
APPLE
PROGRAMMER'S
AND DEVELOPER'S
ASSOCIATION

GS/OS
Reference)
Volume"' .;
seta D'ratt

. .
) ; ·'':.

TM APDA# K25023

,

·~ Apple. II GS/OSTII Reference

Includes System Loader

Volume 1:
Applications and GS/OS

APDADraft

August 31, 1988

C Copyright Apple Computer, Inc. 1988

GSIOS Reference

ti Apple Computer, Inc.

This manual is copyrighted by Apple or by Apple's
supplim, wilh all rights re:seMd. Under the copyright
laws, this manual may not be copied, in whole or in
part, wilhout the written consett of Apple Computer,
Inc. This exception does not allow copies to be made
for others, whether or not sold, but all of the material
purchased may be sold, given, or lent to another
person. Under the law, copying includes translating
into another language.

C Apple Computer, Inc., 1988
20525 Mariani A venue
Cupertino, CA 95014
(408) 996-1010

Apple, the Apple logo, AppleTalk, Apple IIGS,
DuoDisk, ProDOS, Macinrosh, and IIGS are registered
uademarks of Apple Computer, Inc.

APDA, Finder, ProFUe, and UniDisk are trademarks of
Apple Computer, Inc.

Simultaneously published in the United Slates and
Canada.

212U88

Draft 3 (APDA) 8/31/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

Contents

Figures and Tables xiv

Preface I 1
About this book I 2

How to use this book I 2
What it contains I 3
Other materials you'll need I 5
VISual cues I 5
Tenninology I 5
Language notation I 6

Roadmap to the Apple IIGS technical manuals I 6
Introductory Apple llGS manuals I 7
Apple llGS machine-reference manuals I 9
Apple IIGS Toolbox manuals I 10
Apple IIGS operating-system manuals I 10
All-Apple manuals I 11

The APW manuals I 11
The MPW llGS manuals I 12
The debugger manual I 12

Introduction What is GSIOS? I 13
The componenrs of GSIOS I 14

GSIOS Fearures I 16
File-system independence I 16
Enhanced device support I 16
Speed enhancemenrs I 17
Eliminated ProDOS restrictions I 17
ProDOS 16 compatibility I 17

8131/88

Contents iii

. GSIOS Reference (Volume 1) DJU/t 3 (APDA)

Where to fmd call descriptions I 17

GSIOS system requirements I 19

Background to the development of GSIOS I 20

Part I The Appllcatlon Level I 23

1 GSIOS Abstract Flle System I 2S
A high-level interface I 26

iv GS/05 Reference

Classes of GSIOS files I 28
Directory flies I 28
Standard files I 29
Extended files I 30

Filenames I 30

Pathnames I 31
Full pathnames I 31
Prefaes and partial pathnames I 32

Prefa designators I 32
Predefined prefa designators I 33

FUe infonnation I 34
FUe access I 35
FUe types and auxiliary types I 35
EOF and mark I 31
Creation and rmdification date and time I 39
Chmcter devices as files I 39

Groups of GSIOS calls I 40
FUe access calls I 41
Volume and pathname calls I 42
System infonnation calls I 43
Device calls I 43

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

2 GS/OS and Its Environment I 4S
Apple IIGS memory I 46

Entry points and fiXed locations I 47

Managing application memory I 48
Obtaining application memory I 49
Accessing data in a movable memory block I 49

Allocating stack and direct page I 51
Automatic allocation of stack and direct page I 52
Definition during program development I 52
Allocation at load time I 52
GS/OS default stack and direct page I 53

System startup considerations I 54

Quitting and launching applications I 54
Specifying whether an application can be restarted from memory I 54
Specifying the next application to launch I 55

Specifying a GS/OS application to launch I 55
Specifying a ProDOS 8 application to launch I 55

Specifying whether control should return to your application I 56
Quitting without specifying the next application to launch I 56
launching another application and not returning I 56
launching another application and returning I 57

Machine state at application launch I 57
Machine state at GSIOS application launch I 57
Machine state at ProDOS 8 application launch I 59
Pathname prefaes at GSIOS application launch I 59
Pathname prefixes at ProDOS 8 application launch I 61

Contents v

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

3 Making GS/OS Calls I 63
GS/OS call methods I 64

C1lling in a high-level language I 64
Calling in assembly language I 64

Making a GS/OS call using macros I 65
Making an inline GS/OS call I 66
Making a stack call I 66

Including the appropriate files I 67

GS/OS pmmeter blocks I 67
Types c:i pmmeters I 67
Parameter block format I 68
GS/OS string format I 68

GS/OS input string structures I 69
GS/OS result buffer I 69

Setting up a pammeter block in meroory I 70

Conditions upon return from a GSIOS call I 71

Checking for errors I 72

4 Accessing GSIOS Flles I 13
The simplest access method I 74

Creating a ftle I 74

vi GS/05 Reference

Opening a fde I 75

Working on open files I 76
Reading from and writing to fdes I 76
Setting and reading the EOF and Mark I 77
Enabling or disabling newline mode I 77
Examining directory entries I 77
Flushing open ftles I 77
Closing ftles I 77

Setting and getting ftle levels I 78

Working on closed fdes I 78
Clearing backup srarus I 79
Deleting files I 79

8131/88

GSIOS Referena (Volume 1) Draft 3 (APDA)

Setting or getting file characteristics I 79

Changing the creation and modification date and time I 80

Copying fdes I 81
Copying single fdes I 81
Copying multiple fdes I 81

5 Working with Volumes and Pathoames I 83
Working with volumes I 83

Getting volume information I 84
Building a list of mounted volumes I 84
Getting the name of the boot volume I 84
Formatting a volume I 85

Working with pathnames I 85
Setting and getting preftxes I 86
Changing the path to a file I 86
Expanding a pathname I 86
Building your own pathnames I 86

Introdudng devices I 87
Device names I 87
Block devices I 87
Character devices I 88
Direct access to devices I 88
Device drivers I 88

6 Working with System Information I 91
Setting and getting system preferences I 92

Checking FST information I 92

Finding out the version of the operating system I 92

Getting the name of the current application I 93

Contents vii

GS/OS Reference (Volume 1) Draft 3 (APDA) 8/31188

7 GS/OS Call Reference I 95
The parameter block diagram and description I 96
$2010 BeginSession I 91

$2031 Bindlnt I 98

$2004 ChangePath I 99

$200B ClearBackup I 101

$2014 Close I 102

$2001 Create I 103

$202E DControl I 108

$2002 Destroy I 110

$202C Dinfo I 112

$202F DRead I 116

$2020 DStarus I 118

$2030 DWrite I 120

$201E EndSession I 122

$2025 EraseDisk I 123

$200E ExpandPath I 125

$2015 Flush I 127

$2024 Format I 129

$2028 Get.BootVol I 131

$2020 GetDevNumber I 132

$201C GetDirEntry I 134

$2019 GetEOF I 139

$2006 GetFilelnfo I 140

$202B GetFSTinfo I 144

$201B GetLevel I 147

$2017 GetMark I 148

$2027 GetNarne I 149

$200A GetPrefiX I 150

$200F GetSysPrefs I 151

viii GS/OS Reference

GSIOS Reference (Volume 1)

$202A GetVersion I 152

$2011 Newline I 153

$2000 Null I 155

$2010 Open I 156

Draft 3 (APDA)

$2003 OSShutdown 161

$2029 Quit I -163

$2012 Read I 165

$201F SessionSratus 1 168

$2018 SetEOF I 169

$2005 SetFilelnfo I 171

$201A SetLevel I 175

$2016 Se~k I 176

$2009 SetPreflX I 178

$200C SetSysPrefs I 180

$2032 Unbindlnt I 182

$2008 Volume I 183

$2013 Write I 185

Part n The Flle System Level I 187

8 Flle System T.ran.slators I 189

The FST Concept I 190

Calls handled by FSTs I 192

Programming for multiple file systems I 193
Don't assume file characteristics I 193
Use GetDirEntry I 194
Keep rebuilding your device list I 194
Handle errors properly I 194
FSTs and file-access optimization I 195

Present and future FSTs I 195

Disk initialization and FSTs I 196

8/31/88

Contents ix

GSIOS Reference (Volume 1) Draft 3 (APDA)

9 The ProDOS Fsr I 199

'Ibe ProOOS file system I 200

GS/OS and the ProDOS FST I 200

Calls to the ProOOS FST I 201
GetDirEntry ($201C) I 201
GetF"delnfo ($2006) I 202
SetFileinfo ($2005) I 202

10 The High Sierra Fsr I 203

CD-ROM and the High Sierra/ISO 9660 fonnats I 204

Umitations of the High Sierra FST I 205

Apple extensions to ISO 9660 I 201

High Sierra FST calls I 208
GetFUeinfo ($2006) I 209
Volume ($2008) I 210
Open ($2010) I 210
Read ($2012) I 211
GetDirEntry ($201C) I 212

$2033 FSTSpecific I 214
What a map table is I 215
MapEnable (FSTSpeciflc subcall) I 216
Get.MapSize (FSTSpecific subcall) I 217
Get.MapTable (FSTSpecific subcall) I 217
SetMapTable (FSTSpecific subcalD I 218

11 The Character Fsr I 221

Character devices as files I 222

Character FST calls I 222
Open ($2010) I 223
Read ($2012) I 223
Write ($2013) I 224
Close ($2014) I 224
Flush ($2015) I 225

x: GS/OS Reference

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA) 8131/88

Appendixes I 227

Appendix A GSIOS ProDOS 16 cails I 229

$0031 AllOC_INI'ERRUPT I 230

$0004 CHANGE_PATII I 231
-

$000B CLEAR_BACKUP _BIT I 233

$0014 CLOSE I 234

$0001 CREATE I 235

$0032 DEAllOC_INTERRUPT I 239

$0002 DESfROY I 240

$002C D_INFO I 242

$0025 ERASE_DISK I 243

SOOOE EXPAND_PATII I 245

$0015 FLUSH I 247

$0024 FORMAT I 248

$0028 GET_BOOT_VOL I 250

$0020 <;JET_DEV_NUM I 251

$001C GET_DIR_ENTRY I 252

$0019 GET_EOF I 256

$0006 GET_FILE_INFO I 257

$0021 GET_IAST_DEV I 260

$001B GET_LEVEL I 262

$0017 GET_MARK I 263

$0027 GET_NAME I 264

$000A GET_PREFIX I 265

$002A GET_VERSION I 266

$0011 NEWUNE I 267

$0010 OPEN I 269

$0029 QUIT I 271

$0012 READ I 273

Contents xi

GYOS Reference (Volume 1) !)raft 3 (APDA)

$0022 ~_BLcx:K I 275

$0018 SET_EOF I 276

$0005 I SET_FILE_INFO I 2n
$001A SET_LEVEL I 280

$0016 SET_MARK I 281

$0009 SET_PREFIX I 282

$0008 VOLUME I 284

$0013 WRrrE I 286
$0023 WRrrE_BLOCK I 288

AppendJx B ProOOS 16 CaDs and FSTs I 289
The ProDOS fST I 290

The High Sierra fST I 290
GET_FILE_INFO ($06) I 291
VOLUME ($08) I 292
GET_DIR_ENTRY ($1C) I 292

The Character fST I 293
OPEN ($10) I 293
~($12) I 294
WRITE ($13) I 294
CLOSE ($14) I 294
FLUSH ($15) I 295

ProOOS 16 device calls I 295

AppendJx C The GS/OS Exerciser I 291
Starting the Exerciser I 298

Call options I 299

Making GSIOS calls I 299

Other conunands I 301

xi GS/OS Reference

8131/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

Appendix D GSIOS System Disks and Startup I 305
Application system disks I 306
System startup from ProDOS volumes I 307

System startup from non-ProDOS volumes I 308
Startup (boot file routine) I 309
ReadlnFile (boot file routine) I 310
GetBootName (boot file routine) I 311
GetFSTName (boot file routine) I 311
Sample boot file startup routine I 312

Appendix E Apple Extensions to ISO 9660 I 317

What the Apple ~xtensions do I 318

The protocol identifier I 318

The Directory Record SystemUse Field I 320
SystemUseiD I 322

Filename transformations I 324
ProDOS I 324
Macintosh HFS I 325

ISO 9660 associated files I 326

Appendlx F GSIOS Error Codes and Constants I 327

Glossary I 331

8/37/88

Contents xiii

GSIOS Reference (Volume 1) Draft 3 (APDA)

Figures and Tables

Preface I 1
Figure P-1. Roadmap to Apple IIGS technical manuals I 8

Table P-1 Apple IIGS technical manuals I 9

Introduction What Js GS/OS? I 13
Figure 1-1 Interface levels in GSIOS I 14

Figure 1-2 Where to fmd call descriptions in this book. I 19

Part I The Application Level I 23

Chapter 1 GSIOS Abstract Flle System I 25
Figure 1·1 Application level in GSIOS I 26

Figure 1-2 Example of a hierarchical file suucture I 27

Figure 1-3 Direaory fde fonnat I 29

Figure 1-4 Prefixes and partial pathnames I 32

Figure 1-5 Automatic rmvement of EOF and mark I 38

Table 1-1 Examples of prefLX use I 34
Table 1-2 GS/OS file types and auxiliary types I 36

Table 1-3 GS/OS call groups I 41

Chapter 2 GSIOS and Its Environment I 45
Figure 2-1 Apple IIGS mermry map I 46
Figure 2-2 Pointers and handles I 51

Table 2-1 GSIOS vector space I 48

xiv GSIOS Reference

8/31188

GS'OS Reference (Volume 1) Draft 3 (APDA)

Table 2-2 Machine state at GS/OS application launch I 57

Table 2-3 Machine state at GS/OS application launch I 59

Table 2-4 Prefa values when GS/OS application launched at boot time I 60

Table 2-5 Prefa values-GSIOS application launched after GSIOS
application quits I 60

Table 2-6 Prefa values-GSIOS application launched after ProDOS 8
application quits I 60

Table 2-7 Prefa and pathname values at ProDOS 8 application launch I 61

Chapter 3 Making GS/OS Calls I 63
Figure 3-1 GS/OS and Pascal strings I 69

Figure3-2 GS/OS input string structure I 69
Figure 3-3 GS/OS result buffer I 70

Table 3-1 Registers on exit from GS/OS I 71

Table 3-2 Status and control bits on exit from GSIOS I 72

Chapter 4 Accessing GS/OS Flles I 73
Table 4-1 Date and time format I 80

Part u The Flle System Level I 187

Chapter 8 Flle System Translators I 189
Figure8-1 The fde system level in GS/OS I 191

Table 8-1 GS/OS calls handled by FSTs I 192

Chapter 10 The High Sierra FST I 203

Table 10-1 High Sierra FSf calls I 208

Figures and Tables xv

813 I/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

Appendixes I 227

Appendix B ProOOS 16 Calls and Fsrs I 289

Table B-1 High Sierra FST ProDOS 16 calls I 291

Appendix C The GS/OS Exerdser I 297

Figure C-1 Exerciser main screen I 298

Figure C-2 Parameter-setup saeen I 300

Figure C-3 Device-Ust screen I 302

Figure C-4 Modify-memory screen I 303

Table C-1 ASCU table I 304

Appendix D GS/OS System Disks and Startup I 305

Table D-1 Directories and flies on a GS/05 system disk I 306

Appendix E Apple Extensions to ISO 9660 I 317

Table E-1 Defined values for SystemUseiD I 322

Table E-2 Contents of SystemUse field for each value of SystemUseiD I 322

Table E-3 Pro005-to-ISO 9660 fllename transformations I 325

Appendix F GSIOS Error Codes and Constants I 321
Table F-1 GS/05 erroiS I 328

xvi GSIOS Reference

8131/88

GS/OS Reference (Volume 1) Draft 3 (APDA)

Preface

The GS/OS Reference describes a powerful operating system developed
specifically for the Apple® IIGs® computer. GS/QSTM is characterized by fast
execution, easy configurability, multiple file-system access, file access to
character devices, direct device-access, device-independence, compatibility
with the large GS/OS memory space, and compatibility with standard-Apple II
(ProDQS® 8-based) and early Apple IIGs® (ProDOS 16-based) applications.

In two volumes, the GS/OS Reference describes how GS/OS gives applications
access to the the full range of Apple ITGS features, and shows how to create
device drivers to work with GS/OS.

Preface

8/31,88

GYOS Reference (Volunur 1) Draft 3 (APDA)

About this book

The GSIOS Reference is a manual for software developers, advanced programmers, and others who
wish to understand the technical aspects of this operating system. In particular, this manual will be
useful to you if you want to write

• any program that creates or accesses fLies

• a program that catalogs disks or manipulates ftles

• a stand-alone program that automatically runs when the computer starts up

• a program that loads and runs other programs

• any program using segmented, dynamic code

• an interrupt handler

• a device driver

The GSIOS Reference consists of two volumes plus one disk: the GS/OS Exerciser, a program included
on a disk accompanying Volume 1.

The functions and calls in this manual are in assembly-language format If you are programming in
assembly language, you can use the same format to access operating system features. If you are
programming in a higher-level language (or if your assembler includes a GS/OS macro library), you will
use library interface routines specific to your language. Those library routines are not described here;
consult your language manual.

The software described in this book is part of the Apple JIGS System Disk, versions 4.0 and later. Apple
IIGS system disks are available from Apple dealers and from APDA (Apple Programmer's and
Developer's Association).

Note: System disks earlier than version 4.0 use ProDOS 16 as the operating system. Pro DOS 16
is described in the Apple fiGS ProDOS 16 Refemu:e.

How to use this book

This book is primarily a reference too~ although parts of each volume are expb .1:ory.

2 GSIOS Reference

8131188

GYOS Reference (Volume 1) Draft 3 (APDA)

Volume 1 describes the application interface, the high-level parts of GS/OS that your application calls
in order to access files or to modify the operating environment

• The introduction to Volume 1 describes GS/OS in general.

8131188

• Part I of Volume 1 describes how applications interact with GS/OS, and documents all application­
level GS/OS calls.

• Part II of Volume 1 documents the flle system translators (FSTs), the software modules that allow
your program to access fdes from many different file systems. For each FST, Part II lists the
application calls it supports and documents any differences in call handling from the standard
descriptions in Part I.

Volume 2 describes the device interface, the low-level parts d GSIOS that interact with device
drivers to control hardware such as disk drives, communication ports, and the console.

• Part I of Volume 2 documents how your program can use GS/OS calls to access a wide variety of
devices, both block and character devices, and describes the principal device drivers that are
supplied with GS/OS.

• Part II of Volume 2 documents how device drivers interface with GS/OS, and shows you how to write
a GS/OS device driver.

The principal descriptions of all application-level GS/OS calls (other than device calls) are in Part I of
Volume 1. Call descriptions elsewhere in the book consist mainly of differences from the standard
descriptions. The principal descriptions of application-level device calls are in Part I of Volume 2.
Driver calls (low-level device calls used by device drivers) are described in Part II of Volume 2.

If you are writing a typical application, the information in Volume 1 is probably all you will need. If
you need to access devices directly, or if you are writing a device driver, interrupt handler, message
handler, shell, or a large, segmented application, you will need Volume 2 also.

This manual does not explain 65C816 assembly language. Refer to the Apple llGS Programmer's
Workshop Assembler Refermce or the MPW JIGS Assembler Reference for information on Apple IIGs
assembly language programming.

This manual does not give a detailed description of ProDOS 8, the operating system for standard­
Apple II computers (Apple II Plus, Apple lie, Apple lie). For detailed information on ProDOS 8, see
the ProDOS 8 Technical Refermce Manual.

What it contains

GS/OS is described in two volumes. Here is a brief list of the contents of each chapter and appendix
in Volume 1:

Preface 3

GSIOS Referent:~ (Volwu 1) Draft 3 (APDA)

Volume 1. 'l11e Opentfng System: What your applications can do with GS/OS.

Introdudloa. What t. GSIOSl An overview of GS/05.

Part L 'l11e AppUcatloa LeftJ: The uppermost level of GS/OS.
Chapter 1. AppUcatloas au.d GS/OS: A brief overview.
Chapter 2. GS/OS and Its Envfroo.meat: How GS/05 affects your program.
Chapter 3. Maldng GS/OS Calls: The basics of making calls.
Chapter 4. AccessJng GS/OS Files: Accessing block files and character files.
Chapter 5. Working with Volumes and Pathnames: Bypassing files; formatting.
Chapter 6. Working with System Information: Communicating with system software.
Chapter 7. GS/OS Call Reference: Documentation of all application-level standard GS/OS

calls.

Part D. The File System LeftJ: The middle level of GS/OS.
Chapter 8. Fne System Transbtors: How the FST concept works.
Chapter 9. 'l11e ProDOS FST: Details about accessing ProDOS files
Chapter 10. 'l11e High Sierra FST: Details about accessing files on CD-ROM.
Chapter 11. 'l11e Chancter Fsr: Details about accessing character devices as files.

Appendixes
Appendix A. GS/OS ProDOS 16 Calls: Making ProOOS 16 calls under GS/OS.
Appendix B. ProDOS 16 Calls and Fsrs: How each FST handles ProDOS 16 calls
Appendix C. 'l11e GS/OS Exerciser: How to practice GS/OS calls.
Appendix D. GS/OS System Disks and Startup: The major components of a system disk.
Appendix E. Apple Extensions to ISO 9660: Additions to the CD-ROM file format.
Appendix F. GS/OS Error Codes and Constants: A complete listing and description.

Here is a brief lisJ of the geneml contents of Volume 2:

Volume 2. Tbe Dmce Interface: How GS/OS provides access to devices.

The Deftc:e 1eftl iD GS/OS An overview of the lower level of GS/OS.

Part L Usiag Device Drivers: How to make calls to GS/OS drivers.

Part D. Writing a Device Driven How to write a device driver -for GS/OS.

Appendixes: Device driver sample code, description of the System Loader.

4 GS/05 Reference

8131/88

GYOS Referena (Volume 1) Draft 3 (APDA)

Other materials you'll need

In order to write Apple IIGS progi31DS that run under GS/OS, you'll need an Apple IIGS computer and
development~nvironment software. Furthermore, you will need at least some of the reference
materials listed later in the Preface under, •Roadmap to the Apple IIGS Technical Manuals." In
particular, if you intend to write desktop-style applications or desk accessories, which make use of
the Apple IIGS Toolbox, you will need the Apple DGS Toolbox Reference.

The GS/OS Exerciser, desaibed in Appendix C of Volume 1, can be useful for practidng GS/OS calls.

Visual cues

Certain conventions in this manual provide visual cues alerting you, for example, to the introduction
of a new term or to especially important information.

When a new term is introduced, it is printed in boldface the fust time it is used. This lets you know
that the term has not been defmed earlier and that there is an entry for it in the glossary.

Special messages of note are marked as follows:

Note: Text set off in this manner-with the word Note- presents extra information or points
to remember.

Important Text set off in this manner-with the word lmportanl-presents vital information or
instructions.

Terminology

This manual may define certain tenns, such as Apple nand ProDOS, slighdy differently than what you
are used to. Please note:

8131188

Apple D: A general reference to the Apple II family of computers, espedally those that may use
ProDOS 8 or ProDOS 16 as an operating system. It includes the 64 KB Apple II Plus, the Apple lie, the
Apple IIe, and the Apple fiGS.

standard Apple U: Any Apple II computer that is not an Apple fiGS. Since previous members of the
Apple II family share many characteristics, it is useful to distinguish them as a group from the Apple
IIGS. A standard Apple II may also be called an 8-bit Apple II, because of the 8-bit registers in irs
6502 or 65C02 microprocessor.

Preface 5

GSIOS Refmmu (VohuM 1) Draft 3 (APDA) 8131/88

ProDOS: A general term describing the family of operating systems developed for Apple II
computers. It includes both ProOOS 8 and ProDOS 16; it does not include DOS 3.3 or SOS. ProDOS
is aJso a file system developed to operate with the ProDOS operating systems.

ProDOS 8: The 8-bit ProOOS operating system, through vexsion 1.2, originally developed for
standard Apple II computers but compatible with the Apple IIGS. In previous Apple II
documentation, ProDOS 8 is called simply ProOOS.

ProDOS 16: The fltSt 16-bit operating system developed for the Apple IIGS computer. ProDOS 16 is
based on ProDOS 8.

GS/OS: A native<ode, 16-bit operating system developed for the Apple IIGS computer. GS/OS
replaces ProDOS 16 as the preferred Apple IIGS operating system. GS/05 is the system described in
this manual

Language notation

This manual uses certain conventions in conuoon with Apple IIGS language manuals. Words and
symbols that are computer code appear in a rnonospace font:

_CallName_Cl parmblock ;Name of call
bcs error ;handle error if carry set on return

error ; code to handle error return

parmblock ; parameter block

This includes assembly language labels, entry poinrs, and file names that appear in text passages.
GS/OS call names and the names of other system software functions, however, are printed in normal
font in uppercase and lowercase lettexs (for example, GetEntry and LoadSegmentNum). The subclass
of GS/OS calls that are compatible with ProDOS 16 are printed in all uppercase letters and often
include underscore characters (for example, GET_ENTRY).

Roadmap to the Apple fiGS technical manuals

The Apple IIGS personal computer has many advanced features, making it more complex than earlier
models of the Apple II computer. To describe the Apple IIGS fully, Apple has produced a suite of
technical manuals. Depending on the way you intend to use the Apple "iiGS, you may need to refer to a
select few of the manuals, or you may need to refer to most of them.

6 GSIOS Reference

GS/OS Reference (Volume 1) Draft 3 (APDA)

The Apple IIGS technical manuals document Apple IIGS hardware, Apple IIGS system software, and
two development environments for writing Apple IIGS programs. Figure P-1 is a diagram showing the
relationships among the principal manuals; Table P-1 is a complete list of all manuals. Individual
descripions of the manuals follow.

Introductory Apple llGS manuals

The introductory Apple llGS manuals are for developers, computer enthusiasts, and other Apple IIGS
owners who need basic technical information. Their purpose is to help the technical reader
understand the features and programming techniques that make the Apple IIGS different from other
computers.

8131/88

• The Technical Introduction: The Technical Introduction to the Apple JIGS is the first book in the
suite of technical manuals about the Apple llGS. It describes all aspects of the Apple IIGS, including
its features and general design, the program environments, the toolbox, and the development
environment.

You should read the Technical Introduction no matter what kind of programming you intend to do,
because it will help you understand the powers and limitations of the machine.

• The Programmer's Introduction: When you start writing programs that use the Apple IIGS user
interface (with windows, menus, and the mouse), the Programmer's Introduction to the Apple lies
provides the concepts and guidelines you need. It is not a complete course in programming, only a
starting point for programmers writing applications for the Apple IIGS.

The Programmer's Introduaion gives an overview of the routines in the Apple IIGS Toolbox and the
operating environment they run under. It includes a sample event-driven program that demonstrates
how a program uses the toolbox and the operating system.

Preface 7

G~OS Refemta (Volume 1) Draft 3 (APDA)

Figure P·l. Roadmap to Apple llGS technical manuals

To scart findills cut
abaullhe Apple IIGS

To leam bow--­
the Apple IIGs wodll

To lam Apple JIGS
prapmmias

To use the tooRm

To opmre oa files --~
and devices

To wrile Apple IIGS
program~ will the --­
~
system

8 GSIOS Reference

8131188

GSIOS Referena (Volume 1)

Table P-1 Apple IIGS technical manuals

Title

Technical Introduction to the Apple IIGS
Apple llGS Hardware Reference
Apple IIGS Finnware Reference
Progranuner's Introduction to the Apple IIGS
Apple IIGS Toolbox Reference, Volume 1
Apple IIGS Toolbox Reference, Volume 2
ProDOS 8 Technical Reference Manual
Apple IIGS ProDOS 16 Reference

Apple IIGS Programmer's Workshop Reference
APW Assembler Reference
APW C Reference

MPW IIGS Tools Reference
MPW IIGS Assembler Reference
MPW IIGS C Reference
MPW IIGS Pascal Reference

Apple IIGS Debugger Reference

Draft 3 (APDA)

Subject

What the Apple IIGS is
Machine internals-hardware
Machine internals-firmware
Concepts and a sample program
How tools work, some specifications
More toolbox specifications
Standard Apple II operating system
Apple IIGS operating system and loader

UsingAPW
Using the APW Assembler
Using the APW C Compiler

Using the cross-development system
Using the MPW IIGS Assembler
Using the MPW IIGS C Compiler
Using the MPW IIGS Pascal Compiler

Debugger for all Apple IIGS programs

Apple IIGS machine-reference manuals

The machine itself has two reference manuals. They conrain derailed specifications for people who
want to know exactly what's inside the machine.

8131/88

• The hardware reference: The Apple OGS Hardware Reference is required reading for hardware
developers and anyone else who wants to know how the machine works. Information for developers
includes the mechanical and electrical specifications of all connectors, both internal and external.
Information of general interest includes descriptions of the internal hardware and how it affects the
machine's features.

Preface 9

GYOS Referrmce (Volume 1) Draft 3 (APDA) 8131/88

• The firmware reference: The Apple JIGS Firmware Reference describes the programs and subroutines
stored in the machine's read-only memory (ROM). The Firmware Reference includes information
about interrupt routines and low-level VO subroutines for the serial ports, the disk port, and for the
Apple Desktop Bus'~'~~ interface, which controls the keyboard and the mouse. The Firmware Reference
also describes the Monitor program, a low-level programming and debugging aid for assembly­
language programs.

Apple fiGS Toolbox manuals

like the Macintosh, the Apple IIGS has a built-in toolbox. The Apple JIGS Toolbox Reference, Volume 1,
introduces concepts and terminology and tells how to use some of the tools. The Apple IIGS Toolbox
Reference, Volume 2, contains information about the rest of the tools. Volume 2 also tells how to
write and install your own tool sel

If you are developing an application that uses the desktop interface, or if you want to use the Super
Hi-Res graphics display, you'll fmd the toolbox manual indispensable.

Apple IIGS operating-system manuals

The Apple IIGS two preferred operating systems : GS/OS and Pro DOS 8. GS/OS uses the full power of
the Apple IIGS and can access files in multiple flle systems. The GSIOS Reference describes GS/OS and
includes information about the System Loader, which works closely with GS/OS to load programs
into memory.

ProDOS 8, previously called simply ProDOS, is the standard operating system for most Apple II
computers with 8-bit CPUs. As a developer of Apple IIGS programs, you need to use ProDOS 8 only if
you are developing programs to run on 8-bit Apple II computers as well as on the Apple IIGS. Pro DOS
8 is described in the ProDOS 8 Technical Reference Manual.

Note: GSIOS is compatible with and replaces ProDOS 16, the first operating system developed
for the Apple IIGS computer. ProDOS 16 is described in the Apple JIGS ProDOS 16
Reference.

10 GS/OS Reference

GYOS Reference (Volume 1) Draft 3 (APDA)

All-Apple manuals

Two manuals apply to all Apple computers: Human Inlerjace Guilklines: 7he Apple Desktop Interface
and the Apple Numerics Manual. If you develop programs for any Apple computer, you should know
about these manuals.

The Human Interface Guidelines manual describes Apple's standards for the desktop interface to any
program that runs on an Apple computer. If you are writing a conunercial application for the
Apple IIGS, you should be fully familiar with the contents of this manual.

The Apple Numerics Manual is the reference for the Standard Apple Numerics Environment (SANE), a
full implementation of the IEEE Standard for Binary Floating-Point Arithmetic (IEEE Std 754-1985).
If your application requires accurate or robust arithmetic, you'll probably want it to use the SANE
routines in the Apple IIGS.

The APW manuals

Apple provides two development environments for writing Apple IIGS programs. See Figure P-1. One
is the Apple IIGS Programmer's Workshop (APW). APW is a native Apple IIGS development system­
it runs on the Apple IIGS and produces Apple IIGS programs. There are three principal APW manuals:

8131188

• The Programmer's Workshop manual: The Apple JIGS Programmer's Workshop Reference
describes the APW Shell, Editor, Unker, and utility programs; these are the parts of the workshop
that all developers need, regardless of which programming language they use. The APW reference
manual includes a sample program and describes object module format (OMF), the file format used
by all APW compilers to produce files loadable by the Apple IIGS System Loader.

• Assembler. The Apple fiGS Programmer's Workshop Assembler Reference includes the specifications
of the 65816language and of the Apple IIGS libraries, and describes how to use the assembler.

• C compiler: The Apple JIGS Programmer's Workshop C Referrmce includes the specifications of the
APW C implernentaion and of the Apple IIGS interface libraries, and describes how to use the
compiler.

Other compilers can be used with the workshop, provided they follow the standards defined in the
Apple JIGS Programmer's Workshop Referrmce. Several such compilers, for languages such as Pascal, are
now available.

Note: The APW manuals are available through the Apple Progranuner's and Developer's
Association (APDA).

Preface 11

.y ... _'

GYOS Reference (Volume 1) Draft 3 (APDA)

The MPW fiGS manuals

Macintosh Programmer's Workshop (MPW) is one of the two development environments Apple
provides for writing Apple IIGS programs. See Figure P-1. MPW is principally a sophisticated,
powerful development environment for the Macintosh computer. It includes assemblers and
compilers, linkers, and a variety of diagnostic and debugging tools. When used to write Apple IIGS
programs, MPW is a cross-development system-it runs on the Madntosh, but produces executable
programs for the Apple IIGS.

MPW is documented in several manuals, but the parts needed for cross-development-the editor and
the build tooJs-are described in the Macimosh Programmer's Workshop Reference. That book is the
only Macintosh manual you need when writing programs using MPW IIGS.

Four manuals describe the cross-development system. Each programming language has its own
manual. Whichever language you program in, you also need the MPW DGS Tools Reference.

8131/88

• Tools: The MPW DGS Tools Reference describes the tools needed to create Apple IIGS appplications
under MPW. It describes the linker, me-conversion tool, and several other conversion and diagnostic
programs.

• Assembler. The MPW fiGS Assembler Reference describes how to write Apple IIGS assembly-language
programs under MPW. It also documents a utility program that converts source files written for the
APW assembler to files compatible with the MPW IIGS Assembler.

• C compller: The MPW OGS C Reference describes how to write Apple fiGS programs inC under :\!PW.

Note: The MPW IIGS manuals are available through the Apple Programmer's and Developer's
Association (APDA).

The debugger manual

Neither MPW IIGS nor APW includes a debugger as part of the developmenc environment However,
the Apple IIGS Debugger, an independent product, is a machine-language debugger that runs on the
Apple IIGS and can be used to debug programs produced by either MPW IIGS or APW.

The Apple IIGS Debugger is described in the Apple fiGS Debugger Reference.

12 GS/OS Reference

GSIOS Refermce (Volume 1) Draft 3 (APDA)

Introduction What is GS/OS?

GS/OS is the fust completely new operating system designed for the Apple Ilgs
computer. It is similar in inteiface and call style to the ProDOS operating
systems, but it has far greater capabilities because it has many new calls, and it
has much faster execution because it is written entirely in 65816 assembly
language.

Even nx>re important, GS/OS is file-system independent: by making GS/OS
calls, your application can read and write flles transparently among many
different and normally incompatible file systems. GS/OS accomplishes this by
defining a generic GS/OS file inteiface, the abstract file system. Your
application makes calls to that interface, and then GS/OS uses file system
translators to convert the calls and data into formats consistent with individual
me systems.

This chapter gives an overview of the structure and capabilities of GS/OS,
followed by a brief history of the evolution in Apple 11 operating systems from
DOS to GS/OS.

Introduaion: What is GS/OS? 13

8131/88

GYOS Reference (Volume 1) Draft 3 (APDA) 8131188

The components of GS/OS

GS/OS is more complex and integrated than previous Apple II operating systems. As Figure 1 shows,
you can think of it in tenm of three levels of interface: the application leve~ the file system level, and
the device level. A typical GS/OS call passes through the three levels in order, from the application at
the top to the device hardware at the bottom

Figure 1·1 Interface levels in GS/05

Block
device

14 GSIOS Reference

Block
device

Otaracter
device

Application
level

File system
level

Device
level

GYOS Reference (Volume 1) Draft 3 (APDA) 8131/88

• AppUcatJon level: Applications interact with GS/OS mostly at the application level. The
application level processes GS/OS calls that allow an application to access files or devices, or to get
or set specific system information.

In handling a typical GS/OS call, the application level mediates between an individual application
and the flle system level. The application level is described in Part I of this volume.

• Flle system level: The file system level consists of me system translators (FSTs), which ta.ke
application calls, convert them to a specific flle system format, and send them on to device drivers.
FSTs allow applications to use the same calls to read and write files for any number of file systems.
FSTs also allow applications to access character devices (like display screens or printers) as if they
were files.

Note that the file system level is completely internal to GS/OS. Although your applications don't
interact with the file system level directly, you may want to know how calls are translated by different
file system translators. For example, CD-ROM files are read-only, so write calls cannot be translated
meaningfully by an FST that accesses files on compact discs.

In handling a typical GS/OS call, the flle system level mediates between the application level and the
device level. The file system level is described in Part II of this volume.

• Device level: The device level communicates with all device drivers connected to the system. In
handling a typical GS/OS call, the device level mediates between the file system level and an
individual device driver.

The device level of GS/OS has two other types of communication . At the highest level, applications
can bypass the file system level entirely by making device calls, which are calls that directly access
devices. At the lowest level, device drivers communicate with the device level by accepting driver
calls, which are mostly low-level translations of device calls.

Device calls are described in Part I of Volume II; if your application needs direct access to devices,
look there to fmd out how to do it. Driver calls are described in Part II of Volume II; if you are
writing a device driver, look ~re for details.

Another part of system software that is described in this manual is the Apple IIGS System Loader.
The System Loader loads all other programs into memory and prepares them for execution. Although
not strictly part of GS/OS, the System Loader occupies the same disk flle as GS/OS, and works very
closely with GS/OS when loading programs. The System Loader and its calls are documented in
Volume 2. For roost applications, however, its functioning is totally automatic; only specialized
programs such as shells need make loader calls.

Introduction: What is GS/OS? 15

GYOS Reference (Volume 1) Dmft 3 (APDA)

GS/OS Features

This section describes some of the principal GS/OS features of interest to application writers.

File-system independence

Because it uses file system translators, GS/05 accesses non-ProOOS me systems as easily as it
accesses the more familiar (to Apple II applications) ProOOS fdes. It is possible ro gain access to
any file system for which an FST has been written. Several FSTs currently exist; as Apple Computer
creates new Fsrs, they can be very easily added to existing systems.

The GS/OS abstract file system supports both flat and hierarchical fde systems and systems with
specific fde types and access permissions. GS/OS recognizes standard files, directory files, and
e%lenlilld files (two-fork fdes such as the Macintosh uses). Certain GS/05 calls make it easy to retrieve
and use directory information for any file system.

The abstract fde system is cies¢bed in Chapter 1 of this volume. Fsrs are described in Part II of this
volume.

Enhanced device support

All GS/OS device drivers provide a unifonn intelface to character and block devices. GS/OS
supports both ROM-based and RAM-based device drivers, making it easier to integrate new
peripheral devices into GS/05.

GS/OS provides a unifonn input/output ITX>del for both block and character devices. Devices such as
printers and the console are accessed in the same way as sequential fdes on block devices. This can
greatly simplify VO for your application.

Unlike ProOOS 8 and ProOOS 16, GS/OS recognizes disk-switched and duplicate-volume situations,
to help your application avoid writing data to the wrong disk.

Devices are normally accessed through application-level fde calls, described in Part 1 of this volume.
Device drivers are described in Part II of Volume 2.

16 GS/05 Reference

8131/88

GS/OS Reference (Volume 1) Draft 3 (APDA)

Speed enhancements

GS/OS transfers data much faster than ProDOS 8 or ProDOS 16 because it uses disk caching, allows
multiple-block reads and writes, eliminates the duplicate levels of buffering used by ProDOS 16, and
because it is written entirely in 65816 native-mode assembly language.

Disk caching is described in Volume -2.

EJiminated ProDOS restrictions

GS/OS allows any number of open flles (rather than only 8) up to the amount of available R.Ai\1, any
number of devices on line (rather than only 14), and any number of devices per slot (rather than only
2). GS/OS allows volumes and fdes to be as large as 2~2 bytes (rather than only 16 MB for files and 32
MB for volumes).

The GS/OS file interface is described in Chapter 1 of this volume.

ProDOS 16 compatibility

GS/OS includes a complete set of ProDOS 16 calls and implements them just as ProDOS 16 does. All
well-behaved ProDOS 16 applications can run without modification under GS/OS. An added benefit
is that existing ProDOS 16 applications running under GS/OS can now automatically access files on
non-ProDOS disks, and can also access character devices as flles.

Where to find call descriptions

As already noted, there are several categories of calls that programs can make to GS/OS. Broadly,
calls can be divided into appllcation-levd calls (made from application programs to GS/OS) and
low-level calls (made between GS/OS and low-level software such as device drivers). Most
application-level calls are described in Volume 1; most low-level calls are described in Volume 2.
Within these broad divisions, there are several subcategories of calls and call-related descriptions;
each subcategory is described in a different place in the two volumes. The categories are as follows:

In Volume 1:

Introduaion: What is GS/OS? 17

8131/88

GYOS Reference (Volume 1) Draft 3 (APDA)

• standard GS/OS calls: Also called class 1 calls or just GYOS calls, these are the primary calls an
appUC3tion makes to access files or system information. They are application-level caJls. This
category covers all operating system aUs that a typical GS/OS application makes.

8131188

• FST-spedflc Information on GS/OS calls: Beause different ftle systems have different
characteristics, not all respond identially to GS/OS aUs. In addition, each FST can support the
GS/OS call FsrSpedflc, an application-level call whose function is defined individuaHy for each FST.
Therefore, this book includes descriptions of how each FST handles certain GS/OS caJls, including
FSTSpecific.

• ProDOS 16 calls: Also called class 0 caJJs, these are application-level calls that are idential to the
caUs described in the Apple Ogs ProDOS 16 Reference. GSIOS supports these calls so that existing
ProDOS 16 applications can run without modification under GS/05.

• FST-spedfk Information on ProDOS 16 calls: Beause different ftle systems have different
characteristics, not all respond identically to ProDOS 16 caUs. Therefore this book includes
descriptions of how each FST handles Pro005 16 aUs. There is no FSTSpecillc ProDOS 16 call as
there is for GS/05 calls.

In Volume 2:

• GSIOS device calls: These are a subset of the application-level, standard GS/OS calls described in
Volume 1, but they are special because they bypass the file level altogether and access devices
directly.

• Driver-spedflc Information on GS/OS device calls: Because different devices have different
characteristics, not all device drivers respond identically to GS/05 calls. Therefore, this book
includes descriptions of how each GS/OS driver handles certain GS/05 device calls.

• Driver calls: These are caUs that GS/OS makes to individual device drivers. They are low-level calls,
of interest mainly to device~ver writers.

• System service calls: System service calls give low-level components of GS/OS (such as FSTs and
device drivers) a uniform method for accessing system information and executing standard routines.
This book desaibes the system service ails that GS/OS device drivers can make.

• System Loader caUs: These are caUs a program can make to load other programs or program
segments into mermry Although the typical appliation makes no System Loader calls, they are
described in this book so that sheDs and system-level programs an make use of them.

Figure 1-2 shows you where to look in each volume for the principal descriptions of each call
category. For example, the descriptions of all standard G5/05 caDs (except those that access
devices) are in Part I of Volume 1 (Chapter 7); the descriptions of driver calls are in Part II of Volume
2 (Chapter 9).

18 GS/05 Reference

GYOS Reference (Volume 1) Draft 3 (APDA)

Note: Figure 1-2 is reproduced in each Part opening in this book, highlighted in each case to
show the calls described in that part.

Figure 1-2 Where to fmd call descriptions in this book.

Most applications make only the calls described in Part I of Volume 1 (shaded area).

Part I

Volume 1

Part I

GSIOS device ails

Volume2-----______
Dmer-specific
infonnalion on

GSIOS device ails

Part n

FST -1pecific
information on

GSIOsa!Ls
(Olapter 9-11)

Partn

Driver calLs

_________......
System aeMc:e ails

GS/OS system requirements

ProOOS 16ca1Ls
(Appendix A)

FST-specific
information on
ProOOS 16 aDs
(Appendix B)

Appendixes

System Loader ails
(Appendix B)

GS/OS will not run on a standard Apple II computer. It requires an Apple IIGS with a ROM revision of
1.0 or greater, at least 512 KB of RAM, and a disk drive with at least 800 KB c:apadty. A second 800
KB drive or a hard disk is strongly recorrunended.

Introduction: What is GS/OS? 19

8131188

GYOS Refermc~~ (Volume 1) Draft 3 (APDA)

Background to the development of GS/OS

To summarize this overview of GSIOS, this chapter ends with a brief discussion of how GS/OS
evolved from previous Apple II operating systems.

Apple has created seve%21 operating systems for the Apple II family of computers. GS/OS is the latest
in that line; it is related to several earlier systems, but has far greater capabilities than any of them.
Here are thumbnail sketches of the other systems:

8131188

• DOS: DOS (for Di.W Operating System) was Apple's fust operating system. It provided the Apple
computer with its first capability to store and retrieve disk ftles. DOS has relatively slow data
transfer rates by roodem standards, supports a flat (rather than hierarchical) file system, can read 140
KB disks only, has no uniform interrupt support, includes no meroory management, and is not
extensible.

• P35C2I: Apple II Pascal is an Apple implementation and enhancement of the University of California,
San Diego Pascal System. Its lineage is completely separate from the other Apple operating systems.
Apple II Pascal supports only a flat flle system, is characterized by slow, interpretive execution,
provides no uniform support for interruptS, has no meroory management, and is difficult to extend.

• SOS: SOS (for Sophisticated operating System) was developed for the Apple III, but its most
important feature, the ftle system, is the heart of the ProDOS family of operating systems (described
next). SOS gives much faster data transfer than DOS, represents Apple's first hierarchical file system,
supports block devices up to 32 Mb, provides a uniform sequential VO model for both block devices
and character devices, and includes interrupt handling, meroory management, device handling, and
extensibility via device drivers and interrupt handlers. The major defidency of SOS (for standard
Apple II computers) is that it requites at least 256 Kb RAM for effective operation.

• ProDOS 8: ProDOS 8 (originally called ProDOS, for Professional Disk Operating System), brought
some of the advanced features of SOS to 8-bit Apple II computers (Apple II Plus, Apple He, Apple
lie). It requites no roore than 64 Kb of RAM, and in fact can directly access only 64K of memory
space. ProDOS supports exactly the same hierarchical fde system as SOS, but does not have the
uniform I/0 m>del for character devices and files, meroory management, or uniform treatment of
device drivers and interrupt handlers.

• ProDOS 16: ProDOS 16 (ProDOS for the 16-bit Apple IIGS) is the first step toward an operating
system designed specifically for the Apple IIGS computer. It is an extension of ProDOS 8-although
there are a few important additions, it has essentially the same features as ProDOS 8 and supportS
exacdy the same hierarchical flle system. ProDOS 16's main advantage is that it allows applications
to interact with the operating system from anywhere in the 16Mb-Apple IIGS address space.

ll GS/05 Reference

GS/OS Refmmce (Volume 1) Draft 3 (APDA) 8131/88

• GS/OS: G5/05 fully exploits the capabilities of the Apple IIGS. It is a fast, modular, and extensible
operating system that provides a file-system-independent and device-independent environment for
applications. While upwardly compatible from Pro005 16, it corrects deficiencies in ProDOS 16's
VO performance and eliminates its restrictions on number and size of open ftles, volumes, and
devices. G5/05 supports character devices as files, it handles devices uniformJy, and it supports
RAM-based device drivers. G5/0S can create, read and write files among a potentially unlimited
number of different file systems (-including ProDOS).

Although it is an extension of the ProDOS lineage, G5/0S is really a completely new operating system.
As its name suggests, it is designed specifically for the Apple IIGS computer, and it is intended to be
the principal Apple IIGS operating system

Introduction: What is GS/05? 21

GSIOS Reference (Volume 1) Draft 3 (APDA)

Part I The Application Level

Part I

Volume 1

Part!

GSIOS device ails

Volume2 ~

Driver-specific
information on

GSIOS device ails

Part n

FST-specific
information on

GS/Osalls
(O!apter 9-11)

Partn

Driver ails

________......
System service calls

Appendixes

ProOOS 16 calls
(Appendix A)

FST-spedfic
inforrmtion on
ProOOS 16 calls
(Appendix B)

Appendixes

System Loader calls
(Appendix B)

8/31188

GSIOS Refermce (Volume 1) Draft 3 (APDA) 8131188

24 Volume 1: Applications and GSIOS Part 1: The Application Level

GYOS Referena (Volume 1) Drrlft3 (APDA)

Chapter 1 The GS/OS Abstract File System

Two key features of GS/OS are its ability to insulate applications from the
details of (1) the hardware devices connected to the system, and (2) the file
systems used to store applications and their data. This chapter shows how
GS/OS implements these features. It also lists, by category, the GS/OS calls that
an application can make.

