®

GS/0S™ Reference
Volume 2 (Beta Draft)
APDA #A0008LL/A

GS/OS Reference (Volume 2) APDA Draft 1/31/89

r

3
Apple, I GS/0S. Reference

Includes System Loader

Volume 2
Devices and GS/0S

APDA Draft

William H. Harris
Developer Technical Publications
January 26, 1989

© Copyright Apple Computer, Inc. 1988

GS/0S Reference (Volume 2) APDA Draft

& APPLE COMPUTER, INC.

Copyright Apple 1988

This manual and the software
described in it are copyrighted,
with all rights reserved. Under the
copyright laws, this manual or the
software may not be copied, in
whole or in part, without written
consent of Apple, except in the
normal use of the software or to
make a backup copy of the
software. The same proprietary
and copyright notices must be
affixed to any permitted copies as
were affixed to the original. This
exception does not allow copies
to be made for others, whether or
not sold, but all of the material
purchased (with all backup copies)
may be sold, given, or loaned to
another person. Under the law,
copying includes translating into
another language or format.

You may use the software on any
computer owned by you, but
extra copies cannot be made for
this purpose.

© Apple Computer, Inc., 1988
20525 Mariani Avenue
Cupertino, CA 95014

(408) 9%6-1010

Apple, the Apple logo, AppleTalk,
Apple IIGS, DuoDisk, ProDOS,
LaserWriter, Macintosh, and IIGS
are registered trademarks of Apple
Computer, Inc.

APDA, Finder, ProFile, and UniDisk
are trademarks of Apple
Computer, Inc.

Simultaneously published in the
United States and Canada.

2/21/88

1/31/89

GS/OS Reference (Volume 2) APDA Draft

Introduction

Contents

Figures and Tables xiii

The Device Level in GS/0S / 1

What is the device level? / 2
GS/OS drivers / 4
Block drivers and charadter drivers / 4
Loaded drivers and generated drivers / 4
Device drivers and supervisory drivers / 5
How applications access devices / 7
Throughan FST / 7
Through the Device Manager / 8
How GS/OS communicates with drivers / 10
The device dispatcher / 10
System service calls / 11
Driver features / 12
Configuration / 12
Cache support / 13
Interrupt handling / 13
Signals and signal handling / 14

1/31/89

GS/OS Reference (Volume 2) APDA Draft

Part I Using GS/OS Device Drivers / 15

Chapter 1

GS/0S Device Call Reference / 17

How to make a device call / 18
$202C Dinfo / 20
$202D DStatus / 27

GetDeviceStatus (DStatus subcall) 29
GetConfigParameters (DStatus subcall) / 31
GetWaitStatus (DStatus subcall) / 31
GetFormatOptions (DStatus subcall) / 32
GetPartitionMap (DStatus subcall) / 37
Device-specific DStatus subcalls / 37

$202E DControl / 38

ResetDevice (DControl subcall) / 40
FormatDevice (DControl subcall) / 41
EjectMedium (DControl subcall) / 41
SetConfigParameters (DControl subcall) / 42
SetWaitStatus (DControl subcall) / 43
SetFormatOptions (DControl subcall) / 44
AssignPartitionOwner (DControl subcall) / 46
ArmSignal (DControl subcall) / 46
DisarmSignal (DControl subcall) / 47
SetPartitionMap (DControl subcall) / 48
Device-Specific DControl subcalls / 48

$202F DRead / 49
$2030 DWrite / 51

Chapter 2 The SCSI Driver / 53

General information / 54
Device calls to the SCSI driver / 54

DStatus ($202D) / 55

© TestUnitReady (DStatus subcall) / 56
RequestSense (DStatus subcall) / 57
Inquiry (DStatus subcall) / 57
ModeSense (DStatus subcall) / 57

iv VOLUMEZ Devicesand GS/OS

1/31/89

GS/OS Reference (Volume 2) APDA Draft

ReadCapacity (DStatus subcally / 58
Verify (DStatus subcall) / 58
ReadTOC (DStatus subcall) / 59
ReadQSubcode (DStatus subcall) / 59
ReadHeader (DStatus subcall) / 60
AudioStatus (DStatus subcall) / 60
DControl ($202E) / 60
RezeroUnit (DControl subcall) / 61
ModeSelect (DControl subcall) / 62
Start/StopUnit (DControl subcall) / 62
Prevent/AllowRemoval (DControl subcall) / 62
Seek (DControl subcall) / 63
AudioSearch (DControl subcall) / 63
AudioPlay (DControl subcall) / 64
AudioPause (DControl subcall) / 64
AudioStop (DControl subcall) / 65
AudioScan (DControl subcall) / 65

Chapter 3 The AppleDisk 3.5 Driver / 67

General information / 68
Device calls to the AppleDisk 3.5 driver / 68
DStatus ($202D) / 69
DControl (§202E) / 71
DRead ($202F) / 72
DWrite ($2030) / 72

Chapter 4 The UniDisk 3.5 Driver / 73

General information / 74
Device calls to the UniDisk 3.5 driver / 74
DStatus ($202D) / 75
DControl ($202E) / 76
DRead ($202F) / 77
DWrite ($2030) / 77

CONTENTS

1/31/89

GS/0S Reference (Volume 2) APDA Draft

Chapter 5 The AppleDisk 5.25 Driver / 79

General information / 80
Device calls to the AppleDisk 5.25 driver / 80
DStatus ($202D) / 81
DControl (§202E) / 82
DRead ($202F) / 84
DWrite ($2030) / 84
AppleDisk 5.25 formatting / 85

Chapter 6 The Console Driver / 87

General information / 88
The Console Output routine / 90
Screen size / 90
The text port / 90
Character set mapping / 93
Screen control codes / 95
The Console Input routine / 99
The input port / 100
Using raw mode / 102
Using user input mode / 103
Terminators / 103
How to disable terminators / 105
Terminators and newline mode / 105
User-input editing commands / 105
Using no-wait mode / 107
Device calls to the console driver / 107
DStatus ($202D) / 108
Standard DStatus subcalls / 108
GetTextPort (DStatus subcall) / 109
GetlnputPort (DStatus subcall) / 109
GetTerminators (DStatus subcall) / 109
SaveTextPort (DStatus subcall) / 110
GetScreenChar (DStatus subcall) / 110
GetReadMode (DStatus subcall) / 110
GetDefaultString (DStatus subcall) / 111

vi VOLUME2 Devicesand GS/OS

1/31/89

GS/0S Reference (Volume 2) Draft 2

Chapter 7

Part II

Chapter 8

DControl ($202E) / 111
Standard DControl subcalls / 112
SetInputPort (DControl subcall) / 112
SetTerminators (DControl subcall) / 112
RestoreTextPort (DControl subcall) / 113
SetReadMode (DControl subcall) / 113
SetDefaultString (DControl subcall) / 114
AbortInput (DControl subcall) / 114

DRead ($202F) / 115

DWrite ($2030) / 115

GS/0S Generated Drivers / 117 .

About generating drivers / 118
Types of generated drivers / 118
Device calls to generated drivers / 120
DStatus / 120
DControl / 121

Writing a Device Driver / 123

GS/0S Device Driver Design / 125

Driver types and hierarchy / 126
Driver file types and auxiliary types / 128
Device driver structure / 129
The device-driver header / 131
Configuration lists / 131
Device information block (DIB) / 133
Format options table / 139
Driver code section / 143
How GS/OS calls device drivers / 144
The device dispatcher and the device list / 144
Dynamic driver installation / 145
Direct-page parameter space / 145
Dispatching to device drivers / 147
List of driver calls / 149

CONTENTS

1/31/89

vii

GS/0S Reference (Volume 2) APDA Draft

How device drivers call GS/OS / 149

Supervisory driver structure / 150
The supervisor information block (SIB) / 151
Supervisory driver code section / 153

How device drivers (and GS/OS) call supervisory drivers / 154

Chapter 9 Cache Control / 157

Drivers and caching / 158
Cache calls / 159
How drivers cache / 159
Caching notes / 161

Chapter 10 Handling Interrupts and Signals / 163

Interrupts / 164
Interrupt sources / 164
Interrupt dispatching / 166
Interrupt handler structure and execution environment / 167
Connecting interrupt sources to interrupt handlers / 169
BindInt call / 169
Unbindint call / 170
Interrupt handler lifetime / 170
Unclaimed interrupts / 171
Signals / 171
Signal sources / 172
Signal dispatching and the signal queue / 173
Signal handler structure and execution environment / 174
Arming and disarming signals / 175
Arming device driver signal sources / 176
Disarming device driver signal sources / 176
Arming other signal sources / 177
Disarming other signal sources / 178

viii VOLUME2 Devicesand GS/OS

1/31/89

GS/OS Reference (Volume 2) APDA Drafl 1/31/89

CHapter 11 GS/0S Driver Call Reference / 179

About driver calls / 180

$0000 Driver_Startup / 183

$0001 Driver_Open / 187

$0002 Driver_Read / 189

$0003 Driver_Write / 193

$0004 Driver_Close / 197

$0005 Driver_Status / 199
Get_Device_Status (Driver_Status subcall) / 201
Get_Config_Parameters (Driver_Status subcall) / 204
Get_Wait_Status (Driver_Status subcall) / 204
Get_Format_Options (Driver_Status subcall) / 205
Get_Partition_Map (Driver_Status subcall) / 208
Device-specific Driver_Status subcalls / 209

$0006 Driver_Control / 210
Reset_Device (Driver_Control subcall) / 212
Format_Device (Driver_Control subcall) / 212
Eject_Medium (Driver_Control subcall) / 213
Set_Config_Parameters (Driver_Control subcall) / 213
Set_Wait_Status (Driver_Control subcall) / 214
Set_Format_Options (Driver_Control subcall) / 215
Assign_Partition_Owner (Driver_Control subcall) / 216
Arm_Signal (Driver_Control subcall) / 217
Disarm_Signal (Driver_Control subcall) / 218
Set_Partition_Map (Driver_Control subcall) / 218
Device-specific Driver_Control subcalls / 219

$0007 Driver_Flush / 220

$0008 Driver_Shutdown / 222

About supervisory-driver calls / 224

$0000 Get_Supervisor_Number / 227

$0000 Supervisor_Startup / 229

$0001 Set_SIB_Pointer / 230

$0001 Supervisor_Shutdown / 231

$0002-$FFFF Driver-specific calls / 232

Driver error codes / 233

CONTENTS [

GS/0S Reference (Volume 2) APDA Draft

Chapter 12 System Service Calls / 235

About system service calls / 236

$01FC08 CACHE_ADD_BIK / 239
$01FCO4 CACHE_FIND_BLK / 240
$01FCBC DYN_SLOT_ARBITER / 241
$01FCAS INSTALL_DRIVER / 242
$01FC70 MOVE_INFO / 244
$01FC0 SET_DISKSW / 248
$01FCS0 SET_SYS_SPEED / 249
$01RC88 SIGNAL / 250

$01FCA4 SUP_DRVR_DISP / 251

Appendixes / 253

Appendix A The System Loader / 255
How the System Loader works / 256

Definitions / 256
Segments and the System Loader / 257
The System Loader and the Memory Manager / 259
OMF and the System Loader / 261
Loader data structures / 262
Memory-segment table / 262
Pathname table / 263
Jump table / 263
Restarting, reloading, and dormant programs / 264

Making System Loader calls / 265

$OF
$10
$21
$09
$20
$11
$2
$01

GetLoadSeglnfo / 267
GetUserID / 268
GetUserID2 / 269
InitialLoad / 270
InitialLoad2 / 272
LGetPathname / 274
LGetPathname2 / 275
Loaderlnitialization / 276

X VOLUME2 Devicesand GS/OS

1/31/89

GS/OS Reference (Volume 2) APDA Draft

Appendix B

$05 LoaderReset / 277

$03 LoaderShutDown / 278

$02 LoaderStartup / 279

$06 LoaderStatus / 280

$04 LoaderVersion / 281

$0D LoadSegName (Load Segment by Name) / 282
$0B LoadSegNum (Load Segment by Number) / 284
$OA Restart / 287

$OE UnloadSeg (Unload Segment by Address) / 289
$0C UnloadSegNum (Unload Segment by Number) / 290
$12 UserShutDown / 291

Object Module Format / 293

What files are OMF files? / 294
General format for OMF files / 296
Segment types and attributes / 297
Segment header / 299
Segment body / 305
Expressions / 320
Example / 323
Object files / 324
Library files / 324
Load files / 326
Memory image and relocation dictionary / 327
Jump-table segment / 328
Unloaded state / 328
Loaded state / 329
Pathname segment / 329
Initialization segment / 330
Direct-page/stack segments / 331
Run-time library files / 332
Shell applications / 333

CONTENTS

1/31/89

GS/0S Reference (Volume 2) APDA Draft

xii

Appendix C

Appendix D

Appendix E

Generated Drivers and / 337
Generated-driver summary / 338

Generating and dispatching to BASIC drivers / 339
Generating and dispatching to Pascal 1.1 drivers / 340
Generating and dispatching to ProDOS drivers / 342
Generating and dispatching to SmartPort drivers / 344

Driver Source Code Samples / 347

Block driver / 348

Character driver / 408

Supervisory driver / 454

Device driver that calls a supervisory driver / 474

GS/0S Error Codes and Constants / 515

Glossary / 519

VOLUME2 Devicesand GS/OS

1/31/89

GS/0S Reference (Volume 2) APDA Draft

Introduction

Chapter 1

Chapter 5

Chapter 6

Figures and Tables

The Device Level in GS/0S/ 1

Figure I-1 The device level in GS/OS/ 3

Figure I-2 Driver hierarchy within the device level / 6
Figure -3 Diagramofa GS/OScall / 8

Figure -4 Diagramof adevice call/ 9

Figure I-5 Diagram of a driver call / 11

Figure 1-6 Diagram of a system service call / 12

GS/0S Device Call Reference/ 17

Table 1-1 GS/0S device calls / 18
Table 1-2 DStatus subcalls / 29
Table 1-3 Dcontrol subcalls / 40

The AppleDisk 5.25 Driver / 79

Figure 5-1 Apple 5.25 drive interleave configurations / 85
Figure5-2 Apple 5.25 drive sector format / 86

The Console Driver / 87
Figure 6-1 Console driver I/O routines / 89

Table6-1 Console driver character mapping / 94

Figures and Tables

1/31/89

xiii

GS/OS Reference (Volume 2) APDA Draft 1/31/89

Xiv

Chapter 8 GS/0S Device Driver Design / 125

Figure81 A hypothetical driver configuration/ 127
Figure8-2 The auxiliary type field for GS/OS drivers / 129
Figure 83 GS/OS device driver structure / 130

Figure84 The device information block (DIB) / 133
Figure8-5 The device characteristics word / 135
Figure86 Slot-number word / 136

Figure 87 Driver version word / 137

Figure8-8 Format options table / 140

Figure8-9 Format-options entry / 141

Figure 810 Format option flags word / 142

Figure 8-11 GS/OS direct-page parameter space / 146
Figure 8-12 Supervisory driver structure / 151

Figure 8-13 The supervisor information block (SIB) / 152

Table 8-1 Device IDs/ 138

Table 8-2 Device-driver execution environment / 147
Table 8-3 Supervisory IDs/ 152

Table 84 Supervisor execution environment / 155

Chapter 10 Handling Interrupts and Signals / 163

Table10-1 VRNs and interrupt sources / 165

Table 10-2 Interrupt-handler execution environments / 168
Table10-3 GS/OS signal-dispatching strategy / 173

Table 104 Signal-handler execution environment / 174

Volume 2: The Device Interface

GS/0S Reference (Volume 2) APDA Draft

Chapter 11

Chapter 12

Appendix A

Appendix B

Appendix E

GS/0S Driver Call Reference / 179

Figure 11-1 Direct-page parameter space for driver calls / 181
Figure 11-2 Device status word / 202

Figure 11-3 Disk-switched and off-line errors / 192

Figure 11-4 Disk-switched condition / 203

Figure 11-5 The supervisor direct page / 225

Table 11-1 ~ GS/OSdrivercalls 180

Table 11-2 Supervisory-driver calls available to device drivers / 224
Table 11-3 Calls that supervisory drivers must accept / 225
T..le11-4 Driver error codes and constants / 234

System Service Calls / 235
Figure 12-1 GS/OS diret-page parameter space 238

Table 12-1 System service calls 26

The System Loader / 255

Table A-1 Segment characteristics and memory-block attributes / 260
Table A-2 System Loader calls / 266

Object Module Format/ 293

Figure B-1 The structure of an OMF file / 296
Figure B-2 The format of a segment header / 300
Figure B-3 The format of a library dictionary segment / 325

Table B-1 GS/OS program-file types / 295

Table B-2 KIND field definition / 303
Table B-3 Segment-body record types / 306

GS/0S Error Codes and Constants/ 515
Table E-1 GS/OS errors / 516

Figures and Tables

1/31/89

GS/OS Reference (Volume 2) APDA Draft 1/31/89

Introduction The Device Level in GS/0OS

One of the principal goals of GS/OS is to provide application writers with access to a wide
variety of hardware devices, while insulating them (and users) from the low-level details
of hardware control. The device level in GS/OS is responsible for meeting this goal.

The device level consists of

m the GS/OS interface to FSTs for device access through file systems
s the GS/OS interface to applications for direct device access

s the GS/OS interface to device drivers

s aset of low-level system service calls available to device drivers

s the collection of drivers that are provided with GS/OS

Part I of this Volume describes the application interface to GS/OS for direct device-access:
it documents all device calls and describes the individual GS/OS device drivers that
applications can call.

Part 11 of this Volume describes the GS/OS interface to drivers; it shows how to design
and write a device driver, documents all calls a driver must accept, and describes how a
driver can get information and services it needs from GS/OS. It also describes how to
write and install GS/OS interrupt handlers and signal handlers, code segments that execute
automatically in response to hardware or software requests.

Appendixes to this Volume describe how the System Loader works, what the file format
for Apple 1IGS executable files is, how GS/OS generated drivers interact with slot-based
firmware 1/0 drivers, and what errors GS/OS can return. Also included are assembly-
language code examples of four different types of GS/OS drivers.

GS/OS Reference (Volume 2) APDA Draft

1/31/89

What is the device level?

As described in the Introduction to Volume 1, GS/OS consists of three interface levels: the
application level, the file system level, and the device level. Figure I-1is a generalized diagram of
GS/0S, showing how the device level relates to the rest of the system.

In general, the device level sits between the file system level and hardware devices, translating the
file /0O calls made by an application into the calls that access data on peripheral devices. Note also
that part of the device level (The Device Manager) extends upward into the level occupied by file
system translators. By making calls through the Device Manager, applications can access devices at
a high level, in a manner analogous to the way they access files.

Different components of the device level handle different device-access needs:
m File system translators, which convert file /0 calls into equivalent driver calls, go through
the device dispatcher. Driver calls are described in Chapter 11.

s Applications that wish to access devices directly make device calls, which go through the
Device Manager. Device calls are described in Chapter 1. Like file I/O calls, device calls are
translated into driver calls by the Device Manager,

s The device dispatcher itself makes other driver calls, when setting up drivers or shutting them
down. How the device dispatcher interacts with drivers is described in Chapter 8.

s GS/OS device drivers are the lowest-level of GS/OS; they access device hardware directly. The
individual drivers that accompany GS/OS are described in Chapters 2-7.

s The device level is extensible; you can write your own device driver for GS/0S. Device-driver
structure and design are described in Chapter 8; how drivers handle configuration, caching,
interrupt-handling, and signal-handling is discussed in Chapters 9 and 10.

s Device drivers that need access to system features and functions can make system service
calls to GS/OS. System service calls are described in Chapter 12 of this Volume.

What GS/OS device drivers are, and how the Device Manager, device dispatcher, and the rest of
GS/0S interact with them, is the subject of the rest of this chapter.

