
AppleiD ll SCSI Card
Technical Reference
Manual
.\PD.\ =.\2G0029

Apple II SCSI Card
Technical Reference

C APPLE COMPUTER, INC.

This manual is copyrighted by
Apple or by Apple's suppliers,
with all rights reserved. Under
the copyright laws, this manual
may not be copied, in whole or
in part, without the written
consent of Apple Computer,
Inc. This exception does not
allow copies to be made for
others, whether or not sold, but
all of the material purchased
may be sold, given, or lent to
another person. Under the law,
copying includes translating
into another language.

C Apple Computer, Inc., 1988
20525 Mariani Avenue
Cupertino, CA 95014
(408) 996-1010

Apple, Apple IIGS, the Apple
logo, LaserWriter, Macintosh,
and ProDOS are registered
trademarks of Apple Computer,
Inc.

ITC Avant Garde Gothic, lTC
Garamond, and lTC Zapf
Dingbats are registered trade­
marks of International Typeface
Corporation.

Microsoft is a registered trade­
mark of Microsoft Corporation.

Adobe lllustrator is a trademark
and POSTSCRIPT is a registered
trademark of Adobe Systems
Incorporated

Simultaneously published in the
United States and Canada.

Contents

Figures and tables v
Preface vii

Chapter 1 Introduction to the Apple II SCSI Card 1

The Apple II SCSI Card 1
A quick look at the hardware 1
A quick look at the firmware 2
Using the SCSI card as a startup device 2

Chapter 2 The Hardware 3

Functional description of the SCSI card 5
Apple II microprocessor 5
Apple II internal bus 6
Bank select logic 6
RAM 6
ROM 7
CPU-5380 interface logic 7
NCR 5380 SCSI IC 7
The Apple II SCSI bus 8

Chapter 3 The Firmware 11

SCSI managment 11
Device tables 12

SDATs 12
SDAT example 13
DIBTABs 13
DIBTAB example 16

Interpretation 16
Making a ProDOS call 17

Command parameters zero-page write 17
ProDOS call 18

Making a SmartPort call 18
SmartPort location 18
SmartPort call 19

SmartPort command definitions 20
Status ($00) 20
Read Block ($01) 22
Write Block ($02) 23
Format ($03) 23
Control ($04) 24
Init ($05) 33

Ill

Open ($06) 33
Close ($07) 33
Read ($08) 34
Write ($09) 34

Summary of error codes 35
Sample program 36

Appendix A Device Partitioning 45

Creating device partitions 45
The Device Control Block (DCB) 45
The Device Information Block (DIB) 46
The Driver Descriptor Map (DDM) 46
The Device Partition Map (DPM) 47
The Partition Descriptor Map (PDM) 47

Appendix 8 Using Unsupported SCSI Commands 53

Select the SCSI card 53

lv Contents

Set up device tables (SDAT/DIBTAB) 54
Load the command block 54
Call the SCSI management routines 54
Wait for next bus phase 57
Check the command execution status 58

Glossary 59

Index 63

Figures and tables

Chapter 2 The Hardware 3

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Table 2-1
Table 2-2
Table 2-3

Unit number assignment by ProDOS partition 4
Apple II SCSI configur~tion 4
SCSI card block diagram 5
Bank select register data structure 6
RAM map 6
ROM map 7
Device select space 1/0 address map 8
System cable pin-out chart 9
SCSI card cable pin-out chart 10

Chapter 3 The Firmware 11

Figure 3-1
Figure 3-2
Figure 3-3
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9

SDATAT data structure 12
DIBTAB data structure 14
SmartPort call command block data structure 19
SDAT software ID codes 13
Apple device type codes 15
Apple device subtype codes 15
Microprocessor register state 18
General status byte contents 21
SCSI bus status bytes contents 22
Device-specific status bytes 22
Control codes 25
Error codes 35

Appendix A Device Partitioning 45

Figure A-1
Figure A-2
Figure A-3
Figure A-4
Figure A-5

DDM data structure 46
Driver Descriptor data structure 47
DPM data structure 47
PDM data structure 48
Status byte data structure 49

Appendix B Using Unsupported SCSI Commands 53

Table B-1 ROM entry points for SCS~ management
routines 55

Table B-2 Data transfer mode selection address 55
Table B-3 SCSI bus condition 57

Figures and tables v

Preface

The Apple® II SCSI Card allows you to connect SCSI-compatible peripheral
devices, like disk or tape drives, to your Apple II family computer. Depending on the
operating system running on your Apple II, you can connect from four to seven
devices to the SCSI card. Chapter 1 contains more information about the number of
SCSI devices you can connect to your Apple II.

The SCSI card contains firmware that performs all the operations required to use
and control SCSI devices, under the control of the Apple II microprocessor. The
firmware is described in Chapter 3.

This manual is written for anyone with a desire to know more about the operation of
their SCSI card. In an effort to make using this manual easier, it has been divided
into five major sections. The following paragraphs briefly describe what information
you can expect to find in each of these sections.

Chapter 1 introduces you to the Apple II SCSI card. In this chapter you'll find a brief
explanation of what SCSI is, and how Apple has made use of this industry standard.
You'll also get an overview of how the SCSI card hardware and firmware work with
the Apple II microprocessor and with SCSI devices.

Chapter 2 describes the functional operation of the SCSI card and the general
architecture of the Apple II SCSI bus. This chapter describes the electrical interface
between the SCSI card and the Apple II CPU, as well as that between the SCSI card
and SCSI devices on the external bus.

Chapter 3 describes the operation of the firmware. In this chapter you'll find the
information you need to find and use the firmware, including descriptions of the
SmartPort and ProDQS® command sets.

Appendix A explains how to set up SCSI block-type devices, like hard disk drives, for
multiple-operating system use. This type of setup operation is called device
partitioning.

Appendix B provides information on using nonstandard device commands.

A glossary of terms related to SCSI and the SCSI card is included at the back of this
manual. Terms set off in boldface type in this manual are defined in the glossary.

vii

Chapter 1

Introduction to
the Apple II SCSI Card

The abbreviation SCSI stands for Small Computer System Interface. The Small
Computer System Interface is based on the ANSI standard for small computer
systems. Because the SCSI standard defines all the aspects of a computer interface, a
detailed description of the standard itself is beyond the scope of this manual. If you
want to know more about the SCSI standard, see the SCSI American National
Standard for Information Systems (ANSI. X3T9.282-2).

The idea behind the SCSI standard is very simple: Rather than designing products
that are compatible with only one or two small computers, a developer designs
products that are compatible with any small computer. The developer
accomplishes this by designing the device to work with the interface, rather than
the actual computer. Not only does this free developers from worrying about various
computer manufacturers' hardware designs, it gives the owners of small computers a
tremendous amount of flexibility in selecting equipment for use in their systems.

The Apple II SCSI Card
The SCSI standard is implemented in Apple11 II family computers by the Apple II
SCSI Card and the firmware it contains. The SCSI card will work with any SCSI
device, provided tbe device actually conforms to tbe SCSI standard

A quick look at the hardware
The Apple II SCSI Card is a self-contained peripheral card for use in all of the
Apple II family computers that have expansion slots. The SCSI card contains on­
board RAM and ROM. Special logic circuits are used to access and control the RAM
and ROM. The SCSI bus is controlled by a NCR 5380 SCSI IC. The SCSI card also
contains circuitry that provides an interface between the 5380 IC and the Apple II
CPU.

The SCSI card supports four external devices, two each in slots 2 and 5, when
mounted in an Apple II computer running ProDos® 16, version 1, or ProDOS 8,
version 1.2. With ProDOS 8, version 1.1, the SCSI card supports two external devices.
Future versions of ProDOS will support up to seven external devices.

Important
Although It Is using two slots. the SCSI card Is physically Installed In only one slot;
the card •takes over· the other slot's 1/0 space In order to support another two
external SCSI devices. The use of two slots by a single peripheral card Is called
shadowing.

The SCSI card performs data I/0 operations in pseudo-DMA (PDMA) mode.

The SCSI card hardware has two principal functions:

o It provides an electrical interface between external SCSI devices and the host
computer.

o It provides the address and control lines required by the Apple II
microprocessor to access and control the NCR 5380 and the firmware.

More information about the SCSI card hardware is provided in Chapter 2.

A quick look at the firmware
The firmware on the SCSI card is a program that handles all of the communications
protocol and bus management for Apple II SCSI. The firmware also provides a
means for the operating system, or an application program, to access and control
devices on the SCSI bus without requiring a highly-specialized SCSI driver program.
This feature converts calls from the operating system or an application program to
SCSI commands and manages their execution. The firmware calls are described in
Chapter 3.

Using the SCSI card as a startup device
The Apple II SCSI card is recognized as a bootable device by the Autostart ROM, so
all you need to do to use it as a startup device is install it in the slot with the highest
boot priority.

If the SCSI card is installed in the slot with the highest boot priority, the firmware
initializes the SCSI bus and attempts to boot the operating system off a SCSI device.

Important
In the Apple II. the slot with the highest boot priority Is the highest numbered
slot. Boot priority thus descends from slot 7 through slot 1. with slot 1 the lowest
priority slot. However. a device must still be recognized as a valid boot device
by the operating system to be considered the highest priority boot device.

If there is more than one device on the SCSI bus, the device with the highest SCSI ID
number (see Chapter 2) is tried first. If this device is not a valid boot device, the
ftrmware returns control to the Apple II, and the boot search continues through
lower priority slots.

2 Chapter 1: Introduction to the Apple II SCSI Card

Chapter 2

The Hardware

The Apple IT SCSI bus is a peripheral-device bus capable of supporting a maximum
of eight SCSI devices. The Apple II SCSI Card itself counts as one device, so you can
connect up to seven external devices to the bus. A device that is connected to the
SCSI bus is said to be restdent on the bus.

The external SCSI devices are daisy-chained together with cables. These cables form
the physical SCSI bus. There are three different cables used to connect devices:

o The system cable connects the first external device to the SCSI card's 25-pin
back-panel connector.

o The peripheral interface cable connects all of the other SCSI devices in the chain
together (one cable is required for each device).

o The cable extender is an inline bus extender that increases the length of a
peripheral interface cable or the system cable by three feet.

The devices resident on the SCSI bus are identified by two numbers. The first
number, called the SCSI ID number, is set by the position of a strap or switch on
the device, or by configuration software. Each device has a unique SCSI ID number.
SCSI ID numbers range from 7 (the highest) to 0 (the lowest).

A device's SCSI ID number determines its priority with respect to the other devices
on the bus. The device with the highest unit number (7) has the highest priority,
while the device with the lowest unit number (O) has the lowest priority.

The Apple II SCSI Card's SCS! ID number is set by positioning a jumper on a strip
of pins. With the jumper positioned across pins 1 and 16, the SCSI card's ID number
is set to 7. With the jumper across pins 8 and 9, the SCSI card's ID number is set to
0. For most applications, the SCSI card should be set to ID number 7 (jumper across
pins 1 and 16).

The second number, called the unit number, is set by the card ftrmware during
bus initialization. The firmware sets the unit number based on the SCSI ID number,
as follows:

The first ProDOS partition of the device with the highest SCSI ID is unit number 1.
The second ProDOS partition on this same device is assigned unit number 2, and so
on for all valid ProDOS partitions (up to the maximum of 7) on the same device. If
there are no ProDOS partitions on the device, or if all of the available space on the
device is a single partition, the entire device is assigned unit number 1. The device
with the next-highest SCSI ID number is then assigned unit numbers in exactly the
same manner, starting with unit number n+1, where n is the unit number of the last
partition on the previous device.

3

Drive 1
SCSIID#S

10 MB ProDOS partition # 1 = unit #I

10 MB ProDOS partition #2 =unit #2

15 MB ProDOS partition #3 =unit #3

Figure 2-1

Drive2
SCSIID#3

Unit number assignment by ProDOS partition

For example:

A 40 MB and a 20 MB hard disk are resident on the SCSI bus. The 40 MB drive is
SCSI ID #5, and the 20MB drive is SCSI ID *3. There are two 10MB and one 15MB
ProDOS partitions on the 40 MB drive and one 15MB ProDOS partition on the 20
MB drive. The flrmware will assign unit numbers as follows:

40 MB drive (ID #5): unit numbers 1 and 2 for the two 10 MB partitions (assuming
they are the flrst two ProDOS partitions), and unit number 3 for the 15MB ProDOS
partitionS.

Thus, n=3, so n+1=4; the flrst ProDOS partition on the 20MB drive will be assigned
unit number 4.

20MB drive (10# 3): unit number 4 for the 15MB partition.

Important

A device's physical location In the chain does not determine Its unit number.

The SCSI card is resident on both the Apple II internal bus and the SCSI bus. (See
Figure 2-2.) However, the Apple II accesses and controls the SCSI card across the
internal bus, as it would any other peripheral card.

