
GS/OS™ Referertce
Volw?,ze 2 (Beta.Dra]t)
APDA #A0008LL/ A

"\('

GSIOS Reference (Volume 2) APDA Draft

••
Apple® II GS/OSTM Reference

Includes System Loader

Volume 2
Devices and GS/ OS

APDA Draft

William H. Harris
Developer Technical Publications
january 26, 1989

© Copyright Apple Computer, Inc. 1988

1/31/89

GSIOS Reference (Volume 2)

• APPLE COMPUTER, INC.

Copyright Apple 1988

This manual and the software
described in it are copyrighted,
with all rights reserved. Under the
copyright laws, this manual or the
software may not be copied, in
whole or in part, without written
consent of Apple, except in the
normal use of the software or to
make a backup copy of the
software. The same proprietary
and copyright notices must be
affixed to any permitted copies as
were affixed to the original. This
exception does not allow copies
to be made for others, whether or
not sold, but all of the material
purchased (with all backup copies)
may be sold, given, or loaned to
another person. Under the law,
copying includes translating into
another language or format.

You may use the software on any
computer owned by you, but
extra copies cannot be made for
this purpose.

©Apple Computer, Inc., 1988
20525 Mariani Avenue
Cupertino, CA 95014
(408)996-1010

Apple, the Apple logo, AppleTalk,
Apple IIGS, DuoDisk, ProDOS,
LaserWriter, Macintosh, and IIGS
are registered trademarks of Apple
Computer, Inc.

APDA, Finder, ProFile, and UniDisk
are trademarks of Apple
Computer, Inc.

Simultaneously published in the
United States and Canada.

2/21/88

APDA Draft 1/31/89

GSIOS Reference (Volume 2) APDA Draft

Contents

Figures and Tables xill

Introduction The Device Level in GS/OS I 1
What is the device level? I 2
GSIOS drivers I 4

Block drivers and character drivers I 4
Loaded drivers and generated drivers I 4
Device drivers and supervisory drivers I 5

How applications access devices I 7
Through an FST I 7
Through the Device Manager I 8

How GSIOS communicates with drivers I 10
The device dispatcher I 10
System service calls I 11

Driver features I 12
Configuration I 12
Cache support I 13
Interrupt handling I 13
Signals and signal handling I 14

1/31189

iii

GSIOS Reference (Volume 2) APDA Draft

Part I Using GSIOS Device Drivers I 15

Chapter 1 GSIOS Device Call Reference I 17

How to make a device call I 18
$~2C Dlnfo I 20
$2020 DStatus I 21

GetDeviceStatus (DStatus subcall) ~

GetConfigParameters (DStatus subcall) I 31
GetWaitStatus (DStatus subcall) I 31
GetFormatOptions (DStatus subcall) I 32
GetPartitionMap (DStatus subcall) I 31
Device-specific DStatus subcalls I 31

$~2E DControl I 38
ResetDevice (DControl subcall) I 40
FormatDevice (DControl subcall) I 41
EjectMedium (DControl subcall) I 41
SetConfigParameters (DControl subcall) I 42
SetWaitStatus (DControl subcall) I 43
SetFormatOptions (DControl subcall) I 44
AssignPartitionOwner (DControl subcall) I 46
ArmSignal (DControl subcall) I 46
DisarmSignal (DControl subcall) I 41
SetPartitionMap (DControl subcall) I 48
Device-Specific DControl subcalls I 48

$202F DRead I 49
~ DWrite I 51

Chapter 2 The SCSI Driver I 53
General information I 54
Device calls to the SCSI driver I 54

DStatus ($202D) I 55
TestUnitReady (DStatus subcall) I 56
RequestSense (DStatus subcall) I 51
Inquiry (DStatus subcall) I 51
ModeSense (DStatus subcall) I 51

iv V 0 L U M B 2 Devices and GSIOS

1/31189

GSIOS Reference (Volume 2) APDA Draft

ReadCapacity (DStatus subcall) I 58
Verify (DStatus subcall) I 58
ReadTOC (DStatus subcall) I 59
ReadQSubcode (DStatus subcall) I 59
ReadHeader (DStatus subcall) I 6o
AudioStatus (DStatus subcall) I 60

DControl ($202E) I 6o
RezeroUnit (DControl subcall) I 61
ModeSelect (DControl subcall) I 62
Start/StopUnit (DControl subcall) I 62
Prevent/ Allow Removal (DC.ontrol subcall) I 62
Seek (DControl subcall) I 63
AudioSearch (DControl subcall) I 63
AudioPlay (DControl subcall) I 64
AudioPause (DControl subcall) I 64
AudioStop (DControl subcall) I 65
AudioScan (DControl subcall) I 65

Chapter 3 The AppleDisk 3.5 Driver I 67
General information I 68
Device calls to the AppleDisk 3.5 driver I 68

DStatus ($202D) I 69
DControl ($202E) I 71
DRead ($202F) I 72
DWrite ($2030) I 72

Chapter 4 The UniDisk 3.5 Driver I 73
General information I 74
Device calls to the UniDisk 3.5 driver I 74

DStatus ($202D) I 75
DControl ($202E) I 76
DRead ($202f) I 77
DWrite ($2030) I 77

1/31/89

CONTENTS v

GSIOS Reference (Volume 2) APDA Draft

Chapter 5 The AppleDisk 5.25 Driver I 79
General information I 80
Device calls to the AppleDisk 5.25 driver I 80

DStatus ($202D) I 81
DControl ($202E) I 82
DRead ($202F) I 84
DWrite ($2030) I 84

AppleDisk 5.25 formatting I 85

Chapter 6 The Console Driver I 87
General information I 88

The Console Output routine I 90
Screen size I 90
The text port I 90
Character set mapping I 93
Screen control codes I 95

The Console Input routine I 99
The input port I 100
Using raw mode I 102
Using user input mode I 103
Terminators I 103

How to disable terminators I 105
Terminators and newline mode I 105

User-input editing commands I 105
Using no-wait mode I 107

Device calls to the console driver I 107
DStatus ($202D) I 108

Standard DStatus subcalls I 108
GetTextPort (DStatus subcall) I 109
GetinputPort (DStatus subcall) I 109
GetTerminators (DStatus subcall) I 109
SaveTextPort (DStatus subcall) I 110
GetScreenChar (DStatus subcall) I 110
GetReadMode (DStatus subcall) I 110
GetDefaultString (DStatus subcall) I 111

vi V 0 L U ME 2 Devices and GSIOS

1/31/89

GSIOS Reference (Volume 2) Draft 2

DControl ($202E) I 111
Standard DControl subcalls I 112
SetlnputPort (DControl subcall) I 112
SetTerrninators (DControl subcall) I 112
RestoreTextPort (DControl subcall) I 113
SetReadMode (DControl subcall) I 113
SetDefaultString (DControl subcall) I 114
Abortlnput (DControl subcall) I 114

DRead ($202F) I 115
DWrite($20~) I 115

Chapter 7 GSIOS Generated Drivers I 117 .
About generating drivers I 118
Types of generated drivers I 118
Device calls to generated drivers I 120

DStatus I 120
DControl I 121

Part II Writing a Device Driver I 123

Chapter 8 GS/OS Device Driver Design I 125
Driver types and hierarchy I 126
Driver file types and auxiliary types I 128

Device driver structure I 129
The device-driver header I 131
Configuration lists I 131
Device information block (DIB) I 133
Format options table I 139
Driver code section I 143

How GSIOS calls device drivers I 144
The device dispatcher and the device list I 144

Dynamic driver installation I 145
Direct-page parameter space I 145

Dispatching to device drivers I 147
List of driver calls I 149

1/31/89

CONTENTS vii

CSIOS Reference (Volume 2) APDA Draft

How device drivers call GSIOS I 149
Supervisory driver structure I 1 SO

The supervisor information block (SIB) I 151
Supervisory driver code section I 153

How device drivers (and GSIOS) call supervisory drivers I 154

Chapter 9 Cache Control I 157
Drivers and caching I 158

Cache calls I 159
How drivers cache I 159
Caching notes I 161

Chapter 10 Handling Interrupts and Signals I 163
Interrupts I 164

Interrupt sources I 164
Interrupt dispatching I 166
Interrupt handler structure and execution environment I 167
Connecting interrupt sources to interrupt handlers I 169

Bindint call I 169
Unbindlnt call I 170

Interrupt handler lifetime I 170
Unclaimed interrupts I 171

Signals I 171
Signal sources I 172
Signal dispatching and the signal queue I 173
Signal handler structure and execution environment I 174
Arming and disarming signals I I75

Arming device driver signal sources I 176
Disarming device driver signal sources I 176
Arming other signal sources I 177
Disarming other signal sources I 178

viii V 0 L U M E 2 Devices and GSIOS

1131189

GSIOS Reference (Volume 2) APDA Draft

Chapter 11 GS/OS Driver Call Reference I 179
About driver calls I 180
$(XXX) Driver_Startup I 183
$00)1 Driver_Open I 187

$00)2 Driver_Read I 189

$00)3 Driver_ Write I 193
$00)4 Driver_Ciose I 197

$00)5 Driver_Status I 199
Get_Device_Status (Driver_Status subcall) I 201
Get_Config_Parameters (Driver_Status subcall) I 204
Get_ Wait_Status (Driver_Status subcall) I 204
Get_Format_Options (Driver_Status subcall) I 205
Get_Partition_Map (Driver_Status subcall) I 208
Device-specific Driver_Status subcalls I 209

$(XXX) Driver_Control I 210
Reset_Device (Driver_Controlsubcall) I 212
Forrnat_Device (Driver_ Control subcall) I 212
Eject_Medium (Driver_Controlsubcall) I 213
Set_Config_Parameters (Driver_Controlsubcall) I 213
Set_ Wait_Status (Driver_Controlsubcall) I 214
Set_Format_Options (Driver_Controlsubcall) I 215
Assign_Partilion_Owner (Driver_Controlsubcall) I 216
Arrn_Signal (Driver_ Control subcall) I 217
Disarm_Signal (Driver_ Control subcall) I 218
Set_Partition_Map (Driver_Control subcall) I 218
Device-specific Driver_Controlsubcalls I 219

$OOJ7 Driver_Flush I 220

~ Driver_Shutdown I 222

About supervisory-driver calls I 224

$(XXX) Get_Supervisor_Number I 227

$(XXX) Supervisor_Startup I 229
$00)1 Set_SIB_Pointer I 230

$00)1 Supervisor_Shutdown I 231

$0002-$FFFF Driver-specific calls I 232

Driver error codes I 233

1131189

CONTENTS ix

GSIOS Reference (Volume 2) APDA Draft

Chapter 12 System Service CalJs I 23;
About system service calls I 236
$01F<m CACHE_ADD_BLK I 239
$01FC04 CACHE_FIND_BLK I 240
$01FCBC DYN_SLOT_ARBITER I 241
$01FCA8 INSTALL_DRIVER I 242
$01FC70 MOVE_INFO I 244
$01FC90 SET _DISKSW I 248
$01FCSO SET_SYS_SPEED I 249
$01FC88 SIGNAL I 250
$01FCA4 SUP _DRVR_DISP I 251

Appendixes I 253

AppendixA The System Loader I 2;;
How the System Loader works I 256

Definitions I 256
Segments and the System Loader I 257
The System Loader and the Memory Manager I 259
OMF and the System Loader I 261
Loader data structures I 262

Memory-segment table I 262
Pathname table I 263
jump table I 263

Restarting, reloading, and dormant programs I 264
Making System Loader calls I 265
$OF GetLoadSeglnfo I 267
$10 GetUseriD I 268
$21 GetUseriD2 I 269
$00 InitiaiLoad I 270
$l) lnitia1Load2 I 272
$11 LGetPathname I 274
$22 LGetPathname2 I 275
$01 Loaderlnitialization I 276

x V 0 L U M E 2 Devices and GSIOS

1/31/89

GSIOS Reference (Volume 2) APDA Draft

$05 LoaderReset I m
$03 l.oaderShutDown I 218

$02 LoaderStartup I '1:19
~ LoaderStatus I 280

$04 LoaderVersion I 281
SOD LoadSegName (Load Segment by Name) I 282

$0B l.oadSegNum (Load Segment by Number) I 284
$0A Restart I 2'ifl

$0E UnloadSeg (Unload Segment by Address) I 289

$OC UnloadSegNum (Unload Segment by Number) I 290
$12 UserShutDown I 291

Appendix B Object Module Format I 293
What files are OMF files? I 294
General format for OMF files I 296

Segment types and attributes I 297
Segment header I m
Segment body I 305
Expressions I 320

Example I 323
Object files I 324
Library files I 324
Load files I 326

Memory image and relocation dictionary I 321
Jump-table segment I 328

Unloaded state I 328
Loaded state I 329

Pathname segment I 329
Initialization segment I 330
Direct-page/stack segments I 331

Run-time library files I 332
Shell applications I 333

1/31189

CONTENTS :xi

GSIOS Reference (Volume 2) APDA Draft

Appendix C Generated Drivers and I 331
Generated-driver summary I 338
Generating and dispatching to BASIC drivers I 339
Generating and dispatching to Pascall.l drivers I 340
Generating and dispatching to ProDOS drivers I 342
Generating and dispatching to SmartPort drivers I 344

Appendix D Driver Source Code Samples I 347

Block driver I 348
Character driver I 408
Supervisory driver I 454
Device driver that calls a supervisory driver I 474

Appendix E GSIOS Error Codes and Constants I 515

Glossary I 519

xii V 0 L U M E 2 Devices and GSIOS

1/31/89

GSIOS Reference (Volume 2) APDA Draft

Figures and Tables

Introduction The Device Level in GSIOS I 1
Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6

The device levd in GSIOS I 3
Driver hierarchy within the device level I 6
Diagram of a GS/OS call I 8
Diagram of a device call I 9
Diagram of a driver call I 11
Diagram of a system service call I 12

Chapter 1 GSIOS Device Call Reference I 17
Table 1-1
Table 1-2
Table 1-3

GSIOS ckvice calls I 18
DStatus subcalls I 29
Dcontrol subcalls I 40

Chapter 5 The AppleDisk 5.25 Driver I 19
Figure 5-1 Apple 5.25 drive interleave ronfigurations I 85
Figure 5-2 Apple 5.25 drive sector format I 86

Chapter 6 The Console Driver I 81
Figure 6-1 Console driver VO routines I 89

Table 6-1 Console driver character mapping I 94

1/31/89

Figures and Tables xiii

GS/05 Reference (Volume 2) APDA Draft 1/31189

Chapter 8 GSIOS Device Driver Design I 125
Figure8-1 A hypothetical driver configuration I 127
Figure8-2 The auxiliary type f~eld for GS/OS drivers I 129
Figure8-3 GSIOS device driver structure I 130
Figure8-4 The device information block (DIB) I 133
Figure8-5 The device characteristics word I 135
Figure8-6 Slot-number word I 136
Figure8-7 Driver version word I 137
Figure 8-8 Format options table I 140
Figure 8-9 Format-options entry I 141
Figure 8-10 Format option flags word I 142
Figure 8-11 GSIOS direct-page parameter space I 146
Figure 8-12 Supervisory driver structure I 151
Figure 8-13 The supervisor information block (SIB) I 152

Table8-1 Device IDs I 138
Table8-2 Device-driver execution environment I 147
Table8-3 Supervisory IDs I 152
Table8-4 Supervisor execution environment I 155

Chapter 10 Handling Interrupts and Signals I 163
Table 10-1 VRNs and interrupt sources I 165
Table 10-2 Interrupt-handler execution environments I 168
Table 10-3 GSIOS signal-dispatching strategy I 173
Table 10-4 Signal-handler execution environment I 174

xiv Volume 2: The Device Interface

GSIOS Reference (Volume 2) APDA Draft

Chapter 11 GSIOS Driver cai1 Reference I 179
Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5

Table 11-1
Table 11-2
Table 11-3
LAe 11-4

Direct-page parameter space for driver calls I 181
Device status word I 202
Disk-switched and off-line errors I 192
Disk-switched condition I 203
The supervisor dire<1 page I 225

GSIOS driver calls 100
Supervisory-driver calls available to device drivers I 224
Calls that supervisory drivers must accept I 225
Driver error codes and constants I 234

Chapter 12 System Service Calls I 235
Figure 12-1 GSIOS direa-page parameter space 238

Table 12-1 System service calls 236

Appendix A The System Loader I 255
Table A-I Segment characteristics and memory-block attributes I 260
Table A-2 System Loader calls I 266

Appendix B Object Module Format I 293
Figure B-1
Figure B-2
Figure B-3

Table B-1
Table B-2
Table B-3

The structure of an OMF file I 296
The format of a segment header I 300
The format of a library dictionary segment I 325

GSIOS program-file types I 295
KIND field definition I 303
Segment-body record types I 306

Appendix E GSIOS Error Codes and Constants I 515
Table E-1 GS/OS erroo I 516

1131189

Figures and Tables xv

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Introduction The Device Level in GS/OS

One of the principal goals of GS/OS is to provide application writers with access to a wide
variety of hardware devices, while insulating them (and users) from the low-level details
of hardware control. The device level in GS/OS is responsible for meeting this goal.

The device level consists of

• the GS/OS interface to FSTs for device access through file systems

• the GS/OS interface to applications for direct device access

• the GS/OS interface to device drivers

• a set of low-level system service calls available to device drivers

• the collection of drivers that are provided with GS/OS

Part I of this Volume describes the application interface to GS/OS for direct device-access:
it documents all device calls and describes the individual GS/OS device drivers that
applications can call.

Part II of this Volume describes the GS/OS interface to drivers; it shows how to design
and write a device driver, documents all calls a driver must accept, and describes how a
driver can get information and services it needs from GS/OS. It also describes how to
write and install GS/OS interrupt handlers and signal handlers, code segments that execute
automatically in response to hardware or software requests.

Appendixes to this Volume describe how the System Loader works, what the file format
for Apple IIGS executable files is, how GS/OS generated drivers interact with slot-based
firmware 1/0 drivers, and what errors GS/OS can return. Also included are assembly
language code examples of four different types of GS/OS drivers.

1

GSIOS Reference (Volume 2) APDA Draft

What is the device level?

As described in the Introduction to Volume 1, GS/OS consists of three interface levels: the
application level, the file system level, and the device level. Figure I-1 is a generalized diagram of
GS/OS, showing how the device level relates to the rest of the system.

In general, the device level sits between the file system level and hardware devices, translating the
file I/0 calls made by an application into the calls that access data on peripheral devices. Note also
that part of the device level (The Device Manager) extends upward into the level occupied by file
system translators. By making calls through the Device Manager, applications can access devices at
a high level, in a manner analogous to the way they access files.

Different components of the device level handle different device-access needs:

• File system translators, which convert file I/0 calls into equivalent driver calls, go through
the device dispatcher. Driver calls are described in Chapter 11.

• Applications that wish to access devices directly make device calls, which go through the
Device Manager. Device calls are described in Chapter 1. Like file VO calls, device calls are
translated into driver calls by the Device Manager,

• The device dispatcher itself makes other driver calls, when setting up drivers or shutting them
down. How the device dispatcher interacts with drivers is described in Chapter 8.

• GS/OS device drivers are the lowest-level of GS/OS; they access device hardware directly. The
individual drivers that accompany GS/OS are described in Chapters 2-7.

• The device level is extensible; you can write your own device driver for GS/OS. Device-driver
structure and design are described in Chapter 8; how drivers handle configuration, caching,
interrupt-handling, and signal-handling is discussed in Chapters 9 and 10.

• Device drivers that need access to system features and functions can make system service
calls to GS/OS. System service calls are described in Chapter 12 of this Volume.

What GS/OS device drivers are, and how the Device Manager, device dispatcher, and the rest of
GS/OS interact with tfiem, is the subject of the rest of this chapter.

2 V 0 L U M E 2 Devices and GS/OS

1/31/89

GSIOS Reference (Volume 2) APDA Draft 1/31/89

• Figure I-1 The device level in GSIOS

Application program

Block
device

Block
device

~

Character
device

Character
device

OtherFST

Device
level

I NT ROD UCTIO N The Device level in GS/OS 3

GSIOS Reference (Volume 2) APDA Draft

GS/OS drivers

A GS/OS driver is a program, executing from RAM, that directly or indirectly handles all
input/output operations to or from a hardware device, and also provides information to the system
about the device. GS/OS drivers must be able to accept and act upon a specific set of calls from
GS/OS.

Generally, each hardware device (or group of closely related devices) needs its own driver. Disk
drives, printers, serial ports, and the console (keyboard and screen) can all be accessed through their
drivers.

This sections discusses the different driver classifications that GS/OS recognizes.

Block drivers and character drivers

There are two fundamental types of drivers, in terms of the kinds of devices they control.

• Block drivers allow access to block devices, such as disk drives, from which a certain
number (one block) of bytes is read from or written to the device at a time, and on which any
block within a file can be accessed at any time. Block devices are also called random-access
devices because all blocks are equally accessible.

• Character drivers allow access to character devices, such as printers or the console, in which
a single character (byte}-or a stream of consecutive characters-is read or written at a time,
and access is available only to the current byte being read or written. Character devices are also
called sequenttal-access devices because each byte must be taken in sequence.

GS/OS fully supports both types of drivers, and includes drivers of each type. For example, the
Console driver (see Chapter 6) is a character driver, and the AppleDisk 3.5 driver (see Chapter 3) is a
block driver.

Loaded drivers and generated drivers

GS/OS also distinguishes between drivers on the basis of origin, in order to take advantage of the
many existing device drivers (both built-in and on peripheral cards) for the Apple II family of
computers:

4 V 0 L U ME 2 Devices and GS/OS

1/31/89

GSIOS Reference (Volume 2) APDA Draft

• Loaded drivers are drivers that are written to work directly with GS/OS, and that are usually
loaded in from the system disk at boot time.

• Generated drivers are drivers that are constructed by GS/OS itself, to provide a GS/OS
interface to existing, slot-based, firmware drivers in ports or on peripheral-cards.

At boot time, GS/OS first loads and initializes all loaded drivers. Then, for slots which contain
devices that do not have loaded drivers, GS/OS generates the appropriate character or block drivers.
Generated drivers are discussed further in Chapter 7.

Because all generated drivers are created by GS/OS, any driver that you write for GS/OS will of
course be a loaded driver. How to write a loaded driver is discussed in Part II of this Volume.

Device drivers and supervisory drivers

It is simplest to assume that each hardware device is associated with only one driver and each driver
is associated with only one hardware device. It is only slightly more complex to have more than
one device controlled by a single driver; a single block driver can access several disk drives, for
example. In either case the driver accesses its hardware devices directly.

More complexity is possible, however. In some cases there are logical •devices• (hardware
controllers such as a SCSI port) that must handle 1/0 requests from more than one driver (for
example, a SCSI hard disk driver and a SCSI CD-ROM driver) and access more than one type of device.
To handle those situations, GS/OS allows for special drivers that arbitrate calls from individual
device drivers and dispatch them to the proper individual devices.

Therefore, GS/OS also defmes these two types of driver:

• A device driver is a driver that accepts the standard set of driver calls (device 1/0 calls made
by an PST or by an application through the Device Manager). A device driver can conduct 1/0
transactions directly with its device, or indirectly, through a supervisory driver.

• A supervisory driver (or supervisor) arbitrates use of a hardware controller by several device
drivers, in cases where a single hardware controller conducts 1/0 transactions with several
devices. -A supervisory driver does not accept 1/0 calls directly from FSTs or the Device
Manager; it accepts only supervisory-driver calls from its individual device drivers.

The presence of supervisory drivers adds more layers to the GS/OS device level. Because more than
one supervisory driver can be active at a time, there is a supervisor dispatcher to route the
requests of device drivers to the proper supervisory driver. The supervisor dispatcher relates to
supervisory drivers much as the device dispatcher relates to device drivers. This device-level driver
hierarachy is diagrammed in Figure 1-2.

1/31/89

IN T R 0 D U C T 10 N The Device level in GS/05 5

GSIOS Reference (Volume 2) APDA Draft

• Figure 1-2 Driver hierarchy within the device level

Supervisory drivers and their accompanying device drivers are always loaded drivers, but they can be
character drivers, block drivers, or both; that is, a single driver does not have characteristics that
restrict it to being solely a block or character device.

Supervisory drivers are closely tied to their device drivers. During the boot sequence all supervisory
drivers are loaded and started before any device drivers. This ensures that when a loaded device
driver is started, its supervisory driver will be available to it. Other than that, GS/OS is not concerned
with the rules of arbitration between a supervisory driver and its loaded device drivers.

6 V 0 L U M E 2 Devices and GS/OS

1/31/89

GS/OS Reference (Volume 2) APDA Draft

Besides simplifying the device interface for applications and providing increased hardware
independence, the use of supervisory drivers allows individual device drivers to tx! added to the
system without requiring the replacement or revision of existing drivers.

The differences between device drivers and supervisory drivers are explained more fully in Chapters 8
and 11. The rest of the discussion in this chapter concerns device drivers only.

How applications access devices

When an application makes a call that results in any kind of VO, device access occurs. That device
access is either indirect, through a file system translator (FST), or direct, through the Device
Manager.

Through an FST

Device access through a file system translator is completely automatic and transparent to the
application. When an application performs file VO by making a standard GS/OS call (as described in
Chapter 7 of Volume 1) such as Create, Read, or Write, the GS/OS Call Manager passes the call along to
the appropriate FST, which converts it to a driver call and sends it to the device dispatcher, which
routes it to the appropriate device driver. The device driver in turn accesses the device and performs
the requested task.

In most cases the application does not know what device is being accesssed. It might not
even know which file system is being used. Figure 13 shows the schematic progress of a typical
GS/OS call from application to device, including how parameters are passed.

1/31189

I NTRO D U CTI 0 N The Device Level in GS/OS 7

GSIOS Referrmce (Volume 2)

• Figure I-3 Diagram of a GS/OS call

Application J Parameter block
In memory

Device

Parameter~

1--~===1 on direct page

--·Calling sequence

--;.to- Parameter-passing

APDA Draft

High-level calls pass parameters differently than low-level calls. When an FST receives a call from an
application, it converts the parameter block information into data on the GS/05 direct page; that
makes the data available to low-level software, including drivers. The call then passes through the
device dispatcher and to the driver. After the call has been completed, the driver puts any return
information into the direct-page parameter space; the FST transfers that information back to the
application's parameter block, and returns control to the application.

Through the Device Manager

A typical Apple IIGS application does not need to make any calls to access devices directly. File calls
made by the application pass through an FST and are automatically converted into the correct driver
calls that read or write the desired data. The application need not be concerned with the specific
device, or even the specific file system, used to store the data.

On the other hand, there are times at which a particular process is specific to a particular type of
device. If your application needs to do something that specific, such as taking user input from the
console in text mode, you will need to know how to make a specific driver perform a specific
action. That's where device calls come in.

8 V 0 L U M E 2 Devices and GS/OS

1/31/89

GSIOS Reference (Volume 2) APDA Draft

Device calls are application-level GS/OS calls, just like all the calls discussed in Olapter 7 of Volume 1.
Your application sets up a parameter block in memory and makes the call as described in Chapter 3
of Volume 1. The only difference from a normal file-access call is that the device calls are routed
through the Device Manager rather than through an FSf. See Figure I-4.

The Device Manager converts the call into a driver call and sends it to the device dispatcher,
which passes it on to the device driver; the driver then acts on it accordingly.

The Device Manager is similar to-an FST, but is limited in its support of GS/OS system calls, and
is independent of any file system. It supports only thase GS/OS calls that provide an application
with direct access to a peripheral device or device driver, while providing an FST-Iike interface
between the application and the device dispatcher.

The Device Manager handles only five GS/OS calls: Dlnfo, DStatus, DControl, DRead, and
DWrite. Extensions to DStatus and DControl allow device-specific functions to be called. All other
application-level GS/OS calls that access devices must pass through an FST. Device calls are
documented in detail in Chapter 1 of this Volume.

• Figure I-4

Device

Diagram of a device call

Parameter space
1--.....J:~ on direct page

--~Callng sequence

--.. Parameler·passlng

1/31/89

I NTRO D UCTIO N The Device Level in GS/OS 9

GSIOS Reference (Volume 2) APDA Draft

Parameter-passing in device calls is the same as in GS/OS calls that pass through FSTs. When the
Device Manager receives a device call from an application, it converts the parameter block
information into data on the GSIOS direct page; that makes the data available to low-level
software, including drivers. The call then passes through the device dispatcher and to the driver.
After the call has been completed, the driver puts any return information into the direct-page
parameter space; the Device Manager transfers that information back to the application's parameter
block, and returns control to the application.

How GS/OS communicates with drivers

Device drivers communicate with the operating system in two basic ways: by receiving driver calls
from the device dispatcher and by making system service calls to GS/OS.

The device dispatcher

All calls to device drivers pass through the device dispatcher. The device dispatcher maintains a list
of information about each driver attached to the system, and thus knows where to transfer
control when it receives a driver call from an FST or the Device Manager.

The driver calls that the device dispatcher receives from FSTs or the Device Manager and passes
on to drivers are these: Driver_Status, Driver_ Control, Driver_Read, and Driver_ Write. They are
documented in Chapter 11. These particular driver calls have names that are very similar to the
names of their equivalent device calls. The lower parts of Figures I-3 and I-4 diagram the call
progress and parameter-passing for these driver calls.

Note also that there is no equivalent driver call for the device call Dlnfo; Dlnfo is handled
entirely by the device dispatcher, by consulting its list of device information. No access of the
driver or device is necessary for Dinfo.

The device dispatcher and other parts of GS/OS also make driver calls that are not translations of
device calls. These other driver calls are concerned with setting up drivers to perform I/0 and
shutting them down afterward. They are Driver_Startup, Driver_ Open, Driver_Ciose, Driver_Fiush,
and Driver_Shutdown, and are documented in Chapter 11. Figure I-5 shows the progress of such a
driver call; note that Figure I-5 also is identical to the lower part of Figures 1-3 and 1-4.

10 YO L U M E 2 Devices and GSIOS

1/31/89

GSIOS Reference (Volume 2)

• Figure 1-S

Device

Diagram of a driver call

Parameter space ·
t--.F~ on direct page

--•1' CaRing sequence

---+ Pararneter·palllling

System service calls

APDA Draft

GS/OS provides a standardized mechanism for passing information and providing services among its
low-level components such as FSTs and device drivers. That mechanism is the system service
call.

System service calls exist for various purposes: to perform disk caching, to manipulate buffers
in memory, to set system parameters such as execution speed, to send a signal to GS/OS, to call a
supervisory driver, or to perform other tasks. Not all drivers need all of these services, but each is
useful in a particular situation. If you are writing a device driver, consult Chapter 12 to see what
system service calls are available to your driver and what each does.

Drivers make system service calls through jumps to locations specified in the the system
service dispatch table. Parameters are passed back and forth through registers, on the stack, and
through the same direct-page space used for driver calls. See Figure I-6.

1/31189

IN T R 0 D U C TI 0 N The Device Level in GS/OS 11

GS/OS Reference (Volume 2) APDA Draft

• Figure I-6 Diagram of a system service call

Paramelar space
J.--tfo:;;;;;;.;;'.! on dlrec:t page

--·· CaNing sequence
__ ...,.,. Parameler-passing

Driver features

This section describes some of the notable features that GS/OS drivers can have. See the referenced
chapters for more information.

Configuration

GS/OS drivers can be configurable, meaning that the user can customize and store certain driver
settings. For example, for a driver that controlled a serial port, such parameters as bits-per-second,
parity, stop bits, and so on could be customized and stored.

Many users will never need to configure drivers. Others will use the capability when adding a
peripheral device or adjusting device driver or system default settings. As a device-driver writer, you
can choose which user-configurable features you want in your driver.

The specific formats in which configuration options are to be presented to the user, how the
chosen settings are to be stored, and how the options are to be set up by the driver in the first place
are specific to the individual driver. However, the overall format in which the configuration
parameters are to be to be stored in the device driver, and what calls are used to set or modify those
parameters, are defmed in Chapters 8 and 11.

12 V 0 L U M E 2 Devices and GSIOS

1/31/89

GSIOS Reference (Volume 2) APDA Draft

Cache support

caching is the process by which frequently accessed disk blocks are kept in memory, to speed
subsequent accesses to those blocks. On the Apple IIGS, the user can control whether caching is
enabled and what the maximum cache size can be. It is the driver, however, that is responsible for
making caching work. GS/OS block_ drivers should suppon caching.

The GS/OS cache is a write-through cache. That is, when an PST issues a Write call to a device
driver, the driver writes the same data to the block in the cache and the equivalent block on the
disk. Never does the block in the cache contain information more recent than the disk block. Also,
like IJlQCit caching implementations, The GS/OS cache uses a least recently used (I.llU) algorithm:
once the cache is full, the least recently used (= read) block in the cache is sacrifteed for the next
new block that is written.

Glebe memory is obtained and released by GS/OS on an as-needed basis. Only as individual blocks are
cached is the necessary amount of memory (up to the maximum set by the user) assigned to the
cache. The size of a block in the cache is essentially unrestricted, limited only by the maximum size
of the cache itself.

Drivers implement caching by making system service calls. Caching is described in Chapter 9;
system sevice calls are documented in Chapter 12.

Interrupt handling

An interrupt is a hardware signal sent from an external or internal device to the CPU. When the
CPU receives an interrupt, it suspends execution of the current program, saves the program's state,
and transfers control to an interrupt handler. The interrupt handler performs the functions
required by the occurrence of the interrupt and returns control to the CPU, which restores the state
of the interrupted application and resumes execution of the application as if nothing had happened.

In a norrmultitasking system such as GS/OS, interrupts are commonly used by device drivers to
operate their devices more efficiently and to make possible simple background tasks such as printer
spooling.

When installed, a GS/OS interrupt handler can be associated with a particular class of interrupt
source, for faster dispatching when an interrupt occurs. GS/OS interrupt handlers are installed and
removed with the GS/OS calls Bindlnt and Unbindlnt. How to write interrupt handlers for GS/OS
device drivers or applications is discussed in Chapter 11.

1/31/89

IN T R 0 D U C TI 0 N The Device Level in GS/OS 13

GSIOS Reference (Volume 2) APDADTaft

Signals and signal bandllng

A signal is a message from one software subsystem to a second that something of interest to the
second has occurred. When a signal occurs, GS/OS typically places it in the signal queue for
eventual handling. As soon as it can, GS/OS suspends execution of the current program, saves the
program's state, removes the signal from the queue, calls the signal handler in the receiving
subsystem to process the signal, and finally restores the state and returns to the suspended
program.

The most important feature of signal handlers is that they are allowed to make GS/OS calls.
That is why the signal queue exists; GS/OS removes signals from the queue and executes their signal
handlers only when GS/OS is free to accept a call. The most common kind of signal is a software
response to a hardware interrupt, but signals need not be triggered by interrupts.

Signals are analogous to interrupts, but are handled with less urgency. If immediate response
to an interrupt request is needed, and if the routine that handles the interrupt needn't make any
operating-system calls, then it should be an interrupt handler. On the other hand, if a certain
amount of delay can be tolerated, the full range of operating system calls are available to a handler if
it is a signal handler.

A signal source is a software routine (perhaps an interrupt handler) that announces a signal to
GS/OS; the signal handler associated with that source is then executed as a result of the signal
occurrance. GS/OS signal sources and handlers are installed and removed with the device call
DControl or the driver call Driver_Control.

Interrupt handlers, signal handlers, and signal sources are commonly written in conjunction with
drivers. If you want to write a signal source or a signal handler or both to go with your driver or
application, see Chapter 10.

14 V 0 L U M E 2 Devices and GS/OS

1/31/89

GSIOS Reference (Volume 2) APDA Draft

Part I Using GS/OS Device Drivers

Patti -

GSIOScaU.s

Volume I
(ellcepo: dtvice ails)

(Chapcer 7)

Patti

Volume2

PartU -
FST-specific

inlormalion on
GSIOSalls

(Chapter 9-11)

PartO

Sy..um service ails
(Chapter 12)

~

;--Appondiles

ProOOS 16 caRs
(AppendiJ A)

t---
FST-specifiC

infonmlion on
ProOOS 16cals
(AppendiJ B)

Appondiles

S)Oiem Lotdtr ails
(Appondil A)

1/31/89

15

GSIOS Reference (Volume 2) APDA Draft 1/31189

Chapter 1 GS/OS Device Call Reference

This chapter explains how to call device drivers and documents the GS/OS device ca&:
application-level calls that give applications direct access to devices by bypassing all file
systems.

This chapter repeats the device-call descriptions of Chapter 7 of Volume 1, except that
it provides more complete documentation; in particular, it describes all the standard
DStatus and DControl subcalls. •

• This chapter describes only standard GS/OS (class 1) device calls; for
descriptions of how GS/OS handles equivalent ProDOS 16 (class 0) device
calls, see Appendix B of Volume 1.

17

GS/05 Reference (Volume 2) APDA Draft

How to make a device call

Your application makes GS/OS device calls just like any other application-level GS/OS calls-it sets up
a parameter block in memory, and executes either an in-line or stack-based call method (either
directly or with a macro). Chapter 3 of Volume 1 describes all the methods for making GS/OS calls.

All device calls are handled by the Device Manager. Table 1-1 I ists them. The rest of this chapter
documents how the device calls work.

• Table 1-1 GS/OS device calls

Call number Name

$:ll2C Dlnfo
$202D DStatus
$:ll2E DControl
$202F DRead
$20~ DWrite

The diagram accompanying each call description in this chapter is a simplified representation of the
call's parameter block in memory. The width of the parameter block diagram represents one byte;
successive tick marks down the side of the block represent successive bytes in memory. Each
diagram also includes these features:

• Offset: Hexadecimal numbers down the left side of the parameter block represent byte
offsets from the base address of the block.

• Name: The name of each parameter appears at the parameter's location within the block.

• No.: Each parameter in the block has a number, identifying its position within the block. The
total number of parameters in the block is called the parameter count (pcoun t); pcoun t is
the initial (zeroth) parameter in each call. The pcount parameter is needed because in some calls
parameter count is not fixed; see the following description of Minimum parameter count.

18 V 0 L U M E 2 Devices and GS/OS PART I Using GS/OS Device Drivers

1/31/89

GSIOS Reference (Volume 2) Draft 2

• Size and 'I)'pe: Each parameter is also identified by size (word or longword) and type (input
or result, and value or pointer). A word is 2 bytes; a longword is 4 bytes. An input is a
parameter passed from the caller to GS/OS; a result is a parameter returned to the caller from
GSIOS. A value is numeric or character data to be used directly; a pointer is the address of a
buffer containing data (whether input or result) to be used.

• Minimum parameter count: ~o the right of each diagram, across from the pcount
parameter, the minimum permitted value for pcount appears in parentheses. The maximum
permitted value for pcount is the total number of parameters shown in the diagram.

Each parameter is described in detail after the diagram. Additional important notes, call
requirements, and principal error results follow the parameter descriptions.

1131/89

C H A P T E R 1 GS/OS Device Call Reference 19

GS/05 Reference (Volume 2) APDA Draft 1/31/89

$202C

Description

Dlnfo

Dlnfo returns certain attributes of a device known to the system. The information is in
the device's device information block (DIB). The Device Manager makes a call to the
device dispatcher to obtain the pointer to the DIB, and then returns the requested
parameters from the DIB. If the pCount parameter is greater than 3, the Dlnfo call
actually issues a DStatus call with a status code of 0 to the device to obtain the current
block count. This ensures that any dynamic parameters in the DIB are updated.

20 V 0 L U M E 2 Devices and GS/OS P A R T I Using GS/OS Device Drivers

GS/OS Reference (Volume 2)

$02

,, $04
r\t--l(1\ S'T_. S CS 1 • I

$0A

;::~- _j;s2_SC

F $0E

l
$10

Atj>t1t) $12

r-
~

$14

~ $16

(:£ $18
;

$1A

th
'

~ pCount -
.,

~ devNum -

~ -
1- devName -
~ -
-characteristics-

- -
- totalBlocks -
- -
~ slotNum -

~ unitNum -
1- version -

~ device IDNum -
~ headLink -

~ forwardLink -
1- -
1- extendedDIBPtr -

1- -

Draft 2 1/31189

No. Size and type

Word INPUT value (minimum = 2)

1 Word INPUT value

2 Longword INPUT pointer

3 Word RESULT value

4 Longword RESULT value

5 Word RESULT value

6 Word RESULT value

7 Word RESULT value

8 Word RESULT value

9 Word RESULT value

10 Word RESULT value

11 Longword INPUT pointer

pCount Word input value: The number of parameters in this parameter block. Minimum is 2;
maximum is 11.

CHAPTER 1 GS/05 Device Call Reference 21

GSIOS Reference (Volume 2) APDA Draft 1/31/89

ctevNum Word input value: A nonzero device number. GS/OS assigns device numbers in sequence 1,
2, 3, ... as it loads or creates the device drivers. Because the device list is dynamic, there is no
fiXed correspondence between devices and device numbers. To get information about
every device in the system, make repeated calls to Dlnfo with devNum values of 1, 2, 3, .. ,
until GS/OS returns error $11 (invalid device number).

ctevName Longword input pointer: Points to a result buffer in which GS/OS returns the device name
corresponding to the device number. The maximum size of the device-name string is 31
bytes, so the maximum size of the returned value is 33 bytes. Thus the buffer size should
be 35 bytes.

characteristics Word result value: Individual bits in this word give the general characteristics of the
device. This is its format:

I = RAM or ROM disk

22

I~ Device

Speed Group

I • Block

I • 'frite allowed

1 • Read allowed

I • Fonnat allowed

I • Removable media

In the device characteristics word, ltnked devtce means that the device is one of several
partitions on a single, removable medium. Device ts busy is maintained by the device
dispatcher to prevent reentrant calls to a device.

V 0 L U M E 2 Devices and GS/OS P ART I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) Draft 2 1/31189

totalBlocks

slotNum

unitNum

Speed group defines the speed at which the device requires the processor to be running.
Speed group has these binary values and meanings:

Setting Speed
$(XXX) Apple IIGS normal speed
$00>1 Apple IIGS fast speed
$00>2 Accelerated speed
$00)3 Not speed-dependent

Longword result value: If the device is a block device, this parameter gives the maximum
number of blocks on volumes handled by the device. For character devices, this parameter
contains zero.

Word result value: Slot number of the (1) device hardware or (2) resident firmware (port)

associated with the device. Bits 0 through 2 define the slot (valid values are $1 through
$7), and bit 3 indicates whether it is an internal port (controlled by firmware within the
Apple IIGS) or an external slot containing a card with its own firmware.

For a given slot number, either the external slot or its equivalent internal port is active
(switched-in) at any one time; Bit 15 indicates whether or not the device driver must
access the peripheral card's I/0 addresses. For more information on those addresses, see
the Apple lie Technical Reference Manual.

1 • driver independent on slot hardware
0 • driver dependent on slot hardware

q

Reserved: must be zero []]

Word result value: Unit number of the device within the given slot. Because different
drivers permit different numbers of devices per slot, the value of this parameter is driver
specific; it has no direct correlation with the GS/OS device number or any other device
designation used by the system.

C H A P T E R 1 GS/OS Device Call Reference 23

GSIOS Reference (Volume 2) APDA Draft 1/31/89

version

24

Word result value: Version number of the device driver. This parameter has the same
format as the SmartPort version parameter. These are its fields:

Rdeueplwe
A•alpha
8. bela
E • experimental
0. final

+ Note: This parameter has a different format from the version parameter
returned from the GS/OS GetVersion call.

V 0 L U M E 2 Devices and GS/OS P A R r Using GS/OS Device Drivers

GSIOS Reference (Volume 2) Draft 2 1/31/89

deviceiDNum Word result value: An identifying number associated with a particular type of device.
Device ID may be useful for Finder-like applications when determining what type of icon
to display for a certain device. These are the currently defined device IDs:

ID Description ID Description
$(XXX) Apple 5.25 Drive $0010 File server

(includes UniDisk™, DuoDisk®, $0011 (reserved)
Disk lie, and Disk II drives) $0012 AppleDesktop Bus

$00)1 ProFile (5 megabyte) $0013 Hard disk drive (generic)
$00)2 ProFile (10 megabyte) $0014 Floppy disk drive (generic)
$00)3 Apple 3.5 drive $0015 Tape drive (generic)

(includes UniDisk 3.5 drive) $0016 dlaracter device (generic)
$00)4 SCSI device (generic) $0017 MFM-encoded disk drive

,...,. $00)5 SCSI hard disk drive $0018 AppleTalk network (generic)
$(XXX) SCSI tape drive $0019 Sequential access device
$WJJ SCSI CD-ROM drive $001A SCSI scanner
~ SCSI printer $001B Other scanner
$(IDj Modern $001C UiserWriter SC
$000A Console $0010 Apple Talk main driver
$000B Printer $001E AppleTalk file service driver
$(XXX: Serial LaserWriter $001F AppleTalk RPM driver
$000D AppleTalk LaserWriter
$(XX)E RAM Disk
$000F ROM Disk

headLinl< Word result value: This parameter holds a device number that describes a link to another
device. It. is the device number of the first device in a linked list of devices that represent
separate partitions on a single disk. A value of zero indicates that no link exists.

forwardLinl< Word result value: This parameter holds a device number that describes a link to another
device. It is the device number of the next device in a linked list of devices that represent
separate partitions on a single disk. A value of zero indicates that no link exists.

extendedDIBPtr Longword input pointer: Points to a buffer in which GS/OS returns information about the
extended device information block (extended DIB). Only certain devices have extended
D!Bs.

C H A P T E R 1 GS/OS Device <::111 Reference 25

GSIOS Reference (Volume 2) APDA Draft

Errors $11 invalid device number
$53 parameter out of range

V 0 L U M E 2 Devices and GS/OS

1/31/89

P ART I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$202D

Description

Parameters

pCount

devNum

statusCode

DStatus

DStatus returns status infonnation about a specified device. DStatus is really four or
more calls in one. Depending on the value of the status code parameter (statuscode),

DStatus can return several classes of status infonnation.

Offset No. Size and type

$00 1- pCount - Word INPUf value (minimum = 5)

$02 1- devNum - Word INPUf value

~ statusCode -$04 2 Word INPUT value

$06
1- -
~ statusList - 3 Longword INPUT pointer
...... -

1- -$0A

1- request Count - 4 Longword INPUT value
- -

$0E - -
_ transferCount _ 5 Longword RESULT value
- -

Word input value: The number of parameters in this parameter block. Minimum is 5;
maximum is 5.

Word input value: Device number of the device whose status is to be returned.

Word input value: A number indicating the type of status request being made. Each
status code correpsonds to a particular DStatus subcall, described under DStatus Subcalls,
later in this section.

CHAP T E R 1 GS/OS Device Call Reference

GSIOS Reference (Volume 2) APDA Draft 1/31189

statusList Longword input pointer: Points to a buffer in which the device returns its status
infonnation. The fonnat of the data in the status buffer depends on the status code. See
individual DStatus subcall descriptions.

requestcount Longword input value: Specifies the number of bytes to be returned in the status list. The
call can never return more than this number of bytes.

trans fercount Longword result value: Specifies the number of bytes actually returned in the status list.
This value is always less than or equal to the request count.

Buffer size On a status call, the caller supplies a pointer (bu fferPtr) to a buffer, whose size must be
at least requestcount bytes. In some cases, the first 2 bytes of the buffer are a length
word, specifying the number of bytes of data in the buffer. In those cases,
requestcount must be at least 2 bytes greater than the maximum amount of data than
the call can return, to account for the length word

If requestcount is not big enough for the requested data, the driver either fills the
buffer with as much data as can fit and returns with no error, or does not fill the buffer
and returns error $22 (Invalid parameter). See the individual DStatus subcall descriptions
for details.

DStatus subcalls DStatus is several status subcalls rather than a single call. Each value for the parameter
statusCode corresponds to a particular subcall. Status codes of $0000 through $7FFF
are standard status subcalls that are supported (if not actually acted upon) by every device
driver. Device-specifiC status subcalls, which may be defined for individual devices, use
status codes $8000 through $FFFF.

28

Table l-2lists the currently defined values for statusCode and the subcalls invoked.
Following the DStatus error listings, each of the status subcalls is described individually.

V 0 L U M E 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Errors

• Table 1-2

Status code

$(IDJ

$00)1

$00)2

$00)3

$OO}i

$000S-$7FFF
$8000-$FFFF

DStatus subcalls

SubcaDname

GetDeviceStatus
GetConfigParameters
GetWaitStatus
GetFormatOptions
GetPartitionMap
(reserved)
(Device-spedfic subcalls)

$11 invalid device number
$53 parameter out of range

GetDeviceStatus (DStatus subcall)

\.1 c (('.I ; .\

(\ (\.j > 1(\ \' t" ,' t

~\ \' \ \c

Status code = $0000.

The Device Status subcall returns, in the status list, a general device status word
followed by a number giving the total number of blocks on the device.

This sutx:all normally requires an input requestcount of $0000 0006, the size in bytes of
the status list in this case. However, if only the status word is desired, use a request
count of $0000 0002. This is the format of the status list:

Offset Size Description

$()()- statusWord - Word The status word (see following definition)

$02-

- numB locks

r-

-
-
-

t ··,i--1

~~

Longword The number of blocks on the device

I
/\

CHAP T E R 1 GS/OS Device Call Reference
:.~ IIC/c ' - ~~\ [,(',, \,_-, .. ·

#l

J
\ i· dd + ·.

GSIOS Reference (Volume 2) APDA Draft 1/31/89

The device status word has two slightly different formats, depending on whether the
device is a bock device or a character device. This is its defmition:

Block device:

1 • uncert2in block count

1 • disk in drive

1 • device is write protected

1 • device is interrupting

1 • disk has been switched

Character device:

1 • device is on line

1 • device is interrupting

1 .. device is open

Reserved: must be zero IJ

30 V 0 L U M E 2 Devices and GS/OS P ART I Using GSIOS Device Drivers

GSIOS Reference (Volume 2) APDA Draft 1/31/89

To maintain future compatibility, the driver must return zero in all reserved bit positions
for the status word, because reserved bits may in the future be assigned new values.

GetConflgParameters (DStatus subcall)

Status code= $0001.

The GetConfigParameters subcall returns, in the status list, a length word and a list of
configuration parameters. The structure of the configuration list is device-dependent.

The request count for this subcall (the length of the configuration list plus the length
word) must be in the range $0000 0002 to $0000 FFFF. This is the format of the status list:

Offset Size Description

rp ~ cPf SOO r- length - Word The length of the list (in bytes)
$02 1---------l

r- -
r-configParamList
r -

GetWaitStatus (DStatus subcall)

Status code = $0002.

The configuration list

The GetWaitStatus subcall is used to determine if a device is in wait mode or no-wait
mode. When a device is in wait mode, it does not terminate a Read call until it has read the
number of characters specified in the request count, or if a newline character is
encountered during the read and newline mode is enabled. In no-wait mode, a Read call
returns immediately after reading the available characters, with a transfer count indicating
the number of characters returned. If one or more characters was available, the transfer
count has a nonzero value; if no character was available, the transfer count is zero.

CHAP T E R 1 GS/OS Device C111 Reference 31

GSIOS Reference (Volume 2) APDA Draft 1/31/89

The status list for this subcall contains $0000 if the device is operating in wait mode, $8000
if it is operating in no-wait mode. The request count must be $0000 0002. This is the
status list format:

Offset Size Description

$00 ~..F __ wa_i_t_M_od_e _ ___.3 Word The wait/no-wait status of the device

• Block devices: Block devices always operate in wait mode. Whenever this
call is made to a block device, the call returns $0000 in the status list.

GetFormatOptions (DStatus subcall)

Status code = $0003.

Some block devices can be formatted in more than one way. Formatting parameters can
include such variables as fde system group, number of blocks, block size, and interleave.
Each driver that supports media variables (multiple formatting options) contains a list
of the formatting 0ptions for its devices. The options can be used for two purposes:

• An application can select one with a SetFormatOptions subcall, prior to formatting a
block device. See the description of the DControl call, later in this chapter.

• An FST can display one or more rJ the options to the user when initializing disks. See
the section "Disk Initialization and FSTs,• in Chapter 8 rJ Volume 1.

V 0 L U M E 2 Devices and GS/OS P ART I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) APDA Draft 1/31/89

This subcall returns the list of fonnatting options for a particular device. Devices that do
not support media variables return a transfer count of zero and generate no error.
Character devices do nothing and return no error from this call. If a device does support
media variables, it returns a status list consisting of a 4-word header followed by a set of
entries, each of which describes a formatting option. The status list looks like this:

Offset Size Description

$00
t- numOptions - Word Number of format-option entries in the

- numDisplayed -$02
list

Word Number of options to be displayed
-recommendedOption-

- currentOption -$06
Word Recommended default formatting option

- -$08
Word The option with which the currently

on-line media was formatted
t- formatOptionl -
t- - (16 bytes) The first format option entry

$OC

(16 bytes) The last format option entry

formatOptionN

Of the total number of options in the list, zero or more can be displayed on the
initialization dialog presented to the user when initializing a disk (see the calls Format and
EraseDisk in Chapter 7 of Volume 1). The options to be displayed are always the first ones
in the list. (Undisplayed options are available so that drivers can provide FSTs with
logically different options that are actually physically identical and therefore needn't be
duplicated in the dialog.)

CHAPTER 1 GS/OS Device Clll Reference

GSIOS Reference (Volume 2) APDA Draft

Each fonnat-options entry consists of 16 bytes, containing these fields:

Offset

$00 ~formatOptionNum-

$02
~ linl<RefNum -

r- flags -$04

f- -$06

Size Description

Word The number of this option

Word Number of linked option

Word (See the following definition)

1/31/89

f- blocl<Count - Longword Number of blocks supported by device
f- -

- blocl<Size -$0A Word Block size in bytes

soc -interleaveFactor- Word Interleave factor (in ratio to 1)

- mediaSize -$0E Word Media size (see flags description)

Linked options are options that are physically identical but which may appear different at
the FST level. Linked options are in sets; one of the set is displayed, whereas all others are
not, so that the user is not presented with several choices on the initialization dialog. See
"Example," later in this section.

Bits within the flags word are defined as follows:

4 It ,p ,S'

IMIMJj~f~~l~t·h~··lmi?[i'•):ti~·I:~·;.ful;j zit I o I
.i)j \?format type J r

rt) i Size multiplier

/,.;
I

,,S··c r
. ·'"''""""

Reserved Bill
ri' q cp 4> ¢ ~.. ¢ 1 ~ 4> . ~ ~\ d>

4:2

V 0 L U M E 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Example

In the format options flag word, Fonnat type defines the general file-system family for
formatting. An FST might use this information to enable or disable certain options in the
initialization dialog. Format type can have these binary values and meanings:

00 Universal Format (for any file system)
01 Apple Format (for an Apple file system)
10 NonApple Format (for other file systems)
11 (not valid)

Size multiplier is used, in conjunction with the parameter mediasize, to calculate the
total number of bytes of storage available on the device. Size multiplier can have these
binary values and meanings:

00 mediaSizeisinbytes
01 mediasize is in kilobytes (KB)
10 mediaSize is in megabytes (MB)
11 mediasi ze is in gigabytes (GB)

A list returned from this call for a device supporting two possible interleaves intended to
support Apple's file systems (DOS 3.3, ProDOS, MFS or HFS) might be as follows. The
field t ransferCount has the value $0000 0038 (56 bytes returned in list). Only two of
the three options are displayed; option 2 (displayed) is linked to option 3 (not displayed),
because both have exactly the same physical formatting. Both must exist, however,
because the driver will provide an FST with either 512 bytes or 256 bytes per block,
depending on the option chosen. At format time, each FST will choose its proper option
among any set of linked options.

CHAP T E R 1 GS/OS Device Call Reference 35

GSIOS Reference (Volume 2) APDA Draft

The entire format options list looks like this:

Value Explanation

Formal opttons list header:

$00)3 Three format options in the status list
$00)2 Only two display entries
$00)1 Recommended default is option 1
$00)3 Current media is formatted as specified by option 3

Format Option 1:

Option 1
LinkRef = none
Apple format/size in kilobytes
Block count= 1600
Block size= 512 bytes
Interleave factor= 2:1
Media size = 800 KB

Format Option 2:

$00)2

$00)3

$00)5

$00Xlo64o
$0100
$(IDi

$01~

Option 2
LinkRef = option 3
Apple format/size in kilobytes
Block count= 1600
Block size = 256 bytes
Interleave factor = 4:1
Media size = 400 KB

Format Option 3:

Option 3
LinkRef = none
Apple format/size in kilobytes
Block count = 800
Block size= 512 bytes
Interleave factor = 4:1
Media size = 400 KB

V 0 L U M E 2 Devices and GS/OS PART I Using GS/OS Device Drivers

1/31/89

GSIOS Reference (Volume 2) APDA Draft

GetPartltionMap (DStatus subcall)

Status code = $0004.

This call returns, in the status list, the partition map for a partitioned disk or other
medium. The structure of the partition infonnation is device-dependent.

Device-specific DStatus subcalls

1/31189

Device-specific DStatus subcalls are provided to allow device-driver writers to implement
Status calls specific to individual device drivers' needs. DStatus calls with stat usc ode

values of $8000 to $FFFF are passed by the Device Manager directly to the device
dispatcher for interpretation by the device driver.

The content and format of information returned from these subcalls can be defined
individually for each type of device; the only requirements are that the parameter block
must be the regular DStatus parameter block, and the status code must be in the range
$ro>Q-$FFFF.

CHAPTER 1 GS/05 Device Call Reference J7

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$202E

Description

Parameters

pCount

devNum

controlCode

DControl

This call sends control information, commands, or data to a specifted device or device
driver. Dcontrol is really ten or more subcalls in one. Depending on the value of the
control code parameter (controlCode), DControl can set several classes of control
information.

Offset

$00
1-

$02

$04

$06

$0A

$0E

r-

1-

1-

r-
1-

r-
1-

1-

r-
1-

1-

pCount

devNum

control Code

controlList

requestCount

trasferCount

No. Size and type

- Word INPUf value (minimum = 5)

- 1 Word INPUf value

- 2 Word INPUf value

-
- 3 Longword INPliT pointer
-

-
- 4 Longword INPliT value
-

-
- 5 Longword RESULT value
-

Word input value: The number of parameters in this parameter block. Minimum is 5;
maximum is 5.

Word input value: Device number of the device to which the control information is being
sent.

Word input value: specifies the type of control request being made. Each control request
corresponds to a DControl sulx:all, as described for each sulx:alllater in this section.

38 V 0 L U M E 2 Devices and GS/OS P A R T I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) APDA Draft 1/31/89

control List

requestCount

transferCount

Control-list
buffer

Subcalls

Longword input pointer: Points to a buffer that contains the control information for the
device. The format of the data and the required minimum size of the buffer are different
for different sutx:alls. See the individual subcall descriptions.

Longword input value: indicates the number of bytes to be transferred. For control
sutx:alls that ~se a control list, this parameter gives the size of the control list. For control
sutx:alls that do not use the control list, this parameter is not used.

Longword result value: For control sutx:alls that use a control list, this parameter indicates
the number of bytes of information taken from the control list by the device driver. For
control sutx:alls that do not use the control list, this parameter is not used.

On a control call, the caller supplies a pointer (bufferPtr) to a buffer, whose size must
be at least requestCount bytes. In some cases, the first 2 bytes ofthe buffer are a
length word, specifying the number of bytes of data in the buffer. In those cases,
requestCount (which describes the amount of data supplied to the driver in the
buffer) must be at least 2 bytes greater than the amount of data the driver needs, to
account for the length word. The value returned in transferCount is the number of
bytes used by the driver. If not enough data is supplied for the requested function, this
call may return error $22 (invalid parameter).

For those subcalls that pass no information in the control list, the driver does not access
the control list and verify that its length word is zero; the driver ignores the control list
entirely.

DControl is several control subcalls rather than a single call. Each value for the parameter
cant rolCode corresponds to a particular subcall. Control codes of $0000 through
$7FFF are standard control subcalls that are supported (if not actually acted upon) by
every device driver. Device-specifte control subcalls, which may be defmed for individual
devices, use control codes $8000 through $FFFF.

Table 1-31ists the currently defmed values for controlCode. Following the DControl
error listings, each of the standard control subcalls is described individually.

CHAPTER 1 GS/OS Device Call Reference

GSIOS Reference (Volume 2) APDA Draft 1/31/89

• Table 1-3

controiCode

$(XXX)

$00)1
$00)2

$00)3

$00)4

$00)5

$(XXX)

$0017
$()(XlJ

$009
$000A-$7FFF
$8000-$FFFF

Errors

Dcontrol subcalls

subcaDname

ResetDevice
FonnatDevice
EjectMedium
SetConfigParameters
SetWaitStatus
SetFormatOptions
AssignPartitionOwner
ArmSignal
DisarmSignal
SetPartitionMap
(reserved)
(device-specific)

$11 invalid device number
$21 invalid control code
$53 parameter out of range

ResetDevice (DControl subcall)

40

Control code = $0000.

The Reset Device subcall sets a device's configuration parameters back to their default
values. Many GS/OS device drivers contain default configuration settings for each device it
controls; see Olapter 8, "GS/OS Device Driver Design,• for more information.

ResetDevice also sets a device's format options back to their default values, if the device
supports media variables. See the SetFormatOptions subcall described later in this section.

If successful, the transfer count for this call is zero. The request count is ignored, and the
control list is not used. However, for future compatibility, the requestCount
parameter should be set to $0.

V 0 L U M E 2 Devices and GS/OS P ART I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) APDA Draft 1/31/89

FormatDevice (DControl subcall)

Control code= $0001.

The FormatDevice subcall is used to format the medium, usually a disk drive, used by a
block device. This call is not linked to any particular fde system, in that no directory
information is- written to disk. FormatDevice simply prepares all blocks on the media for
reading and writing.

After formatting, FormatDevice resets the device's format options back to their default
values, if the device supports media variables. See the DControl subcall SetFormatOptions
described later in this section.

Character devices do not implement this function but return with no error.

If successful, the transfer count for this call is zero. Request count is ignored; the control
list is not used.

EjectMedlum (OControl subcall)

Control code = $0002.

The Eject.Medium subcall physically or logically ejects the recording medium, usually a disk,
from a block device. In the case of linked devices (separate partitions on a single physical
disk), physical ejection occurs only if, as a result of this call, all the linked devices become
off line. If any devices linked to the device being ejected are still on line, the device being
ejected is marked as off line but is not actually ejected.

Character devices do not implement this function but return with no error.

If successful, the transfer count for this call is zero. Request count is ignored; the control
list is not used.

I
A (' (\ r c. V ;-\ ! \ ,<:J l.· ; :- c\

CHAP T E R 1 GS/OS Device ~I Reference 41

GSIOS Reference (Volume 2) APDADmft 1/31/89

SetConflgParameters (DControl subcall)

Control code = $0003.

The Set ConfigParameters subcall is used to send device-specific configuration parameters
to a device. The configuration parameters are contained in the control list The farst word
in the control list (lengthWord) indicates the length of the configuration list, in bytes.
The configuration parameters follow the length word Here is what the control list looks
like:

Offset Size

$()() 1-

$02

length - Word

I- -
t-configParamList-
1- -

Description

The length of the list (in bytes)

The configuration list

The structure of the configuration list is device-dependent. See Chapter 9, "Configuration
and Cache Control," for more information.

This subcall is most typically used in conjunction with the status subcall
GetConfigParameters. The application first uses the status subcall to get the list of
configuration parameters for the device; it then modifies parameters as needed and makes
this control subcall to send the new parameters to the device driver.

The request count for this subcall must be equal to lengthWord + 2. Furthermore, the
length word of the new configuration list must equal the length word of the existing
configuration list (the list returned from GetConfigParameters). If this call is made with
an improper configuration list length, the call returns error $22 (invalid parameter).

V 0 L U M E 2 Devices and GS/OS P A R T I Using GSIOS Device Drivers

GSIOS Reference (Volume 2) APDA Draft 1/31/89

SetWaitStatus (DControl subcall)

Control code= $0004.

The SetWaitStatus subcall is used to set a character device to wait mode or no-wait mode.

+ Note: Block devices cannot be set to no-wait mode. For block devices,
the driver should return a bad parameter error ($53) on a no-wait mode
request.

When a device is in wait mode, it does not terminate a Read call until it has read the
number of characters specified in the request count, or if a newline character is
encountered during the read and newline mode is enabled. In no-wait mode, a read call
returns immediately after reading the available characters, with a transfer count indicating
the number of characters returned. If one or more characters was available, the transfer
count has a nonzero value; if no character was available, the transfer count is zero.

The control list for this subcall contains $0000 (to set wait mode) or $8000 (to set no-wait
mode). The request count must be $0000 0002. The control list looks like this:

Offset Size

$00 F __ w_a_it_M_o_d_e _ ___,J Word

Description

The wait/no-wait status of the device

This subcall has no meaning for block devices; they operate in wait mode only.
SetWaitStatus should return from block devices with no error (if wait mode is requested)
or with error $ 22 (invalid parameter) if no-wait mode is requested.

CHAP T E R 1 GS/OS Device Clll Reference

GSIOS Reference (Volume 2) APDA Draft 1/31189

SetFormatOptlons (DControl subcall)

44

Control code .. $0005.

Some block devices can be formatted in more than one way. Formatting parameters can
include such variables as fde system group, number of blocks, block size, and interleave.
Each driver that supports media variables (multiple formatting options) contains a list
of the formatting options for its devices.

The SetFormatOptions subcall is used to set these media-specific formatting parameters
prior to executing a FormatDevice subcall. SetFormatOptions does not itself cause or
require a formatting operation. The control list for SetFormatOptions consists of two
word-length parameters:

Offset Size Description

$00 1- formatOptionNum- Word The number of the format option

S02 1-interleaveFactor- Word The override interleave factor (if nonzero)

The format option number (formatOptionNum) specifies a particular format option
entry from the driver's list of formatting options (returned from the DStatus subcall
GetFormatOptions). The format option entry has this format:

V 0 L U M E 2 Devices and GS/OS P ART I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Offset Size Description

formatOptionNum Word The number of this option

.. linkRefNum - Word Number of linked option

flags - Word File system information

-
block Count - Longword Number of blocks supported by device

blockSize Word Block size in bytes

•interleaveFacto~ Word Interleave factor (in ratio to 1)

. mediaSize - Word Media size

See the description of the DStatus subcall GetFormatOptions, earlier in this chapter, for a
more detailed description of the format option entry.

The inter leaveFactor parameter in the control list, if nonzero, overrides
inter leaveFactor in the format option list. If the control list interleave factor is zero,
the interleave specified in the format option list is used.

To carry out a formatting process with this subcall, do this:

1. Issue a (DStatus) GetFormatOptions subcall to the device. The call returns a list of all
the device's format option entries and their corresponding values of
formatOpt ionNum.

2 Issue a (DControl) SetFormatOptions subcall, specifying the desired format option.

3. Issue a (DControl) ForrnatDevice subcall.

!:::,. Important SetFormatOptions sets the parameters for one subsequent formatting
operation only. You must call SetFormatOptions each time you format a
disk with anything other than the recommended (default) option. 6

The SetFormatOptions subcall applies to block devices only; character devices return error
$20 (invalid request) if they receive this call.

CHAPTER 1 GS/OS Device Call Reference 45

GSIOS Reference (Volume 2) APDA Draft 1/31/89

AssignPartitlonOwner (DControl subcall)

Control code .. $0006.

The AssignPartitionOwner subcall provides support for partitioned media on block
devices. Each partition on a disk has an owner, identifted by a string stored on disk. The
owner name is used to identify the file system to which the partition belongs.

This subcall is executed by an FST when an application makes the call EraseDisk, to allow
the driver to reassign the partition to the new owner.

Partition owner names are assigned by Apple Developer Technical Support, and can be up
to 32 bytes in length-uppercase and lowercase characters are considered equivalent The
control list for this call consists of a GS/OS string naming the partition owner:

Offset Size Description

$00 - length - Word The length of the name (in bytes)

$02 - -
- ownerName - The partition owner name
- -

Block devices with non-partitioned media and character devices do nothing with this call
and return no error .

ArmSignal (DControl subcall)

46

Control code = $0007.

The ArmSignal subcall provides a means for an application to bind its own software
interrupt handler to the hardware interrupt handler controlled by the device. This is the
control list for the subcall:

V 0 L U M E 2 Devices and GS/OS P A R T I Using GS/OS Device Drivers

GSIOS Reference (Volume 2)

Offset

$00 .._

$02 -
$04 -

signalCode

priority

APDA Draft

Size

- Word

- Word

-

1/31/89

Description

An ID for this handler and its signals

The priority for this handler's signals

- handlerAddress - Longword A pointer to the signal handler's entry
- -

The signalCode parameter is an arbitrary number assigned by the caller to match the
signals that the signal source generates with the proper handler; its only subsequent use is
as an input to the DControl subcall DisarmSignal. The priority parameter is the signal
priority the caller wishes to assign, with $0000 being the lowest priority and $FFFF being
the highest priority. The handlerAddress parameter is the entry address of the signal
handler for that signal code.

DisarmSignal (DControl subcall)

Control code = $0008.

The Disarm Signal subcall provides a means for an application to unbind its own software
interrupt handler from the hardware interrupt handler controlled by the device. The
signalcode parameter is the identification number assigned to that handler when the
signal was armed.

Offset Size Description

$00 F signalCode J Word The signal handler's ID

CHAP T E R 1 GS/OS Device Call Reference 47

GSIOS Reference (Volume 2) APDA Draft 1/31/89

SetPartitionMap (DControl subcall)

Status code .. $0009.

This call passes to a device, in the control list, the partion map for a partitioned disk or
other medium. The structure of the partition information is device-dependent.

Device-Specific DControl subcalls

48

Device-specific DControl sulx:alls are provided to allow device-driver writers to implement
control calls specifiC to individual device drivers' needs. DControl subcalls with
cent rolcocte values of $8000 to $FFFF are passed by the Device Manager directly to the
device dispatcher for interpretation by the device driver.

The content and format of information passed by this sulx:all can be defined individually
for each type of device. The only requirements are that the parameter block must be the
regular DControl parameter block, and the control code must be in the range $8000-$FFFF.

V 0 L U M E 2 Devices and GS/OS P ART I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$202F

Description

Parameters

pCount

devNum

buffer

DRead

This call performs a device-level read on a specified device: it transfers data from a
character device or block device to a caller-supplied buffer.

Offset

$00
$02

....

....
1-

$08
1-

....

....
$OC

1-
....

$10
$12

pCount -
devNum -

-
buffer -

-

-
request Count -

-

-
startingBlock -

-
blockSize -

-
f- transferCount _

1- -

No. Size and type

Word INPUT value (minimum "' 6)

Word INPUT value

2 Longword INPUf pointer

3 Longword INPUT value

4 Longword INPUT value

5 Word INPUT value

6 Longword RESULT value

Word input value: The number of parameters in this parameter block. Minimum is 6;
maximum is 6.

Word input value: Device number of the device from which data is to be read.

Longword input pointer: Points to a buffer into which the data is to be read. The buffer
must be big enough to hold the data.

CHAPTER 1 GS/OS Device C111 Reference 49

GSIOS Reference (Volume 2) APDA Draft 1/31189

requestCount

startingBlock

block Size

transferCount

Longword input value: Specifies the number of bytes to be read.

Longword input value: For a block device, this parameter specifies the logical block number
of the block where the read starts. For a character device, this parameter is unused.

Word input value: The size, in bytes, of a block on the specifted block device. For non
block devices, the parameter must be set to zero.

Longword result value: The number of bytes actually transferred by the call.

Character devices You must first open a character device (with an Open call) before reading characters from
it with DRead; otherwise, DRead returns error $23 (device not open).

If the parameter block size is not zero on a DRead call to a character device, DRead
returns error $58 (not a block device).

Block devices DRead does not support caching. From block devices, DRead always reads data directly
from the device, not from the cache (if any). Furthermore, the block being read will not be
copied into the cache.

Errors

50

1,, (' __ ~ The request count should be an integral multiple of block size; if it is not, the call returns
error $2C (invalid byte count). If the block number is outside the range of possible block
numbers on the device, the call returns error $2D (invalid block number).

$11 invalid device number
$23 device not open
$~ invalid byte count
$20 invalid block number
$53 parameter out of range
$58 not a block device

V 0 L U M E 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) APDA Draft 1131/89

$2030

Description

Parameters

pCount

devNum

buffer

request Count

DWrite

This call performs a device-level write to a specified device. The call transfers data from a
caller-supplied buffer to a character device or block device.

Offset No. Size and type

$00 - pCount - Word INPliT value (minimum = 6)

- devNum -$02 1 Word INPliT value

$04 - -
r- buffer - 2 Longword INPliT pointer
r- -

$08
r- -
~ request Count - 3 Longword INPliT value
r- -

soc - -
~ startingBlock - 4 Longword INPliT value

r:- -

- blockSize -$10 5 Word INPliT value

$12 - -
r- transferCount _ 6 Longword RESULT value
r- -

Word input value: The number of parameters in this parameter block. Minimum is 6;

maximum is 6.

Word input value: Device number of the device from which data is to be written.

Longword input pointer: Points to a buffer from which the data is to be written.

Longword input value: Specifies the number of bytes to be written.

CHAP T E R 1 GS/OS Device C111 Reference 51

GSIOS Reference (Volume 2) APDA Draft 1/31/89

startingBlock

blockSize

transferCount

Longword input value: For a block device, this parameter specifies the logical block number
of the block where the write starts. For a character device, this parameter is unused.

Word input value: The size, in bytes, of a block on the specified block device. For non
block devices, the parameter is unused and must be set to zero.

Longword result value: The number of bytes actually transferred by the call.

Character devices You must first open a character device (with an Open call) before writing characters to it
with DWrite (or Write); otherwise, DWrite returns error $23 (device not open).

Block devices

Errors

If the parameter block Size is not zero on a DWrite call to a character device, DWrite
returns error $58 (not a block device).

DWrite does not support caching. When writing to block devices, DWrite does not also
write the blocks into the cache, if there is one.

The request count should be an integral multiple of block size; if it is not, the call returns
error $2C (invalid byte count). If the block number is outside the range of possible block
numbers on the device, the call returns error $2D (invalid block number).

$11 invalid device number
$23 device not open
$~ invalid byte count
$20 invalid block number
$53 parameter out of range
$58 not a block device

52 V 0 L U M E 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) APDA Draft

Chapter 2 The SCSI Driver

This chapter describes the GS/OS SCSI driver. The current version of the SCSI driver
provides access to both SCSI hard-disk devices and CD-ROM devices. •

1/31189

53

GSIOS Reference (Volume 2) APDA Draft

General information

The SCSI Driver is a GS/OS loaded driver that provides direct application access to SCSI devices. It
communicates with the firmware on the Apple II SCSI Card and, as such, supports multiple devices.
It translates calls from the GS/OS format into the SCSI Card SmartPort format, allowing access to
SCSI hard disks and the Apple CD SC drive.

6 Important This version of the SCSI driver supports only Revision C of the Apple II
SCSI Card. t::.

The SCSI driver ensures that the Apple CD SC drive stays in 512 byte/block mode.

The SCSI driver provides special handling of CD Audio discs during DRead calls, as follows:

• The Apple CD SC does not allow reading of audio data, and will return an VO error if attempted.
The driver handles this by determining if an VO error was caused by trying to read audio data
and, if so, returns error $28 (no device connected).

• If a read call is issued to the Apple CD SC when it is in play or pause mode, it will stop playing.
Because FSTs frequently scan all devices looking for particular volumes, trying to play an audio
disc can be frustrating. The driver remedies this problem by checking to see if the Apple CD SC
is in play or pause mode and, if so, returns error $28 (no device connected) without issuing the
read call to the drive.

Device calls to the SCSI driver

The SCSI driver supports these standard GS/OS device calls:
Dinfo
DStatus
DControl
DRead
DWrite

including the standard set of DStatus and DControl subcalls.

V 0 L U M E 2 Devices and GS/OS P A R T I Using GSIOS Device Drivers

1/31/89

GSIOS Reference (Volume 2) APDA Draft

The driver also supports additional device-specifiC DStatus and DControl subcalls. Because the
detailed functions and formats of the device-specific DStatus and DControl subcalls are dependent
on the device being accessed, and because the SCSI driver accesses CD-ROM devices as well as SCSI
hard disk devices, this chapter does not provide all the details on how the device-specific calls work.
To fully understand them, you need other documents that describe Apple SCSI commands and
Apple CD-ROM commands, such as_

• Apple CD SC Developers Guide

• ANSI X3.131-1986, SmaU Computer System Interface (SCSI)

You will also need the SCSI Manager chapter in Inside Mactntosh, Volume V.

The rest of this chapter describes the device-specific DStatus and DControl subcalls. Any device
calls or subcalls not discussed here are handled exactly as documented in Chapter 1.

DStatus ($2020)

Please see Chapter 1 of this Volume for a description of the general format of the DStatus call; the
SCSI driver supports all standard DStatus subcalls.

All of the device-specific SCSI driver DStatus subcalls use this same format for the status list (the
buffer pointed to by status List P t r in the DStatus call):

1/31/89

C HAP T E R 2 The SCSI Driver 55

GSIOS Reference (Volume 2)

Offset

$0000

commandData

bufferPtr

APDA Draft

Description

Reserved, must be zero

12 bytes of data

Pointer to a buffer that may contain additional
information

The commandDat a parameter and the contents of the data buffer pointed to by bu f ferPt r vary
for each subcall.

TestUnitReady (DStatus subcall)

In the DStatus parameter block for this call, statusCode = $8000. In the status list, commandData

contains this information:

byte
$00

$01
$02-0B

Meaning
SCSI command: $00
SCSI command flags: $00
(reserved)

The bu f ferPt r parameter is reserved The call will return an error if the subcall is not successful.

V 0 L U M E 2 Devices and GS/OS P ART I Using GS/OS Device Drivers

1/31/89

GSIOS Reference (Volume 2) APDA Draft

RequestSense (DStatus subcall)

In the DSlatus parameter block for this call, statusCode = $8003. In the status list, commandData

contains this information:

byte
$00
$01
$02-0B

Meaning
SCSI command: $03
SCSI command flags: $00
(reserved)

Request sense data is returned in the data buffer.

Inquiry (DStatus subcall)

In the DSlatus parameter block for this call, statusCode = $8012. In the status list, commandData

contains this information:

byte
$00
$01
$02-0B

Meaning
SCSI command: $12
SCSI command flags: $00
(reserved)

Inquiry data is returned in the data buffer.

ModeSense (DStatus subcall)

In the DStatus parameter block for this call, statusCode = $801A. In the status list, commandData

contains this information:

byte
$00
$01
$02-0B

Meaning
SCSI command: $1A
SCSI command flags: $00
(reserved)

Mode sense data is returned in the data buffer.

1/31189

C H A PTE R 2 The SCSI Driver 57

GSIOS Reference (Volume 2) APDA Draft

Readcapacity (DStatus subcall)
·J,

In the DStatus parameter block forthis call, statusCode = $8025. In the status list, commandData

contains this information:

byte
$00
$01
$02-0B

Meaning
SCSI command: $25
SCSI command flags: $00
(reserved)

Capacity data is returned in the data buffer.

Verify (DStatus subcall)

n

f\

In the DStatus parameter block for this call, statuscode = $802F. In the status list, commandData

contains this information:

byte
$00

$01
$02-05
$06-D7
$08-0B

Meaning
SCSI command: $2F
SCSI command flags: $00
block number to start verify, msb first
number of contiguous blocks to verify, msb first
(reserved)

The bu fferPt r parameter is reserved. The call will return an error jf the subcall is not successful.

\. \. f

!)Yc<!fi(j ..

I f~ _ (' ·'>' i. ~·
,--y ''((,_, .. ', },;

rf 1 U'' !)

\:.

~~
~cf
' ' q c\

&J
~~ A

c\'d' 9
r

c~ \-

I ,'

,l ~f /'f.. eli ..;\·
'--! \._.;. v

4,./h ·~

d> r.t~ ~J z~ '~ ef

clc

-.it
.,..;,-f

58 V 0 L U M E 2 Devices and GS/OS P ART I Using GS/OS Device Drivers

p+ 'r' ' i
;(

1/31/89

l , ,,,

,,

')

I. ,j
i .. ;~

GSIOS Reference (Volume 2) APDA Draft

ReadTOC (DStatus subcall)

This subcall applies to CD-ROM only.

In the DStatus parameter block for this call, statusCode = $80Cl. In the status list, commandData

contains this information:

byte Meaning
$00 SCSI command: $C1
$01 SCSI command flags: $00
$02 track number
$03-04 (reserved)
$05 TOC type:

$00 = typeO
$40 =type 1
$80 = type2

$(X)..OB (reserved)

TOC data is returned in the data buffer.

ReadQSubcode (DStatus subcall)

This subcall applies to CD-ROM only.

In the DStatus parameter block for this call, stat usC ode= $80C2. In the status list, commandData

contains this information:

byte Meaning
$00 SCSI command: $C2
$01 SCSI command flags: $00
$02--0B (reserved)

Q subcode data is returned in the data buffer.

1/31/89

CHAPTER 2 TheSCSIDriver 59

GSIOS Reference (Volume 2) APDA Draft

ReadHeader (DStatus subcall)

This subcall applies to CD-ROM only.