2 VOLUME 2 Devices and GS/OS

GS/0S Reference (Volume 2) APDA Draft 1/31/89

= Figure I-1 The device level in GS/OS

Application program

GS/OS Call Manager

it
15 1 15 1

ProDOS High Character Other FST

FST Sierra FST FST

Device Dispatcher

Device
level

INTRODUCTION The Device Level in GS/OS 3

GS/0S Reference (Volume 2) APDA Draft 1/31/89

GS/0S drivers

A GS/0S driver is a program, executing from RAM, that directly or indirectly handles all
input/output operations to or from a hardware device, and also provides information to the system
about the device. GS/OS drivers must be able to accept and act upon a specific set of calls from
GS/0S.

Generally, each hardware device (or group of closely related devices) needs its own driver. Disk
drives, printers, serial ports, and the console (keyboard and screen) can all be accessed through their
drivers.

This sections discusses the different driver classifications that GS/OS recognizes.

Block drivers and character drivers

There are two fundamental types of drivers, in terms of the kinds of devices they control.

s Block drivers allow access to block devices, such as disk drives, from which a certain
number (one block) of bytes is read from or written to the device at a time, and on which any
block within a file can be accessed at any time. Block devices are also called random-access
devices because all blocks are equally accessible.

» Character drivers allow access to character devices, such as printers or the console, in which
a single character (byte)}—or a stream of consecutive characters—is read or written at a time,
and access is available only to the current byte being read or written. Character devices are also
called sequential-access devices because each byte must be taken in sequence.

GS/0S fully supports both types of drivers, and includes drivers of each type. For example, the
Console driver (see Chapter 6) is a character driver, and the AppleDisk 3.5 driver (see Chapter 3) is a
block driver.

Loaded drivers and generated drivers

GS/0S also distinguishes between drivers on the basis of origin, in order to take advantage of the
many existing device drivers (both built-in and on peripheral cards) for the Apple II family of
computers:

4 VOLUME 2 Devices and GS/OS

GS/OS Reference (Volume 2) APDA Draft 1/31/89

s Loaded drivers are drivers that are written to work directly with GS/OS, and that are usually
loaded in from the system disk at boot time.

s Generated drivers are drivers that are constructed by GS/OS itself, to provide a GS/OS
interface to existing, slot-based, firmware drivers in ports or on peripheral-cards.

At boot time, GS/OS first loads and initializes all loaded drivers. Then, for slots which contain
devices that do not have loaded drivers, GS/OS generates the appropriate character or block drivers.
Generated drivers are discussed further in Chapter 7.

Because all generated drivers are created by GS/OS, any driver that you write for GS/0S will of
course be a loaded driver. How to write a loaded driver is discussed in Part 11 of this Volume.

Device drivers and supervisory drivers

It is simplest to assume that each hardware device is associated with only one driver and each driver
is associated with only one hardware device. It is only slightly more complex to have more than
one device controlled by a single driver; a single block driver can access several disk drives, for
example. In either case the driver accesses its hardware devices directly.

More complexity is possible, however. In some cases there are logical “devices” (hardware
controllers such as a SCSI port) that must handle 1/0 requests from more than one driver (for
example, a SCSI hard disk driver and a SCSI CD-ROM driver) and access more than one type of device.
To handle those situations, GS/OS allows for special drivers that arbitrate calls from individual
device drivers and dispatch them to the proper individual devices.

Therefore, GS/0OS also defines these two types of driver:

s Adevice driver is a driver that accepts the standard set of driver calls (device I/O calls made
by an FST or by an application through the Device Manager). A device driver can conduct /0
transactions directly with its device, or indirectly, through a supervisory driver.

s Asupervisory driver (or supervisor) arbitrates use of a hardware controller by several device
drivers, in cases where a single hardware controller conducts I/O transactions with several
devices. “A supervisory driver does not accept I/O calls directly from FSTs or the Device
Manager; it accepts only supervisory-driver calls from its individual device drivers.

The presence of supervisory drivers adds more layers to the GS/OS device level. Because more than
one supervisory driver can be active at a time, there is a supervisor dispatcher to route the
requests of device drivers to the proper supervisory driver. The supervisor dispatcher relates to
supervisory drivers much as the device dispatcher relates to device drivers. This device-level driver
hierarachy is diagrammed in Figure I-2.

INTRODUCTION The Device Level in GS/OS 5

GS/OS Reference (Volume 2) APDA Draft 1/31/89

= Figure I-2 Driver hierarchy within the device level

Supervisory drivers and their accompanying device drivers are always loaded drivers, but they can be
character drivers, block drivers, or both; that is, a single driver does not have characteristics that
restrict it to being solely a block or character device.

Supervisory drivers are closely tied to their device drivers. During the boot sequence all supervisory
drivers are loaded and started before any device drivers. This ensures that when a loaded device
driver is started, its supervisory driver will be available to it. Other than that, GS/OS is not concerned
with the rules of arbitration between a supervisory driver and its loaded device drivers.

6 VOLUME 2 Devices and GS/OS

GS/OS Reference (Volume 2) APDA Draft 1/31/89

Besides simplifying the device interface for applications and providing increased hardware
independence , the use of supervisory drivers allows individual device drivers to be added to the
system without requiring the replacement or revision of existing drivers.

The differences between device drivers and supervisory drivers are explained more fully in Chapters 8
and 11. The rest of the discussion in this chapter concerns device drivers only.

How applications access devices

When an application makes a call that results in any kind of I/0, device access occurs. That device
access is either indirect, through a file system translator (FST), or direct, through the Device
Manager.

Through an FST

Device access through a file system translator is completely automatic and transparent to the
application. When an application performs file I/O by making a standard GS/OS call (as described in
Chapter 7 of Volume 1) such as Create, Read, or Write, the GS/OS Call Manager passes the call along to
the appropriate FST, which converts it to a driver call and sends it to the device dispatcher, which
routes it to the appropriate device driver. The device driver in turn accesses the device and performs
the requested task.

In most cases the application does not know what device is being accesssed. It might not
even know which file system is being used. Figure 13 shows the schematic progress of a typical
GS/0S call from application to device, including how parameters are passed.

INTRODUCTION The Device Level in GS/OS 7

GS/0S Reference (Volume 2) APDA Draft

s Figure I3 Diagram of a GS/OS call

Application

Par block
in Yy

FST 4__—-3“

t >
Parameter space
Device dispatcher on direct page
Device
smmsmmmly Calling sequence

ety Parameter-passing

High-level calls pass parameters differently than low-level calls. When an FST receives a call from an
application, it converts the parameter block information into data on the GS/OS direct page; that
makes the data available to low-level software, including drivers. The call then passes through the
device dispatcher and to the driver. After the call has been completed, the driver puts any return
information into the direct-page parameter space; the FST transfers that information back to the
application’s parameter block, and returns control to the application.

1/31/89

Through the Device Manager

A typical Apple IIGS application does not need to make any calls to access devices directly. File calls
made by the application pass through an FST and are automatically converted into the correct driver
calls that read or write the desired data. The application need not be concemned with the specific
device, or even the specific file system, used to store the data.

On the other hand, there are times at which a particular process is specific to a particular type of
device. If your application needs to do something that specific, such as taking user input from the
console in text mode, you will need to know how to make a specific driver perform a specific
action. That’s where device calls come in.

8 VOLUME 2 Devices and GS/OS

GS/0S Reference (Volume 2) APDA Draft 1/31/89

Device calls are application-level GS/OS calls, just like all the calls discussed in Chapter 7 of Volume 1.
Your application sets up a parameter block in memory and makes the call as described in Chapter 3
of Volume 1. The only difference from a normal file-access call is that the device calls are routed
through the Device Manager rather than through an FST. See Figure 14.

The Device Manager converts the call into a driver call and sends it to the device dispatcher,
which passes it on to the device driver; the driver then acts on it accordingly.

The Device Manager is similar to-an FST, but is limited in its support of GS/OS system calls, and
is independent of any file system. It supports only those GS/OS calls that provide an application
with direct access to a peripheral device or device driver, while providing an FST-like interface
between the application and the device dispatcher.

The Device Manager handles only five GS/OS calls: Dinfo, DStatus, DControl, DRead, and
DWrite. Extensions to DStatus and DControl allow device-specific functions to be called. All other
application-level GS/OS calls that access devices must pass through an FST. Device calls are
documented in detail in Chapter 1 of this Volume.

= Figure 14 Diagram of a device call

Application <

Par block
in memory

(v T

t N
Par space
Device dispatcher on direct page
Device
—— Calling sequence

warsnnsnmnnredy Parameter-passing

INTRODUCTION The Device Level in GS/OS 9

GS/0S Reference (Volume 2) APDA Draft 1/31/89

Parameter-passing in device calls is the same as in GS/OS calls that pass through FSTs. When the
Device Manager receives a device call from an application, it converts the parameter block
information into data on the GS/OS direct page; that makes the data available to low-level
software, including drivers. The call then passes through the device dispatcher and to the driver.
After the call has been completed, the driver puts any return information into the direct-page
parameter space; the Device Manager transfers that information back to the application’s parameter
block, and returns control to the application.

How GS/0OS communicates with drivers

Device drivers communicate with the operating system in two basic ways: by receiving driver calls
from the device dispatcher and by making system service calls to GS/OS.

The device dispatcher

All calls to device drivers pass through the device dispatcher. The device dispatcher maintains a list
of information about each driver attached to the system, and thus knows where to transfer
control when it receives a driver call from an FST or the Device Manager.

The driver calls that the device dispatcher receives from FSTs or the Device Manager and passes
on to drivers are these: Driver_Status, Driver_Control, Driver_Read, and Driver_Write. They are
documented in Chapter 11. These particular driver calls have names that are very similar to the
names of their equivalent device calls. The lower parts of Figures I-3 and I-4 diagram the call
progress and parameter-passing for these driver calls.

Note also that there is no equivalent driver call for the device call DInfo; DInfo is handled
entirely by the device dispatcher, by consulting its list of device information. No access of the
driver or device is necéssary for Dinfo.

The device dispatcher and other parts of GS/OS also make driver calls that are not translations of
device calls. These other driver calls are concerned with setting up drivers to perform 1/0 and
shutting them down afterward. They are Driver_Startup, Driver_Open, Driver_Close, Driver_Flush,
and Driver_Shutdown, and are documented in Chapter 11. Figure [-5 shows the progress of such a
driver call; note that Figure I-5 also is identical to the lower part of Figures I-3 and I-4.

10 VOLUME 2 Devices and GS/OS

GS/0S Reference (Volume 2) APDA Draft

= Figure I-5 Diagram of a driver call

Parameter space
Device dispatcher on direct page

ﬁ Calling sequence

ey Parameter-passing

1/31/89

System service calls

GS/0S provides a standardized mechanism for passing information and providing services among its
low-level components such as FSTs and device drivers. That mechanism is the system service
call.

System service calls exist for various purposes: to perform disk caching, to manipulate buffers
in memory, to set system parameters such as execution speed, to send a signal to GS/OS, to call a
supervisory driver, or to perform other tasks. Not all drivers need all of these services, but each is
useful in a particular situation. If you are writing a device driver, consult Chapter 12 to see what
system service calls are available to your driver and what each does.

Drivers make system service calls through jumps to locations specified in the the system
service dispatch table. Parameters are passed back and forth through registers, on the stack, and
through the same diret-page space used for driver calls. See Figure I-6.

INTRODUCTION The Device Level in GS/OS

1

GS/OS Reference (Volume 2) APDA Draft

= Figure I-6 Diagram of a system service call

Par space
System service on direct page

dispatch table

(cther parameters passed
on stack and in registers)

~ Calling sequence

~enrreneeeeeife. P arameter-passing

1/31/89

Driver features

This section describes some of the notable features that GS/OS drivers can have. See the referenced
chapters for more information.

Configuration

GS/0S drivers can be configurable, meaning that the user can customize and store certain driver
settings. For example, for a driver that controlled a serial port, such parameters as bits-per-second,
parity, stop bits, and so on could be customized and stored.

Many users will never need to configure drivers. Others will use the capability when adding a
peripheral device or adjusting device driver or system default settings. As a device-driver writer, you
can choose which user-configurable features you want in your driver.

The specific formats in which configuration options are to be presented to the user, how the
chosen settings are to be stored, and how the options are to be set up by the driver in the first place
are specific to the individual driver. However, the overall format in which the configuration
parameters are to be to be stored in the device driver, and what calls are used to set or modify those
parameters, are defined in Chapters 8 and 11.

12 VOLUME 2 Devices and GS/OS

GS/0S Reference (Volume 2) APDA Draft 1/31/89

Cache support

Caching is the process by which frequently accessed disk blocks are kept in memory, to speed
subsequent accesses to those blocks. On the Apple IIGS, the user can control whether caching is
enabled and what the maximum cache size can be. It is the driver, however, that is responsible for
making caching work. GS/OS block drivers should support caching.

The GS/OS cache is a write-through cache. That is, when an FST issues a Write call to a device
driver, the driver writes the same data to the block in the cache and the equivalent block on the
disk. Never does the block in the cache contain information more recent than the disk block. Also,
like most caching implementations, The GS/OS cache uses a least recently used (LRU) algorithm:
once the cache is full, the least recently used (= read) block in the cache is sacrificed for the next
new block that is written.

Cache memory is obtained and released by GS/OS on an as-needed basis. Only as individual blocks are
cached is the necessary amount of memory (up to the maximum set by the user) assigned to the
cache. The size of a block in the cache is essentially unrestricted, limited only by the maximum size
of the cache itself.

Drivers implement caching by making system service calls. Caching is described in Chapter 9,
system sevice calls are documented in Chapter 12.

Interrupt handling

An interrupt is a hardware signal sent from an extemnal or internal device to the CPU. When the
CPU receives an interrupt, it suspends execution of the current program, saves the program’s state,
and transfers control to an interrupt handler. The interrupt handler performs the functions
required by the occurrence of the interrupt and returns control to the CPU, which restores the state
of the interrupted application and resumes execution of the application as if nothing had happened.

In a non=multitasking system such as GS/OS, interrupts are commonly used by device drivers to
operate their devices more efficiently and to make possible simple background tasks such as printer
spooling.

When installed, a GS/OS interrupt handler can be associated with a particular class of interrupt
source, for faster dispatching when an interrupt occurs. GS/OS interrupt handlers are installed and
removed with the GS/OS calls Bindint and UnbindInt. How to write interrupt handlers for GS/OS
device drivers or applications is discussed in Chapter 11. '

INTRODUCTION The Device Level in GS/OS 13

GS/OS Reference (Volume 2) APDA Draft

1/31/89

Signals and signal handling

A signal is a message from one software subsystem to a second that something of interest to the
second has occurred. When a signal occurs, GS/OS typically places it in the signal queue for
eventual handling. As soon as it can, GS/OS suspends execution of the current program, saves the
program’s state, removes the signal from the queue, calls the signal handler in the receiving
subsystem to process the signal, and finally restores the state and returns to the suspended
program.

The most important feature of signal handlers is that they are allowed to make GS/OS calls.
That is why the signal queue exists; GS/OS removes signals from the queue and executes their signal
handlers only when GS/OS is free to accept a call. The most common kind of signal is a software
response to a hardware interrupt, but signals need not be triggered by interrupts.

Signals are analogous to interrupts, but are handled with less urgency. If immediate response
to an interrupt request is needed, and if the routine that handles the interrupt needn’t make any
operating-system calls, then it should be an interrupt handler. On the other hand, if a certain
amount of delay can be tolerated, the full range of operating system calls are available to a handler if
it is a signal handler.

A signal source is a software routine (perhaps an interrupt handler) that announces a signal to
GS/0S; the signal handler associated with that source is then executed as a result of the signal
occurrance. GS/OS signal sources and handlers are installed and removed with the device call
DControl or the driver call Driver_Control.

Interrupt handlers, signal handlers, and signal sources are commonly written in conjunction with
drivers. If you want to write a signal source or a signal handler or both to go with your driver or
application, see Chapter 10.

14 VOLUME 2 Devices and GS/OS

GS/OS Reference (Volume 2)

APDA Draft

Part I Using GS/OS Device Drivers

Yolume 1

Volume 2

Part] Partll

GS/0S calls) m—wfm
(except device aalls) information on

(Chapter 7) /05 alls
(Chapter 9-11)

Pant| Panll

Driver calls
(Chapter 11)

Appendixes

ProDOCS 16 calls
(Appendix A)

h_/
FST-spedific

information on

ProDOS 16 calls

(Appendix B)

—~———1

Appendixes

System Loader alls
(Appendix A)

1/31/89

15

GS/OS Reference (Volume 2) APDA Drafl 1/31/89

Chapter 1 GS/0S Device Call Reference

This chapter explains how to call device drivers and documents the GS/OS device calls:
application-level calls that give applications direct access to devices by bypassing all file
systems.

This chapter repeats the device-call descriptions of Chapter 7 of Volume 1, except that
it provides more complete documentation; in particular, it describes all the standard
DStatus and DControl subcalls. =

This chapter describes only standard GS/OS (class 1) device calls; for
descriptions of how GS/0S handles equivalent ProDOS 16 (class 0) device
calls, see Appendix B of Volume 1.

17

GS/0S Reference (Volume 2) APDA Draft 1/31/89

How to make a device call

Your application makes GS/OS device calls just like any other application-level GS/OS calls—it sets up
a parameter block in memory, and executes either an in-line or stack-based call method (either
directly or with a macro). Chapter 3 of Volume 1 describes all the methods for making GS/OS calls.

All device calls are handled by the Device Manager. Table 1-1 lists them. The rest of this chapter
documents how the device calls work.

» Table1-1 GS/OS device calls
Call number Name

$202C Dinfo

$202D DStatus

$202E DControl

$202F DRead

$2030 DWrite

The diagram accompanying each call description in this chapter is a simplified representation of the
call’s parameter block in memory. The width of the parameter block diagram represents one byte;
successive tick marks down the side of the block represent successive bytes in memory. Each
diagram also includes these features:

» Offset: Hexadecimal numbers down the left side of the parameter block represent byte
offsets from the base address of the block.

s Name: The name of each parameter appears at the parameter’s location within the block.

s No.: Each parameter in the block has a number, identifying its position within the block. The
total number of parameters in the block is called the parameter count (pcount); pCount is
the initial (zeroth) parameter in each call. The pcount parameter is needed because in some calls
parameter count is not fixed; see the following description of Minimum parameter count.

18 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/OS Reference (Volume 2) Draft 2 1/31/89

» Size and Type: Each parameter is also identified by size (word or longword) and type (input
or result, and value or pointer). A word is 2 bytes; a longword is 4 bytes. An input is a
parameter passed from the caller to GS/OS; a result is a parameter retumed to the caller from
GS/0S. A value is numeric or character data to be used directly; a pointer is the address of a
buffer containing data (whether input or result) to be used.

s Minimum parameter count: To the right of each diagram, across from the pcount
parameter, the minimum permitted value for pcount appears in parentheses. The maximum
permitted value for pcount is the total number of parameters shown in the diagram.

Each parameter is described in detail after the diagram. Additional important notes, call
requirements, and principal error results follow the parameter descriptions.

CHAPTER 1 GS/OS Device Call Reference 19

GS/OS Reference (Volume 2) APDA Draft 1/31/89

$202C Dinfo

Description Dinfo returns certain attributes of a device known to the system. The information is in
the device's device information block (DIB). The Device Manager makes a call to the
device dispatcher to obtain the pointer to the DIB, and then returns the requested
parameters from the DIB. If the pCount parameter is greater than 3, the Dinfo call
actually issues a DStatus call with a status code of 0 to the device to obtain the current
block count. This ensures that any dynamic parameters in the DIB are updated.

