memory like the bouncing meal trays . Let's look at ways of putting these 
two upsetting facts into a conceptual model you can live with. 

In the first instance, we can trade in the meal tray analogy for that of a 
paper cup dispenser - one that makes you insert fresh cups from the bottom 
rather than refill from the top . If you squeeze several cups in from the bot­
tom, the one at the very bottom of the bunch you shoved into the dispenser 
will be the first one available for the next drink. The Last In , First Out rule 
still holds. That is one unbreakable rule about the stack. 

The problem with using any kind of dispenser in a stack analogy, how­
ever, is that a dispenser assumes the next available tray or cup will be in the 
same location in space as the one before it and the one after it. That is, either 
a spring or gravity places the next available item on the stack at the same 
location every time. That' s not the way it works on a computer stack. 

If we start with several bytes of data on the stack in Figure 2-14A, the 
next available item on the stack is in memory address $007FFC. Then, if we 
add 2 bytes of data to the stack (Figure 2-14B), the address of the new "top" 
of the stack is 2 bytes less, or $007FFA. Popping 1 byte of data from the top 
of the stack (Figure 2-14C) makes the next available stack address $007FFB. 
At no time does the data on the stack shift around inside the stack. 

Obviously , the microprocessor needs to keep track of where the top of 
the stack is at any moment. The 65816 does so with a special counter that it 
keeps in one of its own built-in cubbyholes . That counter is called the stack 
pointer. That CPU cubbyhole holds 2 bytes of data - just enough to specify 
the address of a memory location (bank $00 is assumed). At any instant 
during program execution, the stack pointer contains the address of the top 
of the stack. As an item is popped off the stack, the stack pointer increases by 
1 (goes up in memory); as an item is pushed onto the stack, the stack pointer 
decreases by 1 (goes down in memory). This can be confusing at fll'st , but 
Figure 2- 15 should help bring the concept home. 

POINTERS 

Although the stack pointer is a case in which the microprocessor is actually 
storing information - the address of the top of the stack - you should 
know now that pointers stored in regular RAM play an important role in 
programming IIGS tools. We' ll see pointers in action in later chapters. Let's 
examine the components of a pointer. 

Since a pointer is an address to a memory location in a particular 
memory bank, you will need 4 bytes of memory for the pointer. Two 
bytes - the low , or rightmost, bytes of a four-byte number - refer to the 
memory location . Two high bytes refer to the bank number. Therefore , a 
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(low memory) 

starting 
stack 
(A) 

Top of 
the stack 

... ... 

Top of 
the stack 

Bank $00 

(high memory) 
previous data 
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(B) 

$7FFB 

Figure 2-14. Stack manipulation before push, after push, and after pop. 

$7FFA 
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65816 
Staek Pointer 

I$7FFC 1-

Bank$00 

(high memory) 
.. previous data .. 

(low memory) 

sta rting 
stack 
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Stack Pointer 
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Stack Pointer 
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Bank $00 

(high memory) 

previous data 

new byte l 
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the stack 
(C) 

Bank$00 

previous data 

new byte 1 

-- new byte 2 .. 

(low memory) 

two bytes 
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(B) 

Figure 2-15. The stack pointer keeps track of the top of the stack. 

pointer to address $3F02 in bank $03 will have to be placed in memory as the 
4-byte number $00033F02. If hex numbers, such as this one, ever get dif­
ficult to read, simply divide them into single bytes, in this case $00$03 $3F 
$02, or two-byte chunks, $0003 $3F02. This pointer mechanism is illus-

trated in Figure 2-16. 
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Bank $00 
Display the name 
stored in memory 
indicated by the 

following address: 

$0003 3F02 ~ 

Figure 2-16. The pointer mechanism. 

.... 
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Bank $03 

$3F02...._------4 
LARRY $3F07 .,__ _____ -4 

Pointers have to be used with care, however. In an application, it is 
quite possible for data portions to be moved around a bit. This would happen 
when a block of memory is no longer needed by the program, and all 
remaining blocks that can be moved (i.e., that were created as relocatable 
blocks) are compacted together. The net effect of memory compaction is to 
open up large, empty blocks for the program to use for other purposes. But if 
your program was pointing to a specific chunk of data in memory , it will lose 
track of the data when the data block moves during compaction. 

HANDLES 

Fortunately, there is a way around this dilemma. A common technique in 
IIGS programming is to use a handle instead of a pointer - indeed, many 
tools require the use of handles rather than pointers. Instead of using a 
pointer to refer to a specific data address in memory, a handle is a pointer to 
a master pointer, whose location never changes. The master pointer, in turn, 
keeps track of the location of the desired chunk of data as the data shifts 
around memory while a program runs . Figure 2-17 demonstrates the 
stages involved here, and compares the result of using a handle instead of 
a pointer. 
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Before Compaction After Compaction 

$00 $03 soo 

Pointer; 

soo $03 soo $03 

Handle: 

Figure 2-17. Pointer vs. handle action during memory compaction. 

At first a handle might seem like a long way to go to keep track of a 
block of data, but because the master pointer never moves in memory , the 
IIGS toolbox can always find it and supply it with new information about the 
location of relocatable data. Since even the program that caJls the handle 
may move during a memory compaction, the master pointer system is far 
more efficient than if each pointer in a program tried to track relocatable data 
on its own. 

Notice another important matter, one that has to do with memory nota­
tion, rather than pointers and handles. In the last several figures, we've been 
displaying varying length items as simple blocks of memory in these vertical 
memory maps . The blocks are not necessarily drawn to scale, and a block 
can contain a chunk of information ranging from a single byte to perhaps 
thousands of bytes. Maps are designed to give you a bird 's eye view of items 
stored in memory at a given instant. Therefore, it is important that you watch 
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the words used to describe information in any block of data. If the wording 
in one box indicates it holds a pointer or a handle, then you know that the box 
represents a total of 4 bytes from memory. As you start to work with the 
tools, you'll quickly become versed in the amount of memory each type of 
item requires. 

FLAGS 

In working with pointers and handles, we've seen that information in a pro­
gram is often grouped together in 2- and 4-byte chunks. Sometimes, how­
ever, you need to get down to the bit level to either establish or determine 
certain conditions. A common application for this type of bit manipulation is 
switching an operating mode on or off. 

Bit Switches 

Since turning a particular mode on or off (or checking which mode is cur­
rently engaged) requires nothing more complex than an on or off signal, it 
can be handled by the content of a single 1 or 0 bit in memory. Usually, sev­
eral of these bit switches are grouped together so that they can be "read" at 
once. The smallest practical grouping of bits is 1 byte. Each bit in such a byte 
is called a flag, and the byte itself is often called a status byte. Most data in 
an Apple IIGS native mode program shuffles about in word (2-byte) length. 
A word containing a series of flags is called a status word. 

Each bit in a status byte or word stands for a particular condition. For 
example, one flag might indicate which of two video modes is engaged, 
while a group of four adjacent flags indicates which of sixteen color tables is 
in use (depending on the binary number that those four binary digits make). 
A status byte might look something like the one in Figure 2-18. 

Bit Arithmetic 

Although each bit can carry a specific message about some condition, a pro­
gram has to perform some clever math on the binary number to determine the 
settings of the flags in each of the bits. For example, if you want to check 
whether the sixth bit flag is set to 1 before proceeding with a section of your 
program, you would perform Boolean AND arithmetic on the entire byte. 
The operation would look like the one in Figure 2-19. 

Since the result of this operation is the binary number 0010 0000 
($20}, the program detects that the flag in bit 6 is set. If the result were 
0 (00000000), then the flag in bit6would beO, and the program would know 
that the flag was not set. 
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Flags ~ I I I I I I I I 
I 

Color Table 
0000 lhru 111 1 

(Not used) 

fill 
O= Off I = On 

.llllWUlU 
O= Off I = On 

Color Mode .__ _______ 0 = 320x200 

1 = 640x200 

Status Byte 10100011 (SA3) = Color mode 640x200; Interrupt off; Fill on; Color Table 3 

Status Byte 00101110 ($2E) = Color mode 320x200; Interrupt off; Fill on; Color Table 14 

Figure 2-18. A status byte. 

Boolean arithmetic plays an important role in assembly language pro­
gramming and a lesser role in Pascal and C, but you will encounter it several 
times in your learning about Apple IIGS tools. Be prepared for it by studying 
Appendix A's short course in binary and hex math . 

HOW A PROGRAM WORKS 

In the last chapter, we described a program as a list of instructions for the 
microprocessor. Now that you've seen a little more of what goes on behind 
the scenes, we'll get somewhat more specific about what a microprocessor 
does with a program. 

1010 0110 
AND 0010 0000 

0010 0000 

{Status Byte} 
{Test presence of 0010 0000} 

{Yes, it's there!} 

Figure 2-19. Boolean AND arithmetic. 
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Loading 

The first task occurs before the program even begins. It happens at the 
operating system level. The operating system is, itself, a program that helps 
you manipulate disk files and load programs. It is like a master program from 
which you begin loading an application. Even when you start up the com­
puter with an applications disk that appears to launch straight into the 
program, the operating system actually runs first, and then your program 
loads. 

If you are using the Finder and desktop view from ProDOS 16, then 
you're looking at a shell built around the operating system, insulating you 
from the operating system's command language. By moving the mouse 
pointer onto an application's screen icon and double-clicking the mouse but­
ton, you actually give the load command to the operating system. T he 
operating system tells the microprocessor to perform a set series of tasks that 
will copy some or all of the bytes stored in the selected program on the disk 
into RAM. 

Running 

The microprocessor immediately begins to follow the instructions loaded 
into RAM. It knows where to start because it keeps track of the address 
where the instructions are supposed to start and where the program is at any 
instant. Just as the CPU tracks the stack pointer in a special spot on the chip 
itself, it also keeps an address of the next program instruction it is to follow 
in a section of the microprocessor called the program counter. If an instruc­
tion in the program calls for program execution to jump to a spot far away in 
memory, then the program counter will adjust accordingly, pointing to the 
address of whatever the next instruction is to be. 

The program counter works automatically. Assembly language pro­
grammers have to keep a close eye on the program counter, but C and Pascal 
programmers will never come in contact with it. 

Quitting 

At the end of the applications program, such as when you choose Quit from 
a menu, the final instruction of the program returns control of the computer 
over to the previous program- usually the operating system. When this 
happens, the applications program instructions and all its data are erased 
from memory (remnants may still be in RAM, but you'll have no access to 
them). If the program was one that you used to store information, such as a 
database or word processing program, you should, of course, save the new 
data in data files on disk before quitting the application. 
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One more mechanism is involved in running a program - the micro­
processor's registers. We'll save discussion of this important concept for the 
next chapter, in which we will examine the languages you might use to pro­
gram the IIGS. 



CHAPTER3 

Talking to Your IIGS 

I n this chapter we'll take a slight detour from inside the Apple IIGS and 
investigate what you can expect to encounter when using a programming 

language to write instructions for your computer. We'll also examine three 
programming environments- assembly language, Pascal, and C - in 
some detail. This discussion may help you choose a language if you have not 
yet made this important decision. 

WHY A "LANGUAGE"? 

We have al l learned at least one language- certainly the language in which 
this book is written - although we usually take that learning process for 
granted because it was so gradual. Language experts tell us that we learn our 
main language by imitating the sounds our parents make, slowly assigning 
meaning to those utterances. After years of constant conversational use, plus 
the reinforcement of reading and writing, we learn to convey meaning to vir­
tually anyone knowing the same language- we communicate. 

Command Languages 
When you give instructions to someone to drive to the store, you are com­
municating the directions. The same is true when you want to give instruc­
tions to your IIGS to do something for you. You must communicate with the 
computer. 

39 
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Even when you run a commercial applications software program, you 
communicate your intentions to the computer by issuing commands. Those 
commands may be in the form of words ("Copy"), keyboard commands 
(Control-Q), or mouse actions (pulling down a menu and choosing an item 
on that menu). Commands such as these actually constitute a small lan­
guage. Often the words in the language are similar to those of your own lan­
guage; other times the language is designed to be easy to remember with the 
help of mnemonic clues, such as Control-Q to Quit. Generally, you issue a 
command to produce an action; the program converts those commands into 
instructions for the microprocessor to follow. You, as the program's user , 
are completely insulated from direct contact with the microprocessor. 

From User to Designer 
When you're the program designer, however, the scene changes entirely. 
Not only do you communicate with the microprocessor, but you must be in 
steady touch with it. The chip feeds on your instructions and must have a 
constant stream of them. In other words, instead of issuing occasional indi­
rect commands, as in an applications program, you must carry on a continual 
conversation. But how? 

That's where a programming language comes in. It acts as an inter­
mediary between your human language and the language the micro­
processor understands. 

MACHINE LANGUAGE 

If you're wondering what kind of language the microprocessor has, you've 
already seen what it looks like. To talk directly to the chip, you'd have to use 
ls and Os. That is the total vocabulary of machine language, the language the 
microprocessor "machine" understands. 

An Awkward Tongue 

Programming in machine language is not impossible, but it is awfully incon­
venient. In the earliest days of personal computing, most programming was 
done in machine language. But instead of typing l s and Os on a keyboard, 
programmers toggled switches on the computer's front panel to the desired I 
or 0 position. Once a byte of l s and Os was set, the press of another button on 
the panel stored that byte in the computer's RAM. There were no video 
monitors either. Programmers could review programming instructions only 
one byte at a time, with a panel light representing each bit's status -on or 
off - plus some other lights to reveal the condition of various other parts of 
the microprocessor (see Figure 3-l). 
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Aside from the tedium of writing each byte one bit at a time, errors 
could easily creep in. After all, it takes close scrutiny to tell the difference 
between 0 100 1010 and 0101 1100. And in a program consisting of several 
thousand bytes, imagine trying to find an errant bit in a printout. 

This brings up another key ingredient to using a programming lan­
guage: accuracy. 

LANGUAGE PRECISION 

When you speak your native language to another person, the precise word 
selection and order are not critical, provided you follow some loose ru les. 
For example, read these two sentences: 

Yesterday I went to the grocery store. 
I shopped at the supermarket yesterday. 

Whi le both sentences adhere to the rule that a subject and object agree, each 
sentence is constructed quite differently, yet both present the same mes­
sage- at least similar enough to convey the same meaning. 

[Dm ~lJ-"11' i l:llJE 

5u~Er lllil:rD fl[) 

07 06 
::(f. 0 
··: ·. 

05 04 0 3 02 0 1 DO 

0 ::(/. 0 0 0 ::(/. 
··:·· ··:·· 

I I I I I I I I 
~caca~cacaca~ 

~ ca ca 
Run Step Store 

Figure 3-1. An early programming environment. 
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In communicating with a computer in a programming language (or in its 
own machine language for that matter), there is no room for ambiguities. A 
computer language has a vocabulary and a very specific way its words can be 
strung together. The structure of a message is called the syntax. You can 
make an error in syntax when talking to a fellow human, and the message 
will usually get across just the same. But a computer is a finicky devil, 
insisting that you talk to it in proper syntax. Failure to do so usually results in 
the computer telling you that you have made an error - often called a 
syntax error. 

THE WRITING PROCESS 

Up to now, we may have made it sound as if the microprocessor knew the 
same programming language that you Jearn so that the two of you could com­
municate. Strictly speaking, that's not true. Actually, all the microprocessor 
understands is machine language, and that's all it will ever know. But most 
language software you buy translates your words into machine language for 
the microprocessor. The language bas a vocabulary and syntax of its own, 
and then translates your writings into properly constructed machine lan­
guage instructions. It insulates you from the ls and Os of machine language. 
The language is usually designed to make the program writing process sim­
pler by letting you write instructions in an English-like environment. 
Granted, sometimes the "English" is stilted and abbreviated, but the lan­
guage still makes the programming job much easier than does machine 
language. 

Getting the Words Down - The Editor 

The first step in writing a program is typing the program's steps according to 
the vocabulary and syntax rules of the language you're using (presuming you 
have established what you want your program to do). Most programming 
languages come with a separate program that lets you save the instructions as 
a text file on a disk. This program is nothing more than a stripped-down word 
processing program, usually called an editor. Sometimes the editor is built 
into the language environment; other times it is a separate program. When it 
is a separate program, an editor lets you write in any programming lan­
guage - in fact you can use it as a word processor for letters and other 
simple documents in English if you like. The editor is simply a vehicle to let 
you type in the instructions and save them as a text file on a disk. The file you 
save is not a file you can load and run as a program. 

In addition to typing actual program instructions with an editor, you 
will also add explanations and reminders about what the code is doing at 
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various stages of the program listing. These notes are not part of the pro­
gram - they do not affect the CPU's actions in any way - but they are a 
part of the editor text file just the same. These notes are for your own edifica­
tion so you can return to the list of sometimes cryptic instructions and locate 
a particular section for repair or modification. The task of writing these notes 
(usually as you write the instructions) is called documenting the program. 
Since the notes aren 't part of the program, you can use any language or 
syntax that makes sense to you. Depending on the language, notes are kept 
separate from program listings by enclosing the notes between special 
characters, such as curly brackets. 

Translating Words into Programs 

What turns an edited list of program instructions into a program is an assem­
bler or compiler (hereafter referred to simply as compiler unless we're 
specifically discussing assembly language). When you start the compiling 
procedure, the compiler program opens a file created by the editor and 
converts your typed instructions into machine language . The results of this 
compilation are also saved to disk in a separate file. This file is in a special, 
compressed format that only the computer knows how to read . You won't be 
able to look at its contents by opening it with the editor. By the same token, 
since the instructions are in machine language, the computer has no way of 
identifying the file as coming from a particular language. Once the instructions 
are in machine language, they essentially lose all ties with their linguistic 
origins. 

EDITOR 

I. Editor program converts keystrokes 
into an ASCll text flle of program 

instructions. 

Figure 3-2. Editor and compiler work flow. 

2. Compiler program converts your 
text into machine language. 
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You see, then, the language, per se, is not contained in the editor, but in 
the compiler program. That program expects to see only its own vocabulary 
in the list of instructions you typed into the editor file. A "C" compiler, for 
instance, would not know how to handle a Pascal instruction, even though 
compilers from both languages could translate editor files created with the 
same editor program. 

Two terms you will become very familiar with when you start program­
ming are source code and object code. Source code consists of the list of 
instructions you type into the editor. It is the "source" from which the com­
pilation derives its information . Source code listings are the ones you will 
write, print out, share with others, and use to track down errors. Object 
code, on the other hand, is the name of the result of compilation. You might 
say that it is the "objective" of doing all the programming: to create a list of 
instructions in machine language that the microprocessor can follow. We 
will be using these terms freely through the rest of this chapter, so be sure 
you understand them fu lly before proceeding. 

We now take a closer look at three types of languages: assemblers, com­
pilers, and interpreters. Each has advantages and disadvantages you should 
know about if you're still considering which language to settle down with . 

ASSEMBLY LANGUAGE MECHANICS 

You have probably heard both horror stories and praise for assembly lan­
guage. Both are justified. Assembly language is often said to be difficult to 

EDITOR 

1. Editor program converts keystrokes 
into an ASCII text file of program 

instructions. 

2. Compiler program converts your 
text into machine language. 

Figure 3-3. Source code and object code in the edit and compile stages. 
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learn. That view is hotly debated, but it is safe to say that if you did your first 
programming in a language such as BASIC or Pascal, assembly language 
will seem much harder at first. The primary reason for this is that in assembly 
language you get much closer to working at the microprocessor level than 
you do with any other common language. For this reason, assembly lan­
guage is called a Low-Level language. In contrast, a high-Level language 
largely insulates you from worrying about the CPU chip. 

Brick and Mortar 

To understand what assembly language programs do, you need a little back­
ground in a microprocessor's internal components and their role in a pro­
gram - its architecture. The architecture of a given chip is generally 
unique compared to that of other chips. A 65816, for instance, has far dif­
ferent architecture from that of the 68000 in the Macintosh. Among the 
numerous architectural features of a chip, assembly language programmers 
pay the closest attention to the chip's registers. 

A register is little more than a small storage space built into the micro­
processor. In the last chapter, we saw how two of the 65816 's registers work: 
the stack pointer and the program counter. In both cases, these registers hold 
addresses to places in memory, one for the location of the top of the stack, 
the other for the location in RAM of the next instruction the CPU is to follow. 
These registers are largely automatic, in that certain instructions adjust their 
contents. Pushing a byte onto the stack, for instance, automatically reduces 
by l (decrements) the address held in the stack pointer. 

65816 Registers 

Several other registers, however, are the ones actively used by an assembly 
language program instruction. The registers of the 65816 are represented in 
Figure 3-4. 

Most registers are 16-bit registers, meaning they can hold 2 bytes of 
information at one time. If you find that you need holding places for two 
distinct 8-bit characters, you can store each character in a separate half 
of the same register. Simply signify in the assembly language instruction 
whether you want to store the number in the high or in the low byte of the 
register. 

As you learned in the last chapter, a register can be reserved for specific 
jobs, such as maintaining addresses of the stack and instruction pointers. 
Explanation of the jobs for the other registers goes beyond the scope of this 
book, but the documentation accompanying an assembly language program­
ming package should describe them in detail. 
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8 bits I 8 bits 

I I I I I I I I I I I I I I I I I X Register (X) 
X Register High 

(XH) 
X Register Low 

(XL) 

I I I I I I I I I I I I I I I I I Y Register (Y) 
Y Register High 

(YH) 
Y Register Low 

(YL) 

I I I I I I I I I I I I I I I I I Stack Register (S) 

Stack Register High Stack Register Low 
(SH) (SL) 

I I I I I I I I I I I I I I I I I 
Accumulator High 

(B) 
Accumulator Low 

(A) 

Accumulator (C) 

I I I I I I I I I I I I I I I I I I I I I I I I I I Program Counter 
(PC) 

Program Bank Register 
(PBR) 

Program Counter High Program Counter Low 
(PCH) (PCL) 

I I I I I I I I I I I I I I I I I Direct Register (D) 
Direct Register High Direct Register Low 

(DH) (DL) 

Figure 3-4. Registers of the 65816. 

Shuffled Registers 
It may seem too simple to be true, but the bulk of assembly language pro­
gramming consists of writing instructions to move information into and out 
of registers on the microprocessor chip. For example, if a program is sup­
posed to place thecharacter"A" into a place in RAM, the first step of the pro­
gram procedure will be to place the ASCII code for that character into a 
register. From there, another instruction will specifically store the contents 
of that register into a location in memory. 

To the beginner, this shuffling about of data among registers and 
memory locations might seem like a very time-consuming endeavor when a 
program runs. On the contrary, because these simple instructions are actu-
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ally built into the microprocessor, they are handled with blinding speed­
as often as millions of times a second. Although some instructions take 
longer to perform, they still work at speeds we can only imagine. Tens 
of thousands of instructions, including the microprocessor's mainte­
nance of the instruction and stack pointers , can be executed in less than a 
second . 

An Assembler Package 
When you buy an assembly language for the IIGS , you usually get a 
minimum of three separate programs, and often several more . The three 
basic programs are an editor, an assembler, and a linker. The editor , as 
we've seen, is a simple word processor that lets you write the list of instruc­
tions. Most of the instructions you write into the editor will be the same as 
the instructions that were built into the microprocessor by its designers. 
Microprocessor makers call these instructions opcodes, since each instruc­
tion is assigned an identifying number (the code) that signifies a specific 
operation (the op). Collectively, the opcodes are grouped into an instruction 
set. The instruction set of the JIGS ' 65816 contains 256 different opcodes, 
while the older 6502 microprocessor has only 151 opcodes (the 65C02 in the 
lie has 178 opcodes). 

Macro Libraries 

Most assembly language packages include numerous source code files con­
taining prewritten code for common program operations. Instead of retyping 
a series of frequently used program instructions into your own source code 
listing , you can simply type the name assigned to that group of instructions 
wherever you want them in your program. The name you type is called a 
macroinstruction, or macro . When you assemble the program, the assem­
bler reads the contents of the macro text files and inserts the detailed instruc­
tions where you typed the macro name - it essentially expands the single 
macro name into a full list of instructions from the macro file. A collection 
of macro text files is called a macro library, and you can insert as many as 
your program requires. 

To incorporate a macro in your program, you'll also have to identify 
at the beginning of the source code file that you will be including macros 
from one or more macro files when the program is assembled. Gradually , 
you will also build your own library of macros added to those supplied with 
your assembler language. These will save you the time of retyping instruc­
tions for sections of future programs. You ' II be able to include them in a new 
program just the way you do the macros supplied with the language 
software. 
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The Assembler 

Once the program instructions are safely stored on disk as your source code 
file, it is time to run the assembler program. The assembler reads the con­
tents of the source code file (and macro files, if any) line by line, and trans­
lates the opcodes into machine language. 

The Linker 

The third program in your package is called a linker. As its name implies, 
this program links together previously assembled portions of a program. It 
also figures out where in memory the various portions of your program will 
"reside" when you run it, as well as writing other instructions that the micro­
processor will follow when you run the program. 

Assembly and linking times vary, depending on the assembler software 
you're using and the length of the source file. The procedure may take only 
a few minutes for a modest program. Still it is practical to assemble and link 
only a sizable portion of new code or existing error-filled code that you've 
repaired to the best of your ability. Assembly and linkage of a longer pro­
gram can take tens of minutes, so you're not likely to assemble each time you 
make only one of a series of intended changes. 

The result of the assembly and linkage procedures is saved as a load file, 
which means that you can load and run it just like an application program you 
buy at the computer store. In the case of a native-mode program designed to 
behave like a Macintosh program, it means you start it by double-clicking on 
its icon in the Finder, do whatever the program does while you're running it, 
and then quit (provided you programmed such an option) to the Finder. 

HIGH-LEVEL COMPILER MECHANICS 

The steps involved in writing a program in a high-level compiled language, 
such as Pascal and C, are not far different from those of an assembly 
language program. The key difference is in the way you write program 
instructions in the editor. In both Pascal and C, the vocabularies are more 
English-like, and it is often easier to trace the execution of a program just by 
following a printout of the source code file (although documenting the 
source code is still highly recommended). 

Portability 

Another attraction of writing in a high-level, compiled language is that you 
can often transfer the experience of writing programs for one computer to 
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writing programs on another computer, even though the two machines run on 
completely different microprocessors. For example, if you know how to pro­
gram inC on the Macintosh, you can carry that knowledge right to the Apple 
IIGS. Your learning time on the IIGS will be relatively short. The major dif­
ferences, it turns out, are in the ways of using the built in programming tools, 
which we'll be getting to in the next chapter. Other than programming the 
tools, the language vocabulary and syntax will be almost identical on the two 
machines . Therefore, an experienced programmer can concentrate on the 
programming peculiarities of the machine at hand , rather than trying to learn 
an entirely new vocabulary, as would be necessary moving from the Mac's 
68000 to the IIGS' 65816 assembly language instruction sets. 

By staying with the same high-level language from machine to 
machine, the programmer will have an easier time converting programs to 
the IIGS. Such a conversion is often called a port. Of course, owing to the 
graphical user interface that the IIGS toolbox promotes, it will be easier to 
port programs from similar environments, such as the Macintosh. 

High-Level Punctuation 

Both Pascal and C are rich in punctuation rules, which must be followed 
carefully. The punctuation marks play no role in the running of the program, 
though. Rather, the marks send instructions to the compiler when the source 
file is being compiled. For instance, both Pascal and C require that a 
semicolon be placed at the end of each statement. When the compiler 
encounters a semicolon in the source file, it knows that all the text between 
that mark and the one previous is a single statement and it's okay to go ahead 
and compile it. At first, you will probably experience some frustration when 
the compiler encounters a missing or incorrect punctuation mark, alerting 
you of the mistake. Later you '11 acknowledge the marks as a necessary nui­
sance, and learn to check punctuation prior to compiling. 

Standard Languages 

Designers of high-level languages often try to come close to a recognized 
standard vocabulary and syntax for that language - a standard generally set 
by the language's original developers or an industry standards group. One 
reason for adhering to a standard is that it might be easier for someone to use 
a particular compiled language if it resembles a standard version learned in 
school or from experience elsewhere. A developer of a new dialect might 
include a number of enhancements to the language, and discuss them in the 
manual as enhancements to a particular standard. 

One way to enhance a language is to make it easier to use. Perhaps the 
dialect offers more logical menu selections, a faster compiler (compiler 
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design is a craft in itself), more compact object code, or more automatic per­
formance of key operations. Any of these (and more) qualify as reasons to 
compare various brands of compilers in your desired language, if more than 
one are available. 

High-Level Libraries 

Another common way of enhancing a standard version of a compiled lan­
guage is to add libraries of compiled routines that your program uses to per­
form complex functions when it runs. These routines are merged into your 
program at the linking stage. 

For example, if your program reads and writes disk files, your source 
code would contain instructions such as "read" and "write" to retrieve and 
store data. When you run the source code through the compiler, the resulting 
object code will not contain the routines that do the actual disk work. Those 
routines are in a separate library file, which must be linked to your program. 

The linker attaches the disk routines to your program, and links the 
"read" and "write" instructions to them. The output of the linker- the load 
file - is the final program file. When the program runs and encounters one 
of those disk instructions, execution branches momentarily to the disk 
routines. The procedure for linking library files is illustrated in Figure 3-5. 

EDITOR 

Figure 3-5. Stages of editing, compiling, and linking. 
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HIGH-LEVEL INTERPRETER MECHANICS 

A third class of programming language (after assembler and compiler) is 
called an interpreter. An interpreter functions quite differently from either 
an assembler or a compiler. Assemblers and compilers, as we've seen, trans­
late source code into machine language. The CPU then turns the machine 
language code into "results," which we see as a running program. An 
interpreter, however, does not have an explicit intermediate machine lan­
guage stage. The program's source code (usually stored in a compacted, 
non-text file format) is turned directly into "results" while the program runs. 

Interpreter Pros and Cons 

Now, there are distinct advantages and disadvantages to using an interpreted 
language. 

On the plus side, an interpreter eliminates the compiling stage. That 
means you can test the results of a single-character change in the program 
without waiting for compiling and linking. The source code is , for all prac­
tical purposes, the object code. Source code is written not in an editor, but 
atop the interpreter. In other words, the entire language is a single program, 
a single environment. 

There are penalties for this convenience, however. First, the procedure 
to run an interpreted program is to first load the interpreter into memory; then 
load the program into the interpreter - like loading a spreadsheet program 
and then the spreadsheet into the program. That means that for you to distri­
bute the program to others , they , too, must have the interpreter. The program 
file you generate is not executable, as it usually is with a compiled language . 
Since the copyright on the interpreter language package prevents you from 
distributing the interpreter (at least not without a license from the language 
developer), every potential user of your program must own the same lan­
guage just to run the program. 

Another penalty is that a program running inside an interpreted lan­
guage runs at a slower pace than a compiled program doing the same opera­
tions . If you recall that when writing a compiled language program the com­
pilation process takes a long time, then you'll understand that having an 
interpreter perform similar translations while the program runs is bound to 
make for slower execution speed. 

Interpreter Experim~nt 

If you want experience using an interpreted language, you have one built into 
your Apple IIGS. The language is called Applesoft BASIC. Unfortunately, 
you cannot program with the toolbox from Applesoft BASIC. Other inter-
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preted BASIC languages designed specifically for the Apple IIGS, however, 
will allow you to program toolbox operations. There may eventually be 
BASIC compilers for the IIGS toolbox programming, which will allow you 
to create executable program files after developing a program in an 
interpreter environment for ease of testing and debugging. BASIC compilers 
have traditionally generated rather large executable files , because they often 
link a full complement of program modules, some of which your program 
might not need. If you are considering a BASIC compiler as your language, 
consider its ability to create compact executable files. 

While an interpreter's relatively slow execution speed and other nega­
tive features make it a poor choice for a serious production language, many 
professional programmers use an interpreter, such as BASIC, as a rough 
draft tool. The ability to run and debug programs "on the fly" makes it easy 
to test many programming hypotheses quickly, without wasting compiling 
time. 

CHOOSING A LANGUAGE 

One of the most difficult decisions you will make about your computer is the 
programming language you wish to commit yourself to. It is a commitment, 
to be sure, because you'll invest time, energy, and money in the mastery of 
a given language. Making the choice more difficult will be advice from 
experienced programmers. Such advice often consists of emotionally 
charged statements about one language being "the only" one to use, while 
another is "a waste of time." Programmers tend to be passionate about the 
languages they use. 

If you're impatient- and who of us is not?- then a high-level pro­
gramming language will probably be the best place to start. Once you get 
experience with programming, you will be able to learn enough about 
assembly language to perhaps write assembly language subroutines from 
your high-level language programs that perform key operations faster than 
the compiled high-level program does. 

The High Road 
Between the two most popular high-level, compiled languages, C and 
Pascal, the choice is more a matter of support available to you. If you are sur­
rounded by C language friends, then you will have valuable resources avail­
able to you . Of course, if you already have experience programming in 
Pascal , then you will have an easier time focusing on the idiosyncracies of 
programming with a toolbox. Apple Computer plans to support both C and 
Pascal for developers , so there will likely be plenty of documentation and 
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other support material available from both Apple and third-party publishers 
for both languages. 

Which Compiler? 

Choosing from multiple compilers in a given language is more challenging, 
primarily because it takes some experimentation to adequately compare the 
performance of one C compiler against another, for example. Poke around 
the electronic bulletin boards that seem to attract programmers, such as the 
Micronetworked Apple User Group (MAUG) on CompuServe. Find out 
which packages programmers there are using with success. 

The most important criterion for Apple IIGS compilers is that the one 
you choose be able to access the entire toolbox. Additionally, some com­
pilers come in different levels. One level may not offer access to the entire 
toolbox, but it is inexpensive. Higher levels give you more power, greater 
toolbox access, and perhaps the opportunity to distribute software compiled 
with that language. Be sure you understand a compiler manufacturer's 
licensing agreements for commercial software you might develop with its 
compiler. 

The Low Road 

A number of programming purists , however, will pursue assembly lan­
guage, another language supported directly by Apple. Once you have the 
feel of controlling each movement of data around your microprocessor and 
RAM, you will be hard-pressed to return to a high-level language for any­
thing other than program prototyping. Programming in assembly language 
gives you the supreme opportunity to fine-tune each operation of a program 
for maximum speed. You will likely compare two ways of doing the same 
operation by .adding up the number of processor cycles (internal clock 
pulses) it takes for each, and choosing the one that runs faster. 

APPLE'S PROGRAMMING WORKSHOPS 

Few computer companies go out of their way to support third-party software 
developers as Apple is doing for the IlGS. While most companies, such as 
IBM, offer an assembler and hardware technical documentation for its PCs, 
Apple set out from the very beginning to offer an assembler, a Pascal com­
piler, a C compiler (each in a separate Programmers Workshop package), 
and volumes of technical data for professional and hobbyist programmers. 

There's method to this madness, of course. By offering so many 
development packages, Apple will attract the widest possible audience to 
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the IIGS: accomplished assembler programmers, longtime Apple II Pascal 
adherents, and Pascal and C whizkids from the ranks of Macintosh program­
mers. If IIGS development parallels that of the Macintosh, then C will likely 
be the predominant high-level language among commercial developers. It 
may be easier, therefore, to find programming help at user group meetings 
and on electronic bulletin boards for C than for Pascal, yet you won't be 
alone if your choice is Pascal. 

Common Ground 

The codevelopment of these three programming environments has yielded a 
practical direction for them all. Object files emanating from the assembler or 
the complier of any Workshop language are in identical formats. What 
makes this so inviting is that you can then link object files from multiple lan­
guages into a single load file. 

~G8 
C Compiler 

Pascal 
Compiler 

r-::-h_____ ~ 
~~ 

Assembler 

Figure 3-6. Programmer's Workshop languages produce object code that can be 

linked together. 
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This simplifies the combination of program segments written in dif­
ferent languages. 