In the DStatus parameter block for this call, statusCode = $80C3. In the status list, commandData

contains this information:

byte Meaning
$00 SCSI command: $C3
$01 SCSI command flags: $00
$02-DS block address, msb ftrst
$06-()B (reserved)

Header data is returned in the data buffer.

AudioStatus (DStatus subcall)

This subcall applies to CD-ROM only.

In the DStatus parameter block for this call, statuscode = $80CC. In the status list, commandData

contains this information:

byte Meaning
$00 SCSI command: $CC
$01 SCSI command flags: $00
$02-0B (reserved)

Audio status data is returned in the data buffer.

DControl ($202E)

Please see Chapter 1 o(this Volume for a description of the general format of the DControl call; the
SCSI driver supports all standard DControl subcalls.

60 V 0 L U M E 2 Devices and GS/OS P A R T I Using GS/OS Device Drivers

1/31/89

GSIOS Reference (Volume 2) APDA Draft

All of the device-specific SCSI driver DControl subcalls use this same format for the control list (the
buffer pointed to by controlListPtr):

Offset

$0000

commandData

bufferPtr

Description

Reserved, must be zero

12 bytes of data

pointer to a buffer that may contain additional
information

The commandO at a parameter and the COntents of the data buffer pointed tO by bu f ferPtr vary
for each subcall.

RezeroUnit (DControl subcall)

In the DControl parameter block for this call, controlCode = $8001. In the control list,
commandData COntainS this information:

byte
$00
$01
$02-DB

Meaning
SCSicommand:$01
SCSI command flags: $00
(reserved)

The data buffer is reserved.

1/31189

C H APTER 2 The SCSI Driver 61

GSIOS Reference (Volume 2) APDA Draft

ModeSelect (DControl subcall)

In the DControl parameter block for this call, controlCode = $8015. In the control list,
commandData COntainS this information:

byte
$00
$01
$02-0B

Meaning
SCSI command: $15
SCSI command flags: $00
(reserved)

The data buffer contains the mode-select data to be sent.

Start/StopUnit (DControl subcall)

In the DControl parameter block for this call, controlCode = $8018. In the control list,
commandData COntainS this information:

byte
$00
$01
$02-$03
$04

$05-{)B

Meaning
SCSI command: $1B
SCSI command flags: $00
(reserved)
start/stop flag: $00 = stop

$01 = start
(reserved)

The data buffer is reserved.

Prevent/ Allow Removal (DControl subcall)

In the DControl parameter block for this call, controlCode = $801E. In the control list,
commandData COntains this information:

byte
$00
$01
$02-$03
$04

$OS-OB

Meaning
SCSI command: $1E
SCSI command flags: $00
(reserved)
prevent/allow flag: $00 = allow

$01 = prevent
(reserved)

The data buffer is reserved.

62 V 0 L U M E 2 Devices and GS/OS PART I Using GS/OS Device Drivers

1/31/89

GSIOS Reference (Volume 2) APDA Draft

+ Eject ca/J: On an Eject call (control code = $0002), the SCSI driver always first issues an Allow
Removal call before ejecting the disk; any preexisting prevent-removal condition is therefore
disabled. If you want prevent-removal to be enabled after ejection, reissue the Prevent
Removal call.

Seek (DControl subcall)

In the DControl parameter block for this call, controlCode = $802B. In the control list,
commandData COntains this information:

byte
$00

Meaning
SCSI command: $2B

$01
$02-DS
$06-{)B

SCSI command flags: $00
seek block number, msb first
(reserved)

The data buffer is reserved.

AudioSearch (DControl subcall)

This subcall applies to CD-ROM only.

In the DControl parameter block for this call, controlCode = $80C8. In the control list,
commandData COntains this information:

byte Meaning
$00 SCSI command: $C8
$01 SCSI command flags: $00
$02 play flag: $00 = pause after search complete

$10 =play after search complete
$03 play mode: $00-0F
$04-07 search address, msb first
$00 address type:

$09-0B (reserved)

The bufferPtr parameter is reserved.

$00 = typeO
$40 =type 1
$80 = type2

1/31/89

C H A PTE R 2 The SCSI Driver 63

GSIOS Reference (Volume 2) APDADraft

AudioPlay (DControl subcall)

This subcall applies to CD-ROM only.

In the DControl parameter block for this call, contro!Code = $80C9. In the control list,
commandData COntains this information:

byte Meaning
$00 SCSI command: $C9
$01 SCSI command flags: $00
$02 stop flag: $00 = playback address is start address for play

$10 = playback address is stop address for play
$03 play mode: $00-QF

$04-07 playback address, msb first.
$ffi address type:

$09-DB (reserved)

$00 = typeO
$40 =type 1
$80=type2

The bufferPtr parameter is reserved. The call will return an error if the subcall is not successful.

AudioPause (DControl subcall)

This subcall applies to CD-ROM only.

In the DControl parameter block for this call, control code = $80CA. In the control list,
commandData COntains this information:
byte Meaning
$00 SCSI command: $CA
$01 SCSI command flags: $00
$02 pause flag: $00 = release pause

$40 = start pause
$03-0B (reserved)

The bufferPtr parameter is reserved The call will return an error if the subcall is not successful.

64 V 0 L U M E 2 Devices and GS/OS P ART I Using GS/OS Device Drivers

1/31/89

GSIOS Reference (Volume 2) APDA Draft

AudJoStop (DControl subcall)

This subcall applies to CD-ROM only.

In the DControl parameter block for this call, control code= $80CB. In the control list,
commandData COntains this information:

byte Meaning
$00 SCSI command: $CB
$01 SCSI command flags: $00
$02-05 stop address, rnsb first
~ address type:

$07-{)B (reserved)

$00 = typeO
$40 =type 1
$80 =type 2

The bufferPtr parameter is reserved. The call will return an error if the subcall is not successful.

AudioScan (DControl subcall)

This subcall applies to CD-ROM only.

In the DControl parameter block for this call, controlcode = $80CD. In the control list,
commandDat a COntains this information:

byte
$00

$01
$02

Meaning
SCSI command: $CD
SCSI command flags: $00

direction flag: $00 = fast forward
$40 = fast reverse

$03 (reserved)
$04-07 scan starting address, rnsb first.
sre address type:

~B (reserved)

$00 = typeO
$40 =type 1
$80 =type 2

The bu fferPt r parameter is reserved. The call will return an error if the subcall is not successful.

1/31/89

CHAPTER 2 TheSCSIDriver 65

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Chapter 3 The AppleDisk 3.5 Driver

The Apple 3.5 drive is a block device that can read 3.5-inch disks in formats compatible
with the ProDOS or Macintosh file systems, and connects directly to the Apple IIGS disk
port.

This chapter describes the GS/OS AppleDisk 3. 5 driver, a GS/OS loaded driver that
controls the Apple 3.5 drive. It has general information on the driver and indudes
descriptions of any driver-specific implementation of the standard GS/OS device calls. •

67

GSIOS Reference (Volume 2) APDA Draft

General information

The Apple 3.5 drive is a block device that reads and writes 3.5-inch disks and can handle several types
of disk formats, including those used by the ProDOS file system and the Macintosh file systems.
Although the Apple 3.5 drive is not an intelligent drive-it cannot interpret software command
streams-its controller is accessed through SmiutPort fii1Ilware, and recognizes a set of device
specific extended SmartPort Control commands. The drive connects directly to the Apple IIGS disk
port or to a SmartPort-compatible expansion card in a slot. See the Apple IIGS Firmware Reference
for more information.

The AppleDisk 3.5 driver is a loaded driver that uses the SmartPort firmware protocol to
support one or two Apple 3.5 drives. The AppleDisk 3.5 driver operates independently of the
system speed. The driver supports a variety of formatting options: 400 KB or ~ KB disks, and
either 2:1 or 4: 1 interleave.

Device calls to the AppleDisk 3.5 driver

Applications can access the AppleDisk 3.5 driver either through a me system translator (such as
ProDOS) or by making device calls. Applications can make these device calls to the AppleDisk 3.5
driver:
Dinfo
DStatus
DControl
DRead
OW rite

The rest of this chapter describes the differences between the way the AppleDisk 3.5 driver handles
these device calls and ihe way a standard driver handles these calls. Any calls or subcalls not
discussed here are handled exactly as documented in Chapter 1.

V 0 L U M E 2 Devices and GS/OS P A R T I Using GS/OS Device Drivers

1/31/89

GSIOS Reference (Volume 2) APDA Draft

DStatus ($202D)

This call is used to oblain current slatus information from the device or the driver. The AppleDisk
3.5 driver suppports this standard set of DStatus subcalls:

status code
$(XXX)

$00Jl
$00)2

$00J3

Subcall name
GetDeviceStatus
GetConfigParameters
GetWaitStatus
GetFormatOptions

GetDeviceStatus:

This subcall returns a general status followed by a longword specifying the number of blocks
supported by the device.

The driver returns a disk-switched condition under appropriate circumstances. For a description
of those conditions, see the DriverSI.atus call in Chapter 11, "GS/OS Driver call Reference."

GetConflgParameters:

The AppleDisk 3.5 driver has no parameters in its configuration parameter list and returns with a
slatus list length word of zero and a transfer count of $0000 0002.

GetFormatOptions:

This subcall returns a list of formatting options that may be selected using the DControl subcall
SetFormatOptions prior to issuing a FormatDevice call to a block device. The AppleDisk 3.5 driver
returns format options as follows:

transfercount

statusList

$(XXX)0038

$OOJ3
$OOJ3
$00J1
$(XXX)

(56 bytes returned in list)

Option ltst header:
Three options in list
All three options to be displayed
Recommended default is option 1
Current media formatting is unknown

1/31/89

C H A PTE R 3 The AppleDisk 3.5 Driver 69

GS/OS Reference (Volume 2)

$00)3

$OOX)

$00)4

$00XX)320

$Om
$00)2

$01~

APDA Draft.

Optton-entry 1:
Option 1
no linked option
Apple format/size in kilobytes
Block count = 1600
Block size= 512 bytes
Interleave factor = 2: 1 v

Media size = 800 kilobytes

Optton-entry 2:
Option 2
no linked option
Apple format/size in kilobytes
Block count = 1600
Block size= 512 bytes
Interleave factor = 4: 1 'I

Media size = 800 kilobytes

Optton-entry 3:
Option3
no linked option
Apple format/size in kilobytes
Block count = 800 '-
Block size= 512 bytes
Interleave factor = 2:1
Media size = 400 kilobytes

70 V 0 L U M E 2 Devices and GS/OS PART I Using GS/OS Device Drivers

1/31/89

GSIOS Reference (Volume 2) APDA Draft

DControl ($202E)

This call is used to send control information to the device or the device driver. The AppleDisk 3.5
driver supports this standard set of DControl subcalls:

Control code Subcall name
$OCOO ResetDevice

FormatDevice
EjectMedia
SetConfigParameters
SetWaitStatus
SetFormatOptions
AssignPartitionOwner
ArmSignal
DisarmSignal

Only the following subcalls are nonstandard for the AppleDisk 3.5 driver.

ResetDevice:

This control call is used to reset a particular device to its default seuings. This call has no function
with the AppleDisk 3.5 driver and returns with no error.

SetConfigParameters:

This call has no function with the AppleDisk 3.5 driver and returns with no error.

SetWaitStatus:

All block devices, including the Apple 3.5 drive, operate in wait mode only. Selling the AppleDisk 3.5
driver to wait mode results in no error. If a call is issued to set the AppleDisk 3.5 driver to no-wait
mode, then error $22 (invalid parameter) is returned.

SetformatOptions:

This control. call sets the current format option as specified in the format option list returned from
the GetFormatOptions subcall of DStatus. The AppleDisk 3.5 driver does not support overriding
interleave factors and must have interleaveFactor set to $0000.

Assign Partition Owner:

This call has no function with the AppleDisk 3.5 driver and returns with no error.

1/31/89

C H A PTE R 3 The AppleDisk 3.5 Driver 71

GSIOS Reference (Volume 2) APDA Draft

ArmSignal:

lbis call has no function with the AppleDisk 3. 5 driver and returns with no error.

DisarmS igo.al:

lbis call has no function with the AppleDisk 3.5 driver and returns with no error.

DRead ($202F)

This call returns the requested number of bytes from the disk starting at the block number
specified. lbe request count must be an integral multiple of the block size. Valid block sizes for
this driver are $0200 or $020C (512 or 524) bytes per block.

DWrite ($2030)

This call writes the requested number of bytes to the disk starting at the block number specified.
lbe request count must be an integral multiple of the block size. Valid block sizes for this driver are
$0200 or $020C (512 or 524) bytes per block.

72 V 0 L U M E 2 Devices and GS/OS P A R T I Using GS/OS Device Drivers

1/31/89

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Chapter 4 The UniDisk 3.5 Driver

The UniDisk 3.5 drive is a block device that can read 3.5-inch disks in formats compatible
with the ProDOS or Macintosh file systems, and connects directly to the Apple IIGS disk
port.

This chapter describes the GS/OS UniDisk 3.5 driver, a GS/OS loaded driver that controls
the UniDisk 3.5 drive. It has general information on the driver and includes descriptions of
any driver -specifiC implementation of the standard GS/OS device calls. •

73

GS/OS Reference (Volume 2) APDA Draft

General information

The UniDisk 3.5 drive is a block device that reads and writes 3.5-inch disks and can handle several
types of disk formats, including those used by the ProDOS file system and the Macintosh file
systems. It is an intelligent device that supports standard SmartPort protocols. The drive
connects directly to the Apple IIGS disk port or to a SmartPort-compatible expansion card in a slot.
See the Apple JIGS Firmware Reference for more information.

The UniDisk 3.5 driver is a loaded driver that supports up to four total UniDisk 3.5 drives on the
diskport.

+ Note: The Apple lie UniDisk 3.5 card is not compatible with the Apple IIGS.

The UniDisk 3.5 driver operates independent of the system speed. The driver supports a variety of
formatting options: 400 KB or 800 KB disks, and either 2:1 or 4:1 interleave.

Device calls to the UniDisk 3.5 driver

Applications access a UniDisk 3.5 device either by making a file call that goes through a file system
translator (FS1), or by making a GS/OS device call. The UniDisk 3.5 driver supports these standard
device calls from an application:

Dinfo
DStatus
DControl
DRead
DWrite

The rest of this chapter describes the differences between the way the UniDisk 3.5 driver handles
these device calls and the way a standard driver handles these calls. Any calls or subcalls not
discussed here are handled exactly as documented in Chapter 1.

74 V 0 L U M E 2 Devices and GS/OS P ART I Using GS/OS Device Drivers

1/31/89

GSIOS Reference (Volume 2) APDA Draft

DStatus ($202D)

the UniDisk 3.5 driver supports the standard set of status subcalls. Only the following are
implemented in a nonstandard.way.

GetDeviceStatus:

This call returns a general status followed by a longword specifying the number of blocks
supported by the device.

The driver returns a disk-switched condition under appropriate circumstances. For a description
of those conditions, see the DriverStatus call in Chapter 11, "GS/OS Driver Call Reference."

GetConflgParameters:

The UniDisk 3.5 has no parameters in its configuration parameter list. GetConftgParameters returns
a transfer count of $0000 0002, and a status list length word of $0000.

GetW aitStatus:

Block devices operate in wait mode only. For UniDisk 3.5 devices, GetWaitStatus always returns a
transfer count of $0000 0002, and a wait status value of $0000 in the status list.

GetFormatOptions:

This call returns a list of formatting options that may be selected using a (DControl)
SetForrnatOptions subcall prior to issuing a (DControl) Format subcall to a block device.

1/31189

CHAPTER 4 The UniDisk 3.5 Driver 75

GSIOS Reference (Volume 2) APDA Draft

The UniDisk 3.5 driver returns a fonnat options list as follows:

transferCount

status List

$00)1

$00)1

$00)1

$(XXX)

DControl ($202E)

(56 bytes returned in I ist)

Opttons list header:
Three options in list
One displayed option
Default is option 1
Current media formatted with option 1

Optton~try 1:
Option 1
no linked option
Apple format/size in kilobytes
Block count= 1600
Block size= 512 bytes
Interleave factor = 4: 1
Media size = 800 KB

The UniDisk 3.5 driver supports the s~ndard set of status subcalls. Only the following calls are
implemented in a nonstandard way.

ResetDevice:

This subcall has no function with the UniDisk 3.5 driver and returns with no error.

SetConfigParameters:

This subcall has no function with the UniDisk 3.5 driver and returns with no error.

SetWait Mode:

All block devices operate in wait mode only. Setting the UniDisk 3.5 driver to wait mode results in
no error. If a call is issued to set the UniDisk 3.5 driver to no-wait mode, then error $22 (invalid
parameter) is returned.

V 0 L U M E 2 Devices and GS/OS P ART I Using GS/OS Device Drivers

1/31/89

GS/OS Reference (Volume 2) APDA Draft

SetFormatOptlons:

The UniDisk 3.5 driver supports the format options listed earlier in this chapter, under the DStatus
subcall GetFormatOptions. Any one of those options can be specified in the parameter
formatOptionNum for this subcall. However, the UniDisk 3.5 driver does not support
overriding interleave factors, so interleaveFactor for this call must be $0000.

Assign Partition Owner:

This call has no function with the UniDisk 3.5 driver and returns with no error.

ArmSignal:

This call has no function with the UniDisk 3.5 driver and returns with no error.

DisarmSignal:

This call has no function with the UniDisk 3.5 driver and returns with no error.

DRead ($202F)

This call returns the requested number of bytes from the disk starting at the block number
specified. The request count must be an integral multiple of the block size.

Valid block sizes for the UniDisk 3.5 driver are $0200 or $020C (512 or 524) bytes per block.
Issuing this call with a block size other than $0200 or $020C will result in error $22 (invalid parameter).

DWrite ($2030)

This call writes the requested number of bytes to the disk starting at the block number specified.
The request count must be an integral multiple of the block size.

Valid blOck sizes for this driver are $0200 or $020C (512 or 524) bytes per block. Issuing this call
with a block size other than $0200 or $020C will result in error $22 (invalid parameter).

1/31189

C H APT E R 4 The UniDisk 3.5 Driver 77

GSIOS Reference (Volume 2) APDA Draft 1/31189

Chapter 5 The AppleDisk 5.25 Driver

Apple 5.25 drives, UniDisk drives, DuoDisk drives, and Disk II drives are block devices that
read 5.25-inch floppy disks and are used widely with the Apple II family of computers.
Disks formatted under the ProDOS, Pascal, or DOS 3.3 file systems can be read from these
devices. The drives can plug directly into the Apple IIGS disk port or they can connect to
interface cards in slots.

Under GS/OS, these drives are controlled by the AppleDisk 5.25 driver. This chapter
describes how the the AppleDisk 5.25 driver works and what device calls it accepts. It also
describes the the physical and logical formats used by the AppleDisk 5.25 driver on 5.25-
inch media. •

+ For convenience, in this chapter the term Apple 5.25 drive is used to refer
to all manifestations of the 5.25-inch drive-including Apple 5.25, UniDisk,
Duo Disk, and Disk II.

79

GSIOS Reference (Volume 2) APDA Draft

General information

11te AppleDisk 5.25 driver is a loaded driver that supports up to 14 Apple 5.25 drives and operates
with either an interface card in a slot or the built-in IWM interface. 11te AppleDisk 5.25 driver
functions independently of the system speed and does not have the resident slot limitation
inherent in the Apple IIGS. 11tis means that, although the Apple IIGS normally allows Apple 5.25
drives to operate at accelerated speed in slots 4 through 7 only, the AppleDisk 5.25 driver permits
Apple 5.25 drives to to operate at accelerated speed in all slots (1 through 7), with either one or two
Apple 5.25 drives per slot.

11te Apple 5.25 drive provides no means for detection of disk-switched errors. 11te AppleDisk 5.25
driver provides a simulation of disk-switched detection by forcing any file system translator (FS1)

interfacing to the Apple 5.25 drive to identify the volume currently on line. 11tis simulation of disk
switched errors is adequate to prevent writing to the wrong volume, but it is not adequate to
validate the integrity of the cache. 'Iberefore, the AppleDisk 5.25 driver does not implement
caching. Also, the Status subcall GetDeviceStatus never returns a disk-switched status.

Device calls to the AppleDisk 5.25 driver

Applications can access the Apple 5.25 drive either through an FST or by making device calls.
Applications can make these standard device calls to the AppleDisk 5.25 driver:

Dinfo
DStatus
DControl
DRead
OW rite

The rest of this chapter describes how the AppleDisk 5.25 driver handles any of the above device
calls differently from the standard ways documented in Chapter 1. Any calls or subcalls not
discussed here are handled exactly as documented in Chapter 1.

V 0 L U M E 2 Devices and GS/OS P ART I Using GS/OS Device Drivers

1/31/89

GSIOS Reference (Volume 2) APDA Draft

DStatus ($202D)

This call is used to obtain current status information from the device or the driver. The AppleDisk
5.25 driver supports this standard set of status subcalls:
Status code subcall name
$(XXX) GetDeviceStatus ..
$00)1

$00)2

$00)3

GetConfigParameters
GetWaitStatus
GetFormatOptions

The following descriptions show how the the AppleDisk 5.25 driver handles various DStatus
subcalls differently from the standard descriptions given in Chapter 1 of this Volume.

GetDeviceStatus:

This call returns a general status word followed by a longword specifying the number of blocks
supported by the device. Because there is no way to validate media insertion on an Apple 5.25 drive,
bit 4 of the device status word is always set to 1.

GetConfigParameters:

The AppleDisk 5.25 driver has no parameters in its configuration parameter list. It returns a length
word of zero in the status list and transfer count of $0000 0002 in the parameter block.

GetFormatOptions:

This call returns a list of formatting options that you can select using the DControl subcall
SetFormatOptions prior to issuing a format call to a block device. The AppleDisk 5.25 driver returns
format options as follows:

transferCount

statusList

$(XXX)0028

$00)2

$00)1

$00)1

$(XXX)

(40 bytes returned in list)

Optton-ltst header:
Two options in list
Only one to be displayed
Recommended default is option 1
Formatting option of current media is unknown

1/31/89

CHAPTER 5 The AppleDisk 5.25 Driver 81

GSIOS Reference (Volume 2)

$00)1
$00)2

$00)4

$00X)0118

$Om
$OOX)

$ro3F

$00)2

$OOX)

$00)4

$00X)02~

$0100
$(XXX)

$ro3F

DControl ($202E)

APDA Draft

Option-entry 1:
Option 1
This option is linked to option 2.
Apple format/size in kilobyteS
Block count = 280
Block size= 512 bytes
Interleave factor = rv'a (fiXed physical interleave)
Media size= 140 KB

Optton-entry 2:
Option 2
no linked options
Apple format/size in kilobytes
Block count = 560
Block size = 256 bytes
Interleave factor= rv'a (fiXed physical interleave)
Media size= 140 KB

This call is used to send control information to the device or the device driver. The AppleDisk 5.25
driver supports this standard set of DControl subcalls:

Control code subcall name
$(XXX) ResetDevice
$0001 FormatDevice
$0002 EjectMedia
$0003 SetConfigParameters
$00)4 SetWaitStatus
$0005 SetF_ormatOptions
$(XXX) AssignPartitionOwner
w:m ArmEvent
~ DisarmEvent

The rest of this chapter describes the differences between the way the AppleDisk 5.25 driver
handles DControl subcalls and the way a standard driver handles these subcalls. See Chapter 1 for
complete documentation of DControl.

82 V 0 L U M E 2 Devices and GS/OS P A R T I Using GS/OS Device Drivers

1/31/89

GSIOS Reference (Volume 2) APDA Draft

ResetDevice:

This call has no function for the AppleDisk 5.25 driver and returns with no error.

FormatDevice:

This subcall is used to format a disk. The AppleDisk 5.25 driver ignores the control list

EjectMedia:

The Apple 5.25 drive does not have any mechanism for ejecting disks. This call has no function with
the AppleDisk 5.25 driver and returns with no error.

SetConfigParameters:

The AppleDisk 5.25 driver has no configuration parameters. This call has no function and returns
with no error.

SetWaitStatus:

All block-device drivers, including the AppleDisk 5.25 driver, operate in wait mode only. Setting the
AppleDisk 5.25 driver to wait mode results in no error; attempting to set the driver to no-wait
mode results in error $22 (invalid parameter).

SetFormatOptions:

Because only a single fiXed physical interleave is supported, this call works with either format
option but has no effect on the actual formatting of the media. This call returns with no error.

AssignPartitionOwner:

This call has no function with the AppleDisk 5.25 driver and returns with no error.

ArmSignal:

This call has no function with the AppleDisk 5.25 driver and returns with no error.

DisarmSig,al subcall

This call has no function with the AppleDisk 5.25 driver and returns with no error.

1/31189

CHAPTER 5 The AppleDisk 5.25 Driver 83

GSIOS Reference (Volume 2) APDA Draft

DRead ($202F)

This call returns the requested number of bytes from the disk starting at the block number
specified. 11le request count must be an integral multiple of the block size. 11le AppleDisk 5.25
driver supports a block size of 256 bytes (for DOS 3.3) or 512 bytes (for ProDOS and Pascal) and block
counts of 56o and 280 blocks, respectively. Logical interleaving on the disk varies with the block size.

+ Disk-switched detectton: In order to force disk-switched detection on an Apple 5.25 drive, the
AppleDisk 5.25 driver returns a disk-switched error on any read or write request, if there has not
been a media access in the previous one second. If your application is directly accessing the
AppleDisk 5.25, the application has to handle the disk-switched error. The normal procedure is
to retry once and only once.

DWrite ($2030)

This call writes the requested number of bytes to the disk starting at the block number specified.
The request count must be an integral multiple of the block size. The AppleDisk 5.25 driver
supports a block size of 256 bytes (for DOS 3.3) or 512 bytes (for ProDOS and Pascal) and block
counts of 56o and 280 blocks, respectively. Logical interleaving on the disk varies with the block size.

+ Disk-switched detection: In order to force disk-switched detection on an Apple 5.25 drive, the
AppleDisk 5.25 driver returns a disk-switched error on any read or write request, if there has not
been a media access in the previous one second. If your application is directly accessing the
AppleDisk 5.25, the application has to handle the disk-switched error.11le normal procedure is
to retry once and only once.

V 0 L U M E 2 Devices and GS/OS P A R T I Using GS/OS Device Drivers

1/31189

GSIOS Reference (Volume 2) APDA Draft

AppleDisk 5.25 formatting

The AppleDisk 5.25 driver supports only 35-track, 16-sector formatting. Media is formatted with a
physical 1:1 interleave. Logical interleave is achieved by using one of two interleave translation
tables. DOS 3.3 operates on 256-byte sectors; ProDOS and Pascal operate on 512-byte blocks
consisting of two contiguous "logical sectors. • Both ProDOS and Pascal use a common logical
sector interleave of 2:1 while DOS 3.3 uses a logical sector interleave of 4:1.

Logical-to-physical sector translations are shown in the interleave translation tables of Figure 5-
1. The input block size to a media access call controls which translation table is used.

• Figure 5-l Apple 5.25 drive interleave configurations

ProDOS or Pascal disks:

Logical sector address I o j1 1213 1415 jsl7 lsl9 I A I B I C I D I E I F I
Physical sector address I o 1214 Is IBI A I C I E 11 13 jsl7 191 B I D I F I

DOS 3.3 disks:

Logical sector address I 0 11 12 1314 Isis 1718 l9l A I B I C I D I E I F I
Physical sector address I 0 I D I B 1917 lsl3 11 I E I C I A I B Is 1412 I F I

As Figure 5-2 shows, each sector consists of a self-synchronization gap, followed by the sector
address field, followed by another self-synchronization gap, followed by the data field, and ending
with a final gap. The sector address field contains the volume number, track number, sector
number, and checksum for the sector. The data field contains 342 bytes of data and a checksum.
Both the address f~eld and the data field have beginning (mark) and ending (epilogue) markers.

1/31189

C H A PTE R 5 The AppleDisk 5.25 Driver 85

GSIOS Reference (Volume 2) APDA Dmft 1/31/89

• Figure 5·2 Apple 5.25 drive sector fonnat

GAPl ADDRESS FIElD GAP2
(rypially lil-85 bytes) MARK VOL TRK SEC ~UM EPILOG (Typially s-to bytes)

~~ ~ !!;~ !tit !tit it~ ~ ~ =n~ !~ ~ ~~ I~ ~~~ ~lg :!ffi !tl~ !tit !tit I!!;; !tit !tit lit

DATA FIElD GAP3

MARK DATA(342 BYTES- -SIX&: TWO ENCODED) csu~ EPILOG Cl'ypically 16-28 bytes)

ie < 0
~it !tit !tit ~ !tit !tit I:; i.!l it !tit !tit !tit !tit ~~ ~:! m !tit !tit !tit !tit it ~~~ ~ - -

V 0 L U M E 2 Devices and GS/OS P A R T I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Chapter 6 The Console Driver

The console is a conceptual component of a computer system; it consists of the principal
conduits by which the computer's operator sends commands to the computer and
receives messages from the computer. On the Apple IIGS, like most personal computers,
the console consists of the keyboard (for input) and the video display screen (for output).

The GS/OS console driver is a loaded driver that allows sophisticated manipulation of
the Apple IIGS text page. It runs in both 4G-colurnn and 80-column mode. The console
driver supports many advanced features, while using the standard Apple II BASIC and
Pascal control codes. •

• Text mode only: The console driver is for use only by applications that
run in text mode. The console driver does not support the standard Apple
II Hi-Res or double Hi-Res graphics. If your application uses the
Apple IJGS super Hi-Res graphics screen, it writes to the screen with
toolbox calls. See the Apple IIGS Toolbox Reference.

GSIOS Refermce (Volume 2) APDA Draft

General information

1be GS/OS console driver allows an application to treat both parts of the console (keyboard and
screen) as a single device that can be read from or written to. Because the console has two parts,
the console driver does also: an input routine and an output routine (see Figure 6-t):

Console output:

1be Console Output routine writes to the screen. It supports uppercase, lowercase, inverse, and
MouseText characters. It also includes a suite of control characters with functions such as any
direction scrolling, character-set selection, and cursor control. Finally, it permits saving of areas of
the screen to off-screen buffers, and selectively saving and restoring text port parameters-in
effect, allowing a simple windowing system.

All commands to the Console Output routine are sent as control characters. This allows the
programmer to create strings of commands that will be executed one after another, but requiring
only a single write call. All operations occur in a rectangular subset of the hardware screen known as
the text port. All text outside the text port is protected; that is, that text will not be affected by
any console calls.

Console input:

1be Console Input routine accepts characters from the keyboard. There are two basic input modes:
raw mode allows for simple keyboard input, whereas a more advanced user-input mode allows for
text-line editing and application-defined terminator keys. User-input mode also supports features
such as no-wait mode (which allows an application to continue running while input is pending) and
interrupt keys (which allow application-defined editing keystrokes, such as using arrow keys to
change a setting or using a key combination-like Apple - ?-to bring up a help screen).

1be application can supply a default string to the user input mode. If the default string
contains more characters than the width of the input field, the extra characters are retained;
however, they are displayed only if characters are deleted from the visible part of the field.
Horizontal scrolling of the input field is not supported.

1be application can also specify options such as overstrike or insert mode on entry. A flashing
block cursor signifies overstrike mode; a flashing underline cursor specifies insertion. 1be cursor
flash rate is based on the current control panel settings.

1be user can insert control characters into the input string by pressing Apple-Control
character, where character is replaced by any keyboard character. Control characters are displayed
on the screen in inverse, but are returned in the input string as codes from $00 to $1F. All normal
ASCII characters are returned in the range $20-$7F.

88 V 0 L U M E 2 Devices and GS/OS PART I Using GS/OS Device Drivers

1/31/89

GSIOS Reference (Volume 2) APDA Draft

The terminators used by the Console Input routine are more advanced than the newline characters
specified in GS/OS (see the description of the Newline call in Chapter 7 of Volume 1). User-input
specified terminators can include not only ASCII codes for the terminator characters, but also the
keyboard modifier bits. For example, the Return and Enter keys could be given different functions
by separately specifying terminators, one with the keypad flag set and one with it clear.

• Figure 6-1 Console driver 1/0 routines

The console driver

~------~nL------~ u jJ
Console Input routine

User Input
Mode

Console Output routine

D . -

1/31189

C H A PTE R 6 The Console Driver 89

GSIOS Reference (Volume 2) APDA Draft

The Console Output routine

The Console Output routine handles writing to the screen. It supports different screen sizes and
defines subareas of the screen called text ports, which can be used to protect parts d the screen.
All commands to the Console Output routine are sent as control characters.

Screen size

The default screen size (in columns of width) is always 80 columns. You can change the screen size
by the writing the correct screen control code, as described in the section "Screen Control Codes•
later in this chapter.

• The 40-column screen consists of 40 columns of text in 24lines. The upper-left comer is 0,0 and
the lower-right comer is 39,23.

• The 80-column screen consists of 80 columns dtext in 24lines. The upper-left comer is 0,0 and
the lower-right comer is 79,23.

The text port

The driver maintains an active text port in which all activity occurs. The default size of this text
port is the entire screen. However, subsequent calls can be made to resize the port. All text outside
the text port is protected-no console driver calls can affect that text.

90 V 0 L U M E 2 Devices and GS/OS P A R T I Using GS/OS Device Drivers

1/31/89

GSIOS Reference (Volume 2) APDA Draft

Two control commands allow the application to save the current text port (the port
definitions, not the actual text of the port) and start with a new one, and then to retrieve the
original port. This allows a simple windowing system. In addition, driver-specific control calls
allow the application to read the text port data structure; however, the values in the data structure
can only be changed with control commands (see the section "Screen Control Codes• later in this
chapter). This is the structure of the text port record:

TextPortRec =
byte ch,

cv,
windLeft,
windTop,
windRight,
windBottom,
windWidth,
windLength,
consWrap,
consAdvance,
consLF,
cons Scroll,
consVideo,
consOLE,
consMouse,
consFill

Here are the definitions for the fields:

1/31/89

ch

cv

The eurrent location of the cursor (horizontal and vertical, from the upper-left corner).
The cursor is always within the current text port, but is expressed in absolute screen
coordinates.

windLeft

windTop

windRight

windBottom

windWidth

windLength

Default= 0, 0

Boundaries of the current text port, in absolute screen coordinates.
windTop must be<= windBottom, and
windLeft must be<,. windRight.

Default .. Puft Hardware Screen.

Size of the current text port, calculated as follows:
windWidth = windLeft - windRight + 1
windLength = windTop - windBottom + 1.
Default = Full Hardware Screen

C HAP T E R 6 The Console Driver 91

GSIOS Reference (Volume 2) APDA Draft 1/31/89

cons Wrap

cons Advance

consLF

cons Scroll

cons Video

consOLE

consMouse

consFill

A Boolean flag: 0 .. FALSE, 128 ($80) • TRUE. If TRUE, the cursor wraps to the ftrSt
column of the next line after printing in the rightmost column.
Default .. TRUE

A Boolean flag: 0 =FALSE, 128 ($80) =TRUE. If TRUE, the cursor moves one space to the
right after printing.
Default = TRUE

A Boolean flag: 0 = FALSE, 128 ($80) = TRUE. Clrriage return characters always move the
cursor to the first column of the text port If cons LF is TRUE, the cursor will also move
to the next line (note that this could cause a scroll-see next flag).
Default = TRUE

A Boolean flag: 0 =FALSE, 128 ($80) =TRUE. If TRUE, the screen will scroll if moved past
the top or bottom of the screen.
Default = TRUE

A Boolean flag: 0 =FALSE, 128 ($80) =TRUE. If TRUE, output is displayed in normal video.
If FALSE, output is displayed in inverse video.
Default = TRUE

A Boolean flag: 0 =FALSE, 128 ($80) =TRUE. If TRUE, character $10 (OLE) is interpreted as
a space expansion character; when it is encountered in the input stream, the ASOI value of
the next character minus 32 becomes the number of spaces to output.
Default = TRUE

A Boolean flag: 0 =FALSE, 128 ($80) =TRUE. If TRUE, MouseText is turned on. When
.\1ouseText is on, inverse uppercase characters are displayed as MouseText.
Default= FALSE

This is the fill character used for clearing areas of the screen. It is an actual screen byte
the value of the character as stored in memory-so the high-order bit must be turned on
for normal display. For example, spaces (ASOI $20) should be specified by $AO. The value
in this field is altered whenever inverse or normal modes are selected.
Default = SAO (Screen Space)

92 V 0 L U M E 2 Devices and GS/OS P A R T I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) APDA Draft

Character set mapping

Output characters go through a number of stages before they are placed in screen memory and
appear on the screen. The console driver always uses the Apple IIGS alternate character set, which
includes uppercase and lowercase characters, punctuation, numbers, inverse characters, and
MouseText characters.

Normally, the console driver accepts input in the standard, "7-bit" ASCII range (~$7F). This
input is then mapped to the screen based on the current display mode and MouseText mode
settings (turned on or off through control codes in the character stream; see the section "Screen
Control Codes" later in this chapter). In addition, input ASCII in the range $80-$FF is mapped
directly to the inverse of whatever the current display mode is. Thus screen bytes (characters as
stored in screen memory) may have values quite different from their original input ASCII values.

Table 6-1 summarizes the output mapping. For both normal and inverse display modes, and
with MouseText mapping both enabled and disabled, the table compares input ASCII values with
the characters as displayed on the screen and with the equivalent values as stored in screen memory.
The table also shows that setting the high-order bit (special direct inverse mode) is a shortcut to
getting the inverse of the current mode.

+ Mapping is nonsequential: Note from Table 6-1 that in some cases sequential ASCII values in
the input stream (such as $3F and $40) may map to nonsequential values in screen memory
(such as $BF and $80, respectively). Specifically, the range of values interpreted as uppercase
characters may not be continuous with the ranges interpreted as special characters and
lowercase characters. If your application retrieves bytes directly from screen memory, it may
have to compensate for this.

1/31/89

CHAPTER 6 The Console Driver 93

GSIOS Reference (Volume 2) APDA Draft· 1/31/89

• Table 6-1 Console driver character mapping
AU numbers are hexadectmal

Normal display mode Invme display mode

MouseText disabled:
Input values As displayed As stored As displayed As stored
00-lF Control characters n/a Control characters n/a
20-3F Special characters AO-BF Inverse special 20-3F
40-SF Uppercase letters 8>-9F Inverse upper 00-lF
60-7F Lowercase letters EO-FF Inverse lowercase 60-7F

MouseText enabled:
Input values As displayed As stored As displayed As stored
00-lF Control characters n/a Control characters n/a
20-3F Special characters AO-BF Inverse special 20-3F
40-SF Uppercase letters 8>-9F MouseText characters 40-SF
60-7F Lowercase letters EO-FF Inverse lowercase 60-7F

Special direct inverse mode:
Input values As displayed As stored As displayed As stored
00-9F Uppercase inverse 00-lF Uppercase normal 8>-9F
AO-BF Inverse special 20-3F Special chars normal mode AO-BF
CO-DF MouseText characters 40-SF Uppercase normal CO-DF
EO-FF Inverse lower 60-7F Lowercase normal EO-FF

V 0 L U M E 2 Devices and GS/OS P A R T I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Screen control codes

In any mode, values from $00 to $1F are interpreted as control codes. Some control codes are one
byte commands; others use from two to four bytes of operands, which follow the control
character. If an output stream ends in the middle of a multibyte sequence, the console driver
simply uses the first bytes of the ne-xt output stream. The actual command is not executed until
the entire command string has been read. Here are the defined control codes:

$00

$01

$02

$03

$o4

$05

Null

No operation is performed.

Save Current Text Port and Reset Defauk Text Port

Saves the current text port and resets to the default text port. If the system is out of
memory, no error is returned, and the text port is simply reset.

Set Text Port Size

Accepts the next four bytes as absolute screen coordinates + 32. Sets the current text port
to the new parameters. The parameters are in the following order: windLeft, wind Top,
windRight, windBottom. Any parameter outside of the physical screen boundaries is
clipped to a legal value. The cursor is set to the upper-left comer of the new text port.

Clear from Beginning of line

Clears all characters from the left edge to and including the cursor. Sets them to the
current consFill character.

Pop Text Port

Restores the text port to the most recently saved value (see code $01, Push and Reset Text
Port). If no saved ports exist, resets the text port to the default values. If an SO-column
text port is pushed and subsequently restored in 40-column mode, the text port may be
altered to fit in the 40-column screen (see code $11, Set 40-Column Mode).

Horizontal Scroll

Interprets the next byte as an 8-bit signed integer depicting the number (IV) of columns to
shift. N of zero is a null operation. If N is less than zero, the text port is shifted to the
left; N greater than zero shifts to the right. If the shift magnitude is equal to or greater
than windWidth,the text port is cleared.

CHAP T E R 6 The Console Driver 95

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$06

$07

$08

$09

$OA

$0B

$OC

$OD

The shifted characters are moved directly to their destination location. The space vacated
by the shifted characters is set to the current fill character (see cons rill). Characters
shifted out of the text port are removed from the screen and are na recoverable.

Set Vertical Position

Interprets the next byte as a textport-relative vertical ~ition + 32. If the destination is
outside the current textport, the cursor is moved to the nearest edge.

King BeD

Causes the System Beep to be played. It has no effect on the screen.

Backspace

Moves the cursor one position to the left. If the cursor was on the left edge of the text
port and cons wrap is TRUE, the cursor is placed one row higher and at the right edge. If
the cursor was also on the topmost row and consscroll is TRUE, the text port will
scroll backwards one line.

Tab (no operation)

This command is ignored.

Une Feed

Causes the cursor to move down one line. If at the bottom edge of the text port and
cons Scroll is TRUE, the text port scrolls up one line.

Clear to End of Text Port

Clears all characters from the cursor to the end of the current text port to the current
consFill character.

Cleat Text Port and Home Cursor

Clears the entire text port and resets the cursor to windLeft, windTop.

Carriage Ketum

Resets the cursor to the left edge of the text port; if cons LF is TRUE, performs a line feed
(see $0A line feed).

V 0 L U M E 2 Devices and GS/OS P A R T I Using GS/OS Device Drivers

GS/05 Reference (Volume 2) APDA Draft 1/31189

$OE

$OF

$10

$11

$12

$13

$14

Set Normal Display Mode

After this character, it displays all subsequent characters in normal mode.

Set Inverse Display Mode

After this character, it displays all subsequent characters in inverse mode.

DLE Space Expansion

If consDLE is TRUE, it interprets the next character as number of spaces+ 32, and the
correct number of spaces is issued to the screen. If consDLE is FALSE, the DLE character is
ignored and the following character is processed normally.

Set 40-Column Mode

Sets the screen hardware for 40-column display. If changing from SO-column display,
copies the ftrst 40 columns of the SO-column display into the 40-colurnn display.

If the current text port does not fit in the 40-column screen, it is adjusted by one of two
methods:

• If the text port is 40 columns or narrower, the entire text port Oeft side, right side,
and cursor) is slid over until the right edge is collinear with the right edge of the
screen.

• If 41 columns or wider, the port becomes 40 columns and the cursor moves to the
left edge.

Set SO-Column Mode

Sets the screen hardware for 80-column display. If changing from 40-column display,
copies the 40-column data to the left half of the 80-column display and clears the right half
of the screen tO the cons Fill Character.

Clear from Beginning of Text Port

Clears all characters from the beginning of the text port to and including the cursor
location.

Set Horizontal Position

Interprets the next byte as a textport-relative horizontal position + 32. If the destination
is outside the current textport, the cursor is moved to the nearest edge.

C H A PTE R 6 The Console Driver 'J7

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$15

$16

$17

$18

$19

$1A

Set Cursor Movement Word

Interprets the next byte as cursor movement control. It sets the values of these Boolean
flags:

Scroll

Wrap

Advance

Reserved: must be zero lllij

The functions of the individual flags are described under the section "The Text Port•
earlier in this chapter.

Scroll Down One Une

Scrolls the text port down one line. Does not move the cursor.

Scroll Up One Une

Scrolls the text port up one line. Does not move the cursor.

Disable MouseText Mapping

When MouseText is disabled, uppercase inverse characters are displayed as such (see the
section "Character Set Mapping• earlier in this chapter).

Home Cursor

Resets the cursor to the upper-left comer of the text port.

Clear Une

Clears the line that the cursor is on. Resets the cursor to the leftmost column in the
window.

V 0 L U M E 2 Devices and GS/OS P A R T I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) APDA Draft 1/31189

$1B

$1C

$1D

$1E

$1F

Enable MouseText Mapping

When MouseText is enabled, uppercase inverse letters are instead displayed as MouseText
symbols (see the section "Character Set Mapping" earlier in this chapter).

Move Cursor Right

Performs a nondestructive forward-space of the cursor. If consWrap is TRUE, the
cursor might go to the next line; and if cons scroll is TRUE, the screen might scroll up
one line.

Clear to End of Une

Clears from the position underneath the cursor to the end of the current line.

Go to X,Y

Adjusts the cursor position relative to the text port. The parameters passed are X+32 and
Y+32. If the new locations are outside the current text port, the cursor is placed on the
nearest edge.

Move Cursor Up

Moves the cursor up one line (reverse line feed). If the cursor is already on the uppermost
line of the text port and cons scroll is TRUE, it will cause a reverse scroll.

The Console Input routine

The console driver's Console Input routine, especially in user input mode, provides a convenient
method for obtaining user input. It is best suited for fixed-field, fill-in-the-blanks type of input
with simple. line-editing commands and program-defined default strings.

The console driver obtains input directly from the keyboard hardware, or from the Apple IIGS
Toolbox Event Manager if it is active. The Console Input routine monitors not only the keystroke
but the modifier keys (shift, control, option, and so on) and can make decisions based on both the
keystroke and the current modifiers.

C H A PTE R 6 The Console Driver 99

GSIOS Reference (Volume 2) APDA Draft 1/31/89

The input port

All information about the current input is contained in the input port, a data structure that is
maintained by the Console Input routine but can be read, modified, and written back by the
application program. The data structure is as follows:

InputPortRec = {
byte fillChar,

defCursor,
cursorMode,
beepFlag,
entryType,
exit Type,
lastChar,
lastMod,
lastTermChar,
lastTermMod,
cursorPos,
input Length,
inputField,
originH,
originX, (word)
originV }

The meanings of each field are as follows:

fillChar

defCursor

The character that fills empty space in the input field. It is displayed by the Console
Output routine so it is usually $20 (normal space) (see the section "Character Set Mapping•
earlier in this chapter). One other useful fill character is the MouseText "ghost space•
character. This can be displayed by setting fillChar to $C9. However, since MouseText
characters are only available in normal mode, do not use MouseText fill characters when
the screen is in inverse mode.
Default = Space ($20)

The default cursor-mode setting. The value in this field is placed into the cursorMode

field at the beginning of an input cycle from the user. The application controls the cursor
mode the user starts with by controlling this setting.
Default = $80 (cursor starts at end of string, control-character entry disabled, cursor type =
insert).

100 V 0 L U M E 2 Devices and GS/OS P ART I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) APDA Draft 1/31/89

cursorMode

beepFlag

entryType

exit Type

Contains three status bits that describe the current cursor-mode setting:

Cursor starting position:
1 • over first character

0 • end of string

Control<haracter entry:
1 • enabled
0• disabled

Cursor type:
1 • overstrike

0 • insert

If control-character entry is enabled, the user can insert control characters into the stream
by typing ti-Control-character, where character is replaced by any valid keyboard
character.

The value in this field may be different from defCursorMode because the user can switch
between insert and overstrike modes during entry.

If this flag is nonzero, the Console Input routine beeps on input errors Oine too long, and
soon).
Default = TRUE

Tells the Console Input routine the status of the current input:
O=initial entry
1 =interrupt reentry
2=ncr-wait mode reentry
On exit, the Console Input routine adjusts this value so that it is correct for the next entry.
If the application wishes to cancel an in-progress input and start with a new one, it must
make the DConbtrol subcall Abort Input.
Default = initial entry

Tells the application which type of exit was made. (0 = input not terminated yet, either
because of end-of-field on Raw input or a no-wait exit.) Any other value is the number of
the terminator that halted the input.
(Set on exit from the input cycle.)

C H A PTE R 6 The Console Driver 101

GSIOS Reference (Volume 2) APDA Draft

lastChar

last Mod

The ASCII value ($00-$7F) of the most recently typed key.
(Set on exit from the input cycle.)

The value of the modifiers mask of the most recently typed key. See the section
"Terminators• later in this chapter, for a description of the modifier bits.
(Set on exit from the input cycle.)

1/31189

lastTermChar The ASCII value of the terminator (as specified in the the user-supplied terminator list)
that caused the most recent input termination.

lastTermMod

cursorPos

input Length

(Set on exit from the input cycle.)

The value of the modifiers mask of the terminator that caused the most recent input
termination.
(Set on exit from the input cycle.)

Index of the cursor within the input string. (O=over the first character.) The cursor is
allowed to move from the beginning of the string to one position past its end
Default = position of cursor when input begins

The length of the input string at the current state of editing. This is the length that is

returned in the Transfer Count.
Default = length of default input string

originH Contains the cursor's horizontal position.

originx (word) Contains a variable used by the UIR.

originH Contains the cursor's vertical position.

Using raw mode

Raw mode is the simplest form of user input The keyboard is simply scanned until (1)

requestcount number of keys have been pressed, or (2) A specifted terminator has been typed. As

with other serial input drivers, the terminator is included in the transferred string. There is no echo,
no cursor, and no editing.

102 V 0 L U M R 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) APDA Draft

Using user input mode

This input mode provides more functions than raw mode. The following steps are required to use
it:

1. If the application wishes to supply a default string, it must do so (see descriptions of the
Control subcalls, later in this chapter).

2 If modes other than the default modes are desired, the application should read the input port,
adjust it, and write it back.

3. Terminators must be assigned with a SetTerminators call (DControl subcall).

4. The cursor should be positioned to the desired start of the input field with a Go To X,Y
instruction.

A Read call is made to initiate user input mode. If only simple terminators have been requested, the
Console Input routine will return as soon as one has been pressed. If there are interrupt terminators
or if no-wait mode is selected, the application must make calls to determine the type of
interruption and determine whether more work (repeated read entries) is necessary.

Terminators

A terminator is a character that, when read, terminates or interrupts a Read call. The console driver
permits more than one terminator character and also can note the state of modifier keys in
considering whether a character is to be interpreted as a terminator.

The console driver keeps track of terminators with a terminator list The terminator list is
set using a control call (see the Control subcalls, later in this chapter). This is the format of a
terminator list:

TermList = {
word termMask,

termCount,
termList [1 _ termCount)

1/31189

C H A PTE R 6 The Console Driver 103

GSIOS Reference (Volume 2) APDA Draft 1/31/89

The fields have the following meanings:

termMask

termCount

termList

A mask that is added to the input data with an AND operator before it is compared to the
terminator list entries. The high-order byte is the modiflers mask; it is used to mask
out irrelevant modifiers (for example, if it doesn't matter whether the keystroke was
made from the main keyboard or the keypad). The low-order byte is the ASCD mask; it
is used to simplify ASCII comparisons (for example, if it doesn't matter whether a
character is uppercase or lowercase).

A count of the number of terminators. A count of 0 means terminators are disabled and
there is no list. It specifies the number of entries, so it must be multiplied by two to get a
byte count. The maximum terminator count is 254.

A list of terminator characters and their modifiers. Each entry is in the same format as
termMask; the high byte is the modifiers mask, and the low byte is the ASOI value of the
terminator character. After the incoming data is combined with the terminator mask in a
logical AND operation, the data is compared with each of the entries in the terminator list.
A match causes a termination. In addition, if the application supplies a term list entry
with bit 13 set, this is an interrupt terminator. The Console Input routine will give up
control but is set up to restart the input. The application can use this capability to
implement help screens or custom editing keys.

The terminator mask has the following format:

1 = Apple key/Command key down

1 = Optionkey/Function key down

1 = Interrupt

1 = Keypad key down

1 = Caps lock key down

1 = Control key down

1 = Shift key down

ASCll data mask

Resetved: must be zero Will

104 V 0 L U M E 2 Devices and GS/OS PART I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) APDA Draft

How to disable terminators

The application can disable terminators by doing either of the following:

• Set the mask to 0.

• Set the count to 0.

In addition, if a memory error occurs while new terminators are being received, the UIR dumps the
terminator list.

If an incorrectly formed list (for example, if count = 255) is sent to the Console Input routine, it is
discarded and the original terminators remain in place.

Terminators and newline mode

Newline characters as defined by the Character FST are incompatible with terminators as defined by
the console driver's user input mode. If you need a combined newline/termination mode, use only
the following combinations:
Character FST Console driver
Newline mode enabled
Newline mode disabled
Newline mode disabled

Raw Input mode, terminators disabled
Raw Input mode, terminators enabled
User Input modes

User-input editing commands

The following editing commands are supported by the Console user input mode:

f-or
Controi-H

--+ or
Controi-U

Move cursor backward one position

Move cursor forward one position

Move cursor to end of next word.

Move cursor to beginning of previous word.

1/31/89

C H A PTE R 6 The Console Driver 105

GSIOS Reference (Volume 2) APDA Draft 1/31/89

ti-> or

·-·
ti-< or

·-'

Delete or
Controi-D or
Control-Delete or
ti-Delete or
ti-D

Control-F or
ti-F

Controi-X or
ti-X or
dear

Control-Y or
ti-Y

Controi-Z or
ti-z

Controi-E or
ti-E

ti-Control
character

Move cursor to end of line.

Move cursor to beginning of line.

Delete character to left of cursor and move cursor and
string to left (destructive backspace).

Delete the character underneath the cursor and move the rest of the string to the left.

Delete entire input string.

Clear string from cursor to end.

Reset input string to application-specified default.

Toggle between insertion and overstrike characters.

Insert control character into input string (if enabled; control-character insertion is enabled
by setting a bit in cursorMode).

106 V 0 L U M E 2 Devices and GS/OS P A R T I Using GS/OS Device Drivers

GSIOS Reference (Volume 2) APDA Draft

Using no-wait mode

No-wait mode is defined so that drivers will not hold control of the system. When in wait mode, a
Read call does not terminate until the requested number of characters (or a terminator) is received.
When in no-wait mode, the system returns immediately from a Read call as soon as there is no more
input available. In such a case, it is the responsibility of the application program to continue calling
the input routines until the final number of characters have been transferred.

Device calls to the console driver

The GS/OS console driver supports the standard set of device calls:

Dinfo
DStatus
DControl
DRead
DWrite

The standard calls are described in Chapter 1 of this Volume. The rest of this chapter documents
the driver-specific DStatus and DControl subcalls, and describes how the console driver handles any
of the standard device calls differently from the ways documented in Chapter 1. Any calls or
subcalls not discussed here are handled exactly as documented in Chapter 1.

1/31189

C H A PTE R 6 The Console Driver 107

GSIOS Reference (Volume 2) APDA Draft

DStatus ($202D)

This call is used to request status infonnation from the console driver. For DStatus, the console
driver supports most of the standard sutx:alls and several device-specific sutx:alls. Status sulx:alls are
specified by the value of the status code parameter. The following status codes are supported:

Status code Subcall name
$(m) GetDeviceStatus
$0001 GetConfigParameters
$0002 GetWaitStatus
$aXX) GetTextPort
$00)1 GetinputPort
$00)2 GetTerminators
$00)3 SaveTextPort
$00)4 GetScreenChar
$c<ro5 GetReadMode
$&XX) GetDefaultString

Calls with status codes less than $8000 are standard Status sutx:alls; calls with status codes of $8000
and over are device-specific sutx:alls. The calls are described more fully in the following sections.

Standard DStatus subcalls

Standard DStatus sutx:alls that are not described here function exactly as documented in Chapter 1,
"GS/OS Device Call Reference. •

GetConflgParameters:

The console driver obtains its setup information from battery RAM and therefore uses no control
parameters. This call returns an empty control parameter record (a zero).

The minimum request count is 2. The maximum transfer count is 2.

108 V 0 L U M E 2 Devices and GS/OS PART I Using GS/OS Device Drivers

1/31/89

GSIOS Reference (Volume 2) APDA Draft

GetTextPort (DStatus subcall)

statusCode = $0000

status I ist = a text port record

This subcall copies the contents o.f the current text port record into the status list buffer. See the
section "The Text Port• earlier in this chapter for more details.

The minimum request count is 0. The maximum transfer count is 16.

GetlnputPort (DStatus subcall)

statusCode = $8001.

status list = input port record

This subcall copies the contents of the current input port record into the status list buffer. See the
input port description earlier in this chapter for more details.

The minimum request count is 0. The maximum transfer count is 12.

GetTerminators (DStatus subcall)

stat us Code = $0002

status list = terminator list record

This subcall copies the current terminator list into the status list buffer. The format of the list is
count, enable/mask, terminator list. See the section "Terminators• earlier in this chapter for details.

This call transfers only complete terminator lists. The minimum request count is
(number of entries • 2) + 4. The transfer count is set to this value. The maximum transfer count is
514: 4 bytes of header and 255terminator words.

1131/89

C H A PTE R 6 The Console Driver 109

GSIOS Reference (Volume 2) APDA Draft

SaveTextPort (DStatus subcall)

statusCode = ~.

status list = text port size and contents

This subcall copies not the text port record but the actual text port screen data into the status list
buffer. The fonnat of the data as written is windWidth, windLength, screen bytes (the contents
of screen memory within the limits of the port). The size of the status list in bytes is therefore
(windWidth X windLength) + 2.

This call transfers only a complete screen data record. The minimum request count is the
status list size as calculated.

GetScreenChar (DStatus subcall)

statusCode = $8004.

status list = 1 byte

This subcall copies the current screen byte (that is, the byte underneath the cursor) to the status
list. Note that this is the actual value of the byte in screen memory, which has a complex relation
to the character's ASOI value. See the section "Character Set Mapping" earlier in this chapter.

The minimum request count is 1. The maximum transfer count is 1.

GetReadMode (DStatus subcall)

stat usCode = $8005.

status list = 2 bytes

This subcall copies the current read mode flag into the status list If zero, input is in user input
mode. If $8000, input is in raw mode. The value of the read mode flag is set by the DControl subcall
SetReadMode, described later in this chapter.

The minimum request count is 2. The maximum transfer count is 2.

110 V 0 L U M E 2 Devices and GS/OS P A R T I Using GS/OS Device Drivers

1/31/89

GS/05 Reference (Volume 2) APDA Draft

GetDefaultString (DStatus subcall)

statusCode = $8006.

status list = character string

This subcall copies the current default input string into the status list. This string (set with the
DControl subcall SetDefaultString) is placed in the input field at the beginning of each cycle of user
input. The string can have only standard ASCII ($00-$7F) characters, and can be no more than 254
characters long.

The request count in this case defines the maximum number of bytes that can be returned.

DControl ($202E)

This call is used to send control information to the console driver. For DControl, the console driver
supports most of the standard subcalls and several device-specific subcalls. Control subcalls are
specified by the value of the control code parameter. The following control codes are supported:

Control code Meaning
$()(XX) ResetDevice
$00}1 FormatDevice
$00}2 EjectMedia
$00}3 SetControiParameters
$00>4 SetWaitStatus
$roX> SetlnputPort
$&X>I SetTerminators
$&X>2 RestoreTextPort
$1m3 SetReadMode
$00>4 SetDefaultString
$1ro5 Abortlnput

Calls with control codes less than $8000 are standard Control subcalls; calls with control codes of
$8000 and over are device-specific subcalls. The calls are described more fully in the following
sections.

1/31/89

C H A PTE R 6 The Console Driver 111

GSIOS Reference (Volume 2) APDA Draft

Standard DControl subcalls

Standard DControl subcalls that are not described here function exactly as documented in Chapter 1,
"GS/OS Device Call Reference.•

FormatDevlce:

This sutx:all is not applicable to character devices. It returns with no error. The transfer count is 0.

EjectMedia:

This sutx:all is ntt applicable to character devices. It returns with no error. The transfer count is 0.

SetConflgParameters:

The console driver obtains its setup information from parameter RAM and has no configuration
parameters. The transfer count is 0.

SetlnputPort (DControl subcall)

controlCode = $8000

control list = input port record

This sutx:all transfers data from the control list to the input port record. The data must be in the
format of an input port record; see the section "The Console Input Routine" earlier in this chapter.

The minimum request count is 12. The maximum transfer count is 12.

Sefferminators (DControl subcall)

controlCode = $8001

control list = terminator list record

This sutx:all copies data from the control list to the terminator list. The format of the list is
described in the section "Terminators" earlier in this chapter. The length of a terminator list in
bytes is (2 • count) + 4, where count is the number of entries in the list. The minimum list length is
4; the maximum list length is 514 (2 header words plus 255 terminator characters).

112 V 0 L U M E 2 Devices and GS/OS P A R T I Using GS/OS Device Drivers

1131/89

GSIOS Reference (Volume 2) APDA Draft

The minimum request count for this subcall is 4. Furthennore, request count must match the
calculated length based on the entry count parameter in the list. If there is a match, the transfer
count is set to the length of the list. If the length is incorrectly stated, the previous tenninators
remain in effect and error $22 (invalid parameter) is returned. The driver requests memory from
GS/OS Info Manager to store the tenninators; if the request fails the previous and new lists of
tenninators are lost and error $26 (resource not available) is returned.

-
RestoreTextPort (DControl subcall)

control Code= $8002

control list = a text port record

This subcall copies data (previously obtained through the DStatus subcall GetTextPort) from the
control list back into screen memory (and thereby onto the screen). The fonnat of the data is
windWidth, windLength, screen bytes (the data to be written to screen memory within the limits
of the port). If the size of the buffer is greater than that of the current text port, only the upper
left part of the data (as much as will fit) is transferred to the screen. If the buffer is smaller than
the current text port, only that much of the text port (starting from the upper-left comer) will be
changed; the rest of it will remain as it was before the subcall was made.

Only a complete screen record can be transferred. The minimum request count is 4.
Furthermore, the request count must match the calculated length based on the width and length
parameters in the control list. The total data length is therefore (windWidth x windLength) + 4.
If the list is complete, the transfer count is set to that value.

SetReadMode (DControl subcall)

controlCode = $8003

control list= 2 bytes

This subcall sets the flag that speciftes the console driver's read mode. Only the high-order bit is
signifant and all other bits must be set to zero. A value of $0000 selects user input mode; $8000
selects raw mode.

The minimum request count is 2. The maximum transfer count is 2.

1/31/89

CHAPTER 6 The Console Driver 113

GSIOS Reference (Volume 2) APDA Draft

SetDefaultString (DControl subcall)

controlCode = $8004

control list = character string

This subcall sets the default string for user input. This string is placed in the input field at the
beginning of each cycle of user input. The string can have only standard ASCII ($00-$7F) characters,
and can be no more than 254 characters long. Control characters will be displayed in inverse video.
To disable the current default input string, pass a length of 0 as the request count The driver
requests memory from the GS/OS Info Manager to store the default string; if the request fails, error
$26 (resource not available) is returned.

The minimum request count is 0. The maximum transfer count is 254.

Abortlnput (DControl subcall)

controlCode = $8005

control list = none

This subcall cancels a currently in-progress input session. If entryType is zero, there is no input in
progress and this call is ignored. Otherwise, entryType is reset to zero, and if a cursor is on the
screen, it is removed.

The minimum request count is 0. The transfer count is 0.

114 V 0 L U M E 2 Devices and GSIOS P A R T l Using GS/OS Device Drivers

1/31/89

GSIOS Reference (Volume 2) APDA Draft

DRead ($202F)

This call reads characters from the keyboard. Depending on read mode, either the call begins
waiting for raw entry values, or it activates the user input mode.

In raw mode, the keyboard is scanned until (a) the transfer count equals the request count, or
(b) a terminator has been pressed.- The terminator character is returned as the last character of the
string.

In user input mode, request count becomes the length of an edit field on the screen. This edit
field begins at the current cursor location. An optional default string is displayed in the edit field.
The user can edit this field using the standard editing controls, and finish editing by typing a
terminator key. The terminator is treated as an editing key-it is not included in the returned
string.

In either mode, an additional return condition would be if no-wait mode is selected. On exit,
Transfer Count reports the length of the final string.

DWrite ($2030)

This call transfers the contents of the buffer, one byte at a time, through the console driver and to
the screen. The entire buffer is transferred, and since all byte values ($00 to $FF) are defined, there
are no possible errors (as long as the driver is open).

1/31/89

C H A PTE R 6 The Console Driver 115

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Chapter 7 GS/OS Generated Drivers

At system startup, two kinds of device drivers are installed into the GS/OS device driver
list: loaded drivers and generated drivers. GS/05 constructs generated drivers-for each
slot that does not have an associated loaded driver-so that all the device drivers
supported by GS/OS can use the same standard interface.

With generated drivers, GS/OS allows your application to make standard GS/OS calls to
access firmware-based device drivers (both built-in and on peripheral cards) written for the
Apple II family of computers.

This chapter describes the BASIC, Pascall.l, ProDOS, and SmartPort generated drivers,
and lists the device calls they support. •

+ If you are writing a firmware driver for an Apple IIGS peripheral card, read
Appendix C, "Generated Drivers and Firmware Drivers. • It explains how
GS/OS recognizes and dispatches to firmware-based 1/0 drivers.

117

GSIOS Reference (Volume 2) APDA D'o/1

About generating drivers

At startup, GS/OS constructs a device list, a list of pointers to information about each installed
device driver. GS/OS builds the list in this order:

1. It first installs all loaded drivers from the subdirectory System:Drivers on the system disk.

2 For each slot n that does not have an associated loaded driver, GS/OS looks for a firmware l/0
driver. It examines the appropriate firmware ID bytes in the $Cti)() page of bank zero, and
generates a GS/OS driver for any f11111ware driver it finds that uses BASIC, Pascall.l, ProDOS,
SmartPort, or extended SmartPort protocols.

Generated drivers have two primary advantages over firmware drivers, as follows:

• Peripheral card f11111ware is written in 6502 assembly-language code, and is executable only in
emulation mode on the Apple IIGS. However, generated drivers allow applications to access
these drivers while running in native mode.

• Most firmware drivers cannot directly access memory banks other than bank $00; for these
drivers, GS/OS double-buffers the data through bank $00, so that applications can access the
drivers from anywhere in memory.

Each generated driver has an associated device information block (DIB), just like a loaded driver.
The DIB contains device-specific information that can be used by the driver and by other parts of
GSIOS.

Types of generated drivers

GS/OS generates drivers for three broad types of slot-resident, firmware-based 1/0 drivers:

• BASIC and Pascalt.l drivers: The Apple Super Serial Card and many third-party printer cards
and parallel-port cards contain firmware drivers that conform to the Pascal 1.1 interface
protocol. The Apple Parallel Printer Interface card is a card that conforms to the BASIC
interface protocol.

118 V 0 L U M E 2 Devices and GS/OS PART I Using GS/OS Device Drivers

1/31/89

GS/05 Reference (Volume 2) APDA Draft

A GS/OS character device driver is generated for slot-resident firmware 1/0 drivers that use the
BASIC and Pascal 1.1 protocols (see, for example, the Apple 1/c Techntall Reference Manual)
Each generated character device driver has a single device information block (DIB) indicating
that the driver supports only one device.

For BASIC firmware drivers, a BASIC generated driver is created. For Pascall.l firmware drivers,
a Pascal 1.1 generated driver is created. For firmware drivers that support both BASIC and
Pascal 1.1 protocols, a Pascal1.1 generated driver is created.

• ProDOS drivers: The Apple ProFile and several third-party hard disk drives include firmware
based drivers that conform to the ProDOS interface protocol on their controller cards.

GS/OS generates a block device driver for slot-resident fumware I/0 drivers that use the ProDOS
interface (defined in the ProDOS 8 Reference Manual). One DIB is created for each logical
ProDOS device; for example, a hard disk with two partitions is two logical devices and therefore
has two DIBs.

• SmartPort drivers: The Apple II Memory Expansion card (used as a RAM disk) is a peripheral
card whose firmware driver follows the SmartPort protocol.

+ Note: The Apple lie UniDisk 3.5 card is not compatible with the Apple IIGS.

Slot-resident firmware drivers that use the SmartPort protocol can in theory support up to 127
devices each, either character devices or block devices. See the Apple IIGS Firmware Reference.
GS/OS generates a DIB for each device interfaced to SmartPort. The device characteristics flag
in the DIB indicates whether the device is a character device or a block device.

All SmartPort block devices are supported by a single generated block device driver and all
SmartPort character devices are supported by a single generated character device driver. Each
device's DIB is associated with either the character driver or the block driver.

• Extended SmartPort drivers: An extended SmartPort driver has all of the capabilities of a
SmartPort driver, and in addition supports direct memory transfer from any bank.

1/31/89

C H A PTE R 7 GS/OS Generated Drivers 119

GSIOS Reference (Volume 2) APDADmft

Device calls to generated drivers

All GS/05 generated drivers support these standard device calls:

Dlnfo
DStatus
DControl
DRead
DWrite

All generated drivers support the standard set of DStatus and DControl subcalls, although not all of
those drivers perform meaningful actions with all of the subcalls. No generated drivers support
driver-specific DStatus or DControl calls.

The rest of this chapter describes how generated drivers handle any of the above device calls
differently from the standard ways documented in Chapter 1. Any calls or subcalls not discussed
here are handled exactly as documented in Chapter 1.

DStatus

Generated drivers support these DStatus subcalls:

GetDeviceStatus
GetConfigParameters
GetWaitMode
GetFormatOptions

Only the following subcalls are implemented in a nonstandard way.

GetConflgParameters:

Generated drivers have no configuration parameters. They always return no parameters, no errors,
and a transfer count of $0000 0002 in the parameter block.

GetW aitStatus:

Generated devices support wait mode only. A wait-mode value of $0000 is returned in the status
list.

120 V 0 L U M E 2 Devices and GS/05 P ART I Using GS/05 Device Drivers

1/31/89

GSIOS Reference (Volume 2) APDA Draft

GetFormatOptions:

This subcall applies only to block devices that implement the SmartPort interface with the added
set of calls (Optional calls). The format of the options list is identical to the SmartPort
specification and is returned unmodified in the status list.

DControl

Generated drivers support these standard DControl subcalls:

ResetDevice
FormatDevice
EjectMedia
Set Control Parameters
SetWaitStatus
SetFormatOptions
AssignPartitionOwner
ArmSignal
DisarmSignal

Only the following subcalls are implemented in a nonstandard way:

Reset Device:

This call has no application with generated drivers and returns with no error.

SetConfigParameters:

This call does not apply to generated drivers. Both generated character and block device drivers
return with no error.

SetWaitStatus:

All generated drivers support wait mode only. Attempting to set the mode to wait results in no
error; attempting to set the mode to no-wait results in error $22 (invalid parameter).

SetFormatOptions:

This subcall applies only to block devices that implement the SmartPort interface with the added
set of calls (Optional calls). The format of the options list is identical to the SmartPort
specification and is passed directly to the device in the control list.

1/31189

CHAPTER 7 GS/OS Generated Drivers 121

GSIOS Reference (Volume iJ APDA Draft

ArmSignal:

This call has no application with generated drivers and returns with no error.

DisarmSignal:

This call has no application with generated drivers and returns with no error.

122 V 0 L U M E 2 Devices and GSIOS P A R T I Using GS/OS Device Drivers

1/31/89

GSIOS Reference (Volume 2) APDA Draft

Part II Writing a Device Driver

Volume I

Volume2

Pan! Par!D

Gs.'OScalls
(=ep! device ails)

(Chapler 7)

Pan!

GS/05 device calls
(Chap!a' I)

PST -specific
information on
GSIOSalls

(Chap!a',_ll)

PartD

"\.--

,..... Appendiles

ProOOS 16 cals
CAppendmA)

t--
FST-spedfic

lnfollllllion on
ProOOS 16 cals
(Appenclis B)

System L .. der ails
(Appenclll A)

1/31189

123

GSIOS Reference (Volume 2) APDADraft 1/31/89

Chapter 8 GS/OS Device Driver Design

If you are planning to write a device driver for GS/OS, read this and the following chapters.
GS/OS gives you a wide variety of capabilities to choa;e from in designing your driver;
GS/OS drivers can

• access either block devices or character devices

• access devices either directly or through supervisory drivers

• respond to both a standard set of driver calls and any number of device-specific calls

• support multiple formatting options for their media

• be configurable by users or applications

• support caching of disk blocks to improve 1/0 performance

• include interrupt handlers

• include signal sources

• include signal handlers

This chapter describes the general structure of device drivers and supervisory drivers.
Chapters 9 and 10 discuss additional Concepts related to driver function and design. Driver
calls, which every driver must handle, are described in Chapter 11. System service calls,
which drivers can make to get information from GS/OS and perform certain functions, are
described in Chapter 12. •

125

GS/OS Reference (Volume 2) APDA Draft

Driver types and hierarchy

To summarize the discussion in the Introduction to this volume, drivers can be classified in three
ways:

• In relation to devices, there are two basic types of GS/OS drivers: block drivers and character
drivers. Block drivers control hardware devices that handle data in blocks of multiple
characters; character drivers control hardware devices that handle streams of individual
characters.

• In relation to the GS/OS initialization routines, there is another classification of drivers: loaded
drivers and generated drivers. Loaded drivers are loaded into memory at system startup or
during execution; generated drivers are created by GS/OS to provide a GSIOS-<:ompatible
interface to slot-based firmware I/0 drivers.

• In relation to the hierarchy of drivers and calls, there is another classification: device drivers
and supervisory drivers. Device drivers accept driver calls directly from GSIOS and in tum
access either a hardware device or a supervisory driver. Supervisory drivers accept driver calls
only through other device drivers and in tum access hardware devices.

If you write a driver to work with GS/OS, it may be a block driver or a character driver, it may access
hardware directly or go through a supervisory driver, but it must be a loaded driver. All loaded
drivers, whether block drivers or character drivers, must accept (if not necessarily act on) the
standard GS/OS driver calls documented in Chapter 11. Extensions to the standard calls are available
for device-specific operations. Part I of this Volume describes several examples of loaded and
generated drivers.

Figure 8-1 shows how some specific device drivers and supervisory drivers might make up a
particular configuration on the Apple IIGS.

126 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft 1/31189

• Figure 8-1 A hypothetical driver configuration

CD-ROM
cltM

r-;;1
L:J

Hard
disk

CHAP T E R 8 GS/OS Device Driver Design 127

GSIOS Reference (Volume 2) APDADraft

The diagram includes examples of both block devices and character devices, and two hypothetical
supervisory drivers: a SCSI supervisor and an sec supervisor. Note that some block drivers can
access their devices directly and don't need a supervisory driver. Note also that all SCSI device
drivers must use the SCSI supervisory driver, and all drivers interfacing to the serial communications
chip (SCC)-such as AppleTalk, printers, and modems-must use the sec supervisory driver. The
supervisor dispatcher is needed whenever there is one or more supervisory driver; the dispatcher
routes calls to the proper supervisory driver.

Driver fde types and auxiliary types

Loaded drivers are executable programs Ooad fdes). On disk, they should be in compacted format
conforming to version 2.0 d object module format (OMF; see Appendix B). All Apple IIGS driver
load files must have a file type d $88.

The high-order byte of the auxiliary type field (auxType; see Figure 8-2) indicates the typed
driver file and whether the driver is active (that is, whether it should be loaded and started up at
boot time). If bit 15 of auxType is set (= 1), the driver is inactive; if bit 15 is clear (= 0), the driver is
active. The setting of this flag is part of driver configuration; see Chapter 9.

The two high bits of the low-order byte of auxType indicate the type of GS/OS driver. Two
types have been defined: device drivers and supervisory drivers. The two remaining pnssible values
are reserved.

The definition of the low six bits of the low byte d auxType depends on the driver type. For
device drivers, tha;e bits indicate the maximum number of devices supported by the driver; the
device dispatcher uses that number to allocate memory for the device list For supervisory drivers,
the low six bits d auxType are not defined.

128 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft

• Figure 8-2 The auxiliary type f~eld for GS/OS drivers

]'It,< in112lu I 10 I ' I ~ j, I 61 ~ I • I ' I ' It I ~ I
I =inactive :r

0 =active

$01 = GS/05 driver

I • supervisor driver
0 • device driver

Maximum number of devices (if device driver)
Undefined (if supervisor driver)

Device driver structure

A device driver consists of these basic parts, usually in this order:

• A driver header, which must always be the first part of the driver

• One configuration pointer and one default pointer for each device information block (DIB); for
example, four D!Bs would result in eight pointers

• One or more device information blocks

• A format options table, if the driver can perform more than one type of formatting

• A driver code section

Figure 8-3 diagrams the general structure of a GS/OS device driver.

1/31/89

C H A PTE R 8 GS/OS Device Driver Design 129

GSIOS Reference (Volume 2) APDA D"ift

• Figure 8-3 GS/OS device driver structure

Header

Configuration
parameter list(s)

Device Information
Block(s) (DIBs)

Driver code segmenl(s)

I

Each supported device (or partition)
must have its own configuraiton
parameter list and DIB

May be repeated for each supported
device, or may be shared by all

If the device driver supports more than one device, then one DIB, a configuration pointer, and a
default pointer must be provided for each device. The configuration pointer points to a list of
configuration parameters, and the default pointer points to a list of default configuration
parameters. Each device may have its own individual configuration and default lists, or may share
those lists with other devices supported by the driver.

A driver always contains one DIB per device supported by the driver; multiple devices, even logical
devices such as partitions on a disk, cannot share the same DIB. If several supported devices use
the same configuration parameters, the driver need have only a single set of configuration
parameters for them; pointers in the driver header can then reference the same configuration lists
for each device.

130 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

1/31/89

GS/OS Reference (Volume 2) APDADrafl

The device-driver header

The device-driver header specifies where the configuration lists and OIBs are located. The device
dispatcher needs that information when loading drivers and building the device list. Using an
InitiaiLoad call to the System Loader (see Appendix A of this Volume), the device dispatcher loads
only the driver's static load segment, which contains its code, OIBs, and configuration lists.
Configuration scripts, if present, are used only by a configuration program and are not loaded by the
device dispatcher.

A device-driver header has this format:

Offset Size Description

t- firstDIB - Word Offset to first DIB $00

$02
t- deviceCount - Word Count of number of devices

t- listlOffset -$04 Word Offset to first configuration list for device 1

f- li st20f f set -$06 Word Offset to first configuration list for device 2

$08 etc.

The header fields following devicecount constitute the configuration-list offset table; it is a
word list of offsets from the beginning of the load segment (the beginning of the driver header) to
the first byte of the first configuration list for each device supported by the driver. If there is no
configuration list for a device, the entry for that device in the configuration list offset table must
be zero.

Configuration llsts

A configuration list is a table of device-dependent information used to configure a specific
device. Each device supponed by a driver needs two such lists: the first one shows the device's
current configuration settings, and the second one holds default values.

1/31/89

C HAP T E R 8 GS/OS Device Driver Design 131

GSIOS Reference (Volume 2) APDA Draft

A configuration list has a very simple structure, as far as GS/OS is concerned: it consists of a length
word (containing the number of bytes in the list) followed by the device's configuration
parameters. For a driver that supports a single device, the configuration lists would look like this:

Offset Size Description

$00 - length - Word Length of current configuration list for device 1

$02 - -
- configListl - Current configuration list for device 1
- -

length - Word Length of default configuration list for device 1

f- -
f- configList2 - Default configuration list for device 1
f- -

Configuration lists are driver-specific in content, but they must follow these rules:

• The first word of the list, the length word, must be a byte count: the length of the rest of the
list in bytes. A length word of zero indicates an empty list

• Each parameter in the list must begin on a word boundary (no parameters should be an odd
number of bytes in length).

• Each current configuration Ust must have an accompanying default configuration list,
identical in size and format The default configuration list contains the default driver
configuration values,and is never altered

• The default configuration list must immediately follow the current configuration list in the
driver.

An application (through the Device Manager) or an FST obtains a copy of a driver's current
configuration parameters by making the call Driver_Status; the driver passes a copy of the current
list to the caller in the status list. A caller modifies a driver's configuration parameters by making
the call Driver_ Control; the caller passes the desired configuration list to the driver in the control list;
the driver copies that information into its current list. See Chapter 11.

132 V 0 L U M E 2 Devices and GS/OS PART II Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft

Any time that an application or FST requests that a device revert to its default parameters, the
driver should respond by copying the contents of the default configuration list into the current
configuration list.

Device information block (Dm)

Every device accessed by a driver needs a device information block (Dm). In a driver, the DIB is
a table of information that describes the device's characteristics; when the driver is loaded into
memory, GS/OS uses that information to identify and keep track of the device.

Each DIB has the format shown in Figure 8-4. Descriptions of the individual parameters follow the
figure.