20 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/OS Reference (Volume 2)

pCount

Parameters
D) e ¥
Ll
LA
P Offset
Y $00| pCount .
ol
{f& so2f devNum —
P) P &y SM - —
(AL - devName -
g,qDE} & “B._characteristics_
$oA[|
V) e | totalBlocks
- —
r SOE|_ slotNum -
G §$10(_ unitNum -
A ¢ 4 '%} $12| version —
;f: $14] deviceIDNum |
4. 98l headLink
\f) $18] forwardLink
$1A
- -
:;%§ . extendedDIBPtr -
- -

Draft 2
No. Size and type
—_ Word INPUT value (minimum = 2)
1 Word INPUT value
2 Longword INPUT pointer
3 Word RESULT value
4 Longword RESULT value
5 Word RESULT value
6 Word RESULT value
7 Word RESULT value
8 Word RESULT value
9 Word RESULT value
10 Word RESULT value
11 Longword INPUT pointer

Word input value: The number of parameters in this parameter block. Minimum is 2,
maximum is 11.

CHAPTER 1 GS/OS Device Call Reference

1/31/89

21

GY0S Reference (Volume 2) APDA Draft 1/31/89

devNum Word input value: A nonzero device number. GS/OS assigns device numbers in sequence 1,
2,3,... as it loads or creates the device drivers. Because the device list is dynamic, there is no
fixed correspondence between devices and device numbers. To get information about
every device in the system, make repeated calls to Dinfo with devNum values of 1, 2, 3,...
until GS/OS returns error $11 (invalid device number).

devName Longword input pointer: Points to a result buffer in which GS/OS returns the device name
corresponding to the device number. The maximum size of the device-name string is 31
bytes, so the maximum size of the returned value is 33 bytes. Thus the buffer size should
be 35 bytes.

characteristics Word result value: Individual bits in this word give the general characteristics of the
device. This is its format:

b uf Y o)
High‘ byte Lowibyte
[15]14]13 12} iifi0 i3]z

1 = RAM or ROM disk
1 = Generated device

1 = Linked device
1 = Device busy
Speed Group =
1 = Block device —
1 . Write allowed —
1 = Read allowed —

1 = Format allowed —
1 = Removable media —

Reserved

In the device characteristics word, linked device means that the device is one of several
partitions on a single, removable medium. Device is busy is maintained by the device
dispatcher to prevent reentrant calls to a device.

22 VOLUME 2 Devices and GS/OS PART 1 Using GS/OS Device Drivers

GS/OS Reference (Volume 2) Draft 2 1/31/89

totalBlocks

slotNum

unitNum

Speed group defines the speed at which the device requires the processor to be running,
Speed group has these binary values and meanings:

Setting Speed

$0000 Apple 11GS normal speed
$0001 Apple IIGS fast speed
$0002 . Accelerated speed

$0003 Not speed-dependent

Longword result value: If the device is a block device, this parameter gives the maximum
number of blocks on volumes handled by the device. For character devices, this parameter
contains zero.

Word result value: Slot number of the (1) device hardware or (2) resident firmware (port)
associated with the device. Bits 0 through 2 define the slot (valid values are $1 through
$7), and bit 3 indicates whether it is an internal port (controlled by firmware within the
Apple 11GS) or an external slot containing a card with its own firmware.

For a given slot number, either the external slot or its equivalent internal port is active
(switched-in) at any one time; Bit 15 indicates whether or not the device driver must
access the peripheral card’s 1/0 addresses. For more information on those addresses, see
the Apple lle Technical Reference Manual.

3 (K{\ \f‘: 3‘«
High byte ‘ Lowbyte
Lisfs [3]2]1]o]
1 = driver independent on slot hardware J
0 = driver dependent on slot hardware 1 = card (external slot)
0 = port (internal slot)
slot number

Reserved: must be zero

Word result value: Unit number of the device within the given slot. Because different
drivers permit different numbers of devices per slot, the value of this parameter is driver-
specific; it has no direct correlation with the GS/OS device number or any other device
designation used by the system.

CHAPTER 1 GS/0OS Device Call Reference 23

GS/OS Reference (Volume 2) APDA Draft 1/31/89

version Word result value: Version number of the device driver. This parameter has the same
format as the SmartPort version parameter. These are its fields:
A o A Y.
High{byte Low
istieisfieinfofofsf7i6fsf4fajafijo]
)1 MR N RS]

Major release number —l

Minor release number e

¢ Note: This parameter has a different format from the version parameter
returned from the GS/OS GetVersion call.

24 VOLUME 2 Devices and GS/0S PARI Using GS/OS Device Drivers

PR

GS/0OS Reference (Volume 2) Draft 2 1/31/89

deviceIDNum Word result value: An identifying number associated with a particular type of device.
Device ID may be useful for Finder-like applications when determining what type of icon
to display for a certain device. These are the currently defined device IDs:
ID Description ID Description
$0000 Apple 5.25 Drive $0010 File server
(includes UniDisk™, DuoDisk®, $0011 (reserved)
Disk Iic, and Disk II drives) $0012 AppleDesktop Bus
$0001 ProFile (5 megabyte) $0013 Hard disk drive (generic)
$0002 ProFile (10 megabyte) $0014 Floppy disk drive (generic)
$0003 Apple 3.5 drive $0015 Tape drive (generic)
(includes UniDisk 3.5 drive) $0016 Charadter device (generic)
$0004 SCSI device (generic) $0017 MFM-encoded disk drive
»=p $0005 SCSI hard disk drive $0018 AppleTalk network (generic)
$0006 SCSI tape drive $0019 Sequential access device
$0007 SCSI CD-ROM drive $001A SCSI scanner
$0008 SCSI printer $001B Other scanner
$0009 Modem $001C LaserWriter SC
$000A Console $001D AppleTalk main driver
$000B Printer $001E AppleTalk file service driver
$000C Serial LaserWriter $001F AppleTalk RPM driver
$000D AppleTalk LaserWriter
$000E RAM Disk
$000F ROM Disk
headLink Word result value: This parameter holds a device number that describes a link to another
device. It is the device number of the first device in a linked list of devices that represent
separate partitions on 2 single disk. A value of zero indicates that no link exists.
forwardLink Word result value: This parameter holds a device number that describes a link to another
device. It is the device number of the next device in a linked list of devices that represent
separate partitions on a single disk. A value of zero indicates that no link exists.
extendedDIBPtr Longword input pointer: Points to a buffer in which GS/OS returns information about the

extended device information block (extended DIB). Only certain devices have extended
DIBs.

CHAPTER 1 GS/OS Device Call Reference 25

GS/0S Reference (Volume 2) APDA Draft 1/31/89

Errors $11 invalid device number
$53 parameter out of range

26 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/OS Reference (Volume 2) APDA Draft 1/31/89

$202D DStatus

Description DStatus returns status information about a specified device. DStatus is really four or
more calls in one. Depending on the value of the status code parameter (st at usCode),
DStatus can return several classes of status information.

Parameters
Offset No. Size and type
$01L pcount oA — Word INPUT value (minimum = 5)
s02{ devNum 4 1 Word INPUT value
$41 statusCode 2 Word INPUT value
$06 -
- statuslist 4 3 Longword INPUT pointer
$0A [|
. requestCount 4 Longword INPUT value
$0E | i
. transferCount 4 5 Longword RESULT value
pCount Word input value: The number of parameters in this parameter block. Minimum is 5;
maximum is 5.
devNum Word input value: Device number of the device whose status is to be returned.
statusCode Word input value: A number indicating the type of status request being made. Each

status code correpsonds to a particular DStatus subcall, described under DStatus Subcalls,
later in this section.

CHAPTER 1 GS/OS Device Call Reference 27

GS/0S Reference (Volume 2) APDA Draft 1/31/89

statusList

requestCount

transferCount

Buffer size

DStatus subcalls

Longword input pointer: Points to a buffer in which the device retums its status
information. The format of the data in the status buffer depends on the status code. See
individual DStatus subcall descriptions.

Longword input value: Specifies the number of bytes to be returned in the status list. The
call can never return more than this number of bytes.

Longword result value: Specifies the number of bytes actually returned in the status list.
This value is always less than or equal to the request count.

On a status call, the caller supplies a pointer (buf ferptr) to a buffer, whose size must be
at least requestcount bytes. In some cases, the first 2 bytes of the buffer are a length
word, specifying the number of bytes of data in the buffer. In those cases,
requestCount must be at least 2 bytes greater than the maximum amount of data than
the call can return, to account for the length word.

If requestcount is not big enough for the requested data, the driver either fills the
buffer with as much data as can fit and retuns with no error, or does not fill the buffer
and returns error $22 (Invalid parameter). See the individual DStatus subcall descriptions
for details.

DStatus is several status subcalls rather than a single call. Each value for the parameter
statusCode corresponds to a particular subcall. Status codes of $0000 through $7FFF
are standard status subcalls that are supported (if not actually acted upon) by every device
driver. Device-specific status subcalls, which may be defined for individual devices, use
status codes $8000 through $FFFF.

Table 1-2 lists the currently defined values for statusCode and the subcalls invoked.
Following the DStatus error listings, each of the status subcalls is described individually.

28 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/0S Reference (Volume 2)

Errors

APDA Draft 1/31/89

¢ Table1-2 DStatus subcalls

Status code Subcall name

$0000 GetDeviceStatus
$0001 GetConfigParameters
$0002 . GetWaitStatus

$0003 GetFormatOptions
$0004 GetPartitionMap

$0005-$7FFF (reserved)

$8000-$FFFF (Device-specific subcalls)

$11 invalid device number
$53 parameter out of range

GetDeviceStatus (DStatus subcall)

P fooe
Aey. aoea
Werl oy, Ce’€
W S‘\'&' - .,.n\\
3
Xe r\

Yy

Status code = $0000.

The Device Status subcall returns, in the status list, a general device status word
followed by a number giving the total number of blocks on the device.

This subcall normally requires an input requestcount of $0000 0006, the size in bytes of
the status list in this case. However, if only the status word is desired, use a request
count of $0000 0002. This is the format of the status list:

Offset

$00 - statusWord

$02

= numBlocks

\;\‘}/ﬁ ab v b ot
T ? [.;
b g4
Ve
DRAA L o Add
LEdd 3 d A

. G

4 b

\

Size Description

Word The status word (see following definition)

Longword The number of blocks on the device

CHAPTER 1 GS/OS Device Call Reference 29
\ 32 Hf“‘} - »/;!\ /\ \’,',“\r--f' ¢

d

}
(b v dd Do

GS/0OS Reference (Volume 2) APDA Draft 1/31/89

The device status word has two slightly different formats, depending on whether the
device is a bock device or a character device. This is its definition:

Block device: A b A
High byte

[15]14]13
1 = uncertain block count
1 = linked device
1 = background busy
1 = disk in drive
1 = device is write protected —
1 = device is interrupting —
1 = disk has been switched —
Character device:
High byte Low byte
{14]13
1 = linked device 'J J

1 = background busy
1 = no-wait mode

1 = device is on line

1 = device is interrupting —

1 = device is open —

Reserved: must be zero

30 VOLUME 2 Devices and GS/OS PART 1 Using GS/OS Device Drivers

GS/0S Reference (Volume 2) APDA Draft 1/31/89

To maintain future compatibility, the driver must return zero in all reserved bit positions
for the status word, because reserved bits may in the future be assigned new values.

GetConfigParameters (DStatus subcall)

Status code = $0001.

The GetConfigParameters subcall returns, in the status list, a length word and a list of
configuration parameters. The structure of the configuration list is device-dependent.

The request count for this subcall (the length of the configuration list plus the length
word) must be in the range $0000 0002 to $0000 FFFF. This is the format of the status list:

Offset Size Description
b $4¥WE length 4 Word The length of the list (in bytes)
$02 [i
L configParamList~o — The configuration list
- —ad

GetWaitStatus (DStatus subcall)

Status code = $0002.

The GetWaitStatus subcall is used to determine if a device is in wait mode or no-wait
mode. When a device is in wait mode, it does not terminate a Read call until it has read the
number of characters specified in the request count, or if a newline character is
encountered during the read and newline mode is enabled. In no-wait mode, a Read call
returns immediately after reading the available characters, with a transfer count indicating
the number of characters returned. If one or more characters was available, the transfer
count has a nonzero value; if no character was available, the transfer count is zero.

CHAPTER 1 GS/OS Device Call Reference 31

GS/OS Reference (Volume 2) APDA Draft 1/31/89

The status list for this subcall contains $0000 if the device is operating in wait mode, $8000
if it is operating in no-wait mode. The request count must be $0000 0002. This is the
status list format:

Offset Size Description

$00 1 waitMode -4 Word The wait/no-wait status of the device

& Block devices: Block devices always operate in wait mode. Whenever this
call is made to a block device, the call returns $0000 in the status list.

GetFormatOptions (DStatus subcall)

Status code = $0003.

Some block devices can be formatted in more than one way. Formatting parameters can
include such variables as file system group, number of blocks, block size, and interleave.
Each driver that supports media variables (multiple formatting options) contains a list
of the formatting options for its devices. The options can be used for two purposes:

s An application can select one with a SetFormatOptions subcall, prior to formatting a
block device. See the description of the DControl call, later in this chapter.

= An FST can display one or more of the options to the user when initializing disks. See
the section “Disk Initialization and FSTs,” in Chapter 8 of Volume 1.

32 VOLUME 2 Devices and GS/OS PART 1 Using GS/OS Device Drivers

GS/0S Reference (Volume 2)

P2 ¢

APDA Draft

1/31/89

This subcall returns the list of formatting options for a particular device. Devices that do
not support media variables return a transfer count of zero and generate no error.
Character devices do nothing and return no error from this call. If a device does support
media variables, it returns a status list consisting of a 4-word header followed by a set of
entries, each of which describes a formatting option. The status list looks like this:

Offset

$00 | numOptions

$02 - numDisplayed

-

$04

—recommendedOpt ion—

$06 | currentOption -

$08

formatOptionl

$0C

- formatOptionN —

-

-

Size

Word
list

Word
Word

Word

(16 bytes)

(16 bytes)

Description

Number of format-option entries in the

Number of options to be displayed
Recommended default formatting option

The option with which the currently
on-line media was formatted

The first format option entry

The last format option entry

Of the total number of options in the list, zero or more can be displayed on the
initialization dialog presented to the user when initializing a disk (see the calls Format and
EraseDisk in Chapter 7 of Volume 1). The options to be displayed are always the first ones
in the list. (Undisplayed options are available so that drivers can provide FSTs with
logically different options that are actually physically identical and therefore needn't be

duplicated in the dialog.)

$3 &b A ¢ dz 4 4

CHAPTER 1 GS/OS Device Call Reference 33

GS/OS Reference (Volume 2) APDA Draft 1/31/89

Each format-options entry consists of 16 bytes, containing these fields:

Offset Size Description
$00 | formatoptionNum- Word The number of this option
$21 JinkRefNum - Word Number of linked option
o4 | flags -4 Word (See the following definition)
$06 [i
— blockCount Longword Number of blocks supported by device
$A 1 plocksize - Word Block size in bytes
$0C |_interleaveFactor-| Word Interleave factor (in ratio to 1)
SE| mediasize o word Media size (see flags description)

Linked options are options that are physically identical but which may appear different at
the FST level. Linked options are in sets; one of the set is displayed, whereas all others are
not, so that the user is not presented with several choices on the initialization dialog. See
“Example,” later in this section.

Bits within the flags word are defined as follows:

\ $ 3

Hi Lowbyte

3]2f1]0]
Z‘B plormat WPel:r' Ao

N L.y Sizemultiplier
A la bt
Reserved
$4 b de b b8 @b, SC BL ad
47 4

2
oy

[§

N

e, 4 N

% VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/OS Reference (Volume 2) APDA Draft 1/31/89

Example

In the format options flag word, Format type defines the general file-system family for
formatting. An FST might use this information to enable or disable certain options in the
initialization dialog. Format type can have these binary values and meanings:

00 Universal Format (for any file system)
01 Apple Format (for an Apple file system)
10 NonApple Format (for other file systems)

11 (not valid)

Size multiplier is used, in conjunction with the parameter mediasize, to calculate the
total number of bytes of storage available on the device. Size multiplier can have these
binary values and meanings:

00 mediaSize i$ in bytes

01 mediaSize isin kilobytes (KB)

10 mediasize is in megabytes (MB)

11 mediasize is in gigabytes (GB)

A list returned from this call for a device supporting two possible interleaves intended to
support Apple’s file systems (DOS 3.3, ProDOS, MFS or HFS) might be as follows. The
field t ransferCount has the value $0000 0038 (56 bytes returned in list). Only two of
the three options are displayed; option 2 (displayed) is linked to option 3 (not displayed),
because both have exactly the same physical formatting. Both must exist, however,
because the driver will provide an FST with either 512 bytes or 256 bytes per block,
depending on the option chosen. At format time, each FST will choose its proper option
among any set of linked options.

CHAPTER 1 GS/OS Device Call Reference 35

GS/OS Reference (Volume 2)

APDA Draft

The entire format options list looks like this:

Value Explanation
Format options list header:
$0003 Three format options in the status list
$0002 Only two display entries
$0001 Recommended default is option 1
$0003 Current media is formatted as specified by option 3
Format Option 1:
$0001 Option 1
$0000 LinkRef = none
$0005 Apple format/size in kilobytes
$0000 0640 Block count = 1600
$0200 Block size = 512 bytes
$0002 Interleave factor = 2:1
$0320 Media size = 800 KB
Format Option 2:
$0002 Option 2
$0003 LinkRef = option 3
$0005 Apple format/size in kilobytes
$0000 0640 Block count = 1600
$0100 Block size = 256 bytes
$0004 Interleave factor = 4:1
$0190 Media size = 400 KB
Format Option 3:
$0003 Option 3
$0000 LinkRef = none
$0005 Apple format/size in kilobytes
$0000 0320 Block count = 800
$0200 Block size = 512 bytes
$0004 Interleave factor = 4:1
$0190 Media size = 400 KB

36 VOLUME 2 Devices and GS/OS

PART I Using GS/OS Device Drivers

1/31/89

GS/OS Reference (Volume 2) APDA Draft 1/31/89

GetPartitionMap (DStatus subcall)

Status code = $0004.

This call returns, in the status list, the partition map for a partitioned disk or other
medium. The structure of the partition information is device-dependent.

Device-specific DStatus subcalls

Device-specific DStatus subcalls are provided to allow device-driver writers to implement
Status calls specific to individual device drivers’ needs. DStatus calls with statuscode
values of $8000 to $FFFF are passed by the Device Manager directly to the device
dispatcher for interpretation by the device driver.

The content and format of information returned from these subcalls can be defined
individually for each type of device; the only requirements are that the parameter block
must be the regular DStatus parameter block, and the status code must be in the range
$8000-$FFFF.

CHAPTER 1 GS/OS Device Call Reference 37

GS/OS Reference (Volume 2) APDA Draft 1/31/89

$202E DControl

Description This call sends control information, commands, or data to a specified device or device
driver. Dcontrol is really ten or more subcalls in one. Depending on the value of the
control code parameter (cont rolcode), DControl can set several classes of control

information.
Parameters
Offset No. Size and type
00| pCount -4 - Word INPUT value (minimum = 5)
s02{ devNum 4 1 Word INPUT value
$4] controlCode - 2 Word INPUT value
$06| _
- controllList o 3 Longword INPUT pointer
$0A
- 4
- requestCount 4 4 Longword INPUT value
$0E[]
. trasferCount | 5 Longword RESULT value
— -1
pCount Word input value: The number of parameters in this parameter block. Minimum is 5;
maximum is 5.
devNum Word input value: Device number of the device to which the control information is being
sent.
controlCode Word input value: specifies the type of control request being made. Each control request

corresponds to a DControl subcall, as described for each subcall later in this section.

38 VOLUME 2 Devices and GS/OS PART [Using GS/OS Device Drivers

GS/OS Reference (Volume 2) APDA Draft 1/31/89

controlList

requestCount

transferCount

Control-list
buffer

Subcalls

Longword input pointer: Points to a buffer that contains the control information for the
device. The format of the data and the required minimum size of the buffer are different
for different subcalls. See the individual subcall descriptions.

Longword input value: indicates the number of bytes to be transferred. For control
subcalls that use a control list, this parameter gives the size of the control list. For control
subcalls that do not use the control list, this parameter is not used.

Longword result value: For control subcalls that use a control list, this parameter indicates
the number of bytes of information taken from the control list by the device driver. For
control subcalls that do not use the control list, this parameter is not used.