Chapter 1: The GS/OS Abstract File System 25

8131188

GYOS Reference (Volume 1) Draft 3 (APDA)

A high-level interface

GS/05 has been designed to insulate you, as the application programmer, from the details of the
system. Normally, you simply make a GS/05 call, and GS/05 routes the call to the correct device.
Conceptually, you can think of G5/05 as looking like the illustration shown in Figure 1-1.

Figure 1-1 Application level in GS/OS

8131/88

Applio.tion
level

Block
device
driver

Block
device

Pro DOS
FSF

Block
device
driver

Block
device

li Volume 1: Applications and GS/OS

High
Sierra FST

Character
device
driver

Char.tcter
device

Charmer
Fsr

Other FST

Chmaer
device
driver

Chmcter
device

Part l: The Application Level

GSIOS Reference (Volume 1) Draft 3 (APDA)

GS/OS can keep your application from dealing with FSfs and devices at all, and thus aUow you to
take a higher-level approach, by supporting files in a hierarchical file system.

In a hierarchial me system, some flles, called directory flles, can contain the names of either files
or other directories. Those directories can in turn contain the names of files or other directories.
Figure 1-2 shows the relationships among files in a hierarchical flle system.

Figure 1-:Z Example of a hierarchical file structure

In GS/OS, the root-level directory is called a volume dlrectory. A volume is a logical entity that
allows you to access the files contained on a physical storage medium Only block devices can be
identified by volume name, and then only if the named volume is mounted. For example, an entire
disk is identified by its volume name, which is the filename of its volume directory.

GS/OS also makes certain assumptions about what each file in this hierarchical file system looks like.
The assumptions are as follows:

• that each flle can be classified as a directory, standard, or extended file

• that each file has a name in a certain format

8/3 7/88

• that the logical location of each file can uniquely identified by a pathname, which is a collection of
the fllenames that lead to it

Chapter 1: The GS/OS Abstract File System !7

GSIOS Reference (Volume 1) Drafl3 (APDA)

• that each file has access privileges

• that each fde has a ftletype and an auxiliary fde type

• that each file has a creation and modification date and time

The following sections define these assumptions.

Classes of GS/OS ftles

Every GS/OS ftle is a collection of bytes on a device.

The three classes of fdes are as follows:

• dJrectory mes, which store information about other mes

• standard flies, which are a collection of a single sequence of data

• extended mes, which are a collection of two sequences of data

Note These classes of files are for block devices. GS/OS also allows you to treat character
devices as if they contained ftles. See Chapter 11 "The Character FST' for more
information.

Directory mes
A dlRctory file contains informational entries about other directories and files. Each entry in the
directory file describes and points to another directory me, standard me, or extended file, as shown
in Figure 1-3.

~ Volume 1: Applications and GS/OS Part I: The Application Level

8131188

GS'OS Reference (Volume 1)

Figure 1·3 Directory file format

FDeenby
(file A)

FDeenby
(file B)

FDeenby
Cfi1e0

More entries

Fileenby
(fllen)

Draft 3 (APDA)

FUen

FileB
(data fork)

FileB
(raource fork)

Directory files can be read from, but not written to (except by GS/OS).

Dlra:tory file (0

file enuy
(file X)

file enuy
OileY)

llkft enlria

File entry
(filez:l

A directory can, but need not, have associated file information such as access controls, file type,
creation and modification times and dates, and so on.

You usually only need to examine directory files when you are creating catalog-type applications;
more information about directory files is given in the section •Examining Directory Entries" in
Chapter 4.

Standard files

Standard files are named collections of data consisting of a sequence of bytes and associated file
information such as access controls, file type, creation and modification times and dates, and so on.
They can be read from and written to, and have no predefined internal fonnat, because the
arrangement of the data depends on the specific file type.

8131/88

~

~

~

Chapter 1: The GS/OS Abstract File System ~

GS'OS Rejem~C~ (Volumt 1) Draft 3 (APDA)

Extended files

Extended mc:s are rwned collections of data consisting of two sequences of bytes and a single set
of me information such as access controls, flle type, creation and modification times and dates, and
so on. The two different byte sequences of an extended fde are called the data fork and the resource
fork. They can be read from and written to, and G5/05 makes no assumptions about their internal
formats; the formats depend on the specific file types.

Filenames

Every G5/0S me is identified by a fderwne. A G5/05 filename can be any number of characters long,
and can include spaces as part of the fllerwne. Your application must encode filenames as sequences
of 8-bit ASCII codes.

A11256 extended ASCII values are legal except the colon (ASCll $3A), although most file system
translators (FSTs) support much smaller legal character sets.

Important Because the colon is the pathrwne separator character, it must never appear in a
fllename. See the next section for more details about separators and pathnames.

If an FST does not support a character that the user attempts to use in a filename, GS/OS returns error
$40 (pathrwne syntax error). Fsrs are also responsible for indicating whether filenames should be
case-sensitive or not, and whether the high-order bit of each character is turned off. See Pan II of
this volume for more information about FSTs.

A fllerwne must be unique within its directory. Some examples of legal filenames are as follows:

file-l

January Sales

lonq file name with spaces and special characters !@JS%

}) Volume 1: Applic3lions and GSIOS Part 1: The Application Level

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

Pathnames

In a hierarchical file system, a file is identified by its path name, a sequence of file names starting
with the name of the volume directory name and ending with the name of the flle. These pathnames
specify the access paths to devices, volumes, directories, subdirectories, and files within flat or
hierarchical me systems.

8131188

A GS/OS pathname is either a full pathname or a partial pathname, as described in the following sections.

Full pathnames

A full pathname is one of the following names:

• a volume name followed by a series of zero or more filenames, each preceded by the same separator,
and ending with the name of a directory flle, standard flle, or extended flle

• a device name followed by a series of zero or more fllenames, each preceded by the same separator,
and ending with the name of a directory flle, standard file, or extended file

A separator is a character that separates filenames in a pathname. Both of the following separators
are valid:

• A colon ":" (ASCII code $3A).

• A slash character • /" (ASCII code $2F)

The first colon or slash in the input string determines the separator. When the colon is the separator, the
constituent filenames must not contain colons, but can contain slashes. When the slash is the separator,
the constituent filenames must not contain slashes or colons. Thus, colons are never allowed in filenames.

Examples of legal full pathnames are as follows:

laloysius/beelzebublcat

:a:b:c

lx
:x

.dlla/b

Examples of illegal full pathnames are as follows:

1 : : : 1: : 1: a •:" must not appear in a filename

1 alb 1 c assuming that the first filename is supposed to be "alb"

Chapter 1: The GS/OS Abstract File System 31

GSIOS Reftre"'. · ! (Volume 1)

/a/b/c/

a/b/c/

Draft 3 (APDA)

cannot have a separator after the last filename

must start with a volume or device name

All calls that require you to name a me will accept either a full pathname or a partial pathname.

Prefixes and partJa1 pathnames

8131/88

A full pathname can be broken down into a preftx and a partial pathname. In essence, the prefix starts at
the beginning of the pathnarne (that is, at the volume or device name) and can continue down through the
last directory name in the path. In contrast, the partial pathname starts at the end of the pathname and
can continue up to, but not include, the volume name or device name. Thus, when the prefix and partial
pathname are combined, they yield the full pathname. Figure 1-4 illustrates the possible prefix and partial
pathname portions of a single full pathname.

Figure 1-4 Prefixes and partial pathnames

1118~~~1

IBB~DlrAfyPiJej

.... ,.,.,.·m Prefix

f:::::J Partial paduwne

Prefixes are convenient when you want to access many ftles in the same subdirectory, because you
can use a prefix designator as a substirute for the prefix, thus shortening the pathname references.

Preflz tksignators

A prdlx designator takes the place of a prefix, and can be

• A digit or sequence of digits followed by a pathname separator. The digits specify the prefix number.
Thus, the prefix designators "002:" and "21" both specify prefix number 2.

• The asterisk character(') followed by a pathname separator. This special prefix designator specifies
the volume from which GS/OS was last booted. -

• Nothing. This is identical to prefix 0 rmat is, equal to "0:" or "00000/").

32 Volume 1: Applications and GSIOS Part 1: The Application Level

GYOS Reference (Volume 1) Draft 3 (APDA) 8131188

If you supply a partial pathname that doesn't contain a prefiX designator to G5/05, G5/05 automatically
creates the full pathname by adding the prefiX designator 0/ in front of the partial pathname. GS/05
detennines the separator for a partial pathname in the same way that it determines the separator for a full
pathname.

Note: Although you may use a prefiX designator as an input to the G5/0S SetPreflx call,
prefiXes are always stored in memory in their full pathname form (that is, they include no
prefiX designators themselves).

GS/OS supports two types of prefiXes, as follows:

• Short prdixes, referred to by the prefiX designators ... and "0" through "7," cannot be longer than 63
characters. Short prefiXes are identical to the prefiXes supported by ProDOS 16.

• Long prefixes, referred to by the prefiX designators •a• through •31," can contain up to about 8,000
characters.

This means that GS/OS allows you to set 32 prefiXes. You set and read prefiXes using the standard
GS/OS calls SetPrefJ.X and GetPrefJX. GetPrefJX returns a string in which all separators are colons
(ASCII $3A) and alphabetic characters have the same case in which they were entered by way of a
SetPreflx call.

Predefined prejlz tlesignators

For programming convenience, some prefiX designators have predefined values. One has a fJ.Xed
value, and the others have default values assigned by GS/OS at application launch (see Tables 2-4
through 2.0 in Chapter 2). The most important predefmed prefiX designators are as follows:

•; the boot prefiX-it is the name of the volume from which the presently running GS/OS was booted.

0/ the default prefa (automatically attached to any partial pathname that has no prefix number)-it
has a value dependent on how the current program was launched. In some cases it is equal to the boot
prefix.

1/ the application prefiX-it is the full pathname of the subdirectory that contains the currently running
application.

21 the system run-time libmy prefiX-it is the pathname of the subdirectory (on the boot volume) that
contains the run-time library flies used by applications. Run-time libraries are described in Volume 2.

Your application can assign the rest of the prefiXes. In fact, once your application is running, it can
also change the value of any prefiX (including 0/, 1/, or 2/) except prefiX •;.

Chapter 1: The GS/OS Abstract File System 33

GSIOS Refereru:s (Volume 1) Drrlft 3 (APDA)

Table 1-1 shows some examples of prefa use. They assume that prefa 0/ is set to !YOLUME1/ and
prefa 5/ is set ro /VOLUMEl/I'EXT.FILES/. The pathname provided by the application is compared
with the full pathname constructed by GS/05.

Table 1-1 Examples of prefix use

• Full pathname provided:

as supplied: IVOLUME1/I'EXT.FILES/CHAP.3
as expanded by GS/05: IVOLUMEl!I'EXT.FILES/CHAP .3

• Partial pathname-implicit use of prefix /0:

as supplied: GS.05
as expanded by GS/05: IVOLUME1/GS.05

• Explicit use of prefiX /0:

as supplied: 0/SYSTEMIFINDER
as expanded by G5/05: IVOLUME1/SYSTEMIFINDER

• Use of prefa 5/:

as supplied: 5/CHAP.12
as expanded by G5/05: !YOLUMEl!fEXT.FILES/CHAP.12

File information

GS/OS files are marked as having several characteristics, including those that follow:

• Access pennissions ro the me

• File type and auxiliary type of the file

• The size of the fde and the current reading-writing position in the file

• Creation and modification date and time

Your application can access and modify this information, as introduced in the following sections and
described more completely in Chapter 4, • Accessing GS/OS Files. •

34 Volume 1: Applications and GSIOS Part 1: The Application level

8/31/88

GS/05 Reference (Volume 1) Draft 3 (APDA)

File access

The characteristic of me access determines what operations can be performed on the file. Several
GS/OS calls read or set the access attribute for the me, which can determine the following
capabilities:

• whether the me can be destroyed

• whether the me can be renamed

• whether the me is invisible; that is, whether its name is displayed by file-cataloging applications

• whether the flle needs to be backed up

• whether an application can write to the file

• whether an application can read from the me

File types and auxiliary types

The flle type and auxiliary type of a me do not affect the contents of a file in any way, but do
indicate to GS/OS and other applications the type of infonnation stored in the file. Apple Computer
reserves the right to assign file type and auxiliary type combinations, except for the user-defined file
types $F1 through $F8.

Important: If you need a new ft.le type or auxiliary type assignment, please contact Apple Developer
Technical Support.

Table 1-2 shows the valid table types. In Table 1-2, the descriptions under the Auxiliary type column
have the following meanings:

• Application specific means that the auxiliary type specifies which application created the file

• Way the :c:c::x is stored means the auxiliary type differentiates between various storage methods

• Upper/lower case in filename means that Apple Works uses 15 bits of the auxiliary type word Cit's a
word on disk, instead of a long word, for the ProOOS file system) to flag whether to display that
letter of the fllename in lowercase

8131188

• Not loaded if bU 15 is set means that GS/OS won't load or execute files like DAs and Setup files if bit 15
of the auxiliary type is set ·

• APW language type is the language designation for APW source files

• Load addn!ss in bank for BASIC.SYSTEMis the default load address for ProDOS 8 executable binary
files (file type $06)

Chapter 1: The GS/OS Abstraa File System 35

GSIOS Re[erent:8 (Volume 1) Draft 3 (APDA) 8131188

• Random-access record length specifies the record length for an ASCII text file (file type S04)

Table 1-2 GSIOS ftle types and auxiliary types

me
type Dqqfpdog mmaatype
$00 Uncategorized me
$01 Bad blocks file
$04 ASCli tell file Random-access record-length (O•Sequential file)
$~ Binary rue Load address in bank for BASIC.SYSTEM
$(l! Double Hi-Res me
SOP Direaayflle
$19 AppleW<rks database file Upper/lower case in ftle name
$1A AppleWorics word processor me Upper/lower case in me name
$1B AppleW<rks spreadsheet file U pperflower case in me name
$50 Word processa file Application spec:itic
$51 Spreadsheet file Application speci.tic
$52 Database file Application specifiC
$53 Object-oricnled graphics file Application specifiC
$54 Desktop publishing me Application specifiC
$55 Hypermedia file Application specifiC
$56 Educational data me Application specifiC
$57 Scatbnery me Application specifte
$58 Help file Application specifiC
$59 Communications rile Application specifiC
$5A App1ication configut2tial file Application specifiC
$AB GS BASIC program file
SAC GS BASIC Toolbox definition me
SAD GS BASIC data file
$80 APW source rile APW I.mguage type
$B1 APW object rile
$B2 APW liblaty file
SB3 GSIOS applicatiOn
$84 GS/05 Run-time lib1'2ZY file
$B5 GS/05 Shell applkation file
SB6 GS/05 permanent inirialinrion file Not loaded if high bit set
$B7 Apple UGS temporary initialization ftle Not loaded if high bit set
$88 New Desk Accessory Not loaded if high bit set
$B9 Classic Desk Accessay Not loaded if high bit set
SBA Too! file
SBB Apple IIGS device driver me Not lmded if bitl5 set
$BC Generic load rue

Ji Volume 1: Applications and GSIOS Part I: The Application Level

GSIOS Reference (Volume 1)

SBD
SBP
$CO
$Cl
$C8
$C9

SCA
SD5
SD6
$07
SEO
$E2
SEP
SPO
SPl
SP2
SP3
SP4
SP5
SP6
Sf7
SP8
SP9
SPA
$PB
SFC
$PO
SPE
SPP

GS/05 file system translator
Apple UGS sound file
Apple UGS Super Hi-Res screen image
Apple UGS Super Hi-Res picture me
Apple UGS font me
Apple DGS Fmder dara me
Apple DGS finder icon rile
Music sequence rile
Insuument me
MIDI rile
Telecommunications Library me
AppleTalk Pile
P2.sal area on partitioned disk
BASIC.SYSTEM Command file
User-defmed flle type .tl
User-defmed rile type .t2
User-<lermed flle type .t3
User-defined me type .t4
User-<lermed file type .t5
User-defmed rue type 16
User-<lermed file type .t7
User-defined file type #8
GSIOS System me
Integer BASIC program me
Integer BASIC variable file
AppleSoft BASIC program file
AppJeSoft BASIC Y2riable file
EDASM reloatable code file
ProDOS 8 application

EOF and mark

Draft 3 (APDA)

Not loaded if bit 15 set

Way the image is stored
Way the picture is stored

Appliation-specifJC
Application-specifiC

Appliation-specifJC

To aid reading from and writing to flies, each open standard file and each fork of an open extended
flle has a byte count indicating the size of the ftle in bytes (EOF), and another defining the current
position in the fde (the mark). GS/OS moves both EOF and mark automatically when data is added
to the end of the me, but an application program must move them whenever data is deleted or added
somewhere else in the fde.

EOF is the number of readable bytes in the me. Since the fust byte in a file has number 0, EOF
indicates one position past the last character in the me.

Chapter 1: The GS/OS Abstract File System J7

8131/88

GSIOS Refemu:e (Volume 1) Draft 3 (APDA)

When a file is opened, the mark is set to indicate the fust byte in the file. It is automatically moved
forward one byte for each byte written to or read from the file. The mark, then, always indicates the
next byte to be read from the fde, or the next byte position in which to write new data. It cannot
exceed EOF.

If the mark meets EOF during a write operation, both the mark and EOF are moved forward one
position for every additional byte written to the fde. Thus, adding bytes to the end of the file
automatically advances EOF to accommodate the new information. Figure 1-5 illustrates the
relationship between the mark and EOF.

Figure 1-5 Automatic roovement of EOF and mark

Jtealmdnl polidoll EOF

I
L. z

I
7
I ~

L.
I

7
I ., l ~t-

MAB

After wridnt or radlnt two bytes EOF

L. z z
~

z z ~ I I
:tt"$.t','.

I I I I « ~:·

I
.•.. 1

OlllMARX MAS

OltlEOF EOI

/7777//
I I [I I 11 I

I 11~-ift

An application can place EOF anywhere, from the current mark position to the maximum possible
byte position. The mark can be placed anywhere from the fust byte in the file to EOF. These two
functions can be accomplished using the SetEOF and Setmark calls. The current values of EOF and
the mark can be determined using the GetEOF and Getmark calls.

}J Volume 1: Applicalions and GS/OS Part I: The Application Level

8131/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

Creation and modification date and time

All GS/OS mes are marked with the date and time of their creation. When a file is first created,
GS/OS stamps the me's directory entry with the current date and time from the system clock. If the
me is later modified, GS/OS then stamps it with a modification date and time (its creation date and
time remain unchanged).

The creation and modification fields in a me entry refer to the contents of the me. The values in
these fields should be changed only if the contents of the me change. Since data in the file's directory
entry itself are not part of the me's contents, the modification field should not be updated when
another field in the me entry is changed, unless that change is due to an alteration in the file's
contents. For example, a change in the file's name is not a modification; on the other hand, a change
in the me's EOF always reflects a change in its contents and therefore is a modification.

Remember aJso that a file's entry is a part of the contents of the directory or subdirectory that
contains that entry. Thus, whenever a file entry is changed in any way (whether or not its
modification field is changed), the modification fields in the entries for all its enclosing
subdirectories-including the volume directory-must be updated.

Finally, when a me is copied, a utility program must be sure to give the copy the same creation and
modification date and time as the original me, and not the date and time at which the copy was
created.

Character devices as files

As part of its uniform interface, GS/OS permits applications to access character devices, like block
devices, through file calls. An extension to the GS/OS abstract me system lets you make standard
GS/OS calls to read to and write from character devices. This facility can be a convenience for I/0
redirection.

When character devices are treated as mes, only certain features are available. You can read from a
character device but you cannot, for example, format it Only the following GS/OS calls have
meaning whan applied to character devices: Open, Newline, Read. Write, Close, and Flush (see brief
descriptions of these calls later in this chapter)

In genera~ character •rues• under GS/OS are much more restricted in scope than block files:

• There are no extended or directory files. Character devices are accessed as if they were standard
fLies-single sequences of bytes. And, unlike with block files, it is not possible to obtain or change
the current position (mark) in the sequence.

8131/88

• Character devices are not hierarchical. The only legal pathnarne for a character "file" is a device name.

Chapter 1: The GS/OS Abstract File System IJ

GYOS Reference (Volume 1) Draft 3 (APDA)

• Character devices may recognize some me-access attributes (read-enable, write-enable), but not
others (rename-enable, invisibility, destroy-enable, backup-needed).

• Character •fites• have no flle type, auxiliary type, EOF, creation time, or other information
associated with block-flle directory entries.

In spite of these restrictions, it is generally quite simple and straightforward to treat character
devices as files. For more information on file-access to character devices, see Chapter 11, "The
Character Fsr-.

Groups of GS/OS calls

Chapters 4 through 6 list and describe the GSIOS operating system routines that are normally called by
an application. They are divided into the following categories:

• File access calls (described in Chapter 4)

• Volume and pathname calls (described in Chapter 5)

• System information calls (described in Chapter 6)

In addition to these groups of calls, the Quit call is used when an application quits, and is described
in Chapter 2.

Finally, GSIOS provides calls that directly access devices and install interrupt and signal handlers. For
more detail on those calls, refer to Volume 2. Table 1-3 lists the groups of GS/OS calls.

~ Volume 1: Applications and GS/OS Part 1: The Application Level

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

Table 1·3 GS/OS call groups

volume apd ll"hnamc c;aU. Syacm lofprmatfon glh Deyfce calls
Qeale ($2001)
Destroy ($2002)
SetFileinfo ($2005)
GetFUelnfo ($2006)
GetFileinfo ($2006)
OearBadrup ($2008)
Open (t~>lO)
Newline ($2011)
ReadCm12)
Write ($2013)
CbeCm14)
flush ($2015)
SetMark ($2016)
GetMark ($2017)
SetEof($2018)
GetEof ($2019)
Setl.evel ($201A)
Gcll.evel ($2018)
GetDirEntry ($201C)
Beg~kln($2010)

EndSession ($201E)
SessionStatus ($201F)
ResetCache ($2026)

OlangePath ($2004)
Volume ($2008)
SetPrefix ($2009)
GetPrefiX ($200A)
~th($200E)

Format ($2024)
EraseDisk ($2025)
GetBoctVol ($2028)

SetSysPrefs ($200C)
GetSysPrefs ($200F)
GetName ($2027)
GetVersion ($202A)
GetFSTinfo ($2028)

DControl ($202E)
Dlnfo ($202C)
DRead ($202F)
DStatus ($2020)
DWrite ($2030)

The following sections give you an overview of the capabilities of the calls in these groups. Each call
is discussed in much greater detail in Chapter 7 of this volume.

File access calls

The most corruoon use of GS/OS is to make calls that access files. Your application places a file on
disk by issuing a GS/OS Create call. This call specifies the file's pathname and storage type (standard
file, extended flle, or directory) and possibly other information about the state of the file, such as
access attributes, flle type, creation and modification dates and times, and so on.

Your program must make the GS/OS Open call in order to access a file's contents. For an extended
file, individual Open calls are required for the data fork and resource fork, which are then read and
written independently. When your application opens a file, the application must establish the access
privileges.

Chapter 1: The GS/OS Abstract File System 41

8/]1/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

A fde can be simultaneously opened any number of times with read access. However, a single open
with write access precludes any other opens on the given fde.

While a flle is open, your application can petfonn any of the following tasks:

• Read data from the fde by using the Read call, or write data to the file by using the Write call

8131/88

• Set or get the the Mark by using the SetMark and GetMark calls, and set or get the end of the ftle by
using the SetEOF and GetEOF

• Enable or disable newline rmde by using the Newline call

• If the open fde is a directory fde, get the entries held in the flle by using the GetDirEntry call

• Write changes to the disk for one or more open flles by using the Flush, GetFileLevel, and SetFileLevel
calls .

When you are through working with an open fde, you issue a GS/OS Close call to close the file and
release any memory that it was using back to the Memory Manager.

After the flle has been closed, you can use other GS/OS calls to work with it One of these calls,
ClearBackup, clears a bit so that the flle appears to GS/OS as if it does not need backing up; anmher
GS/OS call, Destroy, can be used to delete a file. Other GS/OS calls that work on closed files are
desaibed in Chapter 5 ..

Two other GS/OS calls, SetFileinfo and GetFileinfo, allow you to access the information in the file's
directory entry. These calls are particularly useful when you are copying files because the calls allow
you to change the creation and modification dates for a file.

A final group of GS/05 calls-BeginSession, EndSession, and SessionSratus-are useful when you
want your application to defer disk writes.

The background infonnation on the file access calls is described in Chapters 1 and 4, and each
individual call is listed alphabetically by name and described in detail in Chapter 7.

Volume and pathname calls

GS/05 provides a whole set of calls to deal with those situations where you want to work directly
with volumes and pathnames. These calls allow you to do the following tasks:

• get information about a currently mounted volume by using the Volume call

• build a list of all mounted volumes by using the Dlnfo, Volume, Oj)en, and GetDirEntry calls

• get the name of the current boot volume by using the GetBootVol call

42 Volume 1: Applications and GSIOS Pan 1: The Application Level

GSIOS Rejemu;e (Volume 1) Dmft 3 (APDA)

• physically format a volume by using the Fonnat call

• quickly empty a volume by using the EraseDisk call

• set or get pathname prefiXes by using the SetPreflX and GetPreflX calls

• change the pathname of a flle by using the ChangePath call

• expand a partial pathname of a file to its full pathname by using the ExpandPath call

The background infonnation on the volume and pathname calls is described in Chapter 5, and each
individual call is listed alphabetically by name and described in detail in Chapter 7.

System information calls

The system infonnation calls allow you to do the following tasks:

• set or get system preferences by using the SeiSysPrefs and GetSysPrefs calls, which allow you to
customize some GS/OS features

• get infonnation about a specified FST by using the GetFsnnfo call

• fmd out the version of the opeating system by using the GetVersion call

• get the filename of the currently executing application by using the GetName call

The background infonnation on the system infonnation calls is described in Chapter 6, and each
individual call is listed alphabetically by name and described in detail in Chapter 7.

Device calls

GS/OS offers a set of calls that allow you to access devices directly, ather than going through any file
system. Most applications will not need to use any of these calls, except perhaps Dlnfo (that use is
described in Chapter 5). The GS/OS device calls allow you to perform the following tasks:

• get general infonnation about a device by using the Dlnfo call

• read infonnation directly from a device by using the DRead call

• write infonnation directly to a device by using the DWrite call

• get status infonnation about a device by using the DStatus call

• send commands to a device by using the DConttol call

A brief summary of the individual calls is listed alphabetically by name in Chapter 7, and information
device calls are completely described in Volume 2.

Chapter 1: The GS/05 Abstract File System 43

8131,88

GSIOS Referena (Volume 1) Drtljt 3 (APDA) 8131188

44 Volume 1: Applications and GS/OS Part 1: The Application Level

GSIOS Reference (Volume 1) Draft 3 (APDA)

Chapter 2 GS/OS and Its Environment

GS/OS is one of the many components that make up the Apple IIGS operating
environmen~ the overall hardware and software setting within which Apple IIGS
application programs run. This chapter describes how GS/OS functions in that
environment and how it relates to the other components.

Chapter 2: GS/OS and its Environment 45

8131/88

GYOS Reference (Volume 1) Draft 3 (APDA)

Apple llGS memory

The Apple IIGS microprocessor can directly address 16 megabyteS (16MB) of memory. The minimum
memory configuration for GS/OS on the Apple IIGS is 512 kilobyteS (512 KB) of RMd and 128 KB of
ROM. As shown in Figure 2-1, the total memory space is divided into 256 banks of 64 KB each.

Figure 2-1 Apple IIGS memory map

$00 $01 $02 $03
SFFFF

$0000 .. ·.·· $CCCX) ·.· ..

S9AOO

RAM

- GSIOS and Sysrem Loader
j,,,,,,,,,,.,.,,, .. j Other reserved memory

Bank Numbers
I

S7P SED . $!1

c::::::J Memory available to die appliadcln

SFO SPl SFD $FE SFF

ROM

GS/OS and the Sy~tem Loader together occupy nearly all addresses from $0000 through SFFFF in
banks $00, $01, $EO, and SEl. In addition, GS/OS reserves (through the Memory Manager)
approximately 9.5 KB just below SCOOO in bank $00 for GS/OS system code and dara. None of these
reserved memory areas is available for use by applications.

Banks $EO and $El are used principally for high-resolution video display, additional system software,
and RAM-based tools. Specialized areas of RAM in these banks include I/0 space, bank-switched
memory, and display buffers in locations consistent with standard Apple II memory configurations.

Other reserved memory includes the ROM space in banks SFE and SFF; they conrain firmware and
ROM-based tools. In addition, banks SFO through SFD are reserved for future ROM expansion.

46 Volume 1: Applications and GSIOS Part 1: The Application Level

8131188

GSIOS Reference (Volume I) Draft 3 (APDA)

Memory allocatable to applications through the Memory Manager is in bank $00, at locations $0800-
$9AOO, bank $01 at $0800-$COOO, and banks $02-$7F at locations $0000-$FFFF (all 64 KB) in each
bank.

For example, a 1 MB Apple llGS Memory Expansion Card makes available 16 additional banks of
memory numbered $02 to $11.

Under most circumstances, you should simply request memory from the Memory Manager and not use
ftxed locations. The only fixed locations you need to use are listed in the next sections.

For more detailed pictures of Apple llGS memory, see the Technical Introduction to the Apple JIGS, the
Apple OGS Hardware Reference, and the Apple OGS Firmware Reference.

Entry points and flXed locations

Because most Apple llGS memory blocks are movable and under the control of the Memory Manager
(see the next section), there are very few fiXed entry points available to applications programmers.
References to fiXed entry points in RAM are strongly discouraged, since they are inconsistent with
flexible memory management and are sure to cause compatibility problems in future versions of the
Apple ITGS. Informational system calls and referencing by handles (see "Accessing a Movable Memory
Block" in this chapter) should take the place of access to fiXed entry points.

The supported GS/OS entry points are $ElOOA8 and E100BO. These locations are the entry points for
all GS/OS calls. The Tool Locator entry point is $E10000, which is the entry point for all Apple IIGS

tool calls, including the System Loader (described in Chapter 2).

Note: How to use the entry points to make GS/OS calls is described in Chapter 3, "Making
GS/OS Calls:

The GS/OS entry points, and the other ftxed locations in bank $E1 that GS/OS supports, are shown in
Table 2-1.

Chapter 2: GS/OS and its Environment 47

8131;88

GYOS Refen!'lla (Volume 1) Draft 3 (APDA)

Table 2·1 GS/OS vector space

Address

$E10000

$E100A8- $E100AB

$E100AC • $E100AF

$E100BO • $E100B3

$E100B4- $E100B9

$E100BA- $E100BB

$E100BC

Descdptlog

Entry vector for all Apple IIGS tool calls.

Entry vector for inllne GS/OS system calls

Reserved for internal use

Entry vector for stack-based GS/OS system calls

Reserved for internal use

Two null bytes (guaranteed to be zeros)

OS_KIND byte-indicates rurrently running operating system, as
follows:

$00 • ProDOS 8

$01- GS/OS

8131188

$E100BD

$FF • none; operating system is being loaded or switched

OS_BOOT byte-indicates the operating system that was initially
booted, as follows:

$00 • ProDOS 8

$01- GS/OS

$E100BE - $E100BF $0000 - GS/OS is not busy

$8()()()..GS/OS is busy processing a system call

Managing application memory

The Memry Manager, a ROM-resident Apple IIGS tool set, controls the allocation, deallocation, and
repositioning of memry blocks in the Apple IIGS. It works closely with GS/OS and the System
Loader to provide the needed memry spaces for loading programs and data and for providing
buffers for input/output All Apple IIGS software, including the System Loader and GS/OS, must
obtain needed memry space by making requests (calls) to the Memory Manager.

~ Volume 1: Applications and GS/OS Part 1: The Application Level

GS/OS Reference (Volume 1) Draft 3 (APDA)

The Memory Manager keeps track of how much memory is free and what parts are allocated to whom.
Memory is allocated in blocks of arbitrary length; each block possesses several attributes that
describe how the Memory Manager can modify it (such as moving it or deleting it), and how it must
be placed in memory (for example, at a fJXed address). See the chapter on the Memory Manager in
the Apple JIGS Toolbox Referrmce for more information.

Besides creating and deleting memory blocks, the Memory Manager moves blocks when necessary to
consolidate free memory. When it compacts memory in this way, it of course can move only those
blocks that needn't be fJXed in location. Therefore, as many memory blocks as possible should be
movable (not faed), if the Memory Manager is to be efficient in compaction.

When a memory block is no longer needed, the Memory Manager either purges it (deletes its contents
but maintains its existence) or disposes of it (completely removes it from memory).

Obtaining application memory

Normal memory allocation and deallocation is completely automatic, as far as applications are
concerned. When an application makes a GS/OS call that requires allocation of memory (such as
opening a me or writing from a ftle to a memory location), GS/OS first obtains any needed memory
blocks from the Memory Manager and then perfonns its tasks. Conversely, when an application
infonns the operating system that it no longer needs memory, that information is passed on to the
Memory Manager, which in tum frees that application's allocated memory.

Any other memory that an application needs for its own purposes must be requested directly from
the Memory Manager. Figure 2-1 shows which parTS of the Apple IIGS memory applications can
allocate through requests to the Memory Manager. Applications for Apple IIGS should avoid
requesting absolute (fiXed-address) blocks. See also the Programmer's Introduction to the Apple IIGS
and the Apple JIGS Toolb Reference.

Accessing data in a movable memory block

To access data in a movable block, an application caMot use a simple pointer because the Memory
Manager may move the block and change the data's address. Instead, each time the Memory Manager
allocates a memory block, it returns to the requesting application a handle referencing that block.

Chapter 2: GS/OS and iiS Environment 49

.··-t-·~--- .• .;.

8131188

GSIOS Referenu (Volume 1) Draft 3 (APDA)

A handle is a pointer to a pointer, it is the address of a fJXed (noruoovable) location, called the
master pointer, that contains the address of the block. If the Meroory Manager changes the location
of the block, it updates the address in the master pointer; the value of the handle itself is not
changed Thus the application can continue to access the block using the handle, no matter how
often the block is ll¥lved in meroory. Figure 2-2 illustrates the difference between a pointer and a
handle.

If a block will always be fiXed in meroory (locked or unll¥lvable), it can be referenced by a pointer
instead of by its handle. To obtain a pointer to a particular block or location, an application can
dereference the block's handle. The application reads the address stored in the location pointed to
by the handle-that address is the pointer to the block. Of course, if the block is ever moved, that
pointer is no longer valid.

GSIOS and the System Loader use both pointers and handles to reference memory locations.
Pointers and handles must be at least three bytes long to access the full range of Apple IIGS memory.
However, all pointers and handles used as parameters by GS/OS are four byres long, for ease of
manipulation in the 16-bit registers of the 65C816 microprocessor.

~ Volume 1: Applications and GS/05 Part 1: The Application Level

8131/88

GYOS Reference (Volume 1) Draft 3 (APDA)

In practice, however, there are sevel21, restrictions on available space. First, only the addresses
between $800 and $COOO in bank $00 can be allocated-the rest is reserved for 1/0 space and system
software. Also, because more than one program can be active at a time, there may be more than one
stack and more than one direct page in bank $00. Furthermore, many applications may want to have
parts of their code as well as their stacks and direct pages in bank $00.

Your program should, therefore, be as _efikient as possible in its use of stack and direct-page space.
The total size of both should probably not exceed about 4 KB in most cases.

Automatic allocation of stack and direct page

Only you can dedde how much stack and direct-page space your program will need when it is running.
The best time to make that decision is during program development, when you create your source
fLies. If you specify at that time the total amount of space needed, GS/05 and the System Loader
will automatically allocate it and set the stack and direct registers each time your program runs.

Definition during program development

You defme your program's stack and direct-page needs by specifying a "direct-page/stack" object
segment (KIND • $12) when you assemble or compile your program. The size of the segment is the
total amount of stack and direct-page space your program needs. It is not necessary to create this
segment; if you need no such space or if the GS/OS default (see the section "GS/OS Default Stack
and Direct Page" later in this chapter) is suffident, you may leave it out

When the program is linked, it is important that the direct-page/stack segment not be combined
with any other object segments to make a load segment-the linker must create a single load segment
corresponding to the direct-page/stack object segment If there is no direct-page/stack object
segment, the linker will not create a corresponding load segment

Allocation at load time

Each time the program is started, the System Loader looks for a direct-page/stack load segment. If
it fmds one, the loader calls the Memory Manager to allocate a page-aligned, locked memory block of
that size in bank $00. The loader loads the segment and passes its base address and size, along with
the program's user ID and starting address, to GS/OS. GS/OS sets the accumulator (A), direct (D),
and stack pointer (S) registers as shown, then passes control to the program:

52 Volume 1: Applications and GSIOS Pan I: The Application Level

8131/88

GYOS Referena (Volume 1) Draft 3 (APDA)

Figure 2-2 Pointers and handles

a. Pointer.

Value d pointer •
Slatting address of memory block

$XXX -----... sxxx

b. Handle:

Value of handle •
address of mas1:er pointer

szzz

rsxxx:
L_ I Master Pointer

-----...... szzz 1-------i

Value of ma.ster pointer •
currenl SWting address of

memory blodt

Allocating stack and direct page

In the Apple IIGS; the 65C816 microprocessor's stack-pointer register is 16 birs wide; that means that,
in theory, the hardware stack can be located anywhere in bank SOO of memory, and the stack can be
as much as 64 KB deep.

The ditect page is the Apple IIGS equivalent to the standard Apple II zero page. The difference is
that it need not be absolute page zero in memory. Uke the stack, the direct page can theoretically
be placed in any unused area of bank $00-the microprocessor's direct register is 16 birs wide, and all
zero-page (direct-page) addresses are added as offsets to the contents of that register.

Chapter 2: GS/OS and its Environment 51

8/31188

GYOS Referena (Volume 1) Dmft 3 (APDA)

A • user ID assigned to the program
D • address of the fU"St (lowest-address) byte in the direct-page/stack space
S • address of the last (highest-address) byte in the direct-page/stack space

By this convention, direct-page addresses are offsets from the base of the allocated space, and the
stack grows downward from the top of the space.

Important: GSIOS provides no mechanism for detecting stack overflow or underflow, or collision of
the stack with the direct page. Your program m~t be carefully designed and tested to
make sure this cannot occur.

When your program terminates with a Quit cal~ the System Loaders Application Shutdown function
makes the direct-page/stack segment purgeable, along with the program's other static segments. As
long as that segment is not subsequently purged, its contents are preserved until the program restans.

Note: There is no provision for extending or moving the direct-page/stack space after its
initial allocation. Beca~e bank $00 is so heavily used, any additional space you later
request may be unavailable-the memory adjoining your stack is likely to be occupied
by a locked memory block. Make sure that the amount of space you specify at link time
fills all your program's needs.

GS/OS default stack. and direct page

If the loader finds no direct-page/stack segment in a file at load time, it still returns the program's
user ID and starting address to GS/OS. However, it does not call the Memory Manager to allocate a
direct-page/stack space, and it returns zeros as the base address and size of the space. GS/OS then
calls the Memory Manager itself, and allocates a 4 KB direct-page/stack segment.

See the Apple JIGS Toolbox Reference for a general description of memory block attributes assigned by
the Memory Ma~ger.

GS/OS sets the A, D, and S registers before handing control to the program, as follows:

A • User ID assigned to the program
D • address of the fU"St (lowest-address) byte in the direct-page/stack space
S • address of the last (highest-address) byte in the direct-page/stack space

When your application terminates with a Quit call, GS/OS disposes of the direct page/stack
segment.

Chapter 2: GS/OS and its Environment 53

8131188

GYOS Reference (Volume 1) Draft 3 (APDA)

System startup considerations

The startup sequence for the Apple IIGS is is invisible to applications and relatively complex, so
funher discussion of the sequence is presented in Appendix 0, •GS/05 System Disks and Startup."
That appendix describes the structure of a valid system disk.

The Apple IIGS startup sequence ends when control is passed to the GS/05 program dispatcher. This
routine is entered both at boot time and whenever an application terminates with a GS/05, Pro DOS
16, or ProOOS 8 Quit call. The GS/05 program dispatcher determines which program is to be run next,
and runs it. After startup, the program dispatcher is permanently resident in memory.

Quitting and launching applications

When you want your app6cation to quit, you issue a GS/OS Quit call. The GS/05 program dispatcher
perfonns all necessary functions to shut down the current app6cation, determines which application
should be executed next, and then launches that app6cation ..

When you issue the Quit call, you can indicate to GS/05 whether your application can be restarted
from memory. You can also specify the next application to be launched, and whether your
application should be placed on the quit return stack so that it will be restarted when the other
program quits. The following sections further explain your options when quitting.

Specifying whether an application can be restarted from memory

When your application sets the restart-from-memory flag in the Quit call to TRUE (bit 14 of the flags
word • 1), the application can be restarted from a dormant state in the computer's memory. If your
app6cation sets the restart-from-memory flag to FALSE (bit 14 • 0), the program must be reloaded
from disk the next time it is run.

If you set the restart-from-memory flag to TRUE, remember that the next time the application is run,
its code and data will be exactly as they were when the application quit Thus, you may need to
reinitialize certain data locations.

54 Volume 1: Applications and GSIOS Part 1: The Application Level

8131/88

GYOS Reference (Volume 1) Draft 3 (APDA)

Specifying the next application to launch

When you are quitting your application, and want to pass control to another application, you supply
the pathname of that application in the Quit call.

Note: GSIOS loads only programs that have a me type $B3, $B5, or $FF.

Specifying a GS/OS application .to Jaunch

You should not specify a device name if you are specifying the pathname of a GS/OS application;
GSIOS returns a fatal error if the device does not contain a disk. The GS/OS program dispatcher does
not handle volume names or fllenames longer than 32 characters.

Specifying a ProDOS 8 application to Jaunch

If you are quitting to a ProOOS 8 application, the pathnarre specified in the Quit call must be a legal
ProOOS 8 pathname. In particular, device names must not be used when specifying the pathname of
a ProOOS 8 application since ProOOS 8 will return a fatal error.

The GSIOS program dispatcher then takes the following steps:

1. Shuts down GS/OS and the System Loader.

2. Allocates all special memory for the application.

3. Loads and starts up ProDOS 8.

When the ProDOS 8 application quits, the next action depends on whether the ProDOS 8 application
uses a standard ProOOS 8 QUIT caU, or an enhanced ProOOS 8 QUIT call, as follows:

8131188

• If the ProDOS 8 application executes a standard ProDOS 8 QUIT call, the GS/OS program dispatcher
restarts GS/OS and the System Loader and launches the next application on the quit return stack.

• If the ProOOS 8 application executes an enhanced ProOOS 8 QUIT call, which contains a pathname
to an application to be launched, control is passed to the specified application. The specified
application can be a ProOOS 8 application or a GS/OS application. If it is a GS/OS application, the
program dispatcher will restart GS/OS and the System Loader and then launch the application.

Olapter 2: GSIOS and irs Environment 55

GSIOS Reference (Volume 1) Draft 3 (APDA)

Specifying whether control should return to your application

The quit return stack is a stack of user IDs used to restart applications that have previously quit If
an application specifteS a TRUE quit return flag in its Quit cal~ G5/05 pushes the user ID of the
quitting program onto the quit return stack and saves infonnation needed to restart the program. As
subsequent programs run and quit, several user IDs may be pushed onto the stack. With this
mechanism, multiple levels of shells can execute subprograrm and subshells, while ensuring that they
eventually regain control when their subprograms quit

For example, the START flle might pass control to a software development system shell, using the
Quit call to specify the pathnarne of the shell and pladng its own ID on the stack. The shell in turn
could hand control to a debugger, likewise placing its own ID on the stack. If the debugger quits
without specifying a pathname, control would pass automatically back to the shell; if the shell then
quits without specifying a pathname, control would pass automatically back to the START file.

This automatic return mechanism is specific to the GS/OS Quit call, and therefore is not available to
ProDOS 8 programs. When a ProDOS 8 application quits, it cannot put its ID on the internal stack.

Quitting without specifying the next application to launch

If you want to quit your application and do not want to specify the next application to be launched,
supply the following parameters in the Quit call:

• no pathname

• a FALSE quit return flag

GS/OS then attempts to pull a user ID off the Quit rerum stack and relaunch that application. If the
Quit return stack is empty, G5/05 will attempt to relaunch the START program.

Launching another application and not returning

When you are quitting your application, and want to pass control to another application, but do not
want control to eventually return to your application, supply the following parameters in the Quit call:

• pathname of the application to be launched

• a FALSE quit return flag

GS/OS will attempt to launch the specified application.

:6 Volume 1: Applications and GS/OS Part 1: The Application Level

8131/83

G~OS Reference (Volume 1) Draft 3 (APDA)

Launching another application and returning

If you want to pass control to another application, and want control to return to your application
when the next application is finished, set the quit return flag to TRUE in the Quit call. That way your
program can function as a shell-whenever it quits to another specified program, it knows that it will
\!venrually be reexecuted. Supply the following parameters in the Quit call:

• pathname of the application to be launched

• a TRUE quit return flag

GS/OS pushes the User ID of your quitting application onto the quit return stack, and then attemprs
to launch the specified application.

Machine state at application launch

The GS/OS program dispatcher initializes certain components of the Apple IIGS and GS/OS before it
passes control to an application. The initial state of those components is described in the following
sections.

Machine state at GS/OS application launch

When a GS/OS program is launched, the machine state is as shown in Table 2-2.

Table 2-2 Machine state at GS/OS application launch

Item State

8131/88

Reserved memory Addresses above S9AOO in bank zero are reserved for GS/OS, and :1re
therefore unavailable to the application. A direct-page/stack space.
of a size determined either by GS/OS or by the application irself, is
reserved for the application; it is located in bank SOO at an address
determined by the Memory Manager. The only other space that
GS/OS requires in RAM is the language-card areas in banks SOO, SOl,
$EO, and SEl.

Hardware registers

accumulator Contains the user ID assigned to the application.

Chapter 2: GSIOS and its Environment 5i

GS/OS Reference (Volume 1)

X- and Y-registers

e-, m-, and x.flags in the
processor status register

stack register

direct register

Standard input/output

Shadowing

Vector space values

Pathname prefa values

~ Volume 1: Applicalions and GS/OS

Draft 3 (APDA) 8/31188

Contain zero ($0000).

All set to zero; processor in full native mode.

Contains the address of the top of the direct-page/stack space.

Contains the address of the bottom of the direct-page/stack space.

For both $B3 and $B5 fdes, standard input, output, and error
locations are set to Pascal SO-column character device vectors.

The value of the Shadow register is $1E, which means:

language card and J/0 spaces: shadowing ON
text pages: shadowing ON
graphics pages: shadowing OFF

Addresses between $00A8 and $00BF in bank $El constitute GS/OS
vector space. The specifiC values an application finds in the vector
space are shown in Table 2-1 earlier in this chapter.

Set as described in the section •Pathname Preflxes at GS/OS
Application Launch• later in this chapter.

Part 1: The Application Level

GSIOS Reference (Volume 1) Draft 3 (APDA)

Machine state at ProDOS 8 application launch

When a ProDOS 8 program is launched, the machine state is as shown in Table 2-3.

Table 2-3 Machine state at GS/OS application launch

Item

Reserved space

Hardware registers

A-, X- andY-registers

e-flag in processor
status register

stack register

direct register

Shadowing

Pathname prefix values

State

All special memory is reserved for use by the program.

Undefined.

Set to one; processor is in emulation mode.

Set to $01FB.

Undefined.

Shadow register is $08, which means:

language card and J/0 spaces:
text pages:
graphics pages:

shadowing ON
shadowing ON
shadowing ON

Set as described in the section "Pathname Prefixes at ProDOS 8
Application Launch" later in this chapter.

Pathname preftxes at GS/OS application launch

When a GS/OS application is launched, all 32 GS/OS prefiX numbers are assigned to specific
pathnarnes (some-are meaningful pathnames, whereas others are null strings). Because an application
can change the assignment of any prefix number except the boot prefix('/), and certain initial prefix
values might be left over from the previous application, beware of assuming a value for any panicular
prefix.

Tables 2-4 through 2-6 show the initial values of the prefix numbers that a GS/OS application receives,
under the three different launching conditions possible on the Apple IIGS.

Note: In each of the following cases, prefiX 1 and prefiX 9 are both set to the full pathname of
the directory containing the current application. If the string is greater than 64
characters long, prefiX 1 is set to a null string and prefix 9 contains the full string.