• Figure 8-4 The device information block (DIB)

Offset

linkPtr

entryPtr

characteristics

blockCount

devName

Size Description

Longword Pointer to the next DIB

Longword Pointer to the driver entry point

Word Characteristics of this device

Longword Number of blocks on the device

String Name of the device
(ASCII, high-bit clear)
(Pascal string)

1/31189

CHAPTER 8 GS/OS Device Driver Design 133

GS/05 Refenmce (Volume 2) APDA Draft 1/31/89

• Figure 8-4 The device infonnation block (DIB) (continued)

Offset Size Description

$2B
~ -
f- -

$2E
f- slotNum - Word Slot number the device is in

- unitNum $30 - Word Unit number of the device in the slot

- version $32 - Word Version number of the device driver

- deviceiD -$34 Word General type of device

$36 f- head link - Word Device number ofthe first linked device

$38
f- forwardLinlt - Word Device number of the next linked device

$3A
~ -
~extendedDIBPtr- Longword Pointer to additional device information
f- -

f- DIBDevNum -$3E Word Initial device number (assigned at startup)

Here is what each parameter in the DIB means:

linkPtr Link pointer: A longword pointer to the next DIB, for device drivers supporting multiple
D!Bs. If the device driver supports only a single DIB, the link pointer should be set to
NIL. The device dispatcher uses the link pointer only to install the device drivers into the
device list

entryPtr Entry pointer: A longword pointer to the device driver's entry point.

characteristics Device characteristics: A word value that defines whether or not the device supports
certain features. The current definition for this word is shown in Figure 8-5. Shaded bits
are reserved and should be set to zero.

134 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2)

• Figure 8-S

1 • RAM or ROM disk

1 • Generated

1 • Device

APDADraft 1/31189

The device characteristics word

Speed Group

1 • Block device

1 • Write allowed

1 • Read allowed

1 • Format allowed

1 • Rerrovable media

Reserved: must be zero fillill)

In the device characteristics word, linked device means that the device is one of several
partitions on a single, removable medium. Device is busy is maintained by the device
dispatcher to prevent reentrant calls to a device.

Speed group defines the speed at which the device requires the processor to be running.
Speed group has these binary values and meanings:

Setting Speed
$(XXX) Apple IIGS normal speed
$00)1 Apple IIGS fast speed
$00)2 Accelerated speed
$00)3 Not speed-dependent

See the system service call SET_SYS_SPEED, in Chapter 12.

CHAP T E R 8 GS/OS Device Driver Design 135

GSIOS Reference (Volume 2) APDA Draft 1/31/89

blockCount

devName

slotNum

Block count: A longword value that is the total number of blocks accessible on the device.
It applies to block devices only; for character devices, it should be set to zero. The value of
blockcount may be dynamic (changing) if the device supports multiple types of
removable media or partitioned removable media In this case, any status call that detects
on-line and disk-switched conditions should update this parameter after media insertion.

Device name: A 32-byte that which contains the device's name as a Pascal string. It
consists of a length byte followed by up to 31 bytes of ASCII characters-uppercase only,
high bit clear (= 0). Note that the initial period (.), which defines a device name to the
system, is not part of the name in this field.

Slot number: A word value indicating the slot in which the device hardware resides. Bits 0
through 2 define the slot, and bit 3 indicates whether it is an internal port (controlled by
firmware within the Apple IIGS) or an external slot containing a card with its own
firmware.

For a given slot number, either the external slot or its equivalent internal port is active
(switched-in) at any one time; Bit 15 indicates whether or not the device driver must
access the peripheral card's 1/0 addresses. For more information on those addresses, see
the Apple lie Technical Reference Manual. Figure 8-6 shows its format.

If you are designing a loaded driver to replace a generated driver, you must use the
same slot number that would have been generated for the driver. To determine whether
an internal or external slot has been used, examine the soft switch SLTROMSEL for slots 1,
2, 4, 5, 6, and 7, or examine the soft switch RDC3ROM for slot 3. See the Apple JIGS
Firmware Reference Manual for more information on soft switches.

• Figure 8-6 Slot-number word

1 = driver independent on slot hardware
0 = driver dependent on slot hardware

Reserved: must be zero lllid

136 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GS/05 Reference (Volume 2) APDA Draft 1/31189

unitNum

version

6. Important The driver must set bits 14-4 to zero in the slot-number word. 6

Unit number: A word value indicating the number of the device within the slot. Multiple
devices within a slot are numbered consecutively. This is not a global unit number relating
to the device list.

If you are designing a loaded driver to replace a generated driver, you must use the
same unit number that would have been generated for the driver. For ProD OS, the drive
number is equal to the unit number; for a SrnartPort device, the SrnartPort unit number is
equal to this unit number.

Driver version: A word value indicating the version number of the driver that controls this
device. Loaded drivers have their own version numbers; generated drivers may use the
version number obtained from the slot-resident firmware interface. Figure 8-7 shows its
fields.

• Figure 8-7 Driver version word

High byte Low byte

vsl14l13112,1,11 110 I 9j8 1716 p I \ !T3 p I q 0 I
......... _,.::J J

Minor releue number

Release phase:
A•alpha
B• beta
E • experimental
o- final

+ Note: This parameter has a different format from the version parameter
returned from the GS/OS call Get Version.

C H A PTE R 8 GS/OS Device Driver Design 137

GSIOS Reference (Volume 2) APDADraft 1/31/89

deviceiD Device ID: A word value specifying the general type of device associated with this DIB.
Table S-1 shows the presently defmed devices and their device IDs. It is a guide to
assigning device IDs and does not in any way imply that Apple Computer, Inc. intends to

provide any of the listed devices or drivers for them.

+ ID assignment· Device IDs are assigned by Apple Computer, Inc.
Contact Apple Developer Technical Support if you have a specific need for
a device ID.

• TableS-1 Device IDs

ID Description ID Description

$OOX) Apple 5.25 drive $0010 File server

(includes Unidisk111, Duodisk™, $0011 (reserved)

Diskllc, and Disk II drives) $0012 AppleDesktop Bus
$00)1 ProFile (5 megabyte) $0013 Hard-disk drive (generic)
$00)2 ProFile (10 megabyte) $0014 Floppy-disk drive (generic)
$00)3 Apple 3.5 drive $0015 Tape drive (generic)

(includes UniDisk 3.5 drive) $0016 Character device (generic)
$00)4 SCSI device (generic) $0017 MFM-enccx:led disk drive
$00)5 SCSI hard disk drive $0018 AppleTalk network (generic)
$Oro) SCSI tape drive $0019 Sequential access device
$OOJ7 SCSI CD-ROM drive $001A SCSI scanner
~ SCSI printer $0018 Other scanner
$OOJ) Modem $001C I..aserWriter SC
$000A Console $0010 Apple Talk main driver
$0008 Printer $001E AppleTalk fde service driver
$(XX)C Serial LaserWriter $001F AppleTalk RPM driver
$000D AppleTalk LaserWriter
$000E RAM disk
$000F ROM disk

138 V 0 L U M E 2 Devices and GSIOS PART II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31/89

headLink Head device link: A word value that is the device number ofthe first device in a chain of
linked devices (separate partitions on a single removable medium). Using the head link and
forward link as "pointers,• GS/OS or an application can fmd all DIBs associated with a
partitioned disk and mark them all on line or off line as needed.

A value of zero indicates that there are no devices linked to this device.

f orwarctLink Forward device link: A word value that is the device number of the next device in a chain
of linked devices (separate partitions on a single removable medium). Using the head link
and forward link as "pointers,• GS/OS or an application can find all DIBs associated with a
partitioned disk and mark them all on line or off line as needed.

A value of zero indicates that there are no devices linked to this device.

extendedDIBPtr Extended DIB pointer: A longword pointer to a second, device-specific structure
containing more information about the device associated with this DIB. This field allows
a driver to maintain additional device information for its own purposes.

DIBDevNum DIB device number: A word value that is the device number initially assigned (during
startup) to the device associated with this DIB. This parameter is used to maintain the
head link and the forward link between devices within a loaded driver supporting multiple
volumes on a single removable medium.

Note that if a loaded device replaces a generated boot device driver, then this
parameter in its DIB will not be valid until the next access of the device.

+ DIB extensions: A driver may extend the DIB for its own internal use. The device call Dlnfo
returns the value in the DIB field extendedDIBPtr, so any driver-specific extensions that use
the extended DIB are available through Dlnfo. The driver can also expand the current data
structure, but the information in those fields will not be returned by Dlnfo.

Format options table

Some block devices can be formatted in more than one way. Formatting parameters can include
such variables as file system group, number of blocks, block size, and interleave. Each driver that
supports media variables (multiple formatting options) contains one or more format options
tables, the formatting options for a particular type of device controlled by the driver.

C H A PTE R 8 GS/OS Device Driver Design 139

GSIOS Reference (Volume 2) APDA Draft

When a block driver receives the Get_Format_Options sulx:all of the driver call Driver_Status, it
returns a copy of its format options table for the particular device requested. One of the options
can then be selected and applied (by an FST, for example) with the Driver_ Control subcalls
Set_ Format_ Options followed by Format_ Device. Device drivers that do not support media
variables return a transfer count of zero and generate no error. Character drivers do nothing and
return no error from this call. Figure 8-8 shows the overall structure of the format options table;
Figure 8-9 shows the structure of each format-options entry within the list.

• Figure 8-8 Format options table

Offset

$00 -
$02 -

numOptions -
numDisplayed -

$04 -recommendedOption-

$o6 - currentOption -

$08 - -
r- formatOptionl -
1- -

$0C

formatOptionN

Size

Word

Word

Word

Word

Description

Number of format-options entries in the list

Number of options to be displayed

Recommended default formatting option

The option with which the currently
on-line media was formatted

(16 bytes) The first format-option entry

(16 bytes) The last format-option entry

The value specified in the curren tOpt ion parameter is the format option of the current on
line media. If a driver can report it, it should. If the driver cannot detect the current option, it
should indicate unknown by returning $0000.

140 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft

Of all the options in the format options table, one or more may be displayed in the initialization
dialog presented to the user when initializing a disk (see the calls Format and EraseDisk in Chapter 7
of Volume 1). The options that are to be displayed must come first in the table. (Undisplayed
options are available so that drivers can provide FSTs with logically different options that are
physically identical and therefore needn't be duplicated in the dialog.)

• Figure 8-9 Format -options entry

Offset Size Description

$()() rformatOptionNum- Word The number of this option

1- linkRefNum -$02 Word Number of linked option

t- flags -$04 Word (see definition below)

$06
t- -
1- blockCount - Longword Number of blocks supported by the device
1- -

t- blockSize -$0A Word Block size in bytes

soc 1-interleaveFactor- Word Interleave factor (in ratio to 1)

t- mediaSize -$0E Word Media size (see flags description)

Linked options are options that are physically identical but which may appear different at the FST
level. Linked options are in sets; one of the set is displayed, whereas all others are not, so that the
user is not presented with several choices on the initialization dialog.

Bits within the flags word are defined as shown in Figure 8-10.

1/31189

CHAPTER 8 GS/OS Device Driver Design 141

GSIOS Reference (Volume 2) APDA Draft

• Figure 8-10 Format option flags word

Size
multiplier

Reserved: f71
should be returned as zero dJJ

In the format option flags word, format type defines the general file-system family for
formatting. An FST might use this information to enable or disable certain options in the
initialization dialog. Format type can have these binary values and meanings:

00 Universal format (for any file system)
01 Apple format (for an Apple file system)
10 Non-Apple format (for other file systems)
11 (not valid)

Size multiplier is used, in conjunction with the format-options parameter mediasi ze, to
calculate the total number of bytes of storage available on the device. Size multiplier can have these
binary values and meanings:

00 mediaSize is in bytes
01 mediasize is in kilobytes
10 mediaS i ze iS in megabyteS
11 mediaSi ze is in gigabyteS

For an example, see the description of the GS/OS call DStatus in Chapter 1, or the driver call
Driver_Status in Chapter 11. See also the sample driver code in Appendix D.

142 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

1/31/89

GS/OS Reference (Volume 2) APDA Draft

Driver code section

The driver code section must accept all calls and return appropriately. Beyond that, the
implementation of the driver is up to the programmer.

For a sample driver, see Appendix D.
-

Some points to consider when designing a device driver are as follows:

• If you are writing a character driver, be sure to include an internal driver-open flag that notes
the current state of the driver. Inspect and set the flag properly on Driver_ Open and
Driver_ Close calls, using the calls to returan error if appropriate. See Chapter 11 for details on
Driver_ Open and Driver_Ciase.

• If your block driver is capable of detecting disk-switched or off-line conditions, it reports that
information as an error from 1/0 calls but as device status information (not as an error) from a
status call. Errors should be reserved for conditions that cause a call such as a Read, Write, or
Format to fail.

• Because device driver routines typically execute during GS/OS calls, and because GS/OS is not re
entrant and therefore cannot accept a call while another is in progress, device drivers normally
cannot make GS/OS calls. Exceptions are the calls Bindlnt and Unbindint, usually made during
driver startup and shutdown, respectively.

If some of your device driver routines need to make GS/OS calls, you can use the Scheduler in
the Apple IIGS Toolbox to schedule a task for completion after the operating system finishes
the current call. See the Apple JIGS Toolbox Reference for more information. Alternatively,
consider making some routines into signal handlers instead See Olapter 10.

• A small workspace is available on the GS/OS direct page for device-driver and supervisory-driver
use; that workspace is described later in this chapter in the section •How device drivers (and
GS/OS) call supervisory drivers.". The workspace is not pennanent; it may be corrupted
between driver calls. Except for that workspace, supervisory drivers should not pennanently
modify any other GS/OS direct-page location that is not within the bounds of the small
workspace. A supervisory driver requiring direct-page space should save and restore the
contents of any other direct-page location that it uses.

b. Important If the driver makes system service calls, those calls can corrupt any direct
page location not in the small workspace. r:.

1/31189

CHAPTER 8 GS/OS Device Driver Design 143

GSIOS Reference (Volume 2) APDA Draft

Alternatively, a supervisory driver requiring large amounts of direct-page space could acquire its
own direct page at startup; the supervisory driver must then be sure to release this memory at
shutdown.

6. Important Drivers should never access GS/OS direct page using ahsolute or absolute long
addressing modes. The location of GS/OS direct page is nct specifted and may
nct be preserved in any future versions of the operating system. t:..

How GS/OS calls device drivers

Drivers receive calls from GS/OS through the device dispatcher. This section describes the device
dispatcher, defines the device-driver execution environment, and lists the calls (driver calls) that a
device driver must accept from the device dispatcher. Driver calls are fully documented in
Chapter 11.

The device dispatcher and the device list

The device dispatcher is the main GS/OS interface to drivers. At startup, the device dispatcher
installs all drivers; during execution, it is the channel through which all calls to drivers pass. The
device dispatcher accepts VO calls from file system translators or the Device Manager, adds any
necessary parameters, and sends them on to individual device drivers. Device-information requests
through the Device Manager are handled by the device dispatcher itself, usually with driver access.
The device dispatcher also generates the startup and shutdown calls that are seot to drivers.

The device dispatcher constructs and maintains the device list, a list of all installed device drivers
in the system, including both loaded and generated drivers. Devices under GS/OS are specified by
device number, which is the current position of the device in the device list Device calls, for
example, use the device number as an input parameter; the device dispatcher uses it as an index to
the device list when selling up the DIB pointer (an input parameter to the equivalent driver call)
prior to calling a device driver.

144 V 0 L U M E 2 Devices and GS/OS PART II Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft

At system startup, the device dispatcher loads and installs all supervisory drivers f1rst. It then
loads and installs all loaded device drivers. Finally, it creates and installs any needed generated
drivers. During execution, the device dispatcher can add more devices to the device list, as explained
next. A device is considered installed when its driver has sucessfully completed a startup call and
its DIB has been placed in the device list.

Dynamic driver Installation

The device list under GS/OS is not always static. Because GS/OS supports removable partitionable
media on block devices, it must also provide a mechanism for dynamically installing devices in the
device list as new partitions come on line. The system service call INST ALL_DRIVER has been
provided for this purpose; it is described in Chapter 12. Because of this call, the GS/OS device list can
grow during program execution. (On the other hand, the device list cannot shrink; there is no
mechanism for removing devices from the device list.)

To dynamically install and startup a driver, take the following steps:

1. Make the INSTALL-DRIVER call.

2 Check for out-of-memory or busy errors. If either of those errors occurred, no drivers were
installed. Postpone installation until later.

If neither of those errors occurred, the drivers will be installed in the system as soon as the
system is not busy (that is, as soon as the current driver finishes executing).

When a new device comes on line, the application receives no notification that the device list has
changed size. An application that scans block devices should always begin by issuing a Dinfo call to
device $0001, and should continue up the device list until error $11 (invalid device number) occurs.
The Dlnfo call should have a parameter count of $0003 or more, to give the application each device's
device-characteristics word. If the newly installed device is a block device with removable media,
the application should make a status call to il

If applications scan devices in this manner, dynamically installed devices will always be included
in the scan operation.

Direct-page-parameter space

Below the application level in GS/OS, many calls pass parameters by using a single parameter block
on the Apple IIGS direct page. This same direct-page parameter block is shared among all FSTs, the
Device Manager, the device dispatcher, all device drivers, system service calls, and the GS/OS Call
Manager. All driver calls share those locations (addresses $00-$23), although not all locations have
the same meaning for all calls or are even used by all calls.

1/31/89

CHAPTER 8 GS/OS Device Driver Design 14S

GSIOS Reference (Volume 2) APDADraft 1/31/89

Figure 8-11 shows the format of the GS/OS direct-page parameter space.

• Figure 8-11 GS/OS direct-page parameter space
CALLS TO DEVICFS

$00

=~~~~~~~~~~~~~~~-4~~~-+--~~~~~--~~~--~~~--~
$03
$04

~
$06

$07
Sill
$09

$II A
$118

$OC
$110

$DE
$liP

SIO

Sll
Sl2
Sll
Sl4
su
$16
Sl7
SIS
Sl9
SIA
SIB
SIC
SID
$11!

SIP
S20
$21
$22

m~----~~------~------------~------~------~------~------~------~

For most calls to drivers, the device dispatcher sets up any needed input parameters on the GS/OS
direct page. Exceptions are th~ parameters already supplied by the application or FST making the
call. A driver can therefore count on all its direct-page parameters to be properly set each time it
receives a driver call.

146 V 0 L U M E 2 Devia:s and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft

Dispatching to device drivers

For every driver call, the device manager sets up the device-driver execution environment
shown in Table 8-2, completes the GS/OS direct-page parameter block for the call, sets the transfer
count parameter on direct page to zero, and calls the device driver's entry point with a JSL
instruction. Boldface entries in the -table indicate the components of the environment that the
driver routine must restore before returning.

• Table 8-2 Device-driver execution environment

Component State

Registers

A Call numberl

X Unspecified
y Unspecified

D Base of GS/OS direct page

s Top of GS/OS stack

DBR Current value

P register flags

e 0 (native mode}

m 0 (16-bit}

X 0 (16-bit}

O(enabled)

c Unspecified2

decimal 0

Speed Fast

1/31/89

1 The accumulator contains the call number on entry; on exit, it should contain the error code (if an error occurred) or 0

(if no error).
Zen exit, the carry flag should be set (= 1) if an error occurred, or clear (= 0) if no error.

CHAPtER 8 GS/05 Device Driver Design 147

GSIOS Reference (Volume 2) APDADraft

lbe current value in the Data Bank register is preserved by the device dispatcher.

Device drivers should not permanently modify any GS/OS direct-page location except
transfercount, which indicates the number of bytes processed by the driver.

6 Important Drivers should never access GS/OS direct page using absolute or absolute long
addressing modes. lbe location of GS/OS direct page is not specified and may
not be preserved in any future versions of the operating system. 6.

A small workspace is available for device-driver use on the GS/OS direct page. Locations $5A through
$5F are available for device drivers; locations $66 through $6B are shared by device drivers and
supervisory drivers (and may be corrupted by either a driver call or supervisory driver call). lbis
workspace is not permanent; it may be corrupted between driver calls.

Device drivers must return from calls with an RTI instruction, in full native mode, with the
portions of the environment preserved as shown in boldface in Table 8-2. The carry t1ag and
accumulator should reflect the error status for the call, as indicated in footnotes 2 and 3 to
TableS-2.

+ Disk-switched status: When a driver call returns to the device dispatcher, the device dispatcher
post-processes any error codes from the device. If either a disk-switched or off-line error is
returned by the device, the device dispatcher sets an internal error t1ag for the device to indicate
that a disk-switched condition has occurred. GS/OS, for example, uses this status to discard
cached blocks and mark volume control records as swapped out.

148

This also means that drivers, which should not return disk-switched or off-line conditions as
errors from status calls, must explicitly notify GS/OS when a status call detects a disk-switched
or off-line condition. See descriptions of the driver call Driver_Status (Chapter 11) and the
system service call SET_DISKSW (Chapter 12).

V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft

Ust of driver calls

When an application makes a device call through the Device Manager, or a fde 1/0 call through an
FST, the call is translated into a driver call and passed on through the device dispatcher to the device
driver. In addition, FSTs and the device dispatcher itself make certain driver calls that are not
translations of application-level calls. A device driver needs to accept and act on all those driver calls.
Here is a list and brief description of them:

can no. Name Description
$000) Driver _Startup Prepares a device for all other device related calls
$00)1 Driver_ Open Prepares a character device for conducting 1/0 transactions
$0002 Driver_Read Reads data from a character device or a block device
$00)3 Driver_ Write Writes data to a character device or a block device
$00)4 Driver_Ciose Resets the driver to its non-open state
$00)5 Driver _Status Gets information about the status of a specific device
$(ro) Driver_ Control Sends control information or requests to a specific device

$OOJ7 Driver_Fiush Writes out any characters in a character driver's buffer
$(XXg Driver_Shutdown Prepares a device driver to be purged

For a more detailed explanation of driver calls, see Chapter 11, "GS/OS Driver Call Reference. •

How device drivers call GS/OS

GS/OS calls device drivers through driver calls. Device drivers call GS/OS through system service
calls. System service calls constitute a standardized mechanism for passing information and
providing services among the low-level components of GS/OS, such as FSTs and device drivers.

System service calls exist for various purposes: to perform disk caching, to manipulate buffers
in memory, to set system parameters such as execution speed, to send a signal to GS/OS, to call a
supervisory driver, or to perform other tasks.

1/31/89

CHAPTER 8 GS/OS Device Driver Design 149

GSIOS Reference (Volume 2) APDADraft

Several of the system service routines are available to device drivers. Access to these routines is
through a system service dispatch table located in bank $01. These are the available routines:

Name
CACHE_FIND _BLK

CACHE_ADD_BLK

SET _SYS_SPEED
MOVE_INFO

SET_DISKSW

SUP _DRVR_DISP
INST ALL_DRIVER

DYN_SLOT_ARBITER

Function

Searches for a disk block in the cache

Adds a block of memory to the cache

Controls processor execution speed
Moves data between memory buffers

Notifies GS/OS of a disk-switched or off-line condition

Makes a supervisory-driver call
Dynamically installs a device into the device list

Returns status of a slot.

For more information, see Chapter 12.

Supervisory driver structure

Supervisory drivers accept calls from device drivers and in turn access hardware devices.
Supervisory drivers are used where several different (but related) device drivers access several
different (but related) types of hardware devices through a single hardware controller, all under the
coordination of the supervisory driver.

Supervisory drivers are simpler in overall structure than device drivers. As shown in Figure 8-12, a
supervisory driver consists of a supervisor infonnation block (SIB) and the supervisory driver code
section.

150 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft

• Figure 8-12 Supervisory driver structure

Supervisor
Information

Block
(Sill)

Supervisory Driver
code segment

The supervisor information block (SIB)

The supervisor information block (SIB) is a supervisory driver's equivalent to a DIB; it identifies the
supervisory driver to the .system. At startup, GS/OS constructs a supervisor list, equivalent to
the device list; it lists pointers to the SIBs of all installed supervisory drivers.

A supervisor information block has the format shown in Figure 8-13.

1/31189

CHAP T E R 8 GS/OS Device Driver Design 151

GSIOS Reference (Volume 2) APDA r ·

• Figure 8-13 The supervisor information block (SIB)

Offset

$00 -
-
-

$04 -
$06

'-

$08
f-

f-

f-

$0C r-

$0E
f-

entryPtr

supervisoriD

version

extDIBPtr

(reserved)

(reserved)

Size

-
- Longword
-

- Word

- Word

-
- Longword
-

- Word

- Word

Description

Pointer to the supervisory driver entry point

lbe general type of supervisory driver

lbe version of the supervisory driver

Pointer to name string; string length byte followed by
ASCII string

(reserved)

(reserved)

The defined parameters in the SIB have these meanings:

1/31/89

entryPointer Entry pointer: A longword pointer that indicates the main entry point for the supervisory
driver.

supervisoriD Supervisor ID: A word value that specifies the type of supervisory driver. Table 8-3
shows the currently defined values for supervisor ID.

• Table 8-3

ID

$00)1

$00)2

$0003-$FFFF

Supervisory IDs

Description

AppleTalk supervisory driver
SCSI supervisory driver
(reserved)

152 V 0 L U M E 2 Devices and GS/OS PART II Writing a Device Driver

GSIOS Reference (Volume 2) APDADraft

• ID assignmenL· Supervisor IDs are assigned by Apple Computer, Inc.
Contact Apple Developer Technical Support if you have a specific need for
a supervisor ID.

1/31/89

version Version: a word value that specifies the version number of the supervisory driver. This
parameter has the same format as the driver version word in a device driver DIB (the
SmartPort version format). See Figure 8-7.

extDIBPtr

(reserved)

Extended DIB pointer: a pointer to the name of the extended DIB.

Two words have been reserved in the SIB for future expansion. They should contain a
value of $0000.

Supenrisory driver code section

The content of the code section of a supervisory driver is strongly device-dependent and device
driver-dependent. A supervisory driver must have a single entry point and must include code
routines to accept the standard supervisory-driver calls listed later in this chapter (and under "About
supervisory-driver calls,· in Chapter 11). It can also contain routines to handle any supervisor
specific calls defined among it and its device drivers; it is the supervisor-specific calls that
implement all driver 1/0.

Appendix D shows the overall structure a supervisory driver might have. All driver calls to its
dependent device driver(s) are translated into supervisor-specific calls to the supervisory driver. The
supervisory driver in tum accesses the appropriate hardware device.

C H A PTE R 8 GS/OS Device Driver Design 153

GSIOS Reference (Volume 2) APDADraft

How device drivers (and GS/OS) call supervisoey drivers

All supervisory-driver calls pass through the supervisor dispatcher. Comparable to the device
dispatcher, the supervisor dispatcher handles informational calls (from device dr~ers), passes on VO
calls (from device drivers) to supervisory drivers, and generates the startup/shutdown calls that are
sent to supervisory drivers.

At startup, the supervisor dispatcher creates a supervisor Ust, a list or pointers to all SIBs.
Each installed supervisory driver is identified by superrisor number, its ~ition in the supervisor
list.

For each supervisory-driver call, the supervisor dispatcher sets up the supervisor execution
environment, as shown in Table 8-4, and calls the supervisory driver's entry point with ajSL
instruction. Boldface entries in the table indicate the components or the environment that the
supervisory-driver routine must restore before returning.

154 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

1/31/89

GS/05 Reference (Volume 2) APDA Draft 1/31/89

• Table 8-4 Supervisor execution environment

Component State

Registers
A Call number/supervisor ml
X Unspecified
y Unspecified
D Base of GS/OS direct page

s Top of GS/OS stack

DBR Current value

P register flags

e 0 (native mode)

m 0 (16-bit)

X 0 (16-bit)

O(enabled)

c Unspecified2

Speed Fast

I The accumulator contains the call number or supervisor 10 on entry; on exit, it should contain the supervisor number
or error code (nonzero if an error occurred, 0 if no error). See individual call descriptions.
2on exit, the carry flag should be set (= 1) if an error occurred, or clear (= 0) if no error.

The value of the Data Bank register is preserved by the Supervisor Dispatcher. If appropriate, a
pointer to a parameter block is set up on GSIOS direct page by the devtce driver prior to calling the
supervisory driver. See Figure 11-3, under •About Supervisory-Driver Calls• in Chapter 11.

A small workspace is available on the GS/OS direct page for device-driver and supervisory-driver use.
By convention, locations $SA through $SF are available for device drivers; locations $60 through $6S
are available for supervisory drivers. Locations $66 through $6B are shared by device drivers and
supervisory drivers (and may be corrupted by either a driver call or supervisory-driver call). This
workspace is not permanent; it may be corrupted between driver calls. Naturally, a supervisory
driver and its device drivers may set up their own scratchpad workspace allocation.

CHAPTER 8 GS/OS Device Driver Design ISS

GSIOS Reference (Volume 2) APDADraft

Supervisory drivers should not permanently modify any GS/OS direct-page location that is net
within the bounds of the small workspace. A supervisory driver requiring direct-page space should
save and restore the contents of any other direct-page location that it uses.

6 Important If the driver makes system service calls, those calls can corrupt any direct
page location net in the small workspace. t:.

Alternatively, a supervisory driver requiring large amounts of direct-page space could acquire its
own direct page at startup; the supervisory driver must then be sure to release this memory at
shutdown.

6 Important Drivers should never access GS/OS direct page using absolute or absolute long
addressing modes. The location of GS/OS direct page is net specifted and may
net be preserved in any future versions of the operating system. t:.

Supervisory drivers must return from calls with an RTI instruction, in full native mode, with the
appropriate portions of the supervisor execution environment preserved, as shown in boldface in
Table S-4. The carry flag and accumulator should reflect the error status for the call or results, as
indicated in foonotes 1 and 2 to Table S-4.

Here are a list and and brief description of the supervisory-driver calls that device drivers can make
or that supervisory drivers must respond to:

can no. Supervisor no. can name
$(XXX) (nonzero) Supervisor_Startup

$00)1 (nonzero) Supervisor_Shutdown

$(XXX) $(XXX) Get_Supervisor_Number

$00)1 $(XXX) Set_SIB_Ptr

$0002-$FFFF (nonzero) (driver-specific calls)

See Chapter 11 for more information.

156 V 0 L U M E 2 Devices and GS/OS

Explanation
Prepares the supervisory driver to
receive calls from device drivers

Releases any system resources
allocated at startup

Returns the supervisor number for
the supervisory driver with a given
supervisor ID

Sets the direct-page SIB pointer for
a specifted supervisory driver

For use by device drivers

P A R T II Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft 1/31189

Chapter 9 Cache Control

GS/OS provides for disk caching, whereby frequently read disk blocks are kept in memory
for faster access. Individual block drivers may or may not implement caching; this chapter
shows you how to write your driver to support caching if you want it to.•

157

GSIOS Reference (Volume 2) APDA Draft

Drivers and caching

Under GS/OS, caching is the process in which frequently accessed disk blocks are kept in memory,
to speed subsequent accesses to those blocks. The user (through the Disk Cache desk accessory or
through the Control Panel program) can control whether caching is enabled and what the maximum
cache size can be. It is the driver, however, that is responsible for making caching work. This
section discusses the design of the GS/OS cache and shows what calls are needed to implement it.

Except for one special case, the GS/OS cache is a write-through cache. When an FSf issues a Write
call to a device driver, the driver writes the same data to the block in the cache and the equivalent
block on the disk. Never does the block in the cache contain information more recent than the disk
block.

The one special case where the GS/OS cache is not write-through is when a write-deferred
session is in effect. In that case, data written to the cache is kept there until the application makes
an EndSession call that terminates the session and flushes the cache to the disk.

Like most caching implementations, the GS/OS cache uses a least recently used (LRU) algorithm:
once the cache is full, the least recently used (= read) block in the cache is sacrificed for the next
new block that is written.

Cache memory is obtained and released on an as-needed basis. For example, if the user or an
application selects 32KB as the cache size, this amount is not directly allocated for specific use by
GS/OS. Only as individual blocks are cached is the necessary amount of memory (up to 32KB in this
case) assigned to the cache.

The size of a block in the cache is essentially unrestricted, limited only by the maximum size of
the cache itself. GS/OS makes no assumptions about the size of the block to be cached; it uses
whatever block size is requested.

+ Macintosh: These features differ from caching on the Macintosh, in which the Cache Manager
holds exclusive control over the entire amount of cache memory and deals in 512-byte
blocks only.

158 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

1/31/89

GS/OS Reference (Volume 2) APDA Draft

Cache calls

The following brief descriptions show what the available cache calls are and what they do. Cache
calls are system service calls; they are described in more detail in Chapter 12.

1/31/89

CACHE_FIND_BLK Search.es the cache to find the specified cached block, and, if it finds it, sets a pointer
on the direct page to the cache.

CACHE_ADD_BLK

MOVE_INFO

SET_DISKSW

How drivers cache

Tries to add the specified block to the cache, and sets a pointer to the cache. If
there is not enough room left in the cache for the specified block, it makes space
available by deleting cached blocks.

Copies the block into or out of the cache.

Deletes from the cache any blocks belonging to a device whose disk has been
switched.

If you are writing a driver that will support caching, it should perform the following tasks on
reading from and writing to its device. See also the device-driver sample code in Appendix D.

On a R.ead call

When the driver receives control, its direct-page parameters have already been set up by the caller
(Device Manager or FST); see the description ofDriver_Read in Otapter 11. lfthe cache priority is
nonzero, the driver should support caching by doing this:

1. Check the FST ID number on the GS/OS direct page. If it is negative (bit 15 = 1; unsigned value=
$8000 or greater), then the block is always to be read from the device and na cached This case
is used by FSTs to verify the identity of an on-line volume for which deferred blocks have been
written to the cache.

2. Search for the block in the cache by calling CACHE_FIND_BLOCK.

C H A PTE R 9 ConftgUratiOD and Cache Control 159

GSIOS Reference (Volume 2) APDA Draft

3. If the block is not in the cache:

a call CACHE_ADD _BLOCK to add a block of the proper size to the cache.

b. If the block is granted, read the data from disk and then write it to both the caller's buffer
and the cached block. If the block is not granted, just read the data from disk and write it
into the caller's buffer.

c. Go to step 4.

4. If the block is already in the cache, call MOVE_INFO to transfer the cached block to the caller's
buffer.

5. Check for a disk-switched condition; if it is true, then call SET_DISKSW to delete the blocks
from the cache, and return a disk-switched error from this call. If it is false, the read has been
completed successfully.

If the driver must perform multiblock reads to satisfy the request count for the call, it can repeat
this loop as many times as needed, or it may be faster to disable caching until all the blocks have
been read from the device, and then transfer those blocks to the cache.

On a Write call

When the driver receives control, its direct-page parameters have already been set up by the caller
(Device Manager or FS'O; see the description of Driver_ Write in Chapter 11. If the cache priority is
nonzero, the driver should support caching by doing this:

1. Search for the block in the cache by calling CACHE_FIND_BLOCK.

2 If the block is not in the cache:

a can CACHE_ADD BLOCK to add a block of the proper size to the cache.

b. if the block is granted, continue; otherwise skip to step 4.

3. call MOVE_INFO to move data from the caller's buffer to the cached block.

4. Check for a disk-switched condition; if it is true, then call SET_OISKSW to delete the blocks
from the cache, and return an error from this call.

5. Check the cache priority on the GS/OS direct page; if it is negative (that is, if bit 15 is equal to 1,
indicating that the value is $8000 or greater), a deferred-write session is in progress. Your driver
should write the block to the cache (if a cached block is available) but net write the data to the
device, since the EndSession call that terminates the deferred-write session flushes the cache to
disk. This completes the driver's write task.

16o V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft

If the cache priority is positive, write the block to disk. This completes the driver's write task.

If the driver must perform multiblock writes to satisfy the request count for the call, it can repeat
this loop as many times as needed, or it may be faster to disable caching until all the blocks have
been read from the device, and then transfer those blocks to the cache.

caching notes

Here are a few other points to keep in mind when designing a driver to support caching.

• Device calls: The GS/OS device calls DRead and DWrite do not invoke caching, whether or not
the accessed device driver supports it. The Device Manager always sets the cache priority to
zero for those calls.

• AppleDisk 5.25 driver: Because it cannot detect disk-switched errors with complete reliability,
the AppleDisk 5.25 driver does not support caching. Any block driver with similar limitations
should not support caching.

1/31/89

c H A PTE R 9 Configuration and Cache Control 161

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Chapter 10 Handling Interrupts and Signals

Interrupt handlers are programs that execute in response to a hardware interrupt.
Interrupts and interrupt handlers are commonly used by device drivers to operate their
devices more efficiently and to make possible simple background tasks such as printer
spooling.

Under GS/OS, a signal is a software message from one subsystem to a second that
something of interest to the second has happened. The most common kind of signal is a
software response to a hardware interrupt, but signals need not be triggered by
interrupts. Signal handlers are programs that execute in response to the occurrence of a
signal. They are similar to interrupt handlers except that signal handlers can make
operating system calls. The GS/OS Call Manager is responsible for managing and
dispatching to both interrupt handlers and signal handlers.

An interrupt handler is commonly written in conjunction with a driver and is installed
when the driver starts up. A signal handler is commonly written in conjunction with
either a driver or an application, and it is installed by the driver or application during
execution. This chapter discusses requirements for designing and installing both types of
handlers. •

163

GSIOS Reference (Volume 2) APDA Draft

Interrupts

An interrupt is a hardware signal that is sent from an external or internal device to the CPU. On
the Apple IIGS, when the CPU receives an interrupt the following actions occur;

1. The CPU suspends execution of the current program, saves the program's state, and transfers
control to the Apple IIGS firmware interrupt dispatcher. The firmware dispatcher sets up a
specific firmware interrupt environment.

2 If it is an interrupt that has a GS/OS interrupt handler, the firmware dispatcher passes control
to GS/OS. GS/OS sets up a specifiC GS/OS interrupt environment and in tum transfers control to
the proper handler.

3. The interrupt handler performs the functions required by the occurreoce of the interrupt. After
it has done its job, the interrupt handler returns control to GS/OS.

4. GS/OS restores the firmware interrupt environment and returns control to the firmware
dispatcher. The firmware dispatcher restores the state of the interrupted application and
returns execution to it as if nothing had happened.

In a non-multitasking system such as GS/OS, interrupts are commonly used by device drivers to
operate their devices more efficiently and to make possible simple background tasks such as printer
spooling.

This section discusses what the sources of interrupts are, how interrupt handlers are dispatched to,
how interrupt handlers function within their execution environment, and how interrupt sources are
connected to interrupt handlers. It also discusses interrupt-handler lifetime and how GS/OS treats
unclaimed interrupts.

Interrupt sources

Each distinct hardware device that can generate an interrupt is known as an interrupt source. For
example, each Apple IIGS expansion slot with a hardware card is an interrupt source, and internal
devices as the mouse and serial ports are also sources. Every interrupt source that is explicitly
identifiable by the firmware has a unique identifier known as its vector reference number (VRN).
VRNs are used to associate interrupt sources with interrupt handlers.

164 V 0 L U M E 2 Devices and GS/OS PART II Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft

VRNs are permanently associated with specific interrupt sources; !hey will not change with
future revisions to GS/OS or !he Apple IIGS computer. If your interrupt handler now appropriately
handles an interrupt source with VRN=n, it will be able to handle VRN=n on any future versions of
GS/OS on any Apple JIGS.

Table 10-1 lists the currently defined VRNs and !heir associated interrupt sources.

• Table 10-1 VRNs and interrupt sources

VRN IntetTupt source VRN InterTUpt source

$(Xffl AppleTalk port
$(W) Serial input port
$(XX) A Scan line
$(XX)B Sound-chip waveform completion
$(XXX: VBL
$0000 Mouse button or movement
$(XX)E Quarter-second timer
$(XX)F Keyboard

$0010 ADB response (keyboard)
$0011 SRQ (keyboard)
$0012 Desk Manager
$0013 Flush command (keyboard)
$0014 Microcontroller abort (keyboard)
$0015 Clock chip 1-second timer
$0016 External interrupt source (slot)
$0017 Other interrupt source

As new interrupt sources (such as internal and external slots, timers, counters, etc.) are defined in
future versions of !he Apple JIGS, each will be assigned a unique VRN by Apple Computer, Inc.

1/31/89

c H A PTE R 10 Handling Interrupts and Signals 165

GSIOS Reference (Volume 2) APDA Draft

Interrupt dispatching

Interrupt dispatching is the process of handing control to the appropriate interrupt handler after
an interrupt occurs. In the Apple IIGS, most interrupt dispatching and interrupt handling is
performed by firmware. Although the Apple IIGS hardware generates a number of distinct
interrupt notifications-ABORT, COP, BRK, NMI, and IR~e only interrupt of interest to GS/OS
interrupt-handler writers is IRQ (Interrupt Request). The firmware dispatches each IRQ by polling
the interrupt handlers through the firmware interrupt vectors (one for each VRN defined in Table
1 0-1) until one of them signals that it has handled the interrupt.

Because of critical timing constraints, the firmware interrupt dispatcher polls the AppleTalk
and serial port vectors frrst, before polling the less time-critical vectors such as vertical blanking,
quarter-second timer, and keyboard. If none of the firmware handlers associated with defined
sources accepts the interrupt, the firmware dispatcher polls through vector $0017 (other interrupt
source). If the interrupt still remains unhandled, the firmware dispatcher passes control through
the user interrupt vector at $00 03FE. Finally, if no handlers associated with the user interrupt
vector accept the interrupt, it becomes an uncJaimed interrupt, described later in this section.

There are two ways in which GS/OS can get control from the firmware dispatcher during this
process, in order to pass control on to a GS/OS interrupt handler:

1. Through one of the firmware interrupt vectors. When GS/OS gets control this way, it polls
only the interrupt handlers that are associated with the particular vector reference number
(VRN) of that interrupt vector. These handlers are installed with the GS/OS call Bindint,
described later in this section.

2 Through the user interrupt vector ($00 03FE). When GS/OS gets control this way, it polls all the
installed ProDOS 16 interrupt handlers. ProDOS 16 interrupt handlers are installed with the
GS/OS ProDOS 16-compatible call ALLOC_INTERRUPT, described in Appendix A of Volume 1.

Within a polling sequence, the polling order is undefined.

166 V 0 L U M E 2 Devices and GS/OS PART II Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft

Interrupt handler structure and execution environment

A GS/OS interrupt handler consists of code in either a device driver, application, or desk accessory.
The interrupt handler must have a single defined entry point. When an interrupt occurs, GS/OS sets
up a specific execution environment and then calls the interrupt handler with a JSL instruction to
that entry point.

The code beginning at the specified entry point should first determine whether or not the
interrupt is the one to be handled by this interrupt handler. If it is not, the interrupt handler should
restore the ex0 cution environment as set up by GS/OS, set the carry flag (c=l), and return with an
RTL. If the interrupt is the proper one, the interrupt handler should perform whatever tasks
necessary to handle the interrupt, restore the proper execution environment, clear the carry flag
(c=O), and return with an Rn.

What execution environment GS/OS sets up for an interrupt handler depends on its type. As far
as execution environments are concerned, there are three basic types:

• A GS/OS interrupt handler bound to the AppleTalk or serial port firmware vector

• A GS/OS interrupt handler bound to any other fmnware vector.

• A ProDOS 16 interrupt handler installed through the user interrupt vector

Table 10-2 shows the execution environment of each of these handlers when it starts executing.
The table also nctes which parts of the environment need to be preserved (or restored on exit).
Boldface entries in the table indicate the components of the environment that the handler must
restore before returning.

1/31/89

CHAPTER 10 Handling Interrupts and Signals 167

GSIOS Reference (Volume 2) APDA Draft 1/31/89

• Table 10-2 Interrupt-handler execution environments

GS/OS AppleTalk Other GS/05 ProDOS 16

Component or serial handler handler handler

Registers

A,X,Y Undefined Undefined Undefined

D Undefined $0000 Undefined

s Undefined I Undefined I Undefinedl

DB Undefined $00 Undefined

PB Handler entry point Handler entry point
Handler entry point

PC Handler entry point Handler entry point
Handler entry point

P register flags

e 0 (native mode) 0 (native mode) 0
(native mode)

m 1 (8-bit) 1 (8-bit) 0 (16-bit)

X 1 (8-bit) 1 (8-bit) 0 (16-bit)

1 (disabled)2 1 (disabled)2 1 (disabled)2

c Undefined3, 4 Undefined3. 4 14

s~ Fast Fast Fast

Ion entry, the three-byte return address to GS/OS is on top of the stack. When the interrupt handler executes its RTI., this

three-byte address is popped from the stack.
2An interrupt handler must never enable interrupts.
3If c=O on entry, the interrupt has not yet been handled; if c=l on entry, the interrupt has already been handled.

4If the interrupt handler handles the interrupt, it sets c=O before returning. If not, it sets c=l before returning.

Note from Table 10-2 that the carry flag is always set (c=l) on entry to a ProDOS 16 interrupt
handler, whereas it can be either 0 or 1 on entry to a GS/OS interrupt handler. ProDOS 16 handlers are
polled only as long as the interrupt is still unclaimed; as soon as one handler takes it and clears the
carry flag, polling stops. On the other hand, all GS/OS handlers bound to a particular VRN are polled
during an interrupt, even if another handler with that VRN has already cleared the interrupt. That
way, all handlers associated with a VRN can do updating or other desired tasks at each interrupt.

168 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft

The first GS/OS handler to respond to an interrupt should perform its normal functions,
including reenabling the interrupt source, clearing the carry flag, and returning. Subsequent handlers,
on seeing that c=l on entry, may perform other tasks as desired but should not themselves reenable
the interrupt source, change the value of the carry flag, or permanently modify the environment.

Here are some other points to remember in designing an interrupt handler:
-

• If the interrupt handler needs to use direct-page space, it must save and restore the contents of
any locations that it uses.

• An interrupt handler must never enable interrupts.

• Because interrupts cannot be disabled for longer than 0.25 seconds in the Apple IIGS (an
AppleTalk requirement), interrupt handlers must execute in less than a quarter-second.

• Because GS/OS is not reentrant, an interrupt handler should not make GS/OS calls. If your
interrupt handler needs to make operating system calls, you should make it a signal handler
instead. See "Signals, • later in this chapter.

Connecting interrupt sources to interrupt handlers

You install and remove GS/OS interrupt handlers by making the standard GS/OS calls Bindint and
Unbindlnt, respectively.

To avoid unclaimed interrupts, make sure that the code that installs an interrupt handler does
not ~nable the interrupt source until the interrupt handler is installed. Likewise, the code that
removes an interrupt handler must disable the interrupt source before removing the handler.

Bindlnt call

This call establishes a binding, or correspondence, between a specifted interrupt source and a
specified GS/OS interrupt handler. GS/OS adds the interrupt handler to the set of handlers to be
polled when the specified (by VRN) interrupt occurs. The polling order is undefined within the
handlers bound to that interrupt vector.

The interrupt identifiCation number returned by the call uniquely identifies the binding
between interrupt source and interrupt handler. Its only use is in the GS/OS Unbindlnt call. Note
that several interrupt handlers may be bound to the same interrupt source.

For a description of the Bindlnt call, see Chapter 7 of Volume 1.

1/31/89

CHAPTER 10 Handling Interrupts and Signals 169

GSIOS Reference (Volume 2) APDA Draft

Unbindlnt call

This call severs the binding previously established between an interrupt source and interrupt handler
by a Bindlnt call. It makes the interrupt handler unavailable.

For a description of the Unbindlnt call, see Chapter 7 of Volume 1.

• ProDOS 16: ProDOS 16 interrupt handlers are installed and removed with the ProDOS 16 calls
ALLOC_INTERRUPT and DEALLOC_INTERRUJ!I'. See Appendix A of Volume 1.

Interrupt handler lifetime

The lifetime of an interrupt handler is the time during which its code is resident in memory and
capable of being executed. During its lifetime, the interrupt handler may be installed (able to handle
its interrupts) or removed (still resident in memory but unable to handle its interrupts).

The interrupt handler is installed when the device driver or application makes a Bindlnt call for
it, and removed when the device driver or application makes an Unbindlnt call. The program that
performs the Btndlnt call must perform an Unbtndlnt call before the lifetime of the intenupt
handler ends. There is no automatic mechanism for removing GS/OS interrupt handlers when an
application quits, and a dispatch to the previous entry point of an installed but now completely
gone interrupt handler could cause a system crash or loss of data.

• Drivers making GSIOS calls: Note that Bindlnt and Unbindlnt are exceptions to the rule that
drivers cannot make operating system calls.

A GS/OS interrupt handler has a lifetime equivalent to the code containing it. For example, if the
interrupt handler is part of a device driver, it lives as long as the device driver is in memory and
capable of being executed. Thus, the lifetime of a GS/OS interrupt handler may span several GS/OS
applications. In this case, the lifetime ends when the user executes a non-GS/OS application or the
hardware reboots.

170 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft

Unclaimed interrupts

If none of the interrupt handlers on an Apple IIGS accepts a given interrupt, it is known as an
unclaimed interrupt. Possible causes of unclaimed interrupts include the following:

• software problems, such as a failure to bind the interrupt handler before enabling the interrupt
source it handles -

• interrupt-related hardware problems, such as failure by the interrupting device to maintain an "I
am the source of the interrupt" tlag after signalling an interrupt to the processor.

• hardware failures such as intermittent shorts of the interrupt line to ground

• random transient phenomena such as cosmic-ray or subatomic-particle bombardment

An unclaimed interrupt is a serious problem bvt shouldn't cause a system failure if the interrupt
was due to a random transient phenomenOn. TlX:refore, GS/OS maintains an unclaimed interrupt
counter that is initialized to 0 at GS/OS startup time. Whenever an unclaimed interrupt occurs,
GS/OS increments the counter. Whenever an interrupt is serviced by an interrupt handler, GS/OS sets
the counter back to 0. If the counter ever reaches 65,536, GS/OS causes a system failure.

Signals

A signal is a message from one software subsystem to a second that something of interest to the
second has occurred. When a signal occurs, GS/OS typically places it in the signal queue for
eventual handling. As soon as it can, GS/OS suspends execution of the current program, saves the
program's state, removes the signal from the queue, calls the signal handler in the receiving
subsystem to process the signal, and finally restores the state and returns to the suspended
program.

The most important feature of signal handlers is that they are allowed to make GS/OS calls.
That is why the signal queue exists; GS/OS removes signals from the queue and executes their signal
handlers only when GS/OS is free to accept a call.

The mnst common kind of signal is a software response to a hardware interrupt. For example,
a modem driver may use a loss of carrier interrupt to trigger a corresponding signal, whose signal
handler calls GS/OS to dose a me of terminal input data. Similarly, a spooling printer driver may
translate a line completion interrupt into a corresponding signal whose signal handler uses GS/OS
calls to read the next line from a spool file and move it into the printer's output buffer.

1/31/89

CHAPTER 10 Handling Interrupts and Signals 171

G::JOS Reference (Volume 2) APDA Draft

In principle, however, signals need not be triggered by interrupts: a signal can indicate, for
example, a message received condition on a network interface or a new volume mounted condition
on a disk drive.

+ Signals are not meant to provide a general mechanism for interprocess communication in a
multitasking environment. Their principal capability is synchronization of handler execution
with time periods when the operating system is able to accept calls.

Signals are analogous to interrupts but are handled with less urgency. If immediate response to an
interrupt request is needed, and if the routine that handles the interrupt needn't make any
operating system calls, then it should be an interrupt handler. On the other hand, if a certain
amount of delay can be tolerated, the full range of operating system calls are available to a handler if
it is a signal handler.

This section discusses what signal sources are, how GS/OS dispatches to signal handlers, how signal
handlers function within their execution environment, how signal sources are connected with signal
handlers, and how the occurrence of a signal is announced.

Signal sources

A signal source is software; it is a routine that announces the occurrence of a signal when it
detects the prerequisite conditions for that signal. For example, a modem device driver may contain
an interrupt handler capable of detecting the conditions needed to announce the loss of carrier
signal. In that case the interrupt handler's primary purpose is to be a signal source. The most
common class of signal sources is probably interrupt handlers within device drivers.

Signal sources announce signals to GS/OS by making the system service call SIGNAL, described
in Chapter 12. When a signal source announces a signal to GSIOS, it passes along the information
needed to execute the source's signal handler. (That information was sent to the signal source
when the signal was armed; see "Arming and Disarming Signats,•Jater in this chapter.) GS/OS
accepts that information and either executes that signal's signal handler immediately or saves the
information for later; GS/OS then returns control to the process that announced the signal.

+ A signal source that announces a signal as the result of an interrupt should generate no more
than one signal per interrupt, to avoid the possibility of overflowing the signal queue.

172 V 0 L U M E 2 Devices and GSIOS P A R T II Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft

Signal dispatching and the signal queue

Signal dispatching is the process of calling signal handlers. GS/OS dispatches signals only when it
is not busy processing a GS/OS call, so that signal handlers are always able to make system calls.

When a signal occurs, if GS/OS is not busy handling a GS/OS call and if the system is in a non
interrupt state, the GS/OS Call Manager executes the signal handler immediately. On the other hand,
if a GS/OS call is in progress when the signal occurs, the signal cannot be dispatched; the Call
Manager instead places the signal in the signal queue. Signals are placed in the queue in order of
signal priority; queued signals with higher priority numbers are placed in front of signals with
lower priorities, meaning that they will be executed first.

lbe signal queue can hold a maximum of 16 signals. If a signal arrives and the queue is full, the
queue overflows, and the signal call returns an error.

GS/OS dispatches a queued signal by pulling it off the front of the queue (that is, by taking the
oldest signal with the highest priority) and calling the signal's handler. To process signals as quickly
as possible, minimize the time during which interrupts are disabled, and assure that all signals are
eventually handled, GS/OS uses the signal dispatching strategy described in Table 10-3.

• Table 10-3 GS/OS signal-dispatching strategy

Situation Action taken

GS/OS is exiting from a system call, system is in
non-interrupt state.

GS/OS is exiting from a system call, system is in
interrupt state.

Execute all queued signals.

Execute only the first queued signal.

1/31/89

Signal arrives while GS/OS is inactive and the
system is in non-interrupt state.

Execute all queued signals, including the one being
signaled.

Signal arrives while GS/OS is inactive and the
system is in interrupt state.

Signal arrives while GS/OS is active.

Queue the arriving signal and execute only the first
queued signal.

Do not execute any signals and queue the arriving signal.

In addition, to make absolutely sure that no signals are left unexecuted, GS/OS uses the VBL
interrupt to execute all remaining signals in the queue every 0.5 seconds.

cHAP T E R 10 Handling Interrupts and Signals 173

GSIOS Reference (Volume 2) APDA Draft

Signal handler structure and execution environment

A signal handler is a subroutine somewhere in memory that is called by GS/OS in response to the
signal that it handles. The signal handler must have a single defined entry point When it dispatches
to the signal handler, GS/OS saves the state of the current application and sets up a specific signal
handler environment; GS/OS then calls the signal handler with a JSL instruction to its entry point.
The features of the signal handler environment are shown in Table 10-4. Boldface entries in the
table indicate the components of the environment that the handler must restore before returning.

• Table 10-4 Signal-handler execution environment

Component State

Registers
A Undefined
X Undefined
y Undefined
D Current direct page
s Current stack pointer
DBR Undefined

P register flags
e 0 (native mode)
m 0 (16-bit)

X 0 (16-bit)

1 (disabled)1

Speed Hig_h

1 A signal handler must never enable interrupts.

174 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft

Here are some other points related to signal handler design:

• Signal handlers must return with an RTL.

• Because interrupts cannot be disabled for longer than 0.25 seconds on the Apple IIGS (an
AppleTalk requirement), and because signal handlers may run in an interrupt environment
(during which interrupts are diababled), signal handlers must execute in less that a quarter
second.

• Signal handlers must never enable interrupts.

• An intem1pt may preempt execution of a signal handler, but a signal handler is never preempted
to execute ancther signal handler, even one of higher priority. Any signal handler that you write
can count on execution without interference from ancther signal handler.

• The lifetime of a signal handler is the same as the lifetime of the software that contains it.
Therefore, if your signal handler is part of a device driver, it can span several applications.

Arming and disarming signals

A program needs to arm, or install, a signal in order to use it. Arming a signal is the process of
providing its signal source with the information needed to execute its signal handler. This
information includes the signal handler's code entry point and the signal's priority. Arming implies
that the signal handler is ready to process occurrences of the signal.

When the program no longer needs to use the signal, it must disarm (remove) it. Disarming a
signal is the process of telling the signal source that the signal handler will no longer process
occurrences of the signal.

Therefore, every signal source must support the ArmSignal and DisarmSignal functions for its
signal. How the source implements the functions is source-specific; however, it must at least save
the information passed to it by ArmSignal and maintain a flag noting whether the signal is currently
armed or disarmed. Two standards exist for ArmSignal and DisarmSignal calls: one for signal sources
in device drivers and one for all other signal sources.

1/31/89

CHAPTER 10 Handling Interrupts and Signals 175

GS/05 Reference (Volume 2) APDA Draft

Anning device driver signal sources

To arm a signal that is generated by a device driver, the caller (application or device driver) perfonns
an ArmSignal subcall of the GS/OS call DControl, passing the following information to the driver
that contains the signal source:

• the signal code, an arbitrary value defined by the signal source to identify the signals that the
source generates. The signal code is used only in the DisarmSignal call.

• the signal priority to be given to signals from this source; $0000 is the lowest priority and
$FFFF is the highest.

• the signal handler address, the entry point of the handler for signals generated by this
source.

The driver receives the call (from the device dispatcher) as an Arm_Signal subcall of the driver call
Driver_ Control. The format in which these parameters are passed, and the procedure for making
the ArmSignal subcall, are documented under "DControl• in Chapter 1; the format in which the
driver receives the parameters is documented under "Driver_ Control• in Chapter 11.

6. Important Before it arms a given signal, the program making the ArmSignal call must
ensure that the signal handler for that signal is ready to process the signal. D.

The ArmSignal subcall can return error number $22 (invalid signal code) or error number $29 (driver
busy, which is this case means that the signal is already armed).

Disanning device driver signal sources

To disarm a signal that is generated by a device driver, the caller (application or device driver)
performs a DisarmSignal subcall of the GS/OS call DControl, passing the following information to
the driver that contains the signal source:

• the signal code, the value assigned by the caller when the signal was armed (with the
ArmSignal call).

The driver receives the call (from the device dispatcher) as a Disarm_ Signal subcall of the driver call
Driver_Control. The format in which the parameter is passed, and the procedure for making the
DisarmSignal subcall, are documented under "DControl• in Chapter 1; the format in which the driver
receives the parameters is documented under "Driver_ Control• in Chapter 11.

176 V 0 L U M E 2 Devices and GS/OS P A R T U Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft

!::J. Important The program making the DisarrnSignal call must not disable or remove the
signal handler from memory until after the call is made. t::.

The Disarm Signal subcall can return error $22 (invalid signal code, which in this case means that the
signal was never armed)

Annfng other signal sources

A signal source that is not part of a device driver must have an ArrnSignal entry point that behaves
essentially like the ArrnSignal subcall of DControl. The application or device driver calls the entry
point by using a JSL instruction, as shown in this APW assembly-language example:

pea parameter_blockl-16 ;push high word of param block ptr
pea parameter_block ;push low word of para block ptr
jsl arm_signal_e ;long jump to arm procedure

The parameter block should have the following form:

de i2'signal_code'
de i2'priority'
de i4'handler address'

These parameters have the same format and meaning as those described under • Arming Device
Driver Signal Sources,• earlier in this section.

On an ArrnSignal call, a non-device-driver signal source must return with the carry flag clear (c = 0) if
no error occurred, or with the flag set (c = 1) and the error code in the accumulator if an error
occurred. The call should support these errors:

Code Meaning
A=$0001 Invalid signal rode
A=$0002 Signal already armed

1/31/89

CHAP T E R 10 Handling Interrupts and Signals ITT

GSIOS Reference (Volume 2) APDA Draft

Disarming other signal sources

A signal source that is not part of a device driver must have a DisarrnSignal entry point that behaves
essentially like the DisarrnSignal subcall of DControl. 1be application or device driver calls the entry
point, as shown in this APW assembly-language example:

;push signal code onto stack

1/31/89

pea
jsl

signal_code
disarm_signal e ;call disarm procedure for the specific signal

On an DisarrnSignal call, a non-<ievice-driver signal source must return with the carry flag clear (c =
0) if no error occurred, or with the flag set (c = 1) and the error code in the accumulator if an error
occurred. lbe call should support this error:

Code Meaning
A=$0001 Invalid signal code

178 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Chapter 11 GS/ OS Driver Call Reference

This chapter documents the GS/OS driver calls: low-level calls, through the device
dispatcher, by which file system translators, the Device Manager, and other parts of GS/OS
communicate with device drivers and devices.

The chapter also documents supervisory-driver calls: calls that GS/OS and certain
types of device drivers make to supervisory drivers to access supervisor-controlled
devices. •

179

GSIOS Reference (Volume 2) APDA Draft

About driver calls

All GS/OS device drivers must accept a standard set of calls. These driver calls are of two basic
types: internal calls, made by GS/OS to drivers for housekeeping purposes; and device-access calls,
low-level translations of application-level calls. The application level calls that are translated to
driver calls include device calls (made through the Device Manager) and all application-level calls that
access files (made through an FST).

Both types of calls are described in this chapter. The driver calls that are internal are not like
other GS/OS calls described elesewhere; the driver calls that access devices, however, are very similar
in content and purpose (if not form) to the device calls documented in Chapter 1 of this volume.

Table 11-1lists the driver calls every GS/OS device driver must accept.

• Table 11-1

No.

$00)1

$()(X)2

$()(X)3

$()(X)4

$0005

$(XXX)

socm

$(XXB

GS/OS driver calls

Name

Driver_Startup

Driver_Open

Driver _Read

Driver_ Write
Driver_Close

Driver _Status

Driver_ Control

Driver_Flush

Driver_Shutdown

Description

Prepares a device for all other device-related calls. This call is
issued by the device dispatcher as drivers are loaded or
generated

Prepares a character device for conducting 1/0 transactions

Reads data from a character device or a block device

Writes data to a character device or a block device

Resets a character device driver to its non-open state

Gets information about the status of a specific device

Sends control information or requests to a specific device

Writes out any characters in a character device driver's buffer
in preparation for purging a driver

Prepares a device driver to be purged (removed from memory)

Recall from Chapter 8 of this Volume that GS/OS recognizes both device drivers and supervisory
drivers. Supervisory drivers handle a different set of calls from those listed in Table 11-1; see "About
Supervisory-Driver Calls," later in this chapter.

180 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft 1/31/89

All driver calls take their parameters from a parameter block on the GS/OS direct page. Figure 11-1 is
a diagram of that parameter block.

• Figure 11-1 Direct-page parameter space for driver calls
All driver calls use the same memory /ocattons.

Offset

$00 f- deviceNum -
$02

t- callNum -

f- -
- bufferPtr -
- -
f- -$08

"""
requestCount -

t- -
soc - -

_ transfer-Count -

- -
$10 - -

- blockNum -
- -

$14 - blockSize -
$16 t- fstNum OR code -

$18 f- volumeiD -
$1A t- cachePriorlty -

$1C - -
- cachePointer -
- -
1- -$20

t- dibPointer -
t- -

Description

The number of the device to whom the call is made

The number of the call being made

Pointer to a buffer for reading or writing data

The number of bytes to transfer to or from driver

The number of bytes transferred by the call

The number of the block to start a read or write at

How many bytes per block for this device

This device's FST number or status code or control code

The VRN for blocks on this device

What sort of caching to implement

Pointer to the current block in the cache
(this parameter is used only indirectly in driver calls)

Pointer to the DIB for this device

C H A PTE R 11 GS/OS Driver call Reference 181

GSIOS Reference (Volume 2) APDA Draft

Drivers receive calls through a JSL to the driver's main entry point (defined by the driver in its DIB),
with the call number in the accumulator and other registers as specified under •Dispatching to

Device Drivers• in Chapter 8.

The following sections describe the individual calls. Each call description repeats the direct-page
diagram, showing the following features:

• Offset (direct page): The width of the direct-page parameter block diagram represents one
byte; successive tick marks down the side of the block represent successive bytes in memory.
Hexadecimal numbers down the left side of the parameter block represent byte offsets from
the base address of the GS/OS direct page.

• Name: The name of each parameter appears at the parameter's location within the parameter
block.

• Size and Type: Each parameter that is used in a particular call is also identified by size (word or
longword) and type (input or result, and value or pointer). A word is 2 bytes; a longword is 4
bytes. An input is a parameter passed from GS/OS to the driver; a result is a parameter returned
to GS/OS by the driver. A value is numeric or character data to be used directly; a pointer is the
address of a buffer containing data (whether input or result) to be used.

+ Transfer count: The only result that can be returned from any driver call is transfercount.

That is, drivers are not permitted to permanently alter any value other than transfercount on
the GS/OS direct page.

• Unused parameters: Although all calls use the same direct-page parameter space, not all
parameters are used for every call. For each call description, parameters that are not used are
shaded in the parameter-block diagram.

Each parameter used by a call is described in detail following the call's diagram. Additional
important notes and call requirements follow the parameter descriptions.

182 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$0000

Description

Parameters

Driver _Startup

This call performs any tasks necessary to prepare the driver to operate. It is executed by
GS/OS during initialization or after loading a driver.

The Driver_Startup call uses these parts of the direct-page parameter space:

C H A PTE R 11 GS/05 Driver Call Reference 183

GSIOS Reference (Volume 2) APDA Draft 1/31/89

deviceNurn

callNurn

Offset (direct-page)

$00 deviceNum

callNum

dibPointer

Size and type

Word INPUT value

Word INPUT value

(not used)

(not used)

(not used)

(not used)

(not used)

(not used)

(not used)

(not used)

(not used)

Longword INPUT pointer

Word input value: specifies which device is to be accessed by the call. Must be nonzero to
be valid.

Word input value: specifJes the call to be issued. For Driver_Startup, callNurn = $0000.

184 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31/89

dibPointer

Call
Requirements

Partitioned
Devices

Longword input pointer: points to the device information block for the device being
accessed.

Both character device and block device drivers must support this call.

For GS/OS, there are 14 slots ($0000-$000F) in the system, only seven of which can be
switched in at any one time. To find the slot that your peripheral device is in, start the
search at one end of the range and search toward the other end, asking the slot arbiter if
the current slot is available. If the slot is not available, the slot arbiter will return an error,
and you can continue the search at the next slot number.

6. Important In GS/OS, you must use the slot arbiter, or you might not find your
peripheral if the slot in which the peripheral resides is not currently
switched in . .6.

Drivers may use this routine for memory allocation and/or installing an interrupt handler
with the GS/OS call Bindlnterrupt. Character device drivers should maintain an internal
flag indicating whether the device is open; that flag should be set to not open by this call.

Prior .to issuing a startup call to a device, the device dispatcher sets the DIB pointer on the
GS/OS direC1 page.

6. Important The Driver_Startup call must not be issued by an application. It is for
system or device driver use only! .6.

Before issuing a startup call, the device dispatcher sets the parameter dibDevNum in the
device's DIB. This parameter is used by devices that support removable partitioned
media. Each partition is accessed as a separate device through its own device driver.
Because multiple devices can share a common medium (such as a single CD-ROM disk) it is
neccessary to maintain the head links and forward links between devices to reflect disk
switched and off-line conditions among them.

The device driver is responsible for maintaining these device links; it uses the DIB
device number (dibDevNum) to initialize the head link and forward link in the DIB.

C H A PTE R 11 GS/OS Driver Call Reference 185

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Notes

ltll

Device numbers can change during the startup process. The boot device driver-always
device l-is replaced by a loaded driver if the slot and unit number of the loaded driver's
DIB match those of the boot device. If that happens, the loaded driver's device number
(in its DIB) is changed to 1, but only after startup has been completed. Therefore, a driver
cannot rely on the device number in its DIB to be correct during the startup call. On the
second device access (that is, the first call after startup), the driver has another chance to
inspect its DIB and note the correct device number.

The driver should examine the head and forward links on the first non-startup call. If the
device number does not match the dibDevNum, the driver should reestablish the links.

A driver's device information block (DIB) is not considered to contain valid information
until the successful completion of this call. If a driver returns an error as the result of the
Startup call, it is not installed in the device list. If the driver returns no error during
startup, it then becomes available for an application to access without further
initialization (except that a character device requires an open call before use).

There are two possibe ways to build a DIB, as follows:

1. Preconstruct the device links, so that each pointer points to the next DIB, and the
last pointer is NIL

2. Allow the device links to be constructed at startup time by taking the following
steps:
• Set the auxiliary type of the driver file to 3F.
• Determine the number of devices.
• Allocate the memory for the D!Bs.
• Establish the links between the D!Bs by the link pointer..

Remember that, if your driver is active (see "Driver File Types and Auxiliary Types• in
Chapter 8) and in the subdirectory SYSTEM:DRIVERS on the boot disk, GS/OS always loads
it and starts it.

Multiple startup calls to a driver are not permitted. Your driver needn't worry about
guarding against them.

v 0 L U M E 2 Devices and GS/OS PART II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$0001

Description

Parameters

Driver_Open

This call prepares a character device driver for Read and Write calls. This call is supported by
character device drivers only.

The Driver_ Open call uses these parts of the direct-page parameter space:

Offset (direct-page)

deviceNum

callNum

dibPointer

Size and type

Word INPUT value

Word INPUT value

(not used)

(not used)

(not used)

(not used)

(not used)

(not used)

(not used)

(not used)

(not used)

Longword INPUT pointer

C H A PTE R 11 GS/OS Driver Call Reference 18'7

GSIOS Reference (Volume 2) APDA Draft 1/31/89

deviceNum

cal!Num

dibPointer

Word input value: specifieS which device is to be accessed by the call. Must be nonzero.

Word input value: specifies the call to be issued. For Driver_ Open, callNum = $0001.

Longword input pointer: points to the device infonnation block for the device being
accessed.

Character device The driver should maintain a flag indicating whether or not the device is open. This flag
requirements should be set to open by this call. If the call is issued to a device that is already open, the

driver should return a DRVR_PRIOR_OPEN error.

Block device
requirements

Notes

Block device drivers should take no action on this call and return with no error.

A driver can use this call to perfonn whatever tasks are necessary to prepare it for
conducting 1/0, including allocation of buffers from the Memory Manager.

188 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31189

$0002

Description

Parameters

Driver _Read

This call transfers data from the device to the buffer specified in the parameter block on
direct page. It is supported by both character and block device drivers.

The Driver_Read call uses these parts of the direct-page parameter space:

Offset (direct-page) Size and type

$00 deviceNum Word INPUT value

callNum Word INPUT value

bufferPtr Longword INPUT pointer

requestCount Longword INPUT value

transferCount Longword RESULT value

blockNum Longword INPUT value

blockSize Word INPUT value

fstNum Word INPUT value

volumeiD Word INPUT value

Word INPUT value

(used indirectly)

dibPointer Longword INPUT pointer

C H A PTE R 11 GS/OS Driver Call Reference 189

GSIOS Reference (Volume 2)

deviceNum

callNum

bufferPtr

requestCount

transferCount

blockNum

blockSize

fstNum

volumeiD

cachePriority

APDA Draft 1/31/89

Word input value: specifies which device is to be accessed by the call. Must be a
nonzero value.

Word input value: specifies the call to be issued. For Driver_Read, callNum = $0002.

Longword input pointer: points to rr~emory to which the data is to be written after
being read from the device.

Longword input value: specifies the number of bytes that the driver is to transfer
from the device to the buffer specified by bu f ferPt r.

Longword result value: indicates the number of bytes actually transferred.

Longword input value: specifies the logical address within the block device from
which data is to be tranferred. This parameter has no application in character device
drivers.

Word input value: specifies the size, in bytes, of the block addressed by the block
number. This pararr~eter must be nonzero for block devices, zero for character
devices.

Word input value: specifies the file system translator that owns the volume from
which the block is being transferred When set, the most significant bit of the FST
number forces device access during the read even if the block being accessed is in the
cache. In this case no cache access occurs. This parameter has no application in
character device drivers.

Word input value: a volurr~e reference number used to identify deferred cached
blocks belonging to a specific volume.

Word input value: specifies whether caching is to be invoked for the block specified
in the current I/0 transaction, according to this formula:

Priority
$OOX)

$0001-$7FFF

Action
Do not read the block from the cache.
Read the block from the cache.

Read operations do not invoke deferred caching; cache priorities are therefore limited
to the range $00~$7FFF for this call. Caching is described in more detail in Chapter
9, "Cache Control.•

190 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2)

(cachePointer)

dibPointer

Notes

Character device
requirements

Block device
requirements

APDA Draft 1/31/89

This parameter has no application in character device drivers.

Longword pointer: points to the cached equivalent of the disk block requested.
Block device drivers that support caching fill in and use this parameter when reading
blocks. However, it is neither an input to nor a result from the call, but is set
automatically by the Cache Manager. See Chapter 9, "Cache Control,• for details.

Longword input pointer: points to the device information block (DIB) for the
device being accessed.

If the request count is greater than the size of a single block, the driver should
continue to read contiguous blocks until the request count is satisfied. The driver
should validate each block number prior to accessing the device. If at any time
during a multiple-block read a bad block number is encountered, the driver should
exit with error $2D (invalid block address), and with the transfer count indicating
the total number of bytes that were successfully read from the device.

A character device must be open before accepting any I/0 transaction requests. If a
Driver_Read or DRead is attempted with a device that has not been opened, the
driver should return error $23 (device not open). A driver must increment the
transfer count as each byte is received from the device. The driver terminates the
I/O transaction when the transfer count equals the request count.

A block device does not have to be opened to accept I/0 transaction requests. Prior
to accessing any device, the driver should validate that the request count is an
integral multiple of the block size; if it is not, the driver should return error $2C
(invalid byte count). If the block number is not a valid block number, the driver
should exit and return error $2D (invalid block number).

The device dispatcher sets the transfer count to zero by before dispatching to a
device driver. The driver should then increment the transfer count to retlect the
number of bytes received from the device. Typically, a device driver does this by
incrementing the transfer count by the block size as each block is read.

C H A PTE R 11 GS/OS Driver Call Reference 191

CSIOS Reference (Volume 2) APDA Draft 1/31/89

• Figure 11·3

Media in drive

Media not in drive

Disk-switched error

The driver should return a disk-switched error on both disk ejection and disk
insertion, but only for the first read, write, or format call following the ejection or
insertion. The driver should return an off-line error on the second and subsequent
read, write, or fonnat calls as long as the media remains off-line. Both of these
conditions are illustrated in Figure 11-3.

Disk-switched and off-line errors

Inserted Ejected

t t
I I
-,...- r--:--

.~ Jl

Not disk-switched error ----...J

192

First media access (read or write
or format) after insertion

Off-line error -----,

Not off-line error

Second and subsequent access
after insertion

First media access
(read or write or

format) after
insertion

Second and subsequent access
after ejection as long as the

media remains off-line

Block device drivers should support caching. How drivers make the calls needed to
implement caching is described in Chapter 9, "Cache Support. • lbe calls themselves
are described in Chapter 12, "System Service Calls. •

V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GS/OS Reference (Volume 2) APDA Draft 1/31/89

$0003.

Description

Parameters

Driver_ Write

This call transfers data to the device from the buffer specified in the parameter block on
direct page. It is supported by both character and block device drivers.

1bc Driver_ Write call uses these parts of the direct-page parameter space:

Offset (direct-page) Size and type

deviceNum Word INPlJf value

callNum Word INPlJf value

bufferPtr Longword INPUT pointer:

requestCount Longword INPlJf value

transferCount Longword RESULT value

blocl<Num Longword INPlJf value

blockSize Word INPlJf value

fstNum Word INPlJf value

volumeiD Word INPlJf value

Word INPlJf value

(used indirectly)

dibPointer Longword INPUT pointer

C H A PTE R 11 GS/OS Driver Call Reference 193

GSIOS Reference (Volume 2)

deviceNum

callNum

bufferPtr

requestCount

transferCount

blockNum

blocl<Size

fstNum

volumeiD

cachePriority

APDA Draft

Word input value: specifies which device is to be accessed by the call. This
parameter must be a nonzero value.

1/31/89

Word input value: spedfteS the call to be issued. For Driver_ Write, cal1Num = $0003.

Longword input pointer: points to memory to which the data is to be written after
being read from the device.

Longword input value: specifies the number of bytes that the driver is being
requested to transfer from the device to the buffer specifted by buffer pointer.

Longword result value: indicates the number of bytes actually transferred.

Longword input value: specifies the logical address within the block device from
which data is to be tranferred. This parameter has oo application in charatter device
drivers.

Word input value: specifies the size in bytes of the block addressed by the block
number. This parameter must be a nonzero value for block devices. For character
devices, this parameter must be set to a value of zero.

Word input value: specifies the file system translator that owns the volume from
which the block is being transferred. The most significant bit of the FST number
has no effect on a write call. This parameter has no application in character device
drivers ..

Word input value: a volume reference number used to identify deferred cached
blocks belonging to a specific volume.

Word input value: speciftes whether caching is to be invoked for the block specified
in the current I/0 transaction, according to this formula:
Priority Action

$(XXX) Do not place the block in the cache.

$0001-$7FFF

$8000-$FFFF

Place the block in the cache. If no space is available in
the cache, purge the least-recently used purgeable
block to make room for this one.

Cache the block as a deferred unpurgeable block.

194 V 0 L U M E 2 Devices and GS/OS PART II Writing a Device Driver

GSIOS Reference (Volume 2)

(cachePointer)

dibPointer

Notes

Character device
requirements

Block device
requirements

APDA Draft 1/31/89

Nondeferred blocks are cached by device number, whereas deferred blocks are
cached by volume ID. caching is described in more detail in Chapter 9, •cache
Control."

This parameter has no application in character device drivers.

Longword pointer: points to the cached equivalent of the disk block requested.
Block device drivers that suppon caching fdl in and use this parameter when writing
blocks. However, it is neither an input to nor a result from the call, but is set
automatically by the cache Manager. See Chapter 9, •cache Control," for details.

Longword input pointer: points to the device information block (DIB) for the
device being accessed.

If the request count is greater than the size of a single block, the driver should write
contiguous blocks until the request count is satisfied. The driver should validate
each block number prior to accessing the device. If at any time during a multiple
block write a bad block number is encountered, the driver should exit with error $20
(invalid block address), and with the transfer count indicating the total number of
bytes that were successfully written to the device.

A character device must be open before accepting any l/0 transaction requests. If a
·Driver_ Write or DWrite is attempted with a device that has not been opened, the
driver should return error $23 (device not open). A driver must increment the
transfer count as each byte is written to the device. The driver terminates the I/0
transaction when the transfer count equals the request count.

A block device does not have to be opened to accept 1/0 transaction requests.

Prior to accessing any device, the driver should validate that the request count is an
integral multiple of the block size; if it is not, the driver should return error $2C
(invalid byte count). If the block number is not a valid block number, the driver
should exit and return error $20 (invalid block number).

The device dispatcher sets the transfer count to zero by before dispatching to the
device driver. The driver should then increment the transfer count to reflect the
number of bytes written to the device. Typically, a device driver does this by
incrementing the transfer count by the block size as each block is written.

C H A PTE R 11 GS/OS Driver Call Reference 195

GS/OS Reference (Volume 2) APDA Draft 1/31/89

The driver should return a disk-switched error on both disk ejection and disk
insertion, but only for the first read, write, or format call following the ejection or
insertion. The driver should return an off-line error on the second and subsequent
read, write, or fonnat calls as long as the media remains off-line. Both of these
conditions are illustrated in Figure 11-3 in the Driver_Read call earlier in this chapter.

Block device drivers should support caching. How drivers make the calls needed to
implement caching is described in Chapter 9, "Cache Support." The calls themselves
are described in Olapter 12, "System Service Calls:

196 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$0004

Description

Parameters

Driver_ Close

This call sets a character device driver to its closed state, making it unavailable for further
1/0 requests and releasing any resources acquired as a result of the Open call.

The Driver_Ciose call uses these parts of the direct-page parameter space:

Offset (direct-page)

deviceNum

callNum

dibPointer

Size and type

Word INPUT value

Word INPUT value

(not used)

(not used)

(not used)

(not used)

(not used)

(not used)

(not used)

(not used)

(not used)

Longword INPUT pointer

C H A PTE R 11 GS/OS Driver Call Reference 197

GSIOS Reference (Volume 2) APDA Draft. 1/31/89

cteviceNum Word input value: specifies which device is to be accessed by the call. This parameter
must be a nonzero value.

callNum Word input value: specifies the call to be issued. For Driver_ a~. callNum = $0004.

ctibPointer Longword input pointer: points to the device information block (DIB) for the device
being accessed.

Character device The driver should maintain a flag indicating whether the device is open. This flag should
requirements be set to closed by this call. If this call is issued to a device that is not open, the driver

should return error $23 (device not open).

Block device
requirements

If the driver's Open call allocated any memory for buffers, this call should release it back to
the Memory Manager.

This call is supported by character device drivers only; block device drivers should take no
action on this call and return with no error.

198 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$0005

Description

Parameters

Driver _Status

This call obtains current status information from the device or driver. Both standard and
device-specific status calls are available.