SCSI bus

g_{l
Hard disk

Figure 2-2
Apple II SCSI configuration

4 Chapter 2: The Hardware

lntemal bus

0
Apple JIGS

Extended
SO-Column Card

External devices reside on the SCSI bus only. The Apple II cannot access these
devices directly because they are not on the internal bus. To perform any I/0 or
control operation on an external SCSI device, the Apple II must send a command to
the SCSI card. The SCSI card firmware then executes the operation CVO or control)
requested by the Apple II. More information about the role of the firmware is given
in Chapter 3.

Functional description of the SCSI card
The following sections describe the basic tasks performed by each of the functional
blocks shown in Figure 2-3.

SCSI
bus

f-

f-

NCR
5380

A-t

D
c
"!"
·----······---~

Bank select logic

RAM ~ ~ ROM

5380 CPU-interface

Note: A= address line. D =data line. C =control line

Figure 2-3
SCSI card block diagram

Apple II microprocessor

~

Apple II
Internal bus

r ' Data Adc:tess
bus bus

....

The Apple II microprocessor controls the access to, and operation of, the SCSI card
and the external devices connected to it. It does so by reading and writing the 5380
IC's control registers. The microprocessor also sends all the addressing signals used
by the SCSI card RAM and ROM.

Functional descrtpt1on of the SCSI card 5

Apple II intemal bus
The Apple II internal bus is the standard 1/0 and control bus used by the Apple II
microprocessor. The SCSI card is connected to the internal bus by the card edge
connector that fits into the slot on the Apple II logic board. The Apple II internal
bus is described in the technical reference manual for your Apple II.

Bank select logic
The on-board ROM and RAM are each mapped into lK banks in the Apple II's 1/0
address space at $~$CFFF. To select a specific bank, the microprocessor writes
the bank address into the memory bank select register at $COnA, where n is the SCSI
card slot number plus eight. Figure 2-4 defines the data structure of the bank select
register.

7 6 5 4 3 2 0

RAM bonk number ROM bonk number

Figure 2-4
Bank select register data structure

RAM
The SCSI card contains BK of static RAM in a single 8Kx8 IC. The RAM is divided by
the bank select logic into eight lK banks and mapped into the Apple II main
memory 1/0 space at $C800-$CBFF. Card RAM is used to store information about
the external SCSI devices. Figure 2-5 is a map of the RAM.

1,....--------- RAM----------..
SCBFF -,r------r-----.,.---------..-----.

BankO
lK

Bonk 1
lK

Bonk 7
lK

SC&D~~---~----L---------~---~

Figure 2-5
RAM map

6 Chapter 2: The Hardware

ROM
The SCSI card contains 16K of ROM in a single 16Kx8 UVEPROM. Uke the RAM, the
ROM is divided into eight selectable lK banks. Except for the lower 256 ROM
locations, the ROM banks are mapped into the Apple II main memory I/0 space at
$CCOO--$CFFF. The lower 256 ROM locations are mapped into the boot space at
$CnOO--$CnFF, where n is the slot number for the SCSI card. Bank selection is
controlled by the microprocessor through the bank select logic. The SCSI card's
ROM is used to store the firmware. Whenever a call is issued to the firmware,
whether from the operating system or from a software program, the SCSI card ROM
is read.

Figure 2-6 is a map of the ROM.

,..----------ROM----------.
SCFFF -------,,-------.---------------

Figure 2-6
ROM map

BankO
768 bytes

Bank 1
1K

CPU-5380 interface logic

Bank 15
1K

The control signals issued to the NCR 5380 SCSI IC by the Apple II microprocessor
are handled by the CPU-5380 interface logic. This logic decodes control and
address signals sent across the Apple II internal bus and, in turn, sets the 5380
control inputs to the correct state. Responses from the 5380 are also passed back to
the CPU through this logic.

NCR 5380 SCSI IC
The NCR 5380 IC provides all the bus control and device protocol required for a
SCSI bus. The 5380 IC is the physical I/0 point for all external devices connected to
the Apple II SCSI bus. All the data and control signals sent to external SCSI devices
by the microprocessor or software are handled by the 5380 IC. The 5380 IC internal
registers are addressed as memory-mapped I/0 space at $COnO-COn7 (the device
select space), where n is the SCSI card slot number plus 8.

Functional description of the SCSI card 7

Table 2-1 describes the device select space I/0 address map.

Table 2-1
Device select space 1/0 address map

1/0 address R/W Name

$CO nO R Current SCSI data register
$CO nO w Output data register
$COnl R/W Initiator command register
$COn2 R/W Mode Select register
$COn3 R/W Target command register
$COn4 R SCSI bus status
$COn4 w Select enable register
$COn5 R Bus and Status register
$C0n5 w Not used
$COn6 R Input data register
$COn6 w Not used
$COn7 R Reset parity/interrupts
$COn7 w Not used
$COnS R/W PDMA/DACK
$COn9 R SCSI device ID
$COnA w Memory Bank Select register
$COnB w Reset 5380 IC
$COnC w Not used
$COnD w PDMA mode enable
$COnE R Read DRQ status bit through 07 bit
$COnF R/W Not used

The Apple II SCSI bus
The Apple II SCSI bus is a standard SCSI peripheral device bus, as deftned in the
ANSI speciftcation referred to earlier in this manual. Bus control and device
protocol are provided by the NCR 5380 SCSI IC. Physical support for the SCSI bus is
provided by the system cable. The system cable is terminated with a DB-25
connector on the Apple II side and a 50-pin conneaor on the SCSI device side.

The SCSI card itself is connected to the DB-25 connector on the back panel of the
Apple II by a 25-pin ribbon cable.

8 Chapter 2: The Hardware

Table 2-2 is a pin-out chart for the system cable, and Table 2-3 is a pin-out chart for
the 25-pin ribbon cable.

Table 2·2
System cable pin-out chart

SO·Pin connector Signal DB·25 connector

1 DBO-GND 14
2 DB1-GND 14
3 DB2-GND 14
4 DB3-GND 16
5 DB4-GND 16
6 DBS-GND 16
7 DB6-GND 18
8 DB7-GND 18
9 DBP-GND 18

11 DIFFSENS-GND 18
16 ATN-GND 7
18 BSY-GND 7
19 ACK-GND 7
20 RST-GND 9
21 MSG-GND 9
22 SEL-GND 9
23 C/D-GND 24
24 REQ-GND 24
25 I/0-GND 24
26 -DBO 8
27 -DB1 21
28 -DB2 22
29 -DB3 10
30 -DB4 23
31 -DBS 11

32 -DB6 12
33 -DB7 13
34 -DBP 20
38 TERMPWR 25
41 -ATN 17
43 -BSY 6
44 -ACK 5
45 -RST 4
46 -MSG 2
47 -SEL 19
48 -C/D 15
49 -REQ 1
50 -I/O 3

Functional description of the SCSI card 9

Table 2·3
SCSI card cable pin-out chart

26-pln P.C.B. connector Signal 08·25 connector

1 -REQ 1
2 GND 14
3 -MSG 2
4 -C/D 15
5 -I/O 3
6 GND 16
7 -RST 4
8 -ATN 17
9 -ACK 5

10 GND 18
11 -BSY 6
12 -SEL 19
13 GND 7
14 -DBP 20
15 -DBO 8
16 -DB1 21
17 GND 9
18 -DB2 22
19 -DB3 10
20 -DB4 23
21 -DBS 11
22 GND 24
23 -DB6 12
24 TPWR 25
25 -DB7 13
26 No connection

10 Chapter 2: lhe Hardware

Chapter 3

The Firmware

The Apple II SCSI Card firmware provides the software interface between the
Apple II (and any program running on it) and the devices resident on the· SCSI bus.

This interface has two primary functions: management and interpretation. The
management functions support SCSI command execution, SCSI message protocol,
and SCSI bus arbitration. The interpretation feature provides a simplified command
interface for use by application programs that do not include SCSI device drivers.

Important
The firmware commands described In this chapter make use of special data
variables called parameters. All parameters have names associated with them.
Whenever a parameter is being described, its name Is set off In italics, as shown
here:

enable is set to 1.

SCSI management
The SCSI card firmware performs all of the read/write and record-keeping
operations required by the SCSI message protocol using the on-board Rfu\1. In
this sense, the firmware acts like a mail carrier, taking mail (a SCSI message) from
one person (a device) and delivering it to another person (another device on the
bus). Along the way, the mail carrier (l.he firmware) logs the mail in and out of the:!
post office, cancels the postage, and sorts the mail out for easier distribution
(record-keeping).

The firmware supports SCSI bus arbitration by maintaining the device tables
(described later in this section).

The SCSI message protocol and the SCSI bus arbitration scheme are described in
the ANSI standard referred to in Chapter 1.

11

Device tables
In order to manage SCSI devices, the firmware needs to store certain information
where it can be quickly accessed, namely the SCSI card RAM. The firmware stores
this critical information in two software tables, the SCSI Device Access Table
(SOAn and the Device Information Block Table (DIBTAB). Each SCSI device h.as
an SDAT and a DIBTAB constructed for it by the firmware at SCSI bus initialization.

SDATs
The SDATs are loaded into SCSI card RAM beginning at $C831 and grow upwards in
RAM to $C897. Each SDAT is 17 bytes long. Figure 3-1 defmes the SDAT data
structure. All entries are in hex unless otherwise specified

Bit number

Figure 3-1
SDAT data structure

12 Chapter 3: The Firmware

sdat ld: This field contains a hexadecimal code identifying the bytes that follow as
an SDAT. This field is always set to $86.

block count: This field contains the number of blocks available on the device
described in the SDAT.

bytes per block: This field contains the size, in bytes, of each block on the device
described in the SDAT.

partition start: This field contains the starting block address of the partitions on the
device described in the SDAT.

software ld code: This field contains a hexadecimal code for the SCSI ID number
of the device described in the SDAT. The software codes for SCSI unit numbers are
shown in Table 3-1.

Table 3-1
SDA T software 10 codes

Code ID number

$01 0
$02 1
$04 2
$08 3
$10 4
$20 5
$40 6
$80 7

device timeout: This field contains a hexadecimal code that defines the timeout
parameter for the device decribed in the SDAT.

SDAT example

Here is an example of an SDAT:

C831: 86

C832: 00 01 49 45 ;Total blocks in device, msb first

C836: 00 00 02 00 ;Bytes per block field

C83A: 00 00 00 40 ;Partition start offset, msb first

C83E: 20 ;SCSI device ID.

C83F: 08 ;Device specific timeout constant

This SDAT describes a device with a size of 84,293 blocks. Each block on the device
consists of 512 bytes. Device partitions begin at block 64. The device number is set
to 5 on the device, because the software ID code is $20.

DIBTABs

The DIBTAB contains status information describing a specific device on the SCSI
bus. DIBTAB information can be obtained from the device itself by reading out the
Device Information Block (DIB) using the Status ($00) SmartPort call with status
code set to $03.

If the target device does not have a DIB, you can build one by using the INQUffiY
($OF), MODE SENSE ($09), and REQUEST SENSE ($o6) SmartPort control calls to
obtain the necessary information, and then writing the appropriate data back to the
device in the block reserved for the DIB. See the SmartPort Control call description,
later in this chapter, for more information.

SCSI management 13

DIBTABs are loaded into SCSI card RAM beginning at $C931. Each DIBTAB is 27
bytes long. Figure 3-2 defines the DIBTAB data structure.

Byte
number -

r

"
Figure 3·2

7 I 6 I 5

0

1 b/C I w I r

2

3

4

5

6

7
;--I
I I
I I

1--1
22

23

24

25

26

DIBTAB data structure

Bit number
I

I 4 I 3 l 2 -T 1 I 0

dibtab ld ($86)

I online I fmt I mwp llntrpt I open

block size (lsb)

block size

block size

block size (msb)

ld string length

id string

device type

device subtype

rom version (msb)

rom version (lsb)

dlbtab ld: This field contains a hexadecimal code identifying the bytes that follow
as a DIBTAB. This field is always set to $86.

device status: This field contains eight 1-bit flags that provide information related
to the status of the target device, as described in the following paragraphs.

o b/c: This field contains the block/character device flag. When set to 1, it
indicates the device is a block-type device. When set to 0, it indicates the device
is a character-type device.

o w: This field contains the write allowed flag. When set to 1, it indicates that write
operations are accepted by the device. When set to 0, it indicates that write
operations are not accepted by the device. This flag applies only to the d.evlce
itself. Certain blocks on the device may be reserved, or otherwise protected

o r: This field contains the read allowed flag. When set to 1, it indicates that read
operations are accepted by the device. When set to 0, it indicates that read
operations are not accepted by the device. This flag applies only to the d.evlce
Itself. Certain blocks on the device may be reserved, or otherwise protected

14 Chapter 3: lhe Firmware

o online: This field contains the on-line flag. When set to 1, it indicates that the
device is on-line. When set to 0, it indicates the device is not on-line.

o fmt: This field contains the format allowed flag. When set to 1, it indicates that
format operations are accepted by the device. When set to 0, it indicates that
format operations are not accepted by the device. This flag applies only to the
device itself Certain blocks on the device may be reserved, or otherwise
protected.

o mwp: This field contains the medium write-protected flag. When set to 1, it
indicates the data medium mounted on the device is write-protected.

o lntrpt: This field contains a flag used by the Apple lie (which does not support
SCSI) for SmartPort block device I/0; it is not valid for the SCSI card or any SCSI
device.

o open: This field contains the device open flag. For character devices, this flag set
to 1 indicates that the device is logically open. When set to 0, it indicates that the
device is logically closed. For block devices, this flag set to 1 indicates a disk
switch took place. When set to 0, it indicates that no switch took place.

block count: This field contains the number of logical blocks available on the
device.

ld string length: This field contains the size, in bytes, of td string

ld string: This field contains an ASCII string identifying the device. This field must
be 16 bytes long; pad any extra bits with space characters.

device type: This field contains a hexadecimal code identifying the general class
of the device. The device type codes are shown in Table 3-2.