On a control call, the caller supplies a pointer (buf ferPt r) to a buffer, whose size must
be at least requestCount bytes. In some cases, the first 2 bytes of the buffer are a
length word, specifying the number of bytes of data in the buffer. In those cases,
requestCount (which describes the amount of data supplied to the driver in the
buffer) must be at least 2 bytes greater than the amount of data the driver needs, to
account for the length word. The value returned in t ransferCount is the number of
bytes used by the driver. If not enough data is supplied for the requested function, this
call may return error $22 (invalid parameter).

For those subcalls that pass no information in the control list, the driver does not access
the control list and verify that its length word is zero; the driver ignores the control list
entirely.

DControl is several control subcalls rather than a single call. Each value for the parameter
cont rolCode corresponds to a particular subcall. Control codes of $0000 through
$7FFF are standard control subcalls that are supported (if not actually acted upon) by
every device driver. Device-specific control subcalls, which may be defined for individual
devices, use control codes $8000 through $FFFF.

Table 1-3 lists the currently defined values for cont rolCode. Following the DControl
error listings, each of the standard control subcalls is described individually.

CHAPTER 1 GS/0S Device Call Reference 39

GY0S Reference (Volume 2) APDA Draft 1/31/89

® Table1-3 Dcontrol subcalls
controlCode subcall name

$0000 ResetDevice

$0001 FormatDevice

$0002 EjectMedium

$0003 SetConfigParameters
$0004 SetWaitStatus

$0005 SetFormatOptions
$0006 AssignPartitionOwner
$0007 ArmSignal

$0008 DisarmSignal

$0009 SetPartitionMap

$000A-$7FFF (reserved)
$8000-$FFFF (device-specific)

Errors $11 invalid device number
$21 invalid control code
$53 parameter out of range

ResetDevice (DControl subcall)

Control code = $0000.

The Reset Device subcall sets a device’s configuration parameters back to their default
values. Many GS/OS device drivers contain default configuration settings for each device it
controls; see Chapter 8, “GS/OS Device Driver Design,” for more information.

ResetDevice also sets a device's format options back to their default values, if the device
supports media variables. See the SetFormatOptions subcall described later in this section.

If successful, the transfer count for this call is zero. The request count is ignored, and the
control list is not used. However, for future compatibility, the requestCount
parameter should be set to $0.

AN

40 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/0S Reference (Volume 2) APDA Draft 1/31/89

FormatDevice (DControl subcall)

Control code = $0001.

The FormatDevice subcall is used to format the medium, usually a disk drive, used by a
block device. This call is not linked to any particular file system, in that no directory
information is written to disk. FormatDevice simply prepares all blocks on the media for
reading and writing.

After formatting, FormatDevice resets the device’s format options back to their default
values, if the device supports media variables. See the DControl subcall SetFormatOptions
described later in this section.

Character devices do not implement this function but return with no error.

If successful, the transfer count for this call is zero. Request count is ignored; the control
list is not used.

EjectMedium (DControl subcall)

Control code = $0002.

The EjectMedium subcall physically or logically ejects the recording medium, usually a disk,
from a block device. In the case of linked devices (separate partitions on a single physical
disk), physical ejection occurs only if, as a result of this call, all the linked devices become
off line. If any devices linked to the device being ejected are still on line, the device being
ejected is marked as off line but is not actually ejected.

Character devices do not implement this function but return with no error.

If successful, the transfer count for this call is zero. Request count is ignored; the control
list is not used.

b

A ¢ Voo 5{ At g ‘\

CHAPTER 1 GS/OS Device Call Reference 41

GS/OS Reference (Volume 2) APDA Draft 1/31/89

SetConfigParameters (DControl subcall)

Control code = $0003.

The Set ConfigParameters subcall is used to send device-specific configuration parameters
to a device. The configuration parameters are contained in the control list. The first word
in the control list (1engthWord) indicates the length of the configuration list, in bytes.
The configuration parameters follow the length word. Here is what the control list looks

like:
Offset Size Description
$00 | length - Word The length of the list (in bytes)
s02 |]
- configParamList—o — The configuration list

The structure of the configuration list is device-dependent. See Chapter 9, “Configuration
and Cache Control,” for more information.

This subcall is most typically used in conjunction with the status subcall
GetConfigParameters. The application first uses the status subcall to get the list of
configuration parameters for the device; it then modifies parameters as needed and makes
this control subcall to send the new parameters to the device driver.

The request count for this subcall must be equal to LengthWord + 2. Furthermore, the
length word of the new configuration list must equal the length word of the existing
configuration list (the list returned from GetConfigParameters). If this call is made with
an improper configuration list length, the call returns error $22 (invalid parameter).

42 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/0S Reference (Volume 2) APDA Draft 1/31/89

SetWaitStatus (DControl subcall)

Control code = $0004.

The SetWaitStatus subcall is used to set a character device to wait mode or no-wait mode.

& Note: Block devices cannot be set to no-wait mode. For block devices,
the driver should return a bad parameter error ($53) on a no-wait mode
request.

When a device is in wait mode, it does not terminate a Read call until it has read the
number of characters specified in the request count, or if a newline character is
encountered during the read and newline mode is enabled. In no-wait mode, a read call
returns immediately after reading the available characters, with a transfer count indicating
the number of characters returned. If one or more characters was available, the transfer
count has a nonzero value; if no character was available, the transfer count is zero.

The control list for this subcall contains $0000 (to set wait mode) or $8000 (to set no-wait
mode). The request count must be $0000 0002. The control list looks like this:

Offset Size Description

$00 | waitMode - Word The wait/no-wait status of the device

This subcall has no meaning for block devices; they operate in wait mode only.
SetWaitStatus should return from block devices with no error (if wait mode is requested)
or with error $ 22 (invalid parameter) if no-wait mode is requested.

CHAPTER 1 GS/OS Device Call Reference 43

GS/OS Reference (Volume 2) APDA Draft 1/31/89

SetFormatOptions (DControl subcall)

Control code = $0005.

Some block devices can be formatted in more than one way. Formatting parameters can
include such variables as file system group, number of blocks, block size, and interleave.
Each driver that supports media variables (multiple formatting options) contains a list
of the formatting options for its devices.

The SetFormatOptions subcall is used to set these media-specific formatting parameters
prior to executing a FormatDevice subcall. SetFormatOptions does not itself cause or
require a formatting operation. The control list for SetFormatOptions consists of two
word-length parameters:

Offset Size Description
$00 | formatOptionNum- Word The number of the format option
$02 | interleaveFactor-| Word The override interleave factor (if nonzero)

The format option number (formatopt ionNum) specifies a particular format option
entry from the driver's list of formatting options (returned from the DStatus subcall
GetFormatOptions). The format option entry has this format:

4 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/OS Reference (Volume 2) APDA Draft 1/31/89

Offset Size Description

- formatOpt ionNum Word The number of this option

- linkRefNum < Word Number of linked option

- flags 7 Word File system information

[bleckcount Longword Number of blocks supported by device

L interleaveFactor Word Interleave factor (in ratio to 1)
- mediaSize = Word Media size

See the description of the DStatus subcall GetFormatOptions, earlier in this chapter, for a
more detailed description of the format option entry.

The interleaveFactor parameter in the control list, if nonzero, overrides
interleaveFactor in the format option list. If the control list interleave factor is zero,
the interleave specified in the format option list is used.

To carry out a formatting process with this subcall, do this:

1. Issue a (DStatus) GetFormatOptions subcall to the device. The call returns a list of all
the device’s format option entries and their corresponding values of
formatOptionNum.

2 Issue a (DControl) SetFormatOptions subcall, specifying the desired format option.
Issue a (DControl) FormatDevice subcall.

A\ Important SetFormatOptions sets the parameters for one subsequent formatting
operation only. You must call SetFormatOptions each time you format a
disk with anything other than the recommended (default) option. &

The SetFormatOptions subcall applies to block devices only; character devices return error
$20 (invalid request) if they receive this call.

CHAPTER 1 GS/OS Device Call Reference 45

GS/0OS Reference (Volume 2) APDA Draft 1/31/89

AssignPartitionOwner (DControl subcall)

Control code = $0006.

The AssignPartitionOwner subcall provides support for partitioned media on block
devices. Each partition on a disk has an owner, identified by a string stored on disk. The
owner name is used to identify the file system to which the partition belongs.

This subcall is executed by an FST when an application makes the call EraseDisk, to allow
the driver to reassign the partition to the new owner.

Partition owner names are assigned by Apple Developer Technical Support, and can be up
to 32 bytes in length—uppercase and lowercase characters are considered equivalent. The
control list for this call consists of a GS/OS string naming the partition owner:

Offset Size Description
$00 | length -4 Word The length of the name (in bytes)
$02 [i
- ownerName o — The partition owner name
—~ -

Block devices with non-partitioned media and character devices do nothing with this call
and return no error .

ArmSignal (DControl subcall)

Control code = $0007.

The ArmSignal subcall provides a means for an application to bind its own software
interrupt handler to the hardware interrupt handler controlled by the device. This is the
control list for the subcall:

46 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/OS Reference (Volume 2) APDA Draft 1/31/89

Offset Size Description
01 signalcode - word An ID for this handler and its signals
02 | priority 4 Word The priority for this handler’s signals
04 | -
- handlerAddress - Longword A pointer to the signal handler’s entry

The signalcode parameter is an arbitrary number assigned by the caller to match the
signals that the signal source generates with the proper handler; its only subsequent use is
as an input to the DControl subcall DisarmSignal. The priority parameter is the signal
priority the caller wishes to assign, with $0000 being the lowest priority and $FFFF being
the highest priority. The handleraddress parameter is the entry address of the signal
handler for that signal code.

DisarmSignal (DControl subcall)

Control code = $0008.

The Disarm Signal subcall provides a means for an application to unbind its own software
interrupt handler from the hardware interrupt handler controlled by the device. The
signalCode parameter is the identification number assigned to that handler when the

signal was armed.

Offset Size Description

$0 | signalCode - Word The signal handler’s ID

CHAPTER 1 GS/OS Device Call Reference 47

GS/OS Reference (Volume 2) APDA Draft 1/31/89

SetPartitionMap (DControl subcall)

Status code = $0009.

This call passes to a device, in the control list, the partion map for a partitioned disk or
other medium. The structure of the partition information is device-dependent.

Device-Specific DControl subcalls

Device-specific DControl subcalls are provided to allow device-driver writers to implement
control calls specific to individual device drivers’ needs. DControl subcalls with
controlCode values of $8000 to $FFFF are passed by the Device Manager directly to the
device dispatcher for interpretation by the device driver.

The content and format of information passed by this subcall can be defined individually
for each type of device. The only requirements are that the parameter block must be the
regular DControl parameter block, and the control code must be in the range $8000-$FFFF.

48 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/OS Reference (Volume 2)

APDA Draft

1/31/89

$202F

Description

Parameters

pCount

devNum

buffer

DRead

This call performs a device-level read on a specified device: it transfers data from a
character device or block device to a caller-supplied buffer.

Offset
$00|_ pCount -
02| devNum -
sM — —
= buffer -
$08] |
- requestCount
soc]
. startingBlock -
$10f blockSize -
$12
. transferCount

No.

Size and type
Word INPUT value (minimum = 6)

Word INPUT value

Longword INPUT pointer

Longword INPUT value

Longword INPUT value

Word INPUT value

Longword RESULT value

Word input value: The number of parameters in this parameter block. Minimum is 6;
maximum is 6.

Word input value: Device number of the device from which data is to be read.

Longword input pointer: Points to a buffer into which the data is to be read. The buffer
must be big enough to hold the data.

CHAPTER 1 GS/OS Device Call Reference 49

GS/OS Reference (Volume 2) APDA Draft 1/31/89

requestCount

startingBlock

blockSize

transferCount

Character devices

Block devices

Errors

Longword input value: Specifies the number of bytes to be read.

Longword input value: For a block device, this parameter specifies the logical block number
of the block where the read starts. For a character device, this parameter is unused.

Word input value: The size, in bytes, of a block on the specified block device. For non-
block devices, the parameter must be set to zero.

Longword result value: The number of bytes actually transferred by the call.

You must first open a character device (with an Open call) before reading characters from
it with DRead; otherwise, DRead returns error $23 (device not open).

If the parameter blocksize is not zero on a DRead call to a character device, DRead
returns error $58 (not a block device).

DRead does not support caching. From block devices, DRead always reads data directly
from the device, not from the cache (if any). Furthermore, the block being read will not be
copied into the cache.

/" The request count should be an integral multiple of block size; if it is not, the call returns

error $2C (invalid byte count). If the block number is outside the range of possible block
numbers on the device, the call returns error $2D (invalid block number).

$11 invalid device number
$23 device not open

$2C invalid byte count

$2D invalid block number
$53 parameter out of range
$58 not a block device

50 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/0S Reference (Volume 2) APDA Draft 1/31/89

$2030 DWrite

Description This call performs a device-level write to a specified device. The call transfers data from a
caller-supplied buffer to a character device or block device.

Parameters
Offset No. Size and type
$00 Count -
- pCoun -~ — Word INPUT value (minimum = 6)
5024 devNum -4 1 Word INPUT value
so4[|
- buffer -4 2 Longword INPUT pointer
so8 [|
- requestCount - 3 Longword INPUT value
soc|_]
— startingBlock — 4 Longword INPUT value
°101 blocksize o 5 Word INPUT value
s12[
| transferCount 4 § Longword RESULT value
pcount Word input value: The number of parameters in this parameter block. Minimum is 6;
maximum is 6.
devNum Word input value: Device number of the device from which data is to be written.
buffer Longword input pointer: Points to a buffer from which the data is to be written.
requestCount Longword input value: Specifies the number of bytes to be written.

CHAPTER 1 GS/OS Device Call Reference 51

GS/0S Reference (Volume 2) APDA Draft 1/31/89

startingBlock

blockSize

transferCount

Character devices

Block devices

Errors

Longword input value: For a block device, this parameter specifies the logical block number
of the block where the write starts. For a character device, this parameter is unused.

Word input value: The size, in bytes, of a block on the specified block device. For non-
block devices, the parameter is unused and must be set to zero.

Longword result value: The number of bytes actually transferred by the call.

You must first open a character device (with an Open call) before writing characters to it
with DWrite (or Write); otherwise, DWrite returns error $23 (device not open).

If the parameter blocksize is not zero on a DWrite call to a character device, DWrite
returns error $58 (not a block device).

DWrite does not support caching. When writing to block devices, DWrite does not also
write the blocks into the cache, if there is one.

The request count should be an integral multiple of block size; if it is not, the call returns
error $2C (invalid byte count). If the block number is outside the range of possible block
numbers on the device, the call returns error $2D (invalid block number).

$11 invalid device number
$23 device not open

$2C invalid byte count

$2D invalid block number
$53 parameter out of range
$58 not a block device

52 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/0S Reference (Volume 2) APDA Draft 1/31/89

Chapter 2 The SCSI Driver

This chapter describes the GS/OS SCSI driver. The current version of the SCSI driver
provides access to both SCSI hard-disk devices and CD-ROM devices. =

53

GS/0S Reference (Volume 2) APDA Draft

1/31/89

General information

The SCSI Driver is a GS/OS loaded driver that provides direct application access to SCSI devices. It

communicates with the firmware on the Apple II SCSI Card and, as such, supports multiple devices.

It translates calls from the GS/OS format into the SCSI Card SmartPort format, allowing access to
SCSI hard disks and the Apple CD SC drive.

A Important This version of the SCSI driver supports only Revision C of the Apple 1
SCSI Card. &

The SCSI driver ensures that the Apple CD SC drive stays in 512 byte/block mode.

The SCSI driver provides special handling of CD Audio discs during DRead calls, as follows:

= The Apple CD SC does not allow reading of audio data, and will return an 1/0 error if attempted.

The driver handles this by determining if an I/O error was caused by trying to read audio data
and, if so, returns error $28 (no device connected).

m Ifaread call is issued to the Apple CD SC when it is in play or pause mode, it will stop playing.
Because FSTs frequently scan all devices looking for particular volumes, trying to play an audio
disc can be frustrating. The driver remedies this problem by checking to see if the Apple CD SC
is in play or pause mode and, if so, returns error $28 (no device connected) without issuing the
read call to the drive.

Device calls to the SCSI driver

The SCSI driver supports these standard GS/OS device calls:
Dinfo

DStatus

DControl

DRead

DWrite

including the standard set of DStatus and DControl subcalls.

54 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/0OS Reference (Volume 2) APDA Draft 1/31/89

The driver also supports additional device-specific DStatus and DControl subcalls. Because the
detailed functions and formats of the device-specific DStatus and DControl subcalls are dependent
on the device being accessed, and because the SCSI driver accesses CD-ROM devices as well as SCSI
hard disk devices, this chapter does not provide all the details on how the device-specific calls work.
To fully understand them, you need other documents that describe Apple SCSI commands and
Apple CD-ROM commands, such as

» Apple CD SC Developers Guide
m ANSI X3.131-1986, Small Computer System Interface (SCSI)

You will also need the SCSI Manager chapter in Inside Macintosh, Volume V.

The rest of this chapter describes the device-specific DStatus and DControl subcalls. Any device
calls or subcalls not discussed here are handled exadtly as documented in Chapter 1.

DStatus ($202D)

Please see Chapter 1 of this Volume for a description of the general format of the DStatus call; the
SCSI driver supports all standard DStatus subcalls.

All of the device-specific SCSI driver DStatus subcalls use this same format for the status list (the
buffer pointed to by statusListPtr in the DStatus call):

CHAPTER 2 The SCSI Driver 55

GS/OS Reference (Volume 2) APDA Draft 1/31/89

Offset Description

s00| $0000 - Reserved, must be zero

02| _
— —
- commandData - 12 bytes of data
- 4

$OE|_ i
- bufferPtr 4 Pointer to a buffer that may contain additional
- — information

The commandData parameter and the contents of the data buffer pointed to by bufferptr vary
for each subcall.

TestUnitReady (DStatus subcall)

In the DStatus parameter block for this call, statuscode = $8000. In the status list, commandData
contains this information:

byte Meaning

$00 SCSI command: $00

$01 SCSI command flags: $00
$02-0B (reserved)

The butferptr parameter is reserved. The call will return an error if the subcall is not successful.

56 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/0OS Reference (Volume 2) APDA Draft 1/31/89

RequestSense (DStatus subcall)

In the DStatus parameter block for this call, statuscode = $8003. In the status list, commandpata
contains this information:

byte Meaning

$00 SCSI command: $03

$01 SCSI command flags: $00
$02-0B (reserved)

Request sense data is returned in the data buffer.
Inquiry (DStatus subcall)

In the DStatus parameter block for this call, statuscode = $8012. In the status list, commandData
contains this information:

byte Meaning

$00 SCSI command: $12

$01 SCSI command flags: $00
$02-0B (reserved)

Inquiry data is returned in the data buffer.
ModeSense (DStatus subcall)

In the DStatus parameter block for this call, statuscode = $801A. In the status list, commandData
contains this information:

byte Meaning

$00 SCSI command: $1A

$01 SCSI command flags: $00
$02-0B (reserved)

Mode sense data is returned in the data buffer.

CHAPTER 2 The SCSI Driver 57

GS/OS Reference (Volume 2) APDA Draft 1/31/89

% N A o
Y LAV IS G S SR
N &

ReadCapacity (DStatus subcall) ~ C~oric lele de ol

In the DStatus parameter block for this call, statuscode = $8025. In the status list, commandpata
contains this information:

e Meaniog L 7 At
$00 SCSI command: $25

$01 SCSI command flags: $00

$02-0B (reserved)

Capacity data is returned in the data buffer.