The Driver_Status call uses these parts of the direct-page parameter space:

Offset (direct-page)

$00 deviceNum

$02 callNum

$04

statusListPtr

$08

requestCount

$0C

transferCount

$14

dibPointer

Size and type

Word INPUT value

Word INPUT value

Longword INPUT pointer

Longword INPUT value

Longword RESULT value

(not used)

(not used)

Word INPUT value

(not used)

(not used)

(not used)

Longword INPUT pointer

C H A PTE R 11 GS/OS Driver Call Reference 199

GSIOS Reference (Volume 2) APDA Draft 1/31/89

deviceNum

callNum

statusListPtr

requestCount

transferCount

statusCode

dibPointer

Notes

Word input value: specifies which device is to be accessed by the call. This parameter
must be a nonzero value.

Word input value: specifies the call to be issued. For Driver_Status, callNum = $0005.

Loniword input pointer: points to a memory buffer into which the status list is to be
written. The required minimum size of the buffer is different for different subcalls.

Longword input value: indicates the number of bytes to be transferred If the request
count is smaller than the minimum buffer size required by the call, an error will be
returned.

Longword result value: indicates the number of bytes actually transferred.

Word input value: specifies the type of status request Status codes of$()()()() through
$7FFF invoke standard status subcalls that must be supported (if not acted upon) by
every device driver. Device-specific status subcalls, which may be defined for individual
devices, use status codes in the range $0000 through $FFFF. These are the currently
defined status codes and subcalls:
$000)

$00)1

$00)2

$00)3

$00)4

$0005-$7FFF
$8000-$FFFF

Get_Device_Status
Get_ Config_Parameters
Get_ Wait_Status
Get_ Format_ Options
Get_Partition_Map
(reserved)
(device-specific)

Longword input pointer: points to the device information block (DIB) for the device
being accessed

The device driver is responsible for validating the status code prior to executing the
requested status call. If an invalid status code is passed to the driver, the driver should
return error $21 (invalid status code).

The device dispatcher sets the transfer count to zero before calling the device driver. If
the call is successful, the device driver should set the transfer count to the number of
bytes returned.

200 V 0 L U M E 2 Devices and GS/OS PART II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft

+ Disk-switched: Both standard and device-specific Status subcalls may
detect an off-line or disk-switched status. If either of these conditions
occurs, the driver should make the system service call SET_DISKSW to
notify the device dispatcher, which maintains the system disk-switched
error state. A disk-switched or offiine status should not be returned as an
error from a status call; drivers should return errors only when a call fails.

Any status call that detects on-line and disk-switched conditions should
update the parameter blockcount in the DIB after media insertion.

Get_Device_Status (Driver_Status subcall)

Status code= $0000.

1/31/89

This subcall returns, in the status list, a general device status word followed by a
longword parameter specifying the number of blocks supported by the device. The
status list is 6 bytes long. This is its format:

Offset Size Description

$00
t- statusWord - Word The status word (see the following

definition)
$02

f- -
t- nurnBlocks - Longword The number of blocks on the device
f- -

The status word indicates several aspects of the device's status. Character devices and
block devices define the status word somewhat differently, as shown in Figure 11-2.

C H A PTE R 11 GS/OS Driver Call Reference 201

GSIOS Reference (Volume 2) APDA Draft 1/31189

• Figure 11-2 Device status word

Block device:

1 = uncertain block count

1 • disk in drive

1 • device is wrile protected

1 • device is interrupting

I • disk has been switched

Character device:

202

I = background busy

I • device is on line

I • device is interrupting

1 • device is open

Reserved: must be zero bill

Character device drivers should return a block count of zero.

If the driver returns either bit 0 as set (= 1) or bit 4 as cleared (= 0), it should also contact
the system service call SET _DISKSW. This is because older ProDOS devices supported by
the generated drivers do not support disk switch but do support on-line; thus, GS/OS
treats not on-line and disk switch as the same condition.

V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31/89

• Figure 11-4

The status word should show a disk-switched condition (bit 0 = 1) on both disk
ejection and disk insertion, but only for the first device access or the first status call
following the ejection or insertion. The driver should maintain the status word to show
an off-line condition (bit 4 = 0) as long as there is no disk in the drive. Figure 11-4 illustrates
the disk-switched condition.

Disk-switched condition

Inserted Ejected

Media on-line
t t

Media off-line -----J~
Disk-switched condition m m

Non-disk-switched condition IIIL---------------llll._ ___ _ ,,. "'"" .. ~ ;-;, t
Second status after insertion

'"' ·-W«j«tioo t
Second status after ejection

+ Error codes: Error codes should not be returned for conditions indicated
with the general status word. A status call should return an error code
only if the call fails.

CHAPTER 11 GSIOS Driver Call Reference 203

CS/OS Reference (Volume 2) APDA Draft 1/31/89

Get_Conflg_Parameters (Driver_Status subcall)

Status code = $0001.

This subcall returns, in the status list, a length word and a list of configuration
parameters. The structure of the configuration list is device-dependent. The size of the
status list is 2 +list Length. bytes:

Offset

$00 1- Length word -

$02 1- -
1- Configuration _

parameters list
1- -

Size Description

Word The length of the list (in bytes)

The configuration list

Get_ Wait_ Status (Driver _Status subcall)

204

Status code = $0002.

The Get_ Wait_Status subcall determines if a device is in wait mode or no-wait mode.
When a device is in wait mode, it does not terminate a Read call until it has read the
number of characters specified in the request count, or a newline character is encountered
during the read and newline mode is enabled In no-wait mode, a Read call returns
immediately after reading the available characters, with a transfer count indicating the
number of characters returned. If one or more characters was available, the transfer count
has a nonzero value; if no character was available, the transfer count is zero.

The status list for this subcall contains $0000 if the device is operating in wait mode, $8000
if it is operating in no-wait mode. The size of the status list is 2 bytes:

Offset Size Description

$00 F._ __ wa_i_t_M_od_e _ __.J Word The wait/no-wait status of the device

V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1131/89

Get_Format_Options (Driver_Status subcall)

Status code = $0003.

Some block devices can be formatted in more than one way. Formatting parameters can
include such variables as file system group, number of blocks, block size, and interleave.
Each driver that supports media variables (multiple formatting options) contains a list
of the formatting options for its devices.

This subcall returns the list of formatting options for a particular device. One of the
options can then be selected and applied (by an FST, for example) with the Driver_ Control
subcalls Set_Format_Options followed by Forrnat_Device. Devices that do not support
media variables should return a transfer count of zero and generate no error. Character
devices should do nothing and return no error from this call.

If a device does support media variables, it should return a status list consisting of a 4-
word header followed by a set of entries, each of which describes a formatting option.
The status list looks like this:

Offset

$()() - numOptions -
,... n umD i sp 1 ayed -$02

$04 -recommendedOption-

r currentOption -

r- -$08

~ formatOptionl -
~ -

soc

formatOptionN

Size

Word

Word

Word

Word

Description

Number of format-option entries in the list

Number of options to be displayed

Recommended default formatting option

The option with which the currently
on-line media was formatted

(16 bytes) The first format-options entry

(16 bytes) The last format-options entry

CHAPTER 11 GS/OS Driver Call Reference 205

GS/05 Reference (Volume 2) APDA Draft 1/31/89

206

Of the total number of options in the list, one or more may be displayed on the
initialization dialog presented to the user when initializing a disk (see the calls Format and
EraseDisk in Chapter 7 of Volume 1). The options to be displayed are always the first ones
in the list. (Undisplayed options are available so that drivers can provide FSTs with
logically different options that are actually physically identical and therefore needn't be
duplicated in the dialog.)

lbe value specified in the currentOption parameter is the format option of the
current on-line media. If a driver can report it, it should. If the driver cannot detect the
current option, it should indicate unknown by returning $0000.

Each format-options entry consists of 16 bytes, containing these fields:

Offset Size Description

$00 ~formatOptionNum- Word The number of this option

~ linkRefNum -$02 Word Number of linked option

~ flags -$04 Word (see definition below)

~ -$06

- blocl<Count - Long word No. of blocks supported by the device
- -

- blockSize -$0A Word Block size in bytes

$0C -interleaveFactor- Word Interleave factor (in ratio to 1)

I- mediaSize -$OE Word Media size (see flags description)

Bits within the flags word are defined as follows:

High byte Low byte

Reserved: must be zero L2]

V 0 L U M E 2 Devices and GS/OS PART II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31189

Example

In the fonnat options flag word, format type defines the general file-system family for
formatting. An FST might use this infonnation to enable or disable certain options in the
initialization dialog. Fonnat type can have these binary values and meanings:

00 Universal format (for any file system)
01 Apple format (for an Apple file system)
10 Non-Apple format (for other file systems)
11 (not valid)

Size multiplier is used, in conjunction with the parameter mediasize, to calculate the
total number of bytes of storage available on the device. Size multiplier can have these
binary values and meanings:

00 mediaSize is in bytes
01 mediaSize is in Kbytes
10 mediaSize is in Mbytes
11 mediaSize is in Gbytes

Character devices should return no error from this call.

A list returned from this call for a device supporting two possible interleaves intended to
support Apple file systems (DOS 3.3, ProDOS, MFS or HFS) might be as follows. The field
transfercount has the value $0000 0038 (56 bytes returned in list). Only two of the three
options are displayed; option 2 (displayed) is linked to option 3 (not displayed), because
both have exactly the same physical formatting. Both must exist, however, because the
driver will provide an FST with either 512 bytes or 256 bytes per block, depending on the
option chosen. At format time, each FST chooses its proper option from among any set
of linked options.

The entire format options list looks like this:

Value Explanation

Format options list header:

$(XX)3 Three format options in the status list
$0002 Only two display entries
$00>1 Recommended default is option 1
$00>1 Current media is fonnatted as specified by option 1

C H A PTE R 11 GS/OS Driver call Reference 2fT!

GSIOS Reference (Volume 2) APDA Draft

Format Optton 1:

Option 1
LinkRef = none
Apple format/size in kilobytes
Block count =1600
Block size= 512 bytes
Interleave factor = 2: 1
Media size = fK>O kilobytes

Format Optton 2:

$00)2

$00)3

$00)5

$(XXX)0640
$0100
$00)4

$01~

Option 2
LinkRef = option 3
Apple format/size in kilobytes
Block count= 1600
Block size= 256 bytes
Interleave factor = 4: 1
Media size = 400 kilobytes

Format Optton 3:

Option 3
LinkRef = none
Apple format/size in kilobytes
Block count = 800
Block size= 512 bytes
Interleave factor= 4:1
Media size = 400 kilobytes

Get_Partition_Map (Driver_Status subcall)

208

Status code = $0004.

This call returns, in the status lis~ the partition map for a partitioned disk or other
medium. The structure of the partition information is device-dependent.

V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Device-specific Driver_Status subcalls

Device-specific Driver_Status subcalls are provided to allow device-driver writers to
implement status calls specific to individual device drivers' needs. Driver_Status calls with
stat uscode values of $8000 to $FFFF are passed by the device dispatcher directly to the
driver for int_erpretation.

The content and format of information returned from these subcalls can be defined
individually for each type of device. The device dispatcher puts the regular driver-call
parameters on the GS/OS direct page, and the device dispatcher and the Device Manager
convert the application parameter list from a DStatus call into a GS/OS driver call. The
status code must be in the range $8000-SFFFF.

CHAPTER 11 GSIOS Driver Call Reference 209

GSIOS Reference (Volume 2) APDA Draft 1/31189

$0006

Description

Parameters

Driver_ Control

This call sends conlrol information or data to the device or the device driver. Extensions
to the standard set of calls are supported through the use of device-specific control codes.

The Driver_Control call uses these parts of the direct-page parameter space:

Offset (direct-page)

deviceNum

callNum

requestCount

transferCount

$18

$20

dibPointer

Size and type

Word INPUT value

Word INPUT value

Longword INPUT pointer

Longword INPUT value

Longword RESULT value

(not used)

(not used)

Word INPUT value

(not used)

(not used)

(not used)

Longword INPUT pointer

210 V 0 L U M E 2 Devices and GS/OS PART ll Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31189

deviceNum Word input value: specifies which device is to be accessed by the call. This parameter
must be a nonzero value.

callNum Word input value: specifies the call to be issued. For Driver_Control, callNum = $0006.

controlListPtr Longword input pointer: points to a memory buffer from which the driver reads the
control list. The format of the data and the required minimum size of the buffer are
different for different subcalls.

request count Longword input value: indicates the number of bytes to be transferred. If the request
count is smaller than the minimum buffer size required by the call, the driver should return
an error. For control subcalls that do not use the control list, this parameter is not used.

trans fercount Longword result value: This parameter indicates the number of bytes of information
taken from the control list by the device driver.

cant rolcode Word input value: specifies the type of control request. Control codes of $0000 through
$7FFF invoke standard Control subcalls that must be supported (if not acted upon) by
every device driver. Device-specific control subcalls, which may be defined for individual
devices, use control codes in the range $8000 through $FFFF. These are the currently
defined control codes and subcalls:

dibPrinter

$(XXX)

$00)1

$OOJ2
$00)3

$00)4

$00)5

$(ro)

$OOJ7
$(Xm

$(W)

$000A-$7FFF
$8000-$FFFF

Reset_Device
Format_Device
Eject_Medium
Set_ Configuration_Parameters
Set_ Wait_Status
Set_Format_ Options
Assign_Partilion_ Owner
Arrn_Signal
Disarm_ Signal
Set_Partition_Map
(reserved)
(device-specific)

Longword input pointer: points to the device information block (DIB) for the device
being accessed.

C H A PTE R 11 GS/OS Driver Call Reference 211

GS/OS Reference (Volume 2) APDA Draft 1/31/89

Notes The device driver is responsible for validating the control code and control list length prior
to executing the requested control call. If an invalid control code is passed to the driver,
the driver should return error $21 (invalid control code). If an invalid control list length is
passed to the driver, the driver should return error $22 (invalid parameter).

If the call is successful, and if a control list was used, the device driver should set the
transfer count to the number of bytes processed. For those subcalls that pass no
infonnation in the control list, the driver need not access the control list and verify that
its length word is zero; the driver should ignore the control list and request count entirely,
and pass a transfer count of zero.

Reset_Device (Driver_Control subcall)

Control code = $0000.

The Reset_Device subcall sets a device's configuration parameters back to their default
values. Every GS/OS device driver contains default configuration settings for each device it
controls; see Chapter 8, "GS/OS Device Driver Design,• for more information.

Reset_Device also sets a device's format options back to their default values, if the
device supports media variables. See the Set_Forrnat_Options subcall, described later in
this section.

If successful, this call has a transfer count of zero and no error is returned. Request count
should be ignored; the control list is not used.

Format_Device (Driver_Control subcall)

212

Control code= $0001.

The Format_Device subcall formats the medium used by a block device. This call is not
linked to any particular file system, in that no directory information is written to disk.
Fonnat_Device simply prepares all blocks on the medium for reading and writing.

After formatting, Format_Device resets the device's format options back to their
default values, if the device supports media variables. See the Driver_Control subcall
Set_Format_Options, described later in this section.

V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GS/OS Reference (Volume 2) APDA Draft 1/31/89

Character devices do not implement this function and should return with no error.

If successful, this call has a transfer count of zero. Request count should be ignored; the
control list is not used.

Eject_Medium (Driver_Control subcall)

Control code = $0002.

lbe Eject_Medium subcall physically or logically ejects the recording medium, usually a
disk, from a block device. In the case of linked devices (separate partitions on a single
physical disk), physical ejection occurs only if, as a result ofthis call, all the linked devices
become off line. If any devices linked to the device being ejected are still on line, the device
being ejected is marked as off line but is not actually ejected.

Character devices do not implement this function and should return with no error.

If successful, this call has a transfer count of zero. Request count should be ignored; the
control list is not used.

Set_Config_Parameters (Driver_Control subcall)

Control code = $0003.

The Set_Config_Parameters subcall sends device-specific configuration parameters to a
device. lbe configuration parameters are contained in the control list. The first word in
the control list indicates the length of the configuration list, in bytes. The configuration
parameters follow the length word:

Offset

$00 f

$02 -

length -
-

-configParamList-

- -

Size Description

Word The length of the list (in bytes)

lbe configuration list

C H A PTE R 11 GS/OS Driver C111 Reference 213

GSIOS Reference (Volume 2) APDA Draft 1/31/89

The structure of the configuration list is device-dependent. See Chapter 9, "Cache
Control,• for more information.

This subcall is most typically used in conjunction with the status subcall
Get_Config_Parameters. The application or FST first uses the status subcall to get the list
of configuration parameters for the device; it then modifies parameters as needed and
makes this control subcall to send the new parameters to the device driver.

The request count for this subcall must be equal to lengt hWord + 2. Furthermore, the
length word of the new configuration list must equal the length word of the existing
configuration list (the list returned from Get_Config_Parameters). If this call is made
with an improper configuration list length, the driver should return error $22. ... mvalid
parameter).

Set_ Wait_Status (Driver_Control subcall)

214

Control code= $0004.

1he Set_ Wait_Status sulx:all sets a character device to wait mode or no-wait mode. When
a device is in wait mode, it does not terminate a Read call until it has read the number of
characters specified in the request count, or a newline character is encountered during the
read and newline mode is enabled. In no-wait mode, a read call returns immediately after
reading the available characters, with a transfer count indicating the number of characters
returned. If one or more characters was available, the transfer count has a nonzero value;
if no character was available, the transfer count is zero.

The control list for this sulx:all contains $0000 (to set wait mode) or $8000 (to set no-wait
mode). The control list looks like this:

Offset Size Description

SOOE ,_ __ w_a_i_t_Mo_d_e_~J Word The wait/no-wait status of the device

This subcall has no meaning for block devices; they operate in wait mode only. Block
devices should return no error from this call (if wait mode is requested) or error $22 (invalid
parameter) if no-wait mode is requested.

V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

CS/05 Reference (Volume 2) APDA Draft 1/31/89

Set_Format_Options (Driver_Control subcall)

Control code "' $0005.

Some block devices can be formatted in more than one way. Formatting parameters can
include such variables as file system group, number of blocks, block size, and interleave.
Each driver that supports media variables (multiple formatting options) contains a list
of the formatting options for its devices.

The Set_Format_Options subcall sets these media-specific formatting parameters prior to
the execution of a Format_Device subcall. Set_Format_Options does not itself cause or
require a formatting operation. The control list for Set_Format_Options consists of two
word-length parameters:

Offset Size Description

$00 r- formatRefNum - Word The number of the format option

$02 r-inter leaveFactor- Word The override interleave factor (if nonzero)

The format option number (f orrna tOptionNurn) specifies a particular format
options entry from the driver's format options list (returned from the Driver_Status
subcall Get_Format_Options). The format-option entry has this format:

Offset Size Description

$00 -formatOptionNum- Word The number of this option

- linkRefNum -$02 Word Number of linked option

,_ flags - Word File system information

i- -$06

i- bloci<Count - Long word Number of blocks supported by device
r- -

$()A
i- bloci<Size - Word Block size, in bytes

$0C r- inter leaveF actor- Word Interleave factor (in ratio to 1)

$0E - mediaSize - Word Media size

CHAPTER 11 GS/OS Driver Call Reference 215

GSIOS Reference (Volume 2) APDA Draft 1/31/89

See the description of the Driver_Status sulx:all Get_Format_Options, earlier in this
chapter, for a more detailed description of the format-options entry.

The inter leaveFactor parameter in the control list, if nonzero, overrides
inter lea veFactor in the format options list. If inter leaveFactor in the control list
is zero, the interleave specified in the format options list is used.

If you want to carry out a formatting process with this sulx:all and not use the GS/OS
Format call, your application or FST can take the following steps (if you use the Format
call, the Initialization Manager takes these steps for you):

1. Issue a (Driver_Status) Get_Format_Options subcall to the device. The driver returns
a list of all the device's format-option entries and their corresponding values of
formatOptionNum.

2. Issue a (Driver_ Control) Set_Format_Options sulx:all to the device, specifying the
desired format option.

3. Issue a (Driver_ Control) Format_Device subcall to the device.

6. Important Set_Format_Options is meant to set the parameters for one subsequent
formatting operation only. Drivers should expect Set_Format_Options to
be called each time a disk is to be formatted with anything other than the
recommended (default) option This implies that, after each successful
formatting operation, the driver should revert to the default option. t1

The Set_Format_Options subcall applies to block devices only; character devices should
return error $20 (invalid request) if they receive this call.

Assign_Partition_ Owner (Driver_ Control subcall)

216

Control code = $0006.

The Assign_Partition_Owner subcall provides support for partitioned media on block
devices. Each partition on a disk has an owner, identifted by a string stored on disk. The
owner name identifies the file system to which the partition belongs.

This sulx:all is executed by an FST after making the Driver_ Control sulx:all Erase_Disk
or Format_Device to allow the driver to reassign the partition to the new owner.

V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Partition owner names can be up to 32 bytes in length-uppercase and lowercase
characters are considered equivalent. The control list for this call consists of a GS/OS
string, generated by the PST or other caller, naming the partition owner:

Offset Size Description

$00
1- length - Word The length of the name (in bytes)

$02
1- -
1- owner Name - The partition owner name
1- -

This call does not reassign physical block allocation within a device partition, but merely
changes the ownership of that partition. The names of the partition owners can be found
in the SCSI Manager chapter in Inside Macintosh, Volume V.

Block devices with nonpartitioned media and character devices should do nothing with
this call and return no error.

Arm_Signal (Driver_Control subcall)

Control code = $0007.

The Arm_Signal subcall provides a means for a device driver to install a signal handler into
the GS/OS signal handler list. This is the control list for the subcall:

Offset

- signalCode -$00

- priority -$02

$04
'"" -
1- handlerAddress -

1- -

Size

Word

Word

Description

An ID for this handler and its signals

The priority for this handler's signals
(assigned by driver)

Longword A pointer to the signal handler's entry

C H A PTE R 11 GS/OS Driver Call Reference 217

GSIOS Reference (Volume 2) APDA Draft 1/31189

The signalCode parameter is an arbitrary number assigned by the caller to match the
signals that the signal source generates with the proper handler; its only subsequent use is
as an input to the Driver_O>ntrol subcall Disann_Signal. The priority parameter is the
signal priority the driver wishes to assign, with $0000 being the lowest priority and $FFFF
being the highest priority. handler Address is the entry address of the signal handler for
that signal code.

Disarm_Signal (Driver_Control subcall)

O>ntrol code = $0008.

The Disarm_Signal subcall provides a means for a device driver to remove its signal handler
from the GS/OS signal handler list. The signalCode parameter is the identification
number assigned to that handler when the signal was anned.

Offset Size Description

SOO E signalCode 3 Word The signal handler's ID

Set_Partition_Map (Driver_ Control subcall)

218

Status code = $0009.

This call passes to a device, in the control list, the partition map for a partitioned disk or
other medium. The structure of the partition infonnation is device-dependent

V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31189

Device-specific Driver_ Control subcalls

Device-specific Driver_Control subcalls are provided to allow device-driver writers to
implement control calls specific to individual device drivers' needs. Driver_Control subcalls
with controlCode values of $8000 to $FFFF are passed by the device dispatcher directly
to the driver.for interpretation.

The content and format of information returned from these subcalls can be defined
individually for each type of device. The device dispatcher puts the regular driver-call
parameters on the GS/OS direct page, and the device dispatcher and the Device Manager
convert the application parameter list from a DStatus call into a GS/05 driver call. The
status code must be in the range $8000-SFFFF.

C H A PTE R 11 GS/OS Driver Call Reference 219

GS/OS Reference (Volume 2) APDA Draft 1/31/89

$0007

Description

Parameters

Driver _Flush

Driver_Fiush is issued only in preparation for a Close or Shutdown call. A character device
that maintains its own buffer should write out any remaining buffer contents.

The Driver_Fiush call uses these parts of the direct-page parameter space:

Offset (direct-page)

deviceNum

callNum

dibE'ointer

Size and type

Word INPliT value

Word INPliT value

(not used)

(not used)

(not used)

(not used)

(not used)

(not used)

(not used)

(not used)

(not used)

Longword INPUT pointer

V 0 L U M E 2 Devices and GS/OS PART II Writing a Device Driver

GS/OS Reference (Volume 2) APDA Draft 1131189

deviceNum

callNum

dibPointer

Notes

Word input value: specifies which device is to be accessed by the call. This parameter
must be a nonzero value.

Word input value: specifies the call to be issued. For Driver_Fiush, callNum = $0007.

Longword input pointer: points to the device information block (DIB) for the device
being accessed.

This call is not supported by block-device drivers; they should return error $20 (invalid
request).

A character device driver that does not maintain its own data buffers need take no action
on this call.

Even if the driver is currently set to no-wait mode, the driver must not return until its
output buffer is completely flushed.

C H A PTE R 11 GS/OS Driver Call Reference 221

GSIOS Reference (Volume 2) APDA Draft 1/31189

$0008

Description

Parameters

Driver _Shutdown

Driver_Shutdown is issued by GS/OS in preparation for removng a driver from memory.
The driver executes any necessary operations, such as releasing buffer memory.

The Driver_Shutdown call uses these parts of the direct-page parameter space:

Offset (direct-page) Size and type

deviceNum Word INPUT value

callNum Word INPUT value

(not used)

(not used)

(not used)

(not used)

(not used)

(not used)

$18 (not used)

(not used)

(not used)

$20

dibPointer Longword INPUT pointer

222 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31189

deviceNum

callNum

dibPointer

Notes

Word input value: specifies which device is to be accessed by the call. This parameter
must be a nonzero value.

Word input value: specifies the call to be issued. For Driver_Shutdown, callNum = $0008.

Longword input pointer: points to the device information block (DIB) for the device
being accessed.

If Driver_Shutdown is sent to an open character device, the driver should perform the
equivalents of a flush and close call before shutting down.

6 Important This call is for system use only. It is not to be issued by an application! LJ.

If more than one device is associated with a single code segment, only the last device to
be shut down should return no error. Other devices should return an I/0 error to prevent
the segment from being purged before the last device is shut down.

C H A PTE R 11 GS/OS Driver Call Reference

GSIOS Reference (Volume 2) APDA Draft

About supervisory-driver calls

As explained in Chapter 8, supervisory drivers (or supervisors) are programs that mediate
among several types of device drivers, allocating and dispatching their calls and interrupt-handling
facilities among several types of hardware devices. Calls to supervisory drivers can be classified
according to who makes them and who handles them:

• From a device driver's point of view, there are calls that the device driver can make, and those
that it cannot (because only other parts of GS/OS can make them).

• From the supervisory driver's point of view, there are calls that the supervisory driver itself
must handle, and calls that are handled by the supervisor dispatcher and thus never reach the
supervisory driver.

If you are writing a device driver that accesses a supervisory driver, you need to know which calls
you can make and whether they actually access the supervisory driver. Table 11-2 shows those calls.
If you are writing a supervisory driver, you need to know which calls your driver must accept and
whether they come from a device driver. Table 11-3 shows those calls.

• Table 11-2 Supervisory-driver calls available to device drivers

Call no. Supervisor no. Call name Explanation

$(XXX) $OOX) Get_Supervisor_Number Returns the supervisor number for
the supervisory driver with a given
supervisor ID

$00)1 Set_SIB_Ptr Sets the direct-page supervisor
information block pointer for a
specified supervisory driver

$0002-$FFFF $(XXX) (Reserved)

$0002- $FFFF (nonzero) (driver-specific calls) For use by device drivers

Note that only those calls in Table 11-2 with nonzero supervisor numbers appear also in Table 11-3;
they are the only calls in Table 11-2 that are actually handled by supervisory drivers.

224 V 0 L U M E 2 Dev:ces and GS/OS P A R T II Writing a Device Driver

1/31/89

GSIOS Reference (Volume 2) APDA Draft

• Table 11-3 Calls that supervisory drivers must accept

Call no. Supen-Jsor no. Call name Explanation

$<XXX) (nonzero) Supervisor_Startup Prepares the supervisory driver to
receive calls from device drivers

$00:)1 (nonzero) Su-pervisor _Shutdown Releases any system resources
allocated at startup

$0002 - $FFFF (nonzero) (driver-specific calls) For use by device drivers

A device driver or other program makes a call to a supervisory driver by making the system service
call SUP _DRVR_DISP (see Chapter 12). Parameters for supervisory-driver calls are passed both in
registers and in locations $74-$7B on the GS/OS direct page, called the supervisor direct page
(Figure 11-5).

A small workspace is available for device-driver use on the GS/OS direct page. Locations $5A through
$SF are available for device drivers; locations $66through $6B are shared by device drivers and
supervisory drivers (and may be corrupted by either a driver call or supervisory driver call). This
workspace is not permanent; it may be corrupted between driver calls. Supervisory drivers should
not permanently modify any GS/OS direct-page location that is not within the bounds of that
workspace. A supervisory driver requiring direct-page space should save and restore the contents of
any other direct-page location that it uses.

Note also that the parts of the GS/OS direct page used by driver calls (locations $00-$23) are
available for use in device-specific supervisory-driver calls.

• Figure 11-5 The supervisor direct page: parameter space

Offset (direct-page) Description

1/31/89

574 ~ SIB -
$75- -
$.., ~ Pointer

,() 1- -

sn t---------4

Longword pointer to the supervisor information block
(SIB)

Supervisor -
parameter list -

pointer -

$78 1-
$79
$7A 'r
$7B !-

...._ _____ __,
Longword pointer to a device-specific parameter list

C H A P T E R 11 GS/OS Driver Call Reference 225

GSIOS Reference (Volume 2) APDA Draft

On input to the supervisory driver, the A register (accumulator) contains the supervisor number,
which specifies the supervisory driver to whom the call is directed; the X register contains the call
number. On return from the call, the A register contains the error code (zero if no error). Other
registers have call-specific functions.

The supervisor number in the A register is a required input to all supervisory-driver calls. Calls
with a supervisor number of zero (see Table 11-2) are handled by the supervisor dispatcher; calls
with a nonzero supervisor number (see Table 11-3) are handled by supervisory drivers.

The rest of this chapter documents the currently defined supervisory-driver calls.

V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

1131/89

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$0000

Description

Get_Supervisor_Number

When it is started up, a device driver makes this call to get the supervisor number (the
position in the supervisor list) of its supervisory driver. The device driver needs that
number for subsequent access to its supervisory driver.

The device driver passes the supervisor ID (a numerical indication of general supervisor
type, such as "AppleTalk" or "SCSI•) of its supervisory driver to this call; the call then
returns the supervisor number.

The call requires an input supervisor number of zero; if the input supervisor number is
nonzero, this call becomes the call Supervisor_Startup, described next.

Parameters Input:

callNum

supervisoriD

supervisorNum

A register= $0000 (on input, supervisorNum =zero)
X register= $0000 (cal!Num)

Y register= supervisoriD

Output:
A register = error code
X register= supervisorNum

Supervisor direct page: sibPtr

Word input value: this X-register input specifies which type of call is to be issued to the
supervisory driver. It is zero for this call.

Word input value: this Y-register input specifies the general type of supervisor ID whose
supervisor number is sought. These are the supervisor IDs currently defined by Apple
Developer Technical Support:

$00)1
$00)2

$0003-SFFFF

AppleTalk supervisory driver
SCSI supervisory driver
(reserved)

This parameter appears twice in this call:

Word input value: This A-register input must be zero for this call.

Word result value: This X-register result is the supervisor number of the supervisory driver
whose supervisor ID was passed as input.

C H A PTE R 11 GS/OS Driver Call Reference

GS/OS Reference (Volume 2) APDA Draft 1/31/89

sibPtr

Notes

Error handling

Longword result pointer: This result on the supervisor direct-page points to the
supervisor information block (SIB) for the supervisory driver being accessed. It is a side
benefit of the call; the supervisor dispatcher places the supervisory driver's SIB on the
supervisor direct page before returning to the caller.

This call is handled by the supervisor dispatcher; it does not result in any execution of the
supervisory driver itself.

If the supervisor dispatcher cannot find a supervisory driver with the input supervisor ID,
error $28 (no device connected) is returned. In such a case the device driver will not be able
to use the superv.isory driver and should return an error from its startup call.

228 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GS/05 Reference (Volume 2) APDA Draft 1/31/89

$0000

Description

Parameters

callNum

super:visor:Num

sibPtr

Notes

Supervisor _Startup

This call is responsible for preparing the supervisory driver for use by device drivers. Any
system resources required by the supervisory driver, such as memory, should be allocated
during this call. If the supervisory driver cannot allocate sufficient resources to support
device driver calls, then it should return an error; if it returns an error as a result of the
startup call, it is removed from the supervisor list.

This call requires that the supervisor number be nonzero.

Input:
contents of the supervisor direct page (sibPtr:) plus:
A register= super:visor:Num

X register= callNum ($0000)

Output:
A register = error code

Word input value: this X-register input specifies which type of call is to be issued to the
supervisory driver. It is zero for this call.

Word input value: this A-register input specifies which supervisory driver is to be started.
It must be nonzero for this call.

Longword input pointer: This supervisor direct-page input is the address of the supervisor
information block for the supervisory driver being started up. This parameter is set up by
the supervisor dispatcher, just in case the supervisory driver needs it.

GS/OS starts up supervisory drivers before starting up any device drivers, so that the
supervisor is available to the device driver at startup time.

C H A P T E R 11 GS/OS Driver Call Reference

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$0001

Description

Set_SIB_Pointer

This call sets the parameter s ibPt r on the supervisor direct page to the proper value for
the specified supervisory driver.

This call requires that the input supervisor number be zero. If the input supervisor
number is nonzero, this call becomes the call Supervisor_Shutdown, described next.

Parameters Input:

callNum

supervisorNum

(A register)

supervisorNum

(Y register)

sibPtr

Notes

A register= supervisorNum ($0000)
X register= callNum ($0001)
Y register= supervisorNum

OUtput:

Contents of the supervisor direct page (sibPt r) plus:
A register = error code

Input word value: this X-register input specifies which type of call is to be issued to the
supervisory driver. It is $0001 for this call.

Word input value: this A-register input must be zero for this call, which directs the call to
the supervisor dispatcher.

Word input value: this Y-register input specifies the supervisor number of the supervisory
driver whose SIB pointer is to be placed on the supervisor direct page.

Longword result pointer: this supervisor direct-page result points to the supervisor
information block for the supervisory driver specified

This call is handled by the supervisor dispatcher; it does not result in any execution of the
supervisory driver itself.

V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1131189

$0001

Description

Supervisor _Shutdown

This call is responsible for releasing any system resources acquired during startup of the
supervisory driver.

This call reqilires that the input supervisor number be nonzero.

Parameters Input·

callNum

supervisorNum

s ibPt r

Notes

contents of the supervisor direct page (sibPtr) plus:
A register= supervisorNumr

X register= callNum ($0001)

OUtput:

A register = error code

Word input value: this X-register input specifies which type of call is to be issued to the
supervisory driver. It is $0001 for this call.

Word input value: this A-register input specifies which supervisory driver is to be shut
down. It must be nonzero for this call.

Longword input pointer: this supervisor direct-page input points to the supervisor
information block for the supervisory driver being accessed. This parameter is set up by
the supervisor dispatcher in case the suprvisory driver needs it.

GS/OS shuts down supervisory drivers only after shutting down all device drivers.

C H A PTE R 11 GS/OS Driver Call Reference 231

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$0002-$FFFF Driver-specific calls

Description These calls are used by device drivers to request specific tasks from their supervisory
drivers. The nature of those tasks is device-specific.

Parameters Input:
Contents of the GSIOS direct page, including the supervisor direct page, plus:
A register= supervisorNum

X register = callNum ($0002-$000F)

Output:
Contents of the GS/OS direct page plus
A register = error code

callNum Word input value: this X-register input specifies which type of call is to be issued to the
supervisory driver. It must be in the range $0002-$000F for this call.

supervisorNum Word input value: this input A-register value specifies which supervisory driver is to be
called. it must be nonzero for this call.

sibPtr Longword input pointer: this supervisor direct-page input ipoints to the supervisor
information block (SIB) for the supervisory driver being accessed. This parameter is set up
by the supervisor dispatcher, in case the supervisory driver needs it.

Notes Not only s ibPt r, but the rest of the supervisor direct page (the supervisor parameter-list
pointer) and all of the device-driver portion of the GS/OS direct page are available for device
drivers and supervisor drivers to use as parameters for device-specific supervisory-driver
calls. However, those drivers should not permanently modify any GSIOS direct-page
location that is not within the bounds of the small workspace; see • About Supervisory
Calls• in this chapter. A supervisory driver requiring direct-page space should save and
_restore the contents of any other direct-page location that it uses.

232 V 0 L U M E 2 Devices and GS/OS PART II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft

Driver error codes

GS/OS can recognize the device driver error codes listed in Table 11-4. Any device driver or supervisor
driver you write should be able to return all appropriate errors from this list Also please note the
following requirements:

• All block device drivers must support disk-switched errors without exception. The first media
access after a disk is switched must report a disk-switched condition; subsequent accesses
under the same conditions should not report it.

• Error codes that a device driver returns must have the high byte cleared. The device dispatcher
maintains certain error codes under certain conditions, and device dispatcher error codes are
passed in the upper byte of the accumulator.

1/31189

C H A PTE R 11 GSIOS Driver Call Reference 233

GSIOS Reference (Volume 2) APDA Draf! 1/31/89

• Table 11-4 Driver error codes and constants

Code Constant Description

$(XXX) NoError No error occurred
$0010 DevNotFound Device not found
$0011 InvalidDevNum Invalid device number
$00;:n DrvrBadReq Invalid request
$0021 DrvrBadCode Invalid control or status code
$0022 DrvrBadParm Invalid parameter
$0023 DrvrNotOpen Device not open (character device driver only)
$0024 DrvrPriorOpen Device already open (character device driver only)
$0026 DrvrNoResrc Resource not available
WJV DrvriOError l/0 error
WJ28 DrvrNoDev Device not connected
$0029 DrvrBusy Device is busy
$0028 DrvrWrProt Write-protected (block device driver only)
$002C DrvrBadCount Invalid byte count
$002D DrvrBadBlock Invalid block number (block device driver only)
$002E DrvrDiskSw Disk-switched (block device driver only)
$002F DrvrOffLine Device off line or no media present
$004E InvalidAccess Invalid access or access not allowed
$0058 NotBlockDev Not a block device
$OOX) DataUnavail Data is unavailable

V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31189

Chapter 12 System Service Calls

GS/OS provides a standardized mechanism for passing information among its low-level
components such as FSTs and device drivers. That mechanism is the system service call

System service calls exist for various purposes: to perform disk caching, to manipulate
buffers in memory, to set system parameters such as execution speed, to send a signal to
GS/OS, to call a supervisory driver, or to perform other tasks.

This chapter documents the system service calls that a driver can make. •

235

GSIOS Reference (Volume 2) APDA Draft

About system service calls

Access to several system service routines has been provided for device drivers by GS/05. Access to
these routines is through a system service dispatch table located in bank $01 from addresses $FCOO
through $FCFF. A list of the available system service routines and their entry locations within the
system service dispatch table is shown in Table 12-1.

• Table 12-1 System service calls

Dispatch
can name location Function

CACHE_FIND _BLK $01FC04 Searches for a disk block in the cache
CACHE_ADD _BLK $01F<m Adds a block of memory to the cache
SWAP_OUT $01FC34 Marks a volume as off-line
SET _SYS_SPEED $01FC50 Controls processor execution speed
MOVE_INFO $01FC70 Moves data between memory buffers
SIGNAL $01FC88 Notifies GS/OS of the occurrence of a signal
SET_DISKSW $01FC90 Notifies GS/OS of a disk-switched or off-line condition
SUP _DRVR_DISP $01FCA4 Makes a supervisory-driver call
INST ALL_DRIVER $01FCA8 Dynamically installs a device into the device list
DYN_SLOT_ARBITER $01FCBC Returns slot status

To make a system service call, follow this procedure:

1. Set up the parameters as required by the call (whether on GS/OS direct page, or in registers, or on
the stack).

2 Execute a JSL instruction to the proper location in the system service dispatch table.

3. When the call completes, take any parameters returned from the direct page or from registers,
as indicated.

236 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

1/31/89

•

GS'OS Reference (Volume 2) APDA Draft

Descriptions of each of the system service routines follow. Calls in this chapter are ordered
alphabetically by name; for cross-reference, Table 12-1 shows the same calls ordered by call number
(system service table entry point).

Some system service calls make use of the GS/OS direct-page parameter space, the same
parameter space used by the GS/OS-driver calls described in Olapter 8. Figure 12-1 shows the GS/OS
direct-page parameters.

1/31/89

C H A PTE R 12 System Service Calls 237

GSIOS Reference (Volume 2) APDA Draft 1/31/89

• Figure 12-1 GS/OS direct-page parameter space
Used by driver calls and some system serotce calls

' I ' '(.,'_',' , . . -) - \·' \

i' f ','
: \ . {

,.·i-:1

\ I.

'_.,'

' . ·\

Offset (direct-page)

$00 - deviceNum -
$02 i- callNum -

r- -$04

1- bufferPtr -
1- -

1- -$08

r- requestCount -
1- -

1- -soc
1- transfercount _

1- -

r- -$10

1- blockNum -
r- -
1- blockSize -$14

$16
1- fstNum OR code-

$18 1- volumeiD -
$!A 1- cachePriority -

1- -$1C

.... cachePointer -
"" -

$20 - -
""

dibPointer -
- -

238 V 0 L U M E 2 Devices and GS/OS

Description

The number of the device to whom the call is made

The number of the call being made

Pointer to a buffer for reading or writing data

The number of bytes to transfer to or from driver

The number of bytes transferred by the call

The number of the block to start a read or write at

How many bytes per block for this device

This device's FST number or status code or control code

The VRN for blocks on this device

What sort of caching to implement

Pointer to the current block in the cache

Pointer to the DIB for this device

P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$01FC08

Description

Parameters

Notes

Errors

CACHE_ADD _BLK

This routine attempts to add the requested block into the cache. The block is added at the
start of the LRU chain (= most recently used). If there is not enough room in the cache,
the block(s) at the end of the chain (= least recently used) are purged until there is enough
room for the requested block.

Input:

GS/OS direct page:
blockSize

blockNum

deviceNum

volumeiD

cachePriority

Return:

GS/OS direct page:
cachePtr

Full native mode is always assumed.

When drivers make this call, the block is cached by device number.

If c = 0:

If c = 1:
No error; the block was added to the cache.
Error; the block was not added to the cache.

C H A P T E R 12 System Service Calls 239

GS/OS Reference (Volume 2) APDA Draft 1/31/89

$01FC04

Description

Parameters

Notes

Errors

CACHE_FIND _BLK

This routine attempts to find the requested block in the cache. If the block is found, it is
moved to the start of the LRU chain and a 4 byte pointer to its start is returned to the
caller. One of two possible searches may be specified for this call: by device number (used
by drivers), or by volume ID (used by FSTs when a deferred-write session is in progress).
A routine making this system service call must specify the type of search desired, by
setting the carry flag appropriately.

Input:

GS/OS direct page:
blockNum

deviceNum

volumeiD

carry flag: 0 = search by device number
1 = search by volume ID

Return:

GS/OS direct page:
cachePtr Pointer to the start of the block in the cache

Full native mode is always assumed.

Drivers making this call should request a search by device number (c = 0).

If c = 0:
If c = 1:

No error; the block is in the cache.
Error; the block is not in the cache.

240 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$01FCBC

Description

Parameters

Errors

DYN_SLOT_ARBITER

This call might, in the future, provide support for dynamic switching between devices on
internal and external slots. At the time of publication, the call indicates only whether the
slot is available.

Input:
A register:
X register:
Y register:

Return:

Carry flag:

Requested slot
Undefined
Undefined

Cleared if requested slot was granted
Set if requested slot was denied.

Requested slot: Word input value: specifJes the slot to be requested. The requested-slot
parameter has this format:

High byte Low byte

1Js]J~:hil'?4lt.t:IJM:'tilnt:::l::::t::=ti:::J::i:Ja::::l3lzll I o I
1 • external sl<t J J
0 • internal sl<t

slot nurri:ler (0-7)

Reserved: must be zero [I

Carry flag set if request denied

C H APTER 12 System Service Calls 241

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$01FCA8

Description

INSTALL_DRIVER

Because GS/OS supports removable, partitionable media on block devices, it must be able
to install devices dynamically in its device list as new partitions come on line.
INSTALL_DRIVER has been provided for that purpose.

6 Important The existence of this call implies that the GS/OS device list can grow during
program execution. Drivers and applications cannot count on a fixed
device list See "Scanning the Device List, • later in this section. t:.

Parameters Input:

Notes

242

X register:
Y register:

Return:

A register:

DIB list address (low word)
DIB list address (high word)

Error code

om Ust address: Longword input pointer: specifies the address of a list of device
information blocks to be installed into the device list. The first field in the list is a
longword that specifies the number of device information blocks to be installed; it is
followed by a series of longword pointers, one to each DIB to be installed.

This call informs the device dispatcher that a driver or set of drivers is to be dynamically
installed into the device list, at the end of the next device call (or at the end of the current
one if a device call is in progress). When installing the driver, the device dispatcher inserts
the device into the device list and then issues a startup call to the device. If space cannot
be allocated in the device list for the new device or if the device returns an error as a result
of the startup call, then the device will not be installed into the device list.

V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Scanning the
device list

Errors

There is no indication to an application that the device list has changed size as a result of
this call. An application (such as the Finder) that scans block devices should always begin
by issuing a Dinfo call to device $0001 and should continue up the device list until error $11
(invalid device number) occurs. The Dlnfo call should have a parameter count of $0003, to
give the applic.ation each device's device-characteristics word. lfthe new device is a block
device with removable media, the application should make a status call to the device. If
applications scan devices in this manner, dynamically installed devices will always be
included in the scan operation.

Error checking is critical when using this call. Two possible errors may be returned: if error
$54 (out of memory error) occurs, it is not possible to install any drivers; if error $29 (driver
busy) occurs, it means that an INSTALL_DRIVER is already pending. In case the latter
current driver installation cannot be accepted; the device driver must wait until it is
accessed once more before it can install additional devices.

C H A PTE R 12 System Service Calls 243

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$01FC70

Description

Parameters

MOVE_INFO

This call transfers a block of data from a source buffer to a destination buffer.
MOVE_ INFO can be used by device drivers to transfer data from a single VO location to a
buffer or from a buffer to a single VO location.

The source buffer pointer, destination buffer pointer, and number of bytes to transfer are
passed as input parameters to this routine via the stack. Source and destination buffers
may be in the same or different memory banks, and either may straddle a bank boundary.

Input:

This is how the stack looks on entry to the call (before execution of the JSL instruction):

Parameters on stack Size and type Description

previous contents

f- -
f- sourcePtr - Longword pointer Pointer to the source buffer
f- -

1- -
1- destinati~nPtr- Longword pointer Pointer to the destination buffer
1- -
1- -
1- requestCount _ Longword value Number of bytes to transfer
- -
- commandWord - Word value Flags (see description)

<- stacll polllter

The high bytes of sourcePtr, destinationPtr, and transferCount must be zero.

Return:

244 V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Data Bank register: Unchanged
Direct register: Unchanged
Accumulator: Error code
X register: Undefined
Y register: Undefined

Command word The command word tells MOVE_INFO what kind of transfer to make and how to
increment the destination and source addresses (useful, for example, for inverting the
order of data as it is copied, or for filling memory with a single value). The command
word format is this:

High byte Low byte

t~:~, t1ll!iltt$ltlmt&i:J!IlJizl Jl 1 o 1

Destination incrementer

Source incrementer

00)

001
010-111

00
01
10

11

00
01
10
11

Reserved: must be zero Dill)

where move mode can have these values and meanings:

(Reserved)
Block move
(Reserved)

and destination incrementer can have these values and meanings:

Constant destination
Increment destination by 1
Decrement destination by 1
(Reserved)

and source incrementer can have these values and meanings:

Constant source
Increment source by 1
Decrement source by 1
(Reserved)

cHAPTER 12 System Service Calls 245

GSIOS Referrmce (Volume 2) APDA Draft 1/31/89

246

Presently, only block moves are defined.
Source incrementer and destination incrementer define in what order successive bytes

are transferred from the source buffer, and in what order they are placed in the destination
buffer. The following recommended predefined constant values for the MOVE_INFO
command word covers most typical situations:

Move mode:

moveblkemd equ $0800

(a block move)

Most common command:

move sine dine equ SOS+moveblkemd

(source and destination both increment)

Less common commands:

move sine ddee equ $09+moveblkemd

(source increments, destination decrements)

move sdee dine equ $06+moveblkemd

(source decrements, destination increments)

move sdee ddee equ $0a+moveblkemd

(source decrements, destination decrements)

move_seon_deon equ SOO+moveblkemd

<source constant, destination constant)

move_sine_deon equ $0l+moveblkemd

<source increments, destination constant)

move_sdee_deon equ · $02+moveblkemd

<source decrements, destination constant)

move_seon_dine equ $04+moveblkemd

(source constant, destination increments)

move_seon_ddee equ SOS+moveblkemd

(source constant, destination decrements)

V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31/89

With these various combinations, buffers can be emptied or filled from the bottom up or
from the top down, and single values can be placed in a buffer from the bottom up or
from the top down. Some of the values are particularly helpful for moving data from one
buffer into another buffer that overlaps the first.

calling sequence From assembly language, you set up and invoke MOVE_INFO like this:

1. Place machine in full native mode (e=O, m=O, x=O)

2. Push parameters onto stack as shown under •Parameters, • earlier in this section

3. Execute this instruction:

jsl Move_Info

Sample code Here is an assembly-language example of a call to MOVE_INFO:
rep t$30

pea source_pointerl-16 ;source pointer
pea source_pointer
pea dest_pointerl-16 ;destination pointer
pea dest_pointer
pea count_lengthl-16 ;count length
pea count_length
pea move sine dine ;command word
jsl move info -

Errors If c = 0: No error
If c = 1: Error

C H APT E R 12 System Service Calls 247

GS/05 Reference (Volume 2) APDA Draft 1/31/89

$01FC90

Description

SET_DISKSW

Some device drivers detect volume-off-line or disk-switched conditions through device
specific status calls, rather than through returned errors. Such a condition would then not
be detected by the device dispatcher on exit from the driver call. In fact, by GS/OS
convention, off-line and disk-switched conditions should never be returned as errors from
a status call; errors are reserved for conditions in which a call fails, not for passing status
information.

With the call SET _DISKSW, drivers can specifically request that the disk-switched status
(maintained internally by the device dispatcher) be set in this situation. SET _DISKSW, if
necessary, removes the device's blocks from the cache and places its volumes off line (if
the device dispatcher-maintained disk-switched flag has not already been set). All GS/OS
drivers are expected to call SET_DISKSW if they detect a disk-switched or off-line
condition as a result of a status call.

Parameters Input:

Notes

Errors

248

GS/OS direct page:
cteviceNum The device number of the disk-switched device

Return:

none

Full native mode is assumed. Register contents are unspecified on entry and return, except
that the Data Bank register and Direct register are unchanged by the call.

If the current device is a linked device, then SET _DISKSW also calls CACHE_DEL_ VOL and
SWAP _OUT for each of the devices linked to the current device, if the device dispatcher
maintained disk-switched flag is not currently set.

None

V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GSIOS Reference (Volume 2) APDA Draft 1/31189

$01FC50

Description

SET _SYS _SPEED

This call allows hardware accelerators to stay compatible with device drivers that may
have speed-dependent software implementations.

Whenever if dispatches to a driver, the device dispatcher obtains the device driver's speed
class from the DIB and issues this system service call to set the system speed. When the
driver completes the call, the device dispatcher restores the system speed to what it was
before.

An accelerator card may intercept this vector and replace the system service call with
its own routine, thus maintaining compatibility with GS/OS device drivers.

Parameters Input:

Errors

The A register contains one of these speed settings:

Setting Speed
$OCOO Apple IIGS normal speed
$00)1 Apple IIGS fast speed
$00)2 Accelerated speed
$00)3 Not speed-dependent

Settings from $0004 through $FFFF are not valid.

Return:

The accumulator contains the speed setting that was in effect prior to issuing this
system service call.

None

C H A P T E R 12 System Service Calls 249

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$01FC88

Description

SIGNAL

This call announces the occurrence of a specifiC signal to GS/OS and provides GS/OS with
the information needed to execute the proper signal handler (previously installed with the
Ann_ Signal subcall of the Driver_Control call). GSIOS queues this information and uses it
when it dispatches to the signal handler.

For more information on GS/OS signals and signal handlers, see Chapter 10 ("Handling
Interrupts and Signals•) of this Volume.

Para01eters Inpuk

Notes

Errors

250

A register:
X register:
Y register:

Return:

A register:
X register:
Y register:

Signal priority
Low word of signal-handler address
High word of signal-handler address

Undefined
Undefined
Undefined

Signal priority: the priority-ranking of the signal, with $0000 being the lowest priority
and $FFFF being the highest.

Signal-handler address: the address of the signal handler entry point.

A signal source that makes this call as the result of an interrupt should announce no more
than one signal per interrupt, to avoid the possibility of overflowing the signal queue.

None

V 0 L U M E 2 Devices and GS/OS P A R T II Writing a Device Driver

GYOS Reference (Volume 2) APDA Draft 1/31/89

$01FCA4

Description

Errors

SUP _DRVR_DISP

This call is the main entry point to the supervisor dispatcher. It dispatches calls among
supervisory drivers. Supervisory drivers provide an interface that gives higher-level device
drivers acce5s to hardware.

Supervisory-driver calls can be classified into two groups: calls with a supervisor number
of zero are handled by the supervisor dispatcher; calls with a nonzero supervisor number
are passed on to a supervisory driver.

The following calls are handled by the supervisor dispatcher and are not passed on to a
supervisory driver:

call No. Sup. No.
$OOX) $OOX)

$00)1 $OOX)

$0002-SFFFF $OOX)

Function
Get_Supervisor_Number
Set_SIB_Pointer
(Reserved)

The following calls are dispatched by the supervisor dispatcher to a supervisory driver:

call No. Sup. No. Function
$OOX) (Nonzero) Supervisor_Startup
$00)1 (Nonzero) Supervisor_Shutdown
$0002-SFFF (Nonzero) (Driver-specific calls)

These subcalls and other supervisory-driver calls are described in detail in Chapter 11,
"GS/OS Driver Call Reference. •

$28 no device connected

C H A P T E R 12 System Service Calls 251

GSIOS Reference (Volume 2) APDA Draft

Appendixes

Volume!

Volume2

Part I -
GS{OSaDs

(escep! device ails)
(Chaplet' 'I)

Part I

GS/05 device calls
(Chapter I)

l'lnD -

FST·specifac
infonmlion on
GS/OSalls

(Chapcer 9-11)

l'lnD

Drm.rals
(Chapter II)

-Ori ~ ' ,_..___

infonDIIion on 5ys1m1 seroice ails
GS/05 device calls (Chapter 12)

(Chapter 2· 7)

1/31/89

~

ProDOS 16 cds
(Appendiz A)

t--
FST -specifac

infOftllllion on
ProDOS 16 cds
(Appendiz B)

'1

253

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Appendix A The System Loader

Because the Apple IIGS has a large amount of available memory, a flexible, dynamic facility
for loading program fdes is required Programs should be able to be loaded in any available
location in memory. The burden of determining where to load a program should be on the
system, not on the application writer. Furthermore, programs should be able to be
broken into smaller program segments that can be loaded independently.

To provide these capabilities, GS/OS comes with a relocating segment loader called the
System Loader. The System Loader provides a very powerful and flexible facility that is
not available on standard Apple II computers. •

255

GSIOS Reference (Volume 2) APDA Draft

How the System Loader works

Apple II computers running under ProDOS 8 have a very simple program loader. The loader is the
part of the boot code that searches the boot disk for the first System file (any file of ProDOS file
type $FF wh~e name ends with •.SYSTEM •.) and loads it into location $2000. If a program wants
to load another program, it has to do all the work by making ProDOS 8 calls.

Some programming environments such as Apple II Pascal and AppleSoft BASIC provide loaders
for programs running under them. The AppleSoft loader loads either System files, BASIC files, or
binary code files. All these files are loaded either at a ftxed address in memory or at an address
specified in the file.

The Apple IIGS System Loader under GS/OS can load programs in any available part of memory,
relieving the application writer of deciding where to put the code and how to make it execute
properly at that location. Furthermore, the System Loader can load individual segments rather than
whole files, either at program start or during execution.

The System Loader loads programs or program segments by first calling the Memory Manager to
find available memory. It loads each segment independently and performs relocation during the
load as necessary. Therefore, a large application can be broken up into smaller program segments,
each of which is put into separate locations in memory. The application's segments can also be
loaded dynamically, as they are referenced, rather than at program boot time. Additionally, the
System Loader can be called by the application itself to load and unload program (or data) segments.

Definitions

The System Loader processes load fLies, generated from object files by a linker. Definitions of
these and related terms may help make the following discussion clearer:

Object files are the output from an assembler or compiler and are the input to a linker.

A linker is the program that combines object files generated by compilers and assemblers, resolves
all symbolic references, and generates a file that can be loaded into memory and executed.

Load files are the output of a linker and contain memory images, which the System Loader can
load into memory. There are several types of load files, reflecting the types of programs they
contain.

256 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31189

GS/OS Reference (Volume 2) APDA Draft

The System Loader is the part of system software that reads the files generated by the linker and
loads them into memory (performing relocation if necessary).

Relocation is the process of modifying a load file in memory so that it will execute correctly. It
consists of patching operands to reflect the code's current memory location.

Library ftles are special object files, containing general program segments that the linker can
search.

Run-time library ftles are special load files, containing general program segments that can be
loaded as needed by the System Loader and shared between applications.

Object module format (OMF) is the general format used in object files, library files, and load files.

An OMF ftle is a file in object module format (an object file, library file or load file).

A segment is an individual component of an OMF file. Each file contains one or more segments;
object files contain object segments, and load files contain load segments.

A controlling program is a program that uses System Loader calls to load and execute another
program, and is responsible for shutting down the program when it exits. Operating systems and
shells are controlling programs.

Segments and the System Loader

The System Loader processes only those files that conform to the Apple IIGS definition of a load
file (see Appendix B). A load file consists of load segments, each of which can be loaded
independently. The load segments are numbered sequentially from 1.

Certain load segments are static load segments. They are loaded into memory at program start
(initial load) and must stay in memory until program completion.

The other general type of load segment is dynamic. Dynamic segments are loaded not at boot
time but during program execution. This can happen automatically (by means of the jump table
mechanism) or manually (at the specific request of the application). When dynamic segments are
not needed by a program, they can be purged (their contents deallocated) by the program.

Load segments can have several other attributes; see Appendix B for a complete list of
attributes.

1/31/89

A P P E N D I X A The System Loader 257

GS/05 Reference (Volume 2) APDA Draft·

Segments are classified numerically by kind (the value of the KIND field in the segment header; see
Appendix B). In addition to segments containing program code or data, there are several special
kinds of load segments:

• The jump-table segment (KIND=$02), when loaded into memory, becomes part of the jump
table. The jump table provides a mechanism whereby segments in memory can trigger the
loading of other segments not yet in memory. The jump table is described later in this section,
under "Loader Data Structures. •

• The pathname table segment (KIND=$04) contains information about the run-time library files
that are referenced. The pathname table is described later in this section, under "Loader Data
Structures•; run-time library files are described in Appendix B.

• Initialization segments (KIND=$10) in a load file are used for code that is to be executed before
all the rest of the load segments are loaded.

• The direct-page/stack segment (KIND=$12) defines the application's direct-page and stack
requirements. This segment is loaded into bank $00 and its starting address and length are
passed to the controlling program, which in tum sets the Direct register and Stack pointer to
the start and end of this segment before transferring control to the program.

If the System Loader is called to perform the initial load of a program, it loads all the static load
segments and the jump table and pathname table segments (if they exist). The loader also
constructs a RAM-based memory-segment table during this process. The memory-segment table
is described later in this section, under "Loader Data Structures. •

+ References to dynamic segments: During the initial load, the System Loader has all the
information needed to resolve all intersegment references between the static load segments.
But during the dynamic loading of dynamic load segments, it can only resolve references in the
dynamic load segment to the already loaded static load segments. Therefore, the general rule is
that static segments can be referenced by any type of segment but dynamic segments can
only be referenced through JSL calls through the jump table.

258 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

+ Unmounted volumes: If the System Loader references a file on a volume that is not mounted,
GS/OS either returns with error $45 (volume not found) or displays a mount-volume message
(depending on the state of the system preferences at the time of the call; see "SetSysPrefs» in
Chapter 7 of Volume 1). If a mount message is displayed, GS/OS handles the user interface and
returns control to the System Loader only when the 1/0 operation is complete or the user has
canceled the request for the mount. For all user-callable System Loader functions, system
preferences are controlled by the user. For the internal jump-Table Load function, the System
Loader sets system preferences to display mount messages and then restores them to their
original state.

The System Loader and the Memory Manager

The System Loader and the Memory Manager work together closely. Depending on how the
System Loader defines a segment, the Memory Manager needs to allocate a memory block for that
segment with the proper properties.

The System Loader defines load segments as static or dynamic (already defined), and as absolute
(needs to be loaded at a specific address), relocatable (can be loaded at any address, but cannot be
moved once loaded), or position-independent (can be loaded anywhere and then moved
anywhere after loading). The Memory Manager uses its own terminology to describe memory
blocks; see the chapter "Memory Manager• in the Apple JIGS Toolbox Reference. Loader and Memory
Manager terminology are related in this way:

• When the System Loader loads a static segments, it calls the Memory Manager to allocate a
corresponding memory block that is unpurgeable (purge level = 0; the Memory Manager
cannot remove it from memory) and locked (the Memory Manager cannot move it unless it is
first unlocked).

• When the loader loads a dynamic segment, the Memory Manager allocates a memory block that
is marked as purgeable (purge level >0) but locked.

• Position-independent segments are placed in blocks that are movable (the Memory Manager
can change their locations in memory if they are not locked); all other segments (whether static
or dynamic) are placed in blocks that are fixed (not movable, even if not locked).

The typical load segment, which is relocatable, is loaded into a memory block having these
attributes:

1/31/89

A P P E N D I X A The System Loader 259

GSIOS Reference (Volume 2)

Locked
Fixed
Purge level=O (if static)
Purge level=3 (if dynamic)

APDA Draft

When the System Loader unloads a specific segment, it calls the Memory Manager to make the
corresponding memory blocks purgeable.

To unload all of a program's segments (all segments associated with a particular user ID), a
controlling program calls the System Loader's UserShutdown routine-which in turn calls the
Memory Manager-to purge all the program's dynamic segments and make all its static segments
purgeable. The purpose of this is to keep the essential parts of an application in memory, in case it
needs to be rerun in the near future. Keeping programs dormant in memory, and executing them
again with the System Loader's Restart routine, can greatly speed up execution of a program
selector such as the Finder. However, once the Memory Manager has to actually purge one of the
static segments of a dormant program, it is incomplete and must be reloaded from file (with
InitiaiLoad) before running.

+ Note: If many incomplete (partially purged) applications are in memory, the system may get
bogged down with NIL memory handles. To avoid this situation, the System Loader disposes
all NIL memory handles it knows about before executing every InitiaiLoad or Restart call.

Depending on the ORG, KIND, BANKSIZE, and AUGN fields in the segment header (see "OMF and
the System Loader," later in this chapter), other memory-block attributes are possible:

260 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

• Table A-1 Segment characteristics and memory-block attributes

Segment header attribute

IfORG>O
If BANKSIZE=$10000
If O<Aiign Factorl<=$100
If Align Factorl>$100
Bit 13 of KIND=O
Bit 12 of KIND= 1
Bit 11 of KIND=l
Bit 8 of KIND=1
KIND= 12

Memory-block attribute

Fixed address
May not cross bank boundary
Page aligned
Bank aligned (forced by System Loader2)
Fixed block (not moveable)
May not use special memory
Fixed bank (not fixed address)
Bank-relative (fixed address in any bank); forced by System Loader
Fixed bank (bank $00), page aligned
(Direct page/stack segment)

I If O<BANKSIZE<$10000, Align factor-the greater of BANKSIZE or ALIGN; if BANKSIZE has any other
value (except for $10000), Align factor=AUGN.
2AJthough the Memory Manager does not provide bank alignment, the System loader forces it in this instance by

requesting successive fixed-address blocks at the beginning of each bank until successful.

A memory block can be made purgeable (unloaded) by a call to the System Loader. However, other
memory-block attributes must be changed through Memory Manager calls. Since the memory
handle for a memory block is stored in the memory-segment table, Memory Manager information is
accessible. Other memory block information that may be useful to a program is as follows:

Start location
Size of segment
User ID
Purge Level: 0 = Unpurgeable

1 = Least purgeable
3 "' Mast purgeable

Note also that if the memory handle is NIL (its address value is 0), the memory block has been
purged.

1/31/89

A P P E N D I X A The System Loader 261

GSIOS Reference (Volume 2) APDA Draft

OMF and the System Loader

Object module format (OMF) defines the internal format for Apple IIGS object files, library files,
and load files. OMF files consist of segments, each of which has a segment header and a series of
OMF records. As Table A-1 shows, a load segment's characteristics, the type of memory block it
inhabits, and its segment-header values are all closely interrelated. OMF is documented in detail in

Appendix B.
Object module format includes general capabilities beyond the requirements of the Apple IIGS

computer. The System Loader, on the other hand, is designed specifically for the Apple IIGS.
Therefore, there are certain OMF features that the System Loader either does not support or
supports in a restricted manner. Here are some examples (see Appendix B for definitions of OMF
features):

• The NUMSEX field of the segment header must be 0.

• The NUMLEN field of the segment header must be 4.

• The BANKSIZE field of the segment header must be <=$10000.

• The AUGN field of the segment header must be <=$10000.

If any of the above is not true, the System Loader returns error $110B (segment is foreign). The
BANKSIZE and AUGN restrictions are enforced by the linker, and violations of them are unlikely in
a load file.

The System Loader uses BANKSIZE and AUGN to force memory alignment of segments as
follows:

• Under OMF, ALIGN and BANKSIZE can be any power of 2. But the Memory Manager does not
support so general a requirement. The Memory Manager can currently only be told that a
memory block must be page aligned or must not cross a bank boundary. To force bank
alignment where needed, the System Loader uses this method:

• Any value of BANKSIZE other than 0 and $10000 results in a memory block that is either page
aligned (if BANKSIZE<=$100) or bank aligned (if BANKSIZE>$100). Since the linker makes sure
that the segment is smaller than BANKSIZE, the requirement that the segment not extend
past the BANKSIZE boundary is met (there will be wasted space in the memory block,
however).

• Any value of ALIGN is bumped to either page alignment or bank alignment

• If there is a BANKSIZE other than 0 and $10000 and a non-zero AUGN, the greater of the two
determines the alignment to be used.

262 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

Loader data structures

The System Loader creates several types of data structures to track which segments are in memory
or need to be loaded. This section briefly describes the structures.

Memory-segment table

The memory-segment table is a linked list created by the System Loader. Each entry corresponds to
one memory block known to the System Loader. The memory blocks are allocated by the Memory
\1.> .··. 1ger when the System Loader loads segments from a load file. Each entry in the memory
segment table contains a handle to the memory block, the block's user ID, and the load-file number
and load-segment number of the segment occupying the block.

The System Loader uses the memory-segment table to keep track of all its loaded segments:
where they are, who owns their memory, and where on disk they came from.

Pathname table

The path name table is created by System Loader to keep track of the pathnames associated with all
load files and run-time library files it processes. The pathnames in the pathname table are fully
expanded pathnames, stored as GS/OS strings (preceded by a word-length character-count field).
At initial load, the System Loader adds the pathname specified in the Initial Load call to the
pathname table. During the load, if the System Loader comes across a pathname segment
(KIND=$04), it adds all the pathname entries to the pathname table. Pathname segements are
created by the linker.

Each entry in the pathname table includes the pathname, load-file number, user ID, and address
and size of direct-page/stack space for a particular load file. It also includes other information
pertinent to run-time libraries. The System Loader uses the pathname table to locate files on disk
that are identified by load-file number in the loader's other tables.

Jump table

The jump table is the data structure that makes it possible for programs to reference dynamic
segments (segments that are loaded into memory only when they are needed). The jump table
consists of the jump-table directory and one or more jump-table segments. The jump-table
directory is a linked list constructed by the System Loader. It contains a handle to and the user ID
of each jump-table segment (KIND=$02) that the System Loader has encountered while loading
load segments. Any load fde or run-time library file may contain a jump-table segment.

1131/89

A P P E N 0 I X A The System Loader 263

GS/OS Reference (Volume 2) APDA Draft·

jump-table segments are created by the linker. When processing an object file, each time the linker
encounters a JSL to an external dynamic segment, it does the following:

1. It creates an entry in the jump-table segment.

2 It links the JSL in the object file to that jump-table segment entry.

Each entry in the jump-table segment contains the load-file number and load-segment number of
the referenced dynamic segment, the offset of the referenced location within that segment, and a
JSL instruction to a location within the System Loader that will take care of loading and executing
that segment when called.

During program execution, the jump table functions this way:

1. When the JSL instruction actually executes, control passes to the jump-table entry, and then to
the System Loader. The System Loader extracts the segment information from the jump-table
entry and the file information from the pathname table.

2 The System Loader loads the dynamic segment, changes the JSL instruction in the jump table to
a JML to the proper location in the just loaded segment, and transfers control to that location.

3. Typically, the location in the loaded segment is a subroutine. When it exits with an RTL, control
is eventually transferred to the location following the original JSL instruction, as expected.

Restarting, reloading, and dormant programs

By working closely with the Memory Manager and GS/OS, the System Loader provides a mechanism
whereby programs can stay in memory after they terminate and can be relaunched very quickly if
they are called again.

When making the GS/OS Quit call, an application always specifies (1) whether it is capable of
being relaunched from memory, and (2) whether it wishes to quit to another specifiC application,
and-if so-whether it wants to be relaunched after that application quits. GS/OS notes those
specifications and treats a quitting program accordingly:

• If a quitting appliCation is capable of being restarted from memory-that is, if it does not
require initialization data to be looded from disk-GS/OS puts it into a dormant state with the
System Loader's UserShutdown call: it keeps all the application's static segments in memory so
that the application can start up very quickly if it is ever called again. When that application is
relaunched from memory, it is said to be restarted. GS/OS uses the System Loader's Restart call
for this.

V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GYOS Reference (Volume 2) APDA Draft

• If an application will be relaunched at a future time, the System Loader keeps track of its
pathname, so that when the time comes it can be reloaded-loaded and executed
automatically from disk, using the System Loader's InitiaiLoad (or Initia1Load2) call. Of course,
if the program is already in memory in a donnant state, it can simply be restarted.

A dormant application's static segments are net protected; if the Memory Manager needs memory,
it can purge one or more of them. Once that happens, the application is no longer dormant; it must
be reloaded from disk if it is ever relaunched.

+ Reload segments and restartabtlity: In some programming languages it is impractical to make
completely restartable applications; initialization data must be read from disk every time a
program is launched. To pennit restartability in such cases, the System Loader allows for
reload segments, load segments that are always loaded from disk at program launch, even if
the program is in a dormant state. Therefore, if a program can be designed with all its
initialization information in one or more reload segments, it can call itself restartable when it
quits.

1/31189

A P P E N D I X A The System Loader 265

G!YOS Reference (Volume 2) APDA Draft

Making System Loader calls

Because the System Loader is a Apple IIGS tool set, its functions are called by making stack-based
calls through the Apple IIGS Tool Locator. The calling sequence for System Loader functions is the
standard tool-calling sequence:

1. First, push space for the output parameters (if any) onto the stack.

2 Push all input parameters in the order specified tn the call descripttons.

3. Execute this call block (syntax in this example is for APV/):

ldx i$11+FuncNuml8
jsl Dispatcher

where FuncNum is the System Loader function number (the number of the call), $11 is the tool
number for the System Loader, and Dispatcher is the Tool Locator entry point

4. Upon return from the call, the A register contains the call status (zero if no error, error number
otherwise), and the carry flag is set if an error has occurred

5. If there is output, pull each output parameter off the stack in the order specified tn the call
descriptions.

Table A-21ists and briefly describes the System Loader calls available to applications (plus its
standard tool-set calls, some of which are not available to applications). The calls in Table A-2 are in
numerical order by call number, except that newer calls that use GS/OS-specifiC data structures (such
as Initiall..oad2) are listed next to their ProDOS-16-compatible counterparts (such as initiall..oad).

The rest of this appendix consists of detailed call descriptions; they are presented in alphabetical
order by call name.

V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31189

GSIOS Reference (Volume 2) APDA Draft 1/31189

• Table A-2 System Loader calls

Call number Call name Description

$01 Loaderlnitialization Initializes the loader

$02 LoaderStartup (Does nothing)

$03 LoaderShutDown (Does nothing)

$04 LoaderVersion Returns loader version

$OS Loader Reset (Does nothing)
$(}') LoaderStatus Returns loader status
$a) InitialLoad Loads a program into memory

$~ Initia1Load2 Loads a program into memory

$0A Restart Re-executes a dormant program in memory

$0B LoadSegNum (Load segment by number:) loads a single
segment

$OC UnloadSegNum (Unload segment by number:) unloads a
single segment

$0D LoadSegName (Load segment by name:) loads a single
segment

$0E UnloadSeg Unloads the segment containing a specific
address

$OF GetLoadSeglnfo Returns a segment's memory-segment
table entry

$10 GetUseriD Returns the user ID for a given pathname

$21 GetUseriD2 Returns the user ID for a given pathname

$11 LGetPathname Returns the pathname for a given user ID

$22 LGetPathname2 Returns the pathname for a given user ID

$12 UserShutDown Shuts down a program

A P P E N D I X A The System Loader 'Jb7

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$OF

Description

Parameters

Errors

GetloadSeglnfo

This function returns the memory-segment-table entry corresponding to the specified
load segment. The memory-segment table is searched for the specified entry; if the entry
is not found, error $1101 is returned. If the entry is found, the contents (except for link
pointers to other entries) are moved into the user buffer.

Name Size Description

Input
useriD ·Word User ID of the load segment
fileNum Word Load-fde number
segNum Word Load-segment number
buffAddr Longword User buffer address

OUtput:

[filled user buffer)

$1101 Entry not found

V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1131/89

$10

Description

Parameters

Errors

GetUseriD

This function searches the pathname table for the specified pathname. The input
pathname is a standard Pascal-type string (a byte count followed by the string of
characters). The pathname is first expanded to a full pathname (in GS/OS string format)
before the search. If a match is found, the corresponding user ID is returned. A
controlling program can use this function to determine whether to perform a Restart of
an application or an InitiaiLoad.

Name Size Description

Input:

pathnameAddr Longword Address of pathname

Output:

useriD Word Corresponding user ID

$1101 Entry not found

A P P E N D I X A The System Loader 1if:J

GS/05 Reference (Volume 2) APDA Draf} 1131/89

$21

Description

Parameters

Errors

GetUseriD2

This function is identical to GetUserlD except that the input pathname is a GS/OS string
rather than a Pascal string.

Name Size Description

Input:

pathnameAddr Longword Address of pathname

Output:

useriD Word Corresponding user ID

$1101 Entry not found

?:70 V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$09

Description

Parameters

Notes

InitialLoad

A controlling program (such as GS/OS or a shell program) uses this call to load another
program into memory, in preparation for executing it

Name Size Description

Input:

useriD Word The user ID to be assigned

pathnameAddr Longword Address of the load file's pathname
flagWord Word Don't-use-special-memory flag

Output:

useriD Word The user ID assigned
startAddr Longword Starting address of the program

dPageAddr Word Address of direct-page/stack buffer

buffSize Word Size of direct-page/stack buffer

If a complete user ID is specified, the System Loader uses that when allocating memory
for the load segments. If the main ro portion of the user ID is 0, a new user ID is
obtained from the User ID Manager, based on the typeiD portion of the user ID. If the
Type portion is 0, an Application type user ID is requested from the User ID Manager.
User IDs are explained under "Miscellaneous Tools,• in the Apple JIGS Toolbox Reference.

If the don't-use-special-memory flag is TRUE (nonzero), the System Loader does nol load
any static load segments into spedal memory. (Special memory is the part of memory
equivalent to that used by a standard Apple II computer under ProDOS 8: all of banks $00
and $01 and parts of banks $EO and $El.) However, dynamic load segments are loaded into
any available memory, regardless of the state of the don't-use-special-memory flag.

GS/OS is called to open the specifted load file using the input pathname. Note that the
input pathname is a Pascal string. If any GS/OS errors occurred or if the file is not a load
file type ($B~$BE), the System Loader returns the appropriate error.

If the load file is successfully opened, the System Loader adds the load file information to
the pathname table and calls the Load Segment by Number function for each static load
segment in the load file.

A P P E N D I X A The System Loader Z71

GS/OS Reference (Volume 2) APDA Draft 1/31/89

Errors

If an initialization segment (KIN0=$10) is loaded, the System Loader immediately
transfers control to that segment in memory. When the System Loader regains control,
the rest of the static segments are loaded normally.

If the direct-page/stack segment (KIND=$12) is loaded, its starting address and length are
returned as output.

If any of the static segments cannot be loaded, the System Loader aborts the load and
returns an error.

After all the static load segments have been loaded, execution returns to the controlling
program with the starting address of the ftrst load segment (not an initialization
segment) of the load ftle. Note that the controlling program is responsible for setting up
the stack pointer and Direct register, and actually transferring control to the loaded
program.

$1102
$1104
$1100
$110A
$110B

OMF version error
File is not load ftle
SegNum out of sequence
Illegal load record found
Load segment is foreign

V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDADraft 1/31/89

$20

Description

Parameters

Input type

Initia1Load2

This function is similar to InitiaiLoad except that four variations of the input information
are possible.

Name

Input:

useriD

buffAddr

flagWord

input Type

) I l· :.

Output:

useriD

startAddr

dPageAddr

buffSize

Size Description

Word The user ID to be assigned
Longword Address of the load-file pathname or load-file image
Word Don't-use-special-memory flag
Word input type

Word The user ID assigned

Longword Starting address of the program

Word Address of direct-page/stack buffer

Word Size of direct-page/stack buffer

If input Type = 0, this function is exactly equivalent to the InitiaiLoad call.

If input Type = 1, the input load-file pathname is a GS!OS string rather than a Pascal
string.

If input Type= 2, the input address points to a parameter block rather than a pathname.
The parameter block contains two parameters: memoryAddress (4 bytes) and
f ileLength (2 bytes). The memoryMdress parameter speciftes where a load fde resides
in memory and the tHe Length parameter specifies its size in bytes. The System Loader
loads the file from memory rather than from a file, in this case.

This input type is used by GS/OS at system startup to load load files that were
previously read into memory as binary images. In this mode, the System Loader does not
make any GS/OS calls and can therefore be used when GS/OS is not in memory or has not

yet been initialized.

A P P E N D I X A The System loader 'Z73

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Errors

Z74

If input Type= 3, the input address points to an entry in the pathname table. The
pathname, user ID, and me number from the pathname table entry are used as input for
InitiaiLoad. This entry is used by the jump table Load function (an internal function) to

load all the static segments in a run-time library.

$1102
$1104
$11(9
$110A
$1108

OMF version error
File is not load me
SegNum out of sequence
Illegal load record found
Load segment is foreign

V 0 L U M E 2 Devices and GS/OS APPENDIXES

GS/05 Reference (Volume 2) APDA Draft 1/31189

$11

Description

Parameters

Errors

LGetPathname

This function searches the pathname table for the specified user ID and file number. If a
match is found, the address of the pathname in the pathname table is returned. The
output pathname is a Pascal string.

GS/OS uses this call to get the pathname of an existing application so that it can set
the Application prefix before restarting it. Note that the output address is within a
System Loader internal data structure, and nothing should be written to that address or
the following addresses.

Name Size Description

Input:
useriD Word The user ID to find

fileNum Word The file number to find

OUtput:

pathnameAddr Longword Address of pathname (if found)

$1101 Entry not found
$1103 Pathname error

A P P E N D I X A The System Loader 275

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$22

Description

Parameters

Errors

LGetPathname2

1bis function is identical to LGetPathname except that the output pathname is a GS/OS
string rather than a Pascal string.

Name

Input:

useriD

fileNum

Output:

Size

Word

Word

Description

The user ID to find

1be file number to find

pathnameAddr Longword Address of pathnarne (if found)

$1101
$1103

Entry not found
Pathname error

?:76 V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31189

$01

Description

Parameters

Errors

Loaderlnitialization

This routine initializes the System Loader. It is called at system initialization time only. All
System Loader tables are cleared, and no assumptions are made about the current or
previous state of the system.

Name Size Description

Input: None

OUtput: None

None

A P P E N D I X A The System Loader TT7

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$05 Loader Reset

Description 1bis routine does nothing and need not be called.

Parameters Name Size Description

Input: None

OUtput: None

Errors None

278 V 0 L U M E 2 Devices and GSIOS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$03 LoaderShutDown

Description This routine does nothing and need not be called.

Parameters Name Size Description

Input: None

OUtput: None

Errors None

A P P E N D I X A The System Loader T79

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$02 LoaderStartup

Description This routine does nothing and need not be called.

Parameters Name Size Description

Input: None

OUtput: None

Errors None

280 V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDADraft 1/31/89

$06 LoaderStatus

Description This routine returns the status (initialized or not initialized) of the System Loader. It
always returns TRUE because the System Loader is always in the initialized state.