Chapter 2: GS/OS and its Environment '1)

8131188

GYOS Refemu:s (Volume 1) Draft 3 (APDA)

At all times during execution, GetName rerums the fdename of the current application (regardless of
whether prefix 1/ has been changed), and GetBootVol returns the boot volume name, equal to the
value ci prefa •; (regamless of whether prefa 0/ has been changed).

Table l-4

Prefll
•
0
1
2
3-8
9
10-31

Table 1·5

Prefll
•
0
1
2
3-8
9
10-31

Table l-6

•
0
1
2
3-8
9
10-31

Prefix values when GS/05 application launched at boot time

Description
boot volume name
boot volume name
full pathname of directory containing current application
• /SY5TEM/UB5
null strin&'
equal to prefiX 1
null strin&'

PrefiX values-G5/05 application launched after G5/05 application quirs

Descriptfog
unchanged from previous application
unchanged from previous application
full pathname of directory containing current application
unchanged from previous application
unchanged from previous application
equal to prefa 1
unchanged from previous application

Prefa values-GS/05 application launched after Pro005 8 application uirs

boot volume name
unchanged from the Pro005 8 system prefiX under previous application
full pathname of the directory containing the current application
• /5Y5TEM/UB5
null strin&'
equal to prefcc 1
null strin&'

{() Volume 1: Applications and GS'OS Part 1: The Applicati n Level

8131/88

GYOS Reference (Volume 1) Draft 3 (APDA)

Pathname preftxes at ProDOS 8 application launch

Table 2-7 shows the initial values of the ProDOS 8 system prefiX and the pathname at location $0280
in bank $00 when a ProDOS 8 application is launched from GS/OS.

Table 2-7 PrefiX and pathname values at ProDOS 8 application launch

Condition

Application launched at boot
time

Application launched through
enhanced ProDOS 8 QUIT call

Application launched after a
GS/OS application has quit (if
Quit call specified a full
pathname)

Application launched after a
GS/OS application has quit (if
Quit call specified a prefiX and a
partial pathname)

System prefix

boot volume name

unchanged from
previous application

previous application's
prefiX 0/

prefiX specified in the
Quit call

Location S0280 pathname

filename of current
application

full or partial pathname
given in QUIT call

full pathname given in
QUIT call

partial pathname given in
Quit call

Chapter 2: GS/OS and its Environment 61

8131188

GYOS Reference (Volume 1) Draft 3 (APDA)

Chapter 3 Making GS/OS Calls

This chapter describes the methods your application must use to make GS/OS
calJs. The current application, a desk accessory, and an interrupt handler are
examples of applications that can make GS/OS calls.

Olapter 3: Making GS/OS Calls 63

8131/88

GSIOS Referena (Volume 1) Draft 3 (APDA)

GS/OS call methods

When an application makes a G5/05 call, the processor can be in emulation mode or full native mode,
or any state in between (see the Technical Introduction to the Apple JIGS). There are no register
requirements on entry to GS/OS. GS/OS saves and restores all registers except the accumulator (A)
and the processor status register (P); these two registers store information on the success or failure of
the call

Calling in a high-level language

To make a GS/OS call from a high-level language, such as C, you supply the name of the call and a
pointer to the parameter block.

Calling in assembly language

You can make GS/05 calls in assembly language using any of the following techniques:

8/31/88

• Macro technique-uses macros defined by Apple to generate inline calls. Macro calls are the simplest
and the easiest to read.

• Inline call technique-similar to ProDOS 8

• Srack call technique-consistent with the way compilers generate code

There is virtually no difference in the run-time performance of these three techniques; essentially,
which one of the techniques you use is a matter of personal preference. Each of these techniques is
detailed separately in the following sections.

To make a GS/OS assembly language call, your application must provide

• a 2-byte call number or the macro name of the call

• If you don't use the macro name, a Jump to Subroutine Long (JSL) instruction to the appropriate
G5/05 entry point

• a 4-byte pointer to the parameter block for the call; the parameter block passes information between
the caller and the called function

The macro name or call number specifies the type of GS/OS cal~ as follows:

64 Volume 1: Applications and GS/OS Part 1: The Application Level

GYOS Reference (Volume 1) Drafl3 (APDA) 8131188

• Standard GS/OS calls: These calls allow you to access the full power of GS/OS; you should use them if
you are writing a new application. Most of the description in this manual is devoted solely to these
calls.

• ProDOS 16 calls: These calls, described in Appendix A of this document, are provided only for
compatibility with ProDOS 16. (ProDOS 16 is described in the Apple DGS ProDOS 16 Reference.)

Every GS/OS call that doesn't use the -macro technique must specify the system call number and class
in a parameter referred to in the next sections as callnum. The callnwn parameter has the
following format:

lt5lt4lt3ltzlnlto I 9 I s l1 I 6 I 5 I 4 I 3 I 2 It I o I
.......... ~I J I

c:lasa 1 • 1 all number
duaO•O

The primary call number is given in each call description. For example, the call number for the Open
call is $10.

Thus, to make a standard GS/OS (class 1) Open call, your application would use the macro name or a
callnwn value of $2010; to make a ProDOS 16-compatible (class 0) OPEN cal~ the caller would use a
callnum value of $0010.

Making a GS/OS call using macros

To make a standard GS/OS call using the macro technique, perform the following steps:

1. Provide the name of the standard GS/OS call.

2. Follow the name with a pointer to the parameter block for the call.

GS/OS performs the function and returns control to the instruction that immediately follows the
macro.

The following code fragment illustrates a macro call:

_CallName_Cl parmblock ; Name of call
bcs error ;handle error if carry set on return

error ;code to handle error return

parmblock ;parameter block

Olapter 3: Making GS/OS Calls 65

GY'OS Reference (Volume 1) Draft. 3 (APDA)

Making an .lnli1le GS/OS all

To make a standard GSIOS call using the in1ine method, perform the following steps:

1. Perform a JSL to $E100A8, the GS/05 inline entry point

2. Follow theJSL with the call number.

3. Follow the call number with a pointer to the parameter block.

GS/OS performs the function and returns control to the instruction that immediately follows the
parameter block pointer.

The following code fragment illustrates an inline call:

inline_entry qequ $ElOOA8 ;address of GS/OS inline entry point

error

parm.bloek

Making a stack all

jsl
de
de
bes

inline_entry
i2'callnum•
i4'parm.bloek'
error

;long jump to GS/05 inline entry point
;call number
;parameter block pointer
;handle error if carry set on return

;code to handle error return

;parameter block

To make a standard GSIOS call using the stack method, perform the following steps:

1. Push the parameter block pointer onto the stack (high-<Jrder word first, low-<Jrder word second).

2. Push the call number of the call onto the stack.

3. Perform a JSL to $E100BO, the GS/OS stack entry point

GS/OS perforrm the GS/OS command and returns control to the instruction that immediately follows
the JSL

The following code fragment illustrates a stack aU:

stacl<_entry

error

parmbloek

gequ

pea
pea
pea
jsl
bcs

$El00BO

parm.bloekl-16
parm.block
callnum
staek_entry
error

en Volume 1: Applications and GS/OS

;address of GS/OS stack entry point

;push high word of parameter block pointe:
;push low word of parameter block pointe:
;push call number
; long jump to GS/OS. stack entry point
;handle error if carry set on return

;code to handle error return

;parameter block

Part 1: The Application Level

8131188

GYOS Reference (Volume I) Draft 3 (APDA)

Including the appropriate files

If you are writing your application in assembly language, include the following files, as appropriate:

E16.SYSCALLS and M16.SYSCAI.IS
E16.PRODOS and M16.PRODOS

If you are making standard GS/OS calls
If you are making ProDOS 16-compatible calls

If you are writing your application in C, include one or both of the following files:

SYSCALI.S.H
PRODOS.H

If you are making standard GS/OS calls
If you are making ProDOS 16-compatible calls

Important In either language, if you include files to make both standard GS/OS and ProOOS 16-
compatible calls, you must append the suffix GS to the standard GS/OS call names and
parameter block type identifiers.

GS/OS parameter blocks

A GS/OS parameter block is a formatted table that occupies a set of contiguous bytes in memory.
The block consists of a number of fields that hold information that the calling program supplies to
the function it calls, as well as information returned by the function to the caller.

Every GS/OS call requires a valid parameter block (parmblock in the preceding examples),
referenced by a 4-byte pointer. The application is respomible for constructing the parameter block
for each call that it makes; the block can be anywhere in memory.

The formats of the fields for individual parameter blocks are presented in the detailed system call
descriptions in Chapter 7.

Types of parameters

Each field in a GS/OS parameter block contains a single parameter, one or more words in length. Each
parameter is an input from the application to GS/OS or a result that GS/OS returns to the application,
or both an input and a result

Olapter 3: Making GS/OS Calls 67

813 7/88

GSIOS Referr!'!JC8 (Volume I) Draft 3 (APDA) 8131/88

• An input can be either a numerical value or a pointer to a string or other data structure.

• A result is a numerical value that GSIOS places into the parameter block for the caller to use.

• A pointer is the 4-byte address of a location containing data, code, or buffer space in which GS/OS
can receive or place data; that is, the pointer may point to a location that contains an input, or point
to space that will receive a result, or point to a location that both contains an input and receives a
result

Parameter block format

All standard GS/OS parameter blocks begin with a parameter count, which is a word-length input
value that specifies the total number of parameters in the block. This allows you to vary the number
of parameters in a C3ll as needed, and aJso makes possible future parameter block expansion.

All parameter fields that contain block numbers, block counts, file offsets, byte counts, and other
file or volume dimensions are 4 byteS long. Using 4-byte fields e~ that GS/OS will accommodate
large devices using file system translators.

All parameter fields contain an even number of bytes, for ease of manipulation by the16-bit 6SC816
processor. Pointers, for example, are 4 bytes long even though 3 bytes are sufficient to address any
memry location. Wherever such extra bytes occur they must be set to zero by the caller; if they are
not, compatibility with future versions of GS/OS will be jeopardized.

Pointers in the parameter block must be written with the low-order byte of the low-order word at the
lowest address.

Important The range of theoretically poss1ble values as defmed by the length of a parameter is
often very different from the range of permissible values for that parameter. The fact
that all fields are an even number of bytes is one reason. Another reason is that the
permissible values for a field depends upon its me system

GS/ OS string format

GS/OS strings resemble Pascal-style strinS'. A Pascal-style string begins with a length byte that
defines the length of the string in bytes, followed by the string itself, with each character equal to one
byte. A GS/OS string is very similar, except that it begins with a length word instead of a byte. See
Figure 3-1.

(B Volume 1: Applications and GS/OS Part I: The Application Level

GS'OS Referena (Volume 1) D'ffJ/t 3 (APDA)

Figure ~1 GS/OS and Pascal strings

GS/OSibint

length word string I

I length byte I string I
String parameters consist of a pointer parameter in the call's parameter block that points to a data
structure containing the string. For standard GS/OS calls, that data structure varies depending on
whether the string parameter is an input to or output from the call.

ProDOS 16-compatible calls use Pascal-style strings, with the exception of the GET_Dm_ENTRY call,
which uses GS/OS strings.

GS/OS input string structures

When a string is used as an input from an application to GS/OS, a pointer in the call's parameter block
points to the low-order byte of the length word of the string, as shown in Figure 3-2.

Figure ~2 GS/OS input string structure

GS/OS string

--~----~-·--~1------~w~~-gth_•_~_.! ____ ~_·,_ I

GS/OS result buffet

When a string is returned as a result from a GS/OS call to an application, a pointer in the parameter
block points to a buffer reserved for the result This buffer starts with a buffer length word that
specifies the total length of the buffer, including the buffer length word, as shown in Figure 3-3.

Olapter 3: Making GS/05 Calls (f)

8131188

GSIOS Referena (Volume 1) Draft 3 (APDA)

Figure 3-3 GS/OS result buffer

GS/OS5Uing

.__paduwne--pouuer-· __ .. 1 ----1 buff:;~gth !length WOld I string I
How GS/OS returns the result depends on whether or not there is enough space in the buffer
(excluding the buffer length word) to hold the output string. If there is enough space, the result is
placed in the buffer starting just after the buffer length word.

The fll'St two bytes of the string are its length word. If there is oot enough space, GS/OS returns only
the length word of the string, placing it inunediately·after the buffer length word This gives the caller
the opportunity to resize the buffer and reissue the call. The proper size is the value in the string
length word plus four (to account for the buffer and string length words).

If the area is too small to contain the string, GS/OS returns a "buffer too small" error and sets the
string length field to the actual string length. In this case, the string field is undefined. The caller must
add four to the returned string length to detennine the total area size needed to hold the string and
the two length fields.

The GetDirEntry call is an exception to the preceding rules. For this call only, if the result does not fit
in the buffer, GS/OS copies as much of the string into the buffer as possible. The length word of the
string will be set to the actual string length, not the size of the string placed in the buffer. Thus, the
application may choose to use a partial string-for example, in a directory listing with a limited
number of columns for the filena~r reissue the call to get a complete string.

Setting up_ a parameter block. in memory

Each GS/OS call uses a 4-byte pointer to point to its parameter block, which can be anywhere in
memory. All applications must obtain needed memory from the Memory Manager, and therefore
cannot know in advance where the memory block holding such a parameter block ~ be.

You can set up a GS/OS parameter block in memory in one of two ways:

1. Code the block directly into the program, referencing it with a label. This is the simplest and most
typical way to do it The parameter block will always be correctly referenced, no matter where in
memory the program code is loaded.

iU Volume 1: Applications and GSIOS Part 1: The Application Level

8131188

GYOSRef~(Vmu~V Draft 3 (APDA)

2. Use Memory Manager and System Loader calls to place the block in memory, as follows:

a. Request a memory block of the proper size from the Memory Manager. Use the procedures .
described in the Apple HGS Toolbox Reference. The block should be either fiXed or locked.

b. Obtain a pointer to the block, by dereferencing the memory handle rerurned by the Memory
Manager (that is, read. the contents of the location pointed to by the handle, and use rliat
value as a pointer to the block).

c. Set up your parameter block, starting at the address pointed to by the pointer obtained in
step (b).

Conditions upon return from a GS/OS call

When control rerurns to the caUer, the registers have the values shown in Table 3-1.

Table 3-1

Register
A
X
y
s
D
p
DB
PB
PC

Registers on exit from GS/OS

Description .
zero if call successful, error code if call unsuccessful
unchanged
unchanged
unchanged
unchanged
shown in Table 3-2
unchanged
unchanged
address of next instruction

•unchanged" me:ins that GS/OS initially saves, and then restores when fmished, the value that the
register had just before the call.

When control rerurns to the caller, the processor status and control bits have the values shown in T:.1ble
3-2.

Olapter 3: Making GS/OS Calls 71

8131/88

GSIOS Referenu (Volume I) Draft 3 (APDA)

Table 3-l Status and control bits on exit from GS/OS

Reaister Description
n undefmed
v undefmed
m unchanged
x unchanged
d unchanged
i unchanged
z 0 if call unsuccessfu~ 1 if call successful
c 0 if call successfu~ 1 if call unsuccessful
e unchanged

Note: The n flag is undefined here; under Pro DOS 8, it is set according to the value in the
accumulator.

Checking for errors

When control returns to your application, the carry bit will be set to 1 if an error occurred, and the
error code (if any) will be in register A. You can thus use a Branch if Carry Set (BCS) instruction to
branch to an error-handling routine, and then pick up the error code from register A.

Fatal GS/OS errors are handled by the GS/OS Error Manager. When a fatal error occurs, the GS/OS
Error Manager displays a failure message on the screen and halts execution of GS/OS. If the error is
unrecoverable and requires that the system be rebooted, the GS/OS Error Manager calls the System
Failure Manager, a part of the Apple IIGS Toolbox. The System Failure Manager is described in the
chapter "Miscellaneous Tool Set" in the Apple UGS Toolbox Reference .

The errors that specifically apply/to a particular call are listed as part of the call description in Chapter
7. Other errors can occur for almost any of the calls. For example, almost any call can rerum error S54
(out of meroory), and perhaps you would want to invoke a special error handler for that condition.

12 Volume 1: Applic31ions and GS/OS Part 1: The Application Level

8137/88

GYOS Reference (Volume 1) Draft 3 (APDA)

Chapter 4 Accessing GS/OS Files

The most common use of GS/OS is to access files that contain data on a storage
medium. A rue is an ordered collection of bytes that has several attributes,
including a name and a flle type.

GS/OS tries to free you, as an application programmer, from knowing more
about flies and flle systems than you want to. GS/OS has been built on the
theory tha~ in most cases, you only want to assign the attributes that are critical
to the function of the flle, and that you're not really interested in where the user
chooses to store the file.

Thus, this chapter assumes that you want to access files using the simplest
possible method. Using this method, you call the Apple IIGS Toolbox routines
SFPutFile or SFGetFile (from the Standard File Operations Tool Set) to
construct the name of the flle the user wishes to create or open. With this
method, you don't have to worry about the pathname to the file, since GS/OS is
able to automatically construct the full pathname to the file.

If you want to build the pathname yourself, GS/OS also gives you that
capability; see Chapter 5, "Working with Volumes and Pathnames."

Olapter 4: Accessing GS/OS Files 73

8131/88

GSIOS Referena (Volum~ 1) Draft 3 (APDA) 8131/88

The simplest access method

To use this method, perform the following steps:

1. If you are creating a new file, call the tool set routine SFPutFile to get a pointer to the pathname of
the file that the user wishes to create. Save the pointer, and use it in a GS/OS Create caH to place the
file on the disk.

If the user is opening an existing me, call the tool set routine SFGetFile to get a pointer to the
pathname of the file that the user wishes to open. Save the pointer, and use it in a GS/OS Open call
to open the file.

2. If the user is opening an existing file, call the tool set routine SFGetFile to get a pointer to the
pathname of the flle the user wishes to open. Save the pointer, and use it in a GS/OS Open call to
open the file.

3. While the file is open, you can do the following tasks:

• Read and write data to the me by making Read and Write calls.

• Move or get the current reading and writing position in the file by making SetMark and Get:\ lark
calls.

• Move or get the OJrrent end-of-file (EOF) by making SetEOF and GetEOF calls.

• Enable newline mode, which terminates a read if the read encounters one of the specified newline
characters, or disable that mode.

• Write all buffered infonnation to storage to ensure data integrity by making a Flush call.

4. When you have finished working with the me, dose it by making a Close calL

This chapter provides you with some information on how to use the file access calls. For more details
on each individual call, see Chapter 7, "GS/OS Call Reference."

Creating a file

When you want your application to create a me, issue a GS/OS Create calL When you issue that call,
you assign some important characteristics to the file:

74 · Volume 1: Applications and GS/05 Part I: The Application Level

GSIOS Reference (Volume I) Dmft 3 (APDA) 813 I/88

• A pathname, which must place the me within an existing directory. As already mentioned, if you use
the Toolbox routine SFPutFile, you only have to save the pathname pointer it returns and supply that
pointer to GS/05. If you want to build the pathname yourself, see Chapter 5.

• The flle access, which determines whether or not the me can be written to, read from, destroyed, or
renamed, and whether the me is invisible.

• A me type and auxiliary type, which indicate to other applications the type of information to be
stored in the me. It does not affect, in any way, the contents of the me.

• A storage type, which determines the physical format of the file on the disk. There are three different
formats: one is used for directory files, the other two for nondirectory mes. Once a file has been
created, you can't change its storage type.

• The size of the me and the size of the resource of the file, which are used to preallocate disk storage
for the me to be created. Under most circumstances, you can leave these parameters set to their
default of 0.

When GS/OS creates the flle, it places the properties listed above on disk, along with the current
system date and time (called creation date and creation time). A created file remains on disk until
it is deleted (using the Destroy call).

Opening a ftle

Before you can read information from or write information to a flle that has been created, you must
use the Open call to open the file for access. When you open a me, you specify a pathname to a
previously created me; the me must be on a disk mounted in a disk drive or GS/OS returns an error. As
already mentioned, you can query the user for the mename by using the SFGetFile routine in the
Standard File Operations Tool Set of the Apple llGS Toolbox.

The Open call returns a reference number that your application must save; any other calls you make
affecting the open me must use the reference number. The me remains open until you use the Close
call.

Multiple open calls can be made to flies on block devices for read-only access; in that situation, the
me remains open until you make a Close call for each me you opened.

GS/OS allows any number of open mes at a time limited only by the amount of total available
memory and number of available reference numbers. In practice, there is no limit to the number of
open mes.a practical limit, . However, each open file requires some system overhead, so in cases
where memory is in short supply, your application might want to keep as few files open as possible.

Olapter 4: Accessing GS/05 Files 75

GS/OS Reference (Volume 1) Dmft 3 (APDA)

Your application can also further limit the read-write access to a file when it makes a GS/OS Open
call; for example, if the file was created with read-write access, you could change that access to read­
only.

You should be aware of the differences between a file on disk and portions of an open file in
memory. Although some of the file's characteristics and some of its data may be in memory at any
given time, the me itself still resides on the disk. This allows GS/OS to manipulate files that are much
larger than the computer's meroory capadty. As an application writes to the file and changes its
characteristics, new data and characteristics are written to the disk.

·Working on open ftles

When you open a file, some of the file's characteristics are placed into a region of memory. Several of
these characteristics are accessible to calling applications by way of GS/OS calls, and can be changed
while the me is open.

This section describes the GS/OS calls that work with open fdes.

Reading from and writing to ftles

Read and Write calls to GS/OS transfer data between memory and a me. For both calls, the
application must specify the following infonnation:

• reference number of the me (assigned when the file was opened)

• location in memory of a buffer that contains, or is to contain, the transferred data

• number of bytes to be transferred

8131/88

• cache priority, which determines whether or not the blocks involved in the call are saved in RAM for
later reading or writing

When the request has been carried out, GS/OS passes back to the application the number of bytes
that it actually transferred.

A read or write request starts at the current Mark, and continues until the requested number of bytes
has been transferred (or, on a read, until che EOF has been reached). Read requests can also terminate
when a specified character is read

76 Volume 1: Applications and GS/OS Part 1: The Application Level

GSIOS Reference (Volume 1) Draft 3 (APDA)

Setting and reading the EOF and Mark

Your application can place the EOF anywhere, from the current Mark position to the maximum
possible byte position. The Mark can be placed anywhere from the firSt byte in the file to the EOF.
These two functions can be accomplished using the SetEOF and SetMark calls. The current values of
the EOF and the Mark can be determined using the GetEOF and GetMark calls.

Enabling or disabling newline mode

Your application can use the Newline call to indicate that read requests terminate on a specified
character or one of a set of specified characters. For example, you can use this capability to read
lines of text that are terminated by carriage returns.

Examining directory entries

Your application does not need to know the details of directory format to access files with known
names. You need to examine a directory's entries only when your application is performing
operations on unknown f.tles (such as listing the f.tles in a directory). The GS/OS caH you use to
examine a directory's entries is called GetDirEntry; for more details, see GetDirEntry in Chapter 7.

Flushing open ftles

The GS/OS Flush ca1l writes any unwritten data from an open file's L'O buffer to the file, and updates
the file's size in the directory. However, it keeps the reference number (returned from the Open call)
and flle's buffer space active, and thus allows continued access to the flle.

When used with a reference number of 0, Flush normally causes all open flles to be flushed. Specific
groups of files can be flushed using the system flle level (see •Setting and Getting File Levels" later in
this chapter).

Closing ftles

When you fmish reading from or writing to a flle, you must use the Close call to close the file. When
you use this ca11, you specify only the reference number of the file that was assigned when the file was
opened.

Olapter 4: Accessing GS/OS Files 77

8131188

GSIOS Refmma (VoluJM 1) Draft 3 (APDA)

The Close call writes any unwritten data from memory to the ftle and updates the file's size in the
directory, if necessary. Then it frees the file's buffer space for other uses and releases the file's
reference number and flle control block. To access the file again, you must reopen it.

Infonnation in the fde's directory, such as the flle's size, is normally updated only when the file is
closed. If the user were to press Control-Reset (typically halting the Cu.rrent program) while a f.tle is
open, data written to the flle since it was opened could be lost, and the integrity of the disk could be
damaged. You can prevent this situation from occurring by using the Flush call.

Setting and getting ffie levels

When a file is opened, it is assigned a file level equal to the current value of the system me level.
Whenever a Close or Flush call is made with a reference number of 0, GS/OS closes or flushes only those
files whose levels are greater than the current system level

The system ftle level fearure can be used, for example, by a controlling program such as a
development system shell to implement an EXEC command:

I. The shell opens an EXEC program file when the level is $00.

2. The shell then sets the level to, for example, $07.

3. The EXEC program opens whatever files it needs.

8131188

4. The EXEC program executes a GS/OS Close command with a reference number of SOOOO to close all
the flles it has opened All files at or above level $07 are closed, but the EXEC flle itself remains open.

You assign a value to the system flle level with a Setl..evel call; you obtain the current value by making
a Getl..evel call.

lVorkfng on closed fdes

This section describes some of the functions of the GS/OS calls that work with closed files. Some of
the calls that work with pathnames are performed on closed flles; see Chapter 5, "Working with
Volumes and Pathnames," for more information.

78 Volume 1: Applications and GSIOS Part 1: The Application Level

GSIOS Reference (Volume 1) Draft 3 (APDA)

Clearing backup status

Whenever a ftle is altered, GS/OS automatically changes the information about the file's state to
indicate that it has been changed but not backed up. Thus, an application that performs backups
can check the backup status to determine whether or not to backup the file.

If you want to change the state information about the backup, and in effect indicate to GS/OS that
the ftle does not need to be backed up, you can use the ClearBackup call This resets the backup
status so that it looks to GS/OS as if the file had not been altered. For example, you could use this
technique in a word-processing application if the user deleted something from the file but then
decided to undo the change; issuing the ClearBackup call would prevent the file from being backed
up.

Deleting ffies

If you want your application to delete a file on disk, you can use the GS/OS Destroy call to delete the
flle. You can use this technique only on subdirectories, standard flies, and extended files; you can't
use the technique to delete volume directories or character-device flles.

Note Character-device files are treated somewhat differently. See Chapter 11, "Character
FST," for a detailed discussion of that kind of file.

Setting or getting f.t.le characteristics

Certain characteristics about an open or closed flle can be retrieved or modified by the standard
GS/OS calls SetFileinfo and GetFileinfo.

Important Although SetFileinfo and GetFUelnfo calls can be performed on open files, you might not
get back the information you want. It's safer to perfonn these calls only on closed files.

Those characteristics include:

• access to the flle

• flle type and auxiliary type

• creation time and date

• modification time and date

Olapter 4: Accessing GS/OS FUes i9

8131188

G~OS Refermcs (Volume 1) Draft 3 (APDA)

• a pointer to an option Ust for FST-specific information (see Part II of this manual for more
information about FSTs)

An example of how you can use SetFUeinfo and GetFileinfo is given in the section •copying Files" in
this chapter.

Changing the creation and modification date and time

The creation and roodification fields in a ftle entry refer to the contents of the file. The values in
these fields should be changed only if the contents of the me change. Each field contains the time
and date information in the format shown in Table 4-1.

Table 4-1 Date and time format

Item Byte position

seconds Byte 1

minutes Byte 2

hour Byte 3

year Byte 4

day Byte 5

month Byte 6
rrull Byte 7

weekday Byte 8

Since data in the ftle's directory entry itself are not part of the file's contents, the modification field
should not be updated when another field in the fde entry is changed, unless that change is due to an
alteration in the ftle's contents. For example, a change in the flle's name is not a modification; on the
other hand, a change in the fde's EOF always reflects a change in its contents and, therefore, is a
modification.

Remember also that a file's entry is a part of the contents of the directory or subdirectory that
contains that entry. Thus, whenever a file entry is changed in any way (whether or not its
modification field is changed), the modification fields in the entries for l its enclosing
subdirectories-including the volume directory-must be updated.

8> Volume 1: Applications and GSIOS Part 1: The Application Level

8131/88

GYOS Reference (Volume 1) Draft 3 (APDA)

Finally, when a fue is copied, a utility program must be sure to give the copy the same creation and
modification date and time as the original file, and not the date and time at which the copy was
created. See the section ·copying Files• in this chapter for nx>re information.

Copying rues

GS/OS provides several techniques that help your application copy files. This section derails those
techniques.

Copying single ftles

To copy single files, perform the following steps:

8131188

1. Make a GetFilelnfo call on the source file (the file to be copied), to get its creation and modification
dates and times.

2. Make a Create call to create the destination file (the file to be copied to).

3. Open both the source and destination mes. Use Read and Write calls to copy the source to the
destination. Close both files.

4. Make a SetFilelnfo call on the destination file, using all the infonnation returned from GetFileinfo in
step 1. This sets the modification date and time values to those of the source file.

Copying multiple files

GS/OS provides a write~eferral mechanism that allows you to cache disk writes in order to increJSe
performance.

To use this technique, perform the following steps:

1. Statt the write~eferral session by making a GS/OS BeginSession call.

2. Copy the flles •

3. End the write~erral session by making a GS/OS EndSession call.

The SessionStatus call also allows you to check whether a write~eferral session is currently in force.

Olapter 4: Accessing GS/OS F~es 81

GSIOS Reference (Volume 1) Draft 3 (APDA)

Important The price of the increased performance is increased caution. Do not allow your
application to exit while a write-deferral mechanism is in force; you could harm the data
integrity of any open disk files. Make sure that you place an EndSession call in the flow
of both a nonnal and an abnormal exit

If your application gets error $54 (out of memory) when sessions are active, it should make an
EndSession call, make a BeginSession call, and try the operation again. If the operation still fails,
more EndSession and BeginSession calls will not help.

82 Volume 1: Applications and GS/OS Part 1: The Application Level

8131/88

G~OS Reference (Volume 1) Draft 3 (APDA)

Chapter 5 Working with Volumes and Pathnames

If you don't want to, you can usually avoid working with volumes, pathnames, and devices in detail;
GS/OS can free you from keeping track of exactly where flies exist As discussed in Chapter 4, if you
use the Apple IIGS Standard File Operations Tool Set routines SFPutFile and SFGetFHe, you don't
need to know where a flle is, since these routines tell GS/OS where the file is located.

In some situations, however, you may not be able to or may not want to use SFPutFHe and SFGetFile.
For example, you might need or want mre control if your application has any of the following
characteristics:

• It is text-based (and thus unable to access SFPutFile and SFGetFile).

8131188

• It needs to check whether particular files are in the appropriate directories; for example, if the data
flies for an application need to be in the same directory as the application.

• It builds its own pathnames; for example, if you want to present a list of all mounted volumes to the
user.

In any of these cases, you have to understand more about pathnames and volumes, and just a little bit
more about devices. This chapter discusses the concepts you need to understand about those
entities, and the GS/OS calls that allow you to work with them.

Note: This chapter doesn't discuss direct access to devices; for that information, see Volume
2, "The Device Interface."

Working with volumes

Some GS/OS calls are designed to allow you to work directly with volumes, as described in the
following sections.

Chapter 5: Working with Volumes and Pathnames 83

GYOS Referena (Volume 1) Draft 3 (APDA)

Getting volume information

GS/OS provides the Volume call to retrieve information about the volume currently mounted in a
specified device. You can retrieve the following information:

• name of the volume

• total number of blocks on the volume

• number of free blocks on the volume

• me system contained on the volume

• size, in bytes, of a block on the volume

An example of the use of the Volume call is given in the next section.

Bullding a list of mounted volumes

If you want your application to build a list of all the roounted volumes, you need to use the following
GS/OS calls:

1. To determine the names of the current devices, make Dlnfo calls for device 1, device 2, and so on
until GS/OS returns error $53 (parameter out of range). Dlnfo returns the name of the device
associated with that device number (see Chapter 7 for details on the Dlnfo call).

8/31,88

2. Once you have the device name, you can use the GS/OS Volume call to obtain the name of the volume
currently mounted on the device.

You can also continue from this point to examine directroy entries and build the pathname to a file.
See the section "Building Your Own Pathnarnes• later in this chapter for more information.

Getting the name of the boot volume

If you need to determine the name of the volume from which GS/OS was booted, use the standard
GS/OS call GetBootVol to retrieve a pointer to the volume name. That name is equivalent to the
prefiX specified by •;. For example, an application could start up QuickDraw II and the Event
Manager and then use the GetBootVol call to check if the boot volume is online. This would allow the
application to put up a custom dialog box if the boot volume was offline.

84 Volume 1: Applicalions and GSIOS Part 1: The Application Level

GYOS Reference (Volume 1) Draft 3 (APDA)

Formatting a volume

GS/OS provides two format options to applications, as follows:

• The GS/OS Format call attempts to physically format the disk; this method is necessary when your
application can't read the existing volume.

813 7/88

• The GS/OS EraseDisk call assumes that a physically formatted medium already exists in the
appropriate device, and writes new boot blocks, directory, and bitmaps to the disk. EraseDisk is
usually faster than Format, but requires that the disk already be physically formatted. You can use this
call, for example, to quickly make all of the space reusable on a disk that can already be read by your
application.

In both of these cases, you have to provide a device name to the call, so you'll need to use the GS/OS
Dlnfo call at some point to flnd out the device name.

After you issue the EraseDisk or Format call, GS/OS takes control, and presents a graphics or text
interface that allows the user to choose the me system to be used to format the volume.

Note: If you don't want to give the user the option of selecting the file system to be placed on
the volume, you can specify the file system as a parameter to the EraseDisk or the
Format call.

For GS/OS to present the graphics user interface, your application has to meet the following
requirements:

• The IIGS Toolbox Desk Manager must be active; by implication, all of the tools sets upon which the
Desk Manager depends must also be active (see the Apple IIGS Toolbox Reference).

• In addition, the List Manager must be active.

• For the graphics tools to run, 64 KB of free RAM must be available.

• The super hi~res screen must be currently displayed.

If all of these requirements are met, GS/OS presents the graphics interface to the user; if any one of
the requirements are not met, GS/OS presents the text interface to the user.

Working with pathnames

If you need to, you can work directly with the pathname of a file. The following sections indicate the
pathname capabilities of GS/OS.

Chapter 5: Working with Volumes and Pathnames 85

GYOS Referena (Volume 1) Draft 3 (APDA)

Setting and getting prefaes

You can use standard GSIOS calJs to manually set and reUieve the prefct assignments. The SetPreflX
call explicitly sets one of the numbered prefiXes to the prefiX you want, and the GetPreflX call returns
the current value of any of the numbered prefiXes.

Important SetPrefJX and GetPrefJX cannot be used to change or retrieve the boot volume prefix.
To retrieve the name of the boot volume prefiX, use the GS/OS GetBootVol call, as
described earlier in this chapter and detailed in Chapter 7. Your application cannot
change the prefiX of the boot volume at all. However, if the user renames the boot
volume, GS/OS will automatically adjust all pathnames to reflect the changed prefiX.

Changing the path to a fde

GS/OS allows you to change the path to a specif"ted fde. From the user's viewpoint of a file system,
this •moves" the file from the old directory to the new directory, even though the physical location of
the file does not change. In addition, if you change the path to a directory, all files and d

To change the pathname, use the standard GS/OS call ChangePath. For detailed information about
how to change the path, see ChangePath in Chapter 7.

Expanding a pathname

GS/OS allows you to expand a partial pathname into its corresponding full pathname.

To expand the pathname, use the standard GS/OS call ExpandPath. For detailed information about
how to expand the path, see ExpandPath in Chapter 7.

Building your own pathnames

If you want your application to build a pathname by itself, you need to use several GS/OS calls, as
follows:

8131/88

1. To determine the names of the 'current devices, make Dlnfo calls for device 1, device 2, and so on
until GS/OS returns error $11 (invalid device number). The Dinfo call returns the name of the device
associated with that device number (see Chapter 7 for details on Dinfo).

ai Volume 1: Applicalions and GSIOS Part 1: The Application Level

GYOS Reference (Volume 1) DJTJft 3 (APDA) 8131188

2. Once you have the device name, you can use the GS/OS Volume call to obtain the name of the volume
currently mounted on the device.

3. Open that volume by using the GS/OS Open call.

4. Get the directory entries for the files by using successive GetDirEntry calls.

Introducing devices

A device is a physical piece of equipment that transfers information to or from the Apple IIGS. Disk
drives, printers, mice, and joysticks are external devices. The keyboard and screen are also
considered devices. An input device transfers information to the computer, an output device
transfers information from the computer, and an input/output device transfers information both
ways.

GS/OS communicates with several different types of devices, but the type of device and its physical
location (slot or port number) need not be known to a program that wants to access that device.
Instead, a program makes calls to GS/OS, identifying the device it wants to access by its volume
name or device name.

Device names

GS/OS identifies devices by device names. A GS/OS device name is a sequence of 2 to 32 characters
beginning with a period (.).

Your application must encode device names as sequences of 7-bit ASCII codes, with the device name
in all uppercase letters and with the roost signiflClllt bit off. The slash character (/; ASCII 2F) and the
colon (: ; ASQI 3A) are always illegal in device names.

Block devices

A block deric:e reads and writes information in multiples of one block of characters at a time.
Furthermore, it is a random-access device-it can access any block on demand, without having to
scan through the preceding or succeeding blocks. Block devices are usually used for storage and
retrieval of information, and are usually input/output devices; for example, disk drives are block
devices.

GS/OS supports two different kinds of access to block devices, as follows:

Chapter 5: Working with Volumes and Pathnames g;

GYOS Reference (Volume 1) Draft 3 (APDA)

• File access, where you make a GS/OS Read or Write call, and GS/OS does the work of fmding and
accessing the device. This process is described in Chapter 4.

• Direct access, which you can use if your application needs to directly access blocks. The calls that
directly access devices are briefly summarized in Chapter 7, and discussed in detail in Chapter 2 of
Volwne 2.

Note: RAM disks are software constructs that the operating system treats like devices. GS/OS
supports any RAM disk that behaves like a block device in all respects just as if it were a
block device. ·

Character devices

A character device reads or writes a stream of characters in order, one at a time. It is a sequential­
access device-it cannot access any position in a stream without first accessing all previous
positions. It can neither skip ahead nor go back to a previous character. Character devices are usually
used to pass information to and from a user or another computer; some are input devices, some are
output devices, and some are input/output devices. The keyboard, screen, printer and
conununications port are charaaer devices.

GS/05 supports character devices through both direct and file access. For more information, see
Chapter 11 in chis volume.

Direct access to devices

Generally, you don't need to do the work of accessing devices directly. For some special
applications and devices, however, you may want to take over that work; if you do, you'll have to
know a lot more about devices. See Volume 2, ovrhe Device Interface, • for that information.

Device drivers

Block devices generally require device drivers to translate a file system's logical block device model
into the tracks and sectors by which information is acrually stored on the physical device. Character
devices also require drivers.

There are two types of G5/05 drivers; loaded drivers, which are RAM-based, and generated drivers,
which are constructed by GS/05. Device drivers are discussed in Volume 2 of this manuaL

!B Volume 1: Applic3lions and GS/OS Part l: The Application Level

8131/88

GSIOS Reference (Volume 1) Draft 3 (APDA) 8/31/88

Chapter 5: Working with Volumes and Pathnames ~

GYOS Reference (Volume 1) Draft 3 (APDA)

Chapter 6 Working with System Information

Several GS/OS calls provide access to information about GS/OS. This chapter
introduces you to them.

Chapter 6: Working with System Information 91

8/3 1<88

GSIOS Referena (Volume 1) Draft 3 (APDA)

Setting and getting system preferences

GS/OS provides a preference word that allows your application to customize some GS/OS functions.
One of the options provided is the ability of the application using pathname callsto determine
whether or not it wants to handle error $45 (volume not found) itself, or whether it wants to have
GSIOS handle those errors.

For information on how to set up the preferences word, and on any other options available in that
word, see the description of SetSysPrefs and GetSysPrefs in Chapter 7.

Checking FST information

If you want to check the information for a specific FST, you can use the standard GS/OS call
GetFSTinfo. That call returns the following information about the FST:

• name and version number of the FST

• some general attributes of the FST, such as whether GS/05 will change the case of pathnames to
uppercase before passing them to the FST, and whether it is a block or character FST

• block size of blocks handled by the FST

• maximum size of volumes handled by the FST

• maximum size of flles handled by the FST

For rmre detliled information about how to retrieve the information, see GetFSTinfo in Chapter 7.
For rmre information about FSTs, see Part II of this volume.

Finding out the version of the operating system

If your application depends upon some feature of GSIOS that was implemented in a version later
than 2.0, you can use the standard GS/OS call GetVersion to retrieve the version number of GS/OS.
For rmre detailed information about how to retrieve the information, see the GetVersion oll in
Chapter 7.

92 Volume 1: Applialions and GSIOS Pan I: The Application Level

8/31188

GSIOS Reference (Volume 1) Draft 3 (APDA)

Getting the name of the current application

To get the fllename of the application that is currently executing, you can use the standard GS/OS call
GetName. For example, if an application wanted to display its own name to the user, it could use
GetName to get its current name (remember, the user can rename applications).

For more detailed information about how to retrieve the information, see the GetName call in
Chapter 7.

Chapter 6: Working with System Information 93

8/31.88

..

GYOS Referent:~ (Volume 1) Drofl3 (APDA)

Chapter 7 GS/OS Call Reference

This chapter provides the detailed description for all GS/OS calls, arranged in
alphabetical order by call name. Each description includes these elements:

• the call's name and call number

• a short explanation of its use

• a diagram of its required parameter block

• a detailed description of all parameters in the parameter block

• a list of all possible operating system error messages.

Olapter7: GS/OS Call Reference 95

8131/88

GSIOS Reference (Volume 1) Dmft 3 (APDA)

--· The parameter block diagram and description

The diagram accompanying each call description is a simplified representation of the call's parameter
block in memory. The width of the parameter block diagram represents one byte; successive tick
marks down the side of the block represent successive bytes in memory. Each diagram also includes
these features:

8131/88

• Offset: Hexadecimal numbers down the left side of the parameter block represent byte offsets from
the base address of the block.

• Name: The name of each parameter appears at the parameter's location within the block.

• No.: Each parameter in the block has a number, identifying irs position within the block. The toral
number of parameters in the block is called the parameter count (pcount); pcount is the initial
(zeroth) parameter in each call. The pCount parameter is needed because in some calls parameter
count is not fixed; see Minimum parameter count, below.

• Size and type: Each parameter is also identified by size (word, longword, or double longword) and
type (input or result, and value or pointer). A word is 2 bytes; a longword is 4 bytes; a double
longword is 8 bytes. An input is a parameter passed from the caller to GS/OS; a result is a parameter
returned to the caller from GS/OS. A value is numeric or character data to be used directly; a pointer
is the address of a buffer containing data (whether input or result) to be used.

• Minimum parameter count: To the right of each diagram, across from the pcoun t parameter,
the minimum permitted value for pCount appears in parentheses. The maximum permitted value for
pCount is the total number of parameters shown in the parameter block diagram.

Each parameter is described in detail after the diagram.

% Volume 1: Applic3tions and GS/OS Part i: The Application Level

GYOS Reference (Volume 1) Draft 3 (APDA)

$2010

Description

Parameters

pCount

Errors

BeginSession

This call telJs GSIOS to begin deferring block writes to disk. Nonnally GS/OS
writes blocks to disk immediately whenever palt of the system issues a block
write request. However, when a write deferral session is in progress, GS/OS
caches blocks that are to be written until it receives an EnciSession call.

This technique speeds up multiple file copying operations because it avoids
physically writing directory blocks to disk for every file. To do a fast multiple
file copy, the application should execute a BeginSession call, copy the files,
then execute an EndSession call.

Offset No. Size md type

SOOF ._ __ pC_o_u_nt __ _,3 - Word INPUT value (minimum •0)

Word input value: The number of parameters in this parameter block. Minimum
is 0; maximum is 0.

(none)

Cl1apter7: GS/OS Call Reference Cf7

8131/88

GYOS Reference (Volume 1) Dmft 3 (APDA)

$2031

Description

Parameters

pCount

intNum

vrn

intCode

Errors

Bin dint

This function places the address of an interrupt handler into GS/OS's interrupt
vector table.

For a complete description of GS/OS's interrupt handling subsystem, see
Volume 2. See also the Unbindlnt call in this chapter.

Offset No. SJze aad type

$00 ... pCount - Word INPUl' value (minimum •3)

... intNwn -$02
1 Word RESULT value

~ vm - 2 Word INPUl' value

$06
~ -
~ intCode - 3 I.ongword INPUT pointer - -

Wold input value: The number of parameters in this parameter block. Minimum
is 3; maximum is 3.

Wold result value: An identifying number assigned by GS/OS to the the binding
between the interrupt source and the interrupt handler. Its only use is as an input
to the GS/OS call Unbindlnt

Word input value: Vector Reference Number of the firmware vector for the
interrupt source to be bound to the interrupt handler specified by intCode.

Longword input pointer: Points to the first instruction of the interrupt handler
routine.

$25 interrupt vector table full
$53 parameter out of range

~ Volume 1: Applications and GS/05 Part I: The Application Level

8131188

GSIOS Reference (Volume 1) Dmft3 (APDA)

$2004

Description

Parameters

pCount

pathname

newPathname

Comments

ChangePath
-

This call changes a file's pathname to another pathname on the same volume, or
changes the name of a volume. ChangePath caMot be used to change a device
name.

Offset No. Size and type

$()()
~ pCount - Word INPTJr value (minimum •2)

1- -$02

~ pathname - 1 Longword INPTJr pointer
1- -

$06 - -
i- newPathname - 2 Longword INPTJr pointer - -

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2.

Longword input pointer: Points to a GS/OS string representing the name of the
file whose pathnarne is to be changed.

Longword input pointer: Points to a GS/OS string representing the new
pathname of the file whose name is to be changed.

A fde may not be renamed while it is open.

A file may not be renamed if rename access is disabled for the file.

A subdirectory s may not be moved into another subdirectory t if s • tor if t is
contained in the directory hierarchy starting at s. For example, "rename /v to
/v/w" is illegal, as is •rename /v/w to /v/w/x".

Olapler7: GS/OS Call Reference 99

8131188

GSIOS Referena (Volume 1) Draft 3 (APDA)

Errors

$10 device not found
$27 VO error
$2B write-protected disk
$40 invalid pathrwne syntax
$44 path not found
$4 5 volume not found
$46 me not found
$47 duplicate pathname
$4A version error
$4B unsupported storage type
$4E access: me not destroy enabled
$50 file open
$52 unsupported volume type

$53 invalid parameter
$57 duplicate volume
$58 not a block device
$5A block number out of range

100 Volume 1: Applications and GS/OS

8131188

Part 1: The Application Level

GYOS Reference (Volume 1) Draft 3 (APDA)

$200B

Description

Parameters

pCount

pathname

Errors

Clear Backup
-

This call sets a file's state information to indicate that the file has been backed
up and not altered since the backup. Whenever a me is altered, GS/OS sets the
file's state information to indicate that the file has been altered.

Offset No. Size arxi cype

$00
1- pCount - Word INPtiT value (minimum = 1)

$02
1- -
- pathname - Longword INPtiT pointer
- -

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Longword input pointer: Points to a GS/OS string that gives the pathname of
the file or directory whose backup status is to be cleared.

$27 VO error
$28 no device connected
$2B write-protected disk
$2E disk switched
$40 invalid pathname syntax
$44 path not found
$45 volume not found
$46 file not found
$4A version error
$52 unsupported volume type
$58 not a block device

Chapter 7: GS/OS Call Reference 101

8/31/88

GYOS Reference (Volume 1) Draft 3 (APDA)

$2014

Description

Parameters

pCount

refNum

Errors

Close

This call closes the access path to the specified file, releasing all resources used
by the me and terminating further access to it Any file-related information that
has not been written to the disk is written, and memory resident data strucrures
associated with the file are released.

If the specified value of the re fNum parameter is $0000, all files at or above the
current system file level are closed.

Offset No. Size and type

pCount - Word INPUf value (minimum al) $00~

$02~ re!Num - 1 Word INPUf value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word input value: The identifying number assigned to the file by the Open c:J.ll.
A value of $0000 indicates that all ftles at or above the current system file level
are to be closed.

$27 VO error
$2B write-protected disk
$2E disk switched
$43 invalid reference number
$48 volume full
$SA block number out of range

102 Volume 1: Applic:Uions and GS/OS Part 1: The Application Level

8131188

GSIOS Reference (Volume I) Dmft 3 (APDA)

$2001

Description

Create

This call creates either a standard file, an extended file, or a subdirectory on a
volume mounted in a block device. A standard file is a ProOOS-like file
containing a single sequence of bytes; an extended file is a Macintosh-like file
containing a data fork and a resource fork, each of which is an independent
sequence of bytes; a subdirectory is a data structure that contains information
about other files and subdirectories.