Verify (DStatus subcall)

In the DStatus parameter block for this call, statuscode = $802F. In the status list, commandData
contains this information:

byte Meaning

$00 SCSI command: $2F

%01 SCSI command flags: $00

$02-05 block number to start verify, msb first

$06-07 number of contiguous blocks to verify, msb first
$08-0B (reserved)

The bufferptr parameter is reserved. The call will return an error if the subcall is not successful.

oL tok bbb T bp bbb £F G
At wo prt 4 b dd b dda depet ook g
NN, ceele $P2F G g 4 Uadh
evuec [oobogy A e rs 6d b 44 49‘
! "6\, conk v # ."i*i"’ ;585
TY . rannk 3
58 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

b ¢ x4 - e

GS/0S Reference (Volume 2) APDA Draft 1/31/89

ReadTOC (DStatus subcall)

This subcall applies to CD-ROM only.

In the DStatus parameter block for this call, statuscode = $80C1. In the status list, commandpata
contains this information:

byte Meaning
$00 SCSI command: $C1
$01 SCSI command flags: $00
$02 track number
$03-04 (reserved)
$05 TOC type:
$00 = type 0
$40 = type 1
$80 = type 2
$06-0B (reserved)

TOC data is retumned in the data buffer.

ReadQSubcode (DStatus subcall)

This subcall applies to CD-ROM only.

In the DStatus parameter block for this call, st atuscode = $80C2. In the status list, commandData
contains this information:

byte Meaning

$00 SCSI command: $C2

$01 SCSI command flags: $00
$02-0B (reserved)

Q subcode data is returned in the data buffer.

CHAPTER 2 The SCSI Driver 59

GS/OS Reference (Volume 2) APDA Draft 1/31/89

ReadHeader (DStatus subcall)

This subcall applies to CD-ROM only.

In the DStatus parameter block for this call, st atuscede = $80C3. In the status list, commandpata
contains this information: :

byte Meaning

$00 SCSI command: $C3

$01 SCSI command flags: $00
$02-05 block address, msb first
$06-0B (reserved)

Header data is returned in the data buffer.
AudioStatus (DStatus subcall)

This subcall applies to CD-ROM only.

In the DStatus parameter block for this call, statuscode = $80CC. In the status list, commandData
contains this information:

byte Meaning

$00 SCSI command: $CC

%01 SCSI command flags: $00
$02-0B (reserved)

Audio status data is returned in the data buffer.

DControl (§202E)

Please see Chapter 1 of this Volume for a description of the general format of the DControl call; the
SCSI driver supports all standard DControl subcalls.

60 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/OS Reference (Volume 2) APDA Draft

All of the device-specific SCSI driver DControl subcalls use this same format for the control list (the
buffer poinled to by controlListPtr):

Offset Description
$001_ $0000 ~ Reserved, must be zero
s02|_]
- ~ 12 bytes of data

. commandData

$OE — pointer to a buffer that may contain additional

| bufferPtr - information

The commandData parameter and the contents of the data buffer pointed to by buf ferptr vary
for each subcall.

RezeroUnit (DControl subcall)

In the DControl parameter block for this call, contro1lcode = $8001. In the control list,
commandData contains this information:

byte Meaning

$00 : SCSI command: $01

$01 SCSI command flags: $00
$02-0B (reserved)

The data buffer is reserved.

CHAPTER 2 The SCSI Driver

1/31/89

61

GS/OS Reference (Volume 2) APDA Draft

ModeSelect (DControl subcall)

In the DControl parameter block for this call, contro1code = $8015. In the control list,
commandData contains this information:

byte Meaning

$00 SCSI command: $15

$01 SCSI command flags: $00
$02-0B (reserved)

The data buffer contains the mode-select data to be sent.
Start/StopUnit (DControl subcall)

In the DControl parameter block for this call, contro1code = $801B. In the control list,
commandData contains this information:

byte Meaning

$00 SCSI command: $1B

$01 SCSI command flags: $00

$02-$03 (reserved)

$04 start/stop flag: $00 = stop
$01 = start

$05-0B (reserved)

The data buffer is reserved.

Prevent/AllowRemoval (DControl subcall)

In the DControl parameter block for this call, cont rolcode = $801E. In the control list,
commandData contains this information:

byte Meaning

$00 SCSI command: $1E

$01 SCSI command flags: $00

$02-$03 (reserved)

$04 prevent/allow flag: $00 = allow
$01 = prevent

$05-0B (reserved)

The data buffer is reserved.

62 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

1/31/89

GS/0OS Reference (Volume 2) APDA Draf 1/31/89

& Eject call: On an Eject call (control code = $0002), the SCSI driver always first issues an Allow
Removal call before ejecting the disk; any preexisting prevent-removal condition is therefore
disabled. If you want prevent-removal to be enabled after ejection, reissue the Prevent
Removal call.

Seek (DControl subcall)

In the DControl parameter block for this call, cont ro1code = $802B. In the control list,
commandData contains this information:

byte Meaning

$00 SCSI command: $2B

$01 SCSI command flags: $00
$02-05 seek block number, msb first
$06-0B (reserved)

The data buffer is reserved.
AudioSearch (DControl subcall)

This subcall applies to CD-ROM only.

In the DControl parameter block for this call, controlcode = $80C8. In the control list,
commandData contains this information:

byte Meaning
$00 SCSI command: $C8
$01 SCSI command flags: $00
$02 play flag: $00 = pause after search complete
$10 = play after search complete
$03 play mode: $00-OF
$04-07) search address, msb first
08 address type:
$00 = type 0
$40 = type 1
$80 = type 2
$09-0B (reserved)

The bufferptr parameter is reserved.

CHAPTER 2 The SCSI Driver 63

GS/OS Reference (Volume 2) APDA Draft 1/31/89

AudioPlay (DControl subcall)

This subcall applies to CD-ROM only.

In the DControl parameter block for this call, contro1code = $80C9. In the control list,
commandData contains this information:

byte Meaning
$00 SCSI command: $C9
$01 SCSI command flags: $00
$02 stop flag: $00 = playback address is start address for play
$10 = playback address is stop address for play
$03 play mode: $00-0F
$04-07 playback address, msb first.
%08 address type:
$00 = type 0
$40 = type 1
$80 = type 2
$09-0B (reserved)

The bufferpPtr parameter is reserved. The call will return an error if the subcall is not successful.
AudioPause (DControl subcall)

This subcall applies to CD-ROM only.

In the DControl parameter block for this call, controlcode = $80CA. In the control list,
commandData contains this information:

byte Meaning

$00 SCSI command: $CA

$01 SCSI command flags: $00

$02 pause flag: $00 = release pause
- $40 = start pause

$03-0B (reserved)

The bufferptr parameter is reserved. The call will return an error if the subcall is not successful.

64 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/OS Reference (Volume 2) APDA Draft 1/31/89

AudioStop (DControl subcall)

This subcall applies to CD-ROM only.

In the DControl parameter block for this call, controlcode = $80CB. In the control list,
commandData contains this information:

byte Meaning

$00 SCSI command: $CB

$01 SCSI command flags: $00

$02-05 stop address, msb first

$06 address type:
$00 = type 0
$40 = type 1
$80 = type 2

$07-0B (reserved)

The butferptr parameter is reserved. The call will return an error if the subcall is not successful.

AudioScan (DControl subcall)

This subcall applies to CD-ROM only.

In the DControl parameter block for this call, controlcode = $80CD. In the control list,
commandData contains this information:

byte Meaning
$00 SCSI command: $CD
$01 SCSI command flags: $00
$02 direction flag: $00 = fast forward
$40 = fast reverse
$03 (reserved)
$04-07 scan starting address, msb first.
$08 : address type:
$00 = type 0
$40 = type 1
$80 = type 2
$09-0B (reserved)

The bufferptr parameter is reserved. The call will return an error if the subcall is not successful.

CHAPTER 2 The SCSI Driver 65

GS/0S Reference (Volume 2) APDA Draft 1/31/89

Chapter 3 The AppleDisk 3.5 Driver

The Apple 3.5 drive is a block device that can read 3.5-inch disks in formats compatible
with the ProDOS or Macintosh file systems, and connects directly to the Apple IIGS disk
port.

This chapter describes the GS/OS AppleDisk 3.5 driver, a GS/OS loaded driver that
controls the Apple 3.5 drive. It has general information on the driver and includes
descriptions of any driver-specific implementation of the standard GS/OS device calls. »

67

GS/0S Reference (Volume 2) APDA Draft 1/31/89

General information

The Apple 3.5 drive is a block device that reads and writes 3.5-inch disks and can handle several types
of disk formats, including those used by the ProDOS file system and the Macintosh file systems.
Although the Apple 3.5 drive is not an intelligent drive—it cannot interpret software command
streams—its controller is accessed through SmartPort firmware, and recognizes a set of device-
specific extended SmartPort Control commands. The drive connects directly to the Apple 1IGS disk
port or to a SmartPort-compatible expansion card in a slot. See the Apple lIGS Firmware Reference
for more information.

The AppleDisk 3.5 driver is a loaded driver that uses the SmartPort firmware protocol to
support one or two Apple 3.5 drives. The AppleDisk 3.5 driver operates independently of the
system speed. The driver supports a variety of formatting options: 400 KB or 800 KB disks, and
either 2:1 or 4.1 interleave.

Device calls to the AppleDisk 3.5 driver

Applications can access the AppleDisk 3.5 driver either through a file system translator (such as
ProDOS) or by making device calls. Applications can make these device calls to the AppleDisk 3.5
driver:

Dlinfo

DStatus

DControl

DRead

DWrite

The rest of this chapter describes the differences between the way the AppleDisk 3.5 driver handles
these device calls and the way a standard driver handles these calls. Any calls or subcalls not
discussed here are handled exactly as documented in Chapter 1.

68 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/0S Reference (Volume 2) APDA Draft 1/31/89

DStatus ($202D)

This call is used to obtain current status information from the device or the driver. The AppleDisk
3.5 driver suppports this standard set of DStatus subcalls:

status code Subcall name

$0000 GetDeviceStatus
$0001 GetConfigParameters
$0002 GetWaitStatus

$0003 GetFormatOptions
GetDeviceStatus:

This subcall returns a general status followed by a longword specifying the number of blocks
supported by the device.

The driver returns a disk-switched condition under appropriate circumstances. For a description
of those conditions, see the DriverStatus call in Chapter 11, “GS/OS Driver Call Reference.”

GetConfigParameters:

The AppleDisk 3.5 driver has no parameters in its configuration parameter list and returns with a
status list length word of zero and a transfer count of $0000 0002.

GetFormatOptions:

This subcall returns a list of formatting options that may be selected using the DControl subcall
SetFormatOptions prior to issuing a FormatDevice call to a block device. The AppleDisk 3.5 driver
returns format options as follows: '

transferCount $0000 0038 (56 bytes returned in list)

statusList Option list header:
$0003 Three options in list
$0003 All three options to be displayed
$0001 Recommended default is option 1
$0000 Current media formatting is unknown

CHAPTER 3 The AppleDisk 3.5 Driver 69

GS/OS Reference (Volume 2)

70

$00000320
$0200

$0190

VOLUME 2 Devices and GS/OS

APDA Draft .

Option-eniry 1:

Option 1

no linked option

Apple format/size in kilobytes
Block count = 1600 ‘
Block size = 512 bytes
Interleave factor = 2:1 v
Media size = 800 kilobytes

Option-entry 2:

Option 2

no linked option

Apple format/size in kilobytes
Block count = 1600

Block size = 512 bytes
Interleave factor = 4:1
Media size = 800 kilobytes

Option-eniry 3:

Option 3

no linked option

Apple format/size in kilobytes
Block count = 800 X
Block size = 512 bytes
Interleave factor = 2:1

Media size = 400 kilobytes .

PART 1 Using GS/OS Device Drivers

1/31/89

GS/0OS Reference (Volume 2) APDA Draft 1/31/89

DControl ($202E)

This call is used to send control information to the device or the device driver. The AppleDisk 3.5
driver supports this standard set of DControl subcalls:

Control code Subcall name

$0000 ResetDevice

$0001 FormatDevice

$0002 EjectMedia

$0003 SetConfigParameters
$0004 SetWaitStatus

$0005 SetFormatOptions
$0006 AssignPartitionOwner
$0007 ArmSignal

$0008 DisarmSignal

Only the following subcalls are nonstandard for the AppleDisk 3.5 driver.
ResetDevice:

This control call is used to reset a particular device to its default settings. This call has no function
with the AppleDisk 3.5 driver and returns with no error.

SetConfigParameters:
This call has no function with the AppleDisk 3.5 driver and returns with no error.
SetWaitStatus:

All block devices, including the Apple 3.5 drive, operate in wait mode only. Setting the AppleDisk 3.5
driver to wait mode results in no error. If a call is issued to set the AppleDisk 3.5 driver to no-wait
mode, then error $22 (invalid parameter) is returned.

SetFormatOptions:

This control call sets the current format option as specified in the format option list returned from
the GetFormatOptions subcall of DStatus. The AppleDisk 3.5 driver does not support overriding
interleave factors and must have interleaveFactor set to $0000.

AssignPartitionOwner:

This call has no function with the AppleDisk 3.5 driver and returns with no error.

CHAPTER 3 The AppleDisk 3.5 Driver 71

GS/OS Reference (Volume 2) APDA Draft 1/31/89

ArmSignal:
This call has no function with the AppleDisk 3.5 driver and returns with no error.
DisarmSlgnal:

This call has no function with the AppleDisk 3.5 driver and returns with no error.

DRead ($202F)

This call returns the requested number of bytes from the disk starting at the block number
specified. The request count must be an integral multiple of the block size. Valid block sizes for
this driver are $0200 or $020C (512 or 524) bytes per block.

DWrite ($2030)

This call writes the requested number of bytes to the disk starting at the block number specified.
The request count must be an integral multiple of the block size. Valid block sizes for this driver are
$0200 or $020C (512 or 524) bytes per block.

72 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/OS Reference (Volume 2) APDA Draft 1/31/89

Chapter 4 The UniDisk 3.5 Driver

The UniDisk 3.5 drive is a block device that can read 3.5-inch disks in formats compatible
with the ProDOS or Macintosh file systems, and connects directly to the Apple IIGS disk
port.

This chapter describes the GS/OS UniDisk 3.5 driver, a GS/OS loaded driver that controls
the UniDisk 3.5 drive. It has general information on the driver and includes descriptions of
any driver-specific implementation of the standard GS/OS device calls. w

GS/0OS Reference (Volume 2) APDA Draft 1/31/89

General information

The UniDisk 3.5 drive is a block device that reads and writes 3.5-inch disks and can handle several
types of disk formats, including those used by the ProDOS file system and the Macintosh file
systems. It is an intelligent device that supports standard SmartPort protocols. The drive
connects directly to the Apple IIGS disk port or to a SmartPort-compatible expansion card in a slot.
See the Apple IIGS Firmware Reference for more information.

The UniDisk 3.5 driver is a loaded driver that supports up to four total UniDisk 3.5 drives on the
diskport.

& Note: The Apple lle UniDisk 3.5 card is not compatible with the Apple IIGS.

The UniDisk 3.5 driver operates independent of the system speed. The driver supports a variety of
formatting options: 400 KB or 800 KB disks, and either 2:1 or 4:1 interleave.

Device calls to the UniDisk 3.5 driver

Applications access a UniDisk 3.5 device either by making a file call that goes through a file system
translator (FST), or by making a GS/OS device call. The UniDisk 3.5 driver supports these standard
device calls from an application:

Dinfo

DStatus

DControl

DRead

DWrite

The rest of this chapter describes the differences between the way the UniDisk 3.5 driver handles
these device calls and the way a standard driver handles these calls. Any calls or subcalls not
discussed here are handled exactly as documented in Chapter 1.

74 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/0S Reference (Volume 2) APDA Draft 1/31/89
DStatus ($202D)
the UniDisk 3.5 driver supports the standard set of status subcalls. Only the following are
implemented in a nonstandard way.
GetDeviceStatus:
This call returns a general status followed by a longword specifying the number of blocks
supported by the device.

The driver returns a disk-switched condition under appropriate circumstances. For a description
of those conditions, see the DriverStatus call in Chapter 11, “GS/OS Driver Call Reference.”
GetConfigParameters:
The UniDisk 3.5 has no parameters in its configuration parameter list. GetConfigParameters returns
a transfer count of $0000 0002, and a status list length word of $0000.
GetWaitStatus:
Block devices operate in wait mode only. For UniDisk 3.5 devices, GetWaitStatus always returns a
transfer count of $0000 0002, and a wait status value of $0000 in the status list.
GetFormatOptions:
This call returns a list of formatting options that may be selected using a (DControl)
SetFormatOptions subcall prior to issuing a (DControl) Format subcall to a block device.

CHAPTER 4 The UniDisk 3.5 Driver 75

GS/OS Reference (Volume 2) APDA Draft 1/31/89

The UniDisk 3.5 driver returns a format options list as follows:

transferCount $00000038 (56 bytes returned in list)

statusList Options list header:

$0001 Three options in list

$0001 One displayed option

$0001 Default is option 1

$0000 Current media formatted with option 1

Option-eniry 1:

$0001 Option 1

$0000 no linked option

$0004 Apple format/size in kilobytes

$00000640 Block count = 1600

$0200 Block size = 512 bytes

$0004 Interleave factor = 4:1

$0320 Media size = 800 KB
DControl ($202E)

The UniDisk 3.5 driver supports the standard set of status subcalls. Only the following calls are
implemented in a nonstandard way.

ResetDevice:

This subcall has no function with the UniDisk 3.5 driver and returns with no error.
SetConfigParameters:

This subcall has no function with the UniDisk 3.5 driver and returns with no error.
Setwait Mode: .

All block devices operate in wait mode only. Setting the UniDisk 3.5 driver to wait mode results in
no error. If a call is issued to set the UniDisk 3.5 driver to no-wait mode, then error $22 (invalid
parameter) is returned.

76 VOLUME 2 Devices and GS5/OS PART I Using GS/OS Device Drivers

GS/0S Reference (Volume 2) APDA Draft 1/31/89

SetFormatOptions:

The UniDisk 3.5 driver supports the format options listed earlier in this chapter, under the DStatus
subcall GetFormatOptions. Any one of those options can be specified in the parameter
formatOptionNum for this subcall. However, the UniDisk 3.5 driver does not support
overriding interleave factors, so interleaveFactor for this call must be $0000.

AssignPartitionOwner:

This call has no function with the UniDisk 3.5 driver and returns with no error.
ArmSignal:

This call has no function with the UniDisk 3.5 driver and returns with no error.
DisarmSignal:

This call has no function with the UniDisk 3.5 driver and retuns with no error.

DRead ($202F)

This call returns the requested number of bytes from the disk starting at the block number
specified. The request count must be an integral multiple of the block size.

Valid block sizes for the UniDisk 3.5 driver are $0200 or $020C (512 or 524) bytes per block.
Issuing this call with a block size other than $0200 or $020C will result in error $22 (invalid parameter).

DWrite ($2030)

This call writes the requested number of bytes to the disk starting at the block number specified.
The request count must be an integral multiple of the block size.

Valid block sizes for this driver are $0200 or $020C (512 or 524) bytes per block. Issuing this call
with a block size other than $0200 or $020C will result in error $22 (invalid parameter).

CHAPTER 4 The UniDisk 3.5 Driver 77

GS/OS Reference (Volume 2) APDA Draft 1/31/89

Chapter 5 The AppleDisk 5.25 Driver

Apple 5.25 drives, UniDisk drives, DuoDisk drives, and Disk II drives are block devices that
read 5.25-inch floppy disks and are used widely with the Apple 11 family of computers.
Disks formatted under the ProDOS, Pascal, or DOS 3.3 file systems can be read from these
devices. The drives can plug directly into the Apple IIGS disk port or they can connect to
interface cards in slots.

Under GS/0S, these drives are controlled by the AppleDisk 5.25 driver. This chapter
describes how the the AppleDisk 5.25 driver works and what device calls it accepts. It also
describes the the physical and logical formats used by the AppleDisk 5.25 driver on 5.25-
inch media. =

& For convenience, in this chapter the term Apple 5.25 drive is used to refer
to all manifestations of the 5.25-inch drive—including Apple 5.25, UniDisk,
DuoDisk, and Disk 1I.