Parameters Name Size Description

Input: None

OUtput:

status Word Current System Loader status;
always TRUE (= initialized)

Errors None

A P P E N D I X A The System Loader 281

GSIOS Reference (Volume 2) APDAD~fl 1/31/89

$04

Description

Parameters

Version word

Errors

Loader Version

This routine returns the version number of the System Loader. The version number is in

the same format as that returned by the GSIOS call Get Version:

Name Size Description

Input: None

Output:
version Word Present System Loader version

This is the fonnat of the version word returned by this call:

1 • developmental release
0 • final release

Major version number---'

Minor version number-----'

None

282 V 0 L U M E 2 Devices and GSIOS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31189

$OD

Description

Parameters

Notes

LoadSegName (Load Segment by Name)

This function loads a named load segment into memory.

Name Size Description

Input:

useriD Word The user ID of the caller
filenameAddr Longword The address of the load-fde name

segNameAddr Longword The address of the load-segment name

Output:

segAddr Longword The starting address of the segment

useriD Word The user ID assigned

fileNum Word The load-file number of the segment
segNum Word The load-segment number of the segment

The input pathname is a Pascal string. The loader calls GS/OS to open the specified load
file. If GS/OS has a problem, a GS/OS error code is returned. If the file is not a load file
(types $B3-$BE), error $1104 is returned.

Next the load file is searched for a load segment corresponding to the specified load
segment name. If no segment has the segment-name requested, error $1101 is returned.

Once the System Loader has located the requested load segment (and knows its load
segment number), it checks the pathname table to see whether the load file is represented.
If so, it uses the file number from the table. Otherwise, the System Loader adds a new
entry to the pathname table with an unused file number. If necessary, the System Loader
loads the jump-table segment (if any) from the load file.

Next the System Loader attempts to load the load segment by calling the Load Segment
by Number function (LoadSegNum). If LoadSegNum returns an error, then LoadSegName
returns the error. If LoadSegNum is successful, LoadSegName returns the load-file
number, the load-segment number, and the starting address of the segment in memory.

A P P E N D I X A The System Loader 283

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Errors $1101 Segment not found
$1104 File is not load file
$1107 File version error
$11(9 SegNum out of sequence
$110A Illegal load record found
$1108 Load segment is foreign

284 V 0 L U M E 2 Devices and GS/OS APPENDIXES

GS/OS Reference (Volume 2) APDA Draft 1/31/89

$OD

Description

Parameters

Notes

LoadSegName (Load Segment by Name)

This function loads a named load segment into memory.

Name Size Description

Input:

useriD Word The user ID of the caller
filenameAddr Longword The address of the load-file name
segNameAddr Longword The address of the load-segment name

Output:

segAddr Longword The starting address of the segment
useriD Word The user ID assigned
fileNum Word The load-file number of the segment
segNum Word The load-segment number of the segment

The input pathname is a Pascal string. The loader calls GS/OS to open the specified load
file. If GS/OS has a problem, a GS/OS error code is returned. If the file is not a load file
(types $B3-$BE), error $1104 is returned.

Next the load file is searched for a load segment corresponding to the specifaed load
segment name. If no segment has the segment-name requested, error $1101 is returned.

Once the System Loader has located the requested load segment (and knows its load
segment number), it checks the pathname table to see whether the load file is represented.
If so, it uses the file number from the table. Otherwise, the System loader adds a new
entry to the pathname table with an unused file number. If necessary, the System Loader
loads the jump-table segment (if any) from the load file.

Next the System Loader attempts to load the load segment by calling the Load Segment
by Number function (LoadSegNum). If LoadSegNum returns an error, then LoadSegName
returns the error. If LoadSegNum is successful, LoadSegName returns the load-file
number, the load-segment number, and the starting address of the segment in memory.

A P P E N D I X A The System loader 283

GSIOS Reference (Volume 2)

Errors $1101
$1104
$1107
$11~

$110A
$1108

APDA Draft

Segment not found
File is not load file
File version error
SegNum out of sequence
Illegal load record found
Load segment is foreign

284 V 0 L U M E 2 Devices and GS/OS

1131/89

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$OB

Description

Parameters

Sequence

LoadSegNum (Load Segment by Number)

This function loads a specific load segment into memory. This is the workhorse function
of the System Loader. Normally, a program calls this function to manually load a dynamic
load segment. If a program calls this function to load a static load segment, the System
Loader does not patch any existing references to the newly loaded segment.

Name

Input:

useriD

fileNum

segNum

Output:

segAddr

Size

Word

Word

Word

Description

The user ID to be assigned

The load-file number of the segment

The load-segment number of the segment

Longword The starting address of the segment

First the memory-segment table is searched to see if there is an entry for the requested
load segment. If there is already an entry, the handle to the memory block is checked to
verify it is still in memory. If the block is still in memory, this function does nothing
further and returns without an error. If the memory block has been purged, the memory
segment table entry is deleted.

Next the load-file number is looked up in the pathname table to get the load file
pathname. From the file's directory entry, the load-file type is checked; if it is not a load
file (types $B3-$BE), error $1104 is returned. The load file's modification date/time values
are compared to the file date and file time values in the pathname table. If these values do
not match, error $1107 is returned This indicates that the run-time library file at the
specified pathname is not the run-time library file that was scanned when the application
was linked together.

The System Loader then calls GS/OS to open the specified load file. If GS/OS has a problem,
a GS/OS error code is returned.

A P P E N D I X A The System Loader 285

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Next the load fde is searched for a load segment corresponding to the specifted load
segment number. If there is no segment corresponding to the load-segment number,
error $1101 is returned. If the VERSION field of the segment header contains a value that
is not supported by the System Loader, error $1102 is returned. If the SEGNUM fteld does
not correspond to the load-segment number, error $1109 is returned. Ifthe NUMSEX and
NUMLEN ftelds are not 0 and 4, respectively, error $110B is returrted.

If the load segment is found and its segrrtent header is correct, a memory block is
requested from the Memory Manager of size specified in the LENGrn field in the segment
header. If the ORG fteld in the segment header is not 0, a rrtemory block starting at that
address is requested. Other attributes are set according to segrrtent header fields (see "The
System Loader and the Memory Manager,• earlier in this chapter).

If the input user ID is not 0, it is used as the user ID of the memory block. If the input
user ID is 0, the memory block is marked as belonging to the user ID of the current user
(in USERID).

If the requested memory is not available, the Memory Manager and the System Loader will
try several techniques to free up memory:

• the Memory Manager purges memory blocks that are marked purgeable;

• the Memory Manager moves movable segrrtents to enlarge contiguous memory;

• and the System Loader calls its Cleanup routine (an internal function) to free its own
unused internal rrtemory.

If all these techniques fail, the System Loader returns with the last Memory Manager error.

If enough memory is available, the System Loader loads the load segment into memory
and processes its relocation dictionary, the part of every relocatable segment that the
loader uses to patch the code for correct execution at its current address. See Appendix B.

The loader adds a new entry to the memory-segrrtent table and returns with the memory
handle of the segment's memory block.

V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31/89

OMFrecords Only the following object module format records are supported by the System Loader:

LCONSf ($F2)
DS ($Fl)
RELOC ($E2)
INTERSEG ($E3)
cRELOC ($F5)
ciNTERSEG ($F6)
SUPER ($F7)
END ($00)

Any other records encountered while loading result in error $110A.

Errors $1101 Segment not found
$1102 OMF version error
$110i File is not load file
$1107 File version error
$11{11 SegNum out of sequence
$110A Illegal load record found
$110B Segment is foreign

A P P E N D I X A The System Loader 1S7

GSIOS Reference (Volume 2) APDA Draft 1/31189

$OA

Description

Parameters

Notes

Restart

A controlling program (such as GSIOS, Basic, Switcher, etc.) uses this call to restart
(relaunch) a dormant application in memory. Only software that is restartable can be
successfully restarted. For a program to be restartable, it must initialize its variables and
not assume that they will be preset at load time. A reload segment can be used for
initializing data because it is reloaded from the file during a restart. The controlling
program is responsible for knowing whether a given program can be restarted; the System
Loader does no checking.

Name Size Description

Input:

useriD Word The user ID of the program to restart

OUtput:

useriD Word The user ID of the restarted program
startAddr Long word The starting address of the program

buffAddr Word Address of direct-page/stack buffer
buffSize Word Size of direct-page/stack buffer

An existing user ID must be specified; otherwise, the System Loader returns error $1108.
the user ID is not known to the System Loader, error $1101 is returned.

Applications can be restarted only if all the segments in the memory-segment table with
the input user ID are in memory; these are the application's static segments. If all are
there, the System Loader resurrects the application from its dormant state by calling the
Memory Manager to lock and make unpurgeable all its segments.

The Restart call returns the user ID and the starting address of the first segment, as
well as the direct-page/stack information from the pathname table. After all the static
segments are resurrected, the System Loader looks for initialization segments and reload
segments; it executes the former and reloads the latter.

If

If there is a pathnarne table entry for the user ID but not all the segments are in memory,
the System Loader first calls UserShutdown, which purges the user ID from all its tables,
and then performs an lnitiaiLoad from the original load file.

288 V 0 L U M E 2 Devices and GSIOS APPENDIXES

GSIOS Reference (Volume 2)

Errors $1101
$11ffi

APDA Draft

Application not found
User ID error

1/31/89

A P P E N D I X A The System Loader 289

GSIOS Reference (Volume 2) APDA Draft 1/31189

$OE

Description

Parameters

Notes

Errors

UnloadSeg (Unload Segment by Address)

This function unloads the load segment that contains the specified input address.

Name

Input
address

OUtput

useriD

fileNum

segNum

Size Description

Longword An address within the segment to be unloaded

Word

Word
Word

The user ID of the segment
The load-file number of the segment
The load-segment number of the segment

The System Loader calls the Memory Manager to locate the memory block containing the
specified address. If no allocated memory block contains the address, error $1101 is
returned. The user ID associated with the handle of the memory block returned by the
Memory Manager is extracted, and the memory-segment table is scanned to find the user
ID and handle. If an entry is not found, error $1101 is returned.

If the entry in the memory-segment table is for a jump-table segment, the specified
address should be pointing to the jump-table entry for a dynamic segment reference. The
load-file number and segment number of the jump-table entry are extracted.

If the entry in the memory-segment-table is not for a jump-table segment, the load-file
number and segment number of the memory-segment table entry are extracted.

UnloadSeg now calls UnloadSegNum to actually unload the segmenl The results returned
by UnloadSeg can be used as input to other System Loader functions, such
asUnloadSedNum.

$1101 Segment not found

290 V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$OC

Description

Parameters

Notes

Errors

UnloadSegNum (Unload Segment by Number)

This function unloads a specified (by number) load segment that is currently in memory.

Name

Input:

useriD

fileNum

segNum

Output:

None

Size

Word

Word

Word

Description

The user ID of the segment to be unloaded

The load-file number of the segment

The load-segment number of the segment

The System Loader searches the memory-segment table for the input load-file number and
load-segment number. If there is no such entry, error $1101 is returned.

Next the Memory Manager is called to make the memory block purgeable, using the
memory handle in the table entry.

All entries in the jump table referencing the unloaded segment are changed to their
unloaded states.

If the input user ID is 0, the user ID of the current user (in USERID) is assumed.

If both the load-file number and the load-segment number are specified, the specific load
segment is made purgeable whether it is static or dynamic. Note that if a static segment
is unloaded, the application can not be restarted. If either input is 0, only dynamic
segments are made purgeable.

If the input load-segment number is 0, all dynamic segments in the specified load file are
unloaded.

If the input load-file number is 0, all dynamic segments for the user ID are unloaded.

$1101 Segment not found

A P P E N D I X A The System loader 291

GSIOS Reference (Volume 2) APDA Draft 1/31/89

$12

Description

Parameters

Notes

Errors

UserShutDown

This function is called by the controlling program to close down an application that has
just terminated If the specified user ID is 0, the current user ID (USERID) is assumed.

Name

Input:

useriD

flag

OUtput:

useriD

Size

Word
Word

Word

Description

The user ID of the program to shut down
The quit Rag

The user ID of the program that was shut
down

The quit flag corresponds to the quit flag used in the GS/OS Quit call:

• If the quit flag is 0, all memory blocks for the user ID are discarded and all the System
Loader's internal tables are purged of the user ID. The application cannot be restarted.
The user ID is also removed from the system so that it can be reused.

• If the quit flag is $8000, all memory blocks for the user ID are discarded and all the
System Loader's tables (except the pathname table) are purged of the user ID. The
application can be reloaded (but not restarted), because its pathname is remembered.

• If the quit flag is any other value, the memory blocks associated with the specified
user ID (with auxiD cleared) are processed as follows:

o all memory blocks corresponding to dynamic load segments are discarded

o all memory blocks corresponding to static load segments are made purgeable

o all other memory blocks are purged

In addition, all dynamic segment entries in the memory-segment table and all entries
in the jump-table directory for the specified user ID are removed. The application is
now in a dormant state and can be restarted (resurrected by the System Loader very
quickly because all the static segments are still in memory). However, as soon as any
one static segment is purged by the Memory Manager for whatever reason, the
System Loader must reload the application from its original load fde.

None

292 V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Appendix B Object Module Format

Object module format (OMF) is the general file format followed by all object files, library
files, and executable load files that run on the Apple IIGS computer under ProDOS 16 or
GS/OS. It is a general format that allows dynamic loading and unloading of file segments,
both at startup and while a program is running.

Most application writers need not be concerned with the details of OMF. If, however,
you are writing a compiler or other program that must create or modify executable files, or
if you want to understand the details of how the System Loader functions, you need to
understand OMF.

,6, Important This appendix describes Version 2.1 of the Apple IIGS object module
format (OMF). t::.

GSIOS Reference (Volume 2) APDA Draft

What ftles are OMF ftles?

The Apple IIGS object module format (OMF) supports language, linker, library, and loader
requirements, and it is extremely flexible, easy to generate, and fast to load.

Under ProDOS 8 on the Apple lie and Apple lie, there is only one loadable file format, called the
binary file format. This format consists of one absolute memory image along with its destination
address. ProD OS 8 does not have a relocating loader, so that even if you write relocatable code, you
must specify the memory location at which the file is to be loaded.

The Apple IIGS uses a more general format that allows dynamic loading and unloading of file
segments while a program is running and that supports the various needs of many languages and
assemblers. Apple IIGS linkers (supplied with development environments) and the System Loader
fully support relocatable codei in general, you do not specify a load address for an Apple IIGS
program, but let the loader and Memory Manager determine where to load the program.

Four kinds of files use object module format: object files, library files, load files, and run-time library
files.

• Object flies are the output from an assembler or compiler and the input to a linker. Object
files must be fast to process, easy to create, independent of the source language, and able to
support libraries in a convenient way. In some development environments object files also
support segmentation of code. They support both absolute and relocatable program
segments.

Apple IIgs object files contain both machine-language code and relocation information for use
by the linker. Object files cannot be loaded directly into memoryi they must first be processed
by the linker to create load files.

• library files contain general object segments that a linker can find and extract to resolve
references unresolved in the object files. Only the code needed during the link process is
extracted from the library file.

• Load ftles, which are the output of a linker, contain memory images that a loader loads into
memory. Load files must be very fast to process. Apple HGS load files contain load segments
that can be relocatable, movable, dynamically loadable, or have any combination of these
attributes. Shell applications are load files that can be run from a shell program without
requiring the shell to shut down. Startup load files are load files that GS/OS loads during its
startup.

Load files are created by the linker from object files and library files. Load files can be loaded into
memory by the System Loaderi they cannot be used as input to the linker.

V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

• Run-time library files are load files containing general routines that can be shared between
applications. The routines are contained in file segments that can be loaded as needed by the
System Loader and then purged from memory when they are no longer needed. The run-time
library files are also input to the linker which scans them for unresolved references. However,
segments that satisfy references are not included in the link.

All four types of files consist of individual components called segments. Each file type uses a
subset of the full object module format. Each compiler or assembler uses a subset of the format
depending on the requirements and complexity of the language.

Some common GS/OS file types related to program files are listed in Table B-1.

• Table B-1 GS/OS program-file types

Hex. Dec. Mnemonk Meaning

$BO 176 SRC Source
$B1 177 OBJ Object
$B2 178 LIB Library
$B3 179 S16 GS/OS or ProDOS 16 application
$B4 18) RTL Run-time library
$B5 181 EXE Shell application
$B6 182 PIF Permanent initialization
$B7 183 TIF Temporary initialization
$B8 184 NDA New desk accessory
$B9 185 CDA Classic desk accessory
$BA 1~ TOL Tool set file

1/31/89

A P P E N D I X B Object Module Format 295

GSIOS Reference (Volume 2) APDA Draft

The rest of this appendix defines object module format First, the general format specification for
all OMF fdes is described. Then, the unique characteristics of each of the following file types are
discussed:

• object files

• library files

• load files

• run-time library files

• shell applications

General format for OMF fdes

Each OMF file contains one or more segments. Each segment consists of a segment header and a
segment body. The segment header contains general information about the segment, such as its
name and length. The segment body is a sequence of records; each record consists of either
program code or information used by a linker or by the System Loader. Figure B-1 represents the
structure of an OMF file.

• Figure B-1 The structure of an OMF file

• • •

Segment 1 Header

Segment 1

Segment 2 Header

Segment 2

• • •
Segment n Header

Segment n

• • •

V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31189

GSIOS Reference (Volume 2) APDA Draft

Each segment in an OMF file contains a set of records that provide relocation infonnation or
contain code or data. If the file is an object file, each segment includes the information the linker
needs to generate a relocatable load segment; the linker processes each record and generates a load
file containing load segments. If the file is a load file, each segment consists of a memory image
followed by a relocation dictionary; the System Loader loads the memory image and then processes
the information in the relocation dictionary. (Load file segments on the Apple IIGS are usually
relocatable.) Relocation dictionaries are discussed in the section •toad Files,•later in this appendix.

Segments in object files can be combined by the linker into one or more segments in the load file.
(See the discussion of the LOADNAME fteld in the section •Segment Header,• later in this appendix.)
For instance, each subroutine in a program can be compiled independently into a separate (object)
code segment; then the linker can be told to place all the code segments into one load segment.

Segment types and attributes

Each OMF segment has a segment type and can have several attributes. The following segment
types are defined by OMF:

• code segment

• data segment

• jump-table segment

• pathname segment

• library dictionary segment

• initialization segment

• direct-page/stack segment

The following segment attributes are defined by the object module format:

• reloadable or not reloadable

• absolute-bank or not restricted to a particular bank

• loadable in special memory or not loadable in special memory

• position-independent or position-dependent

• private or public

• static or dynamic

• bank-relative or not bank-relative

1/31/89

A P P E N D I X B Object Module Format 1!/7

GSIOS Reference (Volume 2) APDA Draft

• skipped or not

Code and data segments are object segments provided to support languages (such as assembly
language) that distinguish program code from data. If a programmer specifies a segment by using
a PROC assembler directive, the linker flags it as a code segment; if the programmer uses a RECORD
directive instead, the linker flags it as a data segment

• Jump-table segments and pathname segments are load segments that facilitate the
dynamic loading of segments; they are described in the section "Load Files, • later in this
appendix.

• Ubrary didionary segments allow the linker to scan library files quickly for needed
segments; they are described in the section "Library Files, • later in this appendix.

• Initialization segments are optional parts of load files that are used to perform any
initialization required by the application during an initial load. If used, they are loaded and
executed immediately as the System Loader encounters them and are re-executed any time the
program is restarted from memory. Initialization segments are described in the section "Load
Files,•Jater in this appendix.

• Direct-page/stack segments are load segments used to preset the location and contents of
the direct page and stack for an application. See the section "Direct-Page/Stack Segments,•Jater
in this appendix for more information.

• Reload segments are load segments that the loader must reload even if the program is
restartable and is restarted from memory. They usually contain data that must be restored to
its initial values before a program can be restarted.

• Absolute-bank segments are load segments that are restricted to a specified bank but that
can be relocated within that bank. The ORG f~eld in the segment header specifies the bank to
which the segment is restricted.

• Loadable in special memory means that a segment can be loaded in banks $00, $01, $EO, and
$El. Because these are the banks used by programs running under ProDOS 8 in standard-Apple
II emulation mode, you may wish to prevent your program from being loaded in these banks
so that it can remain in memory while programs are run under ProDOS 8.

• Position-independent segments can be moved by the Memory Manager during program
execution if they have been unlocked by the program.

• A private code segment is a code segment whnse name is available only to other code
segments within the same object file. (The labels within a code segment are local to that
segment.)

298 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31189

GSIOS Reference (Volume 2) APDA Draft

• A private data segment is a data segment whose labels are available only to code segments in
the same object file.

• Static segments are load segments that are loaded at program execution time and are not
unloaded during execution; dynamic segments are loaded and unloaded during program
execution as needed.

• Bank-relative segments must be loaded at a specified address within any bank. The ORG
field in the segment header specifies the bank-relative address (the address must be less than
$1(XXX)).

• Skip segments will not be linked by the Linker or loaded by the System Loader. However, all
references to global definitions in a Skip object segment will be processed by a Linker as if the
object segment

• A segment can have only one segment type but can have any combination of attributes. The
segment types and attributes are specified in the segment header by the KIND segment-header
f~eld, described in the next section.

Segment header

Each segment in an OMF file has a header that contains general information about the segment,
such as its name and length. Segment headers make it easy for the linker to scan an object file for
the desired segments, and they allow the System Loader to load individual load segments. The
format of the segment header is illustrated in Figure B-2. A detailed description of each of the fields
in the segment header follows the figure.

1/31/89

A P P E N D I X B Object Module Format 'm

GSIOS Reference (Volume 2) APDA Draft

• Figure B-2 The format of a segment header

r-
1-
1-

1-
r-
r-

r-
r-
r-

$10

-
$14

$16

$18

$1C

$ll)

$22

$24

r-
r-

$18 r-

r-
SZA r-

1-
1-

DISPNAME 1-
r-

r
r
r-

BYTECNT

-
RESSPC

LENGTK

undefined
Ll\BLEN
NOMLEN

VERSION

Bl\N!(SI ZE

KIND

undefined -
ORG

ALIGN

NUMSEX
undefined

SEGNUM

ENTRY

DISPNAME

DISPDATA

tempOrq

LOAD NAME

DISPNAME+~ r-
block Count

DISPDATAtL. _____ _.j

300 V 0 L U M E 2 Devices and GS/OS

1/31/89

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31189

.6. Important

BYTECNT

RESSPC

LENGm

LAB LEN

NUMLEN

VERSION

In future versions of the OMF, additional fields may be added to the segment
header between the DISPDATA and LOADNAME fields. To ensure that
future expansion of the segment header does not affect your program,
always use DISPNAME and DISPDATA instead of absolute offsets when
referencing LOAD NAME, SEGNAME, and the start of the segment body, and
always be sur.e that all undefined fields are set to 0. L'::..

A 4-byte field indicating the number of bytes in the file that the segment requires. This
number includes the segment header, so you can calculate the starting Mark of the next
segment from the starting Mark of this segment plus BYfECNT. Segments need not be
aligned to block boundaries.

A 4-byte field specifying the number of bytes of zeros to add to the end of the segment.
This field can be used in an object segment instead of a large block of zeros at the end of
the segment. This field duplicates the effect of a DS record at the end of the segment.

A 4-byte field specifying the memory size that the segment will require when loaded. It
includes the extra memory specifted by RESSPC.

LENGTH is followed by one undefined byte, reserved for future changes to the segment
header specification.

A 1-byte field indicating the length, in bytes, of each name or label record in the segment
body. If LABLEN is 0, the length of each name or label is specified in the first byte of the
record (that is, the first byte of the record specifies how many bytes follow). LABLEN
also specifies the length of the SEGNAME field of the segment header, or, if LAB LEN is 0,
the first byte of SEGNAME specifies how many bytes follow. (The LOAD NAME field
always has a length of 10 bytes.) Fixed-length labels are always left justified and padded
with spaces.

A 1-byte field indicating the length, in bytes, of each number field in the segment body.
This field is 4 for the Apple IIGS.

A 1-byte field indicating the version number of the object module format with which the
segment is compatible. At the time of publication, this field is set to 2 for the current
object module format.

A P P E N D I X B Object Module Format 301

GSIOS Reference (Volume 2) APDA Draft 1131/89

REVISION

BANKSIZE

KIND

A 1-byte field indicating the revision number of the object module format with which the
segment is compatible. Together with the VERSION field, REVISION specifies the OMF
compatibility level of this segment. At the time of publication, this field is set to 1 for the
current object module format.

A 4-byte binary number indicating the maximum memory-bank size for the segment. If
the segment is in an object file, the linker ensures that the segment is not larger than this
value. (The linker returns an error if the segment is too large.) If the segment is in a load
file, the loader ensures that the segment is loaded into a memory block that does not
cross this boundary. For Apple IIGS code segments, this field must be $00010000,
indicating a 64K bank size. A value of 0 in this fteld indicates that the segment can cross
bank boundaries. Apple IIGS data segments can use any number from $00 to $00010000 for
BANKSIZE.

A 2-byte field specifying the type and attributes of the segment. The bits are defined as
shown in Table B-2. The column labeled Where Described indicates the section in this
appendix where the particular segment type or attribute is discussed.

302 V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31189

• Table B-2

BJt(s) Values

0-4

$00
$01
$02
$04
$00
$10
$12

10-15

8 if= 1
9 if= 1
10 if= 1
11 if= 1
12 if= 0
13 if= 1
14 if= 1
15 if=O

KIND field definition

Meaning Where de8cribcd

Segment Type subfleld

oode Segment Types and Attributes
data Segment Types and Attributes
jump-table segment Load Files
Pathname segment Segment Types and Attributes
Library dictionary segment Library Files
Initialization segment Load Files
Direct-page/stack segment Direct-Page/Stack Segments

Segment Attributes btts

Bank-relative segment Segment Types and Attributes
Skip segment Segment Types and Attributes
Reload segment Segment Types and Attributes
Absolute-bank segment Segment Types and Attributes
Can be loaded in special memory Segment Types and Attributes
Position independent Segment Types and Attributes
Private Segment Types and Attributes
Static; otherwise dynamic Segment Types and Attributes

A segment can have only one type but any combination of attributes. For example, a
position-independent dynamic data segment has KIND = ($A001).

!:::. Important If segment KINDs are specified in the source file, and the KINDs of the
object segments placed in a given load segment are not all the same, the
segment KIND of the first object segment determines the segment kind
of the entire load segment. t::.

KIND is followed by two undefined bytes, reserved for future changes to the segment
header specification.

A P P E N D I X B Object Module Format 303

GSIOS Reference (Volume 2) APDA Draft 1/31/89

ORG

AliGN

NUMSEX

SEGNUM

ENTRY

DISPNAME

DISPDATA

A 4-byte field indicating the absolute address at which this segment is to be loaded in
memory, or, for an absolute-bank segment, the bank number. A value of 0 indicates that
this segment is relocatable and can be loaded anywhere in memory. A value of 0 is normal
for the Apple IIGS.

A 4-byte binary number indicating the boundary on which this segment must be aligned.
For example, if the segment is to be aligned on a page boundary, this field is $00000100; if
the segment is to be aligned on a bank boundary, this field is $00010000. A value of 0
indicates that no alignment is needed. For the Apple IIGS, this field must be a power of 2,
less than or equal to $00010000. Currently, the loader supports only values of 0, $00000100,
and $00010000; for any other value, the loader uses the next higher supported value.

A 1-byte field indicating the order of the bytes in a number field. If this field is 0, the least
significant byte is first. If this field is 1, the most significant byte is first This field is set
to 0 for the Apple IIGS.

NUMSEX is followed by one undefined byte, reserved for future changes to the segment
header specification.

A 2-byte field specifying the segment number. The segment number corresponds to the
relative position of the segment in the file (starting with 1). This field is used by the
System Loader to search for a specific segment in a load file.

A 4-byte field indicating the offset into the segment that corresponds to the entry point
of the segment.

A 2-byte field indicating the displacement of the LOADNAME field within the segment
header. Currently, DISPNAME = 44. DISPNAME is provided to allow for future additions
to the segment header; any new fields will be added between DISPDATA and
LOADNAME. DISPNAME allows you to reference LOADNAME and SEGNAME no matter
what the actual size of the header.

A 2-byte field indicating the displacement from the start of the segment header to the
start of the segment body. DISPDATA is provided to allow for future additions to the
segment header; any new fields will be added between DISPDATA and LOADNAME.
DISPDATA allows you to reference the start of the segment body no matter what the
actual size of the header.

V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31189

tempORG A 4-byte field indicating the temprorary origin of the Object segment A nonzero value
indicates that all references to globals within this segment will be interpreted as if the
Object segment started at that location. However, the actuallood address of the Object
segment is still determined by the ORG fJeld.

LOAD NAME

SEGNAME

Segment body

A 10-byte field specifying the name of the load segment that will contain the code
generated by-the linker for this segment. More than one segment in an object file can be
merged by the linker into a single segment in the load file. This f~eld is unused in a load
segment. The position of LOAD NAME may change in future revisions of the OMF;
therefore, you should always use DISPNAME to reference LOADNAME.

A field that is LAB LEN bytes long, and that specifies the name of the segment. The
position of SEGNAME may change in future revisions of the OMF; therefore, you should
always use DISPNAME to reference SEGNAME.

The body of each segment is composed of sequential records, each of which starts with a 1-byte
operation code. Each record contains either program code or information for the linker or System
Loader. All names and labels included in these records are LABLEN bytes long, and all numbers and
addresses are NUMLEN bytes long (unless otherwise specified in the following definitions). For the
Apple IIGS, the least significant byte of each number field is f~rst, as specified by NUMSEX.

Several of the OMF records contain expressions that have to be evaluated by the linker. The
operation and syntax of expressions are described in the next section, •Expressions. • If the
description of the record type does not explicitly state that the opcode is followed by an
expression, then an expression cannot be used. Expressions are never used in load segments.

The operation codes and segment records are described in this section, listed in order of the
opcodes. Table B-3 provides an alphabetical cross-reference between segment record types and
opcodes. Ubrary files consist of object segments and so can use any record type that can be used in
an object segment Table B-3 also lists the segment types in which each record type can be used.

A P P E N 0 I X B Object Module Format 305

GSIOS Reference (Volume 2) APDA Draft

• Table B-3 Segment-body record types

Record type Opcoclc Found Jn wbat qment types

ALIGN $a> object
BEXPR $ED object
ciNTERSEG $F6 lood
CONST $01-$DF object
cRELOC $F5 lood
OS $Fl all
END $00 all
ENTRY $F4 run-time library dictionary
EQU $R) object
EXPR $EB object
GEQU $E7 object
GLOBAL $F.6 object
INTERSEG $E3 lood
LCONST $F2 all
LEXPR $F3 object
LOCAL $EF object
MEM $F8 object
ORG $El object
RELEXPR $EE object
RELOC $E2 lood
STRONG $ES object
SUPER $f7 lood
USING $E4 object
ZEXPR $EC object

The rest of this section defines each of the segment-body record types. The record types are listed
in order of their opcodes.

306 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft 1/31189

Record type Opcode Explanation

END

CONST

ALIGN

ORG

RELOC

$00 This record indicates the end of the segment.

$01-$DF This record contains absolute data that needs no relocation. The operation code
specifies how many bytes of data follow.

$EO

$El

$E2

This record contains a number that indicates an alignment factor. The linker inserts as
many zero bytes as necessary to move to the memory boundary indicated by this
factor. The value of this factor is in the same format as the ALIGN field in the
segment header and cannot have a value greater than that in the ALIGN field. ALIGN
must equal a power of 2.

This record contains a number that is used to increment or decrement the location
counter. If the location counter is incremented (ORG is positive), zeros are inserted to
get to the new address. If the location counter is decremented (ORG is a complement
negative number of 2), subsequent code overwrites the old code.

This is a relocation record, which is used in the relocation dictionary of a load segment.
It is used to patch an address in a load segment with a reference to another address in
the same load segment. It contains two 1-byte counts followed by two offsets.
The first count is the number of bytes to be relocated. The second count is a bit-shift
operator, telling how many times to shift the relocated address before inserting the
result into memory. If the bit-shift operator is positive, the number is shifted to the
left, filling vacated bit positions with zeros (arithmetic shift left). If the bit-shift
operator is (two's complement) negative, the number is shifted right (logical shift
right) and zero-filled.

A P P E N D I X 8 Object Module Fonnat 3ff7

GSIOS Reference (Volume 2) APDA Draft 1/31/89

308

The first offset gives the location (relative to the start of the segment) of the first
byte of the number that is to be patched (relocated). The second offset is the
location of the reference relative to the start of the segment; that is, it is the value
that the number would have if the segment containing it started at address $000000.
For example, suppose the segment includes the following lines:

35 LABEL • • •
•
•
•

400 LOA IABEL+4

The RELOC record contains a patch to the operand of the LDA instruction. The value
of the patch is IABEL+4, so the value of the last field in the RELOC record is $39-the
value the patch would have if the segment started at address $000000. LABEL+4 is
two bytes long; that is, the number of bytes to be relocated is 2. No bit-shift
operation is needed. The location of the patch is 1025 ($401) bytes after the start of
the segment (immediately after the LDA, which is one byte).

The RELOC record for the number to be loaded into the A register by this statement
would therefore look like this (note that the values are stored low-byte first, as
specified by NUMSEX):

This sequence corresponds to the following values:

$E2
$02

$00

$00roi01

$00XXX)39

V 0 L U M E 2 Devices and GS/OS

operation code
number of bytes to be relocated
bit-shift operator
offset of value from start of segment
value if segment started at $000000

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31189

INTERSEG $E3

+ Illegal expressions: Certain types of arithmetic expressions are illegal in a
relocatable segment; specifically, any expression that the assembler
cannot evaluate (relative to the start of the segment) a cannot be used.
The expression I.AB 14 can be evaluated, for example, since the RELOC
record includes a bit-shift operator. The expression I.AB 14+4 cannot be
used, however, because the assembler would have to know the absolute
value of I.AB to perform the bit-shift operation before adding 4 to it.
Similarly, the value of I.AB'4 depends on the absolute value of I.AB and
cannot be evaluated relative to the start of the segment; so
multiplication is illegal in expressions in relocatable segments.

This record is used in the relocation dictionary of a load segment. It contains a patch
to a long call to an external reference; that is, the INTERSEG record is used to patch an
address in a load segment with a reference to another address in a different load
segment. It contains two 1-byte counts followed by an offset, a 2-byte file number,
a 2-byte segment number, and a second offset. The first count is the number of
bytes to be relocated, and the second count is a bit-shift operator, telling how many
times to shift the relocated address before inserting the result into memory. If the
bit-shift operator is positive, the number is shifted to the left, filling vacated bit
positions with zeros (arithmetic shift left). If the bit-shift operator is (two's
complement) negative, the number is shifted right (logical shift right) and zero-filled.

The first offset is the location (relative to the start of the segment) of the (first byte
of the) number that is to be relocated. If the reference is to a static segment, the file
number, segment number, and second offset correspond to the subroutine
referenced. (The linker assigns a file number to each load file in a program. This
feature is provided primarily to support run-time libraries. In the normal case of a
program having one load file, the file number is 1. The load segments in a load file are
numbered by their relative locations in the load file, where the first load segment is
number 1.) If the reference is to a dynamic segment, the file and segment numbers
correspond to the jump-table segment, and the second offset corresponds to the call
to the System Loader for that reference.
For example, suppose the segment includes an instruction such as

JSL EXT

The label EXT is an external reference to a location in a static segment.

A P P E N D I X B Object Module Format 309

GSIOS Reference (Volume 2) APDA Draft 1/31/89

310

If this instruction is at relative address $720 within its segment and EXI' is at relative
address $345 in segment $000A in fde $0001, the linker creates an INTERSEG record in
the relocation dictionary that looks like this (note that the values are stored low-byte
first, as specified by NUMSEX):

E3030021 070000>1 OOOA0045 03(XXX)

This sequence corresponds to the following values:

$E3
$03
$00
$00XXJ721
$00)1

$000A
SOOXX>345

operation code
number of bytes to be relocated
bit-shift operator
offset of instruction's operand
file number
segment number
offset of subroutine referenced

When the loader processes the relocation dictionary, it uses the first offset to find the
JSL and patches in the address corresponding to the file number, segment number, and
offset of the referenced subroutine.

If the JSL is to an external reference in a dynamic segment, the INTERSEG records refer
to the file number, segment number, and offset of the call to the System Loader in
the jump-table segment.

If the jump-table segment is in segment 6 of file 1, and the call to the System Loader is
at relative location $2A45 in the jump-table segment, then the INTERSEG record looks
like this (note that the values are stored low-byte first, as specified by NUMSEX):

E3030021 07000001 <IDXX>45 2A(XXX)

V 0 L U ME 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31/89

USING $E4

STRONG $ES

This sequence corresponds to the following values:

$E3
$03
$00
$00XXJ721
$00)1

$(W)

$(XXX)2A45

operation code
number of bytes to be relocated
bit-shift operator
offset of instruction's operand
file number of jump-table segment
segment number of jump-table segment
offset of call to System Loader

The jumJrtable segment entry that corresponds to the external reference EXT
contains the following values:

User ID
$00)1

$00)5

$OOXXl200

file number
segment number
offset of instruction call to System Loader

INTERSEG records are used for any long-address reference to a static segment.

See the section "JumJr Table Segment, • later in this appendix, for a discussion of the
function of the jump-table segment.

This record contains the name of a data segment. After this record is encountered,
local labels from that data segment can be used in the current segment.

This record contains the name of a segment that must be included during linking,
even if no external references have been made to it. If you are using the APW

assembler, the following statement generates a STRONG record:
DC R I xxxx I

where .xxxx is label.

A P P E N D I X B Object Module Format 311

GSIOS Reference (Volume 2) APDA Draft 1/31/89

GLOBAL

312

$E6 This record contains the name of a global label followed by three attribute fields. The
label is assigned the current value of the location counter. The first attribute field is
two bytes long and gives the number of bytes generated by the line that defined the
label. If this fteld is $FFFF, it indicates that the actual length is unknown but that it is
greater than or equal to $FFFF. The second attribute field is one byte long and
specifies the type of operation in the line that defmed the label. The following type
attributes are defined (uppercase ASCII characters with the high-bit ofO:

A address-type DC statement
B Boolean-type DC statement
c character-type DC statement
D double-precision floating-point-type DC statement
F floating-point-type DC statement
G EQU or GEQU statement
H hexadecimal-type DC statement
I integer-type DC statement
K reference-address-type DC statement
L soft-reference-type DC statement
M instruction
N assembler directive
0 ORG statement
p ALIGN statement
s DS statement
X arithmetic symbolic parameter
y Boolean symbolic parameter
z character symbolic parameter

The third attribute field is one byte long and is the private flag (1 = private). This flag
is used to designate a code or data segment as private. (See the section "Segment
Types and Attributes,• earlier in this appendix, for a definition of private segments.)

V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31189

GEQU $E7

MEM

EXPR $EB

ZEXPR $EC

BEXPR $ED

RELEXPR $EE

This record contains the name of a global label followed by three attribute f~elds and
an expression. The label is given the value of the expression. The ftrst attribute field is
2 bytes long and gives the number d bytes generated by the line that defined the
label. The second attribute f~eld is 1 byte long and specifies the type of operation in
the line that defined the label, as listed in the discussion of the GLOBAL record. The
third attribute f~eld is 1 byte long and is the private flag (1 = private). This flag is used
to designate a code or data segment as private. (See the section •Segment Types and
Attributes,• earlier in this appendix, for a definition of private segments.)

This record contains two numbers that represent the starting and ending addresses of

a range of memory that must be reserved. If the size of the numbers is not specified,
the length of the numbers is defmed by the NUMLEN field in the segment header.

This record contains a 1-byte count followed by an expression. The expression is
evaluated, and its value is truncated to the number of bytes specified in the count.
The order of the truncation is from most significant to least significant.

This record contains a 1-byte count followed by an expression. ZEXPR is identical to
EXPR, except that any bytes truncated must be all zeros. If the bytes are not zeros,
the record is flagged as an error.

This record contains a 1-byte count followed by an expression. BEXPR is identical to
EXPR, except that any bytes truncated must match the corresponding bytes of the
location counter. If the bytes don't match, the record is flagged as an error. This
record allows the linker to make sure that an expression evaluates to an address in the
current memory bank.

This record contains a 1-byte length followed by an offset and an expression. The
offset is NUMLEN bytes long. RELEXPR is used to generate a relative branch value
that involves an external location. The length indicates how many bytes to generate
for the instruction, the offset indicates where the origin of the branch is relative to
the current location counter, and the expression is evaluated to yield the destination
d the branch. For example, a BNE LOC instruction, where LOC is external, generates
this record. For the 6502 and 65816 microprocessors, the offset is 1.

A P P E N D I X B Object Module Format 313

GSIOS Reference (Volume 2) APDA Draft_ 1/31189

LOC.AL

EQU

DS

LCONST

314

$EF

$FO

$Fl

$F2

This record contains the name of a local label followed by three attribute ftelds. The
label is assigned the value of the current location counter. The first attribute field is
two bytes long and gives the number of bytes generated by the line that defined the
label. The second attribute fteld is one byte long and specifies the type of operation in
the line that defined the label, as listed in the discussion of the GLOBAL record. The
third attribute field is one byte long and is the private flag (1 .. private). This flag is
used to designate a code or data segment as private. (See the section "Segment Types
and Attributes, • earlier in this appendix, for a definition of private segments.)

Some linkers (such as the APW Linker) ignore local labels from code segments and
recognize local labels from other data segments only if a USING record was processed.
See the preceding discussion of the USING statement

This record contains the name of a local label followed by three attribute ftelds and an
expression. The label is given the value of the expression. The first attribute field is
two bytes long and gives the number of bytes generated by the line that defined the
label. The second attribute fteld is one byte long and specifies the type of operation in
the line that defined the label, as listed in the discussion of the GLOBAL record. The
third attribute field is one byte long and is the private flag (1 = private). This flag is
used to designate a code or data segment as private. (See the section "Segment Types
and Attributes,• earlier in this appendix, for a definition of private segments.)

This record contains a number indicating how many bytes of zeros to insert at the
current location counter.

This record contains a 4-byte count followed by absolute code or data. The count
indicates the number of bytes of data. The LCONST record is similar to CONST except
that it allows for a much greater number of data bytes. Each relocatable load segment
consists of LCONST records, DS records, and a relocation dictionary. See the
discussions on INTERSEG records, RELOC records, and the relocation dictionary for
more information.

V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31189

LEXPR $F3

ENTRY $F4

cRELOC $F5

This record contains a 1-byte count followed by an expression. The expression is
evaluated, and its value is truncated to the number of bytes specified in the count.
The order of the truncation is from most significant to least significant.

Because the LEXPR record generates an intersegment reference, only simple
expressions are allowed in the expression f~eld, as follows:

LABEL ± const
LABEL I ± const
(LABEL ± const) I ± const

In addition, if the expression evaluates to a single label with a fiXed, constant offset,
and if the label is in another segment and that segment is a dynamic code segment,
then the linker creates an entry for that label in the jump-table segment. (The jump
table segment provides a mechanism to allow dynamic loading of segments as they
are needed-see the section "Load Files, "later in this appendix.)

This record is used in the run-time library entry dictionary; it contains a 2-byte number
and an offset followed by a label. The number is the segment number. The label is a
code-segment name or entry, and the offset is the relative location within the load
segment of the label. Run-time library entry dictionaries are described in the section
"Run-Time Library Files," later in this appendix.

This record is the compressed version of the RELOC record. It is identical to the RELOC
record, except that the offsets are two bytes long rather than four bytes. The
cRELOC record can be used only if both offsets are less than $10000 (65536). The
following example compares a RELOC record and a cRELOC record for the same
reference:

A P P E N D I X B Object Module Ponnat 315

GS/OS Reference (Volume 2) APDA Draft 1/31/89

c!NTERSEG $F6

RELOC cRELOC
$E2 $F5
$02 $02

$00 $00
$00XX)401 $0401
$OCOOX)39 $0039

(11 bytes) (7 bytes)

For an explanation of each line of these records, see the preceding discussion of the
RELOC record.

This record is the compressed version of the INTERSEG record. It is identical to the
INTERSEG record, except that the offsets are two bytes long rather than four bytes,
the segment number is one byte rather than two bytes, and this record does not
include the 2-byte file number. The dNTERSEG record can be used only if both
offsets are less than $10000 (65536), the segment number is less than 256, and the file
number associated with the reference is 1 (that is, the initial load file). References to
segments in run-time library files must use INTERSEG records rather than clNTERSEG
records.

The following example compares an INTERSEG record and a clNTERSEG record for
the same reference:

INTERSEG
$E3
$03
$00
$(XXXX)?:!)

$00:)1

$00)A

$00XX)345

(15 bytes)

ciNTERSEG
$F6
$03
$00
$07:!)

$0A

$0345

(8 bytes)

For an explanation of each line of these records, see the preceding discussion of the
INTERSEG record.

316 V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31/89

SUPER $F7 This is a supercompressed relocation-dictionary record. Each SUPER record is the
equivalent of many cRELOC, c!NTERSEG, and INTERSEG records. It contains a 4-byte
length, a 1-byte record type, and one or more subrecords of variable size, as follows:

opcode:
length:
type:
subrecords:

$F7
number of bytes in the rest of the record (4 bytes)
0-37 (1 byte)
(variable size)

When SUPER records are used, some of the relocation information is stored in the
LCONSf record at the address to be patched.

The length field indicates the number of bytes in the rest of the SUPER record (that is,
the number of bytes exclusive of the opcode and the length field).

The type byte indicates the type of SUPER record. There are 38 types of SUPER
record:

Value
0
1

2-)7

SUPER record type
SUPER RELOC2
SUPER RELOC3
SUPERINTERSEG1-SUPERINTERSEG36

SUPER RELOC2: This record can be used instead of cRELOC records that have a bit
shift count of zero and that relocate two bytes.

SUPER RELOC3: This record can be used instead of cRELOC records that have a bit
shift count of zero and that relocate three bytes.

SUPER INTERSEG 1: This record can be used instead of c!NTERSEG records that have
a bit-shift count of zero and that relocate three bytes.

SUPER INTERSEG2 through SUPER INTERSEG 12: The number in the name of the
record refers to the file number of the file in which the record is used. For example, to
relocate an address in file 6, use a SUPER INTERSEG6 record. These records can be used
instead of INTERSEG records that meet the following criteria:

A P PEND I X B Object Module Format 317

GS/OS Reference (Volume 2) APDA Draft 1131/89

318

• Both offsets are less than $10000
• The segment number is less than 256
• The bit-shift count is 0
• The record relocates 3 bytes
• The file number is from 2 through 12

SUPER INTERSEG13 through SUPER INTERSEG24: These records can be used instead
of ciNTERSEG records that have a bit-shift count of zero, that relocate two bytes,
and that have a segment number of n- 12, where n is a number from 13 to 24. For
example, to replace a ciNTERSEG record in segment 6, use a SUPER INTERSEG18
record

SUPER INTERSEG25 through SUPER INTERSEG36: These records can be used instead
of ciNTERSEG records that have a bit-shift count of $FO (-16), that relocate two
bytes, and that have a segment number of n - 24, where n is a number from 25 to 36.
For example, to replace a ciNTERSEG record in segment 6, use a SUPER INTERSEG30
record.

Each subrecord consists of either a 1-byte offset count followed by a list of 1-byte
offsets, or a 1-byte skip count.

Each offset count indicates how many offsets are listed in this subrecord. The
offsets are one byte each. Each offset corresponds to the low byte of the first (2-
byte) offset in the equivalent INTERSEG, cRELOC, or ciNTERSEG record. The high
byte of the offset is indicated by the location of this offset count in the SUPER
record: Each subsequent offset count indicates the next 256 bytes of the load
segment. Each skip count indicates the number of 256-byte pages to skip; that is, a
skip count indicates that there are no offsets within a certain number of 25&-byte
pages of the load segment.

For example, if patches must be made at offsets 0020, 0030, 0140, and 0550 in the load
segment, the subrecords would include the following fields:

22030

140

skip-3

V 0 L U M E 2 Devices and GS/OS

the first 25&-byte page of the load segment has two patches: one
at offset 20 and one at offset 30

the second 25&-byte page has one patch at offset 40

skip the next three 256-byte pages

APPENDIXES

GS/OS Reference (Volume 2) APDA Draft 1/31/89

150 the sixth 256-byte page has one patch at offset 50

In the actual SUPER record, the patch count byte is the number of offsets minus one,
and the skip count byte has the high bit set A SUPER INTERSEG 1 record with the
offsets in the preceding example would look like this:

$F7 opcode

sooxxxm number of bytes in the rest of the record

$02 INTERSEG 1-type SUPER record

$01 the first 256-byte page has two patches

$~ patch the load segment at offset $0020

$~ patch the segment at $0030

$00 the second page has one patch

$40 patch the segment at $0140

$83 skip the next three 256-byte pages

$00 the sixth page has one patch

$50 patch the segment at $0550

A comparison with the RELOC record shows that a SUPER RELOC record is missing the
offset of the reference. Similarly, the SUPER INTERSEG 1 through SUPER
INTERSEG12 records are missing the segment number and offset of the subroutine
referenced The offsets (which are two bytes long) are stored in the LCONST record
at the •to be patched• location. For the SUPER INTERSEGl through 12 records, the
segment number is stored in the third byte of the •to be patched• location.

For example, if the example given in the discussion of the INTERSEG record were
instead referenced through a SUPER INTERSEG 1 record, the value $0345 (the offset of
the subroutine referenced) would be stored at offset $0721 in the load segment (the
offset of the instruction's operand.) The segment number ($0A) would be stored at
offset $0723, as follows:

45030A

A P P E N D I X B Object Module Fonnat 319

GSIOS Reference (Volume 2) APDA Draft 1/31/89

General $FB This record contains a 4-byte count indicating the number of bytes of data that
follow. This record type is reserved for use by Apple Computer, Inc ..

Experimental $FC-$FF These records contain a 4-byte count indicating the number of bytes of data that
follow. These record types are reserved by Apple Computer for use in system
development.

Expressions

Several types of OMF records contain expressions. Expressions form an extremely flexible reverse
Polish stack language that can be evaluated by the linker to yield numeric values such as addresses
and labels. Each expression consists of a series of operators and operands together with the values
on which they act.

An operator takes one or two values from the evaluation stack, performs some mathematical
or logical operation on them, and places a new value onto the evaluation stack. The final value on
the evaluation stack is used as if it were a single value in the record. Note that this evaluation stack
is purely a programming concept and does not relate to any hardware stack in the computer. Each
operation is stored in the object module file in postfix form; that is, the value or values come first,
followed by the operator. For example, since a binary operation is stored as VaJuel Value2
Operator, the operation Numl - Num2 is stored as

Num1Num2-

The operators are as follows:

• Binary math operators: These operators take two numbers (as two's-complement signed
integers) from the top of the evaluation stack, perform the specified operation, and place the
single-integer result back on the evaluation stack. The binary math operators include

$01 addition (+)

$02 subtraction (-)
$03 multiplicati~n (')
$04 division (/, DIV)

$05 integer remainder (//,MOD)
$(Jl bit shift («, »)

320 V 0 L U M E 2 Devices and GS/OS APPENDIXES

GS/OS Reference (Volume 2) APDADrafl

The subtraction operator subtracts the second number from the first number. The division
operator divides the first number by the second number. The integer-remainder operator
divides the first number by the second number and returns the unsigned integer remainder to
the stack. The bit-shift operator shifts the first number by the number of bit positions
specified by the second number. If the second number is positive, the first number is shifted
to the left, filling vacated bit positions with zeros (arithmetic shift left). If the second number
is negative, the first number is-shifted right, filling vacated bit positions with zeros Oogical
shift right).

• Unary math operator: A unary math operator takes a number as a two's-complernent signed
integer from the top of the evaluation stack, performs the operation on it, and places the
integer result back on the evaluation stack. The only unary math operator currently available is

sa> negation (-)

• Comparison operators: These operators take two numbers as two's-complement signed
integers from the top of the evaluation stack, perform the comparison, and place the single
integer result back on the evaluation stack. Each operator compares the second number in the
stack (TOS - 1) with the number at the top of the stack (TOS). If the comparison is TRUE, a 1
is placed on the stack; if FALSE, a 0 is placed on the stack. The comparison operators include

~ less than or equal to (<=, S)

SOD greater than or equal to (>=, ~)
$0E n<X equal (<>, :;!, !=)
$OF less than (<)

$10 greater than (>)

$11 equal to (= or ==)

• Binary logical operators: These operators take two numbers as Boolean values from the
top of the evaluation stack, perform the operation, and place the single Boolean result back on
the stack. Boolean values are defined as being FALSE for the number 0 and TRUE for any other
number. Logical operators always return a 1 for TRUE. The binary logical operators include

$(B AND (",AND)
$a) ~ (++,OR, I)
$0A EOR (-, XOR)

• Unary logical operator: A unary logical operator takes a number as a Boolean value from the
top of the evaluation stack, performs the operation on it, and places the Boolean result back on
the stack. The only unary logical operator currently available is

SOB NOT (-., NOT)

1/31/89

A P P E N D I X B Object Module Format 321

GSIOS Reference (Volume 2) APDA Draft

• Binary bit operators: These operators take two numbers as binary values from the top of
the evaluation stack, perform the operation, and place the single binary result back on the stack.
The operations are performed on a bit-by-bit basis. The binary bit operators include

$12 Bit AND Oogical AND)
$13 Bit OR (inclusive OR)
$14 Bit EOR (exclusive OR)

• Unary bit operator: This operator takes a number as a binary value from the top of the
evaluation stack, performs the operation on it, and places the binary result back on the stack.
The unary bit operator is

$15 Bit NOT (complement)

• Termination operator: All expressions end with the termination operator $00.

An operand causes some value, such as a constant or a label, to be loaded onto the evaluation
stack. The operands are as follows:

• Location-counter operand ($80): This operand loads the value of the current location
counter onto the top of the stack. Because the location counter is loaded before the bytes
from the expression are placed into the code stream, the value loaded is the value of the location
counter before the expression is evaluated.

• Constant operand ($81): This operand is followed by a number that is loaded on the top of
the stack. If the size of the number is not specified, its length is specified by the NUMLEN field
in the segment header.

• Label-reference operands ($82-$86): Each of these operand codes is followed by the name
of a label and is acted on as follows:

$82 Weak reference (see the following note.)

$83 The value assigned to the label is placed on the top of the stack.

~ The length attribute of the label is placed on the top of the stack.

$85 The type attribute of the label is placed on the top of the stack. (Type attributes are
listed in the discussion of the GLOBAL record in the section "Segment Body" earlier in this
appendix).

$g) The count attribute is placed on the top of the stack. The count attribute is 1 if the label
is defined and 0 if it is not.

• Relative offset operand ($87): This operand is followed by a number that is treated as a
displacement from the start of the segment. Its value is added to the value that the location
counter had when the segment started, and the result is loaded on the top of the stack.

322 VOLUME 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

+ Weak reference: The operand code $82 is referred to as the weak reference. The weak
reference is an irntruction to the linker that asks for the value of a label, if it exists. It is not an
error if the linker cannot find the label. However, the linker does not load a segment from a
library if only weak references to it exist. If a label does not exist, a 0 is loaded onto the top of
the stack. This operand is generally used for creating jump tables to library routines that may
or may not be needed in a particular program.

Example

Assume your assembly-language program contains the following line, where MSG4 and MSG3 are
global labels:

LDX *MSG4-MSG3

This line is assembled into two OMF records:

CONST ($01)
EXPR ($EB)

A2
02 : MSG4MSG3-

In hexadecimal format, these records appear as follows:

01 A2
EB 02 83 04 4D 53 47 34 83 04 4D 53 47 33 02 00 k ... MSG4 .. MSG3 ..

The initial $01 is the OMF opcode for a 1-byte constant. The $A2 is the 65816 opcode for the LDX
instruction. The SEB is the OMF opcode for an EXPR record, which is followed by a 1-byte count
indicating the number of bytes to which the expression is to be truncated ($02 in this case). The
next number, $83, is a label-reference operand for the first label in the expression, indicating that the
value assigned to the label (MSG4) is to be placed on top of the evaluation stack. Next is a length
byte ($04), followed by MSG4 spelled out in ASCII codes.

The next sequence of codes, starting with $83, places the value of MSG3 on the evaluation stack.
Finally, the expression-operator code $02 indicates that subtraction is to be performed, and the
termination operator ($00) indicates the end of the expression.

1/31/89

A P P E N D I X B Object Module Format 323

GSIOS Reference (Volume 2) APDA Draft

+ Viewing expressions: You can use the DumpObj tool provided with some development
environments to examine the contents of any OMF file. DumpObj can list the header contents
of each segment and can list the body of each segment in OMF format, 65816 disassembly
format, or as hexademical codes. See your development-environment manuals for instructions.

Object files

Object files (file type $81) are created from source files by a compiler or assembler. Object files can
contain any of the OMF record types except INTERSEG, c!NTERSEG, RELOC, cRELOC, SUPER, and
ENfRY. Object files can contain unresolved references, because all references are resolved by the
linker. If you are writing a compiler for the Apple IIGS, you can use the DumpObjiiGS tool to
examine the contents of a variety of object files to get an idea of their content and structure.

Library files

Library files (file type $82) contain object segments that the linker can search for external
references. Usually, these files contain general routines that can be used by more than one
application. The linker extracts from the library file any object segment that contains an unresolved
global definition that was referenced during the link. This segment is then added to the load
segment that the linker is currently creating.

Library files differ from object files in that each library file includes a segment called the library
dictionary segment (segment kind = $08). The library dictionary segment contains the names and
locations of all segments in the library file. This information allows the linker to scan the file
quickly for needed segments. Library files are created from object files by a MakeLib tool (provided
with a development environment). The format of the library dictionary segment is illustrated in
Figure B-3.

324 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31189

GSIOS Reference (Volume 2) APDA Draft

• Figure B-3 The format of a library dictionary segment

COUIIT

..,
;...._ ;.,..__. _
·-...-. .._..__._

The library dictionary segment begins with a segment header, which is identical in form to other
segment headers. The BYfECNf field indicates the number of bytes in the library dictionary
segment, including the header. The body of the library dictionary segment consists of three
LCONST records, in this order:

1. Filenames

2. Symbol table

3. Symbol names

The filenames record consists of one or more subrecords, each consisting of a 2-byte file number
followed by a filename. The filename is in Pascal string format; that is, a length byte indicating the
number of characters, followed by an ASCII string. The filenames are the full pathnames of the
object files from which the segments in this library file were extracted. The file numbers are
assigned by the MakeLib program and used only within the library file. These file numbers are not
related to the load-file numbers in the pathname table.

1/31/89

A P P E N D I X B Object Module Format 325

GSIOS Reference (Volume 2) APDA Draf!

The symbol table record consists of a cross-reference between the symbol names in the symbol
names record and the object segments in which the symbol names occur. For each global symbol in
the library file, the symbol table record contains the following components:

1. A 4-byte displacement into the symbol names record, indicating the start of the symbol name.

2 The 2-byte file number of the file in which the name occurred This is the file number assigned
by the MakeLib utility and used in the filenames record of this library dictionary segment.

3. A 2-byte flag, the private flag. If this flag equals 1, the symbol name is valid only in the object
file in which it occurred (that is, the symbol name was in a private segmenO. If this flag equals
0, the symbol name is not private.

4. A 4-byte displacement into the library file indicating the beginning of the object segment in
which the symbol occurs. The displacement is to the beginning of the segment even if the
symbol occurs inside the segment; the location within the segment is resolved by the linker.

The symbol names record consists of a series of symbol names; each symbol name consists of a
length byte followed by up to 255 ASCII characters. All global symbols that appear in an object
segment, including entry points and global equates, are placed in the library dictionary segment
Duplicate symbols are not allowed.

Load files

Load flies (file types $B3 through $BE) contain the load segments that are moved into memory
by the System Loader. They are created by a linker from object files and library files. Load files
conform to the object module format but are restricted to a small subset of that format. Because
the segments must be quickly relocated and loaded, they cannot contain any unresolved symbolic
information.

All load files are comppsed of load segments. The format of each load segment is a loadable binary
memory image followed by a relocation dictionary. Load files can contain any of several special
segment types:

• jump-table segment

• pathname segment

• initialization segment

• direct-page/stack segment

326 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

Each of these segment types is described in the following sections.

The load segments in a load file are numbered by their relative location in the load file, where the
first load segment is number 1. The segment number is used by the System Loader to find a
specific segment in a load file.

Memory image and relocation dictionary

Each load segment consists of two parts, in this order:

1. A memory image comprising long-constant (LCONSf) records and define-storage (DS) records.
These records contain all of the code and data that do not change with load address (these
records reserve space for location-dependent addresses). The DS records are inserted by the
linker (in response to DS records in the object file) to reserve large blocks of space, rather than
putting large blocks of zeros in the load fde.

2 A relocation dictionary that provides the information necessary to patch the LCONST records at
load time. The relocation dictionary contains relocation (RELOC, cRELOC, or SUPER RELOC)
records and intersegment (INTERSEG, ciNTERSEG, or SUPER INTERSEG) records.

When the System Loader loads the segment into memory, it loads each LCONST record or DS record
in one piece; then it processes the relocation dictionary. The relocation dictionary includes only
RELOC (or cRELOC or SUPER RELOC) and INTERSEG (or ciNTERSEG or SUPER INTERSEG) records.
The RELOC records provide the information the loader needs to recalculate the values of location
dependent local references, and the INTERSEG records provide the information it needs to transfer
control to external references. For more information, see the discussions of the RELOC and
INTERSEG records in the section "Segment Body,• earlier in this appendix. The sequence of events
that occurs when a JSL to an external dynamic segment is executed is described in general in
Appendix A of this volume.

1/31/89

A P P E N D I X B Object Module Format 31:1

GSIOS Reference (Volume 2) APDA Draft

jump-table segment

lbe jump-table segment, when used, is the segment of a load file that contains the calls to the
System Loader to load dynamic segments. Each time the linker comes across a statement that
references a label in a dynamic segment, it generates an entry in the jump-table segment for that
label (it also creates an entry in the relocation dictionary). lbe entry in the jump-table segment
contains the file number, segment number, and offset of the reference in the dynamic segment,
plus a call to the System Loader to load the segment. lbe relocation dictionary entry provides the
information the loader needs to patch a call to the jump-table segment into the memory image.

lbe segment type of the jump-table segment is KIND = $02. There is one jump-table segment per
load file; it is a static segment, and it is loaded into memory at program boot time at a location
determined by the Memory Manager. The System Loader maintains a list, called the jump-table
directory (or just the jump table), of the jump-table segments in memory.

Each entry in the jump-table segment corresponds to a call to an external (intersegment) routine in a
dynamic segment. The jump-table segment initially contains entries in the unloaded state. When
the external call is encountered during program execution, a jump to the jump-table segment occurs.
lbe code in the jump-table segment entry, in turn, jumps to the System Loader. The System Loader
figures out which segment is referenced and loads it. Next, the System Loader changes the entry in
the jump-table segment to the loaded state. The entry stays in the loaded state as long as the
corresponding segment is in memory. If the application tells the System Loader to unload a
segment, all jump-table segment entries that reference that segment are changed to their unloaded
states.

Unloaded state

The unloaded state of a jump-table segment entry contains the code that calls the System Loader
to load the needed segment. An entry contains the following fields:

• user ID (two bytes)

• load-file number (two bytes)

• load-segment number (two bytes)

• load-segment offset (four bytes)

• JSL to jump-table load function (four bytes)

328 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

The user ID field is reserved for the identification number assigned to the program by the User!D
Manager; until initial load time, this field is 0. The load-me number, load-segment number, and load
segment offset refer to the location of the external reference. The rest of the entry is a call to the
System Loader jump-table load function (an internal routine). The user ID and the address of the
load function are patched by the System Loader during initial load. See Appendix A of this Volume
for information about the jump-table load function. A load-file number of 0 indicates that there are
no more entries in this jump-table segment. (There may be other jump-table segments for this
program, however-each load file that is part of a program has its own jump-table segment.)

Loaded state

The loaded state of a jump-table segment entry is identical to the unloaded state except that the
JSL to the System Loader jump-table load function is replaced by a JML to the external reference. A
loaded entry contains the following fields:

• user ID (two bytes)

• load-file number (two bytes)

• load-segment number (two bytes)

• load-segment offset (four bytes)

• JML to external reference (four bytes)

+ Version di./Jerences: In Versions 1.0 and 2.0 of the OMF, the jump-table segment starts with
eight bytes of zeros. In future versions of the OMF, these zeros may be eliminated.

Pathname segment

The pathname segment is a segment in a load file that is created by the linker to help the System
Loader find the load segments of run-time library files that must be loaded dynamically. It provides
a cross-reference between file numbers and file pathnames. The segment type of the pathname
segment is KIND= $04. When the loader processes the load file, it adds the information in the
pathname segment to the pathname table that it maintains in memory. Pathnarne tables are
described Appendix A of this volume.

1/31/89

A P P E N D I X B Object Module Format 329

GSIOS Reference (Volume 2) APDA Draft

The pathname segment contains one entry for each load file and for each run-time library file
referenced in a load file. The format of each entry is as follows:

file number (two bytes)
file date and lime (eight bytes)
file pathname Oength byte and ASCII string)

The fl.le number is a number assigned by the linker to a specific load file. File number 1 is reserved
for the load file in which the pathname segment resides (usually the load file of the application
program). A file number of 0 indicates that there are no more entries in this pathname segment.

The flle date and time are directory items retrieved by the linker during the link process. The
System Loader compares these values with the directory of the run-time library file at run time. If
they are not the same, the System Loader does not load the requested load segment, thus ensuring
that the run-time library file used at link time is the same as the one loaded at execution time.

The flle pathname is the pathname of the load file. The pathname is listed as a Pascal-type string:
that is, a length byte followed by an ASCII string. A pathname segment created by the linker may
contain partial pathnames. A partial pathname begins with one of the prefixes supported by the
operating system; these prefrxes have the form n/, where n is a number from 0 to 31. The first three
prefrxes have fixed definitions, as follows:

Ql system prefrx (initially the volume from which the operating system was booted)

V application subdirectory (the subdirectory out of which the application is running)

2/ system library subdirectory (initially /boot_ volume/SYSTEM/UBSI)

Initialization segment

The initialization segment is an optional segment in a load file. When the System Loader
encounters an initialization segment during the initial loading of segments, it transfers control to
the initialization segment. After the initialization segment returns control to the System Loader,
the loader continues the normal initial load of the remaining segments in the load file. The segment
type of the initialization segment is KIND= $10.

You might use an initialization segment, for example, to initialize the graphics environment of an
application and to display a "splash screen" (such as a copyright message and company logo) for the
duration of the program load.

330 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

The initialization segment does not have to be the first segment loaded, there may be more than
one initialization segment, and an initialization segment can make references to other segments
previously loaded.

The initialization segment must obey the following rules:

• It must not reference any segrr~ents not yet loaded.

• It must exit with an Rn instruction.

• It must not change the stack pointer.

• It must not use the current direct page. To avoid writing over a portion of the direct page
being used by the loader, the initialization segment must allocate its own direct page if it needs
direct-page space.

• Restart: Initialization segments are re-executed during the restart d an application from
memory.

Direct-page/stack segments

The Apple IIGS stack can be located anywhere in the lower 48kb of bank $00 and can be any size up
to 48kb. The direct page is the Apple IIGS equivalent of the zero page of 8-bit Apple II computers;
the direct page can also be located anywhere in the lower 48kb of bank $00. Like the zero page, the
direct page occupies 256 bytes of memory; on the Apple IIGS, however, a program can move its
direct page while it is running. Consequently, a given program can use more than 256 bytes of
memory for direct-page functions.

Each program running on the Apple IIGS reserves a portion of bank $00 as a combined direct
page/stack space. Because more than one application can be loaded in memory at one time on the
Apple IIGS, more than one stack and one direct page could be in bank $00 at a given time.
Furthermore, some applications may place some of their code in bank $00. A given program should
therefore probably not use more than about 4kb for its direct-page/stack space ..

1131/89

A P P E N D I X B Object Module Format 331

GSIOS Reference (Volume 2) APDA Draft

When an instruction uses one of the direct-page addressing modes, the effective address is
calculated by adding the valt'e of the operand of the instruction to the value in the direct-page
register. The stack pointer, on the other hand, is decremented each time a stack-push instruction is
executed. The convention used on the Apple IIGS, therefore, is for the direct page to occupy the
lower part of the direct-page/stack space, whereas the stack grows downward from the top of the
space.

6. Important GS/OS provides no mechanism for detecting stack overflow or underflow, or
collision of the stack with the direct page. Your program must be carefully
designed to make sure those conditions cannot occur. t:::.

If you do not define a direct-page/stack segment in your program, GS/OS assigns a 1024-byte direct
page/stack when the System Loader Initiall.oad or Restart call is executed. -or is it 4K now?
To specify the size and contents of the direct-page/stack space, follow the procedures outlined in
Chapter 2 ("GS/OS and Its Environment•) of Volume 1.

Run-time library ftles

Run-time library files (file type $B4) contain dynamic load segments that the System Loader can
load when these segments are referenced through the jump table. Usually, run-time library files
contain general routines that can be used by more than one application.

When you include a run-time library file while linking, the file is scanned by the linker during the link
process. When the linker fmds a referenced segment in the run-time library file, it generates an
INTERSEG reference to the segment in the relocation dictionary and adds an entry to the jump
table segment for that file. The linker also adds the pathname of the run-time library file to the
pathname table if it has not already done so. It does not extract the segment from the file and
place it in the file that referenced it, as it does for ordinary library files. In other words, references
to segments in run-time library files are treated by the linker like references to other dynamic
segments, except that the run-time library file segments are in a file other than the currently
executing load file.

332 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31189

GSIOS Reference (Volume 2) APDA Draft

The first load segment of the run-time library file contains all the information the linker needs to
find referenced segments; it is not necessary for the linker to scan every subroutine in every
segment each time a subroutine is referenced. The first segment contains a table of ENTRY
records, each one corresponding to a segment name or global reference in the run-time library file.

Run-time library files are typically created from corresponding object files by specifying an option
to a linker command.

Shell applications

Shell applications (file type $B5) are executable load files that are run under an Apple JIGS shell
program, such as the APW Shell. The shell calls the System Loader's InitiaiLoad function and
transfers control to the shell application by means of a JSL instruction, rather than launching the
program through the GS/OS Quit function. Therefore, the shell does not shut down, and the
program can use shell facilities during execution. The program returns control to the shell with an
RTL instruction, or with a GS/OS Quit call if the shell intercepts and acts on GS/OS calls.
(Development-environment shells might intercept GS/OS Quit calls.) Shell applications should use
standard Text Tool Set calls for all nongraphics I/0. The shell program is responsible for initializing
the Text Tool Set routines.

+ Running shell files stand-alone: A load file of file type $B5 can be launched by GS/OS by way
of the Quit call if it requires no support other than standard input from the keyboard and
output to the screen. GS/OS initializes the Text Tool Set to use the Pascal 1/0 drivers (see the
Apple 1/GS Toolbox Reference) for the keyboard and 80-column screen. Only $B5 files that end in
a GS/OS Quit call can be run in this way.

As soon as a-shell application is launched, it should check the X andY registers for a pointer to the
shell-identifJer string and input line. The X register holds the high word and theY register holds the
low word of this pointer. The shell program is responsible for loading this pointer into the index
registers and for placing the following information in the area pointed to:

1/31189

A P P E N D I X B Object Module Format 333

GSIOS Reference (Volume 2) APDA Draft

1. An 8-byte ASCII string containing an identifier for the shell. (The identifier for the APW Shell,
for example, is BYfEWRKS.) The shell application should check this identifier to make sure that
it has been launched by the correct shell, so that the environment it needs is in place. If the
shell identifier is not correct, the shell application should write an error message to standard
error output (normally the screen) and then exit with an RTI instruction (or a GS/OS Quit call if
the shell intercepts GS/OS calls).

2 A null-terminated ASCII string containing the input line for the shell application. The shell
program can strip any I/0 redirection or pipeline commands from the input line, since those
commands are intended for the shell itself, but must pass on all input parameters intended for
the shell application.

The shell program must request a user ID for the shell application; the user ID is passed in the
accumulator. The shell must set up a direct-page and stack area for the shell application. The shell
places the address of the start of the direct-page/stack space in the direct-page (D) register and sets
the stack pointer (S register) to point to the last byte of the block. If the shell application does not
have a direct-page/stack segment, the shell should follow the same conventions used by GS/OS for
default direct-page/stack allocation. See the section "Direct-Page/Stack Segments" earlier in this
appendix, and Chapter 2 of Volume 1 for more information about direct-page and stack allocation.

+ GSIOS: GS/OS does not support the identifier string or input line. If the shell application is
launched by GS/OS, the X andY registers contain zeros.

Some shell applications may launch other programs; for example, a shell nested within another shell
would be a shell application. When a shell application requests a user ID for a program, the calling
program is responsible for intercepting GS/OS Quit calls and system resets, so that it can remove
from memory all memory buffers with that user ID before passing control to the shell.

A shell application should use the following procedure to quit:

1. If the shell application has launched any programs, it must call the System Loader's
UserShutdown function to shut down those programs.

2. The shell application should release any memory buffers that it has requested and dispose of
their handles.

3. The shell application must place an error code in the accumulator. If no error occurred, the error
code should be $0000. The error code $FFFF is used as a general (nonspecific) error code. For a
shell program you write, you can define any other error codes you want to use, and you can
handle them in any way you wish.

V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31189

GSIOS Reference (Volume 2) APDA Draft

4. The shell application should execute an R1t or a G5/05 Quit call. If the program ends in a Quit
call, the shell program that launched the shell application is responsible for intercepting the Quit
call, releasing all memory buffers associated with that shell application, and performing any
other system tasks normally done by G5/05 in response to a Quit call .

!:::, Important
..

When a shell launches a shell application, the address of the shell program is
not pushed onto the GS/05 Quit Return stack; therefore, the shell itself must
handle the shell application's Quit call, or control is not returned to the shell.
To intercept the Quit call, the shell program must intercept all G5/0S calls.
The shell may pass on any other operating system calls to GS/OS, but it must
handle Quit calls itself. If the shell you are using does not handle G5/0S calls in
this fashion, the shell application must end in an RTL instruction. 6.

1/31/89

A P P E N D I X B Object Module Format 335

GSIOS Reference (Volume 2) APDA Draft 1/31/89

Appendix c Generated Drivers and
Firmware Drivers

This appendix provides information of use to designers of BASIC, Pascall.l, ProDOS,
SmartPort, and extended SmartPort pertipheral cards; it explains how GS/OS constructs
generated drivers for these devices and how it dispatches to them.

If you are writing a frrmware driver for an Apple IIGS peripheral card, read this appendix.
It explains how GS/OS recognizes your driver, dispatches to it, and manages 1/0 and
caching for it, depending on what kind of a driver it is.

See also Chapter 7 of this Volume for more information on generated drivers. •

337

GSIOS Reference (Volume 2) APDA Draft

Generated-driver summary

At startup, for each slot that does not have an associated loaded driver, G5/05 looks for a finnware
1/0 driver. For slot n, G5/05 examines the appropriate finnware ID bytes in the $C1i)() page of bank
zero and generates a GS/05 driver for any finnware driver it fmds that uses BASIC, Pascall.l,
ProDOS, 5rnartPort, or extended SmartPort protocols.

Each generated driver has an associated device information block (DIB), just like a loaded driver.
The DIB contains device-specific infonnation that can be used by the driver and by other parts of
GSIOS.

GS/OS generates drivers for three broad types of slot-resident, finnware-based 1/0 drivers:

• BASIC and Pascall.l drivers: For BASIC ftnnware drivers, a BASIC generated driver is
created For Pascal 1.1 finnware drivers, a Pascal 1.1 generated driver is created. For finnware
drivers that support both BASIC and Pascal 1.1 protocols, a Pascal 1.1 generated driver is created.

• ProDOS drivers: Either one or two DIBs are created for each generated ProD05 block device
driver, depending on the value of $CnFE.

• SmartPort drivers: All SrnartPort block devices are supported by a single generated block
device driver, and all SrnartPort character devices are supported by a single generated character
device driver. Each device's DIB is associated with either the character driver or the block driver.

All GS/OS generated drivers support these standard device calls:

Dinfo
DStatus
DControl
DRead
OW rite

All generated drivers support the standard set of DStatus and DControl subcalls, although not all
perform meaningful actions with all of them. No generated drivers support driver-specific DStatus
or DControl calls.

• Addresses: For convenience and tradition, all addresses listed in this section are bank $00
addresses. Thus, the full Apple IIGS address corresponding to a listed address such as $Cm>5
would be $00 C7l>5.

338 V 0 L U M E 2 Devices and G5/05 APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

Generating and dispatching to BASIC drivers

Generating

Because there are no conventional fmnware ID bytes for BASIC drivers in the $C700 space, GS/OS
cannot always be sure that a BASIC card is not in a given slot. Therefore, to be safe, it creates a
BASIC generated driver for every slot that is

• occupied by a peripheral card

• has no loaded driver

• has no ProDOS, Pascal 1.1 , or SrnartPort ID bytes

Dispatching

Contrary to the documented standard (see, for example, the Apple lie Technical Reference
Manual), BASIC devices do not support a fixed entry point for input or output. The only defined
entry point for BASIC device drivers is $C~, which is the initialization entry point. The driver's
initialization routine is responsible for putting the offsets to the driver output and input entry
points into absolute zero page locations $0036-0039. GS/OS maintains a list of the input and output
entry points for BASIC devices as described in the following paragraphs.

This is the only BASIC device driver entry point:

$CtlX) Initialization entry point

The driver initialization routine puts the proper values into page zero, so that the input and output
entry points are as follows:

$CT00+($0038)
$CT00+($0036)

Add contents of $0038 to $Cn00 to get the input routine entry point
Add contents of $0036 to $CnOO to get the output routine entry point

After initialization for a driver has been completed, GS/OS saves the entry points for the BASIC
peripheral card.

This is the processor register state when dispatching to a BASIC driver:

Register
Accumulator
X Register
Y Register
P Register

Contents
Character
$Cn(n =the slot where the driver resides)
$ta> (n =the slot where the driver resides)
Unspecified

1/31189

A P P E N D I X C Generated Drivers and Firmware Drivers 339

GSIOS Reference (Volume 2) APDA Draft

On completion of the dispatch to a BASIC driver, the processor register state must be this:

Register
Accumulator
X Register
Y Register
P Register

Contents
Character
Unspecified
Unspecified
Unspecified

BASIC device drivers are not capable of returning errors. BASIC device drivers do not support a
device Status call.

Generated-driver interface:

BASIC firmware drivers support single-character 1/0 only called through bank $00 of Apple IIGS
memory. When a BASIC generated driver receives a multicharacter read or write request, it issues a
separate call to the firmware driver for each character to be transferred. The generated driver also
copies the character from the accumulator to the destination or from the source to the
accumulator, if necessary.

Generating and dispatching to Pascall.l drivers

Generating

At startup, GS/OS ssumes that it has found a driver conforming to the Pascall.l firmware protocol
if all of the following conditions are true for slot n:

$Cn>S = $38

$Cn>7 = $18

$Cn>B= $01

In these circumstances, GS/OS creates a Pascal 1.1 generated driver to interface with that firmware
driver, and assigns a device ID to the generated driver.

Dispatching

Pascal 1.1 slot-resident firmware drivers support a standard set of entry points (not requiring a
hook table like that needed for BASIC cards). Dispatches to Pascal 1.1 drivers occur by obtaining an
offset and dispatching to $CnOO+offset. The offset values are bytes stored at these addresses:

V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

Address
$Cn>D
$Cn>E
$Cn>F
$Cn10

Contents
Offset to Initialization routine
Offset to Read routine
Offset to Write routine
Offset to Status routine

This is the processor register state when dispatching to a Pascal 1.1 driver:

'Register
Accumulator
X Register
Y Register

Contents
Character or request code (for Status call)
$Cn (n =the slot where the driver resides)
$7l> (n =the slot where the driver resides)

The processor register state on completion of the dispatch to a Pascal 1.1 driver must be this:

'Register
Accumulator
X Register
Y Register
P Register

Contents
Character
Error code on Status; otherwise unspecified
Unspecified
Unspecified

The Pascal 1.1 firmware 1/0 protocol is documented in the Apple lie Technical Reference Manual.

Generated-driver interface

Pascal 1.1 firrmware drivers support single-character 1/0 only called through bank $00 of Apple IIGS
memory. When a Pascall.l generated driver receives a multicharacter read or write request, it issues
a separate call to the firmware driver for each character to be transferred. The generated driver also
copies the character from the accumulator to the destination or from the source to the
accumulator, if necessary.

1131189

A P P E N D I X C Generated Drivers and Firmware Drivers 341

GSIOS Reference (Volume 2) APDA Draft

Generating and dispatching to ProDOS drivers

Generating

At startup, GS/OS ssumes that it has found a driver conforming to the ProDOS protocol if all of the
following conditions are true for slot n:

$C11>1 = $20

$C11>3= $00

$Cn>5 = $03

$C 11>7 is not equal to $00

$CnFF is not equal to $00 or $FF

In these circumstances, GS/OS creates a ProDOS driver to interface with that fumware driver, and
assigns a device ID to the generated driver.

