
'' ~11 THE Bant1 m Apple IIGs Library THE B.mtam Apple IIGs Library TilE Bantam AJ
~t. .. tt.M~~ _ ____:....:.._______:. _ _____::.....:.._______::...____----=.

B 0 0 K ._

lliE Ap le ll6S
Toolbox~ evealed

Darmy Goodman

The Apple IIGS
Toolbox Revealed

Bantam Computer Books
Ask your bookseller for the books you have missed

THE AMIGADOS MANUAL
by Commodore-Amiga, Inc.

THE APPLE IIGS BOOK
by Jeanne DuPrau and Molly Tyson

THE APPLE //c BOOK
by Bill O'Brien

THE ART OF DESKTOP PUBLISHING
by Tony Bove, Cheryl Rhodes, and Wes Thomas

ARTIFICIAL INTELLIGENCE ENTERS THE MARKETPLACE
by Larry R. Harris and Dwight B. Davis

THE BIG TIP BOOK FOR THE APPLE II SERIES
by Bert Kersey and Bill Sanders

THE COMMODORE 64 SURVIVAL MANUAL
by Wino L. Rosch

COMMODORE 128 PROGRAMMER'S REFERENCE GUIDE
by Commodore Business Machines, Inc .

THE COMMODORE 128 SUBROUTINE LIBRARY
by David D. Busch

COMPUTER SENSE: Developing Personal Computer Literacy
by Paul Freiberger and Dan McNeill

EXPLORING ARTIFICIAL INTELLIGENCE ON YOUR APPLE II
by Tim Hartnell

FIRST STEPS IN ASSEMBLY LANGUAGE FOR THE 80286
by Robert Erskine

HOW TO GET THE MOST OUT OF COMPUSERVE, 2d edition
by Charles Bowen and David Peyton

HOW TO GET THE MOST OUT OF THE SOURCE
by Charles Bowen and David Peyton

MACINTOSH C PRIMER PLUS
by The Waite Group I Stephen W. Prata

THE IDEA BOOK FOR YOUR APPLE II: How to Put Your Apple II to Work at Home
by Danny Goodman

PC-DOS I MS-DOS
User's Guide to the Most Popular Operating System for Personal Computers

by Alan M. Boyd
SMARTER TELECOMMUNICATIONS
Hands-On Guide to On-Line Computer Services

by Charles Bowen and Stewart Schneider
UNDERSTANDING EXPERT SYSTEMS

by The Waite Group I Mike Van Horn

The Apple IIGS
Toolbox Revealed

Danny Goodman

BANTAM BOOKS
TORONTO • NEW YORK • LONDON • SYDNEY • AUCKLAND

THE APPLE /lGS TOOLBOX REVEALED
A Bantam Book I Nov~mb~r 1986

Apple lie, llc, /lGS, Firukr, and QuickDraw are rradmwrks of Apple
Computer Inc.

Macintosh is a tratkmark liunud to Apple Computer Inc.
IBM is a trademark of lnrenwtwnal Busineu Mac/tines, Inc.

All rights reserv~d.
Copyright• 1986 by Danny Goodman .

Cover design capyrighr c 1986 by Bantam Books, Inc.
lnrerior design by Miu Kelly, The Word Shop, San Diego, CA .

Production bY Th~ Word Shop, San Di~go, CA .

Through the book, the trade names and trademarks of some
companies and products have been used, and no such uses
are intended to convey endorsement of or other qffiliations

with the book.

This book may not be reproduced in whole or in part, by
mimeograph or any other means, without permission.

For information, address: Bantam Books, Inc.

ISBN 0-533-34360-2

Published simultaneously in the United States and Canada

Bantam books are published by Bantam Books, Inc. Its trademark ,
consisting of the words "Bantam Books .. and the portrayal of a rooster,
is registered in U.S. Patent and Trademark Office and in other countries.
M~ Registrada. Bantam Books, Inc., 666 Fifth Avenue, New York,
New Yorlc 10103.

PRINTED IN TiiE UNITED STATES OF AMERICA

0 9 8 7 6 5 4 3 2

Acknowledgments

Many folks associated with Apple Computer helped in the writing of this
book. The people I wish to thank most of all are those who devoted their
own time over and above their own frenetic deadlines to answer questions,
review manuscripts, and offer other guidance along the way. Tied for first
place in lending helping hands were Martha Steffen and Eagle Berns. Harvey
Lehtman and Dan Oliver also came through without flinching. Bill Harris
provided the right ideas at the right time to solidify the book's organization.
And special thanks to Jim Merritt for providing superb technical guidance in
the manuscript's final stages. Off the Apple campus, Linda's undying patience
and understanding made the job possible.

v

Contents

Acknowledgments

Introduction. A Primer Road Map

Part One. Programming Fundamentals -
A Crash Course in Plain English

Chapter 1. Under the Hood
The Engine. Memories. Compatibility. Programs:
The Computer's Road Maps .

v

1

3

5

Chapter 2. Under the Microscope IS
Going with the Flow. Bits to Bytes . Other Measures.
Character Bytes - ASCII Codes. How Memory Works.
The Apple IIGS Memory Map. One Special Bank.
Pointers. Handles. Flags. How a Program Works.

Chapter 3. Talking to Your IIGS 39
Why a "Language"? Machine Language. Language
Precision. The Writing Process . Assembly Language
Mechanics. High-Level Compiler Mechanics. High­
Level Interpreter Mechanics. Choosing a Language.
Apple's Programming Workshops.

vii

viii THE APPLE IIGS TOOLBOX REVEALED

Part Two. Key Toolbox Concepts 57

Chapter 4. What's a Toolbox? 59
The Woodshop. From Woodshop to Computer Shop.
Tools and the User Interface. Macintosh and IIGS Tools.
Toolbox and Skill.

ChapterS. Opening the Toolbox 67
Toolbox Organization. Toolbox Road Map. Tool Set
Interdependencies . Incorporating Tool Sets. Calling a
Tool Function. Passing Parameters. Parameters and
the Stack.

Chapter 6. Understanding Records 91
Record Basics. Getting and Setting Data. Private Data.
Data Types.

Chapter 7. The Main Event 101
Nonevents . Modality. From Mode to Event. The Event
Loop. Event Program Structure. Event Decisions.
Modularity. Designing Your Applications.

Part Three. Tools in Action 111

ChapterS. QuickDraw II 113
QuickDraw II vs. QuickDraw. Graphing Coordinates.
Pixel Images. Colors. The Pen . Irregular Shapes. The
Grafport . Multiple Grafports. Cursors.

Chapter9. The Event Manager 149
Two Event Managers. Event Types. Event Priorities.
Event Records. Masking Events.

Chapter 10. The Window Manager 163
Window Concepts . Window Components. The
Programmer' s Window. Scroll Bars and Regions.
The Window Record. Creating a New Window.
Window Frame Colors. Updating Windows. Windows
and Events. The TaskMaster.

Chapter 11. The Menu Manager 187
Menu Concepts . Menus for Programmers. Menu
Terminology. Creating Menus. Menu Colors.
Menus and Events. Changing Menus Midstream.

CONTENTS --- ix

Chapter 12. The Control Manager 201
Control Types. Control Records. Controls and Events.

Chapter 13. Where Do We Go from Here? 211
Where WeAre. Next. Traps.

Appendixes 215

Appendix A. A Short Course in Hexadecimal and Binary Math 217
Appendix B. ASCII Table 225
Appendix C. For Further Reading 231

Glossary 233

Index 241

INTRODUCTION

A Pritner Road Map

The Apple IIGS is the most recent step in an evolutionary climb that
dates back to the earliest days of personal computers for everyday

people. The IIGS is at once compatible with its past and representative of the
future. You can run thousands of programs and plug in hundreds of boards
already available for earlier generation Apple lis . At the same time, by
offering casual Apple II programmers and serious developers built-in pro­
gramming power matched only by the Macintosh , the IIGS paves a path to
new generations of innovative and truly user-friendly software designs.

The programming power inside the Apple IIGS consists of a carefully
crafted programmer's toolbox, which simplifies the design of sophisticated
Apple II programs, for both newcomers and experienced programmers.

This book provides an introduction to concepts crucial to learning to
program the Apple IIGS by way of its toolbox . Along the way we'll discuss
principles of program design to help you start visualizing your applications
right now. We won't limit our discussions to a single programming lan­
guage. In fact, we'll even help you choose a language if you're still unde­
cided. We'll compare C, Pascal, and assembly language, since these will
probably be the most popular languages for toolbox programming. Later in
the book, a few program examples will illustrate toolbox operations in a
pseudolanguage that closely resembles both C and Pascal.

Whether you're brand new to programming on the Apple II or if you
come to the toolbox as an experienced programmer, this book is where you

2 --------------- THE APPLE IIGS TOOLBOX REVEALED

should begin your IIGS toolbox experience. Start your toolbox explorations
in the chapter appropriate to your expertise:

1. If you are brand new to programming or if you are an experienced
programmer only in BASIC on any computer, then start with
Chapter 1.

2 . If you have programmed earlier models of Apple II in Pascal , C, or
assembly language, then you can skip Part One and head right for
the toolbox discussions, beginning in Chapter 4. Of course, if
you're rusty, it wouldn't hurt to start at Chapter I, skimming over
the parts you know and studying the subjects that need brushing
up on.

3 . Some experienced Macintosh programmers may also come by,
hoping to see how the Apple IIGS toolbox is different from the
Mac's. For you, Chapter 8 is the place to start.

No matter where you begin, bear in mind that this is a book about program­
ming concepts. Aside from a little hands-on exploration in the early chap­
ters, you won' t be needing your IIGS nearby . It's more important that you
grasp the ideas presented here. You will encounter them again, and have
plenty of hands-on experience when you start real programming.

There are hardly any prerequisites for understanding this book . We rec­
ommend, however, that you spend time familiarizing yourself with the
visual orientation of the Apple IIGS Finder. Notice how you work with
screen menus , window, and icons. The Finder demonstrates the funda­
mental "feel" of the highly graphical interface that toolbox programming
promotes. For you it may well be a new way of interacting with a computer.
We also suggest that you acquaint yourself with the Control Panel , which
you can summon from the keyboard at any time by pressing the Apple, Con­
trol , and Escape keys simultaneously.

That's all you'll need to know to begin your lessons with The Apple
IIGS Toolbox Revealed.

Part One

Programming Fundamentals -
A Crash Course In Plain English

CHAPTER 1

Under the Hood

This chapter and the others in this part of the book are intended for
two types of readers: (l) those who have never programmed a com­

puter before, and (2) those who have experience programming a personal
computer in the BASIC programming language. You may think it odd that
we've placed an experienced BASIC programmer in the same classroom
with the complete neophyte. BASIC programmers, however, will see in the
next couple chapters that the BASIC language has hidden many funda­
mental computing concepts. If you are a Pascal or C programmer, you will
likely have worked with most of these concepts, but if it has been a while
since you iast typed some code, then feel free to tag along as we start by
peeking under the hood of the Apple IIGS.

THE ENGINE

Whenever you open the hood of your car, you can't help seeing its main com­
ponent, the engine. It is at the physical center of the engine com­
partment. Surrounding components attached to it perform the tasks needed
to make the car move. The engine is also the functional center of the
automobile, regulating such things as battery recharging, vehicle speed (in
response to the press of the gas pedal), the amount of exhaust going to the tail
pipe, and so on.

5

6 ----- ----- ----- THE APPLE IIGS TOOLBOX REVEALED

CPU
AJl computers - whether a desktop model like your Apple IIGS or a giant
mainframe computer that a credit card company uses to generate monthly
bills - need an engine to regulate the workings inside the machine. The
computer engine, however, doesn't have any moving parts (although invis­
ible electrons move through it) and is small enough to get lost in a desk
drawer. It consists of a single integrated circuit chip . A common name for
this chip, derived from its primary function , is the central processing unit ,
or CPU. This kind of chip is also frequently called a microprocessor because
it is, in a sense, a self-contained computer on a single chip. You can locate
the CPU chip on your Apple IIGS main circuit board (the motherboard) by
using Figure 1-1 as a reference.

Rear Panel Connectors

DO
0

0000

0000

Figure 1-1. Apple IIGS motherboard and CPU chip.

UNDER THE HOOD ---------------------- 7

The 65816 Chip
If you look closely at the actual CPU chip on the motherboard, you'll see
many cryptic numbers on its top. Among them you'll find the part number,
65SC816. This part, generically known as the 65816, is an advanced and
greatly enhanced version of the 6502 CPU, around which all Apple II com­
puters have been built since the very beginning. The Apple lie, for exam­
ple , has a 6502 on its main board, while the Apple lie has a low-power con­
sumption version of that chip, called the 65C02, on its main board. Among
the many enhancements built into the 65816 are increased processing speed
and the ability to work with far more information than the 6502 was ever
meant to manage . These enhancements give the Apple IIGS the power it
needs for super high-resolution color graphics, responsive mouse control of
a screen cursor, and many more desirable features to aid user and pro­
grammer alike.

We said that a microprocessor is essentially a "computer on a chip."
That phrase grew out of a long history of gradually combining the abilities of
more and more integrated circuits into fewer and fewer chips. While a micro­
processor like the 65816 performs the tasks that a personal computer's cen­
tral brain needs, it is hardly an entire computer that we could use directly.
Just as a car engine needs a water pump, a battery, and other components to
work, a microprocessor needs extra integrated circuit chips to allow us to
communicate with the computer via the keyboard or mouse and to allow the
computer to communicate with us via the screen or speaker. Additional cir­
cuitry manages the movement of information to and from disk drives, print­
ers, and modems. Most of the other chips you see on the IIGS motherboard
are those support chips.

MEMORIES

Among the other chips on the motherboard are two types of memory chips,
called RAM and ROM. Each type performs a distinctly different function in
the IIGS .

RAM

RAM stands for Random Access Memory. You'll find these chips arranged in
two groups on your IIGS motherboard (Figure l-2).

These chips store information while the computer is turned on. The kind
of information kept there includes: the contents of the video display screen,
certain numbers that the microprocessor needs for its own housekeeping,
characters you type on the keyboard or load in from disk, and programs (as

8 ----------------------------- THE APPLE ITGS TOOLBOX REVEALED

Rear Panel Connectors

RAM Chips

Figure 1-2. Apple IIGS motherboard and RAM chips.

you type them in or run them) . We ' ll get into how these chips store informa­
tion in the next chapter.

Reading and Writing Memory

As you run an applications program, such as a word processor or a spread­
sheet, the content of the RAM chips is constantly changing. Practically any
action that takes place causes information to be written to or erased from
RAM. Even if you can't see explicit action on the screen, such as when a pro­
gram is calculating, the CPU is frenetica1ly writing, reading, and rewriting
RAM.

(For the sake of accuracy, the term "Random Access Memory" does not
accurately describe this kind of chip, because all types of memory chips can
have their information accessed in a random fashion. That is, the micro­
processor can fetch a character from a specific space in a memory chip
without "thumbing through" the contents of other spaces. The precise name

.ED
UNDER THE HOOD --------------------- 9

for the kind of memory chips we're discussing here is Read/Write Memory,
or RWM . That means that the microprocessor can both fetch information
from a specific spot in a chip and put information there, too. Tradition , how­
ever, dictates the general acceptance of the term "RAM", so we '11 use it
here, too.)

RAM: The Fuel Tank

The amount of RAM inside a computer is an important measure of the
machine's capabilities. The more RAM available to a programmer, the more
sophisticated or complex programs can be. Lots of RAM also makes it pos­
sible to work efficiently on very large word processing documents, spread­
sheets, or databases . With enough memory, all necessary data can be stored
for instant, electronic recall rather than electromechanical recall of small
chunks from a comparatively slow disk drive. You can say, then that RAM
capacity is analogous to the size of the fuel tank on an automobile. The
larger the capacity, the more you 'II be able to do with the machine, and the
more work you'll be able to do without refueling .

Apple IIGS users should have little trouble accommodating early JIGS
commercial programs in RAM supplied with the machine. Eventually, how­
ever, commercial developers will exploit the design opportunities offered by
the computer' s color graphics, sound, and inexpensive RAM chips to build
sophisticated programs requiring a RAM expansion card.

ROM

There's one last key component of the computer's memory circuitry that you
should know about. It's called Read-Only Memory, or ROM.

If you recall what we said earlier about a RAM chip's reading and
writing abilities, then the ROM's characteristics should be obvious from its
name: information in ROM is for reading only. Neither you nor the micro­
processor can alter the contents of ROM.

ROM's Role

While the microprocessor is a powerful chip in its own right, it doesn't really
know what to do when you supply electricity to it. It 's a bundle of potential
energy waiting for something to do. The ROM contains a fixed list of
instructions that the microprocessor follows, starting the instant you turn on
the computer. In the first few seconds your IIGS comes to life, the ROM
shows the microprocessor how to set up the various components on the
motherboard so that the combination of chips will act as a IIGS - how
information is to be displayed on the screen, how to react to presses of the

10--------- ------ THE APPLE IIGS TOOLBOX REVEALED

Rear Panel Connectors
LJ u .__. • • lll....J LJ LJ

DO
0

0000

0000 0 -.,..~-----Hf-l!!t-- ROM Chip

D 0
Figure l -3. Apple IIGS motherboard and ROM chip.

keyboard keys, how to respond to a diskette that has been placed in one of the
disk drives, and more.

The Apple IIGS ROM has much more in it than just the start-up instruc­
tions for the system. It's also where a large portion of the programmer's
toolbox is located. That's right. Much of what programmers need for putting
together fancy-looking, Macintosh-like programs is contained in that
lone chip. We'll have much more to say about the tools and ROM in later
chapters.

COMPATIBILITY

When you purchased your Apple IIGS, quite likely one of the selling points
that clinched the deal was the machine's compatibility with most software
already available for the Apple lle and lie. For two computers to be compat­
ible with each other, many specific items about each machine's design must

UNDER THE HOOD __ ___

be identical. Video display characteristics of both machines, for instance,
must be the same. Since software written for one machine expects to display
a well-defined number of dots on a video screen, a computer that doesn't
have the requisite number of dots may not produce the program's video
output at all. Disk drives, too, must be identical in the way they write infor­
mation onto a disk and read information from it. While to the naked eye the
5 V4-inch floppy diskette for an Apple lie looks like a 51/4-inch diskette for an
IBM Personal Computer, each machine encodes information on a disk much
differently from the other. Neither machine would even recognize that a
diskette recorded for the other machine had information on it.

Compatibility issues, however, reach much more deeply inside a
computer. For one, ROM instructions must be sufficiently equal so that
important systemwide functions, such as display characteristics and infor­
mation flow in and out of the computer's connectors, are the same. Even
more fundamentally, the two machine's microprocessor chips must be
functiona11y identical . Each chip must respond to instructions the same
way.

Two Modes
We noted earlier that previous Apple II computers were based on the 6502
microprocessor, while the 65816 is at the core of the IIGS. One major reason
the IIGS is compatible with earlier Apple II software is that the new chip can
act as if it were a 6502. When it behaves in this manner, it is said to emulate
the 6502. When it behaves like a full-blown 65816, it operates in what is
called native mode.

Emulation mode programming gets a boost by another chip on the IIGS
motherboard. Called the Mega II, the chip was designed by Apple's
engineers to place on a single chip as much of the "old" Apple II as possible.
The Mega II chip provides the IIGS with Apple He- and lie-compatible video
display resolutions and controls communications to outside devices through
expansion slots and rear panel connectors (called ports). As a programmer,
however, you won't have to know much about the Mega II, because the
65816 (under the guidance of ROM) automatically knows when to put it in
use, in both emulation and native modes.

When you program for the Apple IIGS, you have the choice of program­
ming the machine either in its native mode, which this book emphasizes, or
in emulation mode. Advanced programmers also have the choice of mixing
modes by switching from one to the other and back in the middle of a pro­
gram, if necessary. Toolbox programming, though, is entirely in native
mode. Information on programming in emulation mode is readily available,
because it is identical to programming an Apple lie or Ilc, both of which are
abundantly documented in other books.

ll

12 ----- --------- THE APPLE IJGS TOOLBOX REVEALED

Rear Panel Connectors

[)[)[)[)

0000 D 0
Figure 1-4 . Apple IIGS motherboard and Mega II chip.

PROGRAMS: THE COMPUTER'S ROAD MAPS

So far , we've been talking mostly about the pieces that define a machine and
its capabilities. Assembling a fine automobile from components, though,
does not necessarily make it a productive machine. It needs someplace to go.
Similarly, without a program to run, a computer, as defined by its CPU,
ROM, and other chips , doesn't do a thing. You could, then, compare a pro­
gram to a road map for the automobile.

Step by Step

A computer program is nothing more than a series of instructions for the
microprocessor and its related chips to follow. A word processing program,
for example, tells the machine to display characters you type on the keyboard
so they are arranged into neat sentences and paragraphs on the screen. Other
instructions tell the computer what to do when you press the mouse button

UNDER THE HOOD--------------------- 13

when the cursor is in a certain place on the screen. Still other instructions cal­
culate the number of lines on a page until it is time to display a dotted line
representing a page break, and begin counting lines for the next page.

The programs you' ll be writing will probably be stored on either a
floppy disk or a hard disk. When you wish to run a program, a command ­
perhaps a command you type or an action by the mouse-controlled
pointer - will load a copy of the disk's program into the machine's RAM.
Then the microprocessor will start obeying the instructions, one by one.
Some of your instructions will cause the microprocessor to reach over into
ROM for some further instructions that Apple's engineers put there for con­
venience, as you'll see later.

Program execution will continue until you give the stop or quit com­
mand written into your program. When the microprocessor receives that
command, it instantly returns you to the screen from which you started. Even
though your program may no longer be in memory, it is still safe and sound
on the disk. It's ready to run again whenever you need it.

In the next chapter, we push even deeper inside the computer. You ' ll
learn the true meaning of many buzzwords hurled at you since you first heard
about personal computers. Get ready to think small.

Things to do:

I. ROM
Instructions.

2.RAM
Instructions.

Figure 1-5. The CPU follows ROM and RAM instructions step by step.

CHAPTER 2

Under the Microscope

U ntil now, we've been discussing physical pieces of the IIGS - things
you can see when you lift off the computer's cover. Now we'll go one

giant step further by explaining key concepts about what occurs inside the
chips on the motherboard. Because much of what you'lllearn in this chapter
can't be photographed even with an electron microscope, most everything
will be illustrated in diagrams. These diagrams will help you visualize what
goes on at the chip level, as if we had a special microscope that not only
peeks inside the chips , but interprets what's there for us to see plainly. The
types of diagrams you'll learn to use in this chapter will become second
nature to you by the end of the book. You can expect to see them in advanced
programming materials, since even professional programmers rely on such
diagrams to understand the workings of new chips and software procedures.

In this chapter we' 11 encounter precise definitions for terms such as bit,
byte, address, pointer, and memory map. We'll also look inside the 65816
microprocessor to see the kind of work it does when running a program, and
learn the meanings of terms such as stack, pointers, and flags.

GOING WITH THE FLOW

When you look at the Apple IIGS motherboard, you probably notice that
each chip has a number of connections coming from it. These connections,
called pins, are attached to the motherboard in particular spots so that low-

15

-

16 -------------- THE APPLE JIGS TOOLBOX REVEALED

voltage electricity can pass from one chip to the next. You might say that
electricity is the computer's blood, the wiring its veins.

Electricity with a Message

The electricity, however, is used as a way of communicating information
between components on the motherboard and to slots and ports connecting to
the outside world. The language of this information is about as simple as you
can get, with a vocabulary of only two entries. One entry is represented in the
circuits by a high voltage level; the other is represented by a low voltage
level. The terms "high" and "low" are relative to each other, and don't
indicate that the high voltage is necessarily dangerous. In fact, the high­
voltage signal is usually about as high as that generated by a couple of
flashlight batteries, while the low voltage is usually less than a quarter
of that.

CAUTION: Just because the high voltage in the chip communications lines
is only a few volts, this does not mean that it is safe to stick your hands inside
the computer when the power is turned on. There may be places on the circuit
board that handle enough current to give you a shock. Also, owing to the
inherent conductivity of human skin, touching the closely spaced pins on
some chips may cause unexpected short circuits , which may have one or two
undesirable results: (I) an abnormally high current flow into your finger,
causing a shock, and (2) a blow to one or more chips on the motherboard,
necessitating replacement of the entire board. Therefore , always tum off the
computer before removing the cover.

The designers of the 6581 6 microprocessor imbedded instructions into
the chip so that it performs very specific actions in response to precise
sequences of these low- and high-voltage signals. You'll see examples of
this later on, but for now, take it on faith that the microprocessor is "born"
understanding this two-entry vocabulary.

Human Notation

The low-high notation is a bit cumbersome for us humans, so to make
things easier, the low and high entries in the chip's vocabulary are repre­
sented by the digits 0 and I , respectively. This is illustrated in Figure
2-1. From now on, we will use this 0 and 1 notation when discussing indi­
vidual voltage pulses flowing through the computer.

UNDER THE MICROSCOPE __________________ 17

High

VOLTAGE

Low

1 0 1 1 0 0 0 1

DIRECTION OF TRAVEL THROUGH
CIRCUIT

Figure 2-1. Low- and high-voltage flow with their 0 and 1 representations.

Binary Numbering

Through no accident, the 0 and l components of a microprocessor's vocab­
ulary are also the two digits that make up the binary numbering system . In
binary math there are no such numerals as 2, 3, or all the rest up to 9 -just
0 and I . Instead of columns of numbers associated with ones, tens, hun­
dreds, and so on (each increasing by a factor of 10 - hence the name of our
decimal math), a binary number's columns increase by a factor of 2. In
Figure 2-2, compare the different ways the decimal and binary numbering
systems represent the decimal number 195.

Decimal
(base 10)

Binary
(base 2)

I
.lOO.s

1

I I I
.l2&i M:i lli .lQs ~ 1s 2s ls

1 100 0011

1 X 100 = 100
9 X 10 = 90
5 X 1 = 5

195

L 1 X 128= 128
lx 64= 64
1 X 2= 2
1 X 1 = 1

195

Figure 2-2. Decimal and binary representations of the decimal number 195.

18-------------- THE APPLE fiGS TOOLBOX REVEALED

In case the binary numbering system is new to you, we've provided a
short course about it and the hexadecimal system in Appendix A. A firm
understanding of these two numbering systems will be essential for under­
standing Apple IIGS toolbox programming. Turn to this appendix now if you
haven't the faintest idea what we're talking about, or if you need a refresher.

BITS TO BYTES

A convention has evolved over the years that calls for Os and Is flowing
through a computer to be grouped in batches of 8. New microprocessors,
including the 65816, can deal with these pulses in groups of 16, but you will
still work with them often in groups of 8. A sequence of 8 digits would look
something like this:

01011 110

The extra space between the two groups of 4 is generally provided as a means
of making the long binary number more readable. Placing 8 binary digits
together, such as 01011110, makes it harder for us to figure out exactly what
number it is, although the CPU is quite content with the unbroken series.

Now, the term we just used, binary digit, contains a lot of syllables to
describe a single 0 or 1. In common usage, these two words have been com­
bined into one short one, bit. A bit is the smallest unit of information that a
computer deals with. In computer jargon, the binary number shown above
would be called an 8-bit number.

Eight bits is such a common grouping that a term has developed for the
group: byte, pronounced like a "bite" out of an apple. A byte always consists
of 8 bits, even if all bits are Os.

"Bits" and "bytes" are sometimes confused, particularly when talking
about them in the context of computer chips, such as microprocessors and
memory chips (both RAM and ROM types). To clear up this confusion, let's
first talk about microprocessors.

8 = 1 bit

II II lo lo lo !o II I q = 1 byte (8 bits)

Figure 2-3. Comparative length of a bit and a byte.

UNDER THE MICROSCOPE __________________ 19

Microprocessor Bits

You probably remember somewhere in the Apple UGS product literature or
in the salesperson • s pitch a claim that the computer has a 16-bit microproces­
sor, compared to the 8-bit microprocessor of the earlier Apple Us. Unfortu­
nately, this terminology means different things to different people.

To one group, a 16-bit microprocessor accepts, massages, and sends
back information in 16-bit-wide paths - literaJiy through 16 separate pins
(known as data lines) on the chip. In other words, a group of 16 bits passes
through the CPU and external circuits at one time, like 16 race horses taking
off from the starting gate at the bell. An 8-bit microprocessor, then, sends
and receives information only 8 bits at a time. With twice as much informa­
tion passing through a 16-bit computer at a given instant than through an 8-
bit computer, processes generally operate much faster, when both machines
operate at the same speed.

To another group of terminology makers, however, the bit rating of a
microprocessor is measured by the width of information flowing only inside
the microprocessor, regardless of the number of data lines connected to out­
side chips. For example, the model8088 chip in the IBM PC connects to the
rest of the computer via eight data lines, while inside the chip, information
shuffles about in 16-bit-wide chunks. That means that certain operations,
such as simple arithmetic built into the chip, will be performed in the faster
16-bit mode. Communicating the result of the arithmetic to the rest of the
computer, however, will be done in only 8-bit-wide chunks. The designation
for a chip operating at 8 bits externally and 16 bits internally is an 8116-bit
microprocessor.

The 65816 inside your IIGS, however, claims its 8/16-bit denomination
for a slightly different reason. Internally, the chip can run as either an 8-bit

Data 0
Data 1
Data 2
Data 3
Data 4
Data 5
Data 6
Data 7

To other
circuitry

Figure 2-4. A microprocessor's eight data lines.

20 -------------- THE APPLE llGS TOOLBOX REVEALED

(emulation mode) or a 16-bit (native mode) microprocessor. Its link to the
outside world is via 8 data lines. A trend seems to be developing to ignore the
data line count and refer to a microprocessor only according to its
best internal capabilities. Hence, the 65816 is commonly called a 16-
bit chip.

RAM Chip Bits

Bit terminology is also used to describe the capacity of memory chips - not
the amount of the computer's memory specified in the product literature, but
of the actual chips themselves. Chips are normally rated by the number of
kilobits of information they can store. Strictly speaking, a kilobit is 1024
bits. The "kilo" prefix, which should mean 1000, means 1024 in any com­
puter measure (since computer stuff is calculated in binary, 1024 [2'0] is the
factor of 2 nearest to 1000).

RAM Bytes

The RAM chips inside the IIGS are 256-kilobit chips, commonly labeled
256K chips. If each chip holds 256 kilobits, that means each holds 32 kilo­
bytes (remember, 8 bits for each byte). To bring the computer's total on­
board RAM to 256 kilobytes (that ' s the measure on the specifications
sheets) , Apple had to plant eight 256 kilobit chips , which it did in two sepa­
rate banks on the motherboard.

Since kilobits and kilobytes are both abbreviated by the letter "K", be
careful to identify what kind of K you ' re looking at. Chips are measured in
bits; system memory as a whole is measured in bytes. Keep your bits and
bytes straight.

OTHER MEASURES

Bits and bytes aren't the only measures of computer data. You will encounter
two other important terms: word and nibble.

Word

With a microprocessor such as the 65816 working with 16-bit-wide data
internally, there is a convenient term to refer to these 2-byte-wide chunks:
word. This "word" should not be confused with words in a spoken lan­
guage. A word inside a computer is simply any 2-byte (16-bit) collection
of data .

UNDER THE MICROSCOPE------------------- 21

Rear Panel Connectors

128 + 128 = 256
Kbytes

Figure 1-S. Eight 256-Kbit chips makes 256 Kbytes of RAM.

Nibble

One other term you will see occasionally is nibble. Just as a nibble is a small
bite, so is a computer's nibble exactly one half of a byte. In other words, a
group of 4 bits is referred to as a nibble . By convention, a nibble is either the
higher or lower half of a byte. You'll see how a nibble is used in a later
chapter.

A comparison of bit, nibble, byte, and word is illustrated in Figure 2-6.

CHARACTER BYTES - ASCII CODES

Some years ago, an industry standards committee assigned a unique code
number to each letter, numeral (0 through 9), common punctuation mark ,

22 -------------- THE APPLE IIGS TOOLBOX REVEALED

l&ruUh

1 bit IT) bit

nibble

eight bits l1l1l o 1 o I o 1 o I o 111 byte

sixtbi~ 11lolol111lol11ol111lololololol11 word

Figure 2-6. Bit, nibble, byte, and word lengths.

and several special computer commands (often used to control printers,
modems, and other external devices). Even the uppercase and lowercase
versions of each letter of the alphabet had to have their own code numbers.
The result was the American Standard Code for Information Interchange, or
ASCII (pronounced "ass-key") for short.

By strict definition, an ASCII code number is a 7-digit binary number,
allowing for a total of 128 possible combinations (0 to 127, or 0000000 to
1111111). Within the span of 128 codes are enough unique numbers to
accommodate all letters, numerals, punctuation marks, and control codes.
Since computers generally work with bits in multiples of 8, the 7-bit code is
usually embedded in an 8-bit character, with the most significant bit always
being 0. In the United States, these ASCII codes are the common way of
sending characters between computers, whether over the telephone line (via
modem) or through direct cabling.

A number of personal computers also have extended ASCII codes ,
which tum a code number's most significant bit to a 1. Characters assigned
to these code numbers (128-255) are not standardized among different com­
puter models. Some machines use these codes for graphics characters, others
for foreign language letters.

Together, a computer's 128 ASCII characters plus extended codes
make up the machine's character set.

Inside the computer, each character that you type on the keyboard or
that appears on your screen is really known only by its code number. Video
generation circuitry has a lookup table that it uses to display a particular pat­
tern of dots that to us looks like an" A" each time it receives the code number
for that letter.

'

UNDER THE MICROSCOPE - ------------ ----- 23

ASCII X-Ray

If you 'd like to see what some of this looks like in memory, you can use the
IIGS ' built-in Monitor Program for a sneak peek. We'll be seeing the Apple
ll's internal character codes , which differ from ASCII codes in one impor­
tant respect. Internally, standard characters (normally 0-127) are assigned
code values 128- 255. In other words, the Apple II character values (often
referred to as Apple ASCII values) are 128 greater than standard ASCII
values. The lowercase "e", for example, is 101 in standard ASCII, and 229
in Apple ASCII.

To check out these characters, follow these steps:

1. Turn on the computer without a disk in the disk drive . The message
"Check startup device!" will appear on the screen.

2. Hold down the Control key and press the Reset key. The screen will
clear, and a left-facing bracket will appear at the upper left comer.

3 . At that prompt, type

CALL -151

and press Return. This action starts the Monitor Program, and will
display an asterisk as its prompt .

4 . At this point , ty pe

0200.Hello!

and press Return twice. You're now looking at the contents of 16
bytes of RAM.

For the moment, ignore the group of characters along the left edge of the
screen. Notice, though, that to the right of the colon is a series of2-digit hex
numbers extending most of the way across the screen. Each 2-digit number
is the hexadecimal equivalent of the content of a byte of memory. Since most
of these bytes represent text characters, the actual characters appear in the
group of letters along the right edge of the screen. Look up each hex byte (as
displayed on the screen) in the Apple II character table in Appendix B to see
the way each character of the word "Hello!" is stored as its code number,
instead of the character as we would recognize it.

If you want to see some more, you can use the Monitor to explore the
contents of ROM. At the asterisk prompt, type

FF/DOCF

24 - - - ----- - --- - - THE APPLE IIGS TOOLBOX REVEALED

0 0/ 0200 : 80 82 BO BO AE C8 ES EC EC EF Al 80 00 FF FF 00 - . 200 .Hello!

Figure 2-7. Contents of 16 bytes of RAM.

and press Return several times. You'll see all of Applesoft BASIC's reserved
words strung end to end .

HOW MEMORY WORKS

To understand how memory works , we' ll start with an analogy.
You can conceive of memory as a blackboard with row after row of

blank spaces. Into these spaces can go characters, like letters ofthe alphabet.
RAM-type memory allows you to write a character in a space, erase it,

and write in another. Whenever you press a character key on the keyboard ,
that character is stored in a space in RAM . In the case of ROM , however, the
characters are painted on the blackboard at the factory (the chip's factory)
and cannot be altered . With the help of the Apple IIGS Monitor, we just saw
that those character spaces in memory actually hold code numbers (when
they are to represent recognizable characters) and bytes of instructions.

E A c H s Q u A R E I S
A u N I Q u E M E M 0 R y

c E L L

t- rrt
I•

~~ • l
'
I

Figure 2-8. A RAM "blackboard."

UNDER THE MICROSCOPE----- ------------- 25

The Memory Address
For a microprocessor to fetch information from memory or save information
there , it must have a way of denoting a location in memory , like a box
number. In the blackboard scenario, you could establish row and column
numbers (in hexadecimal, of course) that would look like those in
Figure 2-9.

The location for the byte $65 would be $0301, consisting of the column
number, $03, and the row number, $01. This location number is called the
address of a memory location, just like the street address on the front of your
home or apartment building. The number of the address stays the same,
regardless of how often the content of that cell changes or what that content
is. It's exactly the same as your home address: many families may live at that
address over decades, but the address of the building stays the same.

The Memory Map
We're now going move away from the blackboard analogy and orient your
conception of memory to the way programmers visualize memory . Instead
of thinking of memory as a grid of byte spaces, think of memory as a tall
column of byte spaces, with each space having a unique address in numerical
sequence.

$00
$01
$02
$03
$04
$05
$06
$07

$00 $02 $04 $06 S08 SOA $0C $0E . .

$65

•

Figure 1-9. Memory "blackboard" with addresses.

~tl
I

lr

1,;

26 THE APPLE llGS TOOLBOX REVEALED

$00 $02 $04 $06 $08

$0000
$00 $0001
SOl $0002

$02
$03
$04
$05

$06
$07

$65

Figure 2-10. A tall column of memory spaces.

$0300
$0301
$0302
$0303

$65

In this format , you can show the contents of individual bytes or many
bytes combined into a single block. This method of visualizing memory is
called a memory map.

Banked Memory

Partly owing to the necessity of making the IIGS compatible with earlier
Apple II computers, the IIGS memory is actually divided into banks, each 64
kilobytes long. The earliest Apple II models had a built-in limit of 64 kilo­
bytes of memory . Of that 64K, ROM instructions required 16K, leaving only
48K of RAM available in the memory map for programs and data - the so­
called user RAM. Gradually, ingenious software methods brought to the
Apple II family the ability to switch between banks of memory. Under the
guidance of well-designed programs, bank switching was completely hidden
from the program user, and it appeared that the computer had one continuous
block of memory .

Cells of a memory bank are numbered consecutively with the addresses
$0000 to $FFFF. You can envision a bank according to the map in Figure
2-11.

Banks in the Apple IIGS are numbered (in hexadecimal , of course) from
$00 to $FF (there is a gap, though, as we'll see in a moment) . If you do your
hex arithmetic , there should be a theoretical maximum of 256 banks , each
consisting of 64 kilobytes of memory. When you make a bank number part
of an address , such as $0IFFFF (location $FFFF in bank $01), it means that
the Apple ITGS should address up to 256 x 64K memory cells - a total of
16 megabytes (16,777,216 addresses, to be precise). In practice, the IIGS

UNDER THE MICROSCOPE------------------ 27

hex addresses 64K BANK decimal addresses
$FFFF ~----~ 65535

$0000 L---------1 0

Figure 2-11. A 64K-bank memory map.

places a cap on user RAM space at 4 megabytes, plus 128 kilobytes of special
RAM assigned primarily to super high-resolution video and system mainte­
nance, plus up to l megabyte of ROM.

THE APPLE IIGS MEMORY MAP

Right out of the box, the IIGS has a tiny portion of its possible memory
maximum already installed: 256 kilobytes of RAM and 128 kilobytes of
ROM - a total of 384 kilobytes (there are an additional 64 kilobytes of
sound-only RAM). A special memory expansion slot on the motherboard
allows you to easily increase memory to 1 megabyte with the addition of a
single memory expansion card. Expansion to multiple megabytes of RAM
will be possible with memory cards built around higher-density, 1-megabit
RAM chips.

A schematic of the memory possibilities in the Apple IIGS is shown in
Figure 2-12. Notice that RAM bank numbers stop at $3F (a total of64 banks,
including $00) and resume for two more banks, $EO and $El. ROM banks
$FE and $FF are the ones claimed by the IIGS ROM. ROM addresses below
these banks are reserved for future use, leaving plenty of room available for

28 -------------- THE APPLE IIGS TOOLBOX REVEALED

RAM Bank Numbers

$00 $01

RAM Expansion

$02-12 $13-3F

Addi­
tional
RAM

Expan-
sion
Area

RAM Banks

$EO

~ Standard Equipment

F igure 2-12. Apple llGS memory map.

$El

I
SFO-FD $FE $FF

' I 1+- Future ROM

ROM Banks

D Expansion

many enhancements to the IIGS for years to come. The uses of banks $00,
$01, $EO, and $El differ depending on whether you are in native or emula­
tion mode. Although this book deals with native mode programming, we can
say that in Apple II emulation mode, banks $00 and $01 are used as if they
were the 128 kilobytes of memory in an Apple lle or lie. In that mode they
are apportioned and managed identically to the way they are in those earlier
machines.

ONE SPECIAL BANK

Bank $00 has a special place in Apple IIGS programming, because it is the
only bank that can hold two important chunks of memory: the zero page and
the stack. We'll discuss these one at a time.

The Zero Page

Assembly language programmers in particular will need to know about the
location of a small piece of bank $00 called the zero page. A holdover from
Apple II days, the zero page is a kind of scratch pad that various toolbox tools
will use to store temporary data while in use.

UNDER THE MICROSCOPE------------------ 29

The Stack
A more visible application of a section of Bank $00 memory is for use as the
stack. The stack is a temporary receptacle for even more transient data than
what goes into the zero page. Moreover, there are substantial restrictions on
the way you can retrieve information that is stored in the stack. An example
from real life is in order.

The favorite illustration of the mechanics of a stack is a spring-loaded
meal tray dispenser at the start of a cafeteria line. When the busperson places
trays atop the existing pile, the weight of the new trays pushes the trays orig­
inally there out of sight. Only the tray most recently placed on the stack is
showing. As people pull trays from the top of the stack, trays from below
gradually become available.