This call caMot be used to create a volume directory; the Format call performs
that function. Similarly, it cannot be used to create a character-device file; the
character FSI' creates that special kind of file (see Chapter 11).

This call sets up file system state information for the new file and initializes the
file to the empty state.

Chapter7: GS/OS Call Reference 103

8/31,88

GYOS Reference (Volume 1) Draft 3 (APDA)

Parameters

pCount

pathname

Offset No. SJze a type

$00 t- pCount - Word INPur value (minimum •1)

t- -
1- pathname - 1 Longwotd INPur pointer
- -
- access - 2 Word INPur value

1- fileType - 3 Word INPur value

1- -
1- auxType - 4 Longwotd INPUf value
1- -

SO!
1- storaqeType - 5 Word INPur value

1- -$10

1- eo! - 6 Longwotd INPUf value
1- -

$14
1- -
1- resourceEOF - 7 Longword lNPUf value
1- -

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 7.

Longword input pointer: Points to a GS/OS string representing the pathname of
the me to be created This is the only required parameter.

104 Volume 1: ApplicUions and GS/OS Part 1: The Application Level

8131188

GS/OS Reference (Volume 1) Draft 3 (APDA)

access

fileType

auxType

storaqeType

Word input value: Specifies how the fde may be accessed after it is created and
whether or not the flle has changed since the last backup, as shown in the
following bit flag:

File-invisible bit

Wri~lebit

Read-enable bit

The most common setting for the access word is $00C3.
Software that supports file hiding (invisibility) should use bit 2 of the flag to
determine whether or not to display a file or subdirectory.

Word input value: Categorizes the fde's contents. The value of this parameter
has no effect on GS/OS's handling of the file, except that only certain file types
may be executed directly by GS/OS. The me type values are assigned by Apple
Computer and listed in Table 1-2 in Chapter 1 of this volume.

Longword input value: Categorizes additional infonnation about the file. The
value of this parameter has no effect on GS/OS's handling of the file. By
convention, the interpreration of values in this parameter depends on the value
in the fileType parameter. The auxiliary type values by Apple Computer and
listed in Table 1-2 in Chapter 1 of this volume.

Word input value: The value of this parameter determines whether the file being
created is a standard flle, an extended file, or subdirectory file. The following
values are valid:

$0000-$0003' create a standard file
$0005 create an extended file
$0000 create a subdirectory file
•If this parameter contains $0000, $0002 or $0003, GS/OS interprets it as SOOOl
and actually changes it to $0001 on output

Chapter7: GS/05 Call Reference 105

8131188

GSIOS Re[erenu (Volume 1) Draft 3 (APDA)

eof

resourceEOF

Comments

Longword input value: The eo f parameter specifies an amount of storage to be
preallocated during the create call for the file that is being created. The type of
entity is specified by the storaqeType parameter.

For a standard ftle, the eof parameter specifies the file size, in bytes, for which
space is to be preallocated GS/05 preallocates enough space to hold a
standard file of the given size.

For an extended file, the eof parameter specifies the size, in bytes, of the data
fork. GS/05 preallocates enough space to hold a data fork of the specified
size.

For a subdirectory, the eof parameter specifies the number of entries the caller
intends to place in the subdirectory. G5/05 preallocates enough space for the
subdirectory to hold the specified number of entries.

Longword input value: For an extended file, this parameter specifies the amount
of space to preallocate for the resource fork. GS/OS preallocates enough space
to hold a resource fork of the specified size. This parameter is meaningful only
if the storaqeType parameter value is $0005, indicating that an extended file
is to be created.

The Create call applies only to files on block devices.

The storage type of a file cannot be changed after it is created. For example,
there is no direct way to add a resource fork to a standard file or to remove one
of the forks from an extended me.

All FSTs implement standard ft.les, but they are not required to implement
extended mes.

1<1> Volume 1: Applications and GS/OS Part 1: The Application Level

8131188

GYOS Referena (Volume 1) Dmft 3 (APDA)

Errors

$10 device not found
$27 VO error
$2B write-protected disk
$40 invalid pathnarne syntax
$44 path not found
$45 volume not found
$46 me not found
$47 duplicate pathname
$48 volume full
$49 volume directory full
$4B unsupported storage type
$52 unsupported volume type
$53 invalid parameter
$58 not a block device
$5A block number out of range

8131/88

Olaprer7: GS/OS C111 Reference 107

GY'OS Referma (Volume 1) Draft 3 (APDA)

$202E

Description

Parameters

pCount

devNum

code

DControl

This call sends control information to a specified device. This description only
provides general information about the parameter block; for more information,
see Volume 2, "The Device Interface.·

Offset

$00

$02

$04

$06

SOA

SOE

-
-
-

-

pCount -
devNUJil -

code -
-

list --
-

requestCount. --
-

- transferCount _

- -

No. Sbe and type

Word INPtrr value (minimum "5)

1 Word INPtrr value

2 Word INPtrr value

3 Longword INPtrr pointer

4 Longword INPtrr value

5 Longword RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 5; maximum is 5.

Word input value: Device number of the device to which the control
information is being sent.

Word input value: A number indicating the type of control request being made.
The control requests are described completely in Chapter 1 of Volume 2. Control
codes of $0000-$7FFF are standard status calls that must be supported by the
device driver. Device-specific control calls may be supported by a particular
device; they use status codes $8000-SFFFF. A list of standard control codes is as
follows:

1~ Volume 1: Applic3lioos and GS/OS Part I: The Application Level

8/31188

GSIOS Reference (Volume 1)

$0000
$0001
$0002
$0003
$0004
$0005
$ooo6
$0007
$0008
$0009
SOOOA-$7FFF
$8000-SFFFF

Draft 3 (APDA)

ResetDevice
FormatDevice
Eject
SetConfigParameters
SetWaitStatus
SetFormatOptions
~signPanitionOwner
ArmSignal
DisarmSignal
SetPartitionMap
(reserved)
(device-specific subcalls)

list Longword input pointer: Points to a buffer containing the device control
information. The format of the data rerumed in the control buffer depends on
the control code as described in Volume 2, "The Device Interface."

requestcount IDngword input value: For control codes that have a control list, this parameter
gives the size of the control list.

transfercount IDngword result value: For control codes that have a control list, this parameter
indicates the number of bytes of information acrually transferred to the device.

Errors

$11 invalid device number
$53 parameter out of range

Chapter 7: GS/OS Call Reference lW

8/31.'88

GSIOS Reference (Volume 1) Dmft3 (APDA)

$2002

Description

Parameters

pCount

pathname

Destroy

This call deletes a specified standard file, extended file (both the data fork and
resource fork), or subdirectory, and updates the state of the file system to
reflect the deletion. After a file is destroyed, no other operations on the file are
possible.

This call cannot be used to delete a volume directory; the Format call
reinitializes volume directories.

It is not possible to delete only the data fork or only the resource fork of an
extended file.

Before deleting a subdirectory file, you must empty it by deleting all the files it
contains.

o&t No. Size and type

$00 - pCount - Word INPur value (minimum = 1)

$02 - -- pathname - 1 Longword INPur pointer - -

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Longword input pointer: Points to a GS/05 string representing the pathname of
the file to be deleted.

110 Volume 1: Applications and GSIOS Part 1: The Application Level

8131188

GYOS Reference (Volume 1) Draft 3 (APDA)

Comments

Errors

A file cannot be destroyed if it is currendy open or if the access attributes do
not pennit destroy access.

$10 device not found
$27 I/0 error
$2B write-protected disk
$40 invalid pathnarne syntax
$44 path not found
$45 volume not found
$46 file not found
$4B unsupported storage type
$4E access: file not destroy-enabled
$50 file open
$52 unsupported volume type
$53 invalid parameter
$58 not a block device
$5A block number out of range

Olapter7: GS/05 Call Reference 111

8131/88

GYOS Referrnce (Volume 1) Draft 3 (APDA)

$202C

Description

Parameters

pCount

Dlnfo

This call returns general infonnation about a device attached to the system.

Offset

$00
1-

$02

$04

r-

r-
1-

r-

pCount -
devNum -

-
devName --

~characteristics-

$OA
r- -
1- totalBlocks -
1- -
1- slotNum -SOE

1- unitNum -$10

1- version -$12

r- deviceiD -$14

1- headLink -$16

r- forwardLink -$18

$1A
1- -
r- extendedDIBptr -
r- -

No. Sbe aad type

Word INPUT wlue (minimum •2)

1 Word INPUT value

2 Longword INPUT pointer

3 Word RESULT wlue

4 Longword RESULT value

5 Word RESULT value

6 Word RESULT value

7 Word RESULT value

8 Word RESULT value

9 Word RESULT value

10 Word RESULT value

11 Longword INPUT pointer

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 11.

112 Volume 1: Applications and GSIOS Part I: The Application Level

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

devNum Word input value: A device number. GS/OS assigns device numbers in sequence
1, 2, 3, ... as it loads or creates the device drivers. There is no fixed
correspondence between devices and device numbers. To get information
about every device in the system, one makes repeated calls to Dinfo with
devNum values of 1, 2, 3, ... until GS/OS returns error $11 (invalid device
number).

devName Longword input pointer: Points to a result buffer in which GS/OS rerums the
device name of the device specified by device number. The maximum size of
the string is 31 bytes so the maximum size of the returned value is 33 bytes. Thus
the buffer size should be 35 bytes.

characteristics Word result value: Individual bits in this word give the general characteristics of
the device, as shown in the following bit flag:

totalBlocks

slotNum

device ia a RAM disk or ROM disk

device ia busy

reserved

bits inc:licare device speed

device ia a block device

writing to device allowed

reading from device allowed

re3ei'Ved

formaaing device allowed

device contains removable media

reserved

Longword result value: If the device is a block device, this parameter gives the
maximum number of blocks on volumes handled by the device. For character
devices, this parameter returns zero.

Word result value: Slot number corresponding to the resident firmware
associated with the device or slot number of the slot containing the device.
Valid values are $()()()().0Q()F.

Olapter 7: GS/OS Call Reference 113

8131/88

GY'OS Referena (Volume 1) Draft 3 (APDA)

unitNum

ver.sion

deviceiD

Word result value: Unit number of the device within the given slot. This
parameter has no correlation with device number.

Word result value: Version number of the device driver. This parameter has the
same fonnat as the SmartPort version, as shown in the following bit flag:

lt5lt4l13ltzlnlto I 9 I s l1 I 6 I 5 I 4 I 3 I z It I o I
I I

Major release number J

Minor releaae nurmer

Release plwe
A • Alpha
B •SeQ

E • Experimental
0 • Fina.l

For example, a version of 2.00 in this fonnat would be entered as $2000; a
version of 0.18 Beta would be entered as $0188:

Word result value: An identifying number associated with a particular type of
device.

This parameter may be useful for Finder-type applications when determining
what type of icon to display for a particular device. Current definitions of
device ID numbers include:

114 Volume 1: Applications and GS/05 Part I: The Application Level

8131/88

GSIOS Referena (Volume 1) DrrJjt 3 (APDA)

headLink

forwardLink

$0000 Apple 5.25 Drive $0010 File Server
(includes UniDiskTM, $0011 Reserved
DuoDiskTM, Disk nc, $0012 AppleDesktop Bus
and Disk IT) $0013 Hard disk (generic)

$0001 Profile 5MB $0014 Floppy disk (generic)
$0002 Profile 10MB $0015 Tape drive (generic)
$0003 Apple 3.5 Drive $0016 Character device driver (generic)

(includes UniDisk 3.5 $0017 MFM-encoded disk drive
Drive) $0018 AppleTalk network (generic)

$0004 SCSI (generic) $0019 Sequential access device
$0005 SCSI hard disk $001A SCSI scanner
$0006 SCSI tape drive $001B Other scanner
$0007 SCSI CD ROM $001C I.aserWriter SC
$0008 SCSI printer $001D AppleTalk main driver
$0009 Serial roodem $001E AppleTalk flle service driver
$000A Console driver $001F AppleTalk RPM driver
$000B Serial printer
$000C Serial Laser Writer
$000D AppleTalk I.aserWriter
$000E RAM Disk
SOOOF ROM Disk

Word result value: A device number that describes a link to another device. It is
the device number of the first device in a linked list of devices that are
associated with each other because they represent distinct partitions on a single
disk medium. A value of 0 indicates that no link exists.

Word result value: A device number that describes a link to another device. It is
the device number of the next device in a linked list of devices that are
associated with each other because they represent distinct partitions on a single
disk. A value of 0 indicates that no link exists.

extendedDIBptr Longword input pointer: Points to a buffer in which GS/OS returns information
about the extended device information block.

Errors

$11 invalid device number
$53 parameter out of range

Olapter 7: GS/OS Call Reference 115

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

$202F

Description

Parameters

pCount

devNum

buffer

DRead

This call performs a device-level read on a specified device.

This description only provides general information about the parameter block;
for roore information, see Volume 2, "The Device Interface."

Offset No. Size md type

$00
1- pCount - Word INPUT value (minimum -6)

1- devNWil - 1 Word INPUT value

1- -
1- buffer - 2 Longword INPUT pointer
1- -
1- -
1- requestCount - 3 Longword INPUT value
1- -

1- -soc
,_ startinqBlock - 4 Longword INPUT value
1- -
,_ blockSize -$10

S Word INPUT value

$12
1- -
1- transferCount _ 6 Longword RESULT value
1- -

Word input value: The nwnber of parameters in this parameter block. Minimum
is 6; maximum is 6.

Word input value: Device number of the device from which data is to be read.

Longword input pointer: Points to a buffer into which the data is to be read.
The buffer must be big enough to hold the data.

116 Volume 1: Applic:Wons and GS/05 Part 1: The Application Level

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

requestcount Longword input value: Specifies the number of bytes to be read.

startingBlock Longword input value: For a block device, this parameter specifies the logical
block number of the block where the read starts. For a character device, this
parameter is unused.

blockSize Word input value: The size, in bytes, of a block on the specified block device.
For character devices, the parameter must be set to zero.

transferCount Longword result value: The number of bytes actually transferred by the call.

Errors

$11 invalid device number
$53 parameter out of range

Olapter7: GS/05 Call Reference 117

8131188

GSIOS Referena (Volume 1) Draft 3 (APDA)

$2020

Description

Parameters

pCount

devNum

code

DStatus

Returns status information about a specified device.

This description provides only general information about the call; for more
information, see Volume 2, "The Device Interface.~

Offset

$00
~

$02
~

~

$06
~

~

~

SOA
~

~

~

SOE
~

pCount -
devNUJil -

code -
-

list --
-

;requestCount -

-
-

~ transferCount _

~ -

No. She md type

Word INPUT value (minimum aS)

1 Word INPUT value

2 Word INPUT value

3 Longword INPUT pointer

4 Longword INPUT value

5 Longword RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 5; maximum is 5.

Word input value: Device number of the device whose status is to be returned.

Word input value: A number indicating the type of status request being made.
The status requests are described completely in Volume 2, "The Device
Interface. • Starus codes of $0000-$7FFF are standard status calls that must be
supported by the device driver. Device-specificstatus calls may be supported
by a particular device; they use starus codes SBOOO-SFFFF. These are the
standard starus codes:

118 Volume 1: Applicalioos and GS/OS Part I: The Application Level

8131/88

GYOS Reference (Volume 1)

$()()()()
$0001
$0002
$0003
$0004
$0005-$7FFF
$800()..$FFFF

Draft 3 (APDA)

GetDeviceStatus
GetConfigParameters
GetWaitStatus
GetFormatOptions
GetPartitionMap
(reserved)
(device specific subcalls)

list Longword input pointer: Points to a buffer in which the device returns its status
information. Details about the status list are provided in Chapter 1 of Volume 2.

requestcount Longword input value: Specifies the number of bytes to be returned in the status
list The call will never return more than this number of bytes.

transfercount Longword result value: Specifies the number of bytes actually returned in the
status list This value will always be less than or equal to the request count.

Errors

$11 invalid device number
$53 parameter out of range

Olapter7: GS/OS Call Reference 119

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

$2030

Description

Parameters

pCount

devNum

buffer

DWrite

This call performs a device-level write to a specified device.

This description only provides general information about the parameter block;
for more information, see Volume 2, "The Device Interface."

Offset No. Size and type

$00 - pCount - Word INPt.rr value (minimum a6)

$02 - devNUJil - 1 Word INPt.rr value

- -- buffer - 2 Longword INPUT poincer - -
- -- request Count - 3 Longword INPUT value
- -

$OC - -
- startingBlock - 4 Longword INPUT value
- -
- blockSize -$10

5 Word INPUT value

$12 - -
- transferCount _ 6 Longword RESULT value - -

Word input value: The number of parameters in this parameter block. Minimum
is 6; maximum is 6.

Word input value: Device number of the device from which data is to be
written.

I.ongword input pointer: Points to a buffer from which the data is to be written.

ll> Volume 1: Applications and GS/OS Part I: The Application Level

8/31/88

GS'OS Reference (Volume 1) Draft 3 (APDA)

requestCount Longword input value: Specifies the number of bytes to be written.

startinqBlock Longword input value: For a block device, this parameter specifies the logical
block number of the block where the write statts. For a character device, this
parameter is unused

blockSize Word input value: The size, in bytes, of a block on the specified block device.
For character devices, the parameter is unused and must be set to zero.

transferCount Longword result value: The number of bytes actually transferred by the call.

Errors

$11 invalid device number
$53 parameter out of range

Olapter7: GS/OSCall Reference 121

8131/88

GSIOS Reference (Volume 1) Df'Qjt 3 (APDA)

$201E

Descriptio a.

Parameters

pCount

Errors

EndSession

This call tells GS/05 to flush any deferred block writes that occurred during a
write-deferral session (started by a BeginSession call) and to resume normal
write-through processing for all block writes.

Offset No. Sb.e md type

SOOE '---pC_o_u_ne __ _.J - Word INPtrr value (minimum •0)

Word input value: The number of parameters in this parameter block. Minimum
is 0; maximum is 0.

(none)

12Z Volume 1: Applications and GS/OS Part 1: The Application Level

8131/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

$2025

Description

Parameters

pCount

devName

volName

EraseDisk

This call puts up a dialog box that allows the user to erase a specified volume
and choose which me system is to be placed on the newly erased volume. The
volume must have been previously physically formatted. The only difference
between EraseDisk and Format is that EraseDisk does not physically formar the
volume. See the Format call later in this chapter.

Offset No. SJze and type

$00
1- pCount - Word INPUT value (minimum =3)

1- -$02

- devName- - 1 Longword INPUT pointer
- -

$06 - -- volName - 2 Longword INPUT pointer - -
- fileSysiD -$OA

3 Word RESULT value

- reqFileSysiD -soc
4 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 3; maximum is 4.

Longword input pointer: Points to a GS/OS string representing the device name
of the device containing the volume to be erased.

I.ongword input pointer: Points to a GS/OS string representing the volume name
to be assigned to the newly erased volume.

Cllapter7: GS/OS Call Reference 123

8131188

GYOS Reference (Volume 1) Dra/13 (APDA)

fileSysiD Word result value: If the call is successful, this parameter identifies the file
system with which the disk was formatted. If the call is unsuccessful, this
pazameter is undefmed. The me system IDs are as follows:

$0000 reserved $0007 USA
$0001 ProDOS/SOS $0008 Apple CP/M
$0002 DOS 3.3 $0009 reserved
$0003 DOS 3.2 or 3.1 $000A MS/DOS
$0004 Apple II Pascal $0008 High Sierra
$0005 Macintosh (MFS) $000C ISO 9660
$0006 Macintosh (HFS) $000D-$FFFF reserved

reqFileSysiD Word input value: Provides the me system ID of the me system that should be
initialized on the disk. The values for this parameter are the same as those for
the fileSysiD parameter.

If you supply this parameter, it suppresses the initialization dialog that asks the
user which me system to place on the newly erased disk. Normally, your
application should not use this parameter; use it only if your application needs
to format the disk for a specific FST.

Erron If the carry flag is set but A is equal to 0, the user selected cancel in the dialog
box.

$10 device not found
$11 invalid device request
$27 VO error
$28 no device connected
$2B write-protected disk
$40 invalid pathname syntax
$53 parameter out of range
$58 not a block device
$50 me system not available
$64 invalid FST 10

124 Volume 1: Applications and GSIOS Part I: The Application Level

8/31/88

GYOS Reference (Volume 1) DwJft 3 (APDA)

$200E

Description

Parameters

pCount

inputPath

outputPath

flags

ExpandPath

This call converts the input pathname into the corresponding full pathname with
colons (ASCII $3A) as separators. If the input is a full pathname, ExpandPath
simply converts all of the separators to colons. If the input is a partial
pathname, ExpandPath concatenates the specified prefix with the rest of the
partial pathname and converts the separators to colons.

If bit 15 (msb) of the flags parameter is set, the call converts all lowercase
characters to uppercase (all other bits in this word must be cleared). This call
also performs limited syntax checking. It returns an error if it encounters an
illegal character, two adjacent separators, or any other syntax error.

Offset No. Size and type

$00
1- pCount - Word INPUT value (minimum •2)

1- -$02

1- inputPath - 1 Longword INPUT pointer
~ -
~ -S06

1- outputPath - 2 Longword INPUT pointer
1- -
1- flags - 3 Word INPUT value

SOA

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 3.

Longword input pointer: Points to a GS/OS string that is to be expanded.

Longword input pointer: Points to a result buffer where the expanded pathname
is returned. ·

Word input value: If bit 15 is set to 1 this call returns the expanded pathname ::111

in uppercase characters. All other bits in this word must be zero.

Olapter7: GS/05 Call Reference 125

8131188

GSIOS Referena (Volume 1) Draft 3 (APDA)

Errors

$40 invalid pathname syntax
$4F buffer too small

126 Volume 1: Applications and GS/OS

8131188

Part 1: The Application Level

GSIOS Reference (Volume 1) DWJft 3 (APDA)

$2015

Description

Parameters

pCount

refNum

Flush

This call writes to the volume aU file state information that is buffered in
memory but has not yet been written to the volume. The purpose of this call is
to assure that the representation of the flle on the volume is consistent and up
to date with the latest GS/OS calls affecting the flle.

Thus, if a power failure occurs immediately after the Flush call completes, it
should be possible to read all data written to the file as well as all file attributes.
If such a power failure occurs, files that have not been flushed may be in
inconsistent states, as may the volume as a whole. The price for this security is
performance; the Flush call takes time to complete its work. Therefore, be
careful how often you use the Flush call.

A value of $0000 for t~e re fNum parameter indicates that all files at or above
the current me level are to be flushed.

O&t

soo_

soz_

pCount

re!Num

No. Size and type

- Word INPliT value (minimum a 1)

- 1 Word INPliT value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word input value: The identifying number assigned to the ftle by the Open call.
A value of $0000 indicates that all flles at or above the current system flle level
are to be flushed.

Olapter 7: GS/OS Call Reference 127

8131188

GY'OS Reference (Volume 1) Draft 3 (APDA)

Errors

$27 VO error
$2B disk write protected
$2E disk switched
$43 invalid reference number
$48 volume full
$5A block number out of range

128 Volume 1: Applica1ions and GSIOS

8131/88

Part I: The Application Level

GYOS Reference (Volume 1) Dmft 3 (APDA)

$2024

Description

Parameters

pCount

devName

volName

Format

This call puts up a dialog box that allows the user to physicaUy format a
specified volume and choose which file system is to be placed on the newly
formatted volume.

Some devices do not support physical formatting, in which case the Format call
acts like the EraseDisk call and writes only the empty file system. See the
EraseDisk call earlier in this chapter.

o&t

soo

$02

S06

$OC

-

-
1-

No. Size and type

pCount - Word INPt.rr V2lue (minimum .. 3)

-
devName - 1 Longword INPt.rr pointer

-
-

volNama - 2 Longword INPt.IT pointer
-

fileSysiD - 3 Word RESULT V21ue

raqFileSysiD - 4 Word INPt.IT V21ue

Word input value: The number of parameters in this parameter block. Minimum
is -3; maximum is 4.

Longword input pointer: Points to a GS/OS string representing the device name
of the device containing the volume to be formatted.

Longword input pointer: Points to a GS/OS string representing the volume name
to be assigned to. the newly formatted blank volume.

Olapter7: GS/OS Call Reference 129

8/31188

GSIOS Reference (Volume 1) Dmft 3 (APDA)

fileSysiD Word result value: If the call is successful, this parameter identifies the file
system with which the disk was formatted. If the call is unsuccessful, this
parameter is undefined. The file system IDs are as follows:

$0000 reserved $0007 USA
$0001 ProDOS/SOS $0008 Apple CP/M
$0002 DOS 3.3 $0009 reserved
$0003 DOS 3.2 or 3.1 SOOOA MS/DOS
$0004 Apple II Pascal $000B High Sierra
$0005 Macintosh (MFS) SOOOC ISO 9660
$0006 Macintosh (HFS) $000D-$FFFF reserved

reqFileSysiD Word input value: Provides the file system ID of the file system that should be
initialized on the disk. The values for this parameter are the same as those for
the fileSysiD parameter.

If you supply this parameter, it suppresses the dialog from the Disk
Initialization package that asks the user how the disk should be formatted.
Normally, your application should not use this parameter; use it only if your
application needs to format the disk for a specific FST.

Errors If the carry flag is set but A is equal to 0, the user selected cancel in the dialog
box.

$10 device not found
$11 invalid device request
$27 VO error
$28 no device coMected
$ 2B disk is write protected
$40 invalid pathname syntax
$53 parameter out of range
$58 not a block device
$50 file system not available
$64 invalid FST 10

1~ Volume 1: Applications and GSIOS Part I: The Application Level

8131/88

GS/OS Reference (Volume 1) Draft 3 (APDA)

$2028

Description

Parameters

pCount

dataBuffer

Errors

GetBootVol

Returns the volume name of the volume from which the file GS/OS was last
loaded and executed. The volume name returned by this call is equivalent to the
preftx specified by • I.

Otm No. Size and type

$00
i- pCount - Word INPUT value (minimum • 1)

$02
~ -
i- dataBuffer - 1 Longword INPUT pointer
~ -

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

l.Dngword input pointer: Points to a memory area where a GS/OS output string
structure giving the boot volume name is to be returned.

$4F buffer too small

Olapter 7: GS/OS Call Reference 131

8/31/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

$2020

Description

Parameters

pCount

devName

devNum

GetDevNumber

This call returns the device number of a device identified by device name or
volume name. Only block devices may be identified by volume name, and then
only if the named volume is mounted. Most other device calls refer to devices
by device number.

GS/OS assigns device numbers at boot time. The numbers are a series of
consecutive integers beginning with 1. There is no algorithm for determining the
device number for a particular device.

Because a device may hold different volumes and because volumes may be
moved from one device to another, the device number returned for a particular
volume name may be different at different times.

Offset No. Sh:e and type

$00
1- pCount - Word INPUt' value (minimum ,. 2)

1- -$02

1- devName - Longword INPUt' pointer
1!- -

S06
1- devNum - 2 Word RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2.

. l \

Longword input pointer: Points to a ~It buffer representing the device name
or volume name (for a block device). ·

Word result value: The device number of the specified device.

132 Volume 1: Applications and GS/OS Part 1: The Application Level

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

Errors

$10 device not found
$11 invalid device request
$40 invalid device or volume name syntax
$45 volume not found

8131/88

Cllapter 7: GS/OS Call Reference 133

GSIOS Reference (Volume 1) Draft 3 (APDA)

$201C

Description

Parameters

GeWirEntry

This call returns information about a directory entry in the volume directory or a
subdirectory. Before executing this call, the application must open the
directory or subdirectory. The call allows the application to step forward or
backward through flle entries or to specify absolute entries by entry number.

Offset No. SJzemdtype

$00 - pCount - Word INPUT value (minimum a 5)

- refNum -$02
1 Word INPUT value

- !laqs - 2 Word RESULT value

- base - 3 Word INPUT value

~ displacement - 4 Word INPUT value

~ -SOA

~ name - 5 Longword INPUT pointer
~ -
!- entryNum -SOE

6 Word RESULT value

I'"" !ileType -$10
7 Word RESULT value

$12
I'"" -
,.... eo! - 8 Longword RESULT value - -
..... -$16

I'"" bloc IeCount - 9 Longword RESULT value
!- -

$1A

134 Volume 1: Applicalions and GSIOS Part 1: The Application Level

8/31188

GYOS Reference (Volume 1) Draft 3 (APDA)

pCount

refNum

flaqs

$1A

createDateTime 10 Double longword RESULT value

modDateTime 11 Double longword RESULT value

access 12 Word RESULT value

auxType 13 l.ongword RESULT value

fileSysiD 14 Word RESULT value

optionList 15 Longword INPUT pointer

resourceEOF 16 l.ongword RESULT value

resourceBlocks 17 l.ongword RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 5; maximum is 17.

Word input value: The identifying number assigned to the directory or
subdirectory by the Open call.

Word result value: Flags that indicate various attributes of the file, as follows:

<llapter7: GS/05 Call Reference 135

8131188

G~OS Referena (Volt.uM 1) Draft 3 (APDA)

ba~e Word input value: A value that tells how to interpret the displacement
parameter, as follows:

$0000 displacement gives an absolute entry number
$0001 displacement is added to current displacement to get next entry

number
$0002 displacement is subtracted from current displacement to get next

entry number

displacement Word input value: In combination with the base parameter, the
displacement parameter specifies the directory entry whose information is
to be returned. When the directory is fust opened, GS/OS sets the current
displacement value to $0000. The current displacement value is updated on
every GetDirEntry call.

name

entryNwn

fileType

eof

If the base and displacement parameters are both zero, GS/OS returns a 2-
byte value in the entryNwn parameter that specifies the total number of active
entries in the subdirectory. In this case, GS/OS also resets the current
displacement to the fust entry in the subdirectory.

To step through the directory entry by entry, you should set both the base and
displacement parameters to $0001.

Longword input pointer: Points to a result buffer giving the name of the file or
subdirectory represented in this directory entry.

Wold result value: The absolute entry number of the entry whose information is
being returned This parameter is provided so that a program can obtain the
absolute entry number even if the base and displacement parameters
specify a relative entry .

. Word result value: The value of the me type of the directory entry.

Longwold result value: For a standard me, this parameter give~ the number of
bytes that can be read from the me. For an extended me, this parameter gives
the number of bytes that can be read from the file's data fork.

136 Volume 1: Applicalions and GS/OS Part I: The Application Level

8/31188

GSIOS Reference (Volume 1) Draft 3 (APDA)

blockCount Longword result value: For a standard file, this parameter gives the number of
blocks used by the file. For an extended file, this parameter gives the number of
blocks used by the file's data fork.

createDateTime Double longword result value: The value of the creation date and time of the
directory entry. The format of the date and time is shown in Table 4-1 in
Chapter 4.

modDateTime

access

auxType

fileSysiD

optionList

resourceEOF

Double longword result value: The value of the roodification date and time of
the directory entry. The format of the date and time is shown in Table 4-1 in
Chapter 4.

Word result value: Value of the access attribute of the directory entry.

Longword result value: Value of the auxiliary type of the directory entry.

Word result value: File system identifier of the flle system on the volume
containing the file. Values of this parameter are described under the Volume call
later in this chapter.

Longword input pointer: Points to a data area where GS/OS returns FST-specific
information related to the file. This is the same information returned in the
option list of the Open and GetFilelnfo calls.

This parameter points to a buffer that starts with a length word giving the toral
buffer size including the length word. The next word is an output length value
which is undefined on input On output, this word is set to the size of the
output data excluding the length word and the output length word. GS/OS will
not overflow the available space specified in the input length word. If the dara
area is too small, the application can reissue the call after allocating a new
output buffer with size adjusted to output length plus four.

Longword result value: If the specified file is an extended file, this parameter
gives the number of bytes that can be read from the file's resource fork.
Otherwise, the parameter is undefined.

resourceBlocks Longword result value: If the specified file is an extended file, this parameter
gives the number of blocks used by the file's resource fork. Otherwise, the
parameter is undefined.

Cllapter7: GS/OS Call Reference 137

8131/88

GYOS Reference (Volume 1) Draft 3 (APDA)

Errors

$10 device not found
$27 VO error
$4A version error
$4B unsupported storage type

$4P buffer too small
$52 unsupported volume type
$53 invalid parameter
$58 not a block device
$61 end of directory

138 Volume 1: Applialions and GSIOS

8131188

Part 1: The Application Level

GYOS Refemu:e (Volume 1) Dnift 3 (APDA)

$2019

Description

Parameters

pCount

refNwn

eof

Errors

GetEOF

This function returns the current logical size of a specified file. See also the
SetEOF call.

Offset No. Sbe at type

$00
1- pCount - Word INPtrr value (minimum • 2)

- refNum -$02
1 Word INPUT value

- -- eof - 2 Longword RESULT value
- -

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2.

Word input value: The identifying number assigned to the file by the Open call.

Longword result value: The current logical size of the file, in bytes.

$43 invalid reference number

Olaprer7: GS/05 Call Reference 139

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

$2006

Description

Parameters

GetFllelnfo

This call returns cettain me attributes of an existing open or closed block file.

Important A GetFileinfo call following a SetFileinfo call on an open file may
not return the values set by the SetFilelnfo call. To guarancee
recording of the attributes specified in a SetFileinfo call, you muse
first close the me.

See also the SetFileinfo call.

Offset No. Size mdtype

$00
1- pCount - Word lNPt.rr value (minimum a 2)

1- -$02

1- pathname - 1 Longword lNPt.rr pointer
1- -
1- access -$06

2 Word RESULT value

1- fileType - 3 Word RESULT value

SOA
1- -- auxType - 4 Longword RESULT value - -
- storageType SOE - 5 Word RESULT value

$10 - -- -
- -
_ createDateTime _ 6 Double longword RESULT value - -
- -
1- -

140 Volume 1: Applicalions and GS/05 Part I: The Application Level

8131188

GYOS Reference (Volume 1) Dnlft 3 (APDA)

pCount

pathname

access

fileType

auxType

SIB

modOateTime 7 Double longword RESULT value

optionList 8 Longword INPUT pointer

eof 9 Longword RESULT value

blocks Used 10 Longword RESULT value

resourceEOF 11 Longword RESULT value

resourceBlocks 12 Longword RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 12.

Longword input pointer: Points to a GS/OS string representing the pathname of
the file whose me information is to be retrieved

Word result value: Value of the file's access attribute, which is described under
the Create call.

Word result value: Value of the file's file type attribute.

Longword· result value: Value of the file's auxiliary type attribute.

Olaprer 7: GS/05 0111 Reference 141

8131188

GYOS Reference (Volume 1) Draft 3 (APDA)

storaqeType Word result value: Value indicating the storage type of the me.

$01 standard file
$05 extended flle
$00 volume directory or subdirectory file

createDateTime Double longword result value: Value of the file's creation date and time
attributes. The format of the date and time is shown in Table 4-1 in Chapter 4.

modDateTime

optionList

eof

blocksUsed

resourceEOF

Double longword result value: Value of the file's modification date and time
attributes. The format of the date and time is shown in Table 4-1 in Chapter 4.

I.ongword input pointer: Points to a result buffer . On output, GS/OS sets the
output length field to a value giving the number of bytes of space required by
the output data, excluding the length words. GS/OS will not overflow the
available output data area.

I.ongword result value: For a standard me, this parameter gives the number of
bytes that can be read from the file. For an extended file, this parameter gives
the number of bytes that can be read from the file's data fork.

For a subdirectory or a volume directory file, this parameter is undefined.

I.ongword result value: For a standard file, this parameter gives the total number
of blocks used by the flle. For an extended file, this parameter gives the number
of blocks used by the file's data fork.

For a subdirectory or a volume directory file, this parameter is undefined.

Longword result value: If the specified me is an extended file, this parameter
gives the number of bytes that can be read from the file's resource fork.
Otherwise, the par.uneter is undefined.

resourceBlocks Longword result value: If the specified file is an extended file, this parameter
gives the number of blocks used by the flle's resource fork. Otherwise, the
parameter is undefined.

142 Volume 1: Applic:ttions and GS/05 Part I: The Application Level

8131/88

GS'OS Reference (Volume I) Draft 3 (APDA)

Errors

$10 device not found
$27 I/0 error
$40 invalid pathname syntax
$44 path not found
$4 5 volume not found
$46 file not found
$4A version error
$4B unsupported storage type

$52 unsupported volume type

$53 invalid parameter
$58 not a block device

8131/88

Olapter7: GS/OS Call Reference 143

GSIOS Reference (Volume I) Draft 3 (APDA)

$202B

Description

Parameters

pCount

fstNum

GetFSTinfo

This function returns general information about a specified File System
Translator (FST). See also the SetFSTinfo call, and Pan II of this guide.

Offset No. Sbeaadtype

- pCount -$00
Word INPur value (minimum • 2)

- !stNum -$02
1 Word INPur value

- !ileSysiD - 2 Word RESULT value

1- -
1- !stName - 3 Longword INPtrr pointer
1- -

$0A
1- version - 4 Word RESULT value

$OC
1- attributes - 5 Word RESULT value

1- bloc:kSize -SOE
6 Word RESULT value

$10
1- -
1- maxVolSize - 7 IDngword RESULT value
1- -
1- -$14

~ maxl'ilaSize - 8 IDngword RESULT value
1- -

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 8.

Word input value: An FST number. GS/OS assigns.FST numbers in sequence (1, 2,
3, and so on) as it loads the FSTs. There is no fiXed correspondence between
FSTs and FST numbers. To get information about every FST in the system, one
makes repeated calls to GetFSTinfo with fstNum values of 1, 2, 3, and so on
until GS/OS returns error S53: parameter out of range.

144 Volume 1: ApplicationsandGSIOS Part 1: The Application Level

8/31/88

GYOS Referena (Volume 1) Draft 3 (APDA)

fileSysiD

fstName

version

attributes

blockSize

maxVolSize

Word result value: Identifies the ftle system as follows:

$0000 reserved $0007 LISA
$0001 ProDOS/SOS $0008 Apple CP/M
$0002 DOS 3.3 $0009 reserved
$0003 DOS 3.2 or 3.1 $000A MS/DOS
$0004 Apple IT Pascal $0008 High Sierra
$0005 Macintosh (MFS) $000C ISO 9660
$0006 Macintosh (HFS) SOOOD-$FFFF reserved

Longword input pointer: Points to a result buffer where GS/OS is to return the
name of the FSr.

Word result value: Version number of the FSf, in the following format:

protaype releue • 1
final releue • 0

Js II,4I13112Iu l1o I 9 I : I ; I 6 I s I• I 3 l2 I' I : I

major releue number

minor releue nwtber

Word result value: General attributes of the FST, as follows:

GS/OS all dispatcher should
capitalize paduwnes

before palling them • 1
GS/OS all dispard1er should

capitalize cue paduwnes
before puling them • 0

chmaer PST • 1
blockFST•O

: ::. -:-: ·;·:.? :~·:-·

Word result value: The block size (in bytes) of blocks handled by the FST.

Longword result value: The maximum size (in blocks) of volumes handled by the
FST.

Cllapter7: GS/OSCall Reference 145

8131188

GSIOS Refermce (Volume 1) Drafl3 (APDA) 8131/88

maxFileSize Longword result value: The maximum size (in byteS) of files handled by the FST.

Errors

$53 par.uneter out of range

146 Volum: 1: Applic31ions and GS/OS Pan I: The Application Level

GYOS Reference (Volume 1) Draft 3 (APDA)

$201B

Description

Parameters

· pCount

level

Errors

Getlevel

'I1tis function returns the current value of the system file level. See also the
SetLevel call.

Offset

soo_

$02_

pCount

level

No. SJze and type

- Word INPUI" value (minimum '" 1)

- 1 Word RESULT value

Word input value: The number of parameters in this parameter block. Minimum

is 1; maximum is 1.

Word result value: The value of the system flle level.

$01 bad system call number
$04 parameter count out of range
$07 ProDOS is busy
$59 invalid file level

Olapter 7: GS/OS Call Reference l'i7

8131188

GYOS Reference (Volume 1) Draft 3 (APDA)

$2017

Description

Parameters

pCount

refNum

position

Errors

GetMark

This function returns the current file mark for the specified file. See also the
SetMark call.

Offset No. SJze and type

$00
1- pCount - Word INPur value (minimum "' 2)

1- rafNum -$Ol
1 Word INPur value

1- -
~ position - 2 Longword RESULT value
1- -

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2.

Word input value: The identifying number assigned to the file by the Open call.

I.ongword result value: The current value of the file mark in bytes relative to the
beginning of the file.

$43 invalid reference number

148 Volume 1: Applications and GS/OS Part 1: The Application Level

8131/88

GYOS Referena (Volume 1) Draft 3 (APDA)

$2027

Description

Parameters

pCount

dataBuffer

Errors

GetName

Returm the filename (not the complete pathname) of the currently running
application program.

To get the complete pathname of the current application, concatenate prefix 1/
with the filename returned by this call. Do this before making any change in
preflx 1/.

Offset No. Size and type

$00
1- pCount - Word INPUI' value (minimum ,. 1)

$02
1- -
- dataBuffer - Longword INPUI' pointer

- -

Word input value: The number of parameters in this parameter block. Minimum
is 1; maXimum is 1.

Longword input pointer: Points to a result buffer where the filename is to be
returned.

$4F buffer too small

Olapter7: GS/OS Call Reference 149

8131/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

$200A

Description

Parameters

pCount

prefixNum

prefix

Errors

GetPreflX

This function returns the current value of any one of the numbered prefixes. The
returned prefiX string will always start and end with a separator. If the requested
prefiX is null, it is returned as a string with the length field set to 0. This call
should not be used to get the boot volume prefix (•!); use the GetBootVol call
to do that See also the SetPreflX call.

Offset No. Size and type

$00 - pCoun~ - Word INPtrr value (minimum • 2)

- prefixNum -$02
Word lNPtrr value

- -- prefix - Z Longword INPUT pointer - -

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2.

Word input value: Binary value of the prefiX number for the prefix to be
returned.

I..ongword input pointer: Pointer to a GS/OS output string structure where the
prefiX value is returned.

$4F buffer too small
$53 invalid parameter

150 Volume 1: Applications and GS/OS Part I: The Application Level

8131188

G!YOS Reference (Volume 1) Draft 3 (APDA)

$200F

Description

Parameters

pCount

preferences

GetSysPrefs

This call rerums the value of the current global system preferences. The value of
system preferences affects the behavior of some system calls. See also the
SetSysPrefs call.

Offset No. Size and rype

pCount - Word INPUT value (minimum a 1)

$02 ~ preferences - 1 Word RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word result value: Value of system preferences, as follows:

l15 N~'l.ta:l<t.Zit.t .. I.Jai-~:E~'[,tL6d s=IAI;.I tl. tlcrl
display volume ti'X)UOt dialog • 1 J 1 J 1

do not display volume ti'X)Unt dialog • 0 reserved (returned u 0)

Errors (none)

Olapter7: GS/OS Call Reference 151

8/31188

G!'/OS Reference (Volume 1) DrrJft 3 (APDA)

$202A

Description

Parameters

pCount

version

Errors

GetVersion

This call returns the version number of the GS/OS operating system. This value
can be used by application programs to condition version-dependent
operations.

Offset No. Size aad type

pCount - Word INPtrr V2lue (minimum ,. 1)

$02 1- version - 1 Word RESULT V2lue

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word result value: Version number of the operating system, in the following
format:

prouxype releue • 1
flfl21 releue • 0

]'l',•lllltz lul10 I 9 I : I ; 16 I s I• I' I z I' I ~ I

major releue nurmer

minor release number

(none except general system errors)

152 Volume 1: Applications and GSIOS Part I: The Application Level

8/31/88

GYOS Reference (Volume 1) Dmft 3 (APDA)

$2011

Description

Parameters

pCount

Newline

This function enables or disables the newline read mode for an open file and,
when enabling newline read mode, specifies the newline enable mask and
newline character or characters.

When newline mode is disabled, a Read call tenninates only after it reads the
requested number of characters or encounters the end of file. When newline
mode is enabled, the read also terminates if it encounters one of the specified
newline characters.

When a Read call is made while newline mode is enabled and there is another
character in the file, GS/OS performs the following operations:

1. Transfers the next character to the user's buffer.

2. Performs a logical AND operation between the character and the low-order
byte of the newline mask specified in the last Newline call for the open file.

3. Compares the resulting byte with the newline character or characters.

4. If there is a match, terminates the read; otherwise continues at step 1.

Offset No. SJze aod type

$00 - pCount - Word INPUT value (minimum • 4)

- re!Num $02 - 1 Word INPUT value

- en&bleHaak - 2 Word INPUT value

- numCha.ra $06 - 3 Word INPUT value

!- -
!- newlineTable - 4 Longword INPUT pointer
!- -

Word input value: The number of parameters in this parameter block. Minimum
is 4; maximum is 4.

Olapter7: GS/05 Call Reference 153

8131/88

GSIOS Referena (Volume 1) Draft 3 (APDA)

refNum Word input value: The identifying number assigned to the file access path by the
Open call.

enableMasJc Word input value: If the value of this parameter is $0000, disable newline mode.
If the value is greater than $0000, the low-order byte becomes the newline mask.
GS/OS perforrm a logical AND operation of each input character with the
newline mask before comparing it to the newline character or characters.

numChars Word input value: The number of newline characters contained in the newline
character table. If the enableMaslc is nonzero, this parameter must be in the
range 1-256. When disabling newUne mode (enableMasJc • $0000), this
parameter is ignored.

newlineTable Longword input pointer: Points to a table of from 1 to 256 bytes that specifies
the set of newline characters. Each byte holds a distinct newline character.
When disabling newline mode (enableMaslc • $0000), this parameter is
ignored.

Errors

$43 invalid reference number

154 Volume 1: Applications and GSIOS Part 1: The Application Level

8/31/88

G!YOS Reference (Volume 1) Draft 3 (APDA)

$2000

Description

Parameters

pCount

Errors

Null

This call executes any pending events in the GS/OS event queue and in the
Scheduler queue before returning to the calling application. Note that every
GS/OS call perfonns these functions. This call provides a way to flush the
queues without doing anything else.

Offset No. Size aad type

SOOE '---pC_o_u_n_t _ _..3 - Word INPtrr value (minimum • 0)

Word input value: The number of parameters in this parameter block. Minimum
is 0; maximum is 0.

(none)

Olapter7: GS/05 Call Reference 155

8131188

G~OS Reference (Volume 1) Draft 3 (APDA)

$2010

Descripdon

Open

This call causes GS/OS to establish an access path to a file. Once an access path
is established, the user may perform fde Read and Write operations and other
related operations on the me.

This call can also return all the fde information returned by the GetFileinfo call.

156 Volume 1: Applications and GS/05 Part 1: The Application Level

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA) 8131/88

Parameters
Offset No. Size and type

- pCount -$00
Word INPUT value (minimum • 2)

- refNum -$02
Word RESULT value

-- -- pathname - 2 Longword INPUT pointer - -
~ requestAccess - 3 Word INPUT value

~ resourceNumber - 4 Word INPUT value

soc ~ access - 5 Word RESULT value

1- fileType -SOE 6 Word RESULT value

~ -$10

~ auxType - 7 Longword RESULT value
1- -
1- storaqeType -$14

8 Word RESULT value

1- -$16

~ -
~ -
~ createDateTime - 9 Double longword RESULT value
1- -
1- -
1- -

$1E

Olaprer7: GS/OS Call Reference 157

GYOS Reference (Volume 1) Draft 3 (APDA)

pCount

refNum

pathname

modDateTime 10 Double longword RESULT value

optionList 11 Longwotd INPtrr pointer

eo! 12 longword RESULT value

blocks Used 13 longwotd RESULT value

resourceEOF 14 longwotd RESULT value

resourceBloeks 15 longwotd RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 15.

Word result value: A reference number assigned by GS/OS to the access path. All
other file operations (Read, Write, Close, and so on) refer to the access path by
this number.

Longword input pointer: Points to a GS/OS string representing the pathname of
the flle to be opened.

158 Volume 1: Applications and GS/OS Part 1: The Application Level

8131188

GYOS Reference (Volume I) Draft 3 (APDA)

reque.stAcce.s.s Word input value: Specifies the desired access permissions, as follows:

W • 1, request write permission

R • 1, request read permission

If this parameter is not included or its value is $0000, the file is opened with
access permissions determined by the file's stored access attributes.

re.sourceNumber Word input value: This parameter is meaningful only when the pa thnarne
parameter specifies an extended file. In this case, a value of $0000 tells GS/OS
to open the data fork, and a value of $0001 tells it to open the resource fork.

acces.s

file Type

auxType

.storageType

Word result value: Value of the file's access attribute, which is described under
the Create call.