GS/0S Reference (Volume 2) APDA Draft 1/31/89

General information

The AppleDisk 5.25 driver is a loaded driver that supports up to 14 Apple 5.25 drives and operates
with either an interface card in a slot or the built-in WM interface. The AppleDisk 5.25 driver
functions independently of the system speed and does not have the resident slot limitation
inherent in the Apple 1IGS. This means that, although the Apple IIGS normally allows Apple 5.25
drives to operate at accelerated speed in slots 4 through 7 only, the AppleDisk 5.25 driver permits
Apple 5.25 drives to to operate at accelerated speed in all slots (1 through 7), with either one or two
Apple 5.25 drives per slot.

The Apple 5.25 drive provides no means for detection of disk-switched errors. The AppleDisk 5.25
driver provides a simulation of disk-switched detection by forcing any file system translator (FST)
interfacing to the Apple 5.25 drive to identify the volume currently on line. This simulation of disk-
switched errors is adequate to prevent writing to the wrong volume, but it is not adequate to
validate the integrity of the cache. Therefore, the AppleDisk 5.25 driver does not implement
caching. Also, the Status subcall GetDeviceStatus never returns a disk-switched status.

Device calls to the AppleDisk 5.25 driver

Applications can access the Apple 5.25 drive either through an FST or by making device calls.
Applications can make these standard device calls to the AppleDisk 5.25 driver:

DInfo

DStatus

DControl

DRead

DWrite

The rest of this chapter describes how the AppleDisk 5.25 driver handles any of the above device
calls differently from the standard ways documented in Chapter 1. Any calls or subcalls not
discussed here are handled exactly as documented in Chapter 1.

80 VOLUME 2 Devicesand GS/OS PART I Using GS/OS Device Drivers

GS/0S Reference (Volume 2) APDA Draft 1/31/89
DStatus ($202D)
This call is used to obtain current status information from the device or the driver. The AppleDisk
5.25 driver supports this standard set of status subcalls:
Status code subcall name
$0000 GetDeviceStatus
$0001 GetConfigParameters
$0002 ~ GetWaitStatus
$0003 GetFormatOptions
The following descriptions show how the the AppleDisk 5.25 driver handles various DStatus
subcalls differently from the standard descriptions given in Chapter 1 of this Volume.
GetDeviceStatus:
This call retumns a general status word followed by a longword specifying the number of blocks
supported by the device. Because there is no way to validate media insertion on an Apple 5.25 drive,
bit 4 of the device status word is always set to 1.
GetConfigParameters:
The AppleDisk 5.25 driver has no parameters in its configuration parameter list. It returns a length
word of zero in the status list and transfer count of $0000 0002 in the parameter block.
GetFormatOptions:
This call returns a list of formatting options that you can select using the DControl subcall
SetFormatOptions prior to issuing a format call to a block device. The AppleDisk 5.25 driver returns
format options as follows:
transferCount $00000028 (40 bytes returned in list)
statusList Option-list header:

$0002 Two options in list

$0001 Only one to be displayed

$0001 Recommended default is option 1

$0000 Formatting option of current media is unknown

CHAPTER 5 The AppleDisk 5.25 Driver 81

GS/0S Reference (Volume 2) APDA Draft 1/31/89

Option-eniry 1:

$0001 Option 1
$0002 This option is linked to option 2
$0004 Apple format/size in kilobytes
$00000118 Block count = 280
$0200 Block size = 512 bytes
$0000 Interleave factor = n/a (fixed physical interleave)
$008F Media size = 140 KB
Option-entry 2:
$0002 Option 2
$0000 no linked options
$0004 Apple format/size in kilobytes
$0000 0230 Block count = 560
$0100 Block size = 256 bytes
$0000 Interleave factor = n/a (fixed physical interleave)
$008F Media size = 140 KB
DControl ($202E)

This call is used to send control information to the device or the device driver. The AppleDisk 5.25
driver supports this standard set of DControl subcalls:

Control code
$0000
$0001

subcall name
ResetDevice
FormatDevice
EjectMedia
SetConfigParameters
SetWaitStatus
SetFormatOptions
AssignPartitionOwner
ArmEvent
DisarmEvent

The rest of this chapter describes the differences between the way the AppleDisk 5.25 driver
handles DControl subcalls and the way a standard driver handles these subcalls. See Chapter 1 for
complete documentation of DControl.

82 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/0S Reference (Volume 2) APDA Draft 1/31/89

ResetDevice:

This call has no function for the AppleDisk 5.25 driver and returns with no error.
FormatDevice:

This subcall is used to format a disk. The AppleDisk 5.25 driver ignores the control list.
EjectMedia: "

The Apple 5.25 drive does not have any mechanism for ejecting disks. This call has no function with
the AppleDisk 5.25 driver and returns with no error.

SetConfigParameters:

The AppleDisk 5.25 driver has no configuration parameters. This call has no function and returns
with no error.

SetWaitStatus:

All block-device drivers, including the AppleDisk 5.25 driver, operate in wait mode only. Setting the
AppleDisk 5.25 driver to wait mode results in no error; attempting to set the driver to no-wait
mode results in error $22 (invalid parameter).

SetFormatOptions:

Because only a single fixed physical interleave is supported, this call works with either format
option but has no effect on the actual formatting of the media. This call returns with no error.

AssignPartitionOwner:

This call has no function with the AppleDisk 5.25 driver and returns with no error.
ArmSignal:

This call has no function with the AppleDisk 5.25 driver and returns with no error.
DisarmSignal subcall

This call has no function with the AppleDisk 5.25 driver and returns with no error.

CHAPTER 5 The AppleDisk 5.25 Driver 83

GS/OS Reference (Volume 2) APDA Draft 1/31/89

DRead ($202F)

This call returns the requested number of bytes from the disk starting at the block number
specified. The request count must be an integral multiple of the block size. The AppleDisk 5.25
driver supports a block size of 256 bytes (for DOS 3.3) or 512 bytes (for ProDOS and Pascal) and block
counts of 560 and 280 blocks, respectively. Logical interleaving on the disk varies with the block size.

& Disk-switched detection: In order to force disk-switched detection on an Apple 5.25 drive, the
AppleDisk 5.25 driver returns a disk-switched error on any read or write request, if there has not
been a media access in the previous one second. If your application is directly accessing the
AppleDisk 5.25, the application has to handle the disk-switched error. The normal procedure is
to retry once and only once.

DWrite ($2030)

This call writes the requested number of bytes to the disk starting at the block number specified.
The request count must be an integral multiple of the block size. The AppleDisk 5.25 driver
supports a block size of 256 bytes (for DOS 3.3) or 512 bytes (for ProDOS and Pascal) and block
counts of 560 and 280 blocks, respectively. Logical interleaving on the disk varies with the block size.

& Disk-switched detection: In order to force disk-switched detection on an Apple 5.25 drive, the
AppleDisk 5.25 driver returns a disk-switched error on any read or write request, if there has not
been a media access in the previous one second. If your application is directly accessing the
AppleDisk 5.25, the application has to handle the disk-switched error. The normal procedure is
to retry once and only once.

84 VOLUME 2 Devices and GS/OS PART [Using GS/OS Device Drivers

GS/0S Reference (Volume 2) APDA Draft 1/31/89

AppleDisk 5.25 formatting

The AppleDisk 5.25 driver supports only 35-track, 16-sector formatting. Media is formatted with a
physical 1:1 interleave. Logical interleave is achieved by using one of two interleave translation
tables. DOS 3.3 operates on 256-byte sectors; ProDOS and Pascal operate on 512-byte blocks
consisting of two contiguous “logical sectors.” Both ProDOS and Pascal use a common logical
sector interleave of 2:1 while DOS 3.3 uses a logical sector interleave of 4:1.

Logical-to-physical sector translations are shown in the interleave translation tables of Figure 5-
1. The input block size to a media access call controls which translation table is used.

= Figure 5-1 Apple 5.25 drive interleave configurations

ProDOS or Pascal disks:
Logical sector address ~ [o[1]2]3[4]5]6[7[8]9]A[B[C|D[E]F]

Physical sector address |0]2]4]6]8|A|C|E]1]3]5[7|9|B|D|F|

DOS 3.3 disks:
Logical sectoraddress [o|1]2]3]4]|5]6]7]8|9]JA|B]JC|DJE]F]

Physical sector address [0 [D|B]9f7|5|3|1[E[CJA|B]6]4]2]F]

As Figure 5-2 shows, each sector consists of a self-synchronization gap, followed by the sector
address field, followed by another self-synchronization gap, followed by the data field, and ending
with a final gap. The sector address field contains the volume number, track number, sector
number, and checksum for the sector. The data field contains 342 bytes of data and a checksum.
Both the address field and the data field have beginning (mark) and ending (epilogue) markers.

CHAPTER 5 The AppleDisk 5.25 Driver 85

GS/OS Reference (Volume 2)

APDA Draft

Figure 5-2 Apple 5.25 drive sector format

1/31/89

GAP1 ADDRESS FIELD

(Typically 12-85 bytes) MARK | voL | TRK

EC ICSUM| EP!

GAP2
(Typically 5-10 bytes)

E:E:E:&EEE:TE:E:E‘.:E:

| S1SIR|815|8
R ddia

_;gl

e

ST

8

DATA FIELD P

MARK DATA (342 BYTES - - SIX & TWO ENCODED) |CSUM EPILOG (Typically 16-28 bytes)

8:‘3&:&&:&&&&&;'&:&:&. B:[ﬁ:lﬁ:ttﬁ:ga:ggfii%i@&&&a:l&&&a:&:&&&
[1 l

VOLUME 2 Devices and GS/OS

PART I Using GS/OS Device Drivers

GS/OS Reference (Volume 2) APDA Draft 1/31/89

Chapter 6 The Console Driver

The console is a conceptual component of a computer system; it consists of the principal
conduits by which the computer’s operator sends commands to the computer and
receives messages from the computer. On the Apple IIGS, like most personal computers,
the console consists of the keyboard (for input) and the video display screen (for output).

The GS/OS console driver is a loaded driver that allows sophisticated manipulation of
the Apple 11GS text page. It runs in both 40-column and 80-column mode. The console
driver supports many advanced features, while using the standard Apple 11 BASIC and
Pascal control codes. =

& Text mode only: The console driver is for use only by applications that
run in text mode. The console driver does not support the standard Apple
11 Hi-Res or double Hi-Res graphics. If your application uses the
Apple 11GS super Hi-Res graphics screen, it writes to the screen with
toolbox calls. See the Apple IIGS Toolbax Reference.

GS/0S Reference (Volume 2) APDA Draft 1/31/89

General information

The GS/OS console driver allows an application to treat both parts of the console (keyboard and
screen) as a single device that can be read from or written to. Because the console has two parts,
the console driver does also: an input routine and an output routine (see Figure 6-1):

Console output:

The Console Output routine writes to the screen. It supports uppercase, lowercase, inverse, and
MouseText characters. It also includes a suite of control characters with functions such as any-
direction scrolling, character-set selection, and cursor control. Finally, it permits saving of areas of
the screen to off-screen buffers, and selectively saving and restoring text port parameters—in
effect, allowing a simple windowing system.

All commands to the Console Qutput routine are sent as control characters. This allows the
programmer to create strings of commands that will be executed one after another, but requiring
only a single write call. All operations occur in a rectangular subset of the hardware screen known as
the text port. All text outside the text port is protected; that is, that text will not be affected by
any console calls.

Console input:

The Console Input routine accepts characters from the keyboard. There are two basic input modes:
raw mode allows for simple keyboard input, whereas a more advanced user-input mode allows for
text-line editing and application-defined terminator keys. User-input mode also supports features
such as no-wait mode (which allows an application to continue running while input is pending) and
interrupt keys (which allow application-defined editing keystrokes, such as using arrow keys to
change a setting or using a key combination—like Apple - >—to bring up a help screen).

The application can supply a default string to the user input mode. If the default string
contains more characters than the width of the input field, the extra characters are retained;
however, they are displayed only if characters are deleted from the visible part of the field.
Horizontal scrolling of the input field is not supported.

The application can also specify options such as overstrike or insert mode on entry. A flashing
block cursor signifies overstrike mode; a flashing underline cursor specifies insertion. The cursor
flash rate is based on the current control panel settings.

The user can insert control characters into the input string by pressing Apple-Control-
character, where character is replaced by any keyboard character. Control characters are displayed
on the screen in inverse, but are returned in the input string as codes from $00 to $1F. All normal
ASCII characters are returned in the range $20-$7F. -

88 VOLUME 2 Devices and GS/OS PART [Using GS/OS Device Drivers

GS/0S Reference (Volume 2)

APDA Draft

The terminators used by the Console Input routine are more advanced than the newline characters
specified in GS/OS (see the description of the Newline call in Chapter 7 of Volume 1). User-input
specified terminators can include not only ASCII codes for the terminator characters, but also the
keyboard modifier bits. For example, the Return and Enter keys could be given different functions
by separately specifying terminators, one with the keypad flag set and one with it clear.

s Figure 6-1 Console driver /0 routines

The console driver

J

Console Input routine

| I

Raw Mode User Input
Mode

Iles Keyboard

J

Console Output routine

CHAPTER 6 The Console Driver

1/31/89

89

GS/0S Reference (Volume 2) APDA Draft 1/31/89

The Console Output routine

The Console Output routine handles writing to the screen. It supports different screen sizes and
defines subareas of the screen called text ports, which can be used to protect parts of the screen.
All commands to the Console Output routine are sent as control characters.

Screen size

The default screen size (in columns of width) is always 80 columns. You can change the screen size
by the writing the correct screen control code, as described in the section “Screen Control Codes”
later in this chapter.

s The 40-column screen consists of 40 columns of text in 24 lines. The upper-left comer is 0,0 and
the lower-right corner is 39,23.

s The 80-column screen consists of 80 columns of text in 24 lines. The upper-left comer is 0,0 and
the lower-right corer is 79,23.

The text port

The driver maintains an active text port in which all activity occurs. The default size of this text
port is the entire screen. However, subsequent calls can be made to resize the port. All text outside
the text port is protected—no console driver calls can affect that text.

90 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/0OS Reference (Volume 2) APDA Draft 1/31/89

Two control commands allow the application to save the current text port (the port
definitions, not the actual text of the port) and start with a new one, and then to retrieve the
original port. This allows a simple windowing system. In addition, driver-specific control calls
allow the application to read the text port data structure; however, the values in the data structure
can only be changed with control commands (see the section “Screen Control Codes” later in this
chapter). This is the structure of the text port record:

TextPortRec =
byte

{

ch,

cv,
windLeft,
windTop,
windRight,
windBottom,
windWidth,
windLength,
consWrap,
consAdvance,
consLF,
consScroll,
consVideo,
consDLE,
consMouse,
consFill }

Here are the definitions for the fields:

ch The current location of the cursor (horizontal and vertical, from the upper-left corner).

cv The cursor is always within the current text port, but is expressed in absolute screen
coordinates.
Default= 0,0

windLeft Boundaries of the current text port, in absolute screen coordinates.

windTop windTop must be <= windBottom, and

windRight windLe ft must be <= windright.

windBottom Default = Fuli Hardware Screen.

windWidth Size of the current text port, calculated as follows:

windLength windWidth = windLeft - windRight + 1

windLength = windTop - windBottom + 1.
Default = Full Hardware Screen

CHAPTER 6 The Console Driver 91

GS/OS Reference (Volume 2) APDA Draft 1/31/89

consWrap

consAdvance

consLF

consScroll

consVideo

consDLE

consMouse

consFill

A Boolean flag: 0 = FALSE, 128 ($80) = TRUE. If TRUE, the cursor wraps to the first
column of the next line after printing in the rightmost column.
Default = TRUE

A Boolean flag: 0 = FALSE, 128 ($80) = TRUE. If TRUE, the cursor moves one space to the
right after printing.
Default = TRUE

A Boolean flag: 0 = FALSE, 128 ($80) = TRUE. Carriage return characters always move the
cursor to the first column of the text port. If consLF is TRUE, the cursor will also move
to the next line (note that this could cause a scroll—see next flag).

Default = TRUE

A Boolean flag: 0 = FALSE, 128 ($80) = TRUE. If TRUE, the screen will scroll if moved past
the top or bottom of the screen.
Default = TRUE

A Boolean flag: 0 = FALSE, 128 ($80) = TRUE. If TRUE, output is displayed in normal video.
If FALSE, output is displayed in inverse video.
Default = TRUE

A Boolean flag: 0 = FALSE, 128 ($80) = TRUE. If TRUE, character $10 (DLE) is interpreted as
a space expansion character; when it is encountered in the input stream, the ASCII value of
the next character minus 32 becomes the number of spaces to output.

Default = TRUE

A Boolean flag: 0 = FALSE, 128 ($80) = TRUE. If TRUE, MouseText is turned on. When
MouseText is on, inverse uppercase characters are displayed as MouseText.
Default = FALSE

This is the fill character used for clearing areas of the screen. It is an actual screen byte—
the value of the character as stored in memory—so the high-order bit must be turned on
for normal display. For example, spaces (ASCII $20) should be specified by $A0. The value
in this field is altered whenever inverse or normal modes are selected.

Default = $A0 (Screen Space)

92 VOLUME 2 Devices and GS/OS PART [Using GS/OS Device Drivers

GS/0S Reference (Volume 2) APDA Draft 1/31/89

Charécter set mapping

Output characters go through a number of stages before they are placed in screen memory and
appear on the screen. The console driver always uses the Apple 1IGS alternate character set, which
includes uppercase and lowercase characters, punctuation, numbers, inverse characters, and
MouseText characters.

Normally, the console driver accepts input in the standard, “7-bit” ASCII range (00-$7F). This
input is then mapped to the screen based on the current display mode and MouseText mode
settings (turned on or off through control codes in the character stream,; see the section “Screen
Control Codes” later in this chapter). In addition, input ASCII in the range $80-$FF is mapped
directly to the inverse of whatever the current display mode is. Thus screen bytes (characters as
stored in screen memory) may have values quite different from their original input ASCII values.

Table 6-1 summarizes the output mapping. For both normal and inverse display modes, and
with MouseText mapping both enabled and disabled, the table compares input ASCII values with
the characters as displayed on the screen and with the equivalent values as stored in screen memory.
The table also shows that setting the high-order bit (special direct inverse mode) is a shortcut to
getting the inverse of the current mode.

& Mapping is nonsequential: Note from Table 6-1 that in some cases sequential ASCII values in
the input stream (such as $3F and $40) may map to nonsequential values in screen memory
(such as $BF and $80, respectively). Specifically, the range of values interpreted as uppercase
characters may not be continuous with the ranges interpreted as special characters and
lowercase characters. If your application retrieves bytes directly from screen memory, it may
have to compensate for this.

CHAPTER 6 The Console Driver 93

GS/OS Reference (Volume 2) APDA Draft - 1/31/89
= Table 61 Console driver character mapping
All numbers are hexadecimal
Normal display mode Inverse display mode

MouseText disabled:

Input values As displayed As stored As displayed As stored

00-1F Control characters n/a Control characters n/a
203F Special characters AO-BF Inverse special 20-3F

40-5F Uppercase letters 80-9F Inverse upper 00-1F

60-7F Lowercase letters EO-FF Inverse lowercase 60-7F

MouseText enabled:

Input values As displayed As stored As displayed As stored

00-1F Control characters na Control characters n/a

20-3F Special characters AO-BF Inverse special 20-3F

40-5F Uppercase letters 80-9F MouseText characters 40-5F

60-7F Lowercase letters EQ-FF Inverse lowercase 60-7F

Special direct inverse mode:

Input values As displayed As stored As displayed As stored

80-9F Uppercase inverse 00-1F Uppercase normal 80-9F

AO-BF Inverse special 20-3F Special chars normal mode AQ-BF

CO-DF MouseText characters 40-5F Uppercase normal CO0-DF

EO-FF Inverse lower 60-7F Lowercase normal EO-FF

% VOLUME 2 Devices and GS/OS

PART I Using GS/OS Device Drivers

GS/0S Reference (Volume 2) APDA Draft 1/31/89

Screen control codes

In any mode, values from $00 to $1F are interpreted as control codes. Some control codes are one-
byte commands; others use from two to four bytes of operands, which follow the control
character. If an output stream ends in the middle of a multibyte sequence, the console driver
simply uses the first bytes of the next output stream. The actual command is not executed until
the entire command string has been read. Here are the defined control codes:

$00 Null

No operation is performed.