You can think of a computer memory stack in much the same way.
When the microprocessor places a new byte on the stack, it is said to push
data on the stack. When the data is removed from the stack, it is said that the
microprocessor pops data from the stack. At any given moment, the stack
may be empty or it may contain hundreds of bytes of data. Since there is only
one stack, it is sometimes necessary for the microprocessor to push data on
the stack , then push some other data atop it temporarily. Then it pops the data
in the reverse order it had been pushed. The rule with the stack is Last In,
First Out. The stack is probably the most active place in memory while a pro­
gram is running on your computer. Not only does its content change con­
stantly , but it is rare for any chunk of data to sit on the stack for any length of
time.

The Inverted, Solid Stack

Now that you've got a conceptual model for the workings of a stack, get
ready to have that model blown away for two reasons: (1) the stack in the

Top of I tray
the stack __...l_;:"ij· ·i·i·j·jj·ii·i· i· "~l

~
~ rg
~

Figure ~13. A stack of trays.

5 t Top of
rays .__ the stack

f. · · · · · i · J 4 Original
tray

30 -------------- THE APPLE llGS TOOLBOX REVEALED

Apple IIGS grows downward; and (2) data on the stack really doesn' t move
in memory like the bouncing meal trays . Let's look at ways of putting these
two upsetting facts into a conceptual model you can live with.

In the first instance, we can trade in the meal tray analogy for that of a
paper cup dispenser - one that makes you insert fresh cups from the bottom
rather than refill from the top . If you squeeze several cups in from the bot­
tom, the one at the very bottom of the bunch you shoved into the dispenser
will be the first one available for the next drink. The Last In , First Out rule
still holds. That is one unbreakable rule about the stack.

The problem with using any kind of dispenser in a stack analogy, how­
ever, is that a dispenser assumes the next available tray or cup will be in the
same location in space as the one before it and the one after it. That is, either
a spring or gravity places the next available item on the stack at the same
location every time. That' s not the way it works on a computer stack.

If we start with several bytes of data on the stack in Figure 2-14A, the
next available item on the stack is in memory address $007FFC. Then, if we
add 2 bytes of data to the stack (Figure 2-14B), the address of the new "top"
of the stack is 2 bytes less, or $007FFA. Popping 1 byte of data from the top
of the stack (Figure 2-14C) makes the next available stack address $007FFB.
At no time does the data on the stack shift around inside the stack.

Obviously , the microprocessor needs to keep track of where the top of
the stack is at any moment. The 65816 does so with a special counter that it
keeps in one of its own built-in cubbyholes . That counter is called the stack
pointer. That CPU cubbyhole holds 2 bytes of data - just enough to specify
the address of a memory location (bank $00 is assumed). At any instant
during program execution, the stack pointer contains the address of the top
of the stack. As an item is popped off the stack, the stack pointer increases by
1 (goes up in memory); as an item is pushed onto the stack, the stack pointer
decreases by 1 (goes down in memory). This can be confusing at fll'st , but
Figure 2- 15 should help bring the concept home.

POINTERS

Although the stack pointer is a case in which the microprocessor is actually
storing information - the address of the top of the stack - you should
know now that pointers stored in regular RAM play an important role in
programming IIGS tools. We' ll see pointers in action in later chapters. Let's
examine the components of a pointer.

Since a pointer is an address to a memory location in a particular
memory bank, you will need 4 bytes of memory for the pointer. Two
bytes - the low , or rightmost, bytes of a four-byte number - refer to the
memory location . Two high bytes refer to the bank number. Therefore , a

UNDER THE MICROSCOPE------------------- 31

Bank$00

(high memory)

Top of previous data $7FFC
the stack -.-

(low memory)

starting
stack
(A)

Top of
the stack

... ...

Top of
the stack

Bank $00

(high memory)
previous data

new byte 1

(low memory)

one byte
popped from

the stack
(C)

--..

Bank $00

(high memory)
previous data

new byte I

new byte 2

(low memory)

two bytes
pushed

onto stack
(B)

$7FFB

Figure 2-14. Stack manipulation before push, after push, and after pop.

$7FFA

32 -------------- THE APPLE IIGS TOOLBOX REVEALED

65816
Staek Pointer

I$7FFC 1-

Bank$00

(high memory)
.. previous data ..

(low memory)

sta rting
stack
(A)

65816
Stack Pointer

65816
Stack Pointer

I$7FFA

Bank $00

(high memory)

previous data

new byte l

(low memory)

one byte
popped from

the stack
(C)

Bank$00

previous data

new byte 1

-- new byte 2 ..

(low memory)

two bytes
pushed

onto stack
(B)

Figure 2-15. The stack pointer keeps track of the top of the stack.

pointer to address $3F02 in bank $03 will have to be placed in memory as the
4-byte number $00033F02. If hex numbers, such as this one, ever get dif­
ficult to read, simply divide them into single bytes, in this case $00$03 $3F
$02, or two-byte chunks, $0003 $3F02. This pointer mechanism is illus-

trated in Figure 2-16.

UNDER THE MICROSCOPE------------------- 33

Bank $00
Display the name
stored in memory
indicated by the

following address:

$0003 3F02 ~

Figure 2-16. The pointer mechanism.

....
""

Bank $03

$3F02...._------4
LARRY $3F07 .,__ _____ -4

Pointers have to be used with care, however. In an application, it is
quite possible for data portions to be moved around a bit. This would happen
when a block of memory is no longer needed by the program, and all
remaining blocks that can be moved (i.e., that were created as relocatable
blocks) are compacted together. The net effect of memory compaction is to
open up large, empty blocks for the program to use for other purposes. But if
your program was pointing to a specific chunk of data in memory , it will lose
track of the data when the data block moves during compaction.

HANDLES

Fortunately, there is a way around this dilemma. A common technique in
IIGS programming is to use a handle instead of a pointer - indeed, many
tools require the use of handles rather than pointers. Instead of using a
pointer to refer to a specific data address in memory, a handle is a pointer to
a master pointer, whose location never changes. The master pointer, in turn,
keeps track of the location of the desired chunk of data as the data shifts
around memory while a program runs . Figure 2-17 demonstrates the
stages involved here, and compares the result of using a handle instead of
a pointer.

34 ------ - ------- THE APPLE JIGS TOOLBOX REVEALED

Before Compaction After Compaction

$00 $03 soo

Pointer;

soo $03 soo $03

Handle:

Figure 2-17. Pointer vs. handle action during memory compaction.

At first a handle might seem like a long way to go to keep track of a
block of data, but because the master pointer never moves in memory , the
IIGS toolbox can always find it and supply it with new information about the
location of relocatable data. Since even the program that caJls the handle
may move during a memory compaction, the master pointer system is far
more efficient than if each pointer in a program tried to track relocatable data
on its own.

Notice another important matter, one that has to do with memory nota­
tion, rather than pointers and handles. In the last several figures, we've been
displaying varying length items as simple blocks of memory in these vertical
memory maps . The blocks are not necessarily drawn to scale, and a block
can contain a chunk of information ranging from a single byte to perhaps
thousands of bytes. Maps are designed to give you a bird 's eye view of items
stored in memory at a given instant. Therefore, it is important that you watch

UNDER THE MICROSCOPE------------------ 35

the words used to describe information in any block of data. If the wording
in one box indicates it holds a pointer or a handle, then you know that the box
represents a total of 4 bytes from memory. As you start to work with the
tools, you'll quickly become versed in the amount of memory each type of
item requires.

FLAGS

In working with pointers and handles, we've seen that information in a pro­
gram is often grouped together in 2- and 4-byte chunks. Sometimes, how­
ever, you need to get down to the bit level to either establish or determine
certain conditions. A common application for this type of bit manipulation is
switching an operating mode on or off.

Bit Switches

Since turning a particular mode on or off (or checking which mode is cur­
rently engaged) requires nothing more complex than an on or off signal, it
can be handled by the content of a single 1 or 0 bit in memory. Usually, sev­
eral of these bit switches are grouped together so that they can be "read" at
once. The smallest practical grouping of bits is 1 byte. Each bit in such a byte
is called a flag, and the byte itself is often called a status byte. Most data in
an Apple IIGS native mode program shuffles about in word (2-byte) length.
A word containing a series of flags is called a status word.

Each bit in a status byte or word stands for a particular condition. For
example, one flag might indicate which of two video modes is engaged,
while a group of four adjacent flags indicates which of sixteen color tables is
in use (depending on the binary number that those four binary digits make).
A status byte might look something like the one in Figure 2-18.

Bit Arithmetic

Although each bit can carry a specific message about some condition, a pro­
gram has to perform some clever math on the binary number to determine the
settings of the flags in each of the bits. For example, if you want to check
whether the sixth bit flag is set to 1 before proceeding with a section of your
program, you would perform Boolean AND arithmetic on the entire byte.
The operation would look like the one in Figure 2-19.

Since the result of this operation is the binary number 0010 0000
($20}, the program detects that the flag in bit 6 is set. If the result were
0 (00000000), then the flag in bit6would beO, and the program would know
that the flag was not set.

36 -------------- THE APPLE llGS TOOLBOX REVEALED

Flags ~ I I I I I I I I
I

Color Table
0000 lhru 111 1

(Not used)

fill
O= Off I = On

.llllWUlU
O= Off I = On

Color Mode .__ _______ 0 = 320x200

1 = 640x200

Status Byte 10100011 (SA3) = Color mode 640x200; Interrupt off; Fill on; Color Table 3

Status Byte 00101110 ($2E) = Color mode 320x200; Interrupt off; Fill on; Color Table 14

Figure 2-18. A status byte.

Boolean arithmetic plays an important role in assembly language pro­
gramming and a lesser role in Pascal and C, but you will encounter it several
times in your learning about Apple IIGS tools. Be prepared for it by studying
Appendix A's short course in binary and hex math .

HOW A PROGRAM WORKS

In the last chapter, we described a program as a list of instructions for the
microprocessor. Now that you've seen a little more of what goes on behind
the scenes, we'll get somewhat more specific about what a microprocessor
does with a program.

1010 0110
AND 0010 0000

0010 0000

{Status Byte}
{Test presence of 0010 0000}

{Yes, it's there!}

Figure 2-19. Boolean AND arithmetic.

UNDER THE MICROSCOPE ___________________ 37

Loading

The first task occurs before the program even begins. It happens at the
operating system level. The operating system is, itself, a program that helps
you manipulate disk files and load programs. It is like a master program from
which you begin loading an application. Even when you start up the com­
puter with an applications disk that appears to launch straight into the
program, the operating system actually runs first, and then your program
loads.

If you are using the Finder and desktop view from ProDOS 16, then
you're looking at a shell built around the operating system, insulating you
from the operating system's command language. By moving the mouse
pointer onto an application's screen icon and double-clicking the mouse but­
ton, you actually give the load command to the operating system. T he
operating system tells the microprocessor to perform a set series of tasks that
will copy some or all of the bytes stored in the selected program on the disk
into RAM.

Running

The microprocessor immediately begins to follow the instructions loaded
into RAM. It knows where to start because it keeps track of the address
where the instructions are supposed to start and where the program is at any
instant. Just as the CPU tracks the stack pointer in a special spot on the chip
itself, it also keeps an address of the next program instruction it is to follow
in a section of the microprocessor called the program counter. If an instruc­
tion in the program calls for program execution to jump to a spot far away in
memory, then the program counter will adjust accordingly, pointing to the
address of whatever the next instruction is to be.

The program counter works automatically. Assembly language pro­
grammers have to keep a close eye on the program counter, but C and Pascal
programmers will never come in contact with it.

Quitting

At the end of the applications program, such as when you choose Quit from
a menu, the final instruction of the program returns control of the computer
over to the previous program- usually the operating system. When this
happens, the applications program instructions and all its data are erased
from memory (remnants may still be in RAM, but you'll have no access to
them). If the program was one that you used to store information, such as a
database or word processing program, you should, of course, save the new
data in data files on disk before quitting the application.

38 -------------- THE APPLE DGS TOOLBOX REVEALED

One more mechanism is involved in running a program - the micro­
processor's registers. We'll save discussion of this important concept for the
next chapter, in which we will examine the languages you might use to pro­
gram the IIGS.

CHAPTER3

Talking to Your IIGS

I n this chapter we'll take a slight detour from inside the Apple IIGS and
investigate what you can expect to encounter when using a programming

language to write instructions for your computer. We'll also examine three
programming environments- assembly language, Pascal, and C - in
some detail. This discussion may help you choose a language if you have not
yet made this important decision.

WHY A "LANGUAGE"?

We have al l learned at least one language- certainly the language in which
this book is written - although we usually take that learning process for
granted because it was so gradual. Language experts tell us that we learn our
main language by imitating the sounds our parents make, slowly assigning
meaning to those utterances. After years of constant conversational use, plus
the reinforcement of reading and writing, we learn to convey meaning to vir­
tually anyone knowing the same language- we communicate.

Command Languages
When you give instructions to someone to drive to the store, you are com­
municating the directions. The same is true when you want to give instruc­
tions to your IIGS to do something for you. You must communicate with the
computer.

39

40 -------------- THE APPLE JlGS TOOLBOX REVEALED

Even when you run a commercial applications software program, you
communicate your intentions to the computer by issuing commands. Those
commands may be in the form of words ("Copy"), keyboard commands
(Control-Q), or mouse actions (pulling down a menu and choosing an item
on that menu). Commands such as these actually constitute a small lan­
guage. Often the words in the language are similar to those of your own lan­
guage; other times the language is designed to be easy to remember with the
help of mnemonic clues, such as Control-Q to Quit. Generally, you issue a
command to produce an action; the program converts those commands into
instructions for the microprocessor to follow. You, as the program's user ,
are completely insulated from direct contact with the microprocessor.

From User to Designer
When you're the program designer, however, the scene changes entirely.
Not only do you communicate with the microprocessor, but you must be in
steady touch with it. The chip feeds on your instructions and must have a
constant stream of them. In other words, instead of issuing occasional indi­
rect commands, as in an applications program, you must carry on a continual
conversation. But how?

That's where a programming language comes in. It acts as an inter­
mediary between your human language and the language the micro­
processor understands.

MACHINE LANGUAGE

If you're wondering what kind of language the microprocessor has, you've
already seen what it looks like. To talk directly to the chip, you'd have to use
ls and Os. That is the total vocabulary of machine language, the language the
microprocessor "machine" understands.

An Awkward Tongue

Programming in machine language is not impossible, but it is awfully incon­
venient. In the earliest days of personal computing, most programming was
done in machine language. But instead of typing l s and Os on a keyboard,
programmers toggled switches on the computer's front panel to the desired I
or 0 position. Once a byte of l s and Os was set, the press of another button on
the panel stored that byte in the computer's RAM. There were no video
monitors either. Programmers could review programming instructions only
one byte at a time, with a panel light representing each bit's status -on or
off - plus some other lights to reveal the condition of various other parts of
the microprocessor (see Figure 3-l).

TALKING TO YOUR ITGS -------------------- 41

Aside from the tedium of writing each byte one bit at a time, errors
could easily creep in. After all, it takes close scrutiny to tell the difference
between 0 100 1010 and 0101 1100. And in a program consisting of several
thousand bytes, imagine trying to find an errant bit in a printout.

This brings up another key ingredient to using a programming lan­
guage: accuracy.

LANGUAGE PRECISION

When you speak your native language to another person, the precise word
selection and order are not critical, provided you follow some loose ru les.
For example, read these two sentences:

Yesterday I went to the grocery store.
I shopped at the supermarket yesterday.

Whi le both sentences adhere to the rule that a subject and object agree, each
sentence is constructed quite differently, yet both present the same mes­
sage- at least similar enough to convey the same meaning.

[Dm ~lJ-"11' i l:llJE

5u~Er lllil:rD fl[)

07 06
::(f. 0
··: ·.

05 04 0 3 02 0 1 DO

0 ::(/. 0 0 0 ::(/.
··:·· ··:··

I I I I I I I I
~caca~cacaca~

~ ca ca
Run Step Store

Figure 3-1. An early programming environment.

42 -------------- THE APPLE IIGS TOOLBOX REVEALED

In communicating with a computer in a programming language (or in its
own machine language for that matter), there is no room for ambiguities. A
computer language has a vocabulary and a very specific way its words can be
strung together. The structure of a message is called the syntax. You can
make an error in syntax when talking to a fellow human, and the message
will usually get across just the same. But a computer is a finicky devil,
insisting that you talk to it in proper syntax. Failure to do so usually results in
the computer telling you that you have made an error - often called a
syntax error.

THE WRITING PROCESS

Up to now, we may have made it sound as if the microprocessor knew the
same programming language that you Jearn so that the two of you could com­
municate. Strictly speaking, that's not true. Actually, all the microprocessor
understands is machine language, and that's all it will ever know. But most
language software you buy translates your words into machine language for
the microprocessor. The language bas a vocabulary and syntax of its own,
and then translates your writings into properly constructed machine lan­
guage instructions. It insulates you from the ls and Os of machine language.
The language is usually designed to make the program writing process sim­
pler by letting you write instructions in an English-like environment.
Granted, sometimes the "English" is stilted and abbreviated, but the lan­
guage still makes the programming job much easier than does machine
language.

Getting the Words Down - The Editor

The first step in writing a program is typing the program's steps according to
the vocabulary and syntax rules of the language you're using (presuming you
have established what you want your program to do). Most programming
languages come with a separate program that lets you save the instructions as
a text file on a disk. This program is nothing more than a stripped-down word
processing program, usually called an editor. Sometimes the editor is built
into the language environment; other times it is a separate program. When it
is a separate program, an editor lets you write in any programming lan­
guage - in fact you can use it as a word processor for letters and other
simple documents in English if you like. The editor is simply a vehicle to let
you type in the instructions and save them as a text file on a disk. The file you
save is not a file you can load and run as a program.

In addition to typing actual program instructions with an editor, you
will also add explanations and reminders about what the code is doing at

TALKING TO YOUR IIGS ____________________ 43

various stages of the program listing. These notes are not part of the pro­
gram - they do not affect the CPU's actions in any way - but they are a
part of the editor text file just the same. These notes are for your own edifica­
tion so you can return to the list of sometimes cryptic instructions and locate
a particular section for repair or modification. The task of writing these notes
(usually as you write the instructions) is called documenting the program.
Since the notes aren 't part of the program, you can use any language or
syntax that makes sense to you. Depending on the language, notes are kept
separate from program listings by enclosing the notes between special
characters, such as curly brackets.

Translating Words into Programs

What turns an edited list of program instructions into a program is an assem­
bler or compiler (hereafter referred to simply as compiler unless we're
specifically discussing assembly language). When you start the compiling
procedure, the compiler program opens a file created by the editor and
converts your typed instructions into machine language . The results of this
compilation are also saved to disk in a separate file. This file is in a special,
compressed format that only the computer knows how to read . You won't be
able to look at its contents by opening it with the editor. By the same token,
since the instructions are in machine language, the computer has no way of
identifying the file as coming from a particular language. Once the instructions
are in machine language, they essentially lose all ties with their linguistic
origins.

EDITOR

I. Editor program converts keystrokes
into an ASCll text flle of program

instructions.

Figure 3-2. Editor and compiler work flow.

2. Compiler program converts your
text into machine language.

44 ______________________________ _
THE APPLE riGS TOOLBOX REVEALED

You see, then, the language, per se, is not contained in the editor, but in
the compiler program. That program expects to see only its own vocabulary
in the list of instructions you typed into the editor file. A "C" compiler, for
instance, would not know how to handle a Pascal instruction, even though
compilers from both languages could translate editor files created with the
same editor program.

Two terms you will become very familiar with when you start program­
ming are source code and object code. Source code consists of the list of
instructions you type into the editor. It is the "source" from which the com­
pilation derives its information . Source code listings are the ones you will
write, print out, share with others, and use to track down errors. Object
code, on the other hand, is the name of the result of compilation. You might
say that it is the "objective" of doing all the programming: to create a list of
instructions in machine language that the microprocessor can follow. We
will be using these terms freely through the rest of this chapter, so be sure
you understand them fu lly before proceeding.

We now take a closer look at three types of languages: assemblers, com­
pilers, and interpreters. Each has advantages and disadvantages you should
know about if you're still considering which language to settle down with .

ASSEMBLY LANGUAGE MECHANICS

You have probably heard both horror stories and praise for assembly lan­
guage. Both are justified. Assembly language is often said to be difficult to

EDITOR

1. Editor program converts keystrokes
into an ASCII text file of program

instructions.

2. Compiler program converts your
text into machine language.

Figure 3-3. Source code and object code in the edit and compile stages.

TALKING TO YOUR JIGS-------------------- 45

learn. That view is hotly debated, but it is safe to say that if you did your first
programming in a language such as BASIC or Pascal, assembly language
will seem much harder at first. The primary reason for this is that in assembly
language you get much closer to working at the microprocessor level than
you do with any other common language. For this reason, assembly lan­
guage is called a Low-Level language. In contrast, a high-Level language
largely insulates you from worrying about the CPU chip.

Brick and Mortar

To understand what assembly language programs do, you need a little back­
ground in a microprocessor's internal components and their role in a pro­
gram - its architecture. The architecture of a given chip is generally
unique compared to that of other chips. A 65816, for instance, has far dif­
ferent architecture from that of the 68000 in the Macintosh. Among the
numerous architectural features of a chip, assembly language programmers
pay the closest attention to the chip's registers.

A register is little more than a small storage space built into the micro­
processor. In the last chapter, we saw how two of the 65816 's registers work:
the stack pointer and the program counter. In both cases, these registers hold
addresses to places in memory, one for the location of the top of the stack,
the other for the location in RAM of the next instruction the CPU is to follow.
These registers are largely automatic, in that certain instructions adjust their
contents. Pushing a byte onto the stack, for instance, automatically reduces
by l (decrements) the address held in the stack pointer.

65816 Registers

Several other registers, however, are the ones actively used by an assembly
language program instruction. The registers of the 65816 are represented in
Figure 3-4.

Most registers are 16-bit registers, meaning they can hold 2 bytes of
information at one time. If you find that you need holding places for two
distinct 8-bit characters, you can store each character in a separate half
of the same register. Simply signify in the assembly language instruction
whether you want to store the number in the high or in the low byte of the
register.

As you learned in the last chapter, a register can be reserved for specific
jobs, such as maintaining addresses of the stack and instruction pointers.
Explanation of the jobs for the other registers goes beyond the scope of this
book, but the documentation accompanying an assembly language program­
ming package should describe them in detail.

46 ------------- - THE APPLE ITOS TOOLBOX REVEALED

8 bits I 8 bits

I I I I I I I I I I I I I I I I I X Register (X)
X Register High

(XH)
X Register Low

(XL)

I I I I I I I I I I I I I I I I I Y Register (Y)
Y Register High

(YH)
Y Register Low

(YL)

I I I I I I I I I I I I I I I I I Stack Register (S)

Stack Register High Stack Register Low
(SH) (SL)

I I I I I I I I I I I I I I I I I
Accumulator High

(B)
Accumulator Low

(A)

Accumulator (C)

I Program Counter
(PC)

Program Bank Register
(PBR)

Program Counter High Program Counter Low
(PCH) (PCL)

I I I I I I I I I I I I I I I I I Direct Register (D)
Direct Register High Direct Register Low

(DH) (DL)

Figure 3-4. Registers of the 65816.

Shuffled Registers
It may seem too simple to be true, but the bulk of assembly language pro­
gramming consists of writing instructions to move information into and out
of registers on the microprocessor chip. For example, if a program is sup­
posed to place thecharacter"A" into a place in RAM, the first step of the pro­
gram procedure will be to place the ASCII code for that character into a
register. From there, another instruction will specifically store the contents
of that register into a location in memory.

To the beginner, this shuffling about of data among registers and
memory locations might seem like a very time-consuming endeavor when a
program runs. On the contrary, because these simple instructions are actu-

TALKING TO YOUR IIGS ____________________ 47

ally built into the microprocessor, they are handled with blinding speed­
as often as millions of times a second. Although some instructions take
longer to perform, they still work at speeds we can only imagine. Tens
of thousands of instructions, including the microprocessor's mainte­
nance of the instruction and stack pointers , can be executed in less than a
second .

An Assembler Package
When you buy an assembly language for the IIGS , you usually get a
minimum of three separate programs, and often several more . The three
basic programs are an editor, an assembler, and a linker. The editor , as
we've seen, is a simple word processor that lets you write the list of instruc­
tions. Most of the instructions you write into the editor will be the same as
the instructions that were built into the microprocessor by its designers.
Microprocessor makers call these instructions opcodes, since each instruc­
tion is assigned an identifying number (the code) that signifies a specific
operation (the op). Collectively, the opcodes are grouped into an instruction
set. The instruction set of the JIGS ' 65816 contains 256 different opcodes,
while the older 6502 microprocessor has only 151 opcodes (the 65C02 in the
lie has 178 opcodes).

Macro Libraries

Most assembly language packages include numerous source code files con­
taining prewritten code for common program operations. Instead of retyping
a series of frequently used program instructions into your own source code
listing , you can simply type the name assigned to that group of instructions
wherever you want them in your program. The name you type is called a
macroinstruction, or macro . When you assemble the program, the assem­
bler reads the contents of the macro text files and inserts the detailed instruc­
tions where you typed the macro name - it essentially expands the single
macro name into a full list of instructions from the macro file. A collection
of macro text files is called a macro library, and you can insert as many as
your program requires.

To incorporate a macro in your program, you'll also have to identify
at the beginning of the source code file that you will be including macros
from one or more macro files when the program is assembled. Gradually ,
you will also build your own library of macros added to those supplied with
your assembler language. These will save you the time of retyping instruc­
tions for sections of future programs. You ' II be able to include them in a new
program just the way you do the macros supplied with the language
software.

48 -------------- THE APPLE TIGS TOOLBOX REVEALED

The Assembler

Once the program instructions are safely stored on disk as your source code
file, it is time to run the assembler program. The assembler reads the con­
tents of the source code file (and macro files, if any) line by line, and trans­
lates the opcodes into machine language.

The Linker

The third program in your package is called a linker. As its name implies,
this program links together previously assembled portions of a program. It
also figures out where in memory the various portions of your program will
"reside" when you run it, as well as writing other instructions that the micro­
processor will follow when you run the program.

Assembly and linking times vary, depending on the assembler software
you're using and the length of the source file. The procedure may take only
a few minutes for a modest program. Still it is practical to assemble and link
only a sizable portion of new code or existing error-filled code that you've
repaired to the best of your ability. Assembly and linkage of a longer pro­
gram can take tens of minutes, so you're not likely to assemble each time you
make only one of a series of intended changes.

The result of the assembly and linkage procedures is saved as a load file,
which means that you can load and run it just like an application program you
buy at the computer store. In the case of a native-mode program designed to
behave like a Macintosh program, it means you start it by double-clicking on
its icon in the Finder, do whatever the program does while you're running it,
and then quit (provided you programmed such an option) to the Finder.

HIGH-LEVEL COMPILER MECHANICS

The steps involved in writing a program in a high-level compiled language,
such as Pascal and C, are not far different from those of an assembly
language program. The key difference is in the way you write program
instructions in the editor. In both Pascal and C, the vocabularies are more
English-like, and it is often easier to trace the execution of a program just by
following a printout of the source code file (although documenting the
source code is still highly recommended).

Portability

Another attraction of writing in a high-level, compiled language is that you
can often transfer the experience of writing programs for one computer to

TALKING TO YOUR llGS -------------------- 49

writing programs on another computer, even though the two machines run on
completely different microprocessors. For example, if you know how to pro­
gram inC on the Macintosh, you can carry that knowledge right to the Apple
IIGS. Your learning time on the IIGS will be relatively short. The major dif­
ferences, it turns out, are in the ways of using the built in programming tools,
which we'll be getting to in the next chapter. Other than programming the
tools, the language vocabulary and syntax will be almost identical on the two
machines . Therefore, an experienced programmer can concentrate on the
programming peculiarities of the machine at hand , rather than trying to learn
an entirely new vocabulary, as would be necessary moving from the Mac's
68000 to the IIGS' 65816 assembly language instruction sets.

By staying with the same high-level language from machine to
machine, the programmer will have an easier time converting programs to
the IIGS. Such a conversion is often called a port. Of course, owing to the
graphical user interface that the IIGS toolbox promotes, it will be easier to
port programs from similar environments, such as the Macintosh.

High-Level Punctuation

Both Pascal and C are rich in punctuation rules, which must be followed
carefully. The punctuation marks play no role in the running of the program,
though. Rather, the marks send instructions to the compiler when the source
file is being compiled. For instance, both Pascal and C require that a
semicolon be placed at the end of each statement. When the compiler
encounters a semicolon in the source file, it knows that all the text between
that mark and the one previous is a single statement and it's okay to go ahead
and compile it. At first, you will probably experience some frustration when
the compiler encounters a missing or incorrect punctuation mark, alerting
you of the mistake. Later you '11 acknowledge the marks as a necessary nui­
sance, and learn to check punctuation prior to compiling.

Standard Languages

Designers of high-level languages often try to come close to a recognized
standard vocabulary and syntax for that language - a standard generally set
by the language's original developers or an industry standards group. One
reason for adhering to a standard is that it might be easier for someone to use
a particular compiled language if it resembles a standard version learned in
school or from experience elsewhere. A developer of a new dialect might
include a number of enhancements to the language, and discuss them in the
manual as enhancements to a particular standard.

One way to enhance a language is to make it easier to use. Perhaps the
dialect offers more logical menu selections, a faster compiler (compiler

50-------------- THE APPLE IIGS TOOLBOX REVEALED

design is a craft in itself), more compact object code, or more automatic per­
formance of key operations. Any of these (and more) qualify as reasons to
compare various brands of compilers in your desired language, if more than
one are available.

High-Level Libraries

Another common way of enhancing a standard version of a compiled lan­
guage is to add libraries of compiled routines that your program uses to per­
form complex functions when it runs. These routines are merged into your
program at the linking stage.

For example, if your program reads and writes disk files, your source
code would contain instructions such as "read" and "write" to retrieve and
store data. When you run the source code through the compiler, the resulting
object code will not contain the routines that do the actual disk work. Those
routines are in a separate library file, which must be linked to your program.

The linker attaches the disk routines to your program, and links the
"read" and "write" instructions to them. The output of the linker- the load
file - is the final program file. When the program runs and encounters one
of those disk instructions, execution branches momentarily to the disk
routines. The procedure for linking library files is illustrated in Figure 3-5.

EDITOR

Figure 3-5. Stages of editing, compiling, and linking.

TALKING TO YOUR IIGS ___________________ 51

HIGH-LEVEL INTERPRETER MECHANICS

A third class of programming language (after assembler and compiler) is
called an interpreter. An interpreter functions quite differently from either
an assembler or a compiler. Assemblers and compilers, as we've seen, trans­
late source code into machine language. The CPU then turns the machine
language code into "results," which we see as a running program. An
interpreter, however, does not have an explicit intermediate machine lan­
guage stage. The program's source code (usually stored in a compacted,
non-text file format) is turned directly into "results" while the program runs.

Interpreter Pros and Cons

Now, there are distinct advantages and disadvantages to using an interpreted
language.

On the plus side, an interpreter eliminates the compiling stage. That
means you can test the results of a single-character change in the program
without waiting for compiling and linking. The source code is , for all prac­
tical purposes, the object code. Source code is written not in an editor, but
atop the interpreter. In other words, the entire language is a single program,
a single environment.

There are penalties for this convenience, however. First, the procedure
to run an interpreted program is to first load the interpreter into memory; then
load the program into the interpreter - like loading a spreadsheet program
and then the spreadsheet into the program. That means that for you to distri­
bute the program to others , they , too, must have the interpreter. The program
file you generate is not executable, as it usually is with a compiled language .
Since the copyright on the interpreter language package prevents you from
distributing the interpreter (at least not without a license from the language
developer), every potential user of your program must own the same lan­
guage just to run the program.

Another penalty is that a program running inside an interpreted lan­
guage runs at a slower pace than a compiled program doing the same opera­
tions . If you recall that when writing a compiled language program the com­
pilation process takes a long time, then you'll understand that having an
interpreter perform similar translations while the program runs is bound to
make for slower execution speed.

Interpreter Experim~nt

If you want experience using an interpreted language, you have one built into
your Apple IIGS. The language is called Applesoft BASIC. Unfortunately,
you cannot program with the toolbox from Applesoft BASIC. Other inter-

52 ----- - - - ------ THE APPLE ITGS TOOLBOX REVEALED

preted BASIC languages designed specifically for the Apple IIGS, however,
will allow you to program toolbox operations. There may eventually be
BASIC compilers for the IIGS toolbox programming, which will allow you
to create executable program files after developing a program in an
interpreter environment for ease of testing and debugging. BASIC compilers
have traditionally generated rather large executable files , because they often
link a full complement of program modules, some of which your program
might not need. If you are considering a BASIC compiler as your language,
consider its ability to create compact executable files.

While an interpreter's relatively slow execution speed and other nega­
tive features make it a poor choice for a serious production language, many
professional programmers use an interpreter, such as BASIC, as a rough
draft tool. The ability to run and debug programs "on the fly" makes it easy
to test many programming hypotheses quickly, without wasting compiling
time.

CHOOSING A LANGUAGE

One of the most difficult decisions you will make about your computer is the
programming language you wish to commit yourself to. It is a commitment,
to be sure, because you'll invest time, energy, and money in the mastery of
a given language. Making the choice more difficult will be advice from
experienced programmers. Such advice often consists of emotionally
charged statements about one language being "the only" one to use, while
another is "a waste of time." Programmers tend to be passionate about the
languages they use.

If you're impatient- and who of us is not?- then a high-level pro­
gramming language will probably be the best place to start. Once you get
experience with programming, you will be able to learn enough about
assembly language to perhaps write assembly language subroutines from
your high-level language programs that perform key operations faster than
the compiled high-level program does.

The High Road
Between the two most popular high-level, compiled languages, C and
Pascal, the choice is more a matter of support available to you. If you are sur­
rounded by C language friends, then you will have valuable resources avail­
able to you . Of course, if you already have experience programming in
Pascal , then you will have an easier time focusing on the idiosyncracies of
programming with a toolbox. Apple Computer plans to support both C and
Pascal for developers , so there will likely be plenty of documentation and

TALKING TO YOUR IIGS ____ ____ ____ ____ ____ 53

other support material available from both Apple and third-party publishers
for both languages.

Which Compiler?

Choosing from multiple compilers in a given language is more challenging,
primarily because it takes some experimentation to adequately compare the
performance of one C compiler against another, for example. Poke around
the electronic bulletin boards that seem to attract programmers, such as the
Micronetworked Apple User Group (MAUG) on CompuServe. Find out
which packages programmers there are using with success.

The most important criterion for Apple IIGS compilers is that the one
you choose be able to access the entire toolbox. Additionally, some com­
pilers come in different levels. One level may not offer access to the entire
toolbox, but it is inexpensive. Higher levels give you more power, greater
toolbox access, and perhaps the opportunity to distribute software compiled
with that language. Be sure you understand a compiler manufacturer's
licensing agreements for commercial software you might develop with its
compiler.

The Low Road

A number of programming purists , however, will pursue assembly lan­
guage, another language supported directly by Apple. Once you have the
feel of controlling each movement of data around your microprocessor and
RAM, you will be hard-pressed to return to a high-level language for any­
thing other than program prototyping. Programming in assembly language
gives you the supreme opportunity to fine-tune each operation of a program
for maximum speed. You will likely compare two ways of doing the same
operation by .adding up the number of processor cycles (internal clock
pulses) it takes for each, and choosing the one that runs faster.

APPLE'S PROGRAMMING WORKSHOPS

Few computer companies go out of their way to support third-party software
developers as Apple is doing for the IlGS. While most companies, such as
IBM, offer an assembler and hardware technical documentation for its PCs,
Apple set out from the very beginning to offer an assembler, a Pascal com­
piler, a C compiler (each in a separate Programmers Workshop package),
and volumes of technical data for professional and hobbyist programmers.

There's method to this madness, of course. By offering so many
development packages, Apple will attract the widest possible audience to

54-------------- THE APPLE JIGS TOOLBOX REVEALED

the IIGS: accomplished assembler programmers, longtime Apple II Pascal
adherents, and Pascal and C whizkids from the ranks of Macintosh program­
mers. If IIGS development parallels that of the Macintosh, then C will likely
be the predominant high-level language among commercial developers. It
may be easier, therefore, to find programming help at user group meetings
and on electronic bulletin boards for C than for Pascal, yet you won't be
alone if your choice is Pascal.

Common Ground

The codevelopment of these three programming environments has yielded a
practical direction for them all. Object files emanating from the assembler or
the complier of any Workshop language are in identical formats. What
makes this so inviting is that you can then link object files from multiple lan­
guages into a single load file.

~G8
C Compiler

Pascal
Compiler

r-::-h_____ ~
~~

Assembler

Figure 3-6. Programmer's Workshop languages produce object code that can be

linked together.

TALKING TO YOUR IIGS _ ___________________ 55

This simplifies the combination of program segments written in dif­
ferent languages.

Workshop or Third-Party?

The availability of an Apple-produced programming environment may offer
comfort to programmers, but this should not rule out using third-party
assemblers and compilers. Third-party developers will surely write high­
level language compilers for the IIGS as they have for the Macintosh. Some
will write C and Pascal compilers, while others will focus on different lan­
guages, such as Modula 2, Lisp, Prolog, Logo, and more. For maximum
flexibility, though, the language you choose should generate object code
that is fully compatible with the Apple IIGS Programmer's Workshop object
code. That way, you' 1l be able to link object code of other programmers from
many different environments.

No matter which programming language you choose, you will be using
it as a way to gain access to the Apple IIGS toolbox - a very powerful set of
routines built into the machine. The remaining chapters will focus on the
tools in preparation for your own exploration using the language of your
choice .

Part Two

Key Toolbox Concepts

CHAPTER4

What's a Toolbox?

Before we get into the specifics of the toolbox you'll eventually be
using on the JIGS , we need to examine fundamental concepts about

programmer's toolboxes in general. Of particular interest will be why
toolbox programming is so important for IIGS program development. We'll
start our toolbox discussion with an extended analogy, which should
give you a solid picture of what it will be like to use a toolbox in your own
programming.

THE WOODSHOP

Imagine that you want to build a wood bookcase from scratch. Perhaps
you've drawn some sketches of what you want the bookcase to look like ­
its basic dimensions, the number of shelves, the type of base it should have
for stability, and so on. Now imagine that you are provided with the
resources of a fully equipped woodworking shop, decked out with racks of
hand tools and several power tools for just about every step you ' II go through
in building the bookcase.

Thanks to the availability of those tools, you won't have to figure out
how to cut the wood planks to proper length, for example. Over centuries,
professional wood craftsmen have refined the design of the saw so that you
can now pick it up and start using it for cutting. The same goes for essentially

59

60 --- ----------- THE APPLE IIGS TOOLBOX REVEALED

every tool you will use- hammer, screwdriver, vise, even the power drill.
People who knew what they were doing designed those tools to make it easier
for both professional and apprentice woodcrafters to turn their ideas into
finished products.

Of course, just because the tools are well designed doesn't mean that
they guarantee success. It's still possible to saw a crooked line even with the
most expensive and best engineered handsaw. If you mismark the spot for a
drill hole, the fanciest drill press in the shop won't drill the hole in the right
place by itself.

Look closely, and you may notice that some of the tools in the wood
shop, as they have developed over the years, influence the final designs of
items they help build. Access to a mitre (pronounced "my-ter") box, which
lets you saw precise angles at the ends of two adjoining pieces of wood, has
prompted many a builder to design his or her creation around mitred comers.

You could say that mitred comers are now an accepted convention or
standard for joining intersecting wood sections.

FROM WOODSHOP TO COMPUTER SHOP

Now imagine that you have an idea for an Apple IIGS program. You may
even have some sketches of what the screens are to look like and a diagram
of the program's basic structure. Instead of going to a woodworking shop,
you go into a programming shop. In the shop are numerous tools to help you
create effects on the screen such as windows, pull-down menus, graphics
shapes, and text in many fonts.

In this case, the tools are prewritten assembly language programs
(routines) that your program branches to while it runs. These prewritten

Figure 4-1. Joining two pieces of wood to form a mitred corner.

WHAT'S A TOOLBOX?--------------------- 61

programs were crafted by experienced programmers so that they operate
quickly and guide you in the direction of good program design. You don't
have to write the program code for generating on-screen windows or other
features you may use often. The tools that do these tasks are there for the
picking. Simply branch to the ones you need .

While the tools in this Apple IIGS programmer's shop number in the
hundreds, you aren't restricted to those tools only. In fact, if you have the
programming experience, you can design your own tools from scratch if they
will make the job of creating future programs easier. You might say that
Apple provides you with a well-equipped toolbox that is big enough to hold
additional tools.

TOOLS AND THE USER INTERFACE

Having a built-in set of tools at your disposal is a time-saver, especially if
you are trying to design a program that approaches the standards set these
days by commercial programs. The tools, however, will also influence the
way your program will look and behave. Just like the woodworker's mitre
box has made mitred corners a standard way of joining two pieces of wood,
so too will the Apple IIGS tools point you in the direction of certain design
standards.

These standards are called the User Interface Guidelines, a set of pro­
gram design criteria established by Apple. Such guidelines were developed
for the Macintosh a couple of years prior to the release of the computer, and
were published for even the earliest in-house and third-party software
developers to follow.

Guidelines Intentions
The purpose of formal user interface guidelines is to establish a level of com­
monality among programs so that a machine owner will feel at home with
essential commands and tasks in virtually any application program. For
example, the User Interface Guidelines for the Apple TIGS specify ways to
use scroll bars to scroll through a document.