Table 3-2
Apple device type codes

Code Device type

$03 Nonspecific SCSI
$05 CD-ROM
$06 Direct-access tape drive
$07 Hard disk
$08 Scanner
$09 Printer

device subtype: This field contains a hexadecimal code providing additional
information on the type of the device. The device subtype codes are shown in
Table 3-3.

Table 3-3
Apple device subtype codes

Bit number Function

0-4 Reserved

5 If set to 0, device medium is removable
If set to 1, medium is not removable

6 If set to 1, device supports disk-switched errors

7 If set to 1, device supports extended format
SmartPort calls

SCSI management 1 5

rom version: This field contains a hexadecimal code that defines the firmware
version installed on the SCSI card. The Rev. C SCSI card ROM version is $00 02.

DIBTAB example

Here is an example of a DIBTAB:

C931: 86
C932: FS
C933: 45 49 01 00
C937: 10
C938: 51 55 41 4E 54 55 40 51
C940: 32 35 30 37 36 30 34 35
C948: 07
C949: 80
C94A: 00 02

;status byte
;block count
;ID string length
; I QUANTUM Q I

;'25576-45'
;type byte
;subtype byte
;SCSI Rom rev number

1bis DIBTAB describes an 40MB Quantum Q hard disk, model number 25576-45,
identified as a SCSI hard disk that supports extended-format SmartPort calls. The
drive supports SCSI card Rev. C ROM. The status byte indicates that this deviCe

o has not had a disk switch take place

o is not write-protected

o can be formatted

o is on-line

o can be read from

o can be written to

o is a block device

Interpretation
In order to access and control a SCSI device, the host must be able to send and
receive SCSI commands from either the operating system or the active application
program. Rather than force each application or operating system to provide all of
the functions necessary to send and receive SCSI commands, Apple has created a
command interpreter in the SCSI card's firmware. This interpreter accepts calls
from either the ProOOS operating system or the SmartPort I/0 interface. Thus, an
application program need only call the SmartPort, or ProDOS, and leave the rest of
the details to the command interpreter.

Requests from ProDOS or the SmartPort are much like routines, in that the
command interpreter takes a simple input, such as Status, and uses several lower­
level SCSI commands, such as MODE SENSE ($1A) and REQUEST SENSE ($03), to
accomplish the operation requested. The command interpreter receives the
command request from ProDOS or the SmartPort and proceeds to select and
execute the SCSI commands required to carry it out.

Even with the command interpreter, you must still provide all of the data necessary
to accomplish the operation requested. For instance, the interpreter would select the
correct commands to accomplish a Write Block ($02) call, but would not be able to
provide the data to write to the target device unless you had spedfied the location
of the outgoing data in the original SmartPort call.

16 Chapter 3: The Firmware

A ProDOS or SmartPort call includes a command number, a pointer, and a
parameter list.

A command number is a hexadedmal number that indicates to the interpreter the
operation being requested. Each operation has a unique command number. SCSI
commands :also have a command number, but this number is not directly related to
the command number sent to the interpreter in a ProDOS or SmartPort call. Do not
confuse SCSI command number with ProDOS/SmartPort command numbers.

A pointer is a data field that contains the address in RAM of another field, such as
the parameter list.

A parameter list is a set of related data fields loaded into RAM at a specific address.
Parameter lists can contain special codes, pointers to RAM locations loaded with
outgoing data blocks, control variables, or any other information the command
requires to be executed properly.

Basically, you build the command in Apple II RAM, load the RAM address of your
command into the pointer field, make the appropriate call to the command
interpreter via ProDOS or the SmartPort, and wait for the call to finish.

Once a call is issued, the Apple II turns control over to the interpreter until the
requested operation is done. When the interpreter completes the operation, it
returns control to the program issuing the original call. Program execution resumes
at the address immediately following the parameter list pointer for the call.

Making a ProDOS call
The operating system or program running on the Apple II executes a ProDOS call
to the SCSI card firmware in two basic stages:

1. Command parameters zero-page write

2 ProDOS call

Command parameters zero-page write
Prior to issuing a firmware call, the operating system passes a set of command
parameters to the SCSI card. These parameters are passed in zero-page locations
$42-$47, as follows:

$42
$43
$44-$45
$46-$47

Command number
Unit number
Buffer pointer
Block number

The command number is the firmware command number. The unit number
indicates the slot and drive numbers of the target SCSI device, with the slot number
set in bits 4 and 5, and the drive number set in bits 6 and 7. The buffer pointer
indicates the start of a 512-byte data buffer. The block number is the address of the
target block on the SCSI device. If the command is not a read/write operation, no
block number is required.

Making a ProDOS call 17

ProDOS call
The second stage is the actual ProDOS call. A ProDOS call is coded as a JSR to the
entry point.

You can calculate the ProDOS entry point as follows:

$Cn00 + (CnFF)

where n is the SCSI card slot number and CnFF is the value of the byte located at
$CnFF.

When the firmware has completed the operation requested by the call, it sets certain
flags in the microprocessor's Status register and accumulator (A register). The state
of these flags depends on whether or not the ProDOS call was successfully
completed. Table 3-4 defines the state of the microprocessor flags for both
successful and unsuccessful ProDOS calls.

Table 3-4
Microprocessor register state

Bit Successful call Unsuccessful call

N X X

z X X

c 0 1
D 0 0
v X X

1 Unchanged Unchanged
B X X

Xreg X X

Yreg X X

Ace 0 Error code
PC JSR+3 JSR+3
SP Unchanged Unchanged

Making a SmartPort call
The operating system or program running on the Apple II executes a call to the
SmartPort in two basic stages:

1. SmartPort location
2 SmartPort call

SmartPort location
Before you issue a call to the SmartPort, it's a good idea to make sure that the
SmartPort is present on the SCSI card. This step helps assure compatibility between
software and future hardware developments.

18 Chapter 3: The Firmware

To locate the SmartPort, search for the following bytes:
$Cn01 $20 (where n is the SCSI card slot number)
$Cn03 $00
$Cn05 $03
$Cn07 $00

An additional byte, at $CnFB, should contain $82, indicating that the device is the
SCSI card ($2) and that it supports extended calls ($8).

SmartPort call

The next stage is the actual SmartPort call. A SmartPort call is coded as a JSR to the
SmartPort entry point (DISPATCH), followed by the 1-byte command number,
followed by the 2-byte command parameter-list pointer.

You can calculate the DISPATCH address as follows:

$Cn00 + (CnFF) + 3

where n is the SCSI card slot number and (CnFF) is the value of the byte located at
$CnFF.

The following is an example of a nonextended SmartPort call:

PCCALL JSR DISPATCH ;Call SMP entry point and dispatcher
DFB CMDNUM ;SMP command number
DW CMDLIST ;Command parameter list pointer
BCS ERROR ;Carry is set on an error

Extended calls include a 4-byte field for the parameter list pointer. Extended call
command numbers are calculated by adding $40 to the nonextended command
number. For example, a nonextended Read Block call is coded as $01, so the
extended Read Block call is coded as $41. Figure 3-3 is a data diagram of the
SmartPort command block.

For extended calls, the two bytes shown as reserved in Figure 3-3 are used for the
extended address field, so that byte 4 becomes the msb of the address field, while
bytes 2 and 3 become the middle bytes of that field

Byte
number

Figure 3·3

Bit number

SmartPort call command block data structure

Making a SmartPort call 19

rsved: All reserved fields must be set to $0.

extd: This field contains the extended call flag. If set to 1, it indicates that an
extended call is being made. If set to 0, it indicates that a nonextended call is being
made.

command number: This field contains the SmartPort command number for the
call, as described earlier in this chapter.

parameter list pointer: This field contains the parameter list pointer, as described
earlier in this chapter. The parameter lists for each call are described in the section
covering that call. This field includes the two reserved bytes for extended calls.

When the SmartPort has completed the operation requested by the call, it sets
certain flags in the microprocessor's Status register and accumulator (A register).
There are two differences between the states of the microprocessor register flags
after a SmartPort call and those given in Table 3-4:

o The X and Y registers (Xreg and Yreg) are set to the number of bytes of data
transferred in successful device-to-host transfers; unsuccessful and host-to-device
transfers remain undefined.

o The PC register is set to JSR+5 for extended SmartPort calls.

SmartPort command definitions
The following sections describe each SmartPort command in detail. Each definition
contains the following information:

o command name: the name of the SmartPort command

o command number: the hexadecimal number of the SmartPort command

o description: the purpose of the command

o parameter list: the command parameter list required by or for the command, by
byte number (given in parentheses)

o parameter description: describes the parameters in the parameter list

Important

Extended SmartPort calls have address pointers that are fwice as long (4 bytes)
as nonextended calls. When using an extended call format. remember that the
byte numbers given In the following descriptions are for nonextended calls; refer
to the data diagrams given earlier for the correct byte-order.

Status ($00)
The Status command returns information about a specific device on the SCSI bus.
The information returned by this command is determined by status code.

On return from a Status call, the microprocessor X and Y registers are set to
indicate the number of bytes transferred to the Apple II by the command. The X
register is set to the low byte of the count, and the Y register is set to the high byte.

20 Chapter 3: The Firmware

The parameter list for this call is as follows:

Byte Definition

0 parameter list length CS03)
1 unit number
2-3 status list pointer Osb-msb)
4 status code

Parameter description

unit number: This parameter contains the SmartPort unit number of the target SCSI
device. If the unit number is set to $00, all devices resident on the SCSI bus are
targeted. See Chapter 2 for details on selecting the correct SmartPon unit number
for your target device.

status list pointers: This parameter contains the address of the data buffer used to
store the device status information returned by this command. The first byte (byte
2) is the low byte, and the second byte (byte 3) is the high byte of the address.

status code: This parameter contains the hexadecimal code number indicating
which status request is being issued, as follows:

$00 Return device status
$01 Not supported
$02 Not supported
$03 Return Device Information Block (DIB)
$04 Return Device Information Block (DIB), extra
$05 Return last error status
$06 Return bytes/block parameter for device

Code $00: The status list returned for this code is 4 bytes long (5 bytes for extended
format). The first byte is the general status byte, and the remaining 3 (4 extended)·
bytes are the size of the device in blocks. The general status byte is returned for all
device types, but the size bytes are only returned for block-type devices. Table 3-5
defines the information returned in the general status byte.

Table 3·5
General status byte contents

Bit Definition

7 1 =Block device, O=Character device
6 1 =Write allowed
5 1 =Read allowed
4 !=Device on-line
3 !=Format allowed
2 l=Media write-protected (block device)
1 1 =Reserved
0 !=Device open (character device)

l=Disk switch took place (block device)

+ Untt number $00: A code $00 Status command with the unit number set to $00
returns the status of the SCSI bus. The status list returned is 8 bytes long. Table 3-6
defines the contents of the SCSI bus status list.

SmartPort command definitions 21

Table 3·6
SCSI bus status bytes contents

Byte Definition

0 Number of SCSI devices on SCSI bus
1-7 Reserved

Code $01-$02: These codes return error code $21.

Code $03: The status list returned for this code is 25 bytes long (26 bytes extended).
The first 4 bytes are identical to the bytes returned for code $00. The remaining
bytes are device-specific status information. Table 3-7 defmes the information
returned in the device-speciflc status bytes.

Table 3·7
Device-specific status bytes

Byte

1
2
3
4
5
6-21
22
23
24-25

Definition

General status byte
Block count (lsb)
Block count
Block count (msb)
Length of device ID string in bytes (16 max)
Device name, in ASCII (16 bytes)
Device type
Device subtype
ROM version number

+ Note: For extended calls, byte 5 becomes the msb of the block count, and all
subsequent fields •move• 1 byte down.

Code $04: The status list returned for this code is the same as that for code $03.

Code $05: The status list returned for this code is the SCSI REQUEST SENSE ($03)
return block.

Code $06: The status list returned for this code is 2 bytes long. This list returns the
current bytes/block parameter being used on the target device.

Read Block ($01)
The Read Block command reads one 512-byte block from the target device specified
in the unit number parameter. The block read by this command is written into RAM
at the address specified in the input buffer pointer. The parameter list for this call is
as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-3 input buffer pointer (lsb-msb)
4 target block number

22 Chapter 3: The Firmware

Parameter description

unit number: This parameter contains the SmartPort unit number of the target SCSI
device. See Chapter 2 for details on selecting the correct SmartPort unit number for
your target device.