Workshop or Third-Party? 

The availability of an Apple-produced programming environment may offer 
comfort to programmers, but this should not rule out using third-party 
assemblers and compilers. Third-party developers will surely write high­
level language compilers for the IIGS as they have for the Macintosh. Some 
will write C and Pascal compilers, while others will focus on different lan­
guages, such as Modula 2, Lisp, Prolog, Logo, and more. For maximum 
flexibility, though, the language you choose should generate object code 
that is fully compatible with the Apple IIGS Programmer's Workshop object 
code. That way, you' 1l be able to link object code of other programmers from 
many different environments. 

No matter which programming language you choose, you will be using 
it as a way to gain access to the Apple IIGS toolbox - a very powerful set of 
routines built into the machine. The remaining chapters will focus on the 
tools in preparation for your own exploration using the language of your 
choice . 



Part Two 

Key Toolbox Concepts 



CHAPTER4 

What's a Toolbox? 

Before we get into the specifics of the toolbox you'll eventually be 
using on the JIGS , we need to examine fundamental concepts about 

programmer's toolboxes in general. Of particular interest will be why 
toolbox programming is so important for IIGS program development. We'll 
start our toolbox discussion with an extended analogy, which should 
give you a solid picture of what it will be like to use a toolbox in your own 
programming. 

THE WOODSHOP 

Imagine that you want to build a wood bookcase from scratch. Perhaps 
you've drawn some sketches of what you want the bookcase to look like ­
its basic dimensions, the number of shelves, the type of base it should have 
for stability, and so on. Now imagine that you are provided with the 
resources of a fully equipped woodworking shop, decked out with racks of 
hand tools and several power tools for just about every step you ' II go through 
in building the bookcase. 

Thanks to the availability of those tools, you won't have to figure out 
how to cut the wood planks to proper length, for example. Over centuries, 
professional wood craftsmen have refined the design of the saw so that you 
can now pick it up and start using it for cutting. The same goes for essentially 
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every tool you will use- hammer, screwdriver, vise, even the power drill. 
People who knew what they were doing designed those tools to make it easier 
for both professional and apprentice woodcrafters to turn their ideas into 
finished products. 

Of course, just because the tools are well designed doesn't mean that 
they guarantee success. It's still possible to saw a crooked line even with the 
most expensive and best engineered handsaw. If you mismark the spot for a 
drill hole, the fanciest drill press in the shop won't drill the hole in the right 
place by itself. 

Look closely, and you may notice that some of the tools in the wood 
shop, as they have developed over the years, influence the final designs of 
items they help build. Access to a mitre (pronounced "my-ter") box, which 
lets you saw precise angles at the ends of two adjoining pieces of wood, has 
prompted many a builder to design his or her creation around mitred comers. 

You could say that mitred comers are now an accepted convention or 
standard for joining intersecting wood sections. 

FROM WOODSHOP TO COMPUTER SHOP 

Now imagine that you have an idea for an Apple IIGS program. You may 
even have some sketches of what the screens are to look like and a diagram 
of the program's basic structure. Instead of going to a woodworking shop, 
you go into a programming shop. In the shop are numerous tools to help you 
create effects on the screen such as windows, pull-down menus, graphics 
shapes, and text in many fonts. 

In this case, the tools are prewritten assembly language programs 
(routines) that your program branches to while it runs. These prewritten 

Figure 4-1. Joining two pieces of wood to form a mitred corner. 
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programs were crafted by experienced programmers so that they operate 
quickly and guide you in the direction of good program design. You don't 
have to write the program code for generating on-screen windows or other 
features you may use often. The tools that do these tasks are there for the 
picking. Simply branch to the ones you need . 

While the tools in this Apple IIGS programmer's shop number in the 
hundreds, you aren't restricted to those tools only. In fact, if you have the 
programming experience, you can design your own tools from scratch if they 
will make the job of creating future programs easier. You might say that 
Apple provides you with a well-equipped toolbox that is big enough to hold 
additional tools. 

TOOLS AND THE USER INTERFACE 

Having a built-in set of tools at your disposal is a time-saver, especially if 
you are trying to design a program that approaches the standards set these 
days by commercial programs. The tools, however, will also influence the 
way your program will look and behave. Just like the woodworker's mitre 
box has made mitred corners a standard way of joining two pieces of wood, 
so too will the Apple IIGS tools point you in the direction of certain design 
standards. 

These standards are called the User Interface Guidelines, a set of pro­
gram design criteria established by Apple. Such guidelines were developed 
for the Macintosh a couple of years prior to the release of the computer, and 
were published for even the earliest in-house and third-party software 
developers to follow. 

Guidelines Intentions 
The purpose of formal user interface guidelines is to establish a level of com­
monality among programs so that a machine owner will feel at home with 
essential commands and tasks in virtually any application program. For 
example, the User Interface Guidelines for the Apple TIGS specify ways to 
use scroll bars to scroll through a document. 

No Guidelines = Chaos 
If you've worked with applications programs on earlier Apple II family com­
puters or IBM PCs , then you know that scrolling can be handled many dif­
ferent ways. For example, to scroll a full screenful on an Apple lie, a 
program may ask you to press the Down arrow in conjunction with the Shift 
key, Control key, or one of the Apple keys next to the space bar. It's even 
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Figure 4-2. Scroll bar actions according to the User Interface Guidelines. 

worse on the IBM PC, which has not only arrow keys, but keys labeled PgUp 
and PgDn (for Page Up and Page Down). Some program designers take the 
PgUp command to mean that a press of that key will bring into view the text 
above the screenful you're now looking at. Still others take the opposite 
frame of reference: a PgUp command means that you scroll up the page, as 
on an papyrus scroll, which means that you' ll be looking at text below 
the starting screenful. How are you to remember the correct command or 
combination when switching among several programs that use different 
conventions? 

Guidelines = Order 

Fortunately, Apple provides a guideline for scrolling documents in a 
window on the IIGS , as shown in Figure 4-2. It's true that the graphical 
orientation helps in remembering how to scroll , but even so, we know after 
learning in one program that a click on the downward pointing arrow will 
advance the document one line; a click on the gray area underneath the white 
box will scroll one screenful. Without this guideline, program designers 
who need scrolling windows in their programs would likely come up with 
several different ways to bring other parts of a document into view. Nowa­
days, Macintosh owners expect the guidelines to be followed in software 
they acquire. When the guidelines are not met, reviewers and the consuming 
public are quick to criticize the designers for the flaws. 
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Guidelines and Innovation 
The adherence to user interface guidelines is a controversial issue. Some 
programmers, particularly those who are accustomed to doing everything in 
a program "their way ," feel that guidelines are too restrictive. Experience on 
the Macintosh has shown, however, that the common user interface has 
helped dramatically in customer perception that Mac software is easier to 
learn than comparably powered programs on the IBM PC. Far from telling a 
program designer how to design his or her program, the guidelines relieve 
the designer of developing schemes for basic operations: starting the pro­
gram, opening existing files, starting a new file , saving a file to disk, print­
ing, editing (cutting, copying, and pasting) text, scrolling a window, and 
quitting the program. The programmer can concentrate, instead, on those 
elements of the program that make it unique and practical. The guidelines 
simply provide a steady foundation atop which the program designer can 
build individualistic palaces and cathedrals. 

Guidelines Extensions 
Even though the published guidelines might seem all-inclusive with regard 
to basic commands and operations , several third-party developers have 
demonstrated on the Macintosh that guidelines can be extended logically. 

Quo usque IIIIID'.SIIllobutere, Cotol i no, 
potientio nostro~Quom diu etiom 
furor i ste tuus nos e 1 udet? 

~ potientio nostro? Quom diu etiom 
furor iste tuus nos eludet? 

1. Double-click word. 

2. Single-click with mouse 
in left margin of line. 

3. Double-click with mouse 
in left margin of 
paragraph. 

Figure 4-3. Logically extending the User Interface Guidelines. 
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For example, in Microsoft Word for the Macintosh, you can select a word in 
a document (to tell the program which word is to be deleted or underlined, 
for example) by double-clicking the mouse pointer anywhere in the word. 
This is consistent with the original Macintosh text editing guidelines. In 
fact, all of the Macintosh text editing guidelines are observed in Word. But 
the Microsoft designers went a couple steps further to simplify the selection 
of entire lines of text and whole paragraphs. To select a line of text in Word, 
you click the mouse pointer anywhere in the left margin next to the line you 
wish to select. To select a paragraph, you double-click with the mouse 
pointer in the left margin anywhere a long that paragraph. 

These are two logical extensions of the Macintosh guidelines. Both 
demonstrate that the guidelines are hardly as restrictive as some critics 
imply. 

The User Interface Guidelines for the Apple riGS are patterned after the 
Macintosh guidelines, since one of Apple's goals is to establish a user inter­
face family look to all products in its line. 

MACINTOSH AND IIGS TOOLS 

Creators of the Apple IIGS tools had a significant advantage over their 
Macintosh counterparts of the early 1980s: they had the Mac tools to start 
with. In many cases, there is a strong resemblance between the tools in both 
machines. In fact, the similarities will help many Macintosh commercial 
software developers translate their programs and programming languages to 
the IIGS with far less difficulty than they had when creating the original 
Macintosh versions. But there are some major differences that affect the spe­
cifics of any program. 

Color 

The most obvious difference is that the graphics tools on the liGS take a 
color display into account. While several Macintosh tools left openings for 
the eventual addition of color, the IIGS was written from the very beginning 
knowing that color would be a central focus of the machine. Not only is there 
color, but the color capabilities are substantia l, as we'll see in Chapter 8. 
Therefore, color is an integral part ofiiGS graphics tools, while in the Mac, 
color is treated more like an add-on, with which few programmers bothered. 

Different CPUs 
A second major difference in the tools is that the two machines use entirely 
different microprocessors. The 68000 has an internal architecture of 32-
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bit-wide paths, while the 65816 has a 16-bit wide internal architecture. This 
difference affects the way tools manipulate some numbers that go along with 
them. Assembly language programmers in particular will be affected by this 
difference if they are familiar with Macintosh toolbox operations. 

Memory Management 
Finally , each machine manages its memory differently from the other. The 
Macintosh, for example, places its stack at the top of available memory, 
growing downward as the stack fills up . The IIGS , as we've seen, places the 
stack at the top of bank $00, which is near the bottom of memory . 

The rest of available memory in the Mac is treated as one large, con­
tiguous block of memory. It's so big in relation to the rest of the Mac 
memory map, that it is called the heap in all the technical documentation. 
Free memory on the IIGS is grouped into 64-kilobyte banks, and the alloca­
tion of space in those banks is a concern of the programmer and the memory 
management tools built into the toolbox. 

TOOLBOX AND SKILL 

It's true that the toolbox will offer you substantial help in designing the look 
and operation of your UGS programs. But the tools will only be helpers; they 
won't be writing your program for you. You must still bring to your pro­
grams the planning and knowledge about your chosen programming lan­
guage to put all the pieces together. Just the way a power drill doesn't know 
if you have marked the hole position correctly, neither will a tool know if you 
are putting it to use in the proper manner in your program. In both cases, the 
resulting product your first time out may be less than you had hoped, and 
might, indeed, collapse in use. 

But don't despair. Your skill at using any tool improves with practice. 
So it will when you begin programming with IIGS tools. 

From here, we will peek inside the IIGS toolbox to get acquainted with 
the tool sets that will be available to you as you program. You'll also see how 
to make a programming language pick up the tools and put them to work. 



CHAPTERS 

Opening the Toolbox 

I f this chapter were in a woodworking book, it would illustrate the 
overall layout of an expansive woodworking tool chest as you open the 

lid. We'd show you where the various groups of tools were located and 
describe how to select a tool. We wouldn't show you necessarily how to use 
a particular tool , but give you an overview of the process of using those tools 
in whatever kind of work you're involved with. We' ll be doing all of this, but 
focusing on the toolbox of prewritten routines available to programmers of 
the Apple fiGS. 

TOOLBOX ORGANIZATION 

A number of tools are built into the IIGS 's ROM and the rest, called RAM 
tools, arrive on a ProDOS 16 start-up disk, located in a disk subdirectory 
called TOOLS. The location of a particular tool will probably change over 
the life of the Apple IIGS . As the machine matures , Apple will surely pro­
duce updates to the RAM tools and perhaps the ROM. Just as the Macintosh 
was upgraded from a 64K ROM to a 128K ROM in 1986, so too might the 
Apple IIGS be upgraded from a 128K ROM to a 256K ROM in the future . 
When that happens, more of the toolbox will likely be incorporated into 
ROM. Memory-map locations of tools will be entirely different from what 
they are today. Fortunately such changes won't affect your programs 
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because one of the tools, called the Tool Locator, points your program to the 
right tool, to matter where it comes from or what part of the memory map it's 
in . Therefore , it should be of little consequence whether a particular tool set 
arrives on your machine in ROM or on disk to be loaded into RAM. 
Hereafter we will consider the toolbox as if it were a single source, as you 
should. 

A tool set consists of functionally related routines. Some tool sets have 
the name "manager" tacked on, largely as a carryover from the Mac pro­
gramming environment. A tool set and manager are one and the same. 

The organization of tool sets is primarily for the convenience of us 
humans, who need to examine supporting documentation for a particular 
programming operation. For example, if you wanted to know more about the 
details of creating a window on the screen, you would narrow your search 
through the reams of Apple IIGS technical documentation by focusing on the 
section covering the Window Manager. Inside the toolbox (in memory), 
individual tools are simply stacked atop one another. Routines from the same 
tool set may be in adjacent areas of the memory map, but they don't have to 
be. 

TOOLBOX ROAD MAP 

It's difficult to Jist the tool sets without appearing to assign a specific order 
to them. As you will learn in subsequent chapters , many tool sets rely on 
others either directly - a tool in one set may automatically call a tool in 
another set - or indirectly - one tool may require that a tool in another 
tool set be in use prior to execution, because your program must use tools in 
both sets . All this is a preface to saying that the following description of key 
tool sets should not imply any rigid hierarchy in the JIGS toolbox. Tool sets 
that have the most impact on others are the Tool Locator, the Memory Man­
ager, and QuickDraw II . Those are described first. To master the toolbox, 
however, you will have to study each tool and tool set on its own, including 
ones not detailed in this book . 

Tool Locator 

Most applications programmers will not come into direct contact with the 
Tool Locator, since its main job is to do a lot of dirty work behind the scenes 
for the programmer. This is the mechanism that finds the location in memory 
of a toolbox routine that your program needs. It gets an assist from the 
system the liGS designers established for numbering major tool sets and 
each tool therein. For example , when your program wishes to use a toolbox 
routine , the Tool Locator automatically looks up the actual address of that 
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Figure S-1. Tool Locator mechanism . 

tool by first looking in a table of pointers to tool sets, and then in a table of 
pointers to tools in that particular tool set. 

The Tool Locator also allows experienced programmers to develop 
their own tools or their own versions of existing tools and have the program 
summon those new tools in place of the built-in IIGS tools. 

Memory Manager 

Toolbox programs on the IIGS require a considerable amount of memory 
management. A program must request an allocation of memory before 
loading in its remaining portions. It should also deallocate that memory 
when it is no longer in use. Although this may seem like a burden, it allows 
a great deal of program design flexibility. If you divide your program into 
several modules or segments, the program can load in only the segment(s) 
needed for a particular operation the user is performing. When that operation 
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is finished, the segment can be withdrawn (purged), available memory com­
pacted, and another segment loaded into memory in its place. This gives you 
the opportunity to shoehorn very large programs into machines that have 
only the standard 256K of RAM. 

In Figure 5-2, the left memory map shows two program segments sepa­
rated and surrounded by blocks of program data (perhaps text in a word pro­
cessing document). When Segment 2 is no longer needed, it can be purged 
from memory. Doing so, however, leaves memory fragmented. There 
would not be room for a large program segment, such as Segment 3. The 
Memory Manager can compact the memory and open up enough space to 
tack on Segment 3, as shown in the right memory map. 

The Memory Manager, when asked, will also advise your program of 
the amount of memory available at a given moment. If the user has a memory 
expansion card installed in the computer, the program won't have to deallo­
cate memory to make way for a new segment, because there will probably be 
enough free memory for the new segment. Thus, with the help of the 
Memory Manager, the program changes its memory utilization. Users with 
expanded memory will be rewarded by not having to wait for a program seg­
ment to load from the disk each time its particular set of operations is 

Figure 5-2. Purging and compacting memory makes room for a new segment. 
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required by the user. Once Segments 2 and 3 are loaded into memory , they 
will stay there as long as there is no further competition for memory space. 

While you will have to know the Memory Manager quite well to pro­
gram in assembler, a high-level language automatically performs most basic 
Memory Manager calls for you. You' ll still have to be aware of this man­
ager's abilities and requirements, though, for more sophisticated memory 
tasks. 

QuickDraw II 

At the root of all video display output of the Apple IIGS in a toolbox program 
is the QuickDraw IT tool set. While Apple II emulation on the IIGS allows for 
many different graphics and text display modes, the standard output for 
native mode programming is the new super high-resolution graphics. 
QuickDraw H contains the routines that manage text and graphics display in 
this mode (strictly speaking, it is all graphics, because text is displayed as 
bit-mapped graphics, not built-in text characters as on other Apple II display 
modes). 

Figure S-3. Expanded memory lets more of the program stay in RAM. 
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Quiclcdraw II Stuff 

Figure S-4. Typical QuickDraw II prowess. 
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QuickDraw II is responsible for drawing windows, menus , text charac­
ters, graphics shapes, fill patterns -essentially every picture element on 
the screen . Even the ProDOS 16 Finder operating system makes calls to the 
QuickDraw II tool set to create its video output. Because QuickDraw II is 
used by many other tool sets, a firm understanding of its key graphics con­
cepts is essential for using many other tools . We '11 be looking more closely 
at QuickDraw II later. 

Menu Manager 

Routines in the Menu Manager assist in the creation of the Macintosh-like 
menu bar and pull-down menus that appear on the screen. When you pull 
down a menu on the IIGS screen, the Menu Manager is temporarily in full 
control of the program. 

It monitors which item down the menu list you select with the mouse 
pointer. The instant you release the mouse button - indicating that you 
are choosing an item on the menu - the Menu Manager lets the rest of the 
program know which menu and which menu item has been chosen. The pro­
gram then performs whatever its instructions tell it to do for that particular 
choice. 

The Menu Manager is one of the tool sets that relies on QuickDraw II 
and benefits from QuickDraw's color routines. 
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Figure 5-S. Example of Menu Manager output. 

Window Manager 

Action in most of your programs will take place in one or more on-screen 
windows. Even if the screen you ultimately generate does not look like the 
windows you see in the Finder, as far as the UGS is concerned , it will be a 
window. Creating a window of any kind- from a simple full-screen blank 
area to a complex one with a title bar, scroll bars, and other features - is 
the responsibility of the Window Manager. When your program gives 
instructions to the Window Manager to create a window, the Window Man­
ager will adhere to specifications in a set of parameters, which will instruct 
the Window Manager on the exact characteristics of the window. 

But the Window Manager does much more than simply draw windows 
on the screen. One very important job is keeping multiple, overlapping win­
dows under control. The Window Manager assists in sensing where mouse 
clicks occur on the screen so that the desired window becomes the active 
window (the one on top of the stack of windows, as it were). It then performs 
the important task of filling in the part of the window that had been obscured 
by other windows atop it. 

The Window Manager will likely be one of the most important tool sets 
to play a visible role in the design of your programs. It relies on QuickDraw 
II for drawing window elements, and it relies on the next tool set, the Control 
Manager, for scroll bars and other features. 

Control Manager 

A control in a IIGS application can take the form of an on-screen button that 
you "press" with the mouse pointer, window scroll bars, a check box, which 
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Window 

Figure S-6. A typical window drawn by the Window Manager. 

allows you to select one or more options from a list, and other on-screen 
devices whose activation with the mouse pointer produce clearly defined 
actions in the program. All ofthese IIGS screen objects are created and man­
aged by the Control Manager. 

Since controls are graphics objects that are placed in a window , the 
Control Manager works in concert with both QuickDraw IT and the Window 
Manager. For instance , when you adjust the scroll bar in a window, the 
Window Manager temporarily passes program execution to the Control 
Manager, whose job it is to observe where you adjust the scroll bar on the 
screen. 

The IIGS toolbox comes with several predefined controls including but· 
tons , radio buttons, check boxes, and scroll bars (detailed in Chapter 12). 
You won ' t be confined to these controls only, because the Control Manager 
assists in the creation of custom controls , which can take on many different 
forms, such as temperature gauges, sound level meters , and so on . 

Event Manager 

We will be discussing the concept of events in Chapter 7, because it is critical 
to the organization of your IIGS programs. But for now, we can say that 
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Figure 5-7. Part of a window's scroll bar control. 

every press of the keyboard, every press of the mouse button, is called an 
event. An event usually causes the program to perform a particular operation 
as a result of that event. Riding herd over these events is the Event Manager. 
Its role in your programs will be demonstrated in Chapter 9. 

Sound Manager 

The Apple IIGS , of course, can emulate the single-tone sounds that the 
Apple II family's internal speaker produces. But the IIGS also includes a 
powerful sound generator circuit created by Ensoniq, called the Digital 
Oscillator Chip (DOC). This chip, along with 64 kilobytes of RAM dedi­
cated to the sound circuitry and two other chips, give the IIGS remarkable 
sound capabilities for a personal computer (see Figure 5-8). 

The DOC chip includes 32 oscillators (tone generators). One of the 
oscillators is turned into a special clock that the sound circuitry has to itself. 
Common practice is to pair oscillators to produce a high quality tone for 
music. That leaves enough oscillators for 15 independent voices. The Mac­
intosh, by comparison, has only 4 voices. 

To gain access to these wonderful sound abilities, you use the Sound 
Manager. 

Dialog Manager 

According to the Apple User Interface Guidelines, a program designer can 
obtain information from a program user by way of a device called a dialog 
box. A dialog box essentially asks you questions , and you supply answers -
you and the program carry on a kind of dialog. For example, if you want to 
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Figure S-8. Apple IIGS sound circuitry. 

establish a number of settings for the way a printed page should look -
paper size, margins, text of a header or footer, and so on - you select a 
menu choice called "Page Setup" or similar. When you choose that menu 
item, a new window appears atop the current work area and requests infor­
mation, such as a click of a radio button signifying the paper size from a list 
of three possible sizes. The new window that prompts fqr this information is 
called a dialog box. 

The Dialog Manager handles many routines that create dialog boxes. 
This tool set relies on tools from many other sets, although most of that 
reliance exists "behind the scenes." For instance, a dialog box is a window, 
so the Dialog Manager calls many of the tools provided by the Window Man­
ager. A dialog box also frequently contains one or more controls - radio 
buttons, OK buttons, check boxes - so that it is no stranger to the Control 
Manager. If the dialog box has a text entry box in it, then it calls upon the 
tools built into the Line Editor tool set (see below). Dialog Manager tools 
make many of these external calls on their own, letting you accomplish more 
with your dialog boxes with fewer steps in your programming. 
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Figure 5-9. Example of a Page Setup dialog box. 
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The User Interface Guidelines are quite clear on the ways IIGS programs are 
to behave when editing text in a window or a text box . For example, you 
should be able to select text by dragging the text insertion pointer across the 
desired characters. Selected text is then displayed in an inverse highlighted 
fashion. 

From there you can cut or copy the selected text into a scratchpad area 
of memory called the scrap. Later, you can place the text insertion pointer 
anywhere in the text and paste the contents of the scrap into the text. Text in 
its window should also wrap such that words are not broken at the end of a 
line. 

ControJling all this text manipulation is the Line Editor tool set. Line 
Editor routines are often called as the result of menu choices (e.g. , Cut, 
Copy, and Paste). They are also called automatically by the Dialog Man­
ager, as we saw above. The Line Editor, itself, is not concerned with the text 
font or the font size. That is left up to QuickDraw II, upon which the Line 
Editor relies heavily. And even if your program is entirely graphics oriented, 
such as a game program, you may still need to invoke the Line Editor at the 
beginning of the program if desk accessories require Line Editor tool 
functions. 

'Tis a far, t• ,- ,. 1· I ~ t. t ,:.1• .:1 - - •• - thing 

Figure 5-10. Selected text is highlighted. 
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File Operations 

If your programs will be reading and writing disk files, then you' ll need to be 
familiar with the tools in the File Operations tool set. These are the tools you 
wi ll use to create new files on the disk, open existing files, read data from the 
disk, write data to the disk, and perform many other disk-related functions. 
A prerequisite for using the tools effectively is a comfortable knowledge of 
ProDOS 16, particularly in the way it treats disk drive devices (drives and 
slots) and files organized according to the hierarchical file structure (as dis­
played in the Finder by nested file folders). Be sure you are familiar with the 
distinctions between devices, volumes, and files. 

Desk Accessory Manager 

A desk accessory is usually a program of relatively small code length that can 
run atop a main application program. Examples of popular desk accessories 
are an alarm clock, a calculator, and a note pad. 

Desk accessories are often designed to take the place of physical desk 
accessories a user might keep on his or her desk. But a desk accessory can 
also be a stripped-down version of a larger application program. For exam­
ple, a desk accessory program that behaves like a small spreadsheet program 

Quiclcdrow II Stuff 

Figure 5-11. Calculator desk accessory atop an application window. 
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might feature a limited set of built-in functions and have strict limits on its 
total size, yet it may be fine for quick spreadsheet calculations while you are 
busy in a word processing program. 

Two types of desk accessories can be used on the riGS: classic desk 
accessories (also called CD As) and new desk accessories (or NDAs). Classic 
desk accessories can be called from within programs running in emulation 
mode and, usually , native mode as well. New desk accessories operate only 
when the IIGS is running in native mode. If you've experimented with the 
Control Panel desk accessory on a TIGS , you've experienced a classic desk 
accessory, since it sets system configurations from either the native or the 
emulation mode. 

Keeping your program and a desk acessory alive at the same time falls 
under the job description of the Desk Accessory Manager. Among its jobs is 
to check whether a desk accessory you are about to call will work in the pro­
gram environment you are working in. If your program is to be receptive to 
running desk accessories atop it, the program must make provisions for the 
Desk Accessory Manager's tools. 

SANE 
The term SANE is Apple's acronym for Standard Apple Numerics Environ­
ment. These tools consist of built-in routines for various math functions, 
including floating-point math operations (addition, subtraction, multiplica­
tion, division , square root), logs, exponentials, trig functions, time-and­
money calculations, random number generation, and many more. They can 
be found in the Macintosh toolbox as well. SANE has been fully documented 
and is part of the Apple Toolbox Reference series (see Appendix C). 

Other Tools 

While the above tool sets are the ones that get most of the headlines in IIGS 
toolbox documentation, many more tools are available to ease the program­
mer's task. Among the miscellaneous tools you may find helpful are those 
that: 

• access information stored in the battery-backed-up RAM connected 
with the real-time clock circuitry of the IIGS . 

• allow you to retrieve clock (time and date) information for inclusion 
into your programs. 

• let you move information in and out of peripheral cards plugged into 
the IIGS's slots. 

• give you control over printing with a variety of output devices 
(grouped together as the Print Manager). 
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• access and control information copied into the area of memory called 
desk scrap (sometimes called a clipboard) for retrieval or storage 
on disk (the Scrap Manager). 

TOOL SET INTERDEPENDENCIES 

We've noted above several cases in which one tool set relied on routines in 
other tool sets, often making calls to those other tool sets automatically 
without intervention from the programmer. After a while, these inter­
relationships will become second nature to you. But for now they may seem 
like a tangled web of threads running through the IIGS toolbox. 

At great risk, we will attempt to diagram the relationships of the major 
tool sets as described above. One risk is that newcomers will consider these 
relationships to be a rigid structure when in fact the toolbox relationships 
established by Apple's designers are nexible enough to sustain many mod­
ifications by experienced programmers . Another risk is that the following 
diagram will by necessity be an oversimplification of the threads running 
through the toolbox. With those warnings in mind , we offer a hierarchy of 
tool sets. Those at the bottom form the foundation upon which higher-level 
tool sets rely. 

INCORPORATING TOOL SETS 

We must now discuss the link between your program and the tools . We' ll be 
talking in generic terms because the specifics of incorporating tool sets into 

Line Editor 

Dialog Manager 

Menu Manager 

Window Manager 

Event Manager 

Desk Access. Manager 

Quickdraw li 

Memory Manager 

Figure 5-12. Tool sel hierarchy. 

Control Manager 
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programs varies slightly from language to language. Fortunately, the con­
cepts are similar, especially among the languages in the Apple IIGS Pro­
grammers Workshop. 

A IIGS language usually comes with two sets of toolbox-related files. 
One set is source code, the other object code. 

The source code fi les contain many predefined variables and data struc­
tures carrying readily identifiable names that you can begin using in your 
own source code. These will save you from declaring the same toolbox vari­
ables over and over in each application. Moreover, you are assured that they 
are done correctly. 

You can use these predefined variables in your source code listing pro­
vided you instruct the compiler to incorporate the external source files into 
your source code at compile time. The procedure for doing this is placing 
instructions for the compiler (compiler directives) at the top of your source 
code listing to include or use as many of those source files as are needed. The 
files are typically grouped according to tool set, making it easy to specify 
those files to be merged into your program. 

The object code files supplied with the language contain the actual 
routines that make toolbox calls possible in your program - something the 
core compiler does not furnish. Therefore, the linker will link your pro­
gram's object code with as many tool set object modules as you direct in the 
command to start the linker. The result will be a load file that makes the 
appropriate calls to the Tool Locator each time a tool is requested as the pro­
gram runs. 

It should be made clear that the "include" or "use" instructions are 
simply assembler or compiler directives. They do not represent the calls to 
the toolbox routines while the program runs. Actual calls to the toolbox are 
placed throughout the program as needed. 

CALLING A TOOL FUNCTION 

Apple has documented the toolbox calls in full detail in a two-volume set 
called Apple 1/GS Toolbox Reference. A call to a toolbox routine, as listed in 
these references, looks I ike any statement that might be a part of a program­
ming language vocabulary. Here are some examples of tool calls you might 
make to the Window Manager: 

New Window 
Close Window 
GetFrameColor 
SetWTitle 
Select Window 
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Most of these statements are in plain language, although occasionally a 
tool call will be abbreviated. SetWTitle, for example, is short for "Set 
Window Title." Notice, however, that all tool calls are single words. This is 
more for the convenience of the compiler, since compilers find it easier to 
recognize single-word commands than those consisting of multiple words. 

Most languages try to adhere to the vocabulary of tool calls as defined 
in Apple's reference material. That's not always the case. In fact, you may 
encounter languages, particularly assembly language, that have different 
ways of making tool calls. Instead of using the tool call vocabulary as is, the 
assembler may require you to precede the call with an underscore character, 
like this: 

New Window 

The underscore is for the convenience of the assembler: it recognizes 
any word beginning with an underline as being a toolbox call. You may also 
find languages that use slightly different words for some toolbox calls. 
When this happens, the new vocabulary words are close enough for you to 
make an immediate connection between the new words and the ones defined 
in Apple's programmer documentation . 

Jumping to the Toolbox 
In case you're wondering what happens inside the computer when you make 
a toolbox call, here is a synopsis of the procedure. 

Typically , your program will be following a list of instructions that you 
write (although converted into machine language). The instruction pointer 
will be wildly directing the microprocessor to follow instructions from your 
program loaded in the perhaps tens of thousands of RAM addresses. When 
the microprocessor encounters a toolbox call, the instruction pointer jumps 
to the address of the toolbox routine (perhaps in ROM) . As soon as the 
toolbox routine is completed, the instruction pointer returns to its jumping­
off spot in RAM and continues working its way through your program 
instructions. 

If you've had experience programming in any language, you will recog­
nize this methodology as a simple subroutine from your main program. In 
this case, however, you don't have to write the subroutines, since they have 
already been designed and optimized for you. Nor do they take up any disk 
space in your fi nished program file. 

PASSING PARAMETERS 

Toolbox calls are occasionally self-contained, action-oriented functions, 
such as the one named HidePen . When you issue this tool call, it unilaterally 
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Program Toolbox .. New Window ..... 
Routines ,, 

via Tool 

New Window 
T .nr.:~tnr 

..... -- I 

,, 
Figure 5-13. Inside a toolbox call. 

turns off the drawing pen on the screen. When you issue that statement , the 
tool simply does its action and returns control back to the program - the 
tool has nothing to report back to the program. But the vast majority of 
toolbox routines fall into one of three categories: 

I . They require input. 

2. They generate output. 

3. They require input and generate output. 

Let's look at an example for each, using calls that affect the display of 
text in a window. 

To change the font of a patch of selected text, the program would have 
to call the SetFont toolbox call (in QuickDraw II). Of course, just calling 
SetFont would tell the computer nothing, since somehow we need to convey 
the particular font we wish to set. That information is considered input to a 
toolbox call. The way information is passed to the toolbox varies with the 
language in which you' re programming, as we'll see later in this chapter. 
But for now, suffice it to say that this tool requires we submit a handle to the 
information in memory that contains the characteristics of the font we wish 
to use. 
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The opposite occurs when our program needs to know what the current 
font is. To obtain that information, the program uses the Getfont tool call 
(also in QuickDraw II). In this case, we have no input for the tool, because 
it assumes we wish to know the current font. But when the tool routine has 
finished, the tool will need to give us information: its output. Again, the 
way this output reaches our program depends on the language in use, as we'll 
see. 

The third possibility consists of tool calls that require input before run­
ning and produce output when they're finished. An example of such a call is 
StringWidth. This call needs to know the location in memory of the text 
string that is to be measured by the tool. When the tool has measured the 
desired string , the result is then produced in the form of an integer counting 
the number of picture elements on the screen the string occupies. 

As you begin to program for theiiGS, you'll quickly see that most of the 
tools fall into the types that involve input, output, or both. Relatively few 
tools are freestanding functions. 

PARAMETERS AND THE STACK 

The best way to illustrate the way parameters are passed to and from toolbox 
routines is to examine what happens to the stack during a toolbox call . Only 
assembly language programmers will have to bother with direct stack mani­
pulations. High-level programmers will have the impression of using other 
means of passing parameters; in reality, the load file generated by a high­
level compiler and linker will be using stack mechanics, just like the 
assembly language programmer. Everyone, therefore, can benefit from this 
explanation. 

Input Parameters 
When we caJied SetFont, above, we had to pass the handle to the font we 
wished to become the current font. To do this with the stack, an assembly 
language program would first push the handle onto the stack. 

As you recall in our discussion about the way the stack grows down and 
the contents of the stack pointer (SP) decrements when an item is pushed 
onto the stack, the illustration makes perfect sense. 

Once the parameter is on the stack, the program can call the toolbox 
routine. When the routine runs , it automatically looks to the stack for the 
information it needs - a handle in this case - and pops it from the stack 
without any intervention from the assembly language program. Once the 
routine is finished, control of the program returns to the assembly instruc­
tions , and the stack is returned to its previous status. 
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stack 
before push 

previous contents 
....._ SP ....., 

stack 
after push 

previous contents 

Font Handle 
~--------~~sP 

Figure 5-14. Pushing a handle on the stack. 

Many toolbox calls require that more than one parameter be pushed on 
the stack before being called. Parameters can be of unequal lengths , such as 
a sequence of pointers and table arrays. When a toolbox call expects mul­
tiple parameters, those parameters must be pushed on the stack in the proper 
order so that the tool will pop them in the right order. For example, if you 
push an integer and a pointer onto the stack in that order, the tool must expect 
to pop a pointer and an integer from the stack - the reverse order in which 
they were pushed onto the stack. If the tool expects a 2-byte integer and 
instead pulls half of a 4-byte pointer, then the tool will surely fail and cause 
a system error. The order of multiple parameters for each toolbox call is 
detailed in the Apple IIGS Toolbox Reference manuals. Observe parameter 
order religiously. 

stack before 
tool runs 

previous contents 

Font Handle 
~--------~~SP 

stack after 
tool runs 

previous contents 

Figure 5-15. The tool pops the handle from the stack. 