$01 Save Current Text Port and Reset Default Text Port

Saves the current text port and resets to the default text port. If the system is out of
memory, no error is returned, and the text port is simply reset.

$02 Set Text Port Size

Accepts the next four bytes as absolute screen coordinates + 32. Sets the current text port
to the new parameters. The parameters are in the following order: windLeft, windTop,
windRight, windBottom. Any parameter outside of the physical screen boundaries is
clipped to a legal value. The cursor is set to the upper-left comer of the new text port.

$03 Clear from Beginning of Line

Clears all characters from the left edge to and including the cursor. Sets them to the
current consFill character.

$04 Pop Text Port

Restores the text port to the most recently saved value (see code $01, Push and Reset Text
Port). If no saved ports exist, resets the text port to the default values. If an 80-column
text port is pushed and subsequently restored in 40-column mode, the text port may be
altered to fit in the 40-column screen (see code $11, Set 40-Column Mode).

$05 Horizontal Scroll

Interprets the next byte as an 8-bit signed integer depicting the number () of columns to
shift. N of zero is a null operation. If N is less than zero, the text port is shifted to the
left; N greater than zero shifts to the right. If the shift magnitude is equal to or greater
than windwidth, the text port is cleared.

CHAPTER 6 The Console Driver 9%

GS/OS Reference (Volume 2) APDA Draft 1/31/89

$06

$07

$08

$09

$0A

$0B

$0C

$0D

9%

The shifted characters are moved directly to their destination location. The space vacated
by the shifted characters is set to the current fill character (see consFill). Characters
shifted out of the text port are removed from the screen and are not recoverable.

Set Vertical Position

Interprets the next byte as a textport-relative vertical posmon + 32. If the destination is
outside the current textport, the cursor is moved to the nearest edge.

Ring Bell
Causes the System Beep to be played. It has no effect on the screen.
Backspace

Moves the cursor one position to the left. If the cursor was on the left edge of the text
port and conswrap is TRUE, the cursor is placed one row higher and at the right edge. If
the cursor was also on the topmost row and consscrol1l is TRUE, the text port will
scroll backwards one line.

Tab (no operation)
This command is ignored.
Line Feed

Causes the cursor to move down one line. If at the bottom edge of the text port and
consscroll is TRUE, the text port scrolls up one line.

Clear to End of Text Port

Clears all characters from the cursor to the end of the current text port to the current
consFill character.

Clear Text Port and Home Cursor
Clears the entire text port and resets the cursor to windLeft, windTop.
Carriage Return

Resets the cursor to the left edge of the text port; if consLF is TRUE, performs a line feed
(see $0A line feed).

VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/OS Reference (Volume 2) APDA Draft 1/31/89

$OE

$OF

$10

$11

$12

$13

$14

Set Normal Display Mode

After this character, it displays all subsequent characters in normal mode.
Set Inverse Display Mode

After this character, it displays all subsequent characters in invefse mode.
DLE Space Expansion

If consDLE is TRUE, it interprets the next character as number of spaces + 32, and the
correct number of spaces is issued to the screen. If consDLE is FALSE, the DLE character is
ignored and the following character is processed normally.

Set 40-Column Mode

Sets the screen hardware for 40-column display. If changing from 80-column display,
copies the first 40 columns of the 80-column display into the 40-column display.

If the current text port does not fit in the 40-column screen, it is adjusted by one of two
methods:

s If the text port is 40 columns or narrower, the entire text port (left side, right side,
and cursor) is slid over until the right edge is collinear with the right edge of the
screen.

s If 41 columns or wider, the port becomes 40 columns and the cursor moves to the
left edge.

Set 80-Column Mode

Sets the screen hardware for 80-column display. If changing from 40-column display,
copies the 40-column data to the left half of the 80-column display and clears the right half
of the screen to the consFil1 character.

Clear from Beginning of Text Port

Clears all characters from the beginning of the text port to and including the cursor
location.

Set Horizontal Position

Interprets the next byte as a textport—relative horizontal position + 32. If the destination
is outside the current textport, the cursor is moved to the nearest edge.

CHAPTER 6 The Console Driver 97

GS/OS Reference (Volume 2) APDA Draft 1/31/89

$15

$16

$17

$18

$19

$1A

B

Set Cursor Movement Word

Interprets the next byte as cursor movement control. It sets the values of these Boolean
flags:

4[3{2]1]0]
mJJ

Scroll

Wrap
LF

Advance —

Reserved: must be zero

The functions of the individual flags are described under the section “The Text Port”
earlier in this chapter.

Scroll Down One Line

Scrolls the text port down one line. Does not move the cursor.
Scroll Up One Line

Scrolls the text port up one line. Does not move the cursor.
Disable MouseText Mapping

When MouseText is disabled, uppercase inverse characters are displayed as such (see the
section “Character Set Mapping” earlier in this chapter).

Home Cursor
Resets the cursor to the upper-left comer of the text port.
Clear Line

Clears the line that the cursor is on. Resets the cursor to the leftmost column in the
window.

VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GY0S Reference (Volume 2) APDA Draft 1/31/89

$1B

$1C

$1D

$1E

$1F

Enable MouseText Mapping

When MouseText is enabled, uppercase inverse letters are instead displayed as MouseText
symbols (see the section “Character Set Mapping” earlier in this chapter).

Move Cursor Right

Performs a nondestructive forward-space of the cursor. If consWrap is TRUE, the
cursor might go to the next line; and if consscrol1 is TRUE, the screen might scroll up
one line.

Clear to End of Line

Clears from the position underneath the cursor to the end of the current line.

Go to X,Y

Adijusts the cursor position relative to the text port. The parameters passed are X+32 and
Y+32. If the new locations are outside the current text port, the cursor is placed on the
nearest edge.

Move Cursor Up

Moves the cursor up one line (reverse line feed). If the cursor is already on the uppermost
line of the text port and consscrol1 is TRUE, it will cause a reverse scroll.

The Console Input routine

The console driver’s Console Input routine, especially in user input mode, provides a convenient
method for obtaining user input. It is best suited for fixed-field, fill-in-the-blanks type of input
with simple line-editing commands and program—defined default strings.

The console driver obtains input directly from the keyboard hardware, or from the Apple 1IGS
Toolbox Event Manager if it is active. The Console Input routine monitors not only the keystroke
but the modifier keys (shift, control, option, and so on) and can make decisions based on both the
keystroke and the current modifiers.

CHAPTER 6 The Console Driver 9

GS/0S Reference (Volume 2) APDA Draft

1/31/89

The input port

All information about the current input is contained in the input port, a data structure that is

maintained by the Console Input routine but can be read, modified, and written back by the
application program. The data structure is as follows: ‘

InputPortRec = {

byte fillChar,
defCursor,
cursorMode,
beepFlag,
entryType,
exitType,
lastChar,
lastMod,
lastTermChar,
lastTermMod,
cursorPos,
inputLength,
inputField,
originH,
originX, (word)
originV }

The meanings of each field are as follows:

fillChar The character that fills empty space in the input field. It is displayed by the Console
Output routine so it is usually $20 (normal space) (see the section “Character Set Mapping”
earlier in this chapter). One other useful fill character is the MouseText “ghost space”
character. This can be displayed by setting £i11char to $C9. However, since MouseText
characters are only available in normal mode, do not use MouseText fill characters when

the screen is in inverse mode.
Default = Space ($20)

defCursor The default cursor-mode setting. The value in this field is placed into the cursorMode
field at the beginning of an input cycle from the user. The application controls the cursor

mode the user starts with by controlling this setting.

Default = $80 (cursor starts at end of string, control-character entry disabled, cursor type =

insert).

100 VOLUME 2 Devices and GS/OS PART [Using GS/OS Device Drivers

GS/OS Reference (Volume 2) APDA Draft 1/31/89

cursorMode Contains three status bits that describe the current cursor-mode setting:
{7]6]
Cursor starting position:
1 = over first character
0= end of string
Control-character entry:
1 = enabled
0 = disabled
Cursor type: ~
1 = overstrike
0 =insert

If control-character entry is enabled, the user can insert control characters into the stream
by typing ®-Control-character, where character is replaced by any valid keyboard
character.

The value in this field may be different from de fcursorMode because the user can switch
between insert and overstrike modes during entry.

beepFlag If this flag is nonzero, the Console Input routine beeps on input errors (line too long, and
so on).
Default = TRUE

entryType Tells the Console Input routine the status of the current input:
O=initial entry
1=interrupt reentry
2=no-wait mode reentry
On exit, the Console Input routine adjusts this value so that it is correct for the next entry.
If the application wishes to cancel an in-progress input and start with a new one, it must
make the DConbtrol subcall Abort Input.
Default = initial entry

exitType Tells the application which type of exit was made. (0 = input not terminated yet, either
because of end-of-field on Raw input or a no-wait exit.) Any other value is the number of
the terminator that halted the input.
(Set on exit from the input cycle.)

CHAPTER 6 The Console Driver 101

GS/0S Reference (Volume 2) APDA Draft 1/31/89

lastChar The ASCII value ($00-$7F) of the most recently typed key.
(Set on exit from the input cycle.)

lastMod The value of the modifiers mask of the most recently typed key. See the section
“Terminators” later in this chapter, for a description of the modifier bits.
(Set on exit from the input cycle.)

lastTermChar The ASCII value of the terminator (as specified in the the user-supplied terminator list)
that caused the most recent input termination.
(Set on exit from the input cycle.)

lastTermMod The value of the modifiers mask of the terminator that caused the most recent input
termination.
(Set on exit from the input cycle.)

cursorPos Index of the cursor within the input string. (0=over the first character.) The cursor is
allowed to move from the beginning of the string to one position past its end.
Default = position of cursor when input begins

inputLength The length of the input string at the current state of editing. This is the length that is
returned in the Transfer Count.
Default = length of default input string

originH Contains the cursor's horizontal position.
originX (word) Contains a variable used by the UIR.

originH Contains the cursor’s vertical position.

Using raw mode

Raw mode is the simplest form of user input. The keyboard is simply scanned until (1)
requestCount number of keys have been pressed, or (2) A specified terminator has been typed. As
with other serial input drivers, the terminator is included in the transferred string. There is no echo,
no cursor, and no editing.

102 VOLUME 2 Devices and GS/OS PART 1 Using GS/OS Device Drivers

GY/0S Reference (Volume 2) APDA Draft

1/31/89

Using user input mode

This input mode provides more functions than raw mode. The following steps are required to use

it:

1. If the application wishes to supply a default string, it must do so (see descriptions of the
Control subcalls, later in this chapter).

2 If modes other than the default modes are desired, the application should read the input port,
adjust it, and write it back.

3. Terminators must be assigned with a SetTerminators call (DControl subcall).

4 The cursor should be positioned to the desired start of the input field with 2 Go To XY
instruction.

A Read call is made to initiate user input mode. If only simple terminators have been requested, the
Console Input routine will return as soon as one has been pressed. If there are interrupt terminators
or if no-wait mode is selected, the application must make calls to determine the type of
interruption and determine whether more work (repeated read entries) is necessary.

Terminators

A terminator is a character that, when read, terminates or interrupts a Read call. The console driver
permits more than one terminator character and also can note the state of modifier keys in
considering whether a character is to be interpreted as a terminator.

The console driver keeps track of terminators with a terminator list. The terminator list is
set using a control call (see the Control subcalls, later in this chapter). This is the format of a
terminator list:

TermList = ({
word termMask,
termCount,
termList [1 .. termCount)

CHAPTER 6 The Console Driver

103

GS/OS Reference (Volume 2) APDA Draft 1/31/89

The fields have the following meanings:

termMask

termCount

termList

A mask that is added to the input data with an AND operator before it is compared to the
terminator list entries. The high-order byte is the modifiers mask; it is used to mask
out irrelevant modifiers (for example, if it doesn’t matter whether the keystroke was
made from the main keyboard or the keypad). The low-order byte is the ASCII mask; it
is used to simplify ASCII comparisons (for example, if it doesn’t matter whether a
character is uppercase or lowercase).

A count of the number of terminators. A count of 0 means terminators are disabled and
there is no list. It specifies the number of entries, so it must be multiplied by two to get a
byte count. The maximum terminator count is 254.

A list of terminator characters and their modifiers. Each entry is in the same format as
termMask; the high byte is the modifiers mask, and the low byte is the ASCII value of the
terminator character. After the incoming data is combined with the terminator mask in a
logical AND operation, the data is compared with each of the entries in the terminator list.
A match causes a termination. In addition, if the application supplies a term list entry
with bit 13 set, this is an interrupt terminator. The Console Input routine will give up
control but is set up to restart the input. The application can use this capability to
implement help screens or custom editing keys.

The terminator mask has the following format:

1 = Apple key/Command key down
1 = Optionkey/Function key down

High byte Low byte

1 = Interrupt

1 = Keypad key down

1 = Caps lock key down —

1 = Control key down —
1 = Shift key down —

ASCII data mask —

Reserved: must be zero

104 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/OS Reference (Volume 2) APDA Draft

How tb disable terminators

The application can disable terminators by doing either of the following:
s Set the mask to 0.
s Set the count to 0.

In addition, if a memory error occurs while new terminators are being received, the UIR dumps the
terminator list.

If an incorrectly formed list (for example, if count = 255) is sent to the Console Input routine, it is
discarded and the original terminators remain in place.

Terminators and newline mode

Newline characters as defined by the Character FST are incompatible with terminators as defined by
the console driver's user input mode. If you need a combined newline/termination mode, use only
the following combinations:

Character FST Console driver

Newline mode enabled Raw Input mode, terminators disabled
Newline mode disabled Raw Input mode, terminators enabled
Newline mode disabled User Input modes

1/31/89

User-input editing commands

The following editing commands are supported by the Console user input mode:

« or Move cursor backward one position
Control-H

- or) Move cursor forward one position
Control-U

¢ - Move cursor to end of next word.

€ — Move cursor to beginning of previous word.

CHAPTER 6 The Console Driver

105

GS/OS Reference (Volume 2) APDA Draft 1/31/89

&€-> or
$-.

&< or
&-

Delete or
Control-D or
Control-Delete or
®-Delete or
&-D

Control-F or
$-r

Control-X or
&€-X or
Clear

Control-Y or

&€y

Control-Z or

€z

Control-E or

$-E

& -Control-
character

Move cursor to end of line.
Move cursor to beginning of line.

Delete character to left of cursor and move cursor and
string to left (destructive backspace).

Delete the character underneath the cursor and move the rest of the string to the left.

Delete entire input string.

Clear string from cursor to end.
Reset input string to application-specified default.
Toggle between insertion and overstrike characters.

Insert control character into input string (if enabled; control-character insertion is enabled
by setting a bit in cursorMode).

106 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/OS Reference (Volume 2) APDA Draft 1/31/89
Using no-wait mode
No-wait mode is defined so that drivers will not hold control of the system. When in wait mode, a
Read call does not terminate until the requested number of characters (or a terminator) is received.
When in no-wait mode, the system returns immediately from a Read call as soon as there is no more
input available. In such a case, it is the responsibility of the application program to continue calling
the input routines until the final number of characters have been transferred.
Device calls to the console driver
The GS/OS console driver supports the standard set of device calls:
Dinfo
DStatus
DControl
DRead
DWrite
The standard calls are described in Chapter 1 of this Volume. The rest of this chapter documents
the driver-specific DStatus and DControl subcalls, and describes how the console driver handles any
of the standard device calls differently from the ways documented in Chapter 1. Any calls or
subcalls not discussed here are handled exactly as documented in Chapter 1.
CHAPTER 6 The Console Driver 107

GS/0S Reference (Volume 2) APDA Draft 1/31/89

DStatus ($202D)

This call is used to request status information from the console driver. For DStatus, the console
driver supports most of the standard subcalls and several device-specific subcalls. Status subcalls are
specified by the value of the status code parameter. The following status codes are supported:

Status code Subcall name

$0000 GetDeviceStatus
$0001 GetConfigParameters
$0002 GetWaitStatus

$8000 GetTextPort

$8001 GetlnputPort

$8002 GetTerminators
$8003 SaveTextPort

$8004 GetScreenChar

$8005 GetReadMode

$8006 GetDefaultString

Calls with status codes less than $8000 are standard Status subcalls; calls with status codes of $8000
and over are device-specific subcalls. The calls are described more fully in the following sections.

Standard DStatus subcalls

Standard DStatus subcalls that are not described here function exactly as documented in Chapter 1,
“GS/0S Device Call Reference.”

GetConfigParameters:

The console driver obtains its setup information from battery RAM and therefore uses no control
parameters. This call returns an empty control parameter record (a zero).
The minimum request count is 2. The maximum transfer count is 2.

108 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/0S Reference (Volume 2) APDA Draft

GetTextPort (DStatus subcall)

statusCode = $8000
status list = a text port record

This subcall copies the contents of the current text port record into the status list buffer. See the
section “The Text Port” earlier in this chapter for more details.
The minimum request count is 0. The maximum transfer count is 16.

GetlnputPort (DStatus subcall)

statusCode = $8001.
status list = input port record

This subcall copies the contents of the current input port record into the status list buffer. See the
input port description earlier in this chapter for more details.
The minimum request count is 0. The maximum transfer count is 12.

GetTerminators (DStatus subcall)

statusCode = $&)02
status list = terminator list record

This subcall copies the current terminator list into the status list buffer. The format of the list is

count, enable/mask, terminator list. See the section “Terminators” earlier in this chapter for details.
This call transfers only complete terminator lists. The minimum request count is

(number of entries * 2) + 4. The transfer count is set to this value. The maximum transfer count is

514: 4 bytes of header and 255 terminator words.

CHAPTER 6 The Console Driver

1/31/89

109

GS/OS Reference (Volume 2) APDA Draft

SaveTextPort (DStatus subcall)

statusCode = 58003
status list = text port size and contents

This subcall copies not the text port record but the actual text port screen data into the status list
buffer. The format of the data as written is windwidth, windLength, screen bytes (the contents
of screen memory within the limits of the port). The size of the status list in bytes is therefore
(wi ndWidth X windLengt h) +2

This call transfers only a complete screen data record. The minimum request count is the
status list size as calculated.

GetScreenChar (DStatus subcall)

statusCode = $8004.
status list = 1 byte

This subcall copies the current screen byte (that is, the byte undemeath the cursor) to the status
list. Note that this is the actual value of the byte in screen memory, which has a complex relation
to the character’s ASCII value. See the section “Character Set Mapping” earlier in this chapter.

The minimum request count is 1. The maximum transfer count is 1.

GetReadMode (DStatus subcall)

statusCode = $8005

status list = 2 bytes

This subcall copies the current read mode flag into the status list. If zero, input is in user input
mode. If $8000, input is in raw mode. The value of the read mode flag is set by the DControl subcall
SetReadMode, described later in this chapter.

The minimum request count is 2. The maximum transfer count is 2.

110 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

1/31/89

GS/0S Reference (Volume 2) APDA Draft

GetDefaultString (DStatus subcall)

statusCode = $8006.
status list = character string

This subcall copies the current default input string into the status list. This string (set with the
DControl subcall SetDefaultString) is placed in the input field at the beginning of each cycle of user
input. The string can have only standard ASCII ($00-$7F) characters, and can be no more than 254
characters long.

The request count in this case defines the maximum number of bytes that can be returned.