Input buffer pointer: This parameter contains the starting address of the data buffer
used to store the block read by this command.

target block number: This parameter contains the logical address, on the host
device, of the target block.

Write Block ($02)

The Write Block command writes one 512-byte block to the target device specified
in the unit number parameter. The block written by this command is read from
RAM at the address specified in the output buffer pointer. The parameter list for this
call is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-3 output buffer pointer (lsb-msb)
4 target block number

Parameter description

unit number: This parameter contains the SmartPort unit number of the target SCSI
device. See Chapter 2 for details on selecting the correct SmartPort unit number for
your target device.

output buffer pointer: This parameter contains the beginning address of the data
buffer from which the target block is written.

target block number: This parameter contains the logical address, on the target
device, to which the target block is to be written. Byte 4 is the low byte of this
address, byte 5 is the middle byte, and byte 6 is the high byte.

Format ($03)

The Format command prepares all the blocks on the device specified in the unit
number parameter for read/write use. This command is for use on block-type
devices only.

The Format command checks the target device for existing partitions prior to
beginning execution. If valid partitions are found, the command terminates and
control is turned over in the normal fashion. If no partitions are found, a full SCSI
FORMAT ($04) command is executed on the target device, and the routine lays
down a DDM and DPM for the drive, treating the entire storage volume as a single
partition.

SmartPort command definitions 23

The parameter list for this call is as follows:

Byte Oetlnltlon

0 parameter list length ($0 1)
1 unit number

Parameter description

unit number: This parameter contains the SmartPort unit number of the target SCSI
device. See Chapter 2 for details on selecting the correct SmartPort unit number for
your target device.

Control ($04)

The Control command provides two basic functions. The first is to execute device
control routines designed by Apple. The second is to execute SCSI commands. The
command interpreter handles all of the functions required to execute the routine or
command, including the routines necessary to read your routine or command out
of RAM and pass it to the device, and receive any data returned by the command
and write it into the RAM address you have specified (where appropriate).

If you need to use a SCSI command not supported by a SmartPort control code, you
must write some special code in order to pass your command to the interpreter. See
Appendix B for details on using unsupported SCSI commands with the command
interpreter.

If there is a particular unsupported call that you use frequently, it is possible to
patch it into the SCSI card RAM. This allows the command to be treated by the
command interpreter just as if it were a supported command. To do this, use
PatchlCall ($1E).

Although each control code has its own parameter list, the following generic list
shows the basic format they all adhere to.

Byte Definition

0 parameter list length ($03 or $04)
1 unit number
2-3 pointer (lsb--msb)
4 control code
5 transfer count

Important
The Control command makes extensive use of SCSI commands. as well as some
Apple-designed routines. Programming these commands Is very complicated and
requires thorough knowledge of both the commands you are using and the
devices you are targeting. Do not attempt to use this command unless you are
familiar with both the ANSI SCSI commands and the command set supported by
your device or devices; the paragraphs describing the commands later In this
section are Intended only as a quick reference. not a progammlng guide.

24 Chapter 3: The Firmware

Parameter description

unit number: This parameter contains the SmartPort unit number of the target SCSI
device. See Chapter 2 for details on selecting the correct SmartPort unit number for
your target device.

pointer: This parameter contains a pointer to the starting address of a buffer used to
store data sent or received by the host during the execution of the control call.

control code: This parameter contains the SmartPort code number indicating
which control routine or SCSI command is being handled. Table 3-8 shows the
control codes and their associated routine or SCSI command, with the SCSI
operation code (if any) given in parentheses.

transfer count: This parameter, when used, contains a count of the number of bytes
transferred to or from the host during the execution of the command requested by
the control code.

Table 3-8
Control codes

Code Definition Code Definition

$00 DeviceReset $17 ReceiveDiagnostic ($1C)
$01-$03 reserved $18 StartUnit ($1B)
$04 Eject ($CO) $19 StopUnit ($1B)
$05 TestUnitReady ($00) $1A PreventRemoval ($1E)
$06 RequestSense ($03) $1B AllowRemoval ($1E)
$07 ReassignBlock ($07) $1C Verify ($2F)
$08 ModeSelect ($15) $10 RezeroUnit ($01)
$09 ModeSense ($1A) $IE Patch1Call
$0A Reserve ($18) $1F SetNewSDAT
$0B Release ($17) $20 AudioSearch ($C8)
$0C ReadDefectData ($nn) $21 AudioPlay ($C9)
$00 ReadCapacity ($25) $22 AudioPause ($CA)
$0E SendDiagnostic ($10) $24 AudioStatus ($CC)
$10 not supported $25 AudioScan ($CD)
$11 not supported $26 Eject ($CO)
$12 HardReset $27 ReadTOC ($C1)
$13 SetBlockSize $28 ReadQSubcode ($C2)
$14 SetTimeout $29 ReadHeader ($C3)
$15 FormatUnit ($04) $2A Setlnterleave ($04)
$16 ExtendedSeek ($2B)

DeviceReset ($00): This code orders a soft reset of the target device. The
parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-3 reserved ($00)
4 control code ($00)

Code $01-$03: These codes are not supported by the command interpreter. Use of
these code numbers will return an error code.

SmartPort command definitions 25

Eject ($04): This code executes the SCSI EJECT ($CO) command. The parameter
list for this control code is as follows:
Byte Definition
0 parameter list length ($03)
1 unit number
2-3 reserved ($00)
4 control code ($04)

Important
This command Is only valid for CD-ROM devices. Do not use It for other devices.

TestUnUReady ($05): This code executes SCSI TEST UNIT READY ($00)
command. The parameter list for this control code is as follows:
Byte Definition
0 parameter list length ($03)
1 unit number
2-3 reserved ($00)
4 control code ($05)

RequestSense ($06): This code executes the SCSI REQUEST SENSE ($03)
command. The parameter list for this control code is as follows:
Byte Definition
0 parameter list length ($03)
1 unit number
2-3 buffer pointer Qsb-rnsb)
4 control code ($06)

Reassigr&Blocll ($07): This code executes the SCSI REASSIGN BLOCK ($07)
command. The parameter list for this control code is as follows:
Byte Definition
0 parameter list length ($03)
1 unit number
2-3 buffer pointer Qsb-rnsb)
4 control code ($07)

ModeSelsct ($08): This code executes the SCSI MODE SELECT ($15) command.
The parameter list for this control code is as follows:
Byte Definition

0 parameter list length ($04)
1 unit number
2-3 buffer pointer Qsb-rnsb)
4 control code ($08)
5 transfer byte count

ModeSense ($09): This code executes the SCSI MODE SENSE ($1A) command.
The parameter list for this control code is as follows:
Byte Definition

0 parameter list length ($04)
1 unit number
2-3 buffer pointer Qsb-rnsb)
4 control code ($09)
5 transfer byte count

26 Chapter 3: The Firmware

Reserve ($0A): This code executes the SCSI RESERVE ($16) command. The
parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-3 buffer pointer Osb-msb)
4 control code ($0A)

Release ($0B): This code executes the SCSI RELEASE ($17) command. The
parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-3 buffer pointer Osb-msb)
4 control code ($0B)

ReadDefectData ($0C): This code reads out information about data medium
defects on the target device's mounted data medium. Information returned by this
command is written to the buffer identified by the buffer pointer parameter. The
parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-3 buffer pointer Osb-msb)
4 control code ($0C)

ReadCapadty ($0D): This code executes the SCSI READ CAPACI1Y ($25)
command. The parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-5 buffer pointer Osb-msb)
6 control code ($0D)

Sendntagnosttc ($0E): This code executes the SCSI SEND DIAGNOSTIC ($10)
command. The parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-3 reserved
4 control code ($0E)

Inquiry ($OF): This code executes the SCSI INQUIRY ($12) command. The
parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-3 buffer pointer Osb-msb)
4 control code ($0E)

SmartPort command definitions 27

ExtefldedReatl ($10): This code is not supported by the command interpreter.
Use of this code number will return an error code.

Code $11: This code is not supported by the command interpreter. Use of this
code number will return an error code.

HardReset ($12): This code executes a full SCSI bus reset and then passes a SCSI
Test Unit Ready ($00) command to the target device. The parameter list for this
control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-3 buffer pointer Osb-msb)
4 control code ($12)

Warning
Do not use this code on a CD-ROM device.

SetBiociiSI%e ($13): This code sets the number of bytes per block on the target
device. The parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-3 block size (bytes) msb-lsb
4 control code ($13)

SetTimeout ($14): This code sets the amount of time the initiator will wait for a
response from the target before terminating the command (timeout). The timeout
constant ranges from $00-$FF, and is loaded into the Control call parameter list in
byte 2. For this command, byte 3 of the parameter list must be set to 0. The default
timeout constant is $08, for a timeout duration of approximately 10 seconds. The
parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2 timeout
3 reserved ($00)
4 control code ($14)

FormatUnU ($15): This code executes the SCSI FORMAT ($04) command The
parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-3 reserved ($00)
4 control code ($15)

28 Chapter 3: The Firmware

Extendetl.Seell (SI6): This code executes the SCSI EXTENDED SEEK ($2B)
command. The parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-5 seek address buffer pointer
6 control code ($16)

ReceiveDtagnostic (SI7): This code executes the SCSI RECEIVE DIAGNOSTIC
RESULTS ($1C) command. The parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-3 buffer pointer Osb-msb)
4 control code ($17)

StartUnU/StopUnit (SIB/SI!J): These codes execute the SCSI START/STOP UNIT
($1 B) command Each must be used separately; StanUnit ($18) only starts the unit,
while StopUnit ($19) only stops it The parameter list for these control codes is as
follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-3 reserved ($00)
4 control code ($18/$19)

PreventRemoval/AllowRemoval (SIA/SIB): These codes execute the SCSI
PREVENT/ALLOW REMOVAL ($1E) command. Each must be used separately. The
parameter list for these control codes is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-3 reserved ($00)
4 control code ($1A/$1 B)

Ver(/Y (SIC): This code executes the SCSI VERIFY ($2F) command. The parameter
list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-5 reserved ($00)
6 control code ($1 C)

RezeroUntt (SID): This code executes the SCSI REZERO UNIT ($01) command
The parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-3 reserved ($00)
4 control code ($1D)

SmartPort command definitions 29

PatcblCaU ($1E): This code is used to patch one unsupported command to the
command interpreter. It executes program code loaded into RAM bank 2 at $C803.
To use this call, you must write the program code, exactly as you want it to execute,
into bank 2 RAM starting at $C803. Once you have loaded the program code,
executing PatchlCall will automatically execute your command.

Important
Remember that your command Is loaded In RAM; any relnltlallzatlon or Joss of
power will erase lt.

The parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 reserved ($00)
2-3 reserved ($00)
4 control code ($1E)

SetNewSDAT ($1F): This code forces the SCSI card to reinitialize the SDAT and
DIBTAB device tables for all devices resident on the bus. The parameter list for this
control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number (any valid unit number will work)
2-3 RAM address pointer
4 control code ($1E)

AudioSearcb ($20): This code executes the SCSI AUDIO TRACK SEARCH ($C8)
command. The parameter list for this control code is as follows: ·

Byte Definition

0 parameter list length ($03)
1 unit number
2-5 buffer pointer
6 control code ($20)

The buffer contains the control parameters required by the SCSI command for
proper execution, as follows:

Byte Definition

0 play flag (O=hold after search, !=play after search)
1 play mode ($00-$FF)
2-5 search address (lsb-msb)
6 type ($00-$02)

AudloPlay ($21): This code executes the SCSI AUDIO PLAY ($C9) command The
parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-5 buffer pointer Qsb-msb)
6 control code ($21)

30 Chapter 3: The Firmware

The buffer contains the control parameters required by the SCSI command for
proper execution, as follows:
Byte Definition

0 stop flag (O=stop address in 2-5, l=play address)
1 play mode ($00-$FF)
2-5 playback address Osb-msb)
6 type ($0(}.-$02)

AudloPause ($22): This code executes the SCSI AUDIO PAUSE ($CA) command.
The parameter list for this control code is as follows:
Byte Definition

0 parameter list length ($03)
1 unit number
2-5 buffer pointer (isb-msb)
6 control code ($22)

The buffer contains the control parameters required by the SCSI command for
proper execution, as follows:

Byte Definition

0 pause flag (O=pause, !=resume)

AudloStop ($23): This code executes the SCSI AUDIO STOP ($CB) command. The
parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-5 buffer pointer (lsb-msb)
6 control code ($23)

The buffer contains the control parameters required by the SCSI command for
proper execution, as follows:

Byte Definition

(}.-3 stop address (msb-lsb)
4 type ($00-$02)

AudloStatus ($24): This code executes the SCSI AUDIO STATUS ($CC)
command. The parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-5 buffer pointer (isb-msb)
6 control code ($24)

AudloScan ($25): This code executes the SCSI AUDIO SCAN ($CD) command.
The parameter list for this control code is as follows:
Byte Definition