No Guidelines = Chaos
If you've worked with applications programs on earlier Apple II family com­
puters or IBM PCs , then you know that scrolling can be handled many dif­
ferent ways. For example, to scroll a full screenful on an Apple lie, a
program may ask you to press the Down arrow in conjunction with the Shift
key, Control key, or one of the Apple keys next to the space bar. It's even

62 -------- ----- - THE APPLE IIGS TOOLBOX REVEALED

~,_ __
m •----
• 1 ___ _

.• Ji![[[[[[[[ii!il!i[[il Q~,_ __

up one line
up one screen

drag anywhere
witltindocurnent

down one screen

down one line

Figure 4-2. Scroll bar actions according to the User Interface Guidelines.

worse on the IBM PC, which has not only arrow keys, but keys labeled PgUp
and PgDn (for Page Up and Page Down). Some program designers take the
PgUp command to mean that a press of that key will bring into view the text
above the screenful you're now looking at. Still others take the opposite
frame of reference: a PgUp command means that you scroll up the page, as
on an papyrus scroll, which means that you' ll be looking at text below
the starting screenful. How are you to remember the correct command or
combination when switching among several programs that use different
conventions?

Guidelines = Order

Fortunately, Apple provides a guideline for scrolling documents in a
window on the IIGS , as shown in Figure 4-2. It's true that the graphical
orientation helps in remembering how to scroll , but even so, we know after
learning in one program that a click on the downward pointing arrow will
advance the document one line; a click on the gray area underneath the white
box will scroll one screenful. Without this guideline, program designers
who need scrolling windows in their programs would likely come up with
several different ways to bring other parts of a document into view. Nowa­
days, Macintosh owners expect the guidelines to be followed in software
they acquire. When the guidelines are not met, reviewers and the consuming
public are quick to criticize the designers for the flaws.

WHAT'S A TOOLBOX?-------------------- 63

Guidelines and Innovation
The adherence to user interface guidelines is a controversial issue. Some
programmers, particularly those who are accustomed to doing everything in
a program "their way ," feel that guidelines are too restrictive. Experience on
the Macintosh has shown, however, that the common user interface has
helped dramatically in customer perception that Mac software is easier to
learn than comparably powered programs on the IBM PC. Far from telling a
program designer how to design his or her program, the guidelines relieve
the designer of developing schemes for basic operations: starting the pro­
gram, opening existing files, starting a new file , saving a file to disk, print­
ing, editing (cutting, copying, and pasting) text, scrolling a window, and
quitting the program. The programmer can concentrate, instead, on those
elements of the program that make it unique and practical. The guidelines
simply provide a steady foundation atop which the program designer can
build individualistic palaces and cathedrals.

Guidelines Extensions
Even though the published guidelines might seem all-inclusive with regard
to basic commands and operations , several third-party developers have
demonstrated on the Macintosh that guidelines can be extended logically.

Quo usque IIIIID'.SIIllobutere, Cotol i no,
potientio nostro~Quom diu etiom
furor i ste tuus nos e 1 udet?

~ potientio nostro? Quom diu etiom
furor iste tuus nos eludet?

1. Double-click word.

2. Single-click with mouse
in left margin of line.

3. Double-click with mouse
in left margin of
paragraph.

Figure 4-3. Logically extending the User Interface Guidelines.

64 --------------- THE APPLE IIGS TOOLBOX REVEALED

For example, in Microsoft Word for the Macintosh, you can select a word in
a document (to tell the program which word is to be deleted or underlined,
for example) by double-clicking the mouse pointer anywhere in the word.
This is consistent with the original Macintosh text editing guidelines. In
fact, all of the Macintosh text editing guidelines are observed in Word. But
the Microsoft designers went a couple steps further to simplify the selection
of entire lines of text and whole paragraphs. To select a line of text in Word,
you click the mouse pointer anywhere in the left margin next to the line you
wish to select. To select a paragraph, you double-click with the mouse
pointer in the left margin anywhere a long that paragraph.

These are two logical extensions of the Macintosh guidelines. Both
demonstrate that the guidelines are hardly as restrictive as some critics
imply.

The User Interface Guidelines for the Apple riGS are patterned after the
Macintosh guidelines, since one of Apple's goals is to establish a user inter­
face family look to all products in its line.

MACINTOSH AND IIGS TOOLS

Creators of the Apple IIGS tools had a significant advantage over their
Macintosh counterparts of the early 1980s: they had the Mac tools to start
with. In many cases, there is a strong resemblance between the tools in both
machines. In fact, the similarities will help many Macintosh commercial
software developers translate their programs and programming languages to
the IIGS with far less difficulty than they had when creating the original
Macintosh versions. But there are some major differences that affect the spe­
cifics of any program.

Color

The most obvious difference is that the graphics tools on the liGS take a
color display into account. While several Macintosh tools left openings for
the eventual addition of color, the IIGS was written from the very beginning
knowing that color would be a central focus of the machine. Not only is there
color, but the color capabilities are substantia l, as we'll see in Chapter 8.
Therefore, color is an integral part ofiiGS graphics tools, while in the Mac,
color is treated more like an add-on, with which few programmers bothered.

Different CPUs
A second major difference in the tools is that the two machines use entirely
different microprocessors. The 68000 has an internal architecture of 32-

WHAT'S A TOOLBOX?-------------------- 65

bit-wide paths, while the 65816 has a 16-bit wide internal architecture. This
difference affects the way tools manipulate some numbers that go along with
them. Assembly language programmers in particular will be affected by this
difference if they are familiar with Macintosh toolbox operations.

Memory Management
Finally , each machine manages its memory differently from the other. The
Macintosh, for example, places its stack at the top of available memory,
growing downward as the stack fills up . The IIGS , as we've seen, places the
stack at the top of bank $00, which is near the bottom of memory .

The rest of available memory in the Mac is treated as one large, con­
tiguous block of memory. It's so big in relation to the rest of the Mac
memory map, that it is called the heap in all the technical documentation.
Free memory on the IIGS is grouped into 64-kilobyte banks, and the alloca­
tion of space in those banks is a concern of the programmer and the memory
management tools built into the toolbox.

TOOLBOX AND SKILL

It's true that the toolbox will offer you substantial help in designing the look
and operation of your UGS programs. But the tools will only be helpers; they
won't be writing your program for you. You must still bring to your pro­
grams the planning and knowledge about your chosen programming lan­
guage to put all the pieces together. Just the way a power drill doesn't know
if you have marked the hole position correctly, neither will a tool know if you
are putting it to use in the proper manner in your program. In both cases, the
resulting product your first time out may be less than you had hoped, and
might, indeed, collapse in use.

But don't despair. Your skill at using any tool improves with practice.
So it will when you begin programming with IIGS tools.

From here, we will peek inside the IIGS toolbox to get acquainted with
the tool sets that will be available to you as you program. You'll also see how
to make a programming language pick up the tools and put them to work.

CHAPTERS

Opening the Toolbox

I f this chapter were in a woodworking book, it would illustrate the
overall layout of an expansive woodworking tool chest as you open the

lid. We'd show you where the various groups of tools were located and
describe how to select a tool. We wouldn't show you necessarily how to use
a particular tool , but give you an overview of the process of using those tools
in whatever kind of work you're involved with. We' ll be doing all of this, but
focusing on the toolbox of prewritten routines available to programmers of
the Apple fiGS.

TOOLBOX ORGANIZATION

A number of tools are built into the IIGS 's ROM and the rest, called RAM
tools, arrive on a ProDOS 16 start-up disk, located in a disk subdirectory
called TOOLS. The location of a particular tool will probably change over
the life of the Apple IIGS . As the machine matures , Apple will surely pro­
duce updates to the RAM tools and perhaps the ROM. Just as the Macintosh
was upgraded from a 64K ROM to a 128K ROM in 1986, so too might the
Apple IIGS be upgraded from a 128K ROM to a 256K ROM in the future .
When that happens, more of the toolbox will likely be incorporated into
ROM. Memory-map locations of tools will be entirely different from what
they are today. Fortunately such changes won't affect your programs

67

68 ------------- - THE APPLE IIGS TOOLBOX REVEALED

because one of the tools, called the Tool Locator, points your program to the
right tool, to matter where it comes from or what part of the memory map it's
in . Therefore , it should be of little consequence whether a particular tool set
arrives on your machine in ROM or on disk to be loaded into RAM.
Hereafter we will consider the toolbox as if it were a single source, as you
should.

A tool set consists of functionally related routines. Some tool sets have
the name "manager" tacked on, largely as a carryover from the Mac pro­
gramming environment. A tool set and manager are one and the same.

The organization of tool sets is primarily for the convenience of us
humans, who need to examine supporting documentation for a particular
programming operation. For example, if you wanted to know more about the
details of creating a window on the screen, you would narrow your search
through the reams of Apple IIGS technical documentation by focusing on the
section covering the Window Manager. Inside the toolbox (in memory),
individual tools are simply stacked atop one another. Routines from the same
tool set may be in adjacent areas of the memory map, but they don't have to
be.

TOOLBOX ROAD MAP

It's difficult to Jist the tool sets without appearing to assign a specific order
to them. As you will learn in subsequent chapters , many tool sets rely on
others either directly - a tool in one set may automatically call a tool in
another set - or indirectly - one tool may require that a tool in another
tool set be in use prior to execution, because your program must use tools in
both sets . All this is a preface to saying that the following description of key
tool sets should not imply any rigid hierarchy in the JIGS toolbox. Tool sets
that have the most impact on others are the Tool Locator, the Memory Man­
ager, and QuickDraw II . Those are described first. To master the toolbox,
however, you will have to study each tool and tool set on its own, including
ones not detailed in this book .

Tool Locator

Most applications programmers will not come into direct contact with the
Tool Locator, since its main job is to do a lot of dirty work behind the scenes
for the programmer. This is the mechanism that finds the location in memory
of a toolbox routine that your program needs. It gets an assist from the
system the liGS designers established for numbering major tool sets and
each tool therein. For example , when your program wishes to use a toolbox
routine , the Tool Locator automatically looks up the actual address of that

OPENING THE TOOLBOX------------------- 69

Program

SetPenMode -

IggJ Lg~;atg[

1 ... Toolset Toolset#J. .. SetPenMode I.,.. Address Table Address Table

J
. Routine

Setl Address Set Pen Size Addr. SetPenPat
Sel2 Address __r+ SetPenMode Ad Routine
Set3 Address SetPenPat Addr.

Figure S-1. Tool Locator mechanism .

tool by first looking in a table of pointers to tool sets, and then in a table of
pointers to tools in that particular tool set.

The Tool Locator also allows experienced programmers to develop
their own tools or their own versions of existing tools and have the program
summon those new tools in place of the built-in IIGS tools.

Memory Manager

Toolbox programs on the IIGS require a considerable amount of memory
management. A program must request an allocation of memory before
loading in its remaining portions. It should also deallocate that memory
when it is no longer in use. Although this may seem like a burden, it allows
a great deal of program design flexibility. If you divide your program into
several modules or segments, the program can load in only the segment(s)
needed for a particular operation the user is performing. When that operation

70--------------- THE APPLE IIGS TOOLBOX REVEALED

is finished, the segment can be withdrawn (purged), available memory com­
pacted, and another segment loaded into memory in its place. This gives you
the opportunity to shoehorn very large programs into machines that have
only the standard 256K of RAM.

In Figure 5-2, the left memory map shows two program segments sepa­
rated and surrounded by blocks of program data (perhaps text in a word pro­
cessing document). When Segment 2 is no longer needed, it can be purged
from memory. Doing so, however, leaves memory fragmented. There
would not be room for a large program segment, such as Segment 3. The
Memory Manager can compact the memory and open up enough space to
tack on Segment 3, as shown in the right memory map.

The Memory Manager, when asked, will also advise your program of
the amount of memory available at a given moment. If the user has a memory
expansion card installed in the computer, the program won't have to deallo­
cate memory to make way for a new segment, because there will probably be
enough free memory for the new segment. Thus, with the help of the
Memory Manager, the program changes its memory utilization. Users with
expanded memory will be rewarded by not having to wait for a program seg­
ment to load from the disk each time its particular set of operations is

Figure 5-2. Purging and compacting memory makes room for a new segment.

OPENING THE TOOLBOX------------------- 71

required by the user. Once Segments 2 and 3 are loaded into memory , they
will stay there as long as there is no further competition for memory space.

While you will have to know the Memory Manager quite well to pro­
gram in assembler, a high-level language automatically performs most basic
Memory Manager calls for you. You' ll still have to be aware of this man­
ager's abilities and requirements, though, for more sophisticated memory
tasks.

QuickDraw II

At the root of all video display output of the Apple IIGS in a toolbox program
is the QuickDraw IT tool set. While Apple II emulation on the IIGS allows for
many different graphics and text display modes, the standard output for
native mode programming is the new super high-resolution graphics.
QuickDraw H contains the routines that manage text and graphics display in
this mode (strictly speaking, it is all graphics, because text is displayed as
bit-mapped graphics, not built-in text characters as on other Apple II display
modes).

Figure S-3. Expanded memory lets more of the program stay in RAM.

72 --------------- THE APPLE IJGS TOOLBOX REVEALED

Quiclcdraw II Stuff

Figure S-4. Typical QuickDraw II prowess.

ABCDEF
abcdef

11111

1

QuickDraw II is responsible for drawing windows, menus , text charac­
ters, graphics shapes, fill patterns -essentially every picture element on
the screen . Even the ProDOS 16 Finder operating system makes calls to the
QuickDraw II tool set to create its video output. Because QuickDraw II is
used by many other tool sets, a firm understanding of its key graphics con­
cepts is essential for using many other tools . We '11 be looking more closely
at QuickDraw II later.

Menu Manager

Routines in the Menu Manager assist in the creation of the Macintosh-like
menu bar and pull-down menus that appear on the screen. When you pull
down a menu on the IIGS screen, the Menu Manager is temporarily in full
control of the program.

It monitors which item down the menu list you select with the mouse
pointer. The instant you release the mouse button - indicating that you
are choosing an item on the menu - the Menu Manager lets the rest of the
program know which menu and which menu item has been chosen. The pro­
gram then performs whatever its instructions tell it to do for that particular
choice.

The Menu Manager is one of the tool sets that relies on QuickDraw II
and benefits from QuickDraw's color routines.

OPENING THE TOOLBOX------------------- 73

Figure 5-S. Example of Menu Manager output.

Window Manager

Action in most of your programs will take place in one or more on-screen
windows. Even if the screen you ultimately generate does not look like the
windows you see in the Finder, as far as the UGS is concerned , it will be a
window. Creating a window of any kind- from a simple full-screen blank
area to a complex one with a title bar, scroll bars, and other features - is
the responsibility of the Window Manager. When your program gives
instructions to the Window Manager to create a window, the Window Man­
ager will adhere to specifications in a set of parameters, which will instruct
the Window Manager on the exact characteristics of the window.

But the Window Manager does much more than simply draw windows
on the screen. One very important job is keeping multiple, overlapping win­
dows under control. The Window Manager assists in sensing where mouse
clicks occur on the screen so that the desired window becomes the active
window (the one on top of the stack of windows, as it were). It then performs
the important task of filling in the part of the window that had been obscured
by other windows atop it.

The Window Manager will likely be one of the most important tool sets
to play a visible role in the design of your programs. It relies on QuickDraw
II for drawing window elements, and it relies on the next tool set, the Control
Manager, for scroll bars and other features.

Control Manager

A control in a IIGS application can take the form of an on-screen button that
you "press" with the mouse pointer, window scroll bars, a check box, which

74 --------------- THE APPLE IlGS TOOLBOX REVEALED

Window

Figure S-6. A typical window drawn by the Window Manager.

allows you to select one or more options from a list, and other on-screen
devices whose activation with the mouse pointer produce clearly defined
actions in the program. All ofthese IIGS screen objects are created and man­
aged by the Control Manager.

Since controls are graphics objects that are placed in a window , the
Control Manager works in concert with both QuickDraw IT and the Window
Manager. For instance , when you adjust the scroll bar in a window, the
Window Manager temporarily passes program execution to the Control
Manager, whose job it is to observe where you adjust the scroll bar on the
screen.

The IIGS toolbox comes with several predefined controls including but·
tons , radio buttons, check boxes, and scroll bars (detailed in Chapter 12).
You won ' t be confined to these controls only, because the Control Manager
assists in the creation of custom controls , which can take on many different
forms, such as temperature gauges, sound level meters , and so on .

Event Manager

We will be discussing the concept of events in Chapter 7, because it is critical
to the organization of your IIGS programs. But for now, we can say that

OPENING THE TOOLBOX ------------------- 75

Figure 5-7. Part of a window's scroll bar control.

every press of the keyboard, every press of the mouse button, is called an
event. An event usually causes the program to perform a particular operation
as a result of that event. Riding herd over these events is the Event Manager.
Its role in your programs will be demonstrated in Chapter 9.

Sound Manager

The Apple IIGS , of course, can emulate the single-tone sounds that the
Apple II family's internal speaker produces. But the IIGS also includes a
powerful sound generator circuit created by Ensoniq, called the Digital
Oscillator Chip (DOC). This chip, along with 64 kilobytes of RAM dedi­
cated to the sound circuitry and two other chips, give the IIGS remarkable
sound capabilities for a personal computer (see Figure 5-8).

The DOC chip includes 32 oscillators (tone generators). One of the
oscillators is turned into a special clock that the sound circuitry has to itself.
Common practice is to pair oscillators to produce a high quality tone for
music. That leaves enough oscillators for 15 independent voices. The Mac­
intosh, by comparison, has only 4 voices.

To gain access to these wonderful sound abilities, you use the Sound
Manager.

Dialog Manager

According to the Apple User Interface Guidelines, a program designer can
obtain information from a program user by way of a device called a dialog
box. A dialog box essentially asks you questions , and you supply answers -
you and the program carry on a kind of dialog. For example, if you want to

76 -------------- THE APPLE IIGS TOOLBOX REVEALED

Figure S-8. Apple IIGS sound circuitry.

establish a number of settings for the way a printed page should look -
paper size, margins, text of a header or footer, and so on - you select a
menu choice called "Page Setup" or similar. When you choose that menu
item, a new window appears atop the current work area and requests infor­
mation, such as a click of a radio button signifying the paper size from a list
of three possible sizes. The new window that prompts fqr this information is
called a dialog box.

The Dialog Manager handles many routines that create dialog boxes.
This tool set relies on tools from many other sets, although most of that
reliance exists "behind the scenes." For instance, a dialog box is a window,
so the Dialog Manager calls many of the tools provided by the Window Man­
ager. A dialog box also frequently contains one or more controls - radio
buttons, OK buttons, check boxes - so that it is no stranger to the Control
Manager. If the dialog box has a text entry box in it, then it calls upon the
tools built into the Line Editor tool set (see below). Dialog Manager tools
make many of these external calls on their own, letting you accomplish more
with your dialog boxes with fewer steps in your programming.

OPENfNG THE TOOLBOX ------------------- 77

Paper: ®US Letter
0 US Legal
0 Computer Paper

Special Effects: 181 Tall Adjusted
0 50 % Reduction
D No Gaps Between Pages

Figure 5-9. Example of a Page Setup dialog box.

Line Editor

t OK ;J
(Cancel)

The User Interface Guidelines are quite clear on the ways IIGS programs are
to behave when editing text in a window or a text box . For example, you
should be able to select text by dragging the text insertion pointer across the
desired characters. Selected text is then displayed in an inverse highlighted
fashion.

From there you can cut or copy the selected text into a scratchpad area
of memory called the scrap. Later, you can place the text insertion pointer
anywhere in the text and paste the contents of the scrap into the text. Text in
its window should also wrap such that words are not broken at the end of a
line.

ControJling all this text manipulation is the Line Editor tool set. Line
Editor routines are often called as the result of menu choices (e.g. , Cut,
Copy, and Paste). They are also called automatically by the Dialog Man­
ager, as we saw above. The Line Editor, itself, is not concerned with the text
font or the font size. That is left up to QuickDraw II, upon which the Line
Editor relies heavily. And even if your program is entirely graphics oriented,
such as a game program, you may still need to invoke the Line Editor at the
beginning of the program if desk accessories require Line Editor tool
functions.

'Tis a far, t• ,- ,. 1· I ~ t. t ,:.1• .:1 - - •• - thing

Figure 5-10. Selected text is highlighted.

78 ---- ---------- THE APPLE llGS TOOLBOX REVEALED

File Operations

If your programs will be reading and writing disk files, then you' ll need to be
familiar with the tools in the File Operations tool set. These are the tools you
wi ll use to create new files on the disk, open existing files, read data from the
disk, write data to the disk, and perform many other disk-related functions.
A prerequisite for using the tools effectively is a comfortable knowledge of
ProDOS 16, particularly in the way it treats disk drive devices (drives and
slots) and files organized according to the hierarchical file structure (as dis­
played in the Finder by nested file folders). Be sure you are familiar with the
distinctions between devices, volumes, and files.

Desk Accessory Manager

A desk accessory is usually a program of relatively small code length that can
run atop a main application program. Examples of popular desk accessories
are an alarm clock, a calculator, and a note pad.

Desk accessories are often designed to take the place of physical desk
accessories a user might keep on his or her desk. But a desk accessory can
also be a stripped-down version of a larger application program. For exam­
ple, a desk accessory program that behaves like a small spreadsheet program

Quiclcdrow II Stuff

Figure 5-11. Calculator desk accessory atop an application window.

OPENING THE TOOLBOX ------------------- 79

might feature a limited set of built-in functions and have strict limits on its
total size, yet it may be fine for quick spreadsheet calculations while you are
busy in a word processing program.

Two types of desk accessories can be used on the riGS: classic desk
accessories (also called CD As) and new desk accessories (or NDAs). Classic
desk accessories can be called from within programs running in emulation
mode and, usually , native mode as well. New desk accessories operate only
when the IIGS is running in native mode. If you've experimented with the
Control Panel desk accessory on a TIGS , you've experienced a classic desk
accessory, since it sets system configurations from either the native or the
emulation mode.

Keeping your program and a desk acessory alive at the same time falls
under the job description of the Desk Accessory Manager. Among its jobs is
to check whether a desk accessory you are about to call will work in the pro­
gram environment you are working in. If your program is to be receptive to
running desk accessories atop it, the program must make provisions for the
Desk Accessory Manager's tools.

SANE
The term SANE is Apple's acronym for Standard Apple Numerics Environ­
ment. These tools consist of built-in routines for various math functions,
including floating-point math operations (addition, subtraction, multiplica­
tion, division , square root), logs, exponentials, trig functions, time-and­
money calculations, random number generation, and many more. They can
be found in the Macintosh toolbox as well. SANE has been fully documented
and is part of the Apple Toolbox Reference series (see Appendix C).

Other Tools

While the above tool sets are the ones that get most of the headlines in IIGS
toolbox documentation, many more tools are available to ease the program­
mer's task. Among the miscellaneous tools you may find helpful are those
that:

• access information stored in the battery-backed-up RAM connected
with the real-time clock circuitry of the IIGS .

• allow you to retrieve clock (time and date) information for inclusion
into your programs.

• let you move information in and out of peripheral cards plugged into
the IIGS's slots.

• give you control over printing with a variety of output devices
(grouped together as the Print Manager).

80 -------------- THE APPLE IIGS TOOLBOX REVEALED

• access and control information copied into the area of memory called
desk scrap (sometimes called a clipboard) for retrieval or storage
on disk (the Scrap Manager).

TOOL SET INTERDEPENDENCIES

We've noted above several cases in which one tool set relied on routines in
other tool sets, often making calls to those other tool sets automatically
without intervention from the programmer. After a while, these inter­
relationships will become second nature to you. But for now they may seem
like a tangled web of threads running through the IIGS toolbox.

At great risk, we will attempt to diagram the relationships of the major
tool sets as described above. One risk is that newcomers will consider these
relationships to be a rigid structure when in fact the toolbox relationships
established by Apple's designers are nexible enough to sustain many mod­
ifications by experienced programmers . Another risk is that the following
diagram will by necessity be an oversimplification of the threads running
through the toolbox. With those warnings in mind , we offer a hierarchy of
tool sets. Those at the bottom form the foundation upon which higher-level
tool sets rely.

INCORPORATING TOOL SETS

We must now discuss the link between your program and the tools . We' ll be
talking in generic terms because the specifics of incorporating tool sets into

Line Editor

Dialog Manager

Menu Manager

Window Manager

Event Manager

Desk Access. Manager

Quickdraw li

Memory Manager

Figure 5-12. Tool sel hierarchy.

Control Manager

OPENING THE TOOLBOX------------------- 81

programs varies slightly from language to language. Fortunately, the con­
cepts are similar, especially among the languages in the Apple IIGS Pro­
grammers Workshop.

A IIGS language usually comes with two sets of toolbox-related files.
One set is source code, the other object code.

The source code fi les contain many predefined variables and data struc­
tures carrying readily identifiable names that you can begin using in your
own source code. These will save you from declaring the same toolbox vari­
ables over and over in each application. Moreover, you are assured that they
are done correctly.

You can use these predefined variables in your source code listing pro­
vided you instruct the compiler to incorporate the external source files into
your source code at compile time. The procedure for doing this is placing
instructions for the compiler (compiler directives) at the top of your source
code listing to include or use as many of those source files as are needed. The
files are typically grouped according to tool set, making it easy to specify
those files to be merged into your program.

The object code files supplied with the language contain the actual
routines that make toolbox calls possible in your program - something the
core compiler does not furnish. Therefore, the linker will link your pro­
gram's object code with as many tool set object modules as you direct in the
command to start the linker. The result will be a load file that makes the
appropriate calls to the Tool Locator each time a tool is requested as the pro­
gram runs.

It should be made clear that the "include" or "use" instructions are
simply assembler or compiler directives. They do not represent the calls to
the toolbox routines while the program runs. Actual calls to the toolbox are
placed throughout the program as needed.

CALLING A TOOL FUNCTION

Apple has documented the toolbox calls in full detail in a two-volume set
called Apple 1/GS Toolbox Reference. A call to a toolbox routine, as listed in
these references, looks I ike any statement that might be a part of a program­
ming language vocabulary. Here are some examples of tool calls you might
make to the Window Manager:

New Window
Close Window
GetFrameColor
SetWTitle
Select Window

82 -------------- THE APPLE llGS TOOLBOX REVEALED

Most of these statements are in plain language, although occasionally a
tool call will be abbreviated. SetWTitle, for example, is short for "Set
Window Title." Notice, however, that all tool calls are single words. This is
more for the convenience of the compiler, since compilers find it easier to
recognize single-word commands than those consisting of multiple words.

Most languages try to adhere to the vocabulary of tool calls as defined
in Apple's reference material. That's not always the case. In fact, you may
encounter languages, particularly assembly language, that have different
ways of making tool calls. Instead of using the tool call vocabulary as is, the
assembler may require you to precede the call with an underscore character,
like this:

New Window

The underscore is for the convenience of the assembler: it recognizes
any word beginning with an underline as being a toolbox call. You may also
find languages that use slightly different words for some toolbox calls.
When this happens, the new vocabulary words are close enough for you to
make an immediate connection between the new words and the ones defined
in Apple's programmer documentation .

Jumping to the Toolbox
In case you're wondering what happens inside the computer when you make
a toolbox call, here is a synopsis of the procedure.

Typically , your program will be following a list of instructions that you
write (although converted into machine language). The instruction pointer
will be wildly directing the microprocessor to follow instructions from your
program loaded in the perhaps tens of thousands of RAM addresses. When
the microprocessor encounters a toolbox call, the instruction pointer jumps
to the address of the toolbox routine (perhaps in ROM) . As soon as the
toolbox routine is completed, the instruction pointer returns to its jumping­
off spot in RAM and continues working its way through your program
instructions.

If you've had experience programming in any language, you will recog­
nize this methodology as a simple subroutine from your main program. In
this case, however, you don't have to write the subroutines, since they have
already been designed and optimized for you. Nor do they take up any disk
space in your fi nished program file.

PASSING PARAMETERS

Toolbox calls are occasionally self-contained, action-oriented functions,
such as the one named HidePen . When you issue this tool call, it unilaterally

OPENING THE TOOLBOX ------------------- 83

Program Toolbox .. New Window
Routines ,,

via Tool

New Window
T .nr.:~tnr

..... -- I

,,
Figure 5-13. Inside a toolbox call.

turns off the drawing pen on the screen. When you issue that statement , the
tool simply does its action and returns control back to the program - the
tool has nothing to report back to the program. But the vast majority of
toolbox routines fall into one of three categories:

I . They require input.

2. They generate output.

3. They require input and generate output.

Let's look at an example for each, using calls that affect the display of
text in a window.

To change the font of a patch of selected text, the program would have
to call the SetFont toolbox call (in QuickDraw II). Of course, just calling
SetFont would tell the computer nothing, since somehow we need to convey
the particular font we wish to set. That information is considered input to a
toolbox call. The way information is passed to the toolbox varies with the
language in which you' re programming, as we'll see later in this chapter.
But for now, suffice it to say that this tool requires we submit a handle to the
information in memory that contains the characteristics of the font we wish
to use.

84 -------------- THE APPLE nGS TOOLBOX REVEALED

The opposite occurs when our program needs to know what the current
font is. To obtain that information, the program uses the Getfont tool call
(also in QuickDraw II). In this case, we have no input for the tool, because
it assumes we wish to know the current font. But when the tool routine has
finished, the tool will need to give us information: its output. Again, the
way this output reaches our program depends on the language in use, as we'll
see.

The third possibility consists of tool calls that require input before run­
ning and produce output when they're finished. An example of such a call is
StringWidth. This call needs to know the location in memory of the text
string that is to be measured by the tool. When the tool has measured the
desired string , the result is then produced in the form of an integer counting
the number of picture elements on the screen the string occupies.

As you begin to program for theiiGS, you'll quickly see that most of the
tools fall into the types that involve input, output, or both. Relatively few
tools are freestanding functions.

PARAMETERS AND THE STACK

The best way to illustrate the way parameters are passed to and from toolbox
routines is to examine what happens to the stack during a toolbox call . Only
assembly language programmers will have to bother with direct stack mani­
pulations. High-level programmers will have the impression of using other
means of passing parameters; in reality, the load file generated by a high­
level compiler and linker will be using stack mechanics, just like the
assembly language programmer. Everyone, therefore, can benefit from this
explanation.

Input Parameters
When we caJied SetFont, above, we had to pass the handle to the font we
wished to become the current font. To do this with the stack, an assembly
language program would first push the handle onto the stack.

As you recall in our discussion about the way the stack grows down and
the contents of the stack pointer (SP) decrements when an item is pushed
onto the stack, the illustration makes perfect sense.

Once the parameter is on the stack, the program can call the toolbox
routine. When the routine runs , it automatically looks to the stack for the
information it needs - a handle in this case - and pops it from the stack
without any intervention from the assembly language program. Once the
routine is finished, control of the program returns to the assembly instruc­
tions , and the stack is returned to its previous status.

OPENING THE TOOLBOX ------------------- 85

stack
before push

previous contents
....._ SP,

stack
after push

previous contents

Font Handle
~--------~~sP

Figure 5-14. Pushing a handle on the stack.

Many toolbox calls require that more than one parameter be pushed on
the stack before being called. Parameters can be of unequal lengths , such as
a sequence of pointers and table arrays. When a toolbox call expects mul­
tiple parameters, those parameters must be pushed on the stack in the proper
order so that the tool will pop them in the right order. For example, if you
push an integer and a pointer onto the stack in that order, the tool must expect
to pop a pointer and an integer from the stack - the reverse order in which
they were pushed onto the stack. If the tool expects a 2-byte integer and
instead pulls half of a 4-byte pointer, then the tool will surely fail and cause
a system error. The order of multiple parameters for each toolbox call is
detailed in the Apple IIGS Toolbox Reference manuals. Observe parameter
order religiously.

stack before
tool runs

previous contents

Font Handle
~--------~~SP

stack after
tool runs

previous contents

Figure 5-15. The tool pops the handle from the stack.

....._ SP

86 --- ---- ------- THE APPLE IIGS TOOLBOX REVEALED

Output Parameters

For tools that don't require input but emit output, we have an entirely dif­
ferent methodology for the stack. Just as a tool knows how to quietly pop an
input parameter from the stack, so too does it know how to push an output
parameter onto the stack - sort of. The qualification is that the program
must specifically request space to be set aside on the stack for the output that
is to come from the toolbox call.

As an example, if our program is about to call the GetFont tool, which
sends as its output the handle to the current font, we must make room for that
handle on the stack prior to calling the tool.

In this case, we must make room for 4 bytes of data, since the handle
coming back will be 4 bytes long. The empty space usually consists of Os.
The importance of this procedure is that the stack pointer must decrement so
that the tool won't overwrite important stack data with the output. If multiple
parameters are to be output by a tool, then enough space must be reserved on
the stack for them all.

When a tool supplies output as its result, the tool is said to return a par­
ticular kind of data. In good programmer's jargon, GetFont returns a handle
to the current font. Get used to hearing "return" as a way of identifying a
tool's output.

Input and Output

Stack manipulation for a tool that both takes input parameters and returns
output parameters is only slightly more complicated in that it combines the
actions of the two individual actions. To demonstrate, we'll use the

stack
before push

previous contents
.... SP

stack after pushing
4 bytes of $00

previous contents

space for result_
.......

Figure 5-16. Preparing the stack for output.

SP

OPENING THE TOOLBOX - ------------------ 87

StringWidth tool call described earlier. The assembly language programmer
has to plan the actions of the tool prior to calling it. Since the tool will return
an integer representing the picture element (pixel) width of a text string, the
stack must have available enough empty space for an integer that the tool will
push. Of course, the pushing happens after the tool has popped the pointer to
the text string from the stack . In other words, the order in which the assem­
bler program must push space and pointer is first the space for the output,
then the pointer to the text string.

Then the assembler program can call the String Width tool. The toolbox
routine automatically pops the string pointer from the stack and writes the
resulting text width integer into the space left for it on the stack.

Again, by preparing the stack prior to a tool call, the assembly language
programmer (or a high-level language program under direction of the com­
piler) can lay in any number of blank spaces and input parameters for com­
plex tools that have multiple input and output parameters.

High-Level Parameters

Although a high-level compiled language usually doesn't bother with stack
manipulation, you will still have to furnish input parameters and know how
to obtain output parameters after IIGS toolbox calls. Pascal and C are
remarkably similar to each other in working with toolbox routines that
accept and return parameters. Therefore, we'll generalize here a bit to give
you an overview of the mechanics of handling parameters in these
languages.

stack
befor e pushes

previous contents
r---------~~--sP ~

stack
after pushes

previous contents

space for result

handle parameter

Figure 5-17. Pushing space and a parameter onto the stack.

......, SP

88 - ------------- THE APPLE IIGS TOOLBOX REVEALED

stack after
tool runs

previous contents

Text width integer_
...... SP

Figure 5-18. Toolbox routine leaves only its output on the stack.

Both languages have a syntax that lets the programmer assign the value
returned by the tool to a variable name. Input parameters are attached to the
toolbox call by placing them in parentheses immediately following the call
in the program listing. Except for minor variations in punctuation, the fol­
lowing listing shows how the StringWidth toolbox call might look inside a
high-level language listing. The call will measure the width of a text string
whose location in memory has already been identified as a pointer called
" txt" earlier in the program:

width = StringWidth(txt);

Behind the scenes, the pointer (named "txt") is placed on the stack, the
StringWidth routine called, and the width integer placed on the stack . The
language goes one step further by assigning the value of the width integer to
the variable called "width ." Once this program function has been run, the
variable name, "width," can be used in calculations such as determining the
center point of the text string so that the text can be centered in the window
before displaying the string.

Toolbox calls that do not return output are often called procedures in a
high-level language. Tool calls that return output are called functions. Both
procedures and functions can pass input parameters, but only functions get
output parameters in return. Your language manual should demonstrate
ways of nesting procedures and functions to help reduce the number of lines
of source code required for your programs. For example, if you had only one
instance in your program in which you needed the value returned by
StringWidth for use as an input parameter in a different toolbox call, you
could skip the step of defining the "width" variable. Instead , use the

OPENING THE TOOLBOX - ------------------ 89

StringWidth(txt) function itself as an input parameter. Its returned value (the
width) will be passed directly to the other call.

In the next chapter, we'll dig deeper into the parameters passed in
toolbox calls, while demonstrating a key concept for IIGS programming: the
record.

CHAPTER6

Understanding Records

I f you have programmed graphics on an Apple II, you probably noticed
that as soon as you give the command that draws a graphics shape on the

screen, your program loses contact with the object. For example, to move a
shape from one location to another, your program must erase the existing
shape on the screen and then redraw the shape at other coordinates. This
means that you must supply the coordinates, size, color, and other
parameters for the shape each time you draw it. Even the command for
erasing the shape requires coordinate and size parameters so that the pro­
gram will rub out the picture elements on the screen precisely where the
shape is drawn.

Even if you have not programmed graphics before, you can imagine
how tedious it can become to continually specify coordinates, size, and other
parameters each time you wish to draw or move an object on the screen. Now
imagine a graphically based environment such as the IIGS, and you can see
that keeping track of multiple, overlapping windows, for instance, could be
a nightmare if your program has to reinvent the wheel each time a window is
brought forward as the active window. Fortunately, the IIGS toolbox pro­
gramming environment greatly simplifies the maintenance of windows and
other programming items. Specifications about these items are stored in
memory as a list of parameters, a list commonly called a record.

91

92 -------------- THE APPLE IIGS TOOLBOX REVEALED

RECORD BASICS

The concept of records will likely be radically different from anything
you've encountered in non-Macintosh-like programming. Yet once you
understand the way they work, much of IIGS programming should be easier
to grasp.

Let's use a hypothetical window record as an example of how records
are created and how important they are in a program.

To create a new window for the screen, you must predefine a large
number of parameters that the Window Manager will assign to a given win­
dow. The specifications include, among others:

Coordinates of the top left corner of the window

Coordinates of the bottom right corner of the window

Coordinates of the top left and bottom right corners of the active work
area inside the window

Pointer to the memory location containing the text of the window's
title

Components of the frame the window should have

There are many more features to a IIGS window, but we'll save those for our
in-depth examination of the Window Manager, in Chapter 10. For now, the
above parameters specify enough information for us to visualize the results
of various values we assign to window parameters.

If we were to take the information about a window and store it in a pro­
tected area of memory - one that won't get overwritten by another program
segment - then our program will have a fixed place to retrieve information
about our window anytime during execution of the program. The list of
window parameters in memory might begin as shown in Figure 6-1.

To make a change to the parameter list once a window has been created,
the program does not fiddle with list items directly. Instead, the toolbox pro­
vides many routines that adjust whatever parameter we wish. For example,
if we wish to rename a window, we can make a different toolbox call that
reaches into the window's feature list and adjusts the pointer reference so
that it points to the memory location storing the new title's text. Figure 6-2
shows the situation before and after the toolbox call that changes a window's
title.

Calling this parameter list a "record" helps us visualize the way infor­
mation about an object is stored in memory . It follows naturally that a
record, such as a window record, maintains an inventory of the window's
features and settings at any given moment. In fact , even if the user closes the
window by clicking the close box on the title bar, the window record will

UNDERSTANDING RECORDS
_____________________________________ 93

Window 1

grafPort pointer

window location

pointer to title text

status flag

.

Figure 6-1. Hypothetical window record in memory.

not necessarily be erased from memory. With the record still intact in mem­
ory, the user can reopen the window (by giving the appropriate menu com­
mand) and watch the window appear in the same size and location , and dis­
playing the exact same content as the window had when it was closed.

Records as Snapshots

The above example demonstrates how a program can manipulate a record's
contents to effect a change. A record, depending on the tool set managing it,
can also report current conditions. We'll see later on, for example, that one
often-called record logs whether the screen cursor was in a menu bar or in a
window when the mouse button was pressed. The toolbox monitors what's
going on and automatically adjusts the content of the record to reflect the
present state of affairs. The program, then, can read the contents of the
record and make decisions based on those contents.

Record Pointers

Records in the IIGS vary in length, ranging from only a handful of bytes to
hundreds of bytes for complex objects. Most of the time , when you initiate a

94 - ---- ---- ----- THE APPLE liGS TOOLBOX REVEALED

$02 $02
Window 1 Window 1 _.. $0040

grafPon pointer
'Original Title'

grafPort pointer
'Original Title' $0040

window locatior window locatio lr "New Title" $0088
title pointer: - ti~inter: $00020040 $ 2 0088

status flag -Originll Title- status flag

D
Figu re 6-2. Changing a window title parameter.

new object, such as a new window or menu, the toolbox routine you use to
create the object also finds and reserves room in memory for the record and
may even plug in values for a standard, or default, record. The act of creating
such a record often returns a pointer to the beginning of the record.

In a high-level language program, the toolbox call that creates the new
object is usually written as a function that returns a value which is assigned
to a variable name (see Chapter 5). Therefore, if you create a window, the
function might look like this:

Window I = NewWindow (windowlData)

"Window l" is a variable that, after the call , contains a pointer to the window
record created with the statement. If the program needs to create a second
window, a second statement could be added to the program:

Window2 = NewWindow (window2Data)

with "Window2" now capable of standing in for the pointer to the second
window's record. This is convenient because other toolbox calls that inspect
or modify the contents of a record ask that you pass the pointer to the record
you identify as the one to be worked on - such as changing the title of Win­
dow l or resizing Window2. Therefore , you get a comfortable feeling of
working with objects according to readily identifiable names you assign to
their pointer variables. Let' s see how this works in real life.

UNDERSTANDING RECORDS ------------------ 95

One of the criteria in a window record is a pointer to the location in
memory where the text of the title ofthe window rests. If you wish to change
the name of a window, you use the SetWTitle toolbox call. This call has two
input parameters: a pointer to the title text, and a pointer to the window's
record. The program would have to (1) declare the named variables as
pointer types, (2) call New Window, and (3) call SetWTitle.

Declare variables:
Window I is a POINTER
newTitle is a POINTER

BEGIN
Window! = NewWindow(WindowlData)
newTitle = "Worksheet l"
SetWTitle (newTitle, Window!)

END.

The fact that these two variables are pointers, while of crucial impor­
tance to the SetWTitle call, becomes largely hidden to us once they've been
declared as pointers. Instead, we conceive of the pointer variable names as
standing for the actual objects (the title text and window). This is an excel­
lent example of how a high-level language can disguise much of the "dirty
work" that must be addressed directly in assembly language.