Word result value: Value of the flle's file type attribute. Values are shown in Table
1-2 in Chapter 1.

Longword result value: Value of the file's auxiliary type attribute. Values are
shown i~ Table 1-2 in Chapter 1.

Word result value: Value of the file's storage type attribute, as follows:

$01 standard file
$05 extended file
$00 volume directory or subdirectory file

createoateTirne Double longword result value: Value of the flle's creation date and time
attributes. The format of the date and time is shown in Table 4-1 in Chapter 4.

mod.DateTirne

optionList

Double longword result value: Value of the file's modification date and time
attributes. The format of the date and time is shown in Table 4-1 in Chapter 4.

Longword input pointer: Points to a GS/OS result buffer to which FST-specific
information can be returned. On output, GS/OS sets the output length field to a
value giving the number of byteS of space required by the output data,
excluding the length words. GS/OS will not overflow the available output cbta
area.

Olapter7: GS/OS Call Reference 159

8131/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

eof

blocksUsed

resourceE:OF

Longword result value: For a standard file, this parameter gives the number of
byteS that can be read from the file. For an extended file, this parameter gives
the number of bytes that can be read from the file's data fork.

For a subdirectory or volume directory file, this parameter is undefined.

Longword result value: For a standard flle, this parameter gives the number of
byteS used by the file. For an extended flle, this parameter gives the number of
bytes used by the flle's data fork.

For a subdirectory or volume directory file, this parameter is undefined.

Longword result value: If the specified flle is an extended file, this parameter
gives the number of bytes that can be read from the ftle's resource fork, even
when one is opening the data fork. Otherwise, the parameter is undefined.

resourcealocks Longword result value: If the specified flle is an extended file, this parameter
gives the number of blocks used by the ftle's resource fork, even if one is
opening the data fork. Otherwise, the parameter is undefmed.

Errors

$27 I/0 error
$28 no device connected
$2E disk switched
$40 invalid pathname syntax
$44 path not found
$45 volume not found
$46 file not found
$4A version error
$4B unsupported storage type
$4E access not allowed
$4F buffer too small
$50 file is open
$52 unsupported volume type
$58 not a block device

l(A) Volume 1: Applications and GS/05 Part 1: The Application Level

8131188

GS'OS Reference (Volume 1) Draft 3 (APDA)

$2003

Description

Parameters

OSShutdown

This call allows an application (such as the Finder) to shut down the operating
system in preparation for either powering down the machine or perfonning a
cold reboot. GS/OS terminates any write-deferral session in progress and shuts
down all drivers and FSTs.

The action of the call is detennined by the values of the shutdownFlag
param:ter. If Bit 0 is set to 1, GS/OS performs the shutdown operation and
reboots the machine. If Bit 0 is cleared to 0, GS/OS performs the same
shutdown procedure and then displays a dialog box that allows the user to either
power down the computer or reboot If the user chooses to reboot, GS/OS then
looks at Bit 1 of the shutdownFlag parameter.

If Bit 1 is cleared to 0, GS/OS leaves the Memory Manager power-up byte alone;
this leaves any RAM disks intact while the machine is rebooted. If Bit 1 is set to
1, however, GS/OS invalidates the power-up byte, which effectively destroys
any RAM disk, before rebooting the computer.

Offset

soo~ pCount -
No. Sbe aad type

Word INPUT value (minimum • 1)

$02 ~ shutdownFlaq - 1 Word INPUI' value

pcount Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

shutdownFlag Word input value: Two Boolean flags that give information about how to handle
the shutdown, as follows:

Olapter 7: GSIOS call Reference 161

8131188

G£'0S Reference (VolutM 1) Draft 3 (APDA)

Errors

Inftlidare the Memory Manager power-up byte when powering down• I
LeaYe Memory Manager power-up byte mne when powering clown-o

(none)

Perform shutdown and reboot the compurer-1
Perform shutdown and display-0 power.OOwn/reboot dia1qJ

162 Volume 1: Applic3tions and GSIOS Part I: The Application Level

8131188

GS/OS Reference (Volume 1) Dmft 3 (APDA)

$2029

Description

Parameters

pCount

pathname

Quit

This call terminates the running application. It also closes all open files, sets the
system file leve.l to 0, initializes certain components of the Apple IIGS and the
operating system, and then launches the next application.

For more information about quitting applications, see Chapter 2, "GS/OS and
Its Environment."

Offset No. Size aad type

$00
f- pCount - Word INPtrr value (minimum • 0)

~ -S02

~ pathname - 1 Longword INPtrr pointer
f- -
~ flags -$06

2 Word INPur value

Word input value: The number of parameters in this parameter block. Minimum
is 0; maximum is 2.

Longword input pointer: Points to a GS/OS string representing the pathname of
the program to run next. If this parameter is null or the pathname itself has
length 0, GS/OS chooses the next application, as described in Chapter 2.

Olapter7: GSIOS Call Reference 163

8131/88

GSIOS Referenu (Volwu 1) Draft 3 (APDA)

flaqs

Comments

Errors

Word input value: Two Boolean flags that give infonnation about how to handle
the program executing the Quit call, as follows:

PIKe ae inlanmdon about the nuiltf"" ~

pnl8I2ID Oft tbe Qui return aaa !() dial
it will be aUIDmldally reJIIIted laler • 1

Do ld SlaCk tbe quilting program • 0

The quildns program ia apable ofbeina
reJIIIted from ira dormaDt llllmX'f image. 1
The quilling pqnm IIIJit be relclded from

disk if ilia reiWted • 0

Only one error condition causes the Quit call to rerum to the calling application:
error $07 (GSIOS busy). All other errors are managed within the GS/OS program
dispatcher.

$07 GSIOS busy

164 Volume 1: Applications and GS/OS Part I: The Application Level

8131/88

GSIOS Referenu (Volume 1) Dmft 3 (APDA)

$2012

Description

Read

This function attempts to transfer the number of bytes given by the
requestcount parameter, starting at the current mark, from the file specified
by the refNum parameter into the buffer pointed to by the data6uffer

parameter. The function updates the file mark to reflect the new file position
after the read.

Because of three situations that can cause the Read function to transfer fewer
than the requested number of bytes, the function returns the actual number of
bytes transferred in the transferCount parameter, as follows:

• If GS/OS reaches the end of me before transferring the number of bytes
specified in requestCount, it stops reading and sets transferCount
to the number of bytes actually read.

• If newline mode is enabled and a newline character is encountered before
the requested number of bytes have been read, GS/OS stops the transfer
and sets transferCount to the number of bytes actually read, including
the newline character.

• If the device is a character device and no-wait mode is enabled, the call
returns immediately with transferCount indicating the number of
characters returned.

01apter7: GS/OS Call Reference 165

8131/88

GSIOS Reference (Volume 1) Dmft 3 (APDA)

Parameters
Off sec No. SJze aad type

$00
~ pCount - Word INPUI' value (minimum • 4)

~ refNum - 1 Word INPUI' value

~ -
~ dataBuffar - 2 Lonpord INPUT pointer
~ -
~ -
~ reque•tCount - 3 Longword INPUI' value - -

soc - -
- tran•ferCount - 4 Lonpord RESULT value
- -

$10 - eachaPriority - 5 Word INPUI' value

pCount Wo.rd input value: The number of parameters in this parameter block. Minimum
is 4; maximum is 5.

refNum Wo.rd input value: The identifying number assigned to the ftle by the Open call.

dataBuffer Longword input pointer: Points to a memory area large enough to hold the
requested data.

requestcount Longwo.rd input value: The number of byteS to be reaci.

transferCount Longwo.rd result value: The number of byteS actually read.

cachePriority Word input value: Specifies whether or not disk blocks handled by the read call
are candidates for caching, as follows:
$0000 do not cache blocks involved in this read
$0001 cache blocks involved in ~ read if possible

lCXi Volume 1: Applications and GS/OS Pan I: The Application Level

8131/88

GSIOS Reference (Volume 1) Draft 3 (APDA) 8131188

Errors

$27 1/0 error
S2E disk switched
$43 invalid reference number
$4C eof encountered
$4E access not allowed

<llapter 7: GS/05 Call Reference 167

GSIOS Reference (Volume 1) Dmft 3 (APDA)

$201F

Description

Parameters

pCount

status

Errors

SessionStatus

This call returns a value that tells whether or not a write-deferral session is in
progress. See also BeginSession and EndSession in this chapter.

Offset

soo_

$02_

pCount

status

No. SQe aad type

- Word INPUI' value (minimum • 1)

- 1 Word RESULT value

Word input value: The nUmber of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word result value: A value that tells whether or not a write-deferral session is in
progress.

$0000 no session in progress
$0001 session in progress

(none)

168 Volume 1: Applications and GS/05 Part I: The Application Level

8131188

GYOS Reference (Volume 1) Dtaft 3 (APDA)

$2018

Description

Parameters

SetEOF

This call sets the logical size of an open ftle to a specified value which may be
either larger or smaller than the current ftle size. The EOF value cannot be
changed unless the ftle is write-enabled. If the specified EOF is less than the
current EOF, the system may-but need not-free blocks that are no longer
needed to represent the ftle. See also the GetEOF call.

Offset No. Size and type

- pCount - Word INPtrr Vlllue (minimum • 3) $00

$02 - refNum - 1 Word INPtrr Vlllue

- base - 2 Word INPtrr Vlllue

$06 - -
- displacement - 3 Longword INPtrr Vlllue
~ -

pcount Word input value: The number of parameters in this parameter block. Minimum
is 3; maximum is 3.

refNum Word input value: The identifying number assigned to the ftle by the Open call.

base Word input value: A value that tells how to interpret the displacement

parameter.

$0000 set EOF equal to displacement
$0001 set EOF equal to old EOF minus displacement
$0002 set EOF equal to ftle mark plus displacement
$0003 set EOF equal to me mark minus displacement

displacement Longword input value: Used to compute the new value of the eof as described
for the base parameter.

Cllapter 7: GS/OS Call Reference 169

8/31/88

GS/05 Reference (Volume 1) Draft 3 (APDA)

Errors

$27 VO error
$ 2B write-protected disk
$43 invalid reference number
$40 position out of range
$4E flle not write-enabled
$5A block number out of range

170 Volume 1: Applications and GS/OS

8/31/88

Part 1: The Application Level

GSIOS Reference (Volume 1) Draft 3 (APDA)

$2005

Description

SetFllelnfo

This call sets certain me attributes of an existing open or closed block file. This
call immediately modifies the me information in the file's directory entry
whether the me is open or closed. It does not affect the file information seen
by previously open access paths to the same file.

Important A GetFileinfo call following a SetFileinfo call on an open file may
not return the values set by the SetFileinfo call. To guarantee
recording of the attributes specified in a SetFileinfo call, you must
ftrSt close the file.

See also the GetFilelnfo call.

Olapter7: GS/05 Call Reference 171

8131188

GYOS Reference (Volume 1) D1rlft 3 (APDA) 8/31/88

Parameters
Offset No. Sbeaadtype

- pCount - Word INPUl' value (minimum • 2)

$02 - -
- pathna.me - 1 Lonpord INPUl' pointer
- -
- access - 2 Word INPUl' value

1- fileType - 3 Word INPUl' value

1- -SOA

1- auxType - 4 Longword RESULT value
1- -
1- <null> -$0£

5 Word INPUl' value

1- -$10

1- -
1- -
1- createDateTime _ 6 Double longword INPUT value
1- -
1- -
1- -

$18 .
I •

172 Volume 1: Appliations and GSIOS Part 1: The Application Level

GS'OS Reference (Volume 1) D'/Qjt 3 (APDA)

pCount

pathname

access

fileType

auxType

<null>

modOateTime 7 Double longword INPUT V2lue

optionLiat 8 Longword INPUT pointer

<null> 9 Longword INPUT V2lue

10 Longword INPUT V2lue
<null>

szc
11 Longword INPUT V2lue

<null>

<null>
12 Longword INPUT V2lue

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 12.

Longword input pointer: Points to a GS/OS string representing the pathname of
the file whose flle information is to be set

Word input value: Value for the file's access attribute, which is described under
the Create call.

Word input value: Value for the file's fde type attribute.

Longword result value: Value of the flle's auxiliary type attribute.

Word input value: This parameter is unused and must be set to zero.

Olapter7: GS/05 C111 Reference 173

8/31188

GSIOS Reference (Volume 1) Draft 3 (APDA)

createDateTime Double longword input value: Value of the flle's creation date and time
attributes. If the value of this parameter is zero, GS/OS does not change the
creation date and time. The format of the date and time is shown in Table 4-1 in
Chapter 4.

modDateTime

optionList

<null>

<null>

<null>

<null>

Errors

Double longword input value: Value of the me's modification date and time
attributes. If the value of this entire parameter is zero, GS/OS sers the
modification date and time with the current system clock value. The format of
the date and time is shown in Table 4-1 in Chapter 4.

Longword input pointer: Poinrs to a GS/OS result buffer to which FST-specific
information can be returned.

Longword input value: This parameter is unused and must be set to zero.

Longword input value: This parameter is unused and must be set to zero.

Longword input value: This parameter is unused and must be set to zero.

Longword input value: This parameter is unused and must be set to zero.

$10 device not found
$27 I/0 error
$2B write-protected disk
$40 invalid pathname syntax
$44 path not found
$45 volume not found
$46 me not found
$4A version error
$4B unsupported storage type

$4E access: me not destroy-enabled
$52 unsupported volume type

$53 invalid parameter
$58 not a block device

174 Volume 1: Applications and GSIOS Part I: The Application Level

8/31/88

GS/OS Reference (Volume I) D1aft 3 (APDA)

$201A

Description

Parameters

pCount

level

Errors

Setlevel

This function sets the current value of the system flle level.

Whenever a me is opened, GS/OS assigns it a file level equal to the current
system me level. A Close call with a reference number of $0000 closes all files
with me level values at or above the current system me level. Similarly, a Flush call
with reference number of $0000 flushes all flles with file level values at or above
the current system me level. See also the Getl.evel call.

Offset No. SJze and type

soo_ pCount - Word INPtrr value (minimum "' 1)

$02- level - 1 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word input value: The new value of the system file level. Must be in the range
$()()()()-$00FF.

$59 invalid file level

Olapter7: GS/OS alii Reference 175

8131188

GYOS Reference (Volume 1) Draft 3 (APDA)

$2016

Description

Parameters

SetMark

This call sets the file mark (the position from which the next byte will be read or
to which the next byte will be written) to a specified value. The value can never
exceed EOF, the current size of the file. See also the GetMark call.

Offset

$00
~

$02

$04

$06

~

~

~

~

~

pCount - Word INPUT value (minimum • 3)

refNum - 1 Word INPUT value

base - Z Word INPUT value

-
displacement - 3 longword INPUT value

-

pCount Word input value: The number of parameters in this parameter block. Minimum
is 3; maximum is 3.

refNum Word input value: The identifying number assigned to the flle by the Open call.

base Word input value: A value that tells how to interpret the displacement
parameter, as follows:

$0000 set mark equal to displacement
$0001 set mark equal to EOF minus displacement
$0002 set mark equal to old mark plus displacement
$0003 set mark equal to old mark minus displacement

displacement Longword input value: A value used to compute the new value for the file mark,
as described for the base parameter.

176 Volume 1: Applications and GS/OS Part 1: The Application Level

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

Errors

$27 VO error
$43 invalid reference number
$40 position out of range
$5A block number out of range

8/31188

Cllaprer7: GS/OSCall Reference 177

GSIOS Referena (Volume 1) Draft 3 (APDA)

$2009

Description

Parameters

pCount

prefixNum

prefix

SetPrefix

This call sets one of the numbered pathnarne prefiXes to a specified value. The
input to this call can be any of the following pathnames:

• a full pathnarne

• a partial pathnarne beginning with a numeric prefiX designator

• a partial pathnarne beginning with the special prefiX designator "• /"

• a partial pathname without an initial prefLX designator

The SetPrefcc call is unusual in the way it treats partial pathnames without initial
prefiX designators. Normally, GS/OS uses the prefix 0/ in the absence of an
explicit designator. However, only in the SetPreftX cal~ it uses the prefiX nl
where n is the value of the prefixNum parameter described below. See also the
GetPreftX call.

Offset

$00 r- pCount - Word INPUf value (minimum = 2)

r- prefixNum -$02
Word INPur value

r- -
~ prefix - 2 Longword INPUf pointer
r- -

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 2.

Word input value: A prefix number that specifies the prefiX to be set

Longword input pointer: Points to a GS/OS string representing the pathname to
which the prefix is to be set

178 Volume 1: Applications and GS/05 Part I: The Application Level

8131188

GSIOS Reference (Volume 1) Dra/13 (APDA)

Comments

Errors

Specifying a pathname with length 0 or whose syntax is illegal sets the
designated prefix to null.

GS/OS does not check to make sure that the designated prefix corresponds to
an existing subdirectory or file.

The boot volume prefiX c· () cannot be changed using this call.

$40 invalid pathnarne syntax
$53 invalid parameter

Olapter7: GS/OSCall Reference 179

8/31188

GYOS Reference (Volume 1) Dmft 3 (APDA)

$200C

Description

Parameters

pCount

preferences

Comments

SetSysPrefs

This call sets the value of the global system preferences. The value of system
preferences affects the behavior of some system calls. See also the GetSysPrefs
call.

Offset No. Size md type

pCount - Word INPUT value (minimum • 1)

$02 1- preferences - 1 Word INPUT value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word input value: Value of system preferences, as follows:

ltsiH!l3Hzlbi:Mt:9:IJL:txl··.~··.l:•s·l;t•••l3l•·•z.fY·I••·aH

display volume mount dialog • 1 J 1 J 1

do nal display volume mount dialog • 0 reserved (returned as 0)

Under certain circumstances, parts of the system call the system's Mount facility
to display a dialog asking the user to mount a specified volume. This can
happen when the call contains a reference number parameter or a pathname
parameter.

• For those calls that specify a reference number parameter (for example
Read, Write, Close), Mount always displays the dialog.

100 Volume 1: Applic3tions and GS/OS Part 1: The Application Level

8/31/88

GS'OS Reference (Volume 1) Draft 3 (A.PDA)

Errors

• For those calls that specify a pathname parameter, the Mount facility
displays the dialog only if system preference bit 15 is 1. Otherwise, Mount
returns the CANCEL return code which normally causes the system to return a
volume-not-found error. Thus, an application can be written to either
handle volume-not-found errors itself (system-preference bit 15 • 0) or to
allow the system to automatically display mount dialogs (bit 15 • 1), except
for the situation where the System Loader is attempting to load a dynamic
segment.

• For those calls that result in the System Loader attempting to load a
dynamic segment, the System Loader always sets the system preference bit
(bit 15) to 1, and then resets it to its original value when the segment has
been loaded. Thus, the Mount dialog box is always displayed when a
dynamic segment is requested.

(none)

Olapter7: GS/OS Call Reference 181

8131/88

GYOS Reference (Volume 1) Dmft 3 (APDA)

$2032

Description

Parameters

pCount

intNum

Errors

Unbindlnt

This function removes a specified interrupt handler from the interrupt vector
table.

For a complete description of the GSIOS interrupt handling subsystem, see
Volume 2. See also the Bindint call.

Offset No. SJze md type

pCount - Word INPUT value (minimum • 1)

intNum - 1 Word INPur value

Word input value: The number of parameters in this parameter block. Minimum
is 1; maximum is 1.

Word input value: Interrupt identification number of the binding between
interrupt source and interrupt handler that is to be undone.

$53 parameter out of range

182. Volume 1: Applications and GS/05 Part I: The Application Level

8131188

GYOS Reference (Volume 1) Draft 3 (APDA)

$2008

Description

Parameters

pCount

devName

volName

totalBlock.s

Volume

Given the name of a block device, this call returm the name of the volume
mounted in the device, along with other information about the volume.

Offset No. Sb.e md type

$00 - pCount - Word INPUf value (minimum • 2)

$02 - -
- devName - 1 Longword INPUf pointer
f- -

$06 r- -
r- volName - 2 I.ongword INPUf pointer
r- -
r- -SOA

- totalBlocks - 3 I.ongword RESULT value
~ -

SOE - -- freeBloclcs - 4 Longword RESULT value
- -
- fileSysiO -$12

5 Word RESULT value

$1-4
i- blockSize - 6 Word RESULT value

Word input value: The number of parameters in this parameter block. Minimum
is 2; maximum is 6.

Longword input pointer: Points to a GS/OS input string structure containing the
name of a block device.

Longword input pointer: Points to a GS/OS output string structure where GS/OS
returm the volume name of the volume mounted in the device.

Longwor4 result value: Total number of blocks contained on the volume.

Olapter 7: GS/OS Call Reference 183

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

freeBlock~

fileSy~ID

blockSize

Errors

Longword result value: The number of free (unallocated) blocks on the volume.

Word result value: Identifies the ftle system contained on the volume, as
follows:

$0000
$0001
$0002
$0003
$0004
$0005
$0006

reserved
ProDOS/SOS
DOS 3.3
DOS 3.2 or 3.1
Apple n Pascal
Macintosh (MFS)
Macintosh (HFS)

$0007
$0008
$0009
$000A
$0008
$000C
$000D-$FFFF

Word result value: The size, in bytes, of a block.

$10 device not found
$11 invalid device request
$27 I/0 error
$28 no device connected
$2E disk switched
$45 volume not found
$4A version error
$52 unsupported volume type

$53 invalid parameter
$57 duplicate volume
$58 not a block device

LISA
Apple CP/M
reserved
MS/005
High Sierra
ISO 9660
reserved

184 Volume 1: Applications and GS/OS Part 1: The Application Level

8/31/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

$2013

Description

Parameters

pCount

refNum

dataBuffer

Write

This call attempts to transfer the number of bytes specified by requestCount
from the caller's buffer to the file specified by the re fNum parameter starting at
the current file mark.

The function returns the number of bytes actually transferred. The function
updates the file mark to indicate the new flle position and extends the EOF, if
necessary, to accommodate the new data.

Offset No. Sl2e aad type

$00 - pCount - Word INPur value (minimum • 4)

- refNum - 1 Word INPUf value

- -- dataBuffer - 2 Longword INPUf pointer·
- -
- -- request Count - 3 Longword INPUf value
- -
~ -soc
~ transferCount - 4 Longword RESULT value
~ -

$10 ~ cachePriority - 5 Word INPUf value

Word input value: The number of parameters in this parameter block. Minimum
is 4; maximum is 5.

Word input value: The identifying number assigned to the flle by the Open call.

Longword input pointer: Points to the area of memory containing the data to
be written to the file.

<llapter 7: GS/OS Call Reference 185

8/31188

GS'OS Reference (Volume 1) Draft 3 (APDA)

requestCount Longword input value: The number of byteS to write.

transferCount Longword resuk value: The number of bytes actually written.

cachePriority Word input value: Specifies whether or not disk blocks handled by the call are
candidates for caching, as follows:

Errors

$0000 do not cache blocks involved in this call
$0001 cache blocks involved in this call if possible

$27 I/0 error
$28 write-protected disk
$2E disk switched
$43 invalid reference number
$48 volume full
$4E access not allowed
$5A block number out of range

lai Volume 1: Applications and GSIOS Part 1: The Application Level

8/31188

GSIOS Reference (Volume 1) Draft 2

Part n The Flle System Level

Volwne 1

Volume2

Part I

GS/OSails
(except device ails)

(Chapter7)

Part!

GSIOS dmc:e ails

,.---______
Driver-specific:
information on

GSIOS dmc:e ails

Partn

Partll

Driver ails

~

Sytrem semce ails

FST-spedfic
information on
ProDOS 16caUs
(Appendix B)

Appendixes

System Loader calls
(Appendix B)

8131188

187

GSIOS Referenu (Volume 1) Draft 2 8131188

lfE Volume 1: Applications and GS/05 Part II: The File System Level

GSIOS Reference (Volume 1) Draft 3 (APDA)

Chapter 8 File System Translators

This chapter describes how GS/OS is able to communicate with many different
types of files and devices, in a manner that is transparent to the application.
The operating system does this by supporting

• a generic GS/OS me interface (the abstract file system, described in
Chapter 1) with which applications communicate

• individual file system translators (FSTs) that act as intermediaries between
the GS/OS flle interface and specific me systems and devices

This chapter discusses FSTs in general; the following chapters in Part II describe
the individual FSTs suppplied with GS/OS.

Note: The me system translators in GS/OS handle both standard GS/OS
(class 1) calls and ProDOS 16-<:ompatible (class 0) calls. Only the
standard GS/OS calls are described in this chapter and the rest of
Part IT; for information on how FSTs handle ProDOS 16-style calls,
see Appendix B of this volume.

Chapter 8: File System Translators lg}

8131188

GYOS Re[erena (Volume 1) Dmft 3 (APDA)

The FST Concept

Every file system, such as ProDOS or Macintosh HFS, stores directories, subdirectories, files, and
possibly other data structures on disk volumes in a format unique to that file system. Furthermore,
each ftle system provides a slightly different set of system calls for accessing its files. The uniqueness
of these data structures and system calls makes it very difficult for an application program that uses
one file system to also access a volume created under another file system Thus, application
programs are nearly always written to run with one particular me system.

A me system translator (FS1j is a GS/OS software module that accepts GS/OS calls made by
applications and translates those calls into a form acceptable to the particular file system the FST
supports. likewise, the FST takes data read from the device and converts it to a form consistent
with the generic GS/OS file interface (the abstract flle system, described in Chapter 1). This makes it
possible to write an application in which the same set of file VO calls can access files on volumes
created by any ftle system for which there is an FST. Application programs can thus transparently
access files from any me system, using standard GS/OS system calls.

Note: FSTs provide only the file access capabilities of GS/OS (see Chapter 4), which are similar
to those of ProDOS 16. Because all FSTs use the same standard set of calls, they cannot
implement all access capabilities and all calls for all file systems. Moreover, some FSTs
cannot even support all of the capabilities provided by GS/OS. The High Sierra FST, for
example, does not permit calls that write to disk.

1~ Volume 1: Applications and GSIOS Part II: The File System Level

8/31/88

GSIOS Referena (Volume 1)

Figure 8-1 The file system level in GS/OS

Block Block
device device
driver driver

Block Block
device device

Drafl3 (APDA)

Clwacrer
device
driver

Clwacrer
device

Character
device
driver

Chmcter
device

File system
level

Figure 8-1 shows the conceptual position of FSTs in the GS/05 hiemrthy. They make up the file
system leveL which mediates between the GS/05 call dispatcher at the application level and
individual device drivers at the device level. When an FST receives a calL the call has been
preprocessed by the GS/05 caD dispatcher. The PST either processes the call and returns successfully
or encounters an enor condition and returns unsuccessfully with an enor code. FSTs call the Device
Dispatcher, which performs the actual I/0 with cal1s to the device drivers. In addition, FSTs depend
on various services provided by the call manager, such as pathname prefiX management and error
handling.

Chapter 8: File System Translators 191

8131/88

GSIOS Reference (Volume 1) Drajt3 (APDA)

To GS/OS, all FSTs are equal. Any FST can be removed from the system by the user, and any FST can
be added. The user adds or removes FSTs from GS/OS by moving FST ftles into or out of the
subdirectory SYSTEWFSTS on the boot disk. See Appendix D.

Calls handled by FSTs

GS/OS calls can be classified by the part of the operating system that handles them. File calls are
handled by FSTs, device calls are handled by the the Device Manager, and other calls are handled by
the GS/OS call manager itself. Table 8-1 lists all the GS/OS calls handled by FSTs.

Table 8-1 GS/OS calls handled by FSTs

Call no. Call name can no. Call name
$2001 Create $2015 Flush
$2002 Destroy $2016 SetMark
$2004 Change Path $2017 GetMark
$2005 SetFileinfo $2018 SetEOF
$2006 GetFilelnfo $2019 GetEOF
$2008 Volume $201C GetDirEntry
$2008 ClearBackupBit $2020 GetDevNum
$2010 Open $2024 Format
$2012 Read $2025 Erase Disk
$2013 Write $2033 FSTSpecific
$2014 Close

As an application writer, you can expect that every FST will in some way support each of the calls
listed in Table 8-1. Depending on the file system accessed, the call may be meaningful, it may do
nothing and return no error, or it may do nothing and return an error. See the description of each FST
for details.

All of the calls listed in table 8-1 are described in Chapter 7 of this volume, except for FSTSpecific.
FSfSpedfic is a call whose function is completely defmable by each FST. For example, the High
Sierra FST (see Chapter 10) uses the call to control file type emulation. FSTSpecific is documented
individually for each FST that uses it, in the chapter that describes the FsT.

192 Volume 1: Applications and GS/05 Part II: The File System Level

8/31188

GS/OS Referma (Volume 1) Draft 3 (APDA)

Programming for multiple me systems

When you fust write an application for GS/OS, it may seem strange not to know what me system your
own application's files will be stored on. In reality, it makes your job simpler, but you may have to be
careful in the beginning to avoid making some cornroon incorrect assumptions.

Don't assume me characteristics

File-system independence is a cornerstone of the GSIOS design. To be IOOSt useful and efficient, and
to avoid file-system-specific problems, your application should also be as file-system independent as
possible.

In general, you will be working with fde information in the format retumed by the GS/OS call
GetFUelnfo, rather than in the format of any real file system For example, don't assume me-typing
conventions other than the flle type/auxiliary type provided in the GS/OS abstract file system; it is
the job of each FST to translate that information into the flle-type format for each me system

Remember that different file systems use different block sizes. Don't simply assume that a block is
512 (or 256, or 520, or 1024) bytes; if you need to know the exact size of a block on a volume, use the
GS/OS Volume call to the device holding that volume. ·

In manipulating filenames and pathnames, don't assume any fiXed limit on name length, and don't
assume other restrictions such as a limited ASCll character seL Always allow for the GS/OS pathname
syntax: both colons and slashes are valid separators, and colons can only be separators. Detailed
filename and pathname rules are presented in Chapter 1 of this volume.

In general, go through the GSIOS fde system level (by making standald GSIOS calls) as much as
possible, rather than performing file-system-specific or device-specific operations which may require
the presence of a particular FST, device driver, or device. Use GSIOS's flle-system independence and
device independence to your own advantage.

Chapter 8: File System Translators 193

8/31188

G~OS Reference (Volume 1) Draft 3 (APDA)

Use GetDirEntry

If your program needs to catalog a volume, don't read directory ftles directly-that is, don't use the
Read call to fmd out what is in a directory. GetDirEntry gives you the information in a standard
format for all me systems, whereas with Read you need to know the exact format of a directory file
for the specific file system you are accessing. And, because the files of interest may be in any of a
number of file systems, it is far simpler to use GetDirEntry and let GS/OS take care of the details for
you.

Keep rebuilding your device list

Some applications construct a list of online devices only when they start up. This works fine if the list
never changes, but under GS/OS new devices can be added dynamically during execution. Therefore,
instead of constructing your own device list, scan the device list each time you need to use it. For
example, use repeated Oinfo or Volume calls with consecutive device numbers, until an error is
rerurned (such as invalid device number) signals that there are no more on-line devices.

Handle errors properly

Your application's normal error-handling routines may be adequate for processing errors under GS/OS,
as long as you remember to always check for errors. A typical file-system-specific error might occur,
for example, from attempting to save a file from a file system that normally allows saving, such as
ProOOS, to a High Sierra disc. As long as your program is prepared to receive and act on any file error
that GSIOS can generate, there should be no problem. Remember also that, because different file
systems have different size limits on parameters, error $53 (parameter out of range) might be a very
corillOOn occurrence.

On the other hand, you may needlessly restrict your application's capabilities if you assume an error
will occur when it may not For example, if your program is written assuming a read-only file system, it
may unnecessarily prevent a user from saving a file to a different file system that is not read-only. In
general, it is probably better to let GS/OS decide what file permissions and file calls are appropriate
and then act on the returned errors if necessary.

Furthennore, what you do when an error occurs can be significant For example, if a user attempts to
save a very large file to a volume whose file system does not support the size of that file, your
application should put up a Standard File dialog box to let the user save the data to another ftle
system, rather than simply abort the save and lose the data.

194 Volume 1: Applications and GS/05 Part II: The File System Level

8/31/88

GSIOS Reference (Volume 1) DwJft 3 (APDA)

Remember also that GS/OS allows access to character devices with fde calls. Therefore, calls such as
Read or SetMark may be applied to devices (like a printer) for which they have no meaning. Thus
your error-handling should allow for not only different fde systems, but completely different devices
as well. In fact, it is comroon for character devices to return status information with error codes; if
your me-access routines do not check for typical character-device errors, you may lose critical
information. ·

FSTs and rue-access optimization

The flle system t1311Slators written for GS/OS are designed to make file reads and writes as fast and
effiCient as possible. You may be able to read a file under GS/05 faster than you can under the file's
native operating system Furthenmre, the disk caching available under GS/05 (see Chapter 11 of
Volume 2) makes reading faster still.

As much as possible, consecutive file blocks are written to consecutive sectors on disk for fast
access. More importantly, though, FSTs are optimized for large, multi-block transfers; for the
application writer, this means that it is best to read and write data in chunks as large as possible. If
you are interested in speed, try also to avoid Newline read roode (which forces every character to be
examined in tum) and the Flush call (which is slowed by the careful checking and updating it must
perform).

For the fastest possible multiblock copying, use the GS/OS call BeginSession to temporarily defer
block writes while copying, and then EndSession to flush the cache when you are done copying.
BeginSession and EndSession are tmSt useful when doing multiple-file copies, because directory
blocks are not written to disk as every flle is copied See the descriptions of BeginSession,
EndSession and SessionStatus in Chapter 7.

Present and future FSTs

GS/OS applications can read flles from any flle system for which there is an existing, installed GS/OS
flle system t1311Slator. Currently, Apple defines the following fde systems, each specified by its own
ftle system ID. This, then, is the total list of potential FSTs:

Chapter 8: rtle System Translators 195

8131188

GYOS Reference (Volume 1) Draft 3 (APDA)

Flle system Flle system
m Description m Description

$0000 reserved $0007 LISA
$0001 ProDOS/SOS $0008 Apple CP/M
$0002 DOS 3.3 $0009 reserved
$0003 DOS 3.2 or 3.1 $000A MS/005
$0004 Apple II Pascal $0008 High Sierra
$0005 Macintosh (MFS) $000C ISO 9660
$0006 Madntosh (HFS) $000D-$FFFF reserved

Abo, as new ftle systems are deflned, Apple assigns them unique ftle system IDs. In theory, then, all of
the above file systems (and any future systems) can be accessed through GS/OS once FSfs are written
for them. In practice, Apple will create new FSfs as dictated by demand and time constraints. The
currently existing FSfs are described individually in subsequent chapters. Future releases of GS/OS
will include file system translators for other ftle systems.

Disk initialization and FSTs

Disk initialization is a complex issue under an operating system that supports multiple file formats
and many different types of devices.

For example, a system could be configured with several FSI's. A user might wish to write any one of
the file formats on a 3.5-inch disk or a 5.25-inch disk. Or, if a single 3.5-inch drive supports multiple
low-level formatting styles, a formatting routine might select different encoding schemes for
different file systems.

The Initialization Manager is a GS/OS routine that puts a dialog box on the screen, allowing the user
to select aroong valid formatting choices (given the current system configuration of FSTs and device
drivers). Once the user has made a selection, the appropriate FST then performs the format call and
writes the new file system.

Your application can use either the of the GS/OS calls Format or E.raseDisk to initialize disks. The
format call physically formats the disk and writes out the file system; the EraseDisk call simply writes
out a new directory without formatting the disk. Either call causes the initialization dialog box to
appear; after the user makes the desired choices, the appropriate Fsr proceeds with the formatting.
For both calls, the return parameter fileSysiO indicates which file system (if any) the user chose.
Format and EraseDisk are described in more detail in Chapter 7 of this volume.

196 Volume 1: Applicalions and GS/OS Part II: The File System Level

8131188

GS'OS Reference (Volume 1) Draft 3 (APDA)

Use of the Initialization Manager adds a user dialog to the initialization process. Because the
Initialization Manager dialog box allows the user to cancel, it is probably not necessary for your
application also to make the user confirm that a format or erasure is desired.

Chapter 8: File System Translators 197

8131188

GSIOS Re[erena (Volume 1) Dnlft 3 (APDA)

Chapter 9 The ProDOS FST

The ProDOS file system translator (ProDOS FSf) provides a transparent
application interface to the ProDOS file system. The ProDOS FST can access
any block device whose GS/OS device driver can perform 512-byte block reads
and writes.

Note: This chapter describes only standard GS/OS (class 1) calls; for
descriptions of how the ProDOS FST handles equivalent ProDOS 16
(class 0) calls, see Appendix B.

Otapter 9: The ProDOS FST 199

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

The ProDOS file system

The ProDOS file system is the native file system for most of the Apple II family of computers. All
applications that run under either ProOOS 8 or ProOOS 16 create and read ProOOS files (if they
create files at all).

The ProOOS fde system is characterized by a hierarchical strucrure, 512-byte logical blocks, 16 MB
maximum fde size and 32 MB maximum volume size. ProOOS flles are either standard (sequential)
flles or directory ftles; there are no random-access, record-based fde types recognized as such by
Pro DOS.

ProOOS filenames can be up to 15 characters long, consisting of the numerals 0-9, the uppercase
letters A-Z, and the period(.), in any combination (except that the first character must be a letter).
A ProOOS volume name is like a filename but is preceded by a slash (/) or a colon. A ProDOS
pathname consists of a sequence of slash-separated filenames, starting with a volume name.

The ProDOS file system is described in the ProDOS 8 Technical Reference Manual and the Apple figs
ProDOS 16 Reference.

GS/OS and the ProDOS FST

The GS/OS abstract file system described in Chapter 1 is closely related to the ProDOS me system.
Therefore, the ProDOS file system duplicates many features of the abstract file system exactly, and
many GS/OS calls to the ProDOS FST behave exactly as described in Chapter 1. Here are the principal
differences:

8/31188

• ProOOS 8 and ProboS 16 do not create or recognize extended flles, equivalent to the resource forks
of Macintosh ftles. However, the ProDOS FST under GS/OS can store and retrieve extended files in
ProOOS format, by defining a new storage type ($0005). When a file is stored in this format, a GS/OS
application can retrieve its resource fork and its data fork; applications under ProDOS 8 and ProDOS
16, however, cannot access the flle at all; attempts to open the file result in error $4B (unsupported
storage type).

• Under GS/OS, a ProDOS pathname can have either slashes (/) or colons (:) as filename separators. The
GS/OS Call Manager converts both types of separators to an internal format before passing on the
pathname to the ProDOS FST.

D> Volume 1: Applications and GS/OS Part II: The FUe System Level

GSIOS Reference (Volume 1) Dnlft 3 (APDA)

• Because ProDOS flles and volumes have maximum sizes smaller than those supported by GS/OS,
patameters related to size (such as EOF, position, blockCount, requestCount, and
transfercount) may not be accepted by the ProDOS FST if they are too large. In such cases the
ProDOS PST returns error $53 (parameter out of range).

8131188

• Because several file-entry fields in ProDOS directories on disk are smaller than their equivalent
parameters in the GS/OS calls that access me entries, the high-order pans of some of those
parameters are always zero when·a me entry is read, and must also be zero when a file entry is stored.
See the individual call descriptions under •eaJls to the ProDOS FSr."

Calls to the ProDOS FST

This section describes how the ProDOS PST handles certain GS/OS calls differently from the general
procedures described in Chapter 7. Calls not listed in this section are handled exactly as described in
Chapter 7.

GetDirEntry ($201C)

GetDirEntry returns me information contained in a volume directory or subdirectory entry. Under the
ProDOS PST, the following fields have limitations different from the general values permitted by
GS/OS:

file Type

EOF

blockCount

auxType

optionList

resourceEOF

resourceB1ockCount

Only the low-order byte contains information.

Only the three low-order bytes contain information.

Only the two low-order bytes contain information.

Only the two low-order bytes contain information.

Not used.

Only the three low-order bytes contain information.

Only the two low-order bytes contain information.

Olapter 9: The ProDOS FST ~1

GYOS Reference (Volume 1) Draft 3 (APDA)

GetFllelnfo ($2006)

GetFilelnfo returns certain ftle attributes for an existing block ftle. Under the ProDOS FST, the
following ftelds have limitations different from the general values pennitted by GS/05:

fileType

auxType

storaqeType

optionList

EOF

blocksUsed

Only the low~rder byte contains information.

Only the two low~rder bytes contain information.

Only the low nibble of the low byte contains information.

Not used.

Only the three low~rder bytes contain information.

Only the two low~rder bytes contain information.

SetFllelnfo ($2005)

SetFileinfo assigns certain file attributes to an existing block file. Under the ProDOS FST, the
following ftelds have limitations different from the general values pennitted by GS/OS:

fileType

auxType

optionList

Only the low~rder byte can be nonzero; otherwise, error $53 (parameter out of
range) is rerurned.

Only the two low~rder bytes can be nonzero; otherwise, error $53 (parameter
out of range) is returned.

Not used.

m Volume 1: Applications and GS/OS Part II: The File System Level

8131188

GSIOS Reference (Volume 1) DrrJft 3 (APDA)

Chapter 10 The High Sierra FST

This chapter describes the GS/OS High Sierra flle system translator (High Sierra
FST). The High Sierra FST provides transparent application access to compact
read-only optical discs (CD-ROM) and other media upon which High Sierra or
ISO 9660-formatted files may reside.

The High Sierra and ISO 9660 flle formats are not documented here. See the
publications listed under ·co-ROM and the High Sierra/ISO 9660 Formats" for
more information. For information on the Apple extensions to ISO 9660, see
Appendix E.

Note: This chapter describes only standard GS/OS calls; for descriptions
of how the High Sierra FST handles equivalent GS/OS ProDOS 16-
compatible calls, see Appendix B.

Chapter 10: The High Sierra FST 2.13

8131188

GSIOS Referena (Volume 1) Draft 3 (APDA)

CD-ROM and the lllgh Sierra/ISO 9660 formats

Compact discs provide a new and promising method of information storage and retrieval. Compact
discs can hold vast amounts of information on a medium that is durable and inexpensive to
manufacture. The information can be played back using existing, well-established technology based
on CD music players.

A single CD-ROM disc holds about 550 megabyteS of information. This large capacity is CO-ROM's
main advantage, but it comes at a price. Compared to magnetic disk drives, CD-ROM players have
much slower access times; it can take up to one second to fmd a byte of information on a CD-ROM
disc, compared to less than a tenth of a second on a large-capacity hard disk.

CO-ROM's biggest disadvantage, however, is that-at present-its optical storage technology is
read-only. Users can read from a CD, but they cannot write to it (hence the name CD-ROM).

The Wgh Sierra Group format (named for the location of an ad-hoc committee's original meeting
place) and the ISO 9660 format (the International Standards Organization's version of High Sierra)
are two nearly identical CD-ROM file formats that support the large files a compact disc can hold.
They also simultaneously attempt to minimize the penalties caused by slow access. Here are some of
the highlights of the formats that are relevant to GS/OS:

• Logical sectors contain 2048 bytes (2 KB) of data. A logical sector can contain 1, 2, or 4 logical
blocks.

8131188

• Files can contain data in any form or for any purpose; High Sierra/ISO 9660 specifies nothing about
me contents.

• File identifiers can consist of three parts: a fllename, a filename extension, and a version number.
Directories have the filename part only. Nondirectory flles under High Sierra need one or more of the
three parts (except that a me cannot be identified by a version number alone). Under ISO 9660, a
nondirectory flle must include all three parts.

The filename is 0 or more characters (uppercase A-Z, digits 0-9, or underscore); it must be followed
by a period. The fllename extension is 0 or more characters, and it must be followed by a semicolon.
The version number is one to six digits. The sum of the fdename and extension must be between 2
and 31 characters, including the period. Under ISO 9660, then, a minimum legal file name is something
like •A.;l" or • .A;l".

l>4 Volume 1: Applications and GS/05 Part II: The File System Level

GS/OS Reference (Volume 1) Inafl3 (APDA)

Note: See the section •Apple Extensions to ISO 9660,• later in this chapter, for information on
how to devise High Sierra/ISO 9660 fllenames that are transformable to other file
systems with different conventions.

8/31188

• High Sierra/ISO 9660 is hierarthical; files may be placed in subdirectories. To speed access to files
deep within subdirectories, there is a Path Table that can be loaded into RAM for fast searching; it is
an index to all subdirectories on disc. In addition, directory entries are kept small (and therefore fast
to search) by putting auxiliary directory information-such as creation dates and access
permissions-into extended attribute records (XARs), stored separately.

• Both ISO 9660 and High Sierra support associated flies (equivalent to resource forks of GS/OS
extended flles); however, the High Sierra FSf supports associated files for ISO 9660-formaned files
only.

• High Sierra/ISO 9660 supports hidden flles.

The High Sierra!ISO 9660 format from which Apple's High Sierra FST was designed is defmed in these
two documents:

• Working Paper for Information Processing-Volume and File Structure of Compact Read-Only Optical
Discs for Information Interchange, published by the CD ROM Ad Hoc Advisory Committee. May 28,
1986. This is the original High Sierra Group proposal.

• ISO 9660: Information Porcessing- Volume and File ShUCture of CD-ROM for Information
Interchange, first edition, 1988. This is the ISO 9660 standard, a slightly modified version of the High
Sierra Group format

Non-CD-ROM implementalion: Although High Sierra and ISO 9660 were developed specifically for
compact disc storage, nothing in either format requires the files to be on CD-ROM. It is
possible to have High Sierra/ISO 9660 flles on essentially any storage medium that can
be formatted to accept them

limitations of the ffigh Sierra FST

In translating flle calls back and forth between CD-ROM drivers and GS/OS, the High Sierra FST
cannot support all aspects of the High Sierra/ISO 9660 flle system, nor can it meaningfully implement
all GS/OS application calls. The High Sierra FSf provided by Apple has the following features:

• It supports associated files (GS/OS extended files) for ISO 9660-formatted discs only.

• It permits only a single volume descriptor-the Standard File Structure Volume Descriptor- per
physical volume.

Chapter 10: The High Sierra FST ~

GSIOS Referena (Volume 1) Draft 3 (APDA) 8/31188

• It does not support multi-volume sets (named and logically Unked groups of volumes occupying more
than one disc).

• It does not support multi-extent files (files occupying roore than one disc).

• It does not support random-access, record-based files; that is, it can read such files as strearm of
byteS, but it caMot access individual records directly

• It maps the existence bit of the file flags into the invisibility bit of the GS/OS access word.

• It ignores the me pennissions field in the extended attribute record.

• It is a read-only implementation.

This last limitation imposes strong restrictions on GS/OS system calls that write data to the disc:
those calls always return a write-protect error, after identifying that the file or device requested is
present and is in High Sierra or ISO 9660 format

In accessing files on a CD-ROM disc, remember tha~ under High Sierra or ISO 9660, block size is not
flxed across volumes. If necessary, you can use the GS/OS Volume call to get the block size for a
particular volume. Block counts returned by other calls are always in terms of blocks of the size
returned by the Volume call

An associated me in ISO 9660 is analogous to the resource fork of a GS/OS extended file. If an ISO
9660 file named MyFile has an associated ftle, the associated ftle has these characteristics:

• It is also named MyFile (its file identifier is identical).

• Its associated bit (in the file flags byte of the directory record) is set.

• Its directory entry resides inunediately before the other MyFile's directory entry.

Thus, GSIOS refers to the fll'St MyFile (whose associated bit is set) as the resource fork of the
extended ftle MyFile, and the immediately following MyFile (whose associated bit is clear) as the
data fork of MyFile. Only data files can have associated ftles; directories cannot.

File types: High Sierra/ISO 9660 does not provide an explicit ftle typing convention. This can be a
problem because many applications select a particular file type as a filter when calling
the Standard File Tool Set to display files to the user. In such a case, files from a High
Sierra/ISO 9660 disc would never be selectable.

ns Volume 1: Applications and GS/OS Part II: The File System Level

GSIOS Reference (Volume 1) Draft 3 (APDA)

To remedy this problem, the High Siena FST, through the call FSI'Specific, defines and
implemen~ a convention by which High SierraiiSO 9660 fllenames can be used to
convey me type information. See the discussion under "FSTSpecific", later in this
chapter. In addition, Apple has defmed a protocol that extends ISO 9660 to store file­
type and other information needed by either ProDOS or Macintosh HFS files. See the
next section • Apple Extensions to ISO 9660".

Apple extensions to ISO 9660

To facilitate the transformation of ProDOS flles or Macintosh HFS files to ISO 9660 files on CD-ROM
without loss of needed ProDOS or Macintosh me information Apple has defined a protocol that
extends the ISO 9660 specification. Discs created using the Apple extensions are valid ISO 9660
discs, and retain the filename as well as the filetype/auxiliary type (ProDOS) or
filetype/creatorlbundle bit/icon resource (Macintosh) information needed to reconstruct the
original files from which they were made.