Dispatching

ProDOS block 1/0 drivers support a single standard entry poin~ which requires a parameter block in
the absolute zero page to specify the call type. GS/OS supports these devices by generating the
appropriate parameter block prior to dispatching to the slot-resident finnware driver. Entry points
for ProDOS drivers are calculated as follows:

$Cn>O+($CnFF) Add the value of the byte at address $CnFF to $C~ to get the entry point.

V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

This is the processor register state when dispatching to a ProDOS block 1/0 driver:

Register
Accumulator
X Register
Y Register

Contents
Unspecified
Unspecified
Unspecified

On completion of the dispatch to a ProDOS block 1/0 driver the processor register state must be
this:

Register
Accumulator
X Register
Y Register
P register

Contents
Error code
Unspecified, except Status returns low byte of block count
Unspecified, except Status returns high byte of block count
Carry set if error occurred, otherwise clear

The input parameters for the ProD OS block device driver are set up by the generated driver on
absolute zero page as follows:

Offset
$OOi2

$0043
$0044-45

$0046-47

Parameter
Command byte
ProDOS unit number
Buffer pointer
Block number

Functions supported by the ProDOS block 1/0 driver include:

Status
Read
Write
Format

The Format call is implemented only as a subcall (Format_Device) of the GS/OS driver call
Driver_Control. See Chapter 11 of this Volume.

The ProDOS block device protocol is documented in the ProDOS 8 Technical Reference Manual.

1/31/89

A P P E N D I X C Generated Drivers and Firmware Drivers 343

GSIOS Reference (Volume 2) APDA Draft

Generated-driver interface:

ProDOS firmware block-device drivers support only single-block transfers and can access only bank
$00 of Apple IIGS memory. When a ProDOS generated driver receives a multiblock Read or Write
request, the driver first checks that the request count is a multiple of the block size. If it is not, the
generated driver returns an error; if it is, the generated driver issues a Read or Write call to the
firmware driver for each block to be transferred The generated driver also copies the data between
the system bank $00 buffer and the caller's buffer (which may be anywhere in memory), if
necessary.

The ProDOS generated driver supports caching. Blocks written to the ProDOS device through the
firmware driver are also written to the cache (if enabled) by the generated driver; blocks to be read
from the device may instead be read from the cache by the generated driver.

Generating and dispatching to SmartPort drivers

Generating

At startup, GS/OS ssumes that it has found a driver conforming to the SmartPort protocol if all of
the following conditions are true for slot n:

$Cn>l = $20

$Ct03= $00

$Cr05 = $03

$Cn>7 =$00

$CnFF is not equal to $00 or $FF

In these circumstances, GS/OS creates a SmartPort driver to interface with that firmware driver, and
assigns a device ID to the generated driver.

GS/OS then examines the SmartPort ID type byte at $CnFB to find out whether the drive supports
only the standard SmartPort protocol, or both the standard and extended protocols.

V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31189

GSIOS Reference (Volume 2) APDA Draft

Dispatching

SmartPort drivers can support either the standard or the standard and extended SmartPort
protocols. The standard SmartPort protocol uses 2-byte adresses and therefore cannot access
or reside in Apple IIGS memory beyond bank $00. The extended version uses 4-byte addresses and
can access all parts of Apple IIGS memory. All SmartPort device drivers must support the standard
protocol. GS/OS generated drivers permit use of the extended protocol only in cases where both the
device driver and the device itself support it.

The SmartPort driver entry point is determined as follows:

$C1l)()+($CnFF)+$03 Add (3 plus the value of the byte at address $CnFF) to $C~ to get the
SmartPort entry point.

This is the processor register state when dispatching to a SmartPort driver:

Register Contents
Accumulator Unspecified
X register Unspecified
Y register Unspecified

On completion of the dispatch to a SmartPort driver, the processor register state must be this:

Register Contents
Accumulator
X register
Y register
P register

Error code
Low byte count of bytes transferred to system
High byte count of bytes transferred to system
Carry set if error occured, otherwise clear

Calls to the standard SmartPort device driver use the following format:

jsr
de

de

smart port
il'command'
i2'parameterlist'

call to standard smartport
command byte
pointer to parameter list

Calls to the extended SmartPort device driver use the following format:

jsr

de

de

smart port

ih'command'
i4'parameterlist'

call to standard smartport

command byte
pointer to parameter list

The SmartPort protocols, both standard and extended, are described in the Apple JIGS Firmware
Reference.

1/31/89

A P P E N D I X C Generated Drivers and Firmware Drivers 345

GSIOS Reference (Volume 2) APDA Draft

Generated-driver interface

SmartPort firmware character-device drivers support multiple-character 1/0, up to 767 bytes per
request. Standard and extended calls are handled differently:

• Drivers that support only standard calls can access only bank $00 of Apple IIGS memory, and
their data must be copied through the 512-byte system buffer in bank $00. Therefore, the
generated driver makes multiple 512-byte requests until the remaining characters· to transfer are
fewer than 512; it then makes one final request for the remaining characters.

• Drivers that support extended calls can access any memory bank. In that case the generated
driver makes multiple 768-byte requests until the remaining characters to transfer are fewer
than 768; it then makes one final request for the remaining characters.

SmartPort firmware block device drivers support only single-block transfers. When a SrnartPort
generated driver receives a multiblock Read or Write request, the driver first checks that the request
count is a multiple of the block size. If it is not, the generated driver returns an error; if it is, the
generated driver issues a Read or Write call to the firmware driver for each block to be transferred ..
If either the firmware driver or the device it is attached to do not support extended SmartPort calls,
the generated driver copies the data between the system bank $00 buffer and the caller's buffer
(which may be anywhere in memory), if necessary.

The SmartPort generated block device driver supports caching. Blocks written to the SmartPort
device through the firmware driver are also written to the cache (if enabled) by the generated driver;
blocks to be read from the device may instead be read from the cache by the generated driver.

V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GS/OS Reference (Volume 2) APDA Draft 1131/89

Appendix D Driver Source Code Samples

This appendix demonstrates four different types of drivers: a block driver, a character driver, a
supervisory driver, and a device driver that calls a supervisory driver. It consists of fully
commented assembly-language source-code listings for all four drivers. •

!:::, Important These source-code examples are not executable as they stand. Use them as
guides to writing your own drivers, but don't expect that the code here can be
copied exactly. For one thing, there are missing parts: not all call handlers arc
implemented for all the drivers Furthermore, some of the drivers access
fictitious firmware locations. t::.

The drivers in this appendix have three essential components: the driver entry point, the driver
dispatch table, and the driver routines.

• The driver entry point is the beginning of the code section of the driver. It is the one
entry for all driver calls. Code following the entry point does intitial checking and
bOokkeeping before using the driver dispatch table to jump to the proper driver routine.

• The driver dispatch table is a jump table containing offsets to all the supported driver
routines.

• The driver routines are the code that handles all driver calls. Drivers are expected to have
routines to handle all appropriate standard driver calls; they can also include routines to
handle any needed device-specifiC calls. See Chapter 11 for descriptions of how drivers
handle standard driver calls.

In addition to these components, the driver code section may include other routines, such as
interrupt handlers, signal sources, and signal handlers. See Chapter 10_

347

GSIOS Reference (Volume 2) APDA Draft 1131189

Block driver

This is a typical driver for a block-oriented device such as a disk drive. It includes handlers for all standard
driver calls, although in this example not all of the handlers are functional. The driver code consists of
eight parts, in this order:

• Equates

• Device-driver header

• Configuration parameter lists (8 of them, for 8 supported devices)

• Format option tables (8 of them)

• Device information blocks (DIBs; 8 of them)

• Tables for dispatching calls and passing parameters

• A main entry point to the driver

• Routines that handle the driver calls

The driver has routines to handle all standard driver calls, including the standard Status and Control
subcalls. Even though it is a block-device driver, for which Open and dose calls are not meaningful,
handlers for them are included.

348 V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

65816 on
instime on
gen on
symbol on
absaddr n
align 256

Copyright (c) 1987, 1988
Apple Computer, Inc.
All rights reserved.

• NOT£:

Driver Core Routines Version 0.01a01

All driver files must be installed on the
boot volume in the subdirectory •/SYSTEM/DRIVERS'.
Additionally, the fileType for the driver file
must be set to $COBB. AuxType is also critical
to the operating system recognizing the driver
as a GS/OS device driver. The AuxType is a long
word which must have the upper word set to $0000.
The most significant byte of the least significant
word in the AuxType must be set to $01 to indicate
an active GS/OS device driver or $81 to indicate
an inactive GS/OS device driver. The least
significant byte of the least significant word
of the AuxType field indicates the number of
devices supported by the driver file. This value
should be analogous to the number of DIB's
contained in the driver file. GS/OS will only
install the number of devices indicated in the
AuxType field.

GS/OS Device Driver: rUeType • SOOBB
AuxType • $000001XX where:

XX • number of devices.

An AuxType of $00000108 indicates eight devices. When
building a device driver, the best way to set the
rileType and AuxType is to use the Exerciser to get
the current file info (G£T_fiL£_INfO), modify the
rileType ' AuxType and then S£T_riL£_INro.

A P P E N D I X D Driver Source Code Sample Block driver

1131/89

319

GSIOS Reference (Volume 2) APDA Draft

* REVISION HISTORY:

• OAT£ Ver.

• 11/16/87 O.OOe01

• 01/10/88 O.OOe02
• 01/11/88

• 02/04/88 O.OOa01 RBH

• 04/11/88 0.06a01 RBH

By

RBH

RBH

Description

Started initial coding.

Added new status ~ control calls.
rixed startup for dynamic slot numbers •

General update for Alpha release.

New STARTUP.
New SHUTDOWN.
Additional control ~ status calls.

1131/89

Removed valid access parsing performed by dispatcher.

• 12/21/88 1.00 RBH Startup call now uses system service call to dynamic slot

arbiter.

eject
**

• The following are direct page equates on the GS/OS
• direct page for driver usage.

**

drvr_dev_num
drvr_call_num
drvr_buf_ptr
drvr_slist_ptr
drvr_clist_ptr
dev_id_ref
drvr_req_cnt
drvr_tran_cnt
drvr_blk_num
drvr_blk_size

-drvr_fst_num
drvr stat code
drvr_ctrl_code
drvr vol ld
drvr cache
drvr_cach_ptr
drvr_dlb_ptr

sib_ptr
sup_parm_ptr

gequ
gequ
gequ
qequ
gequ
qequ
qequ
qequ
qequ
gequ
qequ

gequ
gequ
gequ
gequ
gequ
qequ

qequ
qequ

eject

$00
drvr_dev_num+2
drvr_call_num+2
drvr_call_num+2
drvr_call_num+2
drvr_buf_ptr
drvr_buf_ptr+4
drvr_req_cnt+4
drvr_tran_cnt+4
drvr_blk_num+4
drvr_blk_size+2
drvr_fst_num
drvr_fst_num
drvr_fst_num+2
drvr_vol_id+2
drvr_cache+2
drvr_cach_ptr+4

$0074
sib_ptr+4

350 V 0 L U M E 2 Devices and GS/OS

(w) device number
(w) call number
(lw) buffer pointer
(lw) buffer pointer
(lw) buffer pointer
(w) indirect device to
(lw) request count
(lw) transfer count
(lw) block number
(w) block size
(w) File System Translator Number
(w) status code for status call
(w) control code for control call
(w) Driver Volume ID Number
(w) Cache Priority
(lw) pointer to cached block
(lw) pointer to active DIB

(lw) pointer to active SIB
(lw) pointer to supervisor parameters

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1131189

**

• The following are equates for driver command types.

**

drvr_startup gequ $0000 driver startup command
drvr_open gequ $0001 driver open command
drvr read gequ $0002 driver read command
drvr_write gequ $0003 driver write command
drvr close gequ $0004 driver close command
drvr_status gequ $0005 driver status co11111and
drvr_control gequ $0006 driver control command
drvr flush gequ $0007 driver flush command
drvr_shutdn gequ $0008 driver shutdown command
max command gequ $0009 co11111ands $0009 - Sffff undefined

drvr dev stat gequ $0000 status code: return device status
drvr_conf_stat gequ $0001 status code: return configuration params
drvr_get_wait gequ $0002 status code: get wait/no wait mode
drvr_get_format gequ $0003 status code: get format options

drvr reset gequ $0000 control code: reset device
drvr_fonnat gequ $0001 control code: format device
drvr_eject gequ $0002 control code: eject media
drvr_set_conf gequ $0003 control code: set configuration params
drvr set wait gequ $0004 control code: set wait/no wait mode
drvr_set format gequ $0005 control code: set format options
drvr_set_Ptn gequ $0006 control code: set partition owner
drvr arm gequ $0007 control code: arm interrupt signal
drvr_disarm gequ $0007 control code: arm interrupt signal

eject

A P P E N D I X D Driver Source Code Sample Block driver 351

GSIOS Reference (Volume 2) APDA Draft

............••••.••.•.•••.•..•.••.••••.....•........•............

• The following are equates for GS/OS error codes.

**

no_error
dev not found
invalid_dev_num
drvr_bad_req
drvr bad code
drvr_bad_parnt
drvr_not_open
drvr_prior_open
irq_table_full
drvr_no_resrc
drvr_io_error
drvr no dev
drvr_busy
drvr_wr_prot
drvr bad count
drvr_bad_block
drvr disk sw
drvr_off_line
invalid_access
parm_range_err
out_of_mem
dup_volume
not block dev
stack overflow
data unavail

gequ

gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ

gequ

eject

soooo
$0010

$0011
$0020

$0021

$0022

$0023
$0024

$0025

$0026
$0027
$0028
$0029

$0028

S002C
$0020
S002E

S002F
S004E
$0053

$0054

$0057
$0058

S005F
$0060

352 V 0 L U M E 2 Devices and GS/OS

no error has occurred
device not found
invalid device number
bad request or command
bad control or status code
bad call parameter
character device not open
character device already open
interrupt table full
resources not available
I/0 error
device not connected

call aborted, driver is busy
device is write protected
invalid byte count
invalid block address
disk has been switched
device off line I no media present
access not allowed
parameter out of range
out of memory
duplicate volume name
not a block device
too many applications on stack
data unavailable

APPENDIXES

1/31189

GSIOS Reference (Volume 2) APDA Draft

.......•.....•••••••....•.•••.............•...................•..

• The following are equates for the DIB.

link_ptr qequ $0000 (lw) pointer to next DIB
entryytr qequ $0004 (lw) pointer to driver
dev char qequ $0008 (W) device characteristics
blk cnt gequ $000A (lw) number of blocks
dev name gequ SOOOE (32) count and ascii name (pstrinQ)
slot num qequ S002E (W) slot number
unit. num qequ $0030 (w) unit number
ver num gequ $0032 (w) version number
dev id num qequ $0034 (w) device ID number (ICON ref f)
head link gequ $0036 (w) backward device link
forward_link gequ $0038 (w) forward device link
ext_dib_ptr gequ S003A (lw) dib reserved field 11
dib dev num gequ S003E (W) Device number of this device

• The following equate(s) are for drive specific extensions to the DIB.
* Parameters that are extended to the manditory DIB parameters are not
• accessable by GS/05 or the application but may be used within a driver
• as needed.

driver unit
my_slotl6

gequ
qequ

eject.

• System Service Table Equates:

$0040
$0042

(w) driver's internal DIB data
(w) driver's slot * 16

• NOT£: Only those system service calls that might be used
• by a device driver are listed here. For a more complete
• list of system service calls and explanations of each call
• consult the system service call ERS .

..
dev _dispatcher gequ $01FCOO dev_dispatch

cache find_blk gequ S01FC04 cash find

cache add blk gequ SOlFCOB cash_add
cache_del_blk qequ S01FC14 cash delete
cache del vel qequ SOlFClB cash del vel

set_sys_speed gequ S01FC50 set system speed

move info gequ S01FC70 gs_move_block

set_disksw gequ $01FC90 set disksw and call swapout/delvol

sup_drvr_disp gequ $01FCA4 supervisor dispatcher

install_driver gequ SOlFCAB dynamic driver installation

dyn_slot_arbiter gequ $01FCBC dynamic slot arbiter

eject

A P P E N D I X D Driver Source Code Sample Block driver

1131189

353

GSIOS Reference (Volume 2) APDA Draft

**

* MOVE INFO

• NOTE: The following equates are used to set the modes
• passed to the move_info call system service call •

.................••.................•......................•.••.
moveblkcmd gequ $0800 block move option
move_sinc_dinc gequ $0805 souce

move_sinc_ddec gequ $0809 souce
move_sdec_dinc qequ $0806 souce
move sdec ddec qequ $080A souce

move_scon_dcon qequ $0800 souce
move_sinc_dcon gequ $0801 souce
move_sdec_dcon gequ $0802 souce
move_scon_dlnc gequ $0804 souce
move_scon_ddec qequ $0808 souce

eject

_7 ___ 6 ___ 5 ___ 4 ___ 3 ___ 2 ___ 1 ___ 0_

; I

;lslot7 lslot6 !slotS lslot4 1

; lint ext lint ext lintext lintext 1
1 slot2 1 slotl 1

0 lintextlintextl 0
;lenablelenablelenablelenablel lenablelenablel I
; 1 __ 1 __ 1 ___ 1 __ 1 __ 1 __ 1 __ 1 __ 1

sltromsel byte AAAAA

sltromsel bits defined as follows
bit 7• 0 enables internal slot 7 1 enables slot rom
bit 6• 0 enables internal slot 6 enables slot rom
bit s- o enables internal slot 5 1 enables slot rom
bit 4• 0 enables internal slot 4 1 enables slot rom
bit 3• must be 0
bit 2• 0 enables internal slot 2 1 enables slot rom
bit 1• 0 enables internal slot 1 1 enables slot rom
bit o- must be 0

increment,

increment,
decrement,
decrement,

constant,
increment,
decrement,
constant,
constant,

sltromsel gequ $00C02D slot rom select

354 V 0 L U M E 2 Devices and GSIOS

dest.

dest.
dest.
dest.

dest.
dest.
dest.

dest.
dest.

1/31/89

increment

decrement
increment
decrement

constant
constant
constant

increment
decrement

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

; I

;I

; I

; I

__ 7 _____ 6 _____ 5 _____ 4 _____ 3 _____ 2 _____ 1 _____ 0 ___

0

I seep I
11/ollc I
I shadow I

I seep I stop I stop I stop I stop
0 lauxh-rlsuprhrlhires21hireslltxt pgl

lshadowlshadowlshadowlshadowlshadowl

;I _____ -----------------------------------
shadow byte AAAAA

shadow bits defined as follows
bie 7- must write 0

bit 6• 1 to inhibit i/o and language card operation
bit 5- must write 0
bit 4~ 1 to inhibit shadowing aux hi-res page
bit 3~ 1 to inhibit shadowing 32k video buffer
bit 2- 1 to inhibit shadowing hires page 2
bit 1- 1 to inhibit shadowing hires page 1
bit o- 1 to inhibit shadowing text pages

shadow gequ SOOC035 shadow register

; I

; I

; I
; I
; I

eject

__ 7 _____ 6 _____ 5 _____ 4 _____ 3 _____ 2 _____ 1 _____ 0 ___

slow/ I
fast I
speed!

I

cyareg
bit
bit
bit
bit
bit
bit
bit
bit

0
lshadowlslot ?!slot 6islot Sislot 41

0 lin alllmotor lmotor I motor! motor!
1 ram ldetecttdetectldetecttdetectl

I

bits defined as follows
7= o-slow system speed -- 1•fast system speed
6- must write 0
5= must write 0
4- shadow in all ram banks

3- slot 7 disk motor on detect

2- slot 6 disk motor on detect

1- slot 5 disk motor on detect

o- slot 4 disk motor on detect

A P P E N D I X D Driver Source Code Sample

1131/89

Block driver 355

GSIOS Reference (Volume 2) APDA Draft

cyareg gequ SOOC036 speed and motor on detect

;I _____ -----------------------------------
statereg status byte AAAAA

statereg bits defined as follows

bit 7• alzp status
bit 6• page2 status
bit s- ramrd status
bit 4- ramwrt status

bit 3• rdrom status (read only ram/rom (0/1))

important note:
do two reads to Sc083 then change statereg
to change lcram/rom banks (0/1) and still
have the language card write enabled.

bit 2• lcbnk2 status O•LC bank 0 - l•LC bank 1
bit 1• rombank status
bit o- intcxrom status

state reg gequ SOOC068

clrrom gequ soocrrr

eject

356 V 0 L U M E 2 Devices and GS/OS

state register

switch out Sc8 roms

1/31189

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1131189

* EQUATES for the IWM require index of (n*16)

phaseoff gequ SOOCOBO stepper phase off
phaseon gequ SOOCOBl stepper phase on

phOoff gequ SOOCOBO phase 0 off
phOon gequ SOOCOBl phase 0 on
phloff gequ SOOCOB2 phase off
ph1on gequ SOOC083 phase on
ph2off gequ SOOC084 phase 2 off
ph2on gequ $00C085 phase 2 on
ph3off gequ $00C086 phase 3 off
ph3on gequ $00C087 phase 3 on

motoroff gequ SOOCOBB disk motor off
motoron gequ $00C089 disk motor on

drvOen gequ $00C08A select drive 0
drvlen gequ SOOCOBB select drive

q6l gequ $00C08C Q6 low
q6h gequ SOOCOBD Q6 high
q71 gequ SOOCOBE Q7 low
q7h gequ SOOCOBf Q7 high

emulstack gequ $010100 emulation mode stack pointer

eject

A P P E N D I X D Driver Source Code Sample Block driver 357

GSIOS Reference (Volume 2) APDA Draft

• The followinq equates are used to implement our hypothetical
• device driver. They in no way reflect softswitches associated
• with any real hardware device.

• I
* I 7 I 6 I 5 I 4 I 3 I 2 I l I 0 I BLOCK_RDY
• 1_1_1_1_1_1_1_1_1

I 1_1_1_1_1_1_1_ Reserved

-------------- l • Device is ready

block_rdy gequ

* I
*17161514131211101
• 1_1_1_1_1_1_1_1_1

block_data qequ

• I
* I 7 I 6 I 5 I 4 I 3 I 2 I l I 0 I
• 1_1_1_1_1_1_1_1_1

I I

$00C084

BLOCK_DATA

Block device data reqister

$00C085

BLOCK_STATUS

l • Disk switched
l - Interrupt in process
l • Write protected

______ o

---------- 0 __________ o
_____________ o

1 • Online

block_status gequ SOOC086

• I
* I 7 I 6 I 5 I 4 I 3 I 2 I l I 0 I BLOCK_CONTROL
• 1_1_1_1_1_-1_1_1_1

__ 1_1_1 ___ I_ Block device control register

block_control gequ $00C087

eject

358 V 0 L U M £ 2 Devices and GS/OS

1131/89

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1131189

• The following table is the header required for all loaded
• drivers which consists of the following:

Word Offset from start to 1st DIB
word Number of DIBs
Word Offset from start to 1st configuration list
Word Offset from start to 2nd configuration list
etc.

driver_data data
here entry

de i2'dib_l-here' of! set to 1st DIB
de i2'8' number of devices
de i2'con!l-here• offset to 1st configuration list
de 12'conf2-here• offset to 2nd configuration list
de i2'conf3-here• offset to 3rd configuration list
de i2'conf4-here• offset to 4th configuration list
de 12'conf5-here' offset to 5th configuration list
de 12'conf6-here' offset to 6th configuration list
de 12' conf7-here • offset to 7th configuration list
de 12 • conf8-here • offset to 8th configuration list

• The following are the driver configuration parameter lists.

confl de i2'0' 0 bytes in parameter list
default1 de i2'0' 0 bytes in default list

conf2 de i2'0' 0 bytes in parameter list
default2 de i2'0' 0 bytes in default list

conf3 de i2'0' 0 bytes in parameter list
default3 de i2'0' 0 bytes in default list

conf4 de i2'0' 0 bytes in parameter list
default4 de i2'0' 0 bytes in default list

conf5 de i2'0' 0 bytes in parameter list
defaultS de i2'0' 0 bytes in default list

conf6 de i2'0' 0 bytes in parameter list

default6 de i2'0' 0 bytes in default list

conf7 de i2'0' 0 bytes in parameter list

ctefault7 de i2'0' 0 bytes in default list

conf8 de i2'0' 0 bytes in parameter list

defaultS de i2'0' o bytes in default list

eject

*. * * ** ••• * •• * ** * ** * * * ** * ** * * * * ** * * *·* ** •••• **. ** ••• * ** * ***** ** * ***

APPENDIX 0 Driver Source Code Sample Block driver 359

GSIOS Reference (Volume 2) APDA Draft

• The following are tables of format options for each device.
• The format option tables have the following structure:

Word Number of entries in list
Word Display count (number of head links)
WOrd Recommended default option
Word Option that current online media is formatted with
Entries 16 bytes per entry in the format list

• The twenty byte structure for each entry in the format list
• is as follows:

Word Media variables reference number
Word Link to reference number n.
Word Flags I Format environment
Long Number of blocks supported by device
Word Block size
WOrd Interleave factor
Long Number of bytes defined by flag

• Bit definition within the flags word is as follows:

• I

* I F I £ I D I C I B I A I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
* I ___ I __ I __ 1_1 ____ 1_1 ___ I

I

__ I_ Format

-----Flags
__ I __________ ---------Reserved

• Format Bit Definition: 00
01 Apple Format
02 NonApple Format
11 Not Valid

• Flag Bit Definition:
01 Size is in Kb
02 Size is in Mb
11 Size is in Gb

00

Universal format

Size is in bytes

format_tbl entry

de i2' format1' pointer to
de i2'format2' pointer to
de i 2 • format3 • pointer to
de i2 • format4 • pointer to
de i2' formatS' pointer to
de i2 • format& • pointer to
de i2'format7' pointer to
de 12 • format a • pointer to

eject
formatl anop

V 0 L U M E 2 Devices and GS/OS

format option
format option
format option
format option
format option
format option
format option
format option

1/31189

list 11

list 12
list 13
list 14
list IS
list 16
list 17
list 18

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31/89

de 12'3' number of entries
de i2'2' number of displayed entries
de i2'1' recommended option is 1
de i2'1' current media formatted w/option 1

format1_entcy1 anop
de i2 '1' RefNum
de i2'2' LinkRef
de i2 ·~. univeral format I size in kb
de i4 '1600. block count
de i2'512' bloclt size
de i2'4' interleave factor
de i2'800' media size is 8001tb

fonnat1_entry2 anop

de i2'2' reference number 1
de i2'0' LinkRef
de i2'4' univeral format I size in ltb
de i4'1600' bloclt count
de i2'512' bloclt size
de i2. 2. interleave factor
de 12'800' media size is 800kb

format 1_ entcy3 anop
de i2'3' reference number 1
de i2'0' LinltRef
de 12.4. univeral format I size in kb
de i4'800' bloclt count
de i2'524' block size

de i2'4' interleave factor
de i2'400' media size is 400kb

eject
format2 anop

de i2'1' Number of entries

de i2'1' number of displayed entries
de i2 '1. recommended option is 1
de i2 '1. current media formatted wloption 1

format2_entry1 anop
de i2 '1' RefNum
de i2'0' LinkRef
de i2'4' univeral format I size in kb
de i4'280' bloclt count

de i2'512' bloclt size

de i2'0' interleave factor
de i2'143' media size is 143 kb

format3 anop
de i2 '1' Number of entries

de i2'1' number of displayed entries

de i2 '1' recommended option is 1

de i2'1' current media formatted wloption 1

format3_entcy1 anop
de i2'1' RefNum

de i2'0' LinkRef

de i2'4' univeral format I size in kb

APPENDIX D Driver Source Code Sample Block driver 361

GYOS Reference (Volume 2)

focmat4

focmat4_entry1

formatS

focmat5_entry1

format6

focmat6_entry1

focmat7

de
de
de
de

anop
de
de
de
de
anop
de
de
de
de
de
de
de

eject
anop
de
de
de
de
anop
de
de
de
de
de
de
de

anop
de
de
de
de
anop
de
de
de
de
de
de
de

anop
de
de
de
de

i4'280'
i2'512'
i2'0'
i2'143'

i2'1'
i2'1'
i2'1'
i2 '1'

i2'1'
i2'0'
i2'4'
i4'280'
i2'512'
i2'0'
i2'143'

i2'1'
i2 '1'

i2 '1'

i2'1'

i2'1'
i2'0'
i2'4'
i4'280'
i2'512'
i2'0'
i2'l43'

i2'1'
i2 '1'

i2 '1'

i2'1'

i2'1'
i2'0'
i2'4'
i4'280'
i2'512'
i2'0'
i2'143'

i2'1'
i2'1'
i2'1'
i2'1'

V 0 L U M E 2 Devices and GS/OS

APDA Draft_

block count
block size
interleave factor
media size is 143 kb

Number of entries
number of displayed entries
recommended option is 1
current media formatted wloption 1

RefNum
LinkRef
univera1 format I size in kb
block count
block size
interleave factor
media size is 143 kb

Number of entries
number of displayed entries
recommended option is 1
current media formatted wloption 1

RefNum
LinkRef
univeral format I size in kb
block count
block size
interleave factor
media size is 143 kb

Number of entries
number of displayed entries
recommended option is 1

current media formatted wloption 1

RefNum
LinkRef
univeral format I size in kb
block count
block size
interleave factor
media size is 143 kb

Number of entries
number of displayed entries
recommended option is 1
current media formatted wloption 1

APPENDIXES

1131189

GSIOS Reference (Volume 2) APDA Draft 1131189

forrnat7_entry1 anop
de i2'1' RefNum
de i2'0' LinkRef
de i2'4' univeral format I size in kb
de i4'280' block count
de i2'512' block size
de i2'0' interleave factor
de i2'143' media size is 143 kb

formatS anop
de i2'1' Number of entries
de i2 '1' number of displayed entries
de i2'1' recommended option is 1
de i2'1' current media formatted w/option

A P P E N D I X D Driver Source Code Sample Block driver 'YJ3

GSIOS Reference (Volume 2) APDA Draft

format8_entry1 anop

de i2'1' RefNum

de i2'0' LinkRef

de i2'4' univera1 format I size in kb

de i4' 280' block count

de i2'512' block size

de i2'0' interleave factor

de i2'143' media size is 143 kb

eject

• I

Link Pointer
Entry Pointer

Device Characteristics

• I F I E I D I C I B I A I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
• 1_1_1_1_1_1_1_1_1_1_1 __ 1_1_1_1_1

RESERVED

---- REMOVABLE

------ FORMAT
-------- RESERVED

---------READ
-----------WRITE

------------- BLOCK DEVICE
-------------- SPEED GROUP

----------------------- RESERVED
----------------------BUSY

----------------------- LINKED
---------------------------GENERATED

--- RAM/ROM DEV

Block Count

Device Name

Slot Number
Unit Number

Device ID Number
Head Device Link

Forward Device Link

Reserved Word

Reserved Word
DIB device n~r

V 0 L U M E 2 Devices and GS/OS APPENDIXES

1131/89

GSIOS Reference (Volume 2)

dib 1 entry

de
de
de
de
de

i4'dib 2'

i4'dispatch'
h'EC oo•
14'280'
i1. 6.

de c'BLOCKO

dib 2

de
de

de
de
de
de
de
de

de
de

entry
de
de

de
de
de
de
de
de
de
de
de
de
de
de
de
de

eject

i2'0'
i2'0'

i2'current ver'
i2'0'
i2'0'
i2'0'

i4'0'
i2'0'
i2'0'
i2'0'

i4'dib 3'
i4 'dispatch'

h'EC oo·
i4'280'

il'6'

c'BLOCK1
i2'0'
i2'0'
i2'current ver'
i2'0'
i2'0'
i2'0'
i4'0'
i2'0'
i2'1'

i2'0'

A P P E N D I X D Driver Source Code Sample

APDA Draft

link pointer to second DIB
entry pointer
characteristics
block count
device name (length & 32 bytes ascii)

slot f (valid only after startup)
unit f (valid only after startup)
version f 0001
device ID f (valid only after startup)
head device link
forward device link
extended DIB pointer
dib device number
drivers internal device number
slot * 16

link pointer
entry pointer
characteristics

block count
device name (length & 32 bytes ascii)

slot f (valid only after startup)
unit f (valid only after startup)
version f 0001
device ID f (valid only after startup)
head device link

forward device link
extended DIB pointer
dib device number
drivers internal device number

slot • 16

Block driver

I/31/89

GSIOS Reference (Volume 2)

dib 3

dib_4

dib 5

entry
de

de
de
de
de
de
de
de
de
de
de
de
de
de
de
de

entry
de
de
de
de

de
de
de
de
de
de
de
de
de
de
de
de

ent:ry

de
de
de
de
de

i4'dib_4'
i4'dispatch'
h'EC oo•
i4'280'
11'6'

c'BLOCK2
i2'0'
i2 •a•
i2'current_ver'

i2'0'
i2'0'
i2'0'
i4'0'
i2'0'
i2. 2.

i2'0'

i4'dib s•
14'dispatch'
h'EC 00'
14'280'
11' 6.

c'BLOCK3
i2'0'
i2'0'
i2'current_ver•
i2'0'

i2'0'
12'0'
i4'0'
12'0'
i2'3'
i2'0'

i4'dib 6'

i4'dispatch'
h'EC 00'
i4'280'
11'6'

de c'BLOCK4
de i2'0'
de i2'0'
de i2'current_ver•
de i2'0'
de i2'0'
de i2'0'
de i4'0'
de 12'0'
de i2'4'
de 12'0'

V 0 L U M E 2 Devices and GS/OS

APDA Draft

link pointer
entry pointer
characteristics
block count
device name (length & 32 bytes ascii)

slot t (valid only after start:up)
unit t (valid only after startup)
version t 0001
device ID t (valid only after startup)
head device link
forward device link
extended DIB pointer
dib device number
drivers internal device number
slot • 16

link pointer
entry pointer
characteristics
block count
device name (length & 32 bytes ascii)

slot t (valid only after startup)
unit t (valid only after startup)
version t 0001
device ID t (valid only after startup)
head device link
forward device link
extended DIB pointer
dib device number
drivers internal device number
slot • 16

link pointer
entry pointer
characteristics
block count
device name (length & 32 bytes ascii)

slot t (valid only after startup)
unit t (valid only after startup)
version t 0001

device ID t (valid only after startup)
head device link
forward device link
extended DIB pointer
dib device n~oer
drivers inte:. r.a1 device number
slot • 16

APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft 1/31189

eject
dib 6 entry

de i4'dib_7' link pointer
de i4'dispatch' entry pointer
de h'EC oo• characteristics
de i4. 280' block count
de 11'6' device name (lenqth ' 32 bytes ascii)
de c•BLOCKS
de i2'0' slot f (valid only after startup)
de i2'0' unit f (valid only after startup)
de i2'current_ver' version f 0001
de i2'0' device ID f (valid only after start up)
de i2'0' head device link
de 12'0' forward device link
de i4'0' extended DIB pointer
de i2'0' dib device number
de i2'5' drivers internal device number
de i2'0' slot • 16

dib_7 entry
de i4'dib_8' link pointer
de i4'dispatch' entry pointer
de h'EC oo• characteristics
de i4'280' block count
de 11'6' device name (lenqth ' 32 bytes ascii)
de c'BLOCK6
de i2'0' slot f (valid only after startup)
de i2'0' unit t (valid only after startup)
de i2'current_ver• version f 0001
de i2'0' device ID f (valid only after start up)

de 12'0' head device link
de i2'0' forward device link
de 14'0' extended DIB pointer
de i2'0' dib device number
de i2'6' drivers internal device number
de i2'0' slot • 16

A P P E N D I X 0 Driver Source Code Sample Block driver ?/J7

GSIOS Reference (Volume 2) APDA Draft 1/31189

dib_B entry
de i4'0' link pointer
de i4'dispatch' entry pointer
de h'EC 00' characteristics
de i4'280' block count
de 11'6' device name (lenqth ' 32 bytes ascii)
de c'BLOCK7
de 12'0' slot I (valid only after startup)
de 12'0' unit I (valid only after startup)
de i2'current_ver• version t 0001
de i2'0' device ID I (valid only after startup)
de 12'0' head device link
de i2'0' forward device link
de i4'0' extended DIB pointer
de i2'0' dib device number
de i2'7' drlvers internal device number
de 12'0' slot • 16

eject
...........•••....•.•.•...........•..•.•..•......•..•...•..•.•.••

• The following table is used to dispatch to GS/OS driver
• functions.

dispatch_table entry
de i2' startup-1'
de i2'open-1'
de i2' read-1'
de i2'write-1'
de 12'close-1'
de 12'status-1'
de i2'control-1'
de i2' flush-1'
de 12' shutdn-1'

V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

status table entry
de i2'dev stat-1'
de i2'get_eonf-1'
de i2'get_wait-1'
de i2'get_format-1'
de i2'get_partn_rnap-1'

control table entry
de i2'dev reset-1'
de 12' format-1'
de i2'media_eject-1'
de i2' set conf-1'
de i2'set wait-1'
de i2'set format-1' -
de i2' set_partn-1'
de i2'arrn_signal-1'
de i2'disarrn_signal-1'
de i2'set_partn_rnap-1'

status flag entry

de i2'0' flag for unit
de i2'0' flag for unit
de i2'0' flag for unit
de i2'0' flag for unit
de i2'0' flag for unit
de i2'0' flag for unit
de i2'0' flag for unit
de 12.0. flag for unit

eject

* The following table contains the open status for each device
• supported by this driver.

open_table entry
de i2'0' open state
de i2'0' open state
de i2'0' open state

de i2'0' open state
de i2'0' open state
de i2'0' open state

de i2'0' open state

de i2'0' open state

eject

A P P E N D I X D Driver Source Code Sample

for
for
for
for
for
for
for
for

1/31189

DIB 1 device
DIB 2 device
DIB 3 device
DIB 4 device
DIB 5 device
DIB 6 device
DIB 7 device
DIB 8 device

Block driver

GSIOS Reference (Volume 2) APDA Draft

• The following table contains the device status for each
• device supported by this driver.

• Encoding of status for a character device is as follows:

• I

• I F I E I D I C I B I A I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
• I 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1

OPEN
INTERRUPT

---- RESERVED

--------------- BUSY

--------- 0 RESERVED

• Encoding of status for a block device is as follows:

• I

• I F I E I D I C I B I A I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
* I I I I I I I I I I I I I I I I

DISK SW
INTERRUPT

--------- WRITE PROT
------- 0 RESERVED

--------------- ONLINE
__________ ------------------- 0 RESERVED

dstat tbl entry
de i2'dstat1' pointer to status for
de i2'dstat2' pointer to status for
de i2'dstat3' pointer to status for
de i2'dstat4' pointer to status for
de i2'dstat5' pointer to status for
de i2'dstat6' pointer to status for
de i2'dstat7' pointer to status for
de i2'dstat8' pointer to status for

DIB 1
DIB 2
DIB 3
DIB 4
DIB 5

DIB 6
DIB 7
DIB 8

dstat 1 de h'OO 00' device general status word
de i4'1600' device block count

dstat 2 de h'OO 00' device general status word
de i4'280' device block count

dstat3 de h'OO oo• device general status word
de i4'280' device block count

device
device
device
device
device
device
device
device

370 V 0 L U M E 2 Devices and GS/OS APPENDIXES

I/31189

GSIOS Reference (Volume 2) APDA Draft 1131189

dstat4 de h'OO 00' device general status word

de i4'280' device block count

dstat 5 de h'OO 00' device general status word
de 14'280' device block count

dstat 6 de h'OO 00' device general status word
de i4'2.80' device block count

dstat7 de h'OO 00' device general status word
de i4'280' device block count

dstat 8 de h'OO 00' device general status word
de i4'280' device block count

eject

• The following table is used to return the configuration list for
• each device supported by this driver.

clist tbl entry
de i2'confl' pointer to configuration list ll
de i2'con!2' pointer to con!igurat ion list 12
de i2'conf3' pointer to configuration list 13

de i2'con!4' pointer to con!igurat ion list 14
de i2'conf5' pointer to con!igurat ion 1 ist 15
de i2'conf6' pointer to configuration list 16
de i2'conf7' pointer to configuration list 17

de i2'conf8' pointer to configuration list 18

• The following table is used to return the wait mode !or
• each device supported by this driver.

wait_mode_tbl entry
de i2'0' unit wait mode

de i2'0' unit 2 wait mode

de i2'0' unit 3 wait mode

de i2'0' unit 4 wait mode

de i2'0' unit 5 wait mode

de i2'0' unit 6 wait mode

de i2'0' unit 7 wait mode

de i2'0' unit 8 wait mode

A P P E N D I X D Driver Source Code Sample Block driver 371

GSIOS Reference (Volume 2) APDA Draft

• The following table is used to set the current format
• option for each device supported by this driver.

format mode entry
de i2'0' unit 1 format mode
de i2'0' unit 2 format mode
de i2'0' unit 3 format mode
de i2'0' unit 4 format mode
de i2'0' unit 5 format mode
de i2'0' unit 6 format mode
de i2'0' unit 7 format mode
de i2'0' unit 8 format mode

• The following table is used by the startup call when setting
• parameters in the DIB. Slot number, Unit number and Device
• ID number are valid only after startup.

startup_slot
startup_unit
startup_name

de
de
de

i2' SOOOF'
i2 '1'

h'31 20'

initial slot to search for
initial unit to search for
startup with BLOCKl

• The following equates are general workspace used by the driver.

retry_ count
startup_count

de
de

end

eject

i2'0'
i2'0'

V 0 L U M E 2 Devices and GS/OS

; retry count

1/31189

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

* DRIVER MAIN ENTRY POINT: DISPATCH

* This is the main entry point for the device driver. The

* routine validates the call number prior to dispatching to
* the requested function.

* Call Number: $0000 Function: Startup
$0001 Open
$0002 Read
$0003 Write
$0004 Close
$0005 Status
$0006 Control
$0007 Flush
$0008 Shutdown

$0009-SFFFF Reserved

* ENTRY: Call via 'JSL'

* EXIT:

[<drvr_dib_ptr] $ Points to the DIB for the device being accessed
<drvr_dev_num • Device number of device being accessed

<drvr call num • Call number

A Reg - Call Number
X Reg • Undefined

Y Reg • Undefined
Dir Reg • GS/OS Direct
B Reg • Undefined
p Reg • N V M X D I z c

X X 0 0 0 0 X X

Page

E
0

Direct page • unchanged with the exception of <drvr_tran_cnt
A Reg • Error code
X Reg • Undefined
Y Reg • Undefined

Dir Reg • GS/OS Direct Page
B Reg - Same as entry
p Reg • N V M X D I Z c E

X X 0 0 0 0 X 0 0 No error occurred

X X 0 0 0 0 X 1 0 Error occurred

A P P E N D I X D Driver Source Code Sample

1/31189

Block driver 373

GSIOS Reference (Volume 2) APDA Draft

dispatch

save_parms

func ret

restore _parms

gen_exit

start
using
long a
longi

phb
phlt
plb
cnp

bge

tay
ldx
anop
lda
ph a
lda
ph a
inx
inx
cpx

bne

tya
pea

asl
tax
lda
ph a
rts

anop
tay

ldx
anop
pla
sta
pla
sta
dex
dex
bpl
plb
bcs
ldy
anop
tya
rtl

driver_data
on
on

tmax_command
illegal_req

t$0000

<drvr_dev_num,x

<drvr_blk_num,x

tSOOOC
save_parms

func ret-1
a

ldispatch_table,x

ISOOOA

<drvr_blk_num,x

<drvr_dev_num,x

restore _parms

gen_exit
tno_error

• Received an illegal request. Return with an error.

374 V 0 L U M E 2 Devices and GS/OS

save environment

is it a legal command?
no
save command I

save GS/OS call parameters

up to but not including DRVR TRAN CNT

restore command t

return address from function
make index to dispatch table

push function address for dispatch
rts dispatches to function

save error code

number of words to restore

restore GS/OS call parameters

force error code 0 if flag cleared

restore error code

APPENDIXES

1/31189

GSIOS Reference (Volume 2) APDA Draft

illegal_req anop
plb
lda
sec
rtl

end

eject

ldrvr_bad_req
restore environement
set error

* DRIVER CALL: STARTUP

• This routine must prepare ~he driver to accept all other driver
• calls.

* ENTRY: Call via 'JSR'

* EXIT: via an 'RTS'

[<drvr_dib_ptr) • Points to the DIB for the device being accessed
<drvr_dev_num • Device number of device being accessed
<drvr call num • Call number
<drvr_tran_cnt • $00000000
A Reg • Call Number
X Reg • Undefined
Y Reg • Undefined
Dir Reg - GS/OS Direct Page
B Reg • Same as program bank
P Reg • N V M X D I Z C E

X X 0 0 0 0 X X 0

A Reg • Error code
X Reg • Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Same as entry
P Reg • N V M X D 1 Z C E

x x 0 0 0 0 x 0 0 No error occurred
x x 0 0 0 0 x 1 0 Error occurred

A P P E N D 1 X 0 Driver Source Code Sample

1131189

Block driver 375

GSIOS Reference (Volume 2) APDA Draft

startup

• Check for the

start
using drlver_data
longa on
longi on

lda 1 startup_count
beq search_ loop

device.

; insert your code here.

has slot been found?
no, go search for it

bne no_start_device if you can't find your signatures bytes

inc lstartup_count

• Update the following DIB parameters •••

Slot Number
Unit Number
Device Name (already unique for each DIBl

• Note that these DIB parameters are static after startup.

ldy fslot num update DIB slot number
ida I startup_slot
sta [<drvr_dib_ptr), y
iny
iny
ida lstartup_count update DIB unit number
sta [<drvr_dib_ptr),y
bra startup_done

• Always request the slot from the slot arbiter prior to scanning the SCnXX space
• for signature bytes when searching for hardware. This provides a compatible
• method of requesting a slot should a method of dynamic slot switching be made
• available in the future.

search_loop
lda
jsl
bcs

I startup_slot
dyn_slot_arbiter
next slot

request slot from slot arbiter

if slot was not granted
inc I startup_count

• If the slot was granted then use the current slot to search for signature
• bytes identifying your hardware.

lda lsearch_slot create SCnOO for signature search index
and f$0007
ora fSOOCO
xba

tax ; X register • SCnOO

• Now search for signatures.

376 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GS/OS Reference (Volume 2) APDA Draft

; insert your code here.
bne next slot ; if you can•t find your signatures bytes

• If you find your signature bytes then check for the device.

; insert your code here.
bne no start device

• Update the following DIB parameters •••

Slot Number
Unit Number
Device Name

if you can't find your signatures bytes

(already unique for each DIB)

• Note that these DIB parameters are static after startup.

start up_ done

next slot

no start device

ldy tslot_num
lda 1 startup_slot
sta [<drvr_dib_ptr},y
iny
iny
lda
sta

lstartup_count
[<drvr_dib_ptr},y

lda tno error
clc
rts

dec
bne

I startup_slot
search_loop

lda tdrvr io error
sec
rts

eject

A P P E N D I X D Driver Source Code Sample

update DIB slot number

update DIB unit number

point at next slot to check
and check for hardware

Block driver

1131189

GSIOS Reference (Volume 2) APDA Draft

* DRIVER CALL: OPEN

• This call has no applica~ion wi~h block device drivers and will
• re~urn with no error.

* ENTRY: via a 'JSR'
<drvr_dev_num • Device Number of current device being accessed
<drvr_~ran_cn~ • $00000000

A Reg • Call Number
X Reg • Undefined
y Reg- Undefined
Dir Req • GS/OS Direct Page
B Reg • Undefined
p Reg • NV H X D I Z C E

X X 0 0 0 0 X X 0

• EXIT: via an 'RTS'
A Reg • Error code
X Reg - Undefined
y Reg • Undefined
Dir Req • GS/05 Dirac~ Page
B Reg • Same as entry
p Reg • NVHXDIZC E

X X 0 0 0 0 X 0 0 No error occurred
X X 0 0 0 0 X 1 0 Error occurred

378 V 0 L U M E 2 Devices and GS/OS

1/31/89

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

open start
using
longa
longi

lda
clc
rts

end

copy

driver data
on
on

tno_error

core.blk.drvr/read

• DRIVER CALL: READ

• This call executes a read from the device. Block devices must
• validate the initial block number and that the request count is
• an integral multiple of the block size. In addition the block
• number of each successive block must be validated as it is
• accessed when an multiple block I/0 transaction is in place.

• ENTRY: via a 'JSR'
<drvr dev num - Device Number of current device being accessed
<drvr_buf_ptr • Pointer to I/0 buffer
<drvr blk num - Initial block number
<drvr_req_cnt • Number of bytes to be transferred
<drvr_blk_size - Size of block to be accessed
<drvr tran cnt • $00000000
A Reg • Call Number
X Reg - Undefined
y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Undefined
p Reg • N V M X D I z c E

X X 0 0 0 0 X X 0

• EXIT: via an 'RTS'
<drvr_tran_cnt - Number of bytes transferred
A Reg • Error code
X Reg • Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page

B Reg - Same as entry
p Reg •NVMXDIZ c E

X X 0 0 0 0 X 0 0 no error occurred

X X 0 0 0 0 X 1 0 error occurred

A P P E N D I X D Driver Source Code Sample

1/31189

Block driver)79

GSIOS Reference (Volume 2) APDA Draft

read start
using driver_data
long a on
longi on

• The following routine implements the read call for a block device and
• includes cache support.

block. read anop
bit
bmi

clc
jsl
bcs

<drvr_fst_num
dev_access

is this a forced device access call?
yes

cache_find_blk
not_cached

specify cache block. search
is the block in the cache?
no

• The block is in the cache. Use the system service call 'MOVE_INFO' to
• transfer the data from the cache to the buffer specified in the read call.

pel <drvr_cach_ptr+2
pel <drvr_cach_ptr
pel <drvr_buf_ptr+2
pel <drvr_buf_ptr
pea $0000

pel <drvr blk. size
pea move_sinc_dinc
jsl move_info
jsr dev_stat check. for disk switched
bee no_purge if not switched
brl block._rd_err else

no_purge anop

V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

• The block has been read. Need to adjust the block address
• and buffer pointer in preperation for the next read if
• a multiple block transaction is in process. If the
• request count has been satisfied, no further action is required.

jsr
jsr
bee
lda
clc
rts

adj_buf_ptr
adjust_block
block.:_ read
fno error

adjust new buffer address
prepare for next block
if more blocks to read
else all done

• If block is not in cache or fst ID is negative then must force
• access to the device to read the block.

dev access anop
ldy
lda
tax

fmy_slotl6 get slot index for hardware access

read_loopO

retry _loopO

read_readyO

[<drvr_dib_ptr I, y

ldy tO

sep f$20

longa off

anop
lda 1100

sta lretry_count

anop
lda
bmi
dec
bpl
sec

>block_rdy .
read_ readyO
lretry_count
retry_loopO

lda fdrvr_off_line
rep
longa

bra

anop
lda
sta
iny

cpy

bne
clc

f$20

on

block rd err

>block. data
[<drvr_buf_ptr],y

<drvr_blk._size

read_loopO

A P P E N 0 I X D Driver Source Code Sample

init buffer pointer

8 bit 'm'

retry counter

is data ready?
yes

if retry count not exhausted
else return offline error

16 bit 'm'

get data

read whole block.?

no

Block driver

1/31189

381

GSIOS Reference (Volume 2) APDA Draft

read_loop_exitO anop
rep t$20 16 bit 'm'
longa on

bee no __purge if no I/0 error
lda tdrvr_io_error else exit with error
bcs block_rd_err

• If block is not cached, action depends on the cache enable in the
• current call. If the cache enable is zero then must force access
• to the device. If cache enable is nonzero, a request for a block
• for the cache must be made of the cache manager. If no block is
• granted then must force access to the device while reading only
• to the buffer. If the block si granted, the block is read from the
• device to the buffer and the cache simultaneously.

not_cached
is caching requested?
no

anop
lda
beq
jsl
bcs

<drvr_cache

dev_access
cache_add_blk
dev access

request a cached block from cache mgr
if block not granted

• The block has been granted from the cache manager. Optimize I/O
• by writing data to both the cache and buffer simultaneously.

ldy tmy _slotl6
lda [<drvr_dib_ptr],y
tax
ldy tO

sep fS20

longa off

read_loopl anop
lda 1100

sta lretry_count

retry_loopl anop
lda >block_rdy
bmi read_readyl
dec lretry_count
bpl retry_loopl
sec

bra read_loop_exitl

read_readyl anop

lda >block_data
sta (<drvr_buf_ptrj,y
sta [<drvr_cach__ptr],y
iny
cpy <drvr_bllt_size
bne read_loopl
clc

V 0 L U M E 2 Devices and GS/OS

get slot index for hardware access

init buffer pointer

8 bit •m•

retry counter

is data ready?
yes

if retry count not exhausted
else return I/O error

get data

read whole block?
no

APPENDIXES

1/31189

GSIOS Reference (Volume 2) APDA Draft

read_loop_exltl anop
rep 1$20 16 bit •m•
longa on

bee no_purge 1! no I/0 error
lda tdrvr_lo_error else exit with error

block_rd_err anop
rts

eject

• ADJUST BUFFER POINTER

• This call adjusts the buffer pointer by the block size

* ENTRY: via a 'JSR'
<drvr_bu!_ptr - Pointer to I/0 buffer
<drvr_blk_size • Size of block to be accessed
A Reg • Call Number
X Reg - Undefined
y Reg • Undefined
Dlr Reg • GS/OS Direct Page
B Reg • Undefined
p Reg • N V M X D I z c E

X X 0 0 0 0 X X 0

• EXIT: via an 'RTS'
<drvr tran cnt • Number of bytes transferred
A Reg • Error code
X Reg - Undefined
y Reg - Unde!ined
Dir Reg • GS/OS Direct Page
B Reg • Same as entry
p Reg - N V M X D I z c E

X X 0 0 0 0 X X 0

adj_bu!_ptr entry
longa on

long! on

clc prepare !or add
lda <drvr_blk_size
a de <drvr_bu!_ptr
sta <drvr_bu!_ptr
lda f$0000

a de <drvr_buf_ptr+2
sta <drvr_bu!__ptr+2
rts

eject

APPENDIX D Driver Source Code Sample

1131189

Block driver 383

GSIOS Reference (Volume 2) APDA Draft

• ADJUST BLOCK ADDRESS

• This call sets the next block address and verifies that the
• block is valid for the device beinq accessed.

• ENTRY: via a 'JSR'
<drvr_dib_ptr • Pointer to DIB for current device
<drvr_blk_num • Current block number
A Req • Call Number
X Req • Undefined
Y Req • Undefined
Dir Reg • GS/OS Direct Paqe
B Req • Undefined
P Req • N V M X D Z C E

X X 0 0 0 0 X X 0

• EXIT: via an 'RTS'
<drvr blk_num • New block number
A Req • Error code
X Req • Undefined
Y Req • Undefined

Dir Req • GS/OS Direct Paqe
B Req • Same as entry
P Req • N V M X 0 I Z C E

x x 0 0 0 0 x 0 0 if next block is valid
x x 0 0 0 0 x 1 0 if next block is invalid

V 0 L U M E 2 Devices and GS/OS

1/31189

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

adjust_block

validate blk

valid blk

Local Symbols

t block

ached

readyl
ate blk

entry
longa on
longi on

inc <drvr blk num
bne validate_blk
inc <drvr_blk_num+2
anop
ldy fblk cnt+2

lda [<drvr_dib_ptr),y
cmp <drvr_blk_num+2
bge valid blk
dey
dey
lda [<drvr_dib_ptr),y
cmp <drvr_blk_num
bge valid_blk
sec

rts
anop
clc
rts

end

000000 block read
OOOOJF read_loopO
OOOOAl read_loop_exitl
000044 retry_loopO

set next block address

000034 dev access
000080 read_loopl

000085 retry_loopl

copy core.blk.drvr/write

A P P E N D I X D Driver Source Code Sample

1131189

Block driver 385

GSIOS Reference (Volume 2) APDA Draft

* DRIVER CALL: WRITE

• This call executes a write to the device. Block devices must
• validate the initial block number and that the request count is
• an integral multiple of the block size. In addition the block
• number of each successive block must be validated as it is
• accessed when an multiple block I/0 transaction is in place.

* ENTRY: via a 'JSR'
<drvr_dev num • Device Number of current device being accessed
<drvr_buf_ptr • Pointer to I/0 buffer
<drvr_blk_num • Initial block number
<drvr_req_cnt • Number of bytes to be transferred
<drvr_blk_size • Size of block to be accessed
<drvr_tran_cnt • $00000000

A Reg • Call Number
X Reg • Undefined
Y Reg • Undefined
Dir Reg • GSIOS Direct Page
B Reg • Undefined
P Reg • N V M X D I Z C E

X X 0 0 0 0 X X 0

* EXIT: via an 'RTS'
<drvr_tran_cnt - Number of bytes transferred

A Reg • Error code
X Reg • Undefined
Y Reg • Undefined
Dir Reg • GSIOS Direct Page
B Reg • Same as.entry
p Reg • N V M X D I Z C E

X X 0 0 X X X 0 0 no error occurred
X X 0 0 X X X 1 0 error occurred

V 0 L U ME 2 Devices and GS/OS

1/31189

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

write start
using driver_data
longa on
longi on

• The following routine implements the write call for a block device and
• includes cache support.

block write anop
clc
jsl
bee
lda
beq

cache_tind_blk
write_cache
<drvr cache
write_blk_dev

specify cache block search
is the block in the cache?
yes
is caching requested?
no

jsl cache_add_blk else request a block from cache mgr

write_cache

write_blk_dev

wr_deferred

block_wr_err

Local Symbols

bcs write_blk_dev
anop
pei <drvr_buf_ptr+2
pei <drvr_buf_ptr
pei <drvr_cach_ptr+2
pei <drvr_cach_ptr
pea $0000
pei <drvr_blk_size
pea move_slnc_dinc
jsl move_info
jsr dev_stat
bcs block_wr_err
bit <drvr cache
bmi wr_deferred
anop

bcs block_wr err
anop
jsr adj_buf_ptr
jsr adjust_block
bee block_write
lda tno_error
clc
anop
rts

end

source

destination

block size

move mode

check !or disk switched
if cant move data
is it in deferred mode?
yes, don't write to media

if error writing to device

set next buffer address
set next block address
if more blocks to write
else exit with no error

000000 block_write 000030 wr_de!erred
000011 write_cache

copy core.blk.drvr/close

A P P E N D I X D Driver Source Code Sample Block driver

1131189

GSIOS Reference (Volume 2) APDA Draft

• DRIVER CALL: CLOSE

• This call has no application with block devices and will
• return with no error.

• ENTRY: via a 'JSR'
<drvr_dev_num • Device Number of current device being accessed
<drvr_tran_cnt • $00000000
A Reg • Call Number
X Reg • Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Undefined
p Reg •NVMXD I z c E

X X 0 0 0 0 X X 0

• EXIT: via an 'RTS'
A Reg • Error code
X Reg • Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Same as entry
p Reg • N V M X D I Z c E

X X 0 0 0 0 X 0 0 No error occurred
X X 0 0 0 0 X 0 Error occurred

close start
using driver_data
long a on
longi on

lda fno_error
clc
rts

end

copy core.blk.drvr/status

V 0 L U M E 2 Devices and GS/OS

I/31189

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

* DRIVER CALL: STATUS

* This routine supports all the standard device status calls.
* Any status call which is able to detect an OffLINE or DISK
* SWITCHED condition should call the system service routine
* SET_DISKSW. OffLINE and DISKSW are conditions and not errors
* when detected by a status call and should only be returned as
* conditions in the status list.

* Status Code: $0000
$0001
$0002
$0003
$0004

Return Device Status
Return Control Parameters
Return Wait/No Wait Mode
Return format Options
Return Partition Map

* ENTRY: via a 'JSR'
<drvr_dev num • Device Number of current device being accessed
<drvr_clist_ptr = Pointer to control list
<drvr ctrl code • Control code
<drvr_req_cnt • Number of bytes to be transferred
<drvr_tran_cnt • $00000000
A Reg ~ Call Number
X Reg • Undefined
Y Reg - Undefined
Dir Reg • GS/OS Direct Page
B Reg = Undefined
P Reg • N V M X D Z C E

X X 0 0 0 0 X X 0

* EXIT: via an 'RTS'
<drvr_tran_cnt - Number of bytes transferred
A Reg - Error code
X Reg • Undefined
y Reg • Unde!ined
Dir Reg • GS/OS Direct Page
B Reg • Same as entry
p Reg •NVMXD z c E

X X 0 0 0 0 X 0 0 No error occurred

X X 0 0 0 0 X 0 Error occurred

A P P E N D I X D Driver Source Code Sample

1131189

Block driver

GSIOS Reference (Volume 2) APDA Draft

status start
usinq
longa
longi

driver_data
on
on

• Need to verify that the status code specifies a
• legal status request.

lda
cmp

blt
lda
rts

<drvr_stat_code
f$0004

legal_status
ldrvr_bad_code

is this a legal status request?

yes
else return "BAD CODE' error

• It's a legal status. Dispatch to the appropriate status routine.

legal stat us anop
asl a
tax
lda lstatus_table,x
pha
rts dispatch is via an 'RTS'

eject

3SQ V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

• The DEVICE STATUS call returns a status list that indicates
• specific status information regarding a character or block
• device and the total number of blocks supported by a block device.

• Status List Pointer: Word
Longword

General status word
Total number of blocks

• Encoding of status for a block device is as follows:

• I

* I F I E I D I C I B I A I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
* I I I I I I I I I I I I I I I I I

DISK SW
INTERRUPT

----- WRITE PROT
------ 0 RESERVED

-------- ONLINE
________ --------- 0 RESERVED

--------------------------- LINKED DEV
-------------------------- UNVALIDATED

• Valid request counts versus returned status list for this status
• call are as follows:

• Request Count: $0002 Status List: General status word
• Request Count: $0006 Status List: General status word and block count

A P P E N D I X D Driver Source Code Sample

1131189

Block driver 391

GSIOS Reference (Volume 2) APDA Draft

dev_stat entry
longa
longi

lda
ldx
bne
ldx
cpx
blt
cpx
blt

bad_dev_stat anop
sec
rts

on
on

ldrvr_bad_parm
<drvr_req_cnt+2
bad dev stat
<drvr_req_cnt
f$0002

bad_dev_stat
f$0007

ok dev stat

assume invalid request count
and validate request count

• Request count is valid. Deterime device status and if appropriate, the
• total number of blocks for the device and return them in the device
• status list. You insert the code required for this operation.

ok_dev_stat anop
ldy tdriver unit internal device
lda [<drvr_dib_ptr),y
asl a
tax
lda ldstat _tbl,x get pointer to device status list
tax
ldy f$0000

sep 1$20
longa off

copy_dstat anop
lda IO,x
sta [<drvr_slist_ptr),y
inx
iny
cpy <drvr _ req_ cnt
bne copy_dstat
rep f$20

longa on

V 0 L U M E 2 Devices and GS/OS

status list pointer
8 bit •m•

copy device status list to slist_ptr

copy - request count size

16 bit 'm'

APPENDIXES

1131/89

GSIOS Reference (Volume 2) APDA Draft

• After returning the device status list check for an OFFLINE
• or DISKSW·state. If either of these conditions exist then
• the driver must call SET_OISKSW via the system service call
• table.

lda
eor
and
beq

jsl
not_blk_stat anop

brl

eject

[<drvr_slist_ptr]
1$001.0
1$0011
not_blk_stat
set_disksw

set_xfer_cnt

convert online to offline
offline or disk switched?
no
else call system service

update xfer count ' exit

• This call returns a byte count as the first word in the status
• list followed by the data !rom the control parameter list.
• The request count specifies how much data is to be returned
• from the list. If the byte count is smaller than the request
• count then only the number of bytes specified by the byte
• count will be returned and the transfer count will indicate
• this.

• Status List: Word
Data

Number of bytes in control list (including byte count).
Data from the control list (device specific).

• This call requires a minimum request count of $00000002 and
• a maximum request count of $0000FFFF.

A P P EN D I X D Driver Source Code Sample

1131189

Block driver 393

GSIOS Reference (Volume 2) APDA Draft

.......•...•..•..•••••••....•..•••....••.........................
get_ctrl entry

longa on
longi on

lda ldrvr_bad_parm
ldx <drvr_req_cnt+2
bne bad_get_ctrl
ldx <drvr _ req_ cnt
cpx 1$0002

bqe ok_get_ctrl
bad_get_ctrl anop

sec
rts

• Request count is valid. Return control list.

ok_get_ctrl anop
ldy ldriver_unit
lda [<drvr_dib_ptrJ,y
asl a
tax
lda lclist _tbl,x
tax
lda IO,x
beq no_clist
cmp <drvr _ req_ cnt
bqe req_cnt_ok
sta <drvr_req_cnt

req_cnt_ok anop
ldy ISOOOO
sep 1$20

longa off
copy_clist anop

lda IO,x
sta [<drvr_slist_ptrJ,y
inx
iny
cpy <drvr_req_cnt
bne copy_clist
rep f$20

longa on
brl- set_xfer_cnt

no clist anop
sta [<drvr_slist_ptrJ
lda 1$0002

brl set_xfer_cnt

eject

394 V 0 L U ME 2 Devices and GS/OS

assume invalid request count
and validate request count

internal device I

get pointer to control list

get length of control list
if list has no content
is list shorter than request?
no
else modify request count

status list index
8 bit •m•

copy control list to slist_ptr

copy - request count size

16 bit 'm'

APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

* This routine returns the Wait/No Wait mode that the driver
* is currently operating in. This is returned in a word
* parameter which indicates a request count of $0002.

get_wait entry
longa
longi

lda
ldx
bne
ldx
cpx
beq

bad_get_wait anop
sec
rts

on
on

ldrvr_bad parm
<drvr_req_cnt+2
bad_get_wait
<drvr_req_cnt
I $0002
ok_get_wait

assume invalid request count
and validate request count

* Request count is valid. Return the wait mode for this device.

ok_get_wait anop

ldy lunit num
lda [<drvr dib_ptr],y

tax
dex
lda lwait_mode_tbl,x

sta [<drvr_slist_ptr]

brl set _xfer _ cnt

eject

A P P E N D I X D Driver Source Code Sample

1/31/89

Block driver 395

GSIOS Reference (Volume 2) APDA Draft

• This routine returns the format options for the device.
• Consult the driver specification for the format option list.
• This call requires a minimum request count of S00000002. The
• maximum request count may exceed the size of the format list
• in which case the request count returned will indicate the
• size of the format list.

get_format entry
lonqa on
lonqi on

lda
ldx

fdrvr_bad_parm
<drvr_req_cnt+2

assume invalid request count
and validate request count

bne bad_get_format
ldx <drvr_req_cnt
cpx f$0002
bqe ok_qet_format

bad_qet_format anop
sec
rts

V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

• Request count is valid. Return the format options !or this device.

ok_get_format anop
ldy
lda
asl
tax
lda
tax
lda
asl
asl
asl
asl
clc
adc

ldriver_unit
[<drvr_dib_ptr),y
a

1 format_tbl,x

IO,x
a
a
a
a

1$0008

internal device I

get pointer to format option list

get I entries in option list
list length • (n * 16) + 8

now have option list length
cmp <drvr _ req_ cnt is request longer then list length?
bge
sta

req_count_ok anop
ldy
sep
longa

copy_fo.nnat anop

req_count_ok
<drvr_req_cnt

1$0000

1$20

off

status list index
8 bit •m•

lda IO,x copy format option list to sllst_ptr
sta [<drvr_slist_ptr),y
inx
iny
cpy <drvr _ req_ cnt copy • request count size
bne copy_fo.nnat
rep 1$20 16 bit •m•
longa on
brl set _xfer_cnt

• Get Partion Map.

• Normally this call would return a partition map for the device.
• our example does not support partitioning and will return with
• no error and a transfer count of NIL.

get _Part n _map entry
longa on
longi on

lda lno error
clc
rts

eject

APPENDIX D Driver Source Code Sample Block driver

1131189

GSIOS Reference (Volume 2) APDA Draft

• This is a common exit routine for successful status calls.
• The transfer count is set to the same value as the request
• count prior to returning with no error.

set xfer cnt

• DRIVER CALL:

entry
lda <drvr_req_cnt
sta <drvr_tran_cnt
lda <drvr_req_cnt+2
sta <drvr_tran_cnt+2
lda tno_error
clc
rts

end

copy core.blk.drvr/control

CONTROL

set transfer count

• This routine supports all the standard device control calls.

• Control Code: $0000 Reset Device
$0001 Format Device
$0002 Eject Media
$0003 Set Control Parameters
$0004 Set Wait/No Wait Mode
$0005 Set Format Options
$0006 Assign Partition Owner
$0007 Arm Signal
$0008 Disarm Signal
$0009 Set Partition Map

V 0 L U M E 2 Devices and GS/OS

1131/89

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

• ENTRY: via a 'JSR'
<drvr dev num • Device Number of current device being accessed
<drvr_clist_ptr • Pointer to control list
<drvr_ctrl_code • Control code
<drvr_req_cnt • Number of bytes to be transferred
<drvr_tran_cnt • $00000000
A Reg • Call Number
X Reg • Undefined
Y Reg - Undefined
Dir Reg • GS/OS Direct Page
B Reg • Undefined
P Reg - N V H X D Z C E

X X 0 0 0 0 X X 0

• EXIT: via an 'RTS'
<drvr_tran cnt - Number of bytes transferred
A Reg • Error code
X Reg • Undefined
Y Reg • Undefined
Dir Reg = GS/OS Direct Page
B Reg • Same as entry
P Reg • N V H X D I Z C E

X X 0 0 0 0 X 0 0
X X 0 0 0 0 X 0

No error occurred
Error occurred

control start
using driver_data
longa on
long! on

• Need to verify that the control code specifies a
• legal control request.

lda <drvr_ctrl_code
cmp 1$0009
blt
lda
rts

legal_control
ldrvr_bad_code

is this a legal control request?

yes
else return 'BAD CODE' error

• It's a legal control. Dispatch to the appropriate control routine.

legal_control anop
asl
tax

a

lda lcontrol_table,x
pha
rts

eject

A P P E N D I X 0 Driver Source Code Sample

dispatch is via an 'RTS'

1/31189

Block driver

GSIOS Reference (Volume 2) APDA Draft

• This routine will reset the device to it's default conditions
• as specified by the default control parameter list. The
• control list contents will be updated to reflect the parameter
• changes that have taken effect.

* CONTROL LIST: None

dev reset entry
lda

clc
rts

eject

lno_error

• This routine will physically format the media. No additional
• information associated with any particular file system will
• be written to the media. Check task count for disk switch
• prior to execution of read.

• CONTROL LIST: None

format entry
lda

clc
rts

eject

fno error

• This routine will physically eject media from the device.
• Character devices will not perform any action as a result of
• this call.

• CONTROL LIST: None

media_eject entry

lda_

clc
rts

eject

lno_error

400 V 0 L U M E 2 Devices and GS/OS

1/31/89

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

• This routine will set the confiquration parameter list as specified
• by the contents of the confiquration list. Note that the first
• word of the confiquration list must have the same value as the
• current confiquration parameter list.

• CONTROL LIST: Word Size of confiquration parameter list
Data Confi9uration parameter list

set_ctrl

bad_set_ctrl

entzy
lonqa on
lonqi on

lda
ldx
bne

fdrvr_bad_parm
<drvr_req_cnt+2
bad_set_ctrl

ldx <drvr_req_cnt
cpx f$0002

bqe ok_set_ctrl
anop
sec
rts

; assume invalid request count
and validate request count

• Request count is valid. Set confiquration list.

ok_set ctrl

req_cnt_ok

anop
ldy
lda

tdriver_unit
[<drvr_dib_ptr),y

asl a
tax
lda
tax
lda
cmp

beq

lda
sec
rts
anop
ldy
sep
longa

1 clist_tbl, x

IO,x
[<drvr_clist_ptr)
req_cnt_ok
tdrvr_bad_parm

1$0000

f$20

off

A P P E N D I X D Driver Source Code Sample

internal device t

qet pointer to confiquration list

are lenqths the same?

yes
else return an error

status list index
8 bit 'm'

1131189

Block driver 401

GSIOS Reference (Volume 2)

copy_clist anop
lda (<drvr_clist_ptr),y
sta IO,x
inx
iny
tya
cmp [<drvr_clist_ptrl
bne
rep
longa
brl

eject

copy_clist
f$20
on
set_xfer_cnt

APDA Draft

set new configuration list

16 bit •m•

.......•....•...••.•••...

• This routine will set the WAIT/NO WAIT mode as specified
• by the contents of the control list. Note that a device
• may not support no wait mode and should return a bad parameter
• error if this support is not provided.

* CONTROL LIST: Word Walt I No Wait Mode

.......•.••.....•.••.•...
set_walt entry

longa on
longl on

lda
ldx

tdrvr_bad_parm
<drvr_req_cnt+2

assume invalid request count
and validate request count

bne bad_set_wait
ldx <drvr _req_cnt
cpx f$0002
beq ok_set_wait

bad_set_wait anop
sec
rts

• Request count is valid. Set the wait mode for this device.

ok_set_wait anop
ldy fdriver_unit
ida (<drvr_dib_ptr],y
tax
ida [<drvr_slist_ptr]
sta lwait_mode_tbl,x
brl set_xfer_cnt

eject

402 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1131/89

GSIOS Reference (Volume 2) APDA Draft

.....•...••••.••••......•.•••.•••..•••••.•....•••..•.••.........•

• This routine will set the format option as specified
• by the contents of the control list.

* CONTROL LIST: Word Format Option Referenc Number

...........•..................•...••.•..•.....••••......•.••..•••
set format entry

longa
longi

lda
ldx
bne
ldx
cpx
beq

bad_fmt_opt anop
sec
rts

on
on

tdrvr_bad_parm
<drvr_req_cnt+2
bad_fmt_opt
<drvr _ req_ cnt
f$0002
ok set format -

assume invalid request count
and validate request count

• Request count is valid. Set the format option for this device.

ok_set_format anop
ldy fdriver_unit
lda [<drvr_dib_ptr],y
tax
lda [<drvr_slist_ptr]
sta lformat_mode,x
brl set_xfer_cnt

eject

• This routine will set the partition owner as specified
• by the contents of the control list. Note that this call
• is only supported by partitioned devices such as CD ROM.
• Non partitioned devices should perform no action and return
• with no error.

* CONTROL LIST: Word
Name

String length
Name of partition owner

A P P E N D I X D Driver Source Code Sample

1/31189

Block driver 403

GSIOS Reference (Volume 2) APDA Draft

set_partn entry
longa on
longi on

lda tno_error
clc
rts

eject

• This routine is envoked by an application to install a signal
• into the event mechanism.

* CONTROL LIST: Word
Word
Long

Signal Code
Signal Priority
Signal Handler Address

arm_signal entry
longa on
longi on

lda tno_error
clc
rts

...................................•..........•....••....•......•

• This routine is remove a signal from the event mechanism that
• was previously installed with the arm_signal call.

* CONTROL LIST: Word Signal Code

disarm_signal entry
long a
longi

lda
clc
rts

on
on

tno_error

• Set Partion Map.

• Normally this call would set a partition map for the device.
• Our example does not support partitioning and will return with
• no error and a transfer count of NIL.

V 0 L U M E 2 Devices and GS/OS

1131189

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

set_partn_map

Local Symbols

mt_opt

ormat

entry
long a
longi

on
on

lda fno_error
clc
rts

end

00002F bad set ctrl
000040 copy_clist 000012 dev_reset
000017 format
00001C media_eject 000031 ok_set_ctrl
00006E ok_set_walt 000048 req_cnt_ok
00009A set_partn
OOOOSE set walt

copy core.blk.drvr/flush

A P P E N D I X D Driver Source Code Sample

1/31189

Block driver 405

GSIOS Reference (Volume 2) APDA Draft \

* DRIVER CALL: FWSH

• This call writes any data in the devices internal buffer to
• the device. It should be noted that this is a WAIT MODE call
• which is only supported by devices which maintain their own
• internal I/0 buffer.devices that cannot write in NO WAIT mode
• do not support this call and will return with no error.

• ENTRY: via a 'JSR'
<drvr_dev_num • Device Number of current device being accessed
<drvr_tran_cnt • $00000000

A Reg • Call Number
X Reg • Undefined
Y Reg - Undefined
Dir Reg - GS/OS Direct ~age
B Reg • Undefined
~ Reg • N V M X 0 I Z C E

X X 0 0 0 0 X X 0

• EXIT: via an 'RTS'
<drvr_tran cnt • Number of bytes transferred
A Reg • Error code
X Reg • Undefined
Y Reg - Undefined
Dir Reg • GS/OS Direct ~age
B Reg • Same as entry
~ Reg = N V M X D I Z C E

x x 0 0 0 0 x 0 0 No error occurred
x x 0 0 0 0 x 0 Error occurred

flush start

using driver_data
longa on
longi on

lda lno_error
clc
rts

end

copy core.blk.drvr/shutdown

V 0 L U M E 2 Devices and GS/OS

1131189

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

* DRIVER CALL: SHUTDOWN

• This call prepares the driver for shutdown. This may include
• closing a character device as well as releasing any and all
• system resources that may have been aquired by either a
• STARTUP or OPEN call. Many devJces may share a common code segment.
• If this is the case, an error should be returned on shutdown from all
• but the last code segment. The device dispatcher will free up the
• memory occupied by the driver when no error is returned on shutdown.

* ENTRY: via a 'JSR'
<drvr dev num - Device Number of current device being accessed
<drvr tran cnt - SOOOOOOOO
A Reg • Call Number
X Reg - Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Undefined
p Reg •NVMXD z c E

X X 0 0 0 0 X X 0

* EXIT: via an 'RTS'

shutdn

<drvr_tran cnt • Number of bytes transferred
A Reg z Error code
X Reg • Undefined
'f Reg • Undefined
Dir Reg • GS/OS Direct Page

B Reg
p Reg

start
using
longa
longi

- Same as entry

• N V M X D I Z

X X 0 0 0 0 X

X X 0 0 0 0 X

driver_data
on
on

c
0

1

1 startup_count
not last

E
0

0

No error occurred
Error occurred

is this the last device shutdown?
no

dec
bne
lda
clc
rts

fno error else return no error on last device

not last anop

lda
sec
rts

end

fdrvr_busy

A P P E N D I X D Driver Source Code Sample

return an error if not last

Block driver

1131189

407

GSIOS Reference (Volume 2) APDA Draft

Character driver

This is a typical driver for a charac.ter device such as a serial printer. It includes handlers for all standard
driver calls, although in this example not all of the handlers are functional. The driver code consists of
seven parts, in this order:

• Equates

• Device-driver header

• Configuration parameter lists (3 of them, for 3 supported devices)

• Device information blocks (DIBs; 3 of them)

• Tables for dispatching calls and passing parameters

• A main entry point to the driver

• Routines that handle the driver calls

1/31/89

Like the block device driver listed earlier in this appendix, this driver has routines to handle all standard
driver calls, including the standard Status and Control subcalls. Even though it is a character-device driver,
for which several Control subcalls are not meaningful, handlers for all subcalls are included.

408 V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

65816 on
ins time on
gen on
symbol on
absaddr on
align 256

Copyright (c) 1987, 1988
Apple Computer, ··rnc.
All rights reserved.

* NOTE:

Driver Core Routines Version 0.01a01

All driver files must be installed on the
boot volume in the subdirectory •!SYSTEM/DRIVERS'.
Additionally, the FileType for the driver file
must be set to $0088. AuxType is also critical
to the operating system recognizing the driver
as a GS/OS device driver. The AuxType is a long
word which must have the upper word set to $0000.
The most significant byte of the least significant
word in the AuxType must be set to $01 to indicate
an active GS/OS device driver or $81 to indicate
an inactive GS/OS device driver. The least
significant byte of the least significant word
of the AuxType field indicates the number of
devices supported by the driver file. This value
should be analogous to the number of DI8's
contained in the driver file. GS/OS will only
install the number of devices indicated in the
AuxType field.

GS/OS Device Driver: FileType • $0088
AuxType • $000001XX where:

XX • number of devices.

An AuxType of $00000108 indicates eight devices. When
building a device driver, the best way to set the
FileType and AuxType is to use the Exerciser to qat
the current file info (G£T_FIL£_INFO), modify the
FileType ' AuxType and then S£T_FIL£_INFO.

* REVISION HISTORY:

* DATE Ver. By Description

* 11/16/87 O.OOe01 RBM Started initial coding.

A P P E N D I X D Driver Source Code Samples

1/31189

Character driver

GSIOS Reference (Volume 2) APDA Draft

* 01/10/88 O.OOe02 RBM
* 01/11/88

* 02/04/88 O.OOa01 RBM

* 02/12/88 0.01a01 RBM

* 04/11/88 0.06a01 RBH

Added new status ' control calls.
Fixed startup for dynamic slot numbers.

General update for Alpha release.

Modified for character device support only.

Removed valid access checking done by dispatcher.
Added status and control call support.

eject

• The following are direct page equates on the GS/OS
* direct page for driver usage.