GETTING AND SETTING DATA

When you program in a record-intensive environment, such as the JIGS tool­
box, your program must often dig into a record to retrieve the current state of
the object specified by that record . Conversely, the program will often have
to change a specification about an object by writing new information into
specific parts of the record. It is certainly more cost-effective (in tenns of
programming and execution time) to read and write only the desired specifi­
cation(s) from a record than either "thumbing through" a record to reach the
item you want or to rewrite an entire record when only one specification
changes . Fortunately , any IIGS object that maintains a record also has
toolbox calls handy that read and write individual specifications to the
record. A tool that reads information from a record begins with the word Get,
while a tool that writes information into a record begins with the word Set.

We saw an example of Get and Set tools in the last chapter when
demonstrating the way the stack operates while passing parameters to a tool.
The GetFont and SetFont tools were actually reading and writing informa­
tion - font handles , you'll recall - in a record associated with the current

96 -------------- THE APPLE IIGS TOOLBOX REVEALED

window (technically speaking, font handles are part of the Grafport record,
a component of the window record).

Get and Set tools are often used closely together. Before changing a
parameter in a record, your program will probably first perform a Get to see
what that current parameter setting is. If it is not the desired setting, then the
program issues a Set command to make the change. But if the existing setting
is fine, then the program can skip the Set routine, thus speeding its way on to
the next operation.

PRIVATE DATA

Records, especially ones such as window records, allow you to create mul­
tiple windows without any fear that parameters for one might get mixed up
with the others. For example, if your program must display two windows of
entirely different appearance - one may be a window with scroll bars and
title bar; the other may be a smaller, plain window- your program will
create a separate window record for each when you create the windows.
Adjusting the location or size of one of the windows will affect the record of
only the one window undergoing adjustment. Parameters for the other
window are not in any danger of being accidentally adjusted.

In formation contained in records is called private data because no other
object shares or is necessarily aware of the data for any other object.

DATA TYPES

As you begin studying the toolbox calls and records in the Apple 1/GS
Toolbox Reference volumes, you will observe that parameters are often
referred to by their data type. Pascal and C programmers will already be
comfortable with the idea of data types, because both languages are strongly
based on the concept.

For those who don't have that background, a data type is a declaration
or statement that a piece of data is going to be a certain kind of number, like
an integer (whole number within a specified range), or a string (a group of
text characters). By specifying the data types for all toolbox call parameters
and records (detailed in the Toolbox Reference volumes), Apple helps us use
these functions in our programs and tells us how much memory space each
parameter occupies.

High-level programmers traditionally think in terms of data types,
while assembly language programmers concern themselves with the size of
each piece of data. Let's look at the data types and sizes each kind of pro­
grammer will encounter, explaining the terminology along the way.

UNDERSTANDING RECORDS ------------------ 97

Fixed Length Data

High-level programmers of the IIGS rarely deal with data that is smaller than
an integer. According to convention, an integer is 2 bytes long. Because of
its 16-bit binary length, it can represent any number from -32768 to
+ 32767. Since the 65816 microprocessor handles information in 16-bit­
wide paths, the integer is generally the smallest data type that will be
specified for a toolbox call parameter.

There are exceptions, however. Occasionally a parameter can be
specified by as little as 1 bit or I nibble (4 bits). When this happens, several
small parameters are often packed together to make up a 16-bit value, thus
keeping the 2-byte width of information intact. When there is a single byte­
length parameter, it will be padded with Os to fill up the 2-byte space.

Assembly-language programmers caJI a 2-byte collection of data a
word. Therefore, sometimes you'll see reference to a word data type.
"Word" in a 16-bit environment such as the IIGS simply means that the data
is 2 bytes long.

When the information to be passed to a tool requires more than 2 bytes,
such as a pointer to a memory address (which needs actually 4 bytes - 2 for
the address within that bank, l for the bank number, and 1 to fill out the
data to an even word length), the data type called into action is the Longlnt,
which stands for Long Integer . A Longlnt is 4 bytes long. In assembly lan­
guage, a 4-byte space for data is called, simply, a long (and sometimes along
word).

Data containing a memory address, as noted earlier, must be expressed
within 4 bytes. Addresses are either pointers or handles (pointers to poin­
ters). Just as you assign a pointer to a Longlnt (4-byte) variable, so, too, do
you assign a handle to a Longlnt. More than likely, you won't come in direct
contact with the actual value, but let the variable name carry the "baggage"
of the handle value. When it comes time to pass that handle to a tool call,
you'll just plug it into the high-level language function as we demonstrated
for the pointer to a window record, earlier.

Boo leans

A common Pascal data type is called a Boolean, named after the nineteenth­
century mathematician George Boote (see Appendix A for further informa­
tion about Boolean arithmetic). A IIGS tool requires or issues a Boolean
value when it is looking for "yes" or "no" kind of information. By conven­
tion, a "yes" is signified by any number other than 0, a "no" is signified by 0.
In IJGS programming, a Boolean is 2 bytes long. The common convention is
to indicate a "yes" Boolean by $FFFF (clearly non-zero), and a "no" Boolean
by $0000.

98 -------------- THE APPLE ITGS TOOLBOX REVEALED

Variable Length Data

The IIGS toolbox generates a number of variable length data structures in
memory. A record is a good example of such a data structure. But records
from different tool sets are of different lengths, because each tool set has its
own list of parameters. Since the toolbox allows you access to key
parameters within a record by way of its many routines, you won't be
attempting direct access to items within a record. At most, you'll need only
the pointer to the record to accomplish any manipulation of parameters
inside an existing record. Consequently the exact byte count of a record
won't be of importance unless you're short on memory allocation for a new
record.

There is, however, one variable length data structure that you may be
examining one byte at a time. Called a string, it can contain any kind of tex­
tual material, from words in a text box to the short title of a window. When a
string data structure is part of a record, the usual connection is via a pointer
to the string data in memory. The actual construction of a string in memory
varies with the type of strings you use, either a Pascal or C string. Your lan­
guage manual will guide you in the proper form.

Manipulating information inside a string data structure may be neces­
sary, depending on the program. For example, a portion of a program may
convert the first letter of each word in the string to a capital letter. For your
program to perform this operation, it must work its way through the string,
looking for space characters, testing the character after each space, and sub­
tracting 32 from the ASCII value of lowercase letters to make them upper­
case (see the ASCII chart in Appendix B for the reason behind the subtrac­
tion). Of course, Apple has provided a tool that helps in searching through
the string data structure, but your program must guide it each step of the way
as it thumbs through the structure. It's not the same as a tool call that mod­
ifies a set location in a record.

Custom Data Types

Throughout the Apple IIGS Toolbox Reference manuals you will see data
types, particularly in Quick Draw IT, that seem to be graphically oriented
data types, such as point and rect. Data types with these names don't occur
naturally in Pascal or C, but they can be added to programs in either language
(using the type facility in Pascal; typedefin C) for convenience. Your high­
level language compiler will probably include these type declarations in the
supplemental source code files associated with QuickDraw II.

We'll examine these custom data types in more detail in Chapter 8, but
a sample is in order here. A point on the screen is determined by its hori­
zontal and vertical coordinates - the number of picture elements across

UNDERSTANDING RECORDS ----------------- 99

and down from the upper left comer of the screen. The horizontal and ver­
tical components of the coordinate can be each measured by an integer. But
if we need to refer to coordinate points often enough, it becomes easier to
refer to those two integers as a "point" whose data component is 4 bytes long .

Going one step further , if a rectangle is a common object - as it is in
JIGS windowing - then we can establish a data type, called reel , which has
as its data the coordinate points of the rectangle's upper left and bottom right
corners . Those two points, contained within 8 bytes of data, supply all the
information necessary to establish the location and size of a rectangle on the
screen . Hence, one of the components of a window can be an 8-byte chunk
of data type RECT that supplies important information about the appearance
of that window.

You'll encounter similar custom data types in the IIGS toolbox refer­
ence material. Also, don't be afraid to define your own data types in pro­
grams when they will aid you in keeping a large number of items and con­
cepts straight.

Before jumping into the key tool sets, we have one last concept to dis­
cuss: event-driven programs. This will be the heart of your programs if you
wish them to follow Apple' s User Interface Guidelines.

CHAPTER 7

The Main Event

So far, we've been looking at some of the components that go into an
Apple IIGS toolbox-based program. Quite likely, you haven't been able

to see how these pieces go together. That's what we'll be doing in this chap­
ter: seeing the main structure of a IIGS program. At the same time, you'll be
introduced to some program organization concepts that professional pro­
grammers use to make their jobs easier.

NONEVENTS

There's a strong likelihood that if you've done any programming in the past,
it has been along straight procedural lines. By that we mean that you write a
program from beginning to end in precisely the same order that things take
place on the screen . For example, if the program is an arithmetic drill for
elementary school students, the program may start with an opening menu of
levels of complexity of the problems the student wishes to work on.

The program essentially stops when it displays the menu . It waits for the
user to type a letter or number to indicate the menu choice. In BASIC, for
example, the INPUT statement literally halts program execution in its
tracks, waiting ever patiently for someone to type a character and the Return
key.

Once a choice is made , the program jumps to the part in the program
listing that contains the arithmetic problems at the level selected by the stu-

101

102 -------------- THE APPLE HGS TOOLBOX REVEALED

ARITHMETIC DRILL

1 -> Level 1
2 -> Level 2
3 -> Level 3
4 -> Score
5 -> Quit

Choose One: .. _.· .. ·.

Figure 7-1. Procedural program menu.

dent. After, say, ten problems, the program halts again as another INPUT
statement waits for the student to type in the response to a question such as,
"Do you wish more? (YIN)." Questions such as this are actually tiny menus,
here with two possible choices, Y for Yes and N for No.

So it goes throughout the program. Sections of action are punctuated by
pauses for menu selections. In block form, the program's code might look
something like Figure 7-2.

A more sophisticated program, along the lines of a word processor or a
spreadsheet (like Multiplan or Lotus J -2-3), is less procedural in nature, but
removes the user from direct access of commands by one or more steps. For
example, in the Multiplan user interface on the Apple II, the IBM PC, and
other computers (but not the Macintosh), you have free reign over entering
data in the spreadsheet's cells by pressing any number or letter keys as well
as a rrow keys and Return . But to gain access to the program's built-in
commands, you must press the Escape key. This action takes you one step
away from the cell mode and puts you into a command mode. A selection of
menu items appears at the bottom of the screen, and you use the keyboard
keys to make your menu selections. In block form, this kind of program
looks like the illustration in Figure 7-3.

THE MAIN EVENT--------------------- 103

MAIN MENU
1,2,or3?

Figure 7-2. Procedural program overview.

MODALITY

lf you study the above application structures, you'll observe that each
restricts the user to certain modes of operation at various times. When the
arithmetic program is presenting problems on the screen, the student may be
locked into going through all ten problems in a set before exiting the current
difficulty level. When one of the menus appears, particularly one of the sub­
menus (the "YIN" kind), the program offers a substantially restricted list of
alternatives. To quit the program entirely (without turning off the com­
puter), the student may have to work his or her way back through multiple
menu levels until reaching the hallowed Main Menu, which finally offers a
Quit option.

In the Multiplan kind of program, the modality is much more obvious,
because you are either in data entry mode or in command mode. When you
are in the latter, the command menu at the bottom of the screen is active, and
you can select items there by moving the highlight bar to the desired word
(using the arrow keys) or typing the first letter of the desired command word.
You couldn't indicate a command while in data entry mode, because the pro-

104 -------------- THE APPLE liGS TOOLBOX REVEALED

Regular Entry Mode

Command Mode Menu

Figure 7-3. An "Escape-Command" program structure.

gram interprets the arrow key as a cell pointer mover and letter keys as
characters worthy of entry into spreadsheet cells.

No Modes

From a user's point of view, modes can be very distracting. In the arithmetic
program, for instance, a student intent on running through twenty-five
problems at a particular level is interrupted after each set of ten with a ques­
tion about solving more problems. And then, the student has no choice but to
solve problems in multiples often. As we've also seen, quitting the program
requires remembering the steps needed to backtrack to the Main Menu. The
thought process is frequently disturbed , as the user puts aside arithmetic
solving skills while focusing on the details of program operation.

A Multiplan-like modality suffers from a similar distraction. If you're
busy entering information into a spreadsheet and wish to change the align­
ment of a cell's contents (i.e., change a label cel l from its natural left-aligned
format to centered), you must take your mind off the spreadsheet and its con­
tents by taking a giant step away from the spreadsheet and going into com­
mand mode. After you've made the adjustment, then you must make sure
you are back in data entry mode- otherwise your key presses will be inter­
preted as commands.

THE MAIN EVENT --------------------- 105

You should strive for modelessness in your program design. Modeless­
ness is best characterized by the freedom to use any program function at any
point while the program runs. Real life is largely modeless. We can be
talking on the telephone, yet we have the freedom to jot a note or punch up
numbers on a calculator. We're not confined to " telephone mode." So, too,
should a modeless program offer access to all possible menu commands so
that it takes but one action to print, save, paste, or change a font size. The
user should not be forced to focus attention on a program's modes while
losing track of the application's content.

In practice , it may be impossible to build a program that is completely
modeless, but it is possible to reduce the most blatant instances of distracting
modes and disguise the rest in devices like dialog boxes. The Apple User
Interface Guidelines promote the design ofmodeless programs . Not surpris­
ingly, then, the nos programmer's toolbox equips programmers with tools
to design modes out of their programs.

Unlearning

For many programmers, this takes some getting used to. The slow start of
early Macintosh applications development was attributed largely to the
rethinking required to design a program in this user interface environment.
In fact , in some editions of the Mac programmer's bible, Inside Macintosh,
a paragraph heading in the first chapter reads , "Everything You Know Is
Wrong ." In that paragraph is another statement conveying the meaning of
that heading: "You ' 11 probably find that many of your preconceptions about
how to write applications don't apply here." Since the IIGS programmer's
toolbox and user interface are patterned after the Mac's, those same words
apply here .

So if modes are "out," what in the toolbox helps you design modeless­
ness into your programs? It's something called an event.

FROM MODE TO EVENT

Everything that exists as input to the computer - a press of a key, a mouse
button press, even a character coming in through a serial port - is called an
event. Events have many characteristics. In fact, you might consider events
as objects because the toolbox Event Manager generates an event record in
memory that contains all the attributes of an event. Your program, then,
looks into the event record, decides what kind of event it is, and acts
accordingly.

106 - ------------- THE APPLE JTGS TOOLBOX REVEALED

Additionally, the Event Manager can keep track of a series of events
that happen too quickly for the computer to handle all at once. The list of
events is kept in a section of memory called the event queue. For example, if
you want to close two overlapping windows that are open on the screen, you
can quickly click the Close boxes in the two windows. You might click the
box on the second window before the program has finished removing the
first window from the screen . Both clicks of the mouse go into the event
queue. The program immediately takes the first mouse click from the queue
(popping it from the stack, if you will). As soon as the program closes the
first window and activates the second, it polls the event queue to see if any­
thing is in there. In this case, the second mouse click will be there . Pulling
this event from the queue, the program closes the second window. The user
benefits because he or she doesn't have to wait for the screen action to catch
up with two closely spaced mouse actions.

THE EVENT LOOP

Building the event mechanism into a program entails a program structure
that may be entirely new to experienced programmers. Actually, if you
haven't programmed a computer before, you' ll have an easier time under­
standing and applying the structure required for an event-driven program.

The central , "living" section of an event-driven program is called the
event Loop. It consists of two types of instructions: (I) a function that reads
the event queue to see what kind of event has taken place, and (2) several
statements that test the event pulled from the queue to determine specifically
what kind of event it is and what the program should do next for that par­
ticular kind of event.

If there has been an event,

-was it a key press?
<if so, display the character)

-was it a mouse button cress?
(if so, where was it?

if in a menu, pull down the menu;
if in a window, make it the active window;
if in a window's scrol I bar, scrol I accordingly>

Go back to the beginning of the loop unti I "Quit" has been
selected from the menu.

Figure 7-4. Event loop structure.

THE MAIN EVENT--------------------- 107

Instructions for each event type are located elsewhere in the program
code as stand-alone subroutines. When execution branches to one of these
routines, the action takes place (it could be a routine responding to a mouse
selection in a menu , a press of a keyboard key , or a click of the mouse on a
scroll bar). When the routine is completed, execution returns to the event
loop in the location from which it branched in the first place. At the end of the
loop section , program execution returns to the beginning of the loop , where,
usually, the event queue is polled once more.

Therefore , when a program doesn't appear to be doing anything, it is
actually racing through the event loop, waiting for some kind of event to take
place. If the event is a keystroke, for example, a word processing program
might jump to a subroutine that instructs the computer to display the
character on the screen and store the character in memory as part of the docu­
ment being built.

Every key press, then, is an event. That means, of course, that event
polling and subroutines must take place at a very fast pace for someone cap­
able of typing 100 words per minute to keep from typing faster than the
computer can accept events. At 100 word per minute, for example, the
machine must handle 10 complete events (including their subroutines) each
second.

Of course, there is no guarantee that any program will automatically
accommodate 10 events per second. It is very possible to design a cumber­
some event loop and keystroke subroutine that would not let a typist get
much past 50 wpm before the event queue overloads and the program loses
characters. That' s where experience and good program design come into
play- something you'll acquire in time.

Has there been an event?

Was the event a key press?

- i f so, j ump to .. D i sp I ay Rou tin e·· in Toolbox

Was the event a mouse click --

Figure 7-5. The event loop branches to subroutines.

.. ...

- I

Toolbox
Display Routine

1. decode
2. display
3. return

108 -------------- THE APPLE liGS TOOLBOX REVEALED

EVENT PROGRAM STRUCTURE

There is no rigid structure for an event-driven program. About the only
requirement is that the program begin with the necessary initialization calls
to "wake up" aU the tool sets that your program will be using.

Next, depending on the content of your program, the program should
perform any other program-specific initializations, such as creating an
opening window and menus . This initialization section should include all
setup procedures that your time-critical event subroutines will need. Perhaps
you will use this opportunity to create window or control records in advance
for objects that won't show up right away (although this may not be neces­
sary). Program execution should proceed from the end of these program
initializations directly to the event loop.

Even though execution jumps to the event loop , the loop does not have
to physically follow the initializations in the source code listing. Pascal, C,
and assembly language let you define the actions for each event subroutine
anywhere in the program, assigning a readily identifiable name to each
action. Consequently, you can define your subroutines in the middle of the
code and place your event loop - the main program - at the end of the
code. Or you can place the event loop after the initializations and put all the
subroutines at the end of the program. Figure 7-6 demonstrates two ways you
can structure an event-driven application.

EVENT DECISIONS

The event loop mechanism really owes its power to the event record, which
the Event Manager automatically creates in memory when an event takes
place. If multiple events are stacked in the event queue, only one event -
the next one to be acted upon - has its information posted to the event
record.

An event record contains the following information about an event:

The kind of event it is (e.g., mouse down, key)

The content of the event (e.g. the letter pressed)

The time of the event

The location of the mouse pointer at the time

Whether modifier keys were pressed (e.g., Shift key)

By reading one or more items of an event record , statements in an event loop
can test any detail about an event. For example, if the event was a mouse­
down event, then the event loop might branch to a subroutine that handles

THE MAIN EVENT --------------------- 109

Organization No.1

Initializations

Event Loop

Action
routine

definitions

Figure 7-6. Two possible program structures.

Organization No.2

Initializations

Action
routine

definitions

Event Loop

all mouse-down events. That routine may subsequently check to see if this
mouse-down event's time was within a specifically defined interval from the
last mousedown event, and if the mouse pointer was located inside a par­
ticular coordinate range on the screen. If so, then it performs an action that
was programmed as an action for double-clicking on a particular icon. After
execution of that action, the program zips back to the event loop, where it
waits to test the next event that comes along.

We're looking at the event loop and its actions from a highly superficial
view here. We'll get into much greater detail on the Event Manager's opera­
tions in Chapter 9.

MODULARITY

One beneficial result of the event-driven program structure is that you will
ultimately program your application in modular form. In other words , each
action- the action instructions for a Copy menu command , for exam­
ple - will be its own module , written in your source code program. You'll
be able to take that very same module and, without blinking, incorporate it

110 -------------- THE APPLE JIGS TOOLBOX REVEALED

into your next program. The same will be true for many procedures you'll
write. If you define your procedures with meaningful, plain-language
names, they'll become practically standard modules for most of your pro­
grams. Eventually, you will amass a considerable library of these building
blocks. The library will allow you to focus more closely on the new aspects
of your program instead of having to recode the same old stuff every time.

DESIGNING YOUR APPLICATIONS

Program coding may seem like a formidable task right now, but once you get
comfortable with your programming language and the IlGS toolbox, you'll
soon realize that designing a program for the Apple User Interface takes
more planning than other kinds of programs.

A procedural program often emerges slowly from the mind of its
creator. It starts with one screen, and gradually builds one screen at a time,
often without much forethought. Coding usually keeps adding to the pre­
vious code. Since the new code doesn't rely too much on what has already
been written in the program, the source code file frequently sprawls in many
directions at once.

Planning an event-driven application, however, will put an immediate
end to procedural thinking.lnstead of designing screens punctuated by menu
choices , think of your program in terms of event actions - menu choices,
mouse clicks , key strokes. By defining the actions in advance , you often find
refreshing ways of portraying tired topics. That's really what the User Inter­
face Guidelines set out to promote.

Remember, too, that with the prospect of high-resolution , color
graphics, you can tum windows - which take on their own physical entities
in your program - into metaphors of real-world objects, such as
accounting ledgers, music machine control panels, and so on. Don't just
limit yourself to the bland windows or screens of yesteryear. Think visually.
Turn your ideas into colorful pictures accompanied by inspiring sound.
Recreate images from real life on the screen.

This kind of thinking has brought us many wonderful software products
on the Macintosh. It will happen on the IIGS just as easily, with the added
enticement of color and superior sound.

Part Three

Tools in Action

CHAPTERS

QuickDraw II

We begin our exploration of the most important tool sets with
QuickDraw II, the tool set that governs the Apple IIGS's native mode

screen display. Although this tool set's name might imply that you'll use it
only for graphics- drawing circles, squares, squiggly lines, and so on­
QuickDraw II governs the display of everything on the screen. Windows,
menus, controls, and text all rely on QuickDraw II to do the actual"drawing"
on the screen.

As a programmer, you will come into direct contact with QuickDraw II
via its own tools only as often as the kind of programs you write need them.
Programs that have the user draw or paint on the screen will use QuickDraw
II actively. Animation programs will also make many QuickDraw II calls.
Text-oriented programs, however, will have little direct contact with
QuickDraw II calls. They'll be using QuickDraw II plenty, though. It's just
that the calls will be made by other tool sets, such as the Window Manager
and text tools. Your understanding of these "higher level" calls may require
a thorough knowledge of what QuickDraw II is doing and requires.

Therefore, no matter what kind of toolbox programming you intend to
do on your IIGS, QuickDraw II is the place to start examining tools in detail.
Many concepts here will be crucial in the design of your programs, as indi­
cated by QuickDraw IT's relatively low position in the tower of toolset
building blocks illustrated in Figure 5-12, on page 80.

113

114 -------------- THE APPLE TIGS TOOLBOX REVEALED

QUICKDRA W II VS. QUICKDRA W

The conceptual framework for QuickDraw II came from the original
QuickDraw, masterminded by Bill Atkinson for the Macintosh. Coupled
with the speedy processing of the Mac's 68000 32-bit microprocessor, the
original QuickDraw presented programmers with a large library of tools that
simplified the potentially enormous task of writing routines for animation
graphics, finely detailed graphics images, text in clearly distinguishable dis­
play typeface styles, and the common denominator user interface features of
windows, scroll bars, menus, and the rest.

QuickDraw II does the same for the Apple IIGS. While many of the
toolbox calls are the same and behave the same in both tool sets, QuickDraw
II differs from its forebear in some important matters.

Color

The most obvious, of course, is that the Apple riGS has been a color com­
puter from the very beginning, while the first Quick Draw focused primarily
on monochrome (black and white). The original QuickDraw does have some
color facilities, as Inside Macintosh will tell you, but since the original
hardware was not set up for color video output, this color facility is rudimen­
tary compared to the system built into the IIGS. QuickDraw II, as we'll see
later in this chapter, has a sophisticated mechanism for generating a
screenful of colors unmatched by most computers in its range.

Screen Resolution

Less obvious differences between the two QuickDraws include the differ­
ence in screen resolution between the Macintosh and the Apple llGS super­
high high-resolution mode. Also, owing to the way Apple II video monitors
usually create images on the screen, individual picture elements are con­
ceived of as rounded, while the Macintosh screen makes square elements.
The Mac's square elements and monochrome screen are responsible for the
crisp images displayed on Macintosh monitors. Still, with a quality RGB
monitor, the Apple IIGS is quite capable of producing sharp color pictures,
especially in its 640 x 200 display mode (i.e., 640 dots horizontally, 200
dots vertically).

The remaining differences between QuickDraw and QuickDraw II are
of little significance. QuickDraw II fares well in a head-to-head competition
with Quick Draw, so don't feel that you're using a lesser tool than what's on
the Macintosh. In some ways, it's even more powerful.

Now that we've acknowledged the differences between the two
QuickDraws, we will hereafter be referring exclusively to QuickDraw II as

QUICKDRAW Jl --------- ------------- 115

implemented in the Apple IIGS toolbox. For convenience, we will refer to
this tool set as, simply , QuickDraw.

GRAPHING COORDINATES

You can think of QuickDraw drawing images in a two-dimensional coordi­
nate plane. A location in the plane is denoted by a coordinate point con­
s isting of numbers representing horizontal and vertical measures in each
direction - just like a coordinate point on a geographical map. The unit of
measure is the picture element, or pixel. A pixel in the coordinate plane is
identical to a dot of an image on the video screen. Therefore, a filled square
image measuring 10 pixels vertically and horizontally would look like a
small square on the video monitor, consisting of 100 dots (a box of 10 by 10
dots) .

You might conclude incorrectly that since drawing occurs in this coor­
dinate plane , the plane exists somewhere in the computer's memory.
Nothing could be further from the truth. The plane exists merely as a concep­
tual drawing space, as a convenience for us when we visualize graphics
images and the physical space they would occupy if the images were real
objects.

It 's true that some images, when drawn on the screen by QuickDraw,
occupy an area of memory that contains information about each pixel in that
image as shown in Figure 8- l .

Data Required for
each pixel, whether
black or white.

Figure 8-1. A screen image requires data in memory for each pixel, whether black
or white.

116 THE APPLE IIGS TOOLBOX REVEALED

QuickDraw, however. also manages to draw other types of images
without taking up nearly the amount of memory that their on-screen image
might imply. For example, a rectangle image occupies little more memory
than is needed to specify its two basic coordinates - locations of its top left
and bottom right corners -no matter how large the rectangle is.

We'll have more to say about these two ways of drawing images later.

Drawing Space

QuickDraw II designers have established a very specific way of visualizing
the range of coordinate measurements in the conceptual drawing space
(Figure 8-3). The space is a square of 32K (32768 to be precise) pixels on a
side. Coordinate 0,0 is situated at the centerpoint of the drawing space.
Numbers increase along the horizontal axis from left to right; numbers
increase along the vertical axis from top to bottom. Note that the vertical axis
orientation - from top to bottom - is directly opposite from what you
may have learned in geography or geometry.

This means that coordinates in the lower right quadrant are the only
ones whose vertical and horizontal components are both positive numbers.
In other quadrants, one or both components are negative.

We must emphasize that the conceptual drawing space is not real
memory or disk space. It is large enough for a programmer to map images
that are far larger than a screen can hold. If, for example, you are designing
an extensive background scene for a program, you may want it to be larger
than one screen so that the user can scroll around a scene that may be the size

(120,50) ~ -
-
1-

1- 1-
1- 1-
1- 1-

1-
1-
1-

~ (133,67)

Data Required
for only two
coordinate
points.

Figure 8-2. A rectangle is defined by only two coordinate points.

QUICKDRAW II - - -------------------- 117

(- 1

t
Figure 8-3. The QuickDraw conceptual drawing space.

of several screens. Not all of the image may be in memory at one time ­
only as much as can be displayed in one screen may be in memory. But the
image, as stored on disk , is "mapped" to, say, a four-screen area in the con­
ceptual drawing space based on its coordinates. When the program needs to
display the second screenful of the scene, it can load in the necessary image
segment from disk and display it. If the computer has enough memory instal­
led, perhaps the entire four-screen image can be loaded into memory. Then ,
when another segment is needed in response to a user's scrolling, the pro­
gram can shift the viewing area to another part of the picture with no notice­
able delay. It will look like one seamless graphic image to the user.

QuickDraw doesn't care where in the drawing space you plant images.
For your own convenience, however, perform your first QuickDraw calls
from the centerpoint (0,0) and work in the lower right quadrant until you get
a feel for using this drawing space. In that quadrant alone, there's room for
an image over 2000 screens large in the densest graphics mode - 64 mega­
bytes of uncondensed picture information.

118 -------------- THE APPLE llGS TOOLBOX REVEALED

Pixels, Points, and Rectangles

The QuickDraw drawing space is measured by picture elements - pixels.
Apple IIGS pixels, as displayed on video monitors, look round or oblong.
This is a function of both the video generation circuitry inside the com­
puter - which must maintain compatibility with earlier Apple II software
design - and the design of the video monitor you are likely to attach to the
machine, whether it be a television set, composite monitor (color or mono­
chrome), or RGB (which stands for the red, green, and blue color signals
sent directly to the monitor).

Pixels are bunched together in perfectly aligned rows and columns.
Coordinates that specify pixel locations (and hence the locations of images
created by the pixels) do not actually refer to the pixels themselves. Instead,
the coordinates refer to points that are located between pixels.

This concept tends to sound a bit theoretical, much like a few geometry
concepts. Tn geometry class, we learned that a point is a location in space that
has no dimension. Similarly, a line between two points, as defined in basic
geometric theorems, must be a straight line. This line , like the points it joins,
has no thickness (although it has a definite length). That is, we can't really
see the line or its end points, but we can visualize what it would look like by
drawing points on paper at the specified distance and connecting them with a
line drawn along the side of a ruler.

On the QuickDraw drawing space, then, we can demonstrate points as
existing between pixels as in Figure 8-4.

~ ~

Point

~ ~
~

""1111 L
l""'"'oioil "'"-o.:
~ Pixel

Figure 8-4. Relationship between point and pixel.

QUICKDRAW II ------------------- --- 119

Points are represented by intersections of row and column lines. Now,
if we wished to specify the coordinates of a rectangle, we would tell
QuickDraw that the rectangle's two definition points (upper left and bottom
right corners) are located at two points. QuickDraw would then consider the
rectangle to be an imaginary rectangle with sides of no thickness. In other
words, just specifying the coordinates for a rectangle simply assigns loca­
tions in space for the dimensions of a rectangle.

For the sake of consistency , QuickDraw considers the rectangular out­
line defined by the coordinates to be the outermost extension of that
rectangle. If we want to see the rectangle, we must tell QuickDraw to actu­
ally draw the rectangle with its pen. A pen, as you' ll see later on, can have
many different attributes. One of those attributes is its thickness (called the
pen size). If the thickness of the pen is assigned to be 1 pixel high and l pixel
wide - l pixel period - QuickDraw would draw the defined rectangle
using a row of pixels inside the theoretical rectangle defined by the coordi­
nate points.

A pen size of 2 pixels high and 2 wide would fill in 2 rows of pixels
inside the theoretical rectangle.

Simple Data Structures

To facilitate the definition of points and rectangles in your programs,
QuickDraw readily acknowledges data structures called Point and Rect.

""""" ~
Rectangle
Specification

Figure 8-5. A rectangle's coordinates merely indicate its location and size.

120 -------------- THE APPLE IIGS TOOLBOX REVEALED

Figure 8-6. Drawing occurs inside the rectangle specification .

Rectangle
Drawn with
1 x 1 Pixel Pen

The Point data structure consists of two integers, one each for the ver­
tical and horizontal coordinates in the drawing space. An integer (2 bytes
wide) is required for each coordinate measure that may go up to l6K
($4000). Rect consists of a series of four integers: the vertical and horizontal
coordinates for the top left corner of the rectangle and the same for the
bottom right corner. When you begin writing programs in your chosen lan­
guage, pay special attention at first to the order of integers these data struc­
ture variables require. Because of the stack' s First In , First Out (FIFO)
orientation , assembly language coordinate parameters must be pushed onto
the stack in the correct order for the toolbox routine to pop.

PIXEL IMAGES

In this section, we'll discuss images that you will be designing for your pro­
grams, not the standard QuickDraw shapes such as rectangles. These custom
images are known to QuickDraw as pixel images (the Macintosh world calls
these images bit maps). You'll use pixel images for things such as back­
ground scenes and animation objects in graphically oriented programs.

All graphics on the Apple IIGS screen (or any computer, for that matter)
consist of carefully designed patterns of pixels. In the monochromatic

QUICKDRAW II ----------- ---------- - 121

Macintosh environment, pixels are either "on" or "off' - either black or
white. When pixels are small enough, the pattern of on and off pixels can
become a recognizable image.

Pixels, then, are like a mosaic of uniformly sized pieces that blend
together to form your pictures. When designing a picture, however, you
must work on these pictures under a microscrope, because you must program
each pixel. You may have the benefit of a graphics program that provides
painting and drawing tools such as those in MacPaint or MousePaint. Such a
program may allow you to save pictures in such a manner that your own pro­
grams will be able to load and use them without pixel-by-pixel program­
ming . Still , it's unlikely you'll escape some image programming in a
graphics program.

Pictures as Numbers

Before you can design a picture and store it in memory (and on disk) for your
program to use, you need to know in what form QuickDraw II expects to find
your picture. We're dealing with a computer that, at its basic level , knows
how to work only with numbers, not pictures or words. Therefore, a picture
as we know it must be turned into numbers for the machine to toss around
memory and display on the screen as colored dots.

As a stepping stone to this understanding, we'lllook at how the mono­
chromatic Macintosh performs this picture-to-number-to-picture conver­
sion. The concepts are a bit easier to grasp in monochrome, and will pave the
way for seeing how it all works in color a little later.

Figure 8-7. A Macintosh image enlarged to see each pixel and in its normal size.

122 -------------- THE APPLE IIGS TOOLBOX REVEALED

Figure 8-8. Enlarged pixel image of a hand.

Look at the pixel image of the hand in Figure 8-8.
The image is contained in a pixel area consisting of 16 rows of 16 pixels

each. Now study the topmost row closely. You'll see that it contains pixels
in the pattern shown in Figure 8-9.

The row of boxes may remind you of the binary boxes of earlier chap­
ters. In this case, however, empty (white) boxes are equivalent to Os, while
filled (black) boxes are equivalent to Is. Taking eight boxes, that is, pixels,
as a group, the content of those boxes can be represented by a number whose
binary equivalent has Os standing in for white pixels, Is for black pixels.

In the first row of the hand picture, then , the leftmost group of 8 pixels
can be communicated to the computer by the binary number 0000 000 I,
which is $01 . The rightmost group can be portrayed by binary 1000 0000, or
$80. Combining the 2 bytes into one integer, we have $0180 containing all
the information we need to depict the top row of the picture. The second row,
a more complex pattern of on and off pixels, would be $1A70 (0001 1010
0 Ill 0000). The entire picture would be translated into numbers as shown in
Figure 8-10.

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 = $0180

Figure 8-9. The top row of pixels from the hand image.

QUICKDRAW II --------------------- 123

= $0180
--t--t--t--t = $1 A70

= $2648
= $264A
= $1240

= $1249
= $6809
= $9801
= $8802
= $4402
= $2002
= $2004
= $1004
= $0808

--t-t--t = $0408

__.__.__. = $0408

Figure 8-10. The hand image and its numeric equivalents.

This pixel image would be stored in memory as a long sequence of the
numbers shown in the illustration. We must also pass another important
parameter as part of this image's definition: the width of the pixel image.
Width is specified as an integer and denotes the number of bytes wide any
row (sometimes called a slice) of the image will be - 4 bytes in the above
monochromatic illustration. With this figure at hand, QuickDraw II knows
how many of the hex values from the list of pixel image numbers are to be
applied to each row of the drawing. To display the hand on the screen,
QuickDraw would begin translating pixel image values into on and off pixels
along a row. As soon as it drew the first 4 bytes' worth of data, it would zip
back to the left edge of the picture area on the screen one line below the first
and start translating the next 4 bytes of pixel values. It would continue with
this until the entire image was displayed. While this may sound like an
enormous amount of calculating, converting, and gnashing going on, it
occurs so fast that you can't see the image being drawn - at least not one
this size.

Add the Color

Things get a little more complex when the pixel image is to carry color infor­
mation with it, but the concept is the same as for the Macintosh monochrome

124 ------------- THE APPLE IIGS TOOLBOX REVEALED

bitmap. The main difference is that in Apple IIGS super high-resolution
color modes (either 320 x 200 or 640 X 200), each pixel is represented not
by just a single bit to signify whether it is on or off. Instead , all pixels are, in
a sense, "on." But what distinguishes one pixel from one next to it is its
color. If a pixel is not supposed to be seen , it must be the same as the back­
ground color so it blends with the background , like camouflage. Each pixel
has a color.

Color information consists of either 2 or 4 bits, depending on which
color mode you are using. The higher density , 640 x 200 mode lets you pick
a color using only 2 bits , because this mode allows your choice of four col­
ors. What those colors are can change in different places on the screen, as
we'll see later in our discussion about the color table . For now , however, just
think of there being a palette of four colors to choose from, each known by
its binary number 00, 01, 10, and 11: four colors within 2 bits. In 320 x 200
mode, however, choice of color zooms up to 16. A quick check of binary
math tells us that a color can be singled out from the list by a 4-bit number,
from 0000 to 1111.

Going back to the hand pixel image, but this time in 320 X 200 mode
Apple IIGS color, if the background color happens to be color 0100 and the
outline of the hand is to be color 0000, the first 8 pixels of the top row of the
image would be

0100 0100 0100 0100 0100 0100 0100 0000

or $44, $44, $44, $40, while the first 8 pixels of the second row from the top
would be

0100 0100 0100 0000 0000 0100 0000 0100

or $44, $40, $04, $04. The hexadecimal values for the entire hand pixel
image are shown in Figure 8-11.

You can see that a color image requires more memory to store and dis­
play a pixel image than a monochrome-based picture. By placing the color
information with each pixel, the programmer ends up with excellent control
over the application of a diverse color spectrum on each image.

Color Image Width
A QuickDraw II pixel image must also be stored with its width factor so that
QuickDraw II knows when to start applying numbers from its long data list
to pixels in the next row. But an important factor to remember is that the
width must be a multiple of 8 bytes. That means that in a 320 X 200 mode
pixel image, whose pixels are I nibble in length, the minimum width of an

QUICKDRAWII --125

.. $4444 4440 0444 4444
f--lf--lf--lf--1 0: $4440 0404 4000 4444

= $4404 4004 4044 0444
"" $4404 4004 4044 0404
.. $4440 4404 4044 0040
= $4440 4404 4044 0440
= $4004 0444 4444 0440
= $0440 0444 4444 4440
- $0444 0444 4444 4404
= $4044 4044 4444 4404
.. $4404 4444 4444 4404
= $4404 4444 4444 4044
= $4440 4444 4444 4044
= $4444 0444 4444 0444

HHH = $4444 4044 4444 0444

= $4444 4044 4444 0444

Figure 8-11. Pixel image data in 320 X 200 mode.

image is 16 pixels . It also means that aJI pixel images must be stored with
widths in multiples of 16 pixels.

Fortunately, this does not mean that all pixel images as displayed on the
screen must be an even multiple of 16 pixels. If that were true, and you had
an active image that was, say, 23 pixels wide, the remaining 9 pixels to the
right of the image would have to be assigned some color. But then, if the
image moved to another part of the screen where images other than the back­
ground color were being displayed, the background color of the rightmost 9
pixels of the image would cover the existing image on the screen.

The BoundsRect

What saves us from that potential disaster is yet another pixel image para­
meter, called boundsRect, which is attached to information stored about
each pixel image. BoundsRect is short for boundary rectangle, and it
specifies the rectangular part of the stored image that is to be available for
display on the screen. The boundsRect does not necessarily determine where
or even whether the image will actually appear on the screen or whether a
Quick Draw tool can alter that image, but the boundary rectangle does mask

126 -------------- THE APPLE HGS TOOLBOX REVEALED

out extraneous pixels to the right of the desired width. Therefore, if you have
a 23-pixel-wide image, set the dimensions of the boundsRect to be only 23
pixels wide. Even though the pixel map extends for 32 pixels, those pixels
outside the boundary rectangle will be ignored by QuickDraw.

It 's also important to note that the boundary rectangle is the device that
gives your pixel image its link to a coordinate plane: the boundary rectangle
you specify for a pixel image is defined by coordinates to the QuickDraw
conceptual drawing space. In other words, until you assign a boundary
rectangle to an image, it is not officially in the QuickDraw drawing space.

When you establish a coordinate for the top left corner of the boundary
rectangle, the bottom right corner coordinate must be offset from the top left
corner coordinate and measured in the same coordinate plane. Therefore, if
the boundary rectangle for an image 23 pixels wide and 17 pixels deep starts
at drawing space coordinate (100, 1 00) , then the coordinate for the bottom
right corner of the boundary rectangle would be (123, 117).

The boundary rectangle does not, however, establish what part of the
pixel image will actually appear on the video screen. That feature is a func­
tion of the GrafPort and its component parts. We' ll get to the GrafPort at the
end of this chapter, since it ties much of QuickDraw together.

(100,1

BoundsRect
Height= 17

BoundsRect width = 23

Pixel Image width = 32

Figure 8-12. BoundsRect imposes a coordinate plane on an image and hides
extraneous pixels.

.·

QUlCKDRAWTI ---127

COLORS

There's nothing engraved on stone tablets dictating that your Apple IIGS
programs must be colorful. In fact, if you are writing programs for other
IIGS users, it is possible that not everyone will have a color monitor. You
could, therefore, program graphics screens in two of the machine's colors:
black and white. But why not reward those with color monitors with a col­
orful display? Since you have to program in color anyway, be imaginative in
your choice of colors. You may discover that certain features or functions in
your program are clearer to the user when displayed in color. Your extra
effort will probably be well rewarded.