....._ SP ..... 
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Output Parameters 

For tools that don't require input but emit output, we have an entirely dif­
ferent methodology for the stack. Just as a tool knows how to quietly pop an 
input parameter from the stack, so too does it know how to push an output 
parameter onto the stack - sort of. The qualification is that the program 
must specifically request space to be set aside on the stack for the output that 
is to come from the toolbox call. 

As an example, if our program is about to call the GetFont tool, which 
sends as its output the handle to the current font, we must make room for that 
handle on the stack prior to calling the tool. 

In this case, we must make room for 4 bytes of data, since the handle 
coming back will be 4 bytes long. The empty space usually consists of Os. 
The importance of this procedure is that the stack pointer must decrement so 
that the tool won't overwrite important stack data with the output. If multiple 
parameters are to be output by a tool, then enough space must be reserved on 
the stack for them all. 

When a tool supplies output as its result, the tool is said to return a par­
ticular kind of data. In good programmer's jargon, GetFont returns a handle 
to the current font. Get used to hearing "return" as a way of identifying a 
tool's output. 

Input and Output 

Stack manipulation for a tool that both takes input parameters and returns 
output parameters is only slightly more complicated in that it combines the 
actions of the two individual actions. To demonstrate, we'll use the 

stack 
before push 

previous contents 
.... SP ...... 

stack after pushing 
4 bytes of $00 

previous contents 

space for result ...._ 
....... 

Figure 5-16. Preparing the stack for output. 

SP 
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StringWidth tool call described earlier. The assembly language programmer 
has to plan the actions of the tool prior to calling it. Since the tool will return 
an integer representing the picture element (pixel) width of a text string, the 
stack must have available enough empty space for an integer that the tool will 
push. Of course, the pushing happens after the tool has popped the pointer to 
the text string from the stack . In other words, the order in which the assem­
bler program must push space and pointer is first the space for the output, 
then the pointer to the text string. 

Then the assembler program can call the String Width tool. The toolbox 
routine automatically pops the string pointer from the stack and writes the 
resulting text width integer into the space left for it on the stack. 

Again, by preparing the stack prior to a tool call, the assembly language 
programmer (or a high-level language program under direction of the com­
piler) can lay in any number of blank spaces and input parameters for com­
plex tools that have multiple input and output parameters. 

High-Level Parameters 

Although a high-level compiled language usually doesn't bother with stack 
manipulation, you will still have to furnish input parameters and know how 
to obtain output parameters after IIGS toolbox calls. Pascal and C are 
remarkably similar to each other in working with toolbox routines that 
accept and return parameters. Therefore, we'll generalize here a bit to give 
you an overview of the mechanics of handling parameters in these 
languages. 

stack 
befor e pushes 

previous contents 
r---------~~--sP ~ 

stack 
after pushes 

previous contents 

space for result 

handle parameter 

Figure 5-17. Pushing space and a parameter onto the stack. 

...... ....., SP 
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stack after 
tool runs 

previous contents 

Text width integer ......_ 
...... SP 

Figure 5-18. Toolbox routine leaves only its output on the stack. 

Both languages have a syntax that lets the programmer assign the value 
returned by the tool to a variable name. Input parameters are attached to the 
toolbox call by placing them in parentheses immediately following the call 
in the program listing. Except for minor variations in punctuation, the fol­
lowing listing shows how the StringWidth toolbox call might look inside a 
high-level language listing. The call will measure the width of a text string 
whose location in memory has already been identified as a pointer called 
" txt" earlier in the program: 

width = StringWidth(txt); 

Behind the scenes, the pointer (named "txt") is placed on the stack, the 
StringWidth routine called, and the width integer placed on the stack . The 
language goes one step further by assigning the value of the width integer to 
the variable called "width ." Once this program function has been run, the 
variable name, "width," can be used in calculations such as determining the 
center point of the text string so that the text can be centered in the window 
before displaying the string. 

Toolbox calls that do not return output are often called procedures in a 
high-level language. Tool calls that return output are called functions. Both 
procedures and functions can pass input parameters, but only functions get 
output parameters in return. Your language manual should demonstrate 
ways of nesting procedures and functions to help reduce the number of lines 
of source code required for your programs. For example, if you had only one 
instance in your program in which you needed the value returned by 
StringWidth for use as an input parameter in a different toolbox call, you 
could skip the step of defining the "width" variable. Instead , use the 
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StringWidth(txt) function itself as an input parameter. Its returned value (the 
width) will be passed directly to the other call. 

In the next chapter, we'll dig deeper into the parameters passed in 
toolbox calls, while demonstrating a key concept for IIGS programming: the 
record. 



CHAPTER6 

Understanding Records 

I f you have programmed graphics on an Apple II, you probably noticed 
that as soon as you give the command that draws a graphics shape on the 

screen, your program loses contact with the object. For example, to move a 
shape from one location to another, your program must erase the existing 
shape on the screen and then redraw the shape at other coordinates. This 
means that you must supply the coordinates, size, color, and other 
parameters for the shape each time you draw it. Even the command for 
erasing the shape requires coordinate and size parameters so that the pro­
gram will rub out the picture elements on the screen precisely where the 
shape is drawn. 

Even if you have not programmed graphics before, you can imagine 
how tedious it can become to continually specify coordinates, size, and other 
parameters each time you wish to draw or move an object on the screen. Now 
imagine a graphically based environment such as the IIGS, and you can see 
that keeping track of multiple, overlapping windows, for instance, could be 
a nightmare if your program has to reinvent the wheel each time a window is 
brought forward as the active window. Fortunately, the IIGS toolbox pro­
gramming environment greatly simplifies the maintenance of windows and 
other programming items. Specifications about these items are stored in 
memory as a list of parameters, a list commonly called a record. 

91 
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RECORD BASICS 

The concept of records will likely be radically different from anything 
you've encountered in non-Macintosh-like programming. Yet once you 
understand the way they work, much of IIGS programming should be easier 
to grasp. 

Let's use a hypothetical window record as an example of how records 
are created and how important they are in a program. 

To create a new window for the screen, you must predefine a large 
number of parameters that the Window Manager will assign to a given win­
dow. The specifications include, among others: 

Coordinates of the top left corner of the window 

Coordinates of the bottom right corner of the window 

Coordinates of the top left and bottom right corners of the active work 
area inside the window 

Pointer to the memory location containing the text of the window's 
title 

Components of the frame the window should have 

There are many more features to a IIGS window, but we'll save those for our 
in-depth examination of the Window Manager, in Chapter 10. For now, the 
above parameters specify enough information for us to visualize the results 
of various values we assign to window parameters. 

If we were to take the information about a window and store it in a pro­
tected area of memory - one that won't get overwritten by another program 
segment - then our program will have a fixed place to retrieve information 
about our window anytime during execution of the program. The list of 
window parameters in memory might begin as shown in Figure 6-1. 

To make a change to the parameter list once a window has been created, 
the program does not fiddle with list items directly. Instead, the toolbox pro­
vides many routines that adjust whatever parameter we wish. For example, 
if we wish to rename a window, we can make a different toolbox call that 
reaches into the window's feature list and adjusts the pointer reference so 
that it points to the memory location storing the new title's text. Figure 6-2 
shows the situation before and after the toolbox call that changes a window's 
title. 

Calling this parameter list a "record" helps us visualize the way infor­
mation about an object is stored in memory . It follows naturally that a 
record, such as a window record, maintains an inventory of the window's 
features and settings at any given moment. In fact , even if the user closes the 
window by clicking the close box on the title bar, the window record will 
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Window 1 

grafPort pointer 

window location 

pointer to title text 

status flag 

. 

Figure 6-1. Hypothetical window record in memory. 

not necessarily be erased from memory. With the record still intact in mem­
ory, the user can reopen the window (by giving the appropriate menu com­
mand) and watch the window appear in the same size and location , and dis­
playing the exact same content as the window had when it was closed. 

Records as Snapshots 

The above example demonstrates how a program can manipulate a record's 
contents to effect a change. A record, depending on the tool set managing it, 
can also report current conditions. We'll see later on, for example, that one 
often-called record logs whether the screen cursor was in a menu bar or in a 
window when the mouse button was pressed. The toolbox monitors what's 
going on and automatically adjusts the content of the record to reflect the 
present state of affairs. The program, then, can read the contents of the 
record and make decisions based on those contents. 

Record Pointers 

Records in the IIGS vary in length, ranging from only a handful of bytes to 
hundreds of bytes for complex objects. Most of the time , when you initiate a 
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$02 $02 
Window 1 Window 1 _.. $0040 

grafPon pointer 
'Original Title' 

grafPort pointer 
'Original Title' $0040 

window locatior window locatio lr "New Title" $0088 
title pointer: - ti~inter: $00020040 $ 2 0088 

status flag -Originll Title- status flag 

D 
Figu re 6-2. Changing a window title parameter. 

new object, such as a new window or menu, the toolbox routine you use to 
create the object also finds and reserves room in memory for the record and 
may even plug in values for a standard, or default, record. The act of creating 
such a record often returns a pointer to the beginning of the record. 

In a high-level language program, the toolbox call that creates the new 
object is usually written as a function that returns a value which is assigned 
to a variable name (see Chapter 5). Therefore, if you create a window, the 
function might look like this: 

Window I = NewWindow (windowlData) 

"Window l" is a variable that, after the call , contains a pointer to the window 
record created with the statement. If the program needs to create a second 
window, a second statement could be added to the program: 

Window2 = NewWindow (window2Data) 

with "Window2" now capable of standing in for the pointer to the second 
window's record. This is convenient because other toolbox calls that inspect 
or modify the contents of a record ask that you pass the pointer to the record 
you identify as the one to be worked on - such as changing the title of Win­
dow l or resizing Window2. Therefore , you get a comfortable feeling of 
working with objects according to readily identifiable names you assign to 
their pointer variables. Let' s see how this works in real life. 
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One of the criteria in a window record is a pointer to the location in 
memory where the text of the title ofthe window rests. If you wish to change 
the name of a window, you use the SetWTitle toolbox call. This call has two 
input parameters: a pointer to the title text, and a pointer to the window's 
record. The program would have to (1) declare the named variables as 
pointer types, (2) call New Window, and (3) call SetWTitle. 

Declare variables: 
Window I is a POINTER 
newTitle is a POINTER 

BEGIN 
Window! = NewWindow(WindowlData) 
newTitle = "Worksheet l" 
SetWTitle (newTitle, Window!) 

END. 

The fact that these two variables are pointers, while of crucial impor­
tance to the SetWTitle call, becomes largely hidden to us once they've been 
declared as pointers. Instead, we conceive of the pointer variable names as 
standing for the actual objects (the title text and window). This is an excel­
lent example of how a high-level language can disguise much of the "dirty 
work" that must be addressed directly in assembly language. 

GETTING AND SETTING DATA 

When you program in a record-intensive environment, such as the JIGS tool­
box, your program must often dig into a record to retrieve the current state of 
the object specified by that record . Conversely, the program will often have 
to change a specification about an object by writing new information into 
specific parts of the record. It is certainly more cost-effective (in tenns of 
programming and execution time) to read and write only the desired specifi­
cation(s) from a record than either "thumbing through" a record to reach the 
item you want or to rewrite an entire record when only one specification 
changes . Fortunately , any IIGS object that maintains a record also has 
toolbox calls handy that read and write individual specifications to the 
record. A tool that reads information from a record begins with the word Get, 
while a tool that writes information into a record begins with the word Set. 

We saw an example of Get and Set tools in the last chapter when 
demonstrating the way the stack operates while passing parameters to a tool. 
The GetFont and SetFont tools were actually reading and writing informa­
tion - font handles , you'll recall - in a record associated with the current 
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window (technically speaking, font handles are part of the Grafport record, 
a component of the window record). 

Get and Set tools are often used closely together. Before changing a 
parameter in a record, your program will probably first perform a Get to see 
what that current parameter setting is. If it is not the desired setting, then the 
program issues a Set command to make the change. But if the existing setting 
is fine, then the program can skip the Set routine, thus speeding its way on to 
the next operation. 

PRIVATE DATA 

Records, especially ones such as window records, allow you to create mul­
tiple windows without any fear that parameters for one might get mixed up 
with the others. For example, if your program must display two windows of 
entirely different appearance - one may be a window with scroll bars and 
title bar; the other may be a smaller, plain window- your program will 
create a separate window record for each when you create the windows. 
Adjusting the location or size of one of the windows will affect the record of 
only the one window undergoing adjustment. Parameters for the other 
window are not in any danger of being accidentally adjusted. 

In formation contained in records is called private data because no other 
object shares or is necessarily aware of the data for any other object. 

DATA TYPES 

As you begin studying the toolbox calls and records in the Apple 1/GS 
Toolbox Reference volumes, you will observe that parameters are often 
referred to by their data type. Pascal and C programmers will already be 
comfortable with the idea of data types, because both languages are strongly 
based on the concept. 

For those who don't have that background, a data type is a declaration 
or statement that a piece of data is going to be a certain kind of number, like 
an integer (whole number within a specified range), or a string (a group of 
text characters). By specifying the data types for all toolbox call parameters 
and records (detailed in the Toolbox Reference volumes), Apple helps us use 
these functions in our programs and tells us how much memory space each 
parameter occupies. 

High-level programmers traditionally think in terms of data types, 
while assembly language programmers concern themselves with the size of 
each piece of data. Let's look at the data types and sizes each kind of pro­
grammer will encounter, explaining the terminology along the way. 
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Fixed Length Data 

High-level programmers of the IIGS rarely deal with data that is smaller than 
an integer. According to convention, an integer is 2 bytes long. Because of 
its 16-bit binary length, it can represent any number from -32768 to 
+ 32767. Since the 65816 microprocessor handles information in 16-bit­
wide paths, the integer is generally the smallest data type that will be 
specified for a toolbox call parameter. 

There are exceptions, however. Occasionally a parameter can be 
specified by as little as 1 bit or I nibble (4 bits). When this happens, several 
small parameters are often packed together to make up a 16-bit value, thus 
keeping the 2-byte width of information intact. When there is a single byte­
length parameter, it will be padded with Os to fill up the 2-byte space. 

Assembly-language programmers caJI a 2-byte collection of data a 
word. Therefore, sometimes you'll see reference to a word data type. 
"Word" in a 16-bit environment such as the IIGS simply means that the data 
is 2 bytes long. 

When the information to be passed to a tool requires more than 2 bytes, 
such as a pointer to a memory address (which needs actually 4 bytes - 2 for 
the address within that bank, l for the bank number, and 1 to fill out the 
data to an even word length), the data type called into action is the Longlnt, 
which stands for Long Integer . A Longlnt is 4 bytes long. In assembly lan­
guage, a 4-byte space for data is called, simply, a long (and sometimes along 
word). 

Data containing a memory address, as noted earlier, must be expressed 
within 4 bytes. Addresses are either pointers or handles (pointers to poin­
ters). Just as you assign a pointer to a Longlnt (4-byte) variable, so, too, do 
you assign a handle to a Longlnt. More than likely, you won't come in direct 
contact with the actual value, but let the variable name carry the "baggage" 
of the handle value. When it comes time to pass that handle to a tool call, 
you'll just plug it into the high-level language function as we demonstrated 
for the pointer to a window record, earlier. 

Boo leans 

A common Pascal data type is called a Boolean, named after the nineteenth­
century mathematician George Boote (see Appendix A for further informa­
tion about Boolean arithmetic). A IIGS tool requires or issues a Boolean 
value when it is looking for "yes" or "no" kind of information. By conven­
tion, a "yes" is signified by any number other than 0, a "no" is signified by 0. 
In IJGS programming, a Boolean is 2 bytes long. The common convention is 
to indicate a "yes" Boolean by $FFFF (clearly non-zero), and a "no" Boolean 
by $0000. 
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Variable Length Data 

The IIGS toolbox generates a number of variable length data structures in 
memory. A record is a good example of such a data structure. But records 
from different tool sets are of different lengths, because each tool set has its 
own list of parameters. Since the toolbox allows you access to key 
parameters within a record by way of its many routines, you won't be 
attempting direct access to items within a record. At most, you'll need only 
the pointer to the record to accomplish any manipulation of parameters 
inside an existing record. Consequently the exact byte count of a record 
won't be of importance unless you're short on memory allocation for a new 
record. 

There is, however, one variable length data structure that you may be 
examining one byte at a time. Called a string, it can contain any kind of tex­
tual material, from words in a text box to the short title of a window. When a 
string data structure is part of a record, the usual connection is via a pointer 
to the string data in memory. The actual construction of a string in memory 
varies with the type of strings you use, either a Pascal or C string. Your lan­
guage manual will guide you in the proper form. 

Manipulating information inside a string data structure may be neces­
sary, depending on the program. For example, a portion of a program may 
convert the first letter of each word in the string to a capital letter. For your 
program to perform this operation, it must work its way through the string, 
looking for space characters, testing the character after each space, and sub­
tracting 32 from the ASCII value of lowercase letters to make them upper­
case (see the ASCII chart in Appendix B for the reason behind the subtrac­
tion). Of course, Apple has provided a tool that helps in searching through 
the string data structure, but your program must guide it each step of the way 
as it thumbs through the structure. It's not the same as a tool call that mod­
ifies a set location in a record. 

Custom Data Types 

Throughout the Apple IIGS Toolbox Reference manuals you will see data 
types, particularly in Quick Draw IT, that seem to be graphically oriented 
data types, such as point and rect. Data types with these names don't occur 
naturally in Pascal or C, but they can be added to programs in either language 
(using the type facility in Pascal; typedefin C) for convenience. Your high­
level language compiler will probably include these type declarations in the 
supplemental source code files associated with QuickDraw II. 

We'll examine these custom data types in more detail in Chapter 8, but 
a sample is in order here. A point on the screen is determined by its hori­
zontal and vertical coordinates - the number of picture elements across 
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and down from the upper left comer of the screen. The horizontal and ver­
tical components of the coordinate can be each measured by an integer. But 
if we need to refer to coordinate points often enough, it becomes easier to 
refer to those two integers as a "point" whose data component is 4 bytes long . 

Going one step further , if a rectangle is a common object - as it is in 
JIGS windowing - then we can establish a data type, called reel , which has 
as its data the coordinate points of the rectangle's upper left and bottom right 
corners . Those two points, contained within 8 bytes of data, supply all the 
information necessary to establish the location and size of a rectangle on the 
screen . Hence, one of the components of a window can be an 8-byte chunk 
of data type RECT that supplies important information about the appearance 
of that window. 

You'll encounter similar custom data types in the IIGS toolbox refer­
ence material. Also, don't be afraid to define your own data types in pro­
grams when they will aid you in keeping a large number of items and con­
cepts straight. 

Before jumping into the key tool sets, we have one last concept to dis­
cuss: event-driven programs. This will be the heart of your programs if you 
wish them to follow Apple' s User Interface Guidelines. 



CHAPTER 7 

The Main Event 

So far, we've been looking at some of the components that go into an 
Apple IIGS toolbox-based program. Quite likely, you haven't been able 

to see how these pieces go together. That's what we'll be doing in this chap­
ter: seeing the main structure of a IIGS program. At the same time, you'll be 
introduced to some program organization concepts that professional pro­
grammers use to make their jobs easier. 

NONEVENTS 

There's a strong likelihood that if you've done any programming in the past, 
it has been along straight procedural lines. By that we mean that you write a 
program from beginning to end in precisely the same order that things take 
place on the screen . For example, if the program is an arithmetic drill for 
elementary school students, the program may start with an opening menu of 
levels of complexity of the problems the student wishes to work on. 

The program essentially stops when it displays the menu . It waits for the 
user to type a letter or number to indicate the menu choice. In BASIC, for 
example, the INPUT statement literally halts program execution in its 
tracks, waiting ever patiently for someone to type a character and the Return 
key. 

Once a choice is made , the program jumps to the part in the program 
listing that contains the arithmetic problems at the level selected by the stu-
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ARITHMETIC DRILL 
----------
1 -> Level 1 
2 -> Level 2 
3 -> Level 3 
4 -> Score 
5 -> Quit 

Choose One: .. _.· .. ·. 

Figure 7-1. Procedural program menu. 

dent. After, say, ten problems, the program halts again as another INPUT 
statement waits for the student to type in the response to a question such as, 
"Do you wish more? (YIN)." Questions such as this are actually tiny menus, 
here with two possible choices, Y for Yes and N for No. 

So it goes throughout the program. Sections of action are punctuated by 
pauses for menu selections. In block form, the program's code might look 
something like Figure 7-2. 

A more sophisticated program, along the lines of a word processor or a 
spreadsheet (like Multiplan or Lotus J -2-3), is less procedural in nature, but 
removes the user from direct access of commands by one or more steps. For 
example, in the Multiplan user interface on the Apple II, the IBM PC, and 
other computers (but not the Macintosh), you have free reign over entering 
data in the spreadsheet's cells by pressing any number or letter keys as well 
as a rrow keys and Return . But to gain access to the program's built-in 
commands, you must press the Escape key. This action takes you one step 
away from the cell mode and puts you into a command mode. A selection of 
menu items appears at the bottom of the screen, and you use the keyboard 
keys to make your menu selections. In block form, this kind of program 
looks like the illustration in Figure 7-3. 
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MAIN MENU 
1,2,or3? 

Figure 7-2. Procedural program overview. 

MODALITY 

lf you study the above application structures, you'll observe that each 
restricts the user to certain modes of operation at various times. When the 
arithmetic program is presenting problems on the screen, the student may be 
locked into going through all ten problems in a set before exiting the current 
difficulty level. When one of the menus appears, particularly one of the sub­
menus (the "YIN" kind), the program offers a substantially restricted list of 
alternatives. To quit the program entirely (without turning off the com­
puter), the student may have to work his or her way back through multiple 
menu levels until reaching the hallowed Main Menu, which finally offers a 
Quit option. 

In the Multiplan kind of program, the modality is much more obvious, 
because you are either in data entry mode or in command mode. When you 
are in the latter, the command menu at the bottom of the screen is active, and 
you can select items there by moving the highlight bar to the desired word 
(using the arrow keys) or typing the first letter of the desired command word. 
You couldn't indicate a command while in data entry mode, because the pro-
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Regular Entry Mode 

Command Mode Menu 

Figure 7-3. An "Escape-Command" program structure. 

gram interprets the arrow key as a cell pointer mover and letter keys as 
characters worthy of entry into spreadsheet cells. 

No Modes 

From a user's point of view, modes can be very distracting. In the arithmetic 
program, for instance, a student intent on running through twenty-five 
problems at a particular level is interrupted after each set of ten with a ques­
tion about solving more problems. And then, the student has no choice but to 
solve problems in multiples often. As we've also seen, quitting the program 
requires remembering the steps needed to backtrack to the Main Menu. The 
thought process is frequently disturbed , as the user puts aside arithmetic 
solving skills while focusing on the details of program operation. 

A Multiplan-like modality suffers from a similar distraction. If you're 
busy entering information into a spreadsheet and wish to change the align­
ment of a cell's contents (i.e., change a label cel l from its natural left-aligned 
format to centered), you must take your mind off the spreadsheet and its con­
tents by taking a giant step away from the spreadsheet and going into com­
mand mode. After you've made the adjustment, then you must make sure 
you are back in data entry mode- otherwise your key presses will be inter­
preted as commands. 
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You should strive for modelessness in your program design. Modeless­
ness is best characterized by the freedom to use any program function at any 
point while the program runs. Real life is largely modeless. We can be 
talking on the telephone, yet we have the freedom to jot a note or punch up 
numbers on a calculator. We're not confined to " telephone mode." So, too, 
should a modeless program offer access to all possible menu commands so 
that it takes but one action to print, save, paste, or change a font size. The 
user should not be forced to focus attention on a program's modes while 
losing track of the application's content. 

In practice , it may be impossible to build a program that is completely 
modeless, but it is possible to reduce the most blatant instances of distracting 
modes and disguise the rest in devices like dialog boxes. The Apple User 
Interface Guidelines promote the design ofmodeless programs . Not surpris­
ingly, then, the nos programmer's toolbox equips programmers with tools 
to design modes out of their programs. 

Unlearning 

For many programmers, this takes some getting used to. The slow start of 
early Macintosh applications development was attributed largely to the 
rethinking required to design a program in this user interface environment. 
In fact , in some editions of the Mac programmer's bible, Inside Macintosh, 
a paragraph heading in the first chapter reads , "Everything You Know Is 
Wrong ." In that paragraph is another statement conveying the meaning of 
that heading: "You ' 11 probably find that many of your preconceptions about 
how to write applications don't apply here." Since the IIGS programmer's 
toolbox and user interface are patterned after the Mac's, those same words 
apply here . 

So if modes are "out," what in the toolbox helps you design modeless­
ness into your programs? It's something called an event. 

FROM MODE TO EVENT 

Everything that exists as input to the computer - a press of a key, a mouse 
button press, even a character coming in through a serial port - is called an 
event. Events have many characteristics. In fact, you might consider events 
as objects because the toolbox Event Manager generates an event record in 
memory that contains all the attributes of an event. Your program, then, 
looks into the event record, decides what kind of event it is, and acts 
accordingly. 
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Additionally, the Event Manager can keep track of a series of events 
that happen too quickly for the computer to handle all at once. The list of 
events is kept in a section of memory called the event queue. For example, if 
you want to close two overlapping windows that are open on the screen, you 
can quickly click the Close boxes in the two windows. You might click the 
box on the second window before the program has finished removing the 
first window from the screen . Both clicks of the mouse go into the event 
queue. The program immediately takes the first mouse click from the queue 
(popping it from the stack, if you will). As soon as the program closes the 
first window and activates the second, it polls the event queue to see if any­
thing is in there. In this case, the second mouse click will be there . Pulling 
this event from the queue, the program closes the second window. The user 
benefits because he or she doesn't have to wait for the screen action to catch 
up with two closely spaced mouse actions. 

THE EVENT LOOP 

Building the event mechanism into a program entails a program structure 
that may be entirely new to experienced programmers. Actually, if you 
haven't programmed a computer before, you' ll have an easier time under­
standing and applying the structure required for an event-driven program. 

The central , "living" section of an event-driven program is called the 
event Loop. It consists of two types of instructions: ( I) a function that reads 
the event queue to see what kind of event has taken place, and (2) several 
statements that test the event pulled from the queue to determine specifically 
what kind of event it is and what the program should do next for that par­
ticular kind of event. 

If there has been an event, 

-was it a key press? 
<if so, display the character) 

-was it a mouse button cress? 
(if so, where was it? 

if in a menu, pull down the menu; 
if in a window, make it the active window; 
if in a window's scrol I bar, scrol I accordingly> 

Go back to the beginning of the loop unti I "Quit" has been 
selected from the menu. 

Figure 7-4. Event loop structure. 
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Instructions for each event type are located elsewhere in the program 
code as stand-alone subroutines. When execution branches to one of these 
routines, the action takes place (it could be a routine responding to a mouse 
selection in a menu , a press of a keyboard key , or a click of the mouse on a 
scroll bar). When the routine is completed, execution returns to the event 
loop in the location from which it branched in the first place. At the end of the 
loop section , program execution returns to the beginning of the loop , where, 
usually, the event queue is polled once more. 

Therefore , when a program doesn't appear to be doing anything, it is 
actually racing through the event loop, waiting for some kind of event to take 
place. If the event is a keystroke, for example, a word processing program 
might jump to a subroutine that instructs the computer to display the 
character on the screen and store the character in memory as part of the docu­
ment being built. 

Every key press, then, is an event. That means, of course, that event 
polling and subroutines must take place at a very fast pace for someone cap­
able of typing 100 words per minute to keep from typing faster than the 
computer can accept events. At 100 word per minute, for example, the 
machine must handle 10 complete events (including their subroutines) each 
second. 

Of course, there is no guarantee that any program will automatically 
accommodate 10 events per second. It is very possible to design a cumber­
some event loop and keystroke subroutine that would not let a typist get 
much past 50 wpm before the event queue overloads and the program loses 
characters. That' s where experience and good program design come into 
play- something you'll acquire in time. 

Has there been an event? 

Was the event a key press? 

- i f so, j ump to .. D i sp I ay Rou tin e·· in Toolbox 

Was the event a mouse click ... .... --

Figure 7-5. The event loop branches to subroutines. 

.. ... 

- I 

Toolbox 
Display Routine 

1. decode 
2. display 
3. return 
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EVENT PROGRAM STRUCTURE 

There is no rigid structure for an event-driven program. About the only 
requirement is that the program begin with the necessary initialization calls 
to "wake up" aU the tool sets that your program will be using. 

Next, depending on the content of your program, the program should 
perform any other program-specific initializations, such as creating an 
opening window and menus . This initialization section should include all 
setup procedures that your time-critical event subroutines will need. Perhaps 
you will use this opportunity to create window or control records in advance 
for objects that won't show up right away (although this may not be neces­
sary). Program execution should proceed from the end of these program 
initializations directly to the event loop. 

Even though execution jumps to the event loop , the loop does not have 
to physically follow the initializations in the source code listing. Pascal, C, 
and assembly language let you define the actions for each event subroutine 
anywhere in the program, assigning a readily identifiable name to each 
action. Consequently, you can define your subroutines in the middle of the 
code and place your event loop - the main program - at the end of the 
code. Or you can place the event loop after the initializations and put all the 
subroutines at the end of the program. Figure 7-6 demonstrates two ways you 
can structure an event-driven application. 

EVENT DECISIONS 

The event loop mechanism really owes its power to the event record, which 
the Event Manager automatically creates in memory when an event takes 
place. If multiple events are stacked in the event queue, only one event -
the next one to be acted upon - has its information posted to the event 
record. 

An event record contains the following information about an event: 

The kind of event it is (e.g., mouse down, key) 

The content of the event (e.g. the letter pressed) 

The time of the event 

The location of the mouse pointer at the time 

Whether modifier keys were pressed (e.g., Shift key) 

By reading one or more items of an event record , statements in an event loop 
can test any detail about an event. For example, if the event was a mouse­
down event, then the event loop might branch to a subroutine that handles 
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Organization No.1 

Initializations 

Event Loop 

Action 
routine 

definitions 

Figure 7-6. Two possible program structures. 

Organization No.2 

Initializations 

Action 
routine 

definitions 

Event Loop 

all mouse-down events. That routine may subsequently check to see if this 
mouse-down event's time was within a specifically defined interval from the 
last mousedown event, and if the mouse pointer was located inside a par­
ticular coordinate range on the screen. If so, then it performs an action that 
was programmed as an action for double-clicking on a particular icon. After 
execution of that action, the program zips back to the event loop, where it 
waits to test the next event that comes along. 

We're looking at the event loop and its actions from a highly superficial 
view here. We'll get into much greater detail on the Event Manager's opera­
tions in Chapter 9. 

MODULARITY 

One beneficial result of the event-driven program structure is that you will 
ultimately program your application in modular form. In other words , each 
action- the action instructions for a Copy menu command , for exam­
ple - will be its own module , written in your source code program. You'll 
be able to take that very same module and, without blinking, incorporate it 
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into your next program. The same will be true for many procedures you'll 
write. If you define your procedures with meaningful, plain-language 
names, they'll become practically standard modules for most of your pro­
grams. Eventually, you will amass a considerable library of these building 
blocks. The library will allow you to focus more closely on the new aspects 
of your program instead of having to recode the same old stuff every time. 

DESIGNING YOUR APPLICATIONS 

Program coding may seem like a formidable task right now, but once you get 
comfortable with your programming language and the IlGS toolbox, you'll 
soon realize that designing a program for the Apple User Interface takes 
more planning than other kinds of programs. 

A procedural program often emerges slowly from the mind of its 
creator. It starts with one screen, and gradually builds one screen at a time, 
often without much forethought. Coding usually keeps adding to the pre­
vious code. Since the new code doesn't rely too much on what has already 
been written in the program, the source code file frequently sprawls in many 
directions at once. 

Planning an event-driven application, however, will put an immediate 
end to procedural thinking.lnstead of designing screens punctuated by menu 
choices , think of your program in terms of event actions - menu choices, 
mouse clicks , key strokes. By defining the actions in advance , you often find 
refreshing ways of portraying tired topics. That's really what the User Inter­
face Guidelines set out to promote. 

Remember, too, that with the prospect of high-resolution , color 
graphics, you can tum windows - which take on their own physical entities 
in your program - into metaphors of real-world objects, such as 
accounting ledgers, music machine control panels, and so on. Don't just 
limit yourself to the bland windows or screens of yesteryear. Think visually. 
Turn your ideas into colorful pictures accompanied by inspiring sound. 
Recreate images from real life on the screen. 

This kind of thinking has brought us many wonderful software products 
on the Macintosh. It will happen on the IIGS just as easily, with the added 
enticement of color and superior sound. 



Part Three 

Tools in Action 



CHAPTERS 

QuickDraw II 

We begin our exploration of the most important tool sets with 
QuickDraw II, the tool set that governs the Apple IIGS's native mode 

screen display. Although this tool set's name might imply that you'll use it 
only for graphics- drawing circles, squares, squiggly lines, and so on­
QuickDraw II governs the display of everything on the screen. Windows, 
menus, controls, and text all rely on QuickDraw II to do the actual"drawing" 
on the screen. 

As a programmer, you will come into direct contact with QuickDraw II 
via its own tools only as often as the kind of programs you write need them. 
Programs that have the user draw or paint on the screen will use QuickDraw 
II actively. Animation programs will also make many QuickDraw II calls. 
Text-oriented programs, however, will have little direct contact with 
QuickDraw II calls. They'll be using QuickDraw II plenty, though. It's just 
that the calls will be made by other tool sets, such as the Window Manager 
and text tools. Your understanding of these "higher level" calls may require 
a thorough knowledge of what QuickDraw II is doing and requires. 

Therefore, no matter what kind of toolbox programming you intend to 
do on your IIGS, QuickDraw II is the place to start examining tools in detail. 
Many concepts here will be crucial in the design of your programs, as indi­
cated by QuickDraw IT's relatively low position in the tower of toolset 
building blocks illustrated in Figure 5-12, on page 80. 

113 
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QUICKDRA W II VS. QUICKDRA W 

The conceptual framework for QuickDraw II came from the original 
QuickDraw, masterminded by Bill Atkinson for the Macintosh. Coupled 
with the speedy processing of the Mac's 68000 32-bit microprocessor, the 
original QuickDraw presented programmers with a large library of tools that 
simplified the potentially enormous task of writing routines for animation 
graphics, finely detailed graphics images, text in clearly distinguishable dis­
play typeface styles, and the common denominator user interface features of 
windows, scroll bars, menus, and the rest. 

QuickDraw II does the same for the Apple IIGS. While many of the 
toolbox calls are the same and behave the same in both tool sets, QuickDraw 
II differs from its forebear in some important matters. 

Color 

The most obvious, of course, is that the Apple riGS has been a color com­
puter from the very beginning, while the first Quick Draw focused primarily 
on monochrome (black and white). The original QuickDraw does have some 
color facilities, as Inside Macintosh will tell you, but since the original 
hardware was not set up for color video output, this color facility is rudimen­
tary compared to the system built into the IIGS. QuickDraw II, as we'll see 
later in this chapter, has a sophisticated mechanism for generating a 
screenful of colors unmatched by most computers in its range. 