0 parameter list length ($03)
1 unit number
2-5 buffer pointer (lsb-msb)
6 control code ($25)

SmartPort command definitions 31

The buffer contains the control parameters required by the SCSI command for
proper execution, as follows:
Byte Definition

0 direction flag (O=forward, !=reverse)
1 reserved ($00)
2-5 scan start address Osb-msb)
6 type ($0~$02)

ReatlTOC ($27): This code executes the SCSI READ TABLE OF CONTENTS ($Cl)
command. The parameter list for this control code is as follows:
Byte Definition

0 parameter list length ($03)
1 unit number
2-3 buffer pointer (lsb-msb)
4 control code ($27)

The buffer contains the control parameters required by the SCSI command for
proper execution, as follows:
Byte Definition

0 track number
1-2 allocation length (lsb-msb)
3 type ($0~$02)

ReatlQSubcode ($28): This code executes the SCSI READ Q SUBCODE ($C2)
command. The parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-3 buffer pointer Osb-msb)
4 control code ($28)

ReatlHeatler ($29): This code executes the SCSI READ HEADER ($C3) command.
The parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2-3 buffer pointer Osb-msb)
4 control coc!e ($29)

The buffer contains the control parameters required by the SCSI command for
proper execution, as follows:

Byte Definition

0-3 block address

Setlmerll!ave ($2A): This code executes the SCSI FORMAT ($04) command,
changing only the interleave. The parameter list for this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number
2 interleave
3 reserved ($00)
4 control code ($2A)

32 Chapter 3: lhe Firmware

ResetBus (special): This special code forces a reset of the SCSI bus. To use it, you
must load untt number with $00 and control code with $00. The parameter list for
this control code is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number ($00)
2-3 reserved ($00)
4 control code ($00)

lnit ($05)

The Init command forces the firmware to reinitialize the SCSI bus. All the devices
on the SCSI bus are hard reset, the partition offsets for each of the devices online
are reinitialized, and new unit numbers are assigned, where necessary. The
parameter list for this call is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number

Parameter description

unit number: This parameter contains the SmartPort unit number of the target SCSI
device. See Chapter 2 for details on selecting the correct SmartPort unit number for
your target device.

Open ($06)
The Open command opens a logical me on the target device for data I/0. This
command is used for character devices only. The parameter list for this call is as
follows:

Byte Definition

0 parameter list length ($03)
1 unit number

Parameter description

unit number: This parameter contains the SmartPort unit number of the target SCSI
device. See Chapter 2 for details on selecting the correct SmartPort unit number for
your target device.

Close ($07)
The Close command closes a logical file on the target device after a data VO
sequence is completed. This command is used for character devices only. The
parameter list for this call is as follows:

Byte Definition

0 parameter list length ($03)
1 unit number

SmortPort command definitions 33

Parameter description

unit number: This parameter contains the SmartPort unit number of the target SCSI
device. See Chapter 2 for details on selecting the correct SmartPort unit number for
your target device.

Read ($08)
The Read command reads a specified number of bytes from the target device
specified in the unit number parameter. The bytes read by this command are
written into RAM, beginning at the address specified in the data buffer pointer. The
number of bytes to be read is specified in the byte count parameter. The parameter
list for this call is as follows:

Byte Definition

0 parameter list length ($04)
1 unit number
2-3 buffer pointer
4-5 byte count
6-7 address pointer

Parameter description

unit number: This parameter contains the SmartPort unit number of the target SCSI
device. See Chapter 2 for details on selecting the correct SmartPort unit number for
your target device.

data buffer pointer: This parameter contains the beginning address of the host data
buffer to which the target bytes are written.

byte count: This parameter contains the number of bytes to read for this
command.

addresa pointer: This parameter contains the block address of the target block.

Write ($09)

The Write command writes a specified number of bytes to the target device
specified in the unit number p4rameter. The bytes written by this command are
read from RAM, beginning at the address specified in the data buffer pointer. The
number of bytes to be written is specified in the byte count parameter. The
parameter list for this call is as follows:

Byte Definition

0 parameter list length
1 unit number
2-3 buffer pointer
4-5 byte count
6-7 address pointer

34 Chapter 3: The Firmware

Parameter description

unit number: This parameter contains the SmartPort unit number of the target SCSI
device. See Chapter 2 for details on selecting the correct SmartPort unit number for
your target device.

data buffer pointer: This parameter contains the beginning address of the data
buffer from which the target bytes are written.

byte count: This parameter contains the number of bytes to write for this
command.

address pointer: This parameter contains the block address of the target block.

Summary of error codes
Following is a summary of error codes returned by the command interpreter,
including a brief description of the possible causes for each. If there is no error, the
C flag (in the Status register of the microprocessor) is cleared (0), and the
accumulator (the A register) contains zeros. If the call was unsuccessful, the C flag is
set (1), and the A register contains the error code.

Table 3-9
Error codes

Code

$00

$01

Error

BadCmd

Explanation

No error.

A nonexistent command was issued. Check the command
number.

$04 BadPCnt Bad call parameter count. The call parameter list was not
properly constructed. Make sure the parameter list has the
correct number of parameters.

$06 BusErr A communications error between the device controller and
the host. Make sure that RAM is both read-enabled and
write-enabled. Check the hardware (cables and connectors)
between the device and the host. Check for noise sources;
make sure the cable is properly shielded

$11 BadUnit Unit number $00 was used in a call other than Status,
Control,or INIT.

$21 BadCtl The Control or Status code is not supported by the device.

$22 BadCtlParm The Control parameter list contains invalid information.
Make sure each value is within the range allowed for that
parameter.

$27 IOError The device encountered an 1/0 error trying to read or write
to the recording medium. Make sure that the medium
device is formatted and not defective. Make sure the device
is operating correctly.

Summary of error codes 35

Table 3-9 (continued)
Error codes

Code Error

$28 NoD rive

$2B NoWrite

$20 BadBlock

$2E DiskSw

$2F Offline

$30-$3F DevSpec

$40-$4F Reserved

$50-$7F NonFatal

Explanation

The device is not connected. This can occur if the device is
not connected but its controller is, or if there is no device
with the unit number specified.

The medium in the device is write-protected.

The block number is outside the range allowed for the
medium in the device. Note that this range depends on the
type of device and the type of medium in the device (single­
sided versus double-sided disk, for example).

Disk switch took place.

Device off-line or no disk in drive. Check the cables and
connections; make sure the medium is present in the drive,
and that the drive is functioning correctly.

Errors that differ from device to device. See the technical
manual for the device in question for details.

Reserved for future expansion.

A device-specific soft error. The operation was successfully
completed but some exception condition was detected. See
the technical manual for the device in question for details.

Sample Program
The following program is written as an example of coding SmartPort calls to a SCSI
device. The device used for this program is a CD-ROM drive. The program is written
to exercise the basic functions of the drive.

verbose on
long a off
longi off
absaddr on
gen on
65c02 on
mcopy cons.macros
Keep CDTest

CDTester START ;Begin program segment
using Cons Data

CD Test Mainline - Initializes the screen and performs Status, Control,
and Read calls to the CD-ROM.

CDTestMain jsr !nits ;Do program initialization
jsr FindCDROM ;Look for CD-ROM to test
jsr DoStatus ;Do all drive Status calls
jsr DeControl ;Do all drive Control calls
jsr Ran dRead ;Do a random read sequence test
jmp Exit Program

36 Chapter 3: The Rrmware

FIND CD-ROM - This routine first locates the SCSI card and saves its
slot value. Then the card is accessed to see if any
CO-ROMs are connected. If a CD-ROM is located, the
test sequence continues.

On Entry: No params.

On Exit: C=O for CD-ROM found
Leaves proqram if no CD-ROM located

; __ __
FindCD-ROM

FindNot

FindOut

IS SCSI -

On Entry:

On Exit:

Is SCSI

Findloop

NotFound

FoundCD

GotoXY 5,5
WriteStr FindCDstr
jsr IsSCSI
bcs FindOut
jsr IsCD
bee FindOut

GotoXY 38,5
WriteStr NotCDstr
jmp ExitProqram

GotoXY 38,5
WriteStr OKStr
rts

;Print subtest identifier strinq
;See if SCSI card is hooked up

;See if a CD-ROM is attached

;Print no CD-ROM messaqe and exit

;Print OK CD-ROM found messaqe

This routine determines if there is a SCSI card hooked up.
Each slot is cycled throuqh and the SCSI card ID bytes are
searched for.

No params.

c-o for SCSI card found.
C•l for no SCSI card located.

lda t$CO
sta Buffhi
sta CNval
lda UFB
sta Bufflo
ldx 17

lda $CFFF
txa
ora CNval
sta Buffhi
ldy to
lda (Bufflo) ,y
cmp tSCSiiD
beq FoundeD
dex
bne Findloop
sec
rts
clc
rts

;Get initial slot pointer hi
;Place in hiqh buffer pointer

;Get SCSI ID location offset
;Point to in buffer
;Keep counter of slot spaces, start with 7

;Clear the I/O space

;Set the proper $CNFA buffer pointer

;Use indirect addressinq for readinq ID byte

;Did we find SCSI card ID?

;Check next lowest slot, stop at zero
;No SCSI card found

Sample program 37

IS_CD -

On Entry:

On Exit:

Is CD

IsCDLoop

YesCD

This routine determines if there is a CD-ROM attached on
the SCSI card bus.

No params.

C=O for SCSI CD-ROM found.
C=l for no SCSI CD-ROM located,

lda iStatus
sta SPcall
lda iO
sta SPUnit
sta SPCodel
jsr SmartPort
ldx Mybuffer
lda iDIB
sta SPcodel

stx SPUnit
jsr SmartPort
lda Mybuffer
cmp iCDCODE
beq YesCD
ldx SPUnit
dex
bne IsCDLoop
sec
rts
clc
rts

;Set Status call SmartPort opcode

;Do unit number zero call for Status
;Set for all units, zero
;Set SmartPort status call
;Do the SmartPort status call
;Look at result i of devices
;Set DIB status mode
;Set in status code byte

;Get DIB status for each connected device
;Do DIB status call
;Look at first status byte
;Look for disk status now!!!
;Did we find the CD?
;Get last x value
;Can we check another device?
;Thank you sir, may I have another?

Routine SMARTPORT - The SmartPort call is executed from here

Smart Port jsr $C660
SPcall de H'00'
SPList de I2'SPparams•

rts

Parameter list for SmartPort call

SPparams
Numparams de H'03'
SPUn it de H'Ol'
SPBuffer de I2'Mybuffer•
Blocklo
SPCodel de H'03'
Blockhi de H'OO'
Blockvhi de H'00'
Blockxhi de H'OO'
SPCode2 de H'05'

38 Chapter 3: The Armware

;SmartPort call segment
;Place for command number
;Pointer to SmartPort parameter list

;Number of parameters in list
;SmartPort unit number
;Pointer to buffer for call

;Block number or cmd code

DO_STATUS -

On Entry:

On Exit:

DoStatus

DoStatOK

DO CONTROL-

On Entry:

On Exit:

DeControl

DoCntrOK

Issues a SmartPort status call on the device

No params.

C=O for status call good.
C=l for status call error.

GotoXY 5, 7
WriteStr Statustr
lda IIStatus
sta SPcall
lda IIDIB
sta SPCodel
jsr SmartPort
bee DoStatOK
WriteStr Staterr

GotoXY 38,7
WriteStr OKStr
rts

;Set Status call

;Set Device Status Block (DIB) call opcode
;Do the SmartPort status call
;No error on status call?

;Print OK status message

Test a SmartPort control call on the device.

No params.

C=O for SmartPort control call good.
C=l for SmartPort control call error.

GotoXY 5, 9
WriteStr Contrstr
lda IIControl
sta SPcall
lda IITstUnit
sta SPCodel
jsr SmartPort
bee DoCntrOK
WriteStr Cntrerr

GotoXY 38,9
Wr iteStr OKStr
rts

;Write control subtest string
;Set Control call

;Set test until ready control opcode
;Do the SmartPort control call
;No error on control call?

;Print OK CD-ROM found message

Sample program 39

:
RAND_READ -

: On Entry:

On Exit:

RandRead

RandRloop

RandRl

Randdie

Test the device with a series of SmartPort read calls.