Pixel Color

Earlier in this chapter, we saw how each pixel of a pixel image contains color
information. r n 320 x 200 mode, the color of a pixel is denoted by a unique
number in the range 0 to 15 (binary 0000 to 111 I). This number essentially
turns the pixel "on" and immediately assigns a color to it. The same goes for
the higher density, 640 x 200 mode, but the range of colors is limited to four
(binary numbers 00 to II).

rt' s important to understand, however, that the color number you assign
to a pixel in a pixel image does not stand for a particular color directly. That
is, color number 4 is not always blue. What that number refers to is a position
in a look-up table of colors stored in memory: a color table. If blue happens
to be the color in position 4 of the color table when the image is drawn on the
screen, then it will appear as blue. By changing the colors assigned to a color
table, we can control the precise shading and hue of a pixel to be any one of
4,096 different colors.

The Standard Color Table (320 Mode)

If you make no changes to the contents of the color table when working in
QuickDraw, you will have at your disposal the standard color table, which
has two lists of entries, one for each resolution mode, 320'or 640. The 320
mode standard color table looks like this:

Pixel Value Color Name Color Value
0 Black 000
I Dark Gray 777
2 Brown 841
3 Purple nc
4 Blue OOF
5 Dark Green 080

128 -------------- THE APPLE IIGS TOOLBOX REVEALED

Pixel Value Color Name Color Value
6 Orange F70
7 Red 000
8 Flesh FA9
9 Yellow FFO
10 Green OEO
11 Light Blue 4DF
12 Lilac OAF
13 Periwinkle Blue 78F
14 Light Gray CCC
15 White FFF

The Pixel Value column is the number you assign to a pixel in a pixel
image. In 320 mode, for instance, a pixel value of 4 (0 I 00) is blue in the stan­
dard color table, just as we showed in Figure 8-11.

The Color Value column should be quite revealing if you look at the pat­
te rn of hex values assigned to the basic colors red, green, and blue, and to
both black and white. First of all, you should immediately recognize that it
takes 3 nibbles of information to convey a particular color in the table.
Values in the range $000 to $FFF can represent any one of 4,096 numbers -
the number of colors available in the IIGS palette. Now, looking at the color
value for blue (4 in the table), you'll see that its value is $00F , meaning the
rightmost nibble is topped out at $F, while the other two are 0. The green
selected for the standard table has a high value, $E, in the middle digit, while
the others are 0. And red has a high value in the leftmost digit, while the other
two are 0. You may discern a pattern: each of the 3 nibbles controls the
amount of red, green, and blue color in a particular shade. Black, which is
the total absence of color , comes in as $000; white, which is a combination
of all three basic colors has a value of $FFF. The other colors consist of pro­
portions of two or more colors, like mixing paint.

The Standard Color Table (640 Mode)
You might expect that because a 640 mode pixel value covers a range of only
4 (00 to 11) , the 640 color table would be only 4 entries long. Fortunately,
that's not the case. If it were, we would have only two colors o ther than black
and white to display at one time (black and white must usually be present for
drawing crisp text, lines , and other standard user interface images).

While a pixel in 640 mode can be programmed in only one of four pos­
sible colors, the human eye and the color video screen can play tricks with
our color perception. The result, as Apple engineers discovered, is that you
can achieve additional colors by placing two differently-colored pixels next
to each other. To the eye, the pixels blend to form the color average of the

QUICKDRAWIT -- 129

two pixel colors. For example, an area of alternating red and yellow pixels
looks like orange. This perceived mixing of colors on the screen is called
dithering.

To facilitate dithering, Quick Draw has established a 640 mode standard
color table that has four mini-palettes, each containing the four values any
pixel may choose.

Pixel Value Name Master Color

0 Black 000
I Red FOO
2 Green OFO
3 White FFF

4 Black 000
5 Blue OOF
6 Yellow FFO
7 White FFF

8 Black 000
9 Red FOO
A Green OFO
B White FFF

c Black 000
D Blue OOF
E Yellow FFO
F White FFF

QuickDraw assigns four horizontally adjacent pixels to the full color table,
such that each pixel in the group has its own mini-palette. The order in which
pixels are assigned to mini-palettes is not particularly intuitive; pixel 0 uses
mini-palette 2; pixel 1 uses mini-palette 3; pixel 2 uses mini-palette 0; pixel
3 uses mini-palette 2. Therefore, if you want four pixels in a row to produce
what to our eye looks like orange , you would assign the pixel values as 0 l II
01 II , which QuickDraw would interpret as the 9th, 14th, I st, and 6th
entries, respectively, on the 640 color table .

Custom Color Tables
You can also make your own color tables. To store a color in a new color
table , you must specify the color value as a word-length (2-byte) number. An
extra nibble must be added to round out the 3-nibble color values. Values

130 -------------- THE APPLE IIGS TOOLBOX REVEALED

for each nibble must also be laid out in the proper order for QuickDraw to
assign the values to the correct basic colors. A color word is shown in Figure
8-13.

A color table, then, consists of a list of sixteen color values. By simple
arithmetic, an entire color table takes up only 32 bytes of memory. You can
adjust the contents of a color table for all sixteen color values at once (Set­
ColorTable caJJ) or a single entry in the table (SetColorEntry). Input
parameters for the latter's call include the number of the table, the number of
the entry (corresponding to the left column in the tables above), and the
word-length color value to go in that entry.

Multiple Color Tables

QuickDraw is ready to accommodate rather creative colorists, because you
can set up as many as sixteen color tables in memory at one time. You assign
a number (from $00 to $OF) to each table when you create it and load it with
your color values.

Having multiple tables resident allows you to perform sophisticated
color graphics effects with a minimum of memory and code manipulation.
Let's say your program features an animated, flying eagle and, in the lower
left corner of the screen, a glowing hot ember. Animation consists of twelve
different pixel images depicting the eagle in its various wing-flapping stages
of flight. What you want to display is that as the eagle nears the ember, the
eagle's colors change from a predominantly golden brown to a hot orange.

The twelve pixel images of the eagle have color values assigned to each
of their pixels. But instead of changing the pixel color values of the images
as the bird nears the hot ember, simply change the color table that the images
use. The pixel values remain the same in all pixel images, but the values refer
to different colors on the second color table. In the first table, a pixel value
of 2 may indicate a golden brown; in the second table, a pixel value of 2 is a
reddish orange. As the eagle retreats from the burning ember, the program
reverts to the starting color table, returning the eagle to its original brown
color.

Must be
Zero

Red Green Blue

Figure 8-13. A color word.

QUJCKDRAWII --131

Scan-Line Control Bytes

You can extend the color capabilities of the IIGS even further by assigning
different color tables to different parts of the screen. You can, if you desire,
assign a different color table (i.e., one of the sixteen possible tables in mem­
ory) to a different scan line . A scan line is the same as a row of pixels on the
screen. In other words, you can have one color table apply to scan line l on
the screen, another table apply to scan line 2, and so on for up to sixteen scan
lines. It's highly unlikely you'll need to do this for your applications, but you
should be aware of the principle behind it.

What determines the color table being used by any scan line is a byte of
information called the Scan Line Control Byte, or SCB. The SCB contains
several flags as well as a 4-bit group that signifies which of the sixteen color
tables to use. The byte is illustrated in Figure 8-14.

Generally, the entire screen (or window) will use the same color table
and, therefore, be governed by the same SCB. Unless you're doing sophisti­
cated graphics or animation, you will probably use only the standard color
table, which is referred to by the default SCB color table of zero. But if you
need a region of the screen to have a different color table, you can assign
SCBs to specific scan lines with the SetSCB QuickDraw call. As parameters
you pass the number of the scan line(s) to be changed (any of 200 in either

Co~~~~~~ ~ I I I I I I I I
I

Color Table
()()()() Lhru I Ill

(Not used)

Eill
0=0ff I = On

.ln1wlm1
0= Off I = On

C'-<>lor Mode
0 = 320x200
1 = 640x200

SCB 10100011 ($A3) = Color mode 640x200; Interrupt off; Fill on; Color Table 3

SCB 0010 Ill 0 ($2E) = Color mode 320x200; Interrupt off; Fill on; Color Table 14

Figure 8-14. A scan line control byte.

132 -------------- THE APPLE IIGS TOOLBOX REVEALED

320 or 640 mode) and the actual SCB that is to apply to that scan line. If you
need twenty contiguous lines on the screen that need a change in color tables,
then you'd set up a finite loop that changes the SCB for those scan lines.

Let's look at an example that should go a long way to explain how color
tables and SCBs work. The example will be an animation sequence in which
an onscreen character, controlled by the mouse, changes color whenever it
passes through a raybeam corridor.

Let's also assume that the 320-mode standard color table is in effect,
except when the character is in the corridor. The screen's background color
is blue and the character's regular colors are red and yellow (standard color
table pixel values 7 and 9, respectively). In other words, background pixels
are set to 4 and the character's pixels are in a pattern of7s and 9s that give the
character its facial features. What we want to do is change his colors to a
purple and brown when he is in the corridor space on the screen.

The program must create a second color table that assigns new color
values to pixel values 7 and 9. Then the program wiJI track the location of the
character so that when it is in the region of the corridor, the scan lines encom­
passing that region change their color table to the second table. When this
happens, entire horizontal rows of pixels change to the new color table (see
Figure 8-15). Colors you don't want to change, such as the background color
to the left and right of the corridor, must have the same color values in both

r---------~r-- Conidor

'------------....ll...._---i- Pixels in these regions
must have same color
value in both color tables .

.... ~---+- Red and Yellow in
table 1; Purple and
Brown in table 2

Figure 8-15. When the character enters the corridor, SCBs for the middle lines
change color table.

QUICKDRA W II
__ 133

tables (pixel value 4 would be blue in both tables). Only those pixel values
with different colors in them (7 and 9 in this example) will change. As soon
as the program detects that the image is outside the corridor, it switches the
affected scan lines back to the first color table so that the character can travel
in its original colors anywhere outside the corridor region.

THE PEN

All drawing by QuickDraw, including the drawing of text on the screen, is
done with an imaginary pen. A pen has several controllable properties,
which, collectively, are called the PenS tate. The properties and their
QuickDraw names are:

Property
pen location
pen size
pen mode
pen pattern
pen mask

QuickDraw Name
PnLoc
PnSize
PnMode
PnPat
PnMask

The PnLoc is a coordinate within the boundary rectangle - the rectangle
that assigns a coordinate system to a pixel image. Like the imaginary
geometric point, the point indicated by the PnLoc component does not mean
that the pen is necessarily visible. Rather, the location is simply a point in the
drawing space where the pen stands ready to draw something.

.... t- PnLoc

(-1 \

~)

~)

c - - - - -
Figure 8-16. Pen location.

134 ----- --------- THE APPLE IIGS TOOLBOX REVEALED

PnLoc

PnSize is defined by a point-like data structure - with a horizontal and
vertical component. The components of the data structure are the number of
pixels in each of those directions that the pen will be changing whenever it
draws. A pen size can be square, like the most common PnSize, (1, 1), or it
can be rectangular, such as 3 pixels wide and 2 high. The point of reference
of measurement of the height and width sizes is PnLoc. Width is measured to
the right of PnLoc; Height is measured down from PnLoc.

QuickDraw recognizes eight different pen modes , each with a unique
integer number. Their names and numbers are as follows:

Pen Mode Integer
COPY $0000
notCOPY $8000

OR $0001
no tOR $8001

XOR $0002
notXOR $8002

BIC $0003
notBIC $8003

These pen modes affect how a pen's pixels and its pixel pattern (described
next) affect pixels already in an image when the pen writes over them. The
most common mode is the default mode, COPY, in which every pixel of a
pen completely overwrites anything in the pixel image. Other modes , how-

J PnSize (2,2)

Figure8-J7. PenSizeof (2,2).

QUICKDRAW II ---------------------- 135

ever, offer different combinations of effects, depending on the binary
number representing a particular pixel (4-bit numbers for 320 mode, 2-bit
numbers for 640 mode). XOR (exclusive OR), for example, changes the bits
of existing pixel values to their opposites if aJI bits in the pen are I . BIC (Bit
Clear), on the other hand , changes existing 1 pixel image values to Os when
overwritten by a pen pixel value consisting of all Is. Pen modes (also called
Transfer Modes) are worth understanding because they can be helpful in
creating pleasing graphics effects. Discussion of their precise possibilities,
however, is better left to more advanced programming guides.

Pen Patterns

A pen can have not only size and location, but a pattern consisting of colored
pixels. Jt takes a square of 64 pixels (8 by 8) to establish a pattern. Once a
pattern is defined , it repeats throughout the drawing space wherever the pen
draws. Consequently, if you wish to design an interesting fi II pattern to
cover a large screen area, you must design it via the 8-by-8-pixel pattern.

Typically , you will assign intricate patterns to a pen only when it is to
fill a relatively large screen area. Since it often takes several contiguous rep-

8x8 Pattern
magnified

~

8x8 Pattern
regular size

8x8 Pattern
filling a region

Figure 8-18. A pattern's pixel representation, the same pattern in real size, and as
a repeated fi 11 pattern.

8x8 Pattern Fill Pattern

_,.,..,..,..,..,..,.,..<:.

Pen Pattern

' ...
' ...
' ...
' ...
' ...
::.

Figure 8-19. Wave pattern works well as a fill pattern, but not as a pattern for a
small pen size.

136 -------------- THE APPLE IIGS TOOLBOX REVEALED

8x8 Diagonal
Pattern

/'//////////////////

~ ~
/ /

~ ~
/ /
/ ~
~ /

~ ~
~ ~
/ ~
~ /
'l/////////////////,

Diagonal Pattern
As Pen Pattern

Figure 8-20. Some patterns work well in small pen sizes.

etitions of a pattern for it to be recognizable, you are not likely to assign a
pattern to a pen that will simply draw a 1- or 2-pixel-wide outline to a box.

Still, with careful pattern design , it is possible to use a pattern and a
small size pen to good effect. A pattern of diagonal lines, for example, will
give a box outline the appearance of a dotted line.

PnPats are defined in memory as lists of 64 nibbles (320 mode) or 64
two-bit numbers (640 mode) , each nibble or two-bit number signifying a
color table entry for each of the pattern's 64 pixels.

A pen mask, the final characteristic of a PenS tate, lets you decide which
pixels of a pattern are to be visible when the pen draws. If, for example, you
wish a pen to draw its pattern as if seen through a screen, you might create a
pen mask that blocks out every other pixel on each row of the pattern. Since
a mask simply admits or blocks (0 or 1) the appearance of a pattern's pixel, a
PnMask is defined by an array of64 bits (corresponding to the 8 by 8 bit mask
pattern).

••••••• •••••• ••••• •••• ••• •• •
Pen Pattern Pen Mask Pattern

seen through
mask

Figure 8-21. The pen mask blocks pixels from the underlying pattern .

QUICKDRA W II --137

IRREGULAR SHAPES

We saw earlier that a pure rectangle can be defined with very little data using
QuickDraw's built-in rectangle routines. This compares favorably with a
pixel image of a rectangle, which must have each pixel of the rectangle
specified by 2 or 4 bits, depending on graphics mode. Once the dimensions
of a rectangle are specified, the rectangle's outline can be drawn with the
FrameRect ca11, and its interior space can be fi lled with a pattern by way of
the FillRect call. Only a handful of bytes are affected, no matter how
enormous the rectangle. We can define more complex, irregular shapes with
similar frugality using QuickDraw's Polygon and Region families of tools.

Polygons

Polygons (shapes with many straight-edge sides) are defined by coordinates
of the shape's outline. In a high-level language coding of a triangle, for
instance, you would start the coordinate definition procedure with the Open­
Poly call, then move the pen's coordinates from point to point, and finally
issue the ClosePoly call.

triangle = OpenPoly;
MoveTo (100, 100);
LineTo(200, 100);
Line To (150,200);
Line To (I 00, I 00);

ClosePoly;
FillPoly(triangle ,bricks);

{move pen to starting point}
{draw line from 100,100 to 200, 100}
{draw line from 200, I 00 to 150,200}
{draw line back to starting point}
{stop gathering triangle data}
{draw "triangle" on the screen with
my previously defined brick pattern}

This series automatically creates a polygon record, complete with informa­
tion such as the dimensions of the rectangle that contains the polygon.

Regions

Regions are slightly more complex shapes, but behave much like polygons.
A region might be a shape, such as a dumbbell, which has two oval shapes
joined by a rectangular shape.

dumbbell = NewRgn;
OpenRgn;

SetRect(temprect,30,30,40,60); {create a temporary rectangle
called temprect at these
coordinates - left weight}

138 -------------- THE APPLE IIGS TOOLBOX REVEALED

FrameOval(temprect) ;

SetRect(tern prect, 90 ,30, I 00 , 60);

FrameOval(temprect);

SetRect(temprect,40,40,90,50) ;

FrameRect(temprect);
CloseRgn(dumbbell);

FiliRgn(dumbbell ,black);

{draw an oval within
temprect's boundaries
(Figure 8-22)}
{create a second temporary
rectangle, use the name
temprect again - right
weight}
{draw this rectangle as an
oval}
{create the bar' s rectangle
coordinates (Figure 8-23)}
{draw the bar (Figure 8-24)}
{that's all the data; save it
in a region record called
dumbbell}
{fill the area defined in the
dumbbell record with the all­
black pattern}

All in all, this region is far less memory-hungry than its pixel image
equivalent. To change its color, we could refill the region with a pattern
defined as the desired color.

(30,30)

(40,60)

Figure 8-22. FrameOval draws an oval within the rectangle specification.

QUICKDRAWII --- 139

(90,30)

(40,40)

(90,50)

Figure 8-23. The crossbar rectangle·s specification is added.

Figure 8-24. FrameRect draws the crossbar.

THE GRAFPORT

Now that we've gone through the major graphics entities ofQuickDraw, it' s
time to pull everything together and see how these elements work inside a
toolbox IIGS program. The unifying element is called a grafport .

A grafport is a self-contained drawing environment that exerts control
over graphics and text drawn in its drawing space. As you ' ll see in Chapter
10, a screen window is built upon a foundation created by a grafport, so it

140 -------------- THE APPLE IIGS TOOLBOX REVEALED

may help in your understanding of the grafport concept to think of a grafport
as a window to a drawing space. A grafport' s characteristics are maintained
in its record , the grafport record. As with most records in the Apple IJGS ,
you won ' t be directly modifying the contents of a record , but will indirectly
gain access to parameters by way of myriad QuickDraw (and other, higher
level tool set) calls .

The Grafport Record
While it isn't important at the level of this book to tear apart each item in a
grafport record, it will be helpful to get an overview of its contents, particu­
larly as they affect the graphics entities we've been looking at thus far .

A grafport record is one of the larger records in the toolbox. lts compo­
nents and the type of data each component takes looks like this:

Portlnfo: Loclnfo
PortRect: rect
ClipRgn: handle
VisRgn: handle
BkPat: pattern
PnLoc: point
PnSize: point
PnMode: integer
PnPat: pattern
PnMask: mask
Pn Vis: integer
FontHandle: handle
FontiD: long
FontFlags: integer
TxSize: integer
TxFace: style
TxMode: integer
SpExtra: fixed
ChExtra: fixed
FGColor: integer
BGColor: integer
PicSave: handle
RgnSave: handle
PolySave: handle
GrafProcs: pointer
ArcRot: integer
UserField: long
SysField: long

QUICKDRAWII -- 141

Portlnfo consists of a compact data structure (only 10 bytes) that estab­
lishes a great deal about the grafport's environment. One byte is the SCB,
which sets the port's color table, its color mode (320 or 640), and other SCB
parameters. A pointer in Portlnfo links the grafport to a pixel image (if there
is one) , while an integer specifies the image's width in bytes (as described
earlier). Finally, a boundsRect rectangle in Portlnfo specifies the boundary
rectangle of a pixel image, if there is one. If no pixel image is pointed to,
then BoundsRect is automatically set to the size of the JIGS screen,
depending on the mode established by the SCB.

A grafport's portRect, the second item in its record, is an important
specification. We said earlier that assigning a boundary rectangle to a pixel
image simply imposed a coordinate system on the image, and did nothing to
promote its display on the screen. That's because an image of any kind will
be active - visible on the screen and subject to drawing changes by
Quick Draw calls - only if the image or any part of it falls within the edges
of the portRect. If you've been following the logic so far, you'll recognize
that for an image to be active it must be within the boundsRect and portRect
rectangles - within an intersection of these two rectangles. An illustration
is in order.

Imagine that you are using a program that creates a screen window that
looks onto a portion of a large graphics area. As you scroll around the
"page," you can see only a portion of the entire page. You can type or draw
only in the part of the document that you can see in the window. The bounds­
Reel may be the ~ize of the full image or a section of image, but the port­
Rect - the one you can see and make changes in - is the size of the
viewing area of the window (i.e. , not including the scroll bars or title bar).
Where the portRect of the window intersects with the boundsRect of the
pixel image, you can view the document, type text, or draw to your heart's
content.

As a result of this interaction between boundsRect and portRect, the
portRect is a separate item in the grafport record. As you change the size of
a window, the size of the portRectchanges with it, while the boundsRect will
probably never change as long as the image doesn't grow or shrink from its
original proportions.

ClipRgn, short for clipping region, won't be adjusted in every grafport,
but can be helpful in many graphics-oriented situations. A clipping region
lets you restrict the area inside a portRect in which the user (and, hence,
QuickDraw) can change a pixel image. It is actually a third layer to the
boundsRect-portRect intersection mechanism. But with clipRgn, the third
layer can be a region of nonrectangular proportions. Imagine creating a view
through a hypergalactic telescope in which the surrounding area is a never­
changing celestial background. But inside the circular telescope view you
have an active view of two Martians playing Crazy Eights at the edge of a

142 -------------- THE APPLE IIGS TOOLBOX REVEALED

Pixel Ima~e

Intersection of Pixel Image,
BoundsRect, and PortRect:
What You See In a Window

Figure 8-25. Relationships among pixel image , boundsRect, and portRect.

crater. To program one Martian getting up in a huff and walking out of view
of the telescope, you could animate his movements so that his image inches
its way out of the clipping region. You won't have to draw special animation
versions of a partial Martian as he walks off the edge of view. Instead, any
part of the Martian image that steps out of the clipRgn will not be displayed
on the screen, even though it is within the limits of the portRect.

If you don't specify a clipRgn when creating a new grafport, it automat­
ically sets itself to coordinates of the full size of the IIGS screen. In the case
of the telescope example, you might start the program with the clipRgn being
set to its default size (i.e., identical to portRect). A menu item, "Telescope,"
will temporarily store the original clipRgn and reset the region to the circle
for the close-up graphics. At the end of the telescope session, another menu
choice restores the clipRgn to its original, full window size, and the original
background scene is redrawn to cover the image displayed in the telescope's
hole.

QUTCKDRAWII -- 143

Although the visRgn item in the grafport record looks like something
that speci fies a "visible region," this region is generally under the control of
the Window Manager. The visRgn corresponds to that region of the grafport
that you can see without obstruction. If a second window overlaps the first
window, the visRgn of the first window is that area not covered by the
second window. The grafport record keeps track of this information so that
if your program attempts to draw in the first, underlying window, it won' t
accidentally extend its drawing image into the region occupied by the over­
lapping window - it will draw only in the visRgn. As soon as the first
window comes fully into view (as when it is made the active, top window) ,
the visRgn assumes the same coordinates as the portRect.

Apple IIGS grafports can be automatically filled with a particular pat­
tern - perhaps a gray shaded pattern like the one on many Macintosh
screens - by assigning a pattern design to the bkPat item in the grafport
record. This item can be adjusted in the course of a program with the Set­
BackPat QuickDraw call. Another call, SetSolidBackPat, adjusts the back­
ground pattern to a solid pattern with a color you specify from the grafport' s
color table .

You should recognize the next five items down the grafport record:
PnLoc , PnSize , PnMode, PnPat , and PnMask. These are items associated
with the Pen State, as we discussed earlier. Pn Vis stores the current visibility
status of the pen. This factor is adjusted by HidePen and ShowPen calls.

The next eight items track the current state of fonts and text parameters
currently on hand in the grafport. That is, these items establish and record
fonts and text display characteristics for the next display of a keyboard press
(or text coming in from a serial port).

FGColor and BGColor indicate the foreground and background colors
respectively.

The balance of items in the grafport record are primarily repositories for
information about the status of various operations during the running of a
program. You probably won't get involved with them, at least not in your
first programs, unless you need to take a "snapshot" of the information
before performing some task that will alter these items in the record. By tem­
porarily saving the values, you can restore them later to reconstruct the
record.

MULTIPLE GRAFPORTS

One of the beauties of working with grafports is that they make dealing with
multiple windows almost child's play. That's because the data in a grafport
is private data that belongs only to that grafport. When you open a second
window and grafport on the screen , all the information contained in the

144 -------------- THE APPLE llGS TOOLBOX REVEALED

first grafport's record is untouched. Therefore, if the pen in the first grafport
is at location 300,- 72 and set to a diagonal pattern with a pen size of3-by-3,
you can activate the second grafport and make any adjustments you want to
its pen. When you reactivate the first grafport , its Pen State (and everything
else in the record) is exactly the way you left it. There's no guessing or
reconstruction of "the way things were." They never changed.

QuickDraw has a built-in mechanism that prevents you from getting
into trouble by accidentally adjusting the record of one grafport when you
really mean to adjust a second one. For most QuickDraw calls, you issue the
same QuickDraw instruction, regardless of the grafport to which you intend
the call to apply. What governs the recipient is which grafport is the current
port. Therefore, before changing the Pen State of a grafport called "sec­
ondport," you would issue the Set Port (second port) QuickDraw call (the pre­
cise syntax will differ from language to language) . Thereafter, any Pen State
calls apply only to the pen in secondport.

It's vital that you understand the intent of the grafport record. It exists
in the Apple IIGS primarily as a log or roster of the current state of all adjust­
able criteria in a grafport. You can draw a frame according to a rectangle's
coordinates with a pen size of 1, I . Later you can reset the pen size (SetPen­
Size) to 2,2, for example, and frame a different rectangle with a pen twice as
thick as the first rectangle 's frame. Once the pixel image of the first rectangle
is drawn on the grafport, it disconnects itself from the pen. Changing the pen
size will not affect any item that has already been drawn by it. A change in
pen specification will, however, affect any new drawing you make- until
you change the pen once more.

There may be times in your program when you wish to "remember" one or
more grafport settings for later restoration. To store those settings away
safely- remember, once a record item changes, it knows not what it was
before - you will use the GET call for those settings (e.g., GetPenSize) and
assign those values to a variable (e.g., oldSize = GetPenSize) for later recall
and SETting (e.g., SetPenSize). The grafport record will be the main store­
house for grafport characteristics in your program. Use its resources often.

CURSORS

While we're in QuickDraw, we'll introduce you to manipulating the cursor's
design.

Cursor manipulation in the Apple IIGS toolbox is more flexible than in
the Macintosh . For example, cursors can be of virtually any size on theliGS ,
whereas they are restricted to 16-by-16-pixel measure on the Mac.

QUICKDRA W II --145

You create a cursor by assembling data in the following order:

CursorHeight: integer
CursorWidth: integer
Cursorlmage: [array I .. CursorHeight, I .. CursorWidth) of word
CursorMask: [array I .. CursorHeight, I .. CursorWidth] of word
HotSpotY: integer
HotSpotX: integer

CursorHeight is the number of rows ("slices") the cursor and/or its mask
image will require. Cursor Width is the number of pixels needed to define the
horizontal dimension of the cursor or mask image. Importantly, the last word
of each slice must be $0000, so you'll have to take this extra space into
account when assigning the Cursor Width. Cursorlmage and CursorMask are
the actual data points for each image (described below). And the HotSpot
designations are the coordinates within the cursor height/width map that act
as the "tip of the arrow," so to speak. A cursor's hotspot is the pixel on the
cursor that the Event Manager will understand to be the mouse location when
you press the mouse button.

Cursor Image and Mask
Design of a cursor is done on a pixel-by-pixel basis in two layers. The first
layer is the cursor image, which represents the actual cursor design you will
see when the cursor is atop any non black color. The second layer is called the
cursor mask.

The map for an arrow cursor image is shown in Figure 8-26. Notice that
(I) you can use the map as a way of organizing your actual data values, and
(2) the last 2 bytes (I word) are 0.

Since all cursors are black, each pixel is assigned either a zero (white)
or nonzero (black) value. In the above image grid, the nonzero value is $F.

The cursor mask acts somewhat differently than a pattern mask. lts
common use is to provide a kind of invisible outline to the cursor so that
when it is atop a color object, you can still make out the edges of the cursor
image. Yet, where the cursor image is white, the mask must allow the under­
lying screen image to show through.

Data for a mask is lined up the same way as the cursor image. For con­
venience in seeing the effect of the cursor mask in our illustration, the "F"
pixel markers corresponding to the cursor image are shown in lowercase,
while the markers for mask pixels above "0" cursor image pixels are in
uppercase.

146 ----------- THE APPLE IIGS TOOLBOX REVEALED

0000000000000000
OFOOOOOOOOOOOOOO
OFFOOOOOOOOOOOOO
OFFFOOOOOOOOOOOO
OFFFFOOOOOOOOOOO
OE~~~~DOOOOOOOOO

OEFE~~FOOOOOOOOO

OEFE~~FE'OOOOOOOO

OFFOFFOOOOOOOOOO
OOOOOFFOOOOOOOOO
0000000000000000

Figure 8-26. Cursor image data.

Onscreen Cursor

Cursor
Image
Data

On a white background, the cursor looks like the arrow cursor image. Where
a mask pixel is filled but its corresponding image cursor pixel is white, the

FFOOOOOOOOOOOOOO
FfFOOOOOOOOOOOOO
Ff~OOOOOOOOOOOO

F~ffFOOOOOOOOOOO

FkfffFOOOOOOOOOO
FfffffFOOOOOOOOO

1FffffffFOOOOOOOO
FfffffffFOOOOOOO
FffFffFFOOOOOOOO
FFFOFffFOOOOOOOO
OOOOOFFFOOOOOOOO

Figure 8-27. Cursor mask data.

Cursor
Mask
Data

QUICKDRAW II ---------------------- 147

resulting display at that pixel is white. Atop a color background, therefore,
the cursor mask turns some of the background's color pixels into white,
making the outline of the arrow stand out, even in an all-black area.

When the cursor image straddles color and white areas, the mask
appears to work only on the color area, turning selected pixels to white to
help the cursor image stand out in the sea of color. And where both the cursor
image and mask image are 0 , the underlying image's color pixels show
through without any interference.

Figure 8-28. The cursor mask turns color backgrounds to white along the cursor's
edge .

Figure 8-29. Where cursor and mask pixels are 0, the background image shows
through.

148 -------------- THE APPLE TIGS TOOLBOX REVEALED

Refer to the following table to understand how the cursor and mask
images work together.

Cursor
F
F
0
0
0

Mask
F
F
F
F
0

Multiple Cursors

Background
color
white
color
white
any

Resulting Pixel on the Scretn
black
black
white
white
same color

The cursor we've been showing here happens to be the design of the cursor
QuickDraw automatically provides if you supply no other cursor para­
meters. An application program can easily have multiple cursor designs pre­
defined and then called by QuickDraw depending on the location of the
mouse pointer. For example, in a painting program, the cursor may be a
pencil atop the drawing surface. But when you move the cursor to the
menubar, the cursor switches to the traditional arrow to aid in selection of
menu choices.

The mechanism that triggers the change of cursor based on mouse loca­
tion is the Event Manager. This is only one of the important tasks we'll see
this tool set doing in the next chapter. In the meantime, if some of the con­
cepts in this QuickDraw slipped past your total understanding, take a few
moments to review the material you're unclear about. Pay particular atten­
tion to grafport concepts. We'll see them later.

CHAPTER9

The Event Manager

W e had a brief introduction to the concepts behind event-driven pro­
grams in Chapter 7. There we said that the Event Manager provided

tools to test for the presence of events- mouse clicks, key presses, and so
on - so that the program can branch to predefined routines, or actions , in
response to a user event. In this chapter, we' ll look more closely at the event
mechanism. Along the way we will also be introducing you to window and
menu concepts that will be more fully described in their respective tool sets'
chapters.

TWO EVENT MANAGERS

The Event Manager is one toolset, but it has two categories of functions:
hardware-oriented and application-oriented. The distinction may not be per­
fectly clear, since applications obviously rely on hardware such as the mouse
and keyboard for input.

The hardware-oriented part of the tool set is called the Operating
System Event Manager, or OSEM. Most of what occurs in this tool set is
hidden from both user and programmer. For example, the OSEM takes care
of the all-important job of detecting hardware events and posting them to the
event queue. Another OSEM tool does wholesale maintenance of the event
queue, by allowing your program to clear the queue of all events or all events
of a certain type.

149

150 -------------- THE APPLE IIGS TOOLBOX REVEALED

As a programmer, you will be dealing more with the other part of the
Event Manager, the Toolbox Event Manager, or TBEM. TBEM calls will be
the focus of your program's main event loop. For example, the TBEM picks
up events from the event queue, records the location of the mouse pointer at
any instant, reports the condition of the mouse button, limits user input to
certain kinds of events (e.g., temporarily disabling the keyboard when you
want only mouse input), and other operations.

Details about each event are maintained in a place in memory called the
event record. Every event, whether it is one that is stored temporarily in the
event queue or one that does not get placed in the queue, has its own event
record. We'll examine the event record more closely later in the chapter, but
for the moment we'll consider one event record item: the event type that
caused the event record to be created in the first place.

EVENT TYPES

Since an event-driven application must branch in response to user or system
input, it must be able to distinguish one type of event from another. Indeed,
the Event Manager keeps track of such in formation, classifying each event
according to its type. There aren't many types to remember, yet you'll see
that they have great power over your applications .

Mouse Events

Every time a user presses the mouse button in an event-driven application,
that action creates an event record. Actually, the mouse button is the source
of two different types of events: mouse-down and mouse-up events. The dis­
tinction is very important, because an application may require the user to
hold the mouse button down while dragging a screen object from one loca­
tion to another. The event loop must know that the mouse button is pressed,
is still held down by the user, and eventually released so that any screen
updating can be performed.

The Event Manager also tracks the location of the mouse pointer - the
hot spot of the cursor - at every instant. When a mouse-down or mouse-up
event occurs, the location of the mouse pointer at that instant is written into
that event's record.

Even when a mouse-down or mouse-up event is not occurring, your
application can retrieve the coordinates of the mouse pointer from the TBEM
with the Event Manager call, GetMouse. Coordinates resulting from the
GetMouse call are global, which means they are coordinates of the entire
screen, with no regard to grafport coordinates. You'd most likely put a Get­
Mouse call inside the event loop, if you want to test for the location of the

THE EVENT MANAGER -------------------- 151

mouse pointer during each cycle through the event loop. If the pointer falls
within a particular region of the screen (a short test in the event loop can
determine this), the program might branch to a quick procedure that sum­
mons a different cursor record , thereby instantaneously changing the cursor
image , or perhaps changing an SCB.

Mouse events are not strictly limited to the mouse as a handheld input
device. Event records automatically track which of two possible buttons
have been pressed when the event took place. Of course, the standard HGS
mouse has only one button, but some joystick controllers have two. The
Event Manager recognizes these buttons as button 0 and button 1.

Keyboard Events
Whenever you press a character key on the keyboard (including the numeric
keypad section), that action creates a key-down event. Notice we specify
character keys - the keys that would generate identifiable characters on
the screen if you were to type them in, say, a word processing program.
Other keys- Shift, Caps Lock, Control, Option, and Open-Apple­
are called modifier keys, and they do not generate key-down events by
themselves.

You normally press a modifier key simultaneously with a character key
to effect an action other than the normal key press. For instance, the Shift
key causes the capital letter of that character to be passed to the system and
screen ; the Open-Apple modifier may be programmed to signify a keyboard
shortcut for a pull-down menu action, such as Open-Apple-S to save a file.
Whenever a key-down event occurs, the status of each modifier key is
logged into the event record. Therefore, your application's event loop will
be able to test for the presence of a modifier when the user pressed a key.

Another kind of keyboard event is called an auto-key event, which
occurs whenever the user presses a character key and holds it down until the
key begins sending repeated characters. The time delay before a key begins
repeating is controlled by the Key Delay setting in the Control Panel desk­
accessory. Moreover, the speed at which a key already in auto-key mode
issues repeated characters to the system is also controlled in the Control
Panel.

Window Events

Unlike mouse and keyboard events, which a user generates by some direct
physical action on the computer's input hardware , a window event is gener­
ated by the Window Manager. In all fairness, the ultimate cause behind a
window event is probably a human physical action, such as clicking the
mouse pointer inside a partially covered window to make that window

152 -------------- THE APPLE IIGS TOOLBOX REVEALED

active. But when you click the mouse button, the Event Manager has no
notion that the mouse is located in a particular grafport. Yes, it knows the
coordinates of the mouse pointer, but it takes a call to the Window Manager
to interpret those coordinates of the mouse-down event as occurring inside
the portRect of a particular grafport. When the Window Manager makes that
window the active window with the SelectWindow call, it also generates an
activate event and its corresponding event record.

After an activate event, particularly if the window that was just made
the active window had been previously overlapped by another window, the
Event Manager will likely generate an update event and its corresponding
event record. The presence of an update event should signal your application
that it needs to redraw one or more windows on the screen. The Window
Manager will handle the actual redrawing, but it takes its cue from the Event
Manager.

Neither activate nor update window events are placed in the event
queue. Otherwise, they are just like any other kind of event.

Your program should include a test for the presence of an update event
in each pass through the event loop. This will keep your windows fully
drawn and "up-to-date" whenever you resize, move, or change the order of
overlapping windows.

The Switch Event
Just as the Window Manager generates window events, so too does the Con­
trol Manager generate switch events. "Switching" here means switching
from one application to another. Although not directly supported with
toolbox calls at this time, application switching is a convenience that will
probably become a standard feature of the Apple IIGS applications environ­
ment, just like Andy Hertzfeld's Macintosh Switcher became an accepted
standard for that computer. In anticipation of the future, the IIGS Event
Manager has reserved an event type for switching.

This is another one of those indirect events, because a switch event is
ultimately the result of a press of the mouse button (sometimes a key press)
when the pointer is in the screen region of a switch control. The Event Man­
ager initially simply detects a mouse-down event occurring at a point on the
screen. The Window Manager and Control Manager work together to deter­
mine if the mouse-down event occurred in the switch control. If so, the
program can post a switch event to the event queue - a case where the
application momentarily takes control of the event queue (via the Operating
System Event Manager tool call, PostEvent) to force an event. After that, the
TBEM can test for the presence of a switch event and branch program execu­
tion to the routines that do necessary housekeeping (screen updating, file
manipulation, storage of various screen states) before switching to a dif­
ferent application loaded in another section of memory .

THE EVENT MANAGER-------------------- 153

Device Driver Events
A device driver is software that allows your IIGS to communicate with
external devices such as printers, modems, digitizer pads, and the like. If
your programs will be using other than standard devices, you will probably
have to write the drivers. Input from these devices must be handled as
events, just like the keyboard and mouse inputs are. Your program will have
to post these events as device driver events to the queue using the OSEM
PostEvent call. Then your main event loop can test for the presence of a
device driver event and branch accordingly.

Application Events
The TBEM has accommodations for up to four user-specified events, which
will be unique to your application. As with device driver events, your pro­
gram is responsible for posting the events to the event queue when they
occur.

Desk Accessory Events
A special event type, called a desk accessory event, is generated whenever
the Control-Open Apple-Escape three-key sequence is pressed to invoke the
classic desk accessory menu (the one from which you select the Control
Panel). This special event is supplied as a convenience for your program to
detect the call to classic desk accessories, which require a dramatic change
in the computer 's operating modes. By checking specifically for this three­
key sequence, the Event Manager bypasses the need to continually test key­
down events for this unique sequence and possibly slowing down the regular
key-down event actions. Instead, your event loop simply checks for the pre­
sence of a desk accessory event during each pass through the loop. When this
event is pulled from the queue, the program can branch to the routines that
prepare your application (and especially memory management) for the
change in environments to the classic desk accessory display.

The Null Event
When you don't touch the mouse or the keyboard, and when no device driver
is sending data to the computer, the event queue is empty. ln the meantime ,
your event loop is cycling like mad, asking (polling) the event queue for
whatever is there . As long as no events are waiting to be polled, the Event
Manager will tell your application that there is a null event - nothing -
pending . A critical event loop call (GetNextEvent) has been designed to test
for the presence of a null event quickly so the loop can start over as soon as
possible .

154 -------------- THE APPLE IIGS TOOLBOX REVEALED

EVENT PRIORITIES

The TBEM recognizes that some events are more important to an application
than others. As a result, it has divided event types into four ranks of impor­
tance. An event with a higher priority than others will be presented to an
application first, even if it actually occurred more recently than an event that
has been in the queue for some time (we're talking tens or hundreds of mil­
liseconds here, but that could be a long time to an event loop polling the
event queue thousands of times a second). Establishing priorities is particu­
larly important when events are generated by other tool sets, which work
much faster than our fingers do on the mouse or keyboard.

If the Event Manager held a fully loaded event queue and had every type
of nonqueue event pending, it would offer events to your application in the
following order:

I. Activate events
2. Switch events
3. Mouse-down, mouse-up, key-down, auto-key, device driver,

application-defined, and desk accessory events in the same order
they were posted to the event queue (that is, First In, First Out)

4. Update events (in order from the frontmost to rearmost window in
a multiwindow screen display)

5. Null event

Let's see how the Event Manager handles each level of event priority.
Top on the priority list is the activate event. You 'II recall that this event

type is not placed on the event queue. When your program polls the Event
Manager, the TBEM looks for a pending activate event before it looks into
the event queue. If an activate event is available, the TBEM will pass it along
to your application before anything else.

If an activate event is not present, the TBEM looks once more outside
the event queue, this time for a switch event. If a switch event is ready to be
passed to your application, the TBEM makes a short detour to pass along any
update events that may be pending (even though they are normally lower on
the priority list). This assures that all windows are updated before the appli­
cation switches to another program (and will be fully updated and ready
when you switch back to it). As soon as the TBEM works its way through all
pending update events in this detour, it finally passes the switch event to
your application.