Screen Resolution 

Less obvious differences between the two QuickDraws include the differ­
ence in screen resolution between the Macintosh and the Apple llGS super­
high high-resolution mode. Also, owing to the way Apple II video monitors 
usually create images on the screen, individual picture elements are con­
ceived of as rounded, while the Macintosh screen makes square elements. 
The Mac's square elements and monochrome screen are responsible for the 
crisp images displayed on Macintosh monitors. Still, with a quality RGB 
monitor, the Apple IIGS is quite capable of producing sharp color pictures, 
especially in its 640 x 200 display mode (i.e., 640 dots horizontally, 200 
dots vertically). 

The remaining differences between QuickDraw and QuickDraw II are 
of little significance. QuickDraw II fares well in a head-to-head competition 
with Quick Draw, so don't feel that you're using a lesser tool than what's on 
the Macintosh. In some ways, it's even more powerful. 

Now that we've acknowledged the differences between the two 
QuickDraws, we will hereafter be referring exclusively to QuickDraw II as 
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implemented in the Apple IIGS toolbox. For convenience, we will refer to 
this tool set as, simply , QuickDraw. 

GRAPHING COORDINATES 

You can think of QuickDraw drawing images in a two-dimensional coordi­
nate plane. A location in the plane is denoted by a coordinate point con­
s isting of numbers representing horizontal and vertical measures in each 
direction - just like a coordinate point on a geographical map. The unit of 
measure is the picture element, or pixel. A pixel in the coordinate plane is 
identical to a dot of an image on the video screen. Therefore, a filled square 
image measuring 10 pixels vertically and horizontally would look like a 
small square on the video monitor, consisting of 100 dots (a box of 10 by 10 
dots) . 

You might conclude incorrectly that since drawing occurs in this coor­
dinate plane , the plane exists somewhere in the computer's memory. 
Nothing could be further from the truth. The plane exists merely as a concep­
tual drawing space, as a convenience for us when we visualize graphics 
images and the physical space they would occupy if the images were real 
objects. 

It 's true that some images, when drawn on the screen by QuickDraw, 
occupy an area of memory that contains information about each pixel in that 
image as shown in Figure 8- l . 

Data Required for 
each pixel, whether 
black or white. 

Figure 8-1. A screen image requires data in memory for each pixel, whether black 
or white. 
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QuickDraw, however. also manages to draw other types of images 
without taking up nearly the amount of memory that their on-screen image 
might imply. For example, a rectangle image occupies little more memory 
than is needed to specify its two basic coordinates - locations of its top left 
and bottom right corners -no matter how large the rectangle is. 

We'll have more to say about these two ways of drawing images later. 

Drawing Space 

QuickDraw II designers have established a very specific way of visualizing 
the range of coordinate measurements in the conceptual drawing space 
(Figure 8-3). The space is a square of 32K (32768 to be precise) pixels on a 
side. Coordinate 0,0 is situated at the centerpoint of the drawing space. 
Numbers increase along the horizontal axis from left to right; numbers 
increase along the vertical axis from top to bottom. Note that the vertical axis 
orientation - from top to bottom - is directly opposite from what you 
may have learned in geography or geometry. 

This means that coordinates in the lower right quadrant are the only 
ones whose vertical and horizontal components are both positive numbers. 
In other quadrants, one or both components are negative. 

We must emphasize that the conceptual drawing space is not real 
memory or disk space. It is large enough for a programmer to map images 
that are far larger than a screen can hold. If, for example, you are designing 
an extensive background scene for a program, you may want it to be larger 
than one screen so that the user can scroll around a scene that may be the size 

(120,50) ~ -
-
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1- 1-
1- 1-
1- 1-

1-
1-
1-

~ (133,67) 

Data Required 
for only two 
coordinate 
points. 

Figure 8-2. A rectangle is defined by only two coordinate points. 
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(- 1 

t 
Figure 8-3. The QuickDraw conceptual drawing space. 

of several screens. Not all of the image may be in memory at one time ­
only as much as can be displayed in one screen may be in memory. But the 
image, as stored on disk , is "mapped" to, say, a four-screen area in the con­
ceptual drawing space based on its coordinates. When the program needs to 
display the second screenful of the scene, it can load in the necessary image 
segment from disk and display it. If the computer has enough memory instal­
led, perhaps the entire four-screen image can be loaded into memory. Then , 
when another segment is needed in response to a user's scrolling, the pro­
gram can shift the viewing area to another part of the picture with no notice­
able delay. It will look like one seamless graphic image to the user. 

QuickDraw doesn't care where in the drawing space you plant images. 
For your own convenience, however, perform your first QuickDraw calls 
from the centerpoint (0,0) and work in the lower right quadrant until you get 
a feel for using this drawing space. In that quadrant alone, there's room for 
an image over 2000 screens large in the densest graphics mode - 64 mega­
bytes of uncondensed picture information. 



118 -------------- THE APPLE llGS TOOLBOX REVEALED 

Pixels, Points, and Rectangles 

The QuickDraw drawing space is measured by picture elements - pixels. 
Apple IIGS pixels, as displayed on video monitors, look round or oblong. 
This is a function of both the video generation circuitry inside the com­
puter - which must maintain compatibility with earlier Apple II software 
design - and the design of the video monitor you are likely to attach to the 
machine, whether it be a television set, composite monitor (color or mono­
chrome), or RGB (which stands for the red, green, and blue color signals 
sent directly to the monitor). 

Pixels are bunched together in perfectly aligned rows and columns. 
Coordinates that specify pixel locations (and hence the locations of images 
created by the pixels) do not actually refer to the pixels themselves. Instead, 
the coordinates refer to points that are located between pixels. 

This concept tends to sound a bit theoretical, much like a few geometry 
concepts. Tn geometry class, we learned that a point is a location in space that 
has no dimension. Similarly, a line between two points, as defined in basic 
geometric theorems, must be a straight line. This line , like the points it joins, 
has no thickness (although it has a definite length). That is, we can't really 
see the line or its end points, but we can visualize what it would look like by 
drawing points on paper at the specified distance and connecting them with a 
line drawn along the side of a ruler. 

On the QuickDraw drawing space, then, we can demonstrate points as 
existing between pixels as in Figure 8-4. 

~ ~ 

Point 

~ ~ 
~ 

""1111 L 
l""'"'oioil "'"-o.: 
~ Pixel 

Figure 8-4. Relationship between point and pixel. 
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Points are represented by intersections of row and column lines. Now, 
if we wished to specify the coordinates of a rectangle, we would tell 
QuickDraw that the rectangle's two definition points (upper left and bottom 
right corners) are located at two points. QuickDraw would then consider the 
rectangle to be an imaginary rectangle with sides of no thickness. In other 
words, just specifying the coordinates for a rectangle simply assigns loca­
tions in space for the dimensions of a rectangle. 

For the sake of consistency , QuickDraw considers the rectangular out­
line defined by the coordinates to be the outermost extension of that 
rectangle. If we want to see the rectangle, we must tell QuickDraw to actu­
ally draw the rectangle with its pen. A pen, as you' ll see later on, can have 
many different attributes. One of those attributes is its thickness (called the 
pen size). If the thickness of the pen is assigned to be 1 pixel high and l pixel 
wide - l pixel period - QuickDraw would draw the defined rectangle 
using a row of pixels inside the theoretical rectangle defined by the coordi­
nate points. 

A pen size of 2 pixels high and 2 wide would fill in 2 rows of pixels 
inside the theoretical rectangle. 

Simple Data Structures 

To facilitate the definition of points and rectangles in your programs, 
QuickDraw readily acknowledges data structures called Point and Rect. 

""""" ~ 
Rectangle 
Specification 

Figure 8-5. A rectangle's coordinates merely indicate its location and size. 
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Figure 8-6. Drawing occurs inside the rectangle specification . 

Rectangle 
Drawn with 
1 x 1 Pixel Pen 

The Point data structure consists of two integers, one each for the ver­
tical and horizontal coordinates in the drawing space. An integer (2 bytes 
wide) is required for each coordinate measure that may go up to l6K 
($4000). Rect consists of a series of four integers: the vertical and horizontal 
coordinates for the top left corner of the rectangle and the same for the 
bottom right corner. When you begin writing programs in your chosen lan­
guage, pay special attention at first to the order of integers these data struc­
ture variables require. Because of the stack' s First In , First Out (FIFO) 
orientation , assembly language coordinate parameters must be pushed onto 
the stack in the correct order for the toolbox routine to pop. 

PIXEL IMAGES 

In this section, we'll discuss images that you will be designing for your pro­
grams, not the standard QuickDraw shapes such as rectangles. These custom 
images are known to QuickDraw as pixel images (the Macintosh world calls 
these images bit maps). You'll use pixel images for things such as back­
ground scenes and animation objects in graphically oriented programs. 

All graphics on the Apple IIGS screen (or any computer, for that matter) 
consist of carefully designed patterns of pixels. In the monochromatic 
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Macintosh environment, pixels are either "on" or "off' - either black or 
white. When pixels are small enough, the pattern of on and off pixels can 
become a recognizable image. 

Pixels, then, are like a mosaic of uniformly sized pieces that blend 
together to form your pictures. When designing a picture, however, you 
must work on these pictures under a microscrope, because you must program 
each pixel. You may have the benefit of a graphics program that provides 
painting and drawing tools such as those in MacPaint or MousePaint. Such a 
program may allow you to save pictures in such a manner that your own pro­
grams will be able to load and use them without pixel-by-pixel program­
ming . Still , it's unlikely you'll escape some image programming in a 
graphics program. 

Pictures as Numbers 

Before you can design a picture and store it in memory (and on disk) for your 
program to use, you need to know in what form QuickDraw II expects to find 
your picture. We're dealing with a computer that, at its basic level , knows 
how to work only with numbers, not pictures or words. Therefore, a picture 
as we know it must be turned into numbers for the machine to toss around 
memory and display on the screen as colored dots. 

As a stepping stone to this understanding, we'lllook at how the mono­
chromatic Macintosh performs this picture-to-number-to-picture conver­
sion. The concepts are a bit easier to grasp in monochrome, and will pave the 
way for seeing how it all works in color a little later. 

Figure 8-7. A Macintosh image enlarged to see each pixel and in its normal size. 
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Figure 8-8. Enlarged pixel image of a hand. 

Look at the pixel image of the hand in Figure 8-8. 
The image is contained in a pixel area consisting of 16 rows of 16 pixels 

each. Now study the topmost row closely. You'll see that it contains pixels 
in the pattern shown in Figure 8-9. 

The row of boxes may remind you of the binary boxes of earlier chap­
ters. In this case, however, empty (white) boxes are equivalent to Os, while 
filled (black) boxes are equivalent to Is. Taking eight boxes, that is, pixels, 
as a group, the content of those boxes can be represented by a number whose 
binary equivalent has Os standing in for white pixels, Is for black pixels. 

In the first row of the hand picture, then , the leftmost group of 8 pixels 
can be communicated to the computer by the binary number 0000 000 I, 
which is $01 . The rightmost group can be portrayed by binary 1000 0000, or 
$80. Combining the 2 bytes into one integer, we have $0180 containing all 
the information we need to depict the top row of the picture. The second row, 
a more complex pattern of on and off pixels, would be $1A70 (0001 1010 
0 Ill 0000). The entire picture would be translated into numbers as shown in 
Figure 8-10. 

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 = $0180 

Figure 8-9. The top row of pixels from the hand image. 
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= $0180 
--t--t--t--t = $1 A70 

= $2648 
= $264A 
= $1240 

= $1249 
= $6809 
= $9801 
= $8802 
= $4402 
= $2002 
= $2004 
= $1004 
= $0808 

--t-t--t = $0408 

__.__.__. = $0408 

Figure 8-10. The hand image and its numeric equivalents. 

This pixel image would be stored in memory as a long sequence of the 
numbers shown in the illustration. We must also pass another important 
parameter as part of this image's definition: the width of the pixel image. 
Width is specified as an integer and denotes the number of bytes wide any 
row (sometimes called a slice) of the image will be - 4 bytes in the above 
monochromatic illustration. With this figure at hand, QuickDraw II knows 
how many of the hex values from the list of pixel image numbers are to be 
applied to each row of the drawing. To display the hand on the screen, 
QuickDraw would begin translating pixel image values into on and off pixels 
along a row. As soon as it drew the first 4 bytes' worth of data, it would zip 
back to the left edge of the picture area on the screen one line below the first 
and start translating the next 4 bytes of pixel values. It would continue with 
this until the entire image was displayed. While this may sound like an 
enormous amount of calculating, converting, and gnashing going on, it 
occurs so fast that you can't see the image being drawn - at least not one 
this size. 

Add the Color 

Things get a little more complex when the pixel image is to carry color infor­
mation with it, but the concept is the same as for the Macintosh monochrome 
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bitmap. The main difference is that in Apple IIGS super high-resolution 
color modes (either 320 x 200 or 640 X 200), each pixel is represented not 
by just a single bit to signify whether it is on or off. Instead , all pixels are, in 
a sense, "on." But what distinguishes one pixel from one next to it is its 
color. If a pixel is not supposed to be seen , it must be the same as the back­
ground color so it blends with the background , like camouflage. Each pixel 
has a color. 

Color information consists of either 2 or 4 bits, depending on which 
color mode you are using. The higher density , 640 x 200 mode lets you pick 
a color using only 2 bits , because this mode allows your choice of four col­
ors. What those colors are can change in different places on the screen, as 
we'll see later in our discussion about the color table . For now , however, just 
think of there being a palette of four colors to choose from, each known by 
its binary number 00, 01, 10, and 11: four colors within 2 bits. In 320 x 200 
mode, however, choice of color zooms up to 16. A quick check of binary 
math tells us that a color can be singled out from the list by a 4-bit number, 
from 0000 to 1111. 

Going back to the hand pixel image, but this time in 320 X 200 mode 
Apple IIGS color, if the background color happens to be color 0100 and the 
outline of the hand is to be color 0000, the first 8 pixels of the top row of the 
image would be 

0100 0100 0100 0100 0100 0100 0100 0000 

or $44, $44, $44, $40, while the first 8 pixels of the second row from the top 
would be 

0100 0100 0100 0000 0000 0100 0000 0100 

or $44, $40, $04, $04. The hexadecimal values for the entire hand pixel 
image are shown in Figure 8-11. 

You can see that a color image requires more memory to store and dis­
play a pixel image than a monochrome-based picture. By placing the color 
information with each pixel, the programmer ends up with excellent control 
over the application of a diverse color spectrum on each image. 

Color Image Width 
A QuickDraw II pixel image must also be stored with its width factor so that 
QuickDraw II knows when to start applying numbers from its long data list 
to pixels in the next row. But an important factor to remember is that the 
width must be a multiple of 8 bytes. That means that in a 320 X 200 mode 
pixel image, whose pixels are I nibble in length, the minimum width of an 
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.. $4444 4440 0444 4444 
f--lf--lf--lf--1 0: $4440 0404 4000 4444 

= $4404 4004 4044 0444 
"" $4404 4004 4044 0404 
.. $4440 4404 4044 0040 
= $4440 4404 4044 0440 
= $4004 0444 4444 0440 
= $0440 0444 4444 4440 
- $0444 0444 4444 4404 
= $4044 4044 4444 4404 
.. $4404 4444 4444 4404 
= $4404 4444 4444 4044 
= $4440 4444 4444 4044 
= $4444 0444 4444 0444 

HHH = $4444 4044 4444 0444 

= $4444 4044 4444 0444 ................................. 

Figure 8-11. Pixel image data in 320 X 200 mode. 

image is 16 pixels . It also means that aJI pixel images must be stored with 
widths in multiples of 16 pixels. 

Fortunately, this does not mean that all pixel images as displayed on the 
screen must be an even multiple of 16 pixels. If that were true, and you had 
an active image that was, say, 23 pixels wide, the remaining 9 pixels to the 
right of the image would have to be assigned some color. But then, if the 
image moved to another part of the screen where images other than the back­
ground color were being displayed, the background color of the rightmost 9 
pixels of the image would cover the existing image on the screen. 

The BoundsRect 

What saves us from that potential disaster is yet another pixel image para­
meter, called boundsRect, which is attached to information stored about 
each pixel image. BoundsRect is short for boundary rectangle, and it 
specifies the rectangular part of the stored image that is to be available for 
display on the screen. The boundsRect does not necessarily determine where 
or even whether the image will actually appear on the screen or whether a 
Quick Draw tool can alter that image, but the boundary rectangle does mask 
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out extraneous pixels to the right of the desired width. Therefore, if you have 
a 23-pixel-wide image, set the dimensions of the boundsRect to be only 23 
pixels wide. Even though the pixel map extends for 32 pixels, those pixels 
outside the boundary rectangle will be ignored by QuickDraw. 

It 's also important to note that the boundary rectangle is the device that 
gives your pixel image its link to a coordinate plane: the boundary rectangle 
you specify for a pixel image is defined by coordinates to the QuickDraw 
conceptual drawing space. In other words, until you assign a boundary 
rectangle to an image, it is not officially in the QuickDraw drawing space. 

When you establish a coordinate for the top left corner of the boundary 
rectangle, the bottom right corner coordinate must be offset from the top left 
corner coordinate and measured in the same coordinate plane. Therefore, if 
the boundary rectangle for an image 23 pixels wide and 17 pixels deep starts 
at drawing space coordinate (100, 1 00) , then the coordinate for the bottom 
right corner of the boundary rectangle would be (123, 117). 

The boundary rectangle does not, however, establish what part of the 
pixel image will actually appear on the video screen. That feature is a func­
tion of the GrafPort and its component parts. We' ll get to the GrafPort at the 
end of this chapter, since it ties much of QuickDraw together. 

(100,1 

BoundsRect 
Height= 17 

BoundsRect width = 23 

Pixel Image width = 32 

Figure 8-12. BoundsRect imposes a coordinate plane on an image and hides 
extraneous pixels. 

.· 
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COLORS 

There's nothing engraved on stone tablets dictating that your Apple IIGS 
programs must be colorful. In fact, if you are writing programs for other 
IIGS users, it is possible that not everyone will have a color monitor. You 
could, therefore, program graphics screens in two of the machine's colors: 
black and white. But why not reward those with color monitors with a col­
orful display? Since you have to program in color anyway, be imaginative in 
your choice of colors. You may discover that certain features or functions in 
your program are clearer to the user when displayed in color. Your extra 
effort will probably be well rewarded. 

Pixel Color 

Earlier in this chapter, we saw how each pixel of a pixel image contains color 
information. r n 320 x 200 mode, the color of a pixel is denoted by a unique 
number in the range 0 to 15 (binary 0000 to 111 I). This number essentially 
turns the pixel "on" and immediately assigns a color to it. The same goes for 
the higher density, 640 x 200 mode, but the range of colors is limited to four 
(binary numbers 00 to II). 

rt' s important to understand, however, that the color number you assign 
to a pixel in a pixel image does not stand for a particular color directly. That 
is, color number 4 is not always blue. What that number refers to is a position 
in a look-up table of colors stored in memory: a color table. If blue happens 
to be the color in position 4 of the color table when the image is drawn on the 
screen, then it will appear as blue. By changing the colors assigned to a color 
table, we can control the precise shading and hue of a pixel to be any one of 
4,096 different colors. 

The Standard Color Table (320 Mode) 

If you make no changes to the contents of the color table when working in 
QuickDraw, you will have at your disposal the standard color table, which 
has two lists of entries, one for each resolution mode, 320'or 640. The 320 
mode standard color table looks like this: 

Pixel Value Color Name Color Value 
0 Black 000 
I Dark Gray 777 
2 Brown 841 
3 Purple nc 
4 Blue OOF 
5 Dark Green 080 
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Pixel Value Color Name Color Value 
6 Orange F70 
7 Red 000 
8 Flesh FA9 
9 Yellow FFO 
10 Green OEO 
11 Light Blue 4DF 
12 Lilac OAF 
13 Periwinkle Blue 78F 
14 Light Gray CCC 
15 White FFF 

The Pixel Value column is the number you assign to a pixel in a pixel 
image. In 320 mode, for instance, a pixel value of 4 (0 I 00) is blue in the stan­
dard color table, just as we showed in Figure 8-11. 

The Color Value column should be quite revealing if you look at the pat­
te rn of hex values assigned to the basic colors red, green, and blue, and to 
both black and white. First of all, you should immediately recognize that it 
takes 3 nibbles of information to convey a particular color in the table. 
Values in the range $000 to $FFF can represent any one of 4,096 numbers -
the number of colors available in the IIGS palette. Now, looking at the color 
value for blue (4 in the table), you'll see that its value is $00F , meaning the 
rightmost nibble is topped out at $F, while the other two are 0. The green 
selected for the standard table has a high value, $E, in the middle digit, while 
the others are 0. And red has a high value in the leftmost digit, while the other 
two are 0. You may discern a pattern: each of the 3 nibbles controls the 
amount of red, green, and blue color in a particular shade. Black, which is 
the total absence of color , comes in as $000; white, which is a combination 
of all three basic colors has a value of $FFF. The other colors consist of pro­
portions of two or more colors, like mixing paint. 

The Standard Color Table (640 Mode) 
You might expect that because a 640 mode pixel value covers a range of only 
4 (00 to 11) , the 640 color table would be only 4 entries long. Fortunately, 
that's not the case. If it were, we would have only two colors o ther than black 
and white to display at one time (black and white must usually be present for 
drawing crisp text, lines , and other standard user interface images). 

While a pixel in 640 mode can be programmed in only one of four pos­
sible colors, the human eye and the color video screen can play tricks with 
our color perception. The result, as Apple engineers discovered, is that you 
can achieve additional colors by placing two differently-colored pixels next 
to each other. To the eye, the pixels blend to form the color average of the 
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two pixel colors. For example, an area of alternating red and yellow pixels 
looks like orange. This perceived mixing of colors on the screen is called 
dithering. 

To facilitate dithering, Quick Draw has established a 640 mode standard 
color table that has four mini-palettes, each containing the four values any 
pixel may choose. 

Pixel Value Name Master Color 

0 Black 000 
I Red FOO 
2 Green OFO 
3 White FFF 

4 Black 000 
5 Blue OOF 
6 Yellow FFO 
7 White FFF 

8 Black 000 
9 Red FOO 
A Green OFO 
B White FFF 

c Black 000 
D Blue OOF 
E Yellow FFO 
F White FFF 

QuickDraw assigns four horizontally adjacent pixels to the full color table, 
such that each pixel in the group has its own mini-palette. The order in which 
pixels are assigned to mini-palettes is not particularly intuitive; pixel 0 uses 
mini-palette 2; pixel 1 uses mini-palette 3; pixel 2 uses mini-palette 0; pixel 
3 uses mini-palette 2. Therefore, if you want four pixels in a row to produce 
what to our eye looks like orange , you would assign the pixel values as 0 l II 
01 II , which QuickDraw would interpret as the 9th, 14th, I st, and 6th 
entries, respectively, on the 640 color table . 

Custom Color Tables 
You can also make your own color tables. To store a color in a new color 
table , you must specify the color value as a word-length (2-byte) number. An 
extra nibble must be added to round out the 3-nibble color values. Values 
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for each nibble must also be laid out in the proper order for QuickDraw to 
assign the values to the correct basic colors. A color word is shown in Figure 
8-13. 

A color table, then, consists of a list of sixteen color values. By simple 
arithmetic, an entire color table takes up only 32 bytes of memory. You can 
adjust the contents of a color table for all sixteen color values at once (Set­
ColorTable caJJ) or a single entry in the table (SetColorEntry). Input 
parameters for the latter's call include the number of the table, the number of 
the entry (corresponding to the left column in the tables above), and the 
word-length color value to go in that entry. 

Multiple Color Tables 

QuickDraw is ready to accommodate rather creative colorists, because you 
can set up as many as sixteen color tables in memory at one time. You assign 
a number (from $00 to $OF) to each table when you create it and load it with 
your color values. 

Having multiple tables resident allows you to perform sophisticated 
color graphics effects with a minimum of memory and code manipulation. 
Let's say your program features an animated, flying eagle and, in the lower 
left corner of the screen, a glowing hot ember. Animation consists of twelve 
different pixel images depicting the eagle in its various wing-flapping stages 
of flight. What you want to display is that as the eagle nears the ember, the 
eagle's colors change from a predominantly golden brown to a hot orange. 

The twelve pixel images of the eagle have color values assigned to each 
of their pixels. But instead of changing the pixel color values of the images 
as the bird nears the hot ember, simply change the color table that the images 
use. The pixel values remain the same in all pixel images, but the values refer 
to different colors on the second color table. In the first table, a pixel value 
of 2 may indicate a golden brown; in the second table, a pixel value of 2 is a 
reddish orange. As the eagle retreats from the burning ember, the program 
reverts to the starting color table, returning the eagle to its original brown 
color. 

Must be 
Zero 

Red Green Blue 

Figure 8-13. A color word. 
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Scan-Line Control Bytes 

You can extend the color capabilities of the IIGS even further by assigning 
different color tables to different parts of the screen. You can, if you desire, 
assign a different color table (i.e., one of the sixteen possible tables in mem­
ory) to a different scan line . A scan line is the same as a row of pixels on the 
screen. In other words, you can have one color table apply to scan line l on 
the screen, another table apply to scan line 2, and so on for up to sixteen scan 
lines. It's highly unlikely you'll need to do this for your applications, but you 
should be aware of the principle behind it. 

What determines the color table being used by any scan line is a byte of 
information called the Scan Line Control Byte, or SCB. The SCB contains 
several flags as well as a 4-bit group that signifies which of the sixteen color 
tables to use. The byte is illustrated in Figure 8-14. 

Generally, the entire screen (or window) will use the same color table 
and, therefore, be governed by the same SCB. Unless you're doing sophisti­
cated graphics or animation, you will probably use only the standard color 
table, which is referred to by the default SCB color table of zero. But if you 
need a region of the screen to have a different color table, you can assign 
SCBs to specific scan lines with the SetSCB QuickDraw call. As parameters 
you pass the number of the scan line(s) to be changed (any of 200 in either 

Co~~~~~~ ~ I I I I I I I I 
I 

Color Table 
()()()() Lhru I Ill 

(Not used) 

Eill 
0=0ff I = On 

.ln1wlm1 
0= Off I = On 

C'-<>lor Mode 
0 = 320x200 
1 = 640x200 

SCB 10100011 ($A3) = Color mode 640x200; Interrupt off; Fill on; Color Table 3 

SCB 0010 Ill 0 ($2E) = Color mode 320x200; Interrupt off; Fill on; Color Table 14 

Figure 8-14. A scan line control byte. 
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320 or 640 mode) and the actual SCB that is to apply to that scan line. If you 
need twenty contiguous lines on the screen that need a change in color tables, 
then you'd set up a finite loop that changes the SCB for those scan lines. 

Let's look at an example that should go a long way to explain how color 
tables and SCBs work. The example will be an animation sequence in which 
an onscreen character, controlled by the mouse, changes color whenever it 
passes through a raybeam corridor. 

Let's also assume that the 320-mode standard color table is in effect, 
except when the character is in the corridor. The screen's background color 
is blue and the character's regular colors are red and yellow (standard color 
table pixel values 7 and 9, respectively). In other words, background pixels 
are set to 4 and the character's pixels are in a pattern of7s and 9s that give the 
character its facial features. What we want to do is change his colors to a 
purple and brown when he is in the corridor space on the screen. 

The program must create a second color table that assigns new color 
values to pixel values 7 and 9. Then the program wiJI track the location of the 
character so that when it is in the region of the corridor, the scan lines encom­
passing that region change their color table to the second table. When this 
happens, entire horizontal rows of pixels change to the new color table (see 
Figure 8-15). Colors you don't want to change, such as the background color 
to the left and right of the corridor, must have the same color values in both 

r---------~r-- Conidor 

'------------....ll...._---i- Pixels in these regions 
must have same color 
value in both color tables . 

.... ~---+- Red and Yellow in 
table 1; Purple and 
Brown in table 2 

Figure 8-15. When the character enters the corridor, SCBs for the middle lines 
change color table. 
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tables (pixel value 4 would be blue in both tables). Only those pixel values 
with different colors in them (7 and 9 in this example) will change. As soon 
as the program detects that the image is outside the corridor, it switches the 
affected scan lines back to the first color table so that the character can travel 
in its original colors anywhere outside the corridor region. 

THE PEN 

All drawing by QuickDraw, including the drawing of text on the screen, is 
done with an imaginary pen. A pen has several controllable properties, 
which, collectively, are called the PenS tate. The properties and their 
QuickDraw names are: 

Property 
pen location 
pen size 
pen mode 
pen pattern 
pen mask 

QuickDraw Name 
PnLoc 
PnSize 
PnMode 
PnPat 
PnMask 

The PnLoc is a coordinate within the boundary rectangle - the rectangle 
that assigns a coordinate system to a pixel image. Like the imaginary 
geometric point, the point indicated by the PnLoc component does not mean 
that the pen is necessarily visible. Rather, the location is simply a point in the 
drawing space where the pen stands ready to draw something. 

.... t- PnLoc 

( -1 \ 

~ ) 

~ ) 

c - - - - -
Figure 8-16. Pen location. 
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PnLoc 

PnSize is defined by a point-like data structure - with a horizontal and 
vertical component. The components of the data structure are the number of 
pixels in each of those directions that the pen will be changing whenever it 
draws. A pen size can be square, like the most common PnSize, ( 1, 1 ), or it 
can be rectangular, such as 3 pixels wide and 2 high. The point of reference 
of measurement of the height and width sizes is PnLoc. Width is measured to 
the right of PnLoc; Height is measured down from PnLoc. 

QuickDraw recognizes eight different pen modes , each with a unique 
integer number. Their names and numbers are as follows: 

Pen Mode Integer 
COPY $0000 
notCOPY $8000 

OR $0001 
no tOR $8001 

XOR $0002 
notXOR $8002 

BIC $0003 
notBIC $8003 

These pen modes affect how a pen's pixels and its pixel pattern (described 
next) affect pixels already in an image when the pen writes over them. The 
most common mode is the default mode, COPY, in which every pixel of a 
pen completely overwrites anything in the pixel image. Other modes , how-

J PnSize (2,2) 

Figure8-J7. PenSizeof (2,2). 



QUICKDRAW II ---------------------- 135 

ever, offer different combinations of effects, depending on the binary 
number representing a particular pixel (4-bit numbers for 320 mode, 2-bit 
numbers for 640 mode). XOR (exclusive OR), for example, changes the bits 
of existing pixel values to their opposites if aJI bits in the pen are I . BIC (Bit 
Clear), on the other hand , changes existing 1 pixel image values to Os when 
overwritten by a pen pixel value consisting of all Is. Pen modes (also called 
Transfer Modes) are worth understanding because they can be helpful in 
creating pleasing graphics effects. Discussion of their precise possibilities, 
however, is better left to more advanced programming guides. 

Pen Patterns 

A pen can have not only size and location, but a pattern consisting of colored 
pixels. Jt takes a square of 64 pixels (8 by 8) to establish a pattern. Once a 
pattern is defined , it repeats throughout the drawing space wherever the pen 
draws. Consequently, if you wish to design an interesting fi II pattern to 
cover a large screen area, you must design it via the 8-by-8-pixel pattern. 

Typically , you will assign intricate patterns to a pen only when it is to 
fill a relatively large screen area. Since it often takes several contiguous rep-

8x8 Pattern 
magnified 

~ 

8x8 Pattern 
regular size 

8x8 Pattern 
filling a region 

Figure 8-18. A pattern's pixel representation, the same pattern in real size, and as 
a repeated fi 11 pattern. 

8x8 Pattern Fill Pattern 

_,.,..,..,..,..,..,.,..<:. 

Pen Pattern 

' ... 
' ... 
' ... 
' ... 
' ... 
::. 

Figure 8-19. Wave pattern works well as a fill pattern, but not as a pattern for a 
small pen size. 
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8x8 Diagonal 
Pattern 

/'////////////////// 

~ ~ 
/ / 

~ ~ 
/ / 
/ ~ 
~ / 

~ ~ 
~ ~ 
/ ~ 
~ / 
'l/////////////////, 

Diagonal Pattern 
As Pen Pattern 

Figure 8-20. Some patterns work well in small pen sizes. 

etitions of a pattern for it to be recognizable, you are not likely to assign a 
pattern to a pen that will simply draw a 1- or 2-pixel-wide outline to a box. 

Still, with careful pattern design , it is possible to use a pattern and a 
small size pen to good effect. A pattern of diagonal lines, for example, will 
give a box outline the appearance of a dotted line. 

PnPats are defined in memory as lists of 64 nibbles (320 mode) or 64 
two-bit numbers (640 mode) , each nibble or two-bit number signifying a 
color table entry for each of the pattern's 64 pixels. 

A pen mask, the final characteristic of a PenS tate, lets you decide which 
pixels of a pattern are to be visible when the pen draws. If, for example, you 
wish a pen to draw its pattern as if seen through a screen, you might create a 
pen mask that blocks out every other pixel on each row of the pattern. Since 
a mask simply admits or blocks (0 or 1) the appearance of a pattern's pixel, a 
PnMask is defined by an array of64 bits (corresponding to the 8 by 8 bit mask 
pattern). 

••••••• •••••• ••••• •••• ••• •• • 
Pen Pattern Pen Mask Pattern 

seen through 
mask 

Figure 8-21. The pen mask blocks pixels from the underlying pattern . 
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IRREGULAR SHAPES 

We saw earlier that a pure rectangle can be defined with very little data using 
QuickDraw's built-in rectangle routines. This compares favorably with a 
pixel image of a rectangle, which must have each pixel of the rectangle 
specified by 2 or 4 bits, depending on graphics mode. Once the dimensions 
of a rectangle are specified, the rectangle's outline can be drawn with the 
FrameRect ca11, and its interior space can be fi lled with a pattern by way of 
the FillRect call. Only a handful of bytes are affected, no matter how 
enormous the rectangle. We can define more complex, irregular shapes with 
similar frugality using QuickDraw's Polygon and Region families of tools. 

Polygons 

Polygons (shapes with many straight-edge sides) are defined by coordinates 
of the shape's outline. In a high-level language coding of a triangle, for 
instance, you would start the coordinate definition procedure with the Open­
Poly call, then move the pen's coordinates from point to point, and finally 
issue the ClosePoly call. 

triangle = OpenPoly; 
MoveTo (100, 100); 
LineTo(200, 100); 
Line To ( 150,200); 
Line To (I 00, I 00); 

ClosePoly; 
FillPoly(triangle ,bricks); 

{move pen to starting point} 
{draw line from 100,100 to 200, 100} 
{draw line from 200, I 00 to 150,200} 
{draw line back to starting point} 
{stop gathering triangle data} 
{draw "triangle" on the screen with 
my previously defined brick pattern} 

This series automatically creates a polygon record, complete with informa­
tion such as the dimensions of the rectangle that contains the polygon. 

Regions 

Regions are slightly more complex shapes, but behave much like polygons. 
A region might be a shape, such as a dumbbell, which has two oval shapes 
joined by a rectangular shape. 

dumbbell = NewRgn; 
OpenRgn; 

SetRect(temprect,30,30,40,60); {create a temporary rectangle 
called temprect at these 
coordinates - left weight} 
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FrameOval(temprect) ; 

SetRect( tern prect, 90 ,30, I 00 , 60); 

FrameOval(temprect); 

SetRect(temprect,40,40,90,50) ; 

FrameRect(temprect); 
CloseRgn(dumbbell); 

FiliRgn( dumbbell ,black); 

{draw an oval within 
temprect's boundaries 
(Figure 8-22)} 
{create a second temporary 
rectangle, use the name 
temprect again - right 
weight} 
{draw this rectangle as an 
oval} 
{create the bar' s rectangle 
coordinates (Figure 8-23)} 
{draw the bar (Figure 8-24)} 
{that's all the data; save it 
in a region record called 
dumbbell} 
{fill the area defined in the 
dumbbell record with the all­
black pattern} 

All in all, this region is far less memory-hungry than its pixel image 
equivalent. To change its color, we could refill the region with a pattern 
defined as the desired color. 