Because ISO 9660 does not provide for flle typing and icons, the extra information is stored in a
special data structure in the file's directory record. Filenames are preserved through transformations
of ProDOS or Macintosh filenames to valid ISO 9660 names, and back again.

This section does not discuss the protocol in detail. Please see Appendix E, "Apple Extensions to
ISO 9660,"

if you need to create or work with ProDOS or Macintosh files stored as ISO 9660 files. Here are the
main highligh~ of the protocol:

8131188

• The Protocol identifier: The protocol identifier consists of 32 bytes in the systemidentifier

field of the Standard Volume Descriptor of an ISO 9660 volume. It is the characters "APPLE

COMPUTER, INC. , TYPE: " followed by 4 bytes of protocol flags. The current version of the
type description gives the version number of the protocol and indicates whether the disc's files
should be transformed to ProDOS file names when read.

The presence of the protocol identifier indicates that the Apple extensions have been applied to the
disc's flles.

• The system.Usc field: The systemUse field in the file's directory record is an optional field. The
Apple extensions use that field to store the extra file information. If the systemuse field is presen~
and if it begins with the proper signature word, the subsequent information in the field can be
interpreted as ProDOS or Macintosh HFS information.

Chapter 10: The High Sierra FST 2iJ7

GYOS Refermce (Volumt 1) Draft 3 (APDA) 8131188

• ProDOS mename transformations: If you (through an authoring tool) are creating ISO 9660 files
from ProOOS flies, you can tramform ProOOS fllenames to valid ISO 9660 ftlenames in such a way
that users (through a receiving system) can access the ftles using their original ProDOS fllenames. Do
this:

1. Replace all periods in the ProOOS fllename with underscores. If the flle is a directory file, that
completes the transformation.

2. If the me is not a directory me, append the characters •.;1" to the ftlename. It is now a valid ISO
9660 filename.

In use, the receiving system petforms the above tramformation on user-supplied filenames before
searching for them on disc and reverses the transformation before presenting menames to the user.

If the transformation is to be done, it must be applied to all mes on a disc.

• HFS mename transformations: Unlike with ProDOS, it is not possible to make a simple,
reversible transformation from all valid Macintosh HFS filenames to valid ISO 9660 filenames. To
make the tramformation as comistent as possible, however, Apple recommends these guidelines:

1. Convert all lowercase characters to uppercase.

2. Replace all illegal characters, including periods, with underscrores.

3. If the me name needs to be shortened, truncate the righttoost characters.

4. If the file is not a directory file, append the characters • .;1" to the filename.

Such a tramformation is not petfectly reversible, but its results are at least consistent across ail files
and discs.

High Sierra FST calls

Table 10-1 lists all the GS/OS system calls supported by the High Sierra FSI'. Those in column 1
petform meaningful tasks; those in column 2 always return an error (with the exception of Flush; see
the call description).

Table 10-1 High Sierra FSI' calls

Meanlnaful Not meanlnKful

$2006 GetFileinfo
$2008 Volume

D3 Volume 1: Applications and GS/05

$2001 Create
$2002 Destroy

Part II: The File System Level

GSIOS Reference (Volume 1) D1rJft 3 (APDA)

$2010 Open $2004 Change Path
$2012 Read $2005 SetFilelnfo
$2014 Close $2013 Write
$2016 SetMark $2015 Flush
$2017 GetMark $2018 SetEOF
$2019 GetEOF $200B ClearBackupBit
$201C GetDirEntry $2024 Format
$2020 GetDevNum $2025 Erase Disk
$2033 FSTSpecific

With the exception of Flush, all the caJ1s on the right side of Table 10-1 do nothing and rerum error $2B
(write-protected). Flush also does nothing, but it returns with the carry flag cleared (no error).

The following sections describe how the High Sierra FST's handling of some of the calls listed on the
left side of Table 10-1 differs from standard GS/OS practice, as documented in Chapter 7. Calls listed
on the left side of Table 10-1 that are not described below are handled exactly as documented in
Chapter 7. Refer also to Chapter 7 for complete explanations of the caJ1s and parameters listed here.

GetFllelnfo ($2006)

GetFilelnfo returns certain attributes of an existing block me. The file may be open or closed.

Parameter differences

access

fileType

modDateTime

auxType

The only possible values for this parameter under High Sierra/ISO 9660 are $01
(read-permission only) and $05 (read-permission only, ftle invisible).

This output word value equals $000F if the me is a directory; otherwise, it is
$()()()() (unknown)-unless the mename extension matches an entry in the me­
type mapping table. See Appendix E •Apple Extensions to ISO 9660"; see also
the call FSTSpecific, described later in this chapter.

This output double longword value always has the same value as
createDateTime.

This output long word value is always $0000 unless the Apple extensions to ISO
9660 have been applied. See Appendix E.

Chapter 10: The High Sierra FST lf.'fJ

8131188

GS/OS Referena (Volume 1) Dnift 3 (APDA)

optionList

Errors

This is a longword input pointer to a data area to which results can be returned.
If an Extended Attribute Record (XAR) exists for the flle, the High Sierra FST
returns the contents of the XAR in the data area pointed to. If an XAR does not
flt in the allotted space, the High Sierra FST returns as much of the data as
possible and generates error $4F (buffer too small).

In addition to the standard GSIOS GetFUeinfo errors, the High Sierra FST can return these errors from
a GetFUeinfo call:

$4F buffer too small

Volume ($2008)

Given the name of a block device, Volume returns the name of the volume mounted in the device and
other information about the volume.

Parameter clifferences

freeBlocks

fileSysiD

Open ($2010)

This longword output value is aways $0000.

This word result value describes the ftle system of the volume being accessed.
For High Sierra, fileSysiD • $0008; for ISO 9660, fileSysiD • $000C. If
any other type of volume is accessed, the High Sierra FSf rerums error $52
(unsupported volume type).

This call causes the FST to establish an access path to a file. Once an access path is established, the
user may perform fde reads and other related operations on the flle.

A me can be opened more than once as long as it is not opened for write access, and each open
assigns a different reference number. Because High Sierra/ISO 9660 flies are read-only, it is always
possible to have multiple open copies of a document

Parameter clifferences

210 Volume 1: Appliations and GS/OS Part II: The FUe System Level

8/31188

GSIOS RefmmaJ (Volume 1) Drrl/1 3 (APDA)

requestAccess If this word input parameter is included, and if its value is anything other than
$0000 (use default pennissions stored with ftle) or $0001 (read-access
requested), the High Sierra FST returns error $4E (access not allowed).

fileType This word output value equals SOOOF if the file is a directory; otherwise, it is
$0000 (unknown}-unless the fllename extension matches an entry in the me­
type mapping table. See Appendix E •Apple Extensions to ISO 9660"; see also
the FSTSpecific call, described later in this chapter.

auxType This longword output value is always $0000 unless the Apple extensions to ISO
9660 have been applied. See Appendix E.

modDateTime This double longword output parameter always has the same value as
createDateTime.

optionList

fileType

auxType

Errors

This is a longword input pointer to a data area to which results can be returned ..
If an Extended Attribute Record (XAR) exists for the ftle, the High Sierra FST
returns the contents of the XAR in the data area pointed to. If an XAR does not
fit in the allotted space, the High Sierra FST returns as much of the data as
possible and gene12tes error $4F (buffer too small).

This output word value equals SOOOF if the me is a directory; otherwise, it is
$0000 ("unknown~}-uni&ss the filename extension matches an entry in the file­
type mapping table. See Appendix E •Apple Extensions to ISO 9660"; see also
the call FSTSpecific, described later in this chapter.

This output long word value is always $0000 unless the Apple extensions to ISO
9660 have been applied. See Appendix E.

In addition to the standard GS/OS Open errors, the High Sierra FST can return this error from an Open
call:

$4F buffer too small

Read ($2012)

This call attempts to tr.lnsfer the requested number of bytes, starting at the current mark, from a
specified file into a specified buffer. The file mark is updated to reflect the number of bytes read.

Chapter 10: The High Sierra FST 211

8131/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

The High Sierra FSf allows applications to read directory files as well as data files (but only with
standard GS/OS calls; ProOOS 16 Read calls to directories return error $4E-access not allowed).
Even so, as a reminder that directory structures differs for different file systems, the High Sierra FST
always returns a "caution• error ($66) after a successful read of a directory.

Also, the High Sierra FSf does not allow Read calls and GetDirEntry calls with the same file reference
number: if an open file has previously been accessed by GetDirEntry, and a Read call is made with the
same reference number, the High Siem Fsr returns error $4E (access not allowed). To avoid that
error, open the directory twice.

Errors

In addition to the standard GS/OS Read errors, the High Sierra FST can rerum this error from a Read
call:

$66 FSTCaution

GetDirEntry ($201C)

This call returns information about a directory entry in the volume directory or a subdirectory.
Before executing this call, the application must open the directory or subdirectory. The call allows
the application to step forward or backward through file entries or to specify absolute entries by
entry number.

The High Sierra FST does not allow Read calls and GetDirEntry calls with the same file reference
number: if an open flle has previously been accessed by Read, and a GetDirEntry call is made with the
same reference number, the High Siem FST returns error $4E (access not allowed). To avoid that
error, open the directory twice.

Parameter differences

fileType

modDateTime

awe Type

This output word value equals $000F if the file is a directory; otherwise, it is
$0000 (unknown)-unless the fllename extension matches an entry in the me­
type mapping table. See Appendix E "Apple Extensions to ISO 9660"; see also
the FS1'Specific call, described later in this chapter.

This double longword output parameter always has the same value as
createDateTime.

This longword output value is always $0000 unless the Apple extensions to ISO
9660 have been applied. See Appendix E.

212 Volume 1: Applications and GS/05 Part II: The File System Level

8131188

GYOS Reference (Volume 1) Draft 3 (APDA)

fileSyl!IID

optionList

Errors:

This word result value describes the file system of the directory being accessed.
For High Sierra, fileSyl!IID • SOOOB; for ISO 9660, fileSysiD • SOOOC. If
any other type of directory is accessed, the High Sierra FST returns error $52
(unsupported volume type).

This is a longword input pointer to a data area to which results can be returned.
If an Extended Attribute Record (XAR) exists for the ftle, the High Sierra FST
returns the contents of the XAR in the data area pointed to. If an XAR does not
flt in the allotted space, the High Sierra FST returns as much of the data as
possible and generates error $4F (buffer too small).

In addition to the standard GS/OS GetDirEntry errors, the High Sierra FST can return this error from a
GetDirEntry call:

$4F buffer too small

Chapter 10: The High Sierra PST 213

8/31/88

GS'OS Reference (Volume 1) Draft 3 (APDA)

$2033

Note:

Desaiption

Parameters

pCount

FSTSpeciflc

FSTSpecific is a call that is not described with me rest of the GS/OS calls in
Chapter 7. Its function can be deftned individually for any file system
translator.

The High Sierra FST uses the call FSTSpecific to control me-type mapping. That
is, it simulates me types in High Sierra/ISO 9660 flles (which do not have file
types) by mapping filename extensions to specific GS/OS file types.
FSTSpeciflC maintains a table in meroory that controls which extensions
correspond to which file types.

The default table contains only two entries; it equates fllenames with extensions
of. txt and . bat to GS/OS me type $04 (text me).

FSTSpecific uses a command number as one of its parameters and therefore
functions as four different calls. The four calls are:

Map Enable
GetMapSize
GetMapTable
SetMapTable

Enables/disables flle-type mapping
Returns size, in bytes, of current file-type map
Returns the current flle-type map
Replaces the current flle-type map

Note: This mapping is independent of and unrelated to the me-typing
implemented by the Apple extensions to ISO 9660 described in
Appendix E.

This is the FSTSpeciflC parameter block:
Offset No. Sixe ani type

$00
1- pCount - Word INPUf value minimum • 3)

1- fileSysiD -$02
1 Word INPur value

1- commandNum - 2 Word INPur value

3 (subcall-specitlc parameter)

Word input value: The number of parameters in this parameter block. Minimum
• 3; maximum • 3.

214 Volume 1: Applicalioos and GS/OS Part 11: The File System Level

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

fileSysiD

commandNum

Woni input value: The ftle system ID of the PST to which the call is directed.
For High Sierra, fileSysiD • $0008; for ISO 9660, fileSysiD • $000C.

Woni input value: A number that specifieS which particular subcall of
FSTSpecific to execute, as follows:

subcall commandNum
MapEnable $0000
GetMapSize $0001
GetMapTable $0002
SetmapTable $0003

See the individual subcall descriptions later in this chapter.

(subcall-specific) Word or longwoni input or resuk value: Depends on the specific subcall; see the
individual subcall descriptions later in this chapter.

Errors $04
"$53
$54

parameter count out of range
invaLid parameter
out of meroory

What a map table is
The map table is the data structure that records which filename extensions are
to be assigned to which filetypes. The format of a map table is as follows:

Chapter 10: The High Sierra FST 215

8131/88

GYOS Referenc8 (Volume 1) Draft 3 (APDA)

mapTable
de
de

end de

:t mapSize j Length d table, including termin2tor

First map record (variable length)

record 0 . . .

t J Next map record .

. record l

r l
L J

Last map record

. record n . Terminalot (zero byte)

t $00 j
A map record consists of a text string (with MSBs oft) followed by a zero byte
followed by a fde type byte. The text string can be any length and can include
any legal characters for a High Sierra filename (text must be uppertaSe, for
example). In APW assembly language, a map table can be defined as follows:

de i2'end-mapTable+l' ;Lenqth of table.
c'.TXT',h'OO 04' ;Record 0.
c'.TYPE',h'OO 7f' ;Record l.
h'00' ;Terminator.

MapEnable (FSTSpeciflc subcall)

The MapEnable subcall toggles me mapping on or off.

Parameters This is the FSTSpecific parameter block for the MapEnable subcall:

216 Volume 1: Applications and GS/OS Part II: The File System Level

8131/88

GS'OS Reference (Volume 1) I>raft 3 (APDA)

commandNum

enable

$00
~ pCount -
~ .fileSysiD -soz

- commandNum -
$06 - enable -

The following parameters have particular values for this subcall.

For MapEnable, commandNum • $0000.

Word input value that equals either $0000 or $0001. If enable • $0000, file­
type mapping is disabled. If enable • $0001, file-type mapping is enabled.

GetMapSize (FSTSpecific subcall)

The GetmapSize subcall rerurns the size of the current file map.

Parameters This is the FSTSpecific parameter block for the GetMapSize subcall:

$00 - pCount -
- fileSysiD -
- commandNum -

$06
~ mapSize -

The following parameters have particular values for this subcall.

commandNum For GetMapSize, commandNum • $0001.

mapSize Word result value that is equal to the size (in bytes) of the current map table.

GetMapTable (FSTSpecific subcall)

The subcall GetMapTable returns a pointer to the current map table.

Chapter 10: The High Sierra FST 217

8131188

GYOS Re[erena (Volume 1) Draft 3 (APDA)

Parameters This is the FSTSpecific parameter block for the GetMapTable subcall:

$00
1- pCount -

$02 - filaSysiD -
- commandNum -

$06 - -- buf!erPtr -
- -

The following parameters have particular values for this subcall.

commandNum For GetMapTable, commandNum • $0002.

bufferPtr A longword input pointer to a memory area large enough to hold the map table
that will be returned by the call.

SetMapTable (FSTSpecific subcall)

Parameters

commandNum

The subcall SetMapTable sets the current map table to the one pointed to by the
input pointer.

This is the FSTSpecific parameter block for the SetMapTable subcall:

1- pCount -$00

$02 - fileSysiD -
- commandNum -

$06 - -- mapPtr -- -

The following parameters have particular values for this subcall.

For SetMapTable, commandNum • $0003.

218 Volume 1: Applications and GS/OS Part II: The File System Level

8131188

GYOS Reference (Volume I) Draft 3 (APDA)

mapPtr l.Dngword input pointer to the new map table. As long as there is space in
memory for the new table, it will replace the old one. If there is not enough
space, error $54 (out of memory) is returned and the original table remains in
effect No validity checking is done on the table.

Chapter 10: The High Sierra FST 219

8131188

GYOS Reference (Volume 1) Draft 3 (APDA)

Chapter 11 The Character FST

The Character me system translator (Character FST) provides a me-system-like
interface to character devices such as the console, printers, and modems. The
Character FST works with both generated and loaded drivers.

Note: This chapter describes only standard GS/OS (class 1) calls; for
descriptions of how the Character FST handles equivalent Pro DOS
16 (class 0) calls, see Appendix B.

Chapter 11: The Charaaer FST 221

8/31188

GS'OS Reference (Volume 1) Dmft 3 (APDA)

Character devices as ffies

The Character FST eanbles applications to read from and write to character devices as if they were
files. That is, your application can open , read, write, and close a printer, modem, console, or other
character device in a manner exactly analogous to perfonning those actions on a file on a block
device.

Not all GS/OS caUs can be made to character devices, of course, and those that do may not always
function exactly the same as for block devices. This chapter discusses those calls that do apply to
character devices and notes any character-device-specific features they have.

Note: Although GS/OS lets you treat character devices as files in some ways, you caMot create,
destroy, or rename character n.tes with GSIOS calls. The system and the user control the
existence and the names of character devices

The Character FST allows multiple Open calls, with both read- and write-access, to a character file.
Block-device FSTs, on the other hand, can allow multiple Opens for read-access only.

Character FST calls

The Character FST supports this subset of GS/OS calls:

Open
Newline
Read
Write
Close
Flush

All other GSIOS calls return error $58 (Not a block device).

The following descriptions explain how the Character FST responds to some of these calls differently
from the standard procedures documented in Chapter 7. Any of the supported calls not described
here function exactly as documented in Chapter 7.

22Z Volume 1: Applic3tions and GS/OS Part II: The File System Level

8/31/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

Open ($2010)

Open establishes an access path to a character file. With the requestAccess parameter, an
application can request limited access rights to the character me.

Parameter dlft'erences

pcount Maximum value • 3. Unlike with block devices, you cannot use the Open call to
a character device to get infonnation normaJJy rerurned by GetFilelnfo.

pathname This input pointer must point to a character device name.

requestAccess The following values are allowed:

$00 open with available permissions
$01 open for read-access only
$02 open for write-access only
$03 open for both read- and write-access

Errors

In addition to the standard GS/OS Open errors, the Character FST can return these errors from an
Open call:

$04 pCounterror
$24 driver prior open
$26 driver no resources
$28 driver no device
$ 2F driver off line
$54 out of memory

Read ($2012)

The Read call attempts to transfer the requested number of bytes from the specified character file
into the application's data buffer.

Parameter dlft'erences

pCount Minimum is 4; maximum is 4.

cacheP riori ty Not used. Data transfers with character devices are not cached.

Chapter 11: The Character FST 223

8/31188

GSIOS Reference (Voluml1) Drrljt 3 (APDA)

Errors

In addition to the standard GS/OS Read errors, the Character FST can return these errors from a Read
call:

$04 pCount error
$23 driver not open
$2F driver off line
$53 parameter out of range
$54 out of mellK)ry

Write ($2013)

The Write call attempts to transfer the requested number of bytes from the application's data buffer
to the specified character file.

Parameter differences

pCount Minimum is 4; maximum is 4.

cachePriority Not used. Data transfers with character devices are not cached.

Errors

In addition to the standard GS/OS Write errors, the Character FST can rerum these errors from a Write
call:

$04 pCounterror
$23 driver not open
$ 2F driver off line

Close ($2014)

The Close call tenninates access to the specified (by re fNum) character file. Close also involves
flushing the file (see the Flush call), to ensure completion of all data transfer before a character me is
closed.

224 Volume 1: Applicalions and GS/05 Part II: The File System Level

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

Errors

In addition to the standard GS/OS Close errors, the Character FST can return these errors from a Close
call:

$04 pCounterror
$23 driver not open
$2F driver off line

Flush ($2015)

The Flush routine completes any pending data transfer to the character file specifed by re fNum. If
the character device is synchronous, all data transfer is by definition completed when the Write call
returns, so the Flush routine simply returns with no error. If the device is asynchronous (such as
interrupt-driven or direct memory access), the Flush routine waits until all data has been transferred
and then returns. If the file is multiply opened, all (output) access paths to the character file (not just
the one with the specified re fNum) are flushed.

Errors

In addition to the standard· GS/OS Flush errors, the Character FST can return these errors from a Flush
call:

$04 pCount Error
$23 Drivernotopen
$2F Driver Off llne

Chapter 11: The Olaraaer FST 225

8/31/88

G£'05 Reference (Volume 1)

Appendixes

Volume I

Volume2

Draft 3 (APDA)

Part I

GS/OSalls
(except device ails)

(Chapter 7)

Part I -
GSIOS device ails

-.....

......----_____
Driver -specifiC
information on

GSIOS device calls

Partll

FST -specific
information on

GS/Osalls
(Chapter 9-11)

Pan n

Driver calls

System service ails

""\..-

8131188

Appendixes

Appendixes ---..:..

System Loader ails
(Appendix B)

~

GSIOS Referenu (Volume 1) DTaft 3 (APDA)

Appendix A GS/OS ProDOS 16 Calls

This appendix provides a detailed description of all the GS/OS ProDOS 16 calls,
arranged in alphabet.ic21 order by call name. These calls are provided only for
compatibility with ProDOS 16. For the standard GS/OS calls, see Chapter 7,
•Gs/OS Call Reference, • in Part I of this manual.

The descriptions in this appendix follow the same conventions as those for the
standard GS/OS calls.

Appendix k GS/05 ProDOS 16 CUts W

8/31188

GSIOS Reference (Volume 1) Draft 3 (APDA)

$0031

Description

Parameters

intNwn

intCode

Errors

ALLOC_INTERRUPT

This function places the address of an interrupt handler into GS/OS's interrupt
vector table.

For a complete description of GS/OS's interrupt handling subsystem, see
Volume 2. See also the DEALLOC_INTERRUPT call in this appendix.

Offset

$00_

$02-

intNum

intCode

Size and type

- Word RESULT value

- Longword INPUT pointer

Word result value: An identifying number assigned by GS/OS to the the binding
between the interrupt source and the interrupt handler. Its only use is as input to
the DEALLOC_INTERRUPT call.

Longword input pointer: Points to the first instruction of the interrupt handler
routine.

$25 interrupt vector table full
$53 parameter out of range

~ Volume 1: Applications and GSIOS Appendixes

8131188

GSIOS Reference (Volume 1) Dmfl 3 (APDA)

$0004

Description

Parameters

pathname

newPathname

Comments

CHANGE_PATH

This call changes a file's pathname to another pathname on the same volume, or
renarres a volume.

CHANGE_PATII cannot be used to change a device name. You must use the
configuration program to change device names.

Offset Sizle and type

$00
~ -
f- pathname - l.ongword INPUI' pointer
~ -

$04
f- -
f- newPathname - Longword INPUI' pointer
f- -

Longword input pointer: Points to a Pascal string that represents the name of
the file whose pathname is to be changed.

Longword input pointer: Points to a Pascal string that represents the new
pathname of the file whose name is to be changed.

A ftle may not be renamed while it is open.

A file may not be renamed if rename access is disabled for the file.

A subdirectory s may not be moved into another subdirectory t if s • t or if t is
contained in the directory hierarchy starting at s. For example, "rename /v to
/v/w" is illegal, as is •rename /v/w to /v/w/x".

Appendix A:. GS/OS ProDOS 16 Calls 231

8131/88

GSIOS Reference (Volume I) Draft 3 (APDA)

Errors

$10 device not found
$27 I/0 error
$2B write-protected disk
$40 invalid pathname syntax
$44 path not found
$45 volume not found
$46 file not found
$47 duplicate pathname
$4A version error
$4B unsupported storage type
$4E access: file not destroy-enabled
$50 file open
$52 unsupported volume type
$53 invalid parameter
$57 duplicate volume
$58 not a block device
$5A block number out of range

2.32 Volume 1: Applications and GS/OS

8131188

Appendixes

GSIOS Reference (Volume 1) Draft 3 (APDA)

$OOOB

Description

Parameters

pathname

Errors

CLEAR_BACKUP _BIT

This call alters a file's state information to indicate that the file has been backed
up and not altered since the backup. Whenever a file is altered, GS/OS sets the
file's state information to indicate that the file has been altered.

Offset

$00_ -

Size Uld type

- pathnam• - Longword INPur pointer
I"" -

Longword input pointer: Points to a Pascal string that gives the pathname of the
file or directory whose backup status is to be cleared.

$27 VO error
$28 no device connected
$ 2B write-protected disk
$2E disk switched
$40 invalid pathname syntax
$44 path not found
$4 5 volume not found
$46 fue not found
$4A version error
$52 unsupported volume type
$58 not a block device

Appendix A: GS/OS ProDOS 16 Calls 233

8131188

GSIOS Referena (Volume 1) Draft 3 (APDA)

$0014

Description

Parameters

fileRefNum

Errors

CLOSE

This call closes the access path to the specified file, releasing all resources used
by the file and terminating further access to it. Any file-related information that
has not been written to the disk is written, and memory resident data structures
associated with the flle are released.

If the specified value of the fileRefNum parameter is $0000, all ftles at or
above the current system file level are closed.

Offset Sb.e mel type

$00 F fileRefNum 3 Word INPUT value

Word input value: The identifying number assigned to the file by the OPEN call.
A value of $0000 indicates that all ftles at or above the current system file level
are to be dosed.

$27 VO error
$2B write-protected disk
$2E disk switched
$43 invalid reference number
$48 volume full
$SA block number out of range

234 Volume 1: Applications and GS/OS Appendixes

8/31188

GSIOS Reference (Volume 1) Draft 3 (APDA)

$0001

Description

Parameters

pathname

CREATE

This call creates either a standard file, an extended file, or a subdirectory on a
volume mounted in a block device. A standard file is a ProDOS-like file
containing a single sequence of bytes; an extended file is a Macintosh-like file
containing a data fork and a resource fork, each of which is an independent
sequence of bytes; a subdirectory is a data structure that contains information
about other ftles and subdirectories.

This call cannot be used to create a volume directory; the FORMAT call performs
that function. Similarly, it cannot be used to create a character-device file.

This call sets up file system state information for the new file and initializes the
file to the empty state.

Offset Size and type

$00 -
i- pathname - Longword INPtrr pointer
f- -
f- !Access - Word INPtrr value

S06
f- fileType - Word INPtrr value

1- -
f- auxType - Longword INPtrr value
f- -
f- storaqeType -soc

Word INPtrr value

$0E
1- createDate - Word INPtrr value

$10 1- createTime - Word INPtrr value

Longword input pointer: Points to a Pascal string representing the pathname of
the file to be created. This is the only required parameter.

Appendix A: GS/OS ProDOS 16 Calls 235

8/31188

GS'C>.$" Reference (Volume 1) Draft 3 (APDA)

fAccess Word input value: Specifies how the me may be accessed after it is created and
whether or not the file has changed since the last backup.

BKkup-needed bit

reseMd

FiJe.4Jwiaible bit

Wrife-enable

Read-enable bit

The roost conunon setting for the access word is $00C3.

Software that supports file hiding (invisibility) should use the I bit to indicate
whether or not to display a file or subdirectory.

fileType Word input value: Used conventionally by system and application programs to
categorize the me's contents. The value of this field has no effect on GS/OS's
handling of the file, except that only certain me types may be executed directly
by GS/OS. Many f.tle types have already been standardized by Apple, as listed in
Table 1-2 in Chapter 1.

auxType Longword input value: Used by system and application programs to store
additional information about the me. The value of this field has no effect on
GS/OS's handling of the me. By convention, the interpretation of values in this
field depends on the value in the f ileType field. Many auxiliary types have
been standardized by Apple, as listed in Table 1-2 in Chapter 1.

storaqeType _ Word input value: The value of this parameter determines whether the file being
created is a standard me, extended me, or subdirectory file, as follows:

$0000-$0003• create a standard file
$0005 create an extended file
$0000 create a subdirectory me

All other values are invalid

•If this field contains $0000, $0002 or $0003, GS/OS interprets it as $0001 and
actu2lly changes it to $0001 on output

ai Volume 1: Applications and GSIOS Appendixes

8/31188

GSIOS Referena (Volume 1) Draft 3 (APDA)

createDate

createTime

Comments

Word input value: This parameter specifies a date that GS/OS saves as the file's
creation date value. If this word is $0000, GS/OS gets the date from the system
clock.

II5I14IBII2Inlto I 9 I s I 1 I 6 I 5 I 4 I ~ I 2 It I o I
I I ~

. year (1•1901, 2•1902, ...) J ' J
month(l•]anuary, 2•Febnwy, ...)

day o(the monlh (1 ,2, ... ,31)

Word input value: This parameter specifies the time that GS/OS saves as the
flle's creation time value. If this word is $0000, GS/OS gets the time from the
system clock.

I'~I If Is I' 131 z Ill 0 I
0

minute (0-59)

The CREATE call applies only to files on block devices.

The storage type of a me cannot be changed after it is created. For example,
there is no direct way to add a resource fork to a standard file or to remove one
of the forks from an extended file.

All FSTs implement standard flles, but they are not required to implement
extended files.

Appendix A:. GS/05 ProOOS 16 Gills 137

8/31/88

GS/OS Reference (Volume 1) Draft 3 (APDA)

Errors

$10 device not found
$27 1/0 error
$2B write-protected disk
$40 invalid pathname syntax
$44 path not found
$45 volume not found
$46 file not found
$47 duplicate pathname
$48 volume full
$49 volume directory full
$4B unsupported storage type

$52 unsupported volume type

$53 invalid parameter
$58 not a block device
$5A block number out of range

238 Volume 1: Applications and GS/OS

8131188

Appendixes

GSIOS Reference (Volume 1) Draft 3 (APDA)

$0032

Description

Parameters

intNum

Errors

DEALLOC_INTERRUPT

This function removes a specified interrupt handler from the interrupt vector
table. See also the ALLOC_INTERRUPT call in this appendix.

Offset She and type

$00 ,_F __ i_nt_N_u_m _----.~3 Word INPtrr value

Word input value: Interrupt identification number of the binding that is to be
undone between interrupt source and interrupt handler.

$53 parameter out of range

Appendix A: GS/OS ProDOS 16 C11ls 239

8131188

GSIOS Referena (Volume 1) Draft 3 (APDA)

$0002

Description

Parameters

pathname

Comments

DESTROY

This call deletes a specified standard file, extended file (both the data fork and
resource fork), or subdirectory and updates the state of the file system to
reflect the deletion. After a file is destroyed, no other operations on the file are
possible.

This call cannot be used to delete a volume directory; the FORMAT call
reinitializes volume directories. Similarly, this call cannot be used to delete
character-device file.

It is not possible to delete only the data fork or only the resource fork of an
extended file.

Before deleting a subdirectory file, you must empty it by deleting all the files it
contains.

Offset

$001-

1-
1-

pathname

Sbemdtype

-
- Longword INPur pointer -

Longword input pointer: Points to a Pascal string that represents the pathname
of the flle to be deleted.

A file cannot be destroyed if it is currently open or if the access attributes do
not permit destroy access.

240 Volume 1: Applications and GSIOS Appendixes

8131188

GYOS Reference (Volume 1) Drafl3 (APDA)

Errors

$10 device not found
$27 1/0 error
$2B write-protected disk
$40 invalid pathname syntax
$44 path not found
$45 volume not found
$46 me not found
$4B unsupported storage type
$4E access: me not destroy-enabled
$50 me open
$52 unsupponed volume type
$53 invalid parameter
$58 not a block device
$5A block number out of range

8/31/88

Appendix k GS/OS ProDOS 16 Calls 241

GYOS Reference (Volume 1) Draft 3 (APDA)

$002C

Description

Parameters

devNum

devName

Errors

D_INFO

This call returns general infonnation about a device attached to the system.

Offset She Uld type

$00 - devNum - Word INPtrr value

$02 - -
~ devName - Longword INPtrr pointer
... -

Word input value: A device number. GS/OS assigns device numbers in sequence
(1, 2, 3, and so on) as it loads or creates the device drivers. There is no fLXed
correspondence between devices and device numbers. To get information
about every device in the system, one makes repeated calls to D _INFO with
devNum values of 1, 2, 3, and so on until GS/OS returns error $53: parameter out
of range~

IDngword input pointer: Points to a buffer in which GS/OS returns a Pascal
string containing the device name of the device specified by device number.
The maxinrum size of the string is 31 byres, so the maximum size of the returned
value is 33 bytes. Thus, the buffer size should be 35 bytes.

$11 invalid device number
$53 parameter out of range

242 Volume 1: Applications and GSIOS Appendixes

8/31188

GSIOS Reference (Volume 1) Draft 3 (APDA)

$0025

Description

Parameters

devName

volName

fileSysiD -

ERASE_DISK

This call puts up a dialog box that allows the user to erase a specified volume
and choose which file system is to be placed on the newly erased volume. The
volume must have been previously physically formatted. The only difference
between ERASE_DISK and FORMAT is that ERASE_DISK does not physically
format the volume. See the FORMAT call later in this appendix.

Offset

$00
~ -
r- devName - Longword INPtrr pointer
f- -
f- -
~ volName - Longword INPtrr pointer
f- -
~ fileSysiD - Word RESULT value

Longword input pointer: Points to a Pascal string that represents the device
name of the device containing the volume to be erased.

Longword input pointer: Points to a Pascal string that represents the volume
name to be assigned to the newly erased volume.

Word result value: If the call is successful, this field identifies the file system
with which the disk was formatted. If the call was unsuccessful, this field is
undefined.

$0000
$0001
$0002
$0003
$0004
$0005
$0006

reserved
ProDOS/SOS
DOS 3.3
DOS 3.2 or 3.1
Apple n Pascal
Macintosh (MFS)
Macintosh (HFS)

$0007
$0008
$0009
$000A
$000B
$000C
$000D-$FFFF

LISA
Apple CP/M
reserved
MS/DOS
High Sierra
ISO 9660
reserved

Appendix A:. GSIOS ProDOS 16 Calls 243

8131188

GYOS Reference (Volume 1) Draft 3 (APDA)

Errors

$10 device not found
$11 invalid device request
$27 I/0 error
$28 no device connected
$2B write-protected disk
$53 parameter out of range
$50 file system not available
$64 invalid FST ID

244 Volume 1: Applications and GS/05

8/31/88

Appendixes

GSIOS Reference (Volume 1) Draft 3 (APDA)

$OOOE

Description

Parameters

inputPath

outputPath

flags

Errors

EXPAND_PATH

This call converts the input pathname into the corresponding full pathname with
colons (ASCIT $3A) as separators. If the input is a full pathname,
EXPAND_PATII simply converts all of the separators to colons. If the input is a
partial pathname, EXPAND_PATII concatenates the specified preftx with the
rest of the partial pathname and converts the separators to colons.

If bit 15 (MSB) of the flags parameter is set, the call converts all lowercase
characters to uppercase (all other bits in this parameter must be cleared). This
call also performs limited syntax checking. It returns an error if it encounters an
illegal character, two adjacent separators, or any other syntax error.

Offset Size and type

$00
~ -
~ inputPath - Longword INPt.rr pointer
~ -
- -
- outputPath - Longword INPt.rr pointer - -
- flags - Word INPt.rr value

Longword input pointer: Points to a Pascal input string that is to be expanded.

Longword input pointer: Points to a buffer in which GS/OS returns a Pascal
string that contains the expanded pathname.

Word input value: If bit 15 is set to 1, this call returns the expanded pathname in
uppercase characters. All other bits in this word must be zero.

$40 invalid pathname syntax
$4F buffer too small

Appendix A:. GS/05 ProDOS 16 Calls 245

8131188

GYOS Reference (Volume 1) Draft 3 (APDA) 8131188

246 Volume 1: Applications and GSIOS Appendixes

GS/OS Referena (Volume 1) Dnift3 (APDA)

$0015

Description

Parameters

fileRefNum

Errors

FLUSH

This call writes to the volume all file state information that is buffered in
memory but bas not yet been written to the volume. The purpose of this call is
to assure that the representation of the me on the volume is consistent and up
to date with the latest GS/OS calls affecting the file. Thus, if a power failure
occurs immediately after the FLUSH call completes, it should be possible to
read all data written to the file as well as all file attributes. If such a power failure
occurs, files that have not been flushed may be in inconsistent states, as may the
volume as a whole.

A value of $0000 for the fileRefNum parameter indicates that all files at or
above the current file level are to be flushed

Offset SJze and type

SOOL J L fileRefNum J Word INPUT value

Word input value: The identifying number assigned to the file by the OPEN call.
A value of $0000 indicates that all flles at or above the current system file level
are to be flushed.

$27 I/0 error
$ 2B write-protected disk
$2E disk switched
$4 3 invalid reference number
$48 volume full
$5A block number out of range

Appendix A:. GS/OS ProDOS 16 Calls 247

8131188

GYOS Reference (Volume 1) Draft 3 (APDA)

$0024

Description

Parameters

devName

volName

fileSysiD

FORMAT

This call puts up a dialog box that allows the user to physically format a
specified volume and choose which file system is to be placed on the newly
formatted volume.

Some devices do not support physical fonnatting, in which case the FORMAT
call writes only the empty file system, and in effect is just like the ERASE_DISK
call See the· ERASE_DISK call earlier in this chapter.

Offset Size uul type

soo - -- devName - Longword INPtrr pointer - -
- -- volName - Longword INPtrr pointer - -
- fileSysiD - Word RESULT value

Longword input pointer: Points to a Pascal string that represents the device
name of the device containing the volume to be formatted.

Longword input pointer: Points to a Pascal string that represents the volume
name to be assigned to the newly formatted blank volume.

Word result value: If the call is successfu~ this field identifies the file system
with which the disk was formatted. If the call is unsuccessful, this field is
undefmed The flle system IDs are as follows:

248 Volume 1: Applications and GSIOS Appendixes

8/31188

GYOS Reference (Volume 1) Draft 3 (APDA) 8131188

$0000 reserved $0007 USA
$0001 ProDOS/SOS $0008 Apple CP/M
$0002 DOS 3.3 $0009 reserved
$0003 DOS 3.2 or 3.1 $000A MS/DOS
$0004 Apple n Pascal $000B High Sierra
$0005 Macintosh (MFS) $000C ISO 9660
$0006 Macintosh (HFS) $000D-$FFFF reserved

Errors

$10 device not found
$11 invalid device request
$27 1/0 error
$28 no device connected
$2B write-protected disk
$53 parameter out of range
$5D file system not available
$64 invalid FST ID

Appendix A:. GSIOS ProOOS 16 Calls 249

GS/OS Reference (Volume 1) Drafl3 (APDA)

$0028

Descripdon

Parameters

dataBuffer

Errors

GET_BOOT_ VOL

This call returns the volume name of the volume from which the me GS/OS was
last loaded and executed. The volume name rerumed by this call is equivalent to
the prefiX specified by •;.

Offset

-
dataBuffer - Longword INPUT pointer -

I.ongword input pointer: Points to a buffer in which GS/OS returns a Pascal
string containing the boot volume name.

$4F buffer too small

250 Volume 1: Applicalions and GSIOS Appendixes

8/31188

GYOS Reference (Volume 1) Draft 3 (APDA)

$0020

Description

Parameters

devName

devNum

Errors

GET DEV NUM - -
This call returns the device number of a device identified by device name or
volume name. Only block devices may be identified by volume name, and then
only if the named volume is mounted. Most other device calls refer to devices
by device number.

GS/OS assigns device numbers at boot time. The numbers are a series of
consecutive integers beginning with 1. There is no algorithm for determining the
device number for a particular device.

Because a device may hold different volumes and because volumes may be
moved from one device to another, the device number returned for a particular
volume name may be different at different times.

Offset Size aad type

$00
f- -
f- devName - Lonpord INPl.IT pointer
f- -

$04 devNum
Word RESULT value

f- -

Longword input pointer: Points to a Pascal string that represents the device
name or volume name (for a block device).

Word result value: The device reference number of the specified device.

$10 device not found
$11 invalid device request
$40 invalid device or volume name syntax
$45 volume not found

Appendix A:. GS/OS ProDOS 16 Ollis 251

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

$001C

Description

Parameters

GET_DIR_ENTRY

This call returns information about a directory entry in the volume directory or a
subdirectory. Before executing this call, the application must open the
directory or subdirectory. The call allows the application to step forward or
backward through file entries or to specify absolute entries by entry number.

Offset

$00
1- refNum - Word INPur value

~ flags -$02 Word RESULT value

~ base - Word INPur value

~ displacement -$06 Word INPur value

f- -
1- nameBuffer - Longword INPur pointer
1- -
f- entryNum -$OC

Word RESULT value

.... fileType SOE - Longword RESULT value

$10
1- -... endOfFile - Longword RESULT value
1- -
1- -$14

1- blockCount - Longword RESULT value
1- -

$18

252 Volume 1: Applications and GS/05 Appendixes

8/31/88

GYOS Referena (Volume 1) Draft 3 (APDA)

refNum

flaqs

base

$18

create Time Double longword RESULT value

modTime Double longword RESULT value

access Word RESULT value

auxType I.ongword RESULT value

fileSysiD Word RESULT value

Word input value: The identifying number assigned to the directory or
subdirectory by the OPEN call.

Word result value: Flags that indicate various attributes of the file.

II5t:u.::t:1n:u=tu.:nft:lit:~f''l~t~iKia::,;il::w:;r:,::Jm~mt:::r::l.=:ll.=.l

file is an eltended tile (the file may have J 1
. J '

bach a dara fork and a resource fork) • 1 reserved
file is noun eJEended file • 0

Word input value: A value that tells how to interpret the displacement field, as
follows:

$0000 displacement gives an absolute entry number
$0001 displacement is added to current displacement to get next entry

number

Appendix A: GS/05 ProOOS 16 Cllls 253

8/31188

GYOS Reference (Volume 1) Draft 3 (APDA)

$0002 displacement is subtracted from current displacement to get next
entry number

displacement Word input value: In combination with the base parameter, the displacement
specifles the directory entry whose information is to be returned. When the
directory is fust opened, GS/OS sets the current displacement value to $0000.
The current displacement value is updated on every GET_DIR_ENTRY call.

nameBuffer

entryNum

fileType

endOfFile

blockCount

createTime

mod Time

access

auxType

fileSysiD

If the base and displacement fields are both zero, GS/OS returns a 2-byte value
in the entryNumber parameter that specifies the total number of active
entries in the subdirectory. In tim case, GS/OS aJso resets the current
displacement to the fust entry in the subdirectory.

To step through the directory entry by entry, you should set both the base and
displacement parameters to $0001.

Longword input pointer: Points to a buffer in which GS/OS returns a Pascal
string containing the name of the me or subdirectory represented in this
directory entry.

Word result value: The absolute entry number of the entry whose information is
being returned This field is provided so that a program can obtain the absolute
entry number even if the base and displacement. parameters specify a
relative entry.

Longword result value: The· value of the file type field of the directory entry.

Longword result value: Value of the EOF field of the directory entry.

Longword result value: The value of the blocks used field of the directory entry.

Double longword result value: The value of the creation date/time field of the
directory entry.

Double longword result value: The value of the modification date/time field of
the directory entry.

Word result value: Value of the access attribute field of the directory entry.

Longword result value: Value of the auxiliary type field of the directory entry.

Word result value: File system identifier of the H ·~ system on the volume
containing the file. Values of this field are desc :d under the VOLUME call.

254 Volume 1: Applicalions and GS/05 Appendixes

8131/88

GSIOS Reference (Volume I) Draft 3 (APDA)

Errors

$10 device not found
$27 VO error
$4A version error
$4B unsupported storage type
$4F buffer too small
$52 unsupported volume type
$53 invalid parameter
$58 not a block device
$61 end of directory ·

8131188

Appendix A: GS/OS ProOOS 16 Calls 255

GSIOS Reference (Volume 1) Draft 3 (APD~)

$0019

Description

Parameters

refNum

eof

Errors

GET_EOF

This function rerurns the current logical size of a specified file. See also the
SET _EOF call in this appendix.

Offset Size and type

$00 eofRefNum Word INPur value I""' -
$02 i- -

r- eofPosition - Longword RESULT value
i- -

Word input value: The identifying number assigned to the file by the OPEN call.

I.ongword result value: The current logical size of the file, in bytes.

$43 invalid reference number

2S6 Volume 1: Applicat.ions and GS/OS Appendixes

8/31/88

GYOS Reference (Volume 1) Draft 3 (APDA)

$0006

Description

Parameters

GET_FILE_INFO

This call retul'll$. certain me attributes of an existing open or closed block file.

Important A GET_FILE_INFO call following a SET_FILE_INFO call on an open
flle may not return the values set by the SET_FILE_INFO call. To
guarantee recording of the attributes specified in a
SET_FILE_INFO call, you must first close the file.

See also the SET_FILE_INFO call in this appendix.

Offset Size and type

$00
1- -
- pathname - Longword INPtrr pointer - -
- !Access - Word RESULT value

- fileType -$06
Word RESULT value

- -
- auxType - Longword RESULT value - -

soc
~ storageType - Word RESULT value

SOE 1- createDate - Word RESULT value

.S10
~ createTime - Word RESULT value

$12
1- modData - Word RESULT value

- modTima -$14
Word RESULT value

$16 - -
.... blocks Used - Longword RESULT value
1- -

Appendix A: GS/05 ProOOS 16 o.Ils 757

8131188

G~OS Reference (Volume 1) Dmft 3 (APDA)

pathname

fAccess

fileType

auxType

storaqeType

createDate

createTime

modDate

mod Time

blocks Used

Longword input pointer: Points to a Pascal string representing the pathname of
the fJJe whose me information is to be retrieved

Word result value: Value of the fJJe's access attribute, which is described under
the CREATE call.

Word result value: Value of the fde's file type attribute.

Longword result value: Value of the file's auxiliary type attribute.

Word result value: Value indicating the storage type of the file, as follows:

Sot standud fue
$05 extended fJJe
$00 volume directory or subdirectory file

Word result value: Value for the file's creation date attribute which is described
under the CREATE call.

Word result value: Value for the file's creation time attribute, which is described
under the CREATE call.

Word result value: Value for the file's modification date attribute. The format is
the same as the createoate parameter.

Word result value: Value for the file's modification time attribute. Format is the
same as the createTime parameter.

Longword result value: For a standard file, this field gives the total number of
blocks used by the flle. For an extended file, this field gives the number of
blocks used by the file's data fork.

For a subdirectory or volume directory flle, this field is undefined.

2S8 Volume 1: Applications and GS/05 Appendixes

8131/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

Errors

$10 device not found
$27 I/0 error
$40 invalid pathname syntax
$44 path not found
$45 volume not found
$46 file not found
$4A version error
$4B unsupponed storage type
$52 unsupponed volume type
$53 invalid parameter
$58 not a block device

8131188

Appendix A: GS/OS ProDOS 16 C1lls 259

GSIOS Referena (Volume 1) Draft 3 (APDA)

$0021

Descripdon

Parameters

devNum

GET_LAST_DEV

This call returns the device number of the last accessed device. The last
accessed device is defmed as the last device to which any device command was
directed by GS/OS as the result of a GS/OS call.

A program that uses this call must take into account that the last device value
can change at any time due to a device-accessing GS/OS call made by an
asynchronously executed process such as a desk accessory or interrupt handler.

To insure that the GET_LAST_DEV call returns the last device accessed by the
given program, the program must:

1. Disable interrupts.

2. Make the GS/OS call that accesses the device (for example, OPEN, READ).

3. Make the GET_LAST_DEV call.

4. Restore the interrupt state that was current before step 1.

Unforrunately, this sequence locks out interrupts for more than the maximum
recommended interrupt disable time. Therefore, system integrity cannot be
guaranteed, especially in a networked environment, where rapid interrupt
handling is crucial.

Important Because of this danger to system integrity, use this call with
caution, if at all

Offset Size and type

SOOL J
._L __ cla_v_N_um __ _.l Word RESULT value

Word result value: Device number of the last accessed device.

?to Volume 1: Applications and GSIOS Appendixes

8/31188

GSIOS Reference (Volume 1) Draft 3 (APDA)

Errors

$01 bad system call number
$04 parameter count out of range
$07 GS/OS is busy
$59 invalid me level

8131188

Appendix A:. GS/OS ProOOS 16 Calls 261

GSIOS Referena (Volume 1) Draft 3 (APDA)

$001B

Description

Parameters

level

Errors

GET_LEVEL

This function returns the current value of the system file level. See also the
SIT_LEVEL call in this appendix.

Offset SJze and type

SOOL J
'-[__ l_•_v•_l __ _,l Word RESULT value

Word result value: The value of the system flle level.