If the TBEM, when polled by your application, finds no pending acti­
vate or switch events, then it looks into the event queue and pulls off the
oldest event in the queue to give to your application. Events in the event

THE EVENT MANAGER -------------------- 155

queue are generally those that are directly controlled by user input. If the
event queue should fill up before your application has a chance to retrieve
events, the TBEM automatically starts "scrolling" old events out of the
queue - they disappear into thin air. A poorly designed program, for
instance , may not poll the Event Manager frequently enough to keep the
event queue from spilling over. A fast typist may appear to outrun the speed
of the computer, when in fact quick fingers are outrunning the program's
ability to retrieve events from the queue owing to a ponderously
implemented event loop.

Once the TBEM clears the event queue, it looks to see if any update
events are pending. By placing the normal update event (i.e., not the one
forced prior to a switch event) near the bottom of event priorities, window
updates, which tend to trigger relatively slow window-updating routines,
don't get in the way of important user input events. For example, if your pro­
gram displays three overlapping windows on the screen, each of which is
affected by the movement of the topmost window, three update events will
be generated: one for each window. The Event Manager will order these
three events so that the frontmost window's update event is handed to your
program first. If, while the front window is redrawing its content, a key or
mouse button is pressed, that higher priority event will be passed to your
application before the second and third windows are updated. The program
will seem to respond much more quickly to user input than if it had to wait for
all three windows to redraw themselves. Additionally , if the event is a
mouse-down event in a different window, the other windows not yet updated
will wait for the mouse action to finish and be updated only once to reflect the
overlapping order of windows as the result of the mouse-down event.

At the bottom of the list is the null event. It merely indicates that there
are absolutely no events pending - in the queue or otherwise - at that
instant.

EVENT RECORDS

Links between the Event Manager and your application are established via
event records - specifications about each event on or off the queue . When
an event occurs, the Event Manager takes a "snapshot" of several indicators
and stores those readings in that event's record . Each event record consists
of five items:

what:
message:

word
long

(event code)
(event message)

156 -------------- THE APPLE JIGS TOOLBOX REVEALED

when:
where:
modifiers:

long
point
word

(clock ticks since system last started)
(global mouse location)
(modifier flags)

An event record contains all the information your application's event loop
needs to branch to previously defined procedures that make things happen in
the program- the actions.

Most compilers and assemblers you will use to program the IIGS will
have predefined variables (or variable suffixes) for each of these event
items, thus saving you from explicit variable declarations for these items that
will occur in practically every event-driven application you write. A typical
variable name for the what event record item would be event. what.

Now let's look at each event record item, paying particular attention to
the way the Event Manager translates some of this information into numeric
codes that you will use to perform event loop tests. As we go through these
items, try to look at them from the point of view of your application: You poll
the Event Manager for an event to process; in return you receive a "dossier"
about the first event to be processed; you must make a decision about what to
do next based on the information in the dossier.

What - Event Codes

First on the event record is a number identifying which of sixteen possible
event types this event is. The codes and their events are as follows:

Code Event Type

0 null
1 mouse-down
2 mouse-up
3 key-down
4 undefined
5 auto-key
6 update
7 undefined
8 activate
9 switch

10 desk accessory
11 device driver
12 application-defined
13 application-defined
14 application-defined
15 application-defined

THE EVENT MANAGER-------------------- 157

Again, owing to the frequency with which an Apple IIGS event-driven appli­
cation will be testing for the presence of these events, most toolbox program­
ming languages provide source code for predeclared variables (also called
identifiers) that correspond to these event codes , just as they provide prefab­
ricated data structures for event record items. Therefore , the event loop
would likely consist of a series of CASE statements in a structure such as the
following:

REPEAT

IF GetNextEvent(every Event ,eventRecord)
THEN

CASE eventRecord. what OF
mousedown:

{branch to mousedown routine}
keydown:

{branch to keydown routine}
activateEvent:

{branch to activate event routine}
updateEvent:

{branch to update event routine}
END;

UNTIL quit;

END.

In this sample, the event loop (between the REPEAT and UNTIL statements)
first tests to see if the TBEM has an event of any kind (signified by the
everyEvent parameter, discussed below) ready to hand over. If the TBEM
returns an event other than a null event, the Event Manager hands the record
of the event to the variable named eventRecord (it could be any name). The
following CASE statement tests the "what" item in the event record (event­
Record. what). If the event code number is the same as assigned to
mouseDown, then the program branches temporarily to the procedure else­
where in the program's code that processes that event. If the event code is
something else, then the program "falls through" to the next test, key Down.
If the event is a null event , the IF GetNextEvent test fails and faJls through all
the way to the bottom of the REPEAT routine. Until the value of "quit" is a
logical TRUE (something the Quit choice in a menu could assign, as we'll
see in Chapter 11, "The Menu Manager"), the loop will repeat itself over and
over.

158 --- ----------- THE APPLE IIGS TOOLBOX REVEALED

Message - Event Message

An event message is additional information your application needs from
some of the event types coming its way. Not all event types need messages,
because their event type is enough to help your application make its
branching decision. But most types have additional information associated
with them. They are:

Event Type

Key-down
Auto-key
Activate
Update
Mouse-down
Mouse-up
Device Driver
Application
Switch
Desk Accessory
Null

Event Message

ASCII character code
ASCII character code
Pointer to window generating event
Pointer to window needing redrawing
Button number (0 or 1)
Button number(Oor 1)
Defined by device driver software
Defined by the application
Undefined
Undefined
Undefined

Your language will ease the passing of messages from the event record to
your application with the help of a predefined event message variable suffix,
making your variable look something like eventRecord . message. In the case
of a key-down event, for instance, eventRecord. message will be equal to the
ASCII character that was pressed on the keyboard . Your program will then
probably pass the value to the LineEdit tool for display on the screen and
storage in a text buffer part of memory.

When - Timer Ticks

While the internal, battery-backed-up clock in your Apple liGS keeps track
of the current date and time without your having to update the numbers each
time you turn on the computer, it also measures the number of ticks ­
sixtieths of a second - that have elapsed since you last rebooted the
machine. This tick count is what the Event Manager uses to log the "time" of
an event. If you need this information from the event record , it is readily
available with the eventRecord. where variable. You can also retrieve the
current tick count from the system with the Event Manager call , TickCount.

The tick count should not be considered "gospel" as far as time is con­
cerned. Its counting may be temporarily interrupted during program execu­
tion (owing to some system-level calls) , throwing the counter off a bit
(unlike the system clock , which stays on track). To play it safe, use the tick

THE EVENT MANAGER-------------------- 159

counts only to determine the relative precedence of events or the elapsed
time between two closely spaced events, such as mouse clicks for a double­
click.

Where - Mouse Location
As noted earlier, the event record holds the global coordinates of the mouse
pointer at the instant an event occurs. For processing some mousedown
events, subsequent procedures automatically convert the global coordinates
to the coordinates of the grafport in which the event occurred. But others,
notably Control Manager calls, work only with local, grafport coordinates.

The problem centers around the fact that a window has its own coor­
dinate plane that is not related to the screen's global coordinates. For exam­
ple , if you open a new window, the top left corner of its portRect will likely
be (0,0). As you drag t~e window around the screen, the grafport for that
window recognizes that starting point as (0,0), no matter where on the global
screen that corner appears. Fortunately, QuickDraw II provides a conver­
sion tool, GlobalToLocal, which converts a point from its global screen
coordinates to the coordinates of the active window. From there , the Control
Manager can see if the mouse-down even occurred in an area that indicates
immediate action is needed.

Modifiers - Modifier Flags
Bringing up the rear of the event record is a 2-byte modifier flag. Several bits
in this flag record the status of modifier keys and certain other modifying
conditions when the event that generated this record occurs. It is up to your
application, then, to test for the presence of these flags if you are looking for
specific modifiers. For example, you might want to intercept key-down
events that are modified by the Option key to signal a menu choice from the
keyboard .

Modifier flags are distributed along the integer as shown in Figure 9-1 .
The KeyPad bit will be set to 1 if a key-down event was the press of a

key in the numeric keypad at the right of your IIGS keyboard. ControiKey,
Option Key, CapsLock, ShiftKey, and AppleKey behave similarly: their bits
will be set to 1 when in the keydown position at the time of the event. One or
more of these modifier keys can be pressed when pressing a character key or
a mouse button, so several bits can be set in the modifier flag for an event.
Bits for BtnOState and Btn 1 State, the conditions of buttons 0 and I (0 for the
single button mouse) behave opposite their keydown companions. When a
button bit is set to 1, it means that the button was in the up position at the
instant of the event. Therefore, a mousedown event will have the BtnOState
flag set to 0, while the BtnlState bit will be one. Lastly, ChangeFlag and

--
160 ------------- THE APPLE IIGS TOOLBOX REVEALED

Modifier Flags

KeyPad ----'

Control Key ------'

Option Key------'

CapsLock-------'

Shift Key Button 1 Sta~

Apple Key Button 0 Sta~

Figure 9-I. Event Record modifier flags.

ActiveFlag bits are helpful in performing actions resulting from activate
actions. See the Apple JIGS Toolbox Reference for further details.

As with other items in the event record, the modifier item will likely be
a predefined variable name in your programming language (something like
eventRecord.modifiers). You'll be able to test the value of that variable
against the decimal or hex equivalent of the modifier flag you wish to locate .

MASKING EVENTS

Occasionally, your applications will not require the Event Manager to
proffer every kind of event that it is capable of recording. For example, a
completely mouse-driven application may wish to essentially turn off the
keyboard as an input device. Or perhaps you don ' t want the program to
recognize auto-key events because the rapid input they provide will overload
your application. To cut down on the number of events passed to your appli­
cation from the Event Manager, you can mask those event types you don't
need by setting bit flags in the event mask.

The event mask is a 16-bit integer, 13 bits of which control which event
type(s) you wish to mask. The numbers of the controlling bits are the same
as the event code numbers for the event types we saw earlier. In their mask
integer form, the event types are shown in Figure 9-2 .

A 1 in a bit location means that the mask will pass that event type; a 0
will prevent events of that type from being passed to your application.

THE EVENT MANAGER-------------------- 161

Event Mask

Application

De~eDri~r--------~

Desk Accessory ------------'

s~~h-------~

Activate -----------------'

Figure 9-2. Event mask flags.

...__ __ Mo1.13e-dovn

'-------- Mo1.13e-up

L--------Ke~dovn

~------Au~-uy

L---------- Update

The mask integer is one of the input parameters of the GetNextEvent
TBEM call. Your programming language may have a predefined constant
(something like every Event) that you can plug into that parameter slot in the
GetNextEvent call. It will tell the TBEM to pass all events. More event­
limiting masks may be predefined, or you'll have to define them yourself in
the application.

It's important to realize that the event mask does not prevent events
from loading up the queue. The mask merely specifies which events will
pass to the application. If you wish to prevent events from even reaching the
event queue or the Event Manager's attention (for nonqueue events), you can
use the Operating System Event Manager call that sets the system event mask
to accept only those events you wish to process. Something to watch out for,
though, is that if you turn off a particular kind of event with the system event
mask, desk accessories won't be able to pass or receive masked events
either.

In general, use an event mask with GetNextEvent whenever you can
logically do so. Although masked events still go on the queue, the Event
Manager discards unwanted events when the GetNextEvent routine runs. A
mask may also speed your event loop by restricting forays through CASE
structures to only those events your program recognizes.

Now that we've seen the basic workings of the Event Manager, we can
proceed to the three tool sets that work with event records. We'll start with
the Window Manager.

CHAPTER 10

The Window Manager

I n the eyes of the user, most of the "action" in a toolbox-created Apple II­
OS program will appear to take place in one or more onscreen windows.

Through the window the user will be able to see some or all of the action area
of a program. In text-oriented programs, the window will be the display and
editing space for the document's contents. If the document contains more
text than can fit comfortably within view of a window, you can scroll around
the document, as if adjusting the large document beneath an opaque layer
that has one transparent rectangle cut out; you keep adjusting the position of
the underlying document until the desired area is visible through that cutout.
The same is true for a graphics document that is larger than the screen. Yet
you may design a graphics-oriented program that has but one steady back­
ground that will be seen through a window that is exactly one screenful in

size.
Windows are relatively complex objects in the Apple liGS toolbox

world. Part of that complexity comes from the multiplicity of elements that a
window comprises - graphics elements obvious to the user and additional
toolbox elements solely under the care of the programmer. Another part
comes from the responsibilities programmers have of upholding the user
interface conventions for windows. For example, guidelines call for a
window to become the active window when the user presses the mouse
button with the mouse pointer anywhere in the window. This activation pro­
cedure is not completely automatic. It's true that the Event Manager and

163

164 -------------- THE APPLE IIGS TOOLBOX REVEALED

Window Manager provide the mechanisms for all the actions needed to acti­
vate a window, but your program must coordinate these actions.

The IIGS Window Manager has a powerful tool, called the TaskMaster,
which greatly simplifies many of the user interface concerns of program­
ming windows. To use the TaskMaster correctly, however, you should
understand the "manual" operations it replaces. We'll get to the TaskMaster,
but only after a firm grounding in the lower level calls in the Window
Manager.

WINDOW CONCEPTS

A good place to start is defining the many terms that apply to windows and
window management. Consistency in terminology is important so that if you
need to ask questions of more experienced programmers, you'll be asking
the correct questions.

Desktops and Windows
When you start up your Apple IIGS with Pro DOS 16 and the Finder, the
computer presents you with a screen containing several icons and a menu
bar. The entire screen work space is called the desktop. Your program, too,
has a desktop. It is just like a totally blank desk surface. It has no feature of
its own except for pattern and color, like a rosewood grain on a real desktop.
Only by placing objects on the desktop, and perhaps moving them around on
the desktop, do you make it useful. One such object might be an icon or a
menu bar.

The object we're concerned with here, however, is a window. A
window will offer your program a way of displaying information - text,
graphics, or both - to its user. Extending the desktop metaphor an addi­
tional step, a window lets us see the contents of a document just as we can see
what's written on a piece of paper resting on a real desktop. Multiple-page
documents, such as a ten-page report, however, are not placed on the IIGS
desktop as a stack of pages. Instead, the pages are positioned end to end,
with the window being used as a viewer to a portion of the document.

The Apple UGS also allows more than one window to be on the desktop
at a time. Windows can overlap each other, but you see only that part of each
window that has no obstruction between it and your eyes. The desktop
metaphor of overlapping pages holds true.

Standard Windows
You can design a window to be of any size - even larger than the screen -
and virtually any shape (although shapes other than rectangle variants are

THE WINDOW MANAGER------------------- 165

Figure 10-l. Overlapping windows on a desktop.

difficult to produce). To help newcomers overcome the complexity of
designing a window from scratch, the Window Manager provides two pre­
defined window frames, called document and alert windows.

Of these two, you will work predominantly with the document window.
Alert windows are created by the Dialog Manager, and don' t offer the design
element flexibility of the document window.

Document Window Alert Window

Figure 10-2. Predefined windows.

166 -------------- THE APPLE IIGS TOOLBOX REVEALED

WINDOW COMPONENTS

To the standard document window you can add a variety of standard compo­
nents. Some components are informational, while others are action­
oriented. Your application's work now will dictate which of these
components your windows need . A fully decked-out window looks like the
one in Figure 10-3.

Title Bar

Extending the full length across the top of the window is the title bar. Aside
from its clear duty as conveyor of the name you assign to the window (the
name may also be the name of the disk file document currently showing in
the window), its four horizontal lines provide an important visual clue about
the window. Whenever the window is active, the four lines wiJI be visible;
the instant the window becomes inactive, the lines disappear. When several
windows are on the desktop, these horizontal lines show you immediately
which window is the active one of the bunch. Fortunately, the Window Man­
ager handles the erasing and drawing of these title bar lines automatically
when your program deactjvates one window and activates another.

Title Bar

1
r ' • Window • Zoom Box Close Box

lnfonnati on Bar ~
...

f I-

Content I-- 1--Ri Re ion .. ght Scroll Bar

j

~ ~
K)l • I l I~ Q]

'------ Grow Box

Bonom Scroll Bar

Figure 10-3. A window and its components.

THE WINDOW MANAGER------------------- 167

The title bar claims another important function for a window. If one of
the specifications for your window is thai it is movable, then the user can
drag the entire window around the desktop by placing the mouse pointer in
the title bar (but not in either the close or zoom boxes), clicking, and drag­
ging. An outline of the window will be visible, indicating where the window
would be repositioned if the mouse button were released . When the button is
released (a mouse-up event), your program must reposition the window and
redraw it (the TaskMaster helps a great deal with this). The window's size
will not change in this operation.

Close and Zoom Boxes

A title bar can have two additional features if your program requires them.
The most common is the one at the left edge of the title bar: the close box. If
you specify that your standard document window is to have a close box
(assuming you have already specified a title bar), the Window Manager will
place the close box along that edge. The Window Manager has only one loca­
tion for the close box so that your program users will instinctively know how
to close a window in precisely the same way they close windows they see in
the ProDOS 16 Finder. When a user presses the mouse button with the
pointer inside the close box, your program will branch to any of several pos­
sible actions, one of which should be to remove the window from the
desktop. The window may still remain an object in memory (described later)
for fast reopening later in the program, but a close box should remove it from
the desktop to be consistent with the User Interface Guidelines.

The second title bar feature is called a zoom box. When a user clicks the
mouse with the pointer in this box, the window will change to a predeter­
mined size (i.e., predetermined by you and your program), usually filling
the entire screen or close to it. Clicking in the zoom box again causes the
window to resize itself to the size and location from which it last zoomed.

Information Bar

Below the title bar is a region called the information bar. In this space can go
many kinds of helpers for your program's user. For example, it may be a line
where spreadsheet formulas are entered and edited before being placed into
the actual spreadsheet in the window. You may place icons there that the user
can click to perform specified tasks without having to pull down menus. The
biggest penalty you pay for adding an information bar to your windows is
that it takes space away from the viewing area inside the window.

168 ------------- THE APPLE JIGS TOOLBOX REVEALED

Scroll Bars

Scroll bars can be added as necessary. If you wish to restrain the document
from growing any wider than the width of one screen, you can prevent hori­
zontal scrolling by omitting the bottom scroll bar and placing only a right
scroll bar in the window. When you add a scroll bar to a window's defini­
tion, the Window Manager automatically places the desired scroll bar in its
appropriate place in the window. Similarly, if you resize the window, the
Window Manager adjusts the scroll bar sizing for you. But specifying what a
click in each part of a scroll bar does for the user is your responsibility inside
the program.

Grow Box

At the lower right corner of the window is the optional grow box. Dragging
the mouse pointer in the grow box allows the user to adjust the location of the
lower right corner of the window to see more or less of the window's docu­
ment. The Window Manager (particularly with the help of the TaskMaster
call) will help your application handle the resizing routines that result from
movement of the grow box. You may have applications, or special windows
in those applications, however, that will not need resizing for any reason.
For example, you may use a fixed-size window to display a reference table
on the screen. If you don't want to encourage users to resize a window, leave
the grow box out of the window's specifications.

Content Region

The dominant part of a window is the area in which information is displayed:
the content region. If we design two windows of the same frame size, one
with scroll bars and one without, the one without scroll bars has a larger con­
tent region. Even though a document may be many times larger than the
rectangular area that provides the window to it, the content region is strictly
that area we can "see through ."

Since each window component is a distinct entity, you can mix and
match elements as you please. Here are examples of some of the combina­
tions you can use in a standard document window.

THE PROGRAMMER'S WINDOW

So far, we've been talking about window components that program users see
and recognize. Now we'll peel away the user layer to reveal some underlying
machinery inside a window.

THE WINDOW MANAGER-------------- ----- 169

i I Window

A ~
,

..... Content ...
-- Re~ ion ..

,,
Figure 10-4. Content regions of two windows with different components.

Common Regions

Every Window Manager window is defined by two regions (among other
specifications, to be sure): the content region and the frame region. We've
already seen where the content region is: in QuickDraw terms, the content
region is the portRect of the window's grafport. The frame region is the out­
line of the complete window - the outermost reaches of the window,
including controls, title bars, and so on. Together, the content region and
frame region define the window's structure region. Your programming con­
cerns, however, will focus on the content and frame regions.

Optional Regions

Depending on what extra features you add to a plain document window - a
title bar, a grow box, and so on - your window will automatically gain up
to four additional regions that the Window Manager will work with. Those
regions and their corresponding window components are:

Region Component

go-away close box
drag title bar
grow grow box
zoom zoom box

Notice that when we introduced these regions by their component names,
they were specifically not a part of the content region. That' s true of their
corresponding regions as well. All four of these regions are within the win­
dow's frame region.

170 ------------- THE APPLE IIGS TOOLBOX REVEALED

ndow

Window 3 Window I' F

J

Window 3 Window

Figure 10-5. Some document window possibilities.

THE WINDOW MANAGER------------------- 171

Window

e
I.-

l;n;

a1 I ~ Q]

Content Region + Frame Region Structure Region

Figure 10-6. Relationship among content, frame, and structure regions.

Drag Region

Close Region --ti!~~~~~~Qw~l~nd~o~w~· §~~~~~~- Zoom Region

~

-

-

~
~OLJ=== l=LI=====E: J===~~l..f-- Grow Region

Frame Region and its Component Regions

Figure 10-7. Window frame region and its component regions.

SCROLL BARS AND REGIONS

The precise workings of scroll bars will be covered in Chapter 12, "The Con­
trol Manager," but since scroll bars are often a significant part of your pro­
gram and its windows, we'll discuss what these controls mean to a window,
its regions, and the document.

From the user's perspective, the purpose of scroll bars, of course, is to
bring parts of a large document into view of the window. From the program­
mer's perspective, however, scroll bars allow you to adjust the location of
the content region to other parts of the data area - the extent of the infor­
mation you wish to show.

172 ------------- THE APPLE IIGS TOOLBOX REVEALED

Figure 10-8. Scroll bars reveal the relative content region and data area sizes.

Notice the distinction in frame of reference: The user, sitting in front of
an unmoving video monitor, sees the scroll bars as controllers of the location
of a movable document; the programmer knows that the document is nailed
down to a QuickDraw coordinate plane, and the scroll bars move the content
region around the plane.

Scroll bars generated by the Apple IIGS Control Manager offer more
feedback to the user than the standard scroll bars of the Macintosh Control
Manager. The difference is that the IIGS scroll bar gives the user a visual
clue to the proportion of the entire document he or she is viewing through the
content region at any instant. Think of the gray area of a scroll bar as repre­
senting a scale of the entire measure of the data area in that dimension, either
horizontally or vertically. The white box - the thumb - of the scroll bar,
then, represents the size of the content region in that dimension relative to
the size of the data area. Therefore, if you look at a scroll bar and find that
the right scroll bar has a small thumb, it means that the content region is
viewing only a small portion of a long, vertical document. A large thumb on
the bottom scroll bar means that the content region is showing nearly the
complete width of the data area, perhaps indicating that there is little need, if
any , to scroll the document horizontally.

THE WINDOW MANAGER------------------- 173

Data Area~

Figure 10-9. Scroll bars in a predominantly vertical document.

THE WINDOW RECORD

Each window you create will have its own window record. That means that
all specifications for one window are stored separately from another. There­
fore, if you give one window a set of visual characteristics, including a
special set of components, a particular screen location and size, the informa­
tion will be stored in that window's record and will not be adjusted as you
manipulate other windows on the screen. Moreover, with a window's
specifications safely stored in its record, you can remove the window from
the screen (make it invisible), perform all kinds of other tasks with other
windows, and later make the original window visible again. It will appear on
the screen exactly the same way it did before it was hidden.

When the Window Manager creates a new window (as the result of the
NewWindow toolbox call), it opens a new QuickDraw grafport (in fact, it
specifically makes an OpenPort call behind the scenes), which becomes one
of the items in a window record. All characteristics of a grafport, such as
color tables, fonts, and pen states, then become part of the new window.
Experienced programmers call this relationship between window and graf­
port inheritance in that a window inherits all the characteristics of a graf-

174 ------------- THE APPLE IIGS TOOLBOX REVEALED

port, the way a newborn baby inherits its parents' family name and heritage,
even though the child will grow up with additional, individual traits of his or
her own.

A window record is the longest record in a IIGS program, extending
over 300 bytes. Several parameters concern themselves with the effects of
scrolling- a subject we'll leave for more advanced programming guides.
But to give you a taste of the more readily visible items in a window record,
we'll examine parameters labeled wTitle, wPlane, wFrame, wZoom, and
wRefCon. Let's define each of these.

Window Title

Specifying a title for the window is as easy as assigning a variable name to a
pointer indicating the actual text you wish to appear in the window's title
bar. Depending on your programming language, that step would look some­
thing like this:

newTitle = "Window 3" {newTitle previously defined as a
pointer variable}

You will then plug newTitle into the NewWindow call 's parameter list (see
below).

The Definition Procedure

Toolbox programming frequently uses definition procedures as shortcuts to
predefined screen objects. For example, the window record's wDefProc
item is a number corresponding to predefined window types. In the Macin­
tosh Window Manager, there are several different predefined window types,
whereas in the IIGS Window Manager, there are only two, the document and
alert windows. Since alert windows should be reserved for the Dialog Man­
ager, you are left with the document window, which is specified in wDef­
Proc by a 0. If you create your own custom-designed windows, you will
assign each one a wDefProc identification number that you can pass as a
parameter to a NewWindow parameter list, summoning that window type
instead of the standard document window.

Window Order

You will normally want a new window to be topmost on the stack of windows
currently open on the screen. To make sure that happens, you should specify
a - I as the wPiane parameter. The Window Manager takes over from there,
deactivating the current active window, creating the new window, high-

THE WINDOW MANAGER ------------------- 175

lighting it, and generating all necessary activate events to the Event Man­
ager. If you wish, you can slip a new window elsewhere in the stack of on­
screen windows without making it the active window. Simply pass the
pointer to the window record of the window behind which the new window
is to be placed. To put the new window at the very bottom of the stack ,
specify a 0.

Window Frame Definition

The "window construction set" feeling of the Window Manager comes to I ife
in the wFrame parameter. The flags you set in the wFrame word determine
which window components are added to the window's frame. The control­
ling bits and their items are shown in Figure 10-10.

The movable item tells the Window Manager to allow a user to drag the
window by the title bar, while the visible item acts as a switch for showing or
hiding a window while its record is in memory.

Reference Constant

A program with the potential for many windows may need to keep track of
those windows by a serial number or some other identifying number. The
wRefCon parameter lets you establish a reference constant for a window. A
practical use for this feature would be to generate new window titles con­
sisting of the word "Window" and a number of the current window since you
started the application (e.g., "Window 5"). By retrieving the wRefCon value
of the last window opened, you can increment the value by l , assign it to the
next window, and incorporate the number into the new window's title.

Frame Definition Flags

Title Bar

Clo'e Box

:Richt Scroll----'

B ottom Scroll------'

Grov Box------1

Zoom Box----------'

'------Information B e.r
.__-----Visible

'---------Movable

Figure 10-10. Window frame definition flags.

176 THE APPLE IIGS TOOLBOX REVEALED

Full Size Window

The last parameter, wZoom, is the size of the rectangle the window's content
region will become when a user clicks on the window's zoom box. If this
parameter is set to 0, the window's content region will zoom to fill most of
the screen (but not cover the menu bar).

CREATING A NEW WINDOW

Before your program actually creates a window, you first establish a list of
specifications about the window. The list is rather long - 24 items - and
items must be listed in a very specific order. Fortunately, many items can be
set to zero, which tells the Window Manager to use standard values when
creating the window. Data for this parameter list will be in the form of a
record (or structure, depending on the language). Then you will call the
New Window function, passing as an input parameter a pointer to the start of
that list. The Window Manager reads that data and creates a window object
out of it. New Window returns a pointer to the window record, which you can
assign to a pointer-declared variable. The steps are sketched below.

Declare variables ...
windowData : POINTER
myWindow : POINTER

BEGIN {window creation}
window Data = struct (wFlag value, wTitle pointer, wRefCon ...)
mywindow = NewWindow(windowData)

END.

NewWindow returns a pointer to the window's record (assigned to the
pointer variable, "mywindow," in the above example). Hereafter, you can
adjust anything in the window record by making one of the Window Man­
ager calls to that window record. For instance, to make the above window
invisible without erasing its record in memory, you'd make the following
call:

Hide Window(mywindow)

Retitling the window would require assigning the newest title to a different
pointer variable, and then passing that along with the pointer to the window
whose name should be changed, as follows:

NewestTitle = "Harvey's Window"
SetWTitle(mywindow ,NewestTitle)

THE WINDOW MANAGER------------------- 177

NewWindow does not draw the window on the screen. Its job is simply to
create the window record. To draw myWindow on the screen, the program
would call

ShowWindow(myWindow)

to finish the window creation job.

WINDOW FRAME COLORS

In our QuickDraw discussions, we went through the way colors can be
applied to images in grafports. The Window Manager really doesn't care
what colors QuickDraw is producing for your pixel images or other objects
displayed in the grafport (i.e., as seen in its content region), but it is con­
cerned about the colors of window parts - the frame, the title bar, the grow
box, and so on. These colors can be set for each window and passed as a part
of the window parameter list or adjusted later in the window record with the
SetFrameColor call.

Frame Color Table

Terminology for frame colors may get a little confusing at fi rst because it
includes references to a window frame color table that is an entirely different
concept from the QuickDraw color table. The window frame color table
is not a list of pixel color values but, rather, a list of colors that apply to spe­
cific frame components. A pointer to the entire table is then included in
the window parameter list or passed as the parameter of the SetFrameColor
call.

For example, the first entry in the frame color table is the color number
(0-15 from the grafport' s standard color table) of the window frame. In other
words, when you assign a color number, say the value 4 (which is blue in
QuickDraw's standard color table), to the first item in the window frame
color table, all pieces of the window frame that are visible will be drawn in
blue on the screen.

Color information for the rest of a window frame's components is
specified by other entries in the frame color table. Each entry is 16 bits wide,
but a color specification for a particular component requires only 4 bits
(0000 to 1111 in 320 mode, 0000 to 0011 in 640 mode). Some components
have related specifications, such as a pattern, occupying other bits of the
integer. Some components change color when selected by the mouse
pointer, so this second four-bit color must also be a part of the color informa­
tion for those items. Still other bits are unused, but are present just the same
to fill out the space.

178 - ------------- THE APPLE IIGS TOOLBOX REVEALED

byte Frame Component

0 Frame Color

2 Title Color

4 Title Bar Color

6 Grow Box Color

8 Information Bar Color

Figure 10-11. Window frame color table.

0

The window frame color table, which consists of 5 two-byte entries, is
set up in the order shown in Figure I 0-11.

Frame color applies to the lines that define the window's frame outline
as well as the outlines for the close box, the zoom box, the grow box, and the
information bar (Figure 1 0-12).

The title color entry sets many items. The lowest nibble controls the
color of the title text and the interior colors of the close and zoom boxes. A
separate color for title text in an inactive window is specified in the next
higher nibble. The third nibble affects the color of the title bar background
when the window is inactive (Figure 1 0-13).

Title bar color controls both the pattern and the color of the title bar
graphics (Figure 10-14). Title bar patterns can be either the familiar four
horizontal lines, a dither pattern, or solid, as defined by the high byte of the
title bar color integer.

I I I I I I I I I I I I I I ! I I
I I I I I I

I I
Zero Outline

Color
Not
Used

Figure 10-12. Frame color.

THE WINDOW MANAGER ------------------- 179

!':'i":·:·i·:~·:·:::":":·::·:::·:·::·:·::·wi'fi'(io·w··:·::~~E·.':·:~::::·::·::·:::::·:·::·f':·:::·f.1;·::jr-----_Tuil.!tl.s<.ej,CJ.<owlo,n:r

1: :: ::: :: :::~~:::::::::1

, ... ~·:;·!:1.1

Figure 10-13. Title color.

I I I I I I I I I I I I I
1._---r___.ll .__ --.___,1 ._I -..----'1 1.__-.--..... 1

Zero Inactive
title bar
color

Inactive Color of
title color Title, close

box, zoom
box

I~:·:·: .. == .. ~.E·i -.~--Title Bar Color
... 1

i !
~

I !
j i
: :
: t

I I
i -............................... ,,,_,,,., ~:~-~~J
Figure 10-14. Title bar color.

I I I I I I I I I I I I I I I I
I I I I I I

Pattern Number
0 = solid
1 =dither
2 =lined

Pattern Background
Color and Inactive

Color

The grow box has its own color item in the window frame color table
(Figure 10-15). The lowest nibble in the color integer controls the interior
color of the box when selected. The next highest nibble controls the interior
color when not selected. Recall that the outline for this box is under the con­
trol of the frame color item.

If your program uses an information bar, its interior color is controlled
by the last integer in the window frame color table (Figure I 0-16).

UPDATING WINDOWS

Very few applications will escape the need for window updating. Even if the
program has only one window (so there 's no threat of a second applications
window overlapping it), there will likely be desk accessory windows (c alled
system windows) or alert windows temporarily covering the main window .
When these overlapping windows close, they will leave blank ho les in your
main window . Your application must update those blank regions.

180 -------------- THE APPLE IIGS TOOLBOX REVEALED

Grow Box Interior Color

Zero Color
When Not
Selected

Color
When

Selected

Figure 10-15. Grow box region color.

Figure 10-16. Information bar interior color.

The Window Manager and the Event Manager work together in alerting
your program of the need for a window update and in performing the actual
updating. When the closure or movement of an overlapping window exposes
a blank region of a window, the Window Manager posts an update event to
the Event Manager. Your application's event loop should be continually
testing for the presence of an update event. If the program finds an update
event, then it should branch to a redrawing routine that your window record
points to. Redrawing by way of the Window Manager sets into motion a
number of complex, yet automatic, procedures to make sure that only the
affected region(s) of a window is(are) redrawn. This speeds up the perceived
redrawing time of the window because the entire content region doesn't need
to be drawn.

THE WINDOW MANAGER------------------- 181

WINDOWS AND EVENTS

With so many regions in a typical window, each of which is to react dif­
ferently to mouse-down events, there is a great deal of interaction between
the Event Manager and the Window Manager. In particular, the Event Man­
ager will trigger the need to check the location of the mouse pointer ­
which window region it was in - when a mouse-down event occurred.
Depending on which region the cursor's hot spot was in, the program should
branch to the routine that actually performs the onscreen action in response
to that mouse click. Your program can do this manually, step by step, or if
you're not doing anything too out of the ordinary, it can call upon the
TaskMaster, which greatly reduces your need for managing every step of the
way. But since the TaskMaster doesn't do it all (at least not in its current
rendition) , you'll still need to know the "old-fashioned" way of handling
window events.

Polling the Event Manager

By now you should be familiar with polling the Event Manager with the Get­
NextEvent call. When it has an event to report, it proffers that event's
record, from which you can extract the event type (Event. what in some lan­
guages). If that event is a mouse-down event, then your application should
make further determinations as to the location of the mouse pointer at the
time of the event.

The mechanism for that task is the FindWindow call. This tool takes the
global screen coordinates of the mouse-down event (the "where" in the event
record) and calculates (l) the window in which the event actually occurred,
and (2) the region of that window in which the mouse-down event occurred.
In other words, the first job FindWindow does is look up the global coordi­
nates of the mouse pointer (as on a map) and see which window is under that
pixel. The results of that search is a pointer to that window's record. Most
languages will assign that pointer to a variable named "whichWindow" or
similar. Once that is established, you will use which Window to help you per­
form one of several possible operations, as we'll see in a moment.

The other information that FindWindow calculates is the region in
which the user clicked the mouse pointer. This information comes back as a
constant from a table of predefined locations:

Constant

0
16
17
18

Location

wNoHit
wlnDesk
winMenuBar
winSysWindow

Meaning

Event did not occur in the window
On the desktop
On the system menu bar
In a system window (e.g., desk accessory)

182 -------------- THE APPLE llGS TOOLBOX REVEALED

Constant Location Meaning

19 wlnContent In the window's content region
20 wlnDrag In the window's title bar
21 wlnGrow In the window's size box
22 winGoAway In the window's close box
23 wlnZoom In the window's zoom box
24 win Info In the window's information bar
25 wlnVScroll In the window's right scroll bar
26 wlnHScroll In the window's bottom scroll bar
27 winFrame In the window , but in none of the above

regions

These constants make it relatively simple to build a series of CASE state­
ments within the event loop in a high-level language to test for the event
taking place in any of these regions. You won't need to test for all of them -
just the ones your windows and your application are concerned about.
Depending on your language of choice, the structure might look something
like this:

REPEAT
IF GetNextEvent(everyEvent,thisEvent)

THEN
CASE thisEvent. what OF
mouseDown:

CASE FindWindow(thisEvent. where, which Window) OF
winMenuBar:

{code to handle menus};
winDrag:

{code to drag window};
winZoom:

{code to zoom window};

END; {finish mouseDown tests}

END; {finish Event CASE routines}
UNTIL done;
END.

Thanks to the built-in constants of the language and their readily identifiable
names, you don't even come into direct contact with the constant values for
the various regions. Assembly languages for the IIGS have macros that per­
form many of these tasks as well, but you will have to move the values into
registers, perform Boolean arithmetic on the values, and as a result of a test

THE WINDOW MANAGER------------------- 183

between the constant value and the Boolean answer, either branch to the
window routine defined elsewhere in the code or "fall through" to the next
test. The precise implementation may be different, but the structure is
largely identical to its high-level language counterparts.

Window Events
Several Window Manager calls are to be summoned as the result of Event
Manager tests. For instance, when the event loop determines that a mouse­
down event occurred in the drag region of a window, the next procedure
should be the Window Manager's Drag Window call. Typically, your event
loop will make the following Window Manager calls, based on the results of
mouse-down region tests (i.e., after it has performed a FindWindow to
determine both the target window and the region in that window):

Drag Window
Grow Window
TrackGoAway
TrackZoom
Select Window

A few other calls are also involved, but we'llleave that up to the Apple 1/GS
Toolbox Reference to provide you with the details. It is a good idea to
become acquainted with these items. Then you'll appreciate how much work
the TaskMaster can do for you.

THE TASKMASTER

Realizing that a high percentage of event-driven programs perform identical
key-down and mouse-down event tests, the Apple IJGS toolbox designers
consolidated a number of Event Manager and Window Manager calls into a
single call, TaskMaster. It is a built-in toolbox subroutine that makes a
number of tool calls on its own. In addition to relieving the programmer of
producing many tedious lines of code, it performs several important tasks
with only two input parameters, while returning a single parameter that your
application can use most efficiently for additional event loop tests.

Calling TaskMaster
TaskMaster call goes into the event loop in place of GetNextEvent. Actu­
ally, TaskMaster calls GetNextEvent as one of its first tasks. Input
parameters to TaskMaster are just like the ones handed to GetNextEvent: an

184 -------------- THE APPLE llGS TOOLBOX REVEALED

event mask and a pointer to task record. Therefore, you can set an event
mask if you like, using the same event mask constant your language provides
(such as "everyEvent"). For the task record pointer, in a high-level lan­
guage, you can simply define a task record pointer variable with an identifi­
able name, such as "myTask." When TaskMaster is finished, it returns a
Task Code, which we'll discuss in a moment.

The Task Record

When TaskMaster calls GetNextEvent, the Event Manager hands over the
record of the event having the highest priority at that instant (as it continually
polls the system while the event loop cycles madly). That event record, of
course, contains the five event record items that every event record has. The
entire record reaches TaskMaster intact. TaskMaster, however, adds two
extra items to the record: TaskData and TaskMask. TaskData is used by
some of the internal calls that TaskData makes, particularly dealing with
menus. The "data" that this record item tracks are the menu and menu item
chosen by the user (more about this in Chapter II). TaskMask allows you to
tell TaskMaster which kinds of events it should not process, in case you wish
to process a particular event differently from TaskMaster's usual handling.
You set one or more of the thirteen bits (in a 32-bit LONG), each of which
controls a single TaskMaster internal function.

A task record, therefore, looks like this:

what: WORD
message: LONG
when: LONG
where: LONG
modifiers: WORD
TaskData: LONG
TaskMask: LONG

These record items behave just as event record items do. Therefore, when
TaskMaster finds out from GetNextEvent that a mouse-down event has
occurred, for instance, it knows to perform its magic by performing its major
mouse-down event tasks: (1) calling FindWindow, and (2) performing the
action appropriate to a mouse-down event in a particular region of the
window.

Open-Ended

Now, you might imagine that as "smart" as TaskMaster is, there is only so
much it can assume about your application. A hazard with this powerful a

THE WINDOW MANAGER------------------- 185

routine is that it might do too much , thus preventing the programmer from
exercising his or her own creativity.

Fortunately , TaskMaster doesn't try to be all things to aB programs.
The tool leaves enough information around for your event loop to use for
further tests not covered by TaskMaster. For example, if TaskMaster poBs
the Event Manager and receives a mouse-down event in the content region of
a window, TaskMaster wiB first make sure the window clicked upon is the
active window. Then, even though TaskMaster is through with its work, it
leaves wlnContent as the TaskCode output parameter, and leaves the pointer
to the window in the Message field of the task record. Now your event loop
can perform further procedures based on the knowledge that the event took
place in a window's content region. The program may, for instance, change
the cursor from an arrow to a text insertion pointer because you intend to type
text into that window.

As another example of TaskMaster passing through information for
further program execution, if TaskMaster finds that a mouse-down event did
not take place in the system menu bar or in the window's drag region, close
box, zoom box, grow box, or either scroll bar, then it returns the window
pointer from the FindWindow call it made inside the macro . Even though the
caB could find no action to perform, it stiB did some work along the way,
easing further event loop tests you may wish to make .

To give you an idea of what TaskMaster call does for your application,
here is a schematic of several internal Window Manager calls it makes :

mouseDown Event:
CaB FindWindow

If Find Window says event was in:

wlnDrag:
If TaskMast bit #6 = 0:

Exit and return TaskCode = w InDrag
If command key not down and window inactive:

CallSelectWindow
CaB DragWindow
Return TaskCode = inNuB ..

wlnContent:
IfTaskMast bit #7 = 0:

Exit and return TaskCode = wlnContent
If window is inactive:

Call SelectWindow
Return TaskCode = InNull

,....