(30,30) 

(40,60) 

Figure 8-22. FrameOval draws an oval within the rectangle specification. 
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(90,30) 

(40,40) 

(90,50) 

Figure 8-23. The crossbar rectangle·s specification is added. 

Figure 8-24. FrameRect draws the crossbar. 

THE GRAFPORT 

Now that we've gone through the major graphics entities ofQuickDraw, it' s 
time to pull everything together and see how these elements work inside a 
toolbox IIGS program. The unifying element is called a grafport . 

A grafport is a self-contained drawing environment that exerts control 
over graphics and text drawn in its drawing space. As you ' ll see in Chapter 
10, a screen window is built upon a foundation created by a grafport, so it 
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may help in your understanding of the grafport concept to think of a grafport 
as a window to a drawing space. A grafport' s characteristics are maintained 
in its record , the grafport record. As with most records in the Apple IJGS , 
you won ' t be directly modifying the contents of a record , but will indirectly 
gain access to parameters by way of myriad QuickDraw (and other, higher 
level tool set) calls . 

The Grafport Record 
While it isn't important at the level of this book to tear apart each item in a 
grafport record, it will be helpful to get an overview of its contents, particu­
larly as they affect the graphics entities we've been looking at thus far . 

A grafport record is one of the larger records in the toolbox. lts compo­
nents and the type of data each component takes looks like this: 

Portlnfo: Loclnfo 
PortRect: rect 
ClipRgn: handle 
VisRgn: handle 
BkPat: pattern 
PnLoc: point 
PnSize: point 
PnMode: integer 
PnPat: pattern 
PnMask: mask 
Pn Vis: integer 
FontHandle: handle 
FontiD: long 
FontFlags: integer 
TxSize: integer 
TxFace: style 
TxMode: integer 
SpExtra: fixed 
ChExtra: fixed 
FGColor: integer 
BGColor: integer 
PicSave: handle 
RgnSave: handle 
PolySave: handle 
GrafProcs: pointer 
ArcRot: integer 
UserField: long 
SysField: long 
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Portlnfo consists of a compact data structure (only 10 bytes) that estab­
lishes a great deal about the grafport's environment. One byte is the SCB, 
which sets the port's color table, its color mode (320 or 640), and other SCB 
parameters. A pointer in Portlnfo links the grafport to a pixel image (if there 
is one) , while an integer specifies the image's width in bytes (as described 
earlier). Finally, a boundsRect rectangle in Portlnfo specifies the boundary 
rectangle of a pixel image, if there is one. If no pixel image is pointed to, 
then BoundsRect is automatically set to the size of the JIGS screen, 
depending on the mode established by the SCB. 

A grafport's portRect, the second item in its record, is an important 
specification. We said earlier that assigning a boundary rectangle to a pixel 
image simply imposed a coordinate system on the image, and did nothing to 
promote its display on the screen. That's because an image of any kind will 
be active - visible on the screen and subject to drawing changes by 
Quick Draw calls - only if the image or any part of it falls within the edges 
of the portRect. If you've been following the logic so far, you'll recognize 
that for an image to be active it must be within the boundsRect and portRect 
rectangles - within an intersection of these two rectangles. An illustration 
is in order. 

Imagine that you are using a program that creates a screen window that 
looks onto a portion of a large graphics area. As you scroll around the 
"page," you can see only a portion of the entire page. You can type or draw 
only in the part of the document that you can see in the window. The bounds­
Reel may be the ~ize of the full image or a section of image, but the port­
Rect - the one you can see and make changes in - is the size of the 
viewing area of the window (i.e. , not including the scroll bars or title bar). 
Where the portRect of the window intersects with the boundsRect of the 
pixel image, you can view the document, type text, or draw to your heart's 
content. 

As a result of this interaction between boundsRect and portRect, the 
portRect is a separate item in the grafport record. As you change the size of 
a window, the size of the portRectchanges with it, while the boundsRect will 
probably never change as long as the image doesn't grow or shrink from its 
original proportions. 

ClipRgn, short for clipping region, won't be adjusted in every grafport, 
but can be helpful in many graphics-oriented situations. A clipping region 
lets you restrict the area inside a portRect in which the user (and, hence, 
QuickDraw) can change a pixel image. It is actually a third layer to the 
boundsRect-portRect intersection mechanism. But with clipRgn, the third 
layer can be a region of nonrectangular proportions. Imagine creating a view 
through a hypergalactic telescope in which the surrounding area is a never­
changing celestial background. But inside the circular telescope view you 
have an active view of two Martians playing Crazy Eights at the edge of a 
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Pixel Ima~e 

Intersection of Pixel Image, 
BoundsRect, and PortRect: 
What You See In a Window 

Figure 8-25. Relationships among pixel image , boundsRect, and portRect. 

crater. To program one Martian getting up in a huff and walking out of view 
of the telescope, you could animate his movements so that his image inches 
its way out of the clipping region. You won't have to draw special animation 
versions of a partial Martian as he walks off the edge of view. Instead, any 
part of the Martian image that steps out of the clipRgn will not be displayed 
on the screen, even though it is within the limits of the portRect. 

If you don't specify a clipRgn when creating a new grafport, it automat­
ically sets itself to coordinates of the full size of the IIGS screen. In the case 
of the telescope example, you might start the program with the clipRgn being 
set to its default size (i.e., identical to portRect). A menu item, "Telescope," 
will temporarily store the original clipRgn and reset the region to the circle 
for the close-up graphics. At the end of the telescope session, another menu 
choice restores the clipRgn to its original, full window size, and the original 
background scene is redrawn to cover the image displayed in the telescope's 
hole. 
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Although the visRgn item in the grafport record looks like something 
that speci fies a "visible region," this region is generally under the control of 
the Window Manager. The visRgn corresponds to that region of the grafport 
that you can see without obstruction. If a second window overlaps the first 
window, the visRgn of the first window is that area not covered by the 
second window. The grafport record keeps track of this information so that 
if your program attempts to draw in the first, underlying window, it won' t 
accidentally extend its drawing image into the region occupied by the over­
lapping window - it will draw only in the visRgn. As soon as the first 
window comes fully into view (as when it is made the active, top window) , 
the visRgn assumes the same coordinates as the portRect. 

Apple IIGS grafports can be automatically filled with a particular pat­
tern - perhaps a gray shaded pattern like the one on many Macintosh 
screens - by assigning a pattern design to the bkPat item in the grafport 
record. This item can be adjusted in the course of a program with the Set­
BackPat QuickDraw call. Another call, SetSolidBackPat, adjusts the back­
ground pattern to a solid pattern with a color you specify from the grafport' s 
color table . 

You should recognize the next five items down the grafport record: 
PnLoc , PnSize , PnMode, PnPat , and PnMask. These are items associated 
with the Pen State, as we discussed earlier. Pn Vis stores the current visibility 
status of the pen. This factor is adjusted by HidePen and ShowPen calls. 

The next eight items track the current state of fonts and text parameters 
currently on hand in the grafport. That is, these items establish and record 
fonts and text display characteristics for the next display of a keyboard press 
(or text coming in from a serial port). 

FGColor and BGColor indicate the foreground and background colors 
respectively. 

The balance of items in the grafport record are primarily repositories for 
information about the status of various operations during the running of a 
program. You probably won't get involved with them, at least not in your 
first programs, unless you need to take a "snapshot" of the information 
before performing some task that will alter these items in the record. By tem­
porarily saving the values, you can restore them later to reconstruct the 
record. 

MULTIPLE GRAFPORTS 

One of the beauties of working with grafports is that they make dealing with 
multiple windows almost child's play. That's because the data in a grafport 
is private data that belongs only to that grafport. When you open a second 
window and grafport on the screen , all the information contained in the 
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first grafport's record is untouched. Therefore, if the pen in the first grafport 
is at location 300,- 72 and set to a diagonal pattern with a pen size of3-by-3, 
you can activate the second grafport and make any adjustments you want to 
its pen. When you reactivate the first grafport , its Pen State (and everything 
else in the record) is exactly the way you left it. There's no guessing or 
reconstruction of "the way things were." They never changed. 

QuickDraw has a built-in mechanism that prevents you from getting 
into trouble by accidentally adjusting the record of one grafport when you 
really mean to adjust a second one. For most QuickDraw calls, you issue the 
same QuickDraw instruction, regardless of the grafport to which you intend 
the call to apply. What governs the recipient is which grafport is the current 
port. Therefore, before changing the Pen State of a grafport called "sec­
ondport," you would issue the Set Port (second port) QuickDraw call (the pre­
cise syntax will differ from language to language) . Thereafter, any Pen State 
calls apply only to the pen in secondport. 

It's vital that you understand the intent of the grafport record. It exists 
in the Apple IIGS primarily as a log or roster of the current state of all adjust­
able criteria in a grafport. You can draw a frame according to a rectangle's 
coordinates with a pen size of 1, I . Later you can reset the pen size (SetPen­
Size) to 2,2, for example, and frame a different rectangle with a pen twice as 
thick as the first rectangle 's frame. Once the pixel image of the first rectangle 
is drawn on the grafport, it disconnects itself from the pen. Changing the pen 
size will not affect any item that has already been drawn by it. A change in 
pen specification will, however, affect any new drawing you make- until 
you change the pen once more. 

There may be times in your program when you wish to "remember" one or 
more grafport settings for later restoration. To store those settings away 
safely- remember, once a record item changes, it knows not what it was 
before - you will use the GET call for those settings (e.g., GetPenSize) and 
assign those values to a variable (e.g., oldSize = GetPenSize) for later recall 
and SETting (e.g., SetPenSize). The grafport record will be the main store­
house for grafport characteristics in your program. Use its resources often. 

CURSORS 

While we're in QuickDraw, we'll introduce you to manipulating the cursor's 
design. 

Cursor manipulation in the Apple IIGS toolbox is more flexible than in 
the Macintosh . For example, cursors can be of virtually any size on theliGS , 
whereas they are restricted to 16-by-16-pixel measure on the Mac. 
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You create a cursor by assembling data in the following order: 

CursorHeight: integer 
CursorWidth: integer 
Cursorlmage: [array I .. CursorHeight, I .. CursorWidth) of word 
CursorMask: [array I .. CursorHeight, I .. CursorWidth] of word 
HotSpotY: integer 
HotSpotX: integer 

CursorHeight is the number of rows ("slices") the cursor and/or its mask 
image will require. Cursor Width is the number of pixels needed to define the 
horizontal dimension of the cursor or mask image. Importantly, the last word 
of each slice must be $0000, so you'll have to take this extra space into 
account when assigning the Cursor Width. Cursorlmage and CursorMask are 
the actual data points for each image (described below). And the HotSpot 
designations are the coordinates within the cursor height/width map that act 
as the "tip of the arrow," so to speak. A cursor's hotspot is the pixel on the 
cursor that the Event Manager will understand to be the mouse location when 
you press the mouse button. 

Cursor Image and Mask 
Design of a cursor is done on a pixel-by-pixel basis in two layers. The first 
layer is the cursor image, which represents the actual cursor design you will 
see when the cursor is atop any non black color. The second layer is called the 
cursor mask. 

The map for an arrow cursor image is shown in Figure 8-26. Notice that 
(I) you can use the map as a way of organizing your actual data values, and 
(2) the last 2 bytes (I word) are 0. 

Since all cursors are black, each pixel is assigned either a zero (white) 
or nonzero (black) value. In the above image grid, the nonzero value is $F. 

The cursor mask acts somewhat differently than a pattern mask. lts 
common use is to provide a kind of invisible outline to the cursor so that 
when it is atop a color object, you can still make out the edges of the cursor 
image. Yet, where the cursor image is white, the mask must allow the under­
lying screen image to show through. 

Data for a mask is lined up the same way as the cursor image. For con­
venience in seeing the effect of the cursor mask in our illustration, the "F" 
pixel markers corresponding to the cursor image are shown in lowercase, 
while the markers for mask pixels above "0" cursor image pixels are in 
uppercase. 
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0000000000000000 
OFOOOOOOOOOOOOOO 
OFFOOOOOOOOOOOOO 
OFFFOOOOOOOOOOOO 
OFFFFOOOOOOOOOOO 
OE~~~~DOOOOOOOOO 

OEFE~~FOOOOOOOOO 

OEFE~~FE'OOOOOOOO 

OFFOFFOOOOOOOOOO 
OOOOOFFOOOOOOOOO 
0000000000000000 

Figure 8-26. Cursor image data. 

Onscreen Cursor 

Cursor 
Image 
Data 

On a white background, the cursor looks like the arrow cursor image. Where 
a mask pixel is filled but its corresponding image cursor pixel is white, the 

FFOOOOOOOOOOOOOO 
FfFOOOOOOOOOOOOO 
Ff~OOOOOOOOOOOO 

F~ffFOOOOOOOOOOO 

FkfffFOOOOOOOOOO 
FfffffFOOOOOOOOO 

1FffffffFOOOOOOOO 
FfffffffFOOOOOOO 
FffFffFFOOOOOOOO 
FFFOFffFOOOOOOOO 
OOOOOFFFOOOOOOOO 

Figure 8-27. Cursor mask data. 

Cursor 
Mask 
Data 
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resulting display at that pixel is white. Atop a color background, therefore, 
the cursor mask turns some of the background's color pixels into white, 
making the outline of the arrow stand out, even in an all-black area. 

When the cursor image straddles color and white areas, the mask 
appears to work only on the color area, turning selected pixels to white to 
help the cursor image stand out in the sea of color. And where both the cursor 
image and mask image are 0 , the underlying image's color pixels show 
through without any interference. 

Figure 8-28. The cursor mask turns color backgrounds to white along the cursor's 
edge . 

Figure 8-29. Where cursor and mask pixels are 0, the background image shows 
through. 
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Refer to the following table to understand how the cursor and mask 
images work together. 

Cursor 
F 
F 
0 
0 
0 

Mask 
F 
F 
F 
F 
0 

Multiple Cursors 

Background 
color 
white 
color 
white 
any 

Resulting Pixel on the Scretn 
black 
black 
white 
white 
same color 

The cursor we've been showing here happens to be the design of the cursor 
QuickDraw automatically provides if you supply no other cursor para­
meters. An application program can easily have multiple cursor designs pre­
defined and then called by QuickDraw depending on the location of the 
mouse pointer. For example, in a painting program, the cursor may be a 
pencil atop the drawing surface. But when you move the cursor to the 
menubar, the cursor switches to the traditional arrow to aid in selection of 
menu choices. 

The mechanism that triggers the change of cursor based on mouse loca­
tion is the Event Manager. This is only one of the important tasks we'll see 
this tool set doing in the next chapter. In the meantime, if some of the con­
cepts in this QuickDraw slipped past your total understanding, take a few 
moments to review the material you're unclear about. Pay particular atten­
tion to grafport concepts. We'll see them later. 



CHAPTER9 

The Event Manager 

W e had a brief introduction to the concepts behind event-driven pro­
grams in Chapter 7. There we said that the Event Manager provided 

tools to test for the presence of events- mouse clicks, key presses, and so 
on - so that the program can branch to predefined routines, or actions , in 
response to a user event. In this chapter, we' ll look more closely at the event 
mechanism. Along the way we will also be introducing you to window and 
menu concepts that will be more fully described in their respective tool sets' 
chapters. 

TWO EVENT MANAGERS 

The Event Manager is one toolset, but it has two categories of functions: 
hardware-oriented and application-oriented. The distinction may not be per­
fectly clear, since applications obviously rely on hardware such as the mouse 
and keyboard for input. 

The hardware-oriented part of the tool set is called the Operating 
System Event Manager, or OSEM. Most of what occurs in this tool set is 
hidden from both user and programmer. For example, the OSEM takes care 
of the all-important job of detecting hardware events and posting them to the 
event queue. Another OSEM tool does wholesale maintenance of the event 
queue, by allowing your program to clear the queue of all events or all events 
of a certain type. 

149 
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As a programmer, you will be dealing more with the other part of the 
Event Manager, the Toolbox Event Manager, or TBEM. TBEM calls will be 
the focus of your program's main event loop. For example, the TBEM picks 
up events from the event queue, records the location of the mouse pointer at 
any instant, reports the condition of the mouse button, limits user input to 
certain kinds of events (e.g., temporarily disabling the keyboard when you 
want only mouse input), and other operations. 

Details about each event are maintained in a place in memory called the 
event record. Every event, whether it is one that is stored temporarily in the 
event queue or one that does not get placed in the queue, has its own event 
record. We'll examine the event record more closely later in the chapter, but 
for the moment we'll consider one event record item: the event type that 
caused the event record to be created in the first place. 

EVENT TYPES 

Since an event-driven application must branch in response to user or system 
input, it must be able to distinguish one type of event from another. Indeed, 
the Event Manager keeps track of such in formation, classifying each event 
according to its type. There aren't many types to remember, yet you'll see 
that they have great power over your applications . 

Mouse Events 

Every time a user presses the mouse button in an event-driven application, 
that action creates an event record. Actually, the mouse button is the source 
of two different types of events: mouse-down and mouse-up events. The dis­
tinction is very important, because an application may require the user to 
hold the mouse button down while dragging a screen object from one loca­
tion to another. The event loop must know that the mouse button is pressed, 
is still held down by the user, and eventually released so that any screen 
updating can be performed. 

The Event Manager also tracks the location of the mouse pointer - the 
hot spot of the cursor - at every instant. When a mouse-down or mouse-up 
event occurs, the location of the mouse pointer at that instant is written into 
that event's record. 

Even when a mouse-down or mouse-up event is not occurring, your 
application can retrieve the coordinates of the mouse pointer from the TBEM 
with the Event Manager call, GetMouse. Coordinates resulting from the 
GetMouse call are global, which means they are coordinates of the entire 
screen, with no regard to grafport coordinates. You'd most likely put a Get­
Mouse call inside the event loop, if you want to test for the location of the 



THE EVENT MANAGER -------------------- 151 

mouse pointer during each cycle through the event loop. If the pointer falls 
within a particular region of the screen (a short test in the event loop can 
determine this), the program might branch to a quick procedure that sum­
mons a different cursor record , thereby instantaneously changing the cursor 
image , or perhaps changing an SCB. 

Mouse events are not strictly limited to the mouse as a handheld input 
device. Event records automatically track which of two possible buttons 
have been pressed when the event took place. Of course, the standard HGS 
mouse has only one button, but some joystick controllers have two. The 
Event Manager recognizes these buttons as button 0 and button 1. 

Keyboard Events 
Whenever you press a character key on the keyboard (including the numeric 
keypad section), that action creates a key-down event. Notice we specify 
character keys - the keys that would generate identifiable characters on 
the screen if you were to type them in, say, a word processing program. 
Other keys- Shift, Caps Lock, Control, Option, and Open-Apple­
are called modifier keys, and they do not generate key-down events by 
themselves. 

You normally press a modifier key simultaneously with a character key 
to effect an action other than the normal key press. For instance, the Shift 
key causes the capital letter of that character to be passed to the system and 
screen ; the Open-Apple modifier may be programmed to signify a keyboard 
shortcut for a pull-down menu action, such as Open-Apple-S to save a file. 
Whenever a key-down event occurs, the status of each modifier key is 
logged into the event record. Therefore, your application's event loop will 
be able to test for the presence of a modifier when the user pressed a key. 

Another kind of keyboard event is called an auto-key event, which 
occurs whenever the user presses a character key and holds it down until the 
key begins sending repeated characters. The time delay before a key begins 
repeating is controlled by the Key Delay setting in the Control Panel desk­
accessory. Moreover, the speed at which a key already in auto-key mode 
issues repeated characters to the system is also controlled in the Control 
Panel. 

Window Events 

Unlike mouse and keyboard events, which a user generates by some direct 
physical action on the computer's input hardware , a window event is gener­
ated by the Window Manager. In all fairness, the ultimate cause behind a 
window event is probably a human physical action, such as clicking the 
mouse pointer inside a partially covered window to make that window 
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active. But when you click the mouse button, the Event Manager has no 
notion that the mouse is located in a particular grafport. Yes, it knows the 
coordinates of the mouse pointer, but it takes a call to the Window Manager 
to interpret those coordinates of the mouse-down event as occurring inside 
the portRect of a particular grafport. When the Window Manager makes that 
window the active window with the SelectWindow call, it also generates an 
activate event and its corresponding event record. 

After an activate event, particularly if the window that was just made 
the active window had been previously overlapped by another window, the 
Event Manager will likely generate an update event and its corresponding 
event record. The presence of an update event should signal your application 
that it needs to redraw one or more windows on the screen. The Window 
Manager will handle the actual redrawing, but it takes its cue from the Event 
Manager. 

Neither activate nor update window events are placed in the event 
queue. Otherwise, they are just like any other kind of event. 

Your program should include a test for the presence of an update event 
in each pass through the event loop. This will keep your windows fully 
drawn and "up-to-date" whenever you resize, move, or change the order of 
overlapping windows. 

The Switch Event 
Just as the Window Manager generates window events, so too does the Con­
trol Manager generate switch events. "Switching" here means switching 
from one application to another. Although not directly supported with 
toolbox calls at this time, application switching is a convenience that will 
probably become a standard feature of the Apple IIGS applications environ­
ment, just like Andy Hertzfeld's Macintosh Switcher became an accepted 
standard for that computer. In anticipation of the future, the IIGS Event 
Manager has reserved an event type for switching. 

This is another one of those indirect events, because a switch event is 
ultimately the result of a press of the mouse button (sometimes a key press) 
when the pointer is in the screen region of a switch control. The Event Man­
ager initially simply detects a mouse-down event occurring at a point on the 
screen. The Window Manager and Control Manager work together to deter­
mine if the mouse-down event occurred in the switch control. If so, the 
program can post a switch event to the event queue - a case where the 
application momentarily takes control of the event queue (via the Operating 
System Event Manager tool call, PostEvent) to force an event. After that, the 
TBEM can test for the presence of a switch event and branch program execu­
tion to the routines that do necessary housekeeping (screen updating, file 
manipulation, storage of various screen states) before switching to a dif­
ferent application loaded in another section of memory . 
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Device Driver Events 
A device driver is software that allows your IIGS to communicate with 
external devices such as printers, modems, digitizer pads, and the like. If 
your programs will be using other than standard devices, you will probably 
have to write the drivers. Input from these devices must be handled as 
events, just like the keyboard and mouse inputs are. Your program will have 
to post these events as device driver events to the queue using the OSEM 
PostEvent call. Then your main event loop can test for the presence of a 
device driver event and branch accordingly. 

Application Events 
The TBEM has accommodations for up to four user-specified events, which 
will be unique to your application. As with device driver events, your pro­
gram is responsible for posting the events to the event queue when they 
occur. 

Desk Accessory Events 
A special event type, called a desk accessory event, is generated whenever 
the Control-Open Apple-Escape three-key sequence is pressed to invoke the 
classic desk accessory menu (the one from which you select the Control 
Panel). This special event is supplied as a convenience for your program to 
detect the call to classic desk accessories, which require a dramatic change 
in the computer 's operating modes. By checking specifically for this three­
key sequence, the Event Manager bypasses the need to continually test key­
down events for this unique sequence and possibly slowing down the regular 
key-down event actions. Instead, your event loop simply checks for the pre­
sence of a desk accessory event during each pass through the loop. When this 
event is pulled from the queue, the program can branch to the routines that 
prepare your application (and especially memory management) for the 
change in environments to the classic desk accessory display. 

The Null Event 
When you don't touch the mouse or the keyboard, and when no device driver 
is sending data to the computer, the event queue is empty. ln the meantime , 
your event loop is cycling like mad, asking (polling) the event queue for 
whatever is there . As long as no events are waiting to be polled, the Event 
Manager will tell your application that there is a null event - nothing -
pending . A critical event loop call (GetNextEvent) has been designed to test 
for the presence of a null event quickly so the loop can start over as soon as 
possible . 
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EVENT PRIORITIES 

The TBEM recognizes that some events are more important to an application 
than others. As a result, it has divided event types into four ranks of impor­
tance. An event with a higher priority than others will be presented to an 
application first, even if it actually occurred more recently than an event that 
has been in the queue for some time (we're talking tens or hundreds of mil­
liseconds here, but that could be a long time to an event loop polling the 
event queue thousands of times a second). Establishing priorities is particu­
larly important when events are generated by other tool sets, which work 
much faster than our fingers do on the mouse or keyboard. 

If the Event Manager held a fully loaded event queue and had every type 
of nonqueue event pending, it would offer events to your application in the 
following order: 

I. Activate events 
2. Switch events 
3. Mouse-down, mouse-up, key-down, auto-key, device driver, 

application-defined, and desk accessory events in the same order 
they were posted to the event queue (that is, First In, First Out) 

4. Update events (in order from the frontmost to rearmost window in 
a multiwindow screen display) 

5. Null event 

Let's see how the Event Manager handles each level of event priority. 
Top on the priority list is the activate event. You 'II recall that this event 

type is not placed on the event queue. When your program polls the Event 
Manager, the TBEM looks for a pending activate event before it looks into 
the event queue. If an activate event is available, the TBEM will pass it along 
to your application before anything else. 

If an activate event is not present, the TBEM looks once more outside 
the event queue, this time for a switch event. If a switch event is ready to be 
passed to your application, the TBEM makes a short detour to pass along any 
update events that may be pending (even though they are normally lower on 
the priority list). This assures that all windows are updated before the appli­
cation switches to another program (and will be fully updated and ready 
when you switch back to it). As soon as the TBEM works its way through all 
pending update events in this detour, it finally passes the switch event to 
your application. 

If the TBEM, when polled by your application, finds no pending acti­
vate or switch events, then it looks into the event queue and pulls off the 
oldest event in the queue to give to your application. Events in the event 
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queue are generally those that are directly controlled by user input. If the 
event queue should fill up before your application has a chance to retrieve 
events, the TBEM automatically starts "scrolling" old events out of the 
queue - they disappear into thin air. A poorly designed program, for 
instance , may not poll the Event Manager frequently enough to keep the 
event queue from spilling over. A fast typist may appear to outrun the speed 
of the computer, when in fact quick fingers are outrunning the program's 
ability to retrieve events from the queue owing to a ponderously 
implemented event loop. 

Once the TBEM clears the event queue, it looks to see if any update 
events are pending. By placing the normal update event (i.e., not the one 
forced prior to a switch event) near the bottom of event priorities, window 
updates, which tend to trigger relatively slow window-updating routines, 
don't get in the way of important user input events. For example, if your pro­
gram displays three overlapping windows on the screen, each of which is 
affected by the movement of the topmost window, three update events will 
be generated: one for each window. The Event Manager will order these 
three events so that the frontmost window's update event is handed to your 
program first. If, while the front window is redrawing its content, a key or 
mouse button is pressed, that higher priority event will be passed to your 
application before the second and third windows are updated. The program 
will seem to respond much more quickly to user input than if it had to wait for 
all three windows to redraw themselves. Additionally , if the event is a 
mouse-down event in a different window, the other windows not yet updated 
will wait for the mouse action to finish and be updated only once to reflect the 
overlapping order of windows as the result of the mouse-down event. 

At the bottom of the list is the null event. It merely indicates that there 
are absolutely no events pending - in the queue or otherwise - at that 
instant. 

EVENT RECORDS 

Links between the Event Manager and your application are established via 
event records - specifications about each event on or off the queue . When 
an event occurs, the Event Manager takes a "snapshot" of several indicators 
and stores those readings in that event's record . Each event record consists 
of five items: 

what: 
message: 

word 
long 

(event code) 
(event message) 
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when: 
where: 
modifiers: 

long 
point 
word 

(clock ticks since system last started) 
(global mouse location) 
(modifier flags) 

An event record contains all the information your application's event loop 
needs to branch to previously defined procedures that make things happen in 
the program- the actions. 

Most compilers and assemblers you will use to program the IIGS will 
have predefined variables (or variable suffixes) for each of these event 
items, thus saving you from explicit variable declarations for these items that 
will occur in practically every event-driven application you write. A typical 
variable name for the what event record item would be event. what. 

Now let's look at each event record item, paying particular attention to 
the way the Event Manager translates some of this information into numeric 
codes that you will use to perform event loop tests. As we go through these 
items, try to look at them from the point of view of your application: You poll 
the Event Manager for an event to process; in return you receive a "dossier" 
about the first event to be processed; you must make a decision about what to 
do next based on the information in the dossier. 

What - Event Codes 

First on the event record is a number identifying which of sixteen possible 
event types this event is. The codes and their events are as follows: 

Code Event Type 

0 null 
1 mouse-down 
2 mouse-up 
3 key-down 
4 undefined 
5 auto-key 
6 update 
7 undefined 
8 activate 
9 switch 

10 desk accessory 
11 device driver 
12 application-defined 
13 application-defined 
14 application-defined 
15 application-defined 
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Again, owing to the frequency with which an Apple IIGS event-driven appli­
cation will be testing for the presence of these events, most toolbox program­
ming languages provide source code for predeclared variables (also called 
identifiers) that correspond to these event codes , just as they provide prefab­
ricated data structures for event record items. Therefore , the event loop 
would likely consist of a series of CASE statements in a structure such as the 
following: 

REPEAT 

IF GetNextEvent( every Event ,eventRecord) 
THEN 

CASE eventRecord. what OF 
mousedown: 

{branch to mousedown routine} 
keydown: 

{branch to keydown routine} 
activateEvent: 

{branch to activate event routine} 
updateEvent: 

{branch to update event routine} 
END; 

UNTIL quit; 

END. 

In this sample, the event loop (between the REPEAT and UNTIL statements) 
first tests to see if the TBEM has an event of any kind (signified by the 
everyEvent parameter, discussed below) ready to hand over. If the TBEM 
returns an event other than a null event, the Event Manager hands the record 
of the event to the variable named eventRecord (it could be any name). The 
following CASE statement tests the "what" item in the event record (event­
Record. what). If the event code number is the same as assigned to 
mouseDown, then the program branches temporarily to the procedure else­
where in the program's code that processes that event. If the event code is 
something else, then the program "falls through" to the next test, key Down. 
If the event is a null event , the IF GetNextEvent test fails and faJls through all 
the way to the bottom of the REPEAT routine. Until the value of "quit" is a 
logical TRUE (something the Quit choice in a menu could assign, as we'll 
see in Chapter 11, "The Menu Manager"), the loop will repeat itself over and 
over. 
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Message - Event Message 

An event message is additional information your application needs from 
some of the event types coming its way. Not all event types need messages, 
because their event type is enough to help your application make its 
branching decision. But most types have additional information associated 
with them. They are: 

Event Type 

Key-down 
Auto-key 
Activate 
Update 
Mouse-down 
Mouse-up 
Device Driver 
Application 
Switch 
Desk Accessory 
Null 

Event Message 

ASCII character code 
ASCII character code 
Pointer to window generating event 
Pointer to window needing redrawing 
Button number (0 or 1) 
Button number(Oor 1) 
Defined by device driver software 
Defined by the application 
Undefined 
Undefined 
Undefined 

Your language will ease the passing of messages from the event record to 
your application with the help of a predefined event message variable suffix, 
making your variable look something like eventRecord . message. In the case 
of a key-down event, for instance, eventRecord. message will be equal to the 
ASCII character that was pressed on the keyboard . Your program will then 
probably pass the value to the LineEdit tool for display on the screen and 
storage in a text buffer part of memory. 

When - Timer Ticks 

While the internal, battery-backed-up clock in your Apple liGS keeps track 
of the current date and time without your having to update the numbers each 
time you turn on the computer, it also measures the number of ticks ­
sixtieths of a second - that have elapsed since you last rebooted the 
machine. This tick count is what the Event Manager uses to log the "time" of 
an event. If you need this information from the event record , it is readily 
available with the eventRecord. where variable. You can also retrieve the 
current tick count from the system with the Event Manager call , TickCount. 

The tick count should not be considered "gospel" as far as time is con­
cerned. Its counting may be temporarily interrupted during program execu­
tion (owing to some system-level calls) , throwing the counter off a bit 
(unlike the system clock , which stays on track). To play it safe, use the tick 
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counts only to determine the relative precedence of events or the elapsed 
time between two closely spaced events, such as mouse clicks for a double­
click. 

Where - Mouse Location 
As noted earlier, the event record holds the global coordinates of the mouse 
pointer at the instant an event occurs. For processing some mousedown 
events, subsequent procedures automatically convert the global coordinates 
to the coordinates of the grafport in which the event occurred. But others, 
notably Control Manager calls, work only with local, grafport coordinates. 

The problem centers around the fact that a window has its own coor­
dinate plane that is not related to the screen's global coordinates. For exam­
ple , if you open a new window, the top left corner of its portRect will likely 
be (0,0). As you drag t~e window around the screen, the grafport for that 
window recognizes that starting point as (0,0), no matter where on the global 
screen that corner appears. Fortunately, QuickDraw II provides a conver­
sion tool, GlobalToLocal, which converts a point from its global screen 
coordinates to the coordinates of the active window. From there , the Control 
Manager can see if the mouse-down even occurred in an area that indicates 
immediate action is needed. 

Modifiers - Modifier Flags 
Bringing up the rear of the event record is a 2-byte modifier flag. Several bits 
in this flag record the status of modifier keys and certain other modifying 
conditions when the event that generated this record occurs. It is up to your 
application, then, to test for the presence of these flags if you are looking for 
specific modifiers. For example, you might want to intercept key-down 
events that are modified by the Option key to signal a menu choice from the 
keyboard . 

Modifier flags are distributed along the integer as shown in Figure 9-1 . 
The KeyPad bit will be set to 1 if a key-down event was the press of a 

key in the numeric keypad at the right of your IIGS keyboard. ControiKey, 
Option Key, CapsLock, ShiftKey, and AppleKey behave similarly: their bits 
will be set to 1 when in the keydown position at the time of the event. One or 
more of these modifier keys can be pressed when pressing a character key or 
a mouse button, so several bits can be set in the modifier flag for an event. 
Bits for BtnOState and Btn 1 State, the conditions of buttons 0 and I (0 for the 
single button mouse) behave opposite their keydown companions. When a 
button bit is set to 1, it means that the button was in the up position at the 
instant of the event. Therefore, a mousedown event will have the BtnOState 
flag set to 0, while the BtnlState bit will be one. Lastly, ChangeFlag and 
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Modifier Flags 

KeyPad ----' 

Control Key ------' 

Option Key------' 

CapsLock-------' 

Shift Key Button 1 Sta~ 

Apple Key Button 0 Sta~ 

Figure 9-I. Event Record modifier flags. 

ActiveFlag bits are helpful in performing actions resulting from activate 
actions. See the Apple JIGS Toolbox Reference for further details. 

As with other items in the event record, the modifier item will likely be 
a predefined variable name in your programming language (something like 
eventRecord.modifiers). You'll be able to test the value of that variable 
against the decimal or hex equivalent of the modifier flag you wish to locate . 

MASKING EVENTS 

Occasionally, your applications will not require the Event Manager to 
proffer every kind of event that it is capable of recording. For example, a 
completely mouse-driven application may wish to essentially turn off the 
keyboard as an input device. Or perhaps you don ' t want the program to 
recognize auto-key events because the rapid input they provide will overload 
your application. To cut down on the number of events passed to your appli­
cation from the Event Manager, you can mask those event types you don't 
need by setting bit flags in the event mask. 

The event mask is a 16-bit integer, 13 bits of which control which event 
type(s) you wish to mask. The numbers of the controlling bits are the same 
as the event code numbers for the event types we saw earlier. In their mask 
integer form, the event types are shown in Figure 9-2 . 