$01 bad system call number
$04 parameter count out of range
$07 GS/OS is busy
$59 invalid fiJe level

262 Volume 1: Applications and GS/05 AppendLxes

8/31188

GSIOS Reference (Volume 1) Draft 3 (APDA)

$0017

Description

Parameters

markRefNum

position

Errors

GET_MARK

This function returns the current file mark for the specified file. See also the
SET _MARK call in this appendix.

Offset Size and type

$00 markRefNum Word INPUf value - -
$02 - -

- position - Longword RESULT value
- -

Word input value: The identifying number assigned to the file by the OPEN call.

Longword result value: The current value of the file mark, in bytes, relative to the
beginning of the file.

$4 3 invalid reference number

Appendix A: GS/05 ProDOS 16 Calls 263

813II88

GYOS Reference (Volume 1) Draft 3 (APDA)

$0027

Description

Parameters

dataBuffer

Errors

GET_NAME

Rerurns the fllename (not the complete pathname) of the currently running
application program.

To get the complete pathname of the current application, concatenate prefix 1/
with the filename returned by this call. Do this before making any change in
preftx 1/.

Offset

$00~ -
f.- dataBuffar -
~ - Longword INPur pointer

Longword input pointer: Points to a buffer in which GS/OS returns a Pascal
string containing the filename.

$4F buffer too small

?64 Volume 1: Applications and GSIOS Appendixes

8131188

GYOS Reference (Volume 1) Draft 3 (APDA)

$OOOA

Description

Parameters

prefix.Num

prefix

Errors

GET_PREFIX

This function rerurns the current value of any one of the numbered prefixes. The
returned prefiX string always swts and ends with a separator. If the requested
prefiX is null, it is rerumed as a string with the length field set to 0. This call
should not be used to get the boot volume prefiX (•!). See also the SET_PREFIX
call in this appendix.

Offset SJze and type

$00 - prefixNum - Word INPUI' value

$02 - -
1- prefix - Longword INPUI' pointer

- -

Word input value: Binary value of the prefix number for the prefix to be
returned ..

Longword input pointer: Points to a buffer in which GS/OS returns a Pascal
string containing the prefiX value.

$4F buffer too small
$53 invalid parameter

Appendix A: GS/OS ProDOS 16 Calls 265

8/31188

GYOS Referena (Volume 1) Draft 3 (APDA)

$002A

Description

Parameters

ver5ion

Errors

GET_ VERSION

This call returns the version number of the GS/OS operating system. This value
can be used by application programs to condition version-dependent
operations.

Offset SJze and type

SOOL J
L._ __ v•_r_si_o_n_---.~l Word RESULT value

Word result value: Version number of the operating system, in the following
format:

ltslt41Bitzlnlto I 9 I s I 1 I 6 I s I 4 I 3 I z It I o I
prototype rele25e • 1 J I I I I

fw.l rele25e • 0

major rele25e number

minor rele25e nurrb:r

(none except general system errors)

266 Volume 1: Applications and GS/05 Appendixes

8/31/88

GSIOS Referena (Volume 1) Draft 3 (APDA)

$0011

Description

Parameters

newLRefNum

enableMask

NEWLINE

This function enables or disables the newline read mode for an open file and,
when enabling newline read mode, specifies the newline enable mask and
newline character or characters.

When newline mode is disabled, a READ call terminates only after it reads the
requested number of characters or encounters the end of file. When newline
mode is enabled, the read also terminates if it encounters one of the specified
newline characters.

When a READ call is made while newline mode is enabled and another character
is in the file, GS/OS performs the following operations:

1. Transfers next character to user's buffer.

2. Performs a logical AND between the character and the low order byte of the
newline mask specified in the last NEWLINE call for the open file.

3. Compares the resulting byte with the newline character or characters.

4. If there is a match, terminates the read; otherwise continues at step 1.

Offset Size and type

$00
t- newLRefNum - Word INPUT value

t- enableMask -$02
Word INPUT value

1- newlineChar - Word INPUT value

Word input value: The identifying number assigned to the file access path by the
OPEN call.

Word input value: If the value of this field is $0000, newline mode is disabled. If
the value is greater than $0000, the low-order byte becomes the newline mask.
GS/OS performs a logical AND of each input character with the newline mask
before comparing it to the newline characters.

Appendix A:. GS/OS ProDOS 16 C11ls 'lb7

8131188

GYOS Referena (Volume 1) Draft 3 (APDA)

newlineChar

Errors

Word input value: The low-order byte of this field is the newline character.
When disabling newline mode (enableMask • $0000), this parameter is
ignored.

$43 invalid reference number

2ii8 Volume 1: Applications and GS/OS Appendixes

8131/88

GYOS Reference (Volume I) Draft 3 (APDA)

$0010

Description

Parameters

OPEN

This call causes GS/OS to establish an access path to a file. Once an access path
is established, the user may perform file READ and WRITE operations and other
related operations on the file.

Offset Size and type

$00
1- openRefNum - Word RESULT value

$02
~ -
1- openPathname - Longword INPUT pointer
~ -

$06 - -
ioBuffer - - Reserved

- -

openRefNum Word result value: A reference number assigned by GS/OS to the access path. All
other file operations (READ, WRITE, CLOSE, and so on) refer to the access path
by this number.

openPathname I.ongword input pointer: Points to a Pascal string that represents the pathname
of the flle to be opened.

ioBuffer This field is reserved and must be set to $00000000.

Appendix A: GS/05 ProDOS 16 Calls '$)

8/31/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

Errors

$27 I/0 error
$28 no device connected
$2E disk switched
$40 invalid pathnarne syntax
$44 path not found
$45 volume not found
$46 file not found
$4A version error
$4B unsupported storage type
$4E access not allowed
$4F buffer too small
$50 open file
$52 unsupported volume type
$58 not a block device

Z70 Volume 1: Applications and GSIOS

8131188

Appendixes

GSIOS Reference (Volume 1) Draft 3 (APDA)

$0029 QUIT

Description This call terminates the running application. It also closes all open files, sets the
system file level to 0, initializes certain components of the Apple IIGS and the
operating system, and then launches the next application.

Parameters

For roore information about quitting applications, see Chapter 2, "GS/OS and
Its Environment."

Offset Size and type

$00 r- -
f- quitPathname - Longword INPliT pointer
r- -

$04
r- flags - Word INPliT value

quitPathname Longword input pointer: Points to a Pascal string that represents the pathname
of the program to run next. If the qui tPathname parameter is null or the
pathname itself has length 0, GS/OS chooses the next application, as described
in Chapter 2.

flags Word input value: Two Boolean flags that give information about how to handle
the program executing the QUIT calL as follows:

Place state informaDorl about the quitting
prognm on the Quit return sw:k so that
it will be automatially reswted later • I

Do ntt sw:k the quitting program • 0

The quitting program is capable of being
reswted from its donnant merrory image • I
The quitting program must be reloaded from

disk if it i& restarted • 0 reserved

Appendix A:. GS/OS ProDOS 16 Calls Z71

8131188

GYOS Referena (Volume 1) Draft 3 (APDA)

Comments

Errors

Only one error condition causes the QUIT call to ~tum to the caller: error $07
(GS/OS busy). All other errors are managed within the GS/OS program
dispatcher.

$07 GS/OS is busy

zn. Volume 1: Applications and GS/OS Appendixes

8/31188

GSIOS Reference (Volume 1) Draft 3 (APDA)

$0012

Description

Parameters

fileRefNum

READ

This function attempts to transfer the number of bytes given by the
reque3tCount parameter, starting at the current mark, from the file specified
by the refNum parameter into the buffer pointed to by the dataEuffer

parameter. The function updates the file mark to reflect the new file position
after the read.

Because of two situations that can cause the READ function to transfer fewer
than the requested number of bytes, the function returns the actual number of
bytes transferred in tran3ferCount. If GS/OS reaches the end of file before
transferring the number of bytes specified in reque3tCount, it stops reading
and sets tran3fercount to the number of bytes actually read.

If newline mode is enabled and a newline character is encountered before the
requested number of bytes have been read, GS/OS stops the transfer and sets
tran3ferCount to the number of bytes actually read, including the newline
character.

Offset Size and type

$00 - fileRefNum - Word INPUI' value

$02 - -
t- dataBuffer - Longword INPUI' pointer
1- -
t- -$06

1- request Count - Longword INPUI' value
t- -
1- -SOA
t- transferCount _ Longword RESULT value
1- -

Word input value: The identifying number assigned to the file by the OPEN call.

Appendix A:. GS/OS ProDOS 16 Calls Z73

8/31188

GSIOS Reference (Volume 1) Draft 3 (APDA)

dataBuffer Longword input pointer: Points to a memory area large enough to hold the
requested data.

requestCount Longword input value: The number of bytes to be reaci.

transferCount Longword result value: The number of bytes actually read.

Errors

$27 I/0 error
$2E disk switched
$43 invalid reference number.
$4C eof encountered
$4E access not allowed

Z74 Volume 1: Applications and GS/05 Appendixes

8131188

GSIOS Referena (Volume 1) Draft 3 (APDA)

$0022

Description

Parameters

READ_BLOCK

This call reads one 512-byte block of information to a disk specified by device
number.

Normally, you should use D_READ and D_ WRITE for all direct device VO.
READ_BLOCK deals only with 512-byte blocks and devices with a maximum of
65,536 blocks, is valid only for the ProDOS PST, and exists only for
compatibility with ProDOS 16.

Offset

$00
~

~

blockDevNum -
-

-blockDataBuffer_

~ -
$06

~ -
1- blockNum -
~ -

She aad type

Word INPUT value

I.ongword INPUT pointer

I.ongword INPUT value

blockDevNum Word input value: The reference number assigned to the device.

blockDataBuffer Longword input pointer: Points to a data buffer large enough to hold the data
to be read

blockNum Longword input value: The number of the block to be read.

Errors

$11 invalid device request
$27 VO error
$28 no device connected
$28 write-protected disk
$53 invalid parameter

Appendix A: GS/OS ProOOS 16 Calls Z75

8/31/88

GY'OS Reference (Volume 1) Draft 3 (APDA)

$0018

Description

Parameters

eofRefNum

eofPosition

Errors

SET_EOF

This call sets the logical size of an open me to a specified value which may be
either larger or smaller than the current file size. The EOF value cannot be
changed unless the file is write-enabled. If the specified EOF is less than the
current EOF, the system may-but need not-free blocks that are no longer
needed to represent the ftle. See also the GET_EOF call.

Offset S.lz and type

$00 eofRefNum Word INPur value f- -
S02 1- -

f- eofPosition - Longword INPur value
1- -

Word input value: The identifying number assigned to the file by the OPEN call.

Longword input value: The new logical size of the file, in bytes.

$27 1/0 error
$ 2B disk is write protected
$43 invalid reference number
$40 position out of range
$4E file not write-enabled
$5A block number out of range

Z76 Volume 1: Applications and GS/OS Appendixes

8/31188

GYOS Reference (Volume 1) Draft 3 (APDA)

$0005

Description

Parameters

SET _FILE_INFO

This call sets certain file attributes of an existing open or closed block file. This
call immediately modifies the me information in the file's directory entry
whether the file is open or closed. It does not affect the file information seen
by previously open access paths to the same file.

Important A GET_FILE_INFO call following a SET_FILE_INFO call on an open
file may not return the values set by the SET_FILE_INFO call. To
guarantee recording of the attributes specified in a
SET_FILE_INFO call, you must first close the file.

See also the GET_FILE_INFO caU.

Offset

$00

$04

S06

soc

SOE

$10

$12

$1-4

~

~

~

~

-

1-

~

~

-
-

pathname

!Access

fileType

auxType

<null>

createOate

create Time

modDate

modTime

Size and type

-- Longword INPUT pointer -
- Word INPUf value

- Word INPur value

-
- Longword RESULT value -
- Word INPUT value

- Word INPUT value

- Word INPUT value

- Word INPUT value

- Word INPUT value

Appendix A: GS/05 ProDOS 16 Calls rn

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

pathname

fAccess

fileType

auxType

<null>

createDate

createTime

modDate

mod Time

Longword input pointer: Points to a Pascal string that represents the pathname
of the file whose file information is to be set

Word input value: Value for the file's access attribute, which is described under
the CREATE call.

Word input value: Value for the file's flle type attribute.

Longword result value: Value of the file's auxiliary type attribute.

Word input value: This field is unused and must be set to zero.

Word input value: Value for the flle's creation date attribute, which is described
under the CREATE call. If the value of this field is zero, GS/OS does not change
the creation date.

Word input value: Value for the file's creation time attribute, which is described
under the CREATE call. If the value of this field is zero, GS/OS does not change
the creation time.

Word input value: Value for the file's modification date attribute. Format is the
same as for the createDate parameter. If the value of this field is zero,
GS/OS supplies the date from the system clock.

Word input value: Value for the file's modification time attribute. Format is the
same as for the createTime parameter. If the value of this field is zero,
GS/OS supplies the time from the system clock.

278 Volume 1: Applications and GSIOS Appendixes

8/31188

GSIOS Reference (Volume 1) Draft 3 (APDA)

Errors

$10 device not found
$27 I/0 error
$ 2B disk is write protected
$40 invalid pathname syntax
$44 path not found
$45 volume not found
$46 me not found
$4A version error
$4B unsupported storage type
$4E access: me not destroy-enabled
$52 unsupported volume type
$53 invalid parameter
$58 not a block device

8131188

Appendix A GS/OS ProDOS 16 Calls V9

GSIOS Reference (Volume I) Draft 3 (APDA) .

$001A

Description

Parameters

level

Errors

SET_LEVEL

This function sets the rurrent value of the system me level.

Whenever a me is opened, GS/OS assigns it a file level equal to the current
system file level. A CLOSE call with a refNum parameter of $0000 closes all files
with file level values at or above the current system ftle level. Similarly, a FLUSH
call with a refNum parameter of $0000 flushes all ftles with file level values at or
above the rurrent system file level. See also the GET_LEVEL call in this
appendix.

Offset Size and type

$00L J
~...L __ l_e_ve_l_-~l Word INPUT value

Word input value: The new value of the system file level. Must be in the range
$0000-$00FF.

$59 invalid file level

28) Volume 1: Applications and GS/OS Appendixes

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

$0016

Description

Parameters

markRefNum

position

Errors

SET_MARK

This call sets the me mark (the position from which the next byte will be read or
to which the neXt byte will be written) to a specified value. The value can never
exceed EOF, the current size of the me. See aJso the GET_MARK call in this
appendix.

Offset Size and type

$00 - markRefNum - Word INPUT value

$02 - -- position - Longword INPUT value
I'"" -

Word input value: The identifying number assigned to the file by the OPEN call.

Longword input value: The value assigned to the mark. It is the position (in
bytes) relative to the beginning of the file at which the next read or write will
begin.

$27 LIO error
$43 invalid reference number
$40 position out of range
$5A block number out of range

Appendix A: GS/05 ProOOS 16 Calls 281

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

$0009

Description

Parameters

prefixNum

prefix

Comments

SET_PREFIX

This call sets one of the numbered pathname prefixes to a specified value. The
input to this call can be any of the following pathnarnes:

• a full pathnarne

• a partial pathnarne beginning with a numeric prefiX designator

• a partial pathnarne beginning with the special prefix designator"*/"

• a partial pathnarne without an initial prefix designator.

The SJIT_PREFIX call is unusual in the way it treats partial pathnames without
initial prefix designators. Normally, GS/OS uses the prefiX 0/ in the absence of
an explicit designator. However, only in the SJIT_PREFIX call, it uses the prefix
n/where n is the value of the prefixNum Held described below. See also the
GJIT_PREFIX call in this appendix.

Offset Size and type

$00 prefixNum Word INPI.IT value - -
$02 - -- prefix - Longword INPI.IT pointer

- -

Word input value: A prefiX number that specifies the prefix to be set

Longword input pointer: Points to a Pascal string representing the pathname to
which the preftx is to be set If this field is not given, the prefiX is set to the null
string.

Specifying a pathname with length 0 or whose syntax is illegal sets the
designated prefiX to null.

-
GS/OS does not verify that the designated preft.x corresponds to an existing
subdirectory or me.

The boot volume prefiX (•I) cannot be changed using this call.

28Z Volume 1: Applications and GS/05 Appendixes

8131188

GYOS Reference (Volume 1) Drafl3 (APDA) 8131188

Errors

$40 invalid pathnarne syntax
$53 invalid parameter

Appendix A:. GS/05 ProOOS 16 Calls 283

GYOS Referencs (Volume 1) Draft 3 (APDA)

$0008

Desc:riptioo.

Parameters

deviceNam.e

volNam.e

totalBlock:s

freeBlock:s

VOLUME

Given the name of a block device, this call returns the name of the volume
mounted in the device along with other information about the volume.

Offset

$00
1-
1-
1-

$04
I'"'

!-

I'"'

....
1-
....

soc
1-
1-

$10
1-

device Nama

volNama

totalBlocks

freeBlocks

fileSysiD

SJzemdtype

-
- Longword INPtrr pointer -
-- Longword INPtrr pointer -
-
- Longword RESULT value -
- Longword RESULT value -
-

Word RESULT value -

I.ongword input pointer: Points to a Pascal string that contains the name of a
block device.

Longword input pointer: Points to a buffer in which GS/OS places a Pascal string
containing the volume name of the volume mounted in the device.

I.ongword result value: Total number of blocks contained in the volume.

I.ongword result value: The number of free (unallocated) blocks in the volume.

284 Volume 1: Applications and GS/OS Appendixes

8/31188

GYOS Reference (Volume 1) Dmft 3 (APDA)

fileSysiD

Errors

Word result value: Identifies the nte system contained in the volume, as follows:

$0000 reserved $0007 LISA
$0001 ProDOS/SOS $0008 Apple CP/M
$0002 DOS 3.3 $0009 reserved
$0003 DOS 3.2 or 3.1 $000A MS/DOS
$0004 Apple II Pascal $000B High Sierra
$0005 Macintosh (MFS) $000C ISO 9660
$0006 Macintosh (HFS) $000D-$FFFF reserved

$10 device not found
$11 invalid device request
$27 VO error
$28 no device connected
$2E disk switched
$45 volume not found
$4A version error
$52 unsupported volume type

$53 invalid parameter
$57 duplicate volume
$58 not a block device

Appendix A: GS/05 ProOOS 16 Calls 285

8131188

G~OS Reference (Volume 1) Draft 3 (APDA)

$0013

Description

Parameters

WRITE

This call attempts to transfer the number of bytes specified by the
requestcount parameter from the application's buffer to the file specified
by the fileRefNwn parameter, starting at the current file mark.

The call returns the number of bytes actually transferred. It also updates the ftle
mark to indicate the new file position and extends the EOF, if necessary, to
accommodate the new data.

Offset Sbe aa.cl type

$00 - ! ileRe fNum - Word INPtrr value

$02 - -- dataBuffer - Longword INPtrr pointer - -
$06 - -- requestCount - Longword INPtrr value - -
SOA - -

- trans!erCount - l.ongword RESULT value - -

fileRefNwn Word input value: The identifying number assigned to the file by the OPEN call.

dataBuffer Longword input pointer: Points to the area of memory containing the data to
be written to the flle.

requestCount Longword input value: The number of bytes to write.

transferCount Longword result value: The number of bytes actually written.

28S Volume 1: Applicalions and GSIOS Appendixes

8131188

GSIOS Referena (Volume 1) Draft 3 (APDA)

Errors

$27 I/0 error
$2B write-protected disk
$2E disk switched
$43 invalid reference number
$48 volume full
$4E access not allowed
$5A block number out of range

8131/88

Appendix A: GS/05 ProDOS 16 ~Is 1El

GSIOS Reference (Volume 1) Draft 3 (APDA)

$0023

Desaipdon

Parameters

WRITE_BLOCK

This call writes one 512-byte block of infonnation to a disk specified by device
number.

Nonnally, you should use D_READ and D_WRITE for all direct device I/0.
WRITE_BLOCK deals only with 512-byte blocks and devices with a maximum of
65,536 blocks, is valid only for the ProDOS FST, and exists only for
compatibility with ProDOS 16.

Offset SJze and type

$00 ... bloekOevNum - Word INPUT value

$02 ... -
~bloekDataBuffer_ Longword INPUT pointer
... -

$06 - -- bloekNum - Longword INPUT value - -

blockDevNum Word input value: The reference number assigned to the device.

bloekDataBuffer Longword input pointer: Points to a data buffer that holds the data to be
written.

blockNum Longword input value: The block number of the destination disk block.

Errors

$11 invalid device request
$27 I/0 error
$28 no device coMected
$2B write-protected disk
$53 invalid parameter

283 Volume 1: Applications and GSIOS Appendixes

8131188

GSIOS Reference (Volume 1) D1rJft 3 (APDA)

Appendix B ProDOS 16 Calls and FSTs

This appendix discusses how individual GS/OS flle system translators handle
ProDOS 16 (• GS/OS class 0) calls. It shows only the differences in each FSTs
call handling from what is presented in Appendix A, •GS/OS ProDOS 16 Calls."
See that appendix for the standard way to make ProDOS 16 calls to GS/OS.

Appendix B: ProDOS 16 C1lls and FSTs ?H)

8131188

G~OS Reference (Volume 1) Draft 3 (APDA)

The ProDOS FST

The ProDOS FST translates ProDOS 16 calls to the format used by the ProDOS file system. Actually,
because that is already the me system that ProDOS 16 calls are designed to access, no translation is
necessary. All GS/OS ProDOS 16 calls that pass through the ProDOS FST function exactly as
described in Appendix A.

See Chapter 9 of this volume for more information on the ProDOS FST. For further information on
ProDOS 16, see the Apple DGS ProDOS 16 Reference.

The High Sierra FST

The main difference between the High Siena FST and other FSTs is that High Sierra does not support
writing to a flie. CD-ROM is a read-only medium.

Table B-1lists the ProDOS 16 calls, both meaningful and not meaningful, that the High Sierra FST
supports. A description of each call's differences from its standard meaning (described in Appendix
A) follows.

See Chapter 10 of this volume for more information on the High Siena file system translator.

2ro Volume 1: Applicalions and GS/OS Appendixes

8/31/88

GSIOS Reference (Volume 1) Dmft 3 (APDA)

Table B-1 High Sierra FST ProOOS 16 calls

Meaninaful Not meaninKful

$06 GET_FILE_INFO $01 CREATE
$08 VOLUME $02 DESTROY
$10 OPEN $04 CHANGE_PATH
$12 READ $05 SET _FILE_INFO
$14 CLOSE $13 WRITE
$16 SET_MARK $15 FLUSH
$17 GET_MARK $18 SET_EOF
$19 GET_EOF $08 CLEAR_BACKUP _BIT
$1C GET_DIR_ENTRY $22 ERASE_DISK
$20 GET_DEV_NUM $24 FORMAT

With the exception of the FLUSH call, all calls on the right side of Table B-1 do nothing and return
error $2B (write-protected). The FLUSH call also does nothing, but it returns no error (carry flag •
clear).

The following sections describe how the High Sierra FSTs handling of some of the calls listed on the
left side of Table B-1 is different from standard ProDOS 16 practice. Calls listed on the left side of
Table B-1 that are not described below are handled exactly as documented in Appendix A.

GET_FILE_INFO ($06)

GET_FILE_INFO returns certain attributes of an existing block me. The me may be open or closed.

Parameter differences

fileType

modDate

mod Time

This word output value equals $000F if the file is a directory; otherwise, it is
$0000 (unknown)-unless the fllename extension matches an entry in the file­
type mapping table. See the FSTSpecific call description in Chapter 10, "The
High Sierra. FST."

This word output value always has the same value as createDate.

This word output value always has the same value as createTime.

Appendix B: ProDOS 16 Calls and FSTs 291

8131/88

GYOS Referena (Volume 1) Draft 3 (APDA)

blocks Used This longword output value is always the same as the totalBlocks parameter
returned from a Volume call.

VOLUME ($08)

Given the name of a block device, this call returns the name of the volume mounted in that device
and other information about the volume.

Parameter dift'erences

freeBlocks This longword output value is aways $0000.

GET_DIR_ENTRY ($1C)

This call returns information about a directory entry in the volume directory or a subdirectory.
Before executing this call, the application must open the directory or subdirectory. The call allows
the application to step forward or backward through file entries or to specify absolute entries by
entry number.

The High Sierra FST does not allow READ calls and GET_DIR_ENTRY calls to the same reference
number: if an open file has previously been accessed by GET_DIR_ENfRY, and a READ call is made
with the same reference number, the High Sierra FST returns error $4E (invalid access). To avoid the
error, open the directory twice.

Parameter differences

fileType

modDateTime

auxType

fileSysiO

This word output value equals $000F if the file is a directory; otherwise, it is
$0000 ("unknown"}-unless the filename extension matches an entry in the file­
type mapping table. See the FSTSpecific call description in Chapter 10, "The
High Sierra FST."

This double longword output value always has the same value as
createOateTime.

This ongword output value is always $0000.

This word output value is always $0008 for High Sierra or $000C for ISO 9660. If
it has any other value, the High Sierra FST returns error $52 (unsupported volume
type).

m Volume 1: Application.s and GS/05 Appendixes

8131188

GSIOS Referena (Volume 1) Draft 3 (APDA)

The Character FST

The Character flle system tr.lnSlator (Character FST) provides a file-system-like interface to character
devices such as the console, printers, and modems.

Because the Character F5r handles ProDOS 16 calls, all ProDOS 16 applications automatically have
the capability of accessing character devices as fdes when running under GS/OS. Pro DOS 16 itself
does not provide that capability to ProDOS 16 applications.

The Character F5r supports this subset of ProDOS .16 calls:

OPEN
NEWLINE
READ
WRITE
CLOSE
FLUSH

Attempting to send any other GS/OS ProDOS 16 call to a character device results in error $58 (not a
block device).

See Chapter 11 for a general description of the Character FST.

OPEN ($10)

OPEN establishes an access path to the character me.

Parameter differences

pathname This longword input pointer must point to a character device name.

Errors

In addition to the standard ProDOS 16 OPEN errors, the Character FST can return these errors from an
OPEN call:

$26 driver no resources
$2F driver off line
$54 out of memory

Appendix B: ProDOS 16 Cl.lls and FSTs 293

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

READ ($12)

The READ call attemptS to transfer the requested number of bytes from the specified character file
into the application's data buffer.

Errors

In addition to the standard ProOOS 16 READ errors, the Character FST can return these errors from a
READ call:

$23 driver not open
$ 2F driver off line
$53 parameter out of range
$54 out of memory

WRITE ($13)

The WRITE call attemp~ to transfer the requested number of bytes from the application's data
buffer to the specified character file.

Errors

In addition to the standard ProOOS 16 WRITE errors, the Character FST can return these errors from a
WRITE call:

$23 driver not open
$2F driver off line
$54 out of memory

CLOSE ($14)

The CLOSE call terminates access to the specified (by refNum) character ftle. CLOSE also involves
flushing the flle (see the FLUSH call) to ensure completion of all data transfer before a character file is
closed.

Errors

In addition to the standard ProOOS 16 CLOSE errors, the Character FST can return these errors from a
CLOSE call:

~ Volume 1: Applic31ions and GS/05 Appendixes

8131/88

GSIOS Referena (Volume 1) Draft 3 (APDA)

$23 driver not open
$2F driver off line

FLUSH ($15)

The FLUSH routine completes any pending data transfer to the character file specifed by re fNum. If
the character device is synchronous, all data transfer is by definition completed when the WRITE call
returns, so the FLUSH routine simply returns with no error. If the device is asynchronous (such as
interrupt-driven or DMA), the FLUSH routine waits until all data has been transferred, and then returns.
If the file is multiply opened, all (output) access paths to the character file (not just the one with the
specified re fNum) are flushed.

Errors

In addition to the standard ProOOS 16 FLUSH errors, the Character FST can return these errors from a
FLUSH call:

$23 driver not open
$2F driver off line

ProDOS 16 device calls

The only Pro005-16 device call is D_INFO, which is handled only by the Device Manager-no FST can
accept this call. Therefore, the standard description of D _INFO in Appendix A is the complete
specification.

See the Introduction and Chapter 1 of Volume 2 for more general information on the Device Manager
and GS/OS devi~e calls.

Appendix B: ProOOS 16 Calls and FSTs 295

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

Appendix C The GS/OS Exerciser

The GS/OS Exerciser is an application that allows you to "exercise" GS/OS by
practicing all its calls from the keyboard. You can learn exactly how each GS/OS
call works and what its results are before writing it into your programs. The
GS/OS Exerciser is an excellent tool for learning the details of the application
interface to GS/OS.

Appendix C: The GS/OS Exerciser m

8131188

GSIOS Referencs (Volume 1) Dmft 3 (APDA)

Starting the Exerciser

Before using the GS/05 Exerciser, be sure to make a copy and put the original in a safe place.

Warning! The Exerciser is a powerful progr.un that does not protect you in any way from
destroying data in mermry or on any disk you can access. You can easily modify parts of
mermry that are already in use, causing a system aash. You can unintentionally overwrite
critical data on disk, even a disk's directory. Be careful how you use this program/

Once the progr.un is running, you see the main screen (Figure C-1). Note that the Exerciser uses a text­
based display.

Figure C-1 Exerciser main screen

GS/OS System Call Exerciser vXX.XX 10 Aug 1988
Copyright 1987,1988 Apple Computer Inc. All Rights Reserved

SOl-Create SOF-GetSysl?refs
$02-0estroy $10-0pen
$03-0SShutdown $11-Newline
$04-Changel?ath $12-Read
$05-SetFileinfo $13-Write
$06-GetFileinfo $14-Close
$08-Volume $15-Flush
$09-Setl?refix $16-SetMark
SOA-Getl?refix $17-GetMark
SOB-ClrBackupbit $18-SetEOF
SOC-SetSysl?refs $19-GetEOF
sao-Null SlA-SetLevel
SOE-Expandl?ath .

J - Make inline calls to GS/OS
L - Catalog a directory
N - Catalog $00 levels of a directory
0 - Quit back to caller

Select command: $01

~ Volume 1: Applications and GSIOS

SlB-GetLevel $28-GetBootVol
SlC-GetOirEntry $29-0uit
$10-Beginsession $2A-GetVersion
SlE-EndSession $28-GetFSTinfo
SlF-SessionStatus $2C-0Info
$20-GetOevNumber $20-0Status
$21-GET_LAST_OEV $2E-0Control
$22-READ_BLOCK $2F-0Read
$23-WRITE_BLOCK $30-0Write
$24-Format $31-Bindint
$25-EraseOisk $32-Unbindint
$27-GetName $33-FSTSpecific

K - Make class 0 calls to GS/OS
M - Modify the contents of memory
I? - Set minimum p_count for all calls
R - Visit the Monitor

Appendixes

8/31/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

Call options

The GS/OS Exerciser can make almost any call an application makes, and in several different ways.
Here are some of the options:

8131188

• Stack/In.llne system c:.al.b 0): The Exerciser lets you make a call with either of two methods. The
first is a stack-based call: you push the parameter buffer address and the command number onto the
stack and then call the appropriate GS/OS entry point The second method is the (more familiar)
inline call: you call the appropriate GS/OS entry point and immediately follow with the command
number and the parameter buffer pointer. (ProDOS 8 uses the inline call method.)

In the Exerciser, you toggle between stack-based calls and inline calls by pressing}.

• System call classes (K): GS/OS includes the concept of call classes. Although up to eight classes
are possible, only classes 0 (ProDOS 16-compatible calls) and 1 (standard GS/OS calls) are currently
defined.

By pressing K followed by either the arrow or number keys, you can select which class of call to make.

• Maximum/Minimum parameter counts (P): Many GS/OS calls accept a variable number of
parameters. For each cal~ there is a minimum and a maximum permitted value for the parameter
count (parameter pCount).

By pressing Pat either the main screen or the parameter-setup screen (see Figure C-2), you set the
default pCount to either the minimum or maximum for the call being issued. (Only standard GS/OS
calls use the parameter pCount.) Then, if you want something other than the minimum or maximum,
you can reset pCount to the desired value at the parameter-setup screen.

The lower part of the main screen always displays the current settings for the method, class, and
pcoun t options. The method and class are also displayed on the top line of the parameter-setup
screen (see Figure C-2).

Making GS/ OS calls

You make GS/OS calls from the Exerciser by entering call numbers on the main screen. The number
you enter is displayed at the bottom of the screen. You can clear the number at any time by pressing
zero twice in succession.

Appendix C: The GS/OS Exerciser ?$

GSIOS Reference (Volume 1) Draft 3 (APDA)

After entering the number, press the Return key. The parameter-setup screen for the call you selected
is displayed (Figure C-2). Enter a value (or select the default provided by pressing the Return key) for
each parameter; each time you press Return, the cursor rooves downward one position in the
parameter block. The cursor does not stop at any parameter that is a resuk-only value (that has no
input value).

Figure C-Z Parameter-setup screen

$1C-Get Dir Entry class 1 inline call esc: main menu

p_count: $000F input
ref_num: $0006 input

reserved: $0000 result
base: $0000 input

displacement: $0001 input
name buffer: $000146AA result

FINDER.DEF

entry_num: $0001 result
file_type: $00C9 result

eof: $00000000 result
bloclcs_used: $00000038 result

create $57090100 result Tu 22Dec87 901
time and date: $03000B15 result
modification $58113400 result We 20Jan88 1752
time and date: $04000013 result

access: $00E3 result
aux_type: $00000100, result

file_sys_id: $0001 result
option_list: $00014850 result

Press return to exit to main men Error $0000: call successful

Note: If, while you are entering patameters, you wish to abort the call, press the Escape key-it
returns you to the main screen.

Pathnames and other text strings are passed to and from GS/OS in buffers referenced by pointers in
the parameter blocks. Therefore, to enter or read a pathname, you must provide a buffer for GS/OS
to read from or write to. In roost cases, the Exerciser sets up a default buffer, pointed to by a default
pointer parameter (see, for example, the Create call). The contents of the location referenced by
that pointer are displayed on the screen, below the parameter block. For convenience, you can
directly edit the displayed string on the screen; you needn't access the memory location itself.

}X) Volume 1: Applications and GSIOS Appendixes

8/31188

GSIOS Reference (Volume 1) Draft 3 (APDA)

After you have entered all the required parameters, press the Return key once more to execute the
call. If everything has gone right, the parameter list now contains any results returned by GS/OS, and
the message " $0000 call successful" appears at the bottom of the screen. If a GS/OS error occurs, the
proper error number and message are displayed instead. In addition, if an error occurs, a small "c"
appears at the lower right comer of the screen, which indicates that the microprocessor's carry bit has
been set

Other commands

The Exerciser has several other useful features.

8131188

• Ust Directory (L,N): There are two items on the main screen that help you catalog a disk. The first
is the Ust command, which catalogs either a target directory or all online devices (see next item).
The second is the N option, which allows you to specify how many levels to display of subdirectories
and files within the target directory.

From the main screen, select the levels you want by pressing N and then using the number keys or
vertical arrow keys to specify the desired number of levels. You can select any number from $00 to
$40. Press Return to enter your selection.

Pressing L repeatedly toggles the list command between listing a directory and listing devices. Press
L until "Catalog a directory• appears after "L - • on the main screen. Then press Return to execute the
command (press Escape to abort it).

• Ust Online: Devices (L): The List Online Devices command allows you quick access to the device
numbers, device names, and volume names of any devices currently connected to the system.

Pressing L repeatedly toggles the Ust command between listing a directory and listing devices. Press
L until •Ust Devices Online" appears after •t - • on the main screen. Then press Return to execute the
command (press Escape to abort it). The device-list screen appears (Figure C-3).

Dev t on the screen is the actual hex value that you would use for devNum in the parameter list for a
device call. Device Name and Volume Name are the names as known to the system If the device
is a drive with a volume that has been removed, the status field will read "Offline".

Appendix C: The GS/OS Exerciser ~1

GYOS Reference (Volume 1)

Figure C-3 Device-list screen ·

L - List Devices Online

Dev t

$0001
$0002
$0003
$0004
sooos
$0006
$0007
$0008

Device Name

.APPLEDISK3. SA

.APPLEDISK3. SB

.CONSOLE

.APPLEDISKS.25A

.APPLEDISKS.2SB

.scsn

.DEV2

.DEV3

Press return to continue: I

Drr:Jfl3 (APDA)

Volume Name

:SYSTEM. DISK
:SYSTEM. TOOLS

:SCUSI

esc: main menu

Status

Offline
Offline

• Modify Memory (M): By using the Modify Menx>ry command, you can inspect and change the
contents of any menx>ry location.

8/31188

When you press M the Exerciser prompts you for a full three-byte address. Enter it and press Return;
the Exerciser gives you an SO-column display of one menx>ry page (256 byteS), with 16 bytes of data
per line (Figure C-4). The page contains the address you entered, and the inverse-video cursor
highlights the byte at that address. Using the arrow keys, you can mve through the display; pressing
> or < disp~ys the next or previous page.

To modify the contents of a menx>ry location, mve the cursor to it and retype the hexadecimal
value you want it to contain. Table C-1 lists the hexadecimal values for all ASCII characters.

Press U to undo a keypress that has modified the data in memry.

~ Volume 1: Applications and GS/OS Appendixes

GSIOS Referena (Volume 1) Draft 3 (APDA) 8131188

Figure C-4 Modify-memory screen

M - Modify the contents of memory esc: main menu

data_ buffer: $000146AA value

01/4600- 20 20 20 20 00 00 00 00 9A 00 00 00 20 20 20 20
01/4610- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/4620- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/4630- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/4640- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/4650- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/4660- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/4670- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/4680- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/4690- 20 20 20 20 20 20 00 00 00 00 p). 00 OA 00 46 49
01/46AO- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 ••••...• FI
01/46BO- 4E 44 45 52 2E 44 45 46 20 20 20 20 20 20 20 20 NDER.DEF
01/46CO- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/4600- 20 20 20 20 ·20 20 20 20 20 20 20 20 20 20 20 20
01/46EO- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
01/46FO- 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

Commands: arrow keys, >, <, U, o •• F

• VIsit the Monitor (R): The Monitor program is a firmware tool for debugging and executing
programs. It is described in the Apple IIGS Firmware Reference. With the Monitor, you can inspect and
modify the contents of memory, assemble and disassemble code in a limited manner, and execute
code in memory.

You can temporarily leave the Exerciser to use the Monitor program by pressing R from the main
screen. The command functions exactly like the Control Panel "Visit Monitor" command and the
BASIC command •ca11-151•. When you are ready to return to the Exerciser, press Control-Y.

• Quit the Exerdser (Q): To leave the Exerciser-and rerum to the Finder or other startup program­
press Q from the main screen. Of course, you can also quit by selecting the GS/OS Quit call ($29 on
the main screen), filling out its parameters on the parameter-serup screen, and executing it.

Appendix C: The GS/OS Exerciser :D3

GS'OS Refemra (Volume 1)

Table Cl ASCII table

A D H I

nul 0
soil 1
a z
etx 3

0 00000000
1 00000001
z 00000010

3 00000011
eot 4 4 00000100

enq 5 5 00000101
ack 6 6 00000110
bel 7 7 00000111
be 8 8 00001000
lu 9 9 00001001

If 10 A 00001010
vt 11 8 00001011
If 12 c 00001100

cr 13 0 00001101
so 14 E 00001110

si 15 P 00001111
die 16 10 00010000

del 17 11 00010001
dc:Z 18 lZ 00010010
dc3 19 13 00010011

de4 zo 14 00010100

nak 21 15 00010101
syn 22 16 00010110

etb 23 17 00010111

an 24 18 00011000

em 25 19 00011001

sub 26 1A 00011010
esc: 27 1B 00011011

fs 28 1C 00011100
gs 29 10 00011101

rs 30 IE 00011110
111 31 IP 00011111

A Q R I

sp 31 20 00100000

33 21 00100001
I 34 22 00100010

35 23 00100011

s 36 24 00100100

% 37 25 00100101

a 38 z6 oo1oo11o
I 39 27 00100111

(40 28 00101000

) 41 29 00101001
• 42 ZA 00101010

+ 43 ZB 00101011
44 2C 00101100

- 45 ZD 00101101
46 2E 00101110

I 47 2P 00101111

0 48 30 00110000

1 49 31 00110001

2 50 32 00110010

3 51 33 00110011

4 52 34 00110100

5 53 35 00110101
6 54 36 00110110

7 55 37 00110111

8 56 38 00111000

9 57 39 00111001
58 3 A 00111010

59 38 00111011

< 60 3C 00111100
• 61 30 00111101
> 62 3! 00111110

63 3P 00111111

~ Volume 1: Applications and GS/OS

Drafl3 (APDA)

A p H I

• 64 40 01000000

A 65 41 01000001

B 66 42 01000010
c 67 43 01000011

0 68 44 01000100

! 69 45 01000101

p 70 46 01000110
G 71 47 01000111
H 7Z 48 01001000

I 73 49 01001001
J 74 4 A 01001010

K 75 4B 01001011
L 76 4C 01001100
M 77 40 01001101

N 78 4! 01001110

0 79 4P 01001111

p 80 50 01010000

Q 81 51 01010001
R 82 52 01010010

s 83 53 01010011
T 84 54 01010100

u 85 55 01010101
v 86 56 01010110
., 87 57 01010111

X 88 58 01011000
y 89 59 01011001

Z 90 5 A 01011010
(91 58 01011011

\ 92 5C 01011100
I 93 50 01011101

" 94 5! 01011110

_ 95 5P 01011111

A p H 8

• 96 60 01100000

a 97 61 01100001

b 98 62 01100010

c 99 63 01100011

d 100 64 01100100

e 101 65 01100101
f 102 66 01100110
g 103 67 01100111
h 104 68 01101000

105 69 01101001
j 106 6 A 01101010
k 107 68 01101011

I 108 6C 01101100

m 109 60 01101101

n 110 6E 01101110

o 111 6P 01101111
p 112 70 01110000

q 113 71 01110001
r 114 72 01110010

s 115 73 01110011

t 116 74 01110100

u 117 75 01110101
v 118 76 01110110
w 119 77 01110111

X 120 78 01111000

y 121 79 01111001

z 122 7A 01111010
123 78 01111011

I 124 7C 01111100

125 70 01111101
- 126 7E 01111110

del 127 7P 01111111

Appendixes

8131/88

GS/OS Reference (Volume 1) Drafl3 (APDA)

Appendix D GS/OS System Disks and Startup

This appendix lists the directories and principal files that make up a GS/OS
system disk for the Apple IIgs computer. A typical system disk has all of these
flles plus others, which may be applications, desk accessories, utilities,
initialization files, documents, or other data flles.

In some very restricted instances, it may be possible to fit an application and
its required system fLies onto a BOOK diskette; most applications, however,
require two BOOK diskettes.

Appendix 0: GSIOS System Disks and Startup 305

8/31/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

Application system disks

Each application program or group of related programs comes on its own application system disk.
The disk has all of the system files needed to run that application, but it may not have all the files
present on a complete system disk. Different applications may have different system files on their
application system disks.

Table 2·1 shows the files that must be present on all application system disks.

Table D·l Directories and files on a GS/OS system disk

Directory/File
Prodos

Appletalk/
Icons/

Finder .icons
Finder.def
System/

P8

GS.OS
START.GS.OS
FSTS/
System.setup/

Tool.setup
Drivers/
Tools/

Fonts/ _
Desk.accs/

Start

Error.rnsg

Contents
Required: A simple loader that loads the START.GS.OS file and

executes it
Contains AppleTalk setup files
Contains FindeHelated information
Icons used by the Finder
Data used by the Finder
Required: Contains GS/OS and other important system files
Required: The GS/OS operating system and the System Loader
Required: The GS/OS loader and program dispatcher
Required: Contains all File System Translators
Required: Contains setup files that execute at system startup
Required: Initializes tool sets at startup
Contains GS/OS device drivers
Contains RAM·based tool sets: required if F.Ai\l·based tools are

needed
Contains font files: required if fonts are needed
Contains desk accessories: required if desk accessories are

provided
The program automatically executed at startup; this should usually

be the Finder
Required: GS/OS error messages
Required if ProDOS 8 applications will be run from GS/OS

~ Volume 1: Applications and GS/05 AppendLxes

8/31/88

GS/05 Reference (Volume 1) Draft3 (APDA) 8131188

System startup from ProDOS volumes

Disk blocks 0 and 1 on an Apple llGS system disk contain the boot code. The boot code is functions
identically for ProDOS 8, ProDOS 16 and GS/OS system disks. This allows ProDOS 8 system disks to
boot on an Apple IIGS, and it also means that the initial pan of the bootstrap procedure is identical
for all three operating systems.

First, the boot firmware in ROM reads the boot code (blocks 0 and 1) into memory and executes it.
For a system disk with a volume name represented by'/,

1. The boot code searches the disk's volume directory for the first flle named PRODOS with the file
type $FF.

2. If the file is found, it is loaded and executed.

From this point on, the three operating systems behave differently. On a ProDOS 8 system disk, the
file named PRODOS is the ProOOS 8 operating system. On a ProDOS 16 system disk, the PRODOS
file is not the operating system itself; it is the operating system loader and program dispatcher. On a
GS/OS system disk, the PRODOS flle contains only a startup routine and file-system-specific
routines that are used by the operating system loader and program dispatcher. The operating system
loader and program dispatcher are contained in the file '/SYSTEM/START.GS.OS.

When it receives control from the boot code, '/PRODOS performs the following tasks-

1. Checks to make sure i~s running on an Apple IIGS with ROM version 01 or greater. .

2. Loads the file '/SYSTEM/START.GS.OS.

The START.GS.OS file is divided into two parts: GLoader and GQuit. GLoader is the operating
system loader. It's temporary and is used only during system startup. GQuit is the program
dispatcher. It contains the code used for starting and quitting ProDOS 8 and GS/OS applications.

3. Transfers control to GI.oader.

When it receives control, GI.oader performs the following tasks:

• Puts up the GS/OS splash screen and initializes the Apple IIGS tools and the Memory Manager.

• Relocates the GS/OS program dispatcher to an area in meroory where it will reside permanently and
relocates pan of the '/PRODOS flle to an area in memory where it will reside permanently.

• Gets the name of the boot volume and the name of the start FST.

• Loads the GS/OS operating system and Apple IIGS System Loader (flle '/SYSTEM/GS.OS) and then
installs the System Loader.

• Loads the file '/SYSTEM/ERROR.MSG.

Appendix D: GS/OS System Disks and Startup 'YJ7

GS/05 Reference (Volume 1) Draft 3 (APDA) 8/31188

• Loads the start FST. The start FST must reside in the '/SYSTEM/FSTS subdirectory, must have a file
type of $BD, and must have the high bit of its auxiliary type set to 0.

• Initializes GS/OS and installs the start FST.

• Loads and installs the rest of the FSTs in the '/SYSTEM/FSTS subdirectory. The files must be Apple
IIGS load files of type $BD. If bit 15 of a file's auxiliary type is 1, the FST is not loaded.

• Sets prefix 0 to the boot volume name, and prefix 2 to • /SYSTEM/UBS.

• GLoader selects the application to run by taking the following steps:

a. It first looks for a type $B3 file named '/SYSTEM/START. Typically, that file should be the
Finder, but it could be any Apple IIGS application. If START is found, it is selected.

b. If there is no START flle, GLoader searches the boot volume directory for a file that is either one
of the following types:

• a ProDOS 8 system program (type SFF) with the filename extension .SYSTEM

• a GS/OS application (type $B3) with the filename extension .SYS16

Whichever is found first is selected.

Note If a ProDOS 8 system program is found first, but the ProDOS 8 operating system (file
'/SYSTEM/P8) is not on the boot volume, GLoader then searches for and selects the first
ProDOS 16 application.

• Executes the file '/SYSTEM/SYSTEM.SETUP/TOOL.SETIJP. The TOOL.SETIJP file must have file
type SB6, and executes, in tum, every flle (other than TOOL.SETIJP) that it finds in the
'/SYSTEM/SYSTEM.SETUP subdirectory. The files must be Apple IIGs load flles of type SB6 or SB7.
If the high bit of a file's auxiliary type is 1, the setup file is not executed.

• Installs all desk accessories it finds in the '/SYSTEM/DESK.ACCS subdirectory. The files must be
Apple IIGS load fLies of type SB8 or B9. If Bit 15 of a flle's auxiliary type is 1, the desk accessory is
not loaded.

Finally, GLoader makes a standard GS/OS Quit call to launch the selected application. It is GQuit,
not GLoader, thatactually loads and launches the selected application.

System startup from non-ProDOS volumes

GS/OS supports booting from non-ProDOS volumes. Special boot blo~ks have to be written out to
the boot volumes, as well as a boot file containing the startup routine and the file-system-specillc
routines required by GLoader and GQuit. The boot flle is a replacement for the file PRODOS, which
is used when booting from ProDOS volumes.