No params.

c-o for SmartPort read call good.
C=l for SmartPort read call error.

bit $COlO
GotoXY 5,11
WriteStr Readstr
lda to
sta blocklo
sta blockhi
sta blockvhi
lda tRead
sta SPcall
lda $CFFF
ldy liO
lda (Bufflo), y

jsr SmartPort
bcs RandRdErr

jsr random
and i$04
sta blockvhi
jsr random
sta blockhi
jsr random
sta blocklo
lda i70
sta $24
lda ll21
sta $25
jsr $FC22
lda blockvhi
jsr $FDDA
lda blockhi
jsr $FDDA
lda blocklo
jsr $FDDA
lda $COCO
bmi Randdie
bpl RandRloop

GotoXY 44,11
Writestr OKStr
clc
rts

;Clear keyboard strobe like Sam says

;Init block counters

;Set read call SmartPort opcode

;Reset IO space

;Access $CNOO card space

;Do the SmartPort status call
;Report read error

;Set the new block number hi

;Set the new block number lo

;CH

;CV
;Vtab

;Print block numbers

;Print OK reads message

40 Chapter 3: The Armware

Do request sense, report error, log it, then continue

RandR;iErr
WriteStr Readerrstr
jmp RandRl
rts

Random - Returns a new random number

Random
inc Increment
ldy Increment
lda SDOOO,y
jsr Strip

Randout rts

Strip
iny
eor $DOOO,y
asl a
rts

;Report the read error
;Go do some more

DO !NITS - Initialize all program space, screen, and variables

On Entry:
On Exit:

I nits

No pararns.
No pararns.

InitConsole
SViewPort 0,0,64,64
WriteChar ClrWind
WriteChar Horne
ldx ts
stx
ldx

SelXPos
tJ

stx SelYPos
GotoXY 1,1
WriteStr Titlel
GotoXY 0, 2
ReptChar TitLine
GotoXY 0, 22
ReptChar TitLine
GotoXY 0,23
WriteStr Title2
rts

;Clear the current screen port

;Set the current x select position

;Write test program title to screen

;Write window top underline

;Write window bottom underline

;Write bottom title text

EXIT_PROGRAM - Execute a ProDOS-8 QUIT command

Exit Program
GotoXY 0,23
WriteStr Quitstr
Get Key
jsr mli
de H'65'
de I2'Exitlist'
de H'00'

;What is the input
;Do the "Quit" rnli call, code $65

Sample program 41

;
; Parameter list for the exit call

Exit list de H'04'
de H'00'
de H'OO'
de H'00'
de H'00'
de H'00'
de H'00'

; __ __
;
; Global data storage and equates
; __ __
;

Zero page equates
;
Bufflo equ
Buffhi equ
CrHB equ
TabHB equ
StrPtr equ
StrPtr2 equ
At Call equ

; Program equates

mli
Status
Read
Control
TstUnit
;

Constants

COCO DE
DIB
SCSiiD
;

; Strings

Titlel
Title2
Statustr
Contrstr
Readstr
FindCDstr
Quitstr
NotCDstr
Readerrstr
Stat Err
CntrErr
OKStr

equ
equ
equ
equ
equ

equ
equ
equ

str
str
str
str
str
str
str
str
str
str
str
str

$18
$19
$8d
$89
$83
$85
$42

$BFOO
$00
$01
$04
$05

;Entry point for all mli calls
;SmartPort status command value
;SmartPort read command value
;SmartPort control command value
;SmartPort Test Unit Ready command

$B4
$03
$82

;Device status code for CD-ROM
;SmartPort DIB status code value
;ID value for SCSI ROM in $CNFA

'Apple //e CD-ROM Test Utility
'Currently t~sting CD-ROM! '
'Testing CD-ROM Status calls ••. '
'Testing CD-ROM Control calls ••• •
'Testing CD-ROM Random Read calls ••• •
'Locating CD-ROM drive ••• '
'Any key to exit program -->'
'No CD-ROM drives have been found.'
'Read error encountered'

••. Error on Status call !! !'
••• Error on Control call !! !'

'OK. I

Vl.lA'

42 Chapter 3: The Armwore

Variable

SelXPosds 1
SelYPosds 1
Increment
readcnt
readx2
CNval
Initparm

Tit Line

ULChars

LinCnt

Mybuffer

CD-ROM Test

storage

ds 1
ds 1
ds 1
ds 1
de H'80'

anop
de a'ULChars'
de i '5'
anop
de I1'MTON'
de I1'ReptChar'
de I1'80'
de c'L'
de i1'MTOFF'

ds 1024

END
Utility Program

;Loop counter for reads
;Second loop counter for reads
;Keep the SCN slot pointer here

;Top of the window underline character

;Data buffer for transfers

Sample program 43

Appendix A

Device Partitioning

Device partitioning is a means of dividing a SCSI block-type device into a number
of sections for use by multiple operating systems. These sections are called device
partitions.

A device partition is a set of blocks on a device. Although a single partition may be
set up for use by more than one operating system, all the operating systems that
share a partition must be compatible with each other.

Each of the partitions on a device is defmed in a software table called the Device
Partition Map (DPM). The DPM is itself a partition and is stored on the device it
describes. The DPM is described under •The Device Partition Map {DPM). •

Creating device partitions
To create a partition on a SCSI block device, you must create the Partition
Descriptor Map (PDM) in the Device Partition Map {DPM). These structures are
described in this appendix. You create the PDM by writing data into a series of
fields that define the partition's physical, logical, and operating characteristics.
The utilities disk supplied with your Apple n SCSI Card contains a utility called
HD SC Partition. Running the HD SC Partition partitioning routine does all of this
work for you.

The Apple n SCSI Card Or.oners Guide contains step-by-step instructions on
running HD SC Partition.

The Device Control Block (DCB)
The Device Control Block (DCB) is a special block of device-specific data, stored
on the device itself. The data in the DCB usually consists of setup data for the
device's SCSI controller.

45

The Device Information Block (DIB)
The Device Information Block (DID) is a special block of device-specific data.
The data in the DIB is used to construct the device's DIBTAB and SDAT in SCSI
Card RAM. The information contained in this block varies by device.

The Driver Descriptor Map (DDM)
The Driver Descriptor Map (DDM) is a software table that contains the starting
address, size, and operating system type of all device drivers resident on the device.
Titis information is stored in an 8-byte entry in the DDM, one entry per device
driver. In addition to the information on device drivers, the DDM contains some
general information about the device itself.

Figure A-1 shows the structure of the DDM. The following sections describe the
DDM entries.

Starting r------ ODM data fleld ----~
b~enumb~ r-r-r-r-r-r-r-r-~~~~~~~~

0 ~~~~--------
2 ~~~-~--~~
4 ~~-----~
8

10 ~~-------t

12 ..,_:::.::.:....::....:.;..:;;.;..;......~---
16

~--------------

18 driv~ descriptor 0

26 driv~ descriptor 1

Figure A-1
DDM data structure

signature: This is a 2-byte field containing the hexadecimal number that identifies
this block as the DDM to the operating system or active program. The value of this
field is always $45 52.

size: This is a 2-byte field containing the size of the DDM block in bytes.

block count: This is a 4-byte field containing the number of blocks on the device.

type: This is a 2-byte field containing an ASCII string describing the device type of
the host device. This field usually contains a mnemonic for the device type.

ld: This is a 2-byte field containing the SCSI device ID of the host device.

data start: This is a 4-byte field containing the starting address of the first driver
descriptor entries.

driver count: This is a 2-byte field containing the number of device driver
descriptor entries in the DDM.

46 Appendix A: Device Partitioning

driver descriptor: This is an 8-byte field containing three data fields describing a
device driver. One driver descriptor is made for each device driver resident on the
device. The data structure of driver descriptor is shown in Figure A-2.

Starting
b~enumber ~~~~~~~~~.-.-.-.-.-.-~

Figure A·2
Driver Descriptor data structure

The driver descriptor fields are described in the following paragraphs.
o driver start: This 4-byte field contains the starting address of the device driver

code.
o driver size: This 2-byte field contains the size of the device driver, in bytes.
o driver system: This 2-byte field contains an ASCII string describing the operating

system type of the device driver. This field usually contains a mnemonic for the
operating system type.

The Device Partition Map (DPM)
The Device Partition Map is a software table made up of a variable number of 1-
block entries. The entries in the DPM are called Partition Descriptor Maps (PDMs).
One PDM is constructed for each partition on the device, including the DPM
partition itself. The DPM always begins on pbystcal block 1 on the device, and is
always defined as logical block 0. The DPM consists of as many blocks as there are
PDMs; that is, as many blocks as there are partitions on the device. Figure A-3 shows
the structure of the DPM.

DPM table entries
(1 block= 1 entry)

14 PDMO 1 PDM, 1 PDM2 1 PDM3 1 ~~~~~
Figure A-3
DPM data structure

The Partition Descriptor Map (PDM)
The Partition Descriptor Map (PDM) is a one-block-wide enuy in the DPM table.
The PDM consists of a series of data fields that define the partition. Figure A-4
shows the structure of the PDM. The following sections defme the PDM data fields.

The Partition Descr1ptor Map (PDM) 47

Starting ,-- PDM data field ~
byte number

0
4

8
12
16

48

80
84

88
92
96

100
104
108
112
116

120
136

Figure A-4

signature

DPM block count

start

size

name

type

data start

data size

status

boot start

boot size

boot load
MPioad
jump to
MPjumpto

boot check
MPid

boot arg

PDM data structure

signature: This 2-byte field is set to the PDM ID string, indicating that this block is a
PDM. The PDM ID string is $50 4D.

DPM block count: This 32-bit field is set to the number of blocks in the Device
Partition Map. Because the PDM for the Device Partition Map may not be the first
PDM on the device, this field must be included in every PDM.

start: This 32-bit field is set to the number of the first physical block allocated to the
partition.

size: This 32-bit field is set to the number of blocks allocated to the partition.

name: This field is filled with the physical name of the partition, which may differ
from the logical name of the partition. This field is an ASCII string with a length of
32 bytes. Uppercase and lowercase characters are not distinguished.

Important
If you fill this field with a string of less than 32 bytes. you must terminate the entry
with a NUL (binary zero) character.

You may leave this field empty, provided that you fill the first byte with the NUL
character.

type: This field is filled with an ASCII string describing the purpose or use of the
partition, such as the name of the operating system that uses it. This field is an ASCll
string with a length of 32 bytes. Uppercase and lowercase characters are not
distinguished

Important
If you fill this field with a string of less than 32 bytes. you must terminate the entry
with a NUL (binary zero) character.

48 Appendix A: Device Partitioning

You may leave this field empty, provided that you fill the firSt byte with the NUL
character.

All type strings that begin with the characters Apple are reserved for use by Apple
Computer.

data start: This 32-bit field is set to the number of the firSt block allocated to the
partition that contains valid data. This number may differ from the number set in
start due to the presence of bad blocks or blocks used for boot code or other
special uses.

data size: This 32-bit field is set to the number of blocks allocated to the partition
that contain valid data.

status: This 32-bit field contains nine 1-bit status flags, as shown in Figure A-5.

Bit number .-- Status flag ~

0

2
3
4
5
6
7
8

9-lF

Figure A-5

PDMvald?
anocated?
In use?
bootok?
read ok?
write ok?
pindboot?
ossf 1
ossf2
not used

Status byte data structure

The status fields are described in the following paragraphs.

o PDM valid: This flag is set to 1 for a valid PDM.

D allocated?: This flag is set to 1 if the partition has been allocated by an
operating system or systems.

o In use?: This flag is set to 1 if the partition is currently being accessed. This flag is
intended for use in multiprocessor environments.

o boot ok?: This flag is set to 1 if the partition contains valid boot code.

o read ok?: This flag is set to 1 if the management operating system for this
partition allows reading of the partition. This flag does not apply to operating
systems other than the operating system to which the partition is allocated.

D write ok?: This flag is set to 1 if the management operating system for this
partition allows writing to the partition. This flag does not apply to operating
systems other than the operating system to which the partition is allocated.

D plnd boot?: This flag is set to 1 if the boot code contained in the partition is
position-independenL For some microprocessors, this flag indicates whether
the Boot Load and Jump To (defmed later in this section) addresses must be
adhered to.

o oaf1/0IIf2: These operating system-specific flags are not defmed; they are
available for use by the operating system to which the partition is allocated.

The Partition Descriptor Map (PDM) 49

Important
Any of the following fields marked with the e symbol are required only If the PDM
Valid flag Is set to 1.

boot start: This 32-bit field contains the starting block number of the boot code.

eboot size: This 32-bit field is set to the number of bytes of boot code contained in
the partition.

eboot load: This 32-bit field is set to the address in main memory where the boot
code must be loaded

emp load: This 32-bit field contains any load address data that is microprocessor
spedfic.

e)ump to: This 32-bit field contains the boot code JUMP address in main memory.

emp jump to: This 32-bit field contains any additional boot code JUMP address
data that is microprocessor specific.

eboot check: This 32-bit field contains the boot code checksum. The C code for
this routine is as follows:

unsigned short

unsigned char

unsigned int

unsigned short

checksum = 0;

while (length--)

calculate_checksum(data,lengthl

*data;

length;

checksum;

checksum += *data++;

if (checksum & Ox8000)

checksum = (checksum << 1) 1 1;

else

checksum <<- 1;

if (checksum -- 0)

checksum • Oxffff;

return(checksum);

50 Appendix A: Device Partitioning

emp ld: This field is filled with an ASCII string describing the microprocessor for
which the boot code is valid. This field is an ASCII string with a length of 16 bytes.
Uppercase and lowercase characters are not distinguished.

Important
If you flll this field with a string of less than 16 bytes. you must terminate It with a
NUL (binary zero) character.