A 1 in a bit location means that the mask will pass that event type; a 0 
will prevent events of that type from being passed to your application. 
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Event Mask 

Application 

De~eDri~r--------~ 

Desk Accessory ------------' 

s~~h-------~ 

Activate -----------------' 

Figure 9-2. Event mask flags. 

...__ __ Mo1.13e-dovn 

'-------- Mo1.13e-up 

L--------Ke~dovn 

~------Au~-uy 

L---------- Update 

The mask integer is one of the input parameters of the GetNextEvent 
TBEM call. Your programming language may have a predefined constant 
(something like every Event) that you can plug into that parameter slot in the 
GetNextEvent call. It will tell the TBEM to pass all events. More event­
limiting masks may be predefined, or you'll have to define them yourself in 
the application. 

It's important to realize that the event mask does not prevent events 
from loading up the queue. The mask merely specifies which events will 
pass to the application. If you wish to prevent events from even reaching the 
event queue or the Event Manager's attention (for nonqueue events), you can 
use the Operating System Event Manager call that sets the system event mask 
to accept only those events you wish to process. Something to watch out for, 
though, is that if you turn off a particular kind of event with the system event 
mask, desk accessories won't be able to pass or receive masked events 
either. 

In general, use an event mask with GetNextEvent whenever you can 
logically do so. Although masked events still go on the queue, the Event 
Manager discards unwanted events when the GetNextEvent routine runs. A 
mask may also speed your event loop by restricting forays through CASE 
structures to only those events your program recognizes. 

Now that we've seen the basic workings of the Event Manager, we can 
proceed to the three tool sets that work with event records. We'll start with 
the Window Manager. 



CHAPTER 10 

The Window Manager 

I n the eyes of the user, most of the "action" in a toolbox-created Apple II­
OS program will appear to take place in one or more onscreen windows. 

Through the window the user will be able to see some or all of the action area 
of a program. In text-oriented programs, the window will be the display and 
editing space for the document's contents. If the document contains more 
text than can fit comfortably within view of a window, you can scroll around 
the document, as if adjusting the large document beneath an opaque layer 
that has one transparent rectangle cut out; you keep adjusting the position of 
the underlying document until the desired area is visible through that cutout. 
The same is true for a graphics document that is larger than the screen. Yet 
you may design a graphics-oriented program that has but one steady back­
ground that will be seen through a window that is exactly one screenful in 

size. 
Windows are relatively complex objects in the Apple liGS toolbox 

world. Part of that complexity comes from the multiplicity of elements that a 
window comprises - graphics elements obvious to the user and additional 
toolbox elements solely under the care of the programmer. Another part 
comes from the responsibilities programmers have of upholding the user 
interface conventions for windows. For example, guidelines call for a 
window to become the active window when the user presses the mouse 
button with the mouse pointer anywhere in the window. This activation pro­
cedure is not completely automatic. It's true that the Event Manager and 

163 
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Window Manager provide the mechanisms for all the actions needed to acti­
vate a window, but your program must coordinate these actions. 

The IIGS Window Manager has a powerful tool, called the TaskMaster, 
which greatly simplifies many of the user interface concerns of program­
ming windows. To use the TaskMaster correctly, however, you should 
understand the "manual" operations it replaces. We'll get to the TaskMaster, 
but only after a firm grounding in the lower level calls in the Window 
Manager. 

WINDOW CONCEPTS 

A good place to start is defining the many terms that apply to windows and 
window management. Consistency in terminology is important so that if you 
need to ask questions of more experienced programmers, you'll be asking 
the correct questions. 

Desktops and Windows 
When you start up your Apple IIGS with Pro DOS 16 and the Finder, the 
computer presents you with a screen containing several icons and a menu 
bar. The entire screen work space is called the desktop. Your program, too, 
has a desktop. It is just like a totally blank desk surface. It has no feature of 
its own except for pattern and color, like a rosewood grain on a real desktop. 
Only by placing objects on the desktop, and perhaps moving them around on 
the desktop, do you make it useful. One such object might be an icon or a 
menu bar. 

The object we're concerned with here, however, is a window. A 
window will offer your program a way of displaying information - text, 
graphics, or both - to its user. Extending the desktop metaphor an addi­
tional step, a window lets us see the contents of a document just as we can see 
what's written on a piece of paper resting on a real desktop. Multiple-page 
documents, such as a ten-page report, however, are not placed on the IIGS 
desktop as a stack of pages. Instead, the pages are positioned end to end, 
with the window being used as a viewer to a portion of the document. 

The Apple UGS also allows more than one window to be on the desktop 
at a time. Windows can overlap each other, but you see only that part of each 
window that has no obstruction between it and your eyes. The desktop 
metaphor of overlapping pages holds true. 

Standard Windows 
You can design a window to be of any size - even larger than the screen -
and virtually any shape (although shapes other than rectangle variants are 
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Figure 10-l. Overlapping windows on a desktop. 

difficult to produce). To help newcomers overcome the complexity of 
designing a window from scratch, the Window Manager provides two pre­
defined window frames, called document and alert windows. 

Of these two, you will work predominantly with the document window. 
Alert windows are created by the Dialog Manager, and don' t offer the design 
element flexibility of the document window. 

Document Window Alert Window 

Figure 10-2. Predefined windows. 
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WINDOW COMPONENTS 

To the standard document window you can add a variety of standard compo­
nents. Some components are informational, while others are action­
oriented. Your application's work now will dictate which of these 
components your windows need . A fully decked-out window looks like the 
one in Figure 10-3. 

Title Bar 

Extending the full length across the top of the window is the title bar. Aside 
from its clear duty as conveyor of the name you assign to the window (the 
name may also be the name of the disk file document currently showing in 
the window), its four horizontal lines provide an important visual clue about 
the window. Whenever the window is active, the four lines wiJI be visible; 
the instant the window becomes inactive, the lines disappear. When several 
windows are on the desktop, these horizontal lines show you immediately 
which window is the active one of the bunch. Fortunately, the Window Man­
ager handles the erasing and drawing of these title bar lines automatically 
when your program deactjvates one window and activates another. 

Title Bar 

1 
r ' • Window • Zoom Box Close Box 

lnfonnati on Bar ....... ~ 
... 

f I-

Content I-- 1--Ri .... Re ion .. ght Scroll Bar 

j 

~ ~ 
K)l • I l I~ Q] 

'------ Grow Box 

Bonom Scroll Bar 

Figure 10-3. A window and its components. 
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The title bar claims another important function for a window. If one of 
the specifications for your window is thai it is movable, then the user can 
drag the entire window around the desktop by placing the mouse pointer in 
the title bar (but not in either the close or zoom boxes), clicking, and drag­
ging. An outline of the window will be visible, indicating where the window 
would be repositioned if the mouse button were released . When the button is 
released (a mouse-up event), your program must reposition the window and 
redraw it (the TaskMaster helps a great deal with this). The window's size 
will not change in this operation. 

Close and Zoom Boxes 

A title bar can have two additional features if your program requires them. 
The most common is the one at the left edge of the title bar: the close box. If 
you specify that your standard document window is to have a close box 
(assuming you have already specified a title bar), the Window Manager will 
place the close box along that edge. The Window Manager has only one loca­
tion for the close box so that your program users will instinctively know how 
to close a window in precisely the same way they close windows they see in 
the ProDOS 16 Finder. When a user presses the mouse button with the 
pointer inside the close box, your program will branch to any of several pos­
sible actions, one of which should be to remove the window from the 
desktop. The window may still remain an object in memory (described later) 
for fast reopening later in the program, but a close box should remove it from 
the desktop to be consistent with the User Interface Guidelines. 

The second title bar feature is called a zoom box. When a user clicks the 
mouse with the pointer in this box, the window will change to a predeter­
mined size (i.e., predetermined by you and your program), usually filling 
the entire screen or close to it. Clicking in the zoom box again causes the 
window to resize itself to the size and location from which it last zoomed. 

Information Bar 

Below the title bar is a region called the information bar. In this space can go 
many kinds of helpers for your program's user. For example, it may be a line 
where spreadsheet formulas are entered and edited before being placed into 
the actual spreadsheet in the window. You may place icons there that the user 
can click to perform specified tasks without having to pull down menus. The 
biggest penalty you pay for adding an information bar to your windows is 
that it takes space away from the viewing area inside the window. 
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Scroll Bars 

Scroll bars can be added as necessary. If you wish to restrain the document 
from growing any wider than the width of one screen, you can prevent hori­
zontal scrolling by omitting the bottom scroll bar and placing only a right 
scroll bar in the window. When you add a scroll bar to a window's defini­
tion, the Window Manager automatically places the desired scroll bar in its 
appropriate place in the window. Similarly, if you resize the window, the 
Window Manager adjusts the scroll bar sizing for you. But specifying what a 
click in each part of a scroll bar does for the user is your responsibility inside 
the program. 

Grow Box 

At the lower right corner of the window is the optional grow box. Dragging 
the mouse pointer in the grow box allows the user to adjust the location of the 
lower right corner of the window to see more or less of the window's docu­
ment. The Window Manager (particularly with the help of the TaskMaster 
call) will help your application handle the resizing routines that result from 
movement of the grow box. You may have applications, or special windows 
in those applications, however, that will not need resizing for any reason. 
For example, you may use a fixed-size window to display a reference table 
on the screen. If you don't want to encourage users to resize a window, leave 
the grow box out of the window's specifications. 

Content Region 

The dominant part of a window is the area in which information is displayed: 
the content region. If we design two windows of the same frame size, one 
with scroll bars and one without, the one without scroll bars has a larger con­
tent region. Even though a document may be many times larger than the 
rectangular area that provides the window to it, the content region is strictly 
that area we can "see through ." 

Since each window component is a distinct entity, you can mix and 
match elements as you please. Here are examples of some of the combina­
tions you can use in a standard document window. 

THE PROGRAMMER'S WINDOW 

So far, we've been talking about window components that program users see 
and recognize. Now we'll peel away the user layer to reveal some underlying 
machinery inside a window. 



THE WINDOW MANAGER-------------- ----- 169 

i I Window 

A ~ 
, 

..... Content ... 
-- Re~ ion .. 

,, 
Figure 10-4. Content regions of two windows with different components. 

Common Regions 

Every Window Manager window is defined by two regions (among other 
specifications, to be sure): the content region and the frame region. We've 
already seen where the content region is: in QuickDraw terms, the content 
region is the portRect of the window's grafport. The frame region is the out­
line of the complete window - the outermost reaches of the window, 
including controls, title bars, and so on. Together, the content region and 
frame region define the window's structure region. Your programming con­
cerns, however, will focus on the content and frame regions. 

Optional Regions 

Depending on what extra features you add to a plain document window - a 
title bar, a grow box, and so on - your window will automatically gain up 
to four additional regions that the Window Manager will work with. Those 
regions and their corresponding window components are: 

Region Component 

go-away close box 
drag title bar 
grow grow box 
zoom zoom box 

Notice that when we introduced these regions by their component names, 
they were specifically not a part of the content region. That' s true of their 
corresponding regions as well. All four of these regions are within the win­
dow's frame region. 
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Figure 10-5. Some document window possibilities. 
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Figure 10-6. Relationship among content, frame, and structure regions. 
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Figure 10-7. Window frame region and its component regions. 

SCROLL BARS AND REGIONS 

The precise workings of scroll bars will be covered in Chapter 12, "The Con­
trol Manager," but since scroll bars are often a significant part of your pro­
gram and its windows, we'll discuss what these controls mean to a window, 
its regions, and the document. 

From the user's perspective, the purpose of scroll bars, of course, is to 
bring parts of a large document into view of the window. From the program­
mer's perspective, however, scroll bars allow you to adjust the location of 
the content region to other parts of the data area - the extent of the infor­
mation you wish to show. 
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Figure 10-8. Scroll bars reveal the relative content region and data area sizes. 

Notice the distinction in frame of reference: The user, sitting in front of 
an unmoving video monitor, sees the scroll bars as controllers of the location 
of a movable document; the programmer knows that the document is nailed 
down to a QuickDraw coordinate plane, and the scroll bars move the content 
region around the plane. 

Scroll bars generated by the Apple IIGS Control Manager offer more 
feedback to the user than the standard scroll bars of the Macintosh Control 
Manager. The difference is that the IIGS scroll bar gives the user a visual 
clue to the proportion of the entire document he or she is viewing through the 
content region at any instant. Think of the gray area of a scroll bar as repre­
senting a scale of the entire measure of the data area in that dimension, either 
horizontally or vertically. The white box - the thumb - of the scroll bar, 
then, represents the size of the content region in that dimension relative to 
the size of the data area. Therefore, if you look at a scroll bar and find that 
the right scroll bar has a small thumb, it means that the content region is 
viewing only a small portion of a long, vertical document. A large thumb on 
the bottom scroll bar means that the content region is showing nearly the 
complete width of the data area, perhaps indicating that there is little need, if 
any , to scroll the document horizontally. 
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Data Area~ 

Figure 10-9. Scroll bars in a predominantly vertical document. 

THE WINDOW RECORD 

Each window you create will have its own window record. That means that 
all specifications for one window are stored separately from another. There­
fore, if you give one window a set of visual characteristics, including a 
special set of components, a particular screen location and size, the informa­
tion will be stored in that window's record and will not be adjusted as you 
manipulate other windows on the screen. Moreover, with a window's 
specifications safely stored in its record, you can remove the window from 
the screen (make it invisible), perform all kinds of other tasks with other 
windows, and later make the original window visible again. It will appear on 
the screen exactly the same way it did before it was hidden. 

When the Window Manager creates a new window (as the result of the 
NewWindow toolbox call), it opens a new QuickDraw grafport (in fact, it 
specifically makes an OpenPort call behind the scenes), which becomes one 
of the items in a window record. All characteristics of a grafport, such as 
color tables, fonts, and pen states, then become part of the new window. 
Experienced programmers call this relationship between window and graf­
port inheritance in that a window inherits all the characteristics of a graf-
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port, the way a newborn baby inherits its parents' family name and heritage, 
even though the child will grow up with additional, individual traits of his or 
her own. 

A window record is the longest record in a IIGS program, extending 
over 300 bytes. Several parameters concern themselves with the effects of 
scrolling- a subject we'll leave for more advanced programming guides. 
But to give you a taste of the more readily visible items in a window record, 
we'll examine parameters labeled wTitle, wPlane, wFrame, wZoom, and 
wRefCon. Let's define each of these. 

Window Title 

Specifying a title for the window is as easy as assigning a variable name to a 
pointer indicating the actual text you wish to appear in the window's title 
bar. Depending on your programming language, that step would look some­
thing like this: 

newTitle = "Window 3" {newTitle previously defined as a 
pointer variable} 

You will then plug newTitle into the NewWindow call 's parameter list (see 
below). 

The Definition Procedure 

Toolbox programming frequently uses definition procedures as shortcuts to 
predefined screen objects. For example, the window record's wDefProc 
item is a number corresponding to predefined window types. In the Macin­
tosh Window Manager, there are several different predefined window types, 
whereas in the IIGS Window Manager, there are only two, the document and 
alert windows. Since alert windows should be reserved for the Dialog Man­
ager, you are left with the document window, which is specified in wDef­
Proc by a 0. If you create your own custom-designed windows, you will 
assign each one a wDefProc identification number that you can pass as a 
parameter to a NewWindow parameter list, summoning that window type 
instead of the standard document window. 

Window Order 

You will normally want a new window to be topmost on the stack of windows 
currently open on the screen. To make sure that happens, you should specify 
a - I as the wPiane parameter. The Window Manager takes over from there, 
deactivating the current active window, creating the new window, high-
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lighting it, and generating all necessary activate events to the Event Man­
ager. If you wish, you can slip a new window elsewhere in the stack of on­
screen windows without making it the active window. Simply pass the 
pointer to the window record of the window behind which the new window 
is to be placed. To put the new window at the very bottom of the stack , 
specify a 0. 

Window Frame Definition 

The "window construction set" feeling of the Window Manager comes to I ife 
in the wFrame parameter. The flags you set in the wFrame word determine 
which window components are added to the window's frame. The control­
ling bits and their items are shown in Figure 10-10. 

The movable item tells the Window Manager to allow a user to drag the 
window by the title bar, while the visible item acts as a switch for showing or 
hiding a window while its record is in memory. 

Reference Constant 

A program with the potential for many windows may need to keep track of 
those windows by a serial number or some other identifying number. The 
wRefCon parameter lets you establish a reference constant for a window. A 
practical use for this feature would be to generate new window titles con­
sisting of the word "Window" and a number of the current window since you 
started the application (e.g., "Window 5"). By retrieving the wRefCon value 
of the last window opened, you can increment the value by l , assign it to the 
next window, and incorporate the number into the new window's title. 

Frame Definition Flags 

Title Bar 

Clo'e Box 

:Richt Scroll----' 

B ottom Scroll------' 

Grov Box------1 

Zoom Box----------' 

'------Information B e.r 
.__-----Visible 

'---------Movable 

Figure 10-10. Window frame definition flags. 
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Full Size Window 

The last parameter, wZoom, is the size of the rectangle the window's content 
region will become when a user clicks on the window's zoom box. If this 
parameter is set to 0, the window's content region will zoom to fill most of 
the screen (but not cover the menu bar). 

CREATING A NEW WINDOW 

Before your program actually creates a window, you first establish a list of 
specifications about the window. The list is rather long - 24 items - and 
items must be listed in a very specific order. Fortunately, many items can be 
set to zero, which tells the Window Manager to use standard values when 
creating the window. Data for this parameter list will be in the form of a 
record (or structure, depending on the language). Then you will call the 
New Window function, passing as an input parameter a pointer to the start of 
that list. The Window Manager reads that data and creates a window object 
out of it. New Window returns a pointer to the window record, which you can 
assign to a pointer-declared variable. The steps are sketched below. 

Declare variables ... 
windowData : POINTER 
myWindow : POINTER 

BEGIN {window creation} 
window Data = struct (wFlag value, wTitle pointer, wRefCon ... ) 
mywindow = NewWindow(windowData) 

END. 

NewWindow returns a pointer to the window's record (assigned to the 
pointer variable, "mywindow," in the above example). Hereafter, you can 
adjust anything in the window record by making one of the Window Man­
ager calls to that window record. For instance, to make the above window 
invisible without erasing its record in memory, you'd make the following 
call: 

Hide Window(mywindow) 

Retitling the window would require assigning the newest title to a different 
pointer variable, and then passing that along with the pointer to the window 
whose name should be changed, as follows: 

NewestTitle = "Harvey's Window" 
SetWTitle(mywindow ,NewestTitle) 
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NewWindow does not draw the window on the screen. Its job is simply to 
create the window record. To draw myWindow on the screen, the program 
would call 

ShowWindow(myWindow) 

to finish the window creation job. 

WINDOW FRAME COLORS 

In our QuickDraw discussions, we went through the way colors can be 
applied to images in grafports. The Window Manager really doesn't care 
what colors QuickDraw is producing for your pixel images or other objects 
displayed in the grafport (i.e., as seen in its content region), but it is con­
cerned about the colors of window parts - the frame, the title bar, the grow 
box, and so on. These colors can be set for each window and passed as a part 
of the window parameter list or adjusted later in the window record with the 
SetFrameColor call. 

Frame Color Table 

Terminology for frame colors may get a little confusing at fi rst because it 
includes references to a window frame color table that is an entirely different 
concept from the QuickDraw color table. The window frame color table 
is not a list of pixel color values but, rather, a list of colors that apply to spe­
cific frame components. A pointer to the entire table is then included in 
the window parameter list or passed as the parameter of the SetFrameColor 
call. 

For example, the first entry in the frame color table is the color number 
(0-15 from the grafport' s standard color table) of the window frame. In other 
words, when you assign a color number, say the value 4 (which is blue in 
QuickDraw's standard color table), to the first item in the window frame 
color table, all pieces of the window frame that are visible will be drawn in 
blue on the screen. 

Color information for the rest of a window frame's components is 
specified by other entries in the frame color table. Each entry is 16 bits wide, 
but a color specification for a particular component requires only 4 bits 
(0000 to 1111 in 320 mode, 0000 to 0011 in 640 mode). Some components 
have related specifications, such as a pattern, occupying other bits of the 
integer. Some components change color when selected by the mouse 
pointer, so this second four-bit color must also be a part of the color informa­
tion for those items. Still other bits are unused, but are present just the same 
to fill out the space. 
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byte Frame Component 

0 Frame Color 

2 Title Color 

4 Title Bar Color 

6 Grow Box Color 

8 Information Bar Color 

Figure 10-11. Window frame color table. 

0 

The window frame color table, which consists of 5 two-byte entries, is 
set up in the order shown in Figure I 0-11. 

Frame color applies to the lines that define the window's frame outline 
as well as the outlines for the close box, the zoom box, the grow box, and the 
information bar (Figure 1 0-12). 

The title color entry sets many items. The lowest nibble controls the 
color of the title text and the interior colors of the close and zoom boxes. A 
separate color for title text in an inactive window is specified in the next 
higher nibble. The third nibble affects the color of the title bar background 
when the window is inactive (Figure 1 0-13). 

Title bar color controls both the pattern and the color of the title bar 
graphics (Figure 10-14). Title bar patterns can be either the familiar four 
horizontal lines, a dither pattern, or solid, as defined by the high byte of the 
title bar color integer. 

I I I I I I I I I I I I I I ! I I 
I I I I I I 

I I 
Zero Outline 

Color 
Not 
Used 

Figure 10-12. Frame color. 
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Figure 10-13. Title color. 
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Figure 10-14. Title bar color. 
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Color and Inactive 
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The grow box has its own color item in the window frame color table 
(Figure 10-15). The lowest nibble in the color integer controls the interior 
color of the box when selected. The next highest nibble controls the interior 
color when not selected. Recall that the outline for this box is under the con­
trol of the frame color item. 

If your program uses an information bar, its interior color is controlled 
by the last integer in the window frame color table (Figure I 0-16). 

UPDATING WINDOWS 

Very few applications will escape the need for window updating. Even if the 
program has only one window (so there 's no threat of a second applications 
window overlapping it), there will likely be desk accessory windows (c alled 
system windows) or alert windows temporarily covering the main window . 
When these overlapping windows close, they will leave blank ho les in your 
main window . Your application must update those blank regions. 
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Grow Box Interior Color 

Zero Color 
When Not 
Selected 

Color 
When 

Selected 

Figure 10-15. Grow box region color. 

Figure 10-16. Information bar interior color. 

The Window Manager and the Event Manager work together in alerting 
your program of the need for a window update and in performing the actual 
updating. When the closure or movement of an overlapping window exposes 
a blank region of a window, the Window Manager posts an update event to 
the Event Manager. Your application's event loop should be continually 
testing for the presence of an update event. If the program finds an update 
event, then it should branch to a redrawing routine that your window record 
points to. Redrawing by way of the Window Manager sets into motion a 
number of complex, yet automatic, procedures to make sure that only the 
affected region(s) of a window is( are) redrawn. This speeds up the perceived 
redrawing time of the window because the entire content region doesn't need 
to be drawn. 
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WINDOWS AND EVENTS 

With so many regions in a typical window, each of which is to react dif­
ferently to mouse-down events, there is a great deal of interaction between 
the Event Manager and the Window Manager. In particular, the Event Man­
ager will trigger the need to check the location of the mouse pointer ­
which window region it was in - when a mouse-down event occurred. 
Depending on which region the cursor's hot spot was in, the program should 
branch to the routine that actually performs the onscreen action in response 
to that mouse click. Your program can do this manually, step by step, or if 
you're not doing anything too out of the ordinary, it can call upon the 
TaskMaster, which greatly reduces your need for managing every step of the 
way. But since the TaskMaster doesn't do it all (at least not in its current 
rendition) , you'll still need to know the "old-fashioned" way of handling 
window events. 

Polling the Event Manager 

By now you should be familiar with polling the Event Manager with the Get­
NextEvent call. When it has an event to report, it proffers that event's 
record, from which you can extract the event type (Event. what in some lan­
guages). If that event is a mouse-down event, then your application should 
make further determinations as to the location of the mouse pointer at the 
time of the event. 

The mechanism for that task is the FindWindow call. This tool takes the 
global screen coordinates of the mouse-down event (the "where" in the event 
record) and calculates (l) the window in which the event actually occurred, 
and (2) the region of that window in which the mouse-down event occurred. 
In other words, the first job FindWindow does is look up the global coordi­
nates of the mouse pointer (as on a map) and see which window is under that 
pixel. The results of that search is a pointer to that window's record. Most 
languages will assign that pointer to a variable named "whichWindow" or 
similar. Once that is established, you will use which Window to help you per­
form one of several possible operations, as we'll see in a moment. 

The other information that FindWindow calculates is the region in 
which the user clicked the mouse pointer. This information comes back as a 
constant from a table of predefined locations: 

Constant 

0 
16 
17 
18 

Location 

wNoHit 
wlnDesk 
winMenuBar 
winSysWindow 

Meaning 

Event did not occur in the window 
On the desktop 
On the system menu bar 
In a system window (e.g., desk accessory) 
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Constant Location Meaning 

19 wlnContent In the window's content region 
20 wlnDrag In the window's title bar 
21 wlnGrow In the window's size box 
22 winGoAway In the window's close box 
23 wlnZoom In the window's zoom box 
24 win Info In the window's information bar 
25 wlnVScroll In the window's right scroll bar 
26 wlnHScroll In the window's bottom scroll bar 
27 winFrame In the window , but in none of the above 

regions 

These constants make it relatively simple to build a series of CASE state­
ments within the event loop in a high-level language to test for the event 
taking place in any of these regions. You won't need to test for all of them -
just the ones your windows and your application are concerned about. 
Depending on your language of choice, the structure might look something 
like this: 

REPEAT 
IF GetNextEvent(everyEvent,thisEvent) 

THEN 
CASE thisEvent. what OF 
mouseDown: 

CASE FindWindow(thisEvent. where, which Window) OF 
winMenuBar: 

{code to handle menus}; 
winDrag: 

{code to drag window}; 
winZoom: 

{code to zoom window}; 

END; {finish mouseDown tests} 

END; {finish Event CASE routines} 
UNTIL done; 
END. 

Thanks to the built-in constants of the language and their readily identifiable 
names, you don't even come into direct contact with the constant values for 
the various regions. Assembly languages for the IIGS have macros that per­
form many of these tasks as well, but you will have to move the values into 
registers, perform Boolean arithmetic on the values, and as a result of a test 
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between the constant value and the Boolean answer, either branch to the 
window routine defined elsewhere in the code or "fall through" to the next 
test. The precise implementation may be different, but the structure is 
largely identical to its high-level language counterparts. 

Window Events 
Several Window Manager calls are to be summoned as the result of Event 
Manager tests. For instance, when the event loop determines that a mouse­
down event occurred in the drag region of a window, the next procedure 
should be the Window Manager's Drag Window call. Typically, your event 
loop will make the following Window Manager calls, based on the results of 
mouse-down region tests (i.e., after it has performed a FindWindow to 
determine both the target window and the region in that window): 

Drag Window 
Grow Window 
TrackGoAway 
TrackZoom 
Select Window 

A few other calls are also involved, but we'llleave that up to the Apple 1/GS 
Toolbox Reference to provide you with the details. It is a good idea to 
become acquainted with these items. Then you'll appreciate how much work 
the TaskMaster can do for you. 

THE TASKMASTER 

Realizing that a high percentage of event-driven programs perform identical 
key-down and mouse-down event tests, the Apple IJGS toolbox designers 
consolidated a number of Event Manager and Window Manager calls into a 
single call, TaskMaster. It is a built-in toolbox subroutine that makes a 
number of tool calls on its own. In addition to relieving the programmer of 
producing many tedious lines of code, it performs several important tasks 
with only two input parameters, while returning a single parameter that your 
application can use most efficiently for additional event loop tests. 

Calling TaskMaster 
TaskMaster call goes into the event loop in place of GetNextEvent. Actu­
ally, TaskMaster calls GetNextEvent as one of its first tasks. Input 
parameters to TaskMaster are just like the ones handed to GetNextEvent: an 
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event mask and a pointer to task record. Therefore, you can set an event 
mask if you like, using the same event mask constant your language provides 
(such as "everyEvent"). For the task record pointer, in a high-level lan­
guage, you can simply define a task record pointer variable with an identifi­
able name, such as "myTask." When TaskMaster is finished, it returns a 
Task Code, which we'll discuss in a moment. 

The Task Record 

When TaskMaster calls GetNextEvent, the Event Manager hands over the 
record of the event having the highest priority at that instant (as it continually 
polls the system while the event loop cycles madly). That event record, of 
course, contains the five event record items that every event record has. The 
entire record reaches TaskMaster intact. TaskMaster, however, adds two 
extra items to the record: TaskData and TaskMask. TaskData is used by 
some of the internal calls that TaskData makes, particularly dealing with 
menus. The "data" that this record item tracks are the menu and menu item 
chosen by the user (more about this in Chapter II). TaskMask allows you to 
tell TaskMaster which kinds of events it should not process, in case you wish 
to process a particular event differently from TaskMaster's usual handling. 
You set one or more of the thirteen bits (in a 32-bit LONG), each of which 
controls a single TaskMaster internal function. 

A task record, therefore, looks like this: 

what: WORD 
message: LONG 
when: LONG 
where: LONG 
modifiers: WORD 
TaskData: LONG 
TaskMask: LONG 

These record items behave just as event record items do. Therefore, when 
TaskMaster finds out from GetNextEvent that a mouse-down event has 
occurred, for instance, it knows to perform its magic by performing its major 
mouse-down event tasks: (1) calling FindWindow, and (2) performing the 
action appropriate to a mouse-down event in a particular region of the 
window. 

Open-Ended 

Now, you might imagine that as "smart" as TaskMaster is, there is only so 
much it can assume about your application. A hazard with this powerful a 
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routine is that it might do too much , thus preventing the programmer from 
exercising his or her own creativity. 

Fortunately , TaskMaster doesn't try to be all things to aB programs. 
The tool leaves enough information around for your event loop to use for 
further tests not covered by TaskMaster. For example, if TaskMaster poBs 
the Event Manager and receives a mouse-down event in the content region of 
a window, TaskMaster wiB first make sure the window clicked upon is the 
active window. Then, even though TaskMaster is through with its work, it 
leaves wlnContent as the TaskCode output parameter, and leaves the pointer 
to the window in the Message field of the task record. Now your event loop 
can perform further procedures based on the knowledge that the event took 
place in a window's content region. The program may, for instance, change 
the cursor from an arrow to a text insertion pointer because you intend to type 
text into that window. 

As another example of TaskMaster passing through information for 
further program execution, if TaskMaster finds that a mouse-down event did 
not take place in the system menu bar or in the window's drag region, close 
box, zoom box, grow box, or either scroll bar, then it returns the window 
pointer from the FindWindow call it made inside the macro . Even though the 
caB could find no action to perform, it stiB did some work along the way, 
easing further event loop tests you may wish to make . 

To give you an idea of what TaskMaster call does for your application, 
here is a schematic of several internal Window Manager calls it makes : 

mouseDown Event: 
CaB FindWindow 

If Find Window says event was in: 

wlnDrag: 
If TaskMast bit #6 = 0: 

Exit and return TaskCode = w InDrag 
If command key not down and window inactive: 

CallSelectWindow 
CaB DragWindow 
Return TaskCode = inNuB .. 

wlnContent: 
IfTaskMast bit #7 = 0: 

Exit and return TaskCode = wlnContent 
If window is inactive: 

Call SelectWindow 
Return TaskCode = InNull 
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Else: 

Else: 

wlnZoom: 

TaskRec Message field = window pointer 
Return TaskCode = wlnContent 

If TaskMast bit #8 = 0: 
Exit and return TaskCode = wlnZoom 

Call TrackZoom 
If TrackZoom returns TRUE: 

Call Zoom Window 
Exit and return TaskCode = InNull 

Return TaskCode = FindWindow value 
TaskRec Message field = which Window's pointer 

Since TaskMaster checks only for key-down, mouse-down, and update 
events, it automatically passes through the event code from an event record 
as the TaskCode if no such events are being processed. The TaskMaster, 
then, takes the place of a great deal of the event loop, but not the entire loop. 

TaskMaster's Future 

Apple encourages you to use the TaskMaster call in your event loops for a 
reason that should appeal to most programmers. If, in the future, Apple 
enhances the TaskMaster call in a new release of the Apple JIGS Toolbox, 
then the routine may do some additional window and menu management for 
your application without your doing any additional coding. 

It is unlikely that your old program would become unusable with the 
new system, since Apple tries to make upgraded ROMs and software tools 
compatible with earlier versions. But an enhanced TaskMaster may make a 
number of standard housekeeping jobs both faster and more compact in 
terms of program size. That should be a good incentive to use it whenever 
appropriate to your application - which may be all the time. 

We'll see TaskMaster coming around once more in the next chapter, as 
we look inside the Menu Manager. 



CHAPTER 11 

The Menu Manager 

Pull-down menus figure prominently in Apple's User Interface 
Guidelines for both the Macintosh and the Apple IIGS. We saw quite 

clearly in Chapter 7 that a pull-down menu system built into an event-driven 
program gives the user options during the running of a program that may 
not have existed in other program environments. Menus, as generated 
and handled by the Apple IIGS Menu Manager, are summoned without a 
change in modes - the user is at once in command mode and data entry 
modes. Choices of both menu category and menu item are done with one 
swift mouse motion. All in all, it is an elegant system, and the JIGS Menu 
Manager facilitates its use by handling the complex graphics for your appli­
cation automatically. 

MENU CONCEPTS 

You have probably enjoyed working with pull-down menus on the IIGS 
already, but you may not have realized how much detail has gone into the menu 
mechanism and the way users interact with menus. As a programmer, you'll 
have to be very much aware of these concepts, because you should know how 
every part of your program functions, including those parts under total control 
of the toolbox. In this first section, however, we'll be speaking in user terms­
what the user experiences when using menus. 
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The System Menu Bar 

Applications using pull-down menus display the names of one or more 
menus in the system menu bar, which is drawn across the screen at the very 
top of the video area. The IIGS Pro DOS 16 Finder, for example, displays a 
system menu bar when the operating system is loaded . If an applications pro­
gram will be using a system menu bar, it will be in precisely the same 
location on the screen, although the names of various menus may be quite 
different. 

Names of menus are called menu titles. A menu title should provide a 
clue to the kinds of operations provided by menu items in its hidden menu. 

A special graphics character you can use in a menu title is in the shape 
of an apple. This character is traditionally used as the menu title for the 
leftmost menu in a system menu bar. Items in this menu are predominantly 
desk accessories, as well as an "About. .. " item. This latter item provides an 
avenue for the program writer to identify the program, its origin, its 
copyrights (if any), or other information the author thinks the user should 
know. The About ... item usually generates a dialog box on the screen dis­
playing the author's information. 

Choosing a Menu and Item 

When the user presses the mouse button with the cursor atop a menu title, the 
title's text changes to its inverse color and a list of menu items drops down in 

Figure 11-1. A system menu bar. 
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a small window below the menu title. As long as the user holds the mouse 
button down , the menu will be visible. Dragging the cursor into the window 
of menu items causes item names touched by the cursor to change to their 
inverse colors- become highlighted. 

If the cursor passes beyond the edge of the item list, the menu will 
remain pulled down , but no item will be highlighted. You can drag the cursor 
back into the menu and make a menu choice. 

To choose a menu item, touch the menu item text with the cursor while 
pressing the mouse button so that the menu item is highlighted. Then release 
the mouse button to choose the item. 

(There's a fine point of terminology here, but one worthy of note. When 
a menu item is highlighted, it is said to be selected. But the instant you 
release the mouse button to set the action in motion, you have chosen the 
menu item.) 