1/31/89

DControl ($202E)

This call is used to send control information to the console driver. For DControl, the console driver
supports most of the standard subcalls and several device-specific subcalls. Control subcalls are
specified by the value of the control code parameter. The following control codes are supported:

Control code Meaning

$0000 ResetDevice
$0001 FormatDevice
$0002 EjectMedia
$0003 SetControlParameters
$0004 SetWaitStatus
$8000 SetinputPort
$3001 SetTerminators
$8002 RestoreTextPort
$8003 SetReadMode
$8004 SetDefaultString
$8005 Abortinput

Calls with control codes less than $8000 are standard Control subcalls; calls with control codes of
$8000 and over are device-specific subcalls. The calls are described more fully in the following
sections.

CHAPTER 6 The Console Driver

11

GS/OS Reference (Volume 2) APDA Draft 1/31/89

Standard DControl subcalls

Standard DControl subcalls that are not described here function exactly as documented in Chaptci 1,
“GS/0OS Device Call Reference.”

FormatDevice:

This subcall is not applicable to character devices. It returns with no error. The transfer count is 0.
EjectMedia:

This subcall is not applicable to character devices. It returns with no error. The transfer count is 0.
SetConfigParameters:

The console driver obtains its setup information from parameter RAM and has no configuration
parameters. The transfer count is 0.

SetlnputPort (DControl subcall)

controlCode = $8000
control list = input port record

This subcall transfers data from the control list to the input port record. The data must be in the
format of an input port record; see the section “The Console Input Routine” earlier in this chapter.
The minimum request count is 12. The maximum transfer count is 12.

SetTerminators (DControl subcall)

controlCode = $8001
control list = terminator list record

This subcall copies data from the control list to the terminator list. The format of the list is
described in the section “Terminators” earlier in this chapter. The length of a terminator list in
bytes is (2 * couns) + 4, where count is the number of entries in the list. The minimum list length is
4; the maximum list length is 514 (2 header words plus 255 terminator characters).

112 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/OS Reference (Volume 2) APDA Draft

The minimum request count for this subcall is 4. Furthermore, request count must match the
calculated length based on the entry count parameter in the list. If there is a match, the transfer
count is set to the length of the list. If the length is incorrectly stated, the previous terminators
remain in effect and error $22 (invalid parameter) is returned. The driver requests memory from
GS/0S Info Manager to store the terminators; if the request fails the previous and new lists of
terminators are lost and error $26 (resource not available) is returned.

RestoreTextPort (DControl §ubcall)

controlCode = $8002
control list = a text port record

This subcall copies data (previously obtained through the DStatus subcall GetTextPort) from the
control list back into screen memory (and thereby onto the screen). The format of the data is
windWidth, windLength, screen bytes (the data to be written to screen memory within the limits
of the port). If the size of the buffer is greater than that of the current text port, only the upper-
left part of the data (as much as will fit) is transferred to the screen. If the buffer is smaller than
the current text port, only that much of the text port (starting from the upper-left comer) will be
changed; the rest of it will remain as it was before the subcall was made.

Only a complete screen record can be transferred. The minimum request count is 4.
Furthermore, the request count must match the calculated length based on the width and length
parameters in the control list. The total data length is therefore (windwidth X windLength) +4.
If the list is complete, the transfer count is set to that value.

SetReadMode (DControl subcall)

controlCode = $8003
control list = 2 bytes

This subcall sets the flag that specifies the console driver’s read mode. Only the high-order bit is
significant and all other bits must be set to zero. A value of $0000 selects user input mode; $8000

selects raw mode.
The minimum request count is 2. The maximum transfer count is 2.

CHAPTER 6 The Console Driver

1/31/89

113

GS/0S Reference (Volume 2) APDA Draft 1/31/89

SetDefaultString (DControl subcall)

controlCode = $8004
control list = character string

This subcall sets the default string for user input. This string is placed in the input field at the
beginning of each cycle of user input. The string can have only standard ASCII ($§00-$7F) characters,
and can be no more than 254 characters long. Control characters will be displayed in inverse video.
To disable the current default input string, pass a length of 0 as the request count. The driver
requests memory from the GS/OS Info Manager to store the default string; if the request fails, error
$26 (resource not available) is returned.

The minimum request count is 0. The maximum transfer count is 254.

AbortInput (DControl subcall)

controlCode = $8005
control list = none

This subcall cancels a currently in-progress input session. If entryType is zero, there is no input in
progress and this call is ignored. Otherwise, entryType is reset to zero, and if a cursor is on the
screen, it is removed.

The minimum request count is 0. The transfer count is 0.

114 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/0S Reference (Volume 2) APDA Draft

1/31/89

DRead ($202F)

This call reads characters from the keyboard. Depending on read mode, either the call begins
waiting for raw entry values, or it activates the user input mode.

In raw mode, the keyboard is scanned until (a) the transfer count equals the request count, or
(b) a terminator has been pressed.- The terminator character is returned as the last character of the
string.

In user input mode, request count becomes the length of an edit field on the screen. This edit
field begins at the current cursor location. An optional default string is displayed in the edit field.
The user can edit this field using the standard editing controls, and finish editing by typing a
terminator key. The terminator is treated as an editing key—it is not included in the returned
string.

In either mode, an additional return condition would be if no-wait mode is selected. On exit,
Transfer Count reports the length of the final string.

DWrite ($2030)

This call transfers the contents of the buffer, one byte at a time, through the console driver and to
the screen. The entire buffer is transferred, and since all byte values ($00 to $FF) are defined, there
are no possible errors (as long as the driver is open).

CHAPTER 6 The Console Driver

115

GS/OS Reference (Volume 2) APDA Drafl 1/31/89

Chapter 7 GS/0OS Generated Drivers

At system startup, two kinds of device drivers are installed into the GS/OS device driver
list: loaded drivers and generated drivers. GS/OS constructs generated drivers—for each
slot that does not have an associated loaded driver—so that all the device drivers
supported by GS/OS can use the same standard interface.

With generated drivers, GS/OS allows your application to make standard GS/OS calls to
access firmware-based device drivers (both built-in and on peripheral cards) written for the
Apple 11 family of computers.

This chapter describes the BASIC, Pascal 1.1, ProDOS, and SmartPort generated drivers,
and lists the device calls they support. =

¢ If you are writing a firmware driver for an Apple 1IGS peripheral card, read
Appendix C, “Generated Drivers and Firmware Drivers.” It explains how
GS/0S recognizes and dispatches to firmware-based 1/0 drivers.

117

GS/OS Reference (Volume 2) APDA Draft 1/31/89

About generating drivers

At startup, GS/OS constructs a device list, a list of pointers to information about each installed
device driver. GS/OS builds the list in this order:

1 It first installs all loaded drivers from the subdirectory System:Drivers on the system disk.
2 For each slot 7 that does not have an associated loaded driver, GS/OS looks for a firmware 1/0
driver. It examines the appropriate firmware ID bytes in the $Cn00 page of bank zero, and

generates a GS/OS driver for any firmware driver it finds that uses BASIC, Pascal 1.1, ProDOS,
SmartPort, or extended SmartPort protocols.

Generated drivers have two primary advantages over firmware drivers, as follows:

» Peripheral card firmware is written in 6502 assembly-language code, and is executable only in
emulation mode on the Apple IIGS. However, generated drivers allow applications to access
these drivers while running in native mode.

s Most firmware drivers cannot directly access memory banks other than bank $00; for these

drivers, GS/OS double-buffers the data through bank $00, so that applications can access the
drivers from anywhere in memory.

Each generated driver has an associated device information block (DIB), just like a loaded driver.
The DIB contains device-specific information that can be used by the driver and by other parts of
GY/0S.

Types of generated drivers

GS/0S generates drivers for three broad types of slot-resident, firmware-based I/O drivers:

= BASIC and Pascal 1.1 drivers: The Apple Super Serial Card and many third-party printer cards
and parallel-port cards contain firmware drivers that conform to the Pascal 1.1 interface
protocol. The Apple Parallel Printer Interface card is a card that conforms to the BASIC
interface protocol.

118 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/0S Reference (Volume 2) APDA Draft 1/31/89

A GS/OS character device driver is generated for slot-resident firmware 1/0 drivers that use the
BASIC and Pascal 1.1 protocols (see, for example, the Apple lic Technical Reference Manual)
Each generated character device driver has a single device information block (DIB) indicating
that the driver supports only one device.

For BASIC firmware drivers, a BASIC generated driver is created. For Pascal 1.1 firmware drivers,
a Pascal 1.1 generated driver is created. For firmware drivers that support both BASIC and
Pascal 1.1 protocols, a Pascal 1.1 generated driver is created.

s ProDOS drivers: The Apple ProFile and several third-party hard disk drives include firmware-
based drivers that conform to the ProDOS interface protocol on their controller cards.

GS/0S generates a block device driver for slot-resident firmware 1/0 drivers that use the ProDOS
interface (defined in the ProDOS 8 Reference Manual). One DIB is created for each logical
ProDOS device; for example, a hard disk with two partitions is two logical devices and therefore
has two DIBs.

s SmartPort drivers: The Apple Il Memory Expansion card (used as a RAM disk) is a peripheral
card whose firmware driver follows the SmartPort protocol.

¢ Note: The Apple Ile UniDisk 3.5 card is not compatible with the Apple IIGS.

Slot-resident firmware drivers that use the SmartPort protocol can in theory support up to 127
devices each, either character devices or block devices. See the Apple IIGS Firmware Reference.

GS/0S generates a DIB for each device interfaced to SmartPort. The device characteristics flag
in the DIB indicates whether the device is a character device or a block device.

All SmartPort block devices are supported by a single generated block device driver and all
SmartPort character devices are supported by a single generated character device driver. Each
device’s DIB is associated with either the character driver or the block driver.

» Extended SmartPort drivers: An extended SmartPort driver has all of the capabilities of a
SmartPort driver, and in addition supports direct memory transfer from any bank.

CHAPTER 7 GS/OS Generated Drivers 119

GS/0S Reference (Volume 2) APDA Draft 1/31/89

Device calls to generated drivers

All GS/OS generated drivers support these standard device calls:

Dinfo
DStatus
DControl
DRead
DWrite

All generated drivers support the standard set of DStatus and DControl subcalls, although not all of
those drivers perform meaningful actions with all of the subcalls. No generated drivers support
driver-specific DStatus or DControl calls.

The rest of this chapter describes how generated drivers handle any of the above device calls
differently from the standard ways documented in Chapter 1. Any calls or subcalls not discussed
here are handled exactly as documented in Chapter 1. -

DStatus

Generated drivers support these DStatus subcalls:

GetDeviceStatus
GetConfigParameters
GetWaitMode
GetFormatOptions

Only the following subcalls are implemented in a nonstandard way.
GetConfigParameters:

Generated drivers havé no configuration parameters. They always return no parameters, no errors,
and a transfer count of $0000 0002 in the parameter block.

GetWaitStatus:

Generated devices support wait mode only. A wait-mode value of $0000 is returned in the status
list.

120 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/OS Reference (Volume 2) APDA Draft 1/31/89

GetFormatOptions:

This subcall applies only to block devices that implement the SmartPort interface with the added
set of calls (Optional calls). The format of the options list is identical to the SmartPort
specification and is returned unmodified in the status list.

DControl

Generated drivers support these standard DControl subcalls:

ResetDevice
FormatDevice
EjectMedia
SetControlParameters
SetWaitStatus
SetFormatOptions
AssignPartitionOwner
ArmSignal
DisarmSignal

Only the following subcalls are implemented in a nonstandard way:
ResetDevice:

This call has no applicatior; with generated drivers and returns with no error.
SetConfigParameters:

This call does not apply to generated drivers. Both generated character and block device drivers
return with no error.

SetWaitStatus:

All generated drivers support wait mode only. Attempting to set the mode to wait results in no
error; altempting to set the mode to no-wait results in error $22 (invalid parameter).

SetFormatOptions:

This subcall applies only to block devices that implement the SmartPort interface with the added
set of calls (Optional calls). The format of the options list is identical to the SmartPort
specification and is passed directly to the device in the control list.

CHAPTER 7 GS/OS Generated Drivers 121

GS/OS Reference (Volume 2) APDA Draft 1/31/89

ArmSignal:
This call has no application with generated drivers and returns with no error.
DisarmSignal:

This call has no application with generated drivers and returns with no error.

122 VOLUME 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GS/OS Reference (Volume 2)

Volume 1

Volume 2

GS/0S calls
(except device aalls)
(Chapter 7)

Panll

FST-spedific
information on
GS/0S aalls
(Chapter 9-11)

T —~—————1
i __/'-

Pant]

e~ N

GS/0S device calls
(Chapter 1)

Driver-spedific
information on
GS/0S device calls
(Chapter 2-7)

APDA Draft

PartII Writing a Device Driver

Appendixes

ProDOS 16 calls
(Appendix A)

T —~———
FST-speific

information on

ProDOS 16 calis

(Appendix B)

Appendixes

System Loader aalls
(Appendix A)

1/31/89

123

GS/0S Reference (Volume 2) APDA Draft 1/31/89

Chapter 8 GS/OS Device Driver Design

If you are planning to write a device driver for GS/OS, read this and the following chapters.
GS/0S gives you a wide variety of capabilities to choose from in designing your driver,
GS/OS drivers can

access either block devices or character devices

access devices either directly or through supervisory drivers

respond to both a standard set of driver calls and any number of device-specific calls
support multiple formatting options for their media

be configurable by users or applications

support caching of disk blocks to improve I/O performance

include interrupt handlers

include signal sources

include signal handlers

This chapter describes the general structure of device drivers and supervisory drivers.
Chapters 9 and 10 discuss additional concepts related to driver function and design. Driver
calls, which every driver must handle, are described in Chapter 11. System service calls,
which drivers can make to get information from GS/OS and perform certain functions, are
described in Chapter 12. =

125

GS/0S Reference (Volume 2) APDA Draft 1/31/89

Driver types and hierarchy

To summarize the discussion in the Introduction to this volume, drivers can be classified in three
ways:

s In relation to devices, there are two basic types of GS/OS drivers: block drivers and character
drivers. Block drivers control hardware devices that handle data in blocks of multiple
characters; character drivers control hardware devices that handle streams of individual
characters.

s In relation to the GS/OS initialization routines, there is another classification of drivers: loaded
drivers and generated drivers. Loaded drivers are loaded into memory at system startup or
during execution; generated drivers are created by GS/OS to provide a GS/OS-compatible
interface to slot-based firmware 1/0 drivers.

= In relation to the hierarchy of drivers and calls, there is another dassification: device drivers
and supervisory drivers. Device drivers accept driver calls directly from GS/OS and in turn
access either a hardware device or a supervisory driver. Supervisory drivers accept driver calls
only through other device drivers and in turn access hardware devices.

If you write a driver to work with GS/OS, it may be a block driver or a character driver, it may access
hardware directly or go through a supervisory driver, but it must be a loaded driver. All loaded
drivers, whether block drivers or character drivers, must accept (if not necessarily act on) the
standard GS/OS driver calls documented in Chapter 11. Extensions to the standard calls are available
for device-specific operations. Part I of this Volume describes several examples of loaded and
generated drivers.

Figure 8-1 shows how some specific device drivers and supervisory drivers might make up a
particular configuration on the Apple 11GS.

126 VOLUME 2 Devices and GS/OS PART Il Writing a Device Driver

GS/0S Reference (Volume 2)

APDA Draft

= Figure 81 A hypothetical driver configuration

1/31/89

SCSI tape
device
driver

SCSI hard
disk device
driver

it

it

it

it

Device Dispatcher

SCSI Supervisory
Driver
CD-ROM Tape Hard
drive drive disk

CHAPTER 8 GS/OS Device Driver Design

127

GS/OS Reference (Volume 2) APDA Draft 1/31/89

The diagram includes examples of both block devices and character devices, and two hypothetical
supervisory drivers: a SCSI supervisor and an SCC supervisor. Note that some block drivers can
access their devices directly and don't need a supervisory driver. Note also that all SCSI device
drivers must use the SCSI supervisory driver, and all drivers interfacing to the serial communications
chip (SCC)}—such as AppleTalk, printers, and modems—must use the SCC supervisory driver. The
supervisor dispatcher is needed whenever there is one or more supervisory driver; the dispatcher
routes calls to the proper supervisory driver.

Driver file types and auxiliary types

Loaded drivers are executable programs (load files). On disk, they should be in compacted format
conforming to version 2.0 of object module format (OMF; see Appendix B). All Apple IIGS driver
load files must have a file type of $BB. '

The high-order byte of the auxiliary type field (auxType; see Figure 8-2) indicates the type of
driver file and whether the driver is active (that is, whether it should be loaded and started up at
boot time). If bit 15 of auxType is set (= 1), the driver is inactive; if bit 15 is clear (= 0), the driver is
active. The setting of this flag is part of driver configuration; see Chapter 9.

The two high bits of the low-order byte of auxType indicate the type of GS/OS driver. Two
types have been defined: device drivers and supervisory drivers. The two remaining possible values
are reserved.

The definition of the low six bits of the low byte of auxType depends on the driver type. For
device drivers, those bits indicate the maximum number of devices supported by the driver; the
device dispatcher uses that number to allocate memory for the device list. For supervisory drivers,
the low six bits of auxType are not defined.

128 VOLUME 2 Devices and GS/0OS PART I Writing a Device Driver

GS/0S Reference (Volume 2) APDA Drafl 1/31/89

s Figure 8-2 The auxiliary type field for GS/OS drivers

High byte Low byte
[1s]1a]3]2fui]aof o876 sTal3]2]1T0]
L J
1 = inactive
0 = active
$01 = GS/OS driver

1= supervisor driver
0 = device driver

Maximum number of devices (if device driver) —
Undefined (if supervisor driver)

Device driver structure

A device driver consists of these basic parts, usually in this order:
s A driver header, which must always be the first part of the driver

s One configuration pointer and one default pointer for each device information block (DIB); for
example, four DIBs would result in eight pointers

s One or more device information blocks

s A format options table, if the driver can perform more than one type of formatting
s Adriver code section

Figure 8-3 diagrams the general structure of a GS/OS device driver.

CHAPTER 8 GS/OS Device Driver Design 129

GS/OS Reference (Volume 2) APDA Draft 1/31/89

= Figure 83 GS/0S device driver structure

(Header

|
Configuration -
parameter list(s)

Each supported device (or partition)
— must have its own configuraiton

Device Information parameter list and DIB
Block(s) (DIBs)
Driver code segment(s) | Maybe repeated for each supported

device, or may be shared by all

If the device driver supports more than one device, then one DIB, a configuration pointer, and a
default pointer must be provided for each device. The configuration pointer points to a list of
configuration parameters, and the default pointer points to a list of default configuration
parameters. Each device may have its own individual configuration and default lists, or may share
those lists with other devices supported by the driver.

A driver always contains one DIB per device supported by the driver; multiple devices, even logical
devices such as partitions on a disk, cannot share the same DIB. If several supported devices use
the same configuration parameters, the driver need have only a single set of configuration
parameters for them; pointers in the driver header can then reference the same configuration lists
for each device.

130 VOLUME 2 Devices and GS/0S PART Il Writing a Device Driver

GS/0S Reference (Volume 2) APDA Draft 1/31/89

The device-driver header

The device-driver header specifies where the configuration lists and DIBs are located. The device
dispatcher needs that information when loading drivers and building the device list. Using an
InitialLoad call to the System Loader (see Appendix A of this Volume), the device dispatcher loads
only the driver’s static load segment, which contains its code, DIBs, and configuration lists.
Configuration scripts, if present, are used only by a configuration program and are not loaded by the
device dispatcher.

A device-driver header has this format:

Offset Size Description
$0 [firstbiB o Word Offset to first DIB
21 gevicecount - Word Count of number of devices
41 1istioffset o word Offset to first configuration list for device 1
61 list2offset o Word Offset to first configuration list for device 2
$08 etc.

The header fields following devicecount constitute the configuration-list offset table; it is a
word list of offsets from the beginning of the load segment (the beginning of the driver header) to
the first byte of the first configuration list for each device supported by the driver. If there is no
configuration list for a device, the entry for that device in the configuration list offset table must
be zero.

Configuration lists

A configuration list is a table of device-dependent information used to configure a specific
device. Each device supported by a dr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>