You may leave this field empty, provided that you fill the first byte with the NUL
character.

eboot arg: These four 32-bit fields contain arguments that are boot code specific.

The Partition Descriptor Map (PDM) 51

Appendix B

Using
SCSI

Unsupported
Commands

The Apple II SCSI Card command interpreter supports 40 different commands. If,
however, you should fmd that you need to use a SCSI command for which there is
no control code, follow the sir basic steps described in the following sections to
exerute your command on the SCSI casd.

Important
SCSI commands contain a 3-blt field coDed logical Clllt number (ll.ll). The
command Interpreter does not use /un to target devices. Instead, It uses the SCSI
device IDs established by the card firmware during bus lnlttallzatton and loaded
Into the SDAT.

Be sure to load /un with $00.

Select the SCSI card
Before you can begin the process of exeruting your command, you must enable
SCSI card RAM and ROM ($COOO-$CFFP). To do this, selea the slot that the SCSI
card is installed in by reading or writing any byte to $CFPP (to clear any previous
selection) and $Cn00 (to select slot n, the SCSI card slot).

If, for example, your SCSI card is installed in slot 2, you might run the following
code to selea it:

lda to
sta $CFFF : clears slot already selected
sta $C200 ; selects slot 2

The SCSI card is now selected, enabling card RAM and ROM.

53

Set up device tables (SDAT/DIBTAB)
Your device should already have a SDAT and a DIBTAB, set up for it by the SCSI
management firmware during initialization. If, for some reason, your device does
not have device tables already set up, or if you wish to change the parameters
loaded into the SDAT or DIBTAB for your device, create the new tables according
to the structure shown in Chapter 3 and load the data in by hand

If you do set up your own tables, you must set tntt. To set tntt, write $77 to address
SC809.

+ Note: Data transfer (r/w) commands require some additional setup. Refer to the
section on data transfer commands later in this appendix.

Load the command block
The command block for an interpreted SCSI command consists of a 1-byte header
and the standard SCSI command block for your command The header contains a
count of the number of bytes in the command block (exclusive of the header).
Construct your command in RAM, count the number of bytes it contains, load the
count into the header, and write the whole command block into the SCSI buffer. The
buffer begins at $C80D.

If, for example, your device is a Tape Backup 40SC and you want to execute a
RECEIVE QIC-100 SYSTEM DATA ($06) command, you would construct the
command block as follows:

byte 0 $06 ;length is 6 bytes
byte 1 $06 ;command number is 6
byte 2 $00 ;lun is set to 0
byte 3 $00 ;reserved
byte 4 $00 ;reserved
byte 5 $00 ;reserved
byte 6 $00 ;reserved

Call the SCSI management routines
To begin executing your command, you need to call the firmware routines
responsible for managing the SCSI bus phases. DoPhases handles the arbitration,
selection, and command phases. DoStatus handles the status and message-in phases.
You must call these two routines for all of your SCSI commands. Data transfer
commands (r/w) also require calls to DataXin, DataXout, and/or LongData. Other
commands may require calls to other routines.

The management routines are loaded at $CCOO-CFFF in 16 ROM banks. In order to
call a routine you must select its ROM bank and then pass its address. In most cases,
you can call BankSwitch to perform your switching operation. BankSwitch is located
at SCFCC in all banks. To use BankSwitch, load the X register with $00 and theY
register with $nO (where n equals the SCSI card slot number plus eight). Then load
the accumulator as follows:

54 Appendix B: Using Unsupported SCSI Commands

upper nibble = target routine number ($0-$F)

lower nibble = target bank number ($0-$F)

With the SCSI card in slot 2, you call DoStatus as follows:

ldx Jl$00
ldy $AO
jsr banksw

only if card in slot 2, n=(2+8)=A
;execute DoStatus

Table B-1
ROM entry points for SCSI management routines

Routine

Do Phases
_ DoStatus
DataXin
DataXout
LongData
BusFree

Entry point

$00
$03
$10
$11
$92
$3A

Description

Arbitration/selection/command
Status/message-in
Transfers data from target to initiator
Transfers data from initiator to target
Special data transfer routine
Clears SCSI bus to Bus Free from any other phase

Commands involving data transfer, like the RECEIVE QIC-100 SYSTEM DATA ($06)
command, require some additional work to execute. First, you must select the
transfer mode your command will use. There are four modes you can choose
among, as follows:

o lie Pseudo-DMA (PDMA): This mode transfers one 512-byte block of data. This
mode is used for the Apple lie when the necessary handshaking is supported by
hardware.

o IIGS Pseudo-DMA (PDMA): This mode transfers one 512-byte block of data. This
mode is used for the Apple IIGS when the necessary handshaking is supported by
hardware.

o Programmed 1/0 (PIO): This mode is used when the hardware involved does not
support handshaking. PIO is executed in software. This mode must be used for
commands that involve less than a full block of data.

o LongData 1/0 (LDIO): This mode transfers any number of bytes, up to 64K.
LongData 1/0 uses a special routine located in ROM bank 10, rather than the
standard DataXin!DataXout routines located in ROM bank 2.

To select the mode you wish to use, you must execute a read to the correct address,
as shown in Table B-2.

Table B-2
Data transfer mode selection address

Mode

IIePDMA
IIGS PDMA
PIO

LDIO

Address

$C804
$C804
$C804
$C820
Special

Contents

$00
$01
$02-$FF
$FF

You must also store a pointer to the buffer you are using for your command The
firmware looks for the buffer address at $FA-$FB in page zero RAM for
nonextended calls, and at $FA-$FD for extended calls.

Call the SCSI management routines 55

For example, in a nonextended call, code to read into a buffer located at $3300,
bank 0, might look like this:

lda iF$00 ;store low byte in $FA

sta $FA

lda if$33 ;store high byte in $FB

sta $FB

lda tsoo ;store high byte in $FB

sta $FC
$FD

For an extended call, code to read into a buffer located at $3300, bank 9, might look
like this:

lda lt$00 ;store low byte in $FA

sta $FA

lda lt$30 ;store next byte in $FB

sta $FB
lda lt$09 ;store next byte (the bank number) in $FC

sta $FC

lda lt$00 ;store high byte in $FD

sta $FD

You must now set the extended flag at $C81D. Write $00 to this address to set the
flag for a nonextended call. Write $40 to set the flag for an extended call.

If you are using LongData I/0 mode, there are a few more steps you must perform.
Because LongData I/0 mode allows you to read any number and write any block­
multiple number of bytes (up to $FFFF), you must load some extra parameters.

After you have loaded the buffer pointer, as directed earlier, you must load the
number of bytes to be transferred. Load the lsb of the count at $C9EE, and the msb
at $C9FF.

Calculate the number of blocks to be transferred using the following algorithm:

Reading: count=(bytecountlsize)+ 1

Where stze is equal to the bytes per block value for the target device.

Writing: count=bytecountlsize

•!• Note: To read an even block-multiple number of bytes, such as 4096 (2 blocks in
a 2048 bytes/block device), you do not need to add 1 to (bytecountlsize).

For e>..d.mple, if you wanted to read 7000 bytes from a device that had 2048-byte
blocks, the algorithm would look like this:

count=(7000/2048)+ 1 =4

To write 7000 bytes to the same device, you should pad the last block to an even
multiple of 2K, as follows:

count=8192/2048=4 blocks

56 Appendix B: Using Unsupported SCSI Commands

Wait for next bus phase
Before you can call the next management routine, you must be sure the previous
one has completed its execution. Also, you must ensure that the target device has
sufficient time to properly execute the previous command. You control these timing
considerations in one of two ways, depending on the type of management routine
you are executing.

For the DoPhases and DoStatus routines, you control the execution timing by setting
TimeConstant at $C9F6. To do this, load a value between $00 and $FF $C9F6. Each
value is roughly equal to 1.25 seconds of time, so a value of $02 sets the timeout
parameter on the card to 2.5 seconds.

To set TimeConstant for your command, you could use the following code:

lda
wait
sta

i$04

$C9F6

;(1.25 sec)x4 = 5 sec timeout

;TimeConstant

For data transfer routines, you need to write a routine that checks the bus phase the
target device is in (its phase condition), and waits for that phase to be completed.
You should call this routine prior to calling DataXin, DataXout, LongData, or
DoStatus.

The target device's phase condition is loaded at $COn4, bits 2, 3, and 4, where n is
the slot number plus eight. Table B-3 shows the values loaded for the various bus
conditions.

Table B-3
SCSI bus condition

Phase b4

Data-In 0
Data-Out 0

b3

0
0

b2

1
0

Code to wait for a status phase might be as follows:

lda i$FF
sta timer

loop lda $COA4 ;card in slot 2, m• 2+8 =A
and i$1C ;mask out for bits 2,3,4
cmp 1$04 ;are we in data in phase yet'?
beq datainyes ;if yes, quit waiting
dec timer ; if no, keep waiting
bne loop

sec datainno ;flag error if timeout occurred
rts
clc datainyes ;data in phase is happening!
rts

+ Note: The time you must wait for a command to be executed varies from device
to device, and sometimes from command to command. Making your timeout
loops longer than seems necessary, just to be on the safe side, costs you very little
time and is an excellent precaution against timeout variances.

Walt for next bus phase 57

Check the command execution status
In order to determine whether or not your command was successfully executed at
the target device, check the status byte loaded at $C81E. A value of $00 indicates the
Good status. A value of $02 indicates the Check Condition status, which means that
something went wrong. To find out what went wrong, execute the SmartPort
RequestSense ($06) routine (by making a SmartPort Control call) or the SCSI
REQUEST SENSE ($03) command.

Code to check the status byte might look like this:

jsr do a read
lda $C81E ;check status byte
cmp i02 ;is status $02?
bne done ;if not, then quit
jsr do _request_sense ;if so, do RequestSense

58 Appendix B: Using Unsupported SCSI Commands

Glossary

accumulator: The register in the
microprocessor where most computations are
performed.

acdve program: The program that is currently
running on the Apple II.

address: (1) A number that specifies the
location of a single byte of memory. Addresses
can be given as decimal integers or as
hexadecimal integers. A 64K system has
addresses ranging from 0 to 65535 (in decimal)
or from $0000 to $FFFF (in hexadecimal). (2) In
data transmission, a code for a specific terminal.
Multiple terminals on one communication line,
for example, must have unique addresses.

Apple n: A family of computers, including the
original Apple II, the Apple II Plus, the Apple lie,
the Apple lie, and the Apple IIGS.

ASCll: Acronym for American Standard Code
for Information Interchange, pronounced ASK­
ee. A code in which the numbers from 0 to 127
stand for text characters. ASCII code is used for
representing text inside a computer and for
transmitting text between computers or between a
computer and a peripheral device.

assembly language: A low-level programming
· language in which individual machine-language

instructions are written in a symbolic form that's
easier to understand than machine language
itself. Each assembly language instruction
produces one machine-language instruction.

binary: The representation of numbers in the
base-2 system, using only the two digits 0 and 1.
For example, the numbers 0, 1, 2, 3, and 4
become 0, 1, 10, 11, and 100 in binary notation.
The binary system is commonly used in
computers because the values 0 and 1 can easily
be represented in a variety of ways, such as the
presence or absence of current, positive or
negative voltage, or a white or black dot on the

display screen. A single binary digit-a 0 or a
l-is called a bit. Compare decimal,
hexadecimaL

binary digit: The smallest unit of information in
the binary number system; a 1 or 0. Also called a
bit.

bit: A contraction of binary digit. The smallest
unit of information that a computer can hold.
The value of a bit (1 or 0) represents a simple
two-way choice, such as yes or no, on or off,
positive or negative, something or nothing. See
also binary.

bit map: A set of bits that represent the position
and state of a corresponding set of items.

block: A unit of data. A standard block is 512
bytes in size. Nonstandard blocks must be
specially defined.

buffer: A •holding area" of the computer's RAM
where information can be stored on a temporary
basis (buffered). Buffering is often done when
data is being transferred between two devices
operating at different communication rates.

bus: An electrical or electronic connection
between devices. The devices connected by the
bus are said to be resident on the bus, and may
be as small as ICs or as large as mainframe
computers. A bus provides a means to send the
same data, signals, or voltages (fot power supply
buses) to more than one device across a single
carrier (wire, fiber-optic cable, and so forth).

byte: A unit of data consisting of eight
contiguous bits numbered from 0 to 7. Bit 7 of a
byte is called the most significant bit, while bit 0
is called the least signtftcant bit.

call: A request issued by the CPU or a program
to the SCSI card flJ'mware. A call consists of a
command number, a pointer, and a
parameter list.