When you have chosen an item, the menu item will blink a couple of 
times, the menu list will disappear, and the action indicated by that menu 
choice will take place. While the action is in progress, the menu item's title 
will remain highlighted . This gives a visual clue that the program is still 
churning away. even if there is no other indication - changes on the screen 
or disk activity - of action taking place. As soon as the action is com­
pleted, the menu item returns to its normal color. 

Uiew 

Figure 11-2. A pull-down menu with an item selected. 
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Enabled and Disabled Menus 

Menu titles can be disabled, which means that you'll be able to pull down the 
menu, but you won't be able to choose any of its menu items. You can spot a 
disabled menu title by its shaded appearance in the menu bar. 

When a menu title is disabled, so are all the items in its menu. As you 
drag the cursor across disabled items, they will not become highlighted. 

You may also find cases when a particular item in an active menu is dis­
abled under certain circumstances in a program. 

This usuaJly means that the operation indicated by the menu item would 
not make sense at that point in the program. For instance, if you have not 
made a change to a document, there would be no need for an Undo menu item 
in the Edit menu. The instant you press a key to type a character, the Undo 
menu item can be enabled. 

MENUS FOR PROGRAMMERS 

So much for the user's perspective. Let's look at the mechanisms we've been 
describing so far and find out how much the Menu Manager does for you and 
how much your application will have to do. 

Figure 11-3. Enabled and disabled menu titles. 

Disabled Menu 
Titles 
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Figure 11-4. A menu with one disabled item. 

Disabled Menu 
Item 

For one thing , you'll have to supply the Menu Manager with the text 
characters that are included in the menu titles and menu items. Menu items 
will let you specify a number of extra parameters , as we'll see a little later. 

Getting the Menu Manager to display a pull-down menu takes an easy 
interaction with the Event Manager. Once the Menu Manager discovers that 
a mouse-down event has occurred in the system menu bar, it takes over, pul­
ling down the menu to which the cursor is pointing, highlighting the menu 
title, and highlighting each menu item as the cursor drags down the list. 

When you release the mouse button , the Menu Manager instantly 
records which menu and menu item you chose (each has an identification 
number). It is your program's job to branch to the action routine that corres­
ponds to the particular 10 numbers recorded by the Menu Manager. In the 
meantime, the Menu Manager erases the pull-down menu from the screen, 
calls for a redrawing of the window(s) beneath the now-departed menu win­
dow , and keeps the menu title text in reverse . As soon as your menu action 
routine is complete, it must make the call that returns the menu title to its 
original state, indicating the program is ready for more input. 

MENU TERMINOLOGY 

Before we dive into what it takes to create a menu, we'd better make sure that 
menu terminology is clear. There are also several interface items you should 
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be aware of that may influence menu design. Figure 11-5 points out the key 
elements of a pull-down menu. 

Most items should be self-explanatory, with a couple of exceptions. 
A mark, indicated by a crosshatch in the figure, is a method of alerting 

the user that a particular feature is in force. For example, when a mark is 
placed next to the Draw menu item, it means that the Draw feature is turned 
on. Choosing this item a second time will both tum off Draw and remove the 
mark from the window. Few menu items will be a feature "switch" like 
this - turning an item on and off. There is also another way to handle such 
an action. For example, when Draw is off, the menu item can read, "Draw 
On," meaning that choosing this item will turn on Draw. The action that 
turns on Draw and would normally place a mark next to the item can , instead , 
change the menu item to read "Draw Off," meaning that choosing the item 
again will turn Draw off. Either method is acceptable under the User Inter­
face Guidelines . 

Key commands are important features of menus, because they provide 
experienced users of your application a way of calling menu items without 
reaching for the mouse. Instead , they would hold down the Open-Apple key 
and the character key indicated by the key command in the menu . Key com­
mands are listed in the menu as a way of alerting users that a keyboard 
shortcut exists for the menu item. If the user grows tired of pulling down the 

Disabled Item 

Key Command 

Menu Height Menu Items 

Selected Item 

' I 
I 

Menu Width 

Figure 11-5. A menu and its components. 
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menu for a frequently used action, he or she will likely remember the key 
command and use it exclusively. Keyboard characters selected for key com­
mands should be mnemonic - the letter should help the user remember 
what command it is, such as Apple-S for Save. The exceptions to this rule are 
four editing key commands that are common to the majority of applications: 

Key Command 

z 
X 
c 
v 

Edit Action 

Undo 
Cut 
Copy 
Paste 

Dividing lines should be used sparingly and intelligently. They can 
group together logical items in a menu. Often, two related menus can be 
combined into one menu by placing items from both menus in one list sepa­
rated by a dividing line. Also use dividing lines to help a user find menu 
items quickly in a long list of largely unrelated items. Again, group logical 
items together as best as possible. 

CREATING MENUS 

Each menu title and its related menu items are considered a single menu on 
the system menu bar. To put together a system menu bar with several menus 
in it, you begin by creating each menu individually. The basic procedure for 
creating a menu bar is to (I) define the textual content and characteristics of 
each menu, (2) turn that definition into a menu that the Menu Manager will 
recognize, (3) insert each menu into the system menu bar, and (4) draw the 
system menu bar, which will display the full set of defined menu titles across 
the top of the screen. 

To define the content and characteristics of a menu, you put together a 
menu/item line list for each menu. 

The Menu/Item Line List 
The list consists of the actual words that are to appear as the menu title and 
its items, as well as one or more special characters that the Menu Manager 
needs for the processing of menu commands and the display of things like 
key commands, menu marks, and so on. Importantly, the list must be put 
together in a strict format. 

The format calls for the menu title to be preceded by two identifying 
characters, such as > >. Menu items in the list are preceded by a pair of dif­
ferent characters, such as hyphen. The end of the list must contain a single 
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character that is different from the item characters - you could use a 
period, for example, or even the same character as used for the menu title 
character. This last character tells eventually the Menu Manager that there 
are no more items for this particular menu. These leading characters behave 
like compiler punctuation marks. 

A menu/item line list must also assign identification numbers (IDs) to 
each menu title and item in the list. Your program will use these numbers to 
identify which menu or item has been chosen by the user. Consequently, the 
IDs must be different numbers for each item in the list. No hard and fast rules 
apply to ID numbering conventions, but Apple suggests that menu titles be 
numbered sequentially, starting with 1; menu items should also be sequen­
tial, but starting with 256. 

Menu IDs are added to each item in the menu/item line list by tacking on 
a backslash (\),the letter N (indicating a decimal number), and the number. 
The backs lash character separates the actual text string that will appear in the 
menu from special characters that furnish additional information about a 
menu title or item (more on this in a moment). 

Taking all this into account, a program with two menu simple menus in 
it would have two menu/item line lists: 

>>File\Nl 
--Open\ N256 
--Save\ N257 

>>Edit\N2 
--Cut\N258 
--Copy\ N259 
--Paste\ N260 

A pointer to each menu/ item line list's text is then passed as the parameter to 
the NewMenu toolbox call. That is, you make the New Menu call twice in the 
above example. The New Menu function returns a handle to the menu record. 
Note that this function does not produce any image on the screen - it 
simply creates the menu in memory. For each menu, you then call 
InsertMenu, with the menu handle as one of the call's input parameters. This 
call, too, deals with menus in memory only, not on the screen. Finally, call 
DrawMenuBartodisplay the menus on the screen, as shown in Figure 11-6. 

The two menus, when pulled down by the mouse, are shown in Figure 
11-7. 

Menu Modifiers 
Earlier we saw that menu items can be disabled, marked, and chosen from 
the keyboard. The way all of this is passed along to the Menu Manager for a 
new menu is by way of the menu item line list. Any menu item to which you 
wish to add one or more attributes needs to be sent to the Menu Manager with 
appropriate modifiers, sometimes called special characters. To alert the 
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Figure 11-6. 

Open 
Saue 

Figure 11-7. 

File and Edit menu titles in a system menu bar. 

Cut 
Copy 
Paste 

File and Edit menu items. 

Menu Manager that a menu title or item will have some special attributes 
coming its way, add the special characters to the text string anywhere to the 
right of the backs! ash. Possible modifiers are: 

*A a where" A" is the primary character to be used as key 
command, "a" the secondary 

Ca where "a" is the character to be used as an item mark 
B boldface menu item text 
I italicize menu item text 
U underline menu item text 
V insert dividing line after this item without adding an 

extra menu item 
D disable menu item text 
X use color replace highlighting 

All of the above modifiers can apply to menu items; menu titles, however, 
can be affected only by D and X. 
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You can specify two key commands, a primary and secondary. This 
feature is in the toolbox mostly for the convenience of programs using 
keyboards and character sets in countries other than the United States. You 
don't have to specify a secondary character, but you must provide a blank 
space as a place holder for the secondary character in the menu/item line list. 
Only the primary character is displayed in the menu, so if you wish the key 
command to appear in uppercase in the menu but allow the user to access the 
menu item by typing a lowercase Jetter with the Open-Apple key, then 
specify both letters, with the uppercase character as the primary one. 

With regard to the highlighting special character, if you don't specify 
an X character in a menu/item line then the Menu Manager uses XOR high­
lighting, which inverts the colors of the menu text and its background when 
an item is selected. For black and white menus, XOR highlighting works 
fine. But if you want color menus, the result of XOR math on the colors you 
choose may produce unreadable results. Therefore, the X special character 
alerts the Menu Manager to highlight selected items according to colors you 
plug into the menu bar color table (described below). 

As another feature of the menu/item line list, you can create a dividing 
line between menu items by typing a single hyphen as the text to be dis­
played . The Menu Manager interprets this to mean you wish a dividing line 
to be displayed across the entire width of the menu. A dividing line like this 
must have its own ID number and must be disabled. As an alternative to a 
standalone dividing line , you can underline a menu item entry by appending 
the V special character. The underline does not add any space between menu 
items, as does the standalone dividing line. Your choice between underline 
or dividing line will depend on your personal taste in menu design. 

To demonstrate the effects of special characters on a menu/item line 
list, we'll show you a list from a hypothetical menu and, in Figure 11 -8, the 
resulting menu. 

>>Text 
--Undo\N270D 
--- \N271D 
--Left\ N272C#*LI 
--Centered\ N273*Cc 
--Right\ N274 V*Rr 
--Bold\ N275B*Bb 
--Italic\ N276I* I i 

Incidentally, you can create your own Apple menu title by pl&cing the @ 
symbol as the lone character in the Title entry in a menu string. If you place 
other characters in that string with the @ sign, the actual @ character will be 
displayed instead. 
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•r:m• 
Undo 

#Left .L 
Centered •c 

~ght •n 
Bold •u 
/tolir. .I 

Figure 11-8. Sample menu. 

MENU COLORS 

If you want to add color to your menus , the Menu Manager has a menu bar 
color table, a pointer to which is part of the menu bar record. The table 
behaves much like the window frame color table in that it contains pixel 
values that refer to the QuickDraw standard color table. Three 16-bit inte­
gers control settings for menu text and background in both highlighted and 
unhighlighted conditions, plus the color of the outline box of a pulled-down 
menu . Notice that the colors apply to the entire menu bar. 

MENUS AND EVENTS 

The TaskMaster call simplifies the linkage between the event and menu 
mechanisms. lts basic job is threefold: (1) to identify when a mouse-down 
event occurs in the system menu bar; (2) to wake up the Menu Manager so 
that it will display the appropriate pull-down menu; and (3) pass along the 
number of the menu item actually chosen by a release of the mouse button. 

Mouse Events 
We saw in the last chapter how the TaskMaster automatically interprets the 
location of a mouse-down event. When the event occurs in the system menu 
bar (wlnMenuBar) , the TaskMaster calls the Menu Manager's workhorse 
routine , MenuSelect. As long as the mouse button is held down, MenuSelect 
has complete control over your program. Its initial job is to determine from 
information held in the task record where on the screen the mouse pointer is. 
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Then it figures out the menu title with which that location coincides. If it is 
indeed over a menu title, the Menu Manager draws the menu on the screen, 
allowing you to drag the pointer through the list. Fortunately, as long as the 
mouse button is down , the Menu Manager will keep asking the TaskMaster 
for the location of the mouse pointer. Consequently, if you drag the pointer 
to another menu title, the first menu will close up, and the second one will 
drop down. 

Releasing the mouse button while a menu item is selected starts a small 
chain reaction. MenuSelect passes critical information back to the Task­
Master: the menu title ID and the menu item ID of the item chosen. Thts 
information is compacted together and placed into the TaskData field in the 
task record. Then the TaskMaster bails out, passing winMenuBar as the 
TaskCode your application can test further. From there, your application can 
perform a CASE procedure to test the low-order word to uncover which 
menu item was chosen. Your program will then branch to a predefined action 
for that menu choice. 

For a menu bar with two menus in it (each with a few menu items), the 
structure of the menu decisions would look like this in a high-level language: 

PROCEDURE DoMenuStuff (TaskData); 

theltem = LoWord(TaskData) ; 
CASE theltem OF 

{File Menu items} 
openCommand: {branch to file open routine}; 
saveCommand: {branch to file save routine}; 
quitCommand: {branch to quit routine}; 

{Edit Menu items} 
undoCommand: {branch to undo routine}; 
cutCommand: {branch to cut routine}; 
copyCommand: {branch to copy routine}; 
pasteCommand: {branch to paste routine}; 

END; {theltem CASE} 
END; {DoMenuStuff PROCEDURE} 

Routines that make up the menu item actions can be located within the CASE 
structure or defined elsewhere in the program as separate procedures. 

One other item that should be added to the above listing is the 
HiliteMenu call. Inserted as the last call in the entire DoMenuStuff proce­
dure , this Menu Manager routine turns off the highlighting of the menu title 
that MenuSelect highlighted. It provides feedback to the user that the event 
loop is again looking for something to do. 
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Key Events 
The Menu Manager and TaskMaster also accommodate the keyboard equi­
valent commands for menus quite handily. The TaskMaster has a built-in 
routine that tests for key-down events. It passes the key character and its 
mask to the Menu Manager routine called Menu Key, which checks the menu 
list in the current system menu bar for a match, provided the Open-Apple key 
has been pressed along with the character. If there is a match, MenuKey 
passes the same information to the TaskMaster that MenuSelect does. Your 
program will use the same branching routines (analogous to the DoMenu­
Stuff procedure, above) as if the menu choice had been made with the 
mouse. 

CHANGING MENUS MIDSTREAM 

There is no problem changing the selection of menu titles in the menu bar or 
menu items in a given menu while in the middle of a program. If the adjust­
ment is a small one, you have several Menu Manager calls that help insert 
and delete menus and menu items. Insertions are generally done by 
specifying the ID number of the menu title or item that you want the new one 
placed after. Similarly, deleting menus and menu items is done by passing 
the appropriate IDs to the calls that remove items. 

Just changing the content of a menu record will not automatically make 
the menus reflect that new content. You'll have to draw the menu bar each 
time you make a change to it (using DrawMenuBar). Neglecting to do so 
may cause your choices to produce results other than what you had planned. 

Additionally, there may be times in your program when you wish to 
change the modifier of a menu item. Placing and removing a mark or 
enabling and disabling an item are the most compelling reasons. All specifi­
cations about a menu item can be adjusted with calls such as Disablellem, 
Setl temMark, SetltemStyle, and SetltemFlag. Consult the Apple 1/GS 
Toolbox Reference for listings of calls and parameters that adjust these set­
tings. They're simple operations you should be ready to incorporate into 
your programs. 

Now that we've been through QuickDraw, the Event Manager, the 
Window Manager, and the Menu Manager, we've already covered the lion's 
share of the IIGS toolbox that affects the way users will interact with your 
native mode programs. We'll look at one more area, though, the Control 
Manager, to acquaint you with some additional terminology and give you 
more to think about in designing your programs. 



CHAPTER 12 

The Control Manager 

M enus aren't the only screen objects that influence program actions or 
change program settings. We also have controls, run by the Control 

Manager. For the programmer, this tool set performs many of the same kinds 
of jobs as the Menu Manager does, but for onscreen controls. Your program 
will summon the Control Manager to do its low-level work, such as dis­
playing controls and observing how a control was changed by the user. Then 
the Control Manager will pass along its results to your program for further 
action based on those results. 

Most standard control functions that you will encounter in your early 
exposure to IIGS programming are handled by other managers. The Window 
Manager and the Dialog Manager, in particular, take care of numerous Con­
trol Manager calls for the program. Therefore, we will introduce you only to 
key concepts about controls in this volume. 

CONTROL TYPES 

The Control Manager comes equipped to help us create any of four standard 
control types: buttons, check boxes, radio buttons, and scroll bars. 

Buttons 

According to the User Interface Guidelines, a click of the mouse pointer on 
a button causes an immediate action. In other words, a button control (and 

201 
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the window it appears in) usually disappears immediately after clicking it 
with the mouse. The name of the action is indicated by a text word located 
inside the rounded rectangle button outline prescribed by the Control 
Manager. 

Check Boxes 

A check box consists of a small square whose center is either blank (off) or is 
marked with an X (on). Clicking the box with the mouse toggles the setting 
in the box from one to the other and back again. Text, which the Control 
Manager places immediately to the right of the box, should indicate what 
action will be in effect when the check box is on. Check boxes are used 
primarily as a way of turning on or off a feature that will affect some future 
action, such as indicating in a print dialog box that you wish to print a back­
ground pattern along with the text in the window. 

Radio Buttons 

When you wish the user to make one selection from a Jist of two or more pos­
sible items , radio buttons are in order. Found in groups of two or more, these 
buttons and their actions in your program should be arranged so that when 
the user clicks on one button in a group (and it becomes highlighted), any 
previously highlighted radio button becomes unhighlighted. This will give 
the user the feel of pressing the push buttons on a car radio - only one can 
be in effect at a time . 

£ OK l) .-.__Buttons 

( Cancel ) ~ 
Figure 12-1. Control Manager buttons. 

[8] Toll Adj ust ed ~ 
D SO 1o Reduction ~.~::::y.::;=~ Check Boxes 
D No Gops Between Poges 

Figure 12-2. Control Manager check boxes . 
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® US letter:~~::::::::=.._ 0 us Lega l ..._ .... ~ Radio Buttons 
0 Computer Paper ~ 

Figure 12-3. Control Manager radio buttons. 

Scroll Bars 
Falling under the broad Control Manager category of dials, scroll bars can be 
used for scrolling documents in a window as well as for adjusting numeric 
setting from a possible range of settings. Whereas other types of controls are 
essentially on/off indicators, scroll bars (and other dials) provide control 
over quantities, whether the subject is the measure along a lengthy document 
or a numeric setting that affects some other actions, such as adjusting a 
volume control. A scroll bar or other dial can also be used as a way of visu­
ally communicating a value from the program to the user, such as the relative 
amount of free space on a disk. 

up arrow -----------------

pageupre~on ---------------------

thumb 

page down region -----

down arrow --

1 

Figure 12-4. Scroll bars parts. 
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Scroll Bar Components 

Scroll bars have several parts, each of which the Control Manager recog­
nizes as a distinct unit. Since your program may need to respond to mouse 
actions in these parts, you should be aware of their names, as illustrated in 
Figure 12-4. 

Clicking in one of the arrows should cause the screen to scroll in the 
smaJiest logical unit in the direction of an arrow - one line of a text docu­
ment, for instance. Clicks in page regions usually cause the screen to scroll 
one screenful in the direction relative to the thumb. The size of the thumb 
represents how much of the entire document the content region of the 
window is showing (see Chapter 10 for more details). 

Each control type or part of complex controls in scroll boxes is known 
to the Control Manager by a part code. For example, if an application fea­
tures a scroll bar inside the content window (separate from scroll bars on the 
window frame), the Control Manager will let the program know over which 
part of the control a mouse-down event occurred. The part codes are as 
follows: 

Part No. Control or Part 

0 No part 

1 Reserved for internal use 

2 Simple button 

3 Checkbox 

4 Radio button 

5 Dial up arrow 

6 Dial down arrow 

7 Dial page up 

8 Dial page down 

9 Reserved for internal use 

10 Grow box icon 

11-31 Reserved for internal use 

32-127 Reserved for application 

128 Reserved for internal use 

129 Dial thumb 

130-159 Reserved for internal use 

160-253 Reserved for application 

254-255 Reserved for internal use 
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As you might guess from the large number of part codes that are 
reserved for applications, the Control Manager allows you to design your 
own controls. This isn't something you're likely to do in one of your first 
programs, but the capability is there when you're ready. You'll be able to 
design rather complex controls, perhaps with several unique parts. 

CONTROL RECORDS 

While a control record functions much like any other toolbox record, it dif­
fers in that some of the items in the record mean different things depending 
on the type of control the record describes. A button control, for example , 
needs a place for the text that appears inside the button; a scroll bar has no 
text, but must contain in formation about the data area size and content region 
size so that the Control Manager can draw a properly proportioned thumb. 

It may be convenient to think of all control records as having the same 
"front end" to their records - specifications they all share in common. This 
front end can be characterized by the following generic control record: 

CtiNext: LONG 
CtlOwner: LONG 
CtlRect: RECT 
CtlFiag: BYTE 

CtlHilite: BYTE 

CtiValue: WORD 
CtlProc: LONG 
CtlAction: LONG 
CtlData: LONG 
CtlRefCon: LONG 
CtlColor: LONG 

Handle to next control (0 = last control) 
Pointer to window holding the control 
Local coordinates of enclosing rectangle 
Control specifications nag: 

bit 7 0 = visible; I = invisible 
bits 6-0 control definitions 

Highlighted part 
0 = no part highlighted 

255 = control inactive 
Current value 
Address of control's definition procedure 
Address of control's default action procedure 
Data requested by definition procedure 
Reference constant assigned by application 
Pointer to control's color table 

To demonstrate how the different built-in controls affect the contents of a 
control record, we'll present the records for each of the four standard con­
trols. Watch how record items CtlFlag, CtlValue, CtlData, and CtlColor 
change from one record type to another. 

First, here is the control record for a simple button: 

CtlNext: LONG 
CtlOwner: LONG 
CtlRect: RECT 

Handle to next control (0 = last control) 
Pointer to window holding the control 
Button's RECT 
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CtlFlag: WORD 

CtlHilite: WORD 

CtlValue: WORD 
Ct!Proc: LONG 
CtlData: LONG 
CtlRefCon: LONG 
CtlColor: LONG 

Control specifications flag: 
bits 7-2 not used 
bits l-0 0 = single round comer outline 

l = bold round corner outline 
2 = single square corner outline 
3 = single square corner out I ine 
with drop shadow 

Highlighted part 
0 = no part high I ighted 
2 = button highlighted 

255 = control inactive 
AlwaysO 
$00000000 
Pointer to title string 
Reference constant assigned by application 
Pointer to control's color table 

color I = outline color when normal 
color 2 = interior color when normal 
color 3 = interior color when selected 
color 4 = text color when normal 
color 5 = text color when selected 
color 6 = special highlight color 
color 7 = thick outline color 

Bit 0 of the CtlFlag , when set to 1, has the Control Manager draw a heavy 
line around the button. This, in line with the User Interface Guidelines, 
should indicate to the user that a press of the Return key will be the same as 
clicking that button with the mouse button . This flag setting affects only the 
drawing of the button on the screen. Your application will have to handle the 
Return key key-down event separately, passing that event along to the con­
trol action that would occur when the button is clicked by the mouse. 

Defining the button's RECT, as in the CtlRect record item, must take into 
account the length of the text string that will be the title of the button. IfCtlRect 
is not wide enough for all of the button's title, the text will be cut short. 

The color table referred to in Ct!Color is a component color table like 
the Window Manager's color table. The color numbers you apply to each 
component refer to colors in QuickDraw's standard color table. A 0 in this 
record item will cause the default color table to be applied to the control. 

Next comes the check box control record: 

CtlNext: LONG 
CtlOwner: LONG 
CtiRect: RECT 

Handle to next control (0 = last control) 
Pointer to window holding the control 
RECT of box and tit le 
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CtlFlag: WORD 

CtlHilite: WORD 

CtlValue: WORD 
CtlProc: LONG 
Ct!Data: LONG 
CtlRefCon: LONG 
CtlColor: LONG 

Control specifications flag: 
bit 7 0 = visible; 1 = invisible 
bits 6-0 not used 

Highlighted part 
0 = no part highlighted 
3 = check box highlighted 

255 = control inactive 
0 = notchecked;nonzero = checked 
$02000000 
Pointer to title string 
Reference constant assigned by application 
Pointer to control's color table 

color 1 = outline color when normal 
color 2 = interior color when normal 
color 3 = interior color when selected 
color 4 = text color 
color 5 =color of the X 

Notice that the CtlRect is a rectangle that includes the space for the control's 
text area. That means that users don't have to be so precise in their mouse 
pointing to check or uncheck a text box. A click anywhere in the box or on 
the title will call the Control Manager. 

Similar to the check box record is the radio button control record. 

CtiNext: LONG 
CtiOwner: LONG 
CtiRect: RECT 
CtlFiag: WORD 

CtiHilite: WORD 

CtlValue: WORD 
CtlProc: LONG 
Ct!Data: LONG 
CtiRefCon: LONG 
CtlColor: LONG 

Handle to next control (0 = last control) 
Pointer to window holding the control 
RECT of button and title 
Control specifications flag: 

bit 7 0 = visible; 1 = invisible 
bits 6-0 family number 

Highlighted part 
0 = no part highlighted 
4 = radio button highlighted 

255 = control inactive 
0 = off; nonzero = on 
$04000000 
Pointer to title string 
Reference constant assigned by application 
Pointer to control's color table 

color I = outline color when normal 
color 2 = interior color when normal 
color 3 = interior color when selected 
color 4 = text color 
color 5 = color of the dot 
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We get a big difference, however, in the scroll bar control record. 

CtlNext: LONG 
CtlOwner: LONG 
CtlRect: RECT 
CtiFlag: WORD 

CtlHilite: WORD 

CtlValue: WORD 

CtiProc: LONG 
CtlData: LONG 

CtiRefCon: LONG 
CtlColor: LONG 

Thumb:RECT 
PageRegion: RECT 

Handle to next control (0 = last control) 
Pointer to window holding the control 
RECT of entire scroll bar 
Control specifications flag: 

bit 7 0 = visible; I = invisible 
bits 6-5 not used 
bit 4 0 = vertical scroll bar 

I = horizontal scroll bar 
bit 3 1 = right arrow 
bit 2 1 = left arrow 
bit 1 1 = down arrow 
bit 0 I = up arrow 

Highlighted part 
0 = no part highlighted 
5 = up arrow highlighted 
6 = down arrow highlighted 

255 = control inactive 
Current value, between 0 and data size 
minus view size 
$06000000 
Low-order WORD = view size 
High-order WORD = data size 
Reference constant assigned by application 
Pointer to control's color table 

color 1 =outline color 
color 2 = arrow color when normal 
color 3 = arrow color when selected 
color 4 = arrow box interior color 
color 5 = thumb interior color when 
normal 
color 6 = thumb interior color when 
selected 
color 7 = page region color 
color 8 = inactive color 

Thumb's rectangle 
Rectangle of thumb's slider region 

This record appends additional record items that hold the size of the thumb 
and the extent of the area the thumb can be dragged in. 
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CONTROLS AND EVENTS 

Since TaskMaster automatically handles mouse-down events in window 
frame controls (i.e., window scroll bars), we'll concentrate here on the steps 
required to link the Event Manager, the Control Manager, and your applica­
tion together when the user clicks on a control in a window's content region. 

Assuming the program is polling the Event Manager with TaskMaster 
(which calls GetNextEvent), TaskMaster will report a mouse-down event (in 
the "what" field of the task record) as well as the pointer to the window in 
which the event occurred (in the message field of the task record). With this 
information you can call FindControl. 

Among the input parameters passed to FindControl are the coordinates 
of the mouse pointer at the time of the mouse-down event. FindControl sets 
the whichControl parameter to the control handle. Then call the TrackCon­
trol tool, which works very much like MenuSelect. It takes control of the 
computer as long as the mouse button is still pressed. For example, in a scroll 
bar, TrackControl automatically lets you drag an outline of the thumb up and 
down the control bar, drawing it in the des ired place when you release the 
mouse button . When the mouse button is released , TrackControl passes an 
output parameter specifying the code number of the part just chosen by the 
user. Armed with this information , your application can execute a CASE 
structure to test for the control and part number, branching to your pre­
defined routines in response to the actions indicated by the control settings. 

TrackControl does one more important task for scroll bars. When you 
drag the thumb, TrackControl not only handles the display part of the scroll 
bar, but it a lso updates the control value (CtlValue) in the control's record, 
relative to the minimum and maximum settings you assign to the scroll bar. 
This action does not do the actual scrolling of the document or adjust the dis­
play of a value controlled by the scroll bar - your application must read 
what the new value is (GetCtlValue) and update either the scrolling or on­
screen value as adjusted by the drag of the thumb. 

Resizing a window that displays a control in its content region puts a 
little burden on your program to resize the control as well . Unlike the 
Window Manager, which automatically resizes its frame-based scroll bars 
when the window grows or shrinks, the Control Manager does not keep as 
watchful an eye on controls in the content region. If the window with such a 
control is growable, your program may have to do some fancy calculations 
about the new size of a window to both move and s ize the control so that it fits 
in the new window size. Consequently, you may wish to limit content region 
controls to windows that do not include grow and zoom boxes. 
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A good strategy to learn the ins and outs of the Control Manager is to 
work with controls managed by other managers, notably the Window Man­
ager for scroll bars and the Dialog Manager for simple buttons 0 Once you 
understand the basics , work your way up to radio buttons, check boxes, and 
free-standing scroll bars 0 



CHAPTER 13 

Where Do We Go from Here? 

I f you've been following Parts Two and Three of this book from beginning 
to end, you'll realize that while we have covered a great deal of ground, 

there are still several tool sets we haven't discussed, such as text, dialog, and 
sound tools. But we have shown you enough to start thinking about how an 
Apple IIGS application works from the programmer's view, and also how an 
application should work from the user's point of view. 

WHERE WEARE 

It should be quite clear by now that programming with the toolbox is more 
difficult than programming on the old Apple II ever was. The difficulty 
comes not from the complexity of the tools - they make a number of tasks 
rather easy - but from the much higher level of human-to-machine inter­
activity of today' s software design. Sure, you can still write programs for the 
JIGS in emulation mode, or even in native mode without all the fancy menus, 
windows, and controls. But that wouldn't be striving for the state of the 
programming art. 

Commercial software reaching store shelves today is far more sophisti­
cated in user interface and raw computing power than it was only a couple of 
years ago. Even public domain and inexpensive "user-supported" software 
is outclassing expensive commercial products of a few years ago. 
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NEXT 

Everyone's expectations about what a computer program should do and look 
like are rising quickly. Computer users won't have the patience for old­
fashioned, unfriendly-looking programs. 

The ante is higher. Your programming skills must match it if you want 
to get into the game. 

In this book, we've stripped the Apple JIGS toolbox of the complexities 
that frighten away first-t imers. We reached the heart of key issues about pro­
gram structure and accessing the tools from a programming language. But 
this is only one part of the learning process. 

The next step is to dig into the programming language of your choice. Since 
you now know where you're heading, it should be easier to think ahead to 
applying acquired language skills to actual applications. As you're learning 
the language or relearning the IIGS version of an old favorite, you won't feel 
as if you're learning language concepts in a total vacuum, even though the 
language's manuals may not be able to put it all together for you until the 
very end. You will be approaching the language with a well-defined sense of 
purpose. 

Every language will come with at least one sample program, hopefully 
one that provides sample source code examples for the major IIGS tool sets 
already tested and running. Study these samples . Make sure you com­
prehend the structure of the entire source code listing, paying particular 
attention to the way parameters are passed to tools and how their output 
parameters are retrieved for later use. 

After you've mastered the sample program, make a copy of the source 
code and start modifying parameters one at a time. Assemble or compile the 
listing to see how the parameter change affected the program. Experiment 
with only one or two parameters at first so you can see clearly whether your 
anticipated changes actually occurred in the compiled version . Do obvious 
things first, such as changing the size of a newly created window or 
removing a zoom box from a window frame definition. 

The real test of your understanding of the language and the toolbox will 
be to recreate on your own a program like the sample program. Type in an 
entire source code listing from scratch. Decide what you want it to do­
perhaps a variation of the sample program. Then write the program's source 
code. Compile it, link it, and if there were no errors in the compilation or 
linkage stages, run the program. Even if errors pop up , don't despair. Errors 
are simply reminders that you forgot something that the language needed. 

By the time you code your first solo program of any length, you should 
begin to feel comfortable with programming in this new and perhaps strange 
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environment. Before heading out on your own, gather a library of reference 
books , especially those from Apple listed in Appendix C. The Toolbox 
Reference volumes, in particular, will prove to be invaluable sources for tool 
call information. 

Also try to locate a local Apple user group, if you don't already belong 
to one. Often all it takes is a brief conversation with someone else who may 
have struggled with and solved the same problem you're having. There is so 
much to learn about the toolbox, that you may know parts of it better than 
others in the group . They, in turn , may know more about other areas that can 
help fill the gaps in your knowledge. User groups were at the foundation of 
the personal computer industry , where enthusiasts could share accomplish­
ments and problems with each other. The viability of the user group as a sup­
port mechanism for programmers is very much alive today. Take advantage 
of it if you can. 

A potential pitfall for programmers meeting the event-driven and toolbox 
world for the first time is that it is easy to focus on the wrong end of the pro­
gramming task first. You 've seen and perhaps marveled at the basic structure 
of a toolbox program and can't wait to apply it to a program of some kind. 
But that may be the wrong approach. Instead of looking at the tools and ask­
ing, "What can I build with these?" forget about the tools. Instead, look at 
the user interface, as exemplified in the ProDOS 16 Finder and any Macin­
tosh application and ask, "What do I want my IIGS to do?" 

Dream about the application first - what real-world situation it may 
simulate , how the mouse and keyboard input will flow smoothly for the user, 
how it can make a normally dull task fun - then figure out what tools you ' II 
use to accomplish those goals. If you begin by focusing on the tools, you run 
the risk of constricting creative program design ideas to your current level of 
expertise with the tools. By imagining creative applications, you will force 
yourself to dig deeper into the toolbox to uncover tools you might otherwise 
overlook. That's an excellent way to grow as an Apple IIGS programmer. 

TRAPS 
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APPENDix A 

A Short Course in Hexadecimal 
and Binary Math 

O ur first counting encounters as children were in the decil)lal numbering 
system. That may be fine for humans, but computers at their lowest 

levels respond to binary representations of the signals running through the 
microchips. If, as programmers, we are to communicate effectively with the 
computer, we will have to learn its way of counting. Therefore, it is vital to 
understand not only the binary numbering system, but a more convenient 
system for conveying binary information: the hexadecimal numbering 
system. 

BACK TO SCHOOL 

As children, we learned first to count from one to ten. When we reached ten, 
numbers increased from single to dual digits, and the rightmost digits started 
counting over again, from zero to nine. We soon learned that numbers, as we 
knew them, had columns that represented ones, tens, hundreds, thousands, 
and so on. If we were looking at a three-digit number, and a 7 was in the 
leftmost column, that meant that the number would be at least 700. Each 
additional digit to the left indicated another factor of ten had been added to 
the number. Therefore, a 7 in the fourth column meant that the number 
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would be ten times 700, or 7000. This dependence on the factor of ten is the 
reason for the numbering system's name, decimal ("deci" is derived from 
"deka," the Greek word for"ten"). We also call it base 10. 