186 -------------- THE APPLE IIGS TOOLBOX REVEALED

Else:

Else:

wlnZoom:

TaskRec Message field = window pointer
Return TaskCode = wlnContent

If TaskMast bit #8 = 0:
Exit and return TaskCode = wlnZoom

Call TrackZoom
If TrackZoom returns TRUE:

Call Zoom Window
Exit and return TaskCode = InNull

Return TaskCode = FindWindow value
TaskRec Message field = which Window's pointer

Since TaskMaster checks only for key-down, mouse-down, and update
events, it automatically passes through the event code from an event record
as the TaskCode if no such events are being processed. The TaskMaster,
then, takes the place of a great deal of the event loop, but not the entire loop.

TaskMaster's Future

Apple encourages you to use the TaskMaster call in your event loops for a
reason that should appeal to most programmers. If, in the future, Apple
enhances the TaskMaster call in a new release of the Apple JIGS Toolbox,
then the routine may do some additional window and menu management for
your application without your doing any additional coding.

It is unlikely that your old program would become unusable with the
new system, since Apple tries to make upgraded ROMs and software tools
compatible with earlier versions. But an enhanced TaskMaster may make a
number of standard housekeeping jobs both faster and more compact in
terms of program size. That should be a good incentive to use it whenever
appropriate to your application - which may be all the time.

We'll see TaskMaster coming around once more in the next chapter, as
we look inside the Menu Manager.

CHAPTER 11

The Menu Manager

Pull-down menus figure prominently in Apple's User Interface
Guidelines for both the Macintosh and the Apple IIGS. We saw quite

clearly in Chapter 7 that a pull-down menu system built into an event-driven
program gives the user options during the running of a program that may
not have existed in other program environments. Menus, as generated
and handled by the Apple IIGS Menu Manager, are summoned without a
change in modes - the user is at once in command mode and data entry
modes. Choices of both menu category and menu item are done with one
swift mouse motion. All in all, it is an elegant system, and the JIGS Menu
Manager facilitates its use by handling the complex graphics for your appli­
cation automatically.

MENU CONCEPTS

You have probably enjoyed working with pull-down menus on the IIGS
already, but you may not have realized how much detail has gone into the menu
mechanism and the way users interact with menus. As a programmer, you'll
have to be very much aware of these concepts, because you should know how
every part of your program functions, including those parts under total control
of the toolbox. In this first section, however, we'll be speaking in user terms­
what the user experiences when using menus.

187

188 -------------- THE APPLE JIGS TOOLBOX REVEALED

The System Menu Bar

Applications using pull-down menus display the names of one or more
menus in the system menu bar, which is drawn across the screen at the very
top of the video area. The IIGS Pro DOS 16 Finder, for example, displays a
system menu bar when the operating system is loaded . If an applications pro­
gram will be using a system menu bar, it will be in precisely the same
location on the screen, although the names of various menus may be quite
different.

Names of menus are called menu titles. A menu title should provide a
clue to the kinds of operations provided by menu items in its hidden menu.

A special graphics character you can use in a menu title is in the shape
of an apple. This character is traditionally used as the menu title for the
leftmost menu in a system menu bar. Items in this menu are predominantly
desk accessories, as well as an "About. .. " item. This latter item provides an
avenue for the program writer to identify the program, its origin, its
copyrights (if any), or other information the author thinks the user should
know. The About ... item usually generates a dialog box on the screen dis­
playing the author's information.

Choosing a Menu and Item

When the user presses the mouse button with the cursor atop a menu title, the
title's text changes to its inverse color and a list of menu items drops down in

Figure 11-1. A system menu bar.

THE MENU MANAGER - ------------------- 189

a small window below the menu title. As long as the user holds the mouse
button down , the menu will be visible. Dragging the cursor into the window
of menu items causes item names touched by the cursor to change to their
inverse colors- become highlighted.

If the cursor passes beyond the edge of the item list, the menu will
remain pulled down , but no item will be highlighted. You can drag the cursor
back into the menu and make a menu choice.

To choose a menu item, touch the menu item text with the cursor while
pressing the mouse button so that the menu item is highlighted. Then release
the mouse button to choose the item.

(There's a fine point of terminology here, but one worthy of note. When
a menu item is highlighted, it is said to be selected. But the instant you
release the mouse button to set the action in motion, you have chosen the
menu item.)

When you have chosen an item, the menu item will blink a couple of
times, the menu list will disappear, and the action indicated by that menu
choice will take place. While the action is in progress, the menu item's title
will remain highlighted . This gives a visual clue that the program is still
churning away. even if there is no other indication - changes on the screen
or disk activity - of action taking place. As soon as the action is com­
pleted, the menu item returns to its normal color.

Uiew

Figure 11-2. A pull-down menu with an item selected.

190 -------------- THE APPLE llGS TOOLBOX REVEALED

Enabled and Disabled Menus

Menu titles can be disabled, which means that you'll be able to pull down the
menu, but you won't be able to choose any of its menu items. You can spot a
disabled menu title by its shaded appearance in the menu bar.

When a menu title is disabled, so are all the items in its menu. As you
drag the cursor across disabled items, they will not become highlighted.

You may also find cases when a particular item in an active menu is dis­
abled under certain circumstances in a program.

This usuaJly means that the operation indicated by the menu item would
not make sense at that point in the program. For instance, if you have not
made a change to a document, there would be no need for an Undo menu item
in the Edit menu. The instant you press a key to type a character, the Undo
menu item can be enabled.

MENUS FOR PROGRAMMERS

So much for the user's perspective. Let's look at the mechanisms we've been
describing so far and find out how much the Menu Manager does for you and
how much your application will have to do.

Figure 11-3. Enabled and disabled menu titles.

Disabled Menu
Titles

THE MENU MANAGER-------------------- 191

Figure 11-4. A menu with one disabled item.

Disabled Menu
Item

For one thing , you'll have to supply the Menu Manager with the text
characters that are included in the menu titles and menu items. Menu items
will let you specify a number of extra parameters , as we'll see a little later.

Getting the Menu Manager to display a pull-down menu takes an easy
interaction with the Event Manager. Once the Menu Manager discovers that
a mouse-down event has occurred in the system menu bar, it takes over, pul­
ling down the menu to which the cursor is pointing, highlighting the menu
title, and highlighting each menu item as the cursor drags down the list.

When you release the mouse button , the Menu Manager instantly
records which menu and menu item you chose (each has an identification
number). It is your program's job to branch to the action routine that corres­
ponds to the particular 10 numbers recorded by the Menu Manager. In the
meantime, the Menu Manager erases the pull-down menu from the screen,
calls for a redrawing of the window(s) beneath the now-departed menu win­
dow , and keeps the menu title text in reverse . As soon as your menu action
routine is complete, it must make the call that returns the menu title to its
original state, indicating the program is ready for more input.

MENU TERMINOLOGY

Before we dive into what it takes to create a menu, we'd better make sure that
menu terminology is clear. There are also several interface items you should

192 ----- --------- THE APPLE IIGS TOOLBOX REVEALED

be aware of that may influence menu design. Figure 11-5 points out the key
elements of a pull-down menu.

Most items should be self-explanatory, with a couple of exceptions.
A mark, indicated by a crosshatch in the figure, is a method of alerting

the user that a particular feature is in force. For example, when a mark is
placed next to the Draw menu item, it means that the Draw feature is turned
on. Choosing this item a second time will both tum off Draw and remove the
mark from the window. Few menu items will be a feature "switch" like
this - turning an item on and off. There is also another way to handle such
an action. For example, when Draw is off, the menu item can read, "Draw
On," meaning that choosing this item will turn on Draw. The action that
turns on Draw and would normally place a mark next to the item can , instead ,
change the menu item to read "Draw Off," meaning that choosing the item
again will turn Draw off. Either method is acceptable under the User Inter­
face Guidelines .

Key commands are important features of menus, because they provide
experienced users of your application a way of calling menu items without
reaching for the mouse. Instead , they would hold down the Open-Apple key
and the character key indicated by the key command in the menu . Key com­
mands are listed in the menu as a way of alerting users that a keyboard
shortcut exists for the menu item. If the user grows tired of pulling down the

Disabled Item

Key Command

Menu Height Menu Items

Selected Item

' I
I

Menu Width

Figure 11-5. A menu and its components.

THE MENU MANAGER-------------------- 193

menu for a frequently used action, he or she will likely remember the key
command and use it exclusively. Keyboard characters selected for key com­
mands should be mnemonic - the letter should help the user remember
what command it is, such as Apple-S for Save. The exceptions to this rule are
four editing key commands that are common to the majority of applications:

Key Command

z
X
c
v

Edit Action

Undo
Cut
Copy
Paste

Dividing lines should be used sparingly and intelligently. They can
group together logical items in a menu. Often, two related menus can be
combined into one menu by placing items from both menus in one list sepa­
rated by a dividing line. Also use dividing lines to help a user find menu
items quickly in a long list of largely unrelated items. Again, group logical
items together as best as possible.

CREATING MENUS

Each menu title and its related menu items are considered a single menu on
the system menu bar. To put together a system menu bar with several menus
in it, you begin by creating each menu individually. The basic procedure for
creating a menu bar is to (I) define the textual content and characteristics of
each menu, (2) turn that definition into a menu that the Menu Manager will
recognize, (3) insert each menu into the system menu bar, and (4) draw the
system menu bar, which will display the full set of defined menu titles across
the top of the screen.

To define the content and characteristics of a menu, you put together a
menu/item line list for each menu.

The Menu/Item Line List
The list consists of the actual words that are to appear as the menu title and
its items, as well as one or more special characters that the Menu Manager
needs for the processing of menu commands and the display of things like
key commands, menu marks, and so on. Importantly, the list must be put
together in a strict format.

The format calls for the menu title to be preceded by two identifying
characters, such as > >. Menu items in the list are preceded by a pair of dif­
ferent characters, such as hyphen. The end of the list must contain a single

194 -------------- THE APPLE IIGS TOOLBOX REVEALED

character that is different from the item characters - you could use a
period, for example, or even the same character as used for the menu title
character. This last character tells eventually the Menu Manager that there
are no more items for this particular menu. These leading characters behave
like compiler punctuation marks.

A menu/item line list must also assign identification numbers (IDs) to
each menu title and item in the list. Your program will use these numbers to
identify which menu or item has been chosen by the user. Consequently, the
IDs must be different numbers for each item in the list. No hard and fast rules
apply to ID numbering conventions, but Apple suggests that menu titles be
numbered sequentially, starting with 1; menu items should also be sequen­
tial, but starting with 256.

Menu IDs are added to each item in the menu/item line list by tacking on
a backslash (\),the letter N (indicating a decimal number), and the number.
The backs lash character separates the actual text string that will appear in the
menu from special characters that furnish additional information about a
menu title or item (more on this in a moment).

Taking all this into account, a program with two menu simple menus in
it would have two menu/item line lists:

>>File\Nl
--Open\ N256
--Save\ N257

>>Edit\N2
--Cut\N258
--Copy\ N259
--Paste\ N260

A pointer to each menu/ item line list's text is then passed as the parameter to
the NewMenu toolbox call. That is, you make the New Menu call twice in the
above example. The New Menu function returns a handle to the menu record.
Note that this function does not produce any image on the screen - it
simply creates the menu in memory. For each menu, you then call
InsertMenu, with the menu handle as one of the call's input parameters. This
call, too, deals with menus in memory only, not on the screen. Finally, call
DrawMenuBartodisplay the menus on the screen, as shown in Figure 11-6.

The two menus, when pulled down by the mouse, are shown in Figure
11-7.

Menu Modifiers
Earlier we saw that menu items can be disabled, marked, and chosen from
the keyboard. The way all of this is passed along to the Menu Manager for a
new menu is by way of the menu item line list. Any menu item to which you
wish to add one or more attributes needs to be sent to the Menu Manager with
appropriate modifiers, sometimes called special characters. To alert the

THE MENU MANAGER-------------------- 195

Figure 11-6.

Open
Saue

Figure 11-7.

File and Edit menu titles in a system menu bar.

Cut
Copy
Paste

File and Edit menu items.

Menu Manager that a menu title or item will have some special attributes
coming its way, add the special characters to the text string anywhere to the
right of the backs! ash. Possible modifiers are:

*A a where" A" is the primary character to be used as key
command, "a" the secondary

Ca where "a" is the character to be used as an item mark
B boldface menu item text
I italicize menu item text
U underline menu item text
V insert dividing line after this item without adding an

extra menu item
D disable menu item text
X use color replace highlighting

All of the above modifiers can apply to menu items; menu titles, however,
can be affected only by D and X.

....

196 ------------- THE APPLE IIGS TOOLBOX REVEALED

You can specify two key commands, a primary and secondary. This
feature is in the toolbox mostly for the convenience of programs using
keyboards and character sets in countries other than the United States. You
don't have to specify a secondary character, but you must provide a blank
space as a place holder for the secondary character in the menu/item line list.
Only the primary character is displayed in the menu, so if you wish the key
command to appear in uppercase in the menu but allow the user to access the
menu item by typing a lowercase Jetter with the Open-Apple key, then
specify both letters, with the uppercase character as the primary one.

With regard to the highlighting special character, if you don't specify
an X character in a menu/item line then the Menu Manager uses XOR high­
lighting, which inverts the colors of the menu text and its background when
an item is selected. For black and white menus, XOR highlighting works
fine. But if you want color menus, the result of XOR math on the colors you
choose may produce unreadable results. Therefore, the X special character
alerts the Menu Manager to highlight selected items according to colors you
plug into the menu bar color table (described below).

As another feature of the menu/item line list, you can create a dividing
line between menu items by typing a single hyphen as the text to be dis­
played . The Menu Manager interprets this to mean you wish a dividing line
to be displayed across the entire width of the menu. A dividing line like this
must have its own ID number and must be disabled. As an alternative to a
standalone dividing line , you can underline a menu item entry by appending
the V special character. The underline does not add any space between menu
items, as does the standalone dividing line. Your choice between underline
or dividing line will depend on your personal taste in menu design.

To demonstrate the effects of special characters on a menu/item line
list, we'll show you a list from a hypothetical menu and, in Figure 11 -8, the
resulting menu.

>>Text
--Undo\N270D
--- \N271D
--Left\ N272C#*LI
--Centered\ N273*Cc
--Right\ N274 V*Rr
--Bold\ N275B*Bb
--Italic\ N276I* I i

Incidentally, you can create your own Apple menu title by pl&cing the @
symbol as the lone character in the Title entry in a menu string. If you place
other characters in that string with the @ sign, the actual @ character will be
displayed instead.

THE MENU MANAGER -------------------- 197

•r:m•
Undo

#Left .L
Centered •c

~ght •n
Bold •u
/tolir. .I

Figure 11-8. Sample menu.

MENU COLORS

If you want to add color to your menus , the Menu Manager has a menu bar
color table, a pointer to which is part of the menu bar record. The table
behaves much like the window frame color table in that it contains pixel
values that refer to the QuickDraw standard color table. Three 16-bit inte­
gers control settings for menu text and background in both highlighted and
unhighlighted conditions, plus the color of the outline box of a pulled-down
menu . Notice that the colors apply to the entire menu bar.

MENUS AND EVENTS

The TaskMaster call simplifies the linkage between the event and menu
mechanisms. lts basic job is threefold: (1) to identify when a mouse-down
event occurs in the system menu bar; (2) to wake up the Menu Manager so
that it will display the appropriate pull-down menu; and (3) pass along the
number of the menu item actually chosen by a release of the mouse button.

Mouse Events
We saw in the last chapter how the TaskMaster automatically interprets the
location of a mouse-down event. When the event occurs in the system menu
bar (wlnMenuBar) , the TaskMaster calls the Menu Manager's workhorse
routine , MenuSelect. As long as the mouse button is held down, MenuSelect
has complete control over your program. Its initial job is to determine from
information held in the task record where on the screen the mouse pointer is.

198 -------------- THE APPLE UGS TOOLBOX REVEALED

Then it figures out the menu title with which that location coincides. If it is
indeed over a menu title, the Menu Manager draws the menu on the screen,
allowing you to drag the pointer through the list. Fortunately, as long as the
mouse button is down , the Menu Manager will keep asking the TaskMaster
for the location of the mouse pointer. Consequently, if you drag the pointer
to another menu title, the first menu will close up, and the second one will
drop down.

Releasing the mouse button while a menu item is selected starts a small
chain reaction. MenuSelect passes critical information back to the Task­
Master: the menu title ID and the menu item ID of the item chosen. Thts
information is compacted together and placed into the TaskData field in the
task record. Then the TaskMaster bails out, passing winMenuBar as the
TaskCode your application can test further. From there, your application can
perform a CASE procedure to test the low-order word to uncover which
menu item was chosen. Your program will then branch to a predefined action
for that menu choice.

For a menu bar with two menus in it (each with a few menu items), the
structure of the menu decisions would look like this in a high-level language:

PROCEDURE DoMenuStuff (TaskData);

theltem = LoWord(TaskData) ;
CASE theltem OF

{File Menu items}
openCommand: {branch to file open routine};
saveCommand: {branch to file save routine};
quitCommand: {branch to quit routine};

{Edit Menu items}
undoCommand: {branch to undo routine};
cutCommand: {branch to cut routine};
copyCommand: {branch to copy routine};
pasteCommand: {branch to paste routine};

END; {theltem CASE}
END; {DoMenuStuff PROCEDURE}

Routines that make up the menu item actions can be located within the CASE
structure or defined elsewhere in the program as separate procedures.

One other item that should be added to the above listing is the
HiliteMenu call. Inserted as the last call in the entire DoMenuStuff proce­
dure , this Menu Manager routine turns off the highlighting of the menu title
that MenuSelect highlighted. It provides feedback to the user that the event
loop is again looking for something to do.

THE MENU MANAGER-------------------- 199

Key Events
The Menu Manager and TaskMaster also accommodate the keyboard equi­
valent commands for menus quite handily. The TaskMaster has a built-in
routine that tests for key-down events. It passes the key character and its
mask to the Menu Manager routine called Menu Key, which checks the menu
list in the current system menu bar for a match, provided the Open-Apple key
has been pressed along with the character. If there is a match, MenuKey
passes the same information to the TaskMaster that MenuSelect does. Your
program will use the same branching routines (analogous to the DoMenu­
Stuff procedure, above) as if the menu choice had been made with the
mouse.

CHANGING MENUS MIDSTREAM

There is no problem changing the selection of menu titles in the menu bar or
menu items in a given menu while in the middle of a program. If the adjust­
ment is a small one, you have several Menu Manager calls that help insert
and delete menus and menu items. Insertions are generally done by
specifying the ID number of the menu title or item that you want the new one
placed after. Similarly, deleting menus and menu items is done by passing
the appropriate IDs to the calls that remove items.

Just changing the content of a menu record will not automatically make
the menus reflect that new content. You'll have to draw the menu bar each
time you make a change to it (using DrawMenuBar). Neglecting to do so
may cause your choices to produce results other than what you had planned.

Additionally, there may be times in your program when you wish to
change the modifier of a menu item. Placing and removing a mark or
enabling and disabling an item are the most compelling reasons. All specifi­
cations about a menu item can be adjusted with calls such as Disablellem,
Setl temMark, SetltemStyle, and SetltemFlag. Consult the Apple 1/GS
Toolbox Reference for listings of calls and parameters that adjust these set­
tings. They're simple operations you should be ready to incorporate into
your programs.

Now that we've been through QuickDraw, the Event Manager, the
Window Manager, and the Menu Manager, we've already covered the lion's
share of the IIGS toolbox that affects the way users will interact with your
native mode programs. We'll look at one more area, though, the Control
Manager, to acquaint you with some additional terminology and give you
more to think about in designing your programs.

CHAPTER 12

The Control Manager

M enus aren't the only screen objects that influence program actions or
change program settings. We also have controls, run by the Control

Manager. For the programmer, this tool set performs many of the same kinds
of jobs as the Menu Manager does, but for onscreen controls. Your program
will summon the Control Manager to do its low-level work, such as dis­
playing controls and observing how a control was changed by the user. Then
the Control Manager will pass along its results to your program for further
action based on those results.

Most standard control functions that you will encounter in your early
exposure to IIGS programming are handled by other managers. The Window
Manager and the Dialog Manager, in particular, take care of numerous Con­
trol Manager calls for the program. Therefore, we will introduce you only to
key concepts about controls in this volume.

CONTROL TYPES

The Control Manager comes equipped to help us create any of four standard
control types: buttons, check boxes, radio buttons, and scroll bars.

Buttons

According to the User Interface Guidelines, a click of the mouse pointer on
a button causes an immediate action. In other words, a button control (and

201

202 -------------- THE APPLE llGS TOOLBOX REVEALED

the window it appears in) usually disappears immediately after clicking it
with the mouse. The name of the action is indicated by a text word located
inside the rounded rectangle button outline prescribed by the Control
Manager.

Check Boxes

A check box consists of a small square whose center is either blank (off) or is
marked with an X (on). Clicking the box with the mouse toggles the setting
in the box from one to the other and back again. Text, which the Control
Manager places immediately to the right of the box, should indicate what
action will be in effect when the check box is on. Check boxes are used
primarily as a way of turning on or off a feature that will affect some future
action, such as indicating in a print dialog box that you wish to print a back­
ground pattern along with the text in the window.

Radio Buttons

When you wish the user to make one selection from a Jist of two or more pos­
sible items , radio buttons are in order. Found in groups of two or more, these
buttons and their actions in your program should be arranged so that when
the user clicks on one button in a group (and it becomes highlighted), any
previously highlighted radio button becomes unhighlighted. This will give
the user the feel of pressing the push buttons on a car radio - only one can
be in effect at a time .

£ OK l) .-.__Buttons

(Cancel) ~
Figure 12-1. Control Manager buttons.

[8] Toll Adj ust ed ~
D SO 1o Reduction ~.~::::y.::;=~ Check Boxes
D No Gops Between Poges

Figure 12-2. Control Manager check boxes .

THE CONTROL MANAGER ------------------- 203

® US letter:~~::::::::=.._ 0 us Lega l ..._ ~ Radio Buttons
0 Computer Paper ~

Figure 12-3. Control Manager radio buttons.

Scroll Bars
Falling under the broad Control Manager category of dials, scroll bars can be
used for scrolling documents in a window as well as for adjusting numeric
setting from a possible range of settings. Whereas other types of controls are
essentially on/off indicators, scroll bars (and other dials) provide control
over quantities, whether the subject is the measure along a lengthy document
or a numeric setting that affects some other actions, such as adjusting a
volume control. A scroll bar or other dial can also be used as a way of visu­
ally communicating a value from the program to the user, such as the relative
amount of free space on a disk.

up arrow -----------------

pageupre~on ---------------------

thumb

page down region -----

down arrow --

1

Figure 12-4. Scroll bars parts.

204 -------------- THE APPLE llGS TOOLBOX REVEALED

Scroll Bar Components

Scroll bars have several parts, each of which the Control Manager recog­
nizes as a distinct unit. Since your program may need to respond to mouse
actions in these parts, you should be aware of their names, as illustrated in
Figure 12-4.

Clicking in one of the arrows should cause the screen to scroll in the
smaJiest logical unit in the direction of an arrow - one line of a text docu­
ment, for instance. Clicks in page regions usually cause the screen to scroll
one screenful in the direction relative to the thumb. The size of the thumb
represents how much of the entire document the content region of the
window is showing (see Chapter 10 for more details).

Each control type or part of complex controls in scroll boxes is known
to the Control Manager by a part code. For example, if an application fea­
tures a scroll bar inside the content window (separate from scroll bars on the
window frame), the Control Manager will let the program know over which
part of the control a mouse-down event occurred. The part codes are as
follows:

Part No. Control or Part

0 No part

1 Reserved for internal use

2 Simple button

3 Checkbox

4 Radio button

5 Dial up arrow

6 Dial down arrow

7 Dial page up

8 Dial page down

9 Reserved for internal use

10 Grow box icon

11-31 Reserved for internal use

32-127 Reserved for application

128 Reserved for internal use

129 Dial thumb

130-159 Reserved for internal use

160-253 Reserved for application

254-255 Reserved for internal use

1
)

1

1

s

THE CONTROL MANAGER------------------205

As you might guess from the large number of part codes that are
reserved for applications, the Control Manager allows you to design your
own controls. This isn't something you're likely to do in one of your first
programs, but the capability is there when you're ready. You'll be able to
design rather complex controls, perhaps with several unique parts.

CONTROL RECORDS

While a control record functions much like any other toolbox record, it dif­
fers in that some of the items in the record mean different things depending
on the type of control the record describes. A button control, for example ,
needs a place for the text that appears inside the button; a scroll bar has no
text, but must contain in formation about the data area size and content region
size so that the Control Manager can draw a properly proportioned thumb.

It may be convenient to think of all control records as having the same
"front end" to their records - specifications they all share in common. This
front end can be characterized by the following generic control record:

CtiNext: LONG
CtlOwner: LONG
CtlRect: RECT
CtlFiag: BYTE

CtlHilite: BYTE

CtiValue: WORD
CtlProc: LONG
CtlAction: LONG
CtlData: LONG
CtlRefCon: LONG
CtlColor: LONG

Handle to next control (0 = last control)
Pointer to window holding the control
Local coordinates of enclosing rectangle
Control specifications nag:

bit 7 0 = visible; I = invisible
bits 6-0 control definitions

Highlighted part
0 = no part highlighted

255 = control inactive
Current value
Address of control's definition procedure
Address of control's default action procedure
Data requested by definition procedure
Reference constant assigned by application
Pointer to control's color table

To demonstrate how the different built-in controls affect the contents of a
control record, we'll present the records for each of the four standard con­
trols. Watch how record items CtlFlag, CtlValue, CtlData, and CtlColor
change from one record type to another.

First, here is the control record for a simple button:

CtlNext: LONG
CtlOwner: LONG
CtlRect: RECT

Handle to next control (0 = last control)
Pointer to window holding the control
Button's RECT

206 ------------- THE APPLE llGS TOOLBOX REVEALED

CtlFlag: WORD

CtlHilite: WORD

CtlValue: WORD
Ct!Proc: LONG
CtlData: LONG
CtlRefCon: LONG
CtlColor: LONG

Control specifications flag:
bits 7-2 not used
bits l-0 0 = single round comer outline

l = bold round corner outline
2 = single square corner outline
3 = single square corner out I ine
with drop shadow

Highlighted part
0 = no part high I ighted
2 = button highlighted

255 = control inactive
AlwaysO
$00000000
Pointer to title string
Reference constant assigned by application
Pointer to control's color table

color I = outline color when normal
color 2 = interior color when normal
color 3 = interior color when selected
color 4 = text color when normal
color 5 = text color when selected
color 6 = special highlight color
color 7 = thick outline color

Bit 0 of the CtlFlag , when set to 1, has the Control Manager draw a heavy
line around the button. This, in line with the User Interface Guidelines,
should indicate to the user that a press of the Return key will be the same as
clicking that button with the mouse button . This flag setting affects only the
drawing of the button on the screen. Your application will have to handle the
Return key key-down event separately, passing that event along to the con­
trol action that would occur when the button is clicked by the mouse.

Defining the button's RECT, as in the CtlRect record item, must take into
account the length of the text string that will be the title of the button. IfCtlRect
is not wide enough for all of the button's title, the text will be cut short.

The color table referred to in Ct!Color is a component color table like
the Window Manager's color table. The color numbers you apply to each
component refer to colors in QuickDraw's standard color table. A 0 in this
record item will cause the default color table to be applied to the control.

Next comes the check box control record:

CtlNext: LONG
CtlOwner: LONG
CtiRect: RECT

Handle to next control (0 = last control)
Pointer to window holding the control
RECT of box and tit le

)

t

1

s

THE CONTROL MANAGER-------- ----------207

CtlFlag: WORD

CtlHilite: WORD

CtlValue: WORD
CtlProc: LONG
Ct!Data: LONG
CtlRefCon: LONG
CtlColor: LONG

Control specifications flag:
bit 7 0 = visible; 1 = invisible
bits 6-0 not used

Highlighted part
0 = no part highlighted
3 = check box highlighted

255 = control inactive
0 = notchecked;nonzero = checked
$02000000
Pointer to title string
Reference constant assigned by application
Pointer to control's color table

color 1 = outline color when normal
color 2 = interior color when normal
color 3 = interior color when selected
color 4 = text color
color 5 =color of the X

Notice that the CtlRect is a rectangle that includes the space for the control's
text area. That means that users don't have to be so precise in their mouse
pointing to check or uncheck a text box. A click anywhere in the box or on
the title will call the Control Manager.

Similar to the check box record is the radio button control record.

CtiNext: LONG
CtiOwner: LONG
CtiRect: RECT
CtlFiag: WORD

CtiHilite: WORD

CtlValue: WORD
CtlProc: LONG
Ct!Data: LONG
CtiRefCon: LONG
CtlColor: LONG

Handle to next control (0 = last control)
Pointer to window holding the control
RECT of button and title
Control specifications flag:

bit 7 0 = visible; 1 = invisible
bits 6-0 family number

Highlighted part
0 = no part highlighted
4 = radio button highlighted

255 = control inactive
0 = off; nonzero = on
$04000000
Pointer to title string
Reference constant assigned by application
Pointer to control's color table

color I = outline color when normal
color 2 = interior color when normal
color 3 = interior color when selected
color 4 = text color
color 5 = color of the dot

208 -------------- THE APPLE IIGS TOOLBOX REVEALED

We get a big difference, however, in the scroll bar control record.

CtlNext: LONG
CtlOwner: LONG
CtlRect: RECT
CtiFlag: WORD

CtlHilite: WORD

CtlValue: WORD

CtiProc: LONG
CtlData: LONG

CtiRefCon: LONG
CtlColor: LONG

Thumb:RECT
PageRegion: RECT

Handle to next control (0 = last control)
Pointer to window holding the control
RECT of entire scroll bar
Control specifications flag:

bit 7 0 = visible; I = invisible
bits 6-5 not used
bit 4 0 = vertical scroll bar

I = horizontal scroll bar
bit 3 1 = right arrow
bit 2 1 = left arrow
bit 1 1 = down arrow
bit 0 I = up arrow

Highlighted part
0 = no part highlighted
5 = up arrow highlighted
6 = down arrow highlighted

255 = control inactive
Current value, between 0 and data size
minus view size
$06000000
Low-order WORD = view size
High-order WORD = data size
Reference constant assigned by application
Pointer to control's color table

color 1 =outline color
color 2 = arrow color when normal
color 3 = arrow color when selected
color 4 = arrow box interior color
color 5 = thumb interior color when
normal
color 6 = thumb interior color when
selected
color 7 = page region color
color 8 = inactive color

Thumb's rectangle
Rectangle of thumb's slider region

This record appends additional record items that hold the size of the thumb
and the extent of the area the thumb can be dragged in.

THE CONTROL MANAGER -------------------209

CONTROLS AND EVENTS

Since TaskMaster automatically handles mouse-down events in window
frame controls (i.e., window scroll bars), we'll concentrate here on the steps
required to link the Event Manager, the Control Manager, and your applica­
tion together when the user clicks on a control in a window's content region.

Assuming the program is polling the Event Manager with TaskMaster
(which calls GetNextEvent), TaskMaster will report a mouse-down event (in
the "what" field of the task record) as well as the pointer to the window in
which the event occurred (in the message field of the task record). With this
information you can call FindControl.

Among the input parameters passed to FindControl are the coordinates
of the mouse pointer at the time of the mouse-down event. FindControl sets
the whichControl parameter to the control handle. Then call the TrackCon­
trol tool, which works very much like MenuSelect. It takes control of the
computer as long as the mouse button is still pressed. For example, in a scroll
bar, TrackControl automatically lets you drag an outline of the thumb up and
down the control bar, drawing it in the des ired place when you release the
mouse button . When the mouse button is released , TrackControl passes an
output parameter specifying the code number of the part just chosen by the
user. Armed with this information , your application can execute a CASE
structure to test for the control and part number, branching to your pre­
defined routines in response to the actions indicated by the control settings.

TrackControl does one more important task for scroll bars. When you
drag the thumb, TrackControl not only handles the display part of the scroll
bar, but it a lso updates the control value (CtlValue) in the control's record,
relative to the minimum and maximum settings you assign to the scroll bar.
This action does not do the actual scrolling of the document or adjust the dis­
play of a value controlled by the scroll bar - your application must read
what the new value is (GetCtlValue) and update either the scrolling or on­
screen value as adjusted by the drag of the thumb.

Resizing a window that displays a control in its content region puts a
little burden on your program to resize the control as well . Unlike the
Window Manager, which automatically resizes its frame-based scroll bars
when the window grows or shrinks, the Control Manager does not keep as
watchful an eye on controls in the content region. If the window with such a
control is growable, your program may have to do some fancy calculations
about the new size of a window to both move and s ize the control so that it fits
in the new window size. Consequently, you may wish to limit content region
controls to windows that do not include grow and zoom boxes.

210 -------------- THE APPLE IIGS TOOLBOX REVEALED

A good strategy to learn the ins and outs of the Control Manager is to
work with controls managed by other managers, notably the Window Man­
ager for scroll bars and the Dialog Manager for simple buttons 0 Once you
understand the basics , work your way up to radio buttons, check boxes, and
free-standing scroll bars 0

CHAPTER 13

Where Do We Go from Here?

I f you've been following Parts Two and Three of this book from beginning
to end, you'll realize that while we have covered a great deal of ground,

there are still several tool sets we haven't discussed, such as text, dialog, and
sound tools. But we have shown you enough to start thinking about how an
Apple IIGS application works from the programmer's view, and also how an
application should work from the user's point of view.

WHERE WEARE

It should be quite clear by now that programming with the toolbox is more
difficult than programming on the old Apple II ever was. The difficulty
comes not from the complexity of the tools - they make a number of tasks
rather easy - but from the much higher level of human-to-machine inter­
activity of today' s software design. Sure, you can still write programs for the
JIGS in emulation mode, or even in native mode without all the fancy menus,
windows, and controls. But that wouldn't be striving for the state of the
programming art.

Commercial software reaching store shelves today is far more sophisti­
cated in user interface and raw computing power than it was only a couple of
years ago. Even public domain and inexpensive "user-supported" software
is outclassing expensive commercial products of a few years ago.

211

212 -------------- THE APPLE IIGS TOOLBOX REVEALED

NEXT

Everyone's expectations about what a computer program should do and look
like are rising quickly. Computer users won't have the patience for old­
fashioned, unfriendly-looking programs.

The ante is higher. Your programming skills must match it if you want
to get into the game.

In this book, we've stripped the Apple JIGS toolbox of the complexities
that frighten away first-t imers. We reached the heart of key issues about pro­
gram structure and accessing the tools from a programming language. But
this is only one part of the learning process.

The next step is to dig into the programming language of your choice. Since
you now know where you're heading, it should be easier to think ahead to
applying acquired language skills to actual applications. As you're learning
the language or relearning the IIGS version of an old favorite, you won't feel
as if you're learning language concepts in a total vacuum, even though the
language's manuals may not be able to put it all together for you until the
very end. You will be approaching the language with a well-defined sense of
purpose.

Every language will come with at least one sample program, hopefully
one that provides sample source code examples for the major IIGS tool sets
already tested and running. Study these samples . Make sure you com­
prehend the structure of the entire source code listing, paying particular
attention to the way parameters are passed to tools and how their output
parameters are retrieved for later use.

After you've mastered the sample program, make a copy of the source
code and start modifying parameters one at a time. Assemble or compile the
listing to see how the parameter change affected the program. Experiment
with only one or two parameters at first so you can see clearly whether your
anticipated changes actually occurred in the compiled version . Do obvious
things first, such as changing the size of a newly created window or
removing a zoom box from a window frame definition.

The real test of your understanding of the language and the toolbox will
be to recreate on your own a program like the sample program. Type in an
entire source code listing from scratch. Decide what you want it to do­
perhaps a variation of the sample program. Then write the program's source
code. Compile it, link it, and if there were no errors in the compilation or
linkage stages, run the program. Even if errors pop up , don't despair. Errors
are simply reminders that you forgot something that the language needed.

By the time you code your first solo program of any length, you should
begin to feel comfortable with programming in this new and perhaps strange

r
s

:1
e

WHERE DO WE GO FROM HERE?: _ ________________ 213

environment. Before heading out on your own, gather a library of reference
books , especially those from Apple listed in Appendix C. The Toolbox
Reference volumes, in particular, will prove to be invaluable sources for tool
call information.

Also try to locate a local Apple user group, if you don't already belong
to one. Often all it takes is a brief conversation with someone else who may
have struggled with and solved the same problem you're having. There is so
much to learn about the toolbox, that you may know parts of it better than
others in the group . They, in turn , may know more about other areas that can
help fill the gaps in your knowledge. User groups were at the foundation of
the personal computer industry , where enthusiasts could share accomplish­
ments and problems with each other. The viability of the user group as a sup­
port mechanism for programmers is very much alive today. Take advantage
of it if you can.

A potential pitfall for programmers meeting the event-driven and toolbox
world for the first time is that it is easy to focus on the wrong end of the pro­
gramming task first. You 've seen and perhaps marveled at the basic structure
of a toolbox program and can't wait to apply it to a program of some kind.
But that may be the wrong approach. Instead of looking at the tools and ask­
ing, "What can I build with these?" forget about the tools. Instead, look at
the user interface, as exemplified in the ProDOS 16 Finder and any Macin­
tosh application and ask, "What do I want my IIGS to do?"

Dream about the application first - what real-world situation it may
simulate , how the mouse and keyboard input will flow smoothly for the user,
how it can make a normally dull task fun - then figure out what tools you ' II
use to accomplish those goals. If you begin by focusing on the tools, you run
the risk of constricting creative program design ideas to your current level of
expertise with the tools. By imagining creative applications, you will force
yourself to dig deeper into the toolbox to uncover tools you might otherwise
overlook. That's an excellent way to grow as an Apple IIGS programmer.

TRAPS

Appendixes

APPENDix A

A Short Course in Hexadecimal
and Binary Math

O ur first counting encounters as children were in the decil)lal numbering
system. That may be fine for humans, but computers at their lowest

levels respond to binary representations of the signals running through the
microchips. If, as programmers, we are to communicate effectively with the
computer, we will have to learn its way of counting. Therefore, it is vital to
understand not only the binary numbering system, but a more convenient
system for conveying binary information: the hexadecimal numbering
system.

BACK TO SCHOOL

As children, we learned first to count from one to ten. When we reached ten,
numbers increased from single to dual digits, and the rightmost digits started
counting over again, from zero to nine. We soon learned that numbers, as we
knew them, had columns that represented ones, tens, hundreds, thousands,
and so on. If we were looking at a three-digit number, and a 7 was in the
leftmost column, that meant that the number would be at least 700. Each
additional digit to the left indicated another factor of ten had been added to
the number. Therefore, a 7 in the fourth column meant that the number

217

218 -------------- THE APPLE IIGS TOOLBOX REVEALED

would be ten times 700, or 7000. This dependence on the factor of ten is the
reason for the numbering system's name, decimal ("deci" is derived from
"deka," the Greek word for"ten"). We also call it base 10.

From Deci to Hexadeci

Now imagine a numbering system that allows you to signify more than ten
numbers in a single digit. In such a system, you start counting up from zero
as in the decimal system. But when you reach nine , the next number won' t
leap to a two-digit number. Instead, letters, signifying the values equivalent
to ten and up, appear in the single column number. After nine, therefore,
would come the letter A. Following A comes B, and so on until you reach the
letter F, which is equivalent to the decimal number fifteen. The next number
in this new series then becomes 10 - not the ten we're accustomed to
seeing, but the value one-zero in the hexadecimal numbering system.
"Hexadeci" is also derived from the Greek, this time for the number sixteen.
In other words, instead of columns labeled "ones, tens , hundreds," and so
on, they are labeled "ones, sixteens, two-hundred-fifty-sixes ," and so on.
Each column increases by a factor of sixteen , and values in this system are
called base 16 values.

And Then to Binary

At the other extreme is the binary numbering system, which has at most, one
of two different numbers - zero and one - in any column. Columns
increase to the left by a factoroftwo, making the column labels "ones, twos ,
fours, eights , sixteens , thirty-twos ," and so on . As you might guess, we' re
in base 2 territory .

Comparing binary to hexadecimal numbers, it takes a five-digit binary
number to indicate the value for sixteen (I 0000) , but only a two-digit
number in hexadecimal (FO).

SIGNIFICANCE

All three numbering systems share a feature that is hardly apparent until you
begin working with computer data. A digit at the rightmost end of a number
is said to be the Least significant digit because its impact on a number's value
is usually small compared against those to the left. The digit at the far left of
the number (regardless of its length) is called the most significant digit. A
change to the most significant digit has the greatest effect on the value of a
number.

A SHORT COURSE IN HEXADECIMAL AND BINARY MATH _ _ _ ____ 219

For example, in the decimal number 1005, the most significant digit is
the I, standing in the thousands column, while the least significant digit is
the 5 in the ones column. If you increase the l by only 1, you nearly double
the value of the number; if you raise the 5 by 4 to a 9, the value increases only
slightly.

In computer numbers, which are predominantly hex and binary num­
bers, bytes of data are often grouped together as integers (2 bytes), long
integers (4 bytes), and others (1 byte is represented by 8 binary digits or its
corresponding 2-digit hexadecimal number). When a number represents the
data in a 2-byte integer, one byte will be the least significant byte, and the
other the most significant. The order of these bytes is the same as the num­
bers we just discussed. Therefore, in the hex integer $A478, $A4 is the most
significant byte, $78 the least significant byte.

When describing data in multiple-byte structures, such as integers and
long integers, it is very important to respect all significant digits that the
computer expects. For example, if the data consists of 12 bits of information
(in the form of three 4-bit binary groups), you must specify the number with
a leading zero in its hexadecimal representation. Therefore, if the informa­
tion component of an integer can be represented by 4A3, the data must be
entered in the program as 04A3, the leading zero satisfying the computer's
need for a full integer. In other words, all four hex digits are significant in an
integer data structure.