**

(w)

(W)

(lw)
(lw)

device number
call number
buffer pointer
buffer pointer

(lw) buffer pointer
(w) indirect device ID
(lw) request count
(lw) transfer count
(lw) block number
(w) block size

drvr_dev_num
drvr call num
drvr_buf_ptr
drvr_slist_ptr
drvr_clist_ptr
dev_id_ref
drvr_req_cnt
drvr_tran_cnt
drvr_blk_num
drvr_blk_size
drvr_fst_num
drv r stat code
drvr_ctrl_code
drvr val id
drvr cache
drvr_cach_ptr
drvr_dib_ptr

gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ

$00
drvr_dev_num+2
drvr_call_num+2
drvr_call_num+2
drvr_call_num+2
drvr_buf_ptr
drvr_buf_ptr+4
drvr_req_cnt+4
drvr_tran_cnt+4
drvr_blk_num+4
drvr_blk_size+2
drvr fst num
drvr_fst_num
drvr_fst_num+2
drvr_vol_id+2
drvr cache+2
drvr_cach_ptr+4

(w) File System Translator Number
(w) status code for status call
(w) control code for control call
(w) Driver Volume ID Number

sib_ptr
sup _pa rm _pt r

eject

gequ
gequ

$0074
sib_ptr+4

(w) Cache Priority
(lw) pointer to cached block
(lw) pointer to active DIS

(lw) pointer to active SIB
(lw) pointer to supervisor parameters

...........•.....•..............•....•..•.••...........•...•...•

• The following are equates for driver command types.

**

drvr_startup gequ $0000 driver startup command
drvr_open gequ $0001 driver open command
ctrvr read gequ $0002 driver read command

410 VOLUME 2 Devices and GS/OS APPENDIXES

1/31189

GSIOS Reference (Volume 2) APDA Draft

drvr write gequ $0003 driver write contnand
drvr_close gequ $0004 driver close contnand
drvr_status gequ $0005 driver status ccxrunand
drvr control gequ $0006 driver control command
drvr_flush gequ $0007 driver flush contnand
drvr_shutdn gequ $0008 driver shutdown command
max co1't'lnand gequ $0009 commands $0009 - Sffff undefined

drvr_dev_stat gequ $0000 status code: return device status
drvr_conf_stat gequ $0001 - status code: return configuration params
drvr_get_wait gequ $0002 status code: get walt/no wait mode
drvr_get_format gequ $0003 status code: get format options

drvr reset gequ $0000 control code: reset device
drvr_format gequ $0001 control code: format device
drvr_eject gequ $0002 control code: eject media
drvr_set_conf gequ $0003 control code: set configuration params
drvr_set_wait gequ $0004 control code: set wait/no wait mode
drvr_set - format gequ $0005 control code: set format options
drvr_set__ptn gequ $0006 control code: set partition owner
drvr_arm gequ $0007 control code: arm interrupt signal
drvr disarm gequ $0007 control code: arm interrupt signal

eject

• The following are equates for GS/OS error codes.

**

no error
dev not found
lnvalid_dev_num
drvr_bad_req
drv r _bad_ code
drvr_bad__parm
drvr_not_open
drvr_prior_open
lrq_table_full
drvr_no_resrc
drvr_io_error
drvr_no_dev
drvr_busy
drvr_wr_prot
drvr_bad_count
drvr_bad_block
drvr_disk_sw
drvr_off_line
invalid_ access
parm_range_err
out_of_mem
dup_volume
not_block_dev
stack_overflow

gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ

$0000
$0010
$0011
$0020
$0021
$0022
50023
$0024
$0025
$0026
$0027
$0028
$0029
$0028
$002C
$0020
$002£
$002F
$004£
$0053
$0054
$0057
$0058
$005F

no error has occurred
device not found
invalid device number
bad request or command
bad control or status code
bad call parameter
character device not open
character device already open
interrupt table full
resources not available
I/O error
device not connected
call aborted, driver is busy
device is write protected
invalid byte count
invalid block address
disk has been switched
device off line I no media present
access not allowed
parameter out of range
out of memory
duplicate volume name
not a block device
too many applications on stack

A P P E N D I X D Driver Source Code Samples

1/31189

Character driver 411

GSIOS Reference (Volume 2) APDA Draft

data_unavail qequ $0060 data unavailable

eject
..................•.......•.........•.••.........•••••.••••••••.•

• The following are equates for the DIB.

link_ptr
entry_ptr
dev _char
blk_cnt
dev_name
slot_num
unit num
ver num
dev id num
head link
forward link
link_dib_ptr
dib_dev_num

gequ
gequ
gequ
gequ
gequ
gequ
qequ
qequ
qequ
qequ
qequ
qequ
gequ

$0000
$0004
$0008
SOOOA
SOOOE
S002E
$0030
$0032
$0034
$0036
$0038
$003A
$003E

(lw) pointer to next DIB
(lw) pointer to driver
(w)

(lw)

(32)
(w)

(W)

(w)

(W)

(w)

(W)

device characteristics
number of blocks
count and ascii name (pstring)
slot number
unit number
version number
device ID number (ICON reff)
backward device link
forward device link

(lw) dib reserved field 11
(w) Device number of this device

• The following equate(s) are for drive specific extensions to the DIB.
• Parameters that are extended to the manditory DIB parameters are not
• accessable by GS/OS or the application but may be used within a driver
• as needed.

driver_unit
my_slotl6

eject

gequ
gequ

$0040
$0042

• System Service Table Equates:

(w) driver's internal DIB data
(w) driver's slot • 16

• NOTE: Only those system service calls that might be used
• by a device driver are listed here. For a more complete
• list of system service calls and explanations of each call
• consult the system service call ERS.

**

dev _dispatcher gequ
cache_find_blk gequ
cache_add_blk gequ
cache del blk gequ
cache_del_vol gequ
set_sys_speed gequ
move_info gequ
set disksw qequ
sup_drvr_disp gequ
install driver gequ

412 VOLUME 2

$01FCOO
$01FC04
$01FC08
S01FC14
S01FC18
SOlFCSO
SOlfC70
S01FC90
$01FCA4
S01FCA8

Devices and GS/OS

dev_dispatch
cash_find
cash add
cash_delete
cash_del_vol
set system speed
gs_move_block
set disksw and call swapout/delvol
supervisor dispatcher
dynamic driver installation

1/31189

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

dyn_slot_arbiter gequ $01FCBC dynamic slot arbiter

eject
**

* MOVE INFO

• NOTE: The following equates are used to set the modes
• passed to the move_info call system service call.

**

moveblkc:mcl gequ $0800 block move option
move_sinc_dinc gequ $0805 source increment, dest.

move_sinc_ddec gequ $0809 source increment, dest.
move_sdec_dinc gequ $0806 source decrement, dest.
move_sdec_ddec gequ $080A source decrement, dest.

move scon dcon gequ $0800 source constant, dest.
move_sinc_dcon gequ $0801 source increment, dest.
move_sdec_dcon gequ $0802 source decrement, dest.
move_scon_dinc gequ $0804 source constant, dest.
move scon ddec gequ $0808 source constant, dest.

eject

__ 7 _____ 6 _____ 5 _____ 4 _____ 3 _____ 2 _____ 1 _____ 0 ___

;I

;lslot7 lslot6 lslotS ls1ot4 I
; lintextlintextlintextlintextl 0
:lenablelenablelenab1elenablel

1 slot2 I slot 1 1

lintext lint ext I
I enable I enable 1

0

;I ______ --
sltromsel byte AAAAA

sltromsel bits defined as follows
bit 7- 0 enables internal slot 7 enables slot
bit 6- 0 enables internal slot 6 enables slot
bit s- 0 enables internal slot 5 enables slot
bit 4- 0 enables internal slot 4 enables slot
bit 3- must be 0
bit. 2- 0 enables internal slot 2 1 enables slot
bit 1- o enables internal slot 1 1 enables slot
bit o- must be 0

sltromsel gequ SOOC02D ; slot rom sel act

A P P E N D I X D Driver Source Code Samples

increment

decrement
increment
decrement

constant
constant
constant

increment
decrement

rom
rom
rom
rom

rom
rom

1/31189

Character driver 413

GSIOS Reference (Volume 2) APDA Draft

__ 7 _____ 6 _____ 5 _____ 4 _____ 3 _____ 2 _____ 1 _____ 0 ___

; I
; I

; I 0

; I
; I

I stop I
li/o/lcl
I shadow I
I I

I stop I stop I stop I stop I stop I
0 lauxh-rlsuprhrlhires21hires11txt pql

lshadowlshadowlshadowlshadowlshadowl
I I I --shadow byte AAAAA

shadow bits defined as follows
bit 7• must write 0
bit 6• 1 to inhibit i/o and language card operation
bit 5• must write 0
bit 4• 1 to inhibit shadowing aux hi-res page
bit 3- to inhibit shadowing 32k video buffer
bit 2- 1 to inhibit shadowing hires page 2

bit 1- to inhibit shadowing hires page
bit o- 1 to inhibit shadowing text pages

shadow gequ SOOC035 ;shadow register

eject

__ 7 _____ 6 _____ 5 _____ 4 _____ 3 _____ 2 _____ 1 _____ 0 ___

; I

;I slow/1
; I fast I
;I speedl
; I I

0

lshadowlslot 71slot 61slot 51slot 41
0 lin alllmotor 1motor I motorl motorl

I ram ldetectldetectldetectldetectl

cyareg byte AAAAA

cyareg bits defined as follows
bit 7- o~slow system speed -- 1•fast system speed
bit 6= must write 0
bit 5· must write 0
bit 4- shadow in all ram banks
bit 3- slot 7 disk motor on detect
bit 2- slot 6 disk motor on detect
bit 1- slot 5 disk motor on detect
bit o- slot disk motor on detect

cyareg gequ SOOC036 ;speed and motor on detect

414 V 0 L U M E 2 Devices and GS/OS

1131189

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

__ 7 _____ 6 _____ 5 _____ 4 _____ 3 _____ 2 _____ 1 _____ 0 ___

;I
; 1 alzp 1 page21 ramrdlramwrtl rdromllcbnk21rombnkl intcxl
;lstatuslstatuslstatuslstatuslstatuslstatuslstatuslstatusl

;I _____ -----------------------------------
statereg status byte

statereg bits defined as follows
bit 7• alzp status
bit 6• page2 status
bit 5• ramrd status
bit 4= ramwrt status
bit 3~ rdrom status (read only ram/rom (0/1))

important note:

statereg

clrrom

do two reads to Sc083 then change statereg
to change lcram/rom banks (0/1) and still
have the language card write enabled.

bit 2• lcbnk2 status O•LC bank 0 - 1-LC bank 1
bit 1• rombank status
bit a- intcxrom status

gequ $00C068 state register

gequ SOOCFFF switch out ScB roms

eject

A P P E N D I X D Driver Source Code Samples

1131189

Character driver 415

GSIOS Reference (Volume 2) APDA Draft

• EQUATES for the IWM require index of (n*16)

phaseof! gequ $00C080 stepper phase off.

phaseon gequ $00C081 stepper phase on.

phOoff gequ soocoeo phase 0 off
phOon gequ SOOC081 phase 0 on

ph1o!f gequ $00C082 phase 1 off

phlon gequ SOOC083 phase 1 on
ph2off gequ $00C084 phase 2 of!

ph2on gequ soocoes phase 2 on

ph3off gequ $00C086 phase 3 off
ph3on gequ $00C087 phase 3 on

motoroff gequ $00C088 disk motor off
motoron gequ SOOC089 disk motor on

drvOen gequ SOOCOBA select drive 0
drv1en gequ $00C088 select drive

q61 gequ SOOCOBC Q6 low

q6h gequ SOOCOBO Q6 high
q7l gequ SOOCOBE Q7 low

q7h gequ SOOCOBF Q7 high

emulstack gequ $010100 emulation mode stack pointer

eject

···································i·····························
• The following equates are used to implement our hypothetical
• device driver. They in no way reflect softswitches associated
• with any real hardware device.

• I

*17161514131211101
1_1_1_1_1_1_1_1

ready gequ soocoeo

READY

Reserved
1 # Device is ready

416 V 0 L U M E 2 Devices and GS/OS

1131189

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

• I

*17161514131211101

* I I I

CHAR

Character device data register

char gequ $00C081

• I
• I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I CHAR_STATUS

• 1_1_1_1_1_1_1_1_1

0
1 - Interrupt in process

____ o
______ o

_________ o
___________ o

------------ 0

char status gequ $00C082

• I

• I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
* I I I I I

- Online

CHAR_CONTROL

Character device control register

char_control gequ $00C083

eject

• The following table is the header required for all loaded
• drivers which consists of the following:

Word Offset from start to 1st DIB
Word Number of DIBs
Word Offset from start to 1st configuration list
Word Offset from start to 2nd configuration list
etc.

A P P E N D I X 0 Driver Source Code Samples

1/31/89

Character driver 417

GSIOS Referrmcs (Volume 2) APDA Draft

driver_data data
here entry

de i2'dib_1-here• offset to 1st DIB
de i2'3' number of devices
de i2'confl-here• offset to 1st confiqurat ion
de i 2 • conf2-here • offset to 2nd con!iqurat ion

de i 2 • conf3-here • offset to 3rd configuration

• The following are the driver configuration parameter lists.

conn de i2'0' 0 bytes in parameter list
default1 de i2'0' 0 bytes in default list

conf2 de i2'0' 0 bytes in parameter list
default2 de i2'0' 0 bytes in default list

conf3 de i2'0' 0 bytes in parameter list
default3 de i2'0' 0 bytes in default list

eject

Link Pointer
Entry Pointer
Device Characteristics

. --~-t--.:L_, __ ;;; -(--··, __
I I I I I I I I I I I I I I I I I

* I F I E I D I C I B I A I 9 I 8 I 1 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
• 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1

I I I I I I I I I I I I I RESERVED
I I RESERVED

-------- REMOVABLE
----------- FORMAT

------------- RESERVED
________ READ

--------------------- WRITE
BLOCK DEVICE
SPEED (LSB)
SPEED (HSB)

----------------------------------- RESERVED
RESERVED
BUSY

---------------------- LINKED

--- GENERATED

Block Count
Device Nama
Slot Number
Unit Number
Device ID Number
Head Device Link

RAH/RCM DEV

list
list
list

418 V 0 L U M E 2 Devices and GSIOS APPENDIXES

1/31189

GSIOS Reference (Volume 2)

Forward Device Link
Reserved Word
Reserved Word
DIB device number

APDA Draft

: 1 1•...•
dib_l

dib 2

entry
de

de
de
de
de

14'd1b 2'
i4'dispatch'
h'60 03'
i4'0'
11'10.

de c'CHARACTERl
de
de
de
de
de
de
de
de
de

de
de

entry
de
de

de
de
de

12.7.

i2'1'
i2'1'
h'l6 oo•
i2. 0.

i2'0'
i2'0'
i2'0'
i2'0'
i2'0'
i2'0'

i4'dib_3'
14'd1spatch'
h'60 03'
i4'0'
il'l0'

de c'CHARACTER2
de
de
de
de
de
de
de
de
de
de
de

eject

i2'2'
i2'1'
12'1'
h '16 00.

i2'0'

i2'0'
i2'0'
i2. 0.

i2'0'
i2'1'
i2'0'

link pointer to second DIB
entry pointer
characteristics
block count .j.
device name (length & 32 bytes ascii)

slot t (valid only after startup)
unit t (valid only after startup)
version I 0001
device ID I (valid only after startup)
head device link
forward device link
Reserved
Reserved
dib device number

drivers internal device number
slot • 16

link pointer
entry pointer

characteristics
block count
device name (length & 32 bytes ascii)

slot t (valid only after startup)
unit I (valid only after startup)
version t 0001
device ID t (valid only after startup)
head device link
forward device link
Reserved
Reserved
dib device number
drivers internal device number
slot • 16

A P P E N D I X D Driver Source Code Samples

1131189

Character driver 419

GSIOS Reference (Volume 2) APDA Draft

dlb_3 entry
de i4. 0. link pointer

de i4 'dispatch' entry pointer

de h'60 03' character 1st ics

de i4'0' block count

de il'l0' device name (lenqth ' 32 bytes ascii)
de c 'CHARACTER3
de i2'1' slot I (valid only after startup)
de i2'1' unit I (valid only after startup)
de i2 '1' version I 0001
de h'l6 00' device ID I (valid only after startup)
de i2'0' head device link
de i2'0' forward device link
de i2'0' Reserved
de i2'0' Reserved
de i2'0' dib device number
de i2'2' drivers internal device number
de i2'0' slot • 16

eject

• The following table is used to dispatch to GS/OS driver
• functions.

dispatch_table
de
de
de
de
de
de
de
de
de

status_table
de
de
de
de
de

entry
12 • startup-1'
i2 • open-1'
i2' read-1'
i2'wr1te-1'
i2'elose-1'
i2 • status-1'
i2'eontrol-1'
i2' flush-1'
i2'shutdn-1'

entry
12'dev stat-1'
i2'get_eonf-1'
12 • get _wa1t-l'
i2'get_format-1'
12'get_partn_map-1'

420 V 0 L U M E 2 Devices and GS/OS

1/31/89

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31189

control table entry
de i2'dev_reset-1'
de i2'!ormat-1'
de i2'media _eject-1'
de i2'set con!-1' -
de i2' set wait-1 •
de i2' set fonnat-1' -
de i2 • set _partn-1 •
de i2' ann _signal-1'
de i2'disann_signal-1'
de i2' set_partn_map-1'

status _!lag entry

de i2'0' flag !or unit
de i2'0' flag !or unit
de i2'0' flag !or unit

eject

• The following table contains the open status for each device
• supported by this driver.

open_table entry
de i2'0' open state !or DIB device
de i2'0' open state !or DIB 2 device
de i2. 0. open state !or DIB 3 device

eject

A P P E N D I X D Driver Source Code Samples Character driver 421

GSIOS Reference (Volume 2) APDA Draft

• The following table contains the device status for each
• device supported by this driver.

• Encoding of status for a character device is as follows:

• I

* I F I E I D I C I B I A I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
* I I I I I I I I I I I I I I I I

OPEN
INTERRUPT

----- RESERVED
RESERVED
BUSY
0 RESERVED
0 RESERVED
0 RESERVED
0 RESERVED
0 RESERVED
0 RESERVED
0 RESERVED
0 RESERVED
0 RESERVED
LINKED
0 RESERVED

dstat tbl entry
de i2"dstatl" pointer to status for DIB 1 device
de i2'dstat2' pointer to status for DIB 2 device
de i2'dstat3' pointer to status for DIB 3 device

dstat 1 de i2'0' device general status word
de i4'0' device block count

dstat2 de i2'0' device general status word
de i4'0' device block count

dstat3 de i2'0' device general status word
de i4'0' device block count

eject

422 V 0 L U M E 2 Devices and GS/OS

1/31189

APPENDIXES

GS/OS Reference (Volume 2) APDA Draft

• The following table is used to return the configuration list for
• each device supported by this driver.

clist tbl entry
de i2 • confl' pointer to configuration
de i2 'conf2' pointer to conflgurat ion
de i2' conf3' pointer to conflgurat ion

• The following table is used to return the wait mode for
• each device supported by this driver.

wait mode tbl entry
de
de

de

i2'0'
i2'0'
i2'0'

unit 1 walt mode
unit 2 walt mode
unit 3 walt mode

• The following table is used to set the current format
• option for each device supported by this driver.

format_mode entry

de i2'0' unit 1 format mode
de 12'0' unit 2 format mode
de 12'0' unit 3 format mode

..................•.....•..

• The following equates are general workspace used by the driver.

retry_count
startup_count

end

eject

de
de

i2'0'
12'0'

; retry count

A P P E N D I X D Driver Source Code Samples

1/31/89

list n
list 12
list 13

Character driver 423

GSIOS Reference (Volume 2) APDA Draft

............................•.••...•••...•......•......•.•......•

• DRIVER MAIN ENTRY POINT: DISPATCH

• This is the main entry point for the device driver. The
• routine validates the call number prior to dispatching to
• the requested function.

• Call Number: $0000 Function: Startup
$0001 Open
$0002 Read
$0003 Write
$0004 Close
$0005 Status
$0006 Control
$0007 Flush
$0008 Shutdown
$0009-SFFFF Reserved

• ENTRY: Call via 'JSL'
[<drvr_dib_ptrJ • Points to the DIB for the device being accessed
<drvr_dev_num - Device number of device being accessed

<drvr_call_num • Call number

• EXIT:

424

A Reg • Call Number
X Reg • Undefined
y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg Q Undefined
p Reg • N v M X D z c E

X X 0 0 0 0 X X 0

Direct page • unchanged with the exception of <drvr_tran_cnt
A Reg • Error code
X Reg • Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Same as entry
I' Reg • N v M X D I Z c E

X X 0 0 0 0 X 0 0 No error occurred
X X 0 0 0 0 X 1 0 Error occurred

V 0 L U M E 2 Devices and GS/OS APPENDIXES

1131189

GSIOS Reference (Volume 2) APDA Draft

dispatch

save_parms

func ret

restore _parms

gen_exit

start
using
longa
long!

phb
phk
plb
cmp

bge

tay
ldx
anop
lda
ph a

driver_data
on
on

tmax_command
illegal_req

f$0000

<drvr_dev_num,x

lda <drvr_blk_num,x
pha
inx
inx
cpx f$000C
bne save_parms

save environment

is it a legal command?
no
save conrnand f

save GS/OS call parameters

up to but not including DRVR_TRAN_CNT

tya restore command f
pea
asl
tax

func_ret-1
a

lda ldispatch_table,x

return address from function
make index to dispatch table

pha push function address for dispatch
rts rts dispatches to function
anop
tay

ldx
anop
pla

f$000A

sta <drvr_blk_num,x
pla
sta <drvr_dev_num,x
dex

dex
bpl restore_parms
plb
bcs gen_exit
ldy fno error
anop
tya
rtl

save error code

number of words to restore

restore GS/OS call parameters

force error code 0 if flag cleared

restore error code

A P P E N D I X D Driver Source Code Samples Character driver

1/31/89

425

GSIOS Reference (Volume 2) APDA Draft

• Received an illegal request. Return with an error.

illegal_req anop
plb
lda
sec
rtl

end

eject

tdrvr_bad_req
restore environement
set error

* DRIVER CALL: STARTUP

• This routine must prepare the driver to accept all other driver
• calls.

• ENTRY: Call via 'JSR'

• EXIT: via an 'RTS'

[<drvr_dib_ptrl • Points to DIB for device being accessed
<drvr_dev_num • Device number of device being accessed
<drvr_call_num • Call number
<drvr_tran_cnt • SOOOOOOOO
A Reg - Call Number
X Reg • Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg - Same as program bank
P Reg • N Y M X D I Z C E

X X 0 0 0 0 X X 0

A Reg • Error code
X Reg • Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Same as entry
P Reg • N Y M X D I Z C E

X X 0 0 0 0 X 0 Q

X X 0 0 0 0 X 1 0

No error occurred
Error occurred

426 V 0 L U M E 2 Devices and GS/OS

1/31/89

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

startup start

using driver_data
longa on
longi on

lda lstartup_count
beq search_loop

• Check for the device.

; insert your code here.

has slot been found?
no, go search for it

bne no_start_device if you can't find your signature bytes
inc lstartup_count

• Update the following DIB parameters •••

Slot Number
Unit Number
Device Name (already unique for each DIB)

• Note that these DIB parameters are static after startup.

ldy tslot_num update DIB slot number
lda 1 startup_slot
sta [<drvr_dib_ptr),y
iny
iny
lda I startup_count update DIB unit number
sta [<drvr_dib_ptr),y
bra startup_done

• Always request the slot from the slot arbiter prior to scanning the $CnXX space
• for signature bytes when searching for hardware. This provides a compatible
• method of requesting a slot should a method of dynamic slot switching be made
• available in the future.

search_loop
lda
jsl
bcs
inc

I startup_slot
dyn_slot_arbiter
next_slot

request slot from slot arbiter

if slot was not granted
1 startup_count

• If the slot was granted then use the current slot to search for signature
• bytes identifying your hardware.

lda lsearch_slot create $Cn00 for signature search index
and 1$0007
ora fSOOCO
xba

tax ; X register • $Cn00

A P P E N D I X D Driver Source Code Samples Character driver

1131189

427

GSIOS Reference (Volume 2) APDA Draft

• Now search for signatures.

; insert your code here.
bne next_slot ; if you can't find your signatures bytes

• If you find your signature bytes then check for the device.

; insert your code here.
bne no_start_device

• Update the following DIB parameters •••

Slot Number
Unit Number
Device Name

• Note that these DIB parameters are static after startup.

startup_done

next_slot

no start device

ldy fslot nurn
lda lstartup_slot
sta [<drvr_dib_ptr],y
iny
iny
lda
sta

I startup_count
[<drvr_dib_ptrJ,y

lda fno_error
clc
rts

dec
bne

I startup_slot
search_loop

lda fdrvr_io_error
sec
rts

end

eject

428 V 0 L U M E 2 Devices and GS/OS

if you can't find your signatures bytes

(already unique for each DIB)

update DIB slot number

update DIB unit number

point at next slot to check
and check for hardware

APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

* DRIVER CALL: OPEN

• This call opens a device in preperation for subsequent read
• from or writes to the device.

* ENTRY: via a 'JSR'
<drvr_dev_num • Device Number of current device being accessed
<drvr tran cnt • 500000000

* EXIT: via an 'RTS'

A Reg • Call Number
X Reg • Undefined
Y Reg - Undefined
Dir Reg • GS/OS Direct Page
8 Reg • Undefined
P Reg • N V H X D Z C E

X X 0 0 0 0 X X 0

A Reg - Error code
X Reg = Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
8 Reg • Same as entry
P Reg • N V H X D I Z C E

X X 0 0 0 0 X 0 0
X X 0 0 0 0 X 0

A P P E N D I X D Driver Source Ccxle Samples

No error occurred
Error occurred

1131189

Character driver 429

GSIOS Reference (Volume 2) APDADraft

open start
using
longa
longi

ldy
lda
dec
asl
tax
sec
lda
bne
lda
bne
dec

driver_data
on
on

fdriver_unit
[<drvr_dib_PtrJ,y
a
a

Jopen_stat,x
exit
Jopen_table,x
already_open
Jopen_table,x

get internal device reference number

assume a device error
can device be opened?
no, exit w/error
else get current open state
if device is already open
set device open

• At this point, your driver may wish to allocate system resources such
• as memory from the memory manager for use in buffering, etc.

lda fno_error and exit w/o error
clc
rts

already_open anop
lda fdrvr_prior_open
sec

exit anop
rts

open_stat anop
de i2•no_error• status for dlb 1 device
de i2'no_error' status for dlb 2 device
de i2'no error• status for dlb 3 device
de 12'no_error• status for dib 4 device
de 12'no_error• status for dib 5 device
de i2'no_error• status for dib 6 device
de i2'no_error• status for dib 1 device
de i2'no error• status for dlb 8 device

end

eject

V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

* DRIVER CALL: READ

* This call executes a read from the device. For block devices
* the call must validate the initial block number and that the
* request count is an integral multiple of the block size. In
* addition the block number of each successive block must be
* validated as it is accessed when an multiple block I/0
* transaction is in place.

* ENTRY: via a 'JSR'
<drvr_dev_num - Device Number of current device being accessed
<drvr_buf_ptr • Pointer to I/0 buffer
<drvr_blk_num • Initial block number
<drvr_req_cnt • Number of bytes to be transferred
<drvr blk size • Size of block to be accessed
<drvr_tran_cnt - $00000000
A Reg - Call Number
X Reg • Undefined
y Reg - Undefined
Dir Reg • GSIOS Direct Page
B Reg • Undefined
P Reg • N V M X D Z C E

X X 0 0 0 0 X X 0

* EXIT: via an 'RTS'
<drvr tran cnt • Number of bytes transferred
A Reg - Error code
X Reg • Undefined
y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg = same as entry
p Reg • N v M X D I Z c E

X X 0 0 0 0 X 0 0 if no error
X X 0 0 0 0 X 0 if error

A P P E N D I X D Driver Source Code Samples

1/31/89

Character driver 431

GSIOS Reference (Volume 2) APDA Draft

.........•.............•.......•..••..•••••••••..•.•••••.•••••.••
read start

usinq
lonqa
lonqi

driver_data
on
on

• If the call seems valid then all that remains to be done prior to executinq
• the I/O transaction is to check that the device is open. I! the device is
• not open then a 'driver not open' error will be returned with no I/O
• transaction executed.

ldy
lda
tax
lda
bne
lda
sec
rts

fdriver_unit
(<drvr_dib_ptr),y

driver's internal device list ref

lopen_table,x
character_read
tdrvr_not_open

is device open?
yes
else return error

• The character device is open. At this point two types of I/O transaction
* are possible. The transaction can be executed in WAIT or NO WAIT mode.
• In wait mode the driver will poll the I/0 device for each byte read until
• either an I/0 error occurs or the request count is satisfied. In NO WAIT
• mode the driver will return the number of bytes currently held in the
• driver's own I/O buffer. NO WAIT mode implies that the driver is running
• with an interrupt handler which manaqes the buffering of I/0 for the device.
• Our driver is set up to run in either mode but no interrupt handler has
* been installed. Since no hardware exists for this driver many hardware
* specific routines such as interrupt handlers have been deleted although
* the general environment for interrupt handlers has been provided.

432 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1131189

GSIOS Reference (Volume 2)

character_read anop

wait_char_ready

read char

incr tran cnt

check_req_cnt

char rd exit

ldy
lda
tax
anop
lda
t:rni

ldy
lda
tax
bit
bpl
t:rni
anop
lda
sta

inc
bne
inc
anop
inc
bne
inc
anop
lda
cmp

bne
lda
c:mp

bne
anop

lda
clc
rts

end

eject

APDA Draft

fmy_slotl6
[<drvr_dib_ptr],y

>ready,x

read_char
tdriver unit
[<drvr_dib_ptr],y

)wait_mode_tbl,x
wait_char_ready yes

need slot • 16 (from DIS extension)

is character ready?
yes
is driver in wait mode?

char rd exit else exit

>char,x
[<drvr buf_ptr]

<drvr_buf_ptr
incr tran cnt
<drvr_buf_ptr+2

<drvr tran cnt
check _req_ cnt
<drvr tran_cnt+2

<drvr tran cnt
<drvr _ req_ cnt

wait_char_ready
<drvr tran cnt+2
<drvr_req_cnt+2
wait_char_ready

fno error

no

no

then read character into buffer

adjust buffer for next character

adjust transfer count

has request count been satisfied?

yes, then return with no error

A P P E N D I X D Driver Source Code Samples Character driver

1131189

433

GSIOS Reference (Volume 2) APDA Draft

......................•............••.....••......•.•............

* DRIVER CALL: WRITE

• This call executes a write to the device. For block devices
• the call must validate the initial block number and that the
• request count is an integral multiple of the block size. In
• addition the block number of each successive block must be

• validated as it is accessed when an multiple block I/0
• transaction is in place.

• ENTRY: via a 'JSR'
<drvr dev num • Device Number of current device being accessed
<drvr_buf_ptr • Pointer to I/O buffer
<drvr blk num • Initial block number
<drvr_req_cnt • Number of bytes to be transferred
<drvr_blk_size • Size of block to be accessed
<drvr_tran_cnt • $00000000
A Reg • Call Number
X Reg • Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Undefined
P Reg • N V M X D I Z C E

X X 0 0 0 0 X X 0

* EXIT: via an 'RTS'
<drvr_tran cnt • Number of bytes transferred
A Reg • Error code
X Reg • Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Same as entry
P Reg • 0-m•x•e
Carry • if error occurred
Carry • 0 if no error occurred

V 0 L U M E 2 Devices and GS/OS

1131189

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

write start
using
long a
longi

driver_data
on
on

• If the call seems valid then all that remains to be done prior to executing
• the I/0 transaction is to check that the device is open. If the device is
• not open then a 'driver not open·· error will be returned with no I/0
• transaction executed.

ldy
lda
tax
lda
bne
lda
sec
rts

fdriver unit
[<drvr_dib_ptr],y

lopen_table,x
character_write
fdrvr_not_open

driver's internal device list ref

is device open?
yes
else return error

• The character device is open. Go ahead and write data to the device.

character_ write anop
ldy fmy_slotl6
lda [<drvr_dib_ptr],y

tax
wait_char_ready anop

lda >ready,x

bpl wait char_ready
lda [<drvr_buf_ptr)
sta >char,x

inc <drvr_buf_ptr
bne incr tran cnt
inc <drvr_buf_ptr+2

incr tran cnt anop
inc <drvr tran cnt
bne check _req_cnt
inc <drvr_tran_cnt+2

check_req_cnt anop

lda <drvr tran cnt

cmp <drvr_req_cnt
bne wait - char_ready
lda <drvr tran cnt+2

cmp <drvr_req_cnt+2

bne wait _char _ready
lda fno_error

clc
rts

end

eject

A P P E N D I X D Driver Source Code Samples

need slot • 16 (from DIB extension)

is device ready for character?

no

then write character into buffer
adjust buffer for next character

adjust transfer count

has request count been satisfied?

no

no
yes, then return with no error

Character driver

1131189

435

GSIOS Reference (Volume 2) APDA Draft

• DRIVER CALL: CLOSE

• This call closes a device and returns the device to the
• same state that existed prior to an open call.

• ENTRY: via a 'JSR'

• EXIT:

<drvr_dev_num • Device Number of current device beinq accessed
<drvr_tran_cnt • $00000000
A Req • Call Number
X Req • Undefined
Y Req • Undefined
Dir Req • GS/OS Direct l?aqe
8 Req s Undefined
I? Req • N V M X D I z c E

X X 0 0 0 0 X X 0

via an 'RTS'

A Req • Error code
X Reg • Undefined
y Reg • Undefined
Dir Req • GS/OS Direct I? age
8 Req- Same as entry
I? Reg • N V M X D I Z c E

X X 0 0 0 0 X 0 0 No error occurred
X X 0 0 0 0 X 1 0 Error occurred

V 0 L U M E 2 Devices and GS/OS

1/31189

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

close start
using
long a
longi

ldy
lda
dec
asl
tax
sec
lda
bne
lda
beq
inc

driver data
on
on

fdriver unit
[<drvr_dib_ptrJ,y
a

a

!close_stat,x
exit
Jopen_table,x
already_closed
jopen_table,x

get internal device reference number

assume a device error
can device be closed?
no, exit w/error
else get current open state
if device is already closed
set device open

• At this point, your driver should release any system resources such
• as memory, that were aquired during the open call.

already_closed

exit

close stat

lda
clc
rts

anop
lda
sec
anop
rts

anop
de
de
de
de
de
de
de
de

end

eject

fno_error

tdrvr _not_ open

12'no_error•
i2'no error'
12'no_error•
i2'no_error'
12'no error•
i2'no error•
i2'no_error'
i2'no_error'

A P P E N D I X D Driver Source Code Samples

and exit w/o error

status for dib device
status for dib 2 device
status for dib J device
status for dib 4 device
status for dib 5 device
status for dib 6 device
status for dib 7 device
status for dib 8 device

Character driver

1/31189

437

GSIOS Reference (Volume 2) APDA Draft

* DRIVER CALL: STATUS

• This routine supports all the standard device status calls.
• Any status call which is able to detect an OFFLINE or DISK
• SWITCHED condition should call the system service routine
• SET_DISKSW. OFFLINE and DISKSW are conditions and not errors
• when detected by a status call and should only be returned as
• conditions in the status list.

• Status Code: $0000 Return Device Status
$0001 Return Con!iquration Parameters
$0002 Return Wait/No Wait Mode
$0003 Return Format Options
$0004 Return Partition Map

* ENTRY: via a 'JSR'
<drvr_dev_num • Device Number of current device beinq accessed
<drvr_clist_ptr • Pointer to control list
<drvr_ctrl_code • Control code
<drvr_req_cnt • Number of bytes to be transferred
<drvr_tran_cnt • $00000000
A Req • Call Number
X Req • Undefined
Y Req • Undefined
Dir Req • GS/OS Direct Paqe
B Req • Undefined
P Req • N V M X D I Z C E

X X 0 0 0 0 X X 0

• EXIT: via an 'RTS'
<drvr_tran_cnt • Number of bytes transferred

A Req • Error code
X Req • Undefined
Y Req • Undefined
Dir Req • GS/OS Direct Paqe
B Req • Same as entry
P Req • N V M X D I Z C E

X X 0 0 0 0 X 0 0
X X 0 0 0 0 X l 0

No error occurred
Error occurred

status start

usinq driver_data
lonqa on
lonqi on

V 0 L U ME 2 Devices and GS/OS

1131/89

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

• Need to verify that the status code specifies a
• legal status request.

lda
cnp

blt
lda
rts

<drvr_stat_code
f$0004
legal_status
fdrvr_bad_code

is this a legal status request?

yes
else return 'BAD CODE' error

• It's a legal status. Dispatch to the appropriate status routine.

legal_status anop
asl
tax
lda
ph a
rts

eject

a

lstatus_table,x

dispatch is via an 'RTS'

• The DEVICE STATUS call returns a status list that indicates
• specific status information regarding a character device.

• Status List Pointer: Word
Longword

General status word
Total number of blocks

• Character devices should indicate SOOOOOOOO as the block count.
• Status conditions are bit encoded in the status word.
• Encoding of status for a character device is as follows:

• I

* I r I E I D I C I B I A I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
* I I I I I I I I I I I I I I I I I

OPEN
INTERRuPT

---- RESERVED

I -------- BUSY
_______ I_ --------- 0 RESERVED

--------------------------LIN~ DEV

-- 0 RESERVED

• Valid request counts versus returned status list for this status
• call are as follows:

• Request Count: $0002 Status List: General status word
• Request Count: $0006 Status List: General status word and block count

A P P E N D I X D Driver Source Code Samples Character driver

1/31189

439

GSIOS Reference (Volume 2) APDA Draft

dev stat entry
longa on
long1 on

lda
ldx

fdrvr_bad_parm
<drvr_req_cnt+2

assume invalid request count
and validate request count

bne bad_dev _stat
ldx <drvr_req_cnt
cpx f$0002
blt bad_dev_stat
cpx f$0007
blt ok_dev_stat

bad dev stat anop
sec
rts

• Request count is valid. Deterime device status and if appropriate, the
• total number of blocks for the device and return them in the device
• status list. You insert the code required for thls operation.

ok_dev _stat anop
ldy fdr i ver unit
lda [<drvr_dib_ptrJ,y
asl a
tax
lda ldstat _tbl,x
tax
ldy f$0000
sep f$20
long a off

copy_dstat anop

internal device f

get pointer to device status list

status list pointer
8 bit 'm'

1131189

lda IO,x copy device status list to slist_ptr
sta [<drvr_slist_ptrJ,y
inx
iny
cpy <drvr _ req_ cnt copy • request count size
bne copy_dstat
rep f$20 16 bit •m•
long a on
brl set_xfer_cnt update xfer count ' exit

eject

440 V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

• This call returns a byte count as the first word in the status
• list followed by the data from the configuration parameter list.
• The request count specifies how much data is to be returned
• from the list. If the byte count is smaller than the request
• count then only the number of bytes specified by the byte
• count will be returned and the transfer count will indicate
• this.

• Status List: Word
Data

Length of configuration list (including count).
Data from the configuration list (device specific).

• This call requires a minimum request count of $00000002 and
• a maximum request count of $0000FFFF.

get_conf entry
longa on
longi on

lda ldrvr_bad_parm
ldx <drvr_req_cnt+2
bne bad_get_ctrl
ldx <drvr_req_cnt
cpx 1$0002
bge ok_get_ctrl

bad_get_ctrl anop
sec
rts

A P P E N D 1 X D Driver Source Code Samples

assume invalid request count
and validate request count

1/31/89

Character driver 441

GSIOS Reference (Volume 2) APDA Draft

• Request count is valid. Return configuration list.

o't_qet_ctrl anop
ldy tdriver_unit
lda [<drvr_dib_ptr),y
asl a
tax
lda I clist_tbl, x
tax
lda IO,x
beq no_clist
anp <drvr_req_cnt
bqe req_cnt_ok
sta <drvr_req_cnt

req_cnt_ok anop
ldy t$0000
sep t$20
lonqa off

copy_clist anop
lda IO,x
sta [<drvr_slist_ptr),y
inx
iny
cpy <drvr_req_cnt
bne copy_clist
rep f$20
lonqa on
brl set_xfer_cnt

no_clist anop
sta [<drvr_slist_ptr)
lda f$0002
brl set_xfer_cnt

eject

V 0 L U M E 2 Devices and GS/OS

internal device t

qat pointer to configuration list

qat lenqth of configuration list
if list has no content
is list shorter than request?
no
else modify request count

status list index
8 bit •m•

1/31/89

copy configuration list to slist_ptr

copy • request count size

16 bit 'm'

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

• This routine returns the Wait/No Wait mode that the driver
• is currently operating in. This is returned in a word
• parameter which indicates a request count of $0002.

get_wait entry
long a on
longi on

lda tdrvr_bad_parm
ldx <drvr _ req_ cnt + 2

; assume invalid request count
; and validate r1quest count i 4 ~0 bct.C\ bne bad_get_wait

ldx <drvr _ req_ cnt
cpx f$0002
beq ok_get_wait

bad_get_wait anop
sec
rts

• Request count is valid. Return the wait mode for this device.

ok _get_wait anop
ldy tunit_num
lda [<drvr_dib_ptr],y
tax
dex
lda jwait_mode_tbl,x
sta [<drvr_slist_ptr]
brl set_xfer_cnt

eject

• This routine returns the format options for the device.
• c-.;racter devices do not support formatting and will return
• with no error and a transfer count of NIL.

get_format entry
longa
longi

lda
clc
rts

on
on

fno error

A P P E N D I X D Driver Source Code Samples

no action this call

Character driver

1131189

443

GSIOS Reference (Volume 2) APDA Draft

• This is a common exit routine for successful status calls.
• The transfer count is sat to the same value as the request
• count prior to returning with no error •

...................•.....................••......•...•.....•...••
set_xfer_cnt entry

lda
sta
lda
sta
lda
clc
rts

eject

<drvr_req_cnt
<drvr_tran_cnt
<drvr_req_cnt+2
<drvr_tran_cnt+2
fno_error

• This routine returns the partition map for the device.
• Character devices do not support partit.ioning and will return
• with no error and a transfer count of NIL.

get_partn_map entry
long a on
lonqi on

lda
clc
rts

end

eject

fno error

444 V 0 L U M E 2 Devices and GS/OS

1/31/89

set transfer count

no action this call

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

* DRIVER CALL: CONTROL

• This routine supports all the standard device control calls.

• Control Code: $0000 Reset Device
$0001
$0002
$0003
$0004
sooos
$0006
$0007
$0008
$0009

* ENTRY: via a 'JSR'

F'ormat Device
Eject Media
Set Configuration Parameters
Set Wait/No Wait Mode
Set F'ormat Options
Assign Partition OWner
Arm Signal
Disarm Signal
Set Partition Map

<drvr_dev_num - Device Number of current device being accessed
<drvr_clist_ptr • Pointer to control list
<drvr_ctrl_code • Control code
<drvr_req cnt • Number of bytes to be transferred
<drvr_tran_cnt • $00000000

A Reg Call Number
X Reg - Undefined

Y Reg - Undefined
Dir Reg • GS/OS Direct Page
B Reg • Undefined
P Reg = N V M X D I Z C E

X X 0 0 0 0 X X 0

* EXIT: via an 'RTS'
<drvr tran cnt • Number of bytes transferred
A Reg • Error code

X Reg • Undefined
Y Reg - Undefined
Dir Reg • GS/OS Direct Page

B Reg - Same as entry
p Reg • N V M X D I Z c E

X X 0 0 0 0 X 0 0 No error occurred

X X 0 0 0 0 X 1 0 Error occurred

A P P E N D I X D Driver Source Code Samples

1131189

Character driver 445

GSIOS Reference (Volume 2) APDA Draft

control start
using
long a
longi

driver_data
on
on

• Need to verify that the control code specifies a
• legal control request.

lda
cmp
blt
lda
rts

<drvr_ctrl_code
1$0009

legal_control
ldrvr_bad_code

is this a legal control request?

yes
else return 'BAD CODE' error

• It's a legal control. Dispatch to the appropriate control routine.

legal control anop
asl
tax
lda
ph a
rts

eject

a

lcontrol_table,x

; dispatch is via an 'RTS'

• This routine will reset the device to it's default conditions
• as specified by the default configuration parameter list. The
• configuration list contents will be updated to reflect the parameter
* changes that have taken effect. S~nce our driver has a configuration
• parameter list of NIL, no action is taken.

* CONTROL LIST: None

....................•................•.........•...•.....••.•..••
dev_reset

lda
clc
rts

eject

entry
tno_error

446 V 0 L U M E 2 Devices and GSIOS APPENDIXES

1/31189

GSIOS Reference (Volume 2) APDA Draft

........•..••..••..••..•••.••••••••.........••..••••••...•.....•.

• Character devices do not support the FORMAT !unction and will
• return with no error and a transfer count of NIL.

* CONTROL LIST: None

format entry
lda
clc
rts

eject

tno_error

• Character devices do not support the media eject command and
• will return with no error and a transfer count of NIL.

* CONTROL LIST: None

media_eject entry
lda
clc
rts

eject

tno_error

• This routine will set the configuration parameter list as specified
• by the contents of the configuration list. Note that the first
• word of the configuration list must have the same value as the
• current configuration parameter list.

* CONTROL LIST: Nord
Data

Size o! configuration parameter list
Configuration parameter list

set con! entry

lonqa on
lonqi on

lda tdrvr_bad_parm
ldx <drvr_req_cnt+2
bne bad_set_ctrl
ldx <drvr_req_cnt
cpx t$0002
bqe ok_set_ctrl

bad_set_ctrl anop
sec
rts

A P P E N D I X D Driver Source Code Samples

assume invalid request count
and validate request count

1/31189

Character driver 447

GSIOS Reference (Volume 2) APDA Draft

• Request count is valid. Set configuration list.

ok_set_ctrl
ldriver unit
[<drvr_dlb_ptrl,y
a

internal device I
anop
ldy
lda
asl
tax
lda I clist_tbl, x get pointer to configuration list

req_cnt_ok

copy_cllst

tax
lda
cmp
beq
lda
sec
rts
anop
ldy
sep

IO,x
[<drvr_cllst ptrl
req_cnt_ok
ldrvr_bad_parm

f$0000

f$20

longa off
anop
lda
sta
inx
lny
tya
cmp
bne
rep

[<drvr_clist_ptrJ,y
IO,x

[<drvr_clist_ptrl
copy_clist
1$20

longa on

are lengths the same?

yes
else return an error

status list index
8 bit •m•

set new configuration list

16 bit •m•

• Prior to exiting with the proper transfer count, your driver would
• have to put the new configuration parameters into effect. The driver
• should reconfigure itself based on the values passed in the new
• configuration parameter list.

• After the new parameters have been put into effect, exit with the
• proper transfer count.

brl set_xfer_cnt

eject

• This routine will set the WAIT/NO WAIT mode as specified
• by the contents of the control list.

• CONTROL LIST: Word Walt I No Walt Mode

set_walt

448

entry
long a on

V 0 L U M E 2 Devices and GS/OS APPENDIXES

1131189

GSIOS Reference (Volume 2)

longi

lda
ldx
bne
ldx
cpx

beq
bad_set_wait anop

sec
rts

on

tdrvr_bad_parm
<drvr_req_cnt+2
bad_set_wait
<drvr_rect_cnt
t$0002
ok_set_wait

APDA Draft

assume invalid request count
and validate request count

• Request count is valid. Set the wait mode for this device.

ok_set_wait anop
ldy
lda
tax
lda
sta
brl

eject

tdriver_unit
[<drvr _dib _ptr I, y

[<drvr_slist_ptrl
lwait_mode_tbl,x
set xfer cnt

••..•.•••••.••.•••••••............................•...........•••

• Format options are not supported by character devices and will
• return with no error and a transfer count of NIL.

• CONTROL LIST: Word Format Option Reference Number

set format entry -
long a on
longi on

lda tno_error exit without action
clc
rts

eject

• Character devices do not support partitions and will return
• with no error and a transfer count of NIL.

• CONTROL LIST: Word
Name

String length
Name of partition owner

set_partn entry

lda
clc
rts

tno_error

A P P E N D I X D Driver Source Code Samples

1131189

Character driver 449

GSIOS Reference (Volume 2) APDA Draft

eject
....................••....................•............•.........

• This routine is envoked by an application to install a signal
• into the event mechanism.

* CONTROL LIST: Word
Word
Long

Signal Code
Signal Priority
Signal Handler Address

arm_signal entry
lda
clc
rts

eject

tno_error

• This routine is remove a signal from the event mechanism that
• was previously installed with the arm_signal call.

* CONTROL LIST: Word Signal Code

disarm_signal entry
lda
clc
rts

eject

tno_error

• This routine is used to set the partition map for the device.
• Character devices do not support partitioning and will return
• with no error and a transfer count of NIL.

set__partn_map entry
lda
clc
rts

end

eject

fno_error

450 V 0 L U M R 2 Devices and GSIOS

1/31189

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

* DRIVER CALL: FLUSH

• This call writes any data in the devices internal bu!!er to
• the device. It should be noted that this is a WAIT MODE call
• which is only supported by devices which maintain their own
* internal I/0 buffer. Devices that cannot write in NO WAIT mode
• do not support this call and will return with no error.

• ENTRY: via a 'JSR'
<drvr_dev_num • Device Number of current device bein9 accessed
<drvr_tran_cnt • $00000000
A Req • Call Number
X Req • Undefined
Y Re9 • Undefined
Dir Re9 • GS/OS Direct Page
B Reg • Undefined
P Reg • N V M X D I Z C E

X X 0 0 0 0 X X 0

* EXIT: via an 'RTS'
<drvr_tran cnt • Number of bytes transferred
A Reg • Error code
X Reg - Undefined
Y Req • Undefined
Dir Reg • GS/OS Direct PaQe
B Reg - Same as entry
P Reg • N V M X D I Z C E

x x 0 0 0 0 x 0 0 No error occurred
X X 0 0 0 0 X 1 0 Error occurred

A P P E N D I X 0 Driver Source Code Samples

1/31189

Character driver 451

GSIOS Reference (Volume 2) APDA Draft

flush

exit

flush_stat

start
usinq driver_data
lonqa on
lonqi on

ldy
lda
asl
tax
sec
lda
bne
clc

anop
rts

anop
de

de

de

de
de

de
de

de

end

eject

ldriver_unit
[<drvr_dib_ptr),y
a

1 flush_stat,x
exit

i2'no_error•
12'no_error•
12' no error•
12'no_error•
i2'no error'
12'no error•
l2'no_error•
12'no_error•

452 V 0 L U M E 2 Devices and GS/OS

get internal device reference number

assume device will return an error
get status for this device

status for dib 1 device
status !or dib 2 device
status for dib 3 device
status for dib 4 device
status for dib 5 device
status for dib 6 device
status for dib 7 device
status for dib 8 device

APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

* DRIVER CALL: SHUTDOWN

• This call prepares the driver for shutdown. This may include
• closing a character device as well as releasing any and all
• system resources that may have been aquired by either a
• STARTUP or OPEN call. Many devices may share a common code segment.
• If this is the case, an error should be returned on shutdown from all
• but the last code segment. The device dispatcher will free up the
• memory occupied by the driver when no error is returned on shutdown.

* ENTRY: via a 'JSR'
<drvr_dev_num - Device Number of current device being accessed
<drvr_tran_cnt - $00000000
A Reg - Call Number
X Reg - Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg - Undefined
P Reg • N V M X D Z C E

X X 0 0 0 0 X X 0

* EXIT: via an 'RTS'
<drvr_tran_cnt ~ Number of bytes transferred
A Reg • Error code
X Reg • Undefined
Y Reg - Undefined
Dir Reg • GS/OS Direct Page
B Reg - Same as entry
p Reg • N v M X D I z c E

X X 0 0 0 0 X 0 0 No error occurred
X X 0 0 0 0 X 1 0 Error occurred

shutdn

not_last

start
using
long a
longi

dec
bne
lda
clc
rts

anop
lda
sec
rts

end

driver data
on
on

lstartup_count
not last
fno_error

tdrvr_busy

A P P E N D I X D Driver Source Code Samples

is this the last device shutdown?
no
else return no error on last device

return an error if not last

1/31189

Character driver 453

GSIOS Reference (Volume 2) APDA Draft

Supervisory driver

This is the shell of a typical supervisory driver, whose job is to mediate among several device drivers that
access several hardware device through the same hardware controller. See Chapter 8 of this volume. The
driver code consists of fwe parts, in this order:

• Equates

• Supervisor-driver header

• Tables for dispatching calls and passing parameters

• A main entry point to the driver

• Routines that handle the driver calls

1/31189

The driver has handlers for three calls (Supervisor_Startup, Supervisor_Specific, and Supervisor_Shutdown),
although the Supervisor_Specific call is a nonfunctional skeleton in this example.

454 V 0 L U M H 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

65816 on
instime on
gen on
symbol on
absaddr on
align 256

Copyright (c_) 1988
Apple Computer, Inc.
All rights reserved.

* NOTE:

Supervisory Driver Core Routines Version O.OlaOl

All supervisor driver files must be installed on the
boot volume in the subdirectory "/SYSTEM/DRIVERS'.
Additionally, the FileType for the driver file
must be set to SOOBB. AuxType is also critical
to the operating system recognizing the driver
as a GS/OS supervisory driver. The AuxType is a long
word which must have the upper word set to $0000.
The least significant word of the AuxType field should
be set to $0140 for supervisory driver files. The
supervisory driver file should be compacted to OMF2.

GS/OS Supervisory Driver: FileType • SOOBB
AuxType • $00000140

* REVISION HISTORY:

• DATE Ver. By Description

• 02/26/88 O.OOeOl Started initial coding •

....•....••.••..•..••...............•.•.••.••..••••.............•

eject

A P P E N D I X D Driver Source Code Samples

1/31189

Supervisory driver 455

GSIOS Reference (Volume 2) APDA Draft

**

• The following are direct page equates on the GS/OS
• direct page for driver usage.

**

drvr_dev_num
drvr _ call_num
drvr_buf_ytr
drvr_slist_ptr
drvr_clist_ptr
dev_id_ref
drvr_req_cnt
drvr_tran_cnt
drvr_blk_num
drvr blk size
drvr fst num
drvr_stat_code
drvr ctrl code
drvr_vol_id
drvr_cache
drvr_cach_ptr
drvr_dib_ptr

sib_ptr
sup_yarm_ptr

gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ

gequ
gequ

eject

$00

drvr_dev_num+2
drvr_call_num+2
drvr_call_num+2
drvr_call_num+2
drvr_buf_ptr
drvr_buf_ptr+4
drvr_req_cnt+4
drvr_tran_cnt+4
drvr_blk_num+4
drvr_blk_size+2
drvr_!st_num
drvr fst num
drvr_fst_num+2
drvr_vol_id+2
drvr_cache+2
drvr_cach_ptr+4

$0074

sib_ptr+4

456 V 0 L U M E 2 Devices and GS/05

(w) device number
(w) call number
(lw) buffer pointer
(lw) buffer pointer
(lw) buffer pointer
(w) indirect device ID
(lw) request count
(lw) transfer count
(lw) block number
(w) block size
(w) File System Translator Number
(w) status code for status call
(w) control code for control call
(w) Driver Volume ID Number
(w) Cache Priority
(lw) pointer to cached block
(lw) pointer to active DIB

(lw) pointer to active SIB
(lw) pointer to supervisor parameters

APPENDIXES

1/31189

GSIOS Reference (Volume 2) APDA Draft 1131/89

**

• The following are equates for driver command types.

**

drvr_startup gequ $0000 driver startup command
drvr_open gequ $0001 driver open command
drvr read gequ $0002 driver read command
drvr_write gequ $0003 driver write command
drvr close gequ $0004 driver close command
drvr_status gequ $0005 driver status comnand
drvr_control gequ $0006 driver control command
drvr_flush gequ $0007 driver flush command
drvr_shutdn gequ $0008 driver shutdown command
max_col'll!\and gequ $0009 conmands $0009 - Sffff undefined

drvr_dev_stat gequ $0000 status code: return device status
drvr_ctrl_stat gequ $0001 status code: return control params
drvr_get_wait gequ $0002 status code: get wait/no wait mode
drvr_get format gequ $0003 status code: get format options

drvr reset gequ $0000 control code: reset device
drvr format gequ $0001 control code: format device
drvr_eject gequ $0002 control code: eject media
drvr_set_ctrl gequ $0003 control code: set control params
drvr_set_wait gequ $0004 control code: set wait/no wait mode
drvr set format gequ $0005 control code: set format opt ions
drvr_set_ptn gequ $0006 control code: set partition owner
drvr_arm gequ $0007 control code: arm interrupt signal
drvr disarm gequ $0007 control code: arm interrupt signal

eject

A P P E N D I X 0 Driver Source Code Samples Supervisory driver 457

GSIOS Reference (Volume 2) APDA Draft

• The following are equates !or GS/OS error codes •

.....................................•..........................

no_error

dev_not_!ound
invalld_dev_num
drvr_bad_req
drvr_bad_code
drvr_bad__parm
drvr_not_open
drvr_prior_open
irq_table_full
drvr_no_resrc
drvr_io_error
drvr_no_dev
drvr_busy
drvr_wr__prot
drvr_bad_count
drvr_bad_block
drvr_disk_sw
drvr_o!f_llne
invalid_access
parm_range_err
out_of_mem
dup_volume
not_ block_ dev
stack_overflow
data_unavail

gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ
gequ

eject

$0000
$0010
$0011
$0020
$0021
$0022
$0023
$0024
$0025
$0026
$0027
$0028
$0029
$0028
S002C
$0020
S002E
S002F
S004E
$0053
$0054
$0057
$0058
S005F
$0060

no error has occurred
device not found
invalid device number
bad request or command
bad control or status code
bad call parameter
character device not open
character device already open
interrupt table full
resources not available
I/O error
device not connected
call aborted, driver is busy
device is write protected
invalid byte count
invalid block address
disk has been switched
device off line I no media present
access not allowed
parameter out of range
out of memory
duplicate volume name
not a block device
too many applications on stack
data unavailable

• The following are equates for the DIB.

link_ptr gequ $0000 (lw) pointer to next DIB
entry__ptr gequ $0004 (lw) pointer to driver
dev_char gequ $0008 (w) device characteristics
blk_cnt gequ $000A (lw) number of blocks
dev_name gequ SOOOE (32) count and ascii name (pstring)
slot_num gequ $002E (w) slot number
unit_num gequ $0030 (W) unit number
ver_num gequ $0032 (W) version number
dev_id_num gequ $0034 (w) device ID number (ICON reff)
head_link gequ $0036 (W) backward device link
forward_link gequ $0038 (w) forward device link
link_dib__ptr gequ S003A (lw) dib reserved field tl
dib_dev_num gequ S003E (w) Device number of this device

458 V 0 L U M E 2 Devices and GSIOS APPENDIXES

1131189

GSIOS Reference (Volume 2) APDA Draft

• The following equate(s) are for drive specific extensions to the DIB.
• Parameters that are extended to the manditory DIB parameters are not
• accessable by GS/OS or the application but may be used within a driver
• as needed.

driver unit
my_slotl6

gequ
gequ

$0040
$0042

(w) driver's internal DIS data
(w) driver's slot * 16

eject
**

• System Servi~e Table Equates:

• NOTE: Only those system service calls that might be used
• by a device driver are listed here. For a more complete
• list of system service calls and explanations of each call
• consult the system service call ERS.

dev_dispatcher gequ SOlFCOO dev_dispatch
cache find blk gequ $01FC04 cash_find
cache add blk gequ S01FC08 cash add
cache_del_blk gequ S01FC14 cash_delete
cache_ del_ vol gequ $01FC18 cash del vol
set_sys_speed gequ SOlFCSO set system speed
move info gequ $01FC70 gs_move_block
set_disksw gequ $01FC90 set disksw and call swapout/delvol
sup_drvr_disp gequ SOlFCM supervisor dispatcher
install driver gequ S01FCA8 dynamic driver installation
dyn_slot_arbiter gequ SOlFCBC dynamic slot arbiter

eject

A P P E N D I X D Driver Source Code Samples Supervisory driver

1/31/89

459

GSIOS Reference (Volume 2) APDA Draft

**

* MOVE_INFO

• NOTE: The following equates are used to set the modes
• passed to the move_info call system service call.

··························~·····································
movebll<cmd qequ $0800
move_sinc_dinc gequ $0805

move_sinc_ddec gequ $0809
move - sdec_dinc gequ $0806
move_sdec_ddec gequ $080A

move_scon_dcon gequ $0800
move sine dean - gequ $0801
move sdec dean gequ $0802
move - scon_dinc gequ $0804
move - scon_ddec gequ $0808

eject

__ 7 _____ 6 _____ 5 _____ 4 _____ 3 _____ 2 _____ 1 _____ 0

; I
;!slot? lslot6 !slotS !slot4 I

;!intext!intext!intext!intextl
; tenablelenable!enable!enablel

1 s lot2 1 slotl I

0 1 in text 1 intext I
lenablelenablel

0

; I------ ------ I I
sltromsel byte AAAAA

sltromsel bits defined as follows
bit 7- 0 enables internal slot 7 enables
bit 6- 0 enables internal slot 6 1 enables
bit s- 0 enables internal slot 5 enables
bit 4= 0 enables internal slot 4 enables
bit 3- must be 0
bit 2• 0 enables internal slot 2 enables
bit 1- 0 enables internal slot enables
bit a- must be o -

block move option
source increment,

source increment,
source decrement,
source decrement,

source constant,
.source increment#
source decrement,
source constant,

source constant,

slot rom
slot rom
slot rom
slot rom

slot rom
slot rom

sltromsel gequ $00C02D ;slot rom select

V 0 L U M E 2 Devices and GS/OS

1/31189

dest. increment

dest. decrement
dest. increment
dest. decrement

dest. constant.
dest:. constant
dest. constant

dest. increment
dest. decrement

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

__ 7 _____ 6 _____ 5 _____ 4 _____ 3 _____ 2 _____ 1 _____ 0 ___

; I

; I

; I 0

;I

I stop I
I i/o/lc I
I shadow I

I stop I stop I stop I stop I stop I
0 lauxh-rlsuprhrlhires21hires11txt pgl

lshadowlshadowlshadowlshadowlshadowl

;I _____ -----------------------------------

shadow bits defined as follows

bit 7• must write 0
bit 6: 1 to inhibit i/o and language card operation
bit 5• must write 0
bit 4- to inhibit shadowing aux hi-res page
bit 3- to inhibit shadowing 32k video buffer
bit 2• to inhibit shadowing hires page 2
bit 1- to inhibit shadowing hires page
bit o- to inhibit shadowing text pages

shadow gequ SOOC035 ;shadow register

eject

A P P E N D I X D Driver Source Code Samples

1131189

Supervisory driver 461

GSIOS Reference (Volume 2) APDA Draft

__ 7 _____ 6 _____ 5 _____ 4 _____ 3 _____ 2 _____ 1 _____ 0 ___

; I
; I slow/ I
; I fast I 0

lshadowtslot 7tslot 6tslot 5tslot 41
0 lin alllmotor tmotor I motort motort

;I speed! I ram tdetectldetectldetecttdetectl
; 1 ____ 1 ______ 1 ______ 1 __ 1 __ 1 __ 1 __ 1 ____ 1

cyareq byte ~AAAA

cyareg bits defined as follows
bit
bit

7• O•slow system speed -- 1•fast system speed
6• must write 0

bit
bit
bit
bit
bit
bit

cyareg

5• must write 0

4• shadow in all ram banks
3• slot 7 disk motor on detect
2• slot 6 disk motor on detect
1• slot 5 disk motor on detect
0• slot 4 disk motor on detect

qequ SOOC036 speed and motor on detect

__ 7 _____ 6 _____ 5 _____ 4 _____ 3 _____ 2 _____ 1 _____ 0 ___

;I

; I alzp I paqe21 ramrdlramwrtl rdromtlcbnk21rombnkt intcxl
;tstatuststatuststatuststatuststatuststatuststatuststatust

; I ____ ---- ---- -------- ----
statereq status byte '''''

statereg bits defined as follows
bit 7• alzp status
bit 6• paqe2 status
bit 5• ramrd status
bit 4• ramwrt status
bit 3· rdrom status (read only ram/rom (0/1))

important note:

statereq

clrrom

462

do two reads to Sc083 then change statereq
to change lcram/rom banks (0/1) and still
have the lanquaqe card write enabled.

bit 2• lcbnk2 status O•LC bank 0 - l•LC bank 1

bit 1• rombank status
bit o- intcxrom status

qequ SOOC068

qequ SOOCFFF

V 0 L U M E 2 Devices and GS/OS

state reqister

switch out Sc8 roms

1131189

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31/89

...........................•................•.....•......•......•

• EQUATES for the IWM require index of (n*16)

phaseoff gequ soocoeo stepper phase off
phaseon gequ SOOC081 stepper phase on

ph Doff gequ soocoao phase 0 off
ph Don gequ SOOC081 phase 0 on

ph1off gequ SOOC082 phase 1 off
phlon gequ SOOC083 phase 1 on
ph 2oft gequ SOOC084 phase 2 off
pr.2on gequ soocoes phase 2 on
ph3off gequ SOOC086 phase 3 off

ph3on gequ SOOC087 phase 3 on

motoroff gequ SOOC088 disk motor off
motoron gequ SOOC089 disk motor on

drvOen gequ SOOCOBA select drive 0
drv1en gequ SOOCOBB select drive 1

q6l gequ SOOCOBC Q6 low

q6h gequ SOOCOBD Q6 high
q71 gequ SOOCOBE Q7 low
q7h gequ SOOCOBF Q7 high

emulstack gequ $010100 emulation mode stack pointer

eject

A P P E N D I X D Driver Source Code Samples Supervisory driver 463

GSIOS Reference (Volume 2) APDA Draft.

• The following equates are used to implement our hypothetical
• device driver. They in no way reflect softswitches associated
• with any real hardware device •

..........•.••.•••••••••..••........•............••••..•••.•••.••

• I

*17161514131211101 READY

• 1_1_1_1_1_1_1_1_1
___________ Reserved

-------------- 1- Device is ready

ready qequ $00C080

• I

* I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
• I I I I I I I

CHAR

__ I _______ Character device data register

char gequ $00C081

• I
*17161514131211101

• 1_1_1_1_1_1_1_1_1

0

CHAR_ STATUS

1 • Interrupt in process
____ o

_____ o

--------- 1 • Online

---------------- 0 ___________________ o
______________________ o

char status gequ $00C082

464 V 0 L U M E 2 Devices and GS/OS

1/31/89

APPENDIXES

GSIOS Reference (Volume 2)

• I

• I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
* I I I I I I I I I

APDA Draft

CHAR_CONTROL

________ Character device control register

char control gequ SOOCOB3

• I

*17161514131211101

• I I I I I I I I I
Reserved

BLOCK RDY

1 • Device is ready

block_rdy gequ SOOC084

• I

*17161514131211101

* I I I I I I I
BLOCK_DATA

Block device data register

block data gequ SOOCOBS

• I

• I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
* I I I I I I I I

• Disk switched

BLOCK_STATUS

• Interrupt in process

--------- 1 • Write protected _____ o

--------------- l • Online
_________ o

----------------------- 0

------------ 0

block status gequ SOOC086

• I

*17161514131211101

* I I I I I I

BLOCK_CONTROL

________ Block device control register

block_control gequ SOOCOB7

eject

A P P E N D I X D Driver Source Code Samples

1/31/89

Supervisory driver 465

GSIOS Reference (Volume 2) APDA Draft

* rhe followinq table is the header required for all supervisory
* drivers which consists of the following:

* Long Entry pointer to supervisory driver
Word Supervisory ID Number
Word Supervisory Driver Version Number
Word Reserved
Word Reserved
Word Reserved
Word Reserved

....•.•.........•.....••.•.......•.............•.•••.......•.....
driver_data data
sib entry

de 14'dispatch' Supervisory driver entry pointer
de h'$ASC3' Supervisory ID Number
de h'$010e' Supervisory Version
de i4 • sib_name• SIB Name Pointer
de i2'0' SIB Reserved fl
de i2'0' SIB Reserved 11

• Supervisory specific extensions to the SIB may be required by

• certain implementations o! the supervisory driver. These
• extensions are allowed. The reserved fields in the current
• SIB structure are !or Apple's internal use. I! your implementation
• o! a supervisory driver requires additional fields in the SIB then
• you should extend the SIB beyond it's current definition.

• The SIB name string that follows is not an extension to the SIB, rather
• an optional name string that describes the SIB.

sib_name de
de

i2'5'
c'MYSIB'

• The following table is used to dispatch to functions wlthlng
• the supervisory driver.

dispatch_tbl entry

de
de
de

end

eject

i2 • startup-1'
i2' shutdn-1'
i2 • sup_call-1'

V 0 L U M E 2 Devices and GS/OS

Number O.Ole

APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

* SUPERVISORY DRIVER MAIN ENTRY POINT: DISPATCH

• This is the main entry point for the supervisory driver. The
• routine validates the call number prior to dispatching to the
• requested function.

• Call Number: $0000 Function: Startup
Shutdown $0001

$0002-SFFFF supervisor Specific

* ENTRY: Call via 'JSL'

* EXIT:

[<drvr_sib_ptr] - Points to SIB for supervisor being accessed
[<sup_parm_ptr) • Supervisory parameter list pointer
A Reg • Supervisory Driver Number
X Reg ~ Supervisory Call Number

Y Reg - Undefined
Dir Reg • GS/OS Direct Page
B Reg • Undefined
P Reg • N V M X D Z C E

X X 0 0 0 0 X X 0

Direct page • unchanged with the exception of <drvr tran cnt
A Reg • Error code

X Reg - Undefined
Y Reg = Undefined
Dir Reg • GS/OS Direct Page
B Reg = Same as entry
P Reg • N V M X D I Z C E

X X 0 0 0 0 X 0 0

X X 0 0 0 0 X 1 0

No error occurred
Error occurred

A p P E N D 1 X D Driver Source Code Samples

1/31189

Supervisory driver 467

GSIOS Reference (Volume 2) APDA Draft

...............................•.................................
dispatch

command_ok

func_ret

start
usinq
long a
lonqi

phb
phk
plb
txa
cnp

blt
lda
anop
pea
asl
tax

driver_data
on
on

f$0002

command_ok
f$0002

func_ret-1
a

lda ldispatch_tbl,x

save environment

startup or shutdown?
yes
else all specific through one entry

return address from function
make index to dispatch table

pha push function address for dispatch
rts rts dispatches to function
anop
plb
rtl

end

eject

468 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

* SUPERVISORY DRIVER CALL: STARTUP

• This routine must prepare the driver to accept all other driver
• calls.

* ENTRY: Call via 'JSR'
[<drvr_sib_ptr] • Points to SIB for supervisor being accessed
[<sup_parm_9tr] • Supervisory parameter list pointer

* EXIT: via an 'RTS'

A Reg - Supervisory Driver Number
X Reg • Supervisory Call Number
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
8 Reg • Undefined
P Reg E N v M X D I z c E

X X 0 0 0 0 X X 0

A Reg - Error code
X Reg • Undefined
Y Reg • Undefined
Dir Reg • GS/05 Direct
8 Reg z same as entry
p Reg - N v M X D I z c

X X 0 0 0 0 X 0

X X 0 0 0 0 X 1

Page

E
0

0

A P P E N D I X D Driver Source Code Samples

No error occurred
Error occurred

1/31189

Supervisory driver

GSIOS Reference (Volume 2) APDA Draft

startup start
using
long a
long!

lda
beq

• Check for the device.

device_loop

: insert

drivar_data
on
on

ldevice_count
search_loop

your code here.

has slot been found?
no, go search for it

bne search_loop if you can't find a device
inc I device_ count

• The supervisor may want to construct a ~ist of devices by slot and
• unit number so that the devices may be claimed by a device driver
• that uses the supervisor driver.

: insert your code here to build a device list.
bra device_loop loop to check for next device

• Always request the slot from the slot arbiter prior to scanning the SCnXX
* space for signature bytes when searching for hardware. This provides a
* compatible method of requesting a slot should a method of dynamic slot
• switching be made available in the future.

search_loop
lda
jsl
bcs
inc

I startup_slot
dyn_slot_arbiter
next_slot

request slot from slot arbiter

if slot was not granted
I device_count

470 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1131/89

GSIOS Reference (Volume 2) APDA Draft

• If the slot was granted then use the current slot to search for signature
• bytes identifying your hardware.

lda
and
ora
xba

tax

tsearch_slot
t$0007
tSOOCO

• Now search for signatures.

next_slot

no_start_device

; insert your code here.
beq device_loop

dec
bne
lda
beq

lda
clc
rts

lda
sec
rts

end

eject

tstartup_slot
search_loop
tdevice_count
no_start_device
tno_error

tdrvr_io_error

A P P EN D I X 0 Driver Source Code Samples

create $Cn00 for signature search index

X register • SCnOO

if you find a device

point at next slot to check
and check for hardware
any devices?
if not, don't need supervisor in system

an error on startup forces supervisor
to be purged.

Supervisory driver

1/31189

471

GSIOS Reference (Volume 2) APDA Draft

• SUPERVISOR DRIVER CALL: Supervisory Specific

• This entry point is dispatched to for all supervisory specific
• calls. OUr skeleton driver does not implement any functional
• calls. Your own implementation may require seperate entries
• for each supervisory specific call or a single entry may be
• used where the supervisory function is defined by the parameters
• passed in the supervisory parameter list.

* ENTRY: Call via 'JSR'
[<drvr_sib_ptrl • Points to SIB for supervisor being accessed
[<sup_parm_ptrl a Supervisory parameter list pointer

• EXIT: via an 'RTS'

sup_call

A Reg • Supervisory Driver Number
X Reg • Supervisory Call Number
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
8 Reg a Undefined
P Reg • N V M X D Z C E

X X 0 0 0 0 X X 0

A Reg • Error code
X Reg • Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg = Same as entry
P Reg • N V M X D I Z C E

X X 0 0 0 0 X 0 0

X X 0 0 0 0 X 1 0

start
using driver_data
long a on
longi on

lda fno error
clc
rts

end

eject

472 V 0 L U M E 2 Devices and GS/OS

No error occurred
Error occurred

and exit w/o error

APPENDIXES

1131189

GSIOS Reference (Volume 2) APDA Draft

* SUPERVISORY DRIVER CALL: SHUTDOWN

• This call prepares the driver for shutdown. This may include
• releasing any and all system resources that may have been
* aquired by a STARTUP call.

* ENTRY: Call via 'JSR'
[<drvr_sib ptr] - Points to the SIB !or the supervisor being accessed
[<sup_parm_ptr] • Supervisory parameter list pointer

* EXIT: via an 'RTS'

A Reg • Supervisory Driver Number
X Reg • Supervisory Call Number
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Undefined
p Reg - N v M X D I z c E

X X 0 0 0 0 X X 0

<drvr tran cnt • Number of bytes transferred
A Reg • Error code

X Reg - Undefined
y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Same as entry
p Reg • N V M X D I Z C E

X X 0 0 0 0 X 0 0 No error occurred
X X 0 0 0 0 X 1 0 Error occurred

shutdn start
using driver_data
long a on
longi on

lda lno_error

clc
rts

end

A P P E N D I X D Driver Source Code Samples Supervisory driver

1131189

473

GSIOS Reference (Volume 2) APDA Draft 1131/89

Device driver that calls a supervisory driver

This could be either a block driver or character driver But it does not access its device(s) directly; instead,
it goes through a supervisory driver like the one just listed The driver code consists of eight parts, in this
order:

• Equates

• Device.{iriver header

• Format option tables (3 of them, for 3 supported formatting options)

• Device information blocks (DIBs; 2 of them, for 2 supported devices)

• Tables for dispatching calls and passing parameters

• A main entry point to the driver

• Routines that handle the driver calls

The driver has routines to handle all standard driver calls, including the standard Status and Control
subcalls. The main difference between this driver and the previously listed device drivers is that, for each
call that access a device, the driver simply passes the information on to the supervisory driver; the
supervisory driver actually handles the call. In general, a supervisory driver and its individual device drivers
can allocate among themselves the tasks of handling device-access calls in any way they see fit; GS/OS
imposes no restrictions.

474 V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

65816 on
instime on
gen on
symbol on
absaddr on
align 256

Copyright (c) 1987, 1988
Apple Comput-er, Inc.
All rights reserved.

* NOTE:

Driver Core Routines Version 0.06a01

All driver files must be installed on the
boot volume in the subdirectory •/SYSTEM/DRIVERS'.
Additionally, the FileType for the driver file
must be set to SOOBB. AuxType is also critical
to the operating system recognizing the driver
as a GS/OS device driver. The AuxType is a long
word which must have the upper word set to $0000.
The most significant byte of the least significant
word in the AuxType must be set to SOl to indicate
an active GS/OS device driver or S81 to indicate
an inactive GS/OS device driver. The least
significant byte of the least significant word
of the AuxType field indicates the number of
devices supported by the driver file. This value
should be analogous to the number of DIB's
contained in the driver file. GS/OS will only
install the number of devices indicated in the
AuxType field.

GS/OS Device Driver: FileType • $00BB
AuxType • $000001XX where:

XX • number of devices.

An AuxType of $00000108 indicates eight devices. When
building a device driver, the best way to set the
FileType and AuxType is to use the Exerciser to get
the current file info (GET_FILE_INFO), modify the
FlleType & AuxType and then SET_FILE_INFO.

Note that this driver requires the presence of
a supervisory driver with a supervisory ID of $A5C3.

A P P E N D I X D Driver Source Code Samples Device driver that calls a supervisor driver

1/31189

475

GSIOS Reference (Volume 2) APDA Draft

• REVISION HISTORY:

• mm/dd/yy Version By

• 02/26/88 O.OOeOl RBM

• 04/11/88 0.06a01 RBM

Revision description

Started initial codinq.

New startup.
New shutdown.
Additional control and status calls.
Removed valid access parsinq performed by dispatcher.

eject
...........••..•.....•..•..•....•.•...•...•.•...................

• The followinq are direct paqe equates on the GS/OS
• direct page for driver usage.

**

drvr_dev_num gequ so a (W) device number
drvr_call_num gequ drvr_dev_num+2 (w) call number
drvr_buf_ptr gequ drvr call num+2 (lw) buffer pointer
drvr_slist_ptr gequ drvr_call_num+2 (lw) buffer pointer
drvr_clist_ptr gequ drvr_call_num+2 (lw) buffer pointer
dev_id_ref gequ drvr_buf_ptr (W) indirect device ID
drvr_req_cnt gequ drvr_buf_ptr+4 (lw) request count
drvr_tran_cnt gequ drvr_feq_cnt+4 (lw) transfer count
drvr_blk_nwn gequ drvr_tran_cnt+4 (lw) block number
drvr_blk_size gequ drvr_blk_num+4 (w) block size
drvr_fst_nwn gequ drvr_blk_size+2 (w) File System Translator Number
drvr_stat_code gequ drvr_fst_num (w) status code for status call
drvr_ctrl_code gequ drvr_fst_num (W) control code for control call
drvr_vol_id gequ drvr_fst_nwn+2 (w) Driver Volume ID Number
drvr_cache gequ drvr_vol_id+2 (W) Cache Priority
drvr_cach_ptr gequ drvr_cache+2 (lw) pointer to cached block
drvr_dib_ptr gequ drvr_cach_ptr+4 (lw) pointer to active DIB

sib_ptr gequ $0074 (lw) pointer to active SIB
sup_parmytr gequ sib_ptr+4 (lwl pointer to supervisor parameters

eject

476 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31189

GSIOS Reference (Volume 2) APDA Draft 1/31189

...........••...••

• The following are equates for driver command types •

.......•.•••.••....•..........•••.•.•.....•.......•.............

drvr_startup gequ $0000 driver startup command
drvr_open gequ $0001 driver open command
drvr read gequ $.0002 driver read command
drvr write gequ $0003 driver write col!l!land
drvr close gequ $0004 driver close col!l!land
drvr status gequ $0005 driver status command
drvr_control gequ $0006 driver control command
drvr flush gequ $0007 driver flush col!l!land
drvr shutdn gequ $0008 driver shutdown col!l!land
max corrmand gequ $0009 commands $0009 - Sffff undefined

drvr dev stat gequ $0000 status code: return device status
drvr_ctrl - stat gequ $0001 status code: return control params
drvr_get_wait gequ $0002 stat us code: get wait/no wait mode
drvr_get format gequ $0003 stat us code: get format opt ions

drvr reset gequ $0000 control code: reset device
drvr_fonnat gequ $0001 control code: format device
drvr_eject gequ $0002 cent rol code: eject media
drvr set ctrl gequ $0003 control code: set control params
drvr_set_wait gequ $0004 control code: set wait/no wait mode

drvr set format - gequ $0005 control code: set format options
drvr_set_ptn gequ $0006 control code: set partition owner

drvr_arm gequ $0007 control code: arm interrupt signal
drvr disarm gequ $0007 control code: arm interrupt signal

eject

A P P E N D I X D Driver Source Code Samples Device driver that calls a supervisor driver 477

GSIOS Reference (Volume 2) APDA Draft

.....................•.........•.................................