From Deci to Hexadeci 

Now imagine a numbering system that allows you to signify more than ten 
numbers in a single digit. In such a system, you start counting up from zero 
as in the decimal system. But when you reach nine , the next number won' t 
leap to a two-digit number. Instead, letters, signifying the values equivalent 
to ten and up, appear in the single column number. After nine, therefore, 
would come the letter A. Following A comes B, and so on until you reach the 
letter F, which is equivalent to the decimal number fifteen. The next number 
in this new series then becomes 10 - not the ten we're accustomed to 
seeing, but the value one-zero in the hexadecimal numbering system. 
"Hexadeci" is also derived from the Greek, this time for the number sixteen. 
In other words, instead of columns labeled "ones, tens , hundreds," and so 
on, they are labeled "ones, sixteens, two-hundred-fifty-sixes ," and so on. 
Each column increases by a factor of sixteen , and values in this system are 
called base 16 values. 

And Then to Binary 

At the other extreme is the binary numbering system, which has at most, one 
of two different numbers - zero and one - in any column. Columns 
increase to the left by a factoroftwo, making the column labels "ones, twos , 
fours, eights , sixteens , thirty-twos ," and so on . As you might guess, we' re 
in base 2 territory . 

Comparing binary to hexadecimal numbers, it takes a five-digit binary 
number to indicate the value for sixteen (I 0000) , but only a two-digit 
number in hexadecimal (FO). 

SIGNIFICANCE 

All three numbering systems share a feature that is hardly apparent until you 
begin working with computer data. A digit at the rightmost end of a number 
is said to be the Least significant digit because its impact on a number's value 
is usually small compared against those to the left. The digit at the far left of 
the number (regardless of its length) is called the most significant digit. A 
change to the most significant digit has the greatest effect on the value of a 
number. 
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For example, in the decimal number 1005, the most significant digit is 
the I, standing in the thousands column, while the least significant digit is 
the 5 in the ones column. If you increase the l by only 1, you nearly double 
the value of the number; if you raise the 5 by 4 to a 9, the value increases only 
slightly. 

In computer numbers, which are predominantly hex and binary num­
bers, bytes of data are often grouped together as integers (2 bytes), long 
integers (4 bytes), and others (1 byte is represented by 8 binary digits or its 
corresponding 2-digit hexadecimal number). When a number represents the 
data in a 2-byte integer, one byte will be the least significant byte, and the 
other the most significant. The order of these bytes is the same as the num­
bers we just discussed. Therefore, in the hex integer $A478, $A4 is the most 
significant byte, $78 the least significant byte. 

When describing data in multiple-byte structures, such as integers and 
long integers, it is very important to respect all significant digits that the 
computer expects. For example, if the data consists of 12 bits of information 
(in the form of three 4-bit binary groups), you must specify the number with 
a leading zero in its hexadecimal representation. Therefore, if the informa­
tion component of an integer can be represented by 4A3, the data must be 
entered in the program as 04A3, the leading zero satisfying the computer's 
need for a full integer. In other words, all four hex digits are significant in an 
integer data structure. 

NOTATIONS 

When discussing numbers from more than one numbering system, things can 
get a bit confusing, especially when decimal and hexadecimal numbers are 
tossed about in the same sentence. To help reduce confusion, several nota­
tion conventions are in common use today. 

The notation you'll see most of the time is one that distinguishes a 
hexadecimal number from other numbers. A hexadecimal number will be 
preceded by a dollar sign($), as in $20. 

Binary numbers do not have a preceding character like the hexa­
decimal's dollar sign. But in computers, binary numbers are usually grouped 
in eights (or sometimes fours), and are generally recognizable by their lack 
of digits other than ls and Os. 

Another convention you may see (although not in this book) is to 
explicitly note the number base of the number in a parenthetical subscript 
after the number. Therefore, the hex number $20 may also be written 2016• 

If you use this notation, it is assumed that you will use it for all numbers, 
including decimal numbers. 
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HEX AND BINARY RELATIONSHIPS 

Study the following table of decimal , hex, and binary numbers. 

Decimal Binary Hexadecimal 

0 00000000 0 
1 00000001 1 
2 00000010 2 
3 00000011 3 
4 00000100 4 
5 00000101 5 
6 00000110 6 
7 00000111 7 
8 00001000 8 
9 0000 1001 9 

10 00001010 A 
II 0000 lOll B 
12 00001100 c 
13 0000 I 101 D 
14 00001110 E 
15 00001111 F 
16 00010000 10 
17 0001 0001 II 
18 00010010 12 
19 00010011 13 
20 00010100 14 

Noti~e in particular the relationship between hexadecimal and binary num­
bers at the critical juncture where single-digit hex numbers become two-digit 
numbers. This relationship will help you to convert binary numbers to 
hexadecimal and vice versa. 

CONVERSIONS 

Programming a computer in assembly language or a high-level language 
such as C and Pascal often requires the conversion of numbers from one base 
to another. Hex and binary numbers are relatively simple owing to their 
special arithmetic relationships. Decimal numbers, however, are not so 
easy. 
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Hex-to-Binary and Back 

Because a single hex digit represents the values zero to fifteen, and since 
those same values are encompassed in the binary numbers 0000 to llll , you 
can convert hex to binary and vice versa by simply dividing a long number 
into four-digit binary or single-digit hex numbers and then stringing the 
resulting conversions together. 

Using the table presented above, you can look up a binary nibble or 
individual hex number to find the corresponding conversion. Let's say you 
wish to convert the binary number 0011 II 01 into hexadecimal. First look up 
the most significant nibble in the table, where you'll find the hex number$3. 
Binary 1101 corresponds to $0. Joining these two hex digits in the same 
order as their binary counterparts produces the hex value $30. 

Conversely, if the hex number is $1 AOB, look up each single hex digit 
in the table and reassemble the binary equivalents in the same order: 0001 
101000001011. 

Decimal Conversions 

Converting numbers to or from decimal is more difficult, because neither 
binary nor hex numbering systems have much in common with the decimal 
system to facilitate conversion. While manual conversion is possible, most 
programmers invest in programmers' calculators that do conversions at the 
press of a few keys. 

Two popular models near most programmers' sides are the Texas 
Instruments TI-Programmer and the Hewlett-Packard HP-16C. Both models 
were designed for programmers and the kinds of math or conversion prob­
lems they encounter. Between the two models, the Texas Instruments is 
easier to use because its features have been pared down to bare essentials. 
Binary-to-hex conversions have to be done somewhat manually , since the 
calculator display does not show binary numbers. On the calculator's keypad 
overlay are printed the four-digit binary equivalents of the sixteen hex digits. 
To convert from hex to binary, you essentially use the keypad as a lookup 
table, like the table presented above. 

The Hewlett-Packard model is more expensive and is loaded with fea­
tures you may not need, at least in your early programming days. This cal­
culator, however, does display binary numbers , and provides a respectible 
amount of programming ability itself. It 's not the kind of calculator you're 
likely to pick up and start using without studying the manual a bit, but it does 
offer a great amount of flexibility in its binary math functions. 
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BOOLEAN ARITHMETIC 

Assembly language programmers in particular will be faced with performing 
many tests inside their programs for the presence of a particular number in 
one of the microprocessor's registers. Since these numbers are stored in the 
chip in binary format, the tests are performed in binary. 

The common way to test the presence or absence of a particular bit in a 
long series of bits (in a byte or two, for instance) is to perform Boolean 
algebra on the entire string of bits. Based on fundamental work performed by 
English mathematician George Booie ( 1815-1864), Boolean algebra as used 
today in computer math is a convenient way to dissect the bit contents of a 
byte or more of data. 

Boolean math looks upon the 1 and 0 not as numeric values, but as equi­
valent to logical TRUE and FALSE, respectively. Therefore, in comparing 
the third digits of two binary numbers, the result of Boolean addition is 1 
only if the digits in both numbers are also I. In other words, the result is 
TRUE if both numbers show a TRUE in those slots. This operation is usually 
called an AND operation: TRUE AND TRUE yields a TRUE; TRUE AND 
FALSE yields a FALSE, because one of the two values was not TRUE. 

TRUE 

AND TRUE 

TRUE 

TRUE 

AND FALSE 

FALSE 

As applied to a long binary number, Boolean logic works one bit at a time. 
The result of an AND is not the sum of the two binary numbers, but the log­
ical result of their respective TRUE and FALSE values. For example, if we 
have a binary number consisting of all 1 s (I I I I 1111), we can test for the 
presence of a I in the least significant digit by performing an AND operation 
with the number 0000 OOOI. The result is 0000 000 I, because the only loca­
tion that is TRUE on both binary numbers is the least significant digit. 

I I I I 1111 

AND 0000 0001 

00000001 

We can use a Boolean to test the presence of more than one bit at a time. For 
instance, in the following example, three bits are tested, only two of which 
test as being present in the topmost number. 
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10110010 
AND 1001 1000 

10010000 
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Now, just because the Boolean tests are performed on the binary numbers, 
that doesn't mean that your program is limited to using the binary figures. In 
the above example, you can just as easily write the problem using hexa­
decimal numbers. 

$B2 
AND $98 

$90 

The microprocessor is still doing the Boolean in binary. But by doing the 
work in hexadecimal, you are relieved from risking errors in typing correct 
binary numbers . 

Boolean Variables 
You will also encounter a variable type called a Boolean. This is not strictly 
connected with Boolean algebra. In the case of a Boolean variable , the com­
puter is looking for (or perhaps sending back to your program) a value cor­
responding either to a TRUE or a FALSE. FALSE is always represented by 
a 0. That 0 may be in the form of a full 2-byte integer ($00), so be sure to 
include all significant digits. Computers usually recognize a TRUE as any 
nonzero number. It could be a simple $01 or, more often , the hex value $FF. 



APPENDix B 

ASCII Table 

W hile American Standard for Information Interchange (ASCII) codes 
are understood by all personal computers when they communicate 

with each other, some computers, notably the Apple II series, store charac­
ters internally using a slightly different version of the ASCII code. The order 
of characters is the same for both versions, but the actual code numbers are 
different. 

When you place text characters in your program, you usually do so with 
the actual letters and numbers, rather than their ASCII values. You should 
have reference to these values, however, in case your program needs to send 
commands to a printer or when you debug your program. 

The following table presents both standard and Apple II ASCII codes. 
Decimal and hexadecimal values for both types appear in their respective 
columns. 

ASCII Apple ASCII 

Hexa- Hexa-
Character Decimal decimal Decimal decimal 

NUL 0 00 128 80 
·soH 1 01 129 81 
STX 2 02 130 82 
ETX 3 03 131 83 
EOT 4 04 132 84 
ENQ 5 05 133 85 
ACK 6 06 134 86 
BEL 7 07 135 87 
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ASCII Apple ASCII 

Hexa- Hexa-
Character Decimal decimal Decimal decimal 

BS 8 08 136 88 
HT 9 09 137 89 
LF 10 OA 138 8A 
VT II OB 139 88 
FF 12 oc 140 8C 
CR 13 00 141 80 
so 14 OE 142 8E 
SI 15 OF 143 8F 
OLE 16 10 144 90 
DCI 17 II 145 91 
DC2 18 12 146 92 
DC3 19 13 147 93 
DC4 20 14 148 94 
NAK 21 15 149 95 
SYN 22 16 150 96 
ETB 23 17 15 1 97 
CAN 24 18 152 98 
EM 25 19 153 99 
SUB 26 IA 154 9A 
ESC 27 18 155 98 
FS 28 IC 156 9C 
GS 29 10 157 90 
RS 30 IE 158 9E 
us 31 IF 159 9F 
Space 32 20 160 AO 
! 33 21 161 AI 

34 22 162 A2 
# 35 23 163 A3 
$ 36 24 164 A4 
% 37 25 165 A5 
& 38 26 166 A6 

39 27 167 A7 
( 40 28 168 A8 
) 41 29 169 A9 
* 42 2A 170 AA 
+ 43 28 171 AB 

44 2C 172 AC 
45 20 173 AD 
46 2E 174 AE 
47 2F 175 AF 
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ASCII Apple ASCII 

Hexa- Hexa-
Character Decimal decimal Decimal decimal 

0 48 30 176 80 
1 49 31 177 81 
2 50 32 178 82 
3 51 33 179 83 
4 52 34 180 84 
5 53 35 181 85 
6 54 36 182 86 
7 55 37 183 87 
8 56 38 184 88 
9 57 39 185 89 

58 3A 186 8A 
59 38 187 88 

< 60 3C 188 BC 
= 61 3D 189 BD 
> 62 3E 190 BE 
? 63 3F 191 BF 
@ 64 40 192 co 
A 65 41 193 Cl 
B 66 42 194 C2 
c 67 43 195 C3 
D 68 44 196 C4 
E 69 45 197 C5 
F 70 46 198 C6 
G 71 47 199 C7 
H 72 48 200 C8 
I 73 49 201 C9 
J 74 4A 202 CA 
K 75 4B 203 CB 
L 76 4C 204 cc 
M 77 4D 205 CD 
N 78 4E 206 CE 
0 79 4F 207 CF 
p 80 50 208 DO 
Q 81 51 209 Dl 
R 82 52 210 02 
s 83 53 211 03 
T 84 54 212 04 
u 85 55 213 D5 
v 86 56 214 D6 
w 87 57 215 07 
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ASCII Apple ASCII 

Hexa- Hexa-
Character Decimal decimal Decimal decimal 

X 88 58 216 D8 
y 89 59 217 D9 
z 90 SA 218 DA 
[ 91 5B 219 DB 
\ 92 5C 220 DC 
) 93 50 221 DD 

94 5E 222 DE 
95 SF 223 DF 
96 60 224 EO 

a 97 61 225 E1 
b 98 62 226 E2 
c 99 63 227 E3 
d 100 64 228 E4 
e 101 65 229 E5 
f 102 66 230 E6 
g 103 67 231 E7 
h 104 68 232 E8 

105 69 233 E9 
j 106 6A 234 EA 
k 107 6B 235 EB 
I 108 6C 236 EC 
m 109 60 237 ED 
n 110 6E 238 EE 
0 111 6F 239 EF 
p 112 70 240 FO 
q 113 71 24 1 Fl 
r 114 72 242 F2 
s 115 73 243 F3 
t 116 74 244 F4 
u 117 75 245 F5 
v 118 76 246 F6 
w 119 77 247 F7 
X 120 78 248 F8 
y 121 79 249 F9 
z 122 7A 250 FA 
{ 123 7B 251 FB 

124 7C 252 FC 
125 7D 253 FD 
126 7E 254 FE 

DELETE 127 7F 255 FF 
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At the beginning of the table are thirty-two special characters, which owe 
their heritage to the old clackety teletype machine days. A number of these 
signals are still in use today for controlling printers and modems and for 
other external communications jobs that personal computers perform. Only 
a handful of them are commonly used, but we provide a list of all their 
meanings. 

Character Meaning 

NUL null character 
SOH start of heading 
STX start of text 
ETX end of text 
EOT end of transmission 
ENQ inquiry 
ACK acknowledge 
BEL bell (beep) 
BS backspace 
HT horizontal tab 
LF line feed 
VT vertical tab 
FF form feed 
CR carriage return 
so shift out 
SI shift in 
OLE data link escape 
DC! device control I 
DC2 device control 2 
DC3 device control 3 
DC4 device control4 
NAK negative acknowledge 
SYN synchronous idle 
ETB end of transmission block 
CAN cancel 
EM end of medium 
SUB substitute 
ESC escape 
FS file separator 
GS group separator 
RS record separator 
us unit separator 



APPENDix C 

For Further Reading 

A pple Computer produces a series of programmer' s guides to toolbox 
programming on the Apple IIGS. A serious programmer will have most 

of these volumes at hand when designing applications programs. All vol­
umes are published by Addison-Wesley. The exact publishing schedule of 
the series was not available as this book goes to press. 

Technical Introduction to the Apple IIGS 

Programmer's Introduction to the Apple IIGS 

Apple JIGS Hardware Reference 

Apple IIGS Firmware Reference 

Apple IIGS Toolbox Reference: Volume I 

Apple 1/Gs Toolbox Reference: Volume II 

Apple IIGs ProDOS 16 Reference 

If you are just starting to build your reference library, then start with Pro­
grammer's Introduction and the two Toolbox Reference volumes. These will 
carry on from the knowledge gained in this book. 

Additionally , Apple will be publishing Programmer's Workshops for 
assembly language , C, and Pascal. These are designed primarily for serious 
program developers, and include editor, compiler (or assembler), and 
linker, as well as macro libraries that allow you make calls to the entire 
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toolbox from any of those languages. All three workshop compilers produce 
object modules in the standard format that facilitates linking modules from 
two or three languages into a single load file . Contact Apple Computer 
directly for more information about the Apple IIGS Programmer's 
Workshops. 

Apple Computer Inc . 
20525 Mariani Ave. 
Cupertino, CA 95014 
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activate event: A special type of event that signals your program that a 
particular window has been made the active window. 

active window: The window on the desktop into which typed text or 
mouse-controlled drawing will appear - usually denoted by horizontal 
lines in the title bar and active scroll bars if so equipped. 

aler t window: A window drawn by the Menu Manager with a double 
border and generated primarily by the Dialog Manager to request further 
input from the user or to signal an error condition. 

allocate: To reserve an area of memory for a collection of data. 

application event: An event type reserved for use by programmers 
building applications with nonstandard events. 

ASCII: The American Standard Code for Information Interchange, a table 
of values assigned to each letter, numeral, punctuation mark, and certain 
control characters. 

auto-key event: An event signifying that the user has pressed a key and 
held it down unti l the Repeat Delay time has expired, causing the key to 
type multiple characters. 

base: The numbering system (e.g., binary, decimal, hexadecimal) to 
which a number belongs; in math, signified as a subscript in parentheses, 
such as 4333(16); in computers, generally signified by the construction of 
the number, such as two groups of four binary numbers, a hexadecimal 
preceded by a dollar sign (S), and no extra markings for a decimal number. 

233 
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bit: the smallest unit of information inside a computer, commonly sig­
nified with either a l or 0. 

bit map: Macintosh terminology for a pixel map. 

boundary rectangle: The rectangular coordinates that both define the 
extent of a pixel image and impose a coordinate system on the image. 

b utton : A control whose click by the mouse pointer usually produces 
immediate action . 

byte: A group of 8 bits in memory . 

check box: A control consisting of a small square with text (its title) to its 
immediate right; clicking the mouse pointer on this control causes an "X" 
to fill the box, meaning that the particular feature has been selected. 

choose: To indicate a particular option on a pull-down menu . 

classic desk accessory (CDA): a desk accessory that can run either in 
native mode or emulation mode. 

clip: To restrict any drawing operation to fall inside a particular boundary; 
any drawing outside that boundary is not displayed. 

clipping region: An area on the screen to which any drawing operation 
will be clipped . 

close box: A small box at the left edge of a document window's title bar; 
c licking the mouse pointer here should remove the window from view. 

close region: The area in the window frame that is to be clicked by the 
mouse to remove a window from view; in standard document windows , 
the region is inside the outline of the close box . 

color table: One of a possible sixteen lookup tables in memory that lists 
four (640 x 200 mode) or 16 (320 x 200 mode) color values, which are 
accessed by their respective number down the table . 

color value: A 12-bit designation (in a 16-bit integer) of the intensity of 
red , green, or blue in a particular color in the color table; a color value of 
$0FOO indicates a maximum of red and absence of green or blue . 

compaction: The act of squeezing together all segments of movable data 
in memory to make room for additional segments. 

content region: The area of a window in which drawing actions (graphics 
and text) take place. 

control: A screen object whose manipulation by the mouse influences 
the display of information in a window or operation of the program with 
respect to that window. 

control record: A data structure consisting of specifications for a control. 
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cursor: A small iconic screen image appearing in black only that shows 
the user where the mouse pointer is located; the image can change in dif­
ferent regions of the screen. 

default: The setting of a parameter or series of parameters that the 
Toolbox makes unless other values are specifically defined. 

desk accessory: A small applications program whose window overlaps 
the underlying application's window; can be either a classic or new desk 
accessory . 

desktop: The background of the active screen area upon which are over­
laid the menu bar, windows, icons, and other objects. 

dial: A control, often designed as an onscreen metaphor for an analog 
control from the real world, such as a slider or meter dial; used to make 
quantitative adjustments in a program. 

dialog box: A window of the alert type that prompts the user for addi­
tional information before preceding with program execution. 

disabled: A menu title, menu item, or control that is not functional at a 
particular stage in the program. 

DOC: The Digital Oscillator Chip, created by Ensoniq, at the core of the 
Apple IJGS sound circuitry. 

document window: The standard window type drawn with a single-pixel­
wide outline; a title bar, scroll bars, and other elements may be added as 
desired . 

double click: Two clicks of the mouse in rapid succession. 

drag: To reposition an object on the screen by placing the mouse pointer 
on that object, pressing and holding down the mouse button , rolling the 
mouse around its work surface, and releasing the mouse button to plant 
the screen object in its new position. 

drag region: A region in a window (usually on the title bar) in which the 
mouse pointer must be placed before the user can drag the window. 

emulation mode: The operational mode in which the Apple IJGS behaves 
likes an enhanced Apple Ile or Apple He. 

enabled: A menu title, menu item, or control that responds to mouse 
action . 

event: The report of an occurrence, such as a press of a keyboard key or 
mouse button, that a program uses to branch to an appropriate series of 
action instructions to effect a response to that occurrence. 

event mask: An integer that filters certain kinds of events from reporting 
their occurrence to a program. 

event message: A part of the event record that contains additional infor­
mation regarding an event. 



236 -------------- THE APPLE HGS TOOLBOX REVEALED 

event queue: A section of memory devoted to temporarily storing events 
in a first-in, first-out order until the program fetches them. 

event r ecord : A data structure containing specifications about an event. 

event type: An identifying code specifying the nature of the event 
occurrence. 

fill pattern : An 8-by-8-pixel image repeated over and over that can be 
used to color some or all of a grafport. 

Finder : The toolbox-based operating system extension of Pro DOS 16 that 
facilitates file operations by the use of icons and pull-down menus. 

global coordinates: The coordinate system assigned to the visible dis­
play area of an Apple IIGS screen when programming with the toolbox; 
the top left corner is assigned the point (0,0). 

GLU: An integrated circuit that performs many miscellaneous functions 
on a circuit board, acting as the "glue" that ties other major chips together. 

grafpor t: A drawing environment consisting of a coordinate system and 
many specifications (e.g., pen size, background color, and text font) 
managed by QuickDraw. 

handle: A pointer to a master pointer, which, in turn, points to a place in 
memory that may move during execution of a program. 

high-level language: A programming language, such as C and Pascal, 
that generally insulates the programmer from the computer's architecture. 

highlight: To display a menu title, menu item, or control in a color oppo­
site its normal color to indicate that it is selected. 

hot spot : The single coordinate point in a cursor image that coincides with 
the location of the mouse pointer on the screen. 

K: The abbreviation for kilobyte and kilobit. 

key-down event: An event signifying that a keyboard key has been 
pressed. 

kilobit: A unit of measure for memory chips, equaling 1024 bits. 

kilobyte: A unit of measure of computer memory and disk drive capacity, 
equaling 1024 bytes. 

library: A collection of prewritten routines that can be merged into a 
program. 

local coordinates: A coordinate system imposed on a window by 
QuickDraw II, totally independent from the global coordinates of the 
screen; local coordinates do not change as the window is dragged across 
the screen. 

long integer: A data type available in most programming languages con­
sisting of 4 bytes (32 bits) of information. 
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mark: A character that can be programmed to appear next to a menu item 
that turns on a mode or other operation. 

master pointer: A pointer, in a fixed memory location , that keeps track 
of movable blocks of memory. 

megabyte: A unit of computer memory or disk drive capacity equaling 
I ,048,576 bytes. 

menu: A list of options from which the user can choose. 

menu bar: An area extending across the top of the screen containing the 
titles of available menus. 

menu item: A si ngle choice within a list of choices in a pull-down menu . 

menu string: A text string in memory containing information about titles, 
items , and item modifiers for a given menu bar. 

menu title: A word or color patch in a menu bar indicating that a menu of 
related items can be pulled down with the mouse. 

modifier key: One of several noncharacter keys on the keyboard that 
influences the meaning of a character key when both are pressed 
simultaneously. 

mouse-down event: A report that the user has pressed the mouse button. 

mouse-up event: A report that the user has released the mouse button . 

native mode: The operational mode of the 65816 microprocessor in which 
the chip manages information internally in 16-bit wide paths. 

new desk accessory (NDA): A desk accessory program that can function 
only atop native mode programs. 

null event: An event signifying no event has taken place. 

object module: A disk fil e containing the compiled version of a program. 

owning window: The window in which a control is drawn . 

part code: An integer signifying a component of a control. 

pen state: A list of specifications about the pen in a grafport; includes 
information about the pen's coordinate location , size, pattern, and 
transfer mode. 

pixel: A single dot on the video monitor. 

pixel image: A graphics picture consisting of a rectangular grid of colored 
pixels. 

pixel value: the 2-bit (in 640 mode) or 4-bit (in 320 mode) representation 
of a pixel's color on the screen . 

point: A location in a QuickDraw II coordinate plane signified by a hori­
zontal and vertical coordinate. 
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pointer: A data type that holds the address of a location in memory. 

polygon: A shape defined by enclosing straight lines. 

pop: To remove an item from a stack. 

por t: In QuickDraw II, short for grafport. 

port rectangle: A rectangle defining what portion of a pixel image the 
grafport may draw into. 

push: To add an item to a stack. 

radio button: A control, usually in groups of two or more, consisting of a 
small circle and text running to its right; clicking on this control usually 
de-selects others in the group. 

RAM: The acronym for random access memory. 

RAM tools: The toolbox routines contained on the ProDOS system disk 
and loaded into RAM when needed. 

random access memory: The type of memory inside a computer, more 
accurately called read/write memory, that allows information to be 
written to it and read from it. 

read-only memory: The type of memory that can only be read; the Apple 
IIGS ROM contains many of the toolbox routines. 

rectangle: A shape definition as defined by two coordinates, the upper 
left and lower right comers of the area. 

region: An area in a grafport of any shape or of multiple shapes. 

register: A temporary storage area inside a microprocessor; some reg-
isters have only one function, while others are general-purpose. 

relocatable: The Macintosh equivalent of movable. 

ROM: The acronym for read-only memory. 

ROM tools: The toolbox routines embedded into the ROM chip. 

SANE: The Standard Apple Numeric Environment, a preprogrammed 
arithmetic environment built into the toolbox. 

65816: The part number of the microprocessor chip at the core of the 
Apple IIGS. 

size box: A small box at the lower right corner of a document window that 
can be dragged to adjust the size of the window. 

size region: The area of a document window frame inside a size box that 
responds to the dragging of the mouse for adjusting the size of a window. 

stack: An area in memory that is used as temporary storage space for infor­
mation that must be passed to and from toolbox routines. 

stack pointer: A 65816 register that always contains the memory address 
of the top of the stack . 
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standard color table : The color table in force if no other color table is 
specified by a program. 

string: A series of text characters. 

structure r egion: The area occupied by both a window 's content region 
and window frame. 

toolbox: Collectively, the preprogrammed routines both built into the 
Apple UGS ROM and supplied in the ProDOS 16 system disk. 

tool locator : Toolbox routines that assist a program in loading specific 
tool sets into memory for the program to use. 

top of the stack: The open end of the stack to which items are pushed and 
from which items are popped. 

transfer mode: A way of specifying how pixels in a pen and in an existing 
pixel image are to combine when overlapped. 

update: To redraw that part of a window's content region that has been 
exposed by the adjustment of window locations on the screen. 

update r egion: The area of a content region exposed by the adjustment of 
window locations and requiring redrawing to fill in the blank space. 

window: An object on the screen in which text and graphics information is 
displayed. 

window event: An event signifying that some action has occurred that 
affects the display of one or more windows on the screen. 

window frame: The overlaying border of a window, often consist ing of a 
title bar, scroll bars, and other components. 

word : A group of 16 bits of information. 
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Boole , George, 97, 222 
Boolean arithmetic, 97, 222-223 
BoundsRect, 125-126 
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Character set, 22 
Check boxes, 202 
Close box, 167 
Codes, event, 156-157 
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boundsRect, 125- 126 
custom table, 129-130 
image width, 124-125 
menu, 197 
multiple tables, I 30 
pixel, 127 
standard table, I 27-129 
window frame, 177- 179 
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Compatibility, I 0-11 
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high-level punctuation, 49 
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Conversion, 220-221 
CPU. See Central processing unit 
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Cursors, 144-148 

D 

Data 

image and mask, 145-146 
multiple, 148 
onscreen, 146-148 

area, 171 
custom, 98-99 
fixed length, 97 
getting and settiong, 95-96 
private, 96 
structures, 98, 119-120 
types, 96-99 
variable length, 98 

Decimal conversion, 221 
Desk accessory events, 153 
Desk Accessory Manager, 7 8-79 
Desktops, 164 
Device driver events, 153 
Dialect,49 
Dialog box, 75,77 
Dialog Manager, 75-77 
Digital Oscillator Chip (DOC), 75 

E 

Editor, 42-43 
see also Line Editor 

Electricity, 16-17 
Emulation mode, 11 
Engine, 5-7 
Event Manager, 74-75, 105, 149-161, 

181-183 
Event message, 158 
Event queue, 106 
Event record, 150 
Events, 105-107 

F 

codes, 156-157 
and controls, 209-210 
decisions, I 08-109 
loop, 106-107 
masking, 160-161 
and menus, 197-199 
mouse, 197-198 
priorities, 154-155 
program structure, 108 
records, 155-160 
types, 150-153 
and windows, 181-183 

File Operations, 78 
Flags, 35-36 

modifier, 159-160 
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Glossary, 233-239 
Grafports, 139-143 

multiple, 143-144 
record, 140-143 

Graphics . See QuickDraw II 
Graphingcoordinates, 115-120 
Grow box, 168 

H 

Handles, 33-35 
Hertzfeld, Andy, 152 
Hexadecimal system, 217-223 

I 

IBM personal computer, II , 61, 63 
Information bar, 167 
Input, 86-87 

parameters, 84-85, 87-88 
Integrated circuit chip, 6 
Interpreter mechanics, 51-52 
Irregularshapes, 137-139 

regions, 137-139 
see also specific shapes 

K 

Keyboard events, 151 , 199 
Keycommands, 192 

L 

Languages,39-42,212 
choosing, 52-53 
precision, 41-42 
standard, 49-50 
see also specific types of 

languages 
Libraries 

high-level, 50 
see also Macro libraries 

Line Editor, 77 
Linker, 48 
Load file, 50 
Loading, 37 

M 

Machine language, 40-41 
Macro libraries, 47 
Master pointer, 33 
Mega II chip, II 
Memory, 7-10,24-28 

address, 25 
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banked, 26-27 
management, 65 
Manager, 65-71 
map, 25-26,27-28 
RAM, 7-9,13,20,24,27,67 
ROM,9-10,13 ,24,27,67 

Menu Manager, 72,187-199 
Menus 

changing midstream, 199 
choosing, 188-189 
colors,197 
concepts, 187-190 
creating, 193-196 
enabled and disabled, 190 
andevents,197-199 
item, 188-189 
item line Jist, 193-194 
modifiers, 194-196 
for programmers, 190-191 
system menu bar, 188 
terminology, 191-193 
titles, 188 

Microprocessor, 6 
architecture, 45 
bits, 19-20 

Modality, I 03-105 
no modes, 104 
unlearning, 105 

Modifierflags, 159-160 
Modularity, 109-110 
Motherboard,6, 15 
Mouse, 150-151,159, 197-198 

N 

Native mode, 11 
Nibble, 21 
Nonevents, 101-102 
Notation, 219 
Null event, 153 

0 

Object code, 44 
Opcodes,47 
Operating system, 37 
Output, 84, 86-87 

parameters, 86,88 

p 

Pen, 119, 133-136 
patterns , 135-136 

Pins, 15 
Pixel 

color, 127 
images,115, 118-119,120-126 

Pointers, 30-33 
Points, 118, 119 
Polygons, 137 
Port, 49 
Program counter, 37 
Programming workshops, 53-54 
Programs, 12-13, 212-213 

Q 

documenting, 43 
menus, 190-191 
quitting, 37 
running, 37 
translating words into, 43-44 
windows, 168-17l 
workings, 36-38 

QuickDraw II, 71-72, 113-148 
drawing space, 116-117 
graphing coordinates, 115-120 
vs. QuickDraw, 114-115 

R 

RAM. See Memory 
Records, 91-99 

basics, 92-93 
control, 205-208 
default, 94 
event, 155-160 
as pointers, 93-95 
as snapshots, 93 
task, 184 
windows, 173-176 
see also Data 

Rectangles, 119 
Registers 

shuffled, 46-47 
65816, 45 

ROM. See Memory 

s 
SANE (Standard Apple Numerics 

Environment), 79 
Scan line, 131 
Scan Line Control Byte, 131-133 
Screen resolution, 114-115 
Scroll bar, 168, 171-172, 203-205 
Shell, 37 
65816 chip, 7, II 

registers, 45 
Software, 211 
Sound Manager, 75 
Source code, 44 
Special characters, 194-196 
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Stack, 29 
inverted, solid , 29-30 

Stack pointer, 30-32 
Status byte, 35 
Status word, 35 
String, 98 
String Width, 84, 88, 89 
Switch events, 152 
System menu bar, 188 

T 

TaskMaster, 183-186 
calling, 183-184 
future, 186 
open-ended, 184-186 
record, 184 

Timer, 158-159 
Titlebar, 166-167 
Titles, menu, 188 
Toolbox programs. See Tools 
Tools, 59-89 

function, 81-82 
locator, 68-69 
and Macintosh, 63-65 
miscellaneous, 79-80 
organization, 67-68 
parameters, 82-89 
road map, 68-80 
set, 68, 80-81 
skill, 65 
and user interface, 61-63 

TrackControl, 209 
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u 

User Interface Guidelines, 61 , 63 

w 
Window events, 151-152 
Window Manager, 73, 163-186 
Windows, 163- 186 

concepts, 164- 165 
componentS, 166-168 
creating new, 176-177 
desktops and, 164 
and events, 181 - 183 
frame colors, 177-179 
frame definition, 175 
full size, 176 
order, 174-175 
programmer's, 168-171 
records, 173-176 
reference constant, 175 
regions, 168- 171 
standard , 164-165 
title bar, 166-167 
titles, 174 
updating, 179-180 

Word, 20 
Writing process, 42-« 

z 
Zero page, 28 
Zoom box, 167 
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Open The Apple IIGS Toolbox ... 
. . . and you'll uncover nearly 600 assembly language subroutines that will give 
your programs the professional look and feel. 
Programming the Apple IIGS with the help of the toolbox makes it easy to 
add onscreen windows, pull down menus, colorful animation, and 
wonderfully detailed graphics in super high-resolution video modes. But 
designing programs around its Macintosh-like user interface is quite different 
from programming in other environments. 
THE APPLE IIGS TOOLBOX REVEALED introduces you to crucial concepts 
before you start programming-concepts that your programming language 
and other reference guides assume you already know. 
• For Programming Newcomers: We'll take you inside the computer and 

some of its circuits; you'lllearn about programming languages and how to 
choose one that's best for you. 

• For Experienced Apple II Programmers: We'll show you how the toolbox 
works and how to incorporate its routines into C, Pascal, and assembly 
language programs; you'lllearn how to design event-driven programs 
around Apple's User Interface Guidelines. 

• For Macintosh Programmers: We'll demonstrate how the Apple IIGS 
toolbox differs from the Mac's; you'll learn how to adapt your programs to 
the machine's 4096 colors. 

This is the book to read before you start programming. With an 
understanding of the concepts presented here , you '11 be on your way to 
Apple IIGS toolbox programming much more quickly and efficiently. 
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PC World, and is author of Tbe Idea Boollfor Your Apple II. 

AJ~ ln the Bantam Apple JIGS Library: 
The ::.pple IIGS1J :>ak: 
Tbe deftffttlve user's guide to the history, components and capabtlltles oftbe 1/GS, 
written by Apple Insiders. 
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