NOTATIONS

When discussing numbers from more than one numbering system, things can
get a bit confusing, especially when decimal and hexadecimal numbers are
tossed about in the same sentence. To help reduce confusion, several nota­
tion conventions are in common use today.

The notation you'll see most of the time is one that distinguishes a
hexadecimal number from other numbers. A hexadecimal number will be
preceded by a dollar sign($), as in $20.

Binary numbers do not have a preceding character like the hexa­
decimal's dollar sign. But in computers, binary numbers are usually grouped
in eights (or sometimes fours), and are generally recognizable by their lack
of digits other than ls and Os.

Another convention you may see (although not in this book) is to
explicitly note the number base of the number in a parenthetical subscript
after the number. Therefore, the hex number $20 may also be written 2016•

If you use this notation, it is assumed that you will use it for all numbers,
including decimal numbers.

220 -------------- THE APPLE IIGS TOOLBOX REVEALED

HEX AND BINARY RELATIONSHIPS

Study the following table of decimal , hex, and binary numbers.

Decimal Binary Hexadecimal

0 00000000 0
1 00000001 1
2 00000010 2
3 00000011 3
4 00000100 4
5 00000101 5
6 00000110 6
7 00000111 7
8 00001000 8
9 0000 1001 9

10 00001010 A
II 0000 lOll B
12 00001100 c
13 0000 I 101 D
14 00001110 E
15 00001111 F
16 00010000 10
17 0001 0001 II
18 00010010 12
19 00010011 13
20 00010100 14

Noti~e in particular the relationship between hexadecimal and binary num­
bers at the critical juncture where single-digit hex numbers become two-digit
numbers. This relationship will help you to convert binary numbers to
hexadecimal and vice versa.

CONVERSIONS

Programming a computer in assembly language or a high-level language
such as C and Pascal often requires the conversion of numbers from one base
to another. Hex and binary numbers are relatively simple owing to their
special arithmetic relationships. Decimal numbers, however, are not so
easy.

A SHORT COURSE IN HEXADECIMAL AND BINARY MATH _______ 221

Hex-to-Binary and Back

Because a single hex digit represents the values zero to fifteen, and since
those same values are encompassed in the binary numbers 0000 to llll , you
can convert hex to binary and vice versa by simply dividing a long number
into four-digit binary or single-digit hex numbers and then stringing the
resulting conversions together.

Using the table presented above, you can look up a binary nibble or
individual hex number to find the corresponding conversion. Let's say you
wish to convert the binary number 0011 II 01 into hexadecimal. First look up
the most significant nibble in the table, where you'll find the hex number$3.
Binary 1101 corresponds to $0. Joining these two hex digits in the same
order as their binary counterparts produces the hex value $30.

Conversely, if the hex number is $1 AOB, look up each single hex digit
in the table and reassemble the binary equivalents in the same order: 0001
101000001011.

Decimal Conversions

Converting numbers to or from decimal is more difficult, because neither
binary nor hex numbering systems have much in common with the decimal
system to facilitate conversion. While manual conversion is possible, most
programmers invest in programmers' calculators that do conversions at the
press of a few keys.

Two popular models near most programmers' sides are the Texas
Instruments TI-Programmer and the Hewlett-Packard HP-16C. Both models
were designed for programmers and the kinds of math or conversion prob­
lems they encounter. Between the two models, the Texas Instruments is
easier to use because its features have been pared down to bare essentials.
Binary-to-hex conversions have to be done somewhat manually , since the
calculator display does not show binary numbers. On the calculator's keypad
overlay are printed the four-digit binary equivalents of the sixteen hex digits.
To convert from hex to binary, you essentially use the keypad as a lookup
table, like the table presented above.

The Hewlett-Packard model is more expensive and is loaded with fea­
tures you may not need, at least in your early programming days. This cal­
culator, however, does display binary numbers , and provides a respectible
amount of programming ability itself. It 's not the kind of calculator you're
likely to pick up and start using without studying the manual a bit, but it does
offer a great amount of flexibility in its binary math functions.

222 -------------- THE APPLE IIGS TOOLBOX REVEALED

BOOLEAN ARITHMETIC

Assembly language programmers in particular will be faced with performing
many tests inside their programs for the presence of a particular number in
one of the microprocessor's registers. Since these numbers are stored in the
chip in binary format, the tests are performed in binary.

The common way to test the presence or absence of a particular bit in a
long series of bits (in a byte or two, for instance) is to perform Boolean
algebra on the entire string of bits. Based on fundamental work performed by
English mathematician George Booie (1815-1864), Boolean algebra as used
today in computer math is a convenient way to dissect the bit contents of a
byte or more of data.

Boolean math looks upon the 1 and 0 not as numeric values, but as equi­
valent to logical TRUE and FALSE, respectively. Therefore, in comparing
the third digits of two binary numbers, the result of Boolean addition is 1
only if the digits in both numbers are also I. In other words, the result is
TRUE if both numbers show a TRUE in those slots. This operation is usually
called an AND operation: TRUE AND TRUE yields a TRUE; TRUE AND
FALSE yields a FALSE, because one of the two values was not TRUE.

TRUE

AND TRUE

TRUE

TRUE

AND FALSE

FALSE

As applied to a long binary number, Boolean logic works one bit at a time.
The result of an AND is not the sum of the two binary numbers, but the log­
ical result of their respective TRUE and FALSE values. For example, if we
have a binary number consisting of all 1 s (I I I I 1111), we can test for the
presence of a I in the least significant digit by performing an AND operation
with the number 0000 OOOI. The result is 0000 000 I, because the only loca­
tion that is TRUE on both binary numbers is the least significant digit.

I I I I 1111

AND 0000 0001

00000001

We can use a Boolean to test the presence of more than one bit at a time. For
instance, in the following example, three bits are tested, only two of which
test as being present in the topmost number.

A SHORT COURSE IN HEXADECIMAL AND BINARY MATH

10110010
AND 1001 1000

10010000

_______ 223

Now, just because the Boolean tests are performed on the binary numbers,
that doesn't mean that your program is limited to using the binary figures. In
the above example, you can just as easily write the problem using hexa­
decimal numbers.

$B2
AND $98

$90

The microprocessor is still doing the Boolean in binary. But by doing the
work in hexadecimal, you are relieved from risking errors in typing correct
binary numbers .

Boolean Variables
You will also encounter a variable type called a Boolean. This is not strictly
connected with Boolean algebra. In the case of a Boolean variable , the com­
puter is looking for (or perhaps sending back to your program) a value cor­
responding either to a TRUE or a FALSE. FALSE is always represented by
a 0. That 0 may be in the form of a full 2-byte integer ($00), so be sure to
include all significant digits. Computers usually recognize a TRUE as any
nonzero number. It could be a simple $01 or, more often , the hex value $FF.

APPENDix B

ASCII Table

W hile American Standard for Information Interchange (ASCII) codes
are understood by all personal computers when they communicate

with each other, some computers, notably the Apple II series, store charac­
ters internally using a slightly different version of the ASCII code. The order
of characters is the same for both versions, but the actual code numbers are
different.

When you place text characters in your program, you usually do so with
the actual letters and numbers, rather than their ASCII values. You should
have reference to these values, however, in case your program needs to send
commands to a printer or when you debug your program.

The following table presents both standard and Apple II ASCII codes.
Decimal and hexadecimal values for both types appear in their respective
columns.

ASCII Apple ASCII

Hexa- Hexa-
Character Decimal decimal Decimal decimal

NUL 0 00 128 80
·soH 1 01 129 81
STX 2 02 130 82
ETX 3 03 131 83
EOT 4 04 132 84
ENQ 5 05 133 85
ACK 6 06 134 86
BEL 7 07 135 87

225

226 -------- ----- THE APPLE IIGS TOOLBOX REVEALED

ASCII Apple ASCII

Hexa- Hexa-
Character Decimal decimal Decimal decimal

BS 8 08 136 88
HT 9 09 137 89
LF 10 OA 138 8A
VT II OB 139 88
FF 12 oc 140 8C
CR 13 00 141 80
so 14 OE 142 8E
SI 15 OF 143 8F
OLE 16 10 144 90
DCI 17 II 145 91
DC2 18 12 146 92
DC3 19 13 147 93
DC4 20 14 148 94
NAK 21 15 149 95
SYN 22 16 150 96
ETB 23 17 15 1 97
CAN 24 18 152 98
EM 25 19 153 99
SUB 26 IA 154 9A
ESC 27 18 155 98
FS 28 IC 156 9C
GS 29 10 157 90
RS 30 IE 158 9E
us 31 IF 159 9F
Space 32 20 160 AO
! 33 21 161 AI

34 22 162 A2
35 23 163 A3
$ 36 24 164 A4
% 37 25 165 A5
& 38 26 166 A6

39 27 167 A7
(40 28 168 A8
) 41 29 169 A9
* 42 2A 170 AA
+ 43 28 171 AB

44 2C 172 AC
45 20 173 AD
46 2E 174 AE
47 2F 175 AF

ASCII TABLE ---------------------227

ASCII Apple ASCII

Hexa- Hexa-
Character Decimal decimal Decimal decimal

0 48 30 176 80
1 49 31 177 81
2 50 32 178 82
3 51 33 179 83
4 52 34 180 84
5 53 35 181 85
6 54 36 182 86
7 55 37 183 87
8 56 38 184 88
9 57 39 185 89

58 3A 186 8A
59 38 187 88

< 60 3C 188 BC
= 61 3D 189 BD
> 62 3E 190 BE
? 63 3F 191 BF
@ 64 40 192 co
A 65 41 193 Cl
B 66 42 194 C2
c 67 43 195 C3
D 68 44 196 C4
E 69 45 197 C5
F 70 46 198 C6
G 71 47 199 C7
H 72 48 200 C8
I 73 49 201 C9
J 74 4A 202 CA
K 75 4B 203 CB
L 76 4C 204 cc
M 77 4D 205 CD
N 78 4E 206 CE
0 79 4F 207 CF
p 80 50 208 DO
Q 81 51 209 Dl
R 82 52 210 02
s 83 53 211 03
T 84 54 212 04
u 85 55 213 D5
v 86 56 214 D6
w 87 57 215 07

228 ------------- THE APPLE IIGS TOOLBOX REVEALED

ASCII Apple ASCII

Hexa- Hexa-
Character Decimal decimal Decimal decimal

X 88 58 216 D8
y 89 59 217 D9
z 90 SA 218 DA
[91 5B 219 DB
\ 92 5C 220 DC
) 93 50 221 DD

94 5E 222 DE
95 SF 223 DF
96 60 224 EO

a 97 61 225 E1
b 98 62 226 E2
c 99 63 227 E3
d 100 64 228 E4
e 101 65 229 E5
f 102 66 230 E6
g 103 67 231 E7
h 104 68 232 E8

105 69 233 E9
j 106 6A 234 EA
k 107 6B 235 EB
I 108 6C 236 EC
m 109 60 237 ED
n 110 6E 238 EE
0 111 6F 239 EF
p 112 70 240 FO
q 113 71 24 1 Fl
r 114 72 242 F2
s 115 73 243 F3
t 116 74 244 F4
u 117 75 245 F5
v 118 76 246 F6
w 119 77 247 F7
X 120 78 248 F8
y 121 79 249 F9
z 122 7A 250 FA
{ 123 7B 251 FB

124 7C 252 FC
125 7D 253 FD
126 7E 254 FE

DELETE 127 7F 255 FF

ASCII TABLE -----------------------229

At the beginning of the table are thirty-two special characters, which owe
their heritage to the old clackety teletype machine days. A number of these
signals are still in use today for controlling printers and modems and for
other external communications jobs that personal computers perform. Only
a handful of them are commonly used, but we provide a list of all their
meanings.

Character Meaning

NUL null character
SOH start of heading
STX start of text
ETX end of text
EOT end of transmission
ENQ inquiry
ACK acknowledge
BEL bell (beep)
BS backspace
HT horizontal tab
LF line feed
VT vertical tab
FF form feed
CR carriage return
so shift out
SI shift in
OLE data link escape
DC! device control I
DC2 device control 2
DC3 device control 3
DC4 device control4
NAK negative acknowledge
SYN synchronous idle
ETB end of transmission block
CAN cancel
EM end of medium
SUB substitute
ESC escape
FS file separator
GS group separator
RS record separator
us unit separator

APPENDix C

For Further Reading

A pple Computer produces a series of programmer' s guides to toolbox
programming on the Apple IIGS. A serious programmer will have most

of these volumes at hand when designing applications programs. All vol­
umes are published by Addison-Wesley. The exact publishing schedule of
the series was not available as this book goes to press.

Technical Introduction to the Apple IIGS

Programmer's Introduction to the Apple IIGS

Apple JIGS Hardware Reference

Apple IIGS Firmware Reference

Apple IIGS Toolbox Reference: Volume I

Apple 1/Gs Toolbox Reference: Volume II

Apple IIGs ProDOS 16 Reference

If you are just starting to build your reference library, then start with Pro­
grammer's Introduction and the two Toolbox Reference volumes. These will
carry on from the knowledge gained in this book.

Additionally , Apple will be publishing Programmer's Workshops for
assembly language , C, and Pascal. These are designed primarily for serious
program developers, and include editor, compiler (or assembler), and
linker, as well as macro libraries that allow you make calls to the entire

231

232 ---- ------- --- THE APPLE IIGS TOOLBOX REVEALED

toolbox from any of those languages. All three workshop compilers produce
object modules in the standard format that facilitates linking modules from
two or three languages into a single load file . Contact Apple Computer
directly for more information about the Apple IIGS Programmer's
Workshops.

Apple Computer Inc .
20525 Mariani Ave.
Cupertino, CA 95014

Glossary

activate event: A special type of event that signals your program that a
particular window has been made the active window.

active window: The window on the desktop into which typed text or
mouse-controlled drawing will appear - usually denoted by horizontal
lines in the title bar and active scroll bars if so equipped.

aler t window: A window drawn by the Menu Manager with a double
border and generated primarily by the Dialog Manager to request further
input from the user or to signal an error condition.

allocate: To reserve an area of memory for a collection of data.

application event: An event type reserved for use by programmers
building applications with nonstandard events.

ASCII: The American Standard Code for Information Interchange, a table
of values assigned to each letter, numeral, punctuation mark, and certain
control characters.

auto-key event: An event signifying that the user has pressed a key and
held it down unti l the Repeat Delay time has expired, causing the key to
type multiple characters.

base: The numbering system (e.g., binary, decimal, hexadecimal) to
which a number belongs; in math, signified as a subscript in parentheses,
such as 4333(16); in computers, generally signified by the construction of
the number, such as two groups of four binary numbers, a hexadecimal
preceded by a dollar sign (S), and no extra markings for a decimal number.

233

234 -------------- THE APPLE IIGS TOOLBOX REVEALED

bit: the smallest unit of information inside a computer, commonly sig­
nified with either a l or 0.

bit map: Macintosh terminology for a pixel map.

boundary rectangle: The rectangular coordinates that both define the
extent of a pixel image and impose a coordinate system on the image.

b utton : A control whose click by the mouse pointer usually produces
immediate action .

byte: A group of 8 bits in memory .

check box: A control consisting of a small square with text (its title) to its
immediate right; clicking the mouse pointer on this control causes an "X"
to fill the box, meaning that the particular feature has been selected.

choose: To indicate a particular option on a pull-down menu .

classic desk accessory (CDA): a desk accessory that can run either in
native mode or emulation mode.

clip: To restrict any drawing operation to fall inside a particular boundary;
any drawing outside that boundary is not displayed.

clipping region: An area on the screen to which any drawing operation
will be clipped .

close box: A small box at the left edge of a document window's title bar;
c licking the mouse pointer here should remove the window from view.

close region: The area in the window frame that is to be clicked by the
mouse to remove a window from view; in standard document windows ,
the region is inside the outline of the close box .

color table: One of a possible sixteen lookup tables in memory that lists
four (640 x 200 mode) or 16 (320 x 200 mode) color values, which are
accessed by their respective number down the table .

color value: A 12-bit designation (in a 16-bit integer) of the intensity of
red , green, or blue in a particular color in the color table; a color value of
$0FOO indicates a maximum of red and absence of green or blue .

compaction: The act of squeezing together all segments of movable data
in memory to make room for additional segments.

content region: The area of a window in which drawing actions (graphics
and text) take place.

control: A screen object whose manipulation by the mouse influences
the display of information in a window or operation of the program with
respect to that window.

control record: A data structure consisting of specifications for a control.

GLOSSARY
___ 235

cursor: A small iconic screen image appearing in black only that shows
the user where the mouse pointer is located; the image can change in dif­
ferent regions of the screen.

default: The setting of a parameter or series of parameters that the
Toolbox makes unless other values are specifically defined.

desk accessory: A small applications program whose window overlaps
the underlying application's window; can be either a classic or new desk
accessory .

desktop: The background of the active screen area upon which are over­
laid the menu bar, windows, icons, and other objects.

dial: A control, often designed as an onscreen metaphor for an analog
control from the real world, such as a slider or meter dial; used to make
quantitative adjustments in a program.

dialog box: A window of the alert type that prompts the user for addi­
tional information before preceding with program execution.

disabled: A menu title, menu item, or control that is not functional at a
particular stage in the program.

DOC: The Digital Oscillator Chip, created by Ensoniq, at the core of the
Apple IJGS sound circuitry.

document window: The standard window type drawn with a single-pixel­
wide outline; a title bar, scroll bars, and other elements may be added as
desired .

double click: Two clicks of the mouse in rapid succession.

drag: To reposition an object on the screen by placing the mouse pointer
on that object, pressing and holding down the mouse button , rolling the
mouse around its work surface, and releasing the mouse button to plant
the screen object in its new position.

drag region: A region in a window (usually on the title bar) in which the
mouse pointer must be placed before the user can drag the window.

emulation mode: The operational mode in which the Apple IJGS behaves
likes an enhanced Apple Ile or Apple He.

enabled: A menu title, menu item, or control that responds to mouse
action .

event: The report of an occurrence, such as a press of a keyboard key or
mouse button, that a program uses to branch to an appropriate series of
action instructions to effect a response to that occurrence.

event mask: An integer that filters certain kinds of events from reporting
their occurrence to a program.

event message: A part of the event record that contains additional infor­
mation regarding an event.

236 -------------- THE APPLE HGS TOOLBOX REVEALED

event queue: A section of memory devoted to temporarily storing events
in a first-in, first-out order until the program fetches them.

event r ecord : A data structure containing specifications about an event.

event type: An identifying code specifying the nature of the event
occurrence.

fill pattern : An 8-by-8-pixel image repeated over and over that can be
used to color some or all of a grafport.

Finder : The toolbox-based operating system extension of Pro DOS 16 that
facilitates file operations by the use of icons and pull-down menus.

global coordinates: The coordinate system assigned to the visible dis­
play area of an Apple IIGS screen when programming with the toolbox;
the top left corner is assigned the point (0,0).

GLU: An integrated circuit that performs many miscellaneous functions
on a circuit board, acting as the "glue" that ties other major chips together.

grafpor t: A drawing environment consisting of a coordinate system and
many specifications (e.g., pen size, background color, and text font)
managed by QuickDraw.

handle: A pointer to a master pointer, which, in turn, points to a place in
memory that may move during execution of a program.

high-level language: A programming language, such as C and Pascal,
that generally insulates the programmer from the computer's architecture.

highlight: To display a menu title, menu item, or control in a color oppo­
site its normal color to indicate that it is selected.

hot spot : The single coordinate point in a cursor image that coincides with
the location of the mouse pointer on the screen.

K: The abbreviation for kilobyte and kilobit.

key-down event: An event signifying that a keyboard key has been
pressed.

kilobit: A unit of measure for memory chips, equaling 1024 bits.

kilobyte: A unit of measure of computer memory and disk drive capacity,
equaling 1024 bytes.

library: A collection of prewritten routines that can be merged into a
program.

local coordinates: A coordinate system imposed on a window by
QuickDraw II, totally independent from the global coordinates of the
screen; local coordinates do not change as the window is dragged across
the screen.

long integer: A data type available in most programming languages con­
sisting of 4 bytes (32 bits) of information.

GLOSSARY ---237

mark: A character that can be programmed to appear next to a menu item
that turns on a mode or other operation.

master pointer: A pointer, in a fixed memory location , that keeps track
of movable blocks of memory.

megabyte: A unit of computer memory or disk drive capacity equaling
I ,048,576 bytes.

menu: A list of options from which the user can choose.

menu bar: An area extending across the top of the screen containing the
titles of available menus.

menu item: A si ngle choice within a list of choices in a pull-down menu .

menu string: A text string in memory containing information about titles,
items , and item modifiers for a given menu bar.

menu title: A word or color patch in a menu bar indicating that a menu of
related items can be pulled down with the mouse.

modifier key: One of several noncharacter keys on the keyboard that
influences the meaning of a character key when both are pressed
simultaneously.

mouse-down event: A report that the user has pressed the mouse button.

mouse-up event: A report that the user has released the mouse button .

native mode: The operational mode of the 65816 microprocessor in which
the chip manages information internally in 16-bit wide paths.

new desk accessory (NDA): A desk accessory program that can function
only atop native mode programs.

null event: An event signifying no event has taken place.

object module: A disk fil e containing the compiled version of a program.

owning window: The window in which a control is drawn .

part code: An integer signifying a component of a control.

pen state: A list of specifications about the pen in a grafport; includes
information about the pen's coordinate location , size, pattern, and
transfer mode.

pixel: A single dot on the video monitor.

pixel image: A graphics picture consisting of a rectangular grid of colored
pixels.

pixel value: the 2-bit (in 640 mode) or 4-bit (in 320 mode) representation
of a pixel's color on the screen .

point: A location in a QuickDraw II coordinate plane signified by a hori­
zontal and vertical coordinate.

238 ---- --------- THE APPLE IIGS TOOLBOX REVEALED

pointer: A data type that holds the address of a location in memory.

polygon: A shape defined by enclosing straight lines.

pop: To remove an item from a stack.

por t: In QuickDraw II, short for grafport.

port rectangle: A rectangle defining what portion of a pixel image the
grafport may draw into.

push: To add an item to a stack.

radio button: A control, usually in groups of two or more, consisting of a
small circle and text running to its right; clicking on this control usually
de-selects others in the group.

RAM: The acronym for random access memory.

RAM tools: The toolbox routines contained on the ProDOS system disk
and loaded into RAM when needed.

random access memory: The type of memory inside a computer, more
accurately called read/write memory, that allows information to be
written to it and read from it.

read-only memory: The type of memory that can only be read; the Apple
IIGS ROM contains many of the toolbox routines.

rectangle: A shape definition as defined by two coordinates, the upper
left and lower right comers of the area.

region: An area in a grafport of any shape or of multiple shapes.

register: A temporary storage area inside a microprocessor; some reg-
isters have only one function, while others are general-purpose.

relocatable: The Macintosh equivalent of movable.

ROM: The acronym for read-only memory.

ROM tools: The toolbox routines embedded into the ROM chip.

SANE: The Standard Apple Numeric Environment, a preprogrammed
arithmetic environment built into the toolbox.

65816: The part number of the microprocessor chip at the core of the
Apple IIGS.

size box: A small box at the lower right corner of a document window that
can be dragged to adjust the size of the window.

size region: The area of a document window frame inside a size box that
responds to the dragging of the mouse for adjusting the size of a window.

stack: An area in memory that is used as temporary storage space for infor­
mation that must be passed to and from toolbox routines.

stack pointer: A 65816 register that always contains the memory address
of the top of the stack .

GLOSSARY ---239

standard color table : The color table in force if no other color table is
specified by a program.

string: A series of text characters.

structure r egion: The area occupied by both a window 's content region
and window frame.

toolbox: Collectively, the preprogrammed routines both built into the
Apple UGS ROM and supplied in the ProDOS 16 system disk.

tool locator : Toolbox routines that assist a program in loading specific
tool sets into memory for the program to use.

top of the stack: The open end of the stack to which items are pushed and
from which items are popped.

transfer mode: A way of specifying how pixels in a pen and in an existing
pixel image are to combine when overlapped.

update: To redraw that part of a window's content region that has been
exposed by the adjustment of window locations on the screen.

update r egion: The area of a content region exposed by the adjustment of
window locations and requiring redrawing to fill in the blank space.

window: An object on the screen in which text and graphics information is
displayed.

window event: An event signifying that some action has occurred that
affects the display of one or more windows on the screen.

window frame: The overlaying border of a window, often consist ing of a
title bar, scroll bars, and other components.

word : A group of 16 bits of information.

A

Applesoft BASIC, 51
Applications, 110

events, 153
ASCJicodes, 21-24

table, 225-229
Assembler, 43
Assembler package, 47
Assembly language, 44-48

B

Binarydigits, 18
Binary numbering, 17-18, 217-223
Bits, 18-20

arithmetic, 35-36
see also Bit switches

Bit switches, 35
Boole , George, 97, 222
Boolean arithmetic, 97, 222-223
BoundsRect, 125-126
Buttons, 201-202

radio, 202-203
Bytes, 18-20

character, 2 1-24

c
Central processing unit

(CPU), 6, 64-65

Index

241

Character set, 22
Check boxes, 202
Close box, 167
Codes, event, 156-157
Color, 64, 114, 123-133

boundsRect, 125- 126
custom table, 129-130
image width, 124-125
menu, 197
multiple tables, I 30
pixel, 127
standard table, I 27-129
window frame, 177- 179

Command languages, 39-40
Compatibility, I 0-11
Compiler, 43

choosing, 53
see also Compiler mechanics

Compiler mechanics, 48-50
high-level punctuation, 49
portability, 48-49
standard languages, 49-50

Content region, 168
Control Manager, 73-74, 201-210
Controls

and events, 209-210
records, 205-208
types, 201-205

Conversion, 220-221
CPU. See Central processing unit

242

Cursors, 144-148

D

Data

image and mask, 145-146
multiple, 148
onscreen, 146-148

area, 171
custom, 98-99
fixed length, 97
getting and settiong, 95-96
private, 96
structures, 98, 119-120
types, 96-99
variable length, 98

Decimal conversion, 221
Desk accessory events, 153
Desk Accessory Manager, 7 8-79
Desktops, 164
Device driver events, 153
Dialect,49
Dialog box, 75,77
Dialog Manager, 75-77
Digital Oscillator Chip (DOC), 75

E

Editor, 42-43
see also Line Editor

Electricity, 16-17
Emulation mode, 11
Engine, 5-7
Event Manager, 74-75, 105, 149-161,

181-183
Event message, 158
Event queue, 106
Event record, 150
Events, 105-107

F

codes, 156-157
and controls, 209-210
decisions, I 08-109
loop, 106-107
masking, 160-161
and menus, 197-199
mouse, 197-198
priorities, 154-155
program structure, 108
records, 155-160
types, 150-153
and windows, 181-183

File Operations, 78
Flags, 35-36

modifier, 159-160

THE APPLE ITGS TOOLBOX REVEALED

G

Glossary, 233-239
Grafports, 139-143

multiple, 143-144
record, 140-143

Graphics . See QuickDraw II
Graphingcoordinates, 115-120
Grow box, 168

H

Handles, 33-35
Hertzfeld, Andy, 152
Hexadecimal system, 217-223

I

IBM personal computer, II , 61, 63
Information bar, 167
Input, 86-87

parameters, 84-85, 87-88
Integrated circuit chip, 6
Interpreter mechanics, 51-52
Irregularshapes, 137-139

regions, 137-139
see also specific shapes

K

Keyboard events, 151 , 199
Keycommands, 192

L

Languages,39-42,212
choosing, 52-53
precision, 41-42
standard, 49-50
see also specific types of

languages
Libraries

high-level, 50
see also Macro libraries

Line Editor, 77
Linker, 48
Load file, 50
Loading, 37

M

Machine language, 40-41
Macro libraries, 47
Master pointer, 33
Mega II chip, II
Memory, 7-10,24-28

address, 25

INDEX --~3

banked, 26-27
management, 65
Manager, 65-71
map, 25-26,27-28
RAM, 7-9,13,20,24,27,67
ROM,9-10,13 ,24,27,67

Menu Manager, 72,187-199
Menus

changing midstream, 199
choosing, 188-189
colors,197
concepts, 187-190
creating, 193-196
enabled and disabled, 190
andevents,197-199
item, 188-189
item line Jist, 193-194
modifiers, 194-196
for programmers, 190-191
system menu bar, 188
terminology, 191-193
titles, 188

Microprocessor, 6
architecture, 45
bits, 19-20

Modality, I 03-105
no modes, 104
unlearning, 105

Modifierflags, 159-160
Modularity, 109-110
Motherboard,6, 15
Mouse, 150-151,159, 197-198

N

Native mode, 11
Nibble, 21
Nonevents, 101-102
Notation, 219
Null event, 153

0

Object code, 44
Opcodes,47
Operating system, 37
Output, 84, 86-87

parameters, 86,88

p

Pen, 119, 133-136
patterns , 135-136

Pins, 15
Pixel

color, 127
images,115, 118-119,120-126

Pointers, 30-33
Points, 118, 119
Polygons, 137
Port, 49
Program counter, 37
Programming workshops, 53-54
Programs, 12-13, 212-213

Q

documenting, 43
menus, 190-191
quitting, 37
running, 37
translating words into, 43-44
windows, 168-17l
workings, 36-38

QuickDraw II, 71-72, 113-148
drawing space, 116-117
graphing coordinates, 115-120
vs. QuickDraw, 114-115

R

RAM. See Memory
Records, 91-99

basics, 92-93
control, 205-208
default, 94
event, 155-160
as pointers, 93-95
as snapshots, 93
task, 184
windows, 173-176
see also Data

Rectangles, 119
Registers

shuffled, 46-47
65816, 45

ROM. See Memory

s
SANE (Standard Apple Numerics

Environment), 79
Scan line, 131
Scan Line Control Byte, 131-133
Screen resolution, 114-115
Scroll bar, 168, 171-172, 203-205
Shell, 37
65816 chip, 7, II

registers, 45
Software, 211
Sound Manager, 75
Source code, 44
Special characters, 194-196

2« -----------------------------

Stack, 29
inverted, solid , 29-30

Stack pointer, 30-32
Status byte, 35
Status word, 35
String, 98
String Width, 84, 88, 89
Switch events, 152
System menu bar, 188

T

TaskMaster, 183-186
calling, 183-184
future, 186
open-ended, 184-186
record, 184

Timer, 158-159
Titlebar, 166-167
Titles, menu, 188
Toolbox programs. See Tools
Tools, 59-89

function, 81-82
locator, 68-69
and Macintosh, 63-65
miscellaneous, 79-80
organization, 67-68
parameters, 82-89
road map, 68-80
set, 68, 80-81
skill, 65
and user interface, 61-63

TrackControl, 209

THE APPLE IIGS TOOLBOX REVEALED

u

User Interface Guidelines, 61 , 63

w
Window events, 151-152
Window Manager, 73, 163-186
Windows, 163- 186

concepts, 164- 165
componentS, 166-168
creating new, 176-177
desktops and, 164
and events, 181 - 183
frame colors, 177-179
frame definition, 175
full size, 176
order, 174-175
programmer's, 168-171
records, 173-176
reference constant, 175
regions, 168- 171
standard , 164-165
title bar, 166-167
titles, 174
updating, 179-180

Word, 20
Writing process, 42-«

z
Zero page, 28
Zoom box, 167

Photo by Linda Racine.

ABOUT THE AUTHOR

Danny Goodman has been
showing people productive ways to
use personal computers since the late
1970s. He is Contributing Editor to
Macworld and PC World and is the
author of nine microcomputer books,
including Bantam's The ldeaBookfor
the Apple//. One of his books, Going
Places With the New Apple l/c , was a
computer book best-seller in the
United States and has been translated
into French, Italian, German, and
Dutch for European lie fans. Danny's

articles interpreting computer and consumer electronics technologies also
appear in many general interest magazines, including Playboy and airline
magazines of the East/West Network.

ALSO AVAILABLE IN THE BANTAM APPLE IIGS LIBRARY

THE APPLE IIGS BOOK
by Jeanne DuPrau and Molly Tyson

Here's the book that gives both novice and experienced users the complete
inside story on all aspects of the revolutionary new Apple HGS - its con­
ception and development, its unique features, its broad capabilities and its
startling potential.

Written by Apple ins iders, THE APPLE IIGS BOOK reveals intimate details
of the machine 's development and design. Interviews with Steve Wozniak,
Dan Hillman and other members of the development team, as well as with
third-party software producers, provide initial insight into why certain fea­
tures were favored over others. The book then provides a detailed user's
reference to the components that make the IIGS so unique and powerful.
After a look at basic computer concepts and operational procedures, you'll
examine the IIGS 's new 16-bit environment, which opens the door to faster,
more sophisticated software.

This book explains:

• History - How the IIGS came to be.
• Design Considerations- The decision to use the powerful new 16-

bit 65816 CPU.
• DOS 3.3, ProDOS and Pascal- Three different operating systems

for the IIGS.
• The Mouse - The point and click device that speeds data access.
• The Finder - A Macintosh-like utility that promotes user

friend! iness.
• Graphics and Sound- The super hi-res and the super hi-fi.
• Software - What programs are available.
• All this and much more.

THE APPLE fiGS BOOK. Find it at your local book or computer store or call
Bantam direct at 1-800-223-6834 Ext. 479.

- ---- --- - - - -

0

Open The Apple IIGS Toolbox ...
. . . and you'll uncover nearly 600 assembly language subroutines that will give
your programs the professional look and feel.
Programming the Apple IIGS with the help of the toolbox makes it easy to
add onscreen windows, pull down menus, colorful animation, and
wonderfully detailed graphics in super high-resolution video modes. But
designing programs around its Macintosh-like user interface is quite different
from programming in other environments.
THE APPLE IIGS TOOLBOX REVEALED introduces you to crucial concepts
before you start programming-concepts that your programming language
and other reference guides assume you already know.
• For Programming Newcomers: We'll take you inside the computer and

some of its circuits; you'lllearn about programming languages and how to
choose one that's best for you.

• For Experienced Apple II Programmers: We'll show you how the toolbox
works and how to incorporate its routines into C, Pascal, and assembly
language programs; you'lllearn how to design event-driven programs
around Apple's User Interface Guidelines.

• For Macintosh Programmers: We'll demonstrate how the Apple IIGS
toolbox differs from the Mac's; you'll learn how to adapt your programs to
the machine's 4096 colors.

This is the book to read before you start programming. With an
understanding of the concepts presented here , you '11 be on your way to
Apple IIGS toolbox programming much more quickly and efficiently.

Danny Goodman has been showing people productive ways to usc personal
computers since the late 1970s. He is contributing editor to Macworld and
PC World, and is author of Tbe Idea Boollfor Your Apple II.

AJ~ ln the Bantam Apple JIGS Library:
The ::.pple IIGS1J :>ak:
Tbe deftffttlve user's guide to the history, components and capabtlltles oftbe 1/GS,
written by Apple Insiders.

N 0-553-34360-2 >2195 34~2 . IN U.S. $21.85 (IN CANADA $25.85) . BANTAM COMPUTER BOOI(S

	toolbox_revealed_001
	toolbox_revealed_002
	toolbox_revealed_003
	toolbox_revealed_004
	toolbox_revealed_005
	toolbox_revealed_006
	toolbox_revealed_007
	toolbox_revealed_008
	toolbox_revealed_009
	toolbox_revealed_010
	toolbox_revealed_011
	toolbox_revealed_012
	toolbox_revealed_013
	toolbox_revealed_014
	toolbox_revealed_015
	toolbox_revealed_016
	toolbox_revealed_017
	toolbox_revealed_018
	toolbox_revealed_019
	toolbox_revealed_020
	toolbox_revealed_021
	toolbox_revealed_022
	toolbox_revealed_023
	toolbox_revealed_024
	toolbox_revealed_025
	toolbox_revealed_026
	toolbox_revealed_027
	toolbox_revealed_028
	toolbox_revealed_029
	toolbox_revealed_030
	toolbox_revealed_031
	toolbox_revealed_032
	toolbox_revealed_033
	toolbox_revealed_034
	toolbox_revealed_035
	toolbox_revealed_036
	toolbox_revealed_037
	toolbox_revealed_038
	toolbox_revealed_039
	toolbox_revealed_040
	toolbox_revealed_041
	toolbox_revealed_042
	toolbox_revealed_043
	toolbox_revealed_044
	toolbox_revealed_045
	toolbox_revealed_046
	toolbox_revealed_047
	toolbox_revealed_048
	toolbox_revealed_049
	toolbox_revealed_050
	toolbox_revealed_051
	toolbox_revealed_052
	toolbox_revealed_053
	toolbox_revealed_054
	toolbox_revealed_055
	toolbox_revealed_056
	toolbox_revealed_057
	toolbox_revealed_058
	toolbox_revealed_059
	toolbox_revealed_060
	toolbox_revealed_061
	toolbox_revealed_062
	toolbox_revealed_063
	toolbox_revealed_064
	toolbox_revealed_065
	toolbox_revealed_066
	toolbox_revealed_067
	toolbox_revealed_068
	toolbox_revealed_069
	toolbox_revealed_070
	toolbox_revealed_071
	toolbox_revealed_072
	toolbox_revealed_073
	toolbox_revealed_074
	toolbox_revealed_075
	toolbox_revealed_076
	toolbox_revealed_077
	toolbox_revealed_078
	toolbox_revealed_079
	toolbox_revealed_080
	toolbox_revealed_081
	toolbox_revealed_082
	toolbox_revealed_083
	toolbox_revealed_084
	toolbox_revealed_085
	toolbox_revealed_086
	toolbox_revealed_087
	toolbox_revealed_088
	toolbox_revealed_089
	toolbox_revealed_090
	toolbox_revealed_091
	toolbox_revealed_092
	toolbox_revealed_093
	toolbox_revealed_094
	toolbox_revealed_095
	toolbox_revealed_096
	toolbox_revealed_097
	toolbox_revealed_098
	toolbox_revealed_099
	toolbox_revealed_100
	toolbox_revealed_101
	toolbox_revealed_102
	toolbox_revealed_103
	toolbox_revealed_104
	toolbox_revealed_105
	toolbox_revealed_106
	toolbox_revealed_107
	toolbox_revealed_108
	toolbox_revealed_109
	toolbox_revealed_110
	toolbox_revealed_111
	toolbox_revealed_112
	toolbox_revealed_113
	toolbox_revealed_114
	toolbox_revealed_115
	toolbox_revealed_116
	toolbox_revealed_117
	toolbox_revealed_118
	toolbox_revealed_119
	toolbox_revealed_120
	toolbox_revealed_121
	toolbox_revealed_122
	toolbox_revealed_123
	toolbox_revealed_124
	toolbox_revealed_125
	toolbox_revealed_126
	toolbox_revealed_127
	toolbox_revealed_128
	toolbox_revealed_129
	toolbox_revealed_130
	toolbox_revealed_131
	toolbox_revealed_132
	toolbox_revealed_133
	toolbox_revealed_134
	toolbox_revealed_135
	toolbox_revealed_136
	toolbox_revealed_137
	toolbox_revealed_138
	toolbox_revealed_139
	toolbox_revealed_140
	toolbox_revealed_141
	toolbox_revealed_142
	toolbox_revealed_143
	toolbox_revealed_144
	toolbox_revealed_145
	toolbox_revealed_146
	toolbox_revealed_147
	toolbox_revealed_148
	toolbox_revealed_149
	toolbox_revealed_150
	toolbox_revealed_151
	toolbox_revealed_152
	toolbox_revealed_153
	toolbox_revealed_154
	toolbox_revealed_155
	toolbox_revealed_156
	toolbox_revealed_157
	toolbox_revealed_158
	toolbox_revealed_159
	toolbox_revealed_160
	toolbox_revealed_161
	toolbox_revealed_162
	toolbox_revealed_163
	toolbox_revealed_164
	toolbox_revealed_165
	toolbox_revealed_166
	toolbox_revealed_167
	toolbox_revealed_168
	toolbox_revealed_169
	toolbox_revealed_170
	toolbox_revealed_171
	toolbox_revealed_172
	toolbox_revealed_173
	toolbox_revealed_174
	toolbox_revealed_175
	toolbox_revealed_176
	toolbox_revealed_177
	toolbox_revealed_178
	toolbox_revealed_179
	toolbox_revealed_180
	toolbox_revealed_181
	toolbox_revealed_182
	toolbox_revealed_183
	toolbox_revealed_184
	toolbox_revealed_185
	toolbox_revealed_186
	toolbox_revealed_187
	toolbox_revealed_188
	toolbox_revealed_189
	toolbox_revealed_190
	toolbox_revealed_191
	toolbox_revealed_192
	toolbox_revealed_193
	toolbox_revealed_194
	toolbox_revealed_195
	toolbox_revealed_196
	toolbox_revealed_197
	toolbox_revealed_198
	toolbox_revealed_199
	toolbox_revealed_200
	toolbox_revealed_201
	toolbox_revealed_202
	toolbox_revealed_203
	toolbox_revealed_204
	toolbox_revealed_205
	toolbox_revealed_206
	toolbox_revealed_207
	toolbox_revealed_208
	toolbox_revealed_209
	toolbox_revealed_210
	toolbox_revealed_211
	toolbox_revealed_212
	toolbox_revealed_213
	toolbox_revealed_214
	toolbox_revealed_215
	toolbox_revealed_216
	toolbox_revealed_217
	toolbox_revealed_218
	toolbox_revealed_219
	toolbox_revealed_220
	toolbox_revealed_221
	toolbox_revealed_222
	toolbox_revealed_223
	toolbox_revealed_224
	toolbox_revealed_225
	toolbox_revealed_226
	toolbox_revealed_227
	toolbox_revealed_228
	toolbox_revealed_229
	toolbox_revealed_230
	toolbox_revealed_231
	toolbox_revealed_232
	toolbox_revealed_233
	toolbox_revealed_234
	toolbox_revealed_235
	toolbox_revealed_236
	toolbox_revealed_237
	toolbox_revealed_238
	toolbox_revealed_239
	toolbox_revealed_240
	toolbox_revealed_241