• The following are equates for GS/OS error codes •

............•...

no_error
dev_not_found
inval id_dev _num
drvr_bad_req
drvr_bad_code
drvr_bad_parm
drvr_not_open
drvr_prior_open
irq_table_full
drvr_no_resrc
drvr_io_error
drvr no dev
drvr_busy
drvr_wr_prot
drvr_bad_count
drvr bad block
drvr_disk_sw
drvr_off_line
invalid_access
parm_range_err
out_of_mem
dup_volume
not block dev
stack_overflow
data_unavail

gequ
gequ
gequ
<;~equ

t;~equ

gequ
<;~equ

gequ
<;~equ

<;~equ

gequ
gequ
<;~equ

<;~equ

<;~equ

<;~equ

<;~equ

<;~equ

<;~equ

t;~equ

gequ
t;~equ

t;~equ

t;~equ

t;~equ

eject

$0000

$0010

$0011
$0020
$0021
$0022
$0023
$0024
$0025
$0026
$0027
$0028
$0029

$0028
S002C
$0020
S002E
$002F
S004E
$0053
$0054
$0057
$0058
S005F
$0060

478 V 0 L U M E 2 Devices and GSIOS

no error has occurred·
device not found
invalid device number
bad request or command
bad control or status code
bad call parameter
character device not open
character device already open
interrupt table full
resources not available
I/0 error
device not connected
call aborted, driver is busy
device is write protected
invalid byte count
invalid block address
disk has been switched
device off line I no media present
access not allowed
parameter out of rant;~e

out of memory
duplicate volume name
not a block device
too many applications on stack
data unavailable

APPENDIXES

I/31/89

GSIOS Reference (Volume 2) APDA Draft

• The following are equates for the DIB.

linl<_ptr gequ $0000 (lw) pointer to next DIB
entry_ptr gequ $0004 (lw) pointer to driver
dev_char gequ $0008 (W) device characteristics
blk cnt gequ SOOOA (lw) number of blocks
dev name gequ $000E (32) count and ascii name (pstring)
slot num gequ S002E (W) slot number
unit num gequ $0030 (W) unit number
ver num gequ $0032 (W) version number
dev id num gequ $0034 (w) device ID number (ICON refl)
head link gequ $0036 (w) backward device link
forward link gequ $0038 (W) forward device link
link_dib_ptr gequ $003A (lw) dib reserved field tl
dib dev num gequ S003E (W) Device number of this device

• The following equate(s) are for drive specific extensions to the DIB.
• Parameters that are extended to the manditory DIB parameters are not
• accessable by GS/OS or the application but may be used within a driver
• as needed.

driver unit
my_slotl6

gequ
gequ

$0040
$0042

(w) driver's internal DIB data

(w) driver's slot * 16

eject

• System Service Table Equates:

• NOTE: Only those system service calls that might be used
• by a device driver are listed here. For a more complete
• list of system service calls and explanations of each call
• consult the system service call ERS.

dev _dispatcher gequ SOlFCOO dev_dispatch

cache find blk gequ $01FC04 cash_tind

cache add blk gequ $01FC08 cash add
cache del blk gequ $01FC14 cash delete

cache del vo1 gequ $01FC18 cash_del_vol
set_sys_speed gequ $01FCSO set system speed

move info gequ $01FC70 gs_move_block

set_disksw gequ $01FC90 set disksw and call swapout/delvol

sup_drvr_disp gequ $01FCA4 supervisor dispatcher

install_driver gequ $01FCA8 dynamic driver installation

dyn_slot_arbiter gequ $01FCBC dynamic slot arbiter

eject

A P P E N D I X D Driver Source Code Samples Device driver that calls a supervisor driver

1/31189

479

GSIOS Reference (Volume 2) APDA Draft

...•.•

• MOVE_INFO

• NOTE: The following equates are used to set the modes
• passed to the move_in!o call system service call •

..
moveblkcmd qequ $0800 block move option
move_sinc_dinc qequ $0805 souce

move_sinc_ddec qequ $0809 souce
move_sdec_dinc qequ $0806 souce
move_sdec_ddec qequ $080A souce

move_scon_dcon qequ $0800 souce
move_sinc_dcon qequ $0801 souce

move_sdec_dcon qequ $0802 souce
move_scon_dinc qequ $0804 souce
move_scon_ddec qequ $0808 souce

eject

__ 7 _____ 6 _____ 5 _____ 4 _____ 3 _____ 2 _____ 1 _____ 0_

; I

;lslot7 lslot6 lslot5 lslot4 1
; lintextlintextlintextlintextl
; lenablelenablelenablelenablel

lslot2 lslot1 I

0 1 intext 1 intext 1
I enable I enable I

0

;I ______ ---
sltromsel byte ~~~A~

sltromsel bits defined as follows
bit 7• 0 enables internal slot 1 enables slot
bit 6• 0 enables internal slot 6 enables slot

increment,

increment,
decremen~,

decrement,

constant,
increment,

decrement,
constant,
constant,

rom
rom

bit 5• o enables internal slot 5 enables slot rom
bit 4• 0 enables internal slot 4 enables slot
bit 3- must be 0
bit 2• 0 enables internal slot 2 1 enables slot
bit 1• 0 enables internal slot 1 1 enables slot
bit o- must be 0

sltromsel qequ SOOC02D ;slot

__ 7 _____ 6 _____ 5 _____ 4 _____ 3 _____ 2 _____ 1 _____ 0_

; I

;I I stop I I stop I stop I stop I stop 1 stop 1
;I 0 li/o/lcl 0 lauxh-rlsuprhrlhires21hires11txt pql
;I lshadowl lshadowlshadowlshadowlshadowlshadowl
; 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1

shadow byte AAAAA

shadow bits defined as follows
bit 7• must write 0

V 0 L U M E 2 Devices and GS/05

rom

ra11
ra11

rom select

dest. increment

dest. decrement
dest. increment
dest. decrement

dest. constant
dest. constant
dest. constant

dest. increment
dest. decrement

APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

bit 6• 1 to inhibit i/o and language card operation
bit s- must write 0
bit 4• to inhibit shadowing aux hi-res page
bit 3- to inhibit shadowing 32k video buffer
bit 2- to inhibit shadowing hires page 2
bit 1- to inhibit shadowing hires page 1
bit o- to inhibit shadowing text pages

shadow gequ $00C035 ""shadow register

; I

; I

; I

; I

; I

eject

__ 7 _____ 6 _____ 5 _____ 4 _____ 3 _____ 2 _____ 1 _____ 0 ___

slow/!
fast I 0
speed!

I

cyareg bits
bit
bit
bit
bit
bit
bit
bit

bit

lshadowlslot ?!slot 6islot Sislot 41
0 lin allimotor !motor I motor! motor!

I ram ldetectldetect!detectldetectl

cyareg byte AAAAA

defined as follows
7• O•slow system speed -- 1•fast system speed
6= must write 0

5- must write 0
4- shadow in all ram banks
3• slot 7 disk motor on detect
2- slot 6 disk motor on detect
1- slot 5 disk motor on detect

o- slot 4 disk motor on detect

cyareg gequ $00C036 ;speed and motor on detect

__ 7 _____ 6 _____ 5 _____ 4 _____ 3 _____ 2 _____ 1 _____ 0 ___

; I

; I alzp I page21 ramrdjramwrtl rdromjlcbnk2irombnkl intcxl
; jstatusjstatusistatusjstatuslstatuslstatus!statusistatusl

;! _____ -----------------------------------
statereg status byte AAAAA

statereg bits defined as follows
bit 7• alzp status
bit 6• page2 status
bit s- ramrd status
bit 4• ramwrt status
bit 3• rdrom status (read only ram/rom (0/1))

important note:
do two reads to $c083 then change statereg
to change lcram/rom banks (0/1) and still
have the language card write enabled.

bit 2• lcbnk2 status O•LC bank 0 - 1•LC bank 1
bit 1• rombank status

A P P E N D I X D Driver Source Code Samples Device driver that calls a supervisor driver

1/31/89

481

GSIOS Reference (Volume 2) APDA Draft 1/31/89

bit 0• intcxrom status

statereg gequ $00C068 state register

clrrom gequ SOOCFFF switch out Sc8 roms

eject

• EQUATES !or the IWM require index o! (n*16)

phaseo!f gequ $00C080 stepper phase of!
phase on gequ SOOC081 stepper phase on

phOoff gequ $00C080 phase 0 off
phOon gequ SOOC081 phase 0 on
ph1off gequ $00C082 phase 1 off
ph1on gequ $00C08J phase on
ph2off gequ SOOC084 phase 2 oft
ph2on gequ $00C085 phase 2 on
ph3off gequ $00C086 phase 3 off
ph Jon gequ $00C087 phase 3 on

motoroff gequ $00C088 disk motor off
motoron gequ $00C089 disk motor on

drvOen gequ SOOCOBA select drive 0
drv1en gequ SOOC088 select drive 1

q61 gequ so ocoee Q6 low
q6h gequ soocoao Q6 high
q71 gequ SOOC08E Q7 low
q7h gequ SOOC08F Q7 high

emulstack gequ $010100 emulation mode stack pointer

eject

• The following are equates for the SIB.

sup_entry_ptr gequ $0000 (lw) pointer to driver
sup_id gequ $0004 (W) supervisory driver ID number
sup_version gequ $0006 (W) supervisory driver version
sib_res_1 gequ $0008 (w) sib reserved n
sib res 2 gequ SOOOA (W) sib reserved 12
sib_res_3 gequ soooc (W) sib reserved 13
sib res 4 gequ SOOOE (W) sib reserved 14

eject

V 0 L U ME 2 Devices and GSIOS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

• The following equates are used to implement our hypothetical
• device driver. They in no way reflect softswitches associated
• with any real hardware device.

• I

*17161514131211101
* I I I I I I I I I

Reserved

READY

-------------- 1 - Device is ready

ready gequ soocoeo

• I

*17161514131211101

* I I I I I I I I

CHAR

Character device data register

char gequ $00C081

• I

*17161514131211101
* I I I I I I I I

0

CHAR_STATUS

- Interrupt in process
_____ o

0

--------- 1 - Online
0

0
____________ a

char status gequ $00C082

* I
• I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I

* I I I I I I I

CHAR_CONTROL

Character device control register

char_control gequ SOOC083

• I
*17161514131211101
• 1_1_1_1_1_1_1_1_1

I 1_1_1_1_1_1_1_ Reserved

A P P E N D I X D Driver Source Code Samples

BLOCK_RDY

Device driver that calls a supervisor driver

1131189

483

GSIOS Reference (Volume 2) APDA Draft

1 • Device is ready

•
block_rdy gequ $00C084

* I
• I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I BLOCK_DATA
• 1_1_1_1_1_1_1_1_1

1_1_1_1_1_1_1_1_ Block device data register

block_data gequ $00C085

• I

• I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I BLOCK_STATUS
* I I I I I I

1 • Disk switched
1 a Interrupt in process

• Write protected
0

1 • Online
0

0
_____________ o

block_status SOOC086

* I
*17161514131211101
* I I I I I I I I I

BLOCK_CONTROL

Block device control register

block_control gequ SOOC087

eject

• The following table is the header required for all loaded
• drivers which consists of the following:

Word Offset from start to lst DIB
Word Number of DIBs
Word Offset from start to lst configuration
Word Offset from start to 2nd configuration
etc.

driver_ data
here

list
list

data
entry
de
de

i2'd1b_l-here•
i2'1'

offset to 1st DIB
number of devices

de i2 • confl-here• offset to 1st configuration list

V 0 l U M E 2 Devices and GS/OS APPENDIXES

1131189

GSIOS Reference (Volume 2) APDA Draft

• The following are the driver configuration parameter lists.

con!l
defaultl

de
de

i2'0'
i2'0'

0 bytes in parameter list
0 bytes in default list

eject

• The following are tables of format options for each device.
• The format option tables have the following structure:

Number of entries in list
Display count (number of head links)
Recommended default option

Word
Word
Word
Word
Entries

Option that current online media is formatted with
16 bytes per entry in the format list

• The twenty byte structure for each entry in the format list
• is as follows:

Word
Word
word
Long
Word
Word
Long

Media variables reference number
Link to reference number n.
Flags I Format environment
Number of blocks supported by device
Block size
Interleave factor
Number of bytes defined by flag

• Bit definition within the flags word is as follows:

• I

* I F I E I D I C I B I A I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
* I I I I I I I I I I I I I I I I I

• Format Bit Definition: 00 Universal format

01 Apple Format
02 NonApple Format
11 Not Valid

• Flag Bit Definition:
01
02

11

00 Size is in bytes
Size is in Kb

Size is in Mb
Size is in Gb

*********************************································
format_tbl

Format
Flags
Reserved

entry
de i2'3'

i2'2'
i2'1'

number of entries
de
de

A P P EN D I X D Driver Source Code Samples

number of displayed entries
recommended option is 1

Device driver that calls a supervisor driver

1/31189

485

GSIOS Reference (Volume 2) APDA Draft

de i2'1' current media formatted wloption 1

formatl_entryl anop
de i2'1' RefNum

de i2'2' LinkRef

de i2'4' univeral format I size in kb

de i4'1600' block count

de i2'512' block size

de 12'4' interleave factor

de i2'800' media size is 800kb

formatl_entry2 anop
de i2'2' reference number 1

de i2'0' LinkRef

de i2'4' univeral format I size

de i4'1600' block count

de i2'512' block size
de i2'2' interleave factor

de i2'800' media size is 800kb

formatl_entry3 anop
de i2'3' reference number 1

de i2'0' LinkRef

de i2'4' univeral format I size

de i4 '800' block count
de i2'524' block size

de i2. 4. interleave factor

de i2'400' media size is 400kb

eject

• I

Link Pointer
Entry Pointer
Device Characteristics

* I F I E I D I C I B I A I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 i 0 I
* 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1

IIIIIIIIIIIIIIIIRESERVED
I REMOVABLE

FORMAT
RESERVED
READ

--------------------- WRIT£
-------------------------- BLOCK DEVICE

SPEED GROUP
RESERVED

-- BUSY
--------~----------------------------------- LINKED

--GENERATED

-- RAM/ROM DEV

Block Count
Device Name
Slot Number

V 0 L U M E 2 Devices and GS/OS

in kb

in kb

APPENDIXES

1131189

GSIOS Reference (Volume 2)

Unit Number
Device ID Number
Head Device Link
Forward Device Link
Reserved Word
Reserved Word
DIB device number

APDA Draft

********************************•********************************

dib_1

dib 2

entry
de
de
de
de
de
de
de
de
de
de
de
de
de
de
de
de
de
de

eject
entry
de
de
de
de
de
de
de
de
de
de
de
de
de
de
de
de
de
de

eject

14'dib 2'
i4'dispatch'
h'EC 00'
14'280'
11'11'
c'SUPERVISORY'
20h' 20.
h'OF 00'
h'03 oo•
H'1e 00'
h'FF 01'
12'0'
12'0'
12'0'
12'0'
12'0'
i2'0'
12'0'

14'0'
i4'dispatch'
h'EC 00'
14'280'
11'11'
c'SUPERVISORY'
20h' 20'
h'OF 00'
h' 04 00.
H'1e 00'
h'FF 01'
12'0'
12'0'
12'0'
12'0'
i2'0'
12'0'
12'0'

link pointer to second DIB
entry pointer
characteristics
block count
device name (lenqth ' 32 bytes ascii)

slot I (valid only after startup)
unit I (valid only after startup)
version I 0.01e
device ID t (valid only after startup)
head device link
forward device link
Reserved
Reserved
dib device number
drivers internal device number
slot • 16

link pointer to next DIB if any
entry pointer
characteristics
block count
device name (lenc;th ' 32 bytes ascii)

slot I (valid only after startup)
unit I (valid only after startup)
version t 0.01e
device ID t (valid only after startup)
head device link
forward device link
Reserved
Reserved
dib device number
drivers internal device number
slot • 16

A P P E N D I X D Driver Source Code Samples Device driver that calls a supervisor driver

1/31189

487

GSIOS Reference (Volume 2) APDA Draft

• The following table is used to dispatch to GS/OS driver

• functions.

dispatch_table entry
de i2' startup-1'
de i2'open-1'
de i2'read-1'

de 12 •write-1'

de i2'close-1'

de i2 'status-1'

de i2' control-1'
de i2' flush-1'
de 12' shutdn-1'

status table entry
de i2'dev_stat-1'
de i2'qet_ctrl-1'
de i2'get_wait-1'
de i2'get_ format-1'
de i2'get_partn_map-1'

control_table entry
de i2 • dev _reset-1'
de i2 • format-1'
de i2'media_eject-l'
de i2'set ctrl-1' -
de 12 • set wait-1'
de i2'set format-1' -
de i2 • set_partn-1'
de i2'arm_signal-1'
de i2'disarm_signal-1'
de i2'set_partn_map-1'

status_flag entry
de 12'0' flag for unit f

eject

• The following table contains the open status for each device
• supported by this driver.

open_table entry
de i2'0' open state for DIB 1 device

eject

• The following table contains the device status for each
• device supported by this driver.

488 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1131189

GSIOS Reference (Volume 2) APDA Draft

• Encoding of status !or a character device is as follows:

* I I I I I I I I I
* I F I E I D I C I B I A I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
• 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1

I I I I I I I I I I I I I I I I OPEN

I I I I I I INTERRUPT

I RESERVED

--- ---------
• Encoding of status !or a block device is as follows:

• I

* I F I E I D I C I B I A I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
* I 1_1_1_ I 1_1_1_1 __ 1_1_1_1_1_1

BUSY

0 RESERVED

DISK SW

INTERRUPT

-----WRITE PROT

------ 0 RESERVED

-------- ONLINE
__________ ---------- 0 RESERVED

dstat_t.bl entry
de
de

eject

i2'0'
i4'1600'

device general status word
device block count

• The following table is used to return the configuration list for
• each device supported by this driver.

clist_tbl entry
de i2'con!1' ; pointer t.o configuration list. fl

• The following table is used t.o return the wait mode for
• each device supported by this driver.

wait_mode_tbl entry
de i2'0' : unit 1 wait mode

• The following table is used to set the current format
• option for each device supported by this driver.

A P P EN D I X 0 Driver Source Code Samples Device driver that calls a supervisor driver

1/31/89

GSIOS Reference (Volume 2)

format_mode entry
de

APDA Draft

i2'0' ; unit 1 format mode

•...........•.•..••.••....•..•••.•.•.•...........•...•....•.•.•••

• The followinq table is used by the startup call when settinq
• parameters in the DIB. Slot number, Unit number and Device
• ID number are valid only after startup.

startup_slot
startup_unit
sup_num

de
de
de

i2'7'
i2'1'
i2'0'

initial slot to search for
initial unit to search for
supervisory driver number

* The followinq equates are general workspace used by the driver •
•

retry_count
startup_count

de
de

end

eject

i2'0'
12'0'

; retry count

.....•.•.•.•.•••.••.••....•.•...•.•........•.•....•...•.•........

* DRIVER MAIN ENTRY POINT: DISPATCH

• This is the main entry point for the device driver. The
• routine validates the call number prior to dispatching to
• the requested function.

• Call Number: $0000 Function: Startup
$0001 Open
$0002 Read
$0003 Write
$0004 Close
$0005 Status
$0006 Control
$0007 Flush
$0008 Shutdown
$0009-SFFFF Reserved

• ENTRY: Call via 'JSL'

•

490

[<drvr_dib_ptr] • Points to DIB for device being accessed
<drvr_dev_num • Device number of device being accessed
<drvr_call_num • Call number
A Req • Call Number
X Req - Undefined
Y Req • Undefined
Dir Reg • GS/OS Direct Page
B Raq • Undefined

V 0 L U M R 2 Devices and GS/OS

1131/89

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

* EXIT:

P Reg • N V M X D I Z C E
X X 0 0 0 0 X X 0

Direct page • unchanged with the exception of <drvr_tran_cnt
A Reg - Error code
X Reg - Undefined
Y Reg - Undefined
Dir Reg • GS/OS Direct Page
B Reg • Same.as entry
p Reg - N v M X D I Z c E

X X 0 0 0 0 X 0 0 No error occurred
X X 0 0 0 0 X 0 Error occurred

dispatch

save_panns

func ret

restore _parms

start
using
long a
longi

phb
phi<
plb
c:mp

bge

driver data
on
on

lmax_command
illegal_req

tay ; save command
ldx 150000

anop
lda
ph a

<drvr_dev_num,x

lda <drvr_blk_num,x
ph a

inx
lnx
cpx ISOOOC
bne save_parms

tya
pea

asl
tax

; restore command I

func_ret-1
a

lda ldispatch_table,x

save environment

is it a legal command?
no

save GS/OS call parameters

up to but not including DRVR TRAN CNT

return address from function
make index to dispatch table

pha push function address for dispatch
rts rts dispatches to function
anop
tay

ldx
anop
pla

tSOOOA

sta <drvr_blk_num,x
pla
sta <drvr_dev_num,x
dex

save error code

number of words to restore

restore GS/OS call parameters

A P P E N D I X D Driver Source Code Samples Device driver that calls a supervisor driver

1/31189

491

GSIOS Reference (Volume 2) APDA Draft

restore_parms
dex
bpl

plb
bcs gen_exit ., force error code 0 if !lag cleared
ldy tno error

gen_exit anop
tya
rtl

• Received an illegal request. Return with an error.

i 11 ega 1_ req anop
plb
lda
sec
rtl

end

eject

tdrvr_bad_req

restore error code

restore environement
set error

* DRIVER CALL: STARTUP

• This routine must prepare the driver to accept all other driver
• calls.

* ENTRY: Call via 'JSR'
[<drvr_dib_ptr] • Points to the DIB for the device being accessed
<drvr_dev_num = Device number of device being accessed
<drvr_call_num • Call number

* EXIT: via an 'RTS'

<drvr_tran_cnt - $00000000
A Reg • Call Number
X Reg = Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Same as program bank
P Reg • N V M X 0 I Z C E

X X 0 0 0 0 X X 0

A Reg • Error code
X Reg • Undefined
Y Reg - Undefined
Dir Reg = GS/OS Direct Page
B Reg • Same as entry
P Reg • N V M X 0 I Z C E

X X 0 0 0 0 X 0 0
X X 0 0 0 0 X 1 0

492 V 0 L U M E 2 Devices and GSIOS

No error occurred
Error occurred

APPENDIXES

1131/89

GSIOS Reference (Volume 2) APDA Draft

startup start
using driver data
longa on
longi on

• This driver requires the use of a supervisory driver with a
• supervisory ID of SASC3. The startup call attempts to aquire
• the supervisory driver number .for the supervisory driver with
• the supervisory ID SA5C3. If a supervisory driver number can
• be aquired then the supervisory number is saved for subsequent
• dispatches to the supervisory driver. If no supervisory driver
• number is returned then the driver cannot startup and will
• return an error to the device dispatcher. This will force the
• driver to be purged from the device list and memory.

found_sup

lda
ldx
ldy
jsl
bee

rts
anop

1$0000
1$0000
I$ASC3
sup drvr_disp
found_sup

Supervisory dispatcher
Supervisory call number
Supervisory ID number
get supervisory driver number
if found supervisory driver

txa save our supervisory driver number
sta >sup_num

• Now any device initialization that must occur should be executed
• through the supervisory driver dispatcher.

inc
lda
clc
rts

end

eject

lstartup_count
lno_error

keep track of how many drvrs started

* DRIVER CALL: OPEN

* ENTRY: via a 'JSR'

* EXIT: via an 'RTS'

<drvr_dev_num • Device Number of current device being accessed
<drvr_tran_cnt • $00000000
A Reg • Call Nl.lllber
X Reg • Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Undefined
P Reg • N V M X D I Z C E

x x a o a a x x a

A P P EN D I X 0 Driver Source Code Samples Device driver that calls a supervisor driver

1/31/89

493

GSIOS Reference (Volume 2)

A Req • Error code
X Req • Undefi,ed
Y Req • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Same as entry
P Reg • N V M X D I Z C E

X X 0 0 0 0 X 0 0
X X 0 0 0 0 X 1 0

APDA Draft

No error occurred
Error occurred

open start
using driver_data
long a on
longi on

• Pass on the standard GS/OS call parameters to the supervisory driver.

tdc
sta
stz
lda
ldx
jsl
rts

<sup_parm_ptr
<sup_parm_ptr+2
lsup_num

set pointer to supervisor parameters

f$0002
sup_drvr_disp

get supervisor driver number
supervisor specific call
call supervisory driver

end

eject

* DRIVER CALL: READ

• This call executes a read via a supervisory driver. Caching
• support is provided within the supervisory driver.

* ENTRY: via a 'JSR'
<drvr_dev_num - Device Number of current device being accessed
<drvr_buf_ptr - Pointer to I/O buffer

* EXIT: via an 'RTS'

<drvr blk num • Initial block number
<drvr_req_cnt • Number of bytes to be transferred
<drvr_blk_size • Size of block to be accessed
<drvr_tran_cnt • $00000000
A Reg • Call Number
X Reg • Undefined
y Reg - Undefined
Dir Reg • GS/OS Direct Page
B Reg - Undefined
p Reg • NV M X D I z c E

xxOOOO X X 0

<drvr_tran_cnt - Number of bytes transferred
A Req • Error code

V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31189

GSIOS Reference (Volume 2) APDA Draft

X Reg • Undefined
Y Reg - Undefined
Dir Reg • GS/OS Direct Page
B Reg • Same as entry
p Reg • N V M X D I z c E

X X 0 0 0 0 X 0 0 if no error
X X 0 0 0 0 X 0 if error

read start
using driver data
long a on
longi on

• Pass on the standard GS/OS call parameters to the supervisory driver.

tdc
sta
stz
lda
ldx
jsl
rts

end

<sup_parm_ptr
<sup_parm_ptr+2
lsup_num
f$0002
sup_drvr_disp

set pointer to supervisor parameters

get supervisor driver number
supervisor specific call
call supervisory driver

eject

* DRIVER CALL: WRITE

* This call executes a write via the supervisory driver. Caching
* support is provided by the supervisory driver.

* ENTRY: via a 'JSR'

* EXIT: via an 'RTS'

<drvr dev num - Device Number of current device being accessed
<drvr_buf_ptr - Pointer to I/0 buffer
<drvr_blk_num • Initial block number
<drvr_req_cnt • Number of bytes to be transferred
<drvr_blk_size • Size of block to be accessed
<drvr_tran_cnt - $00000000
A Reg • Call Number
X Reg - Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Undefined
P Reg • N V M X D I Z C E

X X 0 0 0 0 X X 0

<drvr tran cnt • Number of bytes transferred
A Reg • Error code
X Reg • Undefined

A P P E N D I X D Driver Source Code Samples Device driver that calls a supervisor driver

1131189

495

GSIOS Reference (Volume 2) APDA Draft

'l Req • Undefined
Dir Req • G5/05 Direct Page
8 Req • Same as entry
p Req • N V M X D I Z C E

X X 0 0 X X X 0 0 No error occurred
X X 0 0 X X X l 0 Error occurred

write start
usinq driver_data
lonqa on
lonqi on

• Pass on the standard G5/05 call parameters to the supervisory driver.

tdc
sta
stz
lda
ldx
jsl
rts

end

eject

<sup_parm_ptr
<sup_parm_ptr+2
lsup_num
f$0002
sup_drvr_disp

set pointer to supervisor parameters

qet supervisor driver number
supervisor specific call
call supervisory driver

* DRIVER CALL:

* ENTRY: via a 'J5R'

* EXIT: via an 'RT5'

CLOSE

<drvr dev_num • Device Number of current device beinq accessed
<drvr_tran_cnt • $00000000
A Req • Call Number
X Req • Undefined
'l Req • Undefined
Dir Req • G5/05 Direct Paqe
8 Req Undefined
P Req • N V M X D I Z C E

X X 0 0 0·0 X X 0

A Req • Error code
X Req • Undefined
'l Req • Undefined
Dir Req • G5/05 Direct
8 Reg • same as entry
P Req • N V M X D I Z C

X X 0 0 0 0 X 0
X X 0 0 0 0 X 1

Page

E
0
0

No error occurred
Error occurred

close start

496 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

usinQ
lonQa
lonQi

driver data
on
on

• Pass on the standard GS/OS call parameters to the supervisory driver.

tdc
sta
stz
lda
ldx
jsl
rts

end

<sup_parm_ptr
<sup_parm_ptr+2
lsup_num
t$0002
sup drvr_disp

set pointer to supervisor parameters

Qet supervisor driver number
supervisor specific call
call supervisory driver

eject

* DRIVER CALL: STATUS

• This routine supports all the standard device status calls.
• Any status call which is able to detect an OrrLINE or DISK
• SWITCHED condition should call the system service routine
• SET_DISKSW. OrrLINE and DISKSW are conditions and not errors
• when detected by a status call and should only be returned as
• conditions in the status list.

• Status Code:

* ENTRY: via a 'JSR'

$0000 Return Device Status
$0001 Return Control Parameters
$0002 Return Wait/No Wait Mode
$0003 Return rormat Opt ions

<drvr_dev_num • Device Number of current device beinQ accessed
<drvr_clist_ptr • Pointer to control list
<drvr_ctrl_code • Control code
<drvr_req_cnt • Number of bytes to be transferred
<drvr tran cnt • $00000000
A Reg • Call Number
X Reg • Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Undefined
P Reg • N V H X D Z C E
X X 0 0 0 0 X X 0

A P P EN D 1 X D Driver Source Code Samples Device driver that calls a supervisor driver

1/31189

497

GSIOS Reference (Volume 2) APDA Draft

* EXIT: via an 'RTS'
<drvr_tran_cnt • Number of bytes transferred
A Req • Error code
X Req • Undefined
Y Req • Undefined
Dir Reg • GS/OS Direct Page
B Reg • same as entry
P Reg • N V M X D I Z C E

X X 0 0 0 0 X 0 0
X X 0 0 0 0 X 0

No error occurred
Error occurred

status start

using
longa
longi

driver_data
on
on

• Need to verify that the status code specifies a
• legal status request.

lda <drvr_stat_code is this a legal status request?
anp f$0004
blt legal_status yes
lda tdrvr_bad_code else return 'BAD CODE' error
rts

• It's a legal status. Dispatch to the appropriate status routine.

leqal_status anop
asl a
tax
lda lstatus_table,x
pha
rts ; dispatch is via an 'RTS'

eject

498 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31189

GSIOS Reference (Volume 2) APDA Draft

* The DEVICE STATUS call returns a status list that indicates
* specific status information regarding a character of block
• device and the total number of blocks supported by a block device.

* Status List Pointer: Word General status word
Longword Total number of blocks

* Character devices should indicate $00000000 as the block count.
* Status conditions are bit encoded in the status word.
* Encoding of status for a character device is as follows:

* I
* I F I E I D I C I B I A I 9 I 8 I 1 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
* 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1

I I I I I I I I I I I I I I I I OPEN
INTERRUPT I I I I I I I I I I

I ---- RESERVED

-------- BUSY
________ --------- 0 RESERVED

------------------------- LINKED DEV

----------------------------- 0 RESERVED

* Encoding of status for a block device is as follows:

• I
• I F I E I D I C I B I A I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I
* I I I I I I I I I I I I I I I I

DISK SW
INTERRUPT

----- WRITE PROT
------ 0 RESERVED

-------- ONLINE
________ --------- 0 RESERVED

------------------------- LINKED DEV
---------------------------- UNVALIDATED

* Valid request counts versus returned status list for this status
* call are as follows:

* Request Count: $0002
* Request Count: $0006

status List: General status word
Status List: General status word and block count

A P P E N D I X D Driver Source Code Samples Device driver that calls a supervisor driver

1/31/89

499

GSIOS Reference (Volume 2) APDA Draft

dev_stat entry
long a
longi

lda
ldx
bne
ldx
cpx
blt
cpx
blt

bad_dev_stat anop
sec
rts

on
on

tdrvr_bad_parm
<drvr_req_cnt+2
bad_dev _stat
<drvr_req_cnt
t$0002
bad_dev _stat
t$0007
ok dev stat

assume invalid request count
and validate request count

• Request count is valid. Oeterime device status and if appropriate, the
• total number of blocks for the device and return them in the device
• status list. You insert the code required for this operation.

ok_dev_stat anop
ldx tdstat_tbl
ldy t$0000
sep t$20
long a off

copy_dstat anop
lda IO,x
sta [<drvr_slist ptr),y
inx
iny
cpy <drvr_req_cnt
bne copy_dstat
rep t$20
long a on

500 V 0 L U M E 2 Devices and GS/OS

get pointer to device status list
status list pointer
8 bit •m•

copy device status list to slist_ptr

copy • request count size

16 bit 'm'

APPENDIXES

1131/89

GSIOS Reference (Volume 2) APDA Draft

• After returning the device status list check for an OFFLINE

• or DISKSW state. If either of these conditions exist then
• the driver must call SET DISKSW via the system service call
• table ..

ldy
lda

and

beq
lda

eor

and
beq

jsl

not blk stat anop
brl

eject

ldev char
[<drvr_dib_ptr],y

1$0080

not blk stat
[<drvr_slist_ptr]

1$0010
1$0011
not blk stat -
set disksw

set_xfer_cnt

is this a block device?

no

convert online to offline
offline or disk switched?
no

else call system service

update xfer count & exit

• This call returns a byte count as the first word in the status
• list followed by the data from the control parameter list.

• The request count specifies how much data is to be returned

• from the list. If the byte count is smaller than the request
• count then only the number of bytes specified by the byte

• count will be returned and the transfer count will indicate

• this.

• Status List: Word

Data

Number of bytes in control list (including byte count).

Data !rom the control list (device specific).

• This call requires a minimum request count of SDODOODD2 and

• a maximum request count of SOOOOFFFF.

get_ctrl

bad_get_ctrl

entry
long a

long!

lda

ldx

bne

on

on

ldrvr_bad pann
<drvr_req_cnt+2

bad_get_ctrl
ldx <drvr_req_cnt

cpx 1$0002

bqe ok_get_ctrl

anop

sec

rts

A P P E N D I X D Driver Source Code Samples

; assume invalid request count

and validate request count

Device driver that calls a supervisor driver

1/31189

~I

GSIOS Reference (Volume 2) APDA Draft 1/31/89

• Request count is valid. Return control list.

ok_get_ctrl anop
ldy fdriver unit internal device t

lda [<drvr_dib_ptr),y
asl a
tax
lda lcllst_tbl,x get pointer to control list
tax
lda IO,x get length of control list
beq no_clist if list has no content
cmp <drvr_req_cnt is list shorter than request?
bge req_cnt_ok no
sta <drvr_req_cnt else modify request count

req_cnt_ok anop
ldy t$0000 status list index
sep 1$20 8 bit •m•
long a off

copy_cllst anop
lda IO,x copy control list to slist_ptr
sta [<drvr_slist_ptrJ,y
inx
iny
cpy <drvr_req_cnt copy - request count size
bne copy_clist
rep 1$20 16 bit 'm'
long a on
brl set_xfer_cnt

no_clist anop
sta [<drvr_slist_ptr]
lda 1$0002

brl set_xfer_cnt

ejec:t

502 V 0 L U M E 2 Devices and GS/OS APPENDIXES

GSIOS Reference (Volume 2) APDA Draft

• This routine returns the Wait/No Wait mode that the driver
• is currently operating in. This is returned in a word
• parameter which indicates a request count of $0002.

get_wait entry
long a
longi

lda
ldx
bne
ldx
cpx
beq

bad_get_wait anop
sec
rts

Oh

on

tdrvr_bad_parm
<drvr _req_cnt+2
bad_get_ wait
<drvr_req_cnt
t$0002
ok _get_ wait

assume invalid request count
and validate request count

• Request count is valid. Return the wait mode for this device.

ok get_wait anop
ldy tunit num
lda [<drvr_dib_ptrj, y
tax
dex

lda lwait_mode_tbl,x
sta [<drvr_slist_ptrj

brl set xfer cnt

eject

A P P E N D I X D Driver Source Code Samples Device driver that calls a supervisor driver

1131189

503

GSIOS Reference (Volume 2) APDA Draft

.......•...............•........•............•....••.•••...•.....

• This routine returns the format options for the device.
• Consult the driver specification for the format option list.
• This call requires a minimum request count of $00000002. The
• maximum request count may exceed the size of the format list
• in which case the request count returned will indicate the
* size of the format list.

get_format entry

long a on
longi on

lda
ldx

tdrvr_bad_parm
<drvr_req_cnt+2

assume invalid request count
and validate request count

bne bad_qet_format
ldx <drvr_req_cnt
cpx 1$0002
bge ok_qet_format

bad_get_format anop
sec
rts

• Request count is valid. Return the format options for this device.

ok_get_format anop
ldx tformat_tbl
lda IO,x
asl a
asl a
asl a
asl a
clc
adc 1$0008
cmp <drvr_req_cnt
bge req_count_ok
sta <drvr_req_cnt

req_count_ok anop
ldy f$0000
sep 1$20
long a off

copy_format anop
lda IO,x
sta [<drvr_slist_ptr),y
inx
iny
cpy <drvr _req_ cnt
bne copy_format
rep 1$20
long a on
brl set_xfer_cnt

504 V 0 L U M E 2 Devices and GS/OS

get pointer to format option list
get I entries in option list
list length • (n * 16) + 8

now have option L:st length
is request longer then list length?

status list index
8 bit •m•

copy format option list to slist_ptr

copy • request count size

16 bit •m•

APPENDIXES

1/31189

GSIOS Reference (Volume 2) APDA Draft

• GET_PARTN_MAP:

• This routine normally would return the partition map for the
• device. Since our sample driver does not support partitions,
• the call returns with no error and a transfer count of NIL.

································~·······························
get_partn_map entry

long a
longi

lda
clc
rts

eject

on
on

fno error

A P P E N D I X D Driver Source Code Samples Device driver that calls a supervisor driver

1/31189

505

GSIOS Reference (Volume 2) APDA Draft

.....•........•...........••.•.•.•••••.•.•..•...••...•.•..•.....•

* This is a common exit routine !or successful status calls.
* The transfer count is set to the same value as the request
* count prior to returning with no error.

set_xfer_cnt entry

lda <drvr_req_cnt
sta <drvr_tran_cnt
lda <drvr_req_cnt+2
sta <drvr_tran_cnt+2
lda tno_error
clc
rts

end

eject

set transfer count

* DRIVER CALL: CONTROL

• This routine supports all the standard device control calls.

• Control Code: $0000 Reset Device
$0001 Format Device
$0002 Eject Media
$0003 Set Control Parameters
$0004 Set Wait/No Wait Mode
$0005 Set Format Opt ions
$0006 Assign Partition owner
$0007 Arm Signal
$0008 Disarm Signal

* ENTRY: via a 'JSR'
<drvr_dev_num • Device Number of current device being accessed
<drvr_clist_ptr • Pointer to control list

• EXIT: via an 'RTS'

<drvr_ctrl_code • Control code
<drvr_req_cnt • Number of bytes to be transferred
<drvr_tran_cnt • $00000000
A Reg • Call Number
X Reg • Undefined
y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Undefined
p Reg •NVMXD z c E

X X 0 0 0 0 X X 0

<drvr_tran_cnt • Number of bytes transferred
A Reg • Error code
X Reg • Undefined

506 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

'f Req • Undefined
Dir Req • GS/OS Direct Paqe
B Req • Same as entry
p Req • N V M X D I z c E

X X 0 0 0 0 X 0 0 No error occurred
X X 0 0 0 0 X 0 Error occurred

•.......•.......•....••.•.....•••....•••.•...•.•..••••.........•.
control start

usinq
long a
lonqi

driver data
on
on

* Need to verify that the control code specifies a
• leqal control request.

lda
cmp
blt
lda
rts

<drvr _ ctrl_ code
t$0009

leqal_control
tdrvr bad code

is this a legal control request1

yes
else return 'BAD CODE' error

* It's a legal control. Dispatch to the appropriate control routine.

legal control anop
asl
tax
lda
ph a

a

lcontrol_table, x

rts ; dispatch is via an 'RTS'

eject

* This routine will reset the device to its default conditions
• as specified by the default control parameter list. The
• control list contents will be updated to reflect the parameter
* changes that have taken effect.

* CONTROL LIST: None

dev_reset entry
tdc
sta <sup_parm_ptr
stz <sup_yarmytr+2
lda lsup_num
ldx t$0002

jsl sup_drvr_disp
rts

eject

APPENDIX D Driver Source Code Samples

set pointer to supervisor parameters

get supervisor driver number
supervisor specific call
call supervisory driver

Device driver that calls a supervisor driver

1131/89

GSIOS Reference (Volume 2) APDA Draft

• This routine will physically format the media. No additional
• information associated with any particular file system will
• be written to the media. Check task count for disk switch
• prior to execution of read.

* CONTROL LIST: None

format entry
tdc
sta
stz
lda
ldx
jsl
rts

<sup_parm_ptr
<sup_parmytr+2
lsup_num

set pointer to supervisor parameters

f$0002

sup drvr_disp

get supervisor driver number
supervisor specific call
call supervisory driver

eject

• This routine will physically eject media from the device.
• Character devices will not perform any action as a result of
• this call.

* CONTROL LIST: None

media_eject entry
tdc
sta
stz
lda
ldx
jsl
rts

<sup_parm_ptr
<sup_parm_ytr+2
lsup_num

set pointer to supervisor parameters

f$0002

sup drvr_disp

get supervisor driver number
supervisor specific call
call supervisory driver

eject

• This routine will set the configuration parameter list as specified
* by the contents of the configuration list. Note that the first
* word of the configuration list must have the same value as the
* current configuration parameter list.

* CONTROL LIST:

set ctrl

Word
Data

entry
long a

Size of configuration parameter list
Configuration parameter list

on
longi on

508 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31/89

GSIOS Reference (Volume 2) APDA Draft

lda fdrvr_bad_parm
ldx <drvr _req_ cnt+2
bne bad set ctrl - -
ldx <drvr _req_cnt
cpx • $0002
bqe ok -set - ctrl

bad set -ctrl anop

sec
rts

• Request count is valid. Set configuration list.

ok set ctr 1

req_cnt_ok

copy_clist

anop
ldy
lda
asl
tax
lda
tax
lda
cmp
beq
lda
sec
rts
anop
ldy
sep
long a
anop
lda
sta
inx
iny
tya
cmp
bne
rep
long a
tdc
sta
stz
lda
ldX
jsl
rts
brl

eject

fdriver_unit
[<drvr_dib_ptr],y
a

lclist_tbl,x

!O,x
[<drvr_clist_ptr]
req_cnt_ok
fdrvr_bad_parm

1$0000
1$20

off

[<drvr_clist_ptr],y
!O,x

[<drvr_clist_ptr]
copy_clist
f$20

on

<sup_parm_ptr
<sup_parm_ptr+2

lsup_num
f$0002
sup drvr_disp

set_xfer_cnt

assume invalid request count

and validate request count

internal device I

get pointer to configuration list

are lengths the same?

yes

else return an error

status list index
8 bit 'm'

set new configuration list

16 bit 'm'

set pointer to supervisor parameters

get supervisor driver number
supervisor specific call

call supervisory driver

• This routine will set the WAIT/NO WAIT mode as specified

A P P EN D I X D Driver Source Code Samples Device driver that calls a supervisor driver

1/31189

GSIOS Reference (Volume 2) APDA Draft

• by the contents of the control list.

* CONTROL LIST: Word Wait I No Wait Mode

set_wait entry
lonqa on
long! on

lda
ldx

ldrvr _bad _parm
<drvr _ req__ cnt +2

assume invalid request count
and validate request count

bne bad_set_wait
ldx <drvr_req_cnt
cpx 1$0002
beq ok_set_wait

bad_set_wait anop
sec
rts

• Request count is valid. Set the wait mode for this device.

ok set wait anop
ldy tdriver_unit
lda [<drvr_dib_ptr],y
tax
lda [<drvr_slist_ptr]
sta lwait_mode_tbl,x
brl set_xfer_cnt

eject

* This routine will set the format option as specified
• by the contents of the control list.

* CONTROL LIST: Word Format Option Referenc Number

set_format entry

long a on
long! on

lda
ldx

ldrvr_bad_parm
<drvr_req_cnt+2

assume invalid request count
and validate request count

bne bad_fmt_opt
ldx <drvr_req__cnt
cpx 1$0002
beq ok_set_format

bad_fmt_opt anop
sec
rts

510 V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31189

GSIOS Reference (Volume 2) APDA Draft

* Request count is valid. Set the format option for this device.

ok_set_format anop
ldy
lda
tax
lda
sta
brl

eject

fdriver_unit
[<drvr_dib_ptrj, y

[<drvr _ s 1 i st _pt r I
lformat_mode,x
set xfer cnt

* This routine will set the partition owner as specified
* by the contents of the control list. Note that this call
* is only supported by partitioned devices such as CD ROM.
* Non partitioned devices should perform no action and return
* with no error.

• CONTROL LIST: Word
Name

String length
Name of partition owner

set_partn entry
tdc
sta
stz
lda
ldx
jsl
rts

eject

<sup_parm_ptr

<sup_parm_ptr+2
!sup_num
f$0002
sup drvr_disp

set pointer to supervisor parameters

get supervisor driver number
supervisor specific call
call supervisory driver

• This routine is envoked by an application to install a signal
* into the event mechanism.

• CONTROL LIST: Word
Word
Long

Signal Code
Signal Priority
Signal Handler Address

arm_signal entry
lda

clc
rts

fno_error

A P P E N D I X D Driver Source Code Samples Device driver that calls a supervisor driver

1131189

511

GSIOS Reference (Volume 2) APDA Draft

• This routine is remove a signal from the event mechanism that
• was previously installed with the arm_signal call.

• CONTROL LIST: Word Signal Code

.......................•...
disarm_signal entry

lda
clc
rts

tno_error

* SET_PARTN_MAP:

• This routine normally would set the partition map for the
• device. Since our sample driver does not support partitions,
• the call returns with no error and a transfer count of NIL.

set_partn_map

* DRIVER CALL:

entry
long a
long!

lda
clc
rts

end

eject

F'LUSH

on
on

fno error

• This call writes any data in the devices internal buffer to
* the device. It should be noted that this is a WAIT MODE call
• which is only supported by devices which maintain their own
• internal I/0 buffer. Devices that cannot write in NO WAIT mode
• do not support this call and will return with no error.

* ENTRY: via a 'JSR'
<drvr_dev_num - Device Number of current device being accessed
<drvr_tran_cnt • SOOOOOOOO

512

A Reg • Call Number
X Reg - Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Undefined
P Reg • N V H X D Z C E

X X 0 0 0 0 X X 0

V 0 L U M E 2 Devices and GS/OS APPENDIXES

1/31189

GS/OS Reference (Volume 2) APDA Draft

• EXIT: via an 'RTS'
<drvr_tran_cnt - Number of bytes transferred
A Reg - Error code
X Reg - Undefined
Y Reg - Undefined
Dir Reg - GS/OS Direct Page
B Reg • Same as entry
P Reg • N V M X D I Z C E

X X 0 0 0 0 X 0 0

X X 0 0 0 0 X 1 0
No error occurred
Error occurred

flush start
using driver data
long a on
longi on

• Pass on the standard GS/OS call parameters to the supervisory driver.

tdc
sta
stz
lda
ldx

jsl
rts

end

eject

<sup_parm_ytr
<sup_parmytr+2
lsup_num
f$0002

sup drvr_disp

set pointer to supervisor parameters

get supervisor driver number
supervisor specific call
call supervisory driver

• DRIVER CALL: SHUTDOWN

• This call prepares the driver for shutdown. This may include
• closing a character device as well as releasing any and all
• system resources that may have been aquired by either a
• STARTUP or OPEN call. The driver must return an error if the
• code segment is still in use. When no error is returned, the
• driver dispatcher will purge the driver's memory segment.

• ENTRY: via a 'JSR'
<drvr dev num • Device Number of current device being accessed
<drvr_tran_cnt • SOOOOOOOO
A Reg • Call Number
X Reg • Undefined
Y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • Undefined
P Reg • N V M X D Z C

X X 0 0 0 0 X X

A P P END I X D Driver Source Code Samples

E

0

Device driver that calls a supervisor driver

1/31189

513

GSIOS Reference (Volume 2) APDA Draft

* EXIT: via an 'RTS'

shutdn

not_last

<drvr_tran_cnt - Number of bytes transferred

A Reg - Error code
X Reg - Undefined
y Reg • Undefined
Dir Reg • GS/OS Direct Page
B Reg • same as entry
p Reg • N V H X 0 I Z C

start
using
long a
longi

dec
bne

lda
clc
rts

anop
lda
sec
rts

end

X X 0 0 0 0 X 0

X X 0 0 0 0 X 1

driver_data
on
on

lstartup_count
not last

lno_error

ldrvr_busy

E
0

0

No error occurred
Error occurred

514 V 0 L U M E 2 Devices and GS/OS

1131/89

APPENDIXES

GSIOS Reference (Volume 2) APDA Draft 1/31189

Appendix E GS/OS Error Codes and Constants

This appendix lists and describes the the errors that an application can receive as a result of
making a GS/OS call. •

515

GSIOS Reference (Volume 2) APDA Draft

Column 1 in Table E-1lists the G5/05 error codes that an application can receive. Column 2lists the
predefmed constants whose values are equal to the error codes; the constants are defined in the
GS/OS interface files supplied with development systems. Column 3 gives a brief description of
what each error means.

• Table E-1 GS/05 errors

Code Constant Description

$01 badSystemCall bad GS/05 call number
$04 invalidPcount parameter count out of range
$(J1 gsosActive GS/05 is busy
$10 devNotFound device not found
$11 invalidDevNum invalid device number (request)
$~ drvrBadReq invalid request
$21 drvrBadCode invalid control or status code
$22 drvrBadParm bad call parameter
$23 drvrNotOpen character device not open
$24 drvrPriorOp~n character device already open
$25 irqTableFull interrupt table full
$26 drvrNoResrc resources not available
$1J drvriOError VOerror
$28 drvrNoDevice no device connected
$29 drvrBusy driver is busy
$2B drvrWrtProt device is write-protected
$~ drvrBadCount invalid byte count
$20 drvrBadBlock invalid block address
$2E drvrDiskSwitch disk has been switched

516 V 0 L U ME 2 Devices and GSIOS APPENDIXES

1/31/89

GS/OS Reference (Volume 2) APDA Draft 1131189

• Table E-1 GS/OS errors (continued)

Code Constant Description

$2F drvrOffLine device off line or no media present

$40 badPathSyntax invalid pathname syntax

$43 invalidRefNum invalid reference number

$44 pathNotFound subdirectory does not exist

$45 volNotFound volume not found

$46 fileNotFound file not found

$47 dupPathname create or rename with existing name

$48 volumeFull volume is full

$49 volDirFull volume directory is full

$4A badFileFormat version error (incompatible file format)

$4B badStoreType unsupported (or incorrect) storage type

$4C eofEncountered end-of-file encountered

$4D outOfRange position out of range

$4E invalidAccess access not allowed

$4F buffTooSmall buffer too small

$50 fileBusy me is already open

$51 dirError directory error

$52 unknown Vol unknown volume type

$53 paramRangeErr parameter out of range

$54 outOfMem out of memory

$57 dupVolume duplicate volume name

$58 notBlockDev not a block device

$59 invalidLevel specified level outside legal range

$SA damagedBitMap block number too large

$5B badPathNames invalid pathnames for ChangePath

$SC notSystemFile not an executable file

APPEND I X E GS/OS Error Codes and Constants 517

GSIOS Reference (Volume 2) APDA Draft 1/31189

• Table E-1 GS/OS errors (continued)

Code Constant Description

$5D osUnsupported Operating System not supported

$SF stackOverflow too many applications on stack

~ dataUnavail data unavailable
$61 endOfDir end of directory has been reached
$62 invalidClass invalid FST call class

$63 resNotFound file does not contain required resource

518 V 0 L U M E 2 Devices and GS/OS APPENDIXES

GYOS Reference (Volume 2) APDA Draft 1131189

Glossary

absolute-bank segment: A load segments that is
restricted to a particular memory bank but that can
be placed anywhere within that bank. The ORG
field in the segment header specifies the bank to
which the segment is restricted.

abstract file system: The generic file interface
that GS/OS provides to applications. Individual
file system translators convert file information
in abstract format into formats meaningful to
specific file systems, and back again.

Apple II: Any computer from the Apple II
family, including the Apple II Plus, the Apple lie,
the Apple lie, and the Apple IIGS.

Apple 3.5 drive: A block device that can read 3.5-
inch disks in a variety of formats.

AppleDisk 3.5 driver: A GS/OS loaded driver that
controls Apple 3.5 drives.

Apple 5.25 drive: A disk drive that reads 5.25-
inch disks. In this book, the essentially identical
UniDisk, DuoDisk, Disk He and Disk II drives are
all referred to as Apple 5.25 drives.

AppleDisk 5.25 drivtr: A GS/OS loaded driver
that controls Apple 5.25 drives.

application level: One of the three interface
levels of GS/OS. The application level accepts calls
from applications and may send them on to the file
system level or the device level.

application-level calls: The calls an application
makes to GS/OS to gain access to files or devices or
to set or get system information. Application-level
calls include standard GS/OS calls and Pro DOS
16-compatible calls.

arm: To provide a signal source with the
information needed to execute its signal handler.
Signals are armed with a subcall of the device call
DControl or the driver call Driver_Control.

associated file: In the ISO 9660 file format, a file
analogous to the resource fork of a GS/OS
extended file.

BASIC protocol: An 1/0 protocol for character
devices, used by some firmware-based drivers on
Apple II expansion cards.

block device: A device that reads and writes
information in multiples of one block of characters
at a time. Disk drives are block devices.

block driver: A driver that controls a block
device. Also called block device driver.

519

GSIOS Reference (Volume 2) APDA Draft I/31/89

block: (1) A unit of data storage or transfer,
typically but not necessarily 512 bytes. (2) A
contiguous region of computer memory of
arbitrary size, allocated by the Memory Manager.

cache: A portion of the Apple IIGS memory set
aside for temporary storage of frequently accessed
disk blocks. By reading blocks from the cache
instead of from disk, GS/OS can greatly speed 1/0 in
some cases.

cache priority: A number that determines how a
block is cached during a write operation.
Depending on its priority, a block may be (1) not

cached at all, (2) written both to the cache and to
disk, or (3) written to the cache only (if a deferred
write is in progress).

caching : The process of placing disk blocks in the
cache and retrieving them. GS/OS uses an LRU
caching mechanism, with a write-through cache.

call: (v.) To execute an operating system routine.
(n.) The routine so executed.

character FST: The part of the GS/OS file system
level that makes character devices appear to
application programs as if they were sequential
files.

character driver: A driver that controls a
character device. Also called character devtce
.driver.

character device: A device that reads or writes a
stream of characters in order, one at a time. The
keyboard, screen, printer, and communications port
are character devices.

class 0 calls: See ProDOS 16-compatible calls.

520 V 0 L U M E 2 Devices and GS/OS

class 1 calls: See standard GS/OS calls.

configuration Ust: A table of device-dependent
information in a device driver, used to configure a
specifiC device controlled by the driver. There are
two lists for each configurable device: a current
configuration list and a default configuration
list.

configuration script: A set of commands, either
part of a driver or in a separate module, that are
used by a configuration program to display
configuration options and allow a user to select
among them. The configuration program then
modifieS the driver's current configuration list
accordingly.

console: The main terminal of the computer; the
keyboard and screen. Through the console
driver, GS/OS treats the console as a single device.

console driver: a GS/OS character driver that
allows applications to read data conveniently from
the keyboard or write it to the screen.

Console Input routine: The part of the
console driver that accepts characters from the
keyboard. There are two basic input modes: Raw
mode and User Input mode.

Console Output routine: The part of the
console driver that writes characters to the
screen.

Control Panel program: A text-based Apple
IIGS desk accessory that allows the user to make
certain system settings, such as changing cache
size and selecting external or internal firmware for
slots. See also Disk Cache program.

GSIOS Reference (Volume 2) APDA Draft 1/31/89

control character: A nonprinting character that
controls or modifJeS the way information is
printed or displayed.

control code: (1) a control character. (2) A
parameter in the device call DControl (and the
driver call Driver_ Control) whose value determines
which control subcall is to be made.

control Ust: A buffer used in some control
subcalls to pass data to devices.

controlling program: A program that loads and
runs other programs, without itself relinquishing
control. A controlling program is responsible for
shutting down its subprograms and freeing their
memory space when they are finished. A shell, for
example, is a controlling program.

current configuration list: One of the two
configuration lists for each configurable device
contolled by a driver; it contains the present values
for all the device's configuration parameters.

data fork: The part of an extended file that
contains data created by an application.

default configuration list: One of the two
configuration lists for each device contolled by a
driver; it contains the defauh configuration
settings for the device.

deferred write: A process in which GS/OS writes
blocks to the cache only, deferring writing to disk
until all blocks to be written are in the cache. A
deferred write session is started with a
BeginSession call; it is ended (and all cached blocks
are written to disk) with an EndSession call.

desktop Interface: The visual interface that a
typical Apple JIGS or Macintosh application
presents to the user.

device: A physical piece of equipment that
transfers information to or from the Apple IIGS.
Disk drives, printers, mice, and joysticks are
external devices. The keyboard and screen are also a
device (the console).

device call: see GS/OS device calls.

device characteristics word: Part of the device
information block, this word describes some
fundamental characteristics of the device, such as
whether its driver is loaded or generated, and what
access permissions it allows.

device dispatcher: The component of GS/OS
that controls all access to devices and device
drivers. The device dispatcher handles
informational calls about devices, passes on 1/0
calls to the proper driver, starts up and shuts down
device drivers, and maintains the device list.

device driver: A driver that accepts driver calls
from GS/OS and either (1) controls a hardware
device directly, or (2) accesses a supervisory
driver that in tum controls the hardware.

device ID: A numerical indication of a general type
of device, such as Apple 3.5 drive or SCSI CD-ROM
drive.

device information block (Dm): A table of
information describing a device. It is stored in the
device's driver and used by GS/OS when accessing
or referring to the device.

G L 0 S SA R Y 521

GSIOS Reference (Volume 2) APDA Drajl 1/31/89

device level: One of the three interface levels
of GS/OS. The device level mediates between the
file system level and individual device drivers.

device list: A list of all installed devices; it is
actually a linked list of pointers to all devices' DIBs.
This list is constructed and maintained by the
device dispatcher.

Device Manager. The part of GS/OS that
provides application-level access to devices and
device drivers.

device number: The number by which a device is
specified under GS/OS. It is the position of the
device in the device list.

om: See device information block.

direct page: An area of memory used for fast
access by the microprocessor; it is the 256
contiguous bytes starting at the address specified
in the 65816 microprocessor's Direct register. Direct
page is the Apple IIGS equivalent of the standard
Apple II zero page; the difference is that it need
not be page zero in memory. See also GS/OS
direct page.

direct-page/stack segment: A load segment
used to preset the location and contents of the
direct page and stack for an application.

directory entry: See file entry.

directory flle: A file that describes and points to
other files on disk. Compare standard flle,
extended file.

522 V 0 L U M E 2 Devices and GS/OS

disarm: To notify a signal source that a
particular signal handler will no longer process
occurrences of the signal. Signals are disarmed with
a subcall of the device call DControl or the driver
call Driver_ Control.

disk cache: see cache.

Disk cache program: A graphics-based Apple
IIGS desk accessory that allows the user to set the
cache size. See also Control Panel program.

disk-switched: A condition in which a disk or
other recording medium has been removed from a
device and replaced by another. Subsequent reads
or writes to the device will access the wrong
volume unless the disk-switched condition is
detected.

dormant: Said of a program that is not being
executed, but whose essential parts are all in the
computer's memory. A dormant program may be
quickly restarted because it need not be loaded
from disk.

driver. A program that handles the transfer of
data to and from a peripheral device, such as a
printer or disk drive. GS/OS recognizes two types
of drivers in this regard: device drivers and
supervisory drivers.

driver calls: A class of low-level calls, not
accessible to applications, that access GS/OS device
drivers. Driver calls are made from within GS/OS;
all driver calls pass through the device dispatcher.

dynamic segment: A segment that can be loaded
and unloaded during execution as needed. Compare
static segment

GSIOS Reference (Volume 2) APDA Draft 1131/89

extended file: a named collection of data
consisting of two sequences of bytes, referred to
by a single directory entry. The two different byte
sequences of an extended file are called the data
fork and the resource fork.

extended SmartPort protocoli see SmartPort
protocol.

file: An ordered collection of bytes that has
several attributes under GS/OS, including a name
and a file type.

file entry: A component of a directory file that
describes and points to some other me on disk.

flle system level: One of the three interface
levels of GS/OS. The file system level consists of
file system translators (FSTs), which take calls
from the application leve~ convert them to a
specific file system format, and send them on to
the device leveL

file system translator (FST): A component of
GS/OS that converts appliCation calls into a specific
file system format before sending them on to
device drivers. FSTs allow applications to use the
same calls to read and write mes for any number of
file systems.

fllename: The string of characters that identifies
a particular file within its directory. Compare
pathname.

firmware 1/0 driver: A character or block driver
on an expansion card in a slct (or in the slot's
equivalent internal-port ftrmware). GS/OS creates
generated drivers to provide applications and
FSTs with a consistent interface to firmware 1/0
drivers.

format-option entry: A description of a single
formatting option for a particular device supported
by a device driver. Part of the format options
table, the format-option entry includes such
information as the interleave factor, the block size,
and the number of blocks supported by the device.

format options table: A table in a device
driver that contains formatting parameters for a
device. The format options table contains a
format-option entry for each supported format.

FSTSpedflc: A standard GS/OS call whose
function is defined individually for each FST.

generated drivers: Drivers that are constructed
by GS/OS itself, to provide a GS/OS interface to pre
existing, usually farmware-based peripheral-card
drivers.

GS/OS: A 16-bit operating system developed for
the Apple IIGS computer. GS/OS replaces ProDOS
16 as the preferred Apple IIGS operating system.

GS/OS calls: See standard GS/OS calls.

GS/OS device calls: A subset of the standard
GS/OS calls, they bypass the flle system level
altogether, giving applications direct access to
devices and device drivers.

GS/OS direct page: A portion of bank $00
memory used as a direct page by GS/OS. Some
parts of the GS/OS direct page are used to pass
parameters to device drivers and supervisory
drivers.

GS/OS driver calls: see driver calls.

G L 0 S SA R Y 523

GSIOS Reference (Volume 2) APDA DraJ! 1/31/89

header: In object module format, the first part
of every segment Following the header, each
segment consists of a sequence of records.

High Sierra: The High Sierra Group format; a
common file format for files on CD-ROM compact
discs. Similar to the ISO 9660 international
standard format.

High Sierra FST: The part of the GS/OS tlle
system level that gives applications transparent
access to files stored on optical compact discs (CD
ROM), in the most commonly used file formats:
High Sierra and ISO 9660.

initialization segment: A segment in a load file
that is loaded and executed independently of the
rest of the program. It is commonly executed
first, to perform any initalization that the program
may require.

input port: In the console driver, a data structure
that contains all of the information about the
current input

install: For an interrupt handler, to connect it to
its interrupt source, with the GS/OS call Bindlnt (or
the ProDOS 16 call ALLOC_INTERRUP'O. For a
signal handler, to connect it to its signal source,
with the control subcall ArmSignal (or the
Arm_Signal). For a device (or driver), to put its DIB
into the device list, thereby making it accessible
to GS/OS and applications.

interface level: A conceptual division in the
organization of GS/OS. GS/OS has three interface
levels: the appUcation level, the file system
level, and the device leveL The application level
and the device level are external interfaces, whereas
the file system level is internal to GS/OS.

524 V 0 L U M E 2 Devices and GS/OS

interrupt: A hardware signal sent from an
external or internal device to the CPU. When the
CPU receives an interrupt, it suspends execution of
the current program, saves the program's state,
and transfers control to an interrupt handler.
Compare signal

interrupt dJspatc:hing: The process of handing
control to the appropriate interrupt handler after
an interrupt occurs.

interrupt handler: a program that executes in
response to a hardware interrupt. Interrupts and
interrupt handlers are commonly used by device
drivers to operate their devices more efficiently and
to make possible simple background tasks such as
printer spooling. Compare signal handler.

interrupt source: Any hardware device that can
generate an interrupt, such as the mouse or serial
ports. Compare signal source.

inverse text: Text displayed on the screen with
foreground and background colors reversed:
instead of the usual light characters on a dark
background, inverse text is in the form of dark
characters on a light background.

ISO 9660: An international standard that specifies
volume and file structure for CD-ROM discs. ISO
9660 is similar to the High Sierra format

jump table segment: A segment in a load file
that contains all references to dynamic segments
that may be called during execution of that load
file. The jump table segment is created by the
linker. In memory, the loader combines all jump
table segments it encounters into the jump table.

GSIOS Reference (Volume 2) APDA Draft 1/31189

library file: An object file containing program
segments, each of which can be used in any
number of programs. The linker can search
through the library file for segments that have
been referenced in the program source file.

linker: A program that combines files generated
by compilers and assemblers, resolves all symbolic
references, and generates a file that can be loaded
into memory and executed.

load file: The output of the linker. Load files
contain memory images that the System Loader
can load into memory, together with relocation
dictionaries that the loader uses to relocate
references.

loaded drivers: Drivers that are written to work
directly with GS/OS, and that are usually loaded in
from the system disk at boot time.

long prefix: A GS/OS prefix whose maximum
total length is approximately 8,000 characters.
Prefoc designators 8/ through 311 refer to long
prefoces. Compare short prefix.

LRU: Least-recently used. The caching method
employed by GS/OS. When the cache is full and
another block needs to be written to it, GS/OS
purges the least-recently used block(s}-the one(s)
with the longest time since last access-to make
room for the new block.

media variables: The set of multiple formatting
options supported by a driver.

medium: (1) A disk, tape, or other object on which
a storage device reads or writes data. Some media
are removable, others are foced. (2) A material, such
as metal-oxide tape, from which storage objects are
constructed.

Memory Manager: An Apple IIGS tool set that
controls all allocation and deallocation of memory.

minimum parameter count: The minimum
permitted value for the total number of
parameters in the parameter block for a standard
GS/OScall.

MouseText: Special characters, such as check
marks and apples, used in some applications.

newline character: Any character (most typically
a return character) that indicates the end of a
sequence of bytes.

newline mode: A mode of reading data in which
the end of the data (the termination of the Read
call) is caused by reading a newline character (and
not by a specific byte count).

No-wait mode: A mode for reading characters in
which a driver accepts whatever characters are
immediately available and then terminates a Read
call, whether or not the total number of requested
characters was read. Ne>wait mode allows an
application to continue running while input is
pending. Compare Wait mode.

object file: The output from an assembler or
compiler, and the input to a linker. It contains
machine-language instructions.

object module format (OMF): The general
format followed by Apple IIGS object files, library
files, and load files.

GLOSSARY 525

GSIOS Reference (Volume 2) APDA Draft 1/31/89

paramcttr block: A specifically fcrmatted t2ble
that is part of a GS/OS call. It occupies a set of
contiguous bytes in memory and consists of a
number of fields. These fields hold information
that the calling program supplies to the GS/OS
function it calls, as well as infonnation returned by
the function to the caller.

parameter count: The total m1mber of
pararrleters in a block. Also called pCaunt. See also
minimum parameter count.

partition map: A data structure describing the
state of a specific partition on a device.

Pascall.l protocol: An 1/0 protocoi far
character devices, used by some finnware-based
drivers on Apple II expansion cards.

pathnamc: The complete name by which a file is
specified. It is a sequence of filenames separated
by path.name separators, starting with the
filename of the volume directory and proceeding
through any sutxlirectories that a program must
follow to locate the file. ·

pathname segment: The segment in a ioad file
that contains the cross-references between load
files referenced by number (in the jump table
segment) and their pathnames Oisted in the file
directory). The pathnarne segment is created by
the linker.

pathname separator: The character slash(/) or
colon (:). Pathnarne separators separa.:e filenames
in a pathnarne.

526 V 0 L U M E 2 Devices and GSIOS

position-independent: Code that is written
specifically so that its execution is unaffected by
its position in memory. It can be moved without
needing to l:.e relOCt!ted

prefix: A portion of a pathllame, starting with a
volume name and ending with a subdirectory
name. A prefix always starts with a pathname
separator because a volume directory name
always starts with~. separator.

prefix designator: A number (0-31) or the
asterisk character('), followed by a pathname
separator. PrefiX designators are a shorthand
method for referring to prefiXes.

pre.flx number: See prefix designator.

ProDOS: (1) A general term describing the family
of operating systems deveioped for Apple II
computers. It includes both ProDOS 8 and ProDOS
16; it does not include DOS 3.3 or SOS. (2) The
ProOOS flle system.

ProOOS 8: The 8-bit.ProDOS operating :system,
originally developed for standard Apple li
computers but compatible with the Apple IIGS. In

some earlier Apple II documePtation, ProDOS 8 is
cailed si:rr1ply ProDOS.

ProDOS file system: The general format of files
created and read by applications that run under
ProDOS 8 or PmDOS 16 on Apple!! computers.
Some aspa."ts of the ProDOS file system are similar
to the GS/OS ab§trart file system.

ProDOS FST: The part of the GS/OS file system
bel that implements the ProDOS file system.

GSIOS Reference (Volume 2) APDA Draft 1131189

ProDOS protocol: An 1/0 protocol for block
devices, used by some firmware-based drivers on
Apple II expansion cards.

ProDOS 16: The first 16-bit operating system
developed for the Apple IIGS computer. ProDOS 16
is based on ProDOS 8. - ·

ProDOS 16-compatible calls: Also called
ProDOS 16 calls or class 0 calls, a Sf\."""ndary set of
:1· •• lication-level calls in GS/OS. They are
identical to the ProDOS 16 system calls described in
the Apple JIGS ProDOS 16 Reference. GSIOS
supports these calls so that existing ProDOS 16
applications can run without modification under
GS'ai.

purge: To delete the contents of a memory block.

quit return stack: an internal GS/OS stack that
contains the .user IDs of programs that have quit
but wish to be launched again, once the programs
currently running finish executing.

Raw mode: In the console driver, one of two
Console Input routines. Raw mode allows for
simple keyboard input.

record: In object module format, a component of
a segment. Records consist of either program code
or relocation information used by the linker or
System Loader.

reload: To re.:execute a program whose user ID
has been pulled off the quit return stack but
which is not presently in a dormant state in
memory. The System Loader can reload a program
quickly because it has the program's pathname
information; however, it is much faster to restart
a dormant program than to reload it from disk.

reload segment: A load-file segment that is
always loaded from the file at startup, regardless
of whether the rest of the program is loaded from
file or restarted from memory. Reload segments
contain initialization information, without which
certain types of programs would not be
restartable.

relocate: To modify a file or segment at load
time so that it will execute correctly at its curren~
memory location. Relocation consists of patching
the proper values onto address operands. The
loader relocates load segments when it loads them
into memory.

resource fork: One of the forks of an extended
file. In the Macintosh file systems, the resource ·
fork contains specifically formatted, generaily
static data used by an application (such as menus,
fonts, and icons).

restart: To re-execute a program dormant in
memory. Restarting is much faster than reloading
because disk access is not required (unless the
dormant application contains reload segments).

restartable: Said of an application that initializes
itself and makes no assumptions about machine
state when it executes. Only restartable
applications can be restarted successfully from a
dormant state.

restart-from-memory flag: A nag, part ofthe
Quit call, that lets the System Loader know
whether the quitting program can be restarted
from memory if it is executed again.

return flag: A nag, part of the Quit call, that
notiftes GS!OS whether control should eventually
return to the program making the Quit call.

GLOSSARY 5r/

GSIOS Reference (Volume 2) APDA Draft 1/31/89

run-time lllir-!.ry !llt.~ A loo,d me con:zining
program segrnen~ach of which can he 11sed in
any number of programs-that the System Loader
loads dr:amb.lly whea they are needed.

screen bytes: The actual values, as stored tn

screen memory, of characters displayed on screen ,
(in Apple IIGS text mode).

segment: A component of an OMF me, consiSting
of a header and a body. In object tiles, each
segment incorporates one or more subroutines. In
load mes, each :seg:nen~ L1Corp.>rate5 one cr more
object segments.

separator: See pathname separator.

sess!on: see deferred write.

short pre~ , A GSIOS prefur whos~ naximum
total length is 63 charactef'.;. Prefix de;igr.:ator5 •;
and 0/ through 7 I refer to ${!0: ll)refmes. Cum pare
long ;lreflx.

SIB: See :,upervi.oor fu.fonnad•Ja Mod~.

signal: A message from one software subsystem
to a seCi.Xu.i that somcti1ing of hu,r:resl tu :.he
second has occtJned. Comp~e wtt>tt'Upt

signal handler: A program that executes in
response to the occurrence of a s1gc1<l'l, A, i~o;cfd
feature vf signal handlers is ~hai., u;-thke intem1pt
handlers, they caa make GS/OS cal!:i. Compare
intemipt li311dier.

signal queue: A portion of memory that holds a
signal until it is ready to be handled GS/OS does
not allow signals to be handled until GS/OS is free
to accept calls.

528 V 0 L U M E 2 Devices and GS/OS

signal source: A software routine that
announces a signal to GS/OS. Compare interrupt
source.

SmartPort pi'IMOCI!Jll: An 1/C protocol fer both
block devices and character d.evices, used by the
Apple IIGS disk port and by sorr.c fiim'Jft'iC"based
drivers on Apple II expansion cards. The standard
SmartPort protocol uses two-byte poiniers ;md can
directly access only bank $00 of Apple HGS

memory; the extenaed SmartPort protocol uses
four-byte pointers, so ~bat d1ta can he accessed
anywhere in Apple HGS mem01y

special memory: On an Apple HGS, all of banks
$00 and WI, and d! display r:nemory,in banks $EO
and $El.

speed rtbss: Pt.rt of the dr.~r.e cltua::tcrlstics
wor~ it is a tw(Tbit field !.hat ~pedfies what
proo;sSO(speed th~; device requires.

stack:· A list in which entries are adderi (pushed)
and removed (pulled) at one end only (the top of
tbe stack), Gmsiq; l.hem to be rerooved in last-in,
first-out (UFO) order. The tenn the stack usually
refers io the particular st2.ck pointed to by the
65C816's st2tck register •.

standard Apple II: Any Apple'H<.:ompuh~r that
is not an Apple IIGS. Sinte previous members of
the Apple II family share many characteristics, it is
useful to dist.inguif;h iliern 2.5 :1 ~roup from the
Apple IIGS. A standard Apple II may also be called
an 8-bit Apple II, because of the 8-bit registers in
its 6502 or 65C02 microprocessor.

standard file: A named collection of data
consisting of a single sequence of bytes. Compare
extended file, directory file.

GSIOS Reference (Volume 2) APDA Draft 1/31189

standard GS/OS calls: Also called class 1 calls or
simply GSIOS caJ/s: the primary set of
application-level calls in GS/OS. They provide
the full range of GS/OS capabilities accessible to
applications. Besides GS/OS calls, the other
application-level calls available in GS/OS are ProDOS
16-compatible calls. · · ·

static segment: A segment that is loaded only at
program bqot time and is not unloaded during
execution ... Compare dynamic segment.

status code: a parameter in the device call DStatus
(and the driver call Driver_Status) whlJSe value
determines which status subcall is to be made.

·' .(

status list: A buffer used by drivers to return
data from some status subcalls.

status word: A parameter returned by the status .
subcall GetDeviCeStatus (or Get...;Device~Status)
that describes some aspects of a device's current
status, such as whether it is busy o~. whether it is
interrupting.

subcall: 1An irlstance of a device call or driver call in ;
which one of the call input parameters selects,
which routifie is to be·invoked; For example; if the:
parameter statusCode in the device call DStatus
(or the driver call Driver_Status) has the value $0003,
the status subcall GetformatOptioris (or ·. ·
Get_Format_ Options). is ~ecuted

superVisOr: See supervisory driver.

. ·~· .{_,.',

su perrisor dJspatcher: The component of
GS/OS that t.'OiltrOis ~II access'to ~uperviscty
drivers. lbe supervisor dispatcher handles
informational· calls about supervisory drivers.
passes on 1/0 calb from device drivers, starts up
and shuts down supervisory drivers, and maintains
the supervisor list. Compare device
dispatcher.

supervisor execution environment: The
execution environment set up by the supervisor · ·
dispatche(.f()r each superVisory-driver call.

supervisor ID: A numerical indication of the
general type of supervisory driver, such as
AppleTalk or SCSI.

supervisor infonnation block (SIB): A table
of information describing a supervisory driver. It is
stored in the s11pervisory driver and m:ed by C.S/OS ..
when accessing or refen·ing to the driver. Compare. .
device information block. ·

supervisor list: A list of pointers to the SIBs of

all installed supervisory drivers. f.ompare.device
list.

'
supervisor number: The identifying number for
each installed supervisory driverc It is equ_iyalent to
the driver's.position in the supervisor list.

supervisory driver: A driver that arbitrates
supervisory-driver calls from separate device
drivers and dispatches them to the proper devices. ·
Supervisory drivers are used when several individal
device drivers must access several different devices
through a single llardware controller .

GLOSSARY 529

.. '.I

GSIOS Reference (Volume 2) APDA Draft 1/31/89

supervisory-driver calls: Calls that a
supervisory driver accepts frOm its individual
device drivers. They are different from driver
caUs, although many may be direct translations of
driver calls.

System file: Under ProDOS 8, any file of ProDOS
file type $FF whose name ends with •.SYSTEM•·.
In GS/OS, several different types of files are defined
as system files.

System Loader: The program that loads all other
programs and program segments into memory and
prepares them for execution.

system scrrice call: A low-level call in a common
format used by internal components of GS/OS
such as FSTs-and used between GS/OS and device
drivers.

tetmiaator: A character that terminates a
console driver Read call. The console driver
permits more than one terminator character and
also can note the state of modifier keys in
considering whether a character is to be interpreted
as a terrmnator. Compare newllne character.

tenninator list: A list of terminator characters
kept track of by the console driver.

text port: In the console driver, a rectangular
portion of the screen in which all console output
operations occur.

unclaimed Interrupt: An interrupt that is not
recognized and acted on by any interrupt
handlers.

UniDisk 3.5 drive: An intelligent block device
that can read 3.5-inch disks in a variety of formats.

530 V 0 L U M E 2 Devices and GS/OS

UoiDisk 3.S driver: A GS/OS loaded driver that
controls UniDisk 315 drive1.

,. . x··' .. , ' .
user ID: ·A number, assigned by the User ID
Manager I that Identifies the: owner of every
allocated block 6f'memoriin the Apple iiGS.
Generally, each application has a particol<ar u:;er 10,
with which all its allocat<;d memory is identified.
The user ID is also used as a general identif.!fr of
the program itself.

User Input mode: One of the two Coasole
Input routines, this mode! allows for text"line
editing and applicatioO-deflned temtinator Keys.

vector reference number (VRN): The unique
identifier given to each Interrupt source that is
explicitly identifiable by the firmware. VRNs are
used to associate interrupt sources with Interrupt
handlets.

volume: A named collection of files on a logical
storage device.

volume ID: A number assigned to every volume
on an installed device.

Wait mode: A mode for reading characters in
which a driver does not terminate a Read call until
the total number of requested characters is read.
In Wait mode, normal program execution is
suspended until input is completed. Compare No
wait mode.

GSIOS Reference (Volume 2) APDA Draft

write-through: The kind of cache implemented
by GS/OS. \l'hen a driver writes a block·of data; ii /' >i ·:tJ
writes the same data to the block in the cache and· ;~inn_.
the equivalent. block o,n lbe qisk. Never dQes the
block in the cache oo.n~iA ,!d,~tion mere r~ent .}:0 '.t

. ·" • • . ' ' ·' ,._, .. _- ' i. j • ! .:.·

than the dis~- b!odc (t,mless a deferred write
... - ' . . -. l \• .. · .. -~.'- . .:. . - J.. ;. ~::

session is in progress),. . . c. :•· ;,r .: . , , .. i)
Zero pagei 'AJsb;called alisiiluitn:ero page: The
first page (256 bytes)'c>f memOry iri a· standard

. . I -~ .'

Apple II computer (or in the Apple IIGS computer· ·
when running _+standard Apple II program).
Because the h~h~rde~_bite Or.any addreSs in this
part of memOry is zero •. only a single byt~ is needed . · • · ·
to specify a zero-page addre5s:eompare .
direct page{''· ... -l >::::vl· _,._;·.-· , : t

.. :' __ -. ~·-·

_, .. ·

. :'' ::~_;f .

• . ·' • __ 4 ~-

.· ..

.. ~~ r · .: · i ·.~.-

• .l' ,: !.'·

1/31/89

;._: ...
...... ,J: .. / ;-~- .. -··: .. • .•. .)'

u·
::\ ..

. : . . ::.:·.

. ; '·. ~ • i

···'. ~·- ..

. v
... : ,. .. -

!.- •.. .: , ·-i-.• . .:.

._,.1 .'

GLOSSARY 531

r