~ Volume 1: Applications and GS/OS Appendixes

GSIOS Reference (Volume 1) Draft 3 (APDA)

The boot blocks must load the boot file at location $2000 in bank $00 and then execute the boot file
by doing a JMP $2000. The boot blocks must make sure that MSLOT ($07f8) is set up to contain the
slot number of the boot device since this value will be needed by the boot ft.le and GLoader. The
boot file must contain the following routines: Startup, Read.InFile, GetBootName and GetFstName.
These routines are described in the following sections.

The boot file must begin with a jump table that looks like this:
jump_tab1e

aux_value

start
jmp
nop
de
de
de
de
ds
end

startup

i2'readinfile'
i2'getbootname'
i2'getfstname•
i2'xxxx-jump_table'
2

; 3 bytes
; 1 byte of padding
; offset into table • 4

offset into table • 6
offset into table • 8
offset into table • 10

; offset into table • 12

The jump table must be the first thing in the boot file so that when the boot file is loaded, the table
begins at location $2000. GLoader and GQuit use the table to call the routines in the boot file.

The entry at offset 10 must contain the size, in bytes, of the permanent part of the boot file. The
permanent part of the boot file consists of the jump table, the ReadlnFile routine, the GetBootName
routine and any internal routines and/or data required by Read.InFile and GetBootName. The Startup
and GetFstName routines are only used during boot time and so are temporary.

The boot file must be organized with the permanent code and data at the beginning of the load file
and the temporary code and data at the end of the load file. GQuit uses the size specified in the
jump table to determine how much of the boot file (beginning at location $2000) to save in memory
for later use. When GQuit is quitting from a ProDOS 8 application into a GS/OS application, it needs
to reload GS/OS. In order to do this, it relocates the saved portion of the boot file to location
$2000, calls the GetBootName routine to verify that the boot volume is in the boot drive, and then
calls the Readlnfile routine to read in the necessary files.

The entry at offset 12 must be set up by the Startup routine to contain the auxiliary type of the
START.GS.OS file.- GLoader uses this value when it puts up the splash screen.

Startup (boot fue routine)

The Startup routine must perform the following tasks:

8131/88

1. Determine that it is running on an Apple IIGS with ROM version 01 or greater, and if not, report a fatal
error.

2. Set thee, m, and x flags in the processor status register to zero to enable full native mode.

Appendix D: GS/OS System Disks and Startup ?fJ)

GSIOS Reference (Volume 1) Draft 3 (APDA) 8131188

3. Set the bank register to $00, set the direct register to $0000, and set the stack register to $01FF.

4. Obtain the boot slot number from MSLOT ($07f8) and save it in the permanent code area for later use
by ReadlnFUe and GetBootName. Note that GLoader also uses MSLOT, so its contents must still be
valid when control is transferred to GLoader.

5. Load the flle '/SYSTE!WSTART.GS.OS at location $6800 in bank $00.

6. Store the auxiliary type of the START.GS.OS file at offset 12 in the jump table.

7. Transfer control to GI.oader by doing a JMP $6800.

The starrup routine from the ProOOS boot file is included in this appendix as an example.

ReadlnFile (boot ftle routine)

This routine finds the requested file, reads it into memory at the location specified, and returns the
eof, file type and auxiliary type. The pathname of the requested file is returned as a GS/OS string;
that is, it begins with a length word and the fllenames are separated by colons. There is no leading or
trailing colon.

The pathname does not include the volume name since this routine is called only to read from the
boot volume. Also, the Starrup routine should have saved the boot slot number in the permanent
data area. For example, to load the file '/SYSTEM/GS.OS, GLoader will call this routine with the
partial pathname "SYSTEM:GS.OS".

Entry and exit are in full native mode. The direct register, data bank register, and language card state
must be preserved.

The input parameters are as follows:

4 bytes space for EOF result

2 bytes

2 bytes

4 bytes

4 bytes

2 bytes

space for auxiliary type result

space for flle type result

pointer to partial pathname of file to read

pointer to buffer to read file into

return address

The output parameters are as follows:

4 bytes EOF

2 bytes auxiliary type

310 Volume 1: Applications and GS/OS Appendixes

GSIOS Reference (Volume 1) Draft 3 (APDA)

2 bytes file type

c • 0 if successful, c • 1 if error

A - contains error code if c • 1

GetBootName (boot ftle routine)

The GetBootName routine returns the name of the boot volume. The returned string must begin with
a length word and must contain a leading colon but not a trailing colon. The maximum length of the
volume name is 32 characters. If the volume name is longer than 32 characters, an error should be
returned.

Entry and exit are in full native mode. The direct register, data bank register, and language card state
must be preserved.

The input parameters are as follows:

4 bytes pointer to space for volume name

2 bytes return address

The output parameters are as follows:

c • 0 if successful, c • 1 if error

A- contains error code if c • 1

GetFSTName (boot ftle routine)

The GetFstName routine returns the filename of the FST that is associated with this boot file. For
example, the P.roOOS boot file returns the name "PRO.FST", which is the filename of the ProDOS
FST. The returned string must begin with a length word and must not contain any separators. The
maximum allowed length of the filename is 32 characters.

Entry and exit are in full native mode. The direct register, data bank register and language card state
must be preserved.

The input parameters are as follows:

4 bytes pointer to space for FST name

2 bytes return address

The output parameters are as follows:

Appendix D: GS/OS System Disks and Startup 311

8131/88

GSIOS Reference (VolutM 1) Draft 3 (APDA)

none

Sample boot flle startup routine

The following sample code shows part of the ProDOS boot file startup routine.

startup start
using pb_data

longa on
longi on

At onset, we don't know what machine we are being run on.
If we're not being run on an Apple //GS we must hang with an
error message.

The following code will run on both the 65816 and 6502
processors to ensure a-bit processing.

tsx ;save stack pointer
lda i$3030
nop ;required filler
ph a ;push $30 on stack
plp ;and retrieve for

long a off
longi off

txs ;restore stack

The above code looks like the following for a 6502 ..•
(this code essentially does nothing on a 6502)

tsx
lda tS30
bmi nop ;will never be taken
ph a
plp
txs

lda romin ;bank in rom

full 8-bit mode

sec
jsr idroutine

;go into //GS id routine with c set
;are we on a //GS?

bcs
cpy
bee

show_err
tSOl
show_err

;no
;is rom revision 01 or greater?
;no

At this point we must be in emulation mode on a //GS.

pea
pld

phk
plb

$0000

312 Volume 1: Applications and GS/OS

;ensure direct page at SOOOO

;set data ban~ ~o bank $00

Appendixes

8/31/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

;The id_sp routine reads MSLOT and sets up information used by ReadinFile

jsr id_sp

clc
xce
rep
long a
longi

lda
tcs

it$30
on
on

ifSOlff.

;begin native mode
;begin 16-bit mode

;set stack to S01ff

Now read in the */SYSTEM/START.GS.OS file.

ph a
ph a
ph a
ph a
pea
pea
pea
pea
jsr
bee
ph a
pea
pea
ldx
jsl

read_ok anop
pla
pla
sta
pla
pla

start_path 1-16
start_path
0
start loc
readinfile
read_ok

$0000
startup_err
ll$1503
Se10000

laux_value

Now transfer control to START.GS.OS

jmp start_loc

;push 8 bytes for results

;push pointer to partial pathname
;of file to be loaded
;push address of where file should
;be loaded
;find the file and read it in
;branch if no error
;push error number
;push address of
;error message
;call SysFailMgr tool call to
;report the error -doesn't return

;ignore filetype
;get auxtype
;and store at end of jump table
;ignore eof

;---
show_err

Enter this
Enter this

anop
long a
longi

routine
routine

php
lda
sta
sta
sta

off
off

with c•1 for
with c•O for

romin
clr80vid
clraltchar
clr80col

wrong
wrong

system error.
rom error.

;save 'c' around setup stuff
;rom in for monitor's home routine
;disable 80 column hardware
;switch in primary character set
;disable 80 column store

Appendix D: GS/OS System Disks and Startup 313

8/31188

GS/OS Reference (Volume 1) Draft 3 (APDA)

jsr
jsr
jsr
jsr
plp

ldy
bcs
ldy

print_it anop
lda
bcs
lda

print_it2 anop
sta
dey
bne

hang jmp

end

in it
setvid
setnorm
home

not_a_gs
print_it
wrong_rom

not_a_gs,y
print_it2
wrong_rom,y

screen,y

print_it

hang

;text pg 1, text mode, 40 col window
;does a 'prto• (puts in cout1 in csw)
;white chars on black background
;clear screen
;which message gets shown?

;get length of message

;get length of message

;get character

;get character

;store directly to screen

;done

;---
pb_data data

;firmware entry points

idroutine equ
setvid equ
setnorm equ
in it equ
home equ

;soft switches

clr80col
clr80vid.
clraltchar
romin

equ
equ
equ
equ

;misc. equates

screen
mslot
start_loc

;strings

start_path

fst name

equ
equ
equ

de
de

de
d.c

Sfe1f
$fe93
Sfe84
$fb2f
Sfc58

ScOOO
ScOOc
ScOOe
Sc081

SOSaB
$07f8
$006800

i2'18'
c'SYSTEM:START.GS.OS'

i2'7'
c'PRO.FST'

314 Volume 1: Applications and GS/OS

;//GS id routine
;reset output to screen
;normal white text on blk background
;text pg 1, text mode, 40 col window
;home cursor and clear ~o end of screen

;disable 80 column store
;disable 80 colume hardware
;normal lc, flashing uc
;enable rom read

;left center of 40 column screen
;slot t of boot device
;where START.GS.OS is loaded

;name of start FST

Appendixes

8/31/88

GSIOS Reference (Volume 1) Draft 3 (APDA) 8131/88

startup_err de il'40'
de e'Unable to load START.GS.OS file. Error•$'

msb on

not _a_gs de il'35'
de e'GS/OS REQUIRES APPLE IIGS HARDWARE '

wrong_ rom de il'38'
de e'GS/OS needs ROM version 01 or greater '

end

Appendix D: GS/OS System Disks and Startup 315

GSIOS Reference (Volume 1) Draft 3 (APDA)

Appendix E Apple Extensions to ISO 9660

This appendix describes a protocol through which me-type information can be
added to CD-ROM flles or other flles in the ISO 9660 format (which does not
recognize flle typing). With this protocol, ProDOS and Macintosh files can be
stored on compact discs-as valid ISO 9660 flles-while retaining all
information related to flle type.

You may need to read this appendix if you are

• an Apple Developer working with ISO 9660
• a publisher of authoring tools for Isb 9660 discs

• a publisher of ISO 9660 discs

• a publisher of ISO 9660 receiving system software

High Sierra support: ISO 9660 is the international flle system standard for CD­
ROM; it is based on the original High Sierra format, but is
not identical to it The protocol described in this
appendix is meant to apply to the ISO 9660 file system;
however, the High Sierra FST (See Chapter 10 of this
volume) supports the protocol for High Sierra-formatted
mes also.

Appendix E: Apple Extensions to ISO 9660 317

8131188

GY'OS Reference (Volume 1) Drafl3 (APDA) 8131188

What the Apple extensions do

Creating an ISO 9660 CD-ROM disc containing ProDOS files or Macintosh hierarchical file system (HFS)
files can have great advantages: the large storage capacity of compact discs means cost savings and
greater convenience when distributing large amounts of data, and the position of ISO 9660 as an
international standard means that the files will be accessible on a large variety of machines. Unfortunately,
both the HFS and ProDOS me systems require information that the ISO 9660 file system does not support:
ProDOS requires a me type and an auxiliary file type, and HFS requires a file type, a file creator, and,
frequently, an icon resource.

This appendix defmes a protocol that extends the ISO 9660 specification. The protocol is designed to
both solve existing compatibility problems and allow for furure expansion; at present, it has two principal
features:

• It permits inclusion of HFS-specific or ProD05-specific information in files, without corrupting the
ISO 9660 strucrures. Discs created using the protocol are valid ISO 9660 discs and should function
normally on non-Apple receiving systems.

• It defines a mechanism for preserving filenames across translations form ProDOS to ISO 9660 and
back, and gives suggestions for optimum translations of Macintosh filenames.

The protocol uses the systemidentifier field in the Primary Volume Descriptor for global
information, and the systemuse field in the directory record for file-specific information.

The protocol identifier

Discs that have been formatted with the Apple extensions to ISO 9660 are identified by their
protocol identifier, which has the following characteristics:

Location: Systemidentifier field in the Primary Volume Descriptor.

Size: 32 bytes. It is the entire contents of the Systemidentifier field.

318 Volume 1: Applications and GS/05 Appendixes

GYOS Reference (Volume 1) Draft 3 (APDA)

Contents:

Protocol flags:

"APPLE COMPUTER, INC., TIPE: " followed by the protocol flags. In
hexadecimal, the protocol identifier looks like this:

41 50 50 4C 45 20 43 4F 40 50 55 54 45 52 2C 20
49 4E 43 2E 2C 20 54 59 50 45 3A 20 3x 3x 3x 3x

The protocol identifier is considered valid if its fJISt 28 bytes match the first 28
characters above.

4 bytes of nibble-encoded information (represented as •3x" in the previous
example). Nibble encoding is necessary in order to guarantee that the bytes
represent legal ISO 9660 a-<haracters (printable characters). The flag bytes are
numbered 0-3; flag-byte 0 is the byte following the space ($20). The bits of
each flag byte are numbered 0-7, 0 being the least significant The flag bytes are
presently defmed as follows:

flag-byte 0:

mustbeO

IIIJit be 1

Peri'onn ProDOS filerwne transformalion

flag-byte 1:

11111tbe0

must be 1

Appendix E: Apple Extensions to ISO 9660 319

8131188

GSIOS Referena (Volume 1)

flag-byte 2:

llllllbeO

11111tbeO

l1llllt be 1

l1llllt be 1

flag-byte 3:

llllllbeO

l1llllt be 0

mwtbel

muatbe 1

Apple Elaensiona version nunb!r
(1 indiares this version)

Draft 3 (APDA)

The Directory Record SystemUse Field

Directory records in the ISO 9660 specification have the following format:

~ Volume 1: Applications and GSIOS

8131188

Appendixes

GS'OS Referenct (Volume 1) Draft 3 (APDA)

byte DirectoryRcdLength
byte XARlength
struct ExtentLocation
struct DataLength
struct RecordinqDateTime
byte FileFlaqs
byte FileUnitSize -
byte InterleaveGapSize
lonq VolumeSequenceNum
byte FileNameLength
char FileName[FileNameLenqth]
byte RecordPad
char SystemUse[SystemUseLength]

The RecordPad field is present only if needed to make DirectoryRcdLenqth an even
number. If RecordPad is presen~ its value must be zero ($00).

The Systemuse field is an optional field; if it is present, its length (equal to
SystemUseLength) must be an even number.

The Systemuse field, when presen~ must begin with a signature word, followed by a one-byte
systemusero, followed by file-specific information. The signarure word allows a receiving
system to ensure that it can interpret the following data correctly, and the SystemuseiD
determines the type and format of the information that follows.

The Apple signarure word (AppleSiqnature) is defmed as "B A" ($42 41).

Receiving systems must perform a simple calculation to determine if the systemuse field is
present in any given directory record. It is present if

DirectoryRcd.Length- FileName Length > 34

Receiving systems should fU'St verify that the Systemuse field is presen~ then check for
AppleSiqnature before interpreting the SystemUseiD.

Appendix E: Apple Extensions to ISO 9660 321

8131188

GSIOS Reference (Volume 1) Draft 3 (APDA)

SystemUseiD

Systemusero can have the values shown in Table E-1.

Table E-1

Value

$00
$01
$02
$03
$04
$05
$06
$07-FF

Defined values for SystemUseiO

Mea nina

(reserved)
ProDOS file_type and aux_type follow
HFS fileType and fileCreator follow
HFS fileType, fileCreator follow (bundle bit set)
HFS fileType, fileCreator, and ICN# resource (128-byte icon) follow
HFS fileType, fileCreator, ICN# resource follow (bundle bit set)
HFS file Type, fileCreator,. Finder flags follow
(reserved)

Table E-2 defines the contents of the Systemuse field for each defined value of systemusero.

Table E-2 Contents of Systemuse field for each value of SystemuseiD

Offset Contents

SystemUseiD•Ol (ProDOS):

$00-01 $42 41 (AppleSignature)
$02 $01 (SystemUseiD)
$03 ProDOS file type
$04-05 ProDOS aux type (LSB-MSB)•

SystemUseiD-G2 (HFS):

S00-01 $42 41 (AppleSignature)
S02 $02 (SystemUseiD)
$03-06 HFS fileType (MSB-LSB)
$07-0A HFS fileCreator (MSB-LSB)•
SOB (Padding for even length)

3Z2 Volume 1: Applications and GS/OS Appendi.xes

8131188

GSIOS Reference (Volume 1)

SystemUseiD•03 (HFS, bundle bit set):

$00-01
$02
$03-06
$07-0A
SOB

$42 41 (AppleSignature)
$03 (SystemUseiD)
HFS fileType (MSB-LSB)"
HFS fileCreator (MSB-LSB)"
(Padding for even length)

SystemUseiD-04 (HFS, icon):

$00-01 $42 41 (AppleSignature)
$02 $04 (SystemUseiD)
$03-06 HFS fileType (MSB-LSB)"
$07-0A HFS fileCreator (MSB-LSB)"
$0B-8A HFS ICN# resource (MSB-LSB)"
$8B (Padding for even length)

SystemUseiD-G5 (HFS, icon, bundle bit set):

$00-01 $42 41 (AppleSignature)
$02 $05 (SystemUseiD)
$03-06 HFS fileType (MSB-LSB)"
$07-0A HFS fileCreator (MSB-LSB)"
$0B-8A HFS ICN# resource (MSB-LSB)"
$8B (Padding for even length)

SystemUseiD-06 (HFS, Finder flags)":

S00-01 $42 41 (AppleSignature)
$02 $05 (SystemUseiD)
$03-06 HFS fileType (MSB-LSB)"
$07-0A HFS fileCreator (MSB-LSB)"
SOB-OC HFS Finder flags (MSB-LSB)"

Draft 3 (APDA)

'(MSB-LSB) =the most signifa.nt byte occupies the lowest address, the least significant byte, the highest addressi

(LSB-MSB) = the least signifiCant byte occupies the lowest address, the most significant byte, the highest address.

''to fill the Finder flags field here, premastering software can simply copy the fmder flags as retrieved by the HFS call
GetFinfo. Only bits 5 (always switch-launch), 12 (system f!le), 13 (bundle bit), and 15 (locked) are used. All other bits
are either ignored or always set by the FST. See Macintosh technical note #40 for more details about the Finder flags.

Appendix E: Apple Extensions to ISO 9660 323

8131/88

GSIOS Reference (Volume 1) Draft 3 (APDA)

Filename transformations

The rules governing permissible filenames are different under ISO 9660 than under either ProDOS or
Macintosh HFS. Therefore, one problem with putting ProDOS or HFS flles on an ISO 9660 disc is how
to rename them. Ideally there should be a simple, reversible transformation that can be applied to a
filename to make it a legal ISO 9660 name, and reversed to restore the original ProDOS or HFS name.

Such a transformation exists for ProOOS and is given here. There is none for HFS, but guidelines to
minimize changes during transformation are listed.

ProD OS

Legal ProDOS filenames differ from legal filenames under ISO 9660 in these ways:

• ProDOS filenames allow multiple periods; ISO 9660 filenames do not

8/31188

• ISO 9660 requires that both of the separators period(.) and semicolon (;) occur in each filename, and
that the semicolon be followed by a version number. (This requirement is for nondirectory files only.)

The following steps constitute a reversible transformation that preserves ProDOS filename syntax. That
means that an authoring tool can apply the transformation to any ProDOS file to get a legal ISO 9660
filename, and that a receiving system can reverse the transformation to hide from an application the fact
that a transformation has occurred. A user can therefore access the file using irs original ProDOS
filename.

When creating an ISO 9660 disc from ProDOS source files, the authoring tool must perform the following
transformation on ail filenames:

1. Replace all periods in the ProDOS filename with underscores. If the file is a directory file, that
completes the transformation.

2. If the file is not a directory file, append the characters ".;1" to the filename. It is now a valid ISO
9660 filename.

After all filenames have been transformed, the authoring tool must set the ProDOS transformation bit in
the protocol identifier, described earlier in this appendix.

Table E-3 shows some examples of the transformation.

324 Volume 1: Applications and GS/OS Appendixes

GSIOS Reference (Volume 1) Draft 3 (APDA) 8131188

Table E·3 ProDOS-to-ISO 9660 filename transformations

ProDOS filename kind of file ISO 9660 filename

PRO DOS standard PRODOS.;1
BASIC.SYSTEM standard BASIC_SYSTEM.; 1
SYSTEM directory SYSTEM
DESK.ACCS directory DESK_ACCS
START.GS.OS standard START_GS_OS.;1

Volume name: The ProDOS volume name becomes the ISO 9660 Volume Identifier in the Primary
Volume Descriptor. It is a filename and, therefore, must be transformed like other
ProOOS filenames. It must be transformed as a directory name (periods replaced with
underscores).

In use, the receiving system can inspect the ProDOS transformation bit in the protocol identifier, and
handle the necessary conversions such that the original ProOOS filenames can be used to refer to all files
and directories on the volume. The receiving system performs the above transformation on user-supplied
filenames before searching for them on disc, and reverses the transformation before presenting filenames
to the user.

Remember that this transformation cannot be done on a file-by-file basis; it must be applied to every
file and directory on a disc.

Macintosh HFS

Because HFS file naming rules are very flexible, most HFS filenames are illegal in the ISO 9660
specification. Furthermore, no reversible transformation is possible without degrading
performance; unlike with ProDOS, there is no simple conversion from all valid Macintosh HFS
filenames to valid ISO 9660 filenames. To make the transformations as consistent as possible,
however, Apple recommends that authoring tools and receiving systems follow these guidelines
when performing HFS-to-ISO 9660 transformations:

1. Conven all lowercase characters to uppercase.

2. Replace all illegal characters, including periods, with underscrores.

3. If the filename needs to be shonened, truncate the rightmost characters.

4. If the file is not a directory file, append the characters ".; 1" to the filename.

Such a transformation is not reversible, but if it is followed the results, will at least be consistent
across all files and discs.

Appendix E: Apple Extensions to ISO 966o 325

GYOS Reference (Volume 1) Draft 3 (APDA)

ISO 9660 associated IDes

An associated fde under ISO 9660 is analogous to the resource fork of an HFS me. The fonnat of
associated files is defined in the ISO 9660 specification; the Apple extensions do not change the
format in any way. For clarity, however, dtis section restates the defmition and gives an example.

An associated me has these characteristics:

• It is one of two identically named ft.les in a directory; the associated ft.le has exactly the same file
identifier as its counterpart.

• It resides immediately before its counterpart in the directory.

• It has the associated bit set in the me flags byte of the directory record.

The associated me is equivalent to the resource fork of an HFS me; its counterpart is equivalent to
the data fork of the same HFS me.

For example, if the me •ANYFII.E.;t• has an associated me, two adjacent directory records will be
named •ANYFII.E.;t•. The fttst one (the resource fork) will have the associated bit set, the second
one (the data fork) will have the associated bit clear.

~ Volume 1: Applic31ions and GS/OS Appendixes

8131188

G!YOS Reference (Volume 1) Draft 3 (APDA)

Appendix F GS/OS Error Codes and Constants

This appendix lists and describes the the errors that an application can receive
as a result of making a GS/OS call.

Appendix F: GS/OS Error Codes and Constants 3Zl

8/31/88

GSIOS Reference (Volume 1) Df'Qjt 3 (APDA)

Column 1 in T~le F-1 Usts the GS/OS error codes that an application can receive. Column 2 lists the
predefmed constants whose values are equal to the error codes; the constants are defined in the
GSIOS intelface files supplied with development systems. Column 3 gives a brief description of what
each error means.

Table F-1 GSIOS errors

Code Constant Description

$01 badSystemCall bad GSIOS call number

$04 invalidPcount parameter count out of range

$07 qsosActive GSIOSisbusy

$10 devNot!'ound device not found

$11 invalidDevNwn invalid device number (request)

$20 drvrBadReq invalid request

$21 drvrBadCode invalid control or status code

$22 drvrBadParm bad call parameter

$23 drvrNotOpen character device not open

$24 drvrPriorOpen character device already open

$25 irqTable!'ull interrupt table full

$26 drvrNoResrc resources not available

$27 drvriOError VO error

$28 drvrNoDevice no device connected

$29 drvrBusy driver is busy

$2B drvrWrtProt device is write protected

$2C drvrBadCount invalid byte count_

$20 drvrBadBlock invalid block address

$2E drvrDiskSwitch disk has been switched

328 Volume 1: Applications and GS/OS Appendixes

8/31188

GYOS Reference (Volume 1) Draft 3 (APDA) 8131188

Table F·l GS/OS errors (continued)

Code Constant Description

$2F drvrOffLine device off line or no media present

$40 bad.PathSyntax invalid pathname syntax

$43 invalid.RefNum invalid reference number

$44 pathNotFound subdirectory does not exist

$45 volNotFound volume not found

$46 fileNotFound me not found

$47 dupPathname create or rename with existing name

$48 volumeFull volume full error

$49 volDirFull volume directory full

$4A badFileFormat version error (incompatible file format)

$4B badStoreType unsupported (or incorrect) storage type

$4C eofEncountered end-of-file encountered

$40 outOfRange position out of range

$4E invalidAcce:s5 access not allowed

$4F buffTooSmall buffer too small

$50 fileBu5y file is already open

$51 dirError directory error

$52 unknown Vol unknown volume type

$53 paramRangeErr parameter out of range

$54 outOfMem out of memory

$57 dupVolume duplicate volume name

$58 notBlockDev not a block device

$59 invalidLevel specified level outside legal range

$SA damagedBitMap block number too large

$5B bad.PathNames invalid path names for ChangePath

$5C notSystemFile not an executable file

Appendix F: GS/OS Error Codes and Constants 329

GYOS Reference (Volume 1) Draft 3 (APDA) 8131188

Table F-1 GS/OS errors (continued)

Code Constant Description

$50 osUnsupported Operating System not supported

$5F stackOverflow too many applications on stack

$60 dataUnavail data unavailable

$61 endOfDir end of directory has been reached

$62 invalidClass invalid FST call class

$63 resNotFound me does not contain required resource

3:0 Volume 1: Applications and GS/OS Appendixes

GYOS Reference (Volume 1)

Glossary

abstract me system: the generic me
interface that GS/OS provides to
applications. Individual me system
translators convert me information in
abstract format into formats meaningful to
specific file systems.

Apple U: Any computer from the Apple II
family, including the Apple II Plus, the Apple
lie, the Apple lie, and the Apple IIGS.

Apple IIGS Toolbox: an extensive set of
routines (in ROM and in RAM) that provide
easy program access to hardware and
firmware, and facilitate the writing of
applications that display the desktop
interface.

application level: One of the three
interface levels of GS/OS. The application
level accepts calls from applications, and may
send them on to the me system level or the
device level.

application-level calls: The calls an
application makes to GS/OS to gain access to
mes or devices or to set or get system
information. Application-level calls include
standard GS/OS calls and ProDOS 16-
compatJble calls.

Draft 3 (APDA)

associated me: In the ISO 966o me format,
a file analogous to the resource fork of a
GS/OS extended me.

block: (1) A unit of data storage or transfer,
typically 512 bytes. (2) A contiguous, page­
aligned region of computer memory of
arbitrary size.

block device: A device that reads and writes
information in multiples of one block of
characters at a time. Disk drives are block
devices.

cache: A portion of the Apple IIGS memory
set aside for temporary storage of frequently
accessed disk blocks. By reading blocks from
the cache instead of from disk, GS/OS can
greatly speed VO.

cache controller: The part of GS/OS that
sets the cache size based on the amount of
system RAM installed. The minimum value is
Okb, and the maximum is the amount of RAM
in the system minus 256kb.

call: (v) To execute an operating system
routine. (n) The routine so executed.

caller: A program, such as an application,
that makes a call to the operating system.

Glossary 331

8/31188

G~OS Referenu (Volume 1)

chatactet device: A device that reads or
writes a stream of clwacters in order, one at ~
time. The keyboard, screen, printer, and
communications port are character device-S"

character device driver. A driver which
controls a char.tcter device.

Character FSf: The part of the GS/OS fde
system level that makes character devices
apperu· to appUcation programs as if thty
were sequential f!.les.

Class 0 c:alis: See ProDOS 16-compatible
calls.

Console: The main terminal-that ~s
keyboard and screen-of the compute:r.
GS/OS considers the console to be a sin;.'e
device.

Console driver: a GS/OS character devic~
driver that allows GS/OS to read data from the
keyboard or write it to the screen.

data fork: The part of an extended file thar.
contains data created by an application.

desktop interface: The visual interface that
an application using the Apple IIGS Toolbox
presents to the user. It is characterized by
menus, mouse, icons, and windows.

device: A physical piece of equipment that
transfers infonnation to or from the Apple
IIGS. Disk drives, printers, joysticks, and the
mouse are external devices. The keyboard
and screen are also a device (the console).

332 Volume 1: Applic31ions and GS/OS

Draft 3 (APDA) 8/31188

device call: see GS/OS device call.

device level: One of the three interface
levels of GS/05. The device level mediates
between the me system level and
individual device drivers.

d1rec:t page: An area of memory used for fast
access by the microprocessor; the Apple IIGS
equivalent to the standard Apple II zero
page. The difference is that it need not be
page zero in memory.

cUtec:t-pagelstack segment: a load
segment used to preset the location and
contents of the direct page and stack for an
application.

cUtec:tory entry: See me entry.

cUtec:tory flle: A file that describes and
points to other fdes on disk. Compare
standard me, extended flle.

disk ache: see cache.

driver Cans: A class of low-level calls in
GS/05, not accessible to applications. Driver
calls are calls made from within GS/OS to
device drivers. ,

extended file: a named collection of data
consistirtg of two sequences of bytes, referred
to by a single directory entryo The two
different byte sequences of an extended file
are called the data fork and the resource
fork.

file entry: A component of a directory file
that describes and points to some other file
on disk.

mename: The string of characters that
identifies a panicular file within its directory.
Compare pathoame.

me system level: One of the three
interface levels of GS/OS. The file system
level consists of me system translators
(FSTs), which take calls from the application
level, convert them to a specific me system
format, and send them on to the device
level.

me system translator: A component of
GS/OS that converts application calls into a
specific file system format before sending
them on to device drivers. FSTs allow an
application to use the same calls to read and
write files for any number of me systems.

me: An ordered collection of bytes that has
several attributes under GS/OS, including a
name and a file type.

FSTSpedflc: a standard GS/OS call whose
function is defined individually for each FST.

generated drivers: Drivers that are
constructed by GS/OS itself, to provide a
GS/OS interface to pre-existing, usually ROM­
based peripheral<ard drivers.

GS/OS: A 16-bit operating system developed
for the Apple IIGS computer. GS/OS replaces
ProDOS 16 as the preferred Apple IIGS
operating system.

GS/OS calls: see standard GS/OS calls.

Draft 3 (APDA)

GS/OS device call: Any of a subset of the
standard GS/OS calls that bypass the file level
altogether, allowing applications to access
devices directly.

GS/OS driver calls: see driver calls.

GS/OS string: An ASCII character string
preceded by a (2-byte) word whose numeric ..
value is the number of 1-byte characters in the
string. A GS/OS string can be much longer than
a Pascal string.

High Sierra: A conunon nte format for files
on CD-ROM compact discs. Similar to the
ISO 9660 international standard formaL

High Sierra FST: The part of the GS/OS file. ·
system level that gives applications
transparent access to files stored on optical ·
compact disks (CD-ROM) in the most
conunonly used file formats: High Sierra and
JS0966o.·

interface level: A conceptual division in the
organization of GS/OS. GS/OS has three
interface levels-the application level, the
me system level, and the device level
The application level and the device level are
external interfaces, whereas the file system
level is internal to GS/OS.

interrupt: A hardware signal sent from an
external or internal device to the CPU. When
the CPU receives an interrupt, it suspends
execution of the current program, saves the
program's state, aQd transfers control to an
interrupt lwldler.

Glossary 333

8131188

GSIOS Reference (Volume 1)

Interrupt dJspatching: The process of
handing.control to the appropriate interrupt
handier after an interrupt occurs.

lntemlpt handlei": a program that extcutes
in response to a hardware interrupt rme1rupts
and interrupt handlers are collUOOnly used by
device drivers to operate their devices more
effidently and ro make possible simpie
background tasks such as printer spooiing.
Compare signal banciler.

Interrupt source: Any device that can
generate an interrupt, 1'UCh as the mouse or
serial ports.

ISO 9660: (stand.; for Intematiotlal Standards
Organizationts 966) All international standard
that specifies volume and me structure for
CD-ROM discs. ISO 9660 is similar to the
High Sierra format.

loaded drivers: Drivers that are written to
work directJy with GS/OS, and that are usually
loaded in from the system disk at boot time.

long prefix: A GSiOS pret1x whose
maximum total length is approximately 8,000
characters. Prefix designators 81 through 31/
refer to long prefl.);es. Compare short ,9('tflL

Memory Manager. An Apple liGS tool set
that controls all allocation and deallocation of
memory.

334 Volume 1: Applications and GS/05

Draft 3 (APDA) 8131188

parameter block: A specifically formatted
table that is part of a GSIOS call. It occupies
a set of contiguous bytes in memory, and
consists of a number of fields that hold
information that the calling program supplies
to dte GS/OS function it calls, as well as
information returned by the function to the
caller.

P3sc3l suing: An ASCII character string
preceded by a single byte whose numeric value
is the number of characters in the string.
Pascal strlngs are limited to a maximum of 255
characters. Compare GS/OS string.

pathname: The complete name by which a
ftle is specit1ed. It is a sequence of filenames
separated by pathname separators, starting
with the filename of the volume directory and
following the path through any subdirectories
that a program must follow to locate the file.

pathDam~ separator: The slash character (/)
or colon {:). Pathname separators separate
filenames in a pathname.

prefix: A portion of a pathname starting
with a volume name and ending with a
sulxiirectory name. A GS/OS prefix always
starts with a pathname separator because a
volume tl3me always starts with a separator.

preflx designator. A number (0-31) or the
asterisk character (•), followed by a pathname
separator. PrefiX designators are a shorthand
method for referring to prefixes.

preflx number: See prefix designator.

GSIOS Refermu (Volume 1)

ProDOS: (1) A general tenn describing the
family of operating systems developed for
Apple n computers. It includes both ProOOS
8 and ProDOS 16; it does not include DOS 3.3,
SOS or GS/OS. (2) The ProDOS me system.

ProDOS 8: The 8-bit ProDOS operating
system, originally developed for standard
Apple II computers but compatible with the
Apple llGS. In some earlier Apple n
documentation, ProDOS 8 is called simply
Pro DOS.

ProDOS me system: the general format of
flies created and read by applications that run
under ProDOS 8 or ProDOS 16 on Apple n
computers. Some aspects of the Proi)OS file
system are similar to the GSIOS absttil~ {ile .
system. _· .::. · ·

ProDOS FST: The part of the GSIOS file . .
system level that implements the ProD(j~· file
system.

ProDOS 16: The fust 16-bit operating system
developed for the Apple llGS computer .. ·
ProDOS 16 is ~ed on ProDOS 8. . .

ProDOS 16-compatlble caiJs: Also called
ProDOS 16 calls or class 0 caJJs, a secondary
set of appllcatJoo-levd calls in GS/OS.
They are identical to the ProDOS 16 system
calls described in the Appk fiGS ProDOS 16 .
Refermce. GS/OS supports these calls 59 that
existing ProDOS 16 applications can run
without modification under GS/OS.

quit return flag: A flag, part of the Quit call,
that notifies GS/OS whether or not control
should eventually return to the program
making the Quit call.

{' _, .. _.

Draft 3 (APDA)

resource fork: The part of an extended me .
that contains specifically forinatted, generally
static data, used by an application (such a~
menus, fonts, and icons). ·

restartable: said of a program that
reinitialiZes its variables and Wakes no '. ·
asumptions about machine state each time it .
gains eontrol. ·only restartable programs .can ·
be resunected from a dormant state in ·
memory.

> • •

restart.:-fror...memory flag: A flag, ~n of
the Quit call, that lets the System Loader· ;
know whedter the quitting program can be
rest3:~ fro~ ~mory if it is executed again.

separator: See pathname separator.
~· -..: ! ' • : . •

~· .· .. ;

short prefix: A GSIOS prefix whose
ma:xi.muP~JOtallength is 63 characters. PrefLx
des\~$QatOrs • l and 0/ through 7 I refer to sliolt ...
prefiXe~~ Coinpare long prefix. · ·

signal: A message from one software
subsystem to a second that something of.
interest to the second has ocurred.

signal handler: A program that executes in ·
res~ to the occurrence of a signal.
Co~re Interrupt handler. · · ·---

spedal memory: On an Apple llGS, all of
banks $00 and $01, and all display memory in
banks $EO and $El.

Glossary 335

8131188

>. GSIOS l?eftmu:e (Voiume V
; i . . :_; ·::;... ' \ . . ~- s

Draft 3 (A.PD~) 8131/88

. '' • ;, f ~ !c~ •

• il,_.

stack:· A l!st in whiCh entries are added ~ . .<; z volume ~ame The rame of the volume
directmy ftle on a disk or other medium All
path;~ on a volume start with the volume
~me. Vol'.~ na...Tl'leS follow the same rules as
other fllenames, except that a volume name
always starts with a pathname separator.

• _Ji

· ·~···(pushed) ar.d r!?OOved (pulled) ~t o~ end
O!'lY (tbe top ofthe si2ck), causil1g them to
be· reroovoo ill last-in. ftnt-out (UFO) o~r..

:.·: ~ term lht stack ~y refers tD the
particu!ai stac!t pointed. to by tr.e 65Ca16

;-,stl(k pointer. -

_ standard Apple Ih A!t}" A?pl~ n com?uter
that is not an Apple IIGS. Since previous
mtmbers of the Ap~!*! I! family sb3te manY
characa;erlstics, i~ is ~cl:J! to distingu~h. them

.·as a group from the Apple IIGS. A standard. ·
Apple II may aloo be called an 8-bit Appte 1/,. :} ·
becaUse of the 8-bi(registfrs iii ii.S 6502 of ·
65C02 microprocessor.

standard IDe: A named c.olla."tion of data
cousi,ti:~g of a sL11gle seque~re of bytes.

~·· Compare atended file, dlre.:~:ity rue ... > ·
~ . _, . .

. .,.., '

stmdard GS/OS ·:~: · ~.::. r2!led. class 1-.
calL~ or simp!y GSIOS cails, me oumarv set of:
appllcatioo.-level caR1 i=t GS/OS .. They
provide rhe .full range of GS/OS capabilities .-

- acces:.ible to app~I:atinns. Resid:s GS/0(' ···
calls, the other <.~pplic:atioti·le:vell.4Jls ·av;;:ilabit:
in GS/OS are ProDOS Hi tnm~~tl!lle oils •

~:- ;·:·:., .Sysh!m Loada': the pwgr.tm tiil:l~ h1ds aU
·other prog.":mlS int" me!mry and prepa.te$. : ·: ··
them fo1 ·\!xccution. · · ····

sy;;tem ~me: cal.ls: Lr.lw~level <:alis in a
. com.roon fonmt ~d by ht£em:d C\,)Itlpon~nts
. of GS/OS (:mcl1 as FS'I'.s), and 1iso betWeen
.GS/05 and devia: drivers.

uo.claJmed interrupt: An interrupt that is
not recognized and acted upon by any ' :.n" ;
inte@pt handie(S. ' ·;,": . :T

:. l,

336 · Voit.~me 1: Appl~lS an~ GS/05

:t:erO p~ The first page (256 bytes) of
memory ~c a s!andard Apple II computer (or in
the Appie TIGS computer when running a
standaro Apple II program.). Because the
high-order byte of a!ly address in this part of
mern.ory is !ero, oniy a single byte is needed to
specify a zero-page address, Compare
dlftctpa~.

YOU SHOULD CAREFULLY READ THE FOLLOWING.
TERMS AND CONDITIONS BEFORE USING THIS .
SOFTWARE. ANY DOWNLOADING. REPRODUCTION,
COPYING OR OTHER USE OF THE SOFTWARE WILL
CONSTITUTE ACCEPTANCE OF THESE TERMS AND
CONDITIONS.

SINGLE-COMPUTER END USER
SOFTWARE LICENSE AGREEMENT .. .tu,.c:;.,.

APPLE COMPUTER, INC. ("Apple") provides this softw&r.e;
and licenses its use. You asswne responsibility for the sel_ecti~
of the software to achieve your intended results, anq for the
installation and use of, and results obtained fiom, the soflVIm.

'' ~

LICENSE
Pursuant to this license you may:

1. Use the software only on a single Apple computer. ~You
must obtain a supplementary license from Apple;before
using the software in connection with systems and mulliple
centra! processing ~its, computer networks or em\11.ati0Jl5
on mamframe or muucomputers.

2. Download the software only on media chat is'· compatible
with Apple manufactured computers; . · . · . ·'

3. Copy the software into any machine readable Jor~ f~r
backup purposes in support of yo~ use of the softWare on
the single Apple computer. . . - ;· · " · ..• :.,

4. Transfer the software and license to another par~. ~!th a
copy of this Agreement provided the other party~ea& :ind
agrees to accept the tenns and conditions of this Agreement.
If you transfer the software, you must at the same time
either transfer all copies, whether .in printed or machine­
readable form, to the same party or destroy any copies not
transferred. Apple grants a license to such other party tmder
this Agreement and the other party will accept such license
by its initial use of the software. If you transfer possession
.of any copy of the software, in whole or in part, to another
party, your license is automatically terminated.

This software is protected by United States copyright law.
You must reproduce the Apple copyright notice on any copy of
the software.

THIS SOFTWARE MAY BE ELECTRONICALLY DIS­
TRIBUTED ONLY BY AUTHORIZED ELECTRO!'llC
DISTRIBUTORS. IT MAY BE DOWNLOADED ONLY FOR
PERSONAL OR NON-COMMERCIAL USES ON APPLE
COMPUTERS AND MAY NOT BE REDISTRIDUTED OR
USED FOR COMMERCIAL PURPOSES WITHOUT AN
EXPRESS SOFTWARE DISTRIBUTION LICENSE FROM
APPLE. These licenses are available from Apple's Software
Licensing Department.

YOU MAY NOT MODIFY. REVERSE COMPll.E, DISAS­
SEMB!.E, NETWORK, RENT, LEASE, LOAN OR DIS­
TRIBUTE THE SOFTWARE, OR ANY COPY, IN WHOLE
OR IN PART. YOU UNDERSTAND THAT UNAUTHOR­
IZED REPRODUCTION OF COPIES OF THE SOFI'W ARE
OR UNAUTHORIZED TRANSFER OF ANY COPY OF 1HE
SOFTWARE MAY SUBJECT YOU TO A LAWSUIT FOR
DAMAGES, INJUNCTIVE RELIEF, :AND ATTORNEY'S
FEES.

Apple reserves all rights not expressly granted to you.

Export law assurances
You agree and certify that neither the s~f~are and documen­

tation nor any direct product thereof (1) ts mtended to be used
for nuclear proliferation or any other purpose prohibited by the
United States Export Administration Act of 1979, as amended
(the "Act") and the regulations promulgated thereunder, and
(2) ·is being or will be d~wnload~, shipped, transferr.e~ or
reexported, directly or ind1rectly, mto any cotmtry proh1b1ted
by the Act and the regulations promulgated theretmder.

Government End Users
If you are acquiring the software on behalf of any unit or

agency of the United Sr:ates government, ypu a'-n:e that: (a) ~e
software is "Commerctal Computer Software as that tcnn IS

defined in Paragraph 27.401 of the DoD Supplement to the
Ecderal Acquisition Regulations (the "Supplement") or is
within the equivalent classification Of IJIY-e~_ ~~·,agen­
cies' regulations; (b) the software was developed at private
expense, and no part of it was developed with goverment
funds; (c) the government's use of the software is subject to
"Restricted Rignts" as that tenn is defined in clause
52.227-7013 (b)(3)(ii) of the Supplement or in the equivalent
clause of any other federal agencies' regulations; (d) the
software is a."vade secret" ,Qf ~pple for all purposes of the
Freedom o(Inlormation Act;·· and (e) each copy;:of the
software:will coritam the foUoW'ing Restricted'~!S.:.~~end:

· ,. . "Restricted Rights Legend" , .. · ·
Use, duplication or disclosut'e is subject to restrictrcn5 as
set ·fofl.ti in subdivision .(\))(3)(ii)·.o(th~.,·_ij.!-ghjs in
Technical Data tnr:l Co~puter ,Software claus.e ~t ,fAR
52.227-7013. Manufacturer! ·Apple Computet: lnc.
20525 Mliriani Avenue, Cupeteino; Calfomi~ 95tll4~:
You agree to indemnify Apple for 1ny liability, 19f~· costs

and expense (including coun costs and reasonabi~t attorneys'
fees) arising out of any breach of the provisions of this
Agree~'frelll.ina: 10 use by ~e govem:nent. . ;. ': :·: , .. "

Term
The li~~ i~ c(f~t.ive u.ntri 'tenninated. you :m,.Y terminate it

at anY tiine hy des1roying lhfi ~ftware toge:ho::· .wi~ an copies.
The lic~pe.~'f.il~ l!lso tetm~we ,up,on ~C.?,n~i~?ftfs§l~orth else­
where w· Ults'Agreetnent dt tt'you fl.ll to comply Wtt.h any of
the tenhs'JO'f'eofiditions of. this A,grec;ment.,, Y Ol1 agree upon
such t~~lion to desl;l'Oy,allJiO~ies of. ~e. soft~~-: ..

.. , .. . - - ,. . ·. .• ~ •r. "

Disclaimer of Warranty , "· .:-r "1 ~::·.hr: ::);T

The software is provided "as is" without warranty of any
kind, ~jttlei; e~p,rc;ss or impli~. with ~spectJ9;i~ qterchant­
ability or ~its fitness' for iny paiticular purpose; The entire risk
as to the quality and petformanc:~ of the softwJli~;'Y!'.ith you.
Should .. ~ soft:ware prove def~tive, you (and J)O~,APP.le or an
Apple authorized repiesentative)' assume the entire cost of all
necesslp')' sqvicing, repair or correction. ·

Applt doea.•n.ot: warrant th-.t the functions ~tained ~ the
soft~ life :will meet your requirements or l:hat dte operauon of
the software will' t;e iuiint~ted or error. fr'ee 6r' that" defects in
the sofr.Vve wiD be con·ecr.Cd. •· ~ : · · . , ~ ·. !:
S~e}\3~ ¥not. allow the ~~elusion of im.plied.~arranties,

so the ,a60v.e excluston may not apply to you. ThiS warranty
givesyoli spetific legal rights and you may als~Jlave other
ri~..;~JtjGh vary from state to state, , .

. ' : .. .

Umitation of Remedies·
In no event will Apple be liable to you for any lost profits,

lost.savings' or other incidental. special or .• c.onsequential
damag~ .-rising out of the use ~r 0r inabili~ t'? u5e ~Y soft­
ware e~th if Apple or m authonzed Apple represeruauve has
been advised of the possibility of such damages, or for any
claim by any other party. · · · ' ··

Some states do not allow the limitation or exclusion of
liability for:~idental orconseqUenJJal.damages $0 the above
lknit:ation or exclusion may not apply ro you., . ;tY"

Appl~'s liability to yo~ for actual di,lnag~~:!ot'·my ~ause
whats~:>ever, and legardleSS• Of the form or the.'aetion, Will be
limited to the greater of·SSOO or the money P!lidiar the soft·.
ware that caused the damages or that is the subjecnnauer of, or
is cip'~tly r~la.ted to, the cause of action.

... 1 .:!i .. ··· · _ · . • :.: .. ~~-cJ:l.-.:).:~1.

G~~:~~~ee~~nt, if ~yauempt tP,.;~~~~f~!~~. le!l'e• <?r
sublicense the software, or, except ·arexpreftJ1·'PJ'OVIded tn
this Agreement, to transfer any of the rights, duties or obliga­
tions under this Agreement, becomes void.

The Agreement will be construed under the ~aws ~f the st~te
of California; cx.c~ f~Ul\at ~y of l~~.s c:le:llmg w1th confltct
of laws. If any provis16n of th1s Agteement,hall be held by a
coun of competent jurisdiction to ~ contrary to law, th.at pro­
vision will be enforced to the max1mum extent permasstble,
and the remaining provisions of this Agreement shall remain in
full force and effect.