59

catalog: A list of all files stored on a disk.
Sometimes called a directory.

central processing unit (CPU): The Apple II
computer; specifically, the microprocessor and
its supporting hardware exclusive of any
peripheral cards or devices, RAM, and ROM.

character: Any symbol that has a widely
understood meaning and thus can convey
information. Some characters-such as letters
numbers, and punctuation--can be displayed 'on
the monitor screen and printed on a printer.

character code: A number used to represent a
character for processing by a computer system.

clear: To erase data from memory or reset a
control register. Clearing is usually done by
loading the memory location or register to be
cleared with zeros.

code: (1) A number or symbol that corresponds
to a set of parameters or instructions. (2) The
statements that make up a program.

command: An instruction that causes the target
device to perform a specific operation.
Commands are passed to the f1rmware in calls.

command number: A hexadecimal number
that corresponds to a specific ProDOS,
SmartPort, or SCSI command; each command
has a unique command number within its group
(SCSI, ProDOS, or SmartPort).

command register: A location in a device
controller that stores control information.
Compare data register.

control code: A hexadecimal number that
corresponds to a particular control function for
an external SCSI device.

CPU: See central processing unit.

daisy-chain: A group of devices connected to a
host device, where the first device in the •chain"
is connected to the host, the second device is
connected to the first, the third device is
connected to the second, and so on. In the Apple
II, devices in a daisy-chain are connected in
parallel.

data register: A location in a peripheral device
controller that stores data. Compare command
register.

DCB: See Device Control Block.

60 Glossary

decimal: The common form of number
representation used in everyday life, in which
numbers are expressed in the base-10 system,
using the digits 0 through 9. Compare binary,
hexadecimaL

default: The value or condition to which a
variable or parameter is set automatically. The
default value or condition is used by a device or
program unless the user specifies otherwise.

device: A hardware unit, such as a computer, a
disk drive, or a peripheral card.

Device Control Block (DCB): A block of
device-specific data stored on the device itself.
Data in the DCB is usually setup information for
use in initializing the device after power-up or
reset.

Device Information Block (DIB): A block of
device-specific data stored on the device itself.
Data in the DIB is used to construct the SDAT
and DIBTAB for the device.

device partition: A set of blocks on a device set
up for use by one or more operating systems. All
the operating systems using a partition must be
compatible.

Device Partition Map (DPM): A table made up
of a number of 1-block entries c::alled Partition
Descriptor Maps. The DPM always begins on
physical block 1 of any device, and is defined as
logical block 0.

Dm: See Device Information Block.

DIBTAB: A software table loaded into SCSI card
RAM that contains information on the type and
version of the device, as well as the logical size
and accessibility of the device. Often this is the
same information as that contained in the DIB.

DPM: See Device Partition Map.

Driver Descriptor Map (DDM): A table that
contains the starting address, size, and operating
system type of all device drivers resident on the
device. Each descriptor is 8-bytes long, one
descriptor for every driver on the device.

error code: A number or other symbol
representing a type of error.

field: A specific set of data that is related. A field
is always defined by its size, given in bits or bytes.
A field usually has a name as well.

firmware: Programs stored permanently in
read-only memory (ROM). Such programs (for
example, the Applesoft Interpreter and the
Monitor program) are built into the computer at
the factory. They can be executed at any time but
cannot be modified or erased from main
memory.

flag: A variable whose value (1 or 0) indicates
the state of a specific parameter.

hexadecimal: The representation of numbers in
the base-16 system, using the ten digits 0 through
9 and the six letters A through F. For example,
the decimal numbers 0, 1, 2, 3, 4, ... 8, 9, 10, 11, ...
15, 16, 17 would be shown in hexadecimal
notation as 00, 01, 02, 03, 04, ... 08, 09, OA, OB, ... OF,
10, 11. Hexadecimal numbers are easier for
people to read and understand than binary
numbers, and they can be converted easily and
directly to binary form. Each hexadecimal digit
corresponds to a sequence of four binary digits,
or bits. Hexadecimal numbers are usually
preceded by a dollar sign ($).

host: The device that controls the operation of
peripheral devices. The Apple II is a host for the
SCSI card and the external devices connected to
it

host device: See host.

IC: See integrated circuit.

initialize: To set to a predetermined starting
state or value.

input: Data transferred into a computer from
some external source, such as the keyboard, a
disk drive, or a modem.

input/output (I/0): The process by which
information is transferred to and from the
computer and peripheral devices.

instruction: A unit of a machine-language or
assembly-language program corresponding to a
single action for the computer's processor to
perform.

integrated circuit: An electronic
circuit-including components and
interconnections-entirely contained in a single
piece of semiconducting material, usually silicon.
Often referred to as an IC or a chip.

interface: The rules of interaction between two
devices or programs; the electrical, procedural,
and functional conventions that govern the
exchange of data and control signals between
devices.

interface card: A circuit card that implements a
particular interface (such as SCSO by which the
computer can communicate with peripheral
devices such as a hard disk drive.

interrupt: An electronic attention-getter; a
signal sent to the microprocessor that is
intended to force the microprocessor to stop its
current activity and accept input from the device
that sent the interrupt

least sjgniftcant bit: The rightmost bit of a
binary number; bit 0. The least significant bit
contributes the smallest quantity to the value of
the number. Compare most significant bft.

logical block: A block on a device that can be
used by software to store data. Logical blocks on
a device are numbered consecutively from 0, but
may not directly correspond to their physical
block number due to block sparing conducted
during initialization of the device. Compare
pbysJcal block.

logical name: The name of a block, file, table,
device, or other entity in softw.are, that may or
may not correspond to its physical name.
Compare physical name.

main memory: The part of a computer's
volatile (nonpermanent) memory that is directly
accessible to the microprocessor. Auxiliary
memory, such as that contained on peripheral
cards, is mapped into main memory to allow the
microprocessor to access it

mnemonic: A type of abbreviation consisting
of a series of letters and/or numbers that
represent a longer or more complicated name or
title.

most significant bit: The leftmost bit of a byte;
bit 7. The most significant bit contributes the
largest quantity to the value of the number.
Compare least significant bit.

null: Any character or character code that has
no meaning to the operating system or program
interpreting it

Glossary 61

parameter: Any of a set of characteristics whose
value or condition determines the operation of a
program or device.

parameter Ust: The list of characteristics whose
value or condition determines the precise
execution of a SCSI command

Parddon Descriptor Map: A 1-block entry in
the Device Partidon Map consisting of a series
of data fields describing the state of a specific
partition.

PDM: See Partidon Descriptor Map.

physical block: The blocks on the disk itself,
created during initialization, that represent a
specific storage capacity on the device medium.
A physical block may or may not be a logical
block. Compare logical block.

physical name: The name of a block, me, table,
device, or other entity, used for convenience. A
physical name may or may not correspond to
the logical name. Compare logical name.

pointer: A data item that provides the memory
adcfress of some other data item; a pointer
contains the address of some other data.

protocol: A formal set of rules for sending and
receiving data on a communication line.

register: A memory location of a specific size in
which each bit (or byte, depending on the size
and design of the register) has some meaning to
a microprocessor, program, or •smart• IC. IC
registers are sometimes internal to the IC.

resident: Present on; connected to.

SCSI: See Small Computer System
Interface.

SCSI device access table (SDAT): A softw:\re
table stored in the SCSI card RAM that contains a
set of parameters for each SCSI device connected
to the Apple IL

SCSI m number: The number assigned to a
SCSI device based on the position of a hardware
strap, jumper or switch on the device itself ..
Compare unit number.

62 Glossary

shadowing: A process through which the SCSI
card takes over an additional slot in order to
work with ProDOS in supporting four external
device ports.

Small Computer System Interface (SCSI): A
set of mechanical, electrical, and functional
specifications covering the design of peripheral
devices, software, fumware, and computers for
use in small computer systems.

stack: A list in which entries are added (pushed)
or removed (popped) at one end only (the top
of the stack), causing them to be removed in last­
in, flfSt-out (LIFO) order.

standard: A set of rules, specifications, and
procedures used to standardize the design of
products.

system: A coordinated collection of
interrelated and interacting parts organized to
perform some function or achieve some
purpose--for example, a computer system
comprising a processor, keyboard, monitor, and
disk drive.

unit number: A hexadecimal number assigned
to a SCSI device by the firmware, based on the
device's SCSI ID number. Compare SCSI ID
number.

valid partidon: A device partition that has a
PDM created for it in the DPM.

word: In the Apple II, a word is 2 bytes (16 bits).

X register: One of the two index registers in the
6502 microprocessor.

Y register: One of the two index registers in the
6502 microprocessor.

zero page: The fust page (256 bytes) of memory
in the Apple II family of computers. Zero page is
also called page zero or, in the Apple IIGS, the
direct page. Because the high-order byte of any
address in this page is zero, only the low-order
byte is needed to specify a zero-page address;
this makes zero-page locations more efficient to
address, in both time and space, than locations
in any other page of memory.

A
Apple II internal bus 6
Apple II microprocessor 5, 18
Apple II SCSI bus 8-10
AudioPause 31
AudioPlay 30-31
AudioScan 31-32
AudioSearch 30
AudioStatus 31
AudioStop 31
Autostart ROM 2

B
bank select logic 6
boot priority 2
bus phase 57

c
cable extender 3
cables

peripheral interface 3
SCSI card 10
system 3, 9

Close command 33-34
command block, loading 54
command execution status 58
command interpreter 16-17

unsupported commands and
53-58

command number, defined 17
command parameters zero-page

write 17
Control command 24-33
CPU-5380 interface logic 7

D
Device Control Block (DCB) 45
Device Information Block CDIB) 46
Device Information Block Table

(DIBTAB) 13-16, 54
example 16

Device Partition Map (DPM) 47

Index

device partitions 45-51
creating 45
defined 45

DeviceReset 25
device select space VO address

map 8
device tables. See Device

Information Block Table; SCSI
Device Access Table

DIBT AB. See Device Information
Block Table

Driver Descriptor Map (DDM) 46-47

E
Eject 26
enabling RAWROM 53
error codes 35-36
ExtendedRead 28
ExtendedSeek 29
extended SmartPort calls 19-20,

55-56

F, G
5380 interface logic 7
5380 SCSI IC 7-8
fiJlilware 11-43

overview 2
Format command 23-24
PormatUnit 28
functional description

(of SCSI card) 5

H
HardReset 28
hardware 3-10

overview 1-2
HD SC Partition 4 5

I, J, K
Init command 33
Inquiry 27
internal bus (Apple II) 6
interpreter. See command

interpreter

L
loading command block 54
locating SmartPort 18-19
LongData 1/0 a.DIO) mode 55

M
microprocessor (Apple 10 5

register state 18
ModeSelect 26
ModeSense 26

N
NCR 5380 SCSI IC 7-8
nonextended SmartPort calls

19-20, 55-56

0
Open command 33

P, Q

parameter list, defined 17
parameters, defined 11
Partition Descriptor Map (PDM)

47-51
partitions. See device partitions
Patch 1 Call 30
peripheral interface cable 3
pin-outs

SCSI card cable 10
system cable 9

pointer, defmed 17
PreventRemoval 29
ProDOS calls 17-18
Programmed 1/0 (PIO) mode 55
programs, sample 36-43

R
RAM 6

enabling 53
Read Block command 22-23
ReadCapadty 27
Read command 34

63

Read.DefectData 27
ReadHeader 32
ReadQSubcode 32
ReadTOC 32
ReassignBlock 26
ReceiveDiagnostic 29
register state (microprocessor) 18
Release 27
RequestSense 26
Reserve 27
ResetBus 33
RezeroUnit 29
ROM 7

enabling 53

s
sample program 36-43
SCSI, defined 1
SCSI American National Standard

for Information Systems 1
SCSI bus (Apple II) S-10
SCSI card cable, pin-outs 10
SCSI commands. See command

interpreter
SCSI Device Access Table (SDAT)

12-13, 54
example 13

64 Index

SCSI ID number 3-5
defined 3

SCSI management 11-17, 54-56
SDAT. See SCSI Device Access

Table
selecting SCSI card 53
SendDiagnostic 27
SetBiockSize 28
Setlnterleave 32
SetNewSDAT 30
SetTimeout 28
shadowing, defined 2
Small Computer System Interface.

See SCSI
SmartPort

calls 1S-20, 36-43
command definitions 2~35
extended vs. nonextended calls

19-20, 55-56
locating 1S-19

StartUnit 29
startup device, using SCSI card as

2
Status command 2~22
StopUnit 29
system cable 3

pin-outs 9

T
TestUnitReady 26
lie Pseudo-DMA (PDMA) mode 55
IIGs Pseudo-DMA (PDMA)

mode 55

u
unit number 3-5

defined 3
unsupported commands (command

interpreter) 53-58

v
Verify code 29

W, X, Y
Write Block command 23
Write command 34-35

z
zero-page write 17

THE APPLE PUBLISHING
SYSTEM

This Apple manual was written,
edited, and composed on a
desktop publishing system using
Apple Macintosh® computers
and Microsoft® Word. Proof
and final pages were created on
the Apple LaserWriter® Plus
printer. POSTSCRIPT®, the
LaserWriter page-description
language, was developed by
Adobe Systems Incorporated.
Some of the illustrations were
created using Adobe
Illustrator™.

Text type is lTC Garamond®
(a downloadable font
distributed by Adobe Systems).
Display type is lTC Avant Garde
Gothic®. Bullets are lTC Zapf
Dingbats®. Some elements, such
as program listings, are set in
Apple Courier, a flxed-width
font